Sample records for nano-sizedd oxide dispersions

  1. Dispersion and interaction of graphene oxide in amorphous and semi-crystalline nano-composites: a PALS study

    NASA Astrophysics Data System (ADS)

    Maurer, Frans H. J.; Arza, Carlos R.

    2015-06-01

    The influence of dispersion and interaction of Graphene Oxide (GO) in semicrystalline Polyhydroxy butyrate (PHB) and glassy amorphous Poly(tBP-oda) is explored by Positron Annihilation Lifetime Spectroscopy (PALS). The ortho-Positronium lifetimes which represent the main free volume hole size of both polymers are mainly affected by the large differences in internal stresses built up by the shrinkage of the polymers during their preparation, restricted by the platelet structure of GO. The ortho-Positronium intensities, which represent the ortho-Positronium formation probabilities, suggest a strong dependency of on the dispersion of the nano-particles and their aspect ratio.

  2. Effect of morphology and solvent on two-photon absorption of nano zinc oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavitha, M.K.; Haripadmam, P.C.; Gopinath, Pramod

    Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novelmore » precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.« less

  3. Crossover from disordered to core-shell structures of nano-oxide Y{sub 2}O{sub 3} dispersed particles in Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, M. P.; Wang, L. M.; Gao, F., E-mail: gaofeium@umich.edu

    Molecular dynamic simulations of Y{sub 2}O{sub 3} in bcc Fe and transmission electron microscopy (TEM) observations were used to understand the structure of Y{sub 2}O{sub 3} nano-clusters in an oxide dispersion strengthened steel matrix. The study showed that Y{sub 2}O{sub 3} nano-clusters below 2 nm were completely disordered. Y{sub 2}O{sub 3} nano-clusters above 2 nm, however, form a core-shell structure, with a shell thickness of 0.5–0.7 nm that is independent of nano-cluster size. Y{sub 2}O{sub 3} nano-clusters were surrounded by off-lattice Fe atoms, further increasing the stability of these nano-clusters. TEM was used to corroborate our simulation results and showed a crossover frommore » a disordered nano-cluster to a core-shell structure.« less

  4. Weatherability and leach resistance of wood impregnated with nano-zinc oxide

    Treesearch

    Carol A. Clausen; Frederick Green; S. Nami Kartal

    2010-01-01

    Southern pine specimens vacuum-treated with nano-zinc oxide (nano-ZnO) dispersions were evaluated for leach resistance and UV protection. Virtually, no leaching occurred in any of the nano-ZnO–treated specimens in a laboratory leach test, even at the highest retention of 13 kg/m3. However, specimens treated with high concentrations of nano-ZnO...

  5. Zirconium doped nano-dispersed oxides of Fe, Al and Zn for destruction of warfare agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stengl, Vaclav, E-mail: stengl@uach.cz; Houskova, Vendula; Bakardjieva, Snejana

    2010-11-15

    Zirconium doped nano dispersive oxides of Fe, Al and Zn were prepared by a homogeneous hydrolysis of the respective sulfate salts with urea in aqueous solutions. Synthesized metal oxide hydroxides were characterized using Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). These oxides were taken for an experimental evaluation of their reactivity with sulfur mustard (HD or bis(2-chloroethyl)sulfide), soman (GD or (3,3'-Dimethylbutan-2-yl)-methylphosphonofluoridate) and VX agent (S-[2-(diisopropylamino)ethyl]-O-ethyl-methylphosphonothionate). The presence of Zr{sup 4+} dopant can increase both the surface area and the surface hydroxylation of the resultingmore » doped oxides, decreases their crystallites' sizes thereby it may contribute in enabling the substrate adsorption at the oxide surface thus it can accelerate the rate of degradation of warfare agents. Addition of Zr{sup 4+} converts the product of the reaction of ferric sulphate with urea from ferrihydrite to goethite. We found out that doped oxo-hydroxides Zr-FeO(OH) - being prepared by a homogeneous hydrolysis of ferric and zirconium oxo-sulfates mixture in aqueous solutions - exhibit a comparatively higher degradation activity towards chemical warfare agents (CWAs). Degradation of soman or VX agent on Zr-doped FeO(OH) containing ca. 8.3 wt.% of zirconium proceeded to completion within 30 min.« less

  6. Characterization of nano-sized oxides in Fe-12Cr oxide-dispersion-strengthened ferritic steel using small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Han, Young-Soo; Mao, Xiaodong; Jang, Jinsung; Kim, Tae-Kyu

    2015-04-01

    The ferritic ODS steel was manufactured by hot isostatic pressing and heat treatment. The nano-sized microstructures such as yttrium oxides and Cr oxides were quantitatively analyzed by small-angle neutron scattering (SANS). The effects of the fabrication conditions on the nano-sized microstructure were investigated in relation to the quantitative analysis results obtained by SANS. The ratio between magnetic and nuclear scattering components was calculated, and the characteristics of the nano-sized yttrium oxides are discussed based on the SANS analysis results.

  7. Weatherability and Leach Resistance of Wood Impregnated with Nano-Zinc Oxide

    NASA Astrophysics Data System (ADS)

    Clausen, Carol A.; Green, Frederick; Nami Kartal, S.

    2010-09-01

    Southern pine specimens vacuum-treated with nano-zinc oxide (nano-ZnO) dispersions were evaluated for leach resistance and UV protection. Virtually, no leaching occurred in any of the nano-ZnO-treated specimens in a laboratory leach test, even at the highest retention of 13 kg/m3. However, specimens treated with high concentrations of nano-ZnO showed 58-65% chemical depletion after 12 months of outdoor exposure. Protection from UV damage after 12 months exposure is visibly obvious on both exposed and unexposed surfaces compared to untreated controls. Graying was markedly diminished, although checking occurred in all specimens. Nano-zinc oxide treatment at a concentration of 2.5% or greater provided substantial resistance to water absorption following 12 months of outdoor exposure compared to untreated and unweathered southern pine. We conclude that nano-zinc oxide can be utilized in new wood preservative formulations to impart resistance to leaching, water absorption and UV damage of wood.

  8. Oxide dispersion strengthened ferritic steels: a basic research joint program in France

    NASA Astrophysics Data System (ADS)

    Boutard, J.-L.; Badjeck, V.; Barguet, L.; Barouh, C.; Bhattacharya, A.; Colignon, Y.; Hatzoglou, C.; Loyer-Prost, M.; Rouffié, A. L.; Sallez, N.; Salmon-Legagneur, H.; Schuler, T.

    2014-12-01

    AREVA, CEA, CNRS, EDF and Mécachrome are funding a joint program of basic research on Oxide Dispersion Strengthened Steels (ODISSEE), in support to the development of oxide dispersion strengthened 9-14% Cr ferritic-martensitic steels for the fuel element cladding of future Sodium-cooled fast neutron reactors. The selected objectives and the results obtained so far will be presented concerning (i) physical-chemical characterisation of the nano-clusters as a function of ball-milling process, metallurgical conditions and irradiation, (ii) meso-scale understanding of failure mechanisms under dynamic loading and creep, and, (iii) kinetic modelling of nano-clusters nucleation and α/α‧ unmixing.

  9. Effect of graphene oxide nano filler on dynamic behaviour of GFRP composites

    NASA Astrophysics Data System (ADS)

    Pujar, Nagabhushan V.; Nanjundaradhya, N. V.; Sharma, Ramesh S.

    2018-04-01

    Nano fillers like Alumina oxide, Titanium oxide, Carbon nano tube, Nano clay have been used to improve the mechanical and damping properties of fiber reinforced polymer composites. In the recent years Graphene oxide nano filler is receiving considerable attention for its outstanding properties. Literature available shows that Graphene oxide nano filler can be used to improve the mechanical properties. The use of Graphene oxide in vibration attenuation by enhancing the passive damping in fiber reinforced polymer composite has not been fully explored. The objective of this work is to investigate the dynamic behaviour of Glass fiber-reinforced composite embedded with Graphene oxide nano filler. Graphene oxide is dispersed in epoxy resin with various concentration (0.1%, 0.5% and 1%wt) using ultra-sonification process. Composite laminates were made using the traditional hand-lay-up followed by vacuum bag process. Experimental modal analysis using traditional `strike method' is used to evaluate modal parameters using FFT analyzer and Data Acquisition System. Experiments were carried out for two different fiber orientations viz 0 ➙ & 45 ➙ and two boundary conditions (Free-Free and Cantilever). The modal parameters such as natural frequency, mode shape, damping ratio were studied. This research work demonstrates the vibration damping behaviour with incorporation of Graphene oxide and provides a basic understanding of the damping characteristics in design and manufacture of high performance composites.

  10. Synthesis and Oxidation of Silver Nano-particles

    DTIC Science & Technology

    2011-01-01

    solution (20%wt propyl alcohol, 5%wt hydrochloric acid and 5%wt stannous chloride in water). Scheme 1b and c illustrate the sensitization and silver... Synthesis and Oxidation of Silver Nano-particles Hua Qi*, D. A. Alexson, O.J. Glembocki and S. M. Prokes* Electronics Science and Technology...energy dispersive x-ray (EDX) techniques. The results Quantum Dots and Nanostructures: Synthesis , Characterization, and Modeling VIII, edited by Kurt

  11. Gas sensing performance of nano zinc oxide sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Shiva, E-mail: shivasharmaau@gmail.com; Chauhan, Pratima, E-mail: mangu167@yahoo.co.in

    We report nano Zinc Oxide (ZnO) synthesized by sol-gel method possessing the crystallite size which varies from 25.17 nm to 47.27 nm. The Scanning electron microscope (SEM) image confirms the uniform distribution of nanograins with high porosity. The Energy dispersion X-ray (EDAX) spectrum gives the atomic composition of Zn and O in ZnO powders and confirms the formation of nano ZnO particles. These factors reveals that Nano ZnO based gas sensors are highly sensitive to Ammonia gas (NH{sub 3}) at room temperature, indicating the maximum response 86.8% at 800 ppm with fast response time and recovery time of 36 sec and 23 secmore » respectively.« less

  12. [Effect of stability and dissolution of realgar nano-particles using solid dispersion technology].

    PubMed

    Guo, Teng; Shi, Feng; Yang, Gang; Feng, Nian-Ping

    2013-09-01

    To improve the stability and dissolution of realgar nano-particles by solid dispersion. Using polyethylene glycol 6000 and poloxamer-188 as carriers, the solid dispersions were prepare by melting method. XRD, microscopic inspection were used to determine the status of realgar nano-particles in solid dispersions. The content and stability test of As(2)0(3) were determined by DDC-Ag method. Hydride generation atomic absorption spectrometry was used to determine the content of Arsenic and investigated the in vitro dissolution behavior of solid dispersions. The results of XRD and microscopic inspection showed that realgar nano-particles in solid dispersions were amorphous. The dissolution amount and rate of Arsenic from realgar nano-particles of all solid dispersions were increased significantly, the reunion of realgar nano-particles and content of As(2)0(3) were reduced for the formation of solid dispersions. The solid dispersion of realgar nano-particles with poloxamer-188 as carriers could obviously improve stability, dissolution and solubility.

  13. UV stabilization of wood by nano metal oxides dispersed in propylene glycol.

    PubMed

    Nair, Sreeja; Nagarajappa, Giridhar B; Pandey, Krishna K

    2018-06-01

    Nanoparticles of some of the metal oxides are known to have high UV protective efficiency. The UV filtering efficiency of nanoparticles invariably depends on their size and stability in the dispersion. In the present work, a stable dispersion of nanoparticles of three metal oxides, zinc oxide (ZnO), cerium oxide (CeO 2 ) and titanium dioxide (TiO 2 ), was prepared in propylene glycol (PG) using ultrasonication. The method is easy and useful as no additional surfactant or dispersant is needed. The particle size and its distribution was confirmed by Scanning Electron Microscopy and Dynamic Light Scattering. The stability of dispersion was assessed by UV-visible absorption spectroscopy. The UV stability of wood surfaces of Wrightia tinctoria coated with nanodispersions of ZnO, CeO 2 and TiO 2 was evaluated under laboratory conditions in an accelerated weathering tester. Changes in the colour and FTIR spectra of exposed specimens were measured periodically. Rapid colour darkening (yellowing) was observed in uncoated and PG coated specimens. In contrast, nanodispersion coated specimens prevented photo-yellowing considerably with significant reduction in colour changes examined by CIE L*, a*, b* and ΔE*. Increase in concentration of nanoparticles in the dispersion imparted higher resistance to UV induced degradation. However, increased concentration of nanoparticles reduced the transparency of the coating. FTIR analysis indicated rapid degradation of lignin in uncoated and PG coated specimens due to UV exposure. Coating of wood surfaces with nanodispersions restricted lignin degradation. The study also demonstrates the potential of propylene glycol as a dispersant for developing stable and efficient UV protective nanodispersions for wood coating. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Investigating effects of nano cerium oxide reinforcement on mechanical properties of composite based on natural rubber

    NASA Astrophysics Data System (ADS)

    Bao, Le Quoc; Phan, Vu Hoang Giang; Khuyen, Nguyen Quang

    2018-04-01

    Polymer nanocomposites that based on combination of nanomaterials (such as nanoparticles, nanotubes, nanorods, nanofibers, and nanosheets) and polymeric matrices are receiving great attention in research and application. However, separate and homogenous dispersion rather than aggregates of nanoparticles into matrices meet big difficulty due to large interaction between nanoparticles. The poor dispersion leads to low properties of nanocomposites. In this study, we find out the appropriate method to separately disperse cerium oxides (CeO2) nanoparticles into natural rubber, aiming to increase mechanical properties of natural rubber. The SEM images were used to evaluate the dispersion of nano CeO2 in natural rubber matrix. The mechanical properties of nanocomposites were measured after vulcanization to investigate effects of nano CeO2 amount on prepared composite. The findings exhibited that the addition of CeO2 by dispersion of nano CeO2 in water via ultrasonication before mixing with rubber latex, significantly increase modulus, tear and wear resistance of natural rubber.

  15. Nano-yttria dispersed stainless steel composites composed by the 3 dimensional fiber deposition technique

    NASA Astrophysics Data System (ADS)

    Verhiest, K.; Mullens, S.; De Wispelaere, N.; Claessens, S.; DeBremaecker, A.; Verbeken, K.

    2012-09-01

    In this study, oxide dispersion strengthened (ODS) 316L steel samples were manufactured by the 3 dimensional fiber deposition (3DFD) technique. The performance of 3DFD as colloidal consolidation technique to obtain porous green bodies based on yttria (Y2O3) nano-slurries or paste, is discussed within this experimental work. The influence of the sintering temperature and time on sample densification and grain growth was investigated in this study. Hot consolidation was performed to obtain final product quality in terms of residual porosity reduction and final dispersion homogeneity.

  16. Simultaneous decontamination of cross-polluted soils with heavy metals and PCBs using a nano-metallic Ca/CaO dispersion mixture.

    PubMed

    Mallampati, Srinivasa Reddy; Mitoma, Yoshiharu; Okuda, Tetsuji; Sakita, Shogo; Simion, Cristian

    2014-01-01

    In the present work, we investigated the use of nano-metallic calcium (Ca) and calcium oxide (CaO) dispersion mixture for the simultaneous remediation of contaminated soils with both heavy metals (As, Cd, Cr, and Pb) and polychlorinated biphenyls (PCBs). Regardless of soil moisture content, nano-metallic Ca/CaO dispersion mixture achieved about 95-99% of heavy metal immobilization by a simple grinding process. During the same treatment, reasonable PCB hydrodechlorination efficiencies were obtained (up to 97%), though higher hydrodechlorination efficiency by preliminary drying of soil was observed.

  17. Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system

    NASA Astrophysics Data System (ADS)

    Tang, Erjun; Cheng, Guoxiang; Ma, Xiaolu; Pang, Xingshou; Zhao, Qiang

    2006-05-01

    Commercial zinc oxide nanoparticles were modified by polymethacrylic acid (PMAA) in aqueous system. The hydroxyl groups of nano-ZnO particle surface can interact with carboxyl groups (COO-) of PMAA and form poly(zinc methacrylate) complex on the surface of nano-ZnO. The formation of poly(zinc methacrylate) complex was testified by Fourier-transform infrared spectra (FT-IR). Thermogravimetric analysis (TGA) indicated that PMAA molecules were absorbed or anchored on the surface of nano-ZnO particle, which facilitated to hinder the aggregation of nano-ZnO particles. Through particle size analysis and transmission electron micrograph (TEM) observation, it was found that PMAA enhanced the dispersibility of nano-ZnO particles in water. The dispersion stabilization of modified ZnO nanoparticles in aqueous system was significantly improved due to the introduction of grafted polymer on the surface of nanoparticles. The modification did not alter the crystalline structure of the ZnO nanoparticles according to the X-ray diffraction patterns.

  18. [Response surface method optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis preparation genistein].

    PubMed

    Jin, Xin; Zhang, Zhen-Hai; Zhu, Jing; Sun, E; Yu, Dan-Hong; Chen, Xiao-Yun; Liu, Qi-Yuan; Ning, Qing; Jia, Xiao-Bin

    2012-04-01

    This article reports that nano-silica solid dispersion technology was used to raise genistein efficiency through increasing the enzymatic hydrolysis rate. Firstly, genistin-nano-silica solid dispersion was prepared by solvent method. And differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) were used to verify the formation of solid dispersion, then enzymatic hydrolysis of solid dispersion was done by snailase to get genistein. With the conversion of genistein as criteria, single factor experiments were used to study the different factors affecting enzymatic hydrolysis of genistin and its solid dispersion. And then, response surface method was used to optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis. The optimum condition to get genistein through enzymatic hydrolysis of genistin-nano-silica solid dispersion was pH 7.1, temperature 52.2 degrees C, enzyme concentration 5.0 mg x mL(-1) and reaction time 7 h. Under this condition, the conversion of genistein was (93.47 +/- 2.40)%. Comparing with that without forming the genistin-nano-silica solid dispersion, the conversion increased 2.62 fold. At the same time, the product of hydrolysis was purified to get pure genistein. The method of enzymatic hydrolysis of genistin-nano-silica solid dispersion by snailase to obtain genistein is simple, efficiency and suitable for the modern scale production.

  19. Sediment toxicity and bioaccumulation of nano and micron-sized aluminum oxide.

    PubMed

    Stanley, Jacob K; Coleman, Jessica G; Weiss, Charles A; Steevens, Jeffery A

    2010-02-01

    Nano-aluminum oxide (Al(2)O(3)) is used commercially in coatings and abrasives. Nano-Al(2)O(3) can also be generated through the oxidation of nano-aluminum in military propellants and energetics. The purpose of the present study was to assess toxicity and bioaccumulation of nano-Al(2)O(3) to a variety of sediment organisms (Tubifex tubifex, Hyalella azteca, Lumbriculus variegatus, and Corbicula fluminea). The bioaccumulation and toxicity of nano-Al(2)O(3) was compared with that of micron-sized Al(2)O(3) to investigate potential size-related effects. Results of the present study show species-specific differences in relative bioaccumulation of nano and micron-sized Al(2)O(3). Significant toxic effects (survival and growth) were observed in H. azteca testing, but only at high concentrations unlikely to be found in the environment. Nano-Al(2)O(3) was found to be more toxic than micron-sized Al(2)O(3) to H. azteca survival in a 14-d study in which organisms were in direct contact with a thin layer of 625 or 2,500 mg of Al(2)O(3) dispersed on the surface of either sediment or sand. A significant growth effect was also observed for nano but not micron-sized Al(2)O(3) at the highest treatment level tested (100 g/kg Al(2)O(3)) in a 10-d H. azteca bioassay in which Al(2)O(3) was homogenized with sediment. However, differences in measured sediment Al concentrations (micron-sized = 55.1 [+/-0.6] g/kg Al; nano-sized = 66.2 [+/-0.6] g/kg Al) in the nano and micron-sized Al(2)O(3) preclude direct comparison of the toxicity of these two treatments based on particle size. Copyright 2009 SETAC.

  20. Self-aligned periodic Ni nano dots embedded in nano-oxide layer

    NASA Astrophysics Data System (ADS)

    Doi, M.; Izumi, M.; Kawasaki, S.; Miyake, K.; Sahashi, M.

    The Ni nano constriction dots embedded in the Ta-nano-oxide layer (NOL) was prepared by the ion beam sputtering (IBS) method. After the various conditions of the oxidations, the structural analyses of the NOL were performed by RHEED, AES and in situ STM/AFM observations. From the current image of the conductive AFM for NOL, the periodically aligned metallic dots with the size around 5-10 nm were successfully observed. The mechanism of the formation of the self-organized aligned Ni nano constriction dots is discussed from the standpoint of the grain size, the crystal orientation, the preferred oxidation of Ta at the diffused interface.

  1. Mechanosynthesis of A Ferritic ODS (Oxide Dispersion Strengthened) Steel Containing 14% Chromium and Its Characterization

    NASA Astrophysics Data System (ADS)

    Rivai, A. K.; Dimyati, A.; Adi, W. A.

    2017-05-01

    One of the advanced materials for application at high temperatures which is aggressively developed in the world is ODS (Oxide Dispersion strengthened) steel. ODS ferritic steels are one of the candidate materials for future nuclear reactors in the world (Generation IV reactors) because it is able to be used in the reactor above 600 °C. ODS ferritic steels have also been developed for the interconnect material of SOFC (Solid Oxide Fuel Cell) which will be exposed to about 800 °C of temperature. The steel is strengthened by dispersing homogeneously of oxide particles (ceramic) in nano-meter sized in the matrix of the steel. Synthesis of a ferritic ODS steel by dispersion of nano-particles of yttrium oxide (yttria: Y2O3) as the dispersion particles, and containing high-chromium i.e. 14% has been conducted. Synthesis of the ODS steels was done mechanically (mechanosynthesis) using HEM (High Energy ball Milling) technique for 40 and 100 hours. The resulted samples were characterized using SEM-EDS (Scanning Electron Microscope-Energy Dispersive Spectroscope), and XRD (X-ray diffraction) to analyze the microstructure characteristics. The results showed that the crystal grains of the sample with 100 hours milling time was much smaller than the sample with 40 hours milling time, and some amount of alloy was formed during the milling process even for 40 hours milling time. Furthermore, the structure analysis revealed that some amount of iron atom substituted by a slight amount of chromium atom as a solid solution. The quantitative analysis showed that the phase mostly consisted of FeCr solid-solution with the structure was BCC (body-centered cubic).

  2. Depositing laser-generated nanoparticles on powders for additive manufacturing of oxide dispersed strengthened alloy parts via laser metal deposition

    NASA Astrophysics Data System (ADS)

    Streubel, René; Wilms, Markus B.; Doñate-Buendía, Carlos; Weisheit, Andreas; Barcikowski, Stephan; Henrich Schleifenbaum, Johannes; Gökce, Bilal

    2018-04-01

    We present a novel route for the adsorption of pulsed laser-dispersed nanoparticles onto metal powders in aqueous solution without using any binders or surfactants. By electrostatic interaction, we deposit Y2O3 nanoparticles onto iron-chromium based powders and obtain a high dispersion of nano-sized particles on the metallic powders. Within the additively manufactured component, we show that the particle spacing of the oxide inclusion can be adjusted by the initial mass fraction of the adsorbed Y2O3 particles on the micropowder. Thus, our procedure constitutes a robust route for additive manufacturing of oxide dispersion-strengthened alloys via oxide nanoparticles supported on steel micropowders.

  3. In situ polymerization of highly dispersed polypyrrole on reduced graphite oxide for dopamine detection.

    PubMed

    Qian, Tao; Yu, Chenfei; Wu, Shishan; Shen, Jian

    2013-12-15

    A composite consisting of reduced graphite oxide and highly dispersed polypyrrole nanospheres was synthesized by a straightforward technique, by in situ chemical oxidative polymerization. The novel polypyrrole nanospheres can prevent the aggregation of reduced graphite oxide sheets by electrostatic repulsive interaction, and enhance their electrochemical properties in the nano-molar measurement of dopamine in biological systems with a linear range of 1-8000 nM and a detection limit as low as 0.3 nM. © 2013 Elsevier B.V. All rights reserved.

  4. Preparation of Diatomite Supported Nano Zinc Oxide Composite Photocatalytic Material and Study on its Formaldehyde Degradation

    NASA Astrophysics Data System (ADS)

    Xiao, Liguang; Pang, Bo

    2017-09-01

    This experiment used zinc nitrate as precursor, ethanol as solvent and polyethylene glycol as dispersant, diatomite as carrier, diatomite loaded nano Zinc Oxide was prepared by sol-gel method, in addition, the formaldehyde degradation was studied by two kinds of experimental methods: preparation and loading, preparation and post loading, The samples were characterized by SEM, XRD, BET and IR. Experimental results showed that: Diatomite based nano Zinc Oxide had a continuous adsorption and degradation of formaldehyde, formaldehyde gas with initial concentration was 0.7mg/m3, after 36h degradation, the concentration reached 0.238mg/m3, the degradation rate reached to 66%.

  5. Thermal annealing behavior of nano-size metal-oxide particles synthesized by ion implantation in Fe-Cr alloy

    NASA Astrophysics Data System (ADS)

    Zheng, C.; Gentils, A.; Ribis, J.; Borodin, V. A.; Descoins, M.; Mangelinck, D.; Dalle, F.; Arnal, B.; Delauche, L.

    2017-05-01

    Oxide dispersion strengthened (ODS) steels are promising structural materials for the next generation nuclear reactors, as well as fusion facilities. The detailed understanding of the mechanisms involved in the precipitation of nano-oxides during ODS steel production would strongly contribute to the improvement of the mechanical properties and the optimization of manufacturing of ODS steels, with a potentially strong economic impact for their industrialization. A useful tool for the experimental study of nano-oxide precipitation is ion implantation, a technique that is widely used to synthesize precipitate nanostructures in well-controlled conditions. Earlier, we have demonstrated the feasibility of synthesizing aluminum-oxide particles in the high purity Fe-10Cr alloy by consecutive implantation with Al and O ions at room temperature. This paper describes the effects of high-temperature annealing after the ion implantation stage on the development of the aluminum based oxide nanoparticle system. Using transmission electron microscopy and atom probe tomography experiments, we demonstrate that post-implantation heat treatment induces the growth of the nano-sized oxides in the implanted region and nucleation of new oxide precipitates behind the implantation zone as a result of the diffusion driven broadening of implant profiles. A tentative scenario for the development of metal-oxide nano-particles at both ion implantation and heat treatment stages is suggested based on the experimental observations.

  6. Characteristic of nanoparticles generated from different nano-powders by using different dispersion methods

    NASA Astrophysics Data System (ADS)

    Tsai, Chuen-Jinn; Lin, Guan-Yu; Liu, Chun-Nan; He, Chi-En; Chen, Chun-Wan

    2012-03-01

    A standard rotating drum with a modified sampling train (RD), a vortex shaker (VS), and a SSPD (small-scale powder disperser) were used to investigate the emission characteristics of nano-powders, including nano-titanium dioxide (nano-TiO2, primary diameter: 21 nm), nano-zinc oxide (nano-ZnO, primary diameter: 30-50 nm), and nano-silicon dioxide (nano-SiO2, primary diameter: 10-30 nm). A TSI SMPS (scanning mobility particle sizer), a TSI APS (aerodynamic particle sizer), and a MSP MOUDI (micro-orifice uniform deposit impactor) were used to measure the number and mass distributions of generated particles. Significant differences in specific number and mass concentration or distributions were found among different methods and nano-powders with the most specific number and mass concentration and the smallest particles being generated by the most energetic SSPD, followed by VS and RD. Near uni-modal number or mass distributions were observed for the SSPD while bi-modal number or mass distributions existed for nano-powders except nano-SiO2 which also exhibited bimodal mass distributions. The 30-min average results showed that the mass median aerodynamic diameter (MMAD) and number median diameter (NMD) of the SSPD ranged 1.1-2.1 μm and 166-261 nm, respectively, for all three nano-powders, which were smaller than those of the VS (MMAD: 3.3-6.0 μm and NMD: 156-462 nm), and the RD (MMAD: 5.2-11.2 μm and NMD: 198-479 nm). For nano-particles (electric mobility diameter < 100 nm), specific mass concentrations were nearly negligible for all three nano-powders and test methods. Specific number concentrations of nano-particles were low for the RD tester but were elevated when more energetic VS and SSPD testers were used. The quantitative size and concentration data obtained in this study is useful to elucidate the field emission and personal exposure data in the future provided that particle loss in the generation system is carefully assessed.

  7. Establishment of a total liquid ventilation system using saline-based oxygen micro/nano-bubble dispersions in rats.

    PubMed

    Kakiuchi, Kenta; Matsuda, Kenichi; Harii, Norikazu; Sou, Keitaro; Aoki, Junko; Takeoka, Shinji

    2015-09-01

    Micro/nano-bubbles are practical nanomaterials designed to increase the gas content in liquids. We attempted to use oxygen micro/nano-bubble dispersions as an oxygen-rich liquid as a means for total liquid ventilation. To determine the oxygen content in the bubble dispersion, a new method based on a spectrophotometric change between oxy- and deoxy-hemoglobin was established. The oxygen micro/nano-bubble dispersion was supplied to an experimental total ventilation liquid in anesthetic rats. Though the amount of dissolving oxygen was as low as 6 mg/L in physiological saline, the oxygen content in the oxygen micro/nano-bubble dispersion was increased to 45 mg/L. The positive correlation between the oxygen content and the life-saving time under liquid ventilation clearly indicates that the life-saving time is prolonged by increasing the oxygen content in the oxygen micro/nano-bubble dispersion. This is the first report indicating that the oxygen micro/nano-bubbles containing a sufficient amount of oxygen are useful in producing oxygen-rich liquid for the process of liquid ventilation.

  8. Synthesis Oxide Dispersion Strengthening Stainless Steel doped with Nano Zirconia by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Pawawoi; Widiansyah, Irfan; Hadi Prajitno, Djoko

    2017-01-01

    The oxide dispersion strengthening stainless steel of Fe-11.5wt%Cr and Fe-11.5wt%Cr-1%ZrO2 alloy by mechanical alloying method were synthesized by planetary ball milling. The methods employed for study were designing of Fe-11.5wt%Cr and Fe-11.5wt%Cr-1%ZrO2 proportion of composition alloy which is plotted to Schaffler diagram to get ferritic/martensitic stainless steel. After MA the ODS powders were compaction with pressure 80kg/mm2 and followed by sintering at the temperature of 900,1000 and 1100º C under high purity argon atmosphere for 1 hour. Characterization by XRD is used to examination phase present. Optical microscopy and SEM is used to get image microstructures. XRD analysis resulting the ferritic and martensitic is a major and minor phase respectively. There are not significant differences in the microstructure between Fe-11.5wt%Cr and Fe-11.5wt%Cr-1wt%ZrO2. An increase in the sintering temperature shift the microstructure from dendritic to equaxed. EDS examination showed that zirconia exit in the alloy Fe-11.5wt%Cr-1wt%ZrO2.The addition of 1 % nano-zirconia (ZrO2) into Fe-Cr alloy while milling process was resulted a higher Hardness Vickers Values rather than without zirconia addition. Average value of Hardness Vickers values was resulted 135.5 HV for Fe-11.5wt%Cr whereas 138.4 HV for Fe-11.5wt%Cr-1wt%ZrO2.

  9. Prediction Surface Morphology of Nanostructure Fabricated by Nano-Oxidation Technology.

    PubMed

    Huang, Jen-Ching; Chang, Ho; Kuo, Chin-Guo; Li, Jeen-Fong; You, Yong-Chin

    2015-12-04

    Atomic force microscopy (AFM) was used for visualization of a nano-oxidation technique performed on diamond-like carbon (DLC) thin film. Experiments of the nano-oxidation technique of the DLC thin film include those on nano-oxidation points and nano-oxidation lines. The feature sizes of the DLC thin film, including surface morphology, depth, and width, were explored after application of a nano-oxidation technique to the DLC thin film under different process parameters. A databank for process parameters and feature sizes of thin films was then established, and multiple regression analysis (MRA) and a back-propagation neural network (BPN) were used to carry out the algorithm. The algorithmic results are compared with the feature sizes acquired from experiments, thus obtaining a prediction model of the nano-oxidation technique of the DLC thin film. The comparative results show that the prediction accuracy of BPN is superior to that of MRA. When the BPN algorithm is used to predict nano-point machining, the mean absolute percentage errors (MAPE) of depth, left side, and right side are 8.02%, 9.68%, and 7.34%, respectively. When nano-line machining is being predicted, the MAPEs of depth, left side, and right side are 4.96%, 8.09%, and 6.77%, respectively. The obtained data can also be used to predict cross-sectional morphology in the DLC thin film treated with a nano-oxidation process.

  10. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    PubMed

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances. Copyright © 2014. Published by Elsevier B.V.

  11. Microstructure and Mechanical Property of 12Cr Oxide Dispersion Strengthened Steel

    NASA Astrophysics Data System (ADS)

    Xu, Haijian; Lu, Zheng; Jia, Chunyan; Gao, Hao; Liu, Chunming

    2016-03-01

    Nanostructured oxide dispersion strengthened (ODS) steels with nominal compositions (wt%): Fe-12Cr-2W-0.3Ti-0.3Y2O3 were produced by mechanical alloying and hot isostatic pressing. The microstructure was characterized by means of electron microscopy (EBSD, TEM and HRTEM) and the hardness and the tensile properties at different temperatures were measured. The results showed that the ultimate tensile strength of the fabricated 12Cr-ODS steel reached nearly 1,100 MPa at room temperature and maintained around 340 MPa at 700°C. Nano-oxide particles with size ranging from several nm to 30 nm and the number density was 3.6 × 1020/m3 were observed by TEM. Following heat treatment, including normalizing at 1,100°C for 1 h and tempering at 750°C for 2 h, the average grain size was a little decreased. The number of nano-oxide particles increased and the number density was 8.9 × 1020/m3. Specimens showed much higher ductility and there was a slight increase of ultimate tensile strength and Vickers hardness at the same time.

  12. Nano-size metallic oxide particle synthesis in Fe-Cr alloys by ion implantation

    NASA Astrophysics Data System (ADS)

    Zheng, C.; Gentils, A.; Ribis, J.; Borodin, V. A.; Delauche, L.; Arnal, B.

    2017-10-01

    Oxide Dispersion Strengthened (ODS) steels reinforced with metal oxide nanoparticles are advanced structural materials for nuclear and thermonuclear reactors. The understanding of the mechanisms involved in the precipitation of nano-oxides can help in improving mechanical properties of ODS steels, with a strong impact for their commercialization. A perfect tool to study these mechanisms is ion implantation, where various precipitate synthesis parameters are under control. In the framework of this approach, high-purity Fe-10Cr alloy samples were consecutively implanted with Al and O ions at room temperature and demonstrated a number of unexpected features. For example, oxide particles of a few nm in diameter could be identified in the samples already after ion implantation at room temperature. This is very unusual for ion beam synthesis, which commonly requires post-implantation high-temperature annealing to launch precipitation. The observed particles were composed of aluminium and oxygen, but additionally contained one of the matrix elements (chromium). The crystal structure of aluminium oxide compound corresponds to non-equilibrium cubic γ-Al2O3 phase rather than to more common corundum. The obtained experimental results together with the existing literature data give insight into the physical mechanisms involved in the precipitation of nano-oxides in ODS alloys.

  13. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  14. Formation of nano/micro-dispersions with improved dissolution properties upon dispersion of ritonavir melt extrudate in aqueous media.

    PubMed

    Tho, Ingunn; Liepold, Bernd; Rosenberg, Joerg; Maegerlein, Markus; Brandl, Martin; Fricker, Gert

    2010-04-16

    The objective of the study was to characterise the aqueous dispersions of ritonavir melt extrudates. More specifically to look into the particular system formed when melt extrudate of a poorly soluble drug dissolved in a hydrophilic polymer matrix containing a surfactant is dispersed in an aqueous medium. Melt extrudates with and without ritonavir were studied. The drug containing extrudate was confirmed to be molecular dispersions of drug in a polymer/surfactant matrix. Particulate dispersions were formed in water from both drug and placebo extrudates. The dispersions were investigated with respect to mean particle size and particle size distribution (photon correlation spectroscopy and optical particle counting), surface charge (zeta potential), particle composition (ultracentrifugation), tendency to form aggregates and precipitate (turbidity), in vitro dissolution rate and drug release. It was concluded that dispersion of melt extrudates in aqueous medium give rise to nano/micro-dispersions. The stability of the nano/micro-dispersion is sensitive to anions and may be subjected to association/aggregation/flocculation as time proceeds after preparation of dispersion. Melt extrudate showed improved dissolution rate and drug release properties compared to crystalline raw material. From studies of single components and physical mixtures of the formulation composition it can be concluded that the drug delivery system itself, namely solid dispersion prepared by melt extrusion technology, plays a key role for the formation of the observed particles. 2010 Elsevier B.V. All rights reserved.

  15. Assessing the fate and effects of nano aluminum oxide in the terrestrial earthworm, Eisenia fetida.

    PubMed

    Coleman, Jessica G; Johnson, David R; Stanley, Jacob K; Bednar, Anthony J; Weiss, Charles A; Boyd, Robert E; Steevens, Jeffery A

    2010-07-01

    Nano-sized aluminum is currently being used by the military and commercial industries in many applications including coatings, thermites, and propellants. Due to the potential for wide dispersal in soil systems, we chose to investigate the fate and effects of nano-sized aluminum oxide (Al2O3), the oxidized form of nano aluminum, in a terrestrial organism. The toxicity and bioaccumulation potential of micron-sized (50-200 microm, nominal) and nano-sized (11 nm, nominal) Al2O3 was comparatively assessed through acute and subchronic bioassays using the terrestrial earthworm, Eisenia fetida. Subchronic (28-d) studies were performed exposing E. fetida to nano- and micron-sized Al2O3-spiked soils to assess the effects of long-term exposure. No mortality occurred in subchronic exposures, although reproduction decreased at >or=3,000 mg/kg nano-sized Al2O3 treatments, with higher aluminum body burdens observed at 100 and 300 mg/kg; no reproductive effects were observed in the micron-sized Al2O3 treatments. In addition to toxicity and bioaccumulation bioassays, an acute (48-h) behavioral bioassay was conducted utilizing a soil avoidance wheel in which E. fetida were given a choice of habitat between control, nano-, or micron-sized Al2O3 amended soils. In the soil avoidance bioassays, E. fetida exhibited avoidance behavior toward the highest concentrations of micron- and nano-sized Al2O3 (>5,000 mg/kg) relative to control soils. Results of the present study indicate that nano-sized Al2O3 may impact reproduction and behavior of E. fetida, although at high levels unlikely to be found in the environment. Copyright (c) 2010 SETAC.

  16. Sharper and faster "nano darts" kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube.

    PubMed

    Liu, Shaobin; Wei, Li; Hao, Lin; Fang, Ning; Chang, Matthew Wook; Xu, Rong; Yang, Yanhui; Chen, Yuan

    2009-12-22

    To further our understanding on the antibacterial activity of single-walled carbon nanotubes (SWCNTs), high purity SWCNTs with average diameter of 0.83 nm and (7,5) chirality as dominate (n,m) structure were dispersed in a biocompatible surfactant solution. Ultraviolet-visible-near-infrared radiation absorption spectroscopy was employed to monitor the aggregation of SWCNTs. The results demonstrated that individually dispersed SWCNTs were more toxic than SWCNT aggregates toward bacteria (gram-negative Escherichia coli, Pseudomonas aeruginosa, and gram-positive Staphylococcus aureus, Bacillus subtilis). Individually dispersed SWCNTs can be visualized as numerous moving "nano darts" in the solution, constantly attacking the bacteria; thereby, degrading the bacterial cell integrity and causing the cell death. Controlled experimental results suggested that inhibiting cell growth and oxidative stress were not the major causes responsible for the death of cells. Furthermore, the detrimental effects of Co metal residues (up to 1 mug/mL) on SWCNT samples can be ruled out. Atomic force microscope study conducted in suspension proved that the death rates of bacteria were strongly correlated with their mechanical properties; soft cells were more vulnerable to SWCNT piercing. The antibacterial activity of SWCNTs can be remarkably improved by enhancing the SWCNT physical puncture on bacteria in the following ways: (1) dispersing SWCNTs individually to sharpen the nano darts; (2) increasing SWCNT concentration to raise the population density of nano darts; and (3) elevating the shaking speed of incubation to speed up the nano darts. This study elucidated several factors controlling the antibacterial activity of pristine SWCNTs and it provided an insight in developing strategies that can maximize the SWCNT application potentials while minimizing the health and environment risks.

  17. Nano- and microstructural disperse rocks in protective barriers, medicine and balneology

    NASA Astrophysics Data System (ADS)

    Panko, A. V.; Kovzun, I. G.; Prokopenko, V. A.; Tsyganovich, O. A.; Oliinyk, V. O.; Nikipelova, O. M.

    2018-03-01

    On the base of results of electron microscopy, thermogravimetric, X-ray, rheological, mechanochemical and medico-biological research methods, there are proposed models of physico-mechanical, nanochemical, colloidal and biocolloid metamorphic processes of iron oxide-silicate rocks, which are accompanied by formation of nano- and microdispersed pelitic sediments, peloids (therapeutic muds), clays, sedimentary iron-silicate-carbonate ore materials. The role of microorganisms and surface-active products of their vital activity in these processes is shown. It was noted that a stable existence of ecosystems, which contain iron oxide-hydroxide-silicate polymineral formations, is largely determined by preliminary processes of geomechanical dispersion of rocks and by subsequent processes of vital activity of various microorganisms. The metabolic products of such microorganisms activate the biocolloid interactions, which are due to cooperative colloidal, biological, biochemical and nanochemical transformations of biogeocenosis of living and non-living substance. The conceptions of role and meaning of chemical and biocolloidal processes of iron and silicon nanocluster formation are developed for strength changes in contact zones of microparticles in polymineral dispersion systems which, respectively, have an influence on their rheological properties. It is shown that in the presence of sodium chloride (seawater, lake's brine) for low-iron clay-sand systems, a dilatant-thixotropic nature of the flow is observed, and at a high-iron content in the form of nanostructured goethite, a hypernomalous growth of concentrated iron-silicate suspensions' viscosity and enhancement of contact interactions in them are observed. Taking into account the established phenomena the application of iron oxide-silicate peloid compositions in the construction of protective barriers, in medicine and balneology (treatment of injured joints, wounds, leukemia, etc.) is considered.

  18. The study of the effect of aluminum powders dispersion on the oxidation and kinetic characteristics

    NASA Astrophysics Data System (ADS)

    Gorbenko, T. I.; Gorbenko, M. V.; Orlova, M. P.; Volkov, S. A.

    2017-11-01

    Differential-scanning calorimetry (DSC) and thermogravimetric analysis (TG) were used to study micro-sized aluminum powder ASD-4 and nano-sized powder Alex. The dependence of the oxidation process on the dispersion of the sample particles is shown. The influence of thermogravimetric conditions on the thermal regime of the process was considered, and its kinetic parameters were determined. Calculations of the activation energy and the pre-exponential factor were carried out.

  19. Defect Clustering and Nano-Phase Structure Characterization of Multi-Component Rare Earth Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    2003-01-01

    Advanced oxide thermal barrier coatings have been developed by incorporating multi-component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma-sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), electron energy-loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia- yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging from 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.

  20. Defect Clustering and Nano-Phase Structure Characterization of Multi-Component Rare Earth Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    1990-01-01

    Advanced oxide thermal barrier coatings have been developed by incorporating multi- component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma- sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia-yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging fiom 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.

  1. Iron oxide functionalized graphene nano-composite for dispersive solid phase extraction of chemical warfare agents from aqueous samples.

    PubMed

    Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Tak, Vijay; Goud, D Raghavender; Dubey, D K; Pardasani, Deepak

    2015-05-15

    Present study deals with the preparation and evaluation of graphene based magnetic nano-composite for dispersive solid phase extraction of Chemical Weapons Convention (CWC) relevant chemicals from aqueous samples. Nano-composite, Fe3O4@SiO2-G was synthesized by covalently bonding silica coated Fe3O4 onto the graphene sheets. Nerve agents (NA), Sulfur mustard (SM) and their non-toxic environmental markers were the target analytes. Extraction parameters like amount of sorbent, extraction time and desorption conditions were optimized. Dispersion of 20 milligram of sorbent in 200mL of water sample for 20min. followed by methanol/chloroform extraction produced average to good recoveries (27-94%) of targeted analytes. Recoveries of real agents exhibited great dependency upon sample pH and ionic strength. Sarin produced maximum recovery under mild acidic conditions (56% at pH 5) while VX demanded alkaline media (83% at pH 9). Salts presence in the aqueous samples was found to be advantageous, raising the recoveries to as high as 94% for SM. Excellent limits of detection (LOD) for sulphur mustard and VX (0.11ngmL(-1) and 0.19ngmL(-1) respectively) proved the utility of the developed method for the off-site analysis of CWC relevant chemicals. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Thermoelectric properties of SrTiO3 nano-particles dispersed indium selenide bulk composites

    NASA Astrophysics Data System (ADS)

    Lee, Min Ho; Rhyee, Jong-Soo; Vaseem, Mohammad; Hahn, Yoon-Bong; Park, Su-Dong; Jin Kim, Hee; Kim, Sung-Jin; Lee, Hyeung Jin; Kim, Chilsung

    2013-06-01

    We investigated the thermoelectric properties of the InSe, InSe/In4Se3 composite, and SrTiO3 (STO) nano-particles dispersed InSe/In4Se3 bulk composites. The electrical conductivity of the InSe/In4Se3 composite with self-assembled phase separation is significantly increased compared with those of InSe and In4Se3-δ implying the enhancement of surface conductivity between grain boundaries. The thermal conductivity of InSe/In4Se3 composite is decreased compared to those of InSe. When the STO nano-particle dispersion was employed in the InSe/In4Se3 composite, a coherent interface was observed between nano-particle precipitates and the InSe bulk matrix with a reduction of the thermal conductivity.

  3. The photoelectrocatalytic activity, long term stability and corrosion performance of NiMo deposited titanium oxide nano-tubes for hydrogen production in alkaline medium

    NASA Astrophysics Data System (ADS)

    Mert, Mehmet Erman; Mert, Başak Doğru; Kardaş, Gülfeza; Yazıcı, Birgül

    2017-11-01

    In this study, titanium oxide nano-tubes are doped with Ni and Mo particles with various chemical compositions, in order to put forth the efficiency of single and binary coatings on hydrogen evolution reaction (HER) in 1 M KOH. The characterization was achieved by cyclic voltammetry, scanning electron microscopy and energy dispersive X-ray analysis. The water wettability characteristics of electrode surfaces were investigated using contact angle. The long-term catalyst stability and corrosion performance were determined by current-potential curves and electrochemical impedance spectroscopy. Furthermore, photoelectrochemical behavior was determined via linear sweep voltammetry. Results showed that, nano-structured Ni and Mo deposited titanium oxide nano-tubes decrease the hydrogen over potential and increase HER efficiency, it is stable over 168 h electrolysis and it exhibits higher corrosion performance.

  4. Fabrication, characterization, and irradiation of an austenitic oxide dispersion strengthened steel suited for next generation nuclear applications

    NASA Astrophysics Data System (ADS)

    Brooks, Adam J.

    As nuclear energy systems become more advanced, the materials encompassing them need to perform at higher temperatures for longer periods of time. In this Master's thesis we experiment with an oxide dispersion strengthened (ODS) austenitic steel that has been recently developed. ODS materials have a small concentration of nano oxide particles dispersed in their matrix, and typically have higher strength and better extreme temperature creep resistance characteristics than ordinary steels. However, no ODS materials have ever been installed in a commercial power reactor to date. Being a newer research material, there are many unanswered phenomena that need to be addressed regarding the performance under irradiation. Furthermore, due to the ODS material traditionally needing to follow a powder metallurgy fabrication route, there are many processing parameters that need to be optimized before achieving a nuclear grade material specification. In this Master's thesis we explore the development of a novel ODS processing technology conducted in Beijing, China, to produce solutionized bulk ODS samples with 97% theoretical density. This is done using relatively low temperatures and ultra high pressure (UHP) equipment, to compact the mechanically alloyed (MA) steel powder into bulk samples without any thermal phase change influence or oxide precipitation. By having solutionized bulk ODS samples, transmission electron microscopy (TEM) observation of nano oxide precipitation within the steel material can be studied by applying post heat treatments. These types of samples will be very useful to the science and engineering community, to answer questions regarding material powder compacting, oxide synthesis, and performance. Subsequent analysis performed at Queen's University included X-ray diffraction (XRD) and inductively coupled plasma optical emission spectrometry (ICP-OES). Additional TEM in-situ 1MeV Kr2+ irradiation experiments coupled with energy dispersive X-ray (EDX

  5. High content reduced graphene oxide reinforced copper with a bioinspired nano-laminated structure and large recoverable deformation ability

    PubMed Central

    Xiong, Ding-Bang; Cao, Mu; Guo, Qiang; Tan, Zhanqiu; Fan, Genlian; Li, Zhiqiang; Zhang, Di

    2016-01-01

    By using CuO/graphene-oxide/CuO sandwich-like nanosheets as the building blocks, bulk nacre-inspired copper matrix nano-laminated composite reinforced by molecular-level dispersed and ordered reduced graphene oxide (rGO) with content as high as ∼45 vol% was fabricated via a combined process of assembly, reduction and consolidation. Thanks to nanoconfinement effect, reinforcing effect, as well as architecture effect, the nanocomposite shows increased specific strength and at least one order of magnitude greater recoverable deformation ability as compared with monolithic Cu matrix. PMID:27647264

  6. Synthesis of graphene oxide and reduced graphene oxide using volumetric method by a novel approach without NaNO2 or NaNO3

    NASA Astrophysics Data System (ADS)

    Gunda, Rajitha; Madireddy, Buchi Suresh; Dash, Raj Kishora

    2018-02-01

    In the present work, graphite was processed to graphene oxide (GO) using modified Hummer's method by volumetric titration approach, without attaining zero temperature and the addition of toxic chemicals (NaNO2/NaNO3). The complete oxidation of graphite to graphene oxide was obtained by controlled addition (volumetric titration) of KMnO4. The addition of higher KMnO4 resulted in partial oxidation and 2-3 mono-layers with less defects/disordered structure of reduced graphene oxide (RGO) sheets were achieved. Samples were analyzed by XRD, FT-IR, Raman analysis, and TEM analysis. X-ray diffraction displayed the oxidized peak of graphene oxide at 11.9° and reduced graphene oxide at 23.8°. The prolonged stability of the synthesized GO with lower mole ratios of oxidizing agent was confirmed from UV-visible spectroscopy. Based on the results, processed graphene oxide is found to be a candidate material for thermally stable capacitor application.

  7. Viscoelasticity of nano-alumina dispersions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rand, B.; Fries, R.

    1996-06-01

    The flow and viscoelastic properties of electrostatically stabilized nano-alumina dispersions have been studied as a function of ionic strength and volume fraction of solids. At low ionic strength the suspensions were deflocculated and showed a transition from viscous to elastic behavior as the solid content increased associated with the onset of double layer interpenetration. The phase transition was progressively shifted to higher solids fractions with increasing ionic strength. At higher ionic strength, above the critical coagulation concentration, the suspensions formed attractive networks characterized by high elasticity. Two independent methods of estimating the effective radius of electrostatically stabilized {open_quotes}soft{close_quotes} particles, a{submore » eff}, are presented based on phase angle data and a modified Dougherty-Krieger equation. The results suggest that a{sub eff} is not constant for a given system but changes with both solids fraction and ionic strength.« less

  8. CO oxidation on Alsbnd Au nano-composite systems

    NASA Astrophysics Data System (ADS)

    Rajesh, C.; Majumder, C.

    2018-03-01

    Using first principles method we report the CO oxidation behaviour of Alsbnd Au nano-composites in three different size ranges: Al6Au8, Al13Au42 and a periodic slab of Alsbnd Au(1 1 1) surface. The clusters prefer enclosed structures with alternating arrangement of Al and Au atoms, maximising Auδ-sbnd Alδ+ bonds. Charge distribution analysis suggests the charge transfer from Al to Au atoms, corroborated by the red shift in the density of states spectrum. Further, CO oxidation on these nano-composite systems was investigated through both Eley - Rideal and Langmuir Hinshelwood mechanism. While, these clusters interact with O2 non-dissociatively with an elongation of the Osbnd O bond, further interaction with CO led to formation of CO2 spontaneously. On contrary, the CO2 evolution by co-adsorption of O2 and CO molecules has a transition state barrier. On the basis of the results it is inferred that nano-composite material of Alsbnd Au shows significant promise toward effective oxidative catalysis.

  9. Dispersion of iron nano-particles on expanded graphite for the shielding of electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Xu, Zheng; Huang, Yu'an; Yang, Yang; Shen, Jianyi; Tang, Tao; Huang, Runsheng

    2010-10-01

    Composite materials containing electrically conductive expanded graphite (EG) and magnetic iron nano-particles for electromagnetic shielding were prepared by impregnating EG with an ethanol solution containing iron nitrate and acetic acid, followed by drying and reduction in H 2. Magnetic nano-iron particles were found to be highly dispersed on the surface of EG in the Fe/EG composites, and played the role of enhancing the electromagnetic shielding effectiveness (SE) at low frequencies (0.3-10 MHz), which seemed to depend proportionally on magnetic hysteresis loss of loaded iron nano-particles.

  10. Nano-Disperse Borides and Carbides: Plasma Technology Production, Specific Properties, Economic Evaluation

    NASA Astrophysics Data System (ADS)

    Galevskii, G. V.; Rudneva, V. V.; Galevskii, S. G.; Tomas, K. I.; Zubkov, M. S.

    2016-04-01

    The experience of production and study on properties of nano-disperse chromium and titanium borides and carbides, and silicon carbide has been generalized. The structure and special service aspects of utilized plasma-metallurgical complex equipped with a three-jet direct-flow reactor with a capacity of 150 kW have been outlined. Processing, heat engineering and service life characteristics of the reactor are specified. The synthesis parameters of borides and carbides, as well as their basic characteristics in nano-disperse condition and their production flow diagram are outlined. Engineering and economic performance of synthesizing borides in laboratory and industrial conditions is assessed, and the respective segment of the international market as well. The work is performed at State Siberian Industrial University as a project part of the State Order of Ministry of Science and Education of the Russian Federation No. 11.1531/2014/K.

  11. Urban runoff treatment using nano-sized iron oxide coated sand with and without magnetic field applying

    PubMed Central

    2013-01-01

    Increase of impervious surfaces in urban area followed with increases in runoff volume and peak flow, leads to increase in urban storm water pollution. The polluted runoff has many adverse impacts on human life and environment. For that reason, the aim of this study was to investigate the efficiency of nano iron oxide coated sand with and without magnetic field in treatment of urban runoff. In present work, synthetic urban runoff was treated in continuous separate columns system which was filled with nano iron oxide coated sand with and without magnetic field. Several experimental parameters such as heavy metals, turbidity, pH, nitrate and phosphate were controlled for investigate of system efficiency. The prepared column materials were characterized with Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDXA) instruments. SEM and EDXA analyses proved that the sand has been coated with nano iron oxide (Fe3O4) successfully. The results of SEM and EDXA instruments well demonstrate the formation of nano iron oxide (Fe3O4) on sand particle. Removal efficiency without magnetic field for turbidity; Pb, Zn, Cd and PO4 were observed to be 90.8%, 73.3%, 75.8%, 85.6% and 67.5%, respectively. When magnetic field was applied, the removal efficiency for turbidity, Pb, Zn, Cd and PO4 was increased to 95.7%, 89.5%, 79.9%, 91.5% and 75.6% respectively. In addition, it was observed that coated sand and magnetic field was not able to remove NO3 ions. Statistical analyses of data indicated that there was a significant difference between removals of pollutants in two tested columns. Results of this study well demonstrate the efficiency of nanosized iron oxide-coated sand in treatment of urban runoff quality; upon 75% of pollutants could be removed. In addition, in the case of magnetic field system efficiency can be improved significantly. PMID:24360061

  12. Fabrication of polymeric nano-batteries array using anodic aluminum oxide templates.

    PubMed

    Zhao, Qiang; Cui, Xiaoli; Chen, Ling; Liu, Ling; Sun, Zhenkun; Jiang, Zhiyu

    2009-02-01

    Rechargeable nano-batteries were fabricated in the array pores of anodic aluminum oxide (AAO) template, combining template method and electrochemical method. The battery consisted of electropolymerized PPy electrode, porous TiO2 separator, and chemically polymerized PAn electrode was fabricated in the array pores of two-step anodizing aluminum oxide (AAO) membrane, based on three-step assembling method. It performs typical electrochemical battery behavior with good charge-discharge ability, and presents a capacity of 25 nAs. AFM results show the hexagonal array of nano-batteries' top side. The nano-battery may be a promising device for the development of Micro-Electro-Mechanical Systems (MEMS), and Nano-Electro-Mechanical Systems (NEMS).

  13. Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review

    PubMed Central

    Najafpour, Mohammad Mahdi; Rahimi, Fahimeh; Aro, Eva-Mari; Lee, Choon-Hwan; Allakhverdiev, Suleyman I.

    2012-01-01

    There has been a tremendous surge in research on the synthesis of various metal compounds aimed at simulating the water-oxidizing complex (WOC) of photosystem II (PSII). This is crucial because the water oxidation half reaction is overwhelmingly rate-limiting and needs high over-voltage (approx. 1 V), which results in low conversion efficiencies when working at current densities required for hydrogen production via water splitting. Particular attention has been given to the manganese compounds not only because manganese has been used by nature to oxidize water but also because manganese is cheap and environmentally friendly. The manganese–calcium cluster in PSII has a dimension of about approximately 0.5 nm. Thus, nano-sized manganese compounds might be good structural and functional models for the cluster. As in the nanometre-size of the synthetic models, most of the active sites are at the surface, these compounds could be more efficient catalysts than micrometre (or bigger) particles. In this paper, we focus on nano-sized manganese oxides as functional and structural models of the WOC of PSII for hydrogen production via water splitting and review nano-sized manganese oxides used in water oxidation by some research groups. PMID:22809849

  14. Enhanced Radiation-tolerant Oxide Dispersion Strengthened Steel and its Microstructure Evolution under Helium-implantation and Heavy-ion Irradiation

    PubMed Central

    Lu, Chenyang; Lu, Zheng; Wang, Xu; Xie, Rui; Li, Zhengyuan; Higgins, Michael; Liu, Chunming; Gao, Fei; Wang, Lumin

    2017-01-01

    The world eagerly needs cleanly-generated electricity in the future. Fusion reactor is one of the most ideal energy resources to defeat the environmental degradation caused by the consumption of traditional fossil energy. To meet the design requirements of fusion reactor, the development of the structural materials which can sustain the elevated temperature, high helium concentration and extreme radiation environments is the biggest challenge for the entire material society. Oxide dispersion strengthened steel is one of the most popular candidate materials for the first wall/blanket applications in fusion reactor. In this paper, we evaluate the radiation tolerance of a 9Cr ODS steel developed in China. Compared with Ferritic/Martensitic steel, this ODS steel demonstrated a significantly higher swelling resistance under ion irradiation at 460 °C to 188 displacements per atom. The role of oxides and grain boundaries on void swelling has been explored. The results indicated that the distribution of higher density and finer size of nano oxides will lead a better swelling resistance for ODS alloy. The original pyrochlore-structured Y2Ti2O7 particles dissolved gradually while fine Y-Ti-O nano clusters reprecipitated in the matrix during irradiation. The enhanced radiation tolerance is attributed to the reduced oxide size and the increased oxide density. PMID:28079191

  15. Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms

    NASA Astrophysics Data System (ADS)

    Espitia, Paula Judith Perez; Soares, Nilda de Fátima Ferreira; Teófilo, Reinaldo F.; Vitor, Débora M.; Coimbra, Jane Sélia dos Reis; de Andrade, Nélio José; de Sousa, Frederico B.; Sinisterra, Rubén D.; Medeiros, Eber Antonio Alves

    2013-01-01

    Single primary nanoparticles of zinc oxide (nanoZnO) tend to form particle collectives, resulting in loss of antimicrobial activity. This work studied the effects of probe sonication conditions: power, time, and the presence of a dispersing agent (Na4P2O7), on the size of nanoZnO particles. NanoZnO dispersion was optimized by response surface methodology (RSM) and characterized by the zeta potential (ZP) technique. NanoZnO antimicrobial activity was investigated at different concentrations (1, 5, and 10 % w/w) against four foodborne pathogens and four spoilage microorganisms. The presence of the dispersing agent had a significant effect on the size of dispersed nanoZnO. Minimum size after sonication was 238 nm. An optimal dispersion condition was achieved at 200 W for 45 min of sonication in the presence of the dispersing agent. ZP analysis indicated that the ZnO nanoparticle surface charge was altered by the addition of the dispersing agent and changes in pH. At tested concentrations and optimal dispersion, nanoZnO had no antimicrobial activity against Pseudomonas aeruginosa, Lactobacillus plantarum, and Listeria monocytogenes. However, it did have antimicrobial activity against Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger. Based on the exhibited antimicrobial activity of optimized nanoZnO against some foodborne pathogens and spoilage microorganisms, nanoZnO is a promising antimicrobial for food preservation with potential application for incorporation in polymers intended as food-contact surfaces.

  16. The role of particle size of particulate nano-zinc oxide wood preservatives on termite mortality and leach resistance

    NASA Astrophysics Data System (ADS)

    Clausen, Carol A.; Kartal, S. Nami; Arango, Rachel A.; Green, Frederick

    2011-06-01

    Historically most residential wood preservatives were aqueous soluble metal formulations, but recently metals ground to submicron size and dispersed in water to give particulate formulations have gained importance. In this study, the specific role nano-zinc oxide (ZnO) particle size and leach resistance plays in termite mortality resulting from exposure to particulate ZnO-treated wood was investigated. Southern yellow pine (SYP) sapwood impregnated with three concentrations of two particle sizes (30 and 70 nm) of ZnO were compared to wood treated with soluble zinc sulphate (ZnSO4) preservative for leach resistance and termite resistance. Less than four percent leached from the particulate nano-ZnO-treated specimens, while 13 to 25% of the zinc sulphate leached from the soluble treated wood. Nano-ZnO was essentially non-leachable from wood treated with 5% formulation for the 30-nm particle size. In a no-choice laboratory test, eastern subterranean termites ( Reticulitermes flavipes) consumed less than 10% of the leached nano-ZnO-treated wood with 93 to 100% mortality in all treatment concentrations. In contrast, termites consumed 10 to 12% of the leached ZnSO4-treated wood, but with lower mortality: 29% in the 1% treatment group and less than 10% (5 and 8%, respectively) in the group of wood blocks treated with 2.5 and 5.0% ZnSO4. We conclude that termites were repelled from consuming wood treated with nano-ZnO, but when consumed it was more toxic to eastern subterranean termites than wood treated with the soluble metal oxide formulation. There were no differences in leaching or termite mortality between the two particle sizes of nano-ZnO.

  17. In situ loading of well-dispersed silver nanoparticles on nanocrystalline magnesium oxide for real-time monitoring of catalytic reactions by surface enhanced Raman spectroscopy.

    PubMed

    Zhang, Kaige; Li, Gongke; Hu, Yuling

    2015-10-28

    The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn(2+) linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real-time monitoring of the catalytic reaction process of 4-nitrothiophenol to 4-aminothiophenol in an aqueous medium by observing the SERS signals of the reactant, intermediate and final products. The intrinsic reaction kinetics and reaction mechanism of this reaction were also investigated. This SERS-based synergy technique provides a novel approach for quantitative in situ monitoring of catalytic chemical reaction processes.

  18. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development.

    PubMed

    Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek

    2011-02-25

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.

  19. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    PubMed Central

    Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek

    2011-01-01

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering. PMID:28880002

  20. Improving the physical properties of starch using a new kind of water dispersible nano-hybrid reinforcement.

    PubMed

    Morales, Noé J; Candal, Roberto; Famá, Lucía; Goyanes, Silvia; Rubiolo, Gerardo H

    2015-08-20

    Plasticized cassava starch matrix composites reinforced by a multi-wall carbon nanotube (MWCNT)-hercynite (FeAl2O4) nanomaterial were developed. The hybrid nanomaterial consists of FeAl2O4 nanoparticles anchored strongly to the surface of the MWCNT. This nano-hybrid filler shows an irregular geometry, which provides a strong mechanical interlocking with the matrix, and excellent stability in water, ensuring a good dispersion in the starch matrix. The composite containing 0.04wt.% of the nano-hybrid filler displays increments of 370% in the Young's modulus, 138% in tensile strength and 350% in tensile toughness and a 70% decrease in water vapor permeability relative to the matrix material. All of these significant improvements are explained in terms of the nano-hybrid filler homogenous dispersion and its high affinity with both plasticizers, glycerol and water, which induces crystallization without deterioration of the tensile toughness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Preparation of nano fluids by mechanical method

    NASA Astrophysics Data System (ADS)

    Boopathy, J.; Pari, R.; Kavitha, M.; Angelo, P. C.

    2012-07-01

    Nanofluids are conventional heat transfer fluids that contain nano particles of metals, oxides, carbides, nitrides, or nanotubes. Nanofluids exhibit enhanced thermal conductivity and heat transfer coefficients compared to the base fluids. This paper presents the procedure for preparing nanofluids consisting of Copper and Aluminium nano powders in base fluids. Copper and Aluminium nano powders were produced by planetary ball wet milling at 300rpm for 50hrs. Toluene was added to ensure wet milling. These powders were characterized in XRD and SEM for their purity, particle size and shape. The XRD results confirmed the final particle sizes of Copper and Aluminium in the nano range. Then the 0.01 gm of nano metal powders was added in 150 ml of double distilled water and magnetic stirring was done at 1500 rpm for 15 minutes. Sodium lauryl sulphate (0.05%) was added in water as surfactant to ensure the stability of the dispersion. Ultrasonication in the 3000 watts bath was done for 10 minutes to enhance the uniform dispersion of metal powders in water. The pH, dynamic viscosity, ionic conductivity and the stability of the fluids were determined for further usage of synthesized nanofluids as coolant during grinding operation.

  2. Physical properties of spin-valve films grown on naturally oxidized metal nano-oxide surfaces

    NASA Astrophysics Data System (ADS)

    Mao, Ming; Cerjan, Charlie; Kools, Jacques

    2002-05-01

    The physical properties of spin-valve films NiFe 25 Å/CoFe 10 Å/Cu(tCu)/CoFe 30 Å/IrMn 70 Å/Ta 20 Å with graded Cu layer thickness (tCu=18-45 Å) grown on the surface of metal nano-oxide layers (NOLs) were studied. The NOLs were formed from ultrathin Al, Cr, Cu, Nb, Ta, CoFe, NiFe, and NiFeCr layers by natural oxidation. The growth of the spin-valve films on NOLs has led to an enhancement in giant magnetoresistance value by up to 48%. A corresponding reduction in minimum film resistance by over 10% confirms that this enhancement originates from an increase in the mean free path of spin-polarized electrons due to the resultant specular reflection at the nano-oxide surfaces. A wide spectrum of oscillatory interlayer exchange coupling dependence on tCu for these NOL-bearing films suggests that a specular nano-oxide surface does not necessarily result in a smoother multilayer structure. The observation of an enhanced exchange biasing among these spin-valve films appears in contradiction to the observed deterioration of their crystallographic quality. As an important application, TaOx, CrOx, and NbOx could be employed as an alternative to AlOx as the barrier layer for magnetic tunnel junctions.

  3. Synthesis and antibacterial evaluation of calcinated Ag-doped nano-hydroxyapatite with dispersibility.

    PubMed

    Furuzono, Tsutomu; Motaharul, Mazumder; Kogai, Yasumichi; Azuma, Yoshinao; Sawa, Yoshiki

    2015-05-01

    Dispersible hydroxyapatite (HAp) nanoparticles are very useful for applying a monolayer to implantable medical devices using the nano-coating technique. To improve tolerance to infection on implanted medical devices, silver-doped HAp (Ag-HAp) nanoparticles with dispersiblity and crystallinity were synthesized, avoiding calcination-induced sintering, and evaluated for antibacterial activity. The Ca10-xAgx(PO4)6(OH)2 with x = 0 and 0.2 were prepared by wet chemical processing at 100°C. Before calcination at 700°C for 2 h, two kinds of anti-sintering agents, namely a Ca(NO3)2 (Ca salt) and a polyacrylic acid/Ca salt mixture (PAA-Ca), were used. Escherichia coli was used to evaluate the antibacterial activity of the nanopowder. When PAA-Ca was used as an anti-sintering agent in calcination to prepare the dispersible nanoparticles, strong metallic Ag peaks were observed at 38.1° and 44.3° (2θ) in the X-ray diffraction (XRD) profile. However, the Ag peak was barely observed when Ca salt was used alone as the anti-sintering agent. Thus, using Ca salt alone was more effective for preparation of dispersible Ag-HAp than PAA-Ca. The particle average size of Ag-HAp with 0.5 mol% of Ag content was found to be 325 ± 70 nm when the formation of large particleaggregations was prevented, as determined by dynamic light scattering instrument. The antibacterial activity of the Ag-HAp nanoparticles possessing 0.5 mol% against E. coli was greater than 90.0%. Dispersible and crystalline nano Ag-HAp can be obtained by using Ca salt alone as an anti-sintering agent. The nanoparticles showed antibacterial activity.

  4. Color stability of pigmented maxillofacial silicone elastomer: effects of nano-oxides as opacifiers.

    PubMed

    Han, Ying; Zhao, Yimin; Xie, Chao; Powers, John M; Kiat-amnuay, Sudarat

    2010-01-01

    This study evaluated the effects of nano-oxides on the color stability of pigmented silicone A-2186 maxillofacial prosthetic elastomers before and after artificial aging. Each of three widely used UV-shielding nano-sized particle oxides (TiO(2), ZnO, CeO(2)), based on recent survey of the industry at 1%, 2%, 2.5% concentrations were combined with each of five intrinsic silicone pigment types (no pigments, red, yellow, blue, and a mixture of the three pigments). Silicone A-2186 without nano-oxides or pigments served as control, for a total of 46 experimental groups of elastomers. In each group of the study, all specimens were aged in an artificial aging chamber for an energy exposure of 450kJ/m(2). CIE L*a*b* values were measured by a spectrophotometer. The 50:50% perceptibility (ΔE*=1.1) and acceptability threshold (ΔE*=3.0) were used in interpretation of recorded color differences. Color differences after aging were subjected to three-way analysis of variance. Means were compared by Fisher's PLSD intervals at the 0.05 level of significance. Yellow pigments mixed with all three nano-oxides at all intervals increased ΔE* values significantly from 3.7 up to 8.4. When mixed pigment groups were considered, TiO(2) at 2%, and 2.5% exhibited the smallest color changes, followed by ZnO and CeO(2), respectively (p<0.001). At 1%, CeO(2) exhibited the smallest color changes, followed by TiO(2) and ZnO, respectively (p<0.001). The smallest color differences, observed for nano-oxides groups, were recorded for CeO(2) at 1%, and TiO(2) at 2% and 2.5%. When the nano-oxides were tested at all concentrations, CeO(2) groups overall had the most color changes, and TiO(2) groups had the least. All ΔE* values of the mixed pigment groups were below the 50:50% acceptability threshold (ΔE*=1.2-2.3, below 3.0) except 2% CeO(2) (ΔE*=4.2). 1% nano-CeO(2) and 2% and 2.5% nano-TiO(2) used as opacifiers for silicone A-2186 maxillofacial prostheses with mixed pigments exhibited the least

  5. High-voltage nano-oxidation in deionized water and atmospheric environments by atomic force microscopy.

    PubMed

    Huang, Jen-Ching; Chen, Chung-Ming

    2012-01-01

    This study used atomic force microscopy (AFM), metallic probes with a nanoscale tip, and high-voltage generators to investigate the feasibility of high-voltage nano-oxidation processing in deionized water (DI water) and atmospheric environments. Researchers used a combination of wire-cutting and electrochemical etching to transform a 20-μm-thick stainless steel sheet into a conductive metallic AFM probe with a tip radius of 60 nm, capable of withstanding high voltages. The combination of AFM, high-voltage generators, and nanoscale metallic probes enabled nano-oxidation processing at 200 V in DI water environments, producing oxides up to 66.6 nm in height and 467.03 nm in width. Oxides produced through high-voltage nano-oxidation in atmospheric environments were 117.29 nm in height and 551.28 nm in width, considerably exceeding the dimensions of those produced in DI water. An increase in the applied bias voltage led to an apparent logarithmic increase in the height of the oxide dots in the range of 200-400 V. The performance of the proposed high-voltage nano-oxidation technique was relatively high with seamless integration between the AFM machine and the metallic probe fabricated in this study. © Wiley Periodicals, Inc.

  6. Surface-complexation synthesis of silica-supported high-loading well-dispersed reducible nano-Co3O4 catalysts using CoIII ammine hydroxo complexes

    NASA Astrophysics Data System (ADS)

    Zhang, Weidong; Pan, Feng; Li, Jinjun; Wang, Zhen; Ding, Wei; Qin, Yi; Wu, Feng

    2018-06-01

    Silica-supported highly dispersed cobalt oxides prepared by adsorption are likely to be poorly reducible Co-phyllosilicates or CoO species. Here we report the synthesis of silica-supported monodispersed spinel nano-Co3O4 catalysts by inner-sphere complexation using CoIII ammine hydroxo complexes as precursors. The precursors were facilely prepared by stirring ammoniacal CoII solutions exposed to air. The cobalt loadings (up to 188 mg/g) and particle sizes (3-10 nm) were tailored by successive complexation-calcination cycles. Such catalysts showed significantly superior reducibility and catalytic activity in complete propane oxidation in comparison to supported Co-phyllosilicates and CoO. A further development of this synthesis process may provide a variety of cobalt-based catalysts for important catalytic applications.

  7. Oxide-dispersion strengthening of porous powder metalurgy parts

    DOEpatents

    Judkins, Roddie R.

