Sample records for nano-tio2 based photocatalysis

  1. Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective.

    PubMed

    Chen, Biao; Meng, Yuhuan; Sha, Junwei; Zhong, Cheng; Hu, Wenbin; Zhao, Naiqin

    2017-12-21

    The rapidly increasing severity of the energy crisis and environmental degradation are stimulating the rapid development of photocatalysts and rechargeable lithium/sodium ion batteries. In particular, MoS 2 /TiO 2 based nanocomposites show great potential and have been widely studied in the areas of both photocatalysis and rechargeable lithium/sodium ion batteries due to their superior combination properties. In addition to the low-cost, abundance, and high chemical stability of both MoS 2 and TiO 2 , MoS 2 /TiO 2 composites also show complementary advantages. These include the strong optical absorption of TiO 2 vs. the high catalytic activity of MoS 2 , which is promising for photocatalysis; and excellent safety and superior structural stability of TiO 2 vs. the high theoretic specific capacity and unique layered structure of MoS 2 , thus, these composites are exciting as anode materials. In this review, we first summarize the recent progress in MoS 2 /TiO 2 -based nanomaterials for applications in photocatalysis and rechargeable batteries. We highlight the synthesis, structure and mechanism of MoS 2 /TiO 2 -based nanomaterials. Then, advancements and strategies for improving the performance of these composites in photocatalytic degradation, hydrogen evolution, CO 2 reduction, LIBs and SIBs are critically discussed. Finally, perspectives on existing challenges and probable opportunities for future exploration of MoS 2 /TiO 2 -based composites towards photocatalysis and rechargeable batteries are presented. We believe the present review would provide enriched information for a deeper understanding of MoS 2 /TiO 2 composites and open avenues for the rational design of MoS 2 /TiO 2 based composites for energy and environment-related applications.

  2. Degradation of parathion and the reduction of acute toxicity in TiO2 photocatalysis.

    PubMed

    Zoh, K D; Kim, T S; Kim, J G; Choi, K H

    2005-01-01

    Photocatalytic degradation of methyl parathion was done using a circulating TiO2/UV and TiO2/solar reactor. Indoor experimental results showed that, under the photocatalysis conditions, parathion was more effectively degraded than under the photolysis and TiO2 only conditions. Parathion (38 microM) was completely degraded under photocatalysis within 90 min, and more than 80% TOC decrease after 150 minutes. The main ionic byproducts during the photocatalysis were measured, and almost complete nitrogen recovery was achieved as mainly NO3- NO2-, and NH4+, and 80% of sulfur as recovered as SO4(2)-. Organic intermediates such as nitrophenol and methyl paraoxon were also identified during the photocatalysis of parathion, and these were further degraded after 90 minutes. Microtox bioassay using Vibrio fischeri was used in evaluating the toxicity of solutions treated by photocatalysis and photolysis of parathion. The results showed that the acute toxicity expressed as EC50 almost reduced after 90 min under the photocatalysis condition whereas only 40% reduction of toxicity as EC50 was achieved in photolysis condition. The outdoor results using a TiO2/solar system were similar to the TiO2 indoor system, indicating the possibility of applying TiO2/solar system for the treatment of parathion-contaminated water.

  3. Degradation kinetics and mechanism of RDX and HMX in TiO2 photocatalysis.

    PubMed

    Choi, J K; Son, H S; Kim, T S; Stenstrom, M K; Zoh, K D

    2006-02-01

    This study was undertaken to examine the photocatalytic degradation of explosives hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) with a circular photocatalytic reactor, using a UV lamp as a light source and TiO2 as a photocatalyst. The effects of various parameters, such as the RDX or HMX concentration, the amount of TiO, and the initial pH, on the photocatalytic degradation rates of explosives were examined. In the presence of both UV light and TiO2 RDX and HMX were more effectively degraded than with either UV or TiO2 alone. The degradation rates were found to obey pseudo-first-order kinetics represented by the Langmuir-Hinshelwood model. Increases in the RDX and HMX degradation rates were obtained with decreasing initial concentrations of the explosives. The RDX and HMX degradation rates were higher at pH 7 than at either pH 3 or pH 11. A dose of approximately 0.7 g l(-1) of TiO2 degraded HMX more rapidly than did higher or lower TiO2 doses. RDX (20 mg l(-1)) photocatalysis resulted in an approximately 20% decrease in TOC, and HMX (5 mg l(-1)) photocatalysis resulted in a 60%, decrease in TOC within 150 minutes. A trace amount of formate was produced as an intermediate that was further mineralized by RDX or HMX photocatalysis. The nitrogen byproducts from the photocatalysis of RDX and HMX were mainly NO3- with NO2-, and NH4+. The total nitrogen recovery was about 60% from RDX (20 mg l(-1)), and 70% from HMX (5 mg l(-1)), respectively. Finally, a mechanism for RDX/HMX photocatalysis was proposed, along with supporting qualitative and quantitative evidence.