    2002-01-01

    Oxide dispersion strengthening of porous metal articles includes the incorporation of dispersoids of metallic oxides in elemental metal powder particles. Porous metal articles, such as filters, are fabricated using conventional techniques (extrusion, casting, isostatic pressing, etc.) of forming followed by sintering and heat treatments that induce recrystallization and grain growth within powder grains and across the sintered grain contact points. The result is so-called "oxide dispersion strengthening" which imparts, especially, large increases in creep (deformation under constant load) strength to the metal articles.

  8. Microscopy of Alloy Formation on Arc Plasma Sintered Oxide Dispersion Strengthen (ODS) Steel

    NASA Astrophysics Data System (ADS)

    Bandriyana, B.; Sujatno, A.; Salam, R.; Dimyati, A.; Untoro, P.

    2017-07-01

    The oxide dispersed strengthened (ODS) alloys steel developed as structure material for nuclear power plants (NPP) has good resistant against creep due to their unique microstructure. Microscopy investigation on the microstructure formation during alloying process especially at the early stages was carried out to study the correlation between structure and property of ODS alloys. This was possible thanks to the arc plasma sintering (APS) device which can simulate the time dependent alloying processes. The ODS sample with composition of 88 wt.% Fe and 12 wt.% Cr powder dispersed with 1 wt.% ZrO2 nano powder was mixed in a high energy milling, isostatic compressed to form sample coins and then alloyed in APS. The Scanning Electron Microscope (SEM) with X-ray Diffraction Spectroscopy (EDX) line scan and mapping was used to characterize the microstructure and elemental composition distribution of the samples. The alloying process with unification of each Fe and Cr phase continued by the alloying formation of Fe-Cr by inter-diffusion of both Fe and Cr and followed by the improvement of the mechanical properties of hardness.

  9. Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods

    NASA Astrophysics Data System (ADS)

    Azadi, Mahboobeh; Zolfaghari, Mehrdad; Rezanezhad, Saeid; Azadi, Mohammad

    2018-05-01

    This study has been presented with mechanical properties of aluminum matrix composites, reinforced by SiO2 nano-particles. The stir casting method was employed to produce various aluminum matrix composites. Different composites by varying the SiO2 nano-particle content (including 0.5 and 1 weight percents) and two dispersion methods (including ball-milling and pre-heating) were made. Then, the density, the hardness, the compression strength, the wear resistance and the microstructure of nano-composites have been studied in this research. Besides, the distribution of nano-particles in the aluminum matrix for all composites has been also evaluated by the field emission scanning electron microscopy (FESEM). Obtained results showed that the density, the elongation and the ultimate compressive strength of various nano-composites decreased by the presence of SiO2 nano-particles; however, the hardness, the wear resistance, the yield strength and the elastic modulus of composites increased by auditioning of nano-particles to the aluminum alloy. FESEM images indicated better wetting of the SiO2 reinforcement in the aluminum matrix, prepared by the pre-heating dispersion method, comparing to ball-milling. When SiO2 nano-particles were added to the aluminum alloy, the morphology of the Si phase and intermetallic phases changed, which enhanced mechanical properties. In addition, the wear mechanism plus the friction coefficient value were changed for various nano-composites with respect to the aluminum alloy.

  10. Oxidation resistant, thoria-dispersed nickel-chromium-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Baranow, S.; Klingler, L. J.

    1973-01-01

    Modified thoria-dispersed nickel-chromium alloy has been developed that exhibits greatly improved resistance to high-temperature oxidation. Additions of aluminum have been made to change nature of protective oxide scale entirely and to essentially inhibit oxidation at temperatures up to 1260 C.

  11. Environmental risk assessment of engineered nano-SiO2 , nano iron oxides, nano-CeO2 , nano-Al2 O3 , and quantum dots.

    PubMed

    Wang, Yan; Nowack, Bernd

    2018-05-01

    Many research studies have endeavored to investigate the ecotoxicological hazards of engineered nanomaterials (ENMs). However, little is known regarding the actual environmental risks of ENMs, combining both hazard and exposure data. The aim of the present study was to quantify the environmental risks for nano-Al 2 O 3 , nano-SiO 2 , nano iron oxides, nano-CeO 2 , and quantum dots by comparing the predicted environmental concentrations (PECs) with the predicted-no-effect concentrations (PNECs). The PEC values of these 5 ENMs in freshwaters in 2020 for northern Europe and southeastern Europe were taken from a published dynamic probabilistic material flow analysis model. The PNEC values were calculated using probabilistic species sensitivity distribution (SSD). The order of the PNEC values was quantum dots < nano-CeO 2  < nano iron oxides < nano-Al 2 O 3  < nano-SiO 2 . The risks posed by these 5 ENMs were demonstrated to be in the reverse order: nano-Al 2 O 3  > nano-SiO 2  > nano iron oxides > nano-CeO 2  > quantum dots. However, all risk characterization values are 4 to 8 orders of magnitude lower than 1, and no risk was therefore predicted for any of the investigated ENMs at the estimated release level in 2020. Compared to static models, the dynamic material flow model allowed us to use PEC values based on a more complex parameterization, considering a dynamic input over time and time-dependent release of ENMs. The probabilistic SSD approach makes it possible to include all available data to estimate hazards of ENMs by considering the whole range of variability between studies and material types. The risk-assessment approach is therefore able to handle the uncertainty and variability associated with the collected data. The results of the present study provide a scientific foundation for risk-based regulatory decisions of the investigated ENMs. Environ Toxicol Chem 2018;37:1387-1395. © 2018 SETAC. © 2018 SETAC.

  12. The nano-particle dispersion strengthening of V-4Cr-4Ti alloys for high temperature application in fusion reactors

    NASA Astrophysics Data System (ADS)

    Zheng, Pengfei; Chen, Jiming; Xu, Zengyu; Duan, Xuru

    2013-10-01

    V-4Cr-4Ti was identified as an attractive structural material for Li blanket in fusion reactors. However, both high temperature and irradiation induced degradation are great challenges for this material. It was thought that the nano-particles with high thermal stability can efficiently strengthen the alloy at elevated temperatures, and accommodate the irradiation induced defects at the boundaries. This study is a starting work aiming at improving the creep resistance and reducing the irradiation induced degradation for V-4Cr-4Ti alloy. Currently, we focus on the preparation of some comparative nano-particle dispersion strengthened V-4Cr-4Ti alloys. A mechanical alloying (MA) route is used to fabricate yttrium and carbides added V-4Cr-4Ti alloys. Nano-scale yttria, carbides and other possible particles have a combined dispersion-strengthening effect on the matrices of these MA-fabricated V-4Cr-4Ti alloys. High-temperature annealing is carried out to stabilize the optimized nano-particles. Mechanical properties are tested. Microstructures of the MA-fabricated V-4Cr-4Ti alloys with yttrium and carbide additions are characterized. Based on these results, the thermal stability of different nano-particle agents are classified. ITER related China domestic project 2011GB108007.

  13. Small angle neutron scattering study of nano sized microstructure in Fe-Cr ODS steels for gen IV in-core applications.

    PubMed

    Han, Young-Soo; Mao, Xiadong; Jang, Jinsung

    2013-11-01

    The nano-sized microstructures in Fe-Cr oxide dispersion strengthened steel for Gen IV in-core applications were studied using small angle neutron scattering. The oxide dispersion strengthened steel was manufactured through hot isostatic pressing with various chemical compositions and fabrication conditions. Small angle neutron scattering experiments were performed using a 40 m small angle neutron scattering instrument at HANARO. Nano sized microstructures, namely, yttrium oxides and Cr-oxides were quantitatively analyzed by small angle neutron scattering. The yttrium oxides and Cr-oxides were also observed by transmission electron microscopy. The microstructural analysis results from small angle neutron scattering were compared with those obtained by transmission electron microscopy. The effects of the chemical compositions and fabrication conditions on the microstructure were investigated in relation to the quantitative microstructural analysis results obtained by small angle neutron scattering. The volume fraction of Y-oxide increases after fabrication, and this result is considered to be due to the formation of non-stochiometric Y-Ti-oxides.

  14. Adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals to improve its dispersity.

    PubMed

    Cheng, Dong; Wen, Yangbing; Wang, Lijuan; An, Xingye; Zhu, Xuhai; Ni, Yonghao

    2015-06-05

    In this work, the adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals (CNC) was investigated for preparing re-dispersible dried CNC. Results showed that the re-dispersity of CNC in water can be significantly enhanced using a PEG1000 dosage of 5wt% (based on the dry weight of CNC). The elemental analysis confirmed the adsorption of PEG onto the CNC surface. Transmission electron microscopy (TEM) was used to characterize the dry powder and indicated that the irreversible agglomeration of CNC after drying was essentially eliminated based on the PEG adsorption concept. Thermo-gravimetric analysis (TGA) and X-ray diffraction (XRD) suggested that CNC crystallinity and thermal stability were not affected by the adsorption of PEG. Thus, the adsorption of PEG has great potential for producing re-dispersible powder CNC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Formation and anisotropic magnetoresistance of Co/Pt nano-contacts through aluminum oxide barrier

    NASA Astrophysics Data System (ADS)

    Al-Mahdawi, Muftah; Sahashi, Masashi

    2014-01-01

    We report on the observation of anisotropic magnetoresistance (AMR) in vertical asymmetric nano-contacts (NCs) made through AlOx nano-oxide layer (NOL) formed by ion-assisted oxidation method in the film stack of Co/AlOx-NOL/Pt. Analysis of NC formation was based on in situ conductive atomic force microscopy and transmission electron microscopy. Depending on the purity of NCs from Al contamination, we observed up to 29% AMR ratio at room temperature.

  16. Initial stage oxidation on nano-trenched Si(1 0 0) surface

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Liu, Yi-Lun; Izumi, Satoshi; Chen, Xue-Feng; Zhai, Zhi; Tian, Shao-Hua

    2018-01-01

    As the size of an electronic element shrinks to nanoscale, trench design of Si strongly influences the performance of related semiconductor devices. By reactive force field molecular dynamics (ReaxFF MD) simulation, the initial stage oxidation on nano-trenched Si(1 0 0) angled 60°, 90°, 120°, 150° under temperatures from 300 K to 1200 K has been studied. Inhomogeneous oxidation at the convex-concave corners of the Si surface was observed. In general, the initial oxidation process on the Si surface was that, firstly, the O atoms ballistically transported into surface, then a high O concentration induced compressive stress at the surface layers, which prevented further oxidation. Compared to the concave corner, the convex one contacted a larger volume of oxygen at the very beginning stage, leading an anisotropic absorption of O atoms. Afterwards, a critical compression was produced at both the convex and concave corners to limit the oxidation. As a result, an inhomogeneous oxide film grew on nano-trenched Si. Meanwhile, due to enhanced O transport and compression relaxation by increasing temperature, the inhomogeneous oxidation was more obvious under 1200 K. These present results explained the observed experimental phenomena on the oxidation of non-planar Si and provided an aspect on the design of nano-trenched electronic components in the semiconductor field.

  17. A Study on Formation and Thermal Stability of Nano-sized Oxide Clusters in Mechanically Alloyed Nickel Aluminum for High Temperature Applications

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Deog

    The intermetallic compound, B2 NiAl, is a promising material for high temperature structural applications such as in aviation jet engines or gas turbines, provided that its high temperature mechanical properties can be improved. Although extensive efforts over the last several decades have been devoted toward enhancing ductility through alloying design and reducing impurities, as well as improving high temperature creep strength through precipitation and dispersion strengthening, these efforts have relied on traditional approaches, a combination of large grain size to limit diffusional creep and precipitation/dispersion (50 ˜ 100 nm size) strengthening to limit dislocation creep, for high temperature strengthening. While traditional approaches have shown a good improvement from a relatively high temperature strengthening point of view, the size and number density of dispersoids were not able to provide sufficient strength in the high temperature creep regime. Furthermore, details of the interaction mechanism between dislocations and dispersoids are not yet well understood. This study focuses on designing and developing advanced oxide dispersion strengthened (ODS) NiAl intermetallics with improved high temperature creep strength by incorporating a high number density (˜1024 m-3) of very thermally stable Y-Ti-O nano-clusters, akin to those recently observed to improve creep strength and radiation resistance in nano-structured ferritic alloys. Advanced ODS NiAl alloys have been produced by mechanical alloying of pre-alloyed Ni-50at%Al with Y2O3 and Ti elemental powders. The milled powders were subsequently consolidated by spark plasma sintering, with the objective of producing very high number densities of nano-sized Y-Ti-O precipitates, along with fine grain size. Advanced experimental characterization techniques, combined with microhardness strength measurement, were used to investigate the material microstructure and strength following processing and to evaluate

  18. Recrystallization characteristics of oxide dispersion strengthened nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Hotzler, R. K.; Glasgow, T. K.

    1980-01-01

    Electron microscopy was employed to study the process of recrystallization in two oxide dispersion strengthened (ODS) mechanically alloyed nickel-base alloys, MA 754 and MA 6000E. MA 754 contained both fine, uniformly dispersed particles and coarser oxides aligned along the working direction. Hot rolled MA 754 had a grain size of 0.5 microns and high dislocation densities. After partial primary recrystallization, the fine grains transformed to large elongated grains via secondary (or abnormal) grain growth. Extruded and rolled MA 6000E contained equiaxed grains of 0.2 micron diameter. Primary recrystallization occurring during working eliminated virtually all dislocations. Conversion from fine to coarse grains was triggered by gamma prime dissolution; this was also a process of secondary or abnormal grain growth. Comparisons were made to conventional and oxide dispersion strengthened nickel-base alloys.

  19. Synthesis, characterization and magnetic behavior of Co/MCM-41 nano-composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuello, N.; Elías, V.; CONICET

    2013-09-15

    Synthesis, structure and magnetic properties of Co/MCM-41 as magnetic nano-composites have been investigated. Mesoporous materials with different degrees of metal loading were prepared by wet impregnation and characterized by ICP, XRD, N{sub 2} adsorption, UV–vis DRS, TPR and EPMA-EDS. Cobalt oxide clusters and Co{sub 3}O{sub 4} nano-particles could be confined inside the mesopores of MCM-41, being this fact favored by the Co loading increasing. In addition, larger crystals of Co{sub 3}O{sub 4} detectable by XRD also grow on the surface when the Co loading is enhanced. The magnetic characterization was performed in a SQUID magnetometer using a maximum magnetic appliedmore » field µ{sub 0}Ha=1 T. While the samples with the higher Co loadings showed a behavior typically paramagnetic, a superparamagnetic contribution is more notorious for lower loadings, suggesting high Co species dispersion. - Graphical abstract: Room temperature hysteresis loops as a function of the Co content. Display Omitted - Highlights: • Co species as isolated Co{sup 2+}, oxide clusters and Co{sub 3}O{sub 4} nano-particles were detected. • For higher Co loads were detected, by XRD, Co{sub 3}O{sub 4} particles on the external surface. • The confining of Co species inside the mesopores was achieved by increasing Co load. • Paramagnetism from oxide clusters/nano-particles becomes dominant for higher Co loads. • Superparamagnetism can be assigned to Co species of small size and finely dispersed.« less

  20. Protective effects of Nano-elemental selenium against chromium-vi-induced oxidative stress in broiler liver.

    PubMed

    Xueting, L; Rehman, M U; Zhang, H; Tian, X; Wu, X; Shixue; Mehmood, K; Zhou, D

    2018-01-01

    The valuable role of selenium in mitigation of oxidative stress and heavy metal toxicity is well-known. Thus, the aim of the current study on broiler chickens was to examine whether nano elemental selenium (Nano-Se) supplementation can reduce the effects of chromium VI (K2Cr2O7) toxicity. For this purpose, a total of 150, one-day-old broiler chickens were allotted to five groups with three replicates: control group (standard diet), poisoned group (K2Cr2O7 via drinking water), protection group (K2Cr2O7 + Nano- Se), cure group (K2Cr2O7 for initial 2 weeks and then Nano-Se), and prevention group (opposite to the cure group). The broilers were detected by the activities of marker enzymes and oxidative stress markers including, aspartate aminotransferase (AST), alanine transaminase (ALT), gamma-glutamyl transferase (GGT) and superoxide dismutase (SOD), glutathione peroxidase (GSH-px), malondialdehyde (MDA), respectively. The (K2Cr2O7 administration caused histopathological damage in the liver of the chickens. Moreover, changes in serum biochemical indicators and oxidative stress parameters were also observed. Nano-Se supplementation increased the levels of GSH-px but reduced the activities of SOD, MDA, GGT, ALT and AST in the experimental groups (P less than 0.05). Our results showed that Nano-Se plays a protective role by preventing the oxidative stress induced by the chromium VI in broiler chickens.

  1. Thiolated polyethylene oxide as a non-fouling element for nano-patterned bio-devices

    NASA Astrophysics Data System (ADS)

    Lisboa, Patrícia; Valsesia, Andrea; Colpo, Pascal; Gilliland, Douglas; Ceccone, Giacomo; Papadopoulou-Bouraoui, Andri; Rauscher, Hubert; Reniero, Fabiano; Guillou, Claude; Rossi, François

    2007-03-01

    This work describes the synthesis of a thiolated polyethylene oxide that self-assembles on gold to create a non-fouling surface. Thiolated polyethylene oxide was synthesised by reacting 16-mercaptohexadecanoic acid with polyethylene glycol mono methyl ether. The coverage of the thiolated polyethylene oxide on gold was studied by cyclic voltammetry, and the modified surfaces were characterised by X-ray photoelectron spectroscopy and ellipsometry. Protein resistance was assessed using quartz crystal microbalance. Results showed a non-fouling character produced by the thiolated polyethylene oxide. The synthesised product was used as the passivation layer on nano-patterned surfaces consisting of arrayed nano-spots, fabricated by plasma based colloidal lithography. The specific adsorption of anti-bovine serum albumin in the mercaptohexadecanoic acid spots was verified by atomic force microscopy.

  2. Mechanical and tribological property of single layer graphene oxide reinforced titanium matrix composite coating

    NASA Astrophysics Data System (ADS)

    Hu, Zengrong; Li, Yue; Fan, Xueliang; Chen, Feng; Xu, Jiale

    2018-04-01

    Single layer grapheme oxide Nano sheets and Nano titanium powder were dispersed in deionized water by ultrasonic dispersion. Then the mixed solution was pre-coating on AISI4140 substrate. Using laser sintering process to fabricated grapheme oxide and Ti composite coating. Microstructures and composition of the composite coating was studied by Scanning Electron Microscopy (SEM), x-ray diffract meter (XRD) and Raman spectroscopy. Raman spectrum, XRD pattern and SEM results proved that grapheme oxide sheets were dispersed in the composite coating. The composite coating had much higher average Vickers hardness values than that of pure Ti coating. The tribological performance of the composite coatings became better while the suitable GO content was selected. For the 2.5wt. % GO content coating, the friction coefficient was reduced to near 0.1.

  3. Electro-Optic Effects in Colloidal Dispersion of Metal Nano-Rods in Dielectric Fluid

    PubMed Central

    Golovin, Andrii B.; Xiang, Jie; Park, Heung-Shik; Tortora, Luana; Nastishin, Yuriy A.; Shiyanovskii, Sergij V.; Lavrentovich, Oleg D.

    2011-01-01

    In modern transformation optics, one explores metamaterials with properties that vary from point to point in space and time, suitable for application in devices such as an “optical invisibility cloak” and an “optical black hole”. We propose an approach to construct spatially varying and switchable metamaterials that are based on colloidal dispersions of metal nano-rods (NRs) in dielectric fluids, in which dielectrophoretic forces, originating in the electric field gradients, create spatially varying configurations of aligned NRs. The electric field controls orientation and concentration of NRs and thus modulates the optical properties of the medium. Using gold (Au) NRs dispersed in toluene, we demonstrate electrically induced change in refractive index on the order of 0.1. PMID:28879997

  4. Characterization of Nano-scale Aluminum Oxide Transport through Porous Media

    NASA Astrophysics Data System (ADS)

    Norwood, S.; Reynolds, M.; Miao, Z.; Brusseau, M. L.; Johnson, G. R.

    2011-12-01

    Colloidal material (including that in the nanoparticle size range) is naturally present in most subsurface environments. Mobilization of these colloidal materials via particle disaggregation may occur through abrupt changes in flow rate and/or via chemical perturbations, such as rapid changes in ionic strength or solution pH. While concentrations of natural colloidal materials in the subsurface are typically small, those concentrations may be greatly increased at contaminated sites such as following the application of metal oxides for groundwater remediation efforts. Additionally, while land application of biosolids has become common practice in the United States as an alternative to industrial fertilizers, biosolids have been shown to contain a significant fraction of organic and inorganic nano-scale colloidal materials such as oxides of iron, titanium, and aluminum. Given their reactivity and small size, there are many questions concerning the potential migration of nano-scale colloidal materials through the soil column and their potential participation in the facilitated transport of contaminants, such as heavy metals and emerging pollutants. The purpose of this study was to investigate the transport behavior of aluminum oxide (Al2O3) nanoparticles through porous media. The impacts of pH, ionic strength, pore-water velocity (i.e., residence time), and aqueous-phase concentration on transport was investigated. All experiments were conducted with large injection pulses to fully characterize the impact of long-term retention and transport behavior relevant for natural systems wherein multiple retention processes may be operative. The results indicate that the observed nonideal transport behavior of the nano-scale colloids is influenced by multiple retention mechanisms/processes. Given the ubiquitous nature of these nano-scale colloids in the environment, a clear understanding of their transport and fate is necessary in further resolving the potential for

  5. Studies on the formation of polymeric nano-emulsions obtained via low-energy emulsification and their use as templates for drug delivery nanoparticle dispersions.

    PubMed

    Calderó, G; Montes, R; Llinàs, M; García-Celma, M J; Porras, M; Solans, C

    2016-09-01

    Ethylcellulose nanoparticles have been obtained from O/W nano-emulsions of the water/polyoxyethylene 10 oleyl ether/[ethyl acetate+4wt% ethylcellulose] system by low energy-energy emulsification at 25°C. Nano-emulsions with droplet sizes below 200nm and high kinetic stability were chosen for solubilising dexamethasone (DXM). Phase behaviour, conductivity and optical analysis studies of the system have evidenced for the first time that both, the polymer and the drug play a role on the structure of the aggregates formed along the emulsification path. Nano-emulsion formation may take place by both, phase inversion and self-emulsification. Spherical polymeric nanoparticles containing surfactant, showing sizes below 160nm have been obtained from the nano-emulsions by organic solvent evaporation. DXM loading in the nanoparticles was high (>90%). The release kinetics of nanoparticle dispersions with similar particle size and encapsulated DXM but different polymer to surfactant ratio were studied and compared to an aqueous DXM solution. Drug release from the nanoparticle dispersions was slower than from the aqueous solution. While the DXM solution showed a Fickian release pattern, the release behaviour from the nanoparticle dispersions was faster than that expected from a pure Fickian release. A coupled diffusion/relaxation model fitted the results very well, suggesting that polymer chains undergo conformational changes enhancing drug release. The contribution of diffusion and relaxation to drug transport in the nanoparticle dispersions depended on their composition and release time. Surfactant micelles present in the nanoparticle dispersion may exert a mild reservoir effect. The small particle size and the prolonged DXM release provided by the ethylcellulose nanoparticle dispersions make them suitable vehicles for controlled drug delivery applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. An engineered polypeptide around nano-sized manganese-calcium oxide: copying plants for water oxidation.

    PubMed

    Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Sarvi, Bahram; Haghighi, Behzad

    2015-09-14

    Synthesis of new efficient catalysts inspired by Nature is a key goal in the production of clean fuel. Different compounds based on manganese oxide have been investigated in order to find their water-oxidation activity. Herein, we introduce a novel engineered polypeptide containing tyrosine around nano-sized manganese-calcium oxide, which was shown to be a highly active catalyst toward water oxidation at low overpotential (240 mV), with high turnover frequency of 1.5 × 10(-2) s(-1) at pH = 6.3 in the Mn(III)/Mn(IV) oxidation range. The compound is a novel structural and efficient functional model for the water-oxidizing complex in Photosystem II. A new proposed clever strategy used by Nature in water oxidation is also discussed. The new model of the water-oxidizing complex opens a new perspective for synthesis of efficient water-oxidation catalysts.

  7. Evolution of Microstructure and Mechanical Properties of Oxide Dispersion Strengthened Steels Made from Water-Atomized Ferritic Powder

    NASA Astrophysics Data System (ADS)

    Arkhurst, Barton Mensah; Kim, Jeoung Han

    2018-05-01

    Nano-structured oxide dispersion strengthened (ODS) steels produced from a 410L stainless steel powder prepared by water-atomization was studied. The influences of Ti content and milling time on the microstructure and the mechanical properties were analysed. It was found that the ODS steels made from the Si bearing 410L powder contained Y-Ti-O, Y-Ti-Si-O, Y-Si-O, and TiO2 oxides. Most nanoparticles produced after 80 h of milling were aggregated nanoparticles; however, after 160 h of milling, most aggregated nanoparticles dissociated into smaller individual nanoparticles. Perfect mixing of Y and Ti was not achieved even after the longer milling time of 160 h; instead, the longer hours of milling rather resulted in Si incorporation into the Y-Ti-O rich nanoparticles and a change in the matrix morphology from an equiaxed microstructure to a tempered martensite-like microstructure. The overall micro-hardness of the ODS steel increased with the increase of milling time. After 80 and 160 h, the microhardnesses were over 400 HV, which primarily resulted from the finer dispersed nanoparticles and in part to the formation of martensitic phases. Tensile strength of the 410L ODS steels was comparable with that of ODS steel produced from gas-atomized powder.

  8. Electrochemical water splitting using nano-zeolite Y supported tungsten oxide electrocatalysts

    NASA Astrophysics Data System (ADS)

    Anis, Shaheen Fatima; Hashaikeh, Raed

    2018-02-01

    Zeolites are often used as supports for metals and metal oxides because of their well-defined microporous structure and high surface area. In this study, nano-zeolite Y (50-150 nm range) and micro-zeolite Y (500-800 nm range) were loaded with WO3, by impregnating the zeolite support with ammonium metatungstate and thermally decomposing the salt thereafter. Two different loadings of WO3 were studied, 3 wt.% and 5 wt.% with respect to the overall catalyst. The prepared catalysts were characterized for their morphology, structure, and surface areas through scanning electron microscope (SEM), XRD, and BET. They were further compared for their electrocatalytic activity for hydrogen evolution reaction (HER) in 0.5 M H2SO4. On comparing the bare micro-zeolite particles with the nano-form, the nano-zeolite Y showed higher currents with comparable overpotentials and lower Tafel slope of 62.36 mV/dec. WO3 loading brought about a change in the electrocatalytic properties of the catalyst. The overpotentials and Tafel slopes were observed to decrease with zeolite-3 wt.% WO3. The smallest overpotential of 60 mV and Tafel slope of 31.9 mV/dec was registered for nano-zeolite with 3 wt.% WO3, while the micro-zeolite gave an overpotential of 370 mV and a Tafel slope of 98.1 mV/dec. It was concluded that even with the same metal oxide loading, nano-zeolite showed superior performance, which is attributed to its size and hence easier escape of hydrogen bubbles from the catalyst.

  9. Evaluation of Microstructure and Mechanical Properties of Nano-Y2O3-Dispersed Ferritic Alloy Synthesized by Mechanical Alloying and Consolidated by High-Pressure Sintering

    NASA Astrophysics Data System (ADS)

    Karak, Swapan Kumar; Dutta Majumdar, J.; Witczak, Zbigniew; Lojkowski, Witold; Ciupiński, Łukasz; Kurzydłowski, K. J.; Manna, Indranil

    2013-06-01

    In this study, an attempt has been made to synthesize 1.0 wt pct nano-Y2O3-dispersed ferritic alloys with nominal compositions: 83.0 Fe-13.5 Cr-2.0 Al-0.5 Ti (alloy A), 79.0 Fe-17.5 Cr-2.0 Al-0.5 Ti (alloy B), 75.0 Fe-21.5 Cr-2.0 Al-0.5 Ti (alloy C), and 71.0 Fe-25.5 Cr-2.0 Al-0.5 Ti (alloy D) steels (all in wt pct) by solid-state mechanical alloying route and consolidation the milled powder by high-pressure sintering at 873 K, 1073 K, and 1273 K (600°C, 800°C, and 1000°C) using 8 GPa uniaxial pressure for 3 minutes. Subsequently, an extensive effort has been undertaken to characterize the microstructural and phase evolution by X-ray diffraction, scanning and transmission electron microscopy, and energy dispersive spectroscopy. Mechanical properties including hardness, compressive strength, Young's modulus, and fracture toughness were determined using micro/nano-indentation unit and universal testing machine. The present ferritic alloys record extraordinary levels of compressive strength (from 1150 to 2550 MPa), Young's modulus (from 200 to 240 GPa), indentation fracture toughness (from 3.6 to 15.4 MPa√m), and hardness (from13.5 to 18.5 GPa) and measure up to 1.5 through 2 times greater strength but with a lower density (~7.4 Mg/m3) than other oxide dispersion-strengthened ferritic steels (<1200 MPa) or tungsten-based alloys (<2200 MPa). Besides superior mechanical strength, the novelty of these alloys lies in the unique microstructure comprising uniform distribution of either nanometric (~10 nm) oxide (Y2Ti2O7/Y2TiO5 or un-reacted Y2O3) or intermetallic (Fe11TiY and Al9.22Cr2.78Y) particles' ferritic matrix useful for grain boundary pinning and creep resistance.

  10. A nano-disperse ferritin-core mimetic that efficiently corrects anemia without luminal iron redox activity

    PubMed Central

    Powell, Jonathan J.; Bruggraber, Sylvaine F.A.; Faria, Nuno; Poots, Lynsey K.; Hondow, Nicole; Pennycook, Timothy J.; Latunde-Dada, Gladys O.; Simpson, Robert J.; Brown, Andy P.; Pereira, Dora I.A.

    2014-01-01

    The 2-5 nm Fe(III) oxo-hydroxide core of ferritin is less ordered and readily bioavailable compared to its pure synthetic analogue, ferrihydrite. We report the facile synthesis of tartrate-modified, nano-disperse ferrihydrite of small primary particle size, but with enlarged or strained lattice structure (~ 2.7 Å for the main Bragg peak versus 2.6 Å for synthetic ferrihydrite). Analysis indicated that co-precipitation conditions can be achieved for tartrate inclusion into the developing ferrihydrite particles, retarding both growth and crystallization and favoring stabilization of the cross-linked polymeric structure. In murine models, gastrointestinal uptake was independent of luminal Fe(III) reduction to Fe(II) and, yet, absorption was equivalent to that of ferrous sulphate, efficiently correcting the induced anemia. This process may model dietary Fe(III) absorption and potentially provide a side effect-free form of cheap supplemental iron. From the Clinical Editor Small size tartrate-modified, nano-disperse ferrihydrite was used for efficient gastrointestinal delivery of soluble Fe(III) without the risk for free radical generation in murine models. This method may provide a potentially side effect-free form iron supplementation. PMID:24394211

  11. Effect of Nano-Al₂O₃ on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus.

    PubMed

    Li, Xiaomin; Zhou, Suyang; Fan, Wenhong

    2016-06-09

    Nano-Al₂O₃ has been widely used in various industries; unfortunately, it can be released into the aquatic environment. Although nano-Al₂O₃ is believed to be of low toxicity, it can interact with other pollutants in water, such as heavy metals. However, the interactions between nano-Al₂O₃ and heavy metals as well as the effect of nano-Al₂O₃ on the toxicity of the metals have been rarely investigated. The current study investigated copper toxicity in the presence of nano-Al₂O₃ towards Scenedesmus obliquus. Superoxide dismutase activity and concentration of glutathione and malondialdehyde in cells were determined in order to quantify oxidative stress in this study. Results showed that the presence of nano-Al₂O₃ reduced the toxicity of Cu towards S. obliquus. The existence of nano-Al₂O₃ decreased the growth inhibition of S. obliquus. The accumulation of copper and the level of oxidative stress in algae were reduced in the presence of nano-Al₂O₃. Furthermore, lower copper accumulation was the main factor that mitigated copper toxicity with the addition of nano-Al₂O₃. The decreased copper uptake could be attributed to the adsorption of copper onto nanoparticles and the subsequent decrease of available copper in water.

  12. Nano-structured Platinum-based Catalysts for the Complete Oxidation of Ethylene Glycol and Glycerol

    NASA Astrophysics Data System (ADS)

    Falase, Akinbayowa

    Direct alcohol fuel cells are a viable alternative to the traditional hydrogen PEM fuel cell. Fuel versatility, integration with existing distribution networks, and increased safety when handling these fuels increases their appeal for portable power applications. In order to maximize their utility, the liquid fuel must be fully oxidized to CO2 so as to harvest the full amount of energy. Methanol and ethanol are widely researched as potential fuels to power these devices, but methanol is a toxic substance, and ethanol has a much lower energy density than other liquids such as gasoline or glucose. Oxidation of complex fuels is difficult to realize, due to difficulty in breaking carbon-carbon bonding and poisoning of the catalysts by oxidative byproducts. In order to achieve the highest efficiency, an anode needs to be engineered in such a way as to maximize activity while minimizing poisoning effects of reaction byproducts. We have engineered an anode that uses platinum-based catalysts that is capable of completely oxidizing ethylene glycol and glycerol in neutral and alkaline media with little evidence of CO poisoning. We have constructed a hybrid anode consisting of a nano-structured PtRu electrocatayst with an NAD-dependent alcohol dehydrogenase for improved oxidation of complex molecules. A nano-structured PtRu catalyst was used to oxidize ethylene glycol and glycerol in neutral media. In situ infrared spectroscopy was used to verify complete oxidation via CO2 generation. There was no evidence of poisoning by CO species. A pH study was performed to determine the effect of pH on oxidative current. The peak currents did not trend at 60 mV/pH unit as would be expected from the Nernst equation, suggesting that adsorption of fuel to the surface of the electrode is not an electron-transfer step. We synthesized nano-structured PtRu, PtSn, and PtRuSn catalysts for oxidation of ethylene glycol and glycerol in alkaline media. The PtRu electrocatalyst the highest oxidative

  13. Green and Mild Oxidation: An Efficient Strategy toward Water-Dispersible Graphene.

    PubMed

    You, Xiaofei; Yang, Siwei; Li, Jipeng; Deng, Yuan; Dai, Lianqi; Peng, Xiong; Huang, Haoguang; Sun, Jing; Wang, Gang; He, Peng; Ding, Guqiao; Xie, Xiaoming

    2017-01-25

    Scalable fabrication of water-dispersible graphene (W-Gr) is highly desirable yet technically challenging for most practical applications of graphene. Herein, a green and mild oxidation strategy to prepare bulk W-Gr (dispersion, slurry, and powder) with high yield was proposed by fully exploiting structure defects of thermally reduced graphene oxide (TRGO) and oxidizing radicals generated from hydrogen peroxide (H 2 O 2 ). Owing to the increased carboxyl group from the mild oxidation process, the obtained W-Gr can be redispersed in low-boiling solvents with a reasonable concentration. Benefiting from the modified surface chemistry, macroscopic samples processed from the W-Gr show good hydrophilicity (water contact angle of 55.7°) and excellent biocompatibility, which is expected to be an alternative biomaterial for bone, vessel, and skin regeneration. In addition, the green and mild oxidation strategy is also proven to be effective for dispersing other carbon nanomaterials in a water system.

  14. Oxidation and hot corrosion of coated and bare oxide dispersion strengthened superalloy MA-755E

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.; Santoro, G. J.

    1981-01-01

    Cyclic hot corrosion and oxidation of an experimental oxide dispersion strengthened (ODS) superalloy MA-755E were conducted in a hot gas stream at Mach 0.3. The response of the ODS alloy, bare or with protective coatings, was similar to that of a conventional cast alloy, IN-792, in hot corrosion at 900 C. However, during oxidation at 1100 and 1150 C the ODS alloy differed from the cast alloy by developing a greater amount of subsurface porosity. Compared with a diffused aluminide coating, an electron beam vapor deposited NiCrAlY coating offered superior oxidation protection and decreased porosity formation. In additional testing, the tendency to form porosity was associated with the large grains of recrystallized powder metallurgy alloys but was independent of the presence of an oxide dispersion.

  15. Nano-tags for neonates and ocean-mediated swimming behaviours linked to rapid dispersal of hatchling sea turtles

    PubMed Central

    Scott, Rebecca; Biastoch, Arne; Roder, Christian; Stiebens, Victor A.; Eizaguirre, Christophe

    2014-01-01

    Dispersal during juvenile life stages drives the life-history evolution and dynamics of many marine vertebrate populations. However, the movements of juvenile organisms, too small to track using conventional satellite telemetry devices, remain enigmatic. For sea turtles, this led to the paradigm of the ‘lost years' since hatchlings disperse widely with ocean currents. Recently, advances in the miniaturization of tracking technology have permitted the application of nano-tags to track cryptic organisms. Here, the novel use of acoustic nano-tags on neonate loggerhead turtle hatchlings enabled us to witness first-hand their dispersal and behaviour during their first day at sea. We tracked hatchlings distances of up to 15 km and documented their rapid transport (up to 60 m min−1) with surface current flows passing their natal areas. Tracking was complemented with laboratory observations to monitor swimming behaviours over longer periods which highlighted (i) a positive correlation between swimming activity levels and body size and (ii) population-specific swimming behaviours (e.g. nocturnal inactivity) suggesting local oceanic conditions drive the evolution of innate swimming behaviours. Knowledge of the swimming behaviours of small organisms is crucial to improve the accuracy of ocean model simulations used to predict the fate of these organisms and determine resultant population-level implications into adulthood. PMID:25339720

  16. Research on surface modification of nano-zirconia

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Zhang, Cun-Lin; Yang, Xiao-Yi

    2005-02-01

    The mechanisms about the aggregation and dispersibility of nano-zirconia were analyzed in detail. And nano-zirconia powders which were surface-modified with silane coupling reagent WD70 were prepared in order to disperse homogeneously in ethanol in this investigation. The grain size and grain phase of nano-zirconia were obtained by XRD. Research and characterization on the structure and surface characteristic of surface-modified nano-zirconia were achieved by XPS, TG-DSC, TEM and FT-IR. The results given by FT-IR and XPS showed WD70 was jointed on the surface of nano-zirconia through both physical adsorption and chemical binding after the de-methanol reaction between the methoxyl groups of WD70 and the hydroxy groups on the surface of nano-zirconia. And the corresponding model of surface-modified nano-zirconia was given. The images provided by TEM presented intuitionistic effect of surface modification on the dispersibility of nano-zirconia in ethanol. And TG-DSC analysis ascertained the amount of WD70 that was jointed on the surface of nano-zirconia and the amount was about 6.21 percent.

  17. Investigation of Thin Layered Cobalt Oxide Nano-Islands on Gold

    NASA Astrophysics Data System (ADS)

    Bajdich, Michal; Walton, Alex S.; Fester, Jakob; Arman, Mohammad A.; Osiecki, Jacek; Knudsen, Jan; Vojvodic, Aleksandra; Lauritsen, Jeppe V.

    2015-03-01

    Layered cobalt oxides have been shown to be highly active catalysts for the oxygen evolution reaction (OER), but the synergistic effect of contact with gold is yet to be fully understood. The synthesis of three distinct types of thin-layered cobalt oxide nano-islands supported on a single crystal gold (111) substrate is confirmed by combination of STM and XAS methods. In this work, we present DFT+U theoretical investigation of above nano-islands using several previously known structural models. Our calculations confirm stability of two low-oxygen pressure phases: (a) rock-salt Co-O bilayer and (b) wurtzite Co-O quadlayer and single high-oxygen pressure phase: (c) O-Co-O trilayer. The optimized geometries agree with STM structures and calculated oxidation states confirm the conversion from Co2+ to Co3+ found experimentally in XAS. The O-Co-O trilayer islands have the structure of a single layer of CoOOH proposed to be the true active phase for OER catalyst. For that reason, the effect of water on the Pourbaix stabilities of basal planes and edge sites is fully investigated. Lastly, we also present the corresponding OER theoretical overpotentials.

  18. High-volumetric performance aligned nano-porous microwave exfoliated graphite oxide-based electrochemical capacitors.

    PubMed

    Ghaffari, Mehdi; Zhou, Yue; Xu, Haiping; Lin, Minren; Kim, Tae Young; Ruoff, Rodney S; Zhang, Q M

    2013-09-20

    Ultra-high volumetric performance electrochemical double layer capacitors based on high density aligned nano-porous microwave exfoliated graphite oxide have been studied. Elimination of macro-, meso-, and larger micro-pores from electrodes and controlling the nano-morphology results in very high volumetric capacitance, energy, and power density values. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. In vitro toxicity test of nano-sized magnesium oxide synthesized via solid-phase transformation

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Zhou, Wei

    2018-04-01

    Nano-sized magnesium oxide (MgO) has been a promising potential material for biomedical pharmaceuticals. In the present investigation, MgO nanoparticles synthesized through in-situ solid-phase transformation based on the previous work (nano-Mg(OH)2 prepared by precipitation technique) using magnesium nitrate and sodium hydroxide. The phase structure and morphology of the MgO nanoparticles are characterized by X-ray powder diffraction (XRD), selected area electronic diffraction (SAED) and transmission electron microscopy (TEM) respectively. In vitro hemolysis tests are adopted to evaluate the toxicity of the synthesized nano-MgO. The results evident that nano-MgO with lower concentration is slightly hemolytic, and with concentration increasing nano-MgO exhibit dose-responsive hemolysis.

  20. An attempt to stabilize tanshinone IIA solid dispersion by the use of ternary systems with nano-CaCO3 and poloxamer 188.

    PubMed

    Yan, Hong-Mei; Zhang, Zhen-Hai; Jiang, Yan-Rong; Ding, Dong-Mei; Sun, E; Jia, Xiao-Bin

    2014-04-01

    Tanshinone IIA (TSIIA) on solid dispersions (SDs) has thermodynamical instability of amorphous drug. Ternary solid dispersions (tSDs) can extend the stability of the amorphous form of drug. Poloxamer 188 was used as a SD carrier. Nano-CaCO3 played an important role in adsorption of biomolecules and is being developed for a host of biotechnological applications. The aim of the present study was to investigate the dissolution behavior and accelerated stability of TSIIA on solid dispersions (SDs) by the use of ternary systems with nano-CaCO3 and poloxamer 188. The TSIIA tSDs were prepared by a spray-drying method. First, the effect of combination of poloxamer 188 and nano-CaCO3 on TSIIA dissolution was studied. Subsequently, a set of complementary techniques (DSC, XRPD, SEM and FTIR) was used to monitor the physical changes of TSIIA in the SDs. Finally, stability test was carried out under the conditions 40°C/75% RH for 6 months. The characterization of tSDs by differential scanning calorimetry analysis (DSC) and X-ray powder diffraction (XRPD) showed that TSIIA was present in its amorphous form. Fourier transforms infrared spectroscopy (FTIR) suggested the presence of interactions between TSIIA and carriers in tSDs. Improvement in the dissolution rate was observed for all SDs. The stability study conducted on SDs with nano-CaCO3 showed stable drug content and dissolution behavior, over the period of 6 months as compared with freshly prepared SDs. SDs preparation with nano-CaCO3 and poloxamer 188 may be a promising approach to enhance the dissolution and stability of TSIIA.

  1. Highly dispersed buckybowls as model carbocatalysts for C–H bond activation

    DOE PAGES

    Soykal, I. Ilgaz; Wang, Hui; Park, Jewook; ...

    2015-03-19

    Buckybowl fractions dispersed on mesoporous silica constitute an ideal model for studying the catalysis of graphitic forms of carbon since the dispersed carbon nanostructures contain a high ratio of edge defects and curvature induced by non-six-membered rings. Dispersion of the active centers on an easily accessible high surface area material allowed for high density of surface active sites associated with oxygenated structures. This report illustrates a facile method of creating model polycyclic aromatic nano-structures that are not only active for alkane C-H bond activation and oxidative dehydrogenation but also can be practical catalysts to be eventually used in industry.

  2. Effect of NaNO3 concentration on anodic electrochemical behavior on the Sb surface in NaOH solution

    NASA Astrophysics Data System (ADS)

    He, Yun-long; Xu, Rui-dong; He, Shi-wei; Chen, Han-sen; Li, Kuo; Zhu, Yun; Shen, Qing-feng

    2018-03-01

    The effect of NaNO3 concentration on the anodic electrochemical behavior of antimony in 4 M NaOH solution was investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses. The mechanism of NO 3 - concentration effect on the anodic electrochemical behavior of antimony was proposed, and its availability was confirmed by experimental results. The effect of NaNO3 on the anodic behavior of antimony in NaOH solution can be interpreted as a stepwise formation of different antimony compounds with different NaNO3 concentrations. Metallic antimony is apt to be oxidized into Sb2O3 within the NaNO3 concentration range of 0-0.48 M. NaSbO3 can be found on the antimony surface when the NaNO3 concentration increases gradually. Insoluable NaSbO3 inhibits the anodic oxidation of antimony due to its shielding effect on the mass transport of the reactants and products. Surface morphology and composition were analyzed by X-ray photoelectron spectroscopy (XPS), scanning electronic microscopy (SEM), and electron dispersion spectroscopy (EDS) analyses. Results indicate that the anodic oxidation layer is composed of Sb2O3, NaSbO3, and Sb. The atomic proportion of antimony in the form of NaSbO3 increases with increasing NaNO3 concentration due to the powerful oxidizing property of NaNO3.

  3. Synthesis and LPG sensing properties of nano-sized cadmium oxide.

    PubMed

    Waghulade, R B; Patil, P P; Pasricha, Renu

    2007-04-30

    This paper reports the synthesis and liquid petroleum gas (LPG) sensing properties of nano-sized cadmium oxide (CdO). The nano-sized CdO powder was successfully synthesized by using a chemical co-precipitation method using cadmium acetate and the ammonium hydroxide, as starting materials and water as a carrier. The resulting nano-sized powder was characterized by X-ray diffraction (XRD) measurements and the transmission electron microscopy (TEM). The LPG sensing properties of the synthesized nano-sized CdO were investigated at different operating temperatures and LPG concentrations. It was found that the calcination temperature and the operating temperature significantly affect the sensitivity of the nano-sized CdO powder to the LPG. The sensitivity is found to be maximum when the calcination temperature was 400 degrees C. The sensitivity to 75ppm of LPG is maximum at an operating temperature 450 degrees C and it was found to be approximately 341%. The response and recovery times were found to be nearly 3-5s and 8-10s, respectively. The synthesized nano-sized CdO powder is able to detect up to 25ppm for LPG with reasonable sensitivity at an operating temperature 450 degrees C and it can be reliably used to monitor the concentration of LPG over the range (25-75ppm). The experimental results of the LPG sensing studies reveal that the nano-sized CdO powder synthesized by a simple co-precipitation method is a suitable material for the fabrication of the LPG sensor.

  4. Enhanced thermoelectric properties of nano SiC dispersed Bi2Sr2Co2Oy Ceramics

    NASA Astrophysics Data System (ADS)

    Hu, Qiujun; Wang, Kunlun; Zhang, Yingjiu; Li, Xinjian; Song, Hongzhang

    2018-04-01

    The thermoelectric properties of Bi2Sr2Co2Oy + x wt% nano SiC (x = 0.00, 0.025, 0.05, 0.1, 0.2, and 0.3) prepared by the solid-state reaction method were investigated from 300 K to 923 K. The resistivity can be reduced effectively by adding a small amount of SiC nano particles, which is attributed to the increase of the carrier concentration. At the same time, the Seebeck coefficients can be improved effectively due to the energy filtering effect that low energy carriers are strongly dispersed at the interface between the SiC nano particles and the matrix. The decrease of thermal conductivity is due to the increase of the scattering ability of the phonons by the SiC nanoparticles distributed at the boundary of the matrix. As a result, the Bi2Sr2Co2Oy + x wt% SiC composites exhibit better thermoelectric properties. The maximum ZT value 0.24 is obtained when x = 0.05 at 923 K. Compared with the sample without SiC nano particles, the ZT value is increased by about 59.7%.

  5. New possibility on InZnO nano thin film for green emissive optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Sugumaran, Sathish; Noor Bin Ahmad, Mohd; Faizal Jamlos, Mohd; Bellan, Chandar Shekar; Chandran, Sharmila; Sivaraj, Manoj

    2016-04-01

    Indium zinc oxide (InZnO) nano thin film was prepared from InZnO nanoparticles (NPs) by thermal evaporation technique. Fourier transform infrared spectroscopy showed the presence of metal-oxide bond. X-ray diffraction pattern revealed the mixed phase structure. The presence of elements In, Zn and O were identified from energy dispersive X-ray analysis. Size of the NPs was found to be 171 and 263 nm by transmission electron microscopy. Scanning electron microscopy image showed the spherical shape uniform morphology with uniform distribution grains. Photoluminescence spectrum exhibited a broad green emission for InZnO nano thin film. The acquired results of structure, smooth morphology and photoluminescence property suggested that the InZnO nano thin film to be a promising material for room temperature green emissive optoelectronic, laser diodes, solar cells and other optical devices.

  6. Characterisation of a complex thin walled structure fabricated by selective laser melting using a ferritic oxide dispersion strengthened steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boegelein, Thomas, E-mail: t.boegelein@liv.ac.uk; Louvis, Eleftherios; Dawson, Karl

    2016-02-15

    Oxide dispersion strengthened (ODS) alloys exhibit superior mechanical and physical properties due to the presence of nanoscopic Y(Al, Ti) oxide precipitates, but their manufacturing process is complex. The present study is aimed at further investigation of the application of an alternative, Additive Manufacturing (AM) technique, Selective Laser Melting (SLM), to the production of consolidated ODS alloy components. Mechanically alloyed PM2000 (ODS-FeCrAl) powders have been consolidated and a fine dispersion of Y-containing precipitates were observed in an as built thin-walled component, but these particles were typically poly-crystalline and contained a variety of elements including O, Al, Ti, Cr and Fe. Applicationmore » of post-build heat treatments resulted in the modification of particle structures and compositions; in the annealed condition most precipitates were transformed to single crystal yttrium aluminium oxides. During the annealing treatment, precipitate distributions homogenised and localised variations in number density were diminished. The resulting volume fractions of those precipitates were 25–40% lower than have been reported in conventionally processed PM2000, which was attributed to Y-rich slag-like surface features and inclusions formed during SLM. - Highlights: • A wall structure was grown from ODS steel powder using selective laser melting. • A fine dispersion of nano-precipitates was apparent in as-build material. • Precipitates were multi-phased containing several elements, e.g. O, Ti, Al, Fe, Cr, Y. • Post-build annealing changed those into typically single-crystalline Y–Al–O. • The anneal also reduced and stabilised the volume fraction of precipitates to ~ 0.006.« less

  7. Preparation, assessment, and comparison of α-chitin nano-fiber films with different surface charges

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Jiang, Jie; Liu, Liang; Zheng, Ke; Yu, Shiyuan; Fan, Yimin

    2015-05-01

    Chitin nano-fibers with positive and negative charges have been, respectively, produced from partially deacetylated and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidized α-chitin. The average diameters and lengths of the TEMPO-oxidized chitin nano-fibers (TOChN) were 14 ± 4.3 and 190 ± 140 nm, respectively, and the average diameters and lengths of the partially deacetylated chitin nano-fibers (DEChN) were 6 ± 1.7 and 320 ± 105 nm, respectively. A partially deacetylated chitin nano-fiber film (DEChN-F), a TEMPO-mediated and oxidized chitin nano-fiber film (TOChN-F), and a composite film (DE-TO-ChN-F) consisting of a combination of the two were prepared by drying the dispersions at 40 °C. The DEChN-F, TOChN-F, and DE-TO-ChN-F all have similar tensile strengths of approximately 90 MPa; however, the chitosan film (Chitosan-F) had a tensile strength of approximately 30 MPa. In addition, TOChN-F and DE-TO-ChN-F have a thermal weight loss at 210 °C, and DEChN-F has a thermal weight loss at 280 °C. DEChN-F was found to have antimicrobial activity with regards to Escherichia coli. Finally, the chitin nano-fiber films could be slightly degraded by cellulase, which provided a novel biological performance of the chitin nano-material.

  8. Green chemistry synthesis of nano-cuprous oxide.

    PubMed

    Ceja-Romero, L R; Ortega-Arroyo, L; Ortega Rueda de León, J M; López-Andrade, X; Narayanan, J; Aguilar-Méndez, M A; Castaño, V M

    2016-04-01

    Green chemistry and a central composite design, to evaluate the effect of reducing agent, temperature and pH of the reaction, were employed to produce controlled cuprous oxide (Cu2O) nanoparticles. Response surface method of the ultraviolet-visible spectroscopy is allowed to determine the most relevant factors for the size distribution of the nanoCu2O. X-ray diffraction reflections correspond to a cubic structure, with sizes from 31.9 to 104.3 nm. High-resolution transmission electron microscopy reveals that the different shapes depend strongly on the conditions of the green synthesis.

  9. Compound Method to Disperse CaCO3 Nanoparticles to Nano-Size in Water.

    PubMed

    Gu, Sui; Cai, Jihua; Wang, Jijun; Yuan, Ye; Chang, Dewu; Chikhotkin, Viktor F

    2015-12-01

    The invalidation of CaCO3 nanoparticles (nCaCO3) is often caused by the fact of agglomeration and inhomogeneous dispersion which limits its application into water-based drilling muds for low permeability reservoirs such as coalbed methane reservoir and shale gas/oil reservoir. Effective methods to disperse nCaCO3 to nano-size (≤ 100 nm) in water have seldom been reported. Here we developed a compound method containing mechanical stirring, ultrasonic treatment, the use of surfactant and stabilizer to disperse nCaCO3 in water. It comprises the steps adding 2% nCaCO3, 1% sodium dodecyl sulfonate (SDS), 2% cetyltrimethyl ammonium bromide (CTAB), 2% OP-10, 3% to 4% biopolymer (XC) in water successively, stirring it at a shear rate of 6000 to 8000 r/min for 15 minutes and treating it with ultrasonic at a frequency of 28 KHz for 30 to 40 minutes. The dispersed nCaCO3 was characterized with scanning electron microscope (SEM), transmission electron microscope (TEM) and particle size distribution (PSD) tests. We found that nCaCO3 could be dispersed to below 100 nm in water and the medium value of nCaCO3 was below 50 nm. This method paved the way for the utilization of nCaCO3 in drilling fluid and completion fluid for low permeability reservoirs such as coal seams and shale gas/oil formations.

  10. 3D Oxidized Graphene Frameworks for Efficient Nano Sieving

    PubMed Central

    Pawar, Pranav Bhagwan; Saxena, Sumit; Badhe, Dhanashree Kamlesh; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-01-01

    The small size of Na+ and Cl− ions provides a bottleneck in desalination and is a challenge in providing alternatives for continuously depleting fresh water resources. Graphene by virtue of its structural properties has the potential to address this issue. Studies have indicated that use of monolayer graphene can be used to filter micro volumes of saline solution. Unfortunately it is extremely difficult, resource intensive and almost impractical with current technology to fabricate operational devices using mono-layered graphene. Nevertheless, graphene based devices still hold the key to solve this problem due to its nano-sieving ability. Here we report synthesis of oxidized graphene frameworks and demonstrate a functional device to desalinate and purify seawater from contaminants including Na+ and Cl− ions, dyes and other microbial pollutants. Micro-channels in these frameworks help in immobilizing larger suspended solids including bacteria, while nano-sieving through graphene enables the removal of dissolved ions (e.g. Cl−). Nano-sieving incorporated with larger frameworks has been used in filtering Na+ and Cl− ions in functional devices. PMID:26892277

  11. Effects of La2O3 content and particle size on the long-term stability and thermal cycling property of La2O3-dispersed SUS430 alloys for SOFC interconnect materials

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Won; Mehran, Muhammad Taqi; Song, Rak-Hyun; Lee, Seung-Bok; Lee, Jong-Won; Lim, Tak-Hyoung; Park, Seok-Joo; Hong, Jong-Eun; Shim, Joon-Hyung

    2017-11-01

    We developed oxide-dispersed alloys as interconnect materials for a solid oxide fuel cell by adding La2O3 to SUS430 ferritic steels. For this purpose, we prepared two types of La2O3 with different particle sizes and added different amounts of La2O3 to SUS430 powder. Then, we mixed the powders using a high energy ball mill, so that nano-sized as well as micro-sized oxide particles were able to mix uniformly with the SUS430 powders. After preparing hexahedral green samples using uni-axial and cold isostatic presses, we were finally able to obtain oxide-dispersed alloys having high relative densities after firing at 1,400 °C under hydrogen atmosphere. The nano-sized La2O3 dispersed alloys showed properties superior to those of micro-sized dispersed alloys in terms of long-term stability and thermal cycling. Moreover, we determined the optimum amounts of added La2O3. Finally we were able to develop a new oxide-dispersed alloy showing excellent properties of low area specific resistance (16.23 mΩ cm2) after 1000 h at 800 °C, and no degradation after 10 iterations of thermal cycling under oxidizing atmosphere.

  12. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials.

    PubMed

    Mohamed, Khaled R; Beherei, Hanan H; El Bassyouni, Gehan T; El Mahallawy, Nahed

    2013-10-01

    In the current study, the semiconducting metal oxides such as nano-ZnO and SiO2 powders were prepared via sol-gel technique and conducted on nano-hydroxyapatite (nHA) which was synthesized by chemical precipitation. The properties of fabricated nano-structured composites containing different ratios of HA, ZnO and SiO2 were examined using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The effect of the variation of ratios between the three components on mechanical, microstructure and in-vitro properties was assessed to explore the possibility of enhancing these properties. The results proved that the mechanical properties exhibited an increment with increasing the ZnO content at the extent of HA. In-vitro study proved the formation and nucleation of apatite onto the surface of the fabricated composites after one week of immersion. It is concluded that HA composites containing SiO2 or SiO2/ZnO content had a suitable mechanical properties and ability to form apatite particles onto the composite surface. Based on bioactivity behavior, Si-HA is more bioactive than pure hydroxyapatite and nano-arrangements will provide an interface for better bone formation. Therefore, these nano-composites will be promising as bone substitutes especially in load bearing sites. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Application of nano-TiO2/LDPE composite film on photocatalytic oxidation degradation of dichloromethane.

    PubMed

    Suwannahong, Kowit; Liengcharernsit, Winai; Sanongraj, Wipada; Kruenate, Jittiporn

    2012-09-01

    This study focused on the photocatalytic destruction of dichloromethane (DCM) in indoor air using the nano-TiO2/LDPE composite film as an economical photocatalyst. The nano-TiO2 was dispersed in a polyethylene matrix to form composite film. The photocatalytic activity of the nano-TiO2/LDPE composite films was evaluated through the degradation of dichloromethane(DCM) under UV-C irradiance at specific wavelength of 254 nm. The percentage of nano-TiO2 contents varied from 0, 5, and 10% (wt cat./wt LDPE composite film). The results derived from the kinetic model revealed that the photocatalytic rates of 5 and 10 wt.% nano-TiO2/ LDPE composite films follow the first order reaction while the rate of the film without TiO2 followed the zero order reaction. At low concentration of DCM, the rate of photocatalytic degradation of the DCM was slower than that at high DCM concentration. The 10 wt.% of TiO2 content of the nano-TiO2/LDPE composite film yielded the highest degradation efficiency of 78%, followed by the removal efficiency of 55% for the 5 wt.% of TiO2 content of the nano-TiO2/LDPE composite film. In contrast with the composite film containing nano-TiO2, the LDPE film without adding nano-TiO2 expressed the degradation efficiency of 28%.

  14. Bone marrow mesenchymal stem cell response to nano-structured oxidized and turned titanium surfaces.

    PubMed

    Annunziata, Marco; Oliva, Adriana; Buosciolo, Antonietta; Giordano, Michele; Guida, Agostino; Guida, Luigi

    2012-06-01

    The aim of this study was to analyse the topographic features of a novel nano-structured oxidized titanium implant surface and to evaluate its effect on the response of human bone marrow mesenchymal stem cells (BM-MSC) compared with a traditional turned surface. The 10 × 10 × 1 mm turned (control) and oxidized (test) titanium samples (P.H.I. s.r.l.) were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) and characterized by height, spatial and hybrid roughness parameters at different dimensional ranges of analysis. Primary cultures of BM-MSC were seeded on titanium samples and cell morphology, adhesion, proliferation and osteogenic differentiation, in terms of alkaline phosphatase activity, osteocalcin synthesis and extracellular matrix mineralization, were evaluated. At SEM and AFM analyses turned samples were grooved, whereas oxidized surfaces showed a more complex micro- and nano-scaled texture, with higher values of roughness parameters. Cell adhesion and osteogenic parameters were greater on oxidized (P<0.05 at least) vs. turned surfaces, whereas the cell proliferation rate was similar on both samples. Although both control and test samples were in the range of average roughness proper of smooth surfaces, they exhibited significantly different topographic properties in terms of height, spatial and, mostly, of hybrid parameters. This different micro- and nano-structure resulted in an enhanced adhesion and differentiation of cells plated onto the oxidized surfaces. © 2011 John Wiley & Sons A/S.

  15. Chemical Dynamics of nano-Aluminum and Iodine Based Oxidizers

    NASA Astrophysics Data System (ADS)

    Little, Brian; Ridge, Claron; Overdeep, Kyle; Slizewski, Dylan; Lindsay, Michael

    2017-06-01

    As observed in previous studies of nanoenergetic powder composites, micro/nano-structural features such as particle morphology and/or reactant spatial distance are expected to strongly influence properties that govern the combustion behavior of energetic materials (EM). In this study, highly reactive composites containing crystalline iodine (V) oxide or iodate salts with nano-sized aluminum (nAl) were blended by two different processing techniques and then collected as a powder for characterization. Physiochemical techniques such as thermal gravimetric analysis, calorimetry, X-ray diffraction, electron microscopy, high speed photography, pressure profile analysis, temperature programmed reactions, and spectroscopy were employed to characterize these EM with emphasis on correlating the chemical reactivity with inherent structural features and variations in stoichiometry. This work is a continuation of efforts to probe the chemical dynamics of nAl-iodine based composites.

  16. Designing optical metamaterial with hyperbolic dispersion based on Al:ZnO/ZnO nano-layered structure using Atomic Layer Deposition technique

    DOE PAGES

    Kelly, Priscilla; Liu, Mingzhao; Kuznetsova, Lyuba

    2016-04-07

    In this study, nano-layered Al:ZnO/ZnO hyperbolic dispersion metamaterial with a large number of layers was fabricated using the atomic layer deposition (ALD) technique. Experimental dielectric functions for Al:ZnO/ZnO structures are obtained by an ellipsometry technique in the visible and near-infrared spectral ranges. The theoretical modeling of the Al:ZnO/ZnO dielectric permittivity is done using effective medium approximation. A method for analysis of spectroscopic ellipsometry data is demonstrated to extract the optical permittivity for this highly anisotropic nano-layered metamaterial. The results of the ellipsometry analysis show that Al:ZnO/ZnO structures with a 1:9 ALD cycle ratio exhibit hyperbolic dispersion transition change near 1.8more » μm wavelength.« less

  17. Extremely fine structured cathode for solid oxide fuel cells using Sr-doped LaMnO3 and Y2O3-stabilized ZrO2 nano-composite powder synthesized by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Shimada, Hiroyuki; Yamaguchi, Toshiaki; Sumi, Hirofumi; Nomura, Katsuhiro; Yamaguchi, Yuki; Fujishiro, Yoshinobu

    2017-02-01

    A solid oxide fuel cell (SOFC) for high power density operation was developed with a microstructure-controlled cathode using a nano-composite powder of Sr-doped LaMnO3 (LSM) and Y2O3-stabilized ZrO2 (YSZ) synthesized by spray pyrolysis. The individual LSM-YSZ nano-composite particles, formed by crystalline and amorphous nano-size LSM and YSZ particles, showed spherical morphology with uniform particle size. The use of this powder for cathode material led to an extremely fine microstructure, in which all the LSM and YSZ grains (approximately 100-200 nm) were highly dispersed and formed their own network structures. This microstructure was due to the two phase electrode structure control using the powder, namely, nano-order level in each particle and micro-order level between particles. An anode-supported SOFC with the LSM-YSZ cathode using humidified H2 as fuel and ambient air as oxidant exhibited high power densities, such as 1.29 W cm-2 under a voltage of 0.75 V and a maximum power density of 2.65 W cm-2 at 800 °C. Also, the SOFC could be stably operated for 250 h with no degradation, even at a high temperature of 800 °C.

  18. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries.

    PubMed

    Wang, Jing; Bao, Wurigumula; Ma, Lu; Tan, Guoqiang; Su, Yuefeng; Chen, Shi; Wu, Feng; Lu, Jun; Amine, Khalil

    2015-12-07

    Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide-nickel-graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx /Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stick well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx /Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fabrication of nano-engineered transparent conducting oxides by pulsed laser deposition.

    PubMed

    Gondoni, Paolo; Ghidelli, Matteo; Di Fonzo, Fabio; Li Bassi, Andrea; Casari, Carlo S

    2013-02-27

    Nanosecond Pulsed Laser Deposition (PLD) in the presence of a background gas allows the deposition of metal oxides with tunable morphology, structure, density and stoichiometry by a proper control of the plasma plume expansion dynamics. Such versatility can be exploited to produce nanostructured films from compact and dense to nanoporous characterized by a hierarchical assembly of nano-sized clusters. In particular we describe the detailed methodology to fabricate two types of Al-doped ZnO (AZO) films as transparent electrodes in photovoltaic devices: 1) at low O₂ pressure, compact films with electrical conductivity and optical transparency close to the state of the art transparent conducting oxides (TCO) can be deposited at room temperature, to be compatible with thermally sensitive materials such as polymers used in organic photovoltaics (OPVs); 2) highly light scattering hierarchical structures resembling a forest of nano-trees are produced at higher pressures. Such structures show high Haze factor (>80%) and may be exploited to enhance the light trapping capability. The method here described for AZO films can be applied to other metal oxides relevant for technological applications such as TiO₂, Al₂O₃, WO₃ and Ag₄O₄.

  20. Fabrication of Nano-engineered Transparent Conducting Oxides by Pulsed Laser Deposition

    PubMed Central

    Gondoni, Paolo; Ghidelli, Matteo; Di Fonzo, Fabio; Li Bassi, Andrea; Casari, Carlo S.

    2013-01-01

    Nanosecond Pulsed Laser Deposition (PLD) in the presence of a background gas allows the deposition of metal oxides with tunable morphology, structure, density and stoichiometry by a proper control of the plasma plume expansion dynamics. Such versatility can be exploited to produce nanostructured films from compact and dense to nanoporous characterized by a hierarchical assembly of nano-sized clusters. In particular we describe the detailed methodology to fabricate two types of Al-doped ZnO (AZO) films as transparent electrodes in photovoltaic devices: 1) at low O2 pressure, compact films with electrical conductivity and optical transparency close to the state of the art transparent conducting oxides (TCO) can be deposited at room temperature, to be compatible with thermally sensitive materials such as polymers used in organic photovoltaics (OPVs); 2) highly light scattering hierarchical structures resembling a forest of nano-trees are produced at higher pressures. Such structures show high Haze factor (>80%) and may be exploited to enhance the light trapping capability. The method here described for AZO films can be applied to other metal oxides relevant for technological applications such as TiO2, Al2O3, WO3 and Ag4O4. PMID:23486076

  1. Forging Oxide-Dispersion-Strengthened Superalloys

    NASA Technical Reports Server (NTRS)

    Harf, F. H.; Glasgow, T. K.; Moracz, D. J.; Austin, C. M.

    1986-01-01

    Cladding of mild steel prevents surface cracking when alloy contacts die. Continual need for improvements in properties of alloys capable of withstanding elevated temperatures. Accomplished by using oxide-dispersion-strengthed superalloys such as Inconel Alloy MA 6000. Elevated tensile properties of forged alloy equal those of hot-rolled MA 6000 bar. Stress-rupture properties somewhat lower than those of bar stock but, at 1,100 degrees C, exceed those of strongest commercial single crystal, directionally solidified and conventionally cast superalloys.

  2. Nano lead oxide and epdm composite for development of polymer based radiation shielding material: Gamma irradiation and attenuation tests

    NASA Astrophysics Data System (ADS)

    Özdemir, T.; Güngör, A.; Akbay, I. K.; Uzun, H.; Babucçuoglu, Y.

    2018-03-01

    It is important to have a shielding material that is not easily breaking in order to have a robust product that guarantee the radiation protection of the patients and radiation workers especially during the medical exposure. In this study, nano sized lead oxide (PbO) particles were used, for the first time, to obtain an elastomeric composite material in which lead oxide nanoparticles, after the surface modification with silane binding agent, was used as functional material for radiation shielding. In addition, the composite material including 1%, 5%, 10%, 15% and 20% weight percent nano sized lead oxide was irradiated with doses of 81, 100 and 120 kGy up to an irradiation period of 248 days in a gamma ray source with an initial dose rate of 21.1 Gy/h. Mechanical, thermal properties of the irradiated materials were investigated using DSC, DMA, TGA and tensile testing and modifications in thermal and mechanical properties of the nano lead oxide containing composite material via gamma irradiation were reported. Moreover, effect of bismuth-III oxide addition on radiation attenuation of the composite material was investigated. Nano lead oxide and bismuth-III oxide particles were mixed with different weight ratios. Attenuation tests have been conducted to determine lead equivalent values for the developed composite material. Lead equivalent thickness values from 0.07 to 0.65 (2-6 mm sample thickness) were obtained.

  3. X-ray absorption spectroscopy characterization of embedded and extracted nano-oxides

    DOE PAGES

    Stan, Tiberiu; Sprouster, David J.; Ofan, Avishai; ...

    2016-12-29

    Here, the chemistries and structures of both embedded and extracted Ysingle bondTisingle bondO nanometer-scale oxides in a nanostructured ferritic alloy (NFA) were probed by x-ray absorption spectroscopy (XAS). Y 2Ti 2O 7 is the primary embedded phase, while the slightly larger extracted oxides are primarily Y 2TiO 5. Analysis of the embedded nano-oxides is difficult partly due to the multiple Ti environments associated with different oxides and those still residing in matrix lattice sites. Thus, bulk extraction followed by selective filtration was used to isolate the larger Y 2TiO 5 oxides for XAS, while the smaller predominant embedded phase Ymore » 2Ti 2O 7 oxides passed through the filters and were analyzed using the log-ratio method.« less

  4. Effect of Nano-TiC Dispersed Particles and Electro-Codeposition Parameters on Morphology and Structure of Hybrid Ni/TiC Nanocomposite Layers.

    PubMed

    Benea, Lidia; Celis, Jean-Pierre

    2016-04-06

    This research work describes the effect of dispersed titanium carbide (TiC) nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM). The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX). X-ray diffractometer (XRD) has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers.

  5. Effect of Nano-TiC Dispersed Particles and Electro-Codeposition Parameters on Morphology and Structure of Hybrid Ni/TiC Nanocomposite Layers

    PubMed Central

    Benea, Lidia; Celis, Jean-Pierre

    2016-01-01

    This research work describes the effect of dispersed titanium carbide (TiC) nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM). The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX). X-ray diffractometer (XRD) has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers. PMID:28773395

  6. Engineered nano particles: Nature, behavior, and effect on the environment.

    PubMed

    Goswami, Linee; Kim, Ki-Hyun; Deep, Akash; Das, Pallabi; Bhattacharya, Satya Sundar; Kumar, Sandeep; Adelodun, Adedeji A

    2017-07-01

    Increased application of engineered nano particles (ENPs) in production of various appliances and consumer items is increasing their presence in the natural environment. Although a wide variety of nano particles (NPs) are ubiquitously dispersed in ecosystems, risk assessment guidelines to describe their ageing, direct exposure, and long-term accumulation characteristics are poorly developed. In this review, we describe what is known about the life cycle of ENPs and their impact on natural systems and examine if there is a cohesive relationship between their transformation processes and bio-accessibility in various food chains. Different environmental stressors influence the fate of these particles in the environment. Composition of solid media, pore size, solution chemistry, mineral composition, presence of natural organic matter, and fluid velocity are some environmental stressors that influence the transformation, transport, and mobility of nano particles. Transformed nano particles can reduce cell viability, growth and morphology, enhance oxidative stress, and damage DNA in living organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Preparation, assessment, and comparison of α-chitin nano-fiber films with different surface charges.

    PubMed

    Zhang, Yan; Jiang, Jie; Liu, Liang; Zheng, Ke; Yu, Shiyuan; Fan, Yimin

    2015-01-01

    Chitin nano-fibers with positive and negative charges have been, respectively, produced from partially deacetylated and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidized α-chitin. The average diameters and lengths of the TEMPO-oxidized chitin nano-fibers (TOChN) were 14 ± 4.3 and 190 ± 140 nm, respectively, and the average diameters and lengths of the partially deacetylated chitin nano-fibers (DEChN) were 6 ± 1.7 and 320 ± 105 nm, respectively. A partially deacetylated chitin nano-fiber film (DEChN-F), a TEMPO-mediated and oxidized chitin nano-fiber film (TOChN-F), and a composite film (DE-TO-ChN-F) consisting of a combination of the two were prepared by drying the dispersions at 40 °C. The DEChN-F, TOChN-F, and DE-TO-ChN-F all have similar tensile strengths of approximately 90 MPa; however, the chitosan film (Chitosan-F) had a tensile strength of approximately 30 MPa. In addition, TOChN-F and DE-TO-ChN-F have a thermal weight loss at 210 °C, and DEChN-F has a thermal weight loss at 280 °C. DEChN-F was found to have antimicrobial activity with regards to Escherichia coli. Finally, the chitin nano-fiber films could be slightly degraded by cellulase, which provided a novel biological performance of the chitin nano-material.