  4. A Surface Science Perspective on TiO2 Photocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.

    2011-06-15

    The field of surface science provides a unique approach to understanding bulk, surface and interfacial phenomena occurring during TiO2 photochemistry and photocatalysis. This review highlights, from a surface science perspective, recent literature providing molecular-level insights into phonon-initiated events on TiO2 surfaces obtained in seven key scientific issues: (1) photon absorption, (2) charge transport and trapping, (3) electron transfer dynamics, (4) the adsorbed state, (5) mechanisms, (6) poisons and promoters, and (7) phase and form.

  5. Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/sewage sludge-based activated carbon nanocomposites

    NASA Astrophysics Data System (ADS)

    Rashed, M. Nageeb; Eltaher, M. A.; Abdou, A. N. A.

    2017-12-01

    Nanocomposite TiO2/ASS (TiO2 nanoparticle coated sewage sludge-based activated carbon) was synthesized by the sol-gel method. The changes in surface properties of the TiO2/ASS nanocomposite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence. The prepared TiO2/ASS nanocomposite was applied for simultaneous removal of methyl orange dye (MO) and Cd2+ from bi-pollutant solution. The factors influencing photocatalysis (TiO2 : ASS ratios, initial pollutant concentrations, solution pH, nanocomposite dosage and UV irradiation time) were investigated. The results revealed that high removal efficiency of methyl orange dye (MO) and Cd2+ from bi-pollutant solution was achieved with TiO2/ASS at a ratio (1 : 2). The obtained results revealed that degradation of MO dye on the TiO2/ASS nanocomposite was facilitated by surface adsorption and photocatalytic processes. The coupled photocatalysis and adsorption shown by TiO2/ASS nanocomposite resulted in faster and higher degradation of MO as compared to MO removal by ASS adsorbent. The removal efficiency of MO by ASS adsorbent and TiO2/ASS (1 : 2) nanocomposite at optimum pH value 7 were 74.14 and 94.28%, respectively, while for Cd2+ it was more than 90%. The experimental results fitted well with the second-order kinetic reaction.

  6. Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/sewage sludge-based activated carbon nanocomposites

    PubMed Central

    Eltaher, M. A.; Abdou, A. N. A.

    2017-01-01

    Nanocomposite TiO2/ASS (TiO2 nanoparticle coated sewage sludge-based activated carbon) was synthesized by the sol-gel method. The changes in surface properties of the TiO2/ASS nanocomposite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence. The prepared TiO2/ASS nanocomposite was applied for simultaneous removal of methyl orange dye (MO) and Cd2+ from bi-pollutant solution. The factors influencing photocatalysis (TiO2 : ASS ratios, initial pollutant concentrations, solution pH, nanocomposite dosage and UV irradiation time) were investigated. The results revealed that high removal efficiency of methyl orange dye (MO) and Cd2+ from bi-pollutant solution was achieved with TiO2/ASS at a ratio (1 : 2). The obtained results revealed that degradation of MO dye on the TiO2/ASS nanocomposite was facilitated by surface adsorption and photocatalytic processes. The coupled photocatalysis and adsorption shown by TiO2/ASS nanocomposite resulted in faster and higher degradation of MO as compared to MO removal by ASS adsorbent. The removal efficiency of MO by ASS adsorbent and TiO2/ASS (1 : 2) nanocomposite at optimum pH value 7 were 74.14 and 94.28%, respectively, while for Cd2+ it was more than 90%. The experimental results fitted well with the second-order kinetic reaction. PMID:29308227

  7. Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/sewage sludge-based activated carbon nanocomposites.

    PubMed

    Rashed, M Nageeb; Eltaher, M A; Abdou, A N A

    2017-12-01

    Nanocomposite TiO 2 /ASS (TiO 2 nanoparticle coated sewage sludge-based activated carbon) was synthesized by the sol-gel method. The changes in surface properties of the TiO 2 /ASS nanocomposite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence. The prepared TiO 2 /ASS nanocomposite was applied for simultaneous removal of methyl orange dye (MO) and Cd 2+ from bi-pollutant solution. The factors influencing photocatalysis (TiO 2  : ASS ratios, initial pollutant concentrations, solution pH, nanocomposite dosage and UV irradiation time) were investigated. The results revealed that high removal efficiency of methyl orange dye (MO) and Cd 2+ from bi-pollutant solution was achieved with TiO 2 /ASS at a ratio (1 : 2). The obtained results revealed that degradation of MO dye on the TiO 2 /ASS nanocomposite was facilitated by surface adsorption and photocatalytic processes. The coupled photocatalysis and adsorption shown by TiO 2 /ASS nanocomposite resulted in faster and higher degradation of MO as compared to MO removal by ASS adsorbent. The removal efficiency of MO by ASS adsorbent and TiO 2 /ASS (1 : 2) nanocomposite at optimum pH value 7 were 74.14 and 94.28%, respectively, while for Cd 2+ it was more than 90%. The experimental results fitted well with the second-order kinetic reaction.

  8. TiO2 photocatalysis causes DNA damage via fenton reaction-generated hydroxyl radicals during the recovery period.

    PubMed

    Gogniat, Gaëtan; Dukan, Sam

    2007-12-01

    Here, we show that resistance of Escherichia coli to TiO2 photocatalysis involves defenses against reactive oxygen species. Results support the idea that TiO2 photocatalysis generates damage which later becomes deleterious during recovery. We found this to be partly due to DNA attack via hydroxyl radicals generated by the Fenton reaction during recovery.

  9. Amorphisation and recrystallisation study of lithium intercalation into TiO2 nano-architecture.

    NASA Astrophysics Data System (ADS)

    Matshaba, M. G.; Sayle, D. C.; Sayle, T. X. T.; Ngoepe, P. E.

    2017-02-01

    Titanium dioxide is playing an increasingly significant role in easing environmental and energy concerns. Its rich variety of polymorphic crystal structures has facilitated a wide range of applications such as photo-catalysis, photo-splitting of water, photoelectrochromic devices, insulators in metal oxide, semiconductors devices, dye sensitized solar cells (DSSCs) (energy conversions), rechargeable lithium batteries (electrochemical storage). The complex structural aspects in nano TiO2, are elucidated by microscopic visualization and quantification of the microstructure for electrode materials, since cell performance and various aging mechanisms depend strongly on the appearance and changes in the microstructure. Recent studies on MnO2 have demonstrated that amorphisation and recrystallisation simulation method can adequately generate various nanostructures, for Li-ion battery compounds. The method was also previously employed to produce nano-TiO2. In the current study, the approach is used to study lithiated nanoporous structure for TiO2 which have been extensively studied experimentally, as mentioned above. Molecular graphic images showing microstructural features, including voids and channels have accommodated lithium’s during lithiation and delithiation. Preliminary lithiation of TiO2 will be considered.

  10. Highly efficient indoor air purification using adsorption-enhanced-photocatalysis-based microporous TiO2 at short residence time.

    PubMed

    Lv, Jinze; Zhu, Lizhong

    2013-01-01

    A short residence time is a key design parameter for the removal of organic pollutants in catalyst-based indoor air purification systems. In this study, we synthesized a series of TiO2 with different micropore volumes and studied their removal efficiency of indoor carbonyl pollutants at a short residence time. Our results indicated that the superior adsorption capability of TiO2 with micropores improved its performance in the photocatalytic degradation of cyclohexanone, while the photocatalytic removal of the pollutant successfully kept porous TiO2 from becoming saturated. When treated with 1 mg m(-3) cyclohexanone at a relatively humidity of 18%, the adsorption amount on microporous TiO2 was 5.4-7.9 times higher than that on P25. Removal efficiency via photocatalysis followed'the same order as the adsorption amount: TiO2-5 > TiO2-20 > TiO2-60 > TiO2-180 > P25. The advantage of microporous TiO2 over P25 became more pronounced when the residence time declined from 0.072 to 0.036 s. Moreover, as the concentration of cyclohexanone deceased from 1000 ppb to 500 ppb, removal efficiency by microporous TiO2 increased more rapidly than P25.