  8. Tunneling Conductivity and Piezoresistivity of Composites Containing Randomly Dispersed Conductive Nano-Platelets

    PubMed Central

    Oskouyi, Amirhossein Biabangard; Sundararaj, Uttandaraman; Mertiny, Pierre

    2014-01-01

    In this study, a three-dimensional continuum percolation model was developed based on a Monte Carlo simulation approach to investigate the percolation behavior of an electrically insulating matrix reinforced with conductive nano-platelet fillers. The conductivity behavior of composites rendered conductive by randomly dispersed conductive platelets was modeled by developing a three-dimensional finite element resistor network. Parameters related to the percolation threshold and a power-low describing the conductivity behavior were determined. The piezoresistivity behavior of conductive composites was studied employing a reoriented resistor network emulating a conductive composite subjected to mechanical strain. The effects of the governing parameters, i.e., electron tunneling distance, conductive particle aspect ratio and size effects on conductivity behavior were examined. PMID:28788580

  9. Study on Locally Confined Deposition of Si Nanocrystals in High-Aspect-Ratio Si Nano-Pillar Arrays for Nano-Electronic and Nano-Photonic Applications II

    DTIC Science & Technology

    2010-12-03

    photoluminescence characteristics of equivalent-size controlled silicon quantum dots by employing a nano-porous aluminum oxide membrane as the template for growing...synthesis of Si quantum dots (Si-QDs) embedded in low-temperature (500oC) annealed Si-rich SiOx nano-rod deposited in nano-porous anodic aluminum oxide ...characteristics of the equivalent-size controlled Si-QDs by employing the nano-porous AAO membrane as the template for growing Si-rich SiOx nano-rods

  10. Electrocontact material based on silver dispersion-strengthened by nickel, titanium, and zinc oxides

    NASA Astrophysics Data System (ADS)

    Zeer, G. M.; Zelenkova, E. G.; Belousov, O. V.; Beletskii, V. V.; Nikolaev, S. V.; Ledyaeva, O. N.

    2017-09-01

    Samples of a composite electrocontact material based on silver strengthened by the dispersed phases of zinc and titanium oxides have been investigated by the electron microscopy and energy dispersive X-ray spectroscopy. A uniform distribution of the oxide phases containing 2 wt % zinc oxide in the initial charge has been revealed. The increase in the amount of zinc oxide leads to an increase of the size of the oxide phases. It has been shown that at the zinc oxide content of 2 wt %, the minimum wear is observed in the process of electroerosion tests; at 3 wt %, an overheating and welding of the contacts are observed.

  11. Rapid degradation of phenol by ultrasound-dispersed nano-metallic particles (NMPs) in the presence of hydrogen peroxide: A possible mechanism for phenol degradation in water.

    PubMed

    Singh, Jiwan; Yang, Jae-Kyu; Chang, Yoon-Young

    2016-06-15

    The present study was carried out to investigate the degradation of phenol by ultrasonically dispersed nano-metallic particles (NMPs) in an aqueous solution of phenol. Leaching liquor from automobile shredder residue (ASR) was used to obtain the NMPs. The prepared NMPs were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and by X-ray diffraction (XRD). The SEM images show that the diameters of the NMPs were less than 50 nm. An SEM-EDX elemental analysis reveals that Fe was the most commonly found element (weight %) in the NMPs. The FTIR and XRD peaks indicate the presence of metals oxides on the surfaces of the NMPs. The results of the XPS analysis indicate that various elements (e.g., C, O, Zn, Cu, Mn, Fe) are present on the surfaces of the NMPs. The effects of the NMP dose, the initial solution pH, and of different concentrations of phenol and H2O2 on the phenol degradation characteristics were evaluated. The results of this study demonstrate that phenol degradation can be improved by increasing the amount of NMPs, whereas it is reduced with an increase in the phenol concentration. The degradation of phenol by ultrasonically dispersed NMPs followed the pseudo-first-order kinetics. The probable mechanism of phenol degradation by ultrasonically dispersed NMPs was the oxidation of phenol caused by the hydroxyl radicals produced during the reaction between H2O2 and the NMPs during the ultrasonication process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach

    NASA Astrophysics Data System (ADS)

    Imani, Rana; Emami, Shahriar Hojjati; Faghihi, Shahab

    2015-02-01

    A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV-Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets' surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50-100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high surface

  13. Effect of Nano-Al2O3 on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus

    PubMed Central

    Li, Xiaomin; Zhou, Suyang; Fan, Wenhong

    2016-01-01

    Nano-Al2O3 has been widely used in various industries; unfortunately, it can be released into the aquatic environment. Although nano-Al2O3 is believed to be of low toxicity, it can interact with other pollutants in water, such as heavy metals. However, the interactions between nano-Al2O3 and heavy metals as well as the effect of nano-Al2O3 on the toxicity of the metals have been rarely investigated. The current study investigated copper toxicity in the presence of nano-Al2O3 towards Scenedesmus obliquus. Superoxide dismutase activity and concentration of glutathione and malondialdehyde in cells were determined in order to quantify oxidative stress in this study. Results showed that the presence of nano-Al2O3 reduced the toxicity of Cu towards S. obliquus. The existence of nano-Al2O3 decreased the growth inhibition of S. obliquus. The accumulation of copper and the level of oxidative stress in algae were reduced in the presence of nano-Al2O3. Furthermore, lower copper accumulation was the main factor that mitigated copper toxicity with the addition of nano-Al2O3. The decreased copper uptake could be attributed to the adsorption of copper onto nanoparticles and the subsequent decrease of available copper in water. PMID:27294942

  14. Temperature-Driven Structural and Morphological Evolution of Zinc Oxide Nano-Coalesced Microstructures and Its Defect-Related Photoluminescence Properties

    PubMed Central

    Lim, Karkeng; Abdul Hamid, Muhammad Azmi; Shamsudin, Roslinda; Al-Hardan, N.H.; Mansor, Ishak; Chiu, Weesiong

    2016-01-01

    In this paper, we address the synthesis of nano-coalesced microstructured zinc oxide thin films via a simple thermal evaporation process. The role of synthesis temperature on the structural, morphological, and optical properties of the prepared zinc oxide samples was deeply investigated. The obtained photoluminescence and X-ray photoelectron spectroscopy outcomes will be used to discuss the surface structure defects of the prepared samples. The results indicated that the prepared samples are polycrystalline in nature, and the sample prepared at 700 °C revealed a tremendously c-axis oriented zinc oxide. The temperature-driven morphological evolution of the zinc oxide nano-coalesced microstructures was perceived, resulting in transformation of quasi-mountain chain-like to pyramidal textured zinc oxide with increasing the synthesis temperature. The results also impart that the sample prepared at 500 °C shows a higher percentage of the zinc interstitial and oxygen vacancies. Furthermore, the intensity of the photoluminescence emission in the ultraviolet region was enhanced as the heating temperature increased from 500 °C to 700 °C. Lastly, the growth mechanism of the zinc oxide nano-coalesced microstructures is discussed according to the reaction conditions. PMID:28773425

  15. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via “differentiation-based nano-therapy”

    PubMed Central

    Fiorillo, Marco; Verre, Andrea F.; Iliut, Maria; Peiris-Pagés, Maria; Ozsvari, Bela; Gandara, Ricardo; Cappello, Anna Rita; Sotgia, Federica; Vijayaraghavan, Aravind; Lisanti, Michael P.

    2015-01-01

    Tumor-initiating cells (TICs), a.k.a. cancer stem cells (CSCs), are difficult to eradicate with conventional approaches to cancer treatment, such as chemo-therapy and radiation. As a consequence, the survival of residual CSCs is thought to drive the onset of tumor recurrence, distant metastasis, and drug-resistance, which is a significant clinical problem for the effective treatment of cancer. Thus, novel approaches to cancer therapy are needed urgently, to address this clinical need. Towards this end, here we have investigated the therapeutic potential of graphene oxide to target cancer stem cells. Graphene and its derivatives are well-known, relatively inert and potentially non-toxic nano-materials that form stable dispersions in a variety of solvents. Here, we show that graphene oxide (of both big and small flake sizes) can be used to selectively inhibit the proliferative expansion of cancer stem cells, across multiple tumor types. For this purpose, we employed the tumor-sphere assay, which functionally measures the clonal expansion of single cancer stem cells under anchorage-independent conditions. More specifically, we show that graphene oxide effectively inhibits tumor-sphere formation in multiple cell lines, across 6 different cancer types, including breast, ovarian, prostate, lung and pancreatic cancers, as well as glioblastoma (brain). In striking contrast, graphene oxide is non-toxic for “bulk” cancer cells (non-stem) and normal fibroblasts. Mechanistically, we present evidence that GO exerts its striking effects on CSCs by inhibiting several key signal transduction pathways (WNT, Notch and STAT-signaling) and thereby inducing CSC differentiation. Thus, graphene oxide may be an effective non-toxic therapeutic strategy for the eradication of cancer stem cells, via differentiation-based nano-therapy. PMID:25708684

  16. Evaluation of zinc oxide nano-microtetrapods for biomolecule sensing applications

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Zhao, Yichen; Karlsson, Mikael; Wang, Qin; Toprak, Muhammet S.

    2015-12-01

    Zinc oxide tetrapods (ZnO-Ts) were synthesized by flame transport synthesis using Zn microparticles. This work herein reports a systematical study on the structural, optical and electrochemical properties of the ZnO-Ts. The morphology of the ZnO-Ts was confirmed by scanning electron microscopy (SEM) as joint structures of four nano-microstructured legs, of which the diameter of each leg is 0.7-2.2 μm in average from the tip to the stem. The ZnO-Ts were dispersed in glucose solution to study the luminescence as well as photocatalytic activity in a mimicked biological environment. The photoluminescence (PL) intensity in the ultraviolet (UV) region quenches with linear dependence to increased glucose concentration up to 4 mM. The ZnO-Ts were also attached with glucose oxidase (GOx) and over coated with a thin film of Nafion to form active layers for electrochemical glucose sensing. The attachment of GOx and coating of Nafion were confirmed by infrared spectroscopy (FT-IR). Furthermore, the current response of the active layers based on ZnO-Ts was investigated by cyclic voltammetry (CV) in various glucose concentrations. Stable current response of glucose was detected with linear dependence to glucose concentration up to 12 mM, which confirms the potential of ZnO-Ts for biomolecule sensing applications.

  17. [Catalytic degradation of PCB77 by microwave-induced nano-particle metal oxides in diatomite].

    PubMed

    Huang, Guan-yi; Zhao, Ling; Dong, Yuan-hua

    2009-08-15

    The degradation of PCB77 in diatomite by microwave-induced catalytic oxidation was studied in a sealed vial, including four effects such as microwave (MV) radiating time, addition of different nano-particle metal oxides, concentration and type of acids and dosage of MnO2. The results indicated that PCB77 could be removed significantly by microwave-induced catalytic oxidation. Compared to control reactor (without MV radiation), the removal rate of PCB77 increased by twice after 1 min. In addition, the removal rate of PCB77 under MV radiation was gradually increased with time of radiation and then reached equilibrium after 10 min. The removal rates are about 50% and 20% by addition of H2SO4 and ultrapure water respectively. No significant removal was observed by addition of NaOH and without aqueous media. Moreover, catalytic degradation of PCB77 by microwave-induced nano-particle MnO2 had best removal rate was up to 90% after 1 min, in contrast with addition of nano-particle Fe2O3, CuO and Al2O3. The removal rate raised from 37.0% to 98.5% rapidly with the concentration of H2SO4 ranged from 1 mol/L to 8 mol/L, and H2SO4 mainly played a role of acidification but not oxidation. The addition of 0.01, 0.03 and 0.05 g MnO2 showed the similar result.

  18. Enzymatic biomarkers can portray nanoCuO-induced oxidative and neuronal stress in freshwater shredders.

    PubMed

    Pradhan, Arunava; Silva, Carla O; Silva, Carlos; Pascoal, Cláudia; Cássio, Fernanda

    2016-11-01

    Commercial applications of nanometal oxides have increased concern about their release into natural waters and consequent risks to aquatic biota and the processes they drive. In forest streams, the invertebrate shredder Allogamus ligonifer plays a key role in detritus food webs by transferring carbon and energy from plant litter to higher trophic levels. We assessed the response profiles of oxidative and neuronal stress enzymatic biomarkers in A. ligonifer after 96h exposure to nanoCuO at concentration ranges nanoCuO-induced stress, Cu 2+ released from nanoCuO was quantified and the enzymatic responses to Cu 2+ exposure at similar effective concentrations were compared. The highest activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) were observed at concentrations oxidative stress at low concentrations (nanoCuO, thereby contributing to the survival of A. ligonifer. At concentrations between LC 10 and LC 30 , effects of nanoparticulate or released ionic copper on enzyme activities were concentration-dependent, and led to oxidative stress and even to animal death. The activity of acetylcholinesterase (AChE) was strongly inhibited even at concentrations

  19. Titanium bone implants with superimposed micro/nano-scale porosity and antibacterial capability

    NASA Astrophysics Data System (ADS)

    Necula, B. S.; Apachitei, I.; Fratila-Apachitei, L. E.; van Langelaan, E. J.; Duszczyk, J.

    2013-05-01

    This study aimed at producing a multifunctional layer with micro/nano-interconnected porosity and antibacterial capability on a rough macro-porous plasma sprayed titanium surface using the plasma electrolytic oxidation process. The layers were electrochemically formed in electrolytes based on calcium acetate and calcium glycerophosphate salts bearing dispersed Ag nanoparticles. They were characterized with respect to surface morphology and chemical composition using a scanning electron microscope equipped with the energy dispersive spectroscopy and back scattering detectors. Scanning electron microscopy images showed the formation of a micro/nano-scale porous layer, comprised of TiO2 bearing Ca and P species and Ag nanoparticles, following accurately the surface topography of the plasma sprayed titanium coating. The Ca/P atomic ratio was found to be close to that of bone apatite. Ag nanoparticles were incorporated on both on top and inside the porous structure of the TiO2 layer.

  20. The Effect of Nano Loading and Ultrasonic Compounding of EVA/LDPE/Nano-magnesium Hydroxide on Mechanical Properties and Distribution of Nano Particles

    NASA Astrophysics Data System (ADS)

    Azman, I. A.; Salleh, R. M.; Alauddin, S. M.; Shueb, M. I.

    2018-05-01

    Blends of Ethylene Vinyl Acetate (EVA) and Low-Density Polyethylene (LDPE) are promising composite which have good mechanical properties to environmental stress cracking. However, they lack fire resistant properties, which limits it usage in wire and cable industry. In order to improve flame retardancy ability, a range of nano-magnesium hydroxide (nano-MH) loading which is from 0 phr to maximum of 20 phr with ultrasonic extrusion 0-100 kHz frequencies have been introduced. Ultrasonic extrusion was used to improve the distribution of nano-MH. It was found that, 10 phr of nano loading with 100 kHz ultrasonic assisted has greater tensile strength compared to the nanocomposite without ultrasonication. Further increase of nano MH loading, will decrease the tensile properties. Better elongation at break was observed at10 phr nano-MH with the frequency of 50 kHz. The sample of 20 phr of nanoMH assisted with 50 kHz ultrasonic exhibits good flexural properties while 10 phr of nano-MH without the ultrasonic assisted demonstrates good in izod impact properties. From the evaluation of mechanical properties studied, it was found that 10 phr of nano-MH has shown the best performance among all the samples tested for EVA/LDPE/nano-MH composites. Transmission Electron Microscopy (TEM) has been conducted on 10 phr sample with different frequencies in order to observe the distribution of nano-MH particles. The sample with 100 kHz frequency shows more uniform dispersion of nano-MH in EVA/LDPE composites. This investigation indicates that the ultrasonic technology can enhance the mechanical properties studied as well as the dispersion of nano particles in the composite.

  1. A facile method to synthesize boron-doped Ni/Fe alloy nano-chains as electrocatalyst for water oxidation

    NASA Astrophysics Data System (ADS)

    Yang, Yisu; Zhuang, Linzhou; Lin, Rijia; Li, Mengran; Xu, Xiaoyong; Rufford, Thomas E.; Zhu, Zhonghua

    2017-05-01

    We report a novel magnetic field assisted chemical reduction method for the synthesis of boron-doped Ni/Fe nano-chains as promising catalysts for the oxygen evolution reaction (OER). The boron-doped Ni/Fe nano-chains were synthesised in a one step process at room temperature using NaBH4 as a reducing agent. The addition of boron reduced the magnetic moment of the intermediate synthesis products and produced nano-chains with a high specific surface area of 73.4 m2 g-1. The boron-doped Ni/Fe nano-chains exhibited catalytic performance superior to state-of-the-art Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite and RuO2 noble metal oxide catalysts. The mass normalized activity of the boron-doped Ni/Fe nano-chains measured at an overpotential of 0.35 V was 64.0 A g-1, with a Tafel slope of only 40 mV dec-1. The excellent performance of the boron-doped Ni/Fe nano-chains can be attributed to the uniform elemental distribution and highly amorphous structure of the B-doped nano-chains. These results provide new insights into the effect of doping transition-metal based OER catalysts with non-metallic elements. The study demonstrates a facile approach to prepare transition metal nano-chains using magnetic field assisted chemical reduction method as cheap and highly active catalysts for electrochemical water oxidation.

  2. Growth control of carbon nanotubes using by anodic aluminum oxide nano templates.

    PubMed

    Park, Yong Seob; Choi, Won Seek; Yi, Junsin; Lee, Jaehyeong

    2014-05-01

    Anodic Aluminum Oxide (AAO) template prepared in acid electrolyte possess regular and highly anisotropic porous structure with pore diameter range from five to several hundred nanometers, and with a density of pores ranging from 10(9) to 10(11) cm(-2). AAO can be used as microfilters and templates for the growth of CNTs and metal or semiconductor nanowires. Varying anodizing conditions such as temperature, electrolyte, applied voltage, anodizing and widening time, one can control the diameter, the length, and the density of pores. In this work, we deposited Al thin film by radio frequency magnetron sputtering method to fabricate AAO nano template and synthesized multi-well carbon nanotubes on a glass substrate by microwave plasma-enhanced chemical vapor deposition (MPECVD). AAO nano-porous templates with various pore sizes and depths were introduced to control the dimension and density of CNT arrays. The AAO nano template was synthesize on glass by two-step anodization technique. The average diameter and interpore distance of AAO nano template are about 65 nm and 82 nm. The pore density and AAO nano template thickness are about 2.1 x 10(10) pores/cm2 and 1 microm, respectively. Aligned CNTs on the AAO nano template were synthesized by MPECVD at 650 degrees C with the Ni catalyst layer. The length and diameter of CNTs were grown 2 microm and 50 nm, respectively.

  3. Developing Sensitive and Selective Nanosensors: A Single Molecule - Multiple Excitation Source Approach. Altairnano Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Testing

    DTIC Science & Technology

    2012-03-13

    Source Approach Part II. Altairnano Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Testing 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Testing Report Title ABSTRACT This final report for Contract W911NF-09-C-0135 transmits the...prototype development. The second (Part II.) is "Altairnano Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Test Report". The

  4. Bio-inspired surfactant assisted nano-catalyst impregnation of Solid-Oxide Fuel Cell (SOFC) electrodes

    DOE PAGES

    Ozmen, Ozcan; Zondlo, John W.; Lee, Shiwoo; ...

    2015-11-02

    A bio-inspired surfactant was utilized to assist in the efficient impregnation of a nano-CeO₂ catalyst throughout both porous Solid Oxide Fuel Cells (SOFC’s) electrodes simultaneously. The process included the initial modification of electrode pore walls with a polydopamine film. The cell was then submersed into a cerium salt solution. The amount of nano-CeO₂ deposited per impregnation step increased by 3.5 times by utilizing this two-step protocol in comparison to a conventional drip impregnation method. The impregnated cells exhibited a 20% higher power density than a baseline cell without the nano-catalyst at 750°C (using humid H₂ fuel).

  5. Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing

    NASA Astrophysics Data System (ADS)

    Almuslem, A. S.; Hanna, A. N.; Yapici, T.; Wehbe, N.; Diallo, E. M.; Kutbee, A. T.; Bahabry, R. R.; Hussain, M. M.

    2017-02-01

    In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO2) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.

  6. Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Lu, Haifei; Sun, Jingsong; Zhang, Hong; Lu, Shunmian; Choy, Wallace C. H.

    2016-03-01

    The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies.The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self

  7. Nano- and Micro-Scale Oxidative Patterning of Titanium Implant Surfaces for Improved Surface Wettability.

    PubMed

    Kim, In-hye; Son, Jun Sik; Choi, Seok Hwa; Kim, Kyo-han; Kwon, Tae-yub

    2016-02-01

    A simple and scalable surface modification treatment is demonstrated, in which nano- and microscale features are introduced into the surface of titanium (Ti) substrates by means of a novel and eco-friendly oxidative aqueous solution composed of hydrogen peroxide (H202) and sodium bicarbonate (NaHCO3). By immersing mirror-polished Ti discs in an aqueous mixture of 30 wt% H2O2/5 wt% NaHCO3 at 23 +/- 3 degrees C for 4 h, it was confirmed that this mixture is capable of generating microscale topographies on Ti surfaces. It also simultaneously formed nanochannels that were regularly arranged in a comb-like pattern on the Ti surface, thus forming a hierarchical surface structure. Further, these nano/micro-textured Ti surfaces showed great surface roughness and excellent wettability when compared with control Ti surfaces. This study demonstrates that a H2O2/NaHCO3 mixture can be effectively utilized to create reproducible nano/microscale topographies on Ti implant surfaces, thus providing an economical new oxidative solution that may be used effectively and safely as a Ti surface modification treatment.

  8. Engineering functionalized multi-phased silicon/silicon oxide nano-biomaterials to passivate the aggressive proliferation of cancer

    PubMed Central

    Premnath, P.; Tan, B.; Venkatakrishnan, K.

    2015-01-01

    Currently, the use of nano silicon in cancer therapy is limited as drug delivery vehicles and markers in imaging, not as manipulative/controlling agents. This is due to limited properties that native states of nano silicon and silicon oxides offers. We introduce nano-functionalized multi-phased silicon/silicon oxide biomaterials synthesized via ultrashort pulsed laser synthesis, with tunable properties that possess inherent cancer controlling properties that can passivate the progression of cancer. This nanostructured biomaterial is composed of individual functionalized nanoparticles made of a homogenous hybrid of multiple phases of silicon and silicon oxide in increasing concentration outwards from the core. The chemical properties of the proposed nanostructure such as number of phases, composition of phases and crystal orientation of each functionalized nanoparticle in the three dimensional nanostructure is defined based on precisely tuned ultrashort pulsed laser-material interaction mechanisms. The amorphous rich phased biomaterial shows a 30 fold (95%) reduction in number of cancer cells compared to bulk silicon in 48 hours. Further, the size of the cancer cells reduces by 76% from 24 to 48 hours. This method exposes untapped properties of combination of multiple phases of silicon oxides and its applications in cancer therapy. PMID:26190009

  9. Nano-confinement inside molecular metal oxide clusters: Dynamics and modified encapsulation behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhe; Daemen, Luke L.; Cheng, Yongqiang

    Encapsulation behavior, as well as the presence of internal catalytically-active sites, has been spurring the applications of a 3 nm hollow spherical metal oxide cluster {Mo 132} as an encapsulation host and a nano-reactor. Due to its well-defined and tunable cluster structures, and nano-scaled internal void space comparable to the volumes of small molecules, this cluster provides a good model to study the dynamics of materials under ultra-confinement. Neutron scattering studies suggest that bulky internal ligands inside the cluster show slower and limited dynamics compared to their counterparts in the bulk state, revealing the rigid nature of the skeleton ofmore » the internal ligands. Furthermore, NMR studies indicate that the rigid internal ligands that partially cover the interfacial pore on the molybdenum oxide shells are able to block some large guest molecules from going inside the capsule cluster, which provides a convincing protocol for size-selective encapsulation and separation.« less

  10. Nano-confinement inside molecular metal oxide clusters: Dynamics and modified encapsulation behavior

    DOE PAGES

    Wang, Zhe; Daemen, Luke L.; Cheng, Yongqiang; ...

    2016-08-19

    Encapsulation behavior, as well as the presence of internal catalytically-active sites, has been spurring the applications of a 3 nm hollow spherical metal oxide cluster {Mo 132} as an encapsulation host and a nano-reactor. Due to its well-defined and tunable cluster structures, and nano-scaled internal void space comparable to the volumes of small molecules, this cluster provides a good model to study the dynamics of materials under ultra-confinement. Neutron scattering studies suggest that bulky internal ligands inside the cluster show slower and limited dynamics compared to their counterparts in the bulk state, revealing the rigid nature of the skeleton ofmore » the internal ligands. Furthermore, NMR studies indicate that the rigid internal ligands that partially cover the interfacial pore on the molybdenum oxide shells are able to block some large guest molecules from going inside the capsule cluster, which provides a convincing protocol for size-selective encapsulation and separation.« less

  11. Structural changes in the nano-oxide layer with annealing in specular spin valves

    NASA Astrophysics Data System (ADS)

    Jang, S. H.; Kim, Y. W.; Kang, T.; Kim, H. J.; Kim, K. Y.

    2003-05-01

    We investigated microstructural changes in a nano-oxide layer (NOL) with annealing in specular spin valves (SVs) by cross-sectional transmission electron microscopy and x-ray photoelectron spectroscopy analysis. In the SV annealed at high temperature of 400 °C, an increase in thickness and a local breakdown of the NOL were observed. This local coarsening of the NOL is closely related to the formation of Mn oxides in the oxide-rich part of the NOL through Mn diffusion. Thus, the chemical structure of the NOL changes to the structure with Mn oxide-rich content after annealing.

  12. Long-Range Capture and Delivery of Water-Dispersed Nano-objects by Microbubbles Generated on 3D Plasmonic Surfaces.

    PubMed

    Tantussi, Francesco; Messina, Gabriele C; Capozza, Rosario; Dipalo, Michele; Lovato, Laura; De Angelis, Francesco

    2018-05-22

    The possibility of investigating small amounts of molecules, moieties, or nano-objects dispersed in solution constitutes a central step for various application areas in which high sensitivity is necessary. Here, we show that the rapid expansion of a water bubble can act as a fast-moving net for molecules or nano-objects, collecting the floating objects in the surrounding medium in a range up to 100 μm. Thanks to an engineered 3D patterning of the substrate, the collapse of the bubble could be guided toward a designed area of the surface with micrometric precision. Thus, a locally confined high density of particles is obtained, ready for evaluation by most optical/spectroscopic detection schemes. One of the main relevant strengths of the long-range capture and delivery method is the ability to increase, by a few orders of magnitude, the local density of particles with no changes in their physiological environment. The bubble is generated by an ultrafast IR laser pulse train focused on a resonant plasmonic antenna; due to the excitation process, the technique is trustworthy and applicable to biological samples. We have tested the reliabilities of the process by concentrating highly dispersed fluorescence molecules and fluorescent beads. Lastly, as an ultimate test, we have applied the bubble clustering method on nanosized exosome vesicles dispersed in water; due to the clustering effect, we were able to effectively perform Raman spectroscopy on specimens that were otherwise extremely difficult to measure.

  13. Characterization of Antimicrobial Poly (Lactic Acid)/Nano-Composite Films with Silver and Zinc Oxide Nanoparticles

    PubMed Central

    Chu, Zhuangzhuang; Zhao, Tianrui; Li, Lin; Fan, Jian; Qin, Yuyue

    2017-01-01

    Antimicrobial active films based on poly (lactic acid) (PLA) were prepared with nano-silver (nano-Ag) and nano-zinc oxide (nano-ZnO) using a solvent volatilizing method. The films were characterized for mechanical, structural, thermal, physical and antimicrobial properties. Scanning electron microscopy (SEM) images characterized the fracture morphology of the films with different contents of nano-Ag and nano-ZnO. The addition of nanoparticles into the pure PLA film decreased the tensile strength and elasticity modulus and increased the elongation of breaks—in other words, the flexibility and extensibility of these composites improved. According to the results of differential scanning calorimetry (DSC), the glass transition temperature of the PLA nano-composite films decreased, and the crystallinity of these films increased; a similar result was apparent from X-ray diffraction (XRD) analysis. The water vapor permeability (WVP) and opacity of the PLA nano-composite films augmented compared with pure PLA film. Incorporation of nanoparticles to the PLA films significantly improved the antimicrobial activity to inhibit the growth of Escherichia coli. The results indicated that PLA films with nanoparticles could be considered a potential environmental-friendly packaging material. PMID:28773018

  14. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang , Jing; Bao, Wurigumula; Ma, Lu

    2015-11-09

    Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide–nickel–graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx/Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stickmore » well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx/Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials.« less

  15. Influence of the domain structure of nano-oxide layers on the transport properties of specular spin valves

    NASA Astrophysics Data System (ADS)

    Ventura, J.; Sousa, J. B.; Veloso, A.; Freitas, P. P.

    2007-05-01

    Specular spin valves show enhanced giant magnetoresistive ratio when compared to other simpler, spin valve structures as a result of specular reflection in nano-oxide layers (NOLs) formed by the partial oxidation of the CoFe pinned and free layers. The oxides forming the NOL were recently shown to order antiferromagnetically below T ˜175K. Here we study the training effect in MnIr /CoFe/NOL/CoFe/Cu/CoFe/NOL specular spin valves at low temperatures (15K). We observed that the training effect is related to the nano-oxide layer antiferromagnet ordering and to the evolution of the corresponding domain structure with the number of cycles performed. This allowed us to study the influence of the NOL domain structure on the magnetotransport of specular spin valves.

  16. Helium in inert matrix dispersion fuels

    NASA Astrophysics Data System (ADS)

    van Veen, A.; Konings, R. J. M.; Fedorov, A. V.

    2003-07-01

    The behaviour of helium, an important decay product in the transmutation chains of actinides, in dispersion-type inert matrix fuels is discussed. A phenomenological description of its accumulation and release in CERCER and CERMET fuel is given. A summary of recent He-implantation studies with inert matrix metal oxides (ZrO 2, MgAl 2O 4, MgO and Al 2O 3) is presented. A general picture is that for high helium concentrations helium and vacancy defects form helium clusters which convert into over-pressurized bubbles. At elevated temperature helium is released from the bubbles. On some occasions thermal stable nano-cavities or nano-pores remain. On the basis of these results the consequences for helium induced swelling and helium storage in oxide matrices kept at 800-1000 °C will be discussed. In addition, results of He-implantation studies for metal matrices (W, Mo, Nb and V alloys) will be presented. Introduction of helium in metals at elevated temperatures leads to clustering of helium to bubbles. When operational temperatures are higher than 0.5 melting temperature, swelling and helium embrittlement might occur.

  17. Development oxide dispersion strengthened ferritic steels for fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, D.K.; Froes, F.H.; Gelles, D.S.

    1997-04-01

    Uniaxial tension creep response is reported for an oxide dispersion strengthened (ODS) steel, Fe-13.5Cr-2W-0.5Ti-0.25 Y{sub 2}O{sub 3} (in weight percent) manufactured using the mechanical alloying process. Acceptable creep response is obtained at 900{degrees}C.

  18. Dynamic probabilistic material flow analysis of nano-SiO2, nano iron oxides, nano-CeO2, nano-Al2O3, and quantum dots in seven European regions.

    PubMed

    Wang, Yan; Nowack, Bernd

    2018-04-01

    Static environmental exposure assessment models based on material flow analysis (MFA) have previously been used to estimate flows of engineered nanomaterials (ENMs) to the environment. However, such models do not account for changes in the system behavior over time. Dynamic MFA used in this study includes the time-dependent development of the modelling system by considering accumulation of ENMs in stocks and the environment, and the dynamic release of ENMs from nano-products. In addition, this study also included regional variations in population, waste management systems, and environmental compartments, which subsequently influence the environmental release and concentrations of ENMs. We have estimated the flows and release concentrations of nano-SiO 2 , nano-iron oxides, nano-CeO 2 , nano-Al 2 O 3 , and quantum dots in the EU and six geographical sub-regions in Europe (Central Europe, Northern Europe, Southern Europe, Eastern Europe, South-eastern Europe, and Switzerland). The model predicts that a large amount of ENMs are accumulated in stocks (not considering further transformation). For example, in the EU 2040 Mt of nano-SiO 2 are stored in the in-use stock, 80,400 tonnes have been accumulated in sediments and 65,600 tonnes in natural and urban soil from 1990 to 2014. The magnitude of flows in waste management processes in different regions varies because of differences in waste handling. For example, concentrations in landfilled waste are lowest in South-eastern Europe due to dilution by the high amount of landfilled waste in the region. The flows predicted in this work can serve as improved input data for mechanistic environmental fate models and risk assessment studies compared to previous estimates using static models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Effect of nano-oxide concentration on the mechanical properties of a maxillofacial silicone elastomer.

    PubMed

    Han, Ying; Kiat-amnuay, Sudarat; Powers, John M; Zhao, Yimin

    2008-12-01

    Contemporary silicone-based elastomeric prostheses tend to degrade over time because of the effect of mechanical loading. Little has been reported on how the mechanical properties of a maxillofacial prosthetic elastomer may be affected by the addition of nanosized oxide particles used as an opacifier. The purpose of this study was to evaluate the effect of different concentrations of nanosized oxides of various composition on the mechanical properties of a commercially available silicone elastomer. Nanosized oxides (Ti, Zn, or Ce) were added in various concentrations (0.5%, 1.0%, 1.5%, 2.0%, 2.5%, or 3.0% by weight) to a commercial silicone elastomer (A-2186), commonly used for fabricating extraoral maxillofacial prostheses. Silicone elastomer A-2186 without nanosized oxides served as a control group. Specimens (n=5) were polymerized according to manufacturer's recommendations and tested for tensile strength (ASTM D412) and tear strength (ASTM D624), and percent elongation in a universal testing machine. Uniformity of particle dispersion within the processed elastomer was assessed using scanning electron microscopic imaging. For each property, a 2-way ANOVA was performed evaluating the effect of oxide type and strength, and Fisher's PLSD test was used for pairwise comparisons (alpha=.05). SEM examination indicated that all 3 nanosized oxides distribute evenly throughout the silicone specimens, except for the 3.0% group, which are partly agglomerated. The 2.0% and 2.5% groups of all nanosized oxides demonstrated significantly higher tensile and tear strengths and percent elongation (P<.001) than the control group. CeO(2) had significantly lower tensile strength than TiO2 and ZnO (P<.05). The ZnO group had significantly higher tear strength than TiO(2) and CeO(2) (P <.05). Most of specimens became somewhat harder when compared with the control group. CeO(2) group had significantly higher Shore A hardness than TiO(2) and ZnO (P<.001). There was no significant

  20. Acoustic Properties of Polyurethane Composition Reinforced with Carbon Nanotubes and Silicon Oxide Nano-powder

    NASA Astrophysics Data System (ADS)

    Orfali, Wasim A.

    This article demonstrates the acoustic properties of added small amount of carbon-nanotube and siliconoxide nano powder (S-type, P-Type) to the host material polyurethane composition. By adding CNT and/or nano-silica in the form of powder at different concentrations up to 2% within the PU composition to improve the sound absorption were investigated in the frequency range up to 1600 Hz. Sound transmission loss measurement of the samples were determined using large impedance tube. The tests showed that addition of 0.2 wt.% Silicon Oxide Nano-powder and 0.35 wt.% carbon nanotube to polyurethane composition improved sound transmissions loss (Sound Absorption) up to 80 dB than that of pure polyurethane foam sample.

  1. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2O 4 spinel in oxidizing atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei -Zhen; Nie, Lei; Cheng, Yingwen

    With the capability of MgAl 2O 4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated in this paper, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2 nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement inmore » Pt exposure was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H 2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. Finally, a dynamic stabilization mechanism involving wetting/nucleation seems to be responsible for the evolution of surface compositions upon cyclic oxidizing and reducing thermal treatments.« less

  2. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2O 4 spinel in oxidizing atmosphere

    DOE PAGES

    Li, Wei -Zhen; Nie, Lei; Cheng, Yingwen; ...

    2017-01-13

    With the capability of MgAl 2O 4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated in this paper, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2 nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement inmore » Pt exposure was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H 2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. Finally, a dynamic stabilization mechanism involving wetting/nucleation seems to be responsible for the evolution of surface compositions upon cyclic oxidizing and reducing thermal treatments.« less

  3. Synthesis of hierarchical Mg-doped Fe3O4 micro/nano materials for the decomposition of hexachlorobenzene.

    PubMed

    Su, Guijin; Liu, Yexuan; Huang, Linyan; Lu, Huijie; Liu, Sha; Li, Liewu; Zheng, Minghui

    2014-03-01

    An ethylene-glycol (EG) mediated self-assembly process was firstly developed to synthesize micrometer-sized nanostructured Mg-doped Fe3O4 composite oxides to decompose hexachlorobenzene (HCB) at 300°C. The synthesized samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and inductively coupled plasma optical emission spectrometer. The morphology and composition of the composite oxide precursor were regulated by the molar ratio of the magnesium acetate and ferric nitrate as the reactants. Calcination of the precursor particles, prepared with different molar ratio of the metal salts, under a reducing nitrogen atmosphere, generated three kinds of Mg doped Fe3O4 composite oxide micro/nano materials. Their reactivity toward HCB decomposition was likely influenced by the material morphology and content of Mg dopants. Ball-like MgFe2O4-Fe3O4 composite oxide micro/nano material showed superior HCB dechlorination efficiencies when compared with pure Fe3O4 micro/nano material, prepared under similar experimental conditions, thus highlighting the benefits of doping Mg into Fe3O4 matrices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2 O 4 spinel in oxidizing atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei-Zhen; Nie, Lei; Cheng, Yingwen

    With the capability of MgAl2O4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement in Pt exposure was achieved when themore » sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. A dynamic stabilization mechanism involving wetting\

  5. Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites

    NASA Astrophysics Data System (ADS)

    Mahmoud, Mohamed E.; El-Khatib, Ahmed M.; Badawi, Mohamed S.; Rashad, Amal R.; El-Sharkawy, Rehab M.; Thabet, Abouzeid A.

    2018-04-01

    Polymer composites of high-density polyethylene (HD-PE) filled with powdered lead oxide nanoparticles (PbO NPs) and bulk lead oxide (PbO Blk) were prepared with filler weight fraction [10% and 50%]. These polymer composites were investigated for radiation-shielding of gamma-rays emitted from radioactive point sources [241Am, 133Ba, 137Cs, and 60Co]. The polymer was found to decrease the heaviness of the shielding material and increase the flexibility while the metal oxide fillers acted as principle radiation attenuators in the polymer composite. The prepared composites were characterized by Fourier transform infrared spectrophotometer (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), Brunauer-Emmett-Teller surface area (BET) and field emission transmission electron microscope (FE-TEM). The morphological analysis of the assembled composites showed that, PbO NPs and PbO Blk materials exhibited homogenous dispersion in the polymer-matrix. Thermogravimetric analysis (TGA) demonstrated that the thermal-stability of HD-PE was enhanced in the presence of both PbO Blk and PbO NPs. The results declared that, the density of polymer composites was increase with the percentage of filler contents. The highest density value was identified as 1.652 g cm-3 for 50 wt% of PbO NPs. Linear attenuation coefficients (μ) have been estimated from the use of XCOM code and measured results. Reasonable agreement was attended between theoretical and experimental results. These composites were also found to display excellent percentage of heaviness with respect to other conventional materials.

  6. High Performance Nano-Crystalline Oxide Fuel Cell Materials. Defects, Structures, Interfaces, Transport, and Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, Scott; Poeppelmeier, Ken; Mason, Tom

    This project addresses fundamental materials challenges in solid oxide electrochemical cells, devices that have a broad range of important energy applications. Although nano-scale mixed ionically and electronically conducting (MIEC) materials provide an important opportunity to improve performance and reduce device operating temperature, durability issues threaten to limit their utility and have remained largely unexplored. Our work has focused on both (1) understanding the fundamental processes related to oxygen transport and surface-vapor reactions in nano-scale MIEC materials, and (2) determining and understanding the key factors that control their long-term stability. Furthermore, materials stability has been explored under the “extreme” conditions encounteredmore » in many solid oxide cell applications, i.e, very high or very low effective oxygen pressures, and high current density.« less

  7. Lamb wave extraction of dispersion curves in micro/nano-plates using couple stress theories

    NASA Astrophysics Data System (ADS)

    Ghodrati, Behnam; Yaghootian, Amin; Ghanbar Zadeh, Afshin; Mohammad-Sedighi, Hamid

    2018-01-01

    In this paper, Lamb wave propagation in a homogeneous and isotropic non-classical micro/nano-plates is investigated. To consider the effect of material microstructure on the wave propagation, three size-dependent models namely indeterminate-, modified- and consistent couple stress theories are used to extract the dispersion equations. In the mentioned theories, a parameter called 'characteristic length' is used to consider the size of material microstructure in the governing equations. To generalize the parametric studies and examine the effect of thickness, propagation wavelength, and characteristic length on the behavior of miniature plate structures, the governing equations are nondimensionalized by defining appropriate dimensionless parameters. Then the dispersion curves for phase and group velocities are plotted in terms of a wide frequency-thickness range to study the lamb waves propagation considering microstructure effects in very high frequencies. According to the illustrated results, it was observed that the couple stress theories in the Cosserat type material predict more rigidity than the classical theory; so that in a plate with constant thickness, by increasing the thickness to characteristic length ratio, the results approach to the classical theory, and by reducing this ratio, wave propagation speed in the plate is significantly increased. In addition, it is demonstrated that for high-frequency Lamb waves, it converges to dispersive Rayleigh wave velocity.

  8. Pulse I-V characterization of a nano-crystalline oxide device with sub-gap density of states

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Hur, Ji-Hyun; Jeon, Sanghun

    2016-05-01

    Understanding the charge trapping nature of nano-crystalline oxide semiconductor thin film transistors (TFTs) is one of the most important requirements for their successful application. In our investigation, we employed a fast-pulsed I-V technique for understanding the charge trapping phenomenon and for characterizing the intrinsic device performance of an amorphous/nano-crystalline indium-hafnium-zinc-oxide semiconductor TFT with varying density of states in the bulk. Because of the negligible transient charging effect with a very short pulse, the source-to-drain current obtained with the fast-pulsed I-V measurement was higher than that measured by the direct-current characterization method. This is because the fast-pulsed I-V technique provides a charge-trap free environment, suggesting that it is a representative device characterization methodology of TFTs. In addition, a pulsed source-to-drain current versus time plot was used to quantify the dynamic trapping behavior. We found that the charge trapping phenomenon in amorphous/nano-crystalline indium-hafnium-zinc-oxide TFTs is attributable to the charging/discharging of sub-gap density of states in the bulk and is dictated by multiple trap-to-trap processes.

  9. Pulse I-V characterization of a nano-crystalline oxide device with sub-gap density of states.

    PubMed

    Kim, Taeho; Hur, Ji-Hyun; Jeon, Sanghun

    2016-05-27

    Understanding the charge trapping nature of nano-crystalline oxide semiconductor thin film transistors (TFTs) is one of the most important requirements for their successful application. In our investigation, we employed a fast-pulsed I-V technique for understanding the charge trapping phenomenon and for characterizing the intrinsic device performance of an amorphous/nano-crystalline indium-hafnium-zinc-oxide semiconductor TFT with varying density of states in the bulk. Because of the negligible transient charging effect with a very short pulse, the source-to-drain current obtained with the fast-pulsed I-V measurement was higher than that measured by the direct-current characterization method. This is because the fast-pulsed I-V technique provides a charge-trap free environment, suggesting that it is a representative device characterization methodology of TFTs. In addition, a pulsed source-to-drain current versus time plot was used to quantify the dynamic trapping behavior. We found that the charge trapping phenomenon in amorphous/nano-crystalline indium-hafnium-zinc-oxide TFTs is attributable to the charging/discharging of sub-gap density of states in the bulk and is dictated by multiple trap-to-trap processes.

  10. Stability of Y-Ti-O nanoparticles during laser deposition of oxide dispersion strengthened steel powder

    NASA Astrophysics Data System (ADS)

    Euh, Kwangjun; Arkhurst, Barton; Kim, Il Hyun; Kim, Hyun-Gil; Kim, Jeoung Han

    2017-11-01

    This study investigated the feasibility of a direct energy deposition process for fabrication of oxide dispersion strengthened steel cladding. The effect of the laser working power and scan speed on the microstructural stability of oxide nanoparticles in the deposition layer was examined. Y-Ti-O type oxide nanoparticles with a mean diameter of 45 nm were successfully dispersed by the laser deposition process. The laser working power significantly affected nanoparticle size and number density. A high laser power with a low scan speed seriously induced particle coarsening and agglomeration. Compared with bulk oxide dispersion strengthened steel, the hardness of the laser deposition layer was much lower because of a relatively coarse particle and grain size. Formation mechanism of nanoparticles during laser deposition was discussed.

  11. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production.

    PubMed

    Li, Fengmin; Liang, Zhi; Zheng, Xiang; Zhao, Wei; Wu, Miao; Wang, Zhenyu

    2015-01-01

    Given the extensive use of nanomaterials, they may enter aquatic environments and harm the growth of algae, which are primary producers in an aquatic ecosystem. Thus, the balance of an aquatic ecosystem may be destroyed. In this study, Karenia brevis and Skeletonema costatum were exposed to nano-TiO2 (anatase, average particle size of 5-10 nm, specific surface area of 210±10 m(2) g(-1)) to assess the effects of nano-TiO2 on algae. The findings of transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDX) and scanning electron microscopy (SEM) demonstrate aggregation of nano-TiO2 in the algal suspension. Nano-TiO2 was also found to be inside algal cells. The growth of the two species of algae was inhibited under nano-TiO2 exposure. The 72 h EC50 values of nano-TiO2 to K. brevis and S. costatum were 10.69 and 7.37 mg L(-1), respectively. TEM showed that the cell membrane of K. brevis was destroyed and its organelles were almost undistinguished under nano-TiO2 exposure. The malondialdehyde (MDA) contents of K. brevis and S. costatum significantly increased compared with those of the control (p<0.05). Meanwhile, superoxide dismutase (SOD) and catalase activities (CAT) of K. brevis and S. costatum changed in different ways. The reactive oxygen species (ROS) levels in both species were significantly higher than those of the control (p<0.05). The site of ROS production and accumulation in K. brevis and S. costatum under nano-TiO2 exposure was explored with the addition of inhibitors of different electron transfer chains. This study indicated that nano-TiO2 in algal suspensions inhibited the growth of K. brevis and S. costatum. This effect was attributed to oxidative stress caused by ROS production inside algal cells. The levels of anti-oxidative enzymes changed, which destroyed the balance between oxidation and anti-oxidation. Thus, algae were damaged by ROS accumulation, resulting in lipid oxidation and inhibited algae growth. The inhibitors of the

  12. Nano-Sized Structurally Disordered Metal Oxide Composite Aerogels as High-Power Anodes in Hybrid Supercapacitors.

    PubMed

    Huang, Haijian; Wang, Xing; Tervoort, Elena; Zeng, Guobo; Liu, Tian; Chen, Xi; Sologubenko, Alla; Niederberger, Markus

    2018-03-27

    A general method for preparing nano-sized metal oxide nanoparticles with highly disordered crystal structure and their processing into stable aqueous dispersions is presented. With these nanoparticles as building blocks, a series of nanoparticles@reduced graphene oxide (rGO) composite aerogels are fabricated and directly used as high-power anodes for lithium-ion hybrid supercapacitors (Li-HSCs). To clarify the effect of the degree of disorder, control samples of crystalline nanoparticles with similar particle size are prepared. The results indicate that the structurally disordered samples show a significantly enhanced electrochemical performance compared to the crystalline counterparts. In particular, structurally disordered Ni x Fe y O z @rGO delivers a capacity of 388 mAh g -1 at 5 A g -1 , which is 6 times that of the crystalline sample. Disordered Ni x Fe y O z @rGO is taken as an example to study the reasons for the enhanced performance. Compared with the crystalline sample, density functional theory calculations reveal a smaller volume expansion during Li + insertion for the structurally disordered Ni x Fe y O z nanoparticles, and they are found to exhibit larger pseudocapacitive effects. Combined with an activated carbon (AC) cathode, full-cell tests of the lithium-ion hybrid supercapacitors are performed, demonstrating that the structurally disordered metal oxide nanoparticles@rGO||AC hybrid systems deliver high energy and power densities within the voltage range of 1.0-4.0 V. These results indicate that structurally disordered nanomaterials might be interesting candidates for exploring high-power anodes for Li-HSCs.

  13. Spatially confined synthesis of SiOx nano-rod with size-controlled Si quantum dots in nano-porous anodic aluminum oxide membrane.

    PubMed

    Pai, Yi-Hao; Lin, Gong-Ru

    2011-01-17

    By depositing Si-rich SiOx nano-rod in nano-porous anodic aluminum oxide (AAO) membrane using PECVD, the spatially confined synthesis of Si quantum-dots (Si-QDs) with ultra-bright photoluminescence spectra are demonstrated after low-temperature annealing. Spatially confined SiOx nano-rod in nano-porous AAO membrane greatly increases the density of nucleated positions for Si-QD precursors, which essentially impedes the route of thermally diffused Si atoms and confines the degree of atomic self-aggregation. The diffusion controlled growth mechanism is employed to determine the activation energy of 6.284 kJ mole(-1) and diffusion length of 2.84 nm for SiO1.5 nano-rod in nano-porous AAO membrane. HRTEM results verify that the reduced geometric dimension of the SiOx host matrix effectively constrain the buried Si-QD size at even lower annealing temperature. The spatially confined synthesis of Si-QD essentially contributes the intense PL with its spectral linewidth shrinking from 210 to 140 nm and its peak intensity enhancing by two orders of magnitude, corresponding to the reduction on both the average Si-QD size and its standard deviation from 2.6 to 2.0 nm and from 25% to 12.5%, respectively. The red-shifted PL wavelength of the Si-QD reveals an inverse exponential trend with increasing temperature of annealing, which is in good agree with the Si-QD size simulation via the atomic diffusion theory.

  14. Method of producing nano-scaled inorganic platelets

    DOEpatents

    Zhamu, Aruna; Jang, Bor Z.

    2012-11-13

    The present invention provides a method of exfoliating a layered material (e.g., transition metal dichalcogenide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites.

  15. Are engineered nano iron oxide particles safe? an environmental risk assessment by probabilistic exposure, effects and risk modeling.

    PubMed

    Wang, Yan; Deng, Lei; Caballero-Guzman, Alejandro; Nowack, Bernd

    2016-12-01

    Nano iron oxide particles are beneficial to our daily lives through their use in paints, construction materials, biomedical imaging and other industrial fields. However, little is known about the possible risks associated with the current exposure level of engineered nano iron oxides (nano-FeOX) to organisms in the environment. The goal of this study was to predict the release of nano-FeOX to the environment and assess their risks for surface waters in the EU and Switzerland. The material flows of nano-FeOX to technical compartments (waste incineration and waste water treatment plants) and to the environment were calculated with a probabilistic modeling approach. The mean value of the predicted environmental concentrations (PECs) of nano-FeOX in surface waters in the EU for a worst-case scenario (no particle sedimentation) was estimated to be 28 ng/l. Using a probabilistic species sensitivity distribution, the predicted no-effect concentration (PNEC) was determined from ecotoxicological data. The risk characterization ratio, calculated by dividing the PEC by PNEC values, was used to characterize the risks. The mean risk characterization ratio was predicted to be several orders of magnitude smaller than 1 (1.4 × 10 - 4 ). Therefore, this modeling effort indicates that only a very limited risk is posed by the current release level of nano-FeOX to organisms in surface waters. However, a better understanding of the hazards of nano-FeOX to the organisms in other ecosystems (such as sediment) needs to be assessed to determine the overall risk of these particles to the environment.

  16. Nano-zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photo catalytic degradation of ciprofloxacin hydrochloride from aqueous solutions.

    PubMed

    Anirudhan, T S; Deepa, J R

    2017-03-15

    Purpose of this study is to report the synthetic procedure of a novel photo catalyst, nano zinc oxide incorporated graphene oxide/nanocellulose (ZnO-GO/NC) for the effective adsorption and subsequent photo degradation of ciprofloxacin (CF), an antibiotic widely used in the poultry. Self cleaning property in cellulose was achieved by introducing a nano zinc oxide incorporated graphene oxide into nanocellulose (NC) matrix. By incorporating nano zinc oxide (ZnO) in graphene oxide (GO), band gap could be tuned to 2.4eV and after the composite formation with NC, the band gap was enhanced to 2.8eV which is in the visible region. Thus the degradation of the CF was achieved under the visible light. Photo degradation was due to electron hole interaction. The step wise modification in the synthesis ZnO-GO/NC was characterized using FT-IR, XRD, SEM, EDS, AFM, DRS-UV and BET N 2 adsorption isotherm techniques. The values of surface area, pore volume and pore radius were found to be 12.68m 2 /g, 0.026mL/g and 12.5nm, respectively. Efficiency in the adsorption process of CF onto ZnO-GO/NC was verified by batch adsorption technique. The optimum pH was found to be 5.5 and dose of the ZnO-GO/NC was optimized as 2.0g/L. Equilibrium was attained at 120min and the adsorption of drug followed second-order kinetics. Sips isotherm was the best fitted model and could explain the nature of interaction of CF with ZnO-GO/NC. The studies revealed that the degradation followed first-order kinetics and the optimum pH for the degradation process was found to be 6.0 and achieved a maximum degradation efficiency of 98.0%. The reusability of ZnO-GO/NC after five consecutive cycles indicated it to be a potential candidate for the removal and degradation of CF from aquatic environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. High performance diesel oxidation catalysts using ultra-low Pt loading on titania nanowire array integrated cordierite honeycombs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, Son; Lu, Xingxu; Tang, Wenxiang

    High performance of an ultra-low Pt loading diesel oxidation catalyst can be achieved by using a combination of novel nano-array structured support, precise control of ultrafine active Pt particles, and an addition of H 2 as a promoter into the exhausts. Highly stable mesoporous rutile TiO 2 nano-array was uniformly grown on three-dimensional (3-D) cordierite honeycomb monoliths using a solvothermal synthesis. Atomic layer deposition was employed for precise dispersion of ultrafine Pt particles (0.95 ± 0.24 nm) on TiO 2 nano-array with a Pt loading of 1.1 g/ft 3. Despite low Pt loading, the Pt/TiO 2 nano-array catalyst shows impressivemore » low-temperature oxidation reactivity, with the conversion of CO and total hydrocarbon (THC) reaching 50% at 224 and 285 °C, respectively, in the clean diesel combustion (CDC) simulated exhaust conditions. The excellent activity is attributed to the unique nano-array structure that promotes gas-solid interaction and ultra-small Pt particle dispersion that increase surface Pt atoms. We also demonstrate that addition of more H 2 into the exhaust can lower light-off temperature for CO and THC by up to ~60 °C and ~30 °C, respectively.« less

  18. High performance diesel oxidation catalysts using ultra-low Pt loading on titania nanowire array integrated cordierite honeycombs

    DOE PAGES

    Hoang, Son; Lu, Xingxu; Tang, Wenxiang; ...

    2017-11-15

    High performance of an ultra-low Pt loading diesel oxidation catalyst can be achieved by using a combination of novel nano-array structured support, precise control of ultrafine active Pt particles, and an addition of H 2 as a promoter into the exhausts. Highly stable mesoporous rutile TiO 2 nano-array was uniformly grown on three-dimensional (3-D) cordierite honeycomb monoliths using a solvothermal synthesis. Atomic layer deposition was employed for precise dispersion of ultrafine Pt particles (0.95 ± 0.24 nm) on TiO 2 nano-array with a Pt loading of 1.1 g/ft 3. Despite low Pt loading, the Pt/TiO 2 nano-array catalyst shows impressivemore » low-temperature oxidation reactivity, with the conversion of CO and total hydrocarbon (THC) reaching 50% at 224 and 285 °C, respectively, in the clean diesel combustion (CDC) simulated exhaust conditions. The excellent activity is attributed to the unique nano-array structure that promotes gas-solid interaction and ultra-small Pt particle dispersion that increase surface Pt atoms. We also demonstrate that addition of more H 2 into the exhaust can lower light-off temperature for CO and THC by up to ~60 °C and ~30 °C, respectively.« less

  19. Optimization of mechanical performance of oxidative nano-particle electrode nitrile butadiene rubber conducting polymer actuator.

    PubMed

    Kim, Baek-Chul; Park, S J; Cho, M S; Lee, Y; Nam, J D; Choi, H R; Koo, J C

    2009-12-01

    Present work delivers a systematical evaluation of actuation efficiency of a nano-particle electrode conducting polymer actuator fabricated based on Nitrile Butadiene Rubber (NBR). Attempts are made for maximizing mechanical functionality of the nano-particle electrode conducting polymer actuator that can be driven in the air. As the conducting polymer polypyrrole of the actuator is to be fabricated through a chemical oxidation polymerization process that may impose certain limitations on both electrical and mechanical functionality of the actuator, a coordinated study for optimization process of the actuator is necessary for maximizing its performance. In this article actuation behaviors of the nano-particle electrode polypyrrole conducting polymer is studied and an optimization process for the mechanical performance maximization is performed.

  20. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1975-01-01

    The SAP technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of the alloy Ni-17Cr-5Al-0.2 Y. SAP-NiCrAl was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. A variety of annealing treatments were applied after working to determine the recrystallization response. NiCrAlY, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl of this study exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl as has been reported for other oxide dispersion strengthened alloys. In contrast, unoxidized NiCrAlY exhibited only primary recrystallization.

  1. Nano-crystalline porous tin oxide film for carbon monoxide sensing

    NASA Technical Reports Server (NTRS)

    Liu, Chung-Chiun (Inventor); Savinell, Robert F. (Inventor); Jin, Zhihong (Inventor)

    2000-01-01

    A tin oxide sol is deposited on platinum electrodes (12) of a sensor (10). The sol is calcined at a temperature of 500 to 800.degree. C. to produce a thin film of tin oxide with a thickness of about 150 nm to 2 .mu. and having a nano-crystalline structure with good stability. The sensor rapidly detects reducing gases, such as carbon monoxide, or hydrocarbons and organic vapors. Sensors using films calcined at around 700.degree. C. have high carbon monoxide selectivity with a response time of around 4 minutes and a recovery time of 1 minute, and therefore provide good detection systems for detection of trace amounts of pollutants such as toxic and flammable gases in homes, industrial settings, and hospitals.

  2. Selective Aerobic Oxidation of Alcohols over Atomically-Dispersed Non-Precious Metal Catalysts

    DOE PAGES

    Xie, Jiahan; Yin, Kehua; Serov, Alexey; ...

    2016-12-15

    Catalytic oxidation of alcohols often requires the presence of expensive transition metals. We show that earth-abundant Fe atoms dispersed throughout a nitrogen-containing carbon matrix catalyze the oxidation of benzyl alcohol and 5-hydroxymethylfurfural by O 2 in the aqueous phase. Furthermore, the activity of the catalyst can be regenerated by a mild treatment in H 2. An observed kinetic isotope effect indicates that β-H elimination from the alcohol is the kinetically relevant step in the mechanism, which can be accelerated by substituting Fe with Cu. Dispersed Cr, Co, and Ni also convert alcohols, demonstrating the general utility of metal–nitrogen–carbon materials formore » alcohol oxidation catalysis. Oxidation of aliphatic alcohols is substantially slower than that of aromatic alcohols, but adding 2,2,6,6-tetramethyl-1-piperidinyloxy as a co-catalyst with Fe can significantly improve the reaction rate.« less

  3. Specular spin-valve films with an FeCo nano-oxide layer by ion-assisted oxidation

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Hideaki; Koi, Katsuhiko; Tomita, Hiroshi; Fuke, Hiromi Niu; Iwasaki, Hitoshi; Sahashi, Masashi

    2002-05-01

    We compared the specular spin-valve films with an Fe50Co50 nano-oxide layer (NOL) and a Co90Fe10 NOL in a pinned layer, prepared by natural oxidation (NO) and ion-assisted oxidation (IAO). For the IAO, an Ar-ion beam was used for the energy-assist effect during the oxidation, resulting in thermally stable NOL formation. With small oxygen exposures during the oxidation for the Fe50Co50 NOL by IAO, good ferromagnetic coupling through the NOL and high specularity at the NOL interface were concurrently obtained. Moreover, twisted coupling through the NOL was observed for the Fe50Co50 NOL by IAO for higher oxygen exposures. On the other hand, the NO did not cause large magnetoresistance (MR) enhancement for either the Co90Fe10 or Fe50Co50 NOLs, and the Co90Fe10 NOL by IAO caused weak magnetic coupling through the NOL, resulting in a small MR ratio. The Fe50Co50 NOL for small oxygen exposures is a good candidate for a final specular spin-valve film head for 100-Giga-bit per square inch recording.

  4. Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: an in vitro comparative study.

    PubMed

    Singh, P; Nanda, A

    2014-06-01

    A systematic and detailed study has been designed and conducted, taking into account some of the proposed benefits such as increased efficiency, transparency, unique texture, protection of active ingredient and higher consumer compliance of cosmetics containing nano-sized metal oxides. This study also presents an in vitro method to determine sun protection factor of the investigational sunscreen cream samples containing zinc oxide and titanium dioxide with a varied range of particle size. Finally, a comparative study has been conducted between metal oxide particles, conventional as well as nanoparticles. All the skin cosmetics formulated were thermally stable with a pH ranging from 7.9 to 8.2. Moreover, the fatty acid substance content and residue were found to be analogous to the standard values in each skin cosmetic. The skin cosmetics containing the titanium or zinc oxide nanoparticles were found to have improved spreadability as compared to skin cosmetics containing conventional titanium or zinc oxide particles, respectively. All skin cosmetics were found to have uniform distribution of the particles. The sunscreen creams containing zinc oxide nanoparticles and titanium dioxide nanoparticles were found to have higher in vitro sun protection factor (SPF of 3.65 for ZnO nanoparticles and 4.93 for TiO2 nanoparticles) as compared to that of sunscreen creams containing conventional zinc oxide particles (SPF = 2.90) and conventional titanium dioxide (SPF = 1.29), clearly indicating the effect of reduction in particles size, from micro to nano, on the sun protection factor. Good texture, better spreadability and enhanced in vitro SPF proved the advantageous role of nanoparticles in cosmetics. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  5. Nano-magnetic particles used in biomedicine: core and coating materials.

    PubMed

    Karimi, Z; Karimi, L; Shokrollahi, H

    2013-07-01

    Magnetic nanoparticles for medical applications have been developed by many researchers. Separation, immunoassay, drug delivery, magnetic resonance imaging and hyperthermia are enhanced by the use of suitable magnetic nanoparticles and coating materials in the form of ferrofluids. Due to their low biocompatibility and low dispersion in water solutions, nanoparticles that are used for biomedical applications require surface treatment. Various kinds of coating materials including organic materials (polymers), inorganic metals (gold, platinum) or metal oxides (aluminum oxide, cobalt oxide) have been attracted during the last few years. Based on the recent advances and the importance of nanomedicine in human life, this paper attempts to give a brief summary on the different ferrite nano-magnetic particles and coatings used in nanomedicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Removal of urea from dilute streams using RVC/nano-NiO x -modified electrode.

    PubMed

    Tammam, Reham H; Touny, Ahmed H; Saleh, Mahmoud M

    2018-05-08

    Reticulated vitreous carbon (RVC), a high surface area electrode (40 cm 2 /cm 3 ), has been modified with nickel oxide nanoparticles (nano-NiO x ) and used for electrochemical oxidation of urea from alkaline solution. For the cyclic voltammetry measurements, the used dimensions are 0.8 cm × 0.8 cm × 0.3 cm. The purpose was to offer high specific surface area using a porous open network structure to accelerate the electrochemical conversion. NiO x nanoparticles have been synthesized via an electrochemical route at some experimental conditions. The morphological, structural, and electrochemical properties of the RVC/nano-NiO x are characterized by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), cyclic voltammetry (CV), and potentiostatic measurements. The fabricated electrode, RVC/nano-NiO x , demonstrates high electrocatalytic activity towards urea oxidation in an alkaline electrolyte. The onset potential of the RVC/nano-NiO x compared to that of the planar GC/NiO x is shifted to more negative value with higher specific activity. The different loadings of the NiO x have a substantial influence on the conversion of urea which has been evaluated from concentration-time curves. The urea concentration decreases with time to a limit dependent on the loading extent. Maximum conversion is obtained at 0.86 mg of NiO x per cm 3 of the RVC matrix.

  7. Manufacturing Experience for Oxide Dispersion Strengthened Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Wendy D.; Doherty, Ann L.; Henager, Charles H.

    2016-09-22

    This report documents the results of the development and the manufacturing experience gained at the Pacific Northwest National Laboratories (PNNL) while working with the oxide dispersion strengthened (ODS) materials MA 956, 14YWT, and 9YWT. The Fuel Cycle Research and Development program of the Office of Nuclear Energy has implemented a program to develop a Uranium-Molybdenum metal fuel for light water reactors. ODS materials have the potential to provide improved performance for the U-Mo concept.

  8. Role of quercetin and arginine in ameliorating nano zinc oxide-induced nephrotoxicity in rats.

    PubMed

    Faddah, Laila M; Abdel Baky, Nayira A; Al-Rasheed, Nouf M; Al-Rasheed, Nawal M; Fatani, Amal J; Atteya, Muhammad

    2012-05-02

    Nanoparticles are small-scale substances (<100 nm) with unique properties. Therefore, nanoparticles pose complex health risk implications. The objective of this study was to detect whether treatment with quercetin (Qur) and/or arginine (Arg) ameliorated nephrotoxicity induced by two different doses of nano zinc oxide (n-ZnO) particles. ZnO nanoparticles were administered orally in two doses (either 600 mg or 1 g/Kg body weight/day for 5 conscutive days) to Wister albino rats. In order to detect the protective effects of the studied antioxidants against n-ZnO induced nepherotoxicity, different biochemical parameters were investigated. Moreover, histopathological examination of kidney tissue was performed. Nano zinc oxide-induced nephrotoxicity was confirmed by the elevation in serum inflammatory markers including: tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6); and C-reactive protein (CRP). Moreover, immunoglobulin (IGg), vascular endothelium growth factor (VEGF), and nitric oxide (NO) were significantly increased in rat serum. Serum urea and creatinine levels were also significantly increased in rats intoxicated with n-ZnO particles compared with the control group. Additionally, a significant decrease in the non-enzymatic antioxidant reduced glutathione (GSH) was shown in kidney tissues and serum glucose levels were increased. These biochemical findings were supported by a histopathological examination of kidney tissues, which showed that in the animals that received a high dose of n-ZnO, numerous kidney glomeruli underwent atrophy and fragmentation. Moreover, the renal tubules showed epithelial desquamation, degeneration and necrosis. Some renal tubules showed casts in their lumina. Severe congestion was also observed in renal interstitium. These effects were dose dependent. Cotreatment of rats with Qur and/or Arg along with n-ZnO significantly improved most of the deviated tested parameters. The data show that Qur has a beneficial effect against

  9. Bacterial toxicity comparison between nano- and micro-scaled oxide particles.

    PubMed

    Jiang, Wei; Mashayekhi, Hamid; Xing, Baoshan

    2009-05-01

    Toxicity of nano-scaled aluminum, silicon, titanium and zinc oxides to bacteria (Bacillus subtilis, Escherichia coli and Pseudomonas fluorescens) was examined and compared to that of their respective bulk (micro-scaled) counterparts. All nanoparticles but titanium oxide showed higher toxicity (at 20 mg/L) than their bulk counterparts. Toxicity of released metal ions was differentiated from that of the oxide particles. ZnO was the most toxic among the three nanoparticles, causing 100% mortality to the three tested bacteria. Al(2)O(3) nanoparticles had a mortality rate of 57% to B. subtilis, 36% to E. coli, and 70% to P. fluorescens. SiO(2) nanoparticles killed 40% of B. subtilis, 58% of E. coli, and 70% of P. fluorescens. TEM images showed attachment of nanoparticles to the bacteria, suggesting that the toxicity was affected by bacterial attachment. Bacterial responses to nanoparticles were different from their bulk counterparts; hence nanoparticle toxicity mechanisms need to be studied thoroughly.

  10. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1975-01-01

    The sintered aluminum powder (SAP) technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of a nickel alloy containing, by weight, 17% Cr, 5% Al, and 0.2% Y. The SAP-NiCrAl alloy (without the ytterbium removed by oxdation) was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. Annealing treatments were applied after working to determine the recrystallization response. The NiCrAlY alloy, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl alloy exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl alloy as has been reported for other oxide dispersion strengthened alloys. In contrast, the unoxidized NiCrAlY alloy exhibited only primary recrystallization.

  11. Structural characterization of nano-oxide layers in PtMn based specular spin valves

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Chen, Lifan; Diao, Zhitao; Park, Chang-Man; Huai, Yiming

    2005-05-01

    A systematic structure characterization of nano-oxide layers (NOLs) and specular spin valves using x-ray diffraction and high-resolution transmission electron microscopy (HRTEM) has been studied. High-angle x-ray diffraction data show almost identical fcc textures for both natural and plasma NOL spin-valves. Low-angle x-ray reflectivity spectrum shows more deteriorated Kiessig fringes at high incident angles for natural oxide sample, indicating rougher interfaces in natural oxidation than in plasma oxidation. Oxygen exposure plays an important role in NOLs process. Fabricating NOLs without any crystal structure degradation is critical to obtain high MR ratio. HRTEM reveals that oxide clusters mixing with insufficiently oxidized CoFe layers prevailed in natural NOL, and the natural oxidation was inhomogeneous. In contrast, plasma NOL has a thinner, more homogeneously oxidized CoFe layers with sharp interfaces. In plasma NOLs, the structures still maintain CoFe crystal structure. The structures and magnetic correlation of the NOL specular spin valves are discussed.

  12. Separating nano graphene oxide from the residual strong-acid filtrate of the modified Hummers method with alkaline solution

    NASA Astrophysics Data System (ADS)

    Hu, Xuebing; Yu, Yun; Wang, Yongqing; Zhou, Jianer; Song, Lixin

    2015-02-01

    In the modified Hummers method for preparing graphene oxide, the yellow slurry can be obtained. After filtering through a quantitative filter paper, the strong-acid filtrate containing the unprecipitated nano graphene oxide was gained. The corresponding filtrate was added gradually with an alkaline (NaOH or KOH) solution at room temperature. The unprecipitated nano graphene oxide could undergo fast aggregation when the pH value of the filtrate was about 1.7 and formed the stable floccules. X-ray diffraction analysis shows the dominant peak of the floccules is about 11°, which accords to the peak of graphene oxide. Spectra of X-ray photoelectron spectroscopy confirm the presence in the floccules of an abundance of oxygen functional groups and the purified graphene oxide floccules can be obtained. Atomic force microscopy measurement shows the graphene oxide floccules consists of sheet-like objects, mostly containing only a few layers (about 5 layers). Zeta potential analysis demonstrates the surface charge of the graphene oxide is pH-sensitive and its isoelectric point is ∼1.7. The flocculation mechanism of graphene oxide ascribes to the acid-base interaction with the surface functional groups of the carbon layers.

  13. Thermal conductivity enhancement of nano-silver particles dispersed ethylene glycol based nanofluids

    NASA Astrophysics Data System (ADS)

    Khamliche, Touria; Khamlich, Saleh; Doyle, Terry B.; Makinde, Daniel; Maaza, Malik

    2018-03-01

    This contribution reports on the thermal conductivity enhancement of nano-silver particles (nAgPs) based nanofluids with various nAgPs’ shapes in view of their potential application in concentrated solar power systems. More accurately, the thermal conductivity behaviour of suspensions of nAgPs dispersed ethylene glycol (nAgPs:EG), prepared by a simple and cost effective chemical synthesis method, is compared with a theoretical prediction. The effect of aging time on the shape of the dispersed nAgPs was clearly observed by the structural, optical and morphological analysis. Spherically shaped and Ag nanowires (AgNWs) with high yields were observed when the nAgPs was aged for 1 and 5 h, respectively. The observed AgNWs showed high aspect ratio (≥200) when EG and polyvinylpyrrolidone (PVP) were used as reductant and structure-directing agents. The thermal conductivity measurements on nAgPs:EG nanofuids with different volume fractions of nAgPs were conducted in a temperature range 25 < T < 50 °C using a guarded hot plate (GHP) method. The thermal conductivity manifested a generally monotonic increase with temperature and an approximately linear relationship with the volume fraction of the nAgPs. Particularly, an enhancement of up to 23% was observed when the nanofluid was aged for 5 h and AgNWs were dominant.

  14. Positive effects of bio-nano Pd (0) toward direct electron transfer in Pseudomona putida and phenol biodegradation.

    PubMed

    Niu, Zhuyu; Jia, Yating; Chen, Yuancai; Hu, Yongyou; Chen, Junfeng; Lv, Yuancai

    2018-06-08

    This study constructed a biological-inorganic hybrid system including Pseudomonas putida (P. putida) and bioreduced Pd (0) nanoparticles (NPs), and inspected the influence of bio-nano Pd (0) on the direct electron transfer and phenol biodegradation. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDX) showed that bio-nano Pd (0) (~10 nm) were evenly dispersed on the surface and in the periplasm of P. putida. With the incorporation of bio-nano Pd (0), the redox currents of bacteria in the cyclic voltammetry (CV) became higher and the oxidation current increased as the addition of lactate, while the highest increase rates of two electron transfer system (ETS) rates were 63.97% and 33.79%, respectively. These results indicated that bio-nano Pd (0) could directly promote the electron transfer of P. putida. In phenol biodegradation process, P. putida-Pd (0)- 2 showed the highest k (0.2992 h -1 ), μ m (0.035 h -1 ) and K i (714.29 mg/L) and the lowest apparent K s (76.39 mg/L). The results of kinetic analysis indicated that bio-nano Pd (0) markedly enhanced the biocatalytic efficiency, substrate affinity and the growth of cells compared to native P. putida. The positive effects of bio-nano Pd (0) to the electron transfer of P. putida would promote the biodegradation of phenol. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Artesunate-modified nano-graphene oxide for chemo-photothermal cancer therapy

    PubMed Central

    Pang, Yilin; Mai, Zihao; Wang, Bin; Wang, Lu; Wu, Liping; Wang, Xiaoping; Chen, Tongsheng

    2017-01-01

    Poor water-solubility of artesunate (ARS) hampers its clinical application. We here covalently linked ARS to PEGylated nanographene oxide (nGO-PEG) to obtain ARS-modified nGO-PEG (nGO-PEG-ARS) with excellent photothermal effect and dispersibility in physiological environment. nGO-PEG-ARS induced reactive oxygen species (ROS) and peroxynitrite (ONOO─) generations. Although nGO-PEG with near-infrared (NIR) irradiation did not induce cytotoxicity, the photothermal effect of nGO-PEG under NIR irradiation enhanced not only cell uptake but also ONOO─ generation of nGO-PEG-ARS, resulting in the synergistic chemo-photothermal effect of nGO-PEG-ARS in killing HepG2 cells. Pretreatment with Fe(III) 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato chloride (FeTTPS, a ONOO─ scavenger) instead of antioxidant N-Acetyle-Cysteine (NAC, an ROS scavenger) significantly blocked the cytotoxicity of nGO-PEG-ARS with or without NIR irradiation, demonstrating that ONOO─ instead of ROS dominated the synergistic chemo-photothermal anti-cancer action of nGO-PEG-ARS. nGO-PEG-ARS with NIR irradiation resulted in a complete tumor cure within 15 days earlier than other treatment groups, and did not induce apparent histological lesion for the mice treated with nGO-PEG-ARS with or without NIR irradiation for 30 days, further proving the synergistic chemo-photothermal anti-cancer effect of nGO-PEG-ARS. Collectively, nGO-PEG-ARS is a versatile nano-platform for multi-modal synergistic cancer therapy. PMID:29212190

  16. Characteristics of phase-change materials containing oxide nano-additives for thermal storage.

    PubMed

    Teng, Tun-Ping; Yu, Chao-Chieh

    2012-11-06

    In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin.