  11. Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on Hepatitis B virus.

    PubMed

    Zan, Ling; Fa, Wenjun; Peng, Tianyou; Gong, Zhen-Kui

    2007-02-01

    The photocatalysis effect of nanometer TiO2 particles and TiO2-coated ceramic plate on Hepatitis B virus surface antigen (HBsAg) was investigated. The ELISA (enzyme-linked immunosorbent assay) standard method was used to assess the efficiency of TiO2 material to destroy the HBsAg. The research has shown that the suspension of TiO2 (0.5g/L) can destroy most of the HBsAg under the irradiation of mercury lamp, with the light intensity of 0.6mW/cm(2) at 365nm wavelength, or under the sunlight irradiation for a few hours. TiO2-coated ceramic plates can also destroy the HBsAg under the irradiation of mercury lamp, with the light intensity of 0.05mW/cm(2) at 365nm wavelength or under the room daylight for a few hours.

  12. Comparison of TiO2 photocatalysis, electrochemically assisted Fenton reaction and direct electrochemistry for simulation of phase I metabolism reactions of drugs.

    PubMed

    Ruokolainen, Miina; Gul, Turan; Permentier, Hjalmar; Sikanen, Tiina; Kostiainen, Risto; Kotiaho, Tapio

    2016-02-15

    The feasibility of titanium dioxide (TiO2) photocatalysis, electrochemically assisted Fenton reaction (EC-Fenton) and direct electrochemical oxidation (EC) for simulation of phase I metabolism of drugs was studied by comparing the reaction products of buspirone, promazine, testosterone and 7-ethoxycoumarin with phase I metabolites of the same compounds produced in vitro by human liver microsomes (HLM). Reaction products were analysed by UHPLC-MS. TiO2 photocatalysis simulated the in vitro phase I metabolism in HLM more comprehensively than did EC-Fenton or EC. Even though TiO2 photocatalysis, EC-Fenton and EC do not allow comprehensive prediction of phase I metabolism, all three methods produce several important metabolites without the need for demanding purification steps to remove the biological matrix. Importantly, TiO2 photocatalysis produces aliphatic and aromatic hydroxylation products where direct EC fails. Furthermore, TiO2 photocatalysis is an extremely rapid, simple and inexpensive way to generate oxidation products in a clean matrix and the reaction can be simply initiated and quenched by switching the UV lamp on/off. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The effect of bulk/surface defects ratio change on the photocatalysis of TiO2 nanosheet film

    NASA Astrophysics Data System (ADS)

    Wang, Fangfang; Ge, Wenna; Shen, Tong; Ye, Bangjiao; Fu, Zhengping; Lu, Yalin

    2017-07-01

    The photocatalysis behavior of TiO2 nanosheet array films was studied, in which the ratio of bulk/surface defects were adjusted by annealing at different temperature. Combining positron annihilation spectroscopy, EPR and XPS, we concluded that the bulk defects belonged to Ti3+ related vacancy defects. The results show that the separation efficiency of photogenerated electrons and holes could be significantly improved by optimizing the bulk/surface defects ratio of TiO2 nanosheet films, and in turn enhancing the photocatalysis behaviors.

  14. Efficient and rapid degradation of Congo red dye with TiO2 based nano-photocatalysts

    NASA Astrophysics Data System (ADS)

    Narayan, Himanshu; Alemu, Hailemichael

    2017-04-01

    Degradation of Congo red (CR) dye with TiO2 based nano-photocatalyst (NPC) loaded with Nd3+ and Er3+ ions is reported. The chemical route of synthesis through co-precipitation/hydrolysis (CPH) was employed to produce NPCs with general composition TiO2[R2O3]x, {x = 0.1, 0.2; R □ Nd, Er} and particle size within 12 - 16 nm. Photocatalytic degradation under visible light was measured in terms of the percent degradation of CR in 180 min ({C}180\\prime), time taken to degrade to half of the initial CR concentration (t1/2) and apparent rate constant (kobs). For both doping types, values of {C}180\\prime close to 100% were obtained with x = 0.2 NPCs, indicating complete removal of the dye. For the same NPCs, very high values of kobs were found; 2.91 × 10-2 min-1 and 2.36 × 10-2 min-1, for Nd3+ and Er3+ loaded NPCs, respectively, suggesting very rapid degradation. Other NPCs with x = 0.1, also showed reasonably good and fast degradation of CR. The observations may be attributed to the small particle size of the NPCs. Moreover, from the DRS results it is observed that the addition of Nd3+ and Er3+ ions apparently introduces intermediate energy levels within the band gap of TiO2. Such new levels seem to support photocatalysis because they act as electron traps leading to effective suppression of the undesired e-/h+ recombination. To some meaningful extent they also facilitate the absorption of visible irradiations required in the process.