  17. Characteristics of phase-change materials containing oxide nano-additives for thermal storage

    PubMed Central

    2012-01-01

    In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin. PMID:23127224

  18. Zinc oxide nano-rods based glucose biosensor devices fabrication

    NASA Astrophysics Data System (ADS)

    Wahab, H. A.; Salama, A. A.; El Saeid, A. A.; Willander, M.; Nur, O.; Battisha, I. K.

    2018-06-01

    ZnO is distinguished multifunctional material that has wide applications in biochemical sensor devices. For extracellular measurements, Zinc oxide nano-rods will be deposited on conducting plastic substrate with annealing temperature 150 °C (ZNRP150) and silver wire with annealing temperature 250 °C (ZNRW250), for the extracellular glucose concentration determination with functionalized ZNR-coated biosensors. It was performed in phosphate buffer saline (PBS) over the range from 1 μM to 10 mM and on human blood plasma. The prepared samples crystal structure and surface morphologies were characterized by XRD and field emission scanning electron microscope FESEM respectively.

  19. Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Films

    PubMed Central

    Loisel, Loïc; Florea, Ileana; Cojocaru, Costel-Sorin; Tay, Beng Kang; Lebental, Bérengère

    2016-01-01

    Nano and femtosecond laser writing are becoming very popular techniques for patterning carbon-based materials, as they are single-step processes enabling the drawing of complex shapes without photoresist. However, pulsed laser writing requires costly laser sources and is known to cause damages to the surrounding material. By comparison, continuous-wave lasers are cheap, stable and provide energy at a more moderate rate. Here, we show that a continuous-wave laser may be used to pattern vertical nano-crystalline graphite thin films with very few macroscale defects. Moreover, a spatially resolved study of the impact of the annealing to the crystalline structure and to the oxygen ingress in the film is provided: amorphization, matter removal and high oxygen content at the center of the beam; sp2 clustering and low oxygen content at its periphery. These data strongly suggest that amorphization and matter removal are controlled by carbon oxidation. The simultaneous occurrence of oxidation and amorphization results in a unique evolution of the Raman spectra as a function of annealing time, with a decrease of the I(D)/I(G) values but an upshift of the G peak frequency. PMID:27194181

  20. Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Films

    NASA Astrophysics Data System (ADS)

    Loisel, Loïc; Florea, Ileana; Cojocaru, Costel-Sorin; Tay, Beng Kang; Lebental, Bérengère

    2016-05-01

    Nano and femtosecond laser writing are becoming very popular techniques for patterning carbon-based materials, as they are single-step processes enabling the drawing of complex shapes without photoresist. However, pulsed laser writing requires costly laser sources and is known to cause damages to the surrounding material. By comparison, continuous-wave lasers are cheap, stable and provide energy at a more moderate rate. Here, we show that a continuous-wave laser may be used to pattern vertical nano-crystalline graphite thin films with very few macroscale defects. Moreover, a spatially resolved study of the impact of the annealing to the crystalline structure and to the oxygen ingress in the film is provided: amorphization, matter removal and high oxygen content at the center of the beam; sp2 clustering and low oxygen content at its periphery. These data strongly suggest that amorphization and matter removal are controlled by carbon oxidation. The simultaneous occurrence of oxidation and amorphization results in a unique evolution of the Raman spectra as a function of annealing time, with a decrease of the I(D)/I(G) values but an upshift of the G peak frequency.

  1. Oxidative stress, cytoxicity, and cell mortality induced by nano-sized lead in aqueous suspensions.

    PubMed

    Cornejo-Garrido, Hilda; Kibanova, Daria; Nieto-Camacho, Antonio; Guzmán, José; Ramírez-Apan, Teresa; Fernández-Lomelín, Pilar; Garduño, Maria Laura; Cervini-Silva, Javiera

    2011-09-01

    This paper reports on the effect of aqueous and nano-particulated Pb on oxidative stress (lipid peroxidation), cytoxicity, and cell mortality. As determined by the Thiobarbituric Acid Reactive Substances (TBARS) method, only 6h after incubation aqueous suspensions bearing nano-sized PbO(2), soluble Pb(II), and brain-homogenate only suspensions, were determined to contain as much as ca. 7, 5, and 1 nmol TBARS mg protein(-1), respectively. Exposure of human cells (central nervous system, prostate, leukemia, colon, breast, lung cells) to nano-PbO(2) led to cell-growth inhibition values (%) ca. ≤18.7%. Finally, as estimated by the Artemia salina test, cell mortality values were found to show high-survival larvae rates. Microscopic observations revealed that Pb particles were swallowed, but caused no mortality, however. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Laterally configured resistive switching device based on transition-metal nano-gap electrode on Gd oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakita, Masatoshi; Okabe, Kyota; Kimura, Takashi

    2016-01-11

    We have developed a fabrication process for a laterally configured resistive switching device based on a Gd oxide. A nano-gap electrode connected by a Gd oxide with the ideal interfaces has been created by adapting the electro-migration method in a metal/GdO{sub x} bilayer system. Bipolar set and reset operations have been clearly observed in the Pt/GdO{sub x} system similarly in the vertical device based on GdO{sub x}. Interestingly, we were able to observe a clear bipolar switching also in a ferromagnetic CoFeB nano-gap electrode with better stability compared to the Pt/GdO{sub x} device. The superior performance of the CoFeB/GdO{sub x}more » device implies the importance of the spin on the resistive switching.« less

  3. Comparison of nano-sized Mn oxides with the Mn cluster of photosystem II as catalysts for water oxidation.

    PubMed

    Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Haghighi, Behzad; Tomo, Tatsuya; Shen, Jian-Ren; Allakhverdiev, Suleyman I

    2015-02-01

    "Back to Nature" is a promising way to solve the problems that we face today, such as air pollution and shortage of energy supply based on conventional fossil fuels. A Mn cluster inside photosystem II catalyzes light-induced water-splitting leading to the generation of protons, electrons and oxygen in photosynthetic organisms, and has been considered as a good model for the synthesis of new artificial water-oxidizing catalysts. Herein, we surveyed the structural and functional details of this cluster and its surrounding environment. Then, we review the mechanistic findings concerning the cluster and compare this biological catalyst with nano-sized Mn oxides, which are among the best artificial Mn-based water-oxidizing catalysts. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. High resolution structural characterization of giant magnetoresistance structures containing a nano-oxide layer

    NASA Astrophysics Data System (ADS)

    You, C. Y.; Cerezo, A.; Clifton, P. H.; Folks, L.; Carey, M. J.; Petford-Long, A. K.

    2007-07-01

    The microstructure and chemistry of a current-perpendicular-to-plane giant magnetoresistance structure containing a nano-oxide layer (NOL) have been studied using a combination of high resolution transmission electron microscopy and three-dimensional atom probe analysis. It was found that the morphology of the NOL changes from a planar layer to discrete particles on annealing, indicating the dominance of surface energy on the morphology evolution. Direct evidence was obtained for significant Mn diffusion from the IrMn antiferromagnetic layer and partitioning to the oxide region during annealing.

  5. Nano-casted Metal Oxide Aerogels as Dual Purpose Structural Components for Space Exploration

    NASA Technical Reports Server (NTRS)

    Vassilaras, Plousia E.

    2004-01-01

    NASA missions and space exploration rely on strong, ultra lightweight materials. Such materials are needed for building up past and present space vehicles such as the Sojourner Rover (1997) or the two MERs (2003), but also for a number of components and/or systems including thermal insulators, Solar Sails, Rigid Aeroshells, and Ballutes. The purpose of my internship here at Glenn Research Center is to make dual purpose materials; materials that in addition to being lightweight have electronic, photophysical and magnetic properties and, therefore, act as electronic components and sensors as well as structural components. One type of ultra lightweight material of great interest is aerogels, which have densities ranging from 0.003 g/cc to 0.8 g/cc . However, aerogels are extremely fragile and, as a result, have limited practical applications. Recently, Glenn Research Center has developed a process of nano-casting polymers onto the inorganic network of silica-based aerogels increasing the strength 300 fold while only increasing the density 3 fold. By combining the process of nano-casting polymers with inorganic oxide networks other than silica, we are actively pursuing lightweight dual purpose materials. To date, thirty different inorganic oxide aerogels have been prepared using either standard sol-gel chemistry or a non-alkoxide method involving metal chloride precursors and an epoxide; epichlorohydrin, propylene oxide or trimethylene oxide, as proton scavengers. More importantly, preliminary investigations show that the residual surface hydroxyl groups on each of these inorganic oxide aerogels can be successfully crosslinked with urethane. In addition to characterizing physical and mechanical properties such as density, strength and flexibility, each of these metal oxide aerogels are being characterized for thermal and electronic conductivity and magnetic and optical properties.

  6. Oxidative degradation of nalidixic acid by nano-magnetite via Fe2+/O2-mediated reactions.

    PubMed

    Ardo, Sandy G; Nélieu, Sylvie; Ona-Nguema, Georges; Delarue, Ghislaine; Brest, Jessica; Pironin, Elsa; Morin, Guillaume

    2015-04-07

    Organic pollution has become a critical issue worldwide due to the increasing input and persistence of organic compounds in the environment. Iron minerals are potentially able to degrade efficiently organic pollutants sorbed to their surfaces via oxidative or reductive transformation processes. Here, we explored the oxidative capacity of nano-magnetite (Fe3O4) having ∼ 12 nm particle size, to promote heterogeneous Fenton-like reactions for the removal of nalidixic acid (NAL), a recalcitrant quinolone antibacterial agent. Results show that NAL was adsorbed at the surface of magnetite and was efficiently degraded under oxic conditions. Nearly 60% of this organic contaminant was eliminated after 30 min exposure to air bubbling in solution in the presence of an excess of nano-magnetite. X-ray diffraction (XRD) and Fe K-edge X-ray absorption spectroscopy (XANES and EXAFS) showed a partial oxidation of magnetite to maghemite during the reaction, and four byproducts of NAL were identified by liquid chromatography-mass spectroscopy (UHPLC-MS/MS). We also provide evidence that hydroxyl radicals (HO(•)) were involved in the oxidative degradation of NAL, as indicated by the quenching of the degradation reaction in the presence of ethanol. This study points out the promising potentialities of mixed valence iron oxides for the treatment of soils and wastewater contaminated by organic pollutants.

  7. Co-precipitation synthesis of nano-composites consists of zinc and tin oxides coatings on glass with enhanced photocatalytic activity on degradation of Reactive Blue 160 KE2B.

    PubMed

    Habibi, Mohammad Hossein; Mardani, Maryam

    2015-02-25

    Nano-composite containing zinc oxide-tin oxide was obtained by a facile co-precipitation route using tin chloride tetrahydrate and zinc chloride as precursors and coated on glass by Doctor Blade deposition. The crystalline structure and morphology of composites were evaluated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The XRD results showed peaks relative to zinc oxide with hexagonal wurtzite structure and tin oxide with tetragonal structure. FESEM observations showed that the nano-composite consisted of aggregates of particles with an average particle size of 18 nm. The photocatalytic activity of the pure SnO2, pure ZnO, ZnSnO3-Zn2SnO4 and ZnO-SnO2 nano-structure thin films was examined using the degradation of a textile dye Reactive Blue 160 (KE2B). ZnO-SnO2 nano-composite showed enhanced photo-catalytic activity than the pure zinc oxide and tin oxide. The enhanced photo-catalytic activity of the nano-composite was ascribed to an improved charge separation of the photo-generated electron-hole pairs. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Preparation and characterization of new photoluminescent nano-powder based on Eu3+:La2Ti2O7 and dispersed into silica matrix for latent fingerprint detection

    NASA Astrophysics Data System (ADS)

    Saif, M.; Alsayed, N.; Mbarek, A.; El-Kemary, M.; Abdel-Mottaleb, M. S. A.

    2016-12-01

    Pure lanthanum titanate doped with europium metal ions (La2Ti2O7:Eu3+) and dispersed in silica matrix phosphor powder was prepared by sol-gel process followed by thermal treatment. The prepared nanophosphors were characterized by powder X-ray Diffraction (XRD), Fourier Transform Infrared (FT-IR), Transmission Electron Microscope (TEM), Energy Dispersive Spectroscopy (EDX), and Photoluminescence Spectroscopy (PL). The effects of silica, thermal treatment, Eu3+ ion, and surfactant (CTAB) concentrations on the crystal, morphology, and photoluminescence properties were investigated. The present work found that dispersion of La2Ti2O7:Eu3+ into silica matrix significantly altered the morphology of La2Ti2O7:Eu3+ from high crystalline micro-plate like shape into amorphous aggregated Nano-spherical shape. The high separated spherical shape with intense red PL emission and long lifetime was obtained from 10 mol% Eu3+:La2Ti2O7:Eu3+, dispersed into silica matrix, and prepared in the presence of CTAB. The high PL Nano-phosphor has been successfully used in developing latent fingerprint from various forensic relevant materials.

  9. Minimum ignition temperature of nano and micro Ti powder clouds in the presence of inert nano TiO2 powder.

    PubMed

    Yuan, Chunmiao; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-30

    Minimum ignition temperature (MIT) of micro Ti powder increased gradually with increases in nano-sized TiO2 employed as an inertant. Solid TiO2 inertant significantly reduced ignition hazard of micro Ti powder in contact with hot surfaces. The MIT of nano Ti powder remained low (583 K), however, even with 90% TiO2. The MIT of micro Ti powder, when mixed with nano Ti powder at concentrations as low as 10%, decreased so dramatically that its application as a solid fuel may be possible. A simple MIT model was proposed for aggregate particle size estimation and better understanding of the inerting effect of nano TiO2 on MIT. Estimated particle size was 1.46-1.51 μm larger than that in the 20-L sphere due to poor dispersion in the BAM oven. Calculated MITs were lower than corresponding empirically determined values for micro Ti powder because nano-sized TiO2 coated the micro Ti powder, thereby decreasing its reaction kinetics. In the case of nano Ti powder, nano-sized TiO2 facilitated dispersion of nano Ti powder which resulted in a calculated MIT that was greater than the experimentally determined value. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Fabrication of Oxide Dispersion Strengthened Bond Coats with Low Al2O3 Content

    NASA Astrophysics Data System (ADS)

    Bergholz, Jan; Pint, Bruce A.; Unocic, Kinga A.; Vaßen, Robert

    2017-06-01

    Nanoscale oxide dispersions have long been used to increase the oxidation and wear resistance of alloys used as bond coatings in thermal barrier coatings. Their manufacturing via mechanical alloying is often accompanied by difficulties regarding their particle size, homogeneous distribution of the oxide dispersions inside the powder, involving considerable costs, due to cold welding of the powder during milling. A significant improvement in this process can be achieved by the use of process control agent (PCA) to achieve the critical balance between cold welding and fracturing, thereby enhancing the process efficiency. In this investigation, the influence of the organic additive stearic acid on the manufacturing process of Al2O3-doped CoNiCrAlY powder was investigated. Powders were fabricated via mechanical alloying at different milling times and PCA concentrations. The results showed a decrease in particle size, without hindering the homogeneous incorporation of the oxide dispersions. Two powders manufactured with 0.5 and 1.0 wt.% PCA were deposited by high velocity oxygen fuel (HVOF) spraying. Results showed that a higher content of elongated particles in the powder with the higher PCA content led to increased surface roughness, porosity and decreased coating thickness, with areas without embedded oxide particles.

  11. High gas velocity oxidation and hot corrosion testing of oxide dispersion-strengthened nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1975-01-01

    Several oxide dispersion strengthened (ODS) nickel-base alloys were tested in high velocity gases for cyclic oxidation resistance at temperatures to 1200 C and times to 500 hours and for hot corrosion resistance at 900 C for 200 hours. Nickel-chromium-aluminum ODS alloys were found to have superior resistance to oxidation and hot corrosion when compared to bare and coated nickel-chromium ODS alloys. The best of the alloys tested had compositions of nickel - 15.5 to 16 weight percent chromium with aluminum weight percents between 4.5 and 5.0. All of the nickel-chromium-aluminum ODS materials experienced small weight losses (less than 16 mg/sq cm).

  12. Assisted deposition of nano-hydroxyapatite onto exfoliated carbon nanotube oxide scaffolds.

    PubMed

    Zanin, H; Rosa, C M R; Eliaz, N; May, P W; Marciano, F R; Lobo, A O

    2015-06-14

    Electrodeposited nano-hydroxyapatite (nHAp) is more similar to biological apatite in terms of microstructure and dimension than apatites prepared by other processes. Reinforcement with carbon nanotubes (CNTs) enhances its mechanical properties and increases adhesion of osteoblasts. Here, we carefully studied nHAp deposited onto vertically aligned multi-walled CNT (VAMWCNT) scaffolds by electrodeposition and soaking in a simulated body fluid (SBF). VAMWCNTs are porous biocompatible scaffolds with nanometric porosity and exceptional mechanical and chemical properties. The VAMWCNT films were prepared on a Ti substrate by a microwave plasma chemical vapour deposition method, and then oxidized and exfoliated by oxygen plasma etching (OPE) to produce graphene oxide (GO) at the VAMWCNT tips. The attachment of oxygen functional groups was found to be crucial for nHAp nucleation during electrodeposition. A thin layer of plate-like and needle-like nHAp with high crystallinity was formed without any need for thermal treatment. This composite (henceforth referred to as nHAp-VAMWCNT-GO) served as the scaffold for in vitro biomineralization when soaked in the SBF, resulting in the formation of both carbonate-rich and carbonate-poor globular-like nHAp. Different steps in the deposition of biological apatite onto VAMWCNT-GO and during the short-term biomineralization process were analysed. Due to their unique structure and properties, such nano-bio-composites may become useful in accelerating in vivo bone regeneration processes.

  13. Assisted deposition of nano-hydroxyapatite onto exfoliated carbon nanotube oxide scaffolds

    NASA Astrophysics Data System (ADS)

    Zanin, H.; Rosa, C. M. R.; Eliaz, N.; May, P. W.; Marciano, F. R.; Lobo, A. O.

    2015-05-01

    Electrodeposited nano-hydroxyapatite (nHAp) is more similar to biological apatite in terms of microstructure and dimension than apatites prepared by other processes. Reinforcement with carbon nanotubes (CNTs) enhances its mechanical properties and increases adhesion of osteoblasts. Here, we carefully studied nHAp deposited onto vertically aligned multi-walled CNT (VAMWCNT) scaffolds by electrodeposition and soaking in a simulated body fluid (SBF). VAMWCNTs are porous biocompatible scaffolds with nanometric porosity and exceptional mechanical and chemical properties. The VAMWCNT films were prepared on a Ti substrate by a microwave plasma chemical vapour deposition method, and then oxidized and exfoliated by oxygen plasma etching (OPE) to produce graphene oxide (GO) at the VAMWCNT tips. The attachment of oxygen functional groups was found to be crucial for nHAp nucleation during electrodeposition. A thin layer of plate-like and needle-like nHAp with high crystallinity was formed without any need for thermal treatment. This composite (henceforth referred to as nHAp-VAMWCNT-GO) served as the scaffold for in vitro biomineralization when soaked in the SBF, resulting in the formation of both carbonate-rich and carbonate-poor globular-like nHAp. Different steps in the deposition of biological apatite onto VAMWCNT-GO and during the short-term biomineralization process were analysed. Due to their unique structure and properties, such nano-bio-composites may become useful in accelerating in vivo bone regeneration processes.

  14. Effects of dispersible MoS2 nanosheets and Nano-silver coexistence on the metabolome of yeast.

    PubMed

    Yang, Qi; Zhang, Lei; Ben, Ailing; Wu, Na; Yi, Yanliang; Jiang, Ling; Huang, He; Yu, Yadong

    2018-05-01

    As a new rising star in the post-graphene two-dimensional materials (2DMs), molybdenum disulfide (MoS 2 ) attracts increasing attentions and is widely applied. However, the chemical and toxicological interaction between MoS 2 and other co-contaminants is still poorly understood. Nano-silver (N-Ag) is the most commonly used nanomaterial in commercial products and distributed widely in the environment. Herein, we investigated the effects of chitosan functionalized MoS 2 (CS-MoS 2 ) nanosheets, a water-dispersible form of MoS 2 , on the microbial toxicity of N-Ag. We found that the incorporation of CS-MoS 2 nanosheets attenuated the oxidative stress induced by N-Ag on yeast cells, while caused more membrane stress. In addition, the inhibition of N-Ag on the metabolic activities of yeast cells could be attenuated by CS-MoS 2 nanosheets as well. The coexistence of N-Ag and CS-MoS 2 nanosheets mainly perturbed the amino acid-related metabolic pathways in yeast cells, and phosphoric acid was a potential nanotoxicity biomarker. We further found that CS-MoS 2 nanosheets dramatically absorbed the Ag ion released from N-Ag, which might be responsible for its attenuation effect on the microbial toxicity of N-Ag. Our findings provide more new insights for the ecotoxicity evaluation of MoS 2 and other 2DMs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The creep properties of dispersion-strengthened silver-gallium oxide alloys.

    NASA Technical Reports Server (NTRS)

    Lenel, F. V.; Ansell, G. S.; Nazmy, M. Y.

    1971-01-01

    Steady-state creep rates were measured for two preparations of a dispersion-strengthened alloy of silver with 1 mol % gallium oxide. One preparation, an internally-oxidized type, had a grain size 40 times that of the other preparation, which was a consolidated-powder type of alloy. The temperature and stress dependence of the steady-state creep rate differs widely for the two alloys and must be attributed to the difference in grain size. The activation energy for steady-state creep of the internally-oxidized coarse grained material is near that for self-diffusion of silver, which strongly indicates a creep process controlled by dislocation climb.

  16. In-Situ Observation of Nano-Oxide Formation in Magnetic Thin Films

    NASA Astrophysics Data System (ADS)

    McCallum, Andrew; Russek, Stephen

    2004-03-01

    Exposure of a metal surface in a spin valve structure to oxygen creates a nano-oxide layer, or NOL, on that surface. Inclusion of NOLs into spin valve structures has been shown by many researchers to lower the resistance and increase the giant magnetoresistance effect. Four point in-situ conductance measurements were made during the deposition and oxidation of Co layers. These measurements show an initial decrease in conductance followed by an increase in conductance, due to a specularity increase of at least 0.10. RHEED measurements taken simultaneously with conductance measurements show the formation an amorphous oxide while the specularity increases. With further exposure of oxygen to the surface a CoO structure with a (111) texture forms. Magnetoconductance measurements during the oxidation of the free layer of bottom pinned spin valves show increases in the GMR of the spin valves. Estimates of the change in specularity and Co layer thickness were determined from the change in conductance and the change in magnetoconductance. Also determined from the magnetoconductance measurements was an increase in the coercivity of the free layer with oxidation. Adding Co onto the oxide had a strong effect on the coercivity and coupling between free and pinned layers.

  17. Nano-graphene oxide and vitamin D delivery

    NASA Astrophysics Data System (ADS)

    Mahdavi, Reza; Solati-Hashjin, Mehran; Omidi, Meisam; Khojasteh, Arash; Fayyazbakhsh, Fateme

    2018-01-01

    One of the most interesting and recent insights into biomimetic scaffold nano-biomaterial is smart scaffolding with targeted drug delivery ability. In recent decades, the use of graphene-based materials, such as nano-graphene oxide (nGO), as a drug carrier with amphiphilic properties, has attracted considerable attention of scientists and researchers in this field. In addition, one of the important global problems is increased vitamin D deficiency, particularly in pregnant and postmenopausal women. Therefore, in this work, by considering hydrophobic properties of vitamin D, we attempted to examine its loading and release both in the presence of surfactant and surfactant-free nGO-aqueous solution. At first, nGO powder was synthesized by the modified Hummer's method. After the preparation of vitamin D and Tween 80 (TW) solution, they were added to nGO aqueous solution. Simultaneously, the next vitamin D and nGO aqueous solution was prepared in a surfactant-free mode. In order to evaluate the loading content, both solutions were centrifuged, and their supernatant was analyzed by UV-Visible spectroscopy. Additionally, FTIR spectroscopy was employed to determine the TW 80 effects on vitamin D and nGO. The results have shown that vitamin D loading in surfactant-free solution was approximately 0% while in the presence of TW 80 it was 75.37% ± 4.12. Therefore, the combination of vitamin D, TW 80, and nGO can be a suitable candidate for carrying hydrophobic drugs in smart scaffolding, especially in bone tissue engineering.

  18. Tribological behavior of Al-WC nano-composites fabricated by ultrasonic cavitation assisted stir-cast method

    NASA Astrophysics Data System (ADS)

    Pal, Arpan; Poria, Suswagata; Sutradhar, Goutam; Sahoo, Prasanta

    2018-03-01

    In the present study, the effects of WC nano-particles content on the microstructure, hardness, wear, and friction behavior of aluminum matrix composites are investigated. Al-WC nano composites with varying wt% of WC (0, 1, 1.5, and 2) are fabricated using ultrasonic cavitation assisted stir-cast method. The microstructure of the nano-composite samples is analyzed using optical microscopy and scanning electron microscopy. Elemental composition is determined by energy dispersive x-ray analysis. Vicker’s microhardness test is performed in different locations on the composite sample surface with a load of 50 gf and 10s dwell time. Wear and friction of the composites under dry sliding is studied using a pin-on-disk tribotester for varying normal load (10–40 N) and sliding speed (0.1–0.4 m/s). Uniform distribution of nano-WC is observed over composite surface without noticeable clustering. Reinforcement of nano-WC particles improves wear resistance and frictional behavior of the composite. Hardness is seen to increase with increase in wt% of nano-particles. Wear behavior of composites depends on formation of layers over the surface mixed with oxidized debris and counter-face particles. Wear mechanism changes from adhesion to abrasion with increase in wt% of hard nano particles.

  19. Functionalized nano-graphene oxide particles for targeted fluorescence imaging and photothermy of glioma U251 cells.

    PubMed

    Li, Zhong-Jun; Li, Chao; Zheng, Mei-Guang; Pan, Jia-Dong; Zhang, Li-Ming; Deng, Yue-Fei

    2015-01-01

    This study was to prepare the functionalized nano-graphene oxide (nano-GO) particles, and observe targeted fluorescence imaging and photothermy of U251 glioma cells under near infrared (NIR) exposure. The functionalized nano-GO-Tf-FITC particles were prepared and then were incubated with U251 glioma cells. Estimation of CCK8 cell activity was adopted for measurement of cytotoxicity. The effect of fluorescein imaging was detected by fluorescence microscope with anti-CD71-FITC as a control. Finally, we detected the killing efficacy with flow cytometry after an 808 nm NIR exposure. Both nano-GO-Tf-FITC group and CD71-FITC group exhibited green-yellow fluorescence, while the control group without the target molecule nano-GO-FITC was negative. The nano-GO-Tf-FITC was incubated with U251 cells at 0.1 mg/ml, 1.0 mg/ml, 3.0 mg/ml and 5.0 mg/ml. After 48 h of incubation, the absorbance was 0.747 ± 0.031, 0.732 ± 0.043, 0.698 ± 0.051 and 0.682 ± 0.039, while the absorbance of control group is 0.759 ± 0.052. There is no significant difference between the nano-GO-FITC groups and control group. In addition, the apoptosis and death index of nano-GO-Tf-FITC group was significantly higher than that of nano-GO-FITC and blank control group (P < 0.05). The nano-GO-Tf-FITC particles with good biological compatibility and low cytotoxicity are successfully made, which have an observed effect of target imaging and photothermal therapy on glioma U251 cells.

  20. Mass production of polymer nano-wires filled with metal nano-particles.

    PubMed

    Lomadze, Nino; Kopyshev, Alexey; Bargheer, Matias; Wollgarten, Markus; Santer, Svetlana

    2017-08-17

    Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

  1. The effect of metal (hydr)oxide nano-enabling on intraparticle mass transport of organic contaminants in hybrid granular activated carbon.

    PubMed

    Garcia, Jose; Markovski, Jasmina; McKay Gifford, J; Apul, Onur; Hristovski, Kiril D

    2017-05-15

    The overarching goal of this study was to ascertain the changes in intraparticle mass transport rates for organic contaminants resulting from nano-enabled hybridization of commercially available granular activated carbon (GAC). Three different nano-enabled hybrid media were fabricated by in-situ synthesizing titanium dioxide nanoparticles inside the pores of GAC sorbent, characterized, and evaluated for removal of two model organic contaminants under realistic conditions to obtain the intraparticle mass transport (pore and surface diffusion) coefficients. The results validated the two hypotheses that: (H1) the pore diffusion rates of organic contaminants linearly decrease with decrease in cumulative pore volume caused by increase in metal (hydr)oxide nanoparticle content inside the pores of the hybrid GAC sorbent; and (H2) introduction of metal (hydr)oxide nanoparticles initially increases surface diffusivity, but additional loading causes its decrease as the increase in metal (hydr)oxide nanoparticles content continues to reduce the porosity of the GAC sorbent. Nano-enabled hybridization of commercially available GAC with metal (hydr)oxides has the potential to significantly increase the intraparticle mass transport limitations for organic contaminants. Introduction of metal (hydr)oxide nanoparticles inside the pores of a pristine sorbent causes the pore diffusion rates of organic contaminants to decrease as the cumulative pore volume is reduced. In contrast, the introduction of limited amounts of metal (hydr)oxide nanoparticles appears to facilitate the surface diffusion rates of these contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Hierarchical nano-on-micro copper with enhanced catalytic activity towards electro-oxidation of hydrazine

    NASA Astrophysics Data System (ADS)

    Yan, Xiaodong; Liu, Yuan; Scheel, Kyle R.; Li, Yong; Yu, Yunhua; Yang, Xiaoping; Peng, Zhonghua

    2018-03-01

    The electrochemical properties of catalyst materials are highly dependent on the materials structure and architecture. Herein, nano-on-micro Cu electrodes are fabricated by growing Cu microcrystals on Ni foam substrate, followed by introducing Cu nanocrystals onto the surface of the Cu microcrystals. The introduction of Cu nanocrystals onto the surface of Cu microcrystals is shown to dramatically increase the electrochemically active surface area and thus significantly enhances the catalytic activity of the catalyst electrode towards electro-oxidation of hydrazine. The onset potential (-1.04 V vs. Ag/AgCl) of the nano-on-micro Cu electrode is lower than those of the reported Cu-based catalysts under similar testing conditions, and a current density of 16 mA·cm-2, which is 2 times that of the microsized Cu electrode, is achieved at a potential of -0.95 V vs. Ag/AgCl. Moreover, the nano-on-micro Cu electrode demonstrates good long-term stability.

  3. The interfacial orientation relationship of oxide nanoparticles in a hafnium-containing oxide dispersion-strengthened austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yinbin, E-mail: miao2@illinois.edu; Mo, Kun; Cui, Bai

    2015-03-15

    This work reports comprehensive investigations on the orientation relationship of the oxide nanoparticles in a hafnium-containing austenitic oxide dispersion-strengthened 316 stainless steel. The phases of the oxide nanoparticles were determined by a combination of scanning transmission electron microscopy–electron dispersive X-ray spectroscopy, atom probe tomography and synchrotron X-ray diffraction to be complex Y–Ti–Hf–O compounds with similar crystal structures, including bixbyite Y{sub 2}O{sub 3}, fluorite Y{sub 2}O{sub 3}–HfO{sub 2} solid solution and pyrochlore (or fluorite) Y{sub 2}(Ti,Hf){sub 2−x}O{sub 7−x}. High resolution transmission electron microscopy was used to characterize the particle–matrix interfaces. Two different coherency relationships along with one axis-parallel relation between themore » oxide nanoparticles and the steel matrix were found. The size of the nanoparticles significantly influences the orientation relationship. The results provide insight into the relationship of these nanoparticles with the matrix, which has implications for interpreting material properties as well as responses to radiation. - Highlights: • The oxide nanoparticles in a hafnium-containing austenitic ODS were characterized. • The nanoparticles are Y–Hf–Ti–O enriched phases according to APT and STEM–EDS. • Two coherency and an axis-parallel orientation relationships were found by HR-TEM. • Particle size has a prominent effect on the orientation relationship (OR). • Formation mechanism of the oxide nanoparticles was discussed based on the ORs.« less

  4. Effect of nano-zinc oxide on nitrogenase activity in legumes: an interplay of concentration and exposure time

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen; Burman, Uday; Santra, P.

    2015-07-01

    Experiments were carried out to study the effect of zinc oxide nanoparticles (nano-ZnO) on nitrogenase activity in legumes. In the first experiment, nodulated roots of cluster bean, moth bean, green gram and cowpea were dipped in Hoagland solution containing 1.5 and 10 μg mL-1 of nano-ZnO for 24 h. Nitrogenase activity in cluster bean, green gram and cowpea roots increased after dipping in solution containing 1.5 μg mL-1 nano-ZnO, but decreased in roots dipped in solution containing 10 μg mL-1 nano-ZnO. However, in moth bean roots, nitrogenase activity decreased after dipping in solution containing either concentration of nano-ZnO. In the second experiment, nodulated roots of green gram were dipped in Hoagland solution containing 1, 4, 6, 8 and 10 μg mL-1 nano-ZnO for 6-30 h before estimating nitrogenase activity. Results showed that an interactive effect of nano-ZnO concentration and exposure time influenced nitrogenase activity. The possible reasons behind this effect have been discussed. A model [ A = 3.44 + 0.46 t - 0.01 t 2 - 0.002 tc 2 ( R 2 = 0.81)] involving linear and power components was developed to simulate the response of nitrogenase activity in green gram roots to the concentration and exposure time of nano-ZnO.

  5. Effect of nano oxide layer on exchange bias and GMR in Mn-Ir-Pt based spin valve

    NASA Astrophysics Data System (ADS)

    Jeon, D. M.; Lee, J. P.; Lee, D. H.; Yoon, S. Y.; Kim, Y. S.; Suh, S. J.

    2004-05-01

    We have investigated the effect of nano oxide layers (NOLs), which were fabricated by a plasma oxidation of CoFe layer on the magnetic properties and magneto-resistance (MR) in a Mn-Ir-Pt based spin valve. The adjusted NOL could result in the high MR and the strong exchange coupling field ( Hex). From a high resolution electron microscopy analysis the oxide was about 1 nm. The strong reflectivity at the interface of a free and oxide capping layer should lead to the decrease of an interlayer coupling field, which could possibly improve the Hex.

  6. Structural characterization of Co100-xFex nano-oxide layer

    NASA Astrophysics Data System (ADS)

    Endo, Hiroaki; Doi, Masaaki; Hasegawa, Naoya; Sahashi, Masashi

    2006-04-01

    For the structural characterization of a Co100-xFex nano-oxide layer (NOL), the exchange bias properties of the Co100-xFex-natural oxidized NOL in the specular spin-valve (SPSV) system were investigated. The exchange bias energy (Jex) increased monotonically with the increasing Fe content for the Co100-xFex-NOL. The enhancement of both the magnetoresistance ratio and the exchange bias field (Hex) was realized by increasing the Fe content in the Co100-xFex-NOL. It should be mentioned that Hex more than 800 Oe is obtained by the insertion of Co30Fe70-NOL, even in NOL-SPSV, which is a remarkably higher pinning field than that ever reported on IrMn-SV. This high exchange bias field is considered to be realized by the formation of an Fe-rich fcc phase at the interface of IrMn.

  7. Characterization of oxide nanoparticles in Al-free and Al-containing oxide dispersion strengthened ferritic steels.

    PubMed

    Lee, Jae Hoon; Kim, Jeoung Han

    2013-09-01

    Oxide nanoparticles in oxide dispersion strengthened (ODS) ferritic steels with and without Al have been characterized by transmission electron microscopy. It is confirmed that most of the complex oxide particles consist of Y2TiO5 for 18Cr-ODS steel and YAlO3 or YAl5O12 for 18Cr5Al-ODS steel, respectivley. The addition of 5% Al in 18Cr-ODS steel leads to the formation of larger oxide particles and the reduction in their number density. For 18Cr-ODS steel, 87% of the oxide particles are coherent. The misfit strain of the coherent particles and a few semi-coherent particles is about 0.034 and 0.056, respectively. For 18Cr5Al-ODS steel, 75% of the oxide particles are semi-coherent, of which the misfit strain is 0.091 and 0.125, respectively. These results suggest that for the Al-containing ODS steel the Al addition accelerates the formation of semi-coherent oxide particles and its larger coherent and semi-coherent particles result in the larger misfit strain between the oxide particle and alloy matrix, indicating that the coherence of oxide nanoparticles in ODS steels is size-dependent.

  8. Pinholes and Nano-oxide Specular Layers in Spin Valves

    NASA Astrophysics Data System (ADS)

    Fry, R. A.; Egelhoff, W. F., Jr.; McMichael, R. D.; Chen, P. J.; Powell, C. J.; Beach, G.; Berkowitz, A. E.

    2001-03-01

    Recently, nano-oxide layers (NOL) in giant magnetoresistance (GMR) spin valves have attracted interest as a method of achieving increased GMR associated with specular reflection at Co/oxide interfaces. The NOL must be thin enough so that strong magnetic coupling across it exists; otherwise, the films separated by NOL could switch separately. We have investigated the structure NiO/2.5 nm Co/2.5 nm Cu/2 nm Co/NOL/2 nm Co/10 nm IrMn. The bottom Co is pinned by NiO more strongly than the top Co is pinned by IrMn; thus the top Co film can be switched to observe GMR loops. With no NOL, the GMR loop obtained by switching the 4 nm top Co film is shifted 300 Oe by the exchange bias of IrMn. Using CoO as a NOL, at thickness of 1 nm there is a sudden drop from 300 Oe to <10 Oe. It appears that pinhole coupling at CoO<1 nm forces the two Co films to switch together, but at CoO 1 nm the pinholes close up and the Co films switch separately. Such observations constitute a new approach to the study of pinholes, and we use it to investigate several oxides and metal spacer layers.

  9. Small angle neutron scattering analyses and high temperature mechanical properties of nano-structured oxide dispersion strengthened steels produced via cryomilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeoung Han; Byun, Thak Sang; Shin, Eunjoo

    2015-08-17

    Three oxide dispersion-strengthened (ODS) steels are produced in order to investigate the effect of the mechanical alloying (MA) temperature on the microstructural evolution and high temperature mechanical properties. The microstructural evolution with different MA conditions is examined using small angle neutron scattering. As the MA temperature decreases, the density of the nanoclusters below 10 nm increases and their mean diameter decreases. A low temperature during MA leads to a high strength in the compression tests performed at 500 *C; however, this effect disappears in testing at 900 *C. The milling process at *70 *C exhibits excellent high fracture toughness, whichmore » is better than the benchmark material 14YWT-SM10. However, the *150 *C milling process results in significantly worse fracture toughness properties. The reasons for this strong temperature dependency are discussed.« less

  10. Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy.

    PubMed

    Sheng, Zonghai; Song, Liang; Zheng, Jiaxiang; Hu, Dehong; He, Meng; Zheng, Mingbin; Gao, Guanhui; Gong, Ping; Zhang, Pengfei; Ma, Yifan; Cai, Lintao

    2013-07-01

    Theranostic agents are attracting a great deal of attention in personalized medicine. Here, we developed a protein-based, facile method for fabrication of nanosized, reduced graphene oxide (nano-rGO) with high stability and low cytotoxicity. We constructed highly integrated photoacoustic/ultrasonic dual-modality imaging and photothermal therapy platforms, and further demonstrated that the prepared nano-rGO can be used as ready-to-use theranostic agents for both photoacoustic imaging and photothermal therapy without further surface modification. Intravenous administration of nano-rGO in tumor-bearing mice showed rapid and significant photoacoustic signal enhancement in the tumor region, indicating its excellence for passive targeting and photoacoustic imaging. Meanwhile, using a continuous-wave near-infrared laser, cancer cells in vivo were efficiently ablated, due to the photothermal effect of nano-rGO. The results suggest that the nano-rGO with protein-assisted fabrication was well suited for photoacoustic imaging and photothermal therapy of tumor, which is promising for theranostic nanomedicine. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  11. Nano-Se attenuates cyclophosphamide-induced pulmonary injury through modulation of oxidative stress and DNA damage in Swiss albino mice.

    PubMed

    Bhattacharjee, Arin; Basu, Abhishek; Biswas, Jaydip; Bhattacharya, Sudin

    2015-07-01

    Chemotherapy is an integral part of modern day treatment regimen but anticancer drugs fail to demarcate between cancerous and normal cells thereby causing severe form of systemic toxicity. Among which pulmonary toxicity is a dreadful complication developed in cancer patients upon cyclophosphamide (CP) therapy. Oxidative stress, fibrosis, and apoptosis are the major patho-mechanisms involved in CP-induced pulmonary toxicity. In the present study, we have synthesized Nano-Se, nanotechnology-based new form of elemental selenium which has significantly lower toxicity and acceptable bioavailability. In order to meet the need of effective drugs against CP-induced adverse effects, nano selenium (Nano-Se) was tested for its possible protective efficacy on CP-induced pulmonary toxicity and bone marrow toxicity. CP intoxication resulted in structural and functional lung impairment which was revealed by massive histopathological changes. Lung injury was associated with oxidative stress/lipid peroxidation as evident by increased in reactive oxygen species, nitric oxide level, and malondialdehyde (MDA) formation with decreased in level of antioxidants such as reduced glutathione, glutathione-S-transferase, glutathione peroxidase, superoxide dismutase, and catalase. Furthermore, CP at a dose of 25 mg/kg b.w. increased pulmonary DNA damage ('comet tail') and triggered DNA fragmentation and apoptosis in mouse bone marrow cells. On the other hand, Nano-Se at a dose of 2 mg Se/kg b.w., significantly inhibited CP-induced DNA damage in bronchoalveolar lavage cells, and decreased the apoptosis and percentage of DNA fragmentation in bone marrow cells and also antagonized the reduction of the activities of antioxidant enzymes and the increase level of MDA. Thus, our results suggest that Nano-Se in pre- and co-administration may serve as a promising preventive strategy against CP-induced pulmonary toxicity.

  12. Nano-Graphene Oxide for Cellular Imaging and Drug Delivery

    PubMed Central

    Sun, Xiaoming; Liu, Zhuang; Welsher, Kevin; Robinson, Joshua Tucker; Goodwin, Andrew; Zaric, Sasa

    2010-01-01

    Two-dimensional graphene offers interesting electronic, thermal, and mechanical properties that are currently being explored for advanced electronics, membranes, and composites. Here we synthesize and explore the biological applications of nano-graphene oxide (NGO), i.e., single-layer graphene oxide sheets down to a few nanometers in lateral width. We develop functionalization chemistry in order to impart solubility and compatibility of NGO in biological environments. We obtain size separated pegylated NGO sheets that are soluble in buffers and serum without agglomeration. The NGO sheets are found to be photoluminescent in the visible and infrared regions. The intrinsic photoluminescence (PL) of NGO is used for live cell imaging in the near-infrared (NIR) with little background. We found that simple physisorption via π-stacking can be used for loading doxorubicin, a widely used cancer drug onto NGO functionalized with antibody for selective killing of cancer cells in vitro. Owing to its small size, intrinsic optical properties, large specific surface area, low cost, and useful non-covalent interactions with aromatic drug molecules, NGO is a promising new material for biological and medical applications. PMID:20216934

  13. Performance Analysis of Water Based Copper Oxide Nano Fluids in Heat Exchanger with Twisted Insert

    NASA Astrophysics Data System (ADS)

    Ashok Reddy, K.; Hanmanthu, Bhukya

    2018-03-01

    A new experimental setup has been designed for conducting experiments in a copper round pipe heat exchanger with inner diameter di=14.5mm and outer diameter do=16mm and length L = 1720 mm . By using two copper oxide nano concentrations of 0.1% and 0.3% with water as based fluid, the heat transfer rates have been obtained with helical twisted insert H/D=5 in turbulent flow condition. Reynolds number and friction factor with pressure gradient have been evaluated. The heat transfer rates of 0.1% conc. Nano-fluid with insert was found to be 13.77% more when compared to water.

  14. Effect of Yttrium Addition on the Microstructure and Mechanical Properties of Cu-Rich Nano-phase Strengthened Ferritic Steel

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu; He, Jibai; Luan, Guoqing; Ke, Mingpeng; Fang, Haoyan; Lu, Jianduo

    2018-03-01

    Due to the brittle problem of Cu-rich nano-phase strengthened ferritic steel (CNSFS) after air aging, the effect of Y addition in CNSFS was systemically investigated in the present work. The microstructure, tensile fracture morphology and oxide layer of the steels were surveyed by optical microscope and scanning electron microscope. Transmission electron microscope with the combination of energy-dispersive x-ray spectroscopy and selected area electron diffraction was used to analyze the morphology, size, number density, chemical compositions and crystal structure for nano-crystalline precipitates. Microstructural examinations of the nano-crystalline precipitates show that Cu-rich precipitates and Y compounds in the range of 2-10 and 50-100 nm, respectively, form in the Y-containing steel; meanwhile, the average size of nano-crystalline precipitates in Y-containing steel is larger, but the number density is lower, and the ferritic grains are refined. Furthermore, the tensile strength and ductility of Y-containing steel after air aging are improved, whereas the tensile strength is enhanced and the ductility decreased after vacuum aging. The drag effect of Y makes the oxide layer thinner and be compacted. Tensile properties of CNSFS after air aging are improved due to the refined grains, antioxidation and purification by the addition of Y.

  15. Corrosion resistance of BIS 2062-grade steel coated with nano-metal-oxide mixtures of iron, cerium, and titanium in the marine environment

    NASA Astrophysics Data System (ADS)

    Ashraf, P. Muhamed; Anuradha, R.

    2018-02-01

    BIS 2062-grade carbon steel is extensively used for fishing boat construction. The steel is highly susceptible to corrosion on the hull and welding joints under marine environment. Here, we demonstrate the application of a novel multifunctional nano-metal-oxide mixture comprised of iron, titanium, and cerium as a marine coating to prevent corrosion. The electrochemical performance of nano-metal-oxide mixture coatings, applied over boat-building steel, was evaluated at 3.5% NaCl medium. The nano-mixture surface coatings showed an efficient corrosion resistance with increased polarization resistance of 6043 Ω cm2 and low corrosion current density of 3.53 × 10-6 A cm-2. The electrochemical impedance spectral data exhibited improvement in the polarization resistance of outermost surface and internal layers. The coating responded faster recovery to normal state when subjected to an induced stress over the coating. The nano-material in the coating behaves as a semiconductor; this enhanced electronic activity over the surface of the steel.

  16. [Effect of surface organic modified nano-silicon-oxide on mechanical properties of A-2186 silicone elastomers].

    PubMed

    Guo, Nan; Jiao, Ting

    2011-08-01

    To study the effect of surface organic modified nano-silicon-oxide (SiO(x)) on mechanical properties of A-2186 silicone elastomers. Surface organic modified nano-silicon-oxide (SiO(x)) was added into A-2186 silicone elastomers by weight percentage of 2%, 4% and 6%. The one without addition served as a control. Standard specimens were made according to American Society for Testing Materials (ASTM). Their tensile strength, elongation at break, tear strength, and Shore A hardness were measured. The results were analyzed statistically by SPSS 10.0 software package. The tensile strength in the experimental groups was significantly lower than the control group (P<0.001).The elongation in the experimental groups was lower than the control group, but there was no significant difference between the 2wt% group and the control group (P=0.068). The tear strength in both the 2wt= group and 4wt= group were higher than the control group, and the difference was statistically significant; in addition, the tear strength in 2wt= group was higher than 4wt= group, which also showed statistical significance (P<0.001). With the increase of the added amount of surface modified nano-SiO(x), Shore A hardness increased and there was significant difference among them (P<0.001). Adding surface modified nano-SiO(x) has an effect on mechanical properties of A-2186 silicone elastomer, when 2wt= and 4wt= are added, tear strength of A-2186 improves significantly, with an increase of Shore A hardness and an decrease of tensile strength.

  17. Comparison of characteristics of montmorillonite supported nano zero valent iron (M-nZVI) and nano zero valent iron (nZVI)

    NASA Astrophysics Data System (ADS)

    How, Ho Kuok; Wan Zuhairi W., Y.

    2015-09-01

    In this study, synthesized montmorillonite supported nano zero valent iron (M-nZVI) and nano zero valent iron (nZVI) are compared physically and chemically. The samples were prepared using chemical reduction method that includes sodium borohydride and ethanol. Due to the tendency of nZVI to aggregate, montmorillonite is used as a supporting material. TEM and FESEM images show that the M-nZVI has decreased the aggregation by dispersing the particles on the surface of montmorillonite whereas images of nZVI show chain-like particle due to aggregation. Both images also show particles synthesized are nanoparticles. With less aggregation, the surface area of the M-nZVI is greater than nZVI which is 45.46 m2/g and 10.49 m2/g respectively. XRD patterns have shown Fe0 are synthesized and small amount of iron oxides are produced. M-nZVI has the capability in reducing aggregation which might lead to the increase in reactivity of the particles thus enhancing the performance of nZVI.

  18. Nanoscale assembly of high-temperature oxidation-resistant nanocomposites.

    PubMed

    Peng, Xiao

    2010-02-01

    Structural considerations for designing a high-temperature oxidation-resistant metallic material are proposed, based on the dependence of the material structure on a promotion of the development of a protective scale of chromia or alumina. The material should have numerous sites on its surface for nucleating the protective oxides at the onset of oxidation and abundant grain boundaries in deeper areas for simultaneously supplying sufficient flux of the protective-oxide-forming elements toward the surface for a rapid linkage of the oxide nuclei through their lateral growth. Based on these considerations, we fabricated, using an electrochemical deposition method, novel nanocomposites which have a nanocrystalline metal matrix containing Cr and/or Al nanoparticles dispersed at the nano length scale. The validity of the design considerations is verified by comparing the high-temperature oxidation of a typical Ni-Cr nanocomposite system with two types of conventional Ni-Cr materials having similar or higher Cr content but different structure: one is a composite having a nanocrystalline Ni matrix containing Cr microparticles dispersed at the microscale and the other are micron-grained Ni-Cr alloys with the Cr distribution at the atomic length scale.

  19. Nanoscale assembly of high-temperature oxidation-resistant nanocomposites

    NASA Astrophysics Data System (ADS)

    Peng, Xiao

    2010-02-01

    Structural considerations for designing a high-temperature oxidation-resistant metallic material are proposed, based on the dependence of the material structure on a promotion of the development of a protective scale of chromia or alumina. The material should have numerous sites on its surface for nucleating the protective oxides at the onset of oxidation and abundant grain boundaries in deeper areas for simultaneously supplying sufficient flux of the protective-oxide-forming elements toward the surface for a rapid linkage of the oxide nuclei through their lateral growth. Based on these considerations, we fabricated, using an electrochemical deposition method, novel nanocomposites which have a nanocrystalline metal matrix containing Cr and/or Al nanoparticles dispersed at the nano length scale. The validity of the design considerations is verified by comparing the high-temperature oxidation of a typical Ni-Cr nanocomposite system with two types of conventional Ni-Cr materials having similar or higher Cr content but different structure: one is a composite having a nanocrystalline Ni matrix containing Cr microparticles dispersed at the microscale and the other are micron-grained Ni-Cr alloys with the Cr distribution at the atomic length scale.

  20. Corrosion behavior of oxide dispersion strengthened ferritic steels in supercritical water

    NASA Astrophysics Data System (ADS)

    Gao, Wenhua; Guo, Xianglong; Shen, Zhao; Zhang, Lefu

    2017-04-01

    The corrosion resistance of three different Cr content oxide dispersion strengthened (ODS) ferritic steels in supercritical water (SCW) and their passive films formed on the surface have been investigated. The results show that the dissolved oxygen (DO) and chemical composition have significant influence on the corrosion behavior of the ODS ferritic steels. In 2000 ppb DO SCW at 650 °C, the 14Cr-4Al ODS steel forms a tri-layer oxide film and the surface morphologies have experienced four structures. For the tri-layer oxide film, the middle layer is mainly Fe-Cr spinel and the Al is gradually enriched in the inner layer.

  1. Oxide nanoparticles in an Al-alloyed oxide dispersion strengthened steel: crystallographic structure and interface with ferrite matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenbo; Pantleon, Wolfgang

    2017-07-01

    Oxide nanoparticles are quintessential for ensuring the extraordinary properties of oxide dispersion strengthened (ODS) steels. In this study, the crystallographic structure of oxide nanoparticles, and their interface with the ferritic steel matrix in an Al-alloyed ODS steel, i.e. PM2000, were systematically investigated by high-resolution transmission electron microscopy. The majority of oxide nanoparticles were identified to be orthorhombic YAlO3. During hot consolidation and extrusion, they develop a coherent interface and a near cuboid-on-cube orientation relationship with the ferrite matrix in the material. After annealing at 1200 °C for 1 h, however, the orientation relationship between the oxide nanoparticles and the matrix becomes arbitrary, and their interface mostly incoherent. Annealing at 1300 °C leads to considerable coarsening of oxide nanoparticles, and a new orientation relationship of pseudo-cube-on-cube between oxide nanoparticles and ferrite matrix develops. The reason for the developing interfaces and orientation relationships between oxide nanoparticles and ferrite matrix under different conditions is discussed.

  2. Development of accident tolerant FeCrAl-ODS steels utilizing Ce-oxide particles dispersion

    NASA Astrophysics Data System (ADS)

    Shibata, Hiroki; Ukai, Shigeharu; Oono, Naoko H.; Sakamoto, Kan; Hirai, Mutsumi

    2018-04-01

    FeCrAl-ODS ferritic steels with Ce-oxide dispersion instead of Y-oxide were produced for the accident tolerant fuel cladding of the light water reactor. Excess oxygen (Ex.O) was added to improve the mechanical property. The tensile strength at Ex.O = 0 is around 200 MPa at 700 °C, mainly owing to dispersed Ce2O3 particles in less than 10 nm size. The formation of the fine Ce2O3 particles is dominated by a coherent interface with ferritic matrix. With increasing Ex.O, an increased of number density of coarser Ce-Al type oxide particles over 10 nm size is responsible for the improvement of the tensile strength. Change of the type of oxide particle, CeO2, Ce2O3, CeAlO3, Al2O3, in FeCrAl-ODS steel was thermodynamically analyzed as a parameter of Ex.O.

  3. Implementation of the FDTD method in cylindrical coordinates for dispersive materials: Modal study of C-shaped nano-waveguides

    NASA Astrophysics Data System (ADS)

    kebci, Zahia; Belkhir, Abderrahmane; Mezeghrane, Abdelaziz; Lamrous, Omar; Baida, Fadi Issam

    2018-03-01

    The objective of this work is to develop a code based on the finite difference time domain method in cylindrical coordinates (CC-FDTD) that integrates the Drude Critical Points model (DCP) and to apply it in the study of a metallic C-shaped waveguide (CSWG). The integrated dispersion model allows an accurate description of noble metals in the optical range and working in cylindrical coordinates is necessary to bypass the staircase effect induced by a Cartesian mesh especially in the case of curved geometrical forms. The CC-FDTD code developed as a part of this work is more general than the Body-Of-Revolution-FDTD algorithm that can only handle structures exhibiting a complete cylindrical symmetry. A N-order CC-FDTD code is then derived and used to perform a parametric study of an infinitly-long CSWG for nano-optic applications. Propagation losses and dispersion diagrams are given for different geometrical parameters.

  4. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    NASA Astrophysics Data System (ADS)

    Artem'ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.

    2016-01-01

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2-5 nm and for neutron energies 3 × 10-7-10-3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.

  5. Nano-titanium dioxide induced cardiac injury in rat under oxidative stress.

    PubMed

    Sha, BaoYong; Gao, Wei; Wang, ShuQi; Li, Wei; Liang, Xuan; Xu, Feng; Lu, Tian Jian

    2013-08-01

    Heart diseases, which are related to oxidative stress (OS), negatively affect millions of people from kids to the elderly. Titanium dioxide (TiO2) has widespread applications in our daily life, especially nanoscale TiO2. Compared to the high risk of particulate matter (≤2.5μm) in air to heart disease patients, related research of TiO2 on diseased body is still unknown, which suggest us to explore the potential effects of nanoscale and microscale TiO2 to heart under OS conditions. Here, we used alloxan to induce OS conditions in rat, and investigated the response of heart tissue to TiO2 in healthy and alloxan treated rats. Compared with NMs treatment only, the synergistic interaction between OS conditions and nano-TiO2 significantly reduced the heart-related function indexes, inducing pathological changes of myocardium with significantly increased levels of cardiac troponin I and creatine kinase-MB. In contrast with the void response of micro-TiO2 to heart functions in alloxan treated rats, aggravation of OS conditions might play an important role in cardiac injury after alloxan and nano-TiO2 dual exposure. Our results demonstrated that OS conditions enhanced the adverse effects of nano-TiO2 to heart, suggesting that the use of NMs in stressed conditions (e.g., drug delivery) needs to be carefully monitored. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Crystallographic texture in oxide-dispersion-strengthened alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1982-01-01

    Crystallographic and elastic moduli data are presented which document the degree of texture in several oxide dispersion-strengthened (ODS) nickel-base alloys. The existence of strong crystallographic textures in such multicrystalline alloys is considered important, since the small angle grain boundaries may be partially responsible for creep threshold stresses. Gleiter (1979) has shown that ideal, low energy boundaries will act as vacancy sources only when the applied stress is greater than a threshold stress, while large angle grain boundaries will emit vacancies at all stress levels. The continued operation of a net vacancy in an ODS alloy must be avoided, since it will lead to a localized disruption of the microstructure.

  7. Synthesis, characterization and application of a nano-manganese-catalyst as an efficient solid catalyst for solvent free selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol

    NASA Astrophysics Data System (ADS)

    Habibi, Davood; Faraji, Ali Reza

    2013-07-01

    The object of this study is to synthesize the heterogeneous Mn-nano-catalyst (MNC) which has been covalently anchored on a modified nanoscaleSiO2/Al2O3, and characterized by FT-IR, UV-Vis, CHN elemental analysis, EDS, TEM, and EDX. The method is efficient for the highly selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol without the need to any solvents, using tert-butyl hydroperoxide (TBHP) as an oxidant. Oxidation of ethylbenzene, cyclohexene, and benzylalcohol gave acetophenone, 2-cyclohexene-1-one and benzaldehyde, respectively, as major products. Reaction conditions have been optimized by considering the effect of various factors such as reaction time, amounts of substrates and oxidant, Mn-nano-catalyst and application of various solvents.

  8. Distribution of blocking temperatures in nano-oxide layers of specular spin valves

    NASA Astrophysics Data System (ADS)

    Ventura, J.; Araujo, J. P.; Sousa, J. B.; Veloso, A.; Freitas, P. P.

    2007-06-01

    Specular spin valves show enhanced giant magnetoresistive (GMR) ratio when compared to other, simpler, spin valve structures. The enhancement of GMR results from specular reflection in nano-oxide layers (NOLs) formed by the partial oxidation of the pinned and free layer. These oxides forming the NOL order antiferromagnetically (AFM) below a temperature T ˜175 K. Here, we study the effects of the pinned layer magnetization and its domain structure on the AFM ordering of the NOL by performing field cooling measurements with different cooling fields (H0). We observe enhanced (reduced) exchange field and magnetoresistive ratio for H0>0(<0), i.e., parallel (antiparallel) to the pinned magnetization. These measurements allowed us to confirm the existence of a wide distribution of blocking temperatures (TB) in the NOL of specular spin valves, having a maximum at T ≈175 K, and extending to NOL regions with TB as low as 15 K.

  9. Nano-Structured Magnesium Oxide Coated Iron Ore: Its Application to the Remediation of Wastewater Containing Lead.

    PubMed

    Nagarajah, Ranjini; Jang, Min; Pichiah, Saravanan; Cho, Jongman; Snyder, Shane A

    2015-12-01

    Magnetically separable nano-structured magnesium oxide coated iron ore (IO(MgO)) was prepared using environmentally benign chemicals, such as iron ore (IO), magnesium(II) nitrate hexahydrate [Mg(NO3)2 x 6H2O] and urea; via an easy and fast preparation method. The lO(MgO) was characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and alternating gradient magnetometer (AGM) analyses. The isotherm and kinetic studies indicated that lO(MgO) has a comparably higher Langmuir constant (K(L), 1.69 L mg(-1)) and maximum sorption capacity (33.9 mg g(-1)) for lead (Pb) than other inorganic media. Based on MgO amount, the removal capacity of Pb by IO(MgO) was 2,724 mg Pb (g MgO)(-1), which was higher than that (1,980 mg g(-1)) for flowerlike magnesium oxide nanostructures reported by Cao et al. The kinetics, FE-SEM, elemental mapping and XRD results revealed that the substitution followed by precipitation was identified as the mechanism of Pb removal and plumbophyllite (Pb2Si4O10 x H2O) was the precipitated phase of Pb. A leaching test revealed that IOMgO) had negligible concentrations of leached Fe at pH 4-9. Since the base material, IO, is cheap and easily available, lO(MgO) could be produced in massive amounts and used for remediation of wastewater containing heavy metals, applying simple and fast magnetic separation.

  10. Stable dispersions of polymer-coated graphitic nanoplatelets

    NASA Technical Reports Server (NTRS)

    Nguyen, Sonbinh T. (Inventor); Stankovich, Sasha (Inventor); Ruoff, Rodney S. (Inventor)

    2011-01-01

    A method of making a dispersion of reduced graphite oxide nanoplatelets involves providing a dispersion of graphite oxide nanoplatelets and reducing the graphite oxide nanoplatelets in the dispersion in the presence of a reducing agent and a polymer. The reduced graphite oxide nanoplatelets are reduced to an extent to provide a higher C/O ratio than graphite oxide. A stable dispersion having polymer-treated reduced graphite oxide nanoplatelets dispersed in a dispersing medium, such as water or organic liquid is provided. The polymer-treated, reduced graphite oxide nanoplatelets can be distributed in a polymer matrix to provide a composite material.

  11. Investigation of space charge distribution of low-density polyethylene/GO-GNF (graphene oxide from graphite nanofiber) nanocomposite for HVDC application.

    PubMed

    Kim, Yoon Jin; Ha, Son-Tung; Lee, Gun Joo; Nam, Jin Ho; Ryu, Ik Hyun; Nam, Su Hyun; Park, Cheol Min; In, Insik; Kim, Jiwan; Han, Chul Jong

    2013-05-01

    This paper reported a research on space charge distribution in low-density polyethylene (LDPE) nanocomposites with different types of graphene and graphene oxide (GO) at low filler content (0.05 wt%) under high DC electric field. Effect of addition of graphene oxide or graphene, its dispersion in LDPE polymer matrix on the ability to suppress space charge generation will be investigated and compared with MgO/LDPE nanocomposite at the same filler concentration. At an applied electric field of 80 kV/mm, a positive packet-like charge was observed in both neat LDPE, MgO/LDPE, and graphene/LDPE nanocomposites, whereas only little homogenous space charge was observed in GO/LDPE nanocomposites, especially with GO synthesized from graphite nano fiber (GNF) which is only -100 nm in diameter. Our research also suggests that dispersion of graphene oxide particles on the polymer matrix plays a significant role to the performance of nanocomposites on suppressing packet-like space charge. From these results, it is expected that nano-sized GO synthesized from GNF can be a promising filler material to LDPE composite for HVDC applications.

  12. Nano-extrusion: a promising tool for continuous manufacturing of solid nano-formulations.

    PubMed

    Baumgartner, Ramona; Eitzlmayr, Andreas; Matsko, Nadejda; Tetyczka, Carolin; Khinast, Johannes; Roblegg, Eva

    2014-12-30

    Since more than 40% of today's drugs have low stability, poor solubility and/or limited ability to cross certain biological barriers, new platform technologies are required to address these challenges. This paper describes a novel continuous process that converts a stabilized aqueous nano-suspension into a solid oral formulation in a single step (i.e., the NANEX process) in order to improve the solubility of a model drug (phenytoin). Phenytoin nano-suspensions were prepared via media milling using different stabilizers. A stable nano-suspension was obtained using Tween(®) 80 as a stabilizer. The matrix material (Soluplus(®)) was gravimetrically fed into the hot melt extruder. The suspension was introduced through a side feeding device and mixed with the molten polymer to immediately devolatilize the water in the nano-suspension. Phenytoin nano-crystals were dispersed and embedded in the molten polymer. Investigation of the nano-extrudates via transmission electron microscopy and atomic force microscopy showed that the nano-crystals were embedded de-aggregated in the extrudates. Furthermore, no changes in the crystallinity (due to the mechanical and thermal stress) occurred. The dissolution studies confirmed that the prepared nano-extrudates increased the solubility of nano-crystalline phenytoin, regardless of the polymer. Our work demonstrates that NANEX represents a promising new platform technology in the design of novel drug delivery systems to improve drug performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rieken, Joel

    Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O 2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand themore » kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from

  14. Enhanced optical and electrochemical properties of polyaniline/cobalt oxide nano composite

    NASA Astrophysics Data System (ADS)

    Niranjana, M.; Yesappa, L.; Ashokkumar, S. P.; Vijeth, H.; Basappa, M.; Devendrappa, H.

    2018-05-01

    Polyaniline and its composites at different wt. % of Cobalt oxide nano (PDC1, PDC2 and PDC5) were prepared by in-situ chemical reaction method The optical property was carried out using UV-Vis. Absorption Spectroscopy. The electrochemical property like cyclic voltammetry and galvonostatic charging-discharging was carried out for PANI and PDC nanocomposite electrode materials. A specific capacitance of 212.08 F/g and 336.41 F/g with scan rates 100 and 200 mV/s at 0.4 A/g current density respectively. These results are suggesting PDC composite is a prominent candidate for supercapacitor properties applications.

  15. Synthesis and Properties of Highly Dispersed Ionic Silica–Poly(ethylene oxide) Nanohybrids

    PubMed Central

    2013-01-01

    We report an ionic hybrid based on silica nanoparticles as the anion and amine-terminated poly(ethylene oxide) (PEO) as a cation. The charge on the nanoparticle anion is carried by the surface hydroxyls. SAXS and TEM reveal an exceptional degree of dispersion of the silica in the polymer and high degree of order in both thin film and bulk forms. In addition to better dispersion, the ionic hybrid shows improved flow characteristics compared to silica/PEO mixtures in which the ionic interactions are absent. PMID:23351113

  16. The origin of dispersion of magnetoresistance of a domain wall spin valve

    NASA Astrophysics Data System (ADS)

    Sato, Jun; Matsushita, Katsuyoshi; Imamura, Hiroshi

    2010-01-01

    We theoretically study the current-perpendicular-to-plane magnetoresistance of a domain wall confined in a nanocontact which is experimentally fabricated as current-confined-path (CCP) structure in a nano-oxide-layer (NOL). We solve the non-collinear spin diffusion equation by using the finite element method and calculate the MR ratio by evaluating the additional voltage drop due to the spin accumulation. We investigate the origin of dispersion of magnetoresistance by considering the effect of randomness of the size and distribution of the nanocontacts in the NOL. It is observed that the effect of randomness of the contact size is much larger than that of the contact distribution. Our results suggest that the origin of dispersion of magnetoresistance observed in the experiments is the randomness of the size of the nanocontacts in the NOL.

  17. The therapeutic effect of nano-encapsulated and nano-emulsion forms of carvacrol on experimental liver fibrosis.

    PubMed

    Hussein, Jihan; El-Banna, Mona; Mahmoud, Khaled F; Morsy, Safaa; Abdel Latif, Yasmin; Medhat, Dalia; Refaat, Eman; Farrag, Abdel Razik; El-Daly, Sherien M

    2017-06-01

    The present study aimed to compare the therapeutic efficiency of nano-encapsulated and nano-emulsion carvacrol administration on liver injury in thioacetamide (TAA) treated rats. To fulfill our target, we used sixty male albino rats classified into six groups as follow: control, nano-encapsulated carvacrol, nano-emulsion carvacrol, thioacetamide, treated nano-encapsulated carvacrol and treated nano-emulsion carvacrol groups. Blood samples were collected from all groups and the separated serum was used for analysis of the following biochemical parameters; aspartate aminotransferase (AST), alanine aminotransferase (ALT), S100 B protein, alpha fetoprotein (AFP) and caspase-3. The levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), monocyte chemoattractant protein-1(MCP-1) and hydroxyproline content were all evaluated in liver tissue homogenate. Histopathological examinations for liver tissues were also performed. Thioacetamide induced hepatic damage in rats as revealed by the significant increase in the levels of serum ALT, AST and produced oxidative stress as displayed by the significant elevation in the levels of hepatic MDA and NO concomitant with a significant decrease in GSH. In addition, thioacetamide significantly increased serum S100B protein, alpha fetoprotein and caspase-3 along with hepatic MCP-1 and hydroxyproline; these results were confirmed by the histopathological investigation. In contrast, nano-encapsulated and nano-emulsion carvacrol were able to ameliorate these negative changes in the thioacetamide injected rats. However, the effect of the nano-encapsulated form of carvacrol was more prominent than the nano-emulsion form. Nano-encapsulated and nano-emulsion carvacrol can ameliorate thioacetamide induced liver injury. These results could be attributed to the potential anti-inflammatory, antioxidant, and anti-apoptotic activities of carvacrol in addition to the effectiveness of the encapsulation technique that can protect

  18. Magnetoresistance enhancement in specular, bottom-pinned, Mn83Ir17 spin valves with nano-oxide layers

    NASA Astrophysics Data System (ADS)

    Veloso, A.; Freitas, P. P.; Wei, P.; Barradas, N. P.; Soares, J. C.; Almeida, B.; Sousa, J. B.

    2000-08-01

    Bottom-pinned Mn83Ir17 spin valves with enhanced specular scattering were fabricated, showing magnetoresistance (MR) values up to 13.6%, lower sheet resistance R□ and higher ΔR□. Two nano-oxide layers (NOL) are grown on both sides of the CoFe/Cu/CoFe spin valve structure by natural oxidation or remote plasma oxidation of the starting CoFe layer. Maximum MR enhancement is obtained after just 1 min plasma oxidation. Rutherford backscattering analysis shows that a 15±2 Å oxide layer grows at the expense of the initial (prior to oxidation) CoFe layer, with ˜12% reduction of the initial 40 Å CoFe thickness. X-ray reflectometry indicates that Kiessig fringes become better defined after NOL growth, indicating smoother inner interfaces, in agreement with the observed decrease of the spin valve ferromagnetic Néel coupling.

  19. Mechanical and morphological properties of polypropylene/nano α-Al2O3 composites.

    PubMed

    Mirjalili, F; Chuah, L; Salahi, E

    2014-01-01

    A nanocomposite containing polypropylene (PP) and nano α-Al2O3 particles was prepared using a Haake internal mixer. Mechanical tests, such as tensile and flexural tests, showed that mechanical properties of the composite were enhanced by addition of nano α-Al2O3 particles and dispersant agent to the polymer. Tensile strength was approximately ∼ 16% higher than pure PP by increasing the nano α-Al2O3 loading from 1 to 4 wt% into the PP matrix. The results of flexural analysis indicated that the maximum values of flexural strength and flexural modulus for nanocomposite without dispersant were 50.5 and 1954 MPa and for nanocomposite with dispersant were 55.88 MPa and 2818 MPa, respectively. However, higher concentration of nano α-Al2O3 loading resulted in reduction of those mechanical properties that could be due to agglomeration of nano α-Al2O3 particles. Transmission and scanning electron microscopic observations of the nanocomposites also showed that fracture surface became rougher by increasing the content of filler loading from 1 to 4% wt.

  20. Facile preparation of highly-dispersed cobalt-silicon mixed oxide nanosphere and its catalytic application in cyclohexane selective oxidation

    PubMed Central

    2011-01-01

    Highly dispersed cobalt-silicon mixed oxide [Co-SiO2] nanosphere was successfully prepared with a modified reverse-phase microemulsion method. This material was characterized in detail by X-ray diffraction, transmission electron microscopy, Fourier transform infrared, ultraviolet-visible diffuse reflectance spectra, X-ray absorption spectroscopy near-edge structure, and N2 adsorption-desorption measurements. High valence state cobalt could be easily obtained without calcination, which is fascinating for the catalytic application for its strong oxidation ability. In the selective oxidation of cyclohexane, Co-SiO2 acted as an efficient catalyst, and good activity could be obtained under mild conditions. PMID:22067075

  1. Characterizations of Ca- and Mg-incorporating micro/nano-structured surfaces on titanium fabricated by microarc oxidation and hydrothermal treatments

    NASA Astrophysics Data System (ADS)

    Ko, Sang-Hoon; Hwang, Moon-Jin; Moon, Won-Jin; Park, Yeong-Joon; Song, Ho-Jun

    2015-12-01

    The micro/nano-surface characteristics of magnesium- and calcium-incorporating titanium oxide layers fabricated on titanium metal using microarc oxidation (MAO) and hydrothermal (HT) treatments were investigated. Calcium acetate monohydrate (CA), magnesium acetate monohydrate (MA), and β-glycerophosphoric acid disodium salt pentahydrate were used as electrolytes for MAO treatment of titanium disks. CA/MA electrolyte concentrations (all in M) were 0.2/0.0 (CA20-MAO), 0.15/0.05 (CA15MA5-MAO), 0.1/0.1 (CA10MA10-MAO), 0.05/0.15 (CA5MA15-MAO), and 0.0/0.2 (MA20-MAO). MAO-HT groups were prepared by hydrothermal treatment of MAO groups. The porous surface morphology was consistent even after HT treatment. The incorporation of Mg ions in the oxide layer during MAO treatment was more favorable than incorporation of Ca ions. However, Mg ions were released more rapidly than Ca ions after HT treatment. The anatase TiO2 structure was dominant for all the groups and an increase in the rutile TiO2 structure was observed with an increase in MA concentration. Nano-sized crystallites were observed on the porous surface for all MAO-HT groups. Nano-needle-like crystallites were observed on the surface of CA20-MAO-HT. The crystallites exhibited shorter and thicker characteristics with an increase in Mg concentration.

  2. Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers.

    PubMed

    Cai, S J; Wu, C X; Gong, L M; Song, T; Wu, H; Zhang, L Y

    2012-10-01

    This study was conducted to investigate the effect of nano-selenium (nano-Se) on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. A total of five hundred forty 1-d-old male Arbor Acres broilers were randomly allotted to 1 of 5 treatments with each treatment being applied to 6 replicates of 18 chicks. The 5 treatments consisted of corn-soybean meal-based diets supplemented with 0.0, 0.3, 0.5, 1.0, or 2.0 mg/kg of nano-Se. The selenium content of the unsupplemented control diet was 0.09 mg/kg for the starter phase (0 to 21 d) and 0.08 mg/kg for the grower phase (22 to 42 d). There were no significant differences (P > 0.05) in performance, meat color, or immune organ index (thymus, bursa, and spleen) due to supplementation with nano-Se. On d 42, a significant quadratic effect of nano-Se was observed on glutathione peroxidase activity, free radical inhibition, contents of IgM, glutathione, and malondialdehyde in serum, on glutathione peroxidase activity, free radical inhibition in liver, and on glutathione peroxidase activity in muscle, with birds fed 0.30 mg/kg of nano-Se exhibiting the best effect and birds fed 2.0 mg/kg of nano-Se showing the worst effect on these parameters. Liver and muscle selenium content increased linearly and quadratically as the dietary nano-Se level increased (P < 0.01), and reached the highest value when 2.0 mg/kg of nano-Se was fed. Based on a consideration of all experiment indexes, 0.3 to 0.5 mg/kg is suggested to be the optimum level of supplementation of nano-Se, and the maximum supplementation of nano-Se could not be more than 1.0 mg/kg in broilers.

  3. Comparison of porous and nano zinc oxide for replacing high-dose dietary regular zinc oxide in weaning piglets

    PubMed Central

    Long, Lina; Chen, Jiashun; Zhang, Yonggang; Liang, Xiao

    2017-01-01

    The aim of this study was to compare the effect of dietary supplementation with low dose of porous and nano zinc oxide (ZnO) on weaning piglets, and to evaluate the possibility of using them as an alternative to high dose of regular ZnO. Piglets were randomly allocated into four treatment groups fed with four diets: (1) basal diet (NC), (2) NC+ 3000 mg/kg ZnO (PC), (3) NC + 500 mg/kg porous ZnO (HiZ) and (4) NC + 500 mg/kg nano ZnO (ZNP). The result showed that piglets in HiZ group had less diarrhea than ZNP group (P < 0.05). Besides, there was no significant difference between PC, HiZ and ZNP groups in terms of serum malondialdeyhde (MDA) concentration and glutathione peroxidase (GSH-Px) activity (P > 0.05). Analysis of trace metal elements revealed that piglets fed with high dose of regular ZnO had the highest Zn level in kidney (P < 0.05), which may induce kidney stone formation. Additionally, a decrease in ileal crypt depth was observed in PC, HiZ and ZNP group, suggesting an effective protection against intestinal injury. Results of mRNA analysis in intestine showed that ZNP supplementation had better effects on up-regulated trefoil factor 3 (TFF3) and nuclear factor erythroid 2-related factor 2 (Nrf2) levels in duodenum and jejunum than HiZ did (P < 0.05), implying that nano ZnO may possess higher anti-inflammatory capacity than porous ZnO. In conclusion, dietary supplementation with low dose of porous and nano ZnO had similar (even better) effect on improving growth performance and intestinal morphology, reducing diarrhea and intestinal inflammatory as high dose of regular ZnO in weaning piglets. Compared with nano ZnO, porous ZnO had better performance on reducing diarrhea but less effect on up-regulation of intestinal TFF3 and Nrf2. PMID:28792520

  4. From nano- to macro-engineering of oxide-encapsulated-nanoparticles for harsh reactions: one-step organization via cross-linking molecules.

    PubMed

    Zhang, Qiaofei; Zhao, Guofeng; Zhang, Zhiqiang; Han, Lupeng; Fan, Songyu; Chai, Ruijuan; Li, Yakun; Liu, Ye; Huang, Jun; Lu, Yong

    2016-09-29

    A strategy of "macro-micro-nano" organization is reported for embedding oxide-encapsulated-nanoparticles onto monolithic substrates in one-step with the aid of molecularly defined cross-linking agents. Such catalysts, with enhanced heat/mass transfer and high permeability, are qualified for several harsh reaction processes such as CH 4 /VOC abatement, gas-phase hydrogenation of dimethyl oxalate and oxidative dehydrogenation of ethane.

  5. An oxide dispersion strengthened Ni-W-Al alloy with superior high temperature strength

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1976-01-01

    Oxide dispersion strengthened alloys based on the WAZ-20 nickel-base alloy were prepared by the mechanical alloying process described by Benjamin (1973), and evaluated. The results of microstructural examinations and mechanical property determinations are discussed. It is shown that WAZ-20, a high gamma-prime fraction alloy having a high gamma-prime solvus temperature, can be effectively dispersion strengthened. The strengths obtained were outstanding, especially at 1150 and 1205 C. The strength is attributed to a combination of highly alloyed matrix, elongated grain structure, and hard phase dispersion. Tensile ductility can be improved by post-recrystallization heat treatment. The new alloy shows some potential for low stress post-extrusion forming.

  6. Evaluating the potential of three Fe- and Mn-(nano)oxides for the stabilization of Cd, Cu and Pb in contaminated soils.

    PubMed

    Michálková, Zuzana; Komárek, Michael; Šillerová, Hana; Della Puppa, Loïc; Joussein, Emmanuel; Bordas, François; Vaněk, Aleš; Vaněk, Ondřej; Ettler, Vojtěch

    2014-12-15

    The potential of three Fe- and Mn-(nano)oxides for stabilizing Cd, Cu and Pb in contaminated soils was investigated using batch and column experiments, adsorption tests and tests of soil microbial activity. A novel synthetic amorphous Mn oxide (AMO), which was recently proposed as a stabilizing amendment, proved to be the most efficient in decreasing the mobility of the studied metals compared to nano-maghemite and nano-magnetite. Its application resulted in significant decreases of exchangeable metal fractions (92%, 92% and 93% decreases of Cd, Cu and Pb concentrations, respectively). The adsorption capacity of the AMO was an order of magnitude higher than those recorded for the other amendments. It was also the most efficient treatment for reducing Cu concentrations in the soil solution. No negative effects on soil microorganisms were recorded. On the other hand, the AMO was able to dissolve soil organic matter to some extent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Flame Retardant Effect of Nano Fillers on Polydimethylsiloxane Composites.

    PubMed

    Jagdale, Pravin; Salimpour, Samera; Islam, Md Hujjatul; Cuttica, Fabio; Hernandez, Francisco C Robles; Tagliaferro, Alberto; Frache, Alberto

    2018-02-01

    Polydimethylsiloxane has exceptional fire retardancy characteristics, which make it a popular polymer in flame retardancy applications. Flame retardancy of polydimethylsiloxane with different nano fillers was studied. Polydimethylsiloxane composite fire property varies because of the shape, size, density, and chemical nature of nano fillers. In house made carbon and bismuth oxide nano fillers were used in polydimethylsiloxane composite. Carbon from biochar (carbonised bamboo) and a carbon by-product (carbon soot) were selected. For comparative study of nano fillers, standard commercial multiwall carbon nano tubes (functionalised, graphitised and pristine) as nano fillers were selected. Nano fillers in polydimethylsiloxane positively affects their fire retardant properties such as total smoke release, peak heat release rate, and time to ignition. Charring and surface ceramization are the main reasons for such improvement. Nano fillers in polydimethylsiloxane may affect the thermal mobility of polymer chains, which can directly affect the time to ignition. The study concludes that the addition of pristine multiwall carbon nano tubes and bismuth oxide nano particles as filler in polydimethylsiloxane composite improves the fire retardant property.

  8. Indium-tin-oxide nanowhiskers crystalline silicon photovoltaics combining micro- and nano-scale surface textures

    NASA Astrophysics Data System (ADS)

    Chang, C. H.; Hsu, M. H.; Chang, W. L.; Sun, W. C.; Yu, Peichen

    2011-02-01

    In this work, we present a solution that employs combined micro- and nano-scale surface textures to increase light harvesting in the near infrared for crystalline silicon photovoltaics, and discuss the associated antireflection and scattering mechanisms. The combined surface textures are achieved by uniformly depositing a layer of indium-tin-oxide nanowhiskers on passivated, micro-grooved silicon solar cells using electron-beam evaporation. The nanowhiskers facilitate optical transmission in the near-infrared, which is optically equivalent to a stack of two dielectric thin-films with step- and graded- refractive index profiles. The ITO nanowhiskers provide broadband anti-reflective properties (R<5%) in the wavelength range of 350-1100nm. In comparison with conventional Si solar cell, the combined surface texture solar cell shows higher external quantum efficiency (EQE) in the range of 700-1100nm. Moreover, the ITO nano-whisker coating Si solar cell shows a high total efficiency increase of 1.1% (from 16.08% to17.18%). Furthermore, the nano-whiskers also provide strong forward scattering for ultraviolet and visible light, favorable in thin-wafer silicon photovoltaics to increase the optical absorption path.

  9. Mechanochemical mechanism for reaction of aluminium nano- and micrometre-scale particles.

    PubMed

    Levitas, Valery I

    2013-11-28

    A recently suggested melt-dispersion mechanism (MDM) for fast reaction of aluminium (Al) nano- and a few micrometre-scale particles during fast heating is reviewed. Volume expansion of 6% during Al melting produces pressure of several GPa in a core and tensile hoop stresses of 10 GPa in an oxide shell. Such stresses cause dynamic fracture and spallation of the shell. After spallation, an unloading wave propagates to the centre of the particle and creates a tensile pressure of 3-8 GPa. Such a tensile pressure exceeds the cavitation strength of liquid Al and disperses the melt into small, bare clusters (fragments) that fly at a high velocity. Reaction of the clusters is not limited by diffusion through a pre-existing oxide shell. Some theoretical and experimental results related to the MDM are presented. Various theoretical predictions based on the MDM are in good qualitative and quantitative agreement with experiments, which resolves some basic puzzles in combustion of Al particles. Methods to control and improve reactivity of Al particles are formulated, which are exactly opposite to the current trends based on diffusion mechanism. Some of these suggestions have experimental confirmation.

  10. QSAR analysis for nano-sized layered manganese-calcium oxide in water oxidation: An application of chemometric methods in artificial photosynthesis.

    PubMed

    Shahbazy, Mohammad; Kompany-Zareh, Mohsen; Najafpour, Mohammad Mahdi

    2015-11-01

    Water oxidation is among the most important reactions in artificial photosynthesis, and nano-sized layered manganese-calcium oxides are efficient catalysts toward this reaction. Herein, a quantitative structure-activity relationship (QSAR) model was constructed to predict the catalytic activities of twenty manganese-calcium oxides toward water oxidation using multiple linear regression (MLR) and genetic algorithm (GA) for multivariate calibration and feature selection, respectively. Although there are eight controlled parameters during synthesizing of the desired catalysts including ripening time, temperature, manganese content, calcium content, potassium content, the ratio of calcium:manganese, the average manganese oxidation state and the surface of catalyst, by using GA only three of them (potassium content, the ratio of calcium:manganese and the average manganese oxidation state) were selected as the most effective parameters on catalytic activities of these compounds. The model's accuracy criteria such as R(2)test and Q(2)test in order to predict catalytic rate for external test set experiments; were equal to 0.941 and 0.906, respectively. Therefore, model reveals acceptable capability to anticipate the catalytic activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Hybrid zero valent iron (ZVI)/H2O2 oxidation process for landfill leachate treatment with novel nanosize metallic calcium/iron composite.

    PubMed

    Lee, Son Dong; Mallampati, Srinivasa Reddy; Lee, Byoung Ho

    2017-04-01

    A novel nanosize metallic calcium/iron dispersed reagent was synthesized and tested as coagulant/catalyst in a hybrid zero valent iron (ZVI)/H 2 O 2 oxidation process to treat leachate. Two different types of leachates, one from municipal solid waste (MSW) tipping hall (MSWIL) and second from an MSW landfill site (MSWLL), were collected and characterized. The morphology, elemental composition, and mineral phases of the nano-Ca/CaO and nano-Fe/Ca/CaO were characterized by scanning electron microscopy-electron dispersive spectroscopy (SEM-EDS) and x-ray powder diffraction (XRD) analysis. The coagulation process with 2.5 g L -1 nano-Ca/CaO attained 64.0, 56.0, and 20.7% removal of color, chemical oxygen demand (COD), and total suspended solids (TSS) in MSWLL. With only 1.0 g L -1 of nano-Fe/Ca/CaO, relatively high color, COD and TSS removal was achieved in MSWLL at 67.5, 60.2, and 37.7%, respectively. The heavy metal removal efficiency reached 91-99% after treatment with nano-Fe/Ca/CaO in both leachate samples. The coupling process, using 1.0 g L -1 of nano-Fe/Ca/CaO and 20 mM H 2 O 2 doses, achieved enhancement removal of color, COD, and TSS, up to 95%, 96%, and 66%, respectively, without initial pH control. After this treatment, the color, COD, TSS, and heavy metals were significantly decreased, fitting the Korean discharge regulation limit. A hybrid coupled zero valent iron (ZVI)/H 2 O 2 oxidation process with novel nanosized metallic calcium/iron dispersed reagent proved to be a suitable treatment for dealing with leachate samples. Conventional treatments (biological or physicochemical) are not sufficient anymore to reach the level of purification needed to fully reduce the negative impact of landfill leachates on the environment. This implies that new treatment alternatives species must be proposed. A coupled zero valent iron (ZVI)/H 2 O 2 oxidation process proved to be a suitable treatment for dealing with leachate samples. Coagulation with nFe/Ca/CaO allows 91

  12. Investigation of Dispersion, Stability, and Tribological Performance of Oil-Based Aluminum Oxide Nanofluids

    DTIC Science & Technology

    2012-01-01

    protection of the 4140 steel using the alumina nanoparticles. This means that the alumina particles primarily acted as third body abrasives in this...INVESTIGATION OF DISPERSION, STABILITY, AND TRIBOLOGICAL PERFORMANCE OF OIL-BASED ALUMINUM OXIDE NANOFLUIDS THESIS FOR THE... TRIBOLOGICAL PERFORMANCE OF OIL-BASED ALUMINUM OXIDE NANOFLUIDS 5a. CONTRACT NUMBER W56H2V-08-C-0236 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  13. Phonon Spectrum Engineering in Rolled-up Micro- and Nano-Architectures

    DOE PAGES

    Fomin, Vladimir M.; Balandin, Alexander A.

    2015-10-10

    We report on a possibility of efficient engineering of the acoustic phonon energy spectrum in multishell tubular structures produced by a novel high-tech method of self-organization of micro- and nano-architectures. The strain-driven roll-up procedure paved the way for novel classes of metamaterials such as single semiconductor radial micro- and nano-crystals and multi-layer spiral micro- and nano-superlattices. The acoustic phonon dispersion is determined by solving the equations of elastodynamics for InAs and GaAs material systems. It is shown that the number of shells is an important control parameter of the phonon dispersion together with the structure dimensions and acoustic impedance mismatchmore » between the superlattice layers. The obtained results suggest that rolled up nano-architectures are promising for thermoelectric applications owing to a possibility of significant reduction of the thermal conductivity without degradation of the electronic transport.« less

  14. Phonon Spectrum Engineering in Rolled-up Micro- and Nano-Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fomin, Vladimir M.; Balandin, Alexander A.

    We report on a possibility of efficient engineering of the acoustic phonon energy spectrum in multishell tubular structures produced by a novel high-tech method of self-organization of micro- and nano-architectures. The strain-driven roll-up procedure paved the way for novel classes of metamaterials such as single semiconductor radial micro- and nano-crystals and multi-layer spiral micro- and nano-superlattices. The acoustic phonon dispersion is determined by solving the equations of elastodynamics for InAs and GaAs material systems. It is shown that the number of shells is an important control parameter of the phonon dispersion together with the structure dimensions and acoustic impedance mismatchmore » between the superlattice layers. The obtained results suggest that rolled up nano-architectures are promising for thermoelectric applications owing to a possibility of significant reduction of the thermal conductivity without degradation of the electronic transport.« less

  15. Subcutaneous Connective Tissue Reaction to a New Nano Zinc-Oxide Eugenol Sealer in Rat Model

    PubMed Central

    Omidi, Salma; Javidi, Maryam; Zarei, Mina; Mushakhian, Siavash; Jafarian, Amirhossein

    2017-01-01

    Introduction: The aim of this animal study was to evaluate the histological response of the new nano zinc-oxide eugenol (NZOE) sealer in comparison with Pulp Canal Sealer (ZOE based) and AH-26 (epoxy resin sealer). Methods and Materials: A total of 27 Wistar rats were used. Four polyethylene tubes were implanted in the back of each rat (three tubes containing the test materials and an empty tube as a control). Then, 9 animals were sacrificed at each interval of 15, 30 and 60 days, and the implants were removed with the surrounding tissues.Samples were evaluated for the presence of inflammatory cell (mononuclear cell), vascular changes, fibrous tissue formation and present of giant cell. Comparisons between groups and time-periods were performed using the Kruskal-Wallis and Mann-Whitney U non-parametric tests. The level of significance was set at 0.05. Results: No significant difference was observed in tissue reactions and biocompatibility pattern of three sealers during 3 experimental periods (P<0.05). In all groups the tissue behavior showed tendency to decrease the irritation effect over time. Conclusion: The new nano zinc-oxide eugenol sealer has histocompatibility properties comparable to conventional commercial sealers. PMID:28179927

  16. Nano sand filter with functionalized nanoparticles embedded in anodic aluminum oxide templates

    PubMed Central

    Phuong, NguyenThi; Andisetiawan, Anugrah; Van Lam, Do; Kim, Jeong Hwan; Choi, Doo-Sun; Whang, Kyung-Hyun; Nham, Jeasun; Lee, Yun Jung; Yoo, Yeong-Eun; Yoon, Jae Sung

    2016-01-01

    Since the ancient Egyptians had used sand as filter media for water purification, its principle has been inherited through generations and it is still being used now in industries. The sand filter consists of sand literally, and the voids within the sand bed are the pores for filtration. Here we present a filtration principle using nanoparticles, so that the voids between the nanoparticles can be considered as effective pores in nanoscale dimension. Anodic aluminum oxide (AAO) membrane has been used as the working template, and the nanoparticles have been injected and embedded within the pores of the AAO template. Nanoparticles with multiple sizes have been used in order to obtain smaller voids. Moreover, the nanoparticles have been functionalized, or electrically charged, with arginine/phenylalanine (RF) peptide group. In this way, filtration performance for charged particles or molecules, such as methylene blue, has been enhanced. Consequently, this study is expected to provide a new principle for fabrication of nano voids, or nano pores, and for filtration in nanoscale dimension. PMID:27876886

  17. Nano sand filter with functionalized nanoparticles embedded in anodic aluminum oxide templates.

    PubMed

    Phuong, NguyenThi; Andisetiawan, Anugrah; Van Lam, Do; Kim, Jeong Hwan; Choi, Doo-Sun; Whang, Kyung-Hyun; Nham, Jeasun; Lee, Yun Jung; Yoo, Yeong-Eun; Yoon, Jae Sung

    2016-11-23

    Since the ancient Egyptians had used sand as filter media for water purification, its principle has been inherited through generations and it is still being used now in industries. The sand filter consists of sand literally, and the voids within the sand bed are the pores for filtration. Here we present a filtration principle using nanoparticles, so that the voids between the nanoparticles can be considered as effective pores in nanoscale dimension. Anodic aluminum oxide (AAO) membrane has been used as the working template, and the nanoparticles have been injected and embedded within the pores of the AAO template. Nanoparticles with multiple sizes have been used in order to obtain smaller voids. Moreover, the nanoparticles have been functionalized, or electrically charged, with arginine/phenylalanine (RF) peptide group. In this way, filtration performance for charged particles or molecules, such as methylene blue, has been enhanced. Consequently, this study is expected to provide a new principle for fabrication of nano voids, or nano pores, and for filtration in nanoscale dimension.

  18. Nano sand filter with functionalized nanoparticles embedded in anodic aluminum oxide templates

    NASA Astrophysics Data System (ADS)

    Phuong, Nguyenthi; Andisetiawan, Anugrah; van Lam, Do; Kim, Jeong Hwan; Choi, Doo-Sun; Whang, Kyung-Hyun; Nham, Jeasun; Lee, Yun Jung; Yoo, Yeong-Eun; Yoon, Jae Sung

    2016-11-01

    Since the ancient Egyptians had used sand as filter media for water purification, its principle has been inherited through generations and it is still being used now in industries. The sand filter consists of sand literally, and the voids within the sand bed are the pores for filtration. Here we present a filtration principle using nanoparticles, so that the voids between the nanoparticles can be considered as effective pores in nanoscale dimension. Anodic aluminum oxide (AAO) membrane has been used as the working template, and the nanoparticles have been injected and embedded within the pores of the AAO template. Nanoparticles with multiple sizes have been used in order to obtain smaller voids. Moreover, the nanoparticles have been functionalized, or electrically charged, with arginine/phenylalanine (RF) peptide group. In this way, filtration performance for charged particles or molecules, such as methylene blue, has been enhanced. Consequently, this study is expected to provide a new principle for fabrication of nano voids, or nano pores, and for filtration in nanoscale dimension.

  19. The Effects of Natural Clinoptilolite and Nano-Sized Clinoptilolite Supplementation on Glucose Levels and Oxidative Stress in Rats With Type 1 Diabetes.

    PubMed

    Hossein Nia, Behnoosh; Khorram, Sirous; Rezazadeh, Hassan; Safaiyan, Abdolrasol; Tarighat-Esfanjani, Ali

    2018-02-01

    Oxidative stress has a major role in development of diabetic complications. In this study we investigated whether clinoptilolite and nano-sized clinoptilolite could reduce hyperglycemia and oxidative stress in streptozotocin-induced diabetic rats and attempted to determine which intervention was more effective. Thirty-six rats were randomly allocated to 2 groups; 1 group was randomly chosen as a diabetic group and injected with streptozotocin (60 mg/kg body weight in 0.1 mol/L sodium citrate buffer, pH 4.5) to induce diabetes. Three days after diabetes induction, each group (diabetic group and nondiabetic group) was randomly divided into 3 subgroups of 6 animals each ([1] control, [2] 1% clinoptilolite/food, [3] 1% nano-sized clinoptilolite/food). Supplementation was continued for 28 days. Blood glucose was measured 3 times, at the beginning of the study and on the 14th and 28th days. Activity of antioxidant enzymes, including glutathione peroxidase and superoxide dismutase, and levels of total antioxidant capacity, as well as malondialdehyde, were evaluated. Blood glucose and malondialdehyde were significantly elevated, but there were no statistically significant changes in superoxide dismutase, glutathione peroxidase or total antioxidant capacity in diabetic rats. In diabetic rats treated with nano-sized clinoptilolite, blood glucose decreased to near normal levels (12.4 vs. 27.5 mmol/L). No significant changes were found in the other groups. None of the oxidative stress indices showed significant changes in either the treated or untreated rats. Nano-sized clinoptilolite exerted a hypoglycemic effect in streptozotocin-induced diabetic rats but had no significant influence on oxidative stress markers. Copyright © 2018. Published by Elsevier Inc.

  20. Preliminary study of oxide-dispersion-strengthened B-1900 prepared by mechanical alloys

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.; Quatinetz, M.

    1975-01-01

    An experimental oxide dispersion strengthened (ODS) alloy based on the B-1900 composition was produced by the mechanical alloying process. Without optimization of the processing for the alloy or the alloy for the processing, recrystallization of the extruded product to large elongated grains was achieved. Materials having grain length-width ratios of 3 and 5.5 were tested in tension and stress-rupture. The ODS B-1900 exhibited tensile strength similar to that of cast B-1900. Its stress-rupture life was lower than that of cast B-1900 at 760 C. At 1095 C the ODS B-1900 with the higher grain length-width ratio (5.5) had stress-rupture life superior to that of cast B-1900. It was concluded that, with optimization, oxide dispersion strengthening of B-1900 and other complex cast nickel-base alloys has potential for improving high temperature properties over those of the cast alloy counterparts.

  1. Electrophoretic fabrication of chitosan-zirconium-oxide nanobiocomposite platform for nucleic acid detection.

    PubMed

    Das, Maumita; Dhand, Chetna; Sumana, Gajjala; Srivastava, A K; Nagarajan, R; Nain, Lata; Iwamoto, M; Manaka, Takaaki; Malhotra, B D

    2011-03-14

    The present work describes electrophoretic fabrication of nanostructured chitosan-zirconium-oxide composite (CHIT-NanoZrO(2)) film (180 nm) onto indium-tin-oxide (ITO)-coated glass plate. This nanobiocomposite film has been explored as immobilization platform for probe DNA specific to M. Tuberculosis as model biomolecule to investigate its sensing characteristics. It is revealed that pH-responsive behavior of CHIT and its cationic skeleton is responsible for the movement of CHIT-NanoZrO(2) colloids toward cathode during electrophoretic deposition. The FT-IR, SEM, TEM, and EDX techniques have been employed for the structural, morphological, and composition analysis of the fabricated electrodes. The morphological studies clearly reveal uniform inter-linking and dispersion of hexagonal nanograins of ZrO(2) (30-50 nm) into the chitosan matrix, resulting in homogeneous nanobiocomposite formation. Electrochemical response measurements of DNA/CHIT-NanoZrO(2)/ITO bioelectrode, carried out using cyclic voltammetry and differential pulse voltammetry, reveal that this bioelectrode can specifically detect complementary target DNA up to 0.00078 μM with sensitivity of 6.38 × 10(-6) AμM(-1).

  2. Omega-3 PUFA concentration by a novel PVDF nano-composite membrane filled with nano-porous silica particles.

    PubMed

    Ghasemian, Samaneh; Sahari, Mohammad Ali; Barzegar, Mohsen; Ahmadi Gavlighi, Hasan

    2017-09-01

    In this study, polyvinylidene fluoride (PVDF) and nano-porous silica particle were used to fabricate an asymmetric nano-composite membrane. Silica particles enhanced the thermal stability of PVDF/SiO 2 membranes; increasing the decomposition temperature from 371°C to 408°C. Cross sectional morphology showed that silica particles were dispersed in polymer matrix uniformly. However, particle agglomeration was found at higher loading of silica (i.e., 20 by weight%). The separation performance of nano-composite membranes was also evaluated using the omega-3 polyunsaturated fatty acids (PUFA) concentration at a temperature and pressure of 30°C and 4bar, respectively. Silica particle increased the omega-3PUFA concentration from 34.8 by weight% in neat PVDF to 53.9 by weight% in PVDF with 15 by weight% of silica. Moreover, PVDF/SiO 2 nano-composite membranes exhibited enhanced anti-fouling property compared to neat PVDF membrane. Fouling mechanism analysis revealed that complete pore blocking was the predominant mechanism occurring in oil filtration. The concentration of omega-3 polyunsaturated fatty acids (PUFA) is important in the oil industries. While the current methods demand high energy consumptions in concentrating the omega-3, membrane separation technology offers noticeable advantages in producing pure omega-3 PUFA. Moreover, concentrating omega-3 via membrane separation produces products in the triacylglycerol form which possess better oxidative stability. In this work, the detailed mechanisms of fouling which limits the performance of membrane separation were investigated. Incorporating silica particles to polymeric membrane resulted in the formation of mixed matrix membrane with improved anti-fouling behaviour compared to the neat polymeric membrane. Hence, the industrial potential of membrane processing to concentrate omega-3 fatty acids is enhanced. Copyright © 2017. Published by Elsevier Ltd.

  3. Biquadratic coupling through nano-oxide layers in pinned layers of IrMn-based spin valves

    NASA Astrophysics Data System (ADS)

    Lai, Chih-Huang; Lu, K. H.

    2003-05-01

    We have investigated the coupling between top and bottom pinned layers through various nano-oxide layers (NOLs) in IrMn-based spin valves. The NOLs were formed by using oxygen-plasma oxidation or natural oxidation on 1 nm metallic layers. By inserting naturally oxidized Co-NOLs in the pinned layer, strong ferromagnetic coupling through NOLs and high specularity at the NOL interface were achieved. In contrast, when the plasma-oxidized Co-NOLs were inserted, ferromagnetic coupling through NOLs disappeared, plausibly due to the formation of nonferromagnetic oxides, which led to a low magnetoresistance (MR). Insertion of naturally oxidized Ni80Fe20-NOLs showed the same results as that of naturally oxidized Co-NOLs. On the other hand, biquadratic coupling between top and bottom pinned-Co90Fe10 layers was observed by inserting plasma-oxidized Ni80Fe20-NOLs. The highest MR was obtained when the field was applied along the direction perpendicular to the field-annealing direction. Similar biquadratic coupling was also found with naturally oxidized or plasma-oxidized Fe-NOLs. We suggest that the biquadratic coupling between pinned Co90Fe10 layers through NOLs results from the coupling between Fe (or Co90Fe10) and Fe+3 oxides

  4. Salmonella enterica biofilm-mediated dispersal by nitric oxide donors in association with cellulose nanocrystal hydrogels.

    PubMed

    Marvasi, Massimiliano; Durie, Ian A; McLamore, Eric S; Vanegas, Diana C; Chaturvedi, Prachee

    2015-01-01

    Protected by extracellular polymers, microbes within biofilms are significantly more resistant to disinfectants. Current research has been instrumental in identifying nitric oxide donors and hydrogels as potential disinfectant additives. Nitric oxide (NO) donors are considered a very promising molecule as biofilm dispersal agents and hydrogels have recently attracted a lot of interest due to their biocompatible properties and ability to form stable thin films. When the NO donor MAHMA NONOate was dissolved in phosphate saline buffer, it was able to reduce the biomass of well-established biofilms up to 15% for at least 24 h of contact time. Encapsulation of MAHMA NONOate and molsidomine within a hydrogel composed of cellulose nanocrystals (CNC) has shown a synergistic effect in dispersing well-established biofilms: after 2 h of exposure, moderate but significant dispersion was measured. After 6 h of exposure, the number of cells transitioning from the biofilm to the planktonic state was up to 0.6 log higher when compared with non-treated biofilms. To further explore the transport processes of NO donors within hydrogels, we measured the nitric oxide flux from gels, at 25°C for a composite of 0.1 µM MAHMA NONOate-CNC. Nitric oxide diffuses up to 500 µm from the hydrogel surface, with flux decreasing according to Fick's law. 60% of NO was released from the hydrogel composite during the first 23 min. These data suggest that the combined treatments with nitric oxide donor and hydrogels may allow for new sustainable cleaning strategies.

  5. Effect of Dispersants on Photochromic Behavior of Tungsten Oxide Nanoparticles in Methylcellulose.

    PubMed

    Yamazaki, Suzuko; Shimizu, Dai; Tani, Seiji; Honda, Kensuke; Sumimoto, Michinori; Komaguchi, Kenji

    2018-05-29

    Tungsten oxide-based photochromic films that change reversibly in air between colorless-transparent in the dark and dark blue under UV irradiation were prepared by using methylcellulose as a film matrix and various dispersants. Alpha-hydroxyl acid such as glycolic acid (GA) or glyceric acid (GlyA) is the best dispersant because it can make the film transparent by adding a small quantity much less than that of 3-hydroxypropionic acid or ethylene glycol. Fourier-transform infrared spectra and Raman spectra indicate that a strong interaction exists between WO 3 and GA or GlyA. The coloration and bleaching processes of the prepared films were investigated to clarify the effect of the dispersants and the moisture contents. The bleaching rate remarkably decreased in the films containing GA or GlyA but accelerated by increasing the contact with O 2 . Measurements of electron-spin resonance reveals that GA and GlyA as dispersants stabilize the W 5+ state. This paper shows that the coloring rate and the period for keeping the blue-colored state are tunable by changing the dispersants. The photochromic films containing α-hydroxyl acid as the dispersant have the potential for application as rewritable film on which information displayed with blue-colored state can be clearly readable for longer times compared with other dispersants.

  6. Mechanical and Morphological Properties of Polypropylene/Nano α-Al2O3 Composites

    PubMed Central

    Mirjalili, F.; Chuah, L.; Salahi, E.

    2014-01-01

    A nanocomposite containing polypropylene (PP) and nano α-Al2O3 particles was prepared using a Haake internal mixer. Mechanical tests, such as tensile and flexural tests, showed that mechanical properties of the composite were enhanced by addition of nano α-Al2O3 particles and dispersant agent to the polymer. Tensile strength was approximately ∼16% higher than pure PP by increasing the nano α-Al2O3 loading from 1 to 4 wt% into the PP matrix. The results of flexural analysis indicated that the maximum values of flexural strength and flexural modulus for nanocomposite without dispersant were 50.5 and 1954 MPa and for nanocomposite with dispersant were 55.88 MPa and 2818 MPa, respectively. However, higher concentration of nano α-Al2O3 loading resulted in reduction of those mechanical properties that could be due to agglomeration of nano α-Al2O3 particles. Transmission and scanning electron microscopic observations of the nanocomposites also showed that fracture surface became rougher by increasing the content of filler loading from 1 to 4% wt. PMID:24688421

  7. Micro/nano composited tungsten material and its high thermal loading behavior

    NASA Astrophysics Data System (ADS)

    Fan, Jinglian; Han, Yong; Li, Pengfei; Sun, Zhiyu; Zhou, Qiang

    2014-12-01

    Tungsten (W) is considered as promising candidate material for plasma facing components (PFCs) in future fusion reactors attributing to its many excellent properties. Current commercial pure tungsten material in accordance with the ITER specification can well fulfil the performance requirements, however, it has defects such as coarse grains, high ductile-brittle transition temperature (DBTT) and relatively low recrystallization temperature compared with its using temperature, which cannot meet the harsh wall loading requirement of future fusion reactor. Grain refinement has been reported to be effective in improving the thermophysical and mechanical properties of W. In this work, rare earth oxide (Y2O3/La2O3) and carbides (TiC/ZrC) were used as dispersion phases to refine W grains, and micro/nano composite technology with a process of "sol gel - heterogeneous precipitation - spray drying - hydrogen reduction - ordinary consolidation sintering" was invented to introduce these second-phase particles uniformly dispersed into W grains and grain-boundaries. Via this technology, fine-grain W materials with near-full density and relatively high mechanical properties compared with traditional pure W material were manufactured. Preliminary transient high-heat flux tests were performed to evaluate the thermal response under plasma disruption conditions, and the results show that the W materials prepared by micro/nano composite technology can endure high-heat flux of 200 MW/m2 (5 ms).

  8. Transient thermal effect, nonlinear refraction and nonlinear absorption properties of graphene oxide sheets in dispersion.

    PubMed

    Zhang, Xiao-Liang; Liu, Zhi-Bo; Li, Xiao-Chun; Ma, Qiang; Chen, Xu-Dong; Tian, Jian-Guo; Xu, Yan-Fei; Chen, Yong-Sheng

    2013-03-25

    The nonlinear refraction (NLR) properties of graphene oxide (GO) in N, N-Dimethylformamide (DMF) was studied in nanosecond, picosecond and femtosecond time regimes by Z-scan technique. Results show that the dispersion of GO in DMF exhibits negative NLR properties in nanosecond time regime, which is mainly attributed to transient thermal effect in the dispersion. The dispersion also exhibits negative NLR in picosecond and femtosecond time regimes, which are arising from sp(2)- hybridized carbon domains and sp(3)- hybridized matrix in GO sheets. To illustrate the relations between NLR and nonlinear absorption (NLA), NLA properties of the dispersion were also studied in nanosecond, picosecond and femtosecond time regimes.

  9. Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell

    PubMed Central

    Dong, Feng; Zhang, Peng; Li, Kexun; Liu, Xianhua; Zhang, Pingping

    2016-01-01

    In this work, Cu2O nanoparticles were deposited on a carbon cloth cathode using a facile electrochemical method. The morphology of the modified cathode, which was characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) tests, showed that the porosity and specific surface area of the cathode improved with longer deposition times. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) results showed that cupric oxide and cuprous oxide coexisted on the carbon cloth, which improved the electrochemical activity of cathode. The cathode with a deposition time of 100 s showed the best performance, with a power density twice that of bare carbon cloth. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) results revealed that moderate deposition of nano copper oxide on carbon cloth could dramatically reduce the charge transfer resistance, which contributed to the enhanced electrochemical performance. The mediation mechanism of copper oxide nanocatalyst was illustrated by the fact that the recycled conversion between cupric oxide and cuprous oxide accelerated the electron transfer efficiency on the cathode. PMID:28335366

  10. Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell.

    PubMed

    Dong, Feng; Zhang, Peng; Li, Kexun; Liu, Xianhua; Zhang, Pingping

    2016-12-09

    In this work, Cu₂O nanoparticles were deposited on a carbon cloth cathode using a facile electrochemical method. The morphology of the modified cathode, which was characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) tests, showed that the porosity and specific surface area of the cathode improved with longer deposition times. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) results showed that cupric oxide and cuprous oxide coexisted on the carbon cloth, which improved the electrochemical activity of cathode. The cathode with a deposition time of 100 s showed the best performance, with a power density twice that of bare carbon cloth. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) results revealed that moderate deposition of nano copper oxide on carbon cloth could dramatically reduce the charge transfer resistance, which contributed to the enhanced electrochemical performance. The mediation mechanism of copper oxide nanocatalyst was illustrated by the fact that the recycled conversion between cupric oxide and cuprous oxide accelerated the electron transfer efficiency on the cathode.

  11. A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells

    PubMed Central

    Da Han; Liu, Xuejiao; Zeng, Fanrong; Qian, Jiqin; Wu, Tianzhi; Zhan, Zhongliang

    2012-01-01

    Tremendous efforts to develop high-efficiency reduced-temperature (≤ 600°C) solid oxide fuel cells are motivated by their potentials for reduced materials cost, less engineering challenge, and better performance durability. A key obstacle to such fuel cells arises from sluggish oxygen reduction reaction kinetics on the cathodes. Here we reported that an oxide hybrid, featuring a nanoporous Sm0.5Sr0.5CoO3−δ (SSC) catalyst coating bonded onto the internal surface of a high-porosity La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) backbone, exhibited superior catalytic activity for oxygen reduction reactions and thereby yielded low interfacial resistances in air, e.g., 0.021 Ω cm2 at 650°C and 0.043 Ω cm2 at 600°C. We further demonstrated that such a micro-nano porous hybrid, adopted as the cathode in a thin LSGM electrolyte fuel cell, produced impressive power densities of 2.02 W cm−2 at 650°C and 1.46 W cm−2 at 600°C when operated on humidified hydrogen fuel and air oxidant. PMID:22708057

  12. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel with Hf addition

    NASA Astrophysics Data System (ADS)

    Dou, Peng; Kimura, Akihiko; Kasada, Ryuta; Okuda, Takanari; Inoue, Masaki; Ukai, Shigeharu; Ohnuki, Somei; Fujisawa, Toshiharu; Abe, Fujio; Jiang, Shan; Yang, Zhigang

    2017-03-01

    The nanoparticles in an Al-alloyed high-Cr oxide dispersion strengthened (ODS) ferritic steel with Hf addition, i.e., SOC-16 (Fe-15Cr-2W-0.1Ti-4Al-0.62Hf-0.35Y2O3), have been examined by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Relative to an Al-alloyed high-Cr ODS ferritic steel without Hf addition, i.e., SOC-9 (Fe-15.5Cr-2W-0.1Ti-4Al-0.35Y2O3), the dispersion morphology and coherency of the oxide nanoparticles in SOC-16 were significantly improved. Almost all the small nanoparticles (diameter <10 nm) in SOC-16 were found to be consistent with cubic Y2Hf2O7 oxides with the anion-deficient fluorite structure and coherent with the bcc steel matrix. The larger particles (diameter >10 nm) were also mainly identified as cubic Y2Hf2O7 oxides with the anion-deficient fluorite structure. The results presented here are compared with those of SOC-9 with a brief discussion of the underlying mechanisms of the unusual thermal and irradiation stabilities of the oxides as well as the superior strength, excellent irradiation tolerance and extraordinary corrosion resistance of SOC-16.

  13. Radiation resistance of oxide dispersion strengthened alloys: Perspectives from in situ observations and rate theory calculations

    DOE PAGES

    Liu, Xiang; Miao, Yinbin; Li, Meimei; ...

    2018-04-15

    Here, in situ ion irradiation and rate theory calculations were employed to directly compare the radiation resistance of an oxide dispersion strengthened alloy with that of a conventional ferritic/martensitic alloy. Compared to the rapid buildup of dislocation loops, loop growth, and formation of network dislocations in the conventional ferritic/martensitic alloy, the superior radiation resistance of the oxide dispersion strengthened alloy is manifested by its stable dislocation structure under the same irradiation conditions. Thus, the results are consistent with rate theory calculations, which show that high-density nanoparticles can significantly reduce freely migrating defects and suppress the buildup of clustered defects.

  14. Radiation resistance of oxide dispersion strengthened alloys: Perspectives from in situ observations and rate theory calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang; Miao, Yinbin; Li, Meimei

    Here, in situ ion irradiation and rate theory calculations were employed to directly compare the radiation resistance of an oxide dispersion strengthened alloy with that of a conventional ferritic/martensitic alloy. Compared to the rapid buildup of dislocation loops, loop growth, and formation of network dislocations in the conventional ferritic/martensitic alloy, the superior radiation resistance of the oxide dispersion strengthened alloy is manifested by its stable dislocation structure under the same irradiation conditions. Thus, the results are consistent with rate theory calculations, which show that high-density nanoparticles can significantly reduce freely migrating defects and suppress the buildup of clustered defects.

  15. Strong White Photoluminescence from Carbon-Incorporated Silicon Oxide Fabricated by Preferential Oxidation of Silicon in Nano-Structured Si:C Layer

    NASA Astrophysics Data System (ADS)

    Vasin, Andriy V.; Ishikawa, Yukari; Shibata, Noriyoshi; Salonen, Jarno; Lehto, Vesa-Pekka

    2007-05-01

    A new approach to development of light-emitting SiO2:C layers on Si wafer is demonstrated. Carbon-incorporated silicon oxide was fabricated by three-step procedure: (1) formation of the porous silicon (por-Si) layer by ordinary anodization in HF:ethanol solution; (2) carbonization at 1000 °C in acetylene flow (formation of por-Si:C layer); (3) oxidation in the flow of moisturized argon at 800 °C (formation of SiO2:C layer). Resulting SiO2:C layer exhibited very strong and stable white photoluminescence at room temperature. It is shown that high reactivity of water vapor with nano-crystalline silicon and inertness with amorphous carbon play a key role in the formation of light-emitting SiO2:C layer.

  16. Low Temperature Propane Oxidation over Co 3O 4 based Nano-array Catalysts. Ni Dopant Effect, Reaction Mechanism and Structural Stability

    DOE PAGES

    Ren, Zheng; Wu, Zili; Gao, Puxian; ...

    2015-06-09

    Low temperature propane oxidation has been achieved by Co 3O 4-based nano-array catalysts featuring low catalytic materials loading. The Ni doping into the Co 3O 4 lattice has led to enhanced reaction kinetics at low temperature by promoting the surface lattice oxygen activity. In situ DRIFTS investigation in tandem with isotopic oxygen exchange reveals that the propane oxidation proceeds via Mars-van Krevelen mechanism where surface lattice oxygen acts as the active site whereas O 2 in the reaction feed does not directly participate in CO 2 formation. The Ni doping promotes the formation of less stable carbonates on the surfacemore » to facilitate the CO 2 desorption. The thermal stability of Ni doped Co 3O 4 decreases with increased Ni concentration while catalytic activity increases. A balance between enhanced activity and compromised thermal stability shall be considered in the Ni doped Co 3O 4 nano-array catalysts for low temperature hydrocarbon oxidation. This study provides useful and timely guidance for rational catalyst design toward low temperature catalytic oxidation.« less

  17. Oxide dispersion strengthened nickel produced by nonreactive milling

    NASA Technical Reports Server (NTRS)

    Arias, A.

    1976-01-01

    It is shown that oxide dispersion strengthened alloys can be produced by a postulated nonreactive milling mechanism whereby the dispersoid is trapped at the interface between welding metal powder particles. This interparticle welding is possible because, without a suitable and sufficiently vigorous chemical reaction between the metal powder particles and the milling fluid, no protective, weld-preventing reaction coating is formed on these particles. Using water as the nonreactive milling fluid, Ni - 1.8-vol % thoria and Ni - 1.8-vol % yttria alloys with 1093 C tensile strengths ranging from 122.3 to 141.5 MN/sq m (17,900 to 20,500 psi) were produced by nonreactive milling.

  18. Fabrication of flower-like micro/nano dual scale structured copper oxide surfaces: Optimization of self-cleaning properties via Taguchi design

    NASA Astrophysics Data System (ADS)

    Moosavi, Saeideh Sadat; Norouzbeigi, Reza; Velayi, Elmira

    2017-11-01

    In the present work, copper oxide superhydrophobic surface is fabricated on a copper foil via the chemical bath deposition (CBD) method. The effects of some influential factors such as initial concentrations of Cu (II) ions and the surface energy modifier, solution pH, reaction and modification steps time on the wettability property of copper oxide surface were evaluated using Taguchi L16 experimental design. Results showed that the initial concentration of Cu (II) has the most significant impact on the water contact angle and wettability characteristics. The XRD, SEM, AFM and FTIR analyses were used to characterize the copper oxide surfaces. The Water contact angle (WCA) and contact angle hysteresis (CAH) were also measured. The SEM results indicated the formation of a flower-like micro/nano dual-scale structure of copper oxide on the substrate. This structure composed of numerous nano-petals with a thickness of about 50 nm. As a result, a copper oxide hierarchical surface with WCA of 168.4°± 3.5° and CAH of 2.73° exhibited the best superhydrophobicity under proposed optimum condition. This result has been obtained just by 10 min hydrolysis reaction. Besides, this surface showed a good stability under acidic and saline conditions.

  19. Advanced oxide dispersion strengthened sheet alloys for improved combustor durability

    NASA Technical Reports Server (NTRS)

    Henricks, R. J.

    1981-01-01

    Burner design modifications that will take advantage of the improved creep and cyclic oxidation resistance of oxide dispersion strengthened (ODS) alloys while accommodating the reduced fatigue properties of these materials were evaluated based on preliminary analysis and life predictions, on construction and repair feasibility, and on maintenance and direct operating costs. Two designs - the film cooled, segmented louver and the transpiration cooled, segmented twin Wall - were selected for low cycle fatigue (LCF) component testing. Detailed thermal and structural analysis of these designs established the strain range and temprature at critical locations resulting in predicted lives of 10,000 cycles for MA 956 alloy. The ODs alloys, MA 956 and HDA 8077, demonstrated a 167 C (300 F) temperature advantage over Hastelloy X alloy in creep strength and oxidation resistance. The MA 956 alloy was selected for mechanical property and component test evaluations. The MA 956 alloy was superior to Hastelloy X in LCF component testing of the film cooled, segmented louver design.

  20. Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens

    NASA Astrophysics Data System (ADS)

    Faure, Bertrand; Salazar-Alvarez, German; Ahniyaz, Anwar; Villaluenga, Irune; Berriozabal, Gemma; De Miguel, Yolanda R.; Bergström, Lennart

    2013-04-01

    This review describes recent efforts on the synthesis, dispersion and surface functionalization of the three dominating oxide nanoparticles used for photocatalytic, UV-blocking and sunscreen applications: titania, zinc oxide, and ceria. The gas phase and liquid phase synthesis is described briefly and examples are given of how weakly aggregated photocatalytic or UV-absorbing oxide nanoparticles with different composition, morphology and size can be generated. The principles of deagglomeration are reviewed and the specific challenges for nanoparticles highlighted. The stabilization of oxide nanoparticles in both aqueous and non-aqueous media requires a good understanding of the magnitude of the interparticle forces and the surface chemistry of the materials. Quantitative estimates of the Hamaker constants in various media and measurements of the isoelectric points for the different oxide nanoparticles are presented together with an overview of different additives used to prepare stable dispersions. The structural and chemical requirements and the various routes to produce transparent photocatalytic and nanoparticle-based UV-protecting coatings, and UV-blocking sunscreens are described and discussed.

  1. Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens

    PubMed Central

    Faure, Bertrand; Salazar-Alvarez, German; Ahniyaz, Anwar; Villaluenga, Irune; Berriozabal, Gemma; De Miguel, Yolanda R; Bergström, Lennart

    2013-01-01

    This review describes recent efforts on the synthesis, dispersion and surface functionalization of the three dominating oxide nanoparticles used for photocatalytic, UV-blocking and sunscreen applications: titania, zinc oxide, and ceria. The gas phase and liquid phase synthesis is described briefly and examples are given of how weakly aggregated photocatalytic or UV-absorbing oxide nanoparticles with different composition, morphology and size can be generated. The principles of deagglomeration are reviewed and the specific challenges for nanoparticles highlighted. The stabilization of oxide nanoparticles in both aqueous and non-aqueous media requires a good understanding of the magnitude of the interparticle forces and the surface chemistry of the materials. Quantitative estimates of the Hamaker constants in various media and measurements of the isoelectric points for the different oxide nanoparticles are presented together with an overview of different additives used to prepare stable dispersions. The structural and chemical requirements and the various routes to produce transparent photocatalytic and nanoparticle-based UV-protecting coatings, and UV-blocking sunscreens are described and discussed. PMID:27877568

  2. An oxide dispersion strengthened Ni-W-Al alloy with superior high temperature strength

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1976-01-01

    An experimental oxide dispersion strengthened (ODS) alloy, WAZ-D, derived from the WAZ-20 composition was produced by the mechanical alloying process. Cast WAZ-20 is strengthened by both a high refractory metal content, and 70 volume percent of gamma prime. The ODS alloy WAZ-D was responsive to variables of alloy content, of attritor processing, of consolidation by extrusion, and of heat treatment. The best material produced had large highly elongated grains. It exhibited tensile strengths generally superior to a comparable cast alloy. The ODS alloy exhibited high temperature stress rupture life considerably superior to any known cast superalloy. Tensile and rupture ductility were low, as was intermediate temperature rupture life. Very low creep rates were noted and some specimens failed with essentially no third stage creep. Also the benefit derived from the oxide dispersion, far out-weighed that from the elongated microstructure alone.

  3. Effect of zinc oxide nanoparticles on dielectric behavior of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Kumar, Pankaj; Malik, Praveen

    2018-05-01

    In this work, phase transition and dielectric behavior of nematic liquid crystal (NLC), E7 and zinc oxide (ZnO) nanoparticles (NPs) doped nematic liquid crystals are investigated. Effect of nano-particles dispersion is analyzed and compared with the dielectric behavior of E7 and E7-ZnO. Frequency dependent dielectric permittivity at various temperatures in nematic phase for E7 and E7-ZnO sample is also studied.

  4. Influence of Dispersant and Heat Treatment on the Morphology of Nanocrystalline Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Pan, Yusong; Xiong, Dangsheng

    2010-10-01

    Natural biological hard tissues are biocomposites of proteins and hydroxyapatite (HA) with superior strength. Nanometer scale HAp is the key material to manufacture bone substitute. In this work, nano-sized HA particles were synthesized by a wet method using orthophosphoric acid and calcium hydroxide as raw materials. The prepared nanocrystalline HAp was characterized for its phase purity and nano-scale morphological structure by XRD, TEM, and FTIR. The influences of heat treatment temperature and dispersant on the properties of HAp were also investigated. The results indicated that nano-particles were pure single-phase HAp with a diameter of 25-70 nm and length of 50-180 nm depending on heat treatment temperature. The morphology and crystallite size of HAp change with heat treatment temperature. After heat treating, the crystallinity of these nano-particles increased and its morphology transformed from needle-like to sphere-like structure. The dispersant is beneficial to prevent the growth of HA particles and provide a uniform particle size distribution. Moreover, the HAp tends to form small agglomerates in the absence of dispersant.

  5. Uniting Superhydrophobic, Superoleophobic and Lubricant Infused Slippery Behavior on Copper Oxide Nano-structured Substrates

    NASA Astrophysics Data System (ADS)

    Ujjain, Sanjeev Kumar; Roy, Pritam Kumar; Kumar, Sumana; Singha, Subhash; Khare, Krishnacharya

    2016-10-01

    Alloys, specifically steel, are considered as the workhorse of our society and are inimitable engineering materials in the field of infrastructure, industry and possesses significant applications in our daily life. However, creating a robust synthetic metallic surface that repels various liquids has remained extremely challenging. The wettability of a solid surface is known to be governed by its geometric nano-/micro structure and the chemical composition. Here, we are demonstrating a facile and economical way to generate copper oxide micro-nano structures with spherical (0D), needle (1D) and hierarchical cauliflower (3D) morphologies on galvanized steel substrates using a simple chemical bath deposition method. These nano/micro textured steel surfaces, on subsequent coating of a low surface energy material display excellent superhydrophobic, superoleophobic and slippery behavior. Polydimethylsiloxane coated textured surfaces illustrate superhydrophobicity with water contact angle about 160°(2) and critical sliding angle ~2°. When functionalized with low-surface energy perfluoroalkylsilane, these surfaces display high repellency for low surface tension oils as well as hydrocarbons. Among them, the hierarchical cauliflower morphology exhibits re-entrant structure thereby showing the best superoleophobicity with contact angle 149° for dodecane. Once infused with a lubricant like silicone oil, they show excellent slippery behavior with low contact angle hysteresis (~ 2°) for water drops.

  6. Quantification of oxide particle composition in model oxide dispersion strengthened steel alloys.

    PubMed

    London, A J; Lozano-Perez, S; Moody, M P; Amirthapandian, S; Panigrahi, B K; Sundar, C S; Grovenor, C R M

    2015-12-01

    Oxide dispersion strengthened ferritic steels (ODS) are being considered for structural components of future designs of fission and fusion reactors because of their impressive high-temperature mechanical properties and resistance to radiation damage, both of which arise from the nanoscale oxide particles they contain. Because of the critical importance of these nanoscale phases, significant research activity has been dedicated to analysing their precise size, shape and composition (Odette et al., Annu. Rev. Mater. Res. 38 (2008) 471-503 [1]; Miller et al., Mater. Sci. Technol. 29(10) (2013) 1174-1178 [2]). As part of a project to develop new fuel cladding alloys in India, model ODS alloys have been produced with the compositions, Fe-0.3Y2O3, Fe-0.2Ti-0.3Y2O3 and Fe-14Cr-0.2Ti-0.3Y2O3. The oxide particles in these three model alloys have been studied by APT in their as-received state and following ion irradiation (as a proxy for neutron irradiation) at various temperatures. In order to adequately quantify the composition of the oxide clusters, several difficulties must be managed, including issues relating to the chemical identification (ranging and variable peak-overlaps); trajectory aberrations and chemical structure; and particle sizing. This paper presents how these issues can be addressed by the application of bespoke data analysis tools and correlative microscopy. A discussion follows concerning the achievable precision in these measurements, with reference to the fundamental limiting factors. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Synthesis of α-MoO3 nano-flakes by dry oxidation of RF sputtered Mo thin films and their application in gas sensing

    NASA Astrophysics Data System (ADS)

    Dwivedi, Priyanka; Dhanekar, Saakshi; Das, Samaresh

    2016-11-01

    Synthesis of orthorhombic (α) MoO3 nano-flakes by dry oxidation of RF sputtered Mo thin film is presented. The influence of Mo thickness variation, oxidation temperature and time on the crystallographic structure, surface morphology and roughness of MoO3 thin films was studied using SEM, AFM, XRD and Raman spectroscopy. A structural study shows that MoO3 is polycrystalline in nature with an α phase. It was noticed that oxidation temperature plays an important role in the formation of nano-flakes. The synthesis technique proposed is simple and suitable for large scale productions. The synthesis parameters were optimized for the fabrication of sensors. Chrome gold-based IDE (interdigitated electrodes) structures were patterned for the electrical detection of organic vapors. Sensors were exposed to wide range 5-100 ppm of organic vapors like ethanol, acetone, IPA (isopropanol alcohol) and water vapors. α-MoO3 nano-flakes have demonstrated selective sensing to acetone in the range of 10-100 ppm at 150 °C. The morphology of such nanostructures has potential in applications such as sensor devices due to their high surface area and thermal stability.

  8. Corrosion of oxide dispersion strengthened iron-chromium steels and tantalum in fluoride salt coolant: An in situ compatibility study for fusion and fusion-fission hybrid reactor concepts

    NASA Astrophysics Data System (ADS)

    El-Dasher, Bassem; Farmer, Joseph; Ferreira, James; de Caro, Magdalena Serrano; Rubenchik, Alexander; Kimura, Akihiko

    2011-12-01

    Primary candidate classes of materials for future nuclear power plants, whether they be fission, fusion or hybrids, include oxide dispersion strengthened (ODS) ferritic steels which rely on a dispersion of nano-oxide particles in the matrix for both mechanical strength and swelling resistance, or tantalum alloys which have an inherent neutron-induced swelling resistance and high temperature strength. For high temperature operation, eutectic molten lithium containing fluoride salts are attractive because of their breeding capability as well as their relatively high thermal capacity, which allow for a higher average operating temperature that increases power production. In this paper we test the compatibility of Flinak (LiF-NaF-KF) salts on ODS steels, comparing the performance of current generation ODS steels developed at Kyoto University with the commercial alloy MA956. Pure tantalum was also tested for comparative purposes. In situ data was obtained for temperatures ranging from 600 to 900 °C using a custom-built high temperature electrochemical impedance spectroscopy cell. Results for ODS steels show that steel/coolant interfacial resistance increases from 600 to 800 °C due to an aluminum enriched layer forming at the surface, however an increase in temperature to 900 °C causes this layer to break up and aggressive attack to occur. Performance of current generation ODS steels surpassed that of the MA956 ODS steel, with an in situ impedance behavior similar or better than that of pure tantalum.

  9. Nanoscale Structure and Interaction of Compact Assemblies of Carbon Nano-Materials

    NASA Astrophysics Data System (ADS)

    Timsina, Raju; Qiu, Xiangyun

    Carbon-based nano-materials (CNM) are a diverse family of multi-functional materials under research and development world wide. Our work is further motivated by the predictive power of the physical understanding of the underlying structure-interaction-function relationships. Here we present results form recent studies of the condensed phases of several model CNMs in complexation with biologically derived molecules. Specifically, we employ X-ray diffraction (XRD) to determine nanoscale structures and use the osmotic stress method to quantify their interactions. The systems under investigation are dsDNA-dispersed carbon nanotubes (dsDNA-CNT), bile-salt-dispersed carbon nanotubes, and surfactant-assisted assemblies of graphene oxides. We found that salt and molecular crowding are both effective in condensing CNMs but the resultant structures show disparate phase behaviors. The molecular interactions driving the condensation/assembly sensitively depend on the nature of CNM complex surface chemistry and range from hydrophobic to electrostatic to entropic forces.

  10. Regeneration of titanium oxide nano-coated long-period grating biosensor

    NASA Astrophysics Data System (ADS)

    Dominik, M.; Niedziółka-Jönsson, J.; Roźniecka, E.; Wachnicki, Ł.; Godlewski, M.; Mikulic, P.; Bock, Wojtek J.; Śmietana, M.

    2016-05-01

    This work presents an application of sodium hydroxide (NaOH) as an effective method for regeneration of titanium oxide (TiOx) nano-coated long-period grating (LPG) biosensor. Below 100 nm in thickness TiOx coating was deposited with atomic layer deposition (ALD) method on LPGs for enhancing their refractive index sensitivity up to 2912 nm/RIU in RI range 1.33-1.36 RIU. Next, the sensors were biofunctionalized in order to immobilize receptor (biotin) on their surface and used for selective avidin detection. After successful biofunctionalization process and avidin detection the sensors were washed in NaOH and biofunctionalized again. The proposed method for recovering the sensor does not cause decrease in its functional properties. As a result of the applied procedure the biosensor was fully regenerated.

  11. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    NASA Astrophysics Data System (ADS)

    Song, Hoon Sub; Park, Moon Gyu; Croiset, Eric; Chen, Zhongwei; Nam, Sung Chan; Ryu, Ho-Jung; Yi, Kwang Bok

    2013-09-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H2S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H2S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H2S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H2 and CO2 on H2S adsorption was also investigated. The presence of hydrogen in the H2S stream had a positive effect on the removal of H2S since it allows a reducing environment for Znsbnd O and Znsbnd S bonds, leading to more active sites (Zn2+) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO2) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H2S and CO2.

  12. The dependence of nano-contact magnetoresistance on the bulk scattering spin asymmetry in CoFe alloys with oxidation impurities

    NASA Astrophysics Data System (ADS)

    Shiokawa, Yohei; Jung, JinWon; Otsuka, Takahiko; Sahashi, Masashi

    2015-08-01

    Nano-contact magnetoresistance (NCMR) spin-valves (SVs) using an AlOx nano-oxide-layer (NOL) have numerous nanocontacts in the thin AlOx oxide layer. The NCMR theoretically depends on the bulk scattering spin asymmetry ( β) of the ferromagnetic material in the nanocontacts. To determine the relationship between NCMR and β, we investigated the dependence of NCMR on the composition of the ferromagnetic material Co1-xFex. The samples were annealed at 270 °C and 380 °C to enhance the MR ratio. For both annealing temperatures, the magnetorsistance ratio in the low-resistance area product region at less than 1 Ω μm2 was maximized for Co0.5Fe0.5. To evaluate β exactly, we fabricated current-perpendicular-to-plane giant magnetoresistance SVs with Co1-xFex/Cu/Co1-xFex layers and used Valet and Fert's theory to solve the diffusion equation of the spin accumulation for a ferromagnetic layer/non-ferromagnetic layer of five layers with a finite diffusion length. The evaluated β for Co1-xFex was also maximized for Co0.5Fe0.5. Additionally, to determine the difference between the experimental MR ratio of NCMR SVs and the theoretical MR ratio, we fabricated Co0.5Fe0.5 with oxygen impurities and estimated the decrease in β with increasing oxygen impurity concentration. Our Co0.5Fe0.5 nano-contacts fabricated using ion-assisted oxidation may contain oxygen impurities, and the oxygen impurities might cause a decrease in β and the MR ratio.

  13. Dispersion of nano-nickel into γ-Al 2O 3 studied by positron

    NASA Astrophysics Data System (ADS)

    Jun, Zhu; Wang, S. J.; Luo, X. H.

    2003-10-01

    The positron annihilation lifetime spectra were measured as a function of the content of the nano-nickel, of temperature, as well as of the heating time for the supported nano-nickel catalyst that was prepared by mechanical mixture nano-metal nickel particles with gamma-alumina ( γ-Al 2O 3). The lifetime spectra were well resolved into four lifetime components. The longest lifetime τ4 was assigned to ortho-positronium annihilating in the secondary pore of the γ-Al 2O 3. The results showed that part of the nano-nickel had entered into γ-Al 2O 3 by thermal diffusion at heating above 200°C and had interacted with the face of the γ-Al 2O 3, but the length of diffusion is not very large.

  14. Two-stage epitaxial growth of vertically-aligned SnO 2 nano-rods on(001) ceria

    DOE PAGES

    Solovyov, Vyacheslav F.; Wu, Li-jun; Rupich, Martin W.; ...

    2014-09-20

    Growth of high-aspect ratio oriented tin oxide, SnO 2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO 2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO 2 deposit. Second, vertical SnO 2nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 μm long nano-rods with an average diameter of ≈20 nm.

  15. Development of oxide dispersion strengthened turbine blade alloy by mechanical alloying

    NASA Technical Reports Server (NTRS)

    Merrick, H. F.; Curwick, L. R. R.; Kim, Y. G.

    1977-01-01

    There were three nickel-base alloys containing up to 18 wt. % of refractory metal examined initially for oxide dispersion strengthening. To provide greater processing freedom, however, a leaner alloy was finally selected. This base alloy, alloy D, contained 0.05C/15Cr / 2Mo/4W/2Ta/4.5Al/2.Ti/015Zr/0.01-B/Bal. Ni. Following alloy selection, the effect of extrusion, heat treatment, and oxide volume fraction and size on microstructure and properties were examined. The optimum structure was achieved in zone annealed alloy D which contained 2.5 vol. % of 35 mm Y2O3 and which was extruded 16:1 at 1038 C.

  16. Nano-silymarin provides protection against γ-radiation-induced oxidative stress in cultured human embryonic kidney cells.

    PubMed

    Adhikari, Manish; Arora, Rajesh

    2015-10-01

    Radiation can produce biological damage, mainly oxidative stress, via production of free radicals, including reactive oxygen species (ROS). Nanoparticles are of interest as radioprotective agents, particularly due to their high solubility and bioavailability. Silymarin is a hepatoprotective agent but has poor oral bioavailability. Silymarin was formulated as a nanoemulsion with the aim of improving its bioavailability and therapeutic efficacy. In the present study, we evaluated self-nanoemulsifying drug delivery systems (SNEDDS) formulated with surfactants and co-surfactants. Nano-silymarin was characterized by estimating % transmittance, globule size, and polydispersity index, and by transmission electron microscopy (TEM). The nano-silymarin obtained was in the range of 3-8nm diameter. With regard to DNA damage, measured by a plasmid relaxation assay, maximum protection was obtained at 10μg/mL. Cytotoxicity of nano-silymarin to human embryonic kidney (HEK) cells was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Protective efficacy against γ-radiation was assessed by reduction in micronucleus frequency and ROS generation, using the 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) assay. Radiation-induced apoptosis was estimated by microscopic analysis and cell-cycle estimation. Nano-silymarin was radioprotective, supporting the possibility of developing new approaches to radiation protection via nanotechnology. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Effect of impurity on high pressure behavior of nano indium titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitnis, Abhishek, E-mail: abhishekchitnis87@gmail.com; Garg, Nandini; Mishra, A. K.

    2015-06-24

    Angle dispersive x-ray diffraction studies were carried out on a mixture of nano particles of indium titanate, indium oxide, and disordered TiO{sub 2} upto pressures of ∼ 45 GPa. Our studies show that indium titanate undergoes a partial decomposition to its constituent high pressure oxides. However, concomitantly a very small fraction of indium titanate transforms to a denser phase at ∼ 27.5 GPa. This transformation to new phase was found to be irreversible. At this pressure even cubic In{sub 2}O{sub 3} transformed to the In{sub 2}O{sub 3} (II) (iso-structural to Rh{sub 2}O{sub 3} (II)) phase, without any signature of themore » intermediate corundum phase. The high pressure In{sub 2}O{sub 3} (II) phase transforms to the corundum structure on release of pressure. These studies indicate that the presence of a large fraction of seed impurities could have facilitated the decomposition of indium titanate into its constituent oxides at the cost of its incomplete transformation to the high pressure denser phase.« less

  18. Nanoparticulate NaA zeolite composites for MRI: Effect of iron oxide content on image contrast

    NASA Astrophysics Data System (ADS)

    Gharehaghaji, Nahideh; Divband, Baharak; Zareei, Loghman

    2018-06-01

    In the current study, Fe3O4/NaA nanocomposites with various amounts of Fe3O4 (3.4, 6.8 & 10.2 wt%) were synthesized and characterized to study the effect of nano iron oxide content on the magnetic resonance (MR) image contrast. The cell viability of the nanocomposites was investigated by MTT assay method. T2 values as well as r2 relaxivities were determined with a 1.5 T MRI scanner. The results of the MTT assay confirmed the nanocomposites cytocompatibility up to 6.8% of the iron oxide content. Although the magnetization saturations and susceptibility values of the nanocomposites were increased as a function of the iron oxide content, their relaxivity was decreased from 921.78 mM-1 s-1 for the nanocomposite with the lowest iron oxide content to 380.16 mM-1 s-1 for the highest one. Therefore, Fe3O4/NaA nanocomposite with 3.4% iron oxide content led to the best MR image contrast. Nano iron oxide content and dispersion in the nanocomposites structure have important role in the nanocomposite r2 relaxivity and the MR image contrast. Aggregation of the iron oxide nanoparticles is a limiting factor in using of the high iron oxide content nanocomposites.

  19. Structure-property relationships in oxide-dispersed iron-beryllia alloys

    NASA Technical Reports Server (NTRS)

    Wolf, S.; Grant, N. J.

    1977-01-01

    Two BeO dispersed iron alloys containing about 2.5 and 5.5 v/o dispersoid were produced by attritting, internally oxidizing, and extruding dilute, prealloyed Fe-Be powders. As-extruded alloys were given various thermomechanical treatments involving room temperature swaging and annealing above and below the allotropic transformation temperature. The elevated temperature rupture strengths were measured and correlated with changes in structure; strengthening trends were examined in the light of proposed models for such strengthening. The results obtained showed that the elevated temperature strength was determined by the oxide interparticle spacing (IPS) in recrystallized material and IPS as well as prior deformation in swaged specimens. In fact, a parametric correlation was found between rupture strength values in the longitudinal direction with prestrain during swaging. The overall pattern in strength and microstructural observations were more consistent with a strength-stored energy (substructure) dependence than a strength-grain shape (grain aspect ratio) relation.

  20. Sonocatalytic degradation of humic acid by N-doped TiO2 nano-particle in aqueous solution.

    PubMed

    Kamani, Hossein; Nasseri, Simin; Khoobi, Mehdi; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein

    2016-01-01

    Un-doped and N-doped TiO2 nano-particles with different nitrogen contents were successfully synthesized by a simple sol-gel method, and were characterized by X-ray diffraction, field emission scanning electron microscopy, Energy dispersive X-ray analysis and UV-visible diffuse reflectance spectra techniques. Then enhancement of sonocatalytic degradation of humic acid by un-doped and N-doped TiO2 nano-particles in aqueous environment was investigated. The effects of various parameters such as initial concentration of humic acid, N-doping, and the degradation kinetics were investigated. The results of characterization techniques affirmed that the synthesis of un-doped and N-doped TiO2 nano-particles was successful. Degradation of humic acid by using different nano-particles obeyed the first-order kinetic. Among various nano-particles, N-doped TiO2 with molar doping ratio of 6 % and band gap of 2.92 eV, exhibited the highest sonocatalytic degradation with an apparent-first-order rate constant of 1.56 × 10(-2) min(-1). The high degradation rate was associated with the lower band gap energy and well-formed anatase phase. The addition of nano-catalysts could enhance the degradation efficiency of humic acid as well as N-doped TiO2 with a molar ratio of 6 %N/Ti was found the best nano-catalyst among the investigated catalysts. The sonocatalytic degradation with nitrogen doped semiconductors could be a suitable oxidation process for removal of refractory pollutants such as humic acid from aqueous solution.

  1. Uniting Superhydrophobic, Superoleophobic and Lubricant Infused Slippery Behavior on Copper Oxide Nano-structured Substrates

    PubMed Central

    Ujjain, Sanjeev Kumar; Roy, Pritam Kumar; Kumar, Sumana; Singha, Subhash; Khare, Krishnacharya

    2016-01-01

    Alloys, specifically steel, are considered as the workhorse of our society and are inimitable engineering materials in the field of infrastructure, industry and possesses significant applications in our daily life. However, creating a robust synthetic metallic surface that repels various liquids has remained extremely challenging. The wettability of a solid surface is known to be governed by its geometric nano-/micro structure and the chemical composition. Here, we are demonstrating a facile and economical way to generate copper oxide micro-nano structures with spherical (0D), needle (1D) and hierarchical cauliflower (3D) morphologies on galvanized steel substrates using a simple chemical bath deposition method. These nano/micro textured steel surfaces, on subsequent coating of a low surface energy material display excellent superhydrophobic, superoleophobic and slippery behavior. Polydimethylsiloxane coated textured surfaces illustrate superhydrophobicity with water contact angle about 160°(2) and critical sliding angle ~2°. When functionalized with low-surface energy perfluoroalkylsilane, these surfaces display high repellency for low surface tension oils as well as hydrocarbons. Among them, the hierarchical cauliflower morphology exhibits re-entrant structure thereby showing the best superoleophobicity with contact angle 149° for dodecane. Once infused with a lubricant like silicone oil, they show excellent slippery behavior with low contact angle hysteresis (~ 2°) for water drops. PMID:27752098

  2. Simple approach to detection and estimation of photoactivity of silver particles on graphene oxide in aqueous-organic dispersion

    NASA Astrophysics Data System (ADS)

    Vlasov, D. V.; Vlasova, T. D.; Apresyan, L. A.; Krasovskiy, V. I.; Feofanov, I. N.; Kazaryan, M. A.