  15. Degradation mechanism and the toxicity assessment in TiO2 photocatalysis and photolysis of parathion.

    PubMed

    Kim, Tak-Soo; Kim, Jung-Kon; Choi, Kyungho; Stenstrom, Michael K; Zoh, Kyung-Duk

    2006-02-01

    The photocatalytic degradation of methyl parathion was carried out using a circulating TiO2/UV reactor. The experimental results showed that parathion was more effectively degraded in the photocatalytic condition than the photolysis and TiO2-only condition. With photocatalysis, 10mg/l parathion was completely degraded within 60 min with a TOC decrease exceeding 90% after 150 min. The main ionic byproducts during photocatalysis were measured. The nitrogen from parathion was recovered mainly as NO3-, NO2- and NH4+, 80% of the sulfur as SO4(2-), and less than 5% of the phosphorus as PO4(3-). The organic intermediates 4-nitrophenol and paraoxon were also identified, and these were further degraded. Two different bioassays (Vibrio fischeri and Daphnia magna) were used to test the acute toxicity of solutions treated by photocatalysis and photolysis. A Microtox test using V. fischeri showed that the toxicity, expressed as the relative toxicity (%), was reduced almost completely after 90 min under photocatalysis, whereas only an 83% reduction was achieved with photolysis alone. Another toxicity test using D. magna also showed that the relative toxicity disappeared after 90 min under photocatalysis, whereas there was a 65% reduction in relative toxicity with photolysis alone. The pattern of toxicity reduction parallels the decrease in parathion and TOC concentrations.

  16. MoS2 embedded TiO2 nanoparticles for concurrent role of adsorption and photocatalysis

    NASA Astrophysics Data System (ADS)

    Pal, Arnab; Jana, Tushar K.; Chatterjee, Kuntal

    2018-04-01

    In this work, MoS2 embedded TiO2 nanoparticles, synthesized through hydrothermal process, was successfully employed to remove organic pollutant dye like methylene blue(MB) through adsorption and as well as through photocatalysis under visible light irradiation. The system was characterized by structural and morphological study. The adsorption and photocatalytic study of MB were evaluated with different concentrations of dye in aqueous solution. This work brings the MoS2-TiO2 nanostructure as excellent adsorbent as well as efficient photocatalyst materials which can be used for organic dye removal towards waste-water treatment.

  17. Multi-applicative tetragonal TiO2/SnO2 nanocomposites for photocatalysis and gas sensing

    NASA Astrophysics Data System (ADS)

    Patil, S. M.; Dhodamani, A. G.; Vanalakar, S. A.; Deshmukh, S. P.; Delekar, S. D.

    2018-04-01

    TiO2-based mixed metal oxide heteronanostructures have multiple applications in photocatalysis and gas sensing because of their charge transport properties. In this study, we prepared tetragonal TiO2/SnO2 nanocomposites (NCs) with different weight percentages using a simple wet impregnation method. The physicochemical properties of the NCs were investigated using X-ray diffraction, Fourier transform-infrared spectroscopy, ultraviolet-visible spectroscopy, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and Brunauer-Emmett-Teller surface area analysis. The results showed that the surface area of the NCs increased significantly and the anatase TiO2 was sensitized after the addition of a small amount of cassiterite SnO2 NPs. We systematically studied the as-prepared NCs during the photocatalytic degradation of Congo Red dye under visible light irradiation (λ > 420 nm) and NH3 gas sensing, which demonstrated the efficient photocatalytic performance and the superior sensing response of the catalyst with a weight composition of 25% SnO2 in TiO2 (4:1) compared with the other NCs or the bare individual nanoparticles. The improved photocatalytic and gas sensing performance of the TiO2/SnO2 (4:1) NCs may be attributed to the increased active surface area, the increased adsorption of the dye