    2015-12-01

    The effect of sediment flotation was observed in dispersion of graphene oxide flakes with Ag-particles deposited thereon in the aqueous-organic (containing dimethylformamide) under the visible light action, with subsequent stabilization of the dispersion, which does not occur in the absence of Ag-particles. The main reason for this laser light induced movement of sediment graphene oxide flakes may be associated with the appearance of small bubbles. The further development of this approach seem to be able to estimate the of graphene flakes photoactivity with different activating particles.

  3. Two-stage epitaxial growth of vertically-aligned SnO2 nano-rods on (001) ceria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovyov, VF; Wu, LJ; Rupich, MW

    2014-12-15

    Growth of high-aspect ratio oriented tin oxide, SnO2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO2 deposit. Second, vertical SnO2 nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 mu m long nano-rods with an average diameter of approximate to 20 nm. 2014 Elsevier B.V. All rights reserved.

  4. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.

    PubMed

    Chunmiao, Yuan; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-15

    The inerting effect of nano-sized TiO2 powder on ignition sensitivity of nano and micro Ti powders was investigated with a Mike 3 apparatus. "A little is not good enough" is also suitable for micro Ti powders mixed with nano-sized solid inertants. MIE of the mixtures did not significantly increase until the TiO2 percentage exceeded 50%. Nano-sized TiO2 powders were ineffective as an inertant when mixed with nano Ti powders, especially at higher dust loadings. Even with 90% nano TiO2 powder, mixtures still showed high ignition sensitivity because the statistic energy was as low as 2.1 mJ. Layer fires induced by ignited but unburned metal particles may occur for micro Ti powders mixed with nano TiO2 powders following a low level dust explosion. Such layer fires could lead to a violent dust explosion after a second dispersion. Thus, additional attention is needed to prevent metallic layer fires even where electric spark potential is low. In the case of nano Ti powder, no layer fires were observed because of less flammable material involved in the mixtures investigated, and faster flame propagation in nanoparticle clouds. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Markers of lipid oxidative damage among office workers exposed intermittently to air pollutants including nanoTiO2 particles.

    PubMed

    Pelclova, Daniela; Zdimal, Vladimir; Kacer, Petr; Komarc, Martin; Fenclova, Zdenka; Vlckova, Stepanka; Zikova, Nadezda; Schwarz, Jaroslav; Makes, Otakar; Navratil, Tomas; Zakharov, Sergey; Bello, Dhimiter

    2017-03-01

    Nanoscale titanium dioxide (nanoTiO2) is a commercially important nanomaterial used in numerous applications. Experimental studies with nanotitania have documented lung injury and inflammation, oxidative stress, and genotoxicity. Production workers in TiO2 manufacturing with a high proportion of nanoparticles and a mixture of other air pollutants, such as gases and organic aerosols, had increased markers of oxidative stress, including DNA and protein damage, as well as lipid peroxidation in their exhaled breath condensate (EBC) compared to unexposed controls. Office workers were observed to get intermittent exposures to nanoTiO2 during their process monitoring. The aim of this study was to investigate the impact of such short-term exposures on the markers of health effects in office workers relative to production workers from the same factory. Twenty-two office employees were examined. They were occupationally exposed to (nano)TiO2 aerosol during their daily visits of the production area for an average of 14±9 min/day. Median particle number concentration in office workers while in the production area was 2.32×104/cm3. About 80% of the particles were <100 nm in diameter. A panel of biomarkers of lipid oxidation, specifically malondialdehyde (MDA), 4-hydroxy-trans-hexenal (HHE), 4-hydroxy-trans-nonenal (HNE), 8-isoprostaglandin F2α (8-isoprostane), and aldehydes C6-C12, were studied in the EBC and urine of office workers and 14 unexposed controls. Nine markers of lipid oxidation were elevated in the EBC of office employees relative to controls (p<0.05); only 8-isoprostane and C11 were not increased. Significant association was found in the multivariate analysis between their employment in the TiO2 production plant and EBC markers of lipid oxidation. No association was seen with age, lifestyle factors, or environmental air contamination. The EBC markers in office employees reached about 50% of the levels measured in production workers, and the difference between

  6. Surface plasmon dispersion analysis in the metal-oxide-metal tunnel diode

    NASA Technical Reports Server (NTRS)

    Donohue, J. F.; Wang, E. Y.

    1987-01-01

    A detailed model of surface plasmon dispersion in the metal-oxide-metal tunnel diode is presented in order to clarify the spectral emission from this diode. The model predicts the location of the spectral peaks and the emission between the peaks by considering the effects of retardation on the surface plasmon. A nonradiative mode is found to play a major role in the transition from the visible to UV peaks in the diode spectra.

  7. Nano-material and method of fabrication

    DOEpatents

    Menchhofer, Paul A; Seals, Roland D; Howe, Jane Y; Wang, Wei

    2015-02-03

    A fluffy nano-material and method of manufacture are described. At 2000.times. magnification the fluffy nanomaterial has the appearance of raw, uncarded wool, with individual fiber lengths ranging from approximately four microns to twenty microns. Powder-based nanocatalysts are dispersed in the fluffy nanomaterial. The production of fluffy nanomaterial typically involves flowing about 125 cc/min of organic vapor at a pressure of about 400 torr over powder-based nano-catalysts for a period of time that may range from approximately thirty minutes to twenty-four hours.

  8. Multi-Shell Nano-CarboScavengers for Petroleum Spill Remediation

    PubMed Central

    Daza, Enrique A.; Misra, Santosh K.; Scott, John; Tripathi, Indu; Promisel, Christine; Sharma, Brajendra K.; Topczewski, Jacek; Chaudhuri, Santanu; Pan, Dipanjan

    2017-01-01

    Increasingly frequent petroleum contamination in water bodies continues to threaten our ecosystem, which lacks efficient and safe remediation tactics both on macro and nanoscales. Current nanomaterial and dispersant remediation methods neglect to investigate their adverse environmental and biological impact, which can lead to a synergistic chemical imbalance. In response to this rising threat, a highly efficient, environmentally friendly and biocompatible nano-dispersant has been developed comprising a multi-shelled nanoparticle termed ‘Nano-CarboScavengers’ (NCS) with native properties for facile recovery via booms and mesh tools. NCS treated different forms of petroleum oil (raw and distillate form) with considerable efficiency (80% and 91%, respectively) utilizing sequestration and dispersion abilities in tandem with a ~10:1 (oil: NCS; w/w) loading capacity. In extreme contrast with chemical dispersants, the NCS was found to be remarkably benign in in vitro and in vivo assays. Additionally, the carbonaceous nature of NCS broke down by human myeloperoxidase and horseradish peroxidase enzymes, revealing that incidental biological uptake can enzymatically digest the sugar based core. PMID:28157204

  9. Multi-Shell Nano-CarboScavengers for Petroleum Spill Remediation

    NASA Astrophysics Data System (ADS)

    Daza, Enrique A.; Misra, Santosh K.; Scott, John; Tripathi, Indu; Promisel, Christine; Sharma, Brajendra K.; Topczewski, Jacek; Chaudhuri, Santanu; Pan, Dipanjan

    2017-02-01

    Increasingly frequent petroleum contamination in water bodies continues to threaten our ecosystem, which lacks efficient and safe remediation tactics both on macro and nanoscales. Current nanomaterial and dispersant remediation methods neglect to investigate their adverse environmental and biological impact, which can lead to a synergistic chemical imbalance. In response to this rising threat, a highly efficient, environmentally friendly and biocompatible nano-dispersant has been developed comprising a multi-shelled nanoparticle termed ‘Nano-CarboScavengers’ (NCS) with native properties for facile recovery via booms and mesh tools. NCS treated different forms of petroleum oil (raw and distillate form) with considerable efficiency (80% and 91%, respectively) utilizing sequestration and dispersion abilities in tandem with a ~10:1 (oil: NCS; w/w) loading capacity. In extreme contrast with chemical dispersants, the NCS was found to be remarkably benign in in vitro and in vivo assays. Additionally, the carbonaceous nature of NCS broke down by human myeloperoxidase and horseradish peroxidase enzymes, revealing that incidental biological uptake can enzymatically digest the sugar based core.

  10. A 3D graphene interface (Si-doped) of Ag matrix with excellent electronic transmission and thermal conductivity via nano-assembly modification

    NASA Astrophysics Data System (ADS)

    Ye, Xianzhu; Li, Ming; Zhang, Yafei

    2018-04-01

    The wide development of electronic materials requires higher load capacity and high temperature resistance. In this study, a novel architecture was fabricated consisting of a 3D reduced graphene oxide (rGO)-Si interface using a simple nano-assembly sintering to achieve high current capacity and excellent thermal features. Via the analysis of catalytic oxidation for methanol, the loading catalytic activity of nano-Ag still remained to a certain extent for the composite with 0.8 vol.% rGO. The final Ag-rGO composite apparently possesses a higher initial oxidation temperature and lower rate of oxidation for internal passing and shielding, and the thermal conductivity is significantly enhanced from 344 to 407 W m‑1 K‑1. Importantly, with a 3D synergistic transportation network, the resistivity of the Ag-rGO composite is much lower than pure Ag, and with a longer conductive time under a stress condition of current density of 6.0  ×  104 A cm‑2. Thermal-electronic features demonstrate that the dispersed graphene interface can efficiently suppress the primary failure pathways (high temperature) in Ag matrix and make it uniquely efficient for the advancement of microscale and thermal-management electronics.

  11. [Biomimetic mineralization of rod-like cellulose nano-whiskers and spectrum analysis].

    PubMed

    Qu, Ping; Wang, Xuan; Cui, Xiao-xia; Zhang, Li-ping

    2012-05-01

    Cellulose nano-whiskers/nano-hydroxyapatite composite was prepared with biomimetic mineralization using rod-like cellulose nano-whiskers as template. The cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope-energy dispersive analysis of X-rays (SEM-EDXA). Variation and distribution of carbon, oxygen, calcium, and phosphorus in the composites were studied. The morphologies and growth mechanism of nano-hydroxyapatite were analyzed. The results showed that nano-hydroxyapatite was formed on the surface of cellulose nano-whiskers; the carbon-oxygen ratio of cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite was 1.81 and 1.54, respectively; the calcium-phosphorus ratio of the composite was 1.70. The nucleation of nano-hydroxyapatite was around the hydroxyl groups of cellulose nano-whiskers. It is suggested that there is coordination between the hydroxyl groups of cellulose nano-whiskers and calcium ions of nano-hydroxyapatite. The nano-hydroxyapatite can distribute in the matrix of cellulose nano-whiskers. From the atomic force microscope (AFM) images, we can see that the diameter of the spherical nano-hydroxyapatite particles was about 20 nm.

  12. Experimental study and analysis of lubricants dispersed with nano Cu and TiO2 in a four-stroke two wheeler

    NASA Astrophysics Data System (ADS)

    Sarma, Pullela K.; Srinivas, Vadapalli; Rao, Vedula Dharma; Kumar, Ayyagari Kiran

    2011-12-01

    The present investigation summarizes detailed experimental studies with standard lubricants of commercial quality known as Racer-4 of Hindustan Petroleum Corporation (India) dispersed with different mass concentrations of nanoparticles of Cu and TiO2. The test bench is fabricated with a four-stroke Hero-Honda motorbike hydraulically loaded at the rear wheel with proper instrumentation to record the fuel consumption, the load on the rear wheel, and the linear velocity. The whole range of data obtained on a stationery bike is subjected to regression analysis to arrive at various relationships between fuel consumption as a function of brake power, linear velocity, and percentage mass concentration of nanoparticles in the lubricant. The empirical relation correlates with the observed data with reasonable accuracy. Further, extension of the analysis by developing a mathematical model has revealed a definite improvement in brake thermal efficiency which ultimately affects the fuel economy by diminishing frictional power in the system with the introduction of nanoparticles into the lubricant. The performance of the engine seems to be better with nano Cu-Racer-4 combination than the one with nano TiO2.

  13. Experimental study and analysis of lubricants dispersed with nano Cu and TiO2 in a four-stroke two wheeler

    PubMed Central

    2011-01-01

    The present investigation summarizes detailed experimental studies with standard lubricants of commercial quality known as Racer-4 of Hindustan Petroleum Corporation (India) dispersed with different mass concentrations of nanoparticles of Cu and TiO2. The test bench is fabricated with a four-stroke Hero-Honda motorbike hydraulically loaded at the rear wheel with proper instrumentation to record the fuel consumption, the load on the rear wheel, and the linear velocity. The whole range of data obtained on a stationery bike is subjected to regression analysis to arrive at various relationships between fuel consumption as a function of brake power, linear velocity, and percentage mass concentration of nanoparticles in the lubricant. The empirical relation correlates with the observed data with reasonable accuracy. Further, extension of the analysis by developing a mathematical model has revealed a definite improvement in brake thermal efficiency which ultimately affects the fuel economy by diminishing frictional power in the system with the introduction of nanoparticles into the lubricant. The performance of the engine seems to be better with nano Cu-Racer-4 combination than the one with nano TiO2. PMID:21711765

  14. Experimental study and analysis of lubricants dispersed with nano Cu and TiO2 in a four-stroke two wheeler.

    PubMed

    Sarma, Pullela K; Srinivas, Vadapalli; Rao, Vedula Dharma; Kumar, Ayyagari Kiran

    2011-03-17

    The present investigation summarizes detailed experimental studies with standard lubricants of commercial quality known as Racer-4 of Hindustan Petroleum Corporation (India) dispersed with different mass concentrations of nanoparticles of Cu and TiO2. The test bench is fabricated with a four-stroke Hero-Honda motorbike hydraulically loaded at the rear wheel with proper instrumentation to record the fuel consumption, the load on the rear wheel, and the linear velocity. The whole range of data obtained on a stationery bike is subjected to regression analysis to arrive at various relationships between fuel consumption as a function of brake power, linear velocity, and percentage mass concentration of nanoparticles in the lubricant. The empirical relation correlates with the observed data with reasonable accuracy. Further, extension of the analysis by developing a mathematical model has revealed a definite improvement in brake thermal efficiency which ultimately affects the fuel economy by diminishing frictional power in the system with the introduction of nanoparticles into the lubricant. The performance of the engine seems to be better with nano Cu-Racer-4 combination than the one with nano TiO2.

  15. Creep and stress rupture of oxide dispersion strengthened mechanically alloyed Inconel alloy MA 754

    NASA Technical Reports Server (NTRS)

    Howson, T. E.; Tien, J. K.; Stulga, J. E.

    1980-01-01

    The creep and stress rupture behavior of the mechanically alloyed oxide dispersion strengthened nickel-base alloy MA 754 was studied at 760, 982 and 1093 C. Tensile specimens with a fine, highly elongated grain structure, oriented parallel and perpendicular to the longitudinal grain direction were tested at various stresses in air under constant load. It was found that the apparent stress dependence was large, with power law exponents ranging from 19 to 33 over the temperature range studied. The creep activation energy, after correction for the temperature dependence of the elastic modulus, was close to but slightly larger than the activation energy for self diffusion. Rupture was intergranular and the rupture ductility as measured by percentage elongation was generally low, with values ranging from 0.5 to 16 pct. The creep properties are rationalized by describing the creep rates in terms of an effective stress which is the applied stress minus a resisting stress consistent with the alloy microstructure. Values of the resisting stress obtained through a curve fitting procedure are found to be close to the values of the particle by-pass stress for this oxide dispersion strengthened alloy, as calculated from the measured oxide particle distribution.

  16. Rhodamine B in dissolved and nano-bound forms: Indicators for light-based advanced oxidation processes.

    PubMed

    Shabat-Hadas, Efrat; Mamane, Hadas; Gitis, Vitaly

    2017-10-01

    Rhodamine B (RhB) is a water-soluble fluorescent dye that is often used to determine flux and flow direction in biotechnological and environmental applications. In the current research, RhB in soluble (termed free) and virus-bound (termed nano-bound) forms was used as an efficiency indicator for three environmental processes. The degradation of free and nano-bound RhB by (i) direct UV photolysis and (ii) UV/H 2 O 2 advanced oxidation process (AOP) was studied in a collimated beam apparatus equipped with medium-pressure mercury vapor lamp. The degradation by (iii) solar light-induced photocatalysis was studied in a solar simulator with titanium dioxide and bismuth photocatalysts. Results showed negligible RhB degradation by direct UV and solar light, and its nearly linear degradation by UV/H 2 O 2 and photocatalysis/photosensitization in the presence of a solid catalyst. Considerable adsorption of free RhB on bismuth-based catalyst vs. no adsorption of nano-bound RhB on this catalyst or of any form of the dye on titanium dioxide produced two important conclusions. First, the better degradation of free RhB by the bismuth catalyst suggests that close proximity of a catalyst hole and the decomposing molecule significantly influences degradation. Second, the soluble form of the dye might not be the best option for its use as an indicator. Nano-bound RhB showed high potential as an AOP indicator, featuring possible separation from water after the analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Development of novel nano-composite membranes as introduction systems for mass spectrometers: Contrasting nano-composite membranes and conventional inlet systems

    NASA Astrophysics Data System (ADS)

    Miranda, Luis Diego

    This dissertation presents the development of novel nano-composite membranes as introduction systems for mass spectrometers. These nano-composite membranes incorporate anodic aluminum oxide (AAO) membranes as templates that can be used by themselves or modified by a variety of chemical deposition processes. Two types of nano-composite membranes are presented. The first nano-composite membrane has carbon deposited within the pores of an AAO membrane. The second nano-composite membrane is made by coating an AAO membrane with a thin polymer film. The following chapters describe the transmission properties these nano-composite membranes and compare them to conventional mass spectrometry introduction systems. The nano- composite membranes were finally coupled to the inlet system of an underwater mass spectrometer revealing their utility in field deployments.

  18. Nano-composites for water remediation: a review.

    PubMed

    Tesh, Sarah J; Scott, Thomas B

    2014-09-17

    As global populations continue to increase, the pressure on water supplies will inevitably intensify. Consequently the international need for more efficient and cost effective water remediation technologies will also rise. The introduction of nano-technology into the industry may represent a significant advancement and zero-valent iron nano-particles (INPs) have been thoroughly studied for potential remediation applications. However, the application of water dispersed INP suspensions is limited and somewhat contentious on the grounds of safety, whilst INP reaction mechanisms, transport properties and ecotoxicity are areas still under investigation. Theoretically, the development of nano-composites containing INPs to overcome these issues provides the logical next step for developing nano-materials that are better suited to wide application across the water industry. This review provides an overview of the range of static, bulk nano-composites containing INPs being developed, whilst highlighting the limitations of individual solutions, overall classes of technology, and lack of comparative testing for nano-composites. The review discusses what further developments are needed to optimize nano-composite water remediation systems to subsequently achieve commercial maturity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells.

    PubMed

    Passagne, Isabelle; Morille, Marie; Rousset, Marine; Pujalté, Igor; L'azou, Béatrice

    2012-09-28

    Silica nanoparticles (nano-SiO(2)) are one of the most popular nanomaterials used in industrial manufacturing, synthesis, engineering and medicine. While inhalation of nanoparticles causes pulmonary damage, nano-SiO(2) can be transported into the blood and deposit in target organs where they exert potential toxic effects. Kidney is considered as such a secondary target organ. However, toxicological information of their effect on renal cells and the mechanisms involved remain sparse. In the present study, the cytotoxicity of nano-SiO(2) of different sizes was investigated on two renal proximal tubular cell lines (human HK-2 and porcine LLC-PK(1)). The molecular pathways involved were studied with a focus on the involvement of oxidative stress. Nanoparticle characterization was performed (primary nanoparticle size, surface area, dispersion) in order to investigate a potential relationship between their physical properties and their toxic effects. Firstly, evidence of particle internalization was obtained by transmission electron microscopy and conventional flux cytometry techniques. The use of specific inhibitors of endocytosis pathways showed an internalization process by macropinocytosis and clathrin-mediated endocytosis for 100 nm nano-SiO(2) nanoparticles. These nanoparticles were localized in vesicles. Toxicity was size- and time-dependent (24h, 48 h, 72 h). Indeed, it increased as nanoparticles became smaller. Secondly, analysis of oxidative stress based on the assessment of ROS (reactive oxygen species) production (DHE, dihydroethidium) or lipid peroxidation (MDA, malondialdehyde) clearly demonstrated the involvement of oxidative stress in the toxicity of 20 nm nano-SiO(2). The induction of antioxidant enzymes (catalase, GSTpi, thioredoxin reductase) could explain their lesser toxicity with 100 nm nano-SiO(2). Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-02-01

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices.

  1. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus

    PubMed Central

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-01-01

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices. PMID:26899567

  2. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus.

    PubMed

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-02-22

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices.

  3. Organic-inorganic hybrid polyionic liquid based polyoxometalate as nano porous material for selective oxidation of sulfides

    NASA Astrophysics Data System (ADS)

    Rafiee, Ezzat; Shahebrahimi, Shabnam

    2017-07-01

    Organic-inorganic hybrid nano porous materials based on poly(ionic liquid)-polyoxometalate (PIL-POM) were reported. These hybrid materials were synthesized by the reaction of 4-vinyl pyridine with 1,3-propanesultone, followed by the polymerization and also sulfonate-functionalized cross-linked poly(4-vinylpyridine) and combining these polymers with H5PMo10V2O40 (PMo10V2). Activity of prepared PIL-PMo10V2 hybrids were investigated as catalysts for oxidation of sulfides with H2O2 as oxidant. For understanding catalytic activities of the PIL-PMo10V2 hybrids in oxidation of sulfides, effect of catalyst composition, substrate, and reaction conditions were studied. The results show that the PIL-PMo10V2 hybrids are active as selective heterogeneous catalysts for oxidation of sulfides and can be recovered and reused. The catalyst was characterized by FT-IR, TGA-DSC, XRD, SEM/EDX, BET, CV and zeta potential measurement. Also, average molecular weight of prepared catalysts were measured.

  4. Dispersion strengthened copper

    DOEpatents

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1990-01-09

    A composition of matter is described which is comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide. A method for making this composition of matter is also described. This invention relates to the art of powder metallurgy and, more particularly, it relates to dispersion strengthened metals.

  5. Preparation, characterization and in vivo evaluation of curcumin self-nano phospholipid dispersion as an approach to enhance oral bioavailability.

    PubMed

    Allam, Ahmed N; Komeil, Ibrahim A; Fouda, Mohamed A; Abdallah, Ossama Y

    2015-07-15

    The aim of this study was to examine the efficacy of self-nano phospholipid dispersions (SNPDs) based on Phosal(®) to improve the oral bioavailability of curcumin (CUR). SNPDs were prepared with Phosal(®) 53 and Miglyol 812 at different surfactant ratio. Formulations were evaluated for particle size, polydispersity index, zeta potential, and robustness toward dilution, TEM as well as in vitro drug release. The in vivo oral absorption of selected formulations in comparison to drug suspension was evaluated in rats. Moreover, formulations were assessed for in vitro characteristic changes before and after storage. The SNPDs were miscible with water in any ratio and did not show any phase separation or drug precipitation. All the formulas were monodisperse with nano range size from 158±2.6 nm to 610±6.24 nm. They passed the pharmacopeial tolerance for CUR dissolution. No change in dissolution profile and physicochemical characteristics was detected after storage. CUR-SNPDs are found to be more bioavailable compared with suspension during an in vivo study in rats and in vitro release studies failed to imitate the in vivo conditions. These formulations might be new alternative carriers that enhance the oral bioavailability of poorly water-soluble molecules, such as CUR. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Modified Unzipping Technique to Prepare Graphene Nano-Sheets

    NASA Astrophysics Data System (ADS)

    Al-Tamimi, B. H.; Farid, S. B. H.; Chyad, F. A.

    2018-05-01

    Graphene nano-sheets have been prepared via unzipping approach of multiwall carbon nanotubes (MWCNTs). The method includes two chemical-steps, in which a multi-parameter oxidation step is performed to achieve unzipping the carbon nanotubes. Then, a reduction step is carried out to achieve the final graphene nano-sheets. In the oxidation step, the oxidant material was minimized and balanced with longer curing time. This modification is made in order to reduce the oxygen-functional groups at the ends of graphene basal planes, which reduce its electrical conductivity. In addition, a similar adjustment is achieved in the reduction step, i.e. the consumed chemicals is reduced which make the overall process more economic and eco-friendly. The prepared nano-sheets were characterized by atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. The average thickness of the prepared graphene was about 5.23 nm.

  7. Applying graphene oxide nano-film over a polycarbonate nanoporous membrane to monitor E. coli by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Krishna Pal; Dhek, Neeraj Singh; Nehra, Anuj; Ahlawat, Sweeti; Puri, Anu

    2017-01-01

    Nano-biosensors are excellent monitoring tools for rapid, specific, sensitive, inexpensive, in-field, on-line, and/or real-time detection of pathogens in foods, soil, air, and water samples. A variety of nano-materials (metallic, polymeric, and/or carbon-based) were employed to enhance the efficacy, efficiency, and sensitivity of these nano-biosensors, including graphene-based materials, especially graphene oxide (GO)-based materials. GO bears many oxygen-bearing groups, enabling ligand conjugation at the high density critical for sensitive detection. We have fabricated GO-modified nano-porous polycarbonate track-etched (PCTE) membranes that were conjugated to an Escherichia coli-specific antibody (Ab) and used to detect E. coli. The random distribution of nanopores on the PCTE membrane surface and the bright coating of the GO onto the membrane were confirmed by scanning electron microscope. Anti-E. coli β-gal Abs were conjugated to the GO surface via 1-ethyl-3,3-dimethylaminopropyl carbodiimide hydrochloride-N-hydroxysuccinimide chemistry; antibody coating was confirmed by the presence of a characteristic IR peak near 1600 cm- 1. A non-corresponding Ab (anti-Pseudomonas) was used as a negative control under identical conditions. When E. coli interacted anti-E.coli β-gal with Ab-coated GO-nano-biosensor units, we observed a clear shift in the IR peak from 3373.14 to 3315 cm- 1; in contrast, we did not observe any shift in IR peaks when the GO unit was coated with the non-corresponding Ab (anti-Pseudomonas). Therefore, the detection of E. coli using the described GO-nano-sensor unit is highly specific, is highly selective and can be applied for real-time monitoring of E. coli with a detection limit between 100 μg/mL and 10 μg/mL, similar to existing detection systems.

  8. Applying graphene oxide nano-film over a polycarbonate nanoporous membrane to monitor E. coli by infrared spectroscopy.

    PubMed

    Singh, Krishna Pal; Dhek, Neeraj Singh; Nehra, Anuj; Ahlawat, Sweeti; Puri, Anu

    2017-01-05

    Nano-biosensors are excellent monitoring tools for rapid, specific, sensitive, inexpensive, in-field, on-line, and/or real-time detection of pathogens in foods, soil, air, and water samples. A variety of nano-materials (metallic, polymeric, and/or carbon-based) were employed to enhance the efficacy, efficiency, and sensitivity of these nano-biosensors, including graphene-based materials, especially graphene oxide (GO)-based materials. GO bears many oxygen-bearing groups, enabling ligand conjugation at the high density critical for sensitive detection. We have fabricated GO-modified nano-porous polycarbonate track-etched (PCTE) membranes that were conjugated to an Escherichia coli-specific antibody (Ab) and used to detect E. coli. The random distribution of nanopores on the PCTE membrane surface and the bright coating of the GO onto the membrane were confirmed by scanning electron microscope. Anti-E. coli β-gal Abs were conjugated to the GO surface via 1-ethyl-3,3-dimethylaminopropyl carbodiimide hydrochloride-N-hydroxysuccinimide chemistry; antibody coating was confirmed by the presence of a characteristic IR peak near 1600cm(-1). A non-corresponding Ab (anti-Pseudomonas) was used as a negative control under identical conditions. When E. coli interacted anti-E.coli β-gal with Ab-coated GO-nano-biosensor units, we observed a clear shift in the IR peak from 3373.14 to 3315cm(-1); in contrast, we did not observe any shift in IR peaks when the GO unit was coated with the non-corresponding Ab (anti-Pseudomonas). Therefore, the detection of E. coli using the described GO-nano-sensor unit is highly specific, is highly selective and can be applied for real-time monitoring of E. coli with a detection limit between 100μg/mL and 10μg/mL, similar to existing detection systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Structural, electronic structure and antibacterial properties of graphene-oxide nano-sheets

    NASA Astrophysics Data System (ADS)

    Sharma, Aditya; Varshney, Mayora; Nanda, Sitansu Sekhar; Shin, Hyun Joon; Kim, Namdong; Yi, Dong Kee; Chae, Keun-Hwa; Ok Won, Sung

    2018-04-01

    Correlation between the structural/electronic structure properties and bio-activity of graphene-based materials need to be thoroughly evaluated before their commercial implementation in the health and environment precincts. To better investigate the local hybridization of sp2/sp3 orbitals of the functional groups of graphene-oxide (GO) and their execution in the antimicrobial mechanism, we exemplify the antibacterial activity of GO sheets towards the Escherichia coli bacteria (E. coli) by applying the field-emission scanning electron microscopy (FESEM), near edge X-ray absorption fine structure (NEXAFS) and scanning transmission X-ray microscope (STXM) techniques. C K-edge and O K-edge NEXAFS spectra have revealed lesser sp2 carbon atoms in the aromatic ring and attachment of functional oxygen groups at GO sheets. Entrapment of E. coli bacteria by GO sheets is evidenced by FESEM investigations and has also been corroborated by nano-scale imaging of bacteria using the STXM. Spectroscopy evidence of functional oxygen moieties with GO sheets and physiochemical entrapment of E. coli bacteria have assisted us to elaborate the mechanism of cellular oxidative stress-induced disruption of bacterial membrane.

  10. Preparing nano-hole arrays by using porous anodic aluminum oxide nano-structural masks for the enhanced emission from InGaN/GaN blue light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoang-Duy; Nguyen, Hieu Pham Trung; Lee, Jae-jin; Mho, Sun-Il

    2012-12-01

    We report on the achievement of the enhanced cathodoluminescence (CL) from InGaN/GaN light-emitting diodes (LEDs) by using roughening surface. Nanoporous anodic aluminum oxide (AAO) mask was utilized to form nano-hole arrays on the surface of InGaN/GaN LEDs. AAO membranes with ordered hexagonal structures were fabricated from aluminum foils by a two-step anodization method. The average pore densities of ˜1.0 × 1010 cm-2 and 3.0 × 1010 cm-2 were fabricated with the constant anodization voltages of 25 and 40 V, respectively. Anodic porous alumina film with a thickness of ˜600 nm has been used as a mask for the induced couple plasma etching process to fabricate nano-hole arrays on the LED surface. Diameter and depth of nano-holes can be controlled by varying the etching duration and/or the diameter of AAO membranes. Due to the reduction of total internal reflection obtained in the patterned samples, we have observed that the cathodoluminescence intensity of LEDs with nanoporous structures is increased up to eight times compared to that of samples without using nanoporous structure.

  11. Processable conductive graphene/polyethylene nanocomposites: Effects of graphene dispersion and polyethylene blending with oxidized polyethylene on rheology and microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, Muhammad Z.; Abdala, Ahmed A.; Mittal, Vikas

    Poor dispersion of graphene in non-polar polymer matrices creates composites with limited applications. A method to improve the dispersion of graphene in polyethylene (PE) via blending PE with oxidized PE (OPE) is examined. Graphene was produced by simultaneous thermal exfoliation and reduction of graphite oxide. Nanocomposites of graphene with PE as well as graphene with PE/OPE-blends were prepared by solvent blending. Improved dispersion of graphene in PE/OPE blends substantially decreases percolation from both rheological (0.3 vol%) and electrical (0.13 vol%) measurements compared to neat PE nanocomposites (1 and 0.29 vol%), respectively. A universal Brownian dispersion of graphene in polymers wasmore » concluded similar to that of nanotubes, following the Doi-Edwards theory. Micromechanical models, such as Mori-Tanaka and Halpin-Tsai models, modeled the mechanical properties of the nanocomposites. The nanocomposites microstructure, studied by small angle x-ray scattering, confirmed better dispersion of graphene at lower loadings and the formation of surface fractals in the blend/graphene nanocomposites; whereas only mass fractals were observed in neat PE/graphene nanocomposites.« less

  12. Nano-based PCMs for building energy efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Kaushik

    Thermal storage using phase change materials (PCMs) is seen as a viable method for improving the energy efficiency of buildings. PCMs have been used in building applications in various forms PCM slurries in heat exchangers, macro- or microencapsulated PCMs in building envelopes, bulk PCM for modulating photovoltaic temperatures, etc. In the last decade a new class of PCMs, called nano-enhanced PCM (or nanoPCM), has been extensively investigated with the goal of improving the heat transfer and thermal storage properties of PCMs. NanoPCMs can primarily be categorized as nano-encapsulated PCMs and nanoparticle-PCM composites. The former are nano-sized capsules in which themore » PCM forms the core and is surrounded by a high-conductivity membrane or shell. The latter consist of PCM supported within nanostructures or nanoparticles dispersed in PCMs. This article reviews the current state of nanoPCM synthesis and characterization of their heat transfer and thermal storage properties. Further, a critical review of nanoPCM applications and their potential energy benefits is performed. Nano-enhanced PCMs exhibit higher thermal conductivities than regular PCM. However, whether the higher conductivity is desirable in all applications and if the property enhancements are worth the cost and effort needed to create nanoPCMs are questions that still need to be answered.« less

  13. Carbon nanofibers wrapped with zinc oxide nano-flakes as promising electrode material for supercapacitors.

    PubMed

    Pant, Bishweshwar; Park, Mira; Ojha, Gunendra Prasad; Park, Juhyeong; Kuk, Yun-Su; Lee, Eun-Jung; Kim, Hak-Yong; Park, Soo-Jin

    2018-07-15

    A combination of electrospinning technique and hydrothermal process was carried out to fabricate zinc oxide nano-flakes wrapped carbon nanofibers (ZnO/CNFs) composite as an effective electrode material for supercapacitor. The morphology of the as-synthesized composite clearly revealed that the carbon nanofibers were successfully wrapped with ZnO nano-flakes. The electrochemical performance of the as-synthesized nanocomposite electrode was evaluated by the cyclic voltammetry (CV), galvanostatic charge-discharge (GDC), and electrochemical impedance spectroscopy (EIS), and compared with the pristine ZnO nanofibers. It was found that the composite exhibited a higher specific capacitance (260 F/g) as compared to pristine ZnO NFs (118 F/g) at the scan rate of 5 mV/s. Furthermore, the ZnO/CNFs composite also exhibited good capacity retention (73.33%). The obtained results indicated great potential applications of ZnO/CNFs composite in developing energy storage devices with high energy and power densities. The present work might provide a new route for utilizing ZnO based composites for energy storage applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Treatment of landfill leachate biochemical effluent using the nano-Fe3O4/Na2S2O8 system: Oxidation performance, wastewater spectral analysis, and activator characterization.

    PubMed

    Liu, Zhanmeng; Li, Xian; Rao, Zhiwei; Hu, Fengping

    2018-02-15

    Nano-Fe 3 O 4 was used as heterogeneous catalyst to activate Na 2 S 2 O 8 for the generation of the sulfate radicals (SO 4 - ) to oxidize the residual pollutants in landfill leachate biochemical effluent. The oxidation performance, wastewater spectral analysis and activator characterization were discussed. Oxidation experimental result shows that nano-Fe 3 O 4 has obvious catalytic effect on Na 2 S 2 O 8 and can significantly enhance the oxidation efficiencies of Na 2 S 2 O 8 on landfill leachate biochemical effluent, with COD and color removals above 63% and 95%, respectively. Based on the analyses of three-dimensional excitation emission matrix fluorescence spectrum (3DEEM), ultraviolet-visible spectra (UV-vis), and Fourier Transform infrared spectroscopy (FTIR) of wastewater samples before and after treatment, it can be concluded that the pollution level of dissolved organic matter (DOM) declined and that the humic acid (HA) fractions were efficiently degraded into small molecules of fulvic acid (FA) fractions with less weight and stable structure. Compared to the raw wastewater sample, the aromaticity and substituent groups of the DOM were lessened in the treated wastewater sample. Moreover, the main structure of the organics and functional groups were changed by the Fe 3 O 4 /Na 2 S 2 O 8 system, with substantial decrease of conjugated double bonds. The micro morphology of nano-Fe 3 O 4 was characterized before and after reaction by the methods of scanning electron microscope spectra (SEM), X-ray diffraction pattern (XRD), and X-ray photoelectron spectroscopy (XPS). The XRD pattern analysis showed that nano-Fe 3 O 4 was oxidized into r-Fe 2 O 3 and that the particle size of it also became smaller after reaction. XPS was employed to analyze the content and iron valence on the nano-Fe 3 O 4 surface, and it can be found that the ratio of Fe 3+ /Fe 2+ decreased from 1.8 before reaction to 0.8 after reaction. From the SEM analysis after the treatment, it was

  15. Nano-Bio Engineered Carbon Dot-Peptide Functionalized Water Dispersible Hyperbranched Polyurethane for Bone Tissue Regeneration.

    PubMed

    Gogoi, Satyabrat; Maji, Somnath; Mishra, Debasish; Devi, K Sanjana P; Maiti, Tapas Kumar; Karak, Niranjan

    2017-03-01

    The present study delves into a combined bio-nano-macromolecular approach for bone tissue engineering. This approach relies on the properties of an ideal scaffold material imbued with all the chemical premises required for fostering cellular growth and differentiation. A tannic acid based water dispersible hyperbranched polyurethane is fabricated with bio-nanohybrids of carbon dot and four different peptides (viz. SVVYGLR, PRGDSGYRGDS, IPP, and CGGKVGKACCVPTKLSPISVLYK) to impart target specific in vivo bone healing ability. This polymeric bio-nanocomposite is blended with 10 wt% of gelatin and examined as a non-invasive delivery vehicle. In vitro assessment of the developed polymeric system reveals good osteoblast adhesion, proliferation, and differentiation. Aided by this panel of peptides, the polymeric bio-nanocomposite exhibits in vivo ectopic bone formation ability. The study on in vivo mineralization and vascularization reveals the occurrence of calcification and blood vessel formation. Thus, the study demonstrates carbon dot/peptide functionalized hyperbranched polyurethane gel for bone tissue engineering application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fabrication of a Ni nano-imprint stamp for an anti-reflective layer using an anodic aluminum oxide template.

    PubMed

    Park, Eun-Mi; Lim, Seung-Kyu; Ra, Senug-Hyun; Suh, Su-Jung

    2013-11-01

    Aluminum anodizing can alter pore diameter, density distribution, periodicity and layer thickness in a controlled way. Because of this property, porous type anodic aluminum oxide (AAO) was used as a template for nano-structure fabrication. The alumina layer generated at a constant voltage increased the pore size from 120 nm to 205 nm according to an increasing process time from 60 min to 150 min. The resulting fabricated AAO templates had pore diameters at or less than 200 nm. Ni was sputtered as a conductive layer onto this AAO template and electroplated using DC and pulse power. Comparing these Ni stamps, those generated from electroplating using on/reverse/off pulsing had an ordered pillar array and maintained the AAO template morphology. This stamp was used for nano-imprinting on UV curable resin coated glass wafer. Surface observations via electron microscopy showed that the nano-imprinted patterned had the same shape as the AAO template. A soft mold was subsequently fabricated and nano-imprinted to form a moth-eye structure on the glass wafer. An analysis of the substrate transmittance using UV-VIS/NIR spectroscopy showed that the transmittance of the substrate with the moth-eye structure was 5% greater that the non-patterned substrate.

  17. Synthesis of sea urchin-like carbon nanotubes on nano-diamond powder.

    PubMed

    Hwang, E J; Lee, S K; Jeong, M G; Lee, Y B; Lim, D S

    2012-07-01

    Carbon nanotubes (CNTs) have unique atomic structure and properties, such as a high aspect ratio and high mechanical, electrical and thermal properties. On the other hand, the agglomeration and entanglement of CNTs restrict their applications. Sea urchin-like multiwalled carbon nanotubes, which have a small aspect ratio, can minimize the problem of dispersion. The high hardness, thermal conductivity and chemical inertness of the nano-diamond powder make it suitable for a wide range of applications in the mechanical and electronic fields. CNTs were synthesized on nano-diamond powder by thermal CVD to fabricate a filler with suitable mechanical properties and chemical stability. This paper reports the growth of CNTs with a sea urchin-like structure on the surface of the nano-diamond powder. Nano-diamond powders were dispersed in an attritional milling system using zirconia beads in ethanol. After the milling process, 3-aminopropyltrimethoxysilane (APS) was added as a linker. Silanization was performed between the nano-diamond particles and the metal catalyst. Iron chloride was used as a catalyst for the fabrication of the CNTs. After drying, catalyst-attached nano-diamond powders could be achieved. The growth of the carbon nanotubes was carried out by CVD. The CNT morphology was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The mean diameter and length of the CNTs were 201 nm and 3.25 microm, respectively.

  18. Construct 3D porous hollow Co3O4 micro-sphere: A potential oxidizer of nano-energetic materials with superior reactivity

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Zheng, Bo; Qiao, Zhiqiang; Chen, Jin; Zhang, Liyuan; Zhang, Long; Li, Zhaoqian; Zhang, Xingquan; Yang, Guangcheng

    2018-06-01

    High energy density and rapid reactivity are the future trend for nano-energetic materials. Energetic performance of nano-energetic materials depends on the interfacial diffusion and mass transfer during the reacted process. However, the development of desired structure to significantly enhance reactivity still remains challenging. Here we focused on the design and preparation of 3D porous hollow Co3O4 micro-spheres, in which gas-blowing agents (air) and maximize interfacial interactions were introduced to enhance mass transport and reduce the diffusion distance between the oxidizer and fuel (Aluminum). The 3D hierarchical Co3O4/Al based nano-energetic materials show a low-onset decomposition temperature (423 °C), and high heat output (3118 J g-1) resulting from porous and hollow nano-structure of Co3O4 micro-spheres. Furthermore, 3D hierarchical Co3O4/Al arrays were directly fabricated on the silicon substrate, which was fully compatible with silicon-based microelectromechanical systems to achieve functional nanoenergetics-on-a-chip. This approach provides a simple and efficient way to fabricate 3D ordered nano-energetic arrays with superior reactivity and the potential on the application in micro-energetic devices.

  19. Nano SnO 2-Al 2O 3 mixed oxide and SnO 2-Al 2O 3-carbon composite oxides as new and novel electrodes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, M.; Venugopal, N.; Raja, K. Phani; Rao, M. Mohan

    New nano-materials like SnO 2-Al 2O 3 and SnO 2-Al 2O 3-carbon were synthesized by a single step hydrothermal method in searching for novel mixed oxides with high electrochemical double layer capacitance. A SnO 2-Al 2O 3-carbon sample was calcined at 600 °C and tested for its performance. The source of carbon was tetrapropyl ammonium hydroxide. The capacitive behavior of SnO 2 was compared to the performance of SnO 2-Al 2O 3, SnO 2-Al 2O 3-carbon and calcined SnO 2-Al 2O 3-carbon using the techniques of cyclic voltammetry, double potential step, chronopotentiometry and E-log I polarization. In 0.1 M NaCl solutions, SnO 2-Al 2O 3 gave the best performance with a value of 119 Fg -1 and cycled 1000 times. The nano-material mixed oxides were characterized by TEM, XRD, ICP-AES and SEM-EDAX.

  20. Silica nanosphere-supported palladium(II) furfural complex as a highly efficient and recyclable catalyst for oxidative amination of aldehydes.

    PubMed

    Sharma, R K; Sharma, Shivani

    2014-01-21

    The present work reports the fabrication of a novel and highly efficient silica nanospheres-based palladium catalyst (SiO2@APTES@Pd-FFR) via immobilization of a palladium complex onto silica nanospheres functionalized with 3-aminopropyltriethoxysilane (APTES), and its catalytic application for the oxidative amination of aldehydes to yield commercially important amides. The structure of the nano-catalyst was confirmed by Solid-state (13)C CPMAS and (29)Si CPMAS NMR spectroscopy, Brunauer-Emmett-Teller (BET) surface area analysis, Fourier transform infrared spectroscopy (FT-IR), Energy dispersive X-ray fluorescence spectroscopy (ED-XRF), Atomic absorption spectroscopy (AAS), Transmission electron microscopy (TEM) and elemental analysis. The nano-catalyst was found to be highly effective for the oxidative amination of aldehydes using hydrogen peroxide as an environmentally benign oxidant to give amides. The effect of various reaction parameters such as temperature, amount of catalyst, reaction time, type of solvent, oxidant used, substrate to oxidant ratio etc. have been demonstrated to achieve high catalytic efficacy. Moreover, this nanostructured catalyst could be recovered with simplicity and reused for several cycles without any significant loss in its catalytic activity. In addition, the stability of the reused nano-catalyst was proved by FT-IR and HRTEM techniques. It is worth noting that the features of mild reaction conditions, simple work-up procedure, high product yield, no use of toxic organic solvents, high turn-over frequency (TOF), and easy recovery and reusability of the present quasi-homogeneous nano-catalyst make this protocol an attractive alternative to the existing catalytic methods for the oxidative amination of aldehydes to furnish industrially important amides.

  1. Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial.

    PubMed

    Yu, Jian; Zhang, Wenyun; Li, Yang; Wang, Gang; Yang, Lidou; Jin, Jianfeng; Chen, Qinghua; Huang, Minghua

    2014-12-23

    Postoperative infections remain a risk factor that leads to failures in oral and maxillofacial artificial bone transplantation. This study aimed to synthesize and evaluate a novel hydroxyapatite whisker (HAPw) / nano zinc oxide (n-ZnO) antimicrobial bone restorative biomaterial. A scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD) were employed to characterize and analyze the material. Antibacterial capabilities against Staphylococcus aureus, Escherichia coli, Candida albicans and Streptococcus mutans were determined by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), and kinetic growth inhibition assays were performed under darkness and simulated solar irradiation. The mode of antibiotic action was observed by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The MIC and MBC were 0.078-1.250 mg ml(-1) and 0.156-2.500 mg ml(-1), respectively. The inhibitory function on the growth of the microorganisms was achieved even under darkness, with gram-positive bacteria found to be more sensitive than gram-negative, and enhanced antimicrobial activity was exhibited under simulated solar excitation compared to darkness. TEM and CLSM images revealed a certain level of bacterial cell membrane destruction after treatment with 1 mg ml(-1) of the material for 12 h, causing the leakage of intracellular contents and bacteria death. These results suggest favorable antibiotic properties and a probable mechanism of the biomaterial for the first time, and further studies are needed to determine its potential application as a postoperative anti-inflammation method in bone transplantation.

  2. Preparation of silver nano-particles immobilized onto chitin nano-crystals and their application to cellulose paper for imparting antimicrobial activity.

    PubMed

    Li, Zhihan; Zhang, Ming; Cheng, Dong; Yang, Rendang

    2016-10-20

    Immobilized silver nano-particles (Ag NPs) possess excellent antimicrobial properties due to their unique surface characteristics. In this paper, immobilized silver nano-particles were synthesized in the presence of chitin nano-crystals (CNC) based on the Tollens mechanism (reduction of silver ion by aldehydes in the chitosan oligosaccharides (COS)) under microwave-assisted conditions. The prepared Ag NPs-loaded CNC nano-composites were then applied onto the paper surface via coating for the preparation of antibacterial paper. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) results confirmed that the Ag NPs were immobilized onto the CNC. The transmission electron microscope (TEM) and scanning electron microscopy (SEM) results further revealed that the spherical Ag NPs (5-12nm) were well dispersed on the surface of CNC. The coated paper made from the Ag NPs-loaded CNC nano-composites exhibited a high effectiveness of the antibacterial activity against E. coli or S. aureus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Nano-sized Mn3O4 and β-MnOOH from the decomposition of β-cyclodextrin-Mn: 2. The water-oxidizing activities.

    PubMed

    Najafpour, Mohammad Mahdi; Mostafalu, Ramin; Hołyńska, Małgorzata; Ebrahimi, Foad; Kaboudin, Babak

    2015-11-01

    Nano-sized Mn oxides contain Mn3O4, β-MnOOH and Mn2O3 have been prepared by a previously reported method using thermal decomposition of β-cyclodextrin-Mn complexes. In the next step, the water-oxidizing activities of these Mn oxides using cerium(IV) ammonium nitrate as a chemical oxidant are studied. The turnover frequencies for β-MnO(OH) and Mn3O4 are 0.24 and 0.01-0.17 (mmol O2/mol Mns), respectively. Subsequently, water-oxidizing activities of these compounds are compared to the other previously reported Mn oxides. Important factors affecting water oxidation by these Mn oxides are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage.

    PubMed

    Wang, Hailiang; Dai, Hongjie

    2013-04-07

    The global shift of energy production from fossil fuels to renewable energy sources requires more efficient and reliable electrochemical energy storage devices. In particular, the development of electric or hydrogen powered vehicles calls for much-higher-performance batteries, supercapacitors and fuel cells than are currently available. In this review, we present an approach to synthesize electrochemical energy storage materials to form strongly coupled hybrids (SC-hybrids) of inorganic nanomaterials and novel graphitic nano-carbon materials such as carbon nanotubes and graphene, through nucleation and growth of nanoparticles at the functional groups of oxidized graphitic nano-carbon. We show that the inorganic-nano-carbon hybrid materials represent a new approach to synthesize electrode materials with higher electrochemical performance than traditional counterparts made by simple physical mixtures of electrochemically active inorganic particles and conducting carbon materials. The inorganic-nano-carbon hybrid materials are novel due to possible chemical bonding between inorganic nanoparticles and oxidized carbon, affording enhanced charge transport and increased rate capability of electrochemical materials without sacrificing specific capacity. Nano-carbon with various degrees of oxidation provides a novel substrate for nanoparticle nucleation and growth. The interactions between inorganic precursors and oxidized-carbon substrates provide a degree of control over the morphology, size and structure of the resulting inorganic nanoparticles. This paper reviews the recent development of inorganic-nano-carbon hybrid materials for electrochemical energy storage and conversion, including the preparation and functionalization of graphene sheets and carbon nanotubes to impart oxygen containing groups and defects, and methods of synthesis of nanoparticles of various morphologies on oxidized graphene and carbon nanotubes. We then review the applications of the SC

  5. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification

    NASA Astrophysics Data System (ADS)

    Chen, Xianfu; Qiu, Minghui; Ding, Hao; Fu, Kaiyun; Fan, Yiqun

    2016-03-01

    In this study, we report a promising rGO-CNT hybrid nanofiltration (NF) membrane that was fabricated by loading reduced graphene oxide that was intercalated with carbon nanotubes (rGO-CNTs) onto an anodic aluminum oxide (AAO) microfiltration membrane via a facile vacuum-assisted filtration process. To create this NF membrane, the CNTs were first dispersed using block copolymers (BCPs); the effects of the types and contents of BCPs used on the dispersion of CNTs have been investigated. The as-prepared rGO-CNT hybrid NF membranes were then used for drinking water purification to retain the nanoparticles, dyes, proteins, organophosphates, sugars, and particularly humic acid. Experimentally, it is shown that the rGO-CNT hybrid NF membranes have high retention efficiency, good permeability and good anti-fouling properties. The retention was above 97.3% even for methyl orange (327 Da); for other objects, the retention was above 99%. The membrane's permeability was found to be as high as 20-30 L m-2 h-1 bar-1. Based on these results, we can conclude that (i) the use of BCPs as a surfactant can enhance steric repulsion and thus disperse CNTs effectively; (ii) placing well-dispersed 1D CNTs within 2D graphene sheets allows an uniform network to form, which can provide many mass transfer channels through the continuous 3D nanostructure, resulting in the high permeability and separation performance of the rGO-CNT hybrid NF membranes.In this study, we report a promising rGO-CNT hybrid nanofiltration (NF) membrane that was fabricated by loading reduced graphene oxide that was intercalated with carbon nanotubes (rGO-CNTs) onto an anodic aluminum oxide (AAO) microfiltration membrane via a facile vacuum-assisted filtration process. To create this NF membrane, the CNTs were first dispersed using block copolymers (BCPs); the effects of the types and contents of BCPs used on the dispersion of CNTs have been investigated. The as-prepared rGO-CNT hybrid NF membranes were then used for

  6. Irradiation effects in oxide dispersion strengthened (ODS) Ni-base alloys for Gen. IV nuclear reactors

    NASA Astrophysics Data System (ADS)

    Oono, Naoko; Ukai, Shigeharu; Kondo, Sosuke; Hashitomi, Okinobu; Kimura, Akihiko

    2015-10-01

    Oxide particle dispersion strengthened (ODS) Ni-base alloys are irradiated by using simulation technique (Fe/He dual-ion irradiation) to investigate the reliability to Gen. IV high-temperature reactors. The fine oxide particles with less than 10 nm in average size and approximately 8.0 × 1022 m-3 in number density remained after 101 dpa irradiation. The tiny helium bubbles were inside grains, not at grain-boundaries; it is advantageous effect of oxide particles which trap the helium atoms at the particle-matrix interface. Ni-base ODS alloys demonstrated their great ability to overcome He embrittlement.

  7. Possibilities of practical usage of dispersed aluminim oxidation by liquid water

    NASA Astrophysics Data System (ADS)

    Larichev, M. N.; Laricheva, O. O.; Shaitura, N. S.; Shkolnikov, E. I.

    2012-12-01

    The goal of this work is to show the possibility of practical usage of the environmentally pure oxidation process of preliminarily dispersed aluminum (aluminum powders of the ASD or PAD grade according to TU (Technical Specifications) 48-5-226-87, which are serially produced in industry) with liquid water in order to obtain gaseous hydrogen in volumes sufficient to provide the operation of energizers based on airhydrogen fuel cells (AHFC) for portable and stationary devices (up to 3 kW). It is shown that the synthesis of aluminum oxides-hydroxides with the specified phase and chemical compositions as well as the particle shape and size can be provided simultaneously with producing commercial hydrogen. The practical usage of hydrogen, which is formed in the oxidation reaction of metallic aluminum with liquid water at pressures close to atmospheric (particularly, to service AHFCs), requires reaction intensification to increase the oxidation rate of aluminum. In this work, we considered the aspects of practical implementation of thermal, ultrasonic, and chemical activation as well as their combinations for this purpose. As the chemical activator of oxidation, we used the additives of calcium oxide (<5% of the mass of oxidized aluminum). Application of each activation method affects the phase and chemical compositions as well as the structure of formed aluminum hydroxides, which provides the possibility of their reproducible production. Thus, simultaneously with the production of commercial hydrogen, solid oxidation products satisfying the needs of industry in aluminum oxides and having the specified composition, purity, and particle shape and size can be synthesized. The acquired experimental results and elements of the design of specially developed industrial apparatuses, which were used when performing this work, can be applied when designing the model of the hydrogen generator—the prototype of the hydrogen generator for portable and stationary devices or devices

  8. Nano-metal Oxides: Exposure and Engineering Control Assessment

    PubMed Central

    Garcia, Alberto; Sparks, Christopher; Martinez, Kenneth; Topmiller, Jennifer L.; Eastlake, Adrienne; Geraci, Charles L.

    2017-01-01

    This paper discusses the evaluation of a facility that produces high quality engineered nanomaterials. These ENMs consist of various metals including iron, nickel, silver, manganese, and palladium. Although occupational exposure levels are not available for these metals, studies have indicated that it may be prudent to keep exposures to the nano-scale metal as low as possible. Previous In vitro studies indicated that in comparison with a material’s larger (parent) counterpart, nanomaterials can move easily through cell membranes and can cause severe toxic effects on human health. The in vitro studies showed that the toxicological effects specific to exposure to nanoscale nickel oxide and nickel have been found to be more inflammatory and toxic than larger-sized nickel particles and can decrease cell metabolic activity, arrest the G2-M cell cycle, and increase cell death. An in vitro study on exposure to iron nanoparticles indicated that the reactive oxygen species produced by exposure may increase cell permeability thereby increasing the potential for vascular movement. Much of the data available on palladium focus on dermal or ingestion exposure; the chronic effects are not well understood. Given the available limited data on the metals evaluated, caution is warranted. One should always keep in mind that the current OELs were not developed specifically for nanoscale particles. With limited data suggesting that certain nanoparticles may be more toxic than the larger counterparts of the same material; employers should attempt to control emissions of these particles at the source, to limit the potential for exposure. Evidence suggests that in general some nanomaterials can be more toxic than their macro-scale counterparts, and therefore caution is warranted. It appears that the personal protective equipment utilized by the employee was appropriate for this type of operation. It should be noted that the use of respiratory protection should not be used as sole

  9. Nano-graphene in biomedicine: theranostic applications.

    PubMed

    Yang, Kai; Feng, Liangzhu; Shi, Xiaoze; Liu, Zhuang

    2013-01-21

    Owing to their unique physical and chemical properties, graphene and its derivatives such as graphene oxide (GO), reduced graphene oxide (RGO) and GO-nanocomposites have attracted tremendous interest in many different fields including biomedicine in recent years. With every atom exposed on its surface, single-layered graphene shows ultra-high surface area available for efficient molecular loading and bioconjugation, and has been widely explored as novel nano-carriers for drug and gene delivery. Utilizing the intrinsic near-infrared (NIR) optical absorbance, in vivo graphene-based photothermal therapy has been realized, achieving excellent anti-tumor therapeutic efficacy in animal experiments. A variety of inorganic nanoparticles can be grown on the surface of nano-graphene, obtaining functional graphene-based nanocomposites with interesting optical and magnetic properties useful for multi-modal imaging and imaging-guided cancer therapy. Moreover, significant efforts have also been devoted to study the behaviors and toxicology of functionalized nano-graphene in animals. It has been uncovered that both surface chemistry and sizes play key roles in controlling the biodistribution, excretion, and toxicity of nano-graphene. Biocompatibly coated nano-graphene with ultra-small sizes can be cleared out from body after systemic administration, without rendering noticeable toxicity to the treated mice. In this review article, we will summarize the latest progress in this rapidly growing field, and discuss future prospects and challenges of using graphene-based materials for theranostic applications.

  10. Effect of Acid Oxidation on the Dispersion Property of Multiwalled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Goh, P. S.; Ismail, A. F.; Aziz, M.

    2009-06-01

    A means of dispersion of multiwalled carbon nanotube (MWCNT) via mixed acid (HNO3 and H2SO4) oxidation with different treatment durations was investigated through the solubility study of the treated carbon nanotubes in some common solvents. Fourier transformed infrared (FTIR) characterization of the reaction products revealed that the surface of MWCNTs was successfully functionalized with surface acidic groups. The acid-base titration demonstrated that the amount of surface acidic groups increased in parallel with the refluxing duration. The acid modified MWCNTs were found to be well dispersed in polar solvents, such as ethanol and water due to the presence of the hydrophilic acid functional groups on the surface of raw MWCNTs. Such chemical modification of carbon nanotube properties will pave the way towards the realistic applications in the nanotechnology world.

  11. Nano-TiO₂ modified carbon paste sensor for electrochemical nicotine detection using anionic surfactant.

    PubMed

    Shehata, M; Azab, S M; Fekry, A M; Ameer, M A

    2016-05-15

    A newly competitive electrochemical sensor for nicotine (NIC) detection was successfully achieved. Nano-TiO2 with a carbon paste electrode (CPE) were used for the sensor construction, where Nano-TiO2 was considered as one of the richest and highly variable class of materials. The sensor showed electrocatalytic activity in both aqueous and micellar media toward the oxidation of NIC at Britton-Robinson (B-R) buffer solution (4×10(-2)M) of pH range (2.0-8.0) containing (1.0mM) sodium dodecylsulfate (SDS) using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Scanning electron microscope (SEM) and Energy Dispersive X-Ray Analysis (EDX) techniques were also used. The linear range of detection for NIC using the new Nano-TiO2 Modified Carbon Paste sensor (NTMCP) was detected using diffrential pulse voltammetry (DPV) technique and it was found between 2×10(-6)M and 5.4×10(-4)M with a detection limit of 1.34×10(-8)M. The obtained results clarified the simplicity, high sensitivity and selectivity of the new NTMCPE for nicotine determination in real cigarettes and urine samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Comparative thermal fatigue resistance of several oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Bizon, P. T.

    1981-01-01

    The thermal fatigue resistance of several oxide dispersion strengthened (ODS) alloys has been evaluated through cyclic exposure in fluidized beds. The ODS nickel-base alloy MA 754 and ODS iron-base alloy MA 956 as well as four experimental ODS Ni-16Cr-4.5Al base alloys with and without Ta additions were examined. Both bare and coated alloys were subjected to up to 6000 cycles where each cycle consisted of a 3 minute immersion in a fluidized bed at 1130 C followed by a 3 minute immersion in a bed at 357 C. Testing revealed that the thermal fatigue resistance of the ODS nickel-base alloys was excellent and about equal to that of directionally solidified superalloys. However, the thermal fatigue resistance of MA 956 was found to be poor. Metallographic examination of tested specimens revealed that, in general, the post-test microstructures can be rationalized on the basis of previous diffusion, mechanical property, and oxidation studies.

  13. Giant magnetoresistance enhancement in spin valves with nano-oxide layers

    NASA Astrophysics Data System (ADS)

    Lai, Chih-Huang; Chen, C. J.; Chin, T. S.

    2001-06-01

    The magnetoresistance (MR) ratio is enhanced by 35% by inserting the nano-oxide layer (NOL) at the Ta/Co interface in the FeMn-based top spin valves (Ta/NOL/Co/Cu/Co/FeMn/Ta). The enhancement is attributed to specular reflection, resulting in a large resistance change and small sheet resistance. However, the formation of NOL at the interface of Ta/Co suppresses the (111) texture, resulting in small exchange fields. Top spin valves with NOLs show good thermal stability up to 200 °C annealing. The MR ratio is further increased after annealing at temperatures below 200 °C. Enhancement of the MR ratio by 61% can be achieved by annealing at 150 °C. For bottom spin valves (Ta/NiFe/FeMn/Co/Cu/NiFe/Ta), NOLs formed at FeMn/Co and NiFe/Ta interfaces increase MR ratios, but NOLs at Co/Cu or Cu/NiFe deteriorate the differential spin scattering and significantly reduce MR ratios.

  14. Modifying Si-based consolidants through the addition of colloidal nano-particles

    NASA Astrophysics Data System (ADS)

    Ksinopoulou, E.; Bakolas, A.; Moropoulou, A.

    2016-04-01

    The modification of silicon-based stone consolidants has been the subject of many scientific studies aiming to overcome the commonly reported drawbacks of these materials, such as the tendency to shrink and crack during drying. The addition of nano-particle dispersions into silica matrix has been found to enhance their effectiveness in several ways. Objective of the current research was to study the preparation of particle-modified consolidants (PMC), consisting of an ethyl silicate matrix (TEOS) loaded with colloidal silica (SiO2) nano-particles and oxide titania (TiO2) particles. The effect of the polyacrylic acid on the dispersion stability was also investigated, by varying its concentration into PMC samples. The prepared materials were allowed to dry in two different relative humidity environments and then evaluated based on their stability in the sol phase, the aggregation sizes, determined through dynamic light scattering, the % solids content and their morphological characteristics, observed via scanning electron microscopy (SEM-EDAX). Mercury intrusion porosimetry was also applied to investigate the microstructural characteristics and differences between the prepared consolidants. Significant role in the final form of the material is played by both the initial molar ratios in the mixtures, as well as the conditions where the drying and aging takes place. Based on the results, the three-component PMCs appear to be promising in stone consolidation, as they show a reduction in cracking and shrinkage during drying and a more porous network, compared with the siliceous material, or the two-component TEOS-SiO2 formulation.

  15. Low-temperature method of producing nano-scaled graphene platelets and their nanocomposites

    DOEpatents

    Zhamu, Aruna [Centerville, OH; Shi, Jinjun [Columbus, OH; Guo, Jiusheng [Centerville, OH; Jang, Bor Z [Centerville, OH

    2012-03-13

    A method of exfoliating a layered material to produce separated nano-scaled platelets having a thickness smaller than 100 nm. The method comprises: (a) providing a graphite intercalation compound comprising a layered graphite containing expandable species residing in an interlayer space of the layered graphite; (b) exposing the graphite intercalation compound to an exfoliation temperature lower than 650.degree. C. for a duration of time sufficient to at least partially exfoliate the layered graphite without incurring a significant level of oxidation; and (c) subjecting the at least partially exfoliated graphite to a mechanical shearing treatment to produce separated platelets. The method can further include a step of dispersing the platelets in a polymer or monomer solution or suspension as a precursor step to nanocomposite fabrication.

  16. Novel polyoxometalate silica nano-sized spheres: efficient catalysts for olefin oxidation and the deep desulfurization process.

    PubMed

    Nogueira, Lucie S; Ribeiro, Susana; Granadeiro, Carlos M; Pereira, Eulália; Feio, Gabriel; Cunha-Silva, Luís; Balula, Salete S

    2014-07-07

    A novel method to prepare silica nano-sized particles incorporating polyoxometalates was developed leading to a new efficient heterogeneous oxidative catalyst. Zinc-substituted polyoxotungstate [PW11Zn(H2O)O39](5-) (PW11Zn) was encapsulated into silica nanoparticles using a cross-linked organic-inorganic core, performed through successive spontaneous reactions in water. The potassium salt of PW11Zn and the composite formed, PW11Zn-APTES@SiO2, were characterized by a myriad of solid-state methods such as FT-IR, FT-Raman, (31)P and (13)C CP/MAS solid-state NMR, elemental analysis and SEM-EDS, confirming the integrity of the PW11Zn structure immobilized in the silica nanoparticles. The new composite has shown to be a versatile catalyst for the oxidation of olefins and also to catalyze the desulfurization of a model oil using H2O2 as the oxidant and acetonitrile as the solvent. The novel composite material was capable of being recycled without significant loss of activity and maintaining its structural stability for consecutive desulfurization and olefin oxidative cycles.

  17. Modifying the Surface of γ-Al2 O3 with Y2 Sn2 O7 Pyrochlore: Monolayer Dispersion Behaviour of Composite Oxides.

    PubMed

    Xu, Xianglan; Liu, Fang; Tian, Jinshu; Peng, Honggen; Liu, Wenming; Fang, Xiuzhong; Zhang, Ning; Wang, Xiang

    2017-06-20

    To investigate the dispersion behaviour of composite oxides on supports, and to obtain better supports for Pd for CO oxidation, a series of Y 2 Sn 2 O 7 /Al 2 O 3 composite oxides with different Y 2 Sn 2 O 7 loadings were prepared by a deposition-precipitation method. XRD and X-ray photoelectron spectroscopic extrapolation methods revealed that, similar to single-component metal oxides, composite oxides can also disperse spontaneously on support surfaces to form a monolayer with a certain capacity. The monolayer dispersion capacity/threshold for Y 2 Sn 2 O 7 on the surface of γ-Al 2 O 3 is 0.109 mmol per 100 m 2 γ-Al 2 O 3 , corresponding to 7.2 wt % Y 2 Sn 2 O 7 loading. This is the first work to demonstrate monolayer dispersion of a composite oxide on a support. After combining Y 2 Sn 2 O 7 with γ-Al 2 O 3 , active oxygen species can be introduced onto the catalyst surfaces. Thus, the interaction between Pd and the support is strengthened, the dispersion of Pd is improved in comparison with the single-component Y 2 Sn 2 O 7 support, and a synergistic effect is induced between Pd and the composite support, which is beneficial to catalyst activity. By tuning the γ-Al 2 O 3 surface with different amounts of pyrochlore Y 2 Sn 2 O 7 , CO oxidation activity on 1 % Pd/Y 2 Sn 2 O 7 /Al 2 O 3 was improved. These findings may provide new insights into the design and preparation of effective supported noble metal catalysts with lower contents of noble metals. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Tuning group-velocity dispersion by optical force.

    PubMed

    Jiang, Wei C; Lin, Qiang

    2013-07-15

    We propose an optomechanical approach for dispersion dynamic tuning and microengineering by taking advantage of the optical force in nano-optomechanical structures. Simulations of a suspended coupled silicon waveguide show that the zero-dispersion wavelength can be tuned by 40 nm by an optical pump power of 3 mW. Our approach exhibits great potential for broad applications in dispersion-sensitive processes, which not only offers a new root toward versatile tunable nonlinear photonics but may also open up a great avenue toward a new regime of nonlinear dynamics coupling between nonlinear optical and optomechanical effects.

  19. Ameliorative role of nano-ceria against amine coated Ag-NP induced toxicity in Labeo rohita

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Saleem; Qureshi, Naureen Aziz; Jabeen, Farhat

    2018-03-01

    Silver nanoparticles (Ag-NPs) and its byproducts can spread pollution in aquatic habitat. Liver and gills are key target for toxicity. Oxidative stress, tissue alterations, and hemotoxicity are assumed to be associated with Ag-NPs in target animals. Cerium oxide nanoparticles (nano-ceria) show antioxidant potential in scavenging the free radicals generated in Ag-NP-induced oxidative stress. We determined ameliorated role of nano-ceria against Ag-NP-induced toxicity in fresh water Labeo rohita (L. rohita). Four groups were used in study including control, nano-ceria, Ag-NPs, and Ag-NPs + nano-ceria. Ag-NPs (30 mg l-1) and nano-ceria (50 µg kg-1) were given through water and prepared feed, respectively. The samples were taken after 28 days. Results demonstrated that pre-treatment of nano-ceria recovered L. rohita from Ag-NP-induced toxicity and oxidative stress. Nano-ceria pre-treatment actively mimics the activity of GST, GSH, CAT, and SOD. Furthermore, Ag-NPs' treatment caused severe inflammation and necrosis in hepatic parenchyma which leaded to congestion of blood in hepatic tissues. Accumulation of a yellow pigment in hepatic tissue was also seen due to necrosis of affected cells. In nano-ceria pre-treatment, there was no congestion in hepatic tissue. Vacuolization of cells and necrosis in some area was recorded in nano-ceria pre-treated group, but the gill and hepatic tissue showed improvement against Ag-NP-induced damage. Nano-ceria pre-treatment also improved hematological parameters in Ag-NP-treated fish. This study concluded that Ag-NP-induced toxicity in treated fish and pre-treatment of nano-ceria show ameliorative role.

  20. Dispersive shock waves in Bose-Einstein condensates and nonlinear nano-oscillators in ferromagnetic thin films

    NASA Astrophysics Data System (ADS)

    Hoefer, Mark A.

    This thesis examines nonlinear wave phenomena, in two physical systems: a Bose-Einstein condensate (BEC) and thin film ferromagnets where the magnetization dynamics are excited by the spin momentum transfer (SMT) effect. In the first system, shock waves generated by steep gradients in the BEC wavefunction are shown to be of the disperse type. Asymptotic and averaging methods are used to determine shock speeds and structure in one spatial dimension. These results are compared with multidimensional numerical simulations and experiment showing good, qualitative agreement. In the second system, a model of magnetization dynamics due to SMT is presented. Using this model, nonlinear oscillating modes---nano-oscillators---are found numerically and analytically using perturbative methods. These results compare well with experiment. A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with laboratory experiments show that three and two-dimensional approximations are in excellent agreement and one dimensional approximations are in qualitative agreement. The interaction of two DSWs is investigated analytically and numerically. Using one dimensional DSW theory it is argued

  1. Comparison on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fibre lasers

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Yu; Lin, Yung-Hsiang; Wu, Chung-Lun; Cheng, Chih-Hsien; Tsai, Din-Ping; Lin, Gong-Ru

    2018-06-01

    Comparisons on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fiber lasers (EDFLs) are performed. As opposed to the graphite nano-particles obtained by physically triturating the graphite foil, the tri-layer graphene nano-sheets is obtained by electrochemically exfoliating the graphite foil. To precisely control the size dispersion and the layer number of the exfoliated graphene nano-sheet, both the bias of electrochemical exfoliation and the speed of centrifugation are optimized. Under a threshold exfoliation bias of 3 volts and a centrifugation at 1000 rpm, graphene nano-sheets with an average diameter of 100  ±  40 nm can be obtained. The graphene nano-sheets with an area density of 15 #/µm2 are directly imprinted onto the end-face of a single-mode fiber made patchcord connector inside the EDFL cavity. Such electrochemically exfoliated graphene nano-sheets show comparable saturable absorption with standard single-graphene and perform the self-amplitude modulation better than physically triturated graphite nano-particles. The linear transmittance and modulation depth of the inserted graphene nano-sheets are 92.5% and 53%, respectively. Under the operation with a power gain of 21.5 dB, the EDFL can be passively mode-locked to deliver a pulsewidth of 454.5 fs with a spectral linewidth of 5.6 nm. The time-bandwidth product of 0.31 is close to the transform limit. The Kelly sideband frequency spacing of 1.34 THz is used to calculate the chirp coefficient as  ‑0.0015.

  2. Evaluation of heavy metals in hazardous automobile shredder residue thermal residue and immobilization with novel nano-size calcium dispersed reagent.

    PubMed

    Lee, Chi-Hyeon; Truc, Nguyen Thi Thanh; Lee, Byeong-Kyu; Mitoma, Yoshiharu; Mallampati, Srinivasa Reddy

    2015-10-15

    This study was conducted to synthesize and apply a nano-size calcium dispersed reagent as an immobilization material for heavy metal-contaminated automobile shredder residues (ASR) dust/thermal residues in dry condition. Simple mixing with a nanometallic Ca/CaO/PO4 dispersion mixture immobilized 95-100% of heavy metals in ASR dust/thermal residues (including bottom ash, cavity ash, boiler and bag filter ash). The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO4 was lower than the Korean standard regulatory limit for hazardous waste landfills. The morphology and elemental composition of the nanometallic Ca/CaO-treated ASR residue were characterized by field emission scanning election microscopy combined with electron dispersive spectroscopy (FE-SEM/EDS). The results indicated that the amounts of heavy metals detectable on the ASR thermal residue surface decreased and the Ca/PO4 mass percent increased. X-ray diffraction (XRD) pattern analysis indicated that the main fraction of enclosed/bound materials on ASR residue included Ca/PO4- associated crystalline complexes, and that immobile Ca/PO4 salts remarkably inhibited the desorption of heavy metals from ASR residues. These results support the potential use of nanometallic Ca/CaO/PO4 as a simple, suitable and highly efficient material for the gentle immobilization of heavy metals in hazardous ASR thermal residue in dry condition. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Catalytic destruction of PCDD/Fs over vanadium oxide-based catalysts.

    PubMed

    Yu, Ming-Feng; Lin, Xiao-Qing; Li, Xiao-Dong; Yan, Mi; Prabowo, Bayu; Li, Wen-Wei; Chen, Tong; Yan, Jian-Hua

    2016-08-01

    Vanadium oxide-based catalysts were developed for the destruction of vapour phase PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans). A vapour phase PCDD/Fs generating system was designed to supply stable PCDD/Fs steam with initial concentration of 3.2 ng I-TEQ Nm(-3). Two kinds of titania (nano-TiO2 and conventional TiO2) and alumina were used as catalyst supports. For vanadium-based catalysts supported on nano-TiO2, catalyst activity is enhanced with operating temperature increasing from 160 to 300 °C and then reduces with temperature rising further to 350 °C. It is mainly due to the fact that high volatility of organic compounds at 350 °C suppresses adsorption of PCDD/Fs on catalysts surface and then further inhibits the reaction between catalyst and PCDD/Fs. The optimum loading of vanadium on nano-TiO2 support is 5 wt.% where vanadium oxide presents highly dispersed amorphous state according to the Raman spectra and XRD patterns. Excessive vanadium will block the pore space and form microcrystalline V2O5 on the support surface. At the vanadium loading of 5 wt.%, nano-TiO2-supported catalyst performs best on PCDD/Fs destruction compared to Al2O3 and conventional TiO2. Chemical states of vanadium in the fresh, used and reoxidized VOx(5 %)/TiO2 catalysts at different operating temperature are also analysed by XPS.

  4. Novel Signal-Amplified Fenitrothion Electrochemical Assay, Based on Glassy Carbon Electrode Modified with Dispersed Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Wang, Limin; Dong, Jinbo; Wang, Yulong; Cheng, Qi; Yang, Mingming; Cai, Jia; Liu, Fengquan

    2016-03-01

    A novel signal-amplified electrochemical assay for the determination of fenitrothion was developed, based on the redox behaviour of organophosphorus pesticides on a glassy carbon working electrode. The electrode was modified using graphene oxide dispersion. The electrochemical response of fenitrothion at the modified electrode was investigated using cyclic voltammetry, current-time curves, and square-wave voltammetry. Experimental parameters, namely the accumulation conditions, pH value, and volume of dispersed material, were optimised. Under the optimum conditions, a good linear relationship was obtained between the oxidation peak current and the fenitrothion concentration. The linear range was 1-400 ng·mL-1, with a detection limit of 0.1 ng·mL-1 (signal-to-nose ratio = 3). The high sensitivity of the sensor was demonstrated by determining fenitrothion in pakchoi samples.

  5. Aqueously Dispersed Silver Nanoparticle-Decorated Boron Nitride Nanosheets for Reusable, Thermal Oxidation-Resistant Surface Enhanced Raman Spectroscopy (SERS) Devices

    NASA Technical Reports Server (NTRS)

    Lin, Yi; Bunker, Christopher E.; Fernandos, K. A. Shiral; Connell, John W.

    2012-01-01

    The impurity-free aqueous dispersions of boron nitride nanosheets (BNNS) allowed the facile preparation of silver (Ag) nanoparticle-decorated BNNS by chemical reduction of an Ag salt with hydrazine in the presence of BNNS. The resultant Ag-BNNS nanohybrids remained dispersed in water, allowing convenient subsequent solution processing. By using substrate transfer techniques, Ag-BNNS nanohybrid thin film coatings on quartz substrates were prepared and evaluated as reusable surface enhanced Raman spectroscopy (SERS) sensors that were robust against repeated solvent washing. In addition, because of the unique thermal oxidation-resistant properties of the BNNS, the sensor devices may be readily recycled by short-duration high temperature air oxidation to remove residual analyte molecules in repeated runs. The limiting factor associated with the thermal oxidation recycling process was the Ostwald ripening effect of Ag nanostructures.

  6. Nano-graphene oxide composite for in vivo imaging

    PubMed Central

    Oh, Seo Yeong; Vilian, AT Ezhil; Lee, Ilsong; Han, Young-Kyu; Park, Jeong Hoon; Roh, Changhyun; Huh, Yun Suk

    2018-01-01

    Introduction Positron emission tomography (PET) tracers has the potential to revolutionize cancer imaging and diagnosis. PET tracers offer non-invasive quantitative imaging in biotechnology and biomedical applications, but it requires radioisotopes as radioactive imaging tracers or radiopharmaceuticals. Method This paper reports the synthesis of 18F-nGO-PEG by covalently functionalizing PEG with nano-graphene oxide, and its excellent stability in physiological solutions. Using a green synthesis route, nGO is then functionalized with a biocompatible PEG polymer to acquire high stability in PBS and DMEM. Results and discussion The radiochemical safety of 18F-nGO-PEG was measured by a reactive oxygen species and cell viability test. The biodistribution of 18F-nGO-PEG could be observed easily by PET, which suggested the significantly high sensitivity tumor uptake of 18F-nGO-PEG and in a tumor bearing CT-26 mouse compared to the control. 18F-nGO-PEG was applied successfully as an efficient radiotracer or drug agent in vivo using PET imaging. This article is expected to assist many researchers in the fabrication of 18F-labeled graphene-based bio-conjugates with high reproducibility for applications in the biomedicine field. PMID:29379283

  7. Controllable Edge Oxidation and Bubbling Exfoliation Enable the Fabrication of High Quality Water Dispersible Graphene

    PubMed Central

    Tian, Suyun; Sun, Jing; Yang, Siwei; He, Peng; Wang, Gang; Di, Zengfeng; Ding, Guqiao; Xie, Xiaoming; Jiang, Mianheng

    2016-01-01

    Despite significant progresses made on mass production of chemically exfoliated graphene, the quality, cost and environmental friendliness remain major challenges for its market penetration. Here, we present a fast and green exfoliation strategy for large scale production of high quality water dispersible few layer graphene through a controllable edge oxidation and localized gas bubbling process. Mild edge oxidation guarantees that the pristine sp2 lattice is largely intact and the edges are functionalized with hydrophilic groups, giving rise to high conductivity and good water dispersibility at the same time. The aqueous concentration can be as high as 5.0 mg mL−1, which is an order of magnitude higher than previously reports. The water soluble graphene can be directly spray-coated on various substrates, and the back-gated field effect transistor give hole and electron mobility of ~496 and ~676 cm2 V−1 s−1, respectively. These results achieved are expected to expedite various applications of graphene. PMID:27666869

  8. Controllable Edge Oxidation and Bubbling Exfoliation Enable the Fabrication of High Quality Water Dispersible Graphene.

    PubMed

    Tian, Suyun; Sun, Jing; Yang, Siwei; He, Peng; Wang, Gang; Di, Zengfeng; Ding, Guqiao; Xie, Xiaoming; Jiang, Mianheng

    2016-09-26

    Despite significant progresses made on mass production of chemically exfoliated graphene, the quality, cost and environmental friendliness remain major challenges for its market penetration. Here, we present a fast and green exfoliation strategy for large scale production of high quality water dispersible few layer graphene through a controllable edge oxidation and localized gas bubbling process. Mild edge oxidation guarantees that the pristine sp 2 lattice is largely intact and the edges are functionalized with hydrophilic groups, giving rise to high conductivity and good water dispersibility at the same time. The aqueous concentration can be as high as 5.0 mg mL -1 , which is an order of magnitude higher than previously reports. The water soluble graphene can be directly spray-coated on various substrates, and the back-gated field effect transistor give hole and electron mobility of ~496 and ~676 cm 2 V -1 s -1 , respectively. These results achieved are expected to expedite various applications of graphene.

  9. Controllable Edge Oxidation and Bubbling Exfoliation Enable the Fabrication of High Quality Water Dispersible Graphene

    NASA Astrophysics Data System (ADS)

    Tian, Suyun; Sun, Jing; Yang, Siwei; He, Peng; Wang, Gang; di, Zengfeng; Ding, Guqiao; Xie, Xiaoming; Jiang, Mianheng

    2016-09-01

    Despite significant progresses made on mass production of chemically exfoliated graphene, the quality, cost and environmental friendliness remain major challenges for its market penetration. Here, we present a fast and green exfoliation strategy for large scale production of high quality water dispersible few layer graphene through a controllable edge oxidation and localized gas bubbling process. Mild edge oxidation guarantees that the pristine sp2 lattice is largely intact and the edges are functionalized with hydrophilic groups, giving rise to high conductivity and good water dispersibility at the same time. The aqueous concentration can be as high as 5.0 mg mL-1, which is an order of magnitude higher than previously reports. The water soluble graphene can be directly spray-coated on various substrates, and the back-gated field effect transistor give hole and electron mobility of ~496 and ~676 cm2 V-1 s-1, respectively. These results achieved are expected to expedite various applications of graphene.

  10. Development of a Novel Melt Spinning-Based Processing Route for Oxide Dispersion-Strengthened Steels

    NASA Astrophysics Data System (ADS)

    Hong, Zuliang; Morrison, Alasdair P. C.; Zhang, Hongtao; Roberts, Steve G.; Grant, Patrick S.

    2018-02-01

    Melt spinning of an Fe-5Y and Fe-1Y-1Ti (wt pct) alloy produced a relatively uniform spatial distribution of Y and Ti in solid solution and ribbons with consistent yield (> 60 pct by weight), fast processing time (< 10 seconds), good scalability (up to > 100 g feedstock material), and repeatability. Heat treatment in the presence of Fe2O3 as an oxygen source (Rhines pack method) at 973 K validated the potential of forming < 20 nm Y-rich oxides in the Fe-5Y ribbons. Pulverized Fe-1Y-1Y ribbons were consolidated to bulk using the field-assisted sintering technique (FAST) incorporating nano-sized Fe3O4 powder as the oxygen source. After FAST at 1273 K, 50 MPa, and 30 minutes, a comparatively high number density of sub-micron Y and/or Ti-rich oxides were developed. Further formation of fine-scale oxides took place during post-FAST annealing, resulting in an approximate 20 pct increase in hardness at temperatures below 573 K, but with a reduced hardening effect above 673 K due to a small fraction of persistent porosity and mechanically weak prior ribbon boundaries that were decorated with Ti-rich oxides.

  11. Aerosol synthesis of nano and micro-scale zero valent metal particles from oxide precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Jonathan; Luhrs, Claudia; Lesman, Zayd

    2010-01-01

    In this work a novel aerosol method, derived form the batch Reduction/Expansion Synthesis (RES) method, for production of nano / micro-scale metal particles from oxides and hydroxides is presented. In the Aerosol-RES (A-RES) method, an aerosol, consisting of a physical mixture of urea and metal oxide or hydroxides, is passed through a heated oven (1000 C) with a residence time of the order of 1 second, producing pure (zero valent) metal particles. It appears that the process is flexible regarding metal or alloy identity, allows control of particle size and can be readily scaled to very large throughput. Current workmore » is focused on creating nanoparticles of metal and metal alloy using this method. Although this is primarily a report on observations, some key elements of the chemistry are clear. In particular, the reducing species produced by urea decomposition are the primary agents responsible for reduction of oxides and hydroxides to metal. It is also likely that the rapid expansion that takes place when solid/liquid urea decomposes to form gas species influences the final morphology of the particles.« less

  12. Corrosion and Heat Transfer Characteristics of Water Dispersed with Carboxylate Additives and Multi Walled Carbon Nano Tubes

    NASA Astrophysics Data System (ADS)

    Moorthy, Chellapilla V. K. N. S. N.; Srinivas, Vadapalli

    2016-10-01

    This paper summarizes a recent work on anti-corrosive properties and enhanced heat transfer properties of carboxylated water based nanofluids. Water mixed with sebacic acid as carboxylate additive found to be resistant to corrosion and suitable for automotive environment. The carboxylated water is dispersed with very low mass concentration of carbon nano tubes at 0.025, 0.05 and 0.1 %. The stability of nanofluids in terms of zeta potential is found to be good with carboxylated water compared to normal water. The heat transfer performance of nanofluids is carried out on an air cooled heat exchanger similar to an automotive radiator with incoming air velocities across radiator at 5, 10 and 15 m/s. The flow Reynolds number of water is in the range of 2500-6000 indicating developing flow regime. The corrosion resistance of nanofluids is found to be good indicating its suitability to automotive environment. There is a slight increase in viscosity and marginal decrease in the specific heat of nanofluids with addition of carboxylate as well as CNTs. Significant improvement is observed in the thermal conductivity of nanofluids dispersed with CNTs. During heat transfer experimentation, the inside heat transfer coefficient and overall heat transfer coefficient has also improved markedly. It is also found that the velocity of air and flow rate of coolant plays an important role in enhancement of the heat transfer coefficient and overall heat transfer coefficient.

  13. Biological effects of a nano red elemental selenium.

    PubMed

    Zhang, J S; Gao, X Y; Zhang, L D; Bao, Y P

    2001-01-01

    A novel selenium form, nano red elemental selenium (Nano-Se) was prepared by adding bovine serum albumin to the redox system of selenite and glutathione. Nano-Se has a 7-fold lower acute toxicity than sodium selenite in mice (LD(50) 113 and 15 mg Se/kg body weight respectively). In Se-deficient rat, both Nano-Se and selenite can increase tissue selenium and GPx activity. The biological activities of Nano-Se and selenite were compared in terms of cell proliferation, enzyme induction and protection against free racial-mediated damage in human hepatoma HepG2 cells. Nano-Se and selenite are similarly cell growth inhibited and stimulated synthesis of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase (TR). When HepG2 cells were co-treated with selenium and glutathione, Nano-Se showed less pro-oxidative effects than selenite, as measured by cell growth. These results demonstrate that Nano-Se has a similar bioavailability in the rat and antioxidant effects on cells.

  14. Physicochemical characterization of atorvastatin calcium/ezetimibe amorphous nano-solid dispersions prepared by electrospraying method.

    PubMed

    Jahangiri, Azin; Barzegar-Jalali, Mohammad; Javadzadeh, Yousef; Hamishehkar, Hamed; Adibkia, Khosro

    2017-09-01

    In the present study, electrospraying was applied as a novel method for the fabrication of amorphous nano-solid dispersions (N-SDs) of atorvastatin calcium (ATV), ezetimibe (EZT), and ATV/EZT combination as poorly water-soluble drugs. N-SDs were prepared using polyvinylpyrrolidone K30 as an amorphous carrier in 1:1 and 1:5 drug to polymer ratios and the total solid (including drug and polymer) concentrations of 10 and 20% (w/v). The prepared formulations were further investigated for their morphological, physicochemical, and dissolution properties. Scanning electron microscopy studies indicated that the morphology and diameter of the electrosprayed samples (ESs) were influenced by the solution concentration and drug:polymer ratio, so that an increase in the solution concentration resulted in fiber formation while an increase in the polymer ratio led to enhancement of the particle diameter. Differential scanning calorimetry and X-ray powder diffraction studies together with in vitro dissolution test revealed that the ESs were present in an amorphous form with improved dissolution properties. Infrared spectroscopic studies showed hydrogen-bonding interaction between the drug and polymer in ESs. Since the electrospraying method benefits from the both amorphization and nanosizing effect, this novel approach seems to be an efficient method for the fabrication of N-SDs of poorly water-soluble drugs.

  15. Morphology and thermal stability of nano titanium dioxide filled natural rubber prepared by latex mixing method

    NASA Astrophysics Data System (ADS)

    Hayeemasae, N.; Surya, I.; Ismail, H.

    2018-02-01

    This paper deals with the morphology and thermal stability of nano Titanium Dioxide (TiO2) filled natural rubber composites. This study also suggests a new method of incorporating TiO2. Aqueous dispersions of nano TiO2at the loadings of 0, 2, 4, 6 and 8 phr were dispersed in natural rubber latex, the resulting compounds were then dried prior to mixing it with other ingredients on a two-roll mill. By applying this technique, the homogeneity of the compound is significantly improved. This can be clearly seen from the morphology observed. Adding TiO2 results in shifting the decomposition temperature and char residue irrespective of the loadings of nano TiO2.

  16. In vivo synthesis of nano-selenium by Tetrahymena thermophila SB210.

    PubMed

    Cui, Yin-Hua; Li, Ling-Li; Zhou, Nan-Qing; Liu, Jing-Hua; Huang, Qing; Wang, Hui-Juan; Tian, Jie; Yu, Han-Qing

    2016-12-01

    Nano-selenium has a great potential to be used in chemical, biological, medical and environmental fields. Biological methods for nano-selenium synthesis have attracted wide interests, because they can be operated at ambient temperature and pressure without complicated equipments. In this work, a protozoa, Tetrahymena thermophila (T. thermophila) SB210, was used to in vivo synthesize nano-selenium. The biosynthesized nano-selenium was characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. The synthesized amorphous spherical selenium nanoparticles had diameters of 50-500nm with the coexistence of irregular nano-selenium. The expressions of glutathione (GSH) synthesis related gene glutathione synthase, cysteine-rich protein metallothionein related gene metallothionein-1 and [2Fe-2S] cluster-binding protein related gene were up-regulated in the nano-selenium producing group. Also, the subsequent GSH detection and in vitro synthesis experimental results suggest the three proteins were likely to be involved in the nano-selenium synthesis process. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Stability of GO Modified by Different Dispersants in Cement Paste and Its Related Mechanism.

    PubMed

    Long, Wu-Jian; Fang, Changle; Wei, Jingjie; Li, Haodao

    2018-05-18

    Graphene oxide (GO) is a potential material to be used as a nano-reinforcement in cement matrix. However, a prerequisite for GO to fulfill its function in the cement matrix is homogeneous dispersion. In this study, the effects of three different dispersing agents (DAs), including polycarboxylate-based high range water reducer (P-HRWR), naphthalene-based high range water reducer (N-HRWR), and air entraining agent (AEA) on the dispersion of GO in aqueous solution, simulated concrete pore solution (SCPS), and suspension of cement pastes were sequentially investigated. Results showed that the dispersion effect of GO in aqueous solutions was improved with different DAs. However, the homogeneous dispersion of GO in aqueous solution re-agglomerated in SCPS and suspension of cement pastes. It was concluded that as the cement content and pH of aqueous solutions increased, GOs re-agglomerated and precipitated in an alkaline solution. A possible mechanism was proposed in this study and it was believed that electrostatic interactions and steric hindrance provided by the P-HRWR further made GOs stable in aqueous solutions. The ions and pH of cement pastes increased with the increasing amount of cement, which caused the separation of P-HRWR from GOs. Therefore, GOs were re-agglomerated and absorbed on the surface of the cement particles, resulting in GOs sedimentation.

  18. A targeted drug delivery system based on dopamine functionalized nano graphene oxide

    NASA Astrophysics Data System (ADS)

    Masoudipour, Elham; Kashanian, Soheila; Maleki, Nasim

    2017-01-01

    The cellular targeting property of a biocompatible drug delivery system can widely increase the therapeutic effect against various diseases. Here, we report a dopamine conjugated nano graphene oxide (DA-nGO) carrier for cellular delivery of the anticancer drug, Methotrexate (MTX) into DA receptor positive human breast adenocarcinoma cell line. The material was characterized using scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy and UV-vis spectroscopy. Furthermore, the antineoplastic action of MTX loaded DA-nGO against DA receptor positive and negative cell lines were explored. The results presented in this article demonstrated that the application of DA functionalized GO as a targeting drug carrier can improve the drug delivery efficacy for DA receptor positive cancer cell lines and promise future designing of carrier conjugates based on it.

  19. Nano polypeptide particles reinforced polymer composite fibers.

    PubMed

    Li, Jiashen; Li, Yi; Zhang, Jing; Li, Gang; Liu, Xuan; Li, Zhi; Liu, Xuqing; Han, Yanxia; Zhao, Zheng

    2015-02-25

    Because of the intensified competition of land resources for growing food and natural textile fibers, there is an urgent need to reuse and recycle the consumed/wasted natural fibers as regenerated green materials. Although polypeptide was extracted from wool by alkaline hydrolysis, the size of the polypeptide fragments could be reduced to nanoscale. The wool polypeptide particles were fragile and could be crushed down to nano size again and dispersed evenly among polymer matrix under melt extrusion condition. The nano polypeptide particles could reinforce antiultraviolet capability, moisture regain, and mechanical properties of the polymer-polypeptide composite fibers.

  20. Traversing the Skin Barrier with Nano-emulsions.

    PubMed

    Burger, Cornel; Shahzad, Yasser; Brummer, Alicia; Gerber, Minja; du Plessis, Jeanetta

    2017-01-01

    In recent years, colloidal delivery systems based on nano-emulsion are gaining popularity; being used for encapsulation and delivery of many drugs. This review therefore aims at summarizing various methods of nano-emulsion formulation and their use as a topical and transdermal delivery vehicle for a number of active pharmaceutical ingredients from different pharmacological classes. This article represents a systematic review of nano-emulsions for topical and transdermal drug delivery. A vast literature was searched and critically analysed. Nano-emulsions are thermokinetically stable dispersion systems, which have been used in topical and transdermal delivery of a number of pharmaceutically active compounds. Nano-emulsions have a narrow droplet size range with tuneable surface properties, which make them an ideal delivery vehicle. Nanoemulsions have a number of advantages over conventional emulsions, including easy preparation using various low and high energy methods, optical transparency, high solubilisation capacity, high stability to droplet aggregation and the ability to penetrate the skin; thus allowing the transdermal delivery of drugs. This review indicated that nano-emulsions are promising vehicle for entrapping various drugs and are suitable for traversing the skin barrier for systemic effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Modeling and experimental evaluation of the diffusion bonding of the oxide dispersion strengthened steel PM2000

    NASA Astrophysics Data System (ADS)

    Sittel, Wiebke; Basuki, Widodo W.; Aktaa, Jarir

    2015-10-01

    A modeling based optimization process of the solid state diffusion bonding is presented for joining ferritic oxide dispersion strengthened steels PM2000. An optimization study employing varying bonding temperatures and pressures results in almost the same strength and toughness of the bonded compared to the as received material. TEM investigations of diffusion bonded samples show a homogeneous distribution of oxide particles at the bonding seam similar to that in the bulk. Hence, no loss in strength or creep resistance due to oxide particle agglomeration is found, as verified by the mechanical properties observed for the joint.

  2. Evaluation of dose dependent antimicrobial activity of self-assembled chitosan, nano silver and chitosan-nano silver composite against several pathogens.

    PubMed

    Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat

    2018-01-01

    The aim of this investigation to preparation of silver nanoparticles organized chitosan nano polymer, which effective against microbial and pathogens, when apply to liquid medium and edible food products surface, will rescue the growth of microbes. Self-assembly approach used to synthesis of silver nanoparticles and silver nanoparticles organized chitosan nano polymer. Silver nanoparticles and silver nanoparticles organized chitosan nano polymer and film characterized using Ultra-violate visible spectrometer (UV-vis), X-ray diffraction (X-ray), and Scanning electronic microscope (SEM). The crystalline structured protein capped nano silver successfully synthesized at range of 12 nm-29 nm and organized into chitosan nano polymer. Antimicrobial ingredient in liquid medium and food product surface provide to rescue oxidative change and growth of microorganism to provide higher safety. The silver nanoparticles organized chitosan nano polymer caused the death of microorganism. The materials in nano scale synthesized successfully using self-assembly method, which showed good antimicrobial properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. High temperature Oxidation of ODS alloy with zirconia dispersions synthesized using Arc Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Bandriyana; Sujatno, A.; Salam, R.; Sugeng, B.; Dimyati, A.

    2017-02-01

    Microstructure formation and oxidation behaviour of the Oxide Dispersion Strengthened (ODS) steels for application as structure material in Nuclear Power Plant was investigated. A mixture composed of Fe and 12 wt. % Cr powder with addition of 0.5 and 1 wt.% ZrO2 particles was milled and isostatic pressed to form a sample coin. The coin was then consolidated in the Arc Plasma Sintering (APS) for 4 minutes. The samples were subjected to the high temperature oxidation test in the Magnetic Suspension Balance (MSB). The oxidation test was carried out at 700°C for 6 hours to evaluate the oxide growth in the early stage of it formation by extraction the mass gain curve. The Scanning Electron Microscope (SEM) imaging and X-ray Diffraction Spectroscopy (EDX) elemental mapping were performed to study the microstructure change and compositional distribution. SEM and EDX observation revealed the time dependent development of the Fe-Cr-phases during consolidation. The oxidation rate behaviour of the samples followed the parabolic rate characteristic for inward oxidation process driven by oxygen inward diffusion through the oxide scale with the maximum weight gain around of 60 g/m2. The oxidation resistance was strongly affected by the formation of the oxide protective layer on the surface. In so far, addition of zirconia particles has played no significant role to the oxidation behaviour.

  4. Fabrication of 3D nano-structures using reverse imprint lithography

    NASA Astrophysics Data System (ADS)

    Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-woo; Lee, Heon

    2013-02-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.

  5. Fabrication of 3D nano-structures using reverse imprint lithography.

    PubMed

    Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-Woo; Lee, Heon

    2013-02-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures.UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.

  6. Designing of Hybrid Structured Glass Laminated Transparent Nano Composites through Vacuum infusion Technique

    NASA Astrophysics Data System (ADS)

    Mukherji, A.; Tarapure, N. D.; Wakure, G. N.

    2017-05-01

    Glass is the most commonly used transparent material. However, glass is not suitable in applications where low weight, high strength is required. The present invention comprises a method of making a Transparent Glass Laminated Nano composite product. The product contains a Bidirectionally oriented E-Glass Fabric an essentially bidirectional yarn woven fabrics is stretched Bidirectionally by specially fabricated steel frame associated with both co and counter rotating device. These fibers include glass fibrics/cloths or mixtures of any of these. The synthetic fiber may be any synthetic silica based oven waived bi-directional or Uni-directional fabrics. Engaged gear provided in the device develops uniform tension on fabric, in both direction. Nano particle dispersed resin to be used is formulated with their respective curing agents and extenders. The formulated resin contains 0.1-0.5% of Nano additives and the product composed from 5-10 % of Glass fabric, between 10 to 20 % of ordinary glass, and between 60-80 % of the product is the Nano particles dispersed formulated resin, all measured by volume.

  7. Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel.

    PubMed

    Angelopoulou, A; Voulgari, E; Diamanti, E K; Gournis, D; Avgoustakis, K

    2015-06-01

    To investigate the application of water-dispersible poly(lactide)-poly(ethylene glycol) (PLA-PEG) copolymers for the stabilization of graphene oxide (GO) aqueous dispersions and the feasibility of using the PLA-PEG stabilized GO as a delivery system for the potent anticancer agent paclitaxel. A modified Staudenmaier method was applied to synthesize graphene oxide (GO). Diblock PLA-PEG copolymers were synthesized by ring-opening polymerization of dl-lactide in the presence of monomethoxy-poly(ethylene glycol) (mPEG). Probe sonication in the presence of PLA-PEG copolymers was applied in order to reduce the hydrodynamic diameter of GO to the nano-size range according to dynamic light scattering (DLS) and obtain nano-graphene oxide (NGO) composites with PLA-PEG. The composites were characterized by atomic force microscopy (AFM), thermogravimetric analysis (TGA), and DLS. The colloidal stability of the composites was evaluated by recording the size of the composite particles with time and the resistance of composites to aggregation induced by increasing concentrations of NaCl. The composites were loaded with paclitaxel and the in vitro release profile was determined. The cytotoxicity of composites against A549 human lung cancer cells in culture was evaluated by flow cytometry. The uptake of FITC-labeled NGO/PLA-PEG by A549 cells was also estimated with flow cytometry and visualized with fluorescence microscopy. The average hydrodynamic diameter of NGO/PLA-PEG according to DLS ranged between 455 and 534 nm, depending on the molecular weight and proportion of PLA-PEG in the composites. NGO/PLA-PEG exhibited high colloidal stability on storage and in the presence of high concentrations of NaCl (far exceeding physiological concentrations). Paclitaxel was effectively loaded in the composites and released by a highly sustained fashion. Drug release could be regulated by the molecular weight of the PLA-PEG copolymer and its proportion in the composite. The paclitaxel

  8. Thermally induced all-optical inverter and dynamic hysteresis loops in graphene oxide dispersions.

    PubMed

    Melle, Sonia; Calderón, Oscar G; Egatz-Gómez, Ana; Cabrera-Granado, E; Carreño, F; Antón, M A

    2015-11-01

    We experimentally study the temporal dynamics of amplitude-modulated laser beams propagating through a water dispersion of graphene oxide sheets in a fiber-to-fiber U-bench. Nonlinear refraction induced in the sample by thermal effects leads to both phase reversing of the transmitted signals and dynamic hysteresis in the input-output power curves. A theoretical model including beam propagation and thermal lensing dynamics reproduces the experimental findings.

  9. The role of allophane nano-structure and Fe oxide speciation for hosting soil organic matter in an allophanic Andosol

    NASA Astrophysics Data System (ADS)

    Filimonova, Svetlana; Kaufhold, Stephan; Wagner, Friedrich E.; Häusler, Werner; Kögel-Knabner, Ingrid

    2016-05-01

    We evaluated the impact of nano-structural characteristics of allophanic compounds and Fe oxide speciation on the efficiency of organo-mineral interactions in an allophanic Andosol derived from volcanic ash (Eifel mountains, Germany). The samples selected for our work represented a gradient from: (i) a pure synthetic allophane and (ii) model organo-mineral mixtures to (iii) particle size fractions of the natural Andosol. We thus aimed to link the processes operating at the individual molecular scale to the phenomena active at the aggregate scale. For a non-destructive characterization of the samples, we applied 129Xe NMR spectroscopy of adsorbed Xe atoms (to identify the mineral nano-structure and surface acid centres), ESEM (verifying the nano-spherical structure of allophane), 13C CPMAS NMR (for the nature of the soil organic matter (SOM)), 57Fe Mössbauer spectroscopy (Fe oxide speciation), and N2 adsorption (contribution of micro- and mesoporosity). By using the atomic probe Xe, we obtained evidence for a coupled mechanism of adsorption onto allophane requiring both the narrow pores (voids formed by the primary nano-spherules) and the acid centres located at the defect surfaces of the primary spherules. The validity of this coupled mechanism for the sorption of organic matter was confirmed by the concomitant blocking of acid centres (129Xe NMR data) and the decrease of the N2-available pore volumes (Vmicro and Vmeso) in the model samples DOM/- and NOM/allophane (DOM = dissolved OM, NOM = natural OM). In the Andosol, the high resistance of SOM against oxidation (OCresist = 15-50%) was combined with preferential accumulation of certain organic compounds, e.g. potentially labile substrates such as carbohydrates, and the low molecular weight species such as amino acids. This feature was attributed to the peculiar microporous tortuous structure of allophane aggregates that likely impose certain criteria for the chemical nature and size of mineral-bound SOM. On the

  10. Evaluation of the sonosensitizing properties of nano-graphene oxide in comparison with iron oxide and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Beik, Jaber; Abed, Ziaeddin; Shakeri-Zadeh, Ali; Nourbakhsh, Mitra; Shiran, Mohammad Bagher

    2016-07-01

    In cancer hyperthermia, ultrasound is considered as an appropriate source of energy to achieve desired therapeutic levels of heating. It is assumed that such a heating is targeted to cancer cells by using nanoparticles as sonosensitization agents. Here, we report the sonosensitizing effects of Nano-Graphene Oxide (NGO) and compare them with gold nanoparticles (AuNPs), Iron Oxide nanoparticles (IONPs). Experiments were conducted to explore the effects of nanoparticle type and concentration, as well as ultrasound power, on transient heating up of the solutions exposed by 1 MHz ultrasound. Nanoparticles concentration was selected from 0.25 to 2.5 mg/ml and the solutions were exposed by ultrasound powers from 1 to 8 W. Real time temperature monitoring was done by a thermocouple and obtained data was analyzed. Temperature profiles of various nanoparticle solutions showed the higher heating rates, in comparison to water. Heating rise was strongly depended on nanoparticles concentration and ultrasound power. AuNPs showed a superior efficiency in heat generation enhancement in comparison to IONPs and NGO. Our result supports the idea of sonosensitizing capabilities of AuNPs, IONPs, and NGO. Targeted hyperthermia may be achievable by preferential loading of tumor with nanoparticles and subsequent ultrasound irradiation.

  11. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification.

    PubMed

    Chen, Xianfu; Qiu, Minghui; Ding, Hao; Fu, Kaiyun; Fan, Yiqun

    2016-03-14

    In this study, we report a promising rGO-CNT hybrid nanofiltration (NF) membrane that was fabricated by loading reduced graphene oxide that was intercalated with carbon nanotubes (rGO-CNTs) onto an anodic aluminum oxide (AAO) microfiltration membrane via a facile vacuum-assisted filtration process. To create this NF membrane, the CNTs were first dispersed using block copolymers (BCPs); the effects of the types and contents of BCPs used on the dispersion of CNTs have been investigated. The as-prepared rGO-CNT hybrid NF membranes were then used for drinking water purification to retain the nanoparticles, dyes, proteins, organophosphates, sugars, and particularly humic acid. Experimentally, it is shown that the rGO-CNT hybrid NF membranes have high retention efficiency, good permeability and good anti-fouling properties. The retention was above 97.3% even for methyl orange (327 Da); for other objects, the retention was above 99%. The membrane's permeability was found to be as high as 20-30 L m(-2) h(-1) bar(-1). Based on these results, we can conclude that (i) the use of BCPs as a surfactant can enhance steric repulsion and thus disperse CNTs effectively; (ii) placing well-dispersed 1D CNTs within 2D graphene sheets allows an uniform network to form, which can provide many mass transfer channels through the continuous 3D nanostructure, resulting in the high permeability and separation performance of the rGO-CNT hybrid NF membranes.

  12. Ultrafine and well dispersed silver nanocrystals on 2D nanosheets: synthesis and application as a multifunctional material for electrochemical catalysis and biosensing.

    PubMed

    Gao, Tao; Yang, Dawei; Ning, Limin; Lei, Lin; Ye, Zonghuang; Li, Genxi

    2014-12-21

    The strong coupling of inorganic nanocrystals with 2D nanosheets to produce function-enhanced nano-materials with uniform size, dispersion, and high coverage density has long been of interest to scientists from various research fields. Here, a simple and effective method has been described to fabricate ultrafine and well dispersed silver nanocrystals (AgNCs) on graphene oxide (GO), based on a facial-induced co-reduction strategy. The synthesized nanohybrid has shown uniform and well dispersed AgNCs (2.9 ± 1.4 nm), individually separated GO sheets, as well as highly covered surface (5250 nanocrystals per square micrometer), indicating the formation of a high-quality GO-based nanohybrid. Moreover, this material shows excellent catalytic activity for oxygen reduction reactions (ORRs) and exhibits enhanced signal readout for molecular sensing, demonstrating the potential application of this newly synthesized inorganic hybrid with strong synergistic coupling effects on advanced functional systems.

  13. Preparations, Properties, and Applications of Periodic Nano Arrays using Anodized Aluminum Oxide and Di-block Copolymer

    NASA Astrophysics Data System (ADS)

    Noh, Kunbae

    2011-12-01

    Self-ordered arrangements observed in various materials systems such as anodic aluminum oxide, polystyrene nanoparticles, and block copolymer are of great interest in terms of providing new opportunities in nanofabrication field where lithographic techniques are broadly used in general. Investigations on self-assembled nano arrays to understand how to obtain periodic nano arrays in an efficient yet inexpensive way, and how to realize advanced material and device systems thereof, can lead to significant impacts on science and technology for many forefront device applications. In this thesis, various aspects of periodic nano-arrays have been discussed including novel preparations, properties and applications of anodized aluminum oxide (AAO) and PS-b-P4VP (S4VP) di-block copolymer self-assembly. First, long-range ordered AAO arrays have been demonstrated. Nanoimprint lithography (NIL) process allowed a faithful pattern transfer of the imprint mold pattern onto Al thin film, and interesting self-healing and pattern tripling phenomena were observed, which could be applicable towards fabrication of the NIL master mold having highly dense pattern over large area, useful for fabrication of a large-area substrate for predictable positioning of arrayed devices. Second, S4VP diblock copolymer self-assembly and S4VP directed AAO self-assembly have been demonstrated in the Al thin film on Si substrate. Such a novel combination of two dissimilar self-assembly techniques demonstrated a potential as a versatile tool for nanopatterning formation on a Si substrate, capable of being integrated into Si process technology. As exemplary applications, vertically aligned Ni nanowires have been synthesized into an S4VP-guided AAO membrane on a Si substrate in addition to anti-dot structured [Co/Pd]n magnetic multilayer using S4VP self assembly. Third, a highly hexagonally ordered, vertically parallel aluminum oxide nanotube array was successfully fabricated via hard anodization technique

  14. Corrosion resistance of high-Cr oxide dispersion strengthened ferritic steels in super-critical pressurized water

    NASA Astrophysics Data System (ADS)

    Cho, H. S.; Kimura, A.

    2007-08-01

    The effects of alloying elements, such as Cr and Al, on corrosion resistance in super critical pressurized water (SCPW) have been investigated to develop corrosion resistant oxide-dispersion-strengthened (ODS) steels. Corrosion tests were performed in a SCPW (783 K, 25 MPa) environment. Weight gain was measured after exposure to the SCPW, and then oxide layers were analyzed by low angle X-ray diffraction and SEM microscopy. The weight gains of all high-Cr ODS steels are smaller than an austenitic stainless steel (SUS316L). More uniform and thinner oxidation layers were observed on the ODS steels after corrosion compared to those on 9Cr martensitic steel and SUS316L.

  15. Dispersion dependence of second-order refractive index and complex third-order optical susceptibility in oxide glasses

    NASA Astrophysics Data System (ADS)

    Abdel Wahab, F. A.; El-Diasty, Fouad; Abdel-Baki, Manal

    2009-10-01

    A method correlates Fresnel-based spectrophotometric measurements and Lorentz dispersion theory is presented to study the dispersion of nonlinear optical parameters in particularly oxide glasses in a very wide range of angular frequency. The second-order refractive index and third-order optical susceptibility of Cr-doped glasses are determined from linear refractive index. Furthermore, both real and imaginary components of the complex susceptibility are carried out. The study reveals the importance of determining the dispersion of nonlinear absorption (two-photon absorption coefficient) to find the maximum resonant and nonresonant susceptibilities of investigated glasses. The present method is applied on Cr-doped lithium aluminum silicate (LAS) glasses due to their semiconductor-like behavior and also to their application in laser industry.

  16. Study of nano mechanical properties polydimethylsiloxane (PDMS)/MWCNT composites

    NASA Astrophysics Data System (ADS)

    Murudkar, Vrishali; Gaonkar, Amita; Deshpande, V. D.; Mhaske, S. T.

    2018-05-01

    Polydimethylsiloxane (PDMS), a clear elastomer, is a common material used in many applications; but has poor mechanical properties. Carbon nano tubes (CNT) exhibit excellent mechanical properties & hence are used as filler in PDMS. It was found that the elastic modulus and strength of the PDMS/MWCNT nano composites were enhanced by adding MWCNT [1]. Through the nano indentation experiment, the hardness (H), the elastic modulus (E), and other mechanical properties can be determined from very small volumes of materials [2]; hence nano indentation is widely used to study mechanical properties. PDMS/MWCNT composites have enhanced mechanical properties over neat PDMS. FTIR analysis shows bonding between MWCNT and PDMS; which affects the mechanical properties. From AFM study it shows decreasing roughness for increasing MWCNT concentration. Surface morphology (SEM) study shows well dispersion of MWCNT into PDMS matrix.

  17. Study of the effects of Shockwaves on Nano fluids

    NASA Astrophysics Data System (ADS)

    Shreekhar; Akhil, Mohan; Ram, Sai; Gopaiah, Venkata; Koundinya, Sandeep; Nagaraja, S. R.

    2018-02-01

    Nanofluids are fluids with nanoparticles dispersed in them. Due to the presence of Nano particles, these fluids exhibit unique properties that can used in various applications such as heat exchangers and in medical fields. However, due to agglomeration, the size of these particle increases, reducing their efficiency. In order to break the agglomeration, we are passing shockwaves in the fluid. Shockwaves theoretically carry energy which can be used to break the agglomerating particles. In this paper, silver nanoparticles were synthesized using silver nitrate. Tri sodium citrate was used as the reducing agent. Shock waves were passed to the fluid containing silver Nano particles. The changes in the Nano fluid was measured by a UV-Vis Spectrophotometer. With each shock passed, the fluid’s absorbance and wavelength peak was measured and compared with Nano fluid without shock.

  18. Fabrication of water-dispersible single-walled carbon nanotube powder using N-methylmorpholine N-oxide

    NASA Astrophysics Data System (ADS)

    Choi, Hyejun; Woo, Jong Seok; Tark Han, Joong; Park, Soo-Young

    2017-11-01

    Dispersion of nanocarbon materials in liquid media, via solution processing such as spraying, printing, spinning, etc. is one of the prerequisites for practical applications. Here we report that water-dispersible single-walled carbon nanotubes (SWCNTs) were prepared through successive treatments with chlorosulfuric acid (CSA)/H2O2 and N-methylmorpholine N-oxide (NMO) monohydrate. The powder of the CSA/H2O2- and NMO-treated SWCNTs (N-SWCNTs) could be readily redispersed in water in concentrations as high as 1 g l-1 without requiring a dispersant. The mechanism responsible for the high dispersity of the N-SWCNT powder in polar solvents, including water, was elucidated based on the high polarity of the NMO molecule. In order to highlight the wide applicability of the N-SWCNTs, they were used successfully to prepare conducting thin films by spray-coating plastic substrates with an aqueous hybrid solution containing the N-SWCNTs and Ag nanowires (NWs). In addition, a flexible, large-area thin-film heater was prepared based on the N-SWCNT/AgNW hybrid film with a transmittance of 93% and sheet resistance of 30 Ω sq-1.

  19. Magnetic iron oxide nanoparticles (MIONs) cross-linked natural polymer-based hybrid gel beads: Controlled nano anti-TB drug delivery application.

    PubMed

    Kesavan, Mookkandi Palsamy; Ayyanaar, Srinivasan; Vijayakumar, Vijayaparthasarathi; Dhaveethu Raja, Jeyaraj; Annaraj, Jamespandi; Sakthipandi, Kathiresan; Rajesh, Jegathalaprathaban

    2018-04-01

    The nanosized rifampicin (RIF) has been prepared to increase the solubility in aqueous solution, which leads to remarkable enhancement of its bioavailability and their convenient delivery system studied by newly produced nontoxic, biodegradable magnetic iron oxide nanoparticles (MIONs) cross-linked polyethylene glycol hybrid chitosan (mCS-PEG) gel beads. The functionalization of both nano RIF and mCS-PEG gel beads were studied using various spectroscopic and microscopic techniques. The size of prepared nano RIF was found to be 70.20 ± 3.50 nm. The mechanical stability and swelling ratio of the magnetic gel beads increased by the addition of PEG with a maximum swelling ratio of 38.67 ± 0.29 g/g. Interestingly, this magnetic gel bead has dual responsive assets in the nano drug delivery application (pH and the magnetic field). As we expected, magnetic gel beads show higher nano drug releasing efficacy at acidic medium (pH = 5.0) with maximum efficiency of 71.00 ± 0.87%. This efficacy may also be tuned by altering the external magnetic field and the weight percentage (wt%) of PEG. These results suggest that such a dual responsive magnetic gel beads can be used as a potential system in the nano drug delivery applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1039-1050, 2018. © 2017 Wiley Periodicals, Inc.

  20. Grain Refinement and Mechanical Properties of Cu–Cr–Zr Alloys with Different Nano-Sized TiCp Addition

    PubMed Central

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-01-01

    The TiCp/Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiCp/Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu–Cr–Zr alloys to fabricate the nano-sized TiCp-reinforced Cu–Cr–Zr composites. Results show that nano-sized TiCp can effectively refine the grain size of Cu–Cr–Zr alloys. The morphologies of grain in Cu–Cr–Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiCp. The grain size decreased from 82 to 28 μm with the nano-sized TiCp content. Compared with Cu–Cr–Zr alloys, the ultimate compressive strength (σUCS) and yield strength (σ0.2) of 4 wt% TiCp-reinforced Cu–Cr–Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu–Cr–Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiCp-reinforced Cu–Cr–Zr composites decreased with the increasing TiCp content under abrasive particles. The eletrical conductivity of Cu–Cr–Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu–Cr–Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively. PMID:28786937

  1. Micro and Nano Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    Manohara, Harish

    2007-01-01

    This slide presentation reviews the use of micro and nano systems in Space exploration. Included are: an explanation of the rationales behind nano and micro technologies for space exploration, a review of how the devices are fabricated, including details on lithography with more information on Electron Beam (E-Beam) lithography, and X-ray lithography, a review of micro gyroscopes and inchworm Microactuator as examples of the use of MicroElectoMechanical (MEMS) technology. Also included is information on Carbon Nanotubes, including a review of the CVD growth process. These micro-nano systems have given rise to the next generation of miniature X-ray Diffraction, X-ray Fluorescence instruments, mass spectrometers, and terahertz frequency vacuum tube oscillators and amplifiers, scanning electron microscopes and energy dispersive x-ray spectroscope. The nanotechnology has also given rise to coating technology, such as silicon nanotip anti-reflection coating.

  2. Influence of nanovoids on α-α' phase separation in FeCrAl oxide dispersion strengthened alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capdevila, Carlos; Aranda, M. M.; Rememnteria, R.

    2015-08-10

    The presence of nanovoids in the vicinity of oxide particles in FeCrAl oxide dispersion strengthened (ODS) alloy has been identified. These nanovoids are inherent to the manufacturing route and remain quite resistant during heat treatments. Positron annihilation spectroscopy (PAS) experiments demonstrate that these nanovoids trap Cr inside thereby reducing the Cr-content in the matrix. In conclusion, this might lead to a delay in the α–α' phase separation process as observed by atom probe tomography (APT).

  3. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1989-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  4. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1990-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  5. Synthesis, characterization, and reactivity of cellulose modified nano zero-valent iron for dye discoloration

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyu; Wang, Pei; Ma, Jun; Liu, Huiling; Ning, Ping

    2015-08-01

    Nano zero-valent iron (NZVI) was innovatively and successfully modified by using hydroxyethyl cellulose (HEC) and hydroxypropylmethyl cellulose (HPMC) as dispersants. The systematic characterization observations (including XRD, SEM and TEM) illustrate that, compared with bare nano zero-valent iron particles (BNZVI), the particle sizes of hydroxyethyl cellulose modified (ENZVI) and hydroxypropylmethyl cellulose modified (PNZVI) were decreased, while the dispersity and antioxidizability of ENZVI and PNZVI particles were increased. The discoloration efficiencies of ENZVI, PNZVI, and BNZVI were compared by using dyes (including orange II, methyl orange, methyl blue, and methylene blue) as target pollutant. The results show that both the discoloration efficiency and reaction rate of ENZVI and PNZVI are higher than that of BNZVI. In addition, effects of dispersant content, dye type, pH value, initial dye concentration, iron dosage, and reaction temperature on discoloration efficiencies were studied. The results show that discoloration efficiency was decreased by increasing initial pH value and dye concentration, and it was increased with the increase the iron dosage and reaction temperature. Under optimized NZVI addition of 0.7 g L-1, the discoloration efficiencies of ENZVI and PNZVI were increased to 96.33% and 98.62%, respectively. And the possible discoloration pathway and dispersant modification mechanism of NZVI were discussed. This study suggests hydroxyethyl cellulose and hydroxypropylmethyl cellulose dispersed NZVI can be utilized as a promising modified nano-material for degradation of dye wastewater.

  6. Equivalent distributed capacitance model of oxide traps on frequency dispersion of C-V curve for MOS capacitors

    NASA Astrophysics Data System (ADS)

    Lu, Han-Han; Xu, Jing-Ping; Liu, Lu; Lai, Pui-To; Tang, Wing-Man

    2016-11-01

    An equivalent distributed capacitance model is established by considering only the gate oxide-trap capacitance to explain the frequency dispersion in the C-V curve of MOS capacitors measured for a frequency range from 1 kHz to 1 MHz. The proposed model is based on the Fermi-Dirac statistics and the charging/discharging effects of the oxide traps induced by a small ac signal. The validity of the proposed model is confirmed by the good agreement between the simulated results and experimental data. Simulations indicate that the capacitance dispersion of an MOS capacitor under accumulation and near flatband is mainly caused by traps adjacent to the oxide/semiconductor interface, with negligible effects from the traps far from the interface, and the relevant distance from the interface at which the traps can still contribute to the gate capacitance is also discussed. In addition, by excluding the negligible effect of oxide-trap conductance, the model avoids the use of imaginary numbers and complex calculations, and thus is simple and intuitive. Project supported by the National Natural Science Foundation of China (Grant Nos. 61176100 and 61274112), the University Development Fund of the University of Hong Kong, China (Grant No. 00600009), and the Hong Kong Polytechnic University, China (Grant No. 1-ZVB1).

  7. Semi-flexible polymer engendered aggregation/dispersion of fullerene (C60) nano-particles: An atomistic investigation

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Pattanayek, Sudip K.

    2018-06-01

    Semi flexible polymer chain has been modeled by choosing various values of persistent length (stiffness). As the polymer chain stiffness increases, the shape of polymer chain changes from globule to extended cigar to toroid like structure during cooling from a high temperature. The aggregation of fullerene nano-particles is found to depend on the morphology of polymer chain. To maximize, the number of polymer bead-nanoparticle contacts, all nano-particle have positioned inside the polymer globule. To minimize, the energy penalty, due to bending of the polymer chain, all nano-particle have positioned on the surface of the polymer's cigar and toroid morphology.

  8. Development of an electrochemical process for production of nano-copper oxides: Agglomeration kinetics modeling.

    PubMed

    Shahcheraghi, Seyed Hadi; Schaffie, Mahin; Ranjbar, Mohammad

    2018-06-01

    The main objective of this study was the development of a simple, clean, and industrial applicable electrochemical process for production of high pure nano-copper oxides from mining and industrial resources (e.g., ore, spent, slag and wastewater). To conduct the proposed process, a special set up containing an electrochemical cell in an ultrasonic system (28 kHz and 160 W) was proposed. Accordingly, using this set up and applying appropriate voltage (≈ 5 V) at 25 °C, in the presence of N 2 gas, the simultaneous anode dissolution and nano-copper oxides formation (≈ 24 nm) can be occurred, rapidly (less than 45 min). Then, the effect of N 2 gas and free radicals generated by ultrasonic irradiation was studied. The results showed, in the absence of ultrasonic irradiation and N 2 , an increase of electrolyte pH from 6.42 to 10.92, a decrease of electrolyte Eh from 285 mV to -1.14 V, and formation of copper nanoparticles. While, in the presence of ultrasonic and N 2 , the CuO nanoparticles were formed due to presence of H 2 O 2 generated by interaction of free radicals. Moreover, a novel method for kinetics modeling of nanoparticles agglomeration was proposed according to distributed activation energy model and Arrhenius parameters variation. The results showed that, in the absence of ultrasonic irradiation, the nanoparticle agglomerates were firstly formed (interface controlled mechanism) and then, the diffusion of nanoparticle agglomerates was occurred (diffusion controlled mechanism). Therefore, the control of nanoparticles size and shape may be impossible without surfactant. Also, in the presence of ultrasonic irradiation, the whole of agglomeration process followed interface controlled mechanism. Therefore, using ultrasonic irradiation, the nanoparticles shape and size don't change due to prevention of agglomerates diffusion. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Defect and void evolution in oxide dispersion strengthened ferritic steels under 3.2 MeV Fe + ion irradiation with simultaneous helium injection

    NASA Astrophysics Data System (ADS)

    Kim, I.-S.; Hunn, J. D.; Hashimoto, N.; Larson^1, D. L.; Maziasz, P. J.; Miyahara, K.; Lee, E. H.

    2000-08-01

    In an attempt to explore the potential of oxide dispersion strengthened (ODS) ferritic steels for fission and fusion structural materials applications, a set of ODS steels with varying oxide particle dispersion were irradiated at 650°C, using 3.2 MeV Fe + and 330 keV He + ions simultaneously. The void formation mechanisms in these ODS steels were studied by juxtaposing the response of a 9Cr-2WVTa ferritic/martensitic steel and solution annealed AISI 316LN austenitic stainless steel under the same irradiation conditions. The results showed that void formation was suppressed progressively by introducing and retaining a higher dislocation density and finer precipitate particles. Theoretical analyses suggest that the delayed onset of void formation in ODS steels stems from the enhanced point defect recombination in the high density dislocation microstructure, lower dislocation bias due to oxide particle pinning, and a very fine dispersion of helium bubbles caused by trapping helium atoms at the particle-matrix interfaces.

  10. Murine liver damage caused by exposure to nano-titanium dioxide

    NASA Astrophysics Data System (ADS)

    Hong, Jie; Zhang, Yu-Qing

    2016-03-01

    Due to its unique physiochemical properties, nano-titanium dioxide (nano-TiO2) is widely used in all aspects of people’s daily lives, bringing it into increasing contact with humans. Thus, this material’s security issues for humans have become a heavily researched subject. Nano-TiO2 can enter the body through the mouth, skin, respiratory tract or in other ways, after which it enters the blood circulation and is deposited in the liver, changing biochemical indicators and causing liver inflammation. Meanwhile, the light sensitivity of these nanoparticles allows them to become media-generating reactive oxygen species (ROS), causing an imbalance between oxidation and anti-oxidation that leads to oxidative stress and liver damage. Nano-TiO2 can be transported into cells via phagocytosis, where the nanoparticles bind to the mitochondrial membrane, resulting in the disintegration of the membrane and the electron transport chain within the mitochondria. Thus, more ROS are produced. Nano-TiO2 can also enter the nucleus, where it can directly embed into or indirectly affect DNA, thereby causing DNA breakage or affecting gene expression. These effects include increased mRNA and protein expression levels of inflammation-related factors and decreased mRNA and protein expression levels of IκB and IL-2, resulting in inflammation. Long-term inflammation of the liver causes HSC cell activation, and extracellular matrix (ECM) deposition is promoted by multiple signalling pathways, resulting in liver fibrosis. In this paper, the latest progress on murine liver injury induced by environmental TiO2 is systematically described. The toxicity of nano-TiO2 also depends on size, exposure time, surface properties, dosage, administration route, and its surface modification. Therefore, its toxic effects in humans should be studied in greater depth. This paper also provides useful reference information regarding the safe use of nano-TiO2 in the future.

  11. The Antibiofilm efficacy of nitric oxide on soft contact lenses.

    PubMed

    Kim, Dong Ju; Park, Joo-Hee; Kim, Marth; Park, Choul Yong

    2017-11-21

    To investigate the antibiofilm efficacy of nitric oxide (NO) on soft contact lenses. Nitrite (NO precursor) release from various concentrations (0-1000 μM) of sodium nitrite (NaNO 2, NO donor) was measured by Griess Assay. Cell viability assay was performed using human corneal epithelial cell under various concentration (0-1000 μM) of NaNO 2 . Biofilm formation on soft contact lenses was achieved by adding Staphylococcus aureus or Pseudomonas aeruginosa to the culture media. Various concentrations of NaNO 2 (0-1000 μM) were added to the culture media, each containing soft contact lens. After incubation in NaNO 2 containing culture media for 1, 3, or 7 days, each contact lens was transferred to a fresh, bacteria-free media without NaNO 2 . The bacteria in the biofilm were dispersed in the culture media for planktonic growth. After reculturing the lenses in the fresh media for 24 h, optical density (OD) of media was measured at 600 nm and colony forming unit (CFU) was counted by spreading media on tryptic soy agar plate for additional 18 h. Nitrite release from NaNO 2 showed dose-dependent suppressive effect on biofilm formation. Most nitrite release from NaNO 2 tended to occur within 30 min. The viability of human corneal epithelial cells was well maintained at tested NaNO 2 concentrations. The bacterial CFU and OD showed dose-dependent decrease in the NaNO 2 treated samples on days 1, 3 and 7 for both Staphylococcus aureus and Pseudomonas aeruginosa. NO successfully inhibited the biofilm formation by Staphylococcus aureus or Pseudomonas aeruginosa on soft contact lenses in dose-dependent manner.

  12. Radiation response of oxide-dispersion-strengthened alloy MA956 after self-ion irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Tianyi; Kim, Hyosim; Gigax, Jonathan G.; Chen, Di; Wei, Chao-Chen; Garner, F. A.; Shao, Lin

    2017-10-01

    We studied the radiation-induced microstructural evolution of an oxide-dispersion-strengthened (ODS) ferritic alloy, MA956, to 180 dpa using 3.5 MeV Fe2+ ions. Post-irradiation examination showed that voids formed rather early and almost exclusively at the particle-matrix interfaces. Surprisingly, voids formed even in the injected interstitial zone. Comparisons with studies on other ODS alloys with smaller and largely coherent dispersoids irradiated at similar conditions revealed that the larger and not completely coherent oxide particles in MA956 serve as defect collectors which promote nucleation of voids at their interface. The interface configuration, which is related to particle type, crystal structure and size, is one of the important factors determining the defect-sink properties of particle-matrix interfaces.

  13. Preparation, characterization and application of dispersible and spherical Nano-SiO2@Copolymer nanocomposite in leather tanning

    NASA Astrophysics Data System (ADS)

    Pan, Hui; Li, Guang-Long; Liu, Rui-Qi; Wang, Su-Xia; Wang, Xiao-Dong

    2017-12-01

    Dispersible and spherical silica nanoparticles (nano-SiO2) were prepared with tetraethyl silicate and different surface-modifiers via a simple method. The silica nanoparticles surface-modified with methacryloxy (propyl) trimethoxysilane (denoted as MPS-SiO2), dimethyl diallyl ammoniumchloride (denoted as DMDAAC-SiO2) and poly (methacrylic acid) (denoted as PMAA-SiO2) which are known as hydrophobic, amphiphilic and hydrophilic modifiers, respectively, exhibited excellent dispersibility in various solvents or polymer matrix. The obtained bare silica nanoparticles, MPS-SiO2, DMDAAC-SiO2 and PMAA-SiO2 were characterized by Fourier transform infrared spectra (FTIR), thermogravimetric analysis (TGA), transmission electron microscope (TEM) and scanning electron microscope (SEM). A series of nanocomposites (denoted as SiO2/P, MPS-SiO2/P, DMDAAC-SiO2/P and PMAA-SiO2/P, respectively) were also prepared with the bare or surface-modified silica nanoparticles and methacrylic acid-co-acrylamide-co-acrylonitrile-co-salicylic acid tetrabasic copolymer (denoted as PMAAS) and applied in leather tanning. Compared with those of the leather tanned with the commercial acrylic resin (CHINATAN OM) and pure tetrabasic copolymer tanning agents, the physical and mechanical properties, rheological properties and thermal stabilities of the leather treated with SiO2/P, MPS-SiO2/P, DMDAAC-SiO2/P or PMAA-SiO2/P founded to be improved in a significant way. Moreover, the highest shrinkage temperature of the wet-white sheepskin tanned with PMAA-SiO2/P reached to 76 °C and the thickness increase reached to 105%.

  14. Anodization: a promising nano-modification technique of titanium implants for orthopedic applications.

    PubMed

    Yao, Chang; Webster, Thomas J

    2006-01-01

    Anodization is a well-established surface modification technique that produces protective oxide layers on valve metals such as titanium. Many studies have used anodization to produce micro-porous titanium oxide films on implant surfaces for orthopedic applications. An additional hydrothermal treatment has also been used in conjunction with anodization to deposit hydroxyapatite on titanium surfaces; this is in contrast to using traditional plasma spray deposition techniques. Recently, the ability to create nanometer surface structures (e.g., nano-tubular) via anodization of titanium implants in fluorine solutions have intrigued investigators to fabricate nano-scale surface features that mimic the natural bone environment. This paper will present an overview of anodization techniques used to produce micro-porous titanium oxide structures and nano-tubular oxide structures, subsequent properties of these anodized titanium surfaces, and ultimately their in vitro as well as in vivo biological responses pertinent for orthopedic applications. Lastly, this review will emphasize why anodized titanium structures that have nanometer surface features enhance bone forming cell functions.

  15. DISPERSION HARDENING OF URANIUM METAL

    DOEpatents

    Arbiter, W.

    1963-01-15

    A method of hardening U metal involves the forming of a fine dispersion of UO/sub 2/. This method consists of first hydriding the U to form a finely divided powder and then exposing the powder to a very dilute O gas in an inert atmosphere under such pressure and temperature conditions as to cause a thin oxide film to coat each particle of the U hydride, The oxide skin prevents agglomeration of the particles as the remaining H is removed, thus preserving the small particle size. The oxide skin coatings remain as an oxide dispersion. The resulting product may be workhardened to improve its physical characteristics. (AEC)

  16. Manufacture and engine test of advanced oxide dispersion strengthened alloy turbine vanes. [for space shuttle thermal protection

    NASA Technical Reports Server (NTRS)

    Bailey, P. G.

    1977-01-01

    Oxide-Dispersion-strengthened (ODS) Ni-Cr-Al alloy systems were exploited for turbine engine vanes which would be used for the space shuttle thermal protection system. Available commercial and developmental advanced ODS alloys were evaluated, and three were selected based on established vane property goals and manufacturing criteria. The selected alloys were evaluated in an engine test. Candidate alloys were screened by strength, thermal fatigue resistance, oxidation and sulfidation resistance. The Ni-16Cr (3 to 5)Al-ThO2 system was identified as having attractive high temperature oxidation resistance. Subsequent work also indicated exceptional sulfidation resistance for these alloys.

  17. Oleic acid-grafted chitosan/graphene oxide composite coating for corrosion protection of carbon steel.

    PubMed

    Fayyad, Eman M; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Al-Maadeed, Mariam Al Ali

    2016-10-20

    An anticorrosion coating film based on the formation of nanocomposite coating is reported in this study. The composite consisted of chitosan (green matrix), oleic acid, and graphene oxide (nano filler). The nanocomposite coating was arranged on the surface of carbon steel, and the corrosion resistance was monitored using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP). Compared to the pure chitosan (CS) coating, the corrosion resistance of oleic acid-modified chitosan/graphene oxide film (CS/GO-OA) is increased by 100 folds. Since the well-dispersed smart grafted nanolayers delayed the penetration rate of corrosive species and thus maintained long term anticorrosive stability which is correlated with hydrophobicity and permeability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Magnetic iron oxides in the cementation technology of the boron-containing radioactive waste

    NASA Astrophysics Data System (ADS)

    Fedotov, M. A.; Gorbunova, O. A.; Fedorova, O. V.; Folmanis, G. E.; Kovalenko, L. V.

    2015-04-01

    Two ways of synthesis of non-detachable dispersed particles of magnetic materials useful for the boron-containing waste cementation process regulation were developed. Powder XRD showed that the method of carbothermic recovery of nanoscale iron hydroxide allows obtaining a mixture of iron oxides with content of the magnetic phase up to 70%. Method of low-temperature hydrogen reduction of the raw materials allows obtaining various compositions of a-iron and iron oxides with the possibility to change the size of the final particles in a wide range. The possibility of using composites of magnetic iron oxides and metal oxide compositions instead of ferromagnetic rods with VEP of boron-containing liquid radioactive waste in the fluidized field was studied. It was shown that the use of fine and nano particles of the iron oxides in the pre-treatment of the boron-containing LRW increases the strength of the final compounds and accelerates the cement setting compounds from 13 to 5-9 days.

  19. Photochromic Properties of Tungsten Oxide/Methylcellulose Composite Film Containing Dispersing Agents.

    PubMed

    Yamazaki, Suzuko; Ishida, Hiroki; Shimizu, Dai; Adachi, Kenta

    2015-12-02

    Tungsten oxide-based photochromic films which changed reversibly in air between colorless- transparent in the dark and dark blue under UV irradiation were prepared by using methylcellulose as a film matrix and polyols such as ethylene glycol (EG), propylene glycol (PG), and glycerin (Gly) as dispersing agents. Influence of the dispersing agents and water in the films on the photochromic behavior was systematically studied. Under UV irradiation, absorption bands around 640 and 980 nm increased and the coloring rate was the following order: Gly > EG > PG. An increase in the amounts of dispersing agents or water accelerated the coloring rate. By increasing the water content of the film, a new absorption peak appeared at ca. 775 nm and the Raman spectra indicated a shift of W-O-W stretching vibration to lower wavenumber which was due to the formation of hydrogen bonding. All absorption spectra were fit by three Lorentz functions, whose bands were ascribed to various packing of WO6 octahedra. After the light was turned off, the formation of W(5+) was stopped and bleaching occurred by the reaction with O2 in air to recover its original transparent state. We anticipate that the biodegradable photochromic films developed in this study can be applied in recyclable display medium and especially in detachable films for glass windows whose light transmission properties are changed by sunlight, i.e., for usage as an alternative of smart windows without applying voltage.

  20. Processing and synthesis of multi-metallic nano oxide ceramics via liquid-feed flame spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Azurdia, Jose Antonio

    The liquid-feed flame spray pyrolysis (LF-FSP) process aerosolizes metal-carboxylate precursors dissolved in alcohol with oxygen and combusts them at >1500°C. The products are quenched rapidly (˜10s msec) to < 400°C. By selecting the appropriate precursor mixtures, the compositions of the resulting oxide nanopowders can be tailored easily, which lends itself to combinatorial studies of systems facilitating material property optimization. The resulting nanopowders typically consist of single crystal particles with average particle sizes (APS) < 35 nm, specific surface areas (SSA) of 20-60 m2/g and spherical morphology. LF-FSP provides access to novel single phase nanopowders, known phases at compositions outside their published phase diagrams, intimate mixing at nanometer length scales in multi metallic oxide nanopowders, and control of stoichiometry to ppm levels. The materials produced may exhibit unusual properties including structural, catalytic, and photonic ones and lower sintering temperatures. Prior studies used LF-FSP to produce MgAl2O4 spinel for applications in transparent armor and IR radomes. In these studies, a stable spinel structure with a (MgO)0.1(Al2O3)0.9 composition well outside the known phase field was observed. The work reported here extends this observation to two other spinel systems: Al2O3-NiO, Al2O3-CoOx; followed by three series of transition metal binary oxides, NiO-CoO, NiO-MoO3, NiO-CuO. The impetus to study spinels derives both from the fact that a number of them are known transparent ceramics, but also others offer high SSAs coupled with unusual phases that suggest potentially novel catalytic materials. Because LF-FSP provides access to any composition, comprehensive studies of the entire tie-lines were conducted rather than just compositions of value for catalytic applications. Initial efforts established baseline properties for the nano aluminate spinels, then three binary transition metal oxide sets (Ni-Co, Ni-Mo and Ni

  1. Synthesis and mechanical/magnetic properties of nano-grained iron-oxides prepared with an inert gas condensation and pulse electric current sintering process

    NASA Astrophysics Data System (ADS)

    Choa, Yong-Ho; Nakayama, Tatachika; Sekino, Tohru; Niihara, Koichi

    1999-04-01

    Nanocrystalline iron-oxide powder was fabricated with an inert gas condensation (IGC) method combined with evaporation, and in-situ oxidation techniques. The particle size of iron-oxide powder was controlled by varying the helium gas pressure between 0.1 and 10 Torr, with the smallest one =10 nm at 0.1 Torr. The nanostructure was characterized by TEM. Nanocrystalline iron-oxide powder was sintered with the pulse electric current sintering (PECS) method to obtain densified γ-Fe2O3 materials, and suitably densified nano-grained γ-Fe2O3 materials (≈ 40 nm) of great hardness were obtained. The correlation between the nanostructure and magnetic properties of nanocrystalline powder and densified γ-Fe2O3 materials was also investigated.

  2. Antimicrobial, free radical scavenging activities and catalytic oxidation of benzyl alcohol by nano-silver synthesized from the leaf extract of Aristolochia indica L.: a promenade towards sustainability

    NASA Astrophysics Data System (ADS)

    Shanmugam, C.; Sivasubramanian, G.; Parthasarathi, Bera; Baskaran, K.; Balachander, R.; Parameswaran, V. R.

    2016-06-01

    Silver nanoparticles (Ag-NPs) were synthesized from aqueous silver nitrate through a simple route using the leaf extract of Aristolochia indica L. (LAIL) which acted as a reducing as well as capping agent. X-ray diffraction confirmed that the synthesized silver particles have a face centred cubic structure. EDS predicted the presence of elemental silver. The SEM images showed the synthesis of spherically mono-dispersed particles, with nano dimensions accounted by the TEM images. Infra-red spectrum adopted to the different organic functionalities present at the surface of the particles. TGA indicated an overall 11 % weight loss up to 1000 °C, suggesting desorption of biomolecules from the surface. X-ray photoelectron spectroscopy (XPS) analysis revealed the presence of metallic silver nanoparticles. The prepared material was utilized as catalyst in the oxidation of benzyl alcohol with molecular oxygen as the oxidant in methanol, under ambient conditions of temperature and pressure. Also Ag-NPs showed good to moderate anti-microbial activity employing the Agar disc diffusion method against various strains using Ciprofloxacin and Fluconazole as standard. Free radical scavenging activity of the nanoparticles were observed by modified 1,1-diphynyl-2-picrylhydrazyl, DPPH and 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), ABTS in vitro assays. The work presented here demonstrates the adaptability of the synthesized Ag-NPs in participating as a disinfectant agent, free radical scavenger and an effective oxidation catalyst. The basic premise of attaining sustainability through the green synthesis of smart multifaceted materials has been consciously addressed.

  3. Grain Refinement and Mechanical Properties of Cu-Cr-Zr Alloys with Different Nano-Sized TiCp Addition.

    PubMed

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-08-08

    The TiC p /Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiC p /Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu-Cr-Zr alloys to fabricate the nano-sized TiC p -reinforced Cu-Cr-Zr composites. Results show that nano-sized TiC p can effectively refine the grain size of Cu-Cr-Zr alloys. The morphologies of grain in Cu-Cr-Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiC p . The grain size decreased from 82 to 28 μm with the nano-sized TiC p content. Compared with Cu-Cr-Zr alloys, the ultimate compressive strength (σ UCS ) and yield strength (σ 0.2 ) of 4 wt% TiC p -reinforced Cu-Cr-Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu-Cr-Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiC p -reinforced Cu-Cr-Zr composites decreased with the increasing TiC p content under abrasive particles. The eletrical conductivity of Cu-Cr-Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu-Cr-Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively.

  4. Effect of the nano-oxide layer as a Mn diffusion barrier in specular spin valves

    NASA Astrophysics Data System (ADS)

    Jang, S. H.; Kang, T.; Kim, H. J.; Kim, K. Y.

    2002-07-01

    In previous work an enhanced giant magnetoresistance (GMR) effect in spin valves (SVs) with a nano-oxide layer (NOL) after annealing at about 250-300 degC has been reported. We have shown that SVs with a NOL also have higher thermal stability of the MR ratio at 300 degC. From secondary-ion-mass spectroscopy and x-ray photoelectron spectroscopy depth profile analysis, the mechanism of the improved thermal stability of the SVs with a NOL is shown to be related to MnO formation within the NOL. Thus, Mn atoms from the FeMn layer are trapped, and Mn diffusion is inhibited by the NOL during annealing.

  5. Influence of nano-oxide layers on IrMn pinned bottom spin-valves at different positions

    NASA Astrophysics Data System (ADS)

    Qiu, J. J.; Li, K. B.; Luo, P.; Zheng, Y. K.; Wu, Y. H.

    2004-05-01

    The influence of nano-oxide layer (NOL) inserted at different positions on interlayer coupling (Hin), coercivity of free layer (Hcf), exchange bias (Hex) and MR ratio of IrMn pinned bottom type spin-valves (SV) were studied. Weak antiferromagnetic interlayer coupling was observed in NOL-added SV. The NOL inside pinned layer and after free layer can enhance the MR ratio remarkably. MR of SV with a structure Ta3/NiFe2/IrMn6/CoFe1/NOL/CoFe2.3/Cu2.2/CoFe2.3/AlO reached 18.2%. This is one of the best values ever reported for all-metal single spin-valves.

  6. Antagonistic effect of nano-ZnO and cetyltrimethyl ammonium chloride on the growth of Chlorella vulgaris: Dissolution and accumulation of nano-ZnO.

    PubMed

    Liu, Na; Wang, Yipeng; Ge, Fei; Liu, Shixiang; Xiao, Huaixian

    2018-04-01

    The interaction of nanoparticles with coexisting chemicals affects the fate and transport of nanoparticles, as well as their combined effects on aquatic organisms. Here, we evaluated the joint effect of ZnO nanoparticle (nano-ZnO) and cetyltrimethyl ammonium chloride (CTAC) on the growth of Chlorella vulgaris and explored the possible mechanism. Results showed that an antagonistic effect of nano-ZnO and CTAC (0.1, 0.2 and 0.3 mg L -1 ) was found because CTAC stop nano-ZnO being broken down into solution zinc ions (Zn 2+ ). In the presence of CTAC, the zinc (including nano-ZnO and released Zn 2+ ) showed a higher adsorption on bound extracellular polymeric substances (B-EPS) but lower accumulation in the algal cells. Moreover, we directly demonstrated that nano-ZnO was adsorbed on the algal B-EPS and entered into the algal cells by transmission electron microscope coupled with energy dispersive X-ray (TEM-EDX). Hence, these results suggested that the combined system of nano-ZnO and CTAC exhibited an antagonistic effect due to the inhibition of CTAC on dissolution of nano-ZnO and accumulation of the zinc in the algal cells. Copyright © 2017. Published by Elsevier Ltd.

  7. A new chemotherapy agent-free theranostic system composed of graphene oxide nano-complex and aptamers for treatment of cancer cells.

    PubMed

    Bahreyni, Amirhossein; Yazdian-Robati, Rezvan; Hashemitabar, Shirin; Ramezani, Mohammad; Ramezani, Pouria; Abnous, Khalil; Taghdisi, Seyed Mohammad

    2017-06-30

    The common cancer treatment strategies like chemotherapy and radiotherapy are nonspecific and can trigger severe side effects by damaging normal cells. So, targeted cancer therapies, such as apoptosis induction, have attracted great attention in recent years. In this project, two nano-complexes, MUC1 aptamer-NAS-24 aptamer-Graphene oxide (GO) and MUC1 aptamer-Cytochrome C aptamer-GO, were designed to induce cell programmed death in MDA-MB-231 and MCF-7 cells (breast cancer cell lines) and to verify the level of apoptosis in both cell lines. MUC1 aptamer was a molecular recognition probe that led the internalization of two nano-complexes into MDA-MB-231 and MCF-7 cells (MUC1 positive cells) but not into HepG2 cell (liver cancer cell line, MUC1 negative cells). The apoptosis induction relied on binding of NAS-24 aptamer to its target, vimentin, in MDA-MB-231 and MCF-7 (target cells) with different levels of vimentin content. The function of first nano-complex was confirmed by binding of FAM-labeled cytochrome C aptamer to its target (cytochrome C) which was released from mitochondria, based on the function of the first nano-complex. Fluorometric analysis and gel retardation assay proved the formation of nano-complexes. The results of flow cytometry and fluorescence microscopy indicated efficient apoptosis induction just in target cells (MDA-MB-231 and MCF-7 cells) but not in non-target cells (HepG2 cell). The results of MTT assay also confirmed cell death process. Overall, our results proved excellent targeted apoptosis in breast cancer cells by designed nano-complexes which can be applied as an efficient cancer therapy method. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Synthesis of Nano-Zinc Oxide Loaded on Mesoporous Silica by Coordination Effect and Its Photocatalytic Degradation Property of Methyl Orange.

    PubMed

    Shen, Zhichuan; Zhou, Hongjun; Chen, Huayao; Xu, Hua; Feng, Chunhua; Zhou, Xinhua

    2018-05-09

    Salicylaldimine-modified mesoporous silica (Sal-MCM-3 and Sal-MCM-9) was prepared through a co-condensation method with different amounts of added salicylaldimine. With the coordination from the salicylaldimine, zinc ions were impregnated on Sal-MCM-3 and Sal-MCM-9. Then, Zn-Sal-MCM-3 and Zn-Sal-MCM-9 were calcined to obtain nano-zinc oxide loaded on mesoporous silica (ZnO-MCM-3 and ZnO-MCM-9). The material structures were systematically studied by Fourier transform infrared spectroscopy (FTIR), N₂ adsorption/desorption measurements, X-ray powder diffraction (XRD), zeta potential, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet diffused reflectance spectrum (UV-vis DRS), and thermogravimetry (TGA). Methyl orange (MO) was used to investigate the photocatalysis behavior of ZnO-MCM-3 and ZnO-MCM-9. The results confirmed that nano ZnO was loaded in the channels as well as the outside surface of mesoporous silica (MCM-41). The modification of salicylaldimine helped MCM-41 to load more nano ZnO on MCM-41. When the modification amount of salicylaldimine was one-ninth and one-third of the mass of the silicon source, respectively, the load of nano ZnO on ZnO-MCM-9 and ZnO-MCM-3 had atomic concentrations of 1.27 and 2.03, respectively. ZnO loaded on ZnO-MCM-9 had a wurtzite structure, while ZnO loaded on ZnO-MCM-3 was not in the same crystalline group. The blocking effect caused by nano ZnO in the channels reduced the orderliness of MCM-41. The photodegradation of MO can be divided in two processes, which are mainly controlled by the surface areas of ZnO-MCM and the loading amount of nano ZnO, respectively. The pseudo-first-order model was more suitable for the photodegradation process.

  9. Dispersion of nano-silicon carbide (SiC) powder in aqueous suspensions

    NASA Astrophysics Data System (ADS)

    Singh, Bimal P.; Jena, Jayadev; Besra, Laxmidhar; Bhattacharjee, Sarama

    2007-10-01

    The dispersion characteristics of nanosize silicon carbide (SiC) suspension were investigated in terms of surface charge, particle size, rheological measurement and adsorption study. Ammonium polycarboxylate has been used as dispersant to stabilize the suspension. It was found that the isoelectric point (iep) of SiC powder was pHiep (4.9). The surface charge of powder changed significantly in presence of the ammonium polycarboxylate dispersant and iep shifted significantly towards lower acidic pH (3.6). The shift in iep has been quantified in terms of Δ G 0 SP, the specific free energy of adsorption between the surface sites and the adsorbing polyelectrolyte (APC). The values of Δ G 0 SP (-10.85 RT unit) estimated by the electro kinetic data compare well with those obtained from adsorption isotherms (-9.521 RT unit). The experimentally determined optimum concentration of dispersant required for maximizing the dispersion was found to be 2.4 mg/g of SiC (corresponding to an adsorbed amount of 1.10 mg/g), at pH 7.5. This is much below the full monolayer coverage (corresponding to adsorbed amount of 1.75 mg/g) of the particles surface by the dispersant. The surface charge quantity, rheological, pH, electro kinetic and adsorption isotherm results were used to explain and correlate the stability of the nanosize silicon carbide in aqueous media. At pH 7.5, where both SiC surface and APC are negatively charged, the adsorption of APC was low because of limited availability of favourable adsorption sites. In addition, the brush-like configuration of the adsorbed polymer prevented close approach of any additional dispersant; hence stabilization of the slurry happens at a comparatively lower concentration than the monolayer coverage.

  10. The influence of gamma prime on the recrystallization of an oxide dispersion strengthened superalloy - MA 6000E

    NASA Technical Reports Server (NTRS)

    Hotzler, R. K.; Glasgow, T. K.

    1982-01-01

    The requirement of large, recrystallized, highly elongated grains is of primary importance to the development of suitable high temperature properties in oxide dispersion strengthened-superalloys. In the present study the recrystallization behavior of MA 6000E, a recently developed Y2O3 strengthened superalloy produced by mechanical alloying, was examined using transmission and replication microscopy. Gradient and isothermal annealing treatments were applied to extruded and hot rolled products. It was found that conversion from a very fine (0.2 micron) grain structure to a coarse (approximately 10 mm) grain structure is controlled by the dissolution of the gamma prime phase, while grain shape was controlled primarily by the thermal gradient. The fine uniform oxide dispersion appeared to have only a secondary influence in determining the grain shape as columnar grains could be grown transverse to the working direction by appropriate application of the thermal gradient.

  11. Effects of Alumina Nano Metal Oxide Blended Palm Stearin Methyl Ester Bio-Diesel on Direct Injection Diesel Engine Performance and Emissions

    NASA Astrophysics Data System (ADS)

    Krishna, K.; Kumar, B. Sudheer Prem; Reddy, K. Vijaya Kumar; Charan Kumar, S.; Kumar, K. Ravi

    2017-08-01

    The Present Investigation was carried out to study the effect of Alumina Metal Oxide (Al2O3) Nano Particles as additive for Palm Stearin Methyl Ester Biodiesel (B 100) and their blends as an alternate fuel in four stroke single cylinder water cooled, direct injection diesel engine. Alumina Nano Particles has high calorific value and relatively high thermal conductivity (30-1 W m K-1) compare to diesel, which helps to promote more combustion in engines due to their higher thermal efficiency. In the experimentation Al2O3 were doped in various proportions with the Palm Stearin Methyl Ester Biodiesel (B-100) using an ultrasonicator and a homogenizer with cetyl trimethyl ammonium bromide (CTAB) as the cationic surfactant. The test were performed on a Kirsloskar DI diesel engine at constant speed of 1500 rpm using different Nano Biodiesel Fuel blends (psme+50 ppm, psme+150 ppm, and psme+200 ppm) and results were compared with those of neat conventional diesel and Palm Stearin Methyl Ester Bio diesel. It was observed that for Nano Biodiesel Fuel blend (psme+50ppm) there is an significant reduction in carbon monoxide (CO) emissions and Nox emissions compared to diesel and the brake thermal efficiency for (psme+50ppm) was almost same as diesel.

  12. Silica Fume Functionalized With Amine-Based Additives as a Modifier to Enhance Asphalt Resistance to Oxidation

    NASA Astrophysics Data System (ADS)

    Abutalib, Nader Turki

    This dissertation investigates the practical feasibility of functionalizing silica fume particles with the amine groups in Bio-binder and pure APTES chemical to disperse silica fume in asphalt binder matrix to produce silica-fume-modified binder (SFMB). Dispersed silica fume was then introduced to asphalt to reduce oxidative aging. It has been widely reported that asphalt binder oxidation is one of the phenomena that reduces the service life of asphalt pavement by negatively affecting its rheological properties. This in turn can lead to a more brittle pavement, which is more prone to cracks due to thermal stress and traffic loading. It has been shown that the introduction of 4% silica fume to asphalt can reduce asphalt oxidative aging. However, the challenge with a higher percentage of silica fume was found to be the agglomeration of nano- particles to form micro-size clusters, which can reduce the effectiveness of silica fume while making asphalt binder more susceptible to shear. Therefore, this dissertation studies the effectiveness of functionalizing the SFMB to reduce asphalt oxidative aging while alleviating the agglomeration effect. To do so, various percentages of bio-binder (BB) and bio-char (BC) were introduced to SFMB, and the rheological properties and high-temperature performance of each specimen were evaluated by measuring the rotational viscosity and complex shear modulus before and after oxidative aging. It is hypothesized that fine-graded BC and BB with nano- to micro-level particles can be used to reduce asphalt oxidation and create a new generation of low- agglomeration SFMB with higher resistance to oxidative aging. To further study the effects of functionalization on dispersion of silica fume, silica fume particles were produced with different functional groups: amine (APTES) groups and phosphonate (THPMP) groups. Agglomeration studies using a scanning electron microscope and zeta potential analysis indicate that modifying asphalt binder with

  13. Chemical Synthesis and Oxide Dispersion Properties of Strengthened Tungsten via Spark Plasma Sintering

    PubMed Central

    Ding, Xiao-Yu; Luo, Lai-Ma; Chen, Hong-Yu; Zhu, Xiao-Yong; Zan, Xiang; Cheng, Ji-Gui; Wu, Yu-Cheng

    2016-01-01

    Highly uniform oxide dispersion-strengthened materials W–1 wt % Nd2O3 and W–1 wt % CeO2 were successfully fabricated via a novel wet chemical method followed by hydrogen reduction. The powders were consolidated by spark plasma sintering at 1700 °C to suppress grain growth. The samples were characterized by performing field emission scanning electron microscopy and transmission electron microscopy analyses, Vickers microhardness measurements, thermal conductivity, and tensile testing. The oxide particles were dispersed at the tungsten grain boundaries and within the grains. The thermal conductivity of the samples at room temperature exceeded 140 W/m·K. The tensile tests indicated that W–1 wt % CeO2 exhibited a ductile–brittle transition temperature between 500 °C and 550 °C, which was a lower range than that for W–1 wt % Nd2O3. Surface topography and Vickers microhardness analyses were conducted before and after irradiations with 50 eV He ions at a fluence of 1 × 1022 m−2 for 1 h in the large-powder material irradiation experiment system. The grain boundaries of the irradiated area became more evident than that of the unirradiated area for both samples. Irradiation hardening was recognized for the W–1 wt % Nd2O3 and W–1 wt % CeO2 samples. PMID:28773999

  14. Optical properties study of nano-composite filled D shape photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Udaiyakumar, R.; Mohamed Junaid, K. A.; Janani, T.; Maheswar, R.; Yupapin, P.; Amiri, I. S.

    2018-06-01

    With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF) is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor.

  15. Room-temperature aqueous plasma electrolyzing Al2O3 nano-coating on carbon fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Yuping; Meng, Yang; Shen, Yonghua; Chen, Weiwei; Cheng, Huanwu; Wang, Lu

    2017-10-01

    A novel room-temperature aqueous plasma electrolysis technique has been developed in order to prepared Al2O3 nano-coating on each fiber within a carbon fiber bundle. The microstructure and formation mechanism of the Al2O3 nano-coating were systematically investigated. The oxidation resistance and tensile strength of the Al2O3-coated carbon fiber was measured at elevated temperatures. It showed that the dense Al2O3 nano-coating was relatively uniformly deposited with 80-120 nm in thickness. The Al2O3 nano-coating effectively protected the carbon fiber, evidenced by the slower oxidation rate and significant increase of the burn-out temperature from 800 °C to 950 °C. Although the bare carbon fiber remained ∼25 wt.% after oxidation at 700 °C for 20 min, a full destruction was observed, evidenced by the ∼0 GPa of the tensile strength, compared to ∼1.3 GPa of the Al2O3-coated carbon fiber due to the effective protection from the Al2O3 nano-coating. The formation mechanism of the Al2O3 nano-coating on carbon fiber was schematically established mainly based on the physic-chemical effect in the cathodic plasma arc zone.

  16. Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites

    DOEpatents

    Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH

    2011-02-22

    Disclosed is a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm, and often between 0.34 nm and 1.02 nm. The method comprises: (a) subjecting the layered material in a powder form to a halogen vapor at a first temperature above the melting point or sublimation point of the halogen at a sufficient vapor pressure and for a duration of time sufficient to cause the halogen molecules to penetrate an interlayer space of the layered material, forming a stable halogen-intercalated compound; and (b) heating the halogen-intercalated compound at a second temperature above the boiling point of the halogen, allowing halogen atoms or molecules residing in the interlayer space to exfoliate the layered material to produce the platelets. Alternatively, rather than heating, step (a) is followed by a step of dispersing the halogen-intercalated compound in a liquid medium which is subjected to ultrasonication for exfoliating the halogen-intercalated compound to produce the platelets, which are dispersed in the liquid medium. The halogen can be readily captured and re-used, thereby significantly reducing the impact of halogen to the environment. The method can further include a step of dispersing the platelets in a polymer or monomer solution or suspension as a precursor step to nanocomposite fabrication.

  17. Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites

    DOEpatents

    Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH

    2012-02-14

    Disclosed is a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm, and often between 0.34 nm and 1.02 nm. The method comprises: (a) subjecting the layered material in a powder form to a halogen vapor at a first temperature above the melting point or sublimation point of the halogen at a sufficient vapor pressure and for a duration of time sufficient to cause the halogen molecules to penetrate an interlayer space of the layered material, forming a stable halogen-intercalated compound; and (b) heating the halogen-intercalated compound at a second temperature above the boiling point of the halogen, allowing halogen atoms or molecules residing in the interlayer space to exfoliate the layered material to produce the platelets. Alternatively, rather than heating, step (a) is followed by a step of dispersing the halogen-intercalated compound in a liquid medium which is subjected to ultrasonication for exfoliating the halogen-intercalated compound to produce the platelets, which are dispersed in the liquid medium. The halogen can be readily captured and re-used, thereby significantly reducing the impact of halogen to the environment. The method can further include a step of dispersing the platelets in a polymer or monomer solution or suspension as a precursor step to nanocomposite fabrication.

  18. Activity of Highly Dispersed Co/SBA-15 Catalysts (Low Content) in Carbon Black Oxidation

    NASA Astrophysics Data System (ADS)

    Hassan, Nissrine El; Casale, Sandra; Aouad, Samer; Hanein, Theodor; Jabbour, Karam; Chidiac, Elvis; Khoury, Bilal el; Zakhem, Henri El; Nakat, Hanna El

    Cobalt supported on mesoporous silica SBA-15 (0.75, 1.5 and 3 wt% Co) were used as catalysts for the oxidation of carbon black. Catalysts were characterized by N2 sorption, XRD, TEM and TPR. The catalytic activity in CB oxidation was measured. It has been shown that only small cobalt domains (less than 5 nm) are present on all samples. A homogeneous dispersion was obtained for all catalysts. With increasing cobalt loading, crystalline species start to appear. Using an intermediate contact between the CB and the catalyst, the best activity is that of 0.75Co/SBA-15 catalyst where the oxidation reaches the maximum (Tmax) 68 K before the non-catalyzed reaction. On the same catalyst used in tight contact mode with CB, even if Tmax didn't decrease for more than additional 12 K but the Ti decreases by 38K and thus starts 83 K before.

  19. Synthesis and characterization of porous metal oxides and desulfurization studies of sulfur containing compounds

    NASA Astrophysics Data System (ADS)

    Garces Trujillo, Hector Fabian

    This thesis contains two parts: 1) synthesis and characterization of porous metal oxides that include zinc oxide and a porous mixed-valent manganese oxide with an amorphous structure (AMO) 2) the desulfurization studies for the removal of sulfur compounds. Zinc oxide with different nano-scale morphologies may result in various porosities with different adsorption capabilities. A tunable shape microwave synthesis of ZnO nano-spheres in a co-solvent mixture is presented. The ZnO nano-sphere material is investigated as a desulfurizing sorbent in a fixed bed reactor in the temperature range 200 to 400 °C and compared with ZnO nanorods and platelet-like morphologies. Fresh and sulfided materials were characterized by X-ray diffraction (XRD), BET specific surface area, pore volume, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (SEM/EDX), Raman spectroscopy, and thermogravimetric analysis (TGA). The tunable shape microwave synthesis of ZnO presents a high sulfur sorption capacity at temperatures as low as 200 °C which accounts for a three and four fold enhancement over the other preparations presented in this work, and reached 76 % of the theoretical sulfur capacity (TSC) at 300 °C. Another ZnO material with a bimodal micro- and mesopore size distribution investigated as a desulfurizing sorbent presents a sorption capacity that reaches 87% of the theoretical value for desulfurization at 400 °C at breakthrough time. A deactivation model that considers the activity of the solid reactant was used to fit the experimental data. Good agreement between the experimental breakthrough curves and the model predictions are obtained. Manganese oxides are a type of metal oxide materials commonly used in catalytic applications. Little is known about the adsorption capabilities for the removal of sulfur compounds. One of these manganese oxides; amorphous manganese oxide (AMO) is highly promising material for low temperature sorption processes. Amorphous

  20. Coherent Fe-rich nano-scale perovskite oxide phase in epitaxial Sr2FeMoO6 films grown on cubic and scandate substrates

    NASA Astrophysics Data System (ADS)

    Deniz, Hakan; Preziosi, Daniele; Alexe, Marin; Hesse, Dietrich

    2017-01-01

    We report the growth of high-quality epitaxial Sr2FeMoO6 (SFMO) thin films on various unconventional oxide substrates, such as TbScO3, DyScO3, and Sr2Al0.3Ga0.7TaO6 (SAGT) as well as on the most commonly used one, SrTiO3 (STO), by pulsed laser deposition. The films were found to contain a foreign nano-scale phase coherently embedded inside the SFMO film matrix. Through energy dispersive X-ray spectroscopy and scanning transmission electron microscopy, we identified the foreign phase to be Sr2-xFe1+yMo1-yO6, an off-stoichiometric derivative of the SFMO compound with Fe rich content (y ≈ 0.6) and a fairly identical crystal structure to SFMO. The films on STO and SAGT exhibited very good magnetic properties with high Curie temperature values. All the samples have fairly good conducting behavior albeit the presence of a foreign phase. Despite the relatively large number of items of the foreign phase, there is no significant deterioration in the properties of the SFMO films. We discuss in detail how magneto-transport properties are affected by the foreign phase.

  1. Direct evidence for interaction between nano-anatase and superoxide dismutase from rat erythrocytes

    NASA Astrophysics Data System (ADS)

    Ma, Linglan; Ze, Yuguang; Liu, Jie; Liu, Huiting; Liu, Chao; Li, Zhongrui; Zhao, Jinfang; Yan, Jinying; Duan, Yanmei; Xie, Yaning; Hong, Fashui

    2009-07-01

    Nano-TiO2 and superoxide dismutase (SOD, EC 1.15.1.1) have been added to cosmetics and used to prevent injury of skin from UV-radiation, which might be related to the decrease of oxidative damage of skin. In previous studies we had proven that nano-anatase could increase the activity of SOD and decrease the oxidative damage in vivo. The mechanisms by which nano-anatase promoted SOD activity, however, are still not clearly understood. In the present work, nano-anatase in various concentrations was added to SOD from rat erythrocytes in vitro to gain insight into the mechanism of molecular interactions between nano-anatase and SOD by various spectral methods, suggesting that the reaction between SOD and nano-anatase was two-order, which meant that the SOD activity was greatly increased by low concentration of nano-anatase and inhibited by high concentration of nano-anatase. The spectroscopic assays suggested that the nano-anatase was determined to directly bind to SOD; the binding site of nano-anatase to SOD was 0.256 and the binding constants were 6.54 × 105 and 3.6 × 105 L mol-1; Ti was bound with three oxygen or nitrogen atoms and a sulfur atoms of amino acid residues at the Ti-O(N) and Ti-S bond lengths of 1.86 and 2.37 Å, respectively, the binding nano-anatase entirely altered the secondary structure of SOD. It implied that the nano-anatase coordination created a new metal ion-active site form in SOD, thus leading to an enhancement in SOD activity.

  2. Influence of sodium nitrite on protein oxidation and nitrosation of sausages subjected to processing and storage.

    PubMed

    Feng, Xianchao; Li, Chenyi; Jia, Xu; Guo, Yan; Lei, Na; Hackman, Robert M; Chen, Lin; Zhou, Guanghong

    2016-06-01

    The influence of NaNO2 content on protein oxidation and nitrosation was investigated in cooked sausages at different concentrations (0, 50, 100, 200 and 400 mg NaNO2/kg). Dependent on concentration, NaNO2 had both anti- and pro-oxidant effects on protein oxidation. The antioxidant effects of NaNO2 on the protein oxidation were evidenced by significantly lower carbonyl contents, higher free amines and lower surface hydrophobicities. The pro-oxidant effects of NaNO2 on protein oxidation resulted in a decrease of sulfhydryls and an increase of disulfide bonds. NaNO2 also improved the protein nitrosation inducing the formation of 3-nitrotyrosine (3-NT). Moreover, 3-NT had significant correlations with parameters of protein oxidation, indicating that 3-NT may be a possible marker for protein oxidation. Results of this study contribute to an understanding of the impact of NaNO2 on food quality and help to identify optimal formulations of cured meat products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Modulation of the Proteasome Pathway by Nano-Curcumin and Curcumin in Retinal Pigment Epithelial Cells.

    PubMed

    Ramos de Carvalho, J Emanuel; Verwoert, Milan T; Vogels, Ilse M C; Schipper-Krom, Sabine; Van Noorden, Cornelis J F; Reits, Eric A; Klaassen, Ingeborg; Schlingemann, Reinier O

    2018-01-01

    Curcumin has multiple biological effects including the modulation of protein homeostasis by the ubiquitin-proteasome system. The purpose of this study was to assess the in vitro cytotoxic and oxidative effects of nano-curcumin and standard curcumin and characterize their effects on proteasome regulation in retinal pigment epithelial (RPE) cells. Viability, cell cycle progression, and reactive oxygen species (ROS) production were determined after treatment with nano-curcumin or curcumin. Subsequently, the effects of nano-curcumin and curcumin on proteasome activity and the gene and protein expression of proteasome subunits PA28α, α7, β5, and β5i were assessed. Nano-curcumin (5-100 μM) did not show significant cytotoxicity or anti-oxidative effects against H2O2-induced oxidative stress, whereas curcumin (≥10 μM) was cytotoxic and a potent inducer of ROS production. Both nano-curcumin and curcumin induced changes in proteasome-mediated proteolytic activity characterized by increased activity of the proteasome subunits β2 and β5i/β1 and reduced activity of β5/β1i. Likewise, nano-curcumin and curcumin affected mRNA and protein levels of household and immunoproteasome subunits. Nano-curcumin is less toxic to RPE cells and less prone to induce ROS production than curcumin. Both nano-curcumin and curcumin increase proteasome-mediated proteolytic activity. These results suggest that nano-curcumin may be regarded as a proteasome-modulating agent of limited cytotoxicity for RPE cells. The Author(s). Published by S. Karger AG, Basel.

  4. Removal of arsenic from water using nano adsorbents and challenges: A review.

    PubMed

    Lata, Sneh; Samadder, S R

    2016-01-15

    Many researchers have used nanoparticles as adsorbents to remove water pollutants including arsenic after modifying the properties of nanoparticles by improving reactivity, biocompatibility, stability, charge density, multi-functionalities, and dispersibility. For arsenic removal, nano adsorbents emerged as the potential alternatives to existing conventional technologies. The present study critically reviewed the past and current available information on the potential of nano adsorbents for arsenic removal from contaminated water and the challenges involved in that. The study discussed the separation and regeneration techniques of nano adsorbents and the performance thereof. The study evaluated the adsorption efficiency of the various nanoparticles based on size of nanoparticles, types of nano adsorbents, method of synthesis, separation and regeneration of the nano adsorbents. The study found that more studies are required on suitable holding materials for the nano adsorbents to improve the permeability and to make the technology applicable at the field condition. The study will help the readers to choose suitable nanomaterials and to take up further research required for arsenic removal using nano adsorbents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effect of Ozone Treatment on Nano-Sized Silver Sulfide in Wastewater Effluent.

    PubMed

    Thalmann, Basilius; Voegelin, Andreas; von Gunten, Urs; Behra, Renata; Morgenroth, Eberhard; Kaegi, Ralf

    2015-09-15

    Silver nanoparticles used in consumer products are likely to be released into municipal wastewater. Transformation reactions, most importantly sulfidation, lead to the formation of nanoscale silver sulfide (nano-Ag2S) particles. In wastewater treatment plants (WWTP), ozonation can enhance the effluent quality by eliminating organic micropollutants. The effect of ozonation on the fate of nano-Ag2S, however, is currently unknown. In this study, we investigate the interaction of ozone with nano-Ag2S and evaluate the effect of ozonation on the short-term toxicity of WWTP effluent spiked with nano-Ag2S. The oxidation of nano-Ag2S by ozone resulted in a stoichiometric factor (number of moles of ozone required to oxidize one mole of sulfide to sulfate) of 2.91, which is comparable to the results obtained for the reaction of bisulfide (HS(-)) with ozone. The second-order rate constant for the reaction of nano-Ag2S with ozone (k = 3.1 × 10(4) M(-1) s(-1)) is comparable to the rate constant of fast-reacting micropollutants. Analysis of the ozonation products of nano-Ag2S by transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) revealed that ozonation dominantly led to the formation of silver chloride in WWTP effluent. After ozonation of the Ag2S-spiked effluent, the short-term toxicity for the green algae Chlamydomonas reinhardtii increased and reached EC50 values comparable to Ag(+). This study thus reveals that ozone treatment of WWTP effluent results in the oxidation of Ag2S and, hence, an increase of the Ag toxicity in the effluent, which may become relevant at elevated Ag concentrations.

  6. All-solid-state flexible supercapacitors based on highly dispersed polypyrrole nanowire and reduced graphene oxide composites.

    PubMed

    Yu, Chenfei; Ma, Peipei; Zhou, Xi; Wang, Anqi; Qian, Tao; Wu, Shishan; Chen, Qiang

    2014-10-22

    Highly dispersed polypyrrole nanowires are decorated on reduced graphene oxide sheets using a facile in situ synthesis route. The prepared composites exhibit high dispersibility, large effective surface area, and high electric conductivity. All-solid-state flexible supercapacitors are assembled based on the prepared composites, which show excellent electrochemical performances with a specific capacitance of 434.7 F g(-1) at a current density of 1 A g(-1). The as-fabricated supercapacitor also exhibits excellent cycling stability (88.1% capacitance retention after 5000 cycles) and exceptional mechanical flexibility. In addition, outstanding power and energy densities were obtained, demonstrating the significant potential of prepared material for flexible and portable energy storage devices.

  7. X-ray reflectivity of ruthenium nano-oxide layer in a CoFe-Ru-CoFe trilayer system

    NASA Astrophysics Data System (ADS)

    Asghari Zadeh, Saeid; Sutton, Mark; Altonian, Zaven; Mao, Ming; Lee, Chih-Ling

    2006-03-01

    A grazing incidence X-ray reflectivity technique is used to determine electron density profile(EDP) as a function of depth in CoFe-Ru-CoFe and CoFe-Ru nano oxide layer(NOL)-CoFe trilayers. Four trilayers with ruthenium thicknesses of 8,8.5 and 9 å.08cm and one with Ru8.5.05cmå.05cmNOL, prepared by a dc planetary sputtering system, were investigated. For all samples, EDP shows a central peak which is related to the Ru layer. Natural oxidation in all samples introduces a graded EDP of the top CoFe layer that decreases gradually to zero. The large surface resistivity of Ru8.5 å.05cm NOL compared to Ru 8.5å.08cm can be related to the remarkable difference between their EDP.

  8. Creep and rupture of an ODS alloy with high stress rupture ductility. [Oxide Dispersion Strengthened

    NASA Technical Reports Server (NTRS)

    Mcalarney, M. E.; Arsons, R. M.; Howson, T. E.; Tien, J. K.; Baranow, S.

    1982-01-01

    The creep and stress rupture properties of an oxide (Y2O3) dispersion strengthened nickel-base alloy, which also is strengthened by gamma-prime precipitates, was studied at 760 and 1093 C. At both temperatures, the alloy YDNiCrAl exhibits unusually high stress rupture ductility as measured by both elongation and reduction in area. Failure was transgranular, and different modes of failure were observed including crystallographic fracture at intermediate temperatures and tearing or necking almost to a chisel point at higher temperatures. While the rupture ductility was high, the creep strength of the alloy was low relative to conventional gamma prime strengthened superalloys in the intermediate temperature range and to ODS alloys in the higher temperature range. These findings are discussed with respect to the alloy composition; the strengthening oxide phases, which are inhomogeneously dispersed; the grain morphology, which is coarse and elongated and exhibits many included grains; and the second phase inclusion particles occurring at grain boundaries and in the matrix. The creep properties, in particular the high stress dependencies and high creep activation energies measured, are discussed with respect to the resisting stress model of creep in particle strengthened alloys.

  9. Self-assembled Nano-layering at the Adhesive interface.

    PubMed

    Yoshida, Y; Yoshihara, K; Nagaoka, N; Hayakawa, S; Torii, Y; Ogawa, T; Osaka, A; Meerbeek, B Van

    2012-04-01

    According to the 'Adhesion-Decalcification' concept, specific functional monomers within dental adhesives can ionically interact with hydroxyapatite (HAp). Such ionic bonding has been demonstrated for 10-methacryloyloxydecyl dihydrogen phosphate (MDP) to manifest in the form of self-assembled 'nano-layering'. However, it remained to be explored if such nano-layering also occurs on tooth tissue when commercial MDP-containing adhesives (Clearfil SE Bond, Kuraray; Scotchbond Universal, 3M ESPE) were applied following common clinical application protocols. We therefore characterized adhesive-dentin interfaces chemically, using x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS), and ultrastructurally, using (scanning) transmission electron microscopy (TEM/STEM). Both adhesives revealed nano-layering at the adhesive interface, not only within the hybrid layer but also, particularly for Clearfil SE Bond (Kuraray), extending into the adhesive layer. Since such self-assembled nano-layering of two 10-MDP molecules, joined by stable MDP-Ca salt formation, must make the adhesive interface more resistant to biodegradation, it may well explain the documented favorable clinical longevity of bonds produced by 10-MDP-based adhesives.

  10. Comparison of the tribology performance of nano-diesel soot and graphite particles as lubricant additives

    NASA Astrophysics Data System (ADS)

    Zhang, Zu-chuan; Cai, Zhen-bing; Peng, Jin-fang; Zhu, Min-hao

    2016-02-01

    The tribology behavior of exhaust diesel soot as a lubricant additive was investigated and then compared with that of a selection of commercial nano-graphite particles. Specifically, 0.01 wt% particles were dispersed in PAO4 oil with 1 wt% sorbitan monooleate (Span 80) as a dispersing agent, and wear tests based on the ball against plate mode were conducted at various temperatures. Different analytical techniques (e.g. transmission electron, scanning electron and infrared microscopy; energy dispersive x-ray and Raman spectroscopy; and charge measurement) were employed to characterize the chemistry and morphology of the additives and their tribology performance. The oil containing only 0.01 wt% diesel soot clearly improved wear resistance over 60 °C. In particular, at 100 °C the wear rate decreased by approximately 90% compared to the function of base oil. In the same test conditions, diesel soot exhibited better anti-wear performance than nano-graphite at high temperatures. The potential measure showed that the nano-graphite had positive charge and the diesel soot had negative charge. Electrochemical action may play an important role in the lubricant mechanisms of diesel soot and graphite as oil additives.

  11. Effect of l-lysine-assisted surface grafting for nano-hydroxyapatite on mechanical properties and in vitro bioactivity of poly(lactic acid-co-glycolic acid).

    PubMed

    Liuyun, Jiang; Lixin, Jiang; Chengdong, Xiong; Lijuan, Xu; Ye, Li

    2016-01-01

    It is promising and challenging to study surface modification for nano-hydroxyapatite to improve the dispersion and enhance the mechanical properties and bioactivity of poly(lactic acid-co-glycolic acid). In this paper, we designed an effective new surface grafting with the assist of l-lysine for nano-hydroxyapatite, and the nano-hydroxyapatite surface grafted with the assist of l-lysine (g-nano-hydroxyapatite) was incorporated into poly(lactic acid-co-glycolic acid) to develop a series of g-nano-hydroxyapatite/poly(lactic acid-co-glycolic acid) nano-composites. The surface modification reaction for nano-hydroxyapatite, the mechanical properties, and in vitro human osteoblast-like cell (MG-63) response were characterized and investigated by Fourier transformation infrared, thermal gravimetric analysis, dispersion test, electromechanical universal tester, differential scanning calorimeter measurements, and in vitro cells culture experiment. The results showed that the grafting amount on the surface of nano-hydroxyapatite was enhanced with the increase of l-lysine, and the dispersion of nano-hydroxyapatite was improved more, so that it brought about better promotion crystallization and more excellent mechanical enhancement effect for poly(lactic acid-co-glycolic acid), comparing with the unmodified nano-hydroxyapatite. Moreover, the cells' attachment and proliferation results confirmed that the incorporation of the g-nano-hydroxyapatite into poly(lactic acid-co-glycolic acid) exhibited better biocompatibility than poly(lactic acid-co-glycolic acid). The above results indicated that the new surface grafting with the assist of l-lysine for nano-hydroxyapatite was an ideal novel surface modification method, which brought about better mechanical enhancement effect and in vitro bioactivity for poly(lactic acid-co-glycolic acid) with adding higher g-nano-hydroxyapatite content, suggesting it had a great potential to be used as bone fracture internal fixation materials

  12. Synthesis, Optical and Photoluminescence Properties of Cu-Doped Zno Nano-Fibers Thin Films: Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Salem, G. F.; Yahia, I. S.; Yakuphanoglu, F.

    2018-03-01

    Different concentrations of copper-doped zinc oxide thin films were coated on a glass substrate by sol-gel/spin-coating technique. The structural properties of pure and Cu-doped ZnO films were characterized by different techniques, i.e., atomic force microscopy (AFM), photoluminescence and UV-Vis-NIR spectroscopy. The AFM study revealed that pure and doped ZnO films are formed as nano-fibers with a granular structure. The photoluminescence spectra of these films showed a strong ultraviolet emission peak centered at 392 nm and a strong blue emission peak cantered at 450 nm. The optical band gap of the pure and copper-doped ZnO thin films calculated from optical transmission spectra (3.29-3.23 eV) were found to be increasing with increasing copper doping concentration. The refractive index dispersion curve of pure and Cu-doped ZnO film obeyed the single-oscillator model. The optical dispersion parameters such as E o , E d , and n_{∞}2 were calculated. Further, the nonlinear refractive index and nonlinear optical susceptibility were also calculated and interpreted.

  13. Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration.

    PubMed

    Bai, Long; Liu, Yanlian; Du, Zhibin; Weng, Zeming; Yao, Wei; Zhang, Xiangyu; Huang, Xiaobo; Yao, Xiaohong; Crawford, Ross; Hang, Ruiqiang; Huang, Di; Tang, Bin; Xiao, Yin

    2018-06-15

    Coating materials applied for intraosseous implants must be optimized to stimulate osseointegration. Osseointegration is a temporal and spatial physiological process that not only requires interactions between osteogenesis and angiogenesis but also necessitates a favorable immune microenvironment. It is now well-documented that hierarchical nano-micro surface structures promote the long-term stability of implants, the interactions between nano-micro structure and the immune response are largely unknown. Here, we report the effects of microporous titanium (Ti) surfaces coated with nano-hydroxyapatite (HA) produced by micro-arc oxidation and steam-hydrothermal treatment (SHT) on multiple cell behavior and osseointegration. By altering the processing time of SHT it was possible to shift HA structures from nano-particles to nano-rods on the microporous Ti surfaces. Ti surfaces coated with HA nano-particles were found to modulate the inflammatory response resulting in an osteoimmune microenvironment more favorable for osteo-/angio-genesis, most likely via the activation of certain key signaling pathways (TGF-β, OPG/RANKL, and VEGF). By contrast, Ti surfaces coated with nano-rod shaped HA particles had a negative impact on osteo-/angio-genesis and osteoimmunomodulation. In vivo results further demonstrated that Ti implant surfaces decorated with HA nano-particles can stimulate new bone formation and osseointegration with enhanced interaction between osteocytes and implant surfaces. This study demonstrated that Ti implants with micro-surfaces coated with nano-particle shaped HA have a positive impact on osseointegration. Osteo-/angio-genesis are of importance during osteointegration of the implants. Recent advances unravel that immune response of macrophages and its manipulated osteoimmunomodulation also exerts a pivotal role to determine the fate of the implant. Surface nano-micro modification has evidenced to be efficient to influence osteogenesis, however, little is

  14. Nano-TiO2, ultrasound and sequential nano-TiO2/ultrasonic degradation of N-acetyl-para-aminophenol from aqueous solution.

    PubMed

    Ayanda, Olushola S; Nelana, Simphiwe M; Petrik, Leslie F; Naidoo, Eliazer B

    2017-10-01

    The application of nano-TiO 2 as adsorbent combined with ultrasound for the degradation of N-acetyl-para-aminophenol (AAP) from aqueous solution was investigated. The nano-TiO 2 was characterized by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). Experimental results revealed that the adsorption of AAP by nano-TiO 2 fitted the pseudo-second-order kinetic model, the equilibrium could be explained by the Freundlich isotherm and the treatment process is exothermic. The optimum removal efficiency of AAP (128.89 mg/g (77.33%)) was achieved at pH 4 when 0.03 g of nano-TiO 2 was mixed with 50 mL of 100 mg/L AAP aqueous solution at ambient temperature, 60 min contact time, and a stirring speed of 120 rpm. Ultrasound at 20 kHz and pH 3 was favorable and it resulted in 52.61% and 57.43% removal efficiency with and without the addition of nano-TiO 2 , respectively. The degradation of AAP by ultrasound followed by nano-TiO 2 treatment resulted in approximately 99.50% removal efficiency. This study showed that a sequential ultrasound and nano-TiO 2 treatment process could be employed for the removal of AAP or other emerging water and wastewater contaminants.

  15. Performance and Structural Evolution of Nano-Scale Infiltrated Solid Oxide Fuel Cell Cathodes

    NASA Astrophysics Data System (ADS)

    Call, Ann Virginia

    Nano-structured mixed ionic and electronic conducting (MIEC) materials have garnered intense interest in electrode development for solid oxide fuel cells due to their high surface areas which allow for effective catalytic activity and low polarization resistances. In particular, composite solid oxide fuel cell (SOFC) cathodes consisting of ionic conducting scaffolds infiltrated with MIEC nanoparticles have exhibited some of the lowest reported polarization resistances. In order for cells utilizing nanostructured moRPhologies to be viable for commercial implementation, more information on their initial performance and long term stability is necessary. In this study, symmetric cell cathodes were prepared via wet infiltration of Sr0.5Sm 0.5CoO3 (SSC) nano-particles via a nitrate process into porous Ce0.9Gd0.1O1.95 (GDC) scaffolds to be used as a model system to investigate performance and structural evolution. Detailed analysis of the cells and cathodes was carried out using electrochemical impedance spectroscopy (EIS). Initial polarization resistances (RP) as low as 0.11 O cm2 at 600ºC were obtained for these SSC-GDC cathodes, making them an ideal candidate for studying high performance nano-structured electrodes. The present results show that the infiltrated cathode microstructure has a direct impact on the initial performance of the cell. Small initial particle sizes and high infiltration loadings (up to 30 vol% SSC) improved initial RP. A simple microstructure-based electrochemical model successfully explained these trends in RP. Further understanding of electrode performance was gleaned from fitting EIS data gathered under varying temperatures and oxygen partial pressures to equivalent circuit models. Both RQ and Gerischer impedance elements provided good fits to the main response in the EIS data, which was associated with the combination of oxygen surface exchange and oxygen diffusion in the electrode. A gas diffusion response was also observed at relatively

  16. Nano-Material and Structural Engineering for Thermal Highways

    DTIC Science & Technology

    2013-06-14

    which are covered with a porous anodized aluminum oxide ( AAO ) membrane that is compatible to most if not all semiconductor electronics chips and has... aluminum oxide ( AAO ) templates as hard masks for fabrication of nanomesh thermoelectric structures. Both USPI’s and KPI’s laboratories have accumulated...T. Bigioni, M. Moskovits, and J. M. Xu, “Electrochemical fabrication of CdS nano-wire arrays in porous anodic aluminum oxide templates”, J. Phys

  17. Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation.

    PubMed

    Tugulea, A-M; Bérubé, D; Giddings, M; Lemieux, F; Hnatiw, J; Priem, J; Avramescu, M-L

    2014-10-01

    Nano-silver is increasingly used in consumer products from washing machines and refrigerators to devices marketed for the disinfection of drinking water or recreational water. The nano-silver in these products may be released, ending up in surface water bodies which may be used as drinking water sources. Little information is available about the stability of the nano-silver in sources of drinking water, its fate during drinking water disinfection processes, and its interaction with disinfection agents and disinfection by-products (DBPs). This study aims to investigate the stability of nano-silver in drinking water sources and in the finished drinking water when chlorine and chloramines are used for disinfection and to observe changes in the composition of DBPs formed when nano-silver is present in the source water. A dispersion of nano-silver particles (10 nm; PVP-coated) was used to spike untreated Ottawa River water, treated Ottawa River water, organic-free water, and a groundwater at concentrations of 5 mg/L. The diluted dispersions were kept under stirred and non-stirred conditions for up to 9 months and analyzed weekly using UV absorption to assess the stability of the nano-silver particles. In a separate experiment, Ottawa River water containing nano-silver particles (at 0.1 and 1 mg/L concentration, respectively) was disinfected by adding sodium hypochlorite (a chlorinating agent) in sufficient amounts to maintain a free chlorine residual of approximately 0.4 mg/L after 24 h. The disinfected drinking water was then quenched with ascorbic acid and analyzed for 34 neutral DBPs (trihalomethanes, haloacetonitriles, haloacetaldehydes, 1,1 dichloro-2-propanone, 1,1,1 trichloro-2-propanone, chloropicrin, and cyanogen chloride). The results were compared to the profile of DBPs obtained under the same conditions in the absence of nano-silver and in the presence of an equivalent concentration of Ag(+) ions (as AgNO3). The stability of the nano-silver dispersions in

  18. A polymer solution technique for the synthesis of nano-sized Li 2TiO 3 ceramic breeder powders

    NASA Astrophysics Data System (ADS)

    Jung, Choong-Hwan; Lee, Sang Jin; Kriven, Waltraud M.; Park, Ji-Yeon; Ryu, Woo-Seog

    2008-02-01

    Nano-sized Li 2TiO 3 powder was fabricated by an organic-inorganic solution route. A steric entrapment route employing ethylene glycol was used for the preparation of the nano-sized Li 2TiO 3 particles. Titanium isopropoxide and lithium nitrate were dissolved in liquid-type ethylene glycol without any precipitation. With the optimum amount of the polymer, the metal cations (Li and Ti) were dispersed in the solution and a homogeneous polymeric network was formed. The organic-inorganic precursor gels were turned to crystalline powders through an oxidation reaction during a calcination process. The dried precursor gel showed the carbon-free Li 2TiO 3 crystalline form which was observed above 400 °C. The primary particle size of the carbon-free Li 2TiO 3 was about 70 nm, and the structure of the crystallized powder was porous and agglomerated. The powder compact was densified to 92% of TD at a relatively low sintering temperature of 1100 °C for 2 h.

  19. Novel nano-semiconductor film layer supported nano-Pd Complex Nanostructured Catalyst Pd/Ⓕ-MeOx/AC for High Efficient Selective Hydrogenation of Phenol to Cyclohexanone.

    PubMed

    Si, Jiaqi; Ouyang, Wenbing; Zhang, Yanji; Xu, Wentao; Zhou, Jicheng

    2017-04-28

    Supported metal as a type of heterogeneous catalysts are the most widely used in industrial processes. High dispersion of the metal particles of supported catalyst is a key factor in determining the performance of such catalysts. Here we report a novel catalyst Pd/Ⓕ-MeO x /AC with complex nanostructured, Pd nanoparticles supported on the platelike nano-semiconductor film/activated carbon, prepared by the photocatalytic reduction method, which exhibited high efficient catalytic performance for selective hydrogenation of phenol to cyclohexanone. Conversion of phenol achieved up to more than 99% with a lower mole ratio (0.5%) of active components Pd and phenol within 2 h at 70 °C. The synergistic effect of metal nanoparticles and nano-semiconductors support layer and the greatly increasing of contact interface of nano-metal-semiconductors may be responsible for the high efficiency. This work provides a clear demonstration that complex nanostructured catalysts with nano-metal and nano-semiconductor film layer supported on high specific surface AC can yield enhanced catalytic activity and can afford promising approach for developing new supported catalyst.

  20. CPP-GMR films with a current-confined-path nano-oxide layer (CCP-NOL)

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Hideaki; Yuasa, Hiromi; Iwasaki, Hitoshi

    2007-03-01

    We investigated the film performance and nanostructure of current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) spin-valve film with a current-confined-path nano-oxide layer (CCP-NOL). By applying ion-assisted oxidation (IAO) for the CCP-NOL formation, we enhanced the MR ratio to 5.4% at a small RA value of 500 mΩ µm2 for conventional Co90Fe10 layers. Furthermore, the use of bcc-Fe50Co50 also increased the MR ratio to 8.2% at a small RA value of 580 mΩ µm2. A modified Valet-Fert model for the CCP-NOL showed that the MR enhancement by the IAO is due to the improvement in resistivity of the CCP, and that by Fe50Co50 is due to a larger spin-dependent interface scattering effect. Analysis by cross-sectional TEM and three-dimensional atom probe confirmed the formation of the CCP-NOL structure. A reliability test for test element devices showed almost no change even under acceleration stress. The CPP-GMR spin-valve film with the CCP-NOL is extendable to future high-density recording heads due to its potential for a higher MR ratio at a small value of RA.

  1. Effects of Nano-Aluminum Nitride on the Performance of an Ultrahigh-Temperature Inorganic Phosphate Adhesive Cured at Room Temperature

    PubMed Central

    Ma, Chengkun; Chen, Hailong; Wang, Chao; Zhang, Jifeng; Qi, Hui; Zhou, Limin

    2017-01-01

    Based on the optimal proportion of resin and curing agent, an ultrahigh-temperature inorganic phosphate adhesive was prepared with aluminum dihydric phosphate, aluminium oxide (α-Al2O3), etc. and cured at room temperature (RT). Then, nano-aluminum nitride (nano-AlN), nano-Cupric oxide (nano-CuO), and nano-titanium oxide (nano-TiO2) were added into the adhesive. Differential scanning calorimetry was conducted using the inorganic phosphate adhesive to analyze the phosphate reactions during heat treatment, and it was found that 15 wt % nano-AlN could clearly decrease the curing temperature. Scanning electron microscopy was used to observe the microphenomenon of the modified adhesive at ultrahigh-temperature. The differential thermal analysis of the inorganic phosphate adhesive showed that the weight loss was approximately 6.5 wt % when the mass ratio of resin to curing agent was 1:1.5. An X-ray diffraction analysis of the adhesive with 10% nano-AlN showed that the phase structure changed from AlPO4(11-0500) to the more stable AlPO4(10-0423) structure after heat treatment. The shear strength of the adhesive containing 10% nano-AlN reached 7.3 MPa at RT due to the addition of nano-AlN, which promoted the formation of phosphate and increased the Al3+. PMID:29099812

  2. Transformations in oxides induced by high-energy ball-milling.

    PubMed

    Šepelák, Vladimir; Bégin-Colin, Sylvie; Le Caër, Gérard

    2012-10-21

    This paper, by no means exhaustive, focuses on high-energy ball-milling of oxides, on their mechanically induced changes and on the consequences of such changes on their physical and chemical properties. High-energy ball-milling offers a fortunate combination of technical simplicity and of complexity both of physical mechanisms which act during milling and of mechanosynthesized materials. Its basic interest, which stems from the large diversity of routes it offers to prepare oxides either directly or indirectly, is illustrated with various families of oxides. The direct path is to be favoured when as-milled oxides are of interest per se because of their nanocrystalline characteristics, their defects or their modified structures which result from mechanically driven phase transformations. The indirect path consists of a sequence of steps starting with mechanically activated oxides which may be subsequently just annealed or submitted to a combination of thermal treatments, with the possible occurrence of various chemical reactions, to prepare the sought-after materials with potential gains in processing temperatures and times. High energy ball-milling of oxides is more and more currently used to activate powders and to prepare nano-oxides at moderate temperatures. The interest of an activation step is well illustrated by the broad development of doped titania powders, synthesized by heat treatment of pre-ground reactants, for photocatalytic applications or to develop antibacterial materials. Another important class of applications of high-energy ball-milling is the formation of composites. It is exemplified here with the case of oxide-dispersed strengthened alloys whose properties are considerably improved by a dispersion of ultra-stable nanosized oxides whose formation mechanisms were recently described. The basic understanding of the mechanisms by which oxides or oxide mixtures evolve by high-energy ball-milling appears to be less advanced than it is for metallic

  3. Development of a novel in silico model of zeta potential for metal oxide nanoparticles: a nano-QSPR approach

    NASA Astrophysics Data System (ADS)

    Wyrzykowska, Ewelina; Mikolajczyk, Alicja; Sikorska, Celina; Puzyn, Tomasz

    2016-11-01

    Once released into the aquatic environment, nanoparticles (NPs) are expected to interact (e.g. dissolve, agglomerate/aggregate, settle), with important consequences for NP fate and toxicity. A clear understanding of how internal and environmental factors influence the NP toxicity and fate in the environment is still in its infancy. In this study, a quantitative structure-property relationship (QSPR) approach was employed to systematically explore factors that affect surface charge (zeta potential) under environmentally realistic conditions. The nano-QSPR model developed with multiple linear regression (MLR) was characterized by high robustness ({{{Q}}{{2}}}{{CV}}=0.90) and external predictivity ({{{Q}}{{2}}}{{EXT}}=0.93). The results clearly showed that zeta potential values varied markedly as functions of the ionic radius of the metal atom in the metal oxides, confirming that agglomeration and the extent of release of free MexOy largely depend on their intrinsic properties. A developed nano-QSPR model was successfully applied to predict zeta potential in an ionized solution of NPs for which experimentally determined values of response have been unavailable. Hence, the application of our model is possible when the values of zeta potential in the ionized solution for metal oxide nanoparticles are undetermined, without the necessity of performing more time consuming and expensive experiments. We believe that our studies will be helpful in predicting the conditions under which MexOy is likely to become problematic for the environment and human health.

  4. Domain Wall Depinning Assisted by Current-Induced Oersted Field in Nano-oxide Layer Inserted Magnetic Stripes

    NASA Astrophysics Data System (ADS)

    Nam, Chunghee; Cho, Beong-Ki

    2011-11-01

    The effect of the local Oersted field on a pinned domain wall (DW) was investigated in a magnetic spin-valve nanowire. The Oersted field is produced by a low current, which is confined under a nano-oxide layer (NOL) inserted into the NiFe layer in sub/NiFe/Cu/NiFe/NOL/NiFe. It was found that the depinning field of the pinned DW decreases linearly as the magnitude of current (or equivalently Oersted field) increases. The Oersted field was believed to change the internal magnetic structure of DW, such that the DW pinning energy was lowered, resulting in the reduction of the depinning field.

  5. Nanocapsular Dispersion of Thymol for Enhanced Dispersibility and Increased Antimicrobial Effectiveness against Escherichia coli O157:H7 and Listeria monocytogenes in Model Food Systems

    PubMed Central

    Shah, Bhavini; Davidson, P. Michael

    2012-01-01

    Essential oils are marginally soluble in water, making it challenging to evenly disperse them in foods and resulting in an increased tendency to bind with food lipids and proteins, resulting in lowered antimicrobial efficacy. In the current study, free and nano-dispersed (ND) thymol were compared in terms of their antimicrobial efficacies against Escherichia coli O157:H7 ATCC 43889 and 43894 and Listeria monocytogenes strains Scott A and 101 in apple cider and 2% reduced-fat milk. Apple cider was adjusted to pHs 5.5 and 3.5, and antimicrobial tests were performed at 0.3-, 0.5-, 0.75-, and 1.0-g/liter thymol concentrations at 35, 32, 25, and 4°C. Overall, 0.5 and 1.0 g/liter thymol in nano-dispersion and along with free thymol were inhibitory and bactericidal, respectively, against bacterial strains under all treatment conditions. At pH 5.5, 0.5 g/liter ND thymol was bacteriostatic against L. monocytogenes and E. coli for up to 48 h. At pH 3.5, L. monocytogenes controls did not survive beyond 12 h but E. coli survived and was inhibited by 0.5 g/liter ND thymol after 12 and 48 h in apple cider. E. coli strains were significantly sensitive to 4°C and pH 3.5 (P < 0.05). When bacteria were tested in 2% reduced-fat milk at 35 or 32°C, ND and free thymol demonstrated inhibition at 4.5 g/liter. Thus, the current technology seems to be promising and novel, enabling thymol-containing nano-dispersions that are not only transparent but also effective against pathogens in food applications, especially in clear beverages. PMID:23023745

  6. Visible light active, nano-architectured metal oxide photo-catalysts for solar fuel applications

    NASA Astrophysics Data System (ADS)

    LaTempa, Thomas Joseph, Jr.

    Large-scale implementation of renewable energy sources such as solar requires the development of an efficient energy capture, conversion and storage scheme. Harnessing solar energy to create storable fuels, i.e., solar fuels, provides a unique strategy to meet this objective. In this regard, hydrogen generation through water photoelectrolysis and methane generation via the photocatalytic conversion of carbon dioxide and water vapor are investigated. The primary motivation of this work lies in the development of efficient, low cost materials for solar fuel applications. Metal oxide semiconductors such as n-type titanium dioxide (TiO 2) have generated significant interest in the scientific community due to their low cost, stability and high photocatalytic activity under band gap illumination. The implementation of nano-structured materials has significantly enhanced the conversion efficiency obtained with TiO2 in applications such as water photoelectrolysis. Despite these advancements, TiO2 has an inherently poor photoresponse due its wide band gap (3.0-3.2 eV), which accounts for ≈ 5% of the solar spectrum energy. Therefore, the primary objective of this work is to develop materials with a photocatalytic activity approaching that of TiO2, while shifting the photo-response to harness the visible light portion of the solar spectrum. Two differing approaches are evaluated in this work to meet this objective. Hematite (alpha-Fe2O3) has a band gap ≈ 2.2 eV, well suited for capturing solar energy, but suffers from intrinsically poor electrical characteristics. To overcome these limitations, iron oxide nanotubes were developed using a temperature controlled anodization technique. This provides greater control over the film morphology to create high aspect ratio nano-structures approximately 1-4 mum in length, sufficient to harness solar energy, with a wall thickness approaching 10 nm to improve the electrical characteristics for photocatalytic application. The

  7. Multi scale modeling of ignition and combustion of micro and nano aluminum particles

    NASA Astrophysics Data System (ADS)

    Puri, Puneesh

    With renewed interest in nano scale energetic materials like aluminum, many fundamental issues concerning the ignition and combustion characteristics at nano scales, remain to be clarified. The overall aim of the current study is the establishment of a unified theory accommodating the various processes and mechanisms involved in the combustion and ignition of aluminum particles at micro and nano scales. A comprehensive review on the ignition and combustion of aluminum particles at multi scales was first performed identifying various processes and mechanisms involved. Research focus was also placed on the establishment of a Molecular Dynamics (MD) simulation tool to investigate the characteristics of nano-particulate aluminum through three major studies. The general computational framework involved parallelized preprocessing, post-processing and main code with capability to simulate different ensembles using appropriate algorithms. Size dependence of melting temperature of pure aluminum particles was investigated in the first study. Phenomena like dynamic coexistence of solid and liquid phase and effect of surface charges on melting were explored. The second study involved the study of effect of defects in the form of voids on melting of bulk and particulate phase aluminum. The third MD study was used to analyze the thermo-mechanical behavior of nano-sized aluminum particles with total diameter of 5-10 nm and oxide thickness of 1-2.5 nm. The ensuing solid-solid and solid-liquid phase changes in the core and shell, stresses developed within the shell, and the diffusion of aluminum cations in the oxide layer, were explored in depth for amorphous and crystalline oxide layers. In the limiting case, the condition for pyrophoricity/explosivity of nano-particulate aluminum was analyzed and modified. The size dependence of thermodynamic properties at nano scales were considered and incorporated into the existing theories developed for micro and larger scales. Finally, a

  8. METHOD OF INCREASING THE DISPERSIBILITY OF SLURRY PARTICLES

    DOEpatents

    McBride, J.P.

    1959-12-15

    A method is described for increasing the dispersibility of metallic oxide particles, particularly thorium oxide, in slurries. Organo-silicon compounds, such as organosilicon halides and silicate esters, are deposited on the surface of the oxide particles. A firing step conducted at temperatures of 600 to 1200 deg C removes the organic groups leaving a surface coating of silica, which provides the desired increase in particle dispersibility.

  9. Longitudinal shear behavior of several oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1978-01-01

    Two commercial oxide dispersion strengthened (ODS) alloys, MA-753 and MA-754, and three experimental ODS alloys, MA-757E, MA-755E, and MA-6000E, were tested in shear at 760 C. Comparisons were made with other turbine blade and vane alloys. All of the ODS alloys exhibited less shear strength than directionally solidified Mar-M 200 = Hf or then conventionally cast B-1900. The strongest ODS alloy tested, MA-755E, was comparable in both shear and tensile strength to the lamellar directionally solidified eutectic alloy gamma/gamma prime - delta. Substantial improvements in shear resistance were found for all alloys tested when the geometry of the specimen was changed from one generating a transverse tensile stress in the shear area to one generating a transverse compressive stress. Finally, 760 C shear strength as a fraction of tensile strength was found to increase linearly with the log of the transverse tensile ductility.

  10. Functionalized graphene oxide serves as a novel vaccine nano-adjuvant for robust stimulation of cellular immunity

    NASA Astrophysics Data System (ADS)

    Xu, Ligeng; Xiang, Jian; Liu, Ye; Xu, Jun; Luo, Yinchan; Feng, Liangzhu; Liu, Zhuang; Peng, Rui

    2016-02-01

    Benefiting from their unique physicochemical properties, graphene derivatives have attracted great attention in biomedicine. In this study, we carefully engineered graphene oxide (GO) as a vaccine adjuvant for immunotherapy using urease B (Ure B) as the model antigen. Ure B is a specific antigen for Helicobacter pylori, which is a class I carcinogen for gastric cancer. Polyethylene glycol (PEG) and various types of polyethylenimine (PEI) were used as coating polymers. Compared with single-polymer modified GOs (GO-PEG and GO-PEI), certain dual-polymer modified GOs (GO-PEG-PEI) can act as a positive modulator to promote the maturation of dendritic cells (DCs) and enhance their cytokine secretion through the activation of multiple toll-like receptor (TLR) pathways while showing low toxicity. Moreover, this GO-PEG-PEI can serve as an antigen carrier to effectively shuttle antigens into DCs. These two advantages enable GO-PEG-PEI to serve as a novel vaccine adjuvant. In the subsequent in vivo experiments, compared with free Ure B and clinically used aluminum-adjuvant-based vaccine (Alum-Ure B), GO-PEG-PEI-Ure B induces stronger cellular immunity via intradermal administration, suggesting promising applications in cancer immunotherapy. Our work not only presents a novel, highly effective GO-based vaccine nano-adjuvant, but also highlights the critical roles of surface chemistry for the rational design of nano-adjuvants.Benefiting from their unique physicochemical properties, graphene derivatives have attracted great attention in biomedicine. In this study, we carefully engineered graphene oxide (GO) as a vaccine adjuvant for immunotherapy using urease B (Ure B) as the model antigen. Ure B is a specific antigen for Helicobacter pylori, which is a class I carcinogen for gastric cancer. Polyethylene glycol (PEG) and various types of polyethylenimine (PEI) were used as coating polymers. Compared with single-polymer modified GOs (GO-PEG and GO-PEI), certain dual

  11. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria-mediated apoptosis in zebrafish embryos.

    PubMed

    Zhao, Xuesong; Ren, Xin; Zhu, Rong; Luo, Zhouying; Ren, Baixiang

    2016-11-01

    Zinc oxide nanoparticles (nano-ZnO) are one of the most important nanoparticles in the industry. The objectives of this study were (1) to investigate the effects of nano-ZnO on oxidative damage to DNA and on apoptosis in zebrafish (Danio rerio) embryos, and (2) to identify the underlying molecular mechanism affecting theapoptotic process. In addition to nano-ZnO, we also investigated the toxic effects of the Zn 2+ ion. Zebrafish embryos were exposed to 10, 30, 60, 90, or 120mg/L nano-ZnO for 96h postfertilization. Nano-ZnO (at concentrations between 10 and 120mg/L) significantly reduced the rate of embryo hatching. Embryos/larvae exposed to 120mg/L nano-ZnO had significantly higher heart rates. Increased heart rates could be a physiological mechanism compensating for body hypoxia. Embryos/larvae exposed to nano-ZnO exhibited oxidative stress, due to an excessive generation of reactive oxygen species (ROS). Oxidative stress was evidenced by increased levels of superoxide dismutase, by increased lipid peroxidation, and by increased expression of genes related to the antioxidant defense system (sod1, cat, gpx1a, and pparα), which were altered at different degrees. Upon exposure to nano-ZnO, the percentage of apoptotic cells increased in a dose-dependent manner (0.41% to 4.21%). In addition, altered transcriptional regulation of pro-apoptotic genes (bax, puma, and apaf-1) and anti-apoptotic genes (bcl-2) provided further evidence of the activation of apoptosis. In this study, exposure of zebrafish embryos to nano-ZnO triggered an excessive production of ROS, which was followed by several phenomena: the up-regulation of p53, a reduction in the bcl-2/bax ratio,a reduction in the mitochondrial membrane potential (ψ m ), the release of cytochrome c into the cytosolic fraction, and the activation of caspases 9 and 3. Collectively, our data imply that nano-ZnO induce an excessive production of ROS which then activate the apoptosis pathway mediated by mitochondria and

  12. Modeling and analysis of sub-surface leakage current in nano-MOSFET under cutoff regime

    NASA Astrophysics Data System (ADS)

    Swami, Yashu; Rai, Sanjeev

    2017-02-01

    The high leakage current in nano-meter regimes is becoming a significant portion of power dissipation in nano-MOSFET circuits as threshold voltage, channel length, and gate oxide thickness are scaled down to nano-meter range. Precise leakage current valuation and meticulous modeling of the same at nano-meter technology scale is an increasingly a critical work in designing the low power nano-MOSFET circuits. We present a specific compact model for sub-threshold regime leakage current in bulk driven nano-MOSFETs. The proposed logical model is instigated and executed into the latest updated PTM bulk nano-MOSFET model and is found to be in decent accord with technology-CAD simulation data. This paper also reviews various transistor intrinsic leakage mechanisms for nano-MOSFET exclusively in weak inversion, like drain-induced barricade lowering (DIBL), gate-induced drain leakage (GIDL), gate oxide tunneling (GOT) leakage etc. The root cause of the sub-surface leakage current is mainly due to the nano-scale short channel length causing source-drain coupling even in sub-threshold domain. Consequences leading to carriers triumphing the barricade between the source and drain. The enhanced model effectively considers the following parameter dependence in the account for better-quality value-added results like drain-to-source bias (VDS), gate-to-source bias (VGS), channel length (LG), source/drain junction depth (Xj), bulk doping concentration (NBULK), and operating temperature (Top).

  13. Long-term high-velocity oxidation and hot corrosion testing of several NiCrAl and FeCrAl base oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Deadmore, D. L.; Whittenberger, J. D.

    1982-01-01

    Several oxide dispersion strengthened (ODS) alloys have been tested for cyclic, long-term, high gas-velocity resistance to oxidation at 1100 C and hot corrosion at 900 C. Both nominally Ni-16Cr-4Al and Fe-20Cr-4.5Al ODS alloys were subjected up to about 2500 cycles, where each cycle consisted of 1 hr in a hot, Mach 0.3 combusted gas stream followed by a 3-min quench in an ambient temperature, Mach 0.3 air blast. For comparison to existing technology, a coated superalloy was simultaneously tested. The ODS iron alloy exhibited clearly superior behavior, surviving 3800 oxidation and 2300 hot corrosion cycles essentially unscathed. While the ODS nickel alloys exhibited adequate oxidation resistance, the long-term hot corrosion resistance could be marginal, since the best life for such alloys under these conditions was only about 1100 cycles. However, the hot corrosion resistance of the ODS Ni-base alloys is excellent in comparison to that of traditional superalloys.

  14. Nano-Enabled Technologies for Naval Aviation Applications

    DTIC Science & Technology

    2015-06-05

    4. Reduced self- discharge DEW 1. Active materials (silicon based/anode only); 2. Active materials coated on CNTs surface; 3...polymer film capacitors have the potential to provide higher energy density, higher power density, reduce weight, improve duty cycles (fast discharge and...dependent excess of 200C) 4. Nano-particle dispersion 5. Understanding discharge rate 6. Design and control of the interface 1. Increased

  15. Improved thermal stability of Mn-Ir-based magnetic tunnel junction with nano-oxide layer

    NASA Astrophysics Data System (ADS)

    Yoon, S. Y.; Kim, Y. I.; Lee, D. H.; Kim, Y. S.; Suh, S. J.

    2004-06-01

    Si/SiO2/Ta/NiFe/Mn-Ir/CoFe/NOL/CoFe/Al-O/CoFe/NiFe/Ta bottom conventional (without nano-oxide layer, NOL) and specular (with NOL) MTJs were prepared by DC magnetron sputtering methods. In the case of a conventional MTJ, the TMR ratio increased up to 300 °C but the TMR ratio of a specular MTJ increased up to 400 °C. The highest TMR ratios of two samples after annealing at each optimal temperature were 21.6% (conventional MTJ) and 22.7% (specular MTJ), respectively, This improved thermal property of the specular MTJ is due to the NOL, which could act as a diffusion barrier for Mn. The bias-voltage dependence of both samples was vastly improved after annealing at each optimal temperature.

  16. Uniformly Dispersed and Re-Agglomerated Graphene Oxide-Based Cement Pastes: A Comparison of Rheological Properties, Mechanical Properties and Microstructure.

    PubMed

    Long, Wu-Jian; Li, Hao-Dao; Fang, Chang-Le; Xing, Feng

    2018-01-09

    The properties of graphene oxide (GO)-based cement paste can be significantly affected by the state of GO dispersion. In this study, the effects of uniformly dispersed and re-agglomerated GO on the rheological, mechanical properties and microstructure of cement paste were systematically investigated. Two distinct dispersion states can be achieved by altering the mixing sequence: Polycarboxylate-ether (PCE) mixed with GO-cement or cement mixed with GO-PCE. The experimental results showed that the yield stress and plastic viscosity increased with the uniformly dispersed GO when compared to those of re-agglomerated GO cement paste. Moreover, the 3-day compressive and flexural strengths of uniformly dispersed GO paste were 8% and 27%, respectively, higher than those of re-agglomerated GO pastes. The results of X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy analyses demonstrated that uniformly dispersed GO more effectively promotes the formation of hydration products in hardened cement paste. Furthermore, a porosity analysis using mercury intrusion porosimetry revealed that the homogeneous dispersion of GO can better inhibit the formation of large-size pores and optimize the pore size distribution at 3 and 7 days than the re-agglomerated GO.

  17. An oral absorbent, surface-deacetylated chitin nano-fiber ameliorates renal injury and oxidative stress in 5/6 nephrectomized rats.

    PubMed

    Anraku, Makoto; Tabuchi, Ryo; Ifuku, Shinsuke; Nagae, Tomone; Iohara, Daisuke; Tomida, Hisao; Uekama, Kaneto; Maruyama, Toru; Miyamura, Shigeyuki; Hirayama, Fumitoshi; Otagiri, Masaki

    2017-04-01

    In this study, we report that surface-deacetylated chitin nano-fibers (SDACNFs) are more effective in decreasing renal injury and oxidative stress than deacetylated chitin powder (DAC) in 5/6 nephrectomized rats. An oral administration of low doses of SDACNFs (40mg/kg/day) over a 4 week period resulted in a significant decrease in serum indoxyl sulfate, creatinine and urea nitrogen levels, compared with a similar treatment with DAC or AST-120. The SDACNFs treatment also resulted in an increase in antioxidant potential, compared with that for DAC or AST-120. Immunohistochemical analyses also demonstrated that SDACNFs treated CRF rats showed a decrease in the amount of accumulated 8-OHdG compared with the CRF group. These results suggest that the ingestion of SDCH-NF results in a significant reduction in the levels of pro-oxidants, such as uremic toxins, in the gastrointestinal tract, thereby inhibiting the subsequent development of oxidative stress in the systemic circulation. Copyright © 2016. Published by Elsevier Ltd.

  18. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques.

    PubMed

    van Drooge, D J; Hinrichs, W L J; Visser, M R; Frijlink, H W

    2006-03-09

    The molecular distribution in fully amorphous solid dispersions consisting of poly(vinylpyrrolidone) (PVP)-diazepam and inulin-diazepam was studied. One glass transition temperature (T(g)), as determined by temperature modulated differential scanning calorimetry (TMDSC), was observed in PVP-diazepam solid dispersions prepared by fusion for all drug loads tested (10-80 wt.%). The T(g) of these solid dispersions gradually changed with composition and decreased from 177 degrees C for pure PVP to 46 degrees C for diazepam. These observations indicate that diazepam was dispersed in PVP on a molecular level. However, in PVP-diazepam solid dispersions prepared by freeze drying, two T(g)'s were observed for drug loads above 35 wt.% indicating phase separation. One T(g) indicated the presence of amorphous diazepam clusters, the other T(g) was attributed to a PVP-rich phase in which diazepam was dispersed on a molecular level. With both the value of the latter T(g) and the DeltaC(p) of the diazepam glass transition the concentrations of molecular dispersed diazepam could be calculated (27-35 wt.%). Both methods gave similar results. Water vapour sorption (DVS) experiments revealed that the PVP-matrix was hydrophobised by the incorporated diazepam. TMDSC and DVS results were used to estimate the size of diazepam clusters in freeze dried PVP-diazepam solid dispersions, which appeared to be in the nano-meter range. The inulin-diazepam solid dispersions prepared by spray freeze drying showed one T(g) for drug loads up to 35 wt.% indicating homogeneous distribution on a molecular level. However, this T(g) was independent of the drug load, which is unexpected because diazepam has a lower T(g) than inulin (46 and 155 degrees C, respectively). For higher drug loads, a T(g) of diazepam as well as a T(g) of the inulin-rich phase was observed, indicating the formation of amorphous diazepam clusters. From the DeltaC(p) of the diazepam glass transition the amount of molecularly dispersed

  19. Metal Ions Removal Using Nano Oxide Pyrolox™ Material

    NASA Astrophysics Data System (ADS)

    Gładysz-Płaska, A.; Skwarek, E.; Budnyak, T. M.; Kołodyńska, D.

    2017-02-01

    The paper presents the use of Pyrolox™ containing manganese nano oxides used for the removal of Cu(II), Zn(II), Cd(II), and Pb(II) as well as U(VI) ions. Their concentrations were analyzed using the atomic absorption spectrometer SpectrAA 240 FS (Varian) as well as UV-vis method. For this purpose the static kinetic and equilibrium studies were carried out using the batch technique. The effect of solution pH, shaking time, initial metal ion concentrations, sorbent dosage, and temperature was investigated. The equilibrium data were analyzed using the sorption isotherm models proposed by Freundlich, Langmuir-Freundlich, Temkin, and Dubinin-Radushkevich. The kinetic results showed that the pseudo second order kinetic model was found to correlate the experimental data well. The results indicate that adsorption of Cu(II), Zn(II), Cd(II), and Pb(II) as well as U(VI) ions is strongly dependent on pH. The value of pH 4-7 was optimal adsorption. The time to reach the equilibrium was found to be 24 h, and after this time, the sorption percentage reached about 70%. Kinetics of Cu(II), Zn(II), Cd(II), Pb(II), and U(VI) adsorption on the adsorbent can be described by the pseudo second order rate equation. Nitrogen adsorption/desorption, infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) measurements for adsorbent characterization were performed. Characteristic points of the double layer determined for the studied Pyrolox™ sample in 0.001 mol/dm3 NaCl solution are pHPZC = 4 and pHIEP < 2.

  20. Tube manufacturing and characterization of oxide dispersion strengthened ferritic steels

    NASA Astrophysics Data System (ADS)

    Ukai, Shigeharu; Mizuta, Shunji; Yoshitake, Tunemitsu; Okuda, Takanari; Fujiwara, Masayuki; Hagi, Shigeki; Kobayashi, Toshimi

    2000-12-01

    Oxide dispersion strengthened (ODS) ferritic steels have an advantage in radiation resistance and superior creep rupture strength at elevated temperature due to finely distributed Y2O3 particles in the ferritic matrix. Using a basic composition of low activation ferritic steel (Fe-12Cr-2W-0.05C), cladding tube manufacturing by means of pilger mill rolling and subsequent recrystallization heat-treatment was conducted while varying titanium and yttria contents. The recrystallization heat-treatment, to soften the tubes hardened due to cold-rolling and to subsequently improve the degraded mechanical properties, was demonstrated to be effective in the course of tube manufacturing. For a titanium content of 0.3 wt% and yttria of 0.25 wt%, improvement of the creep rupture strength can be attained for the manufactured cladding tubes. The ductility is also adequately maintained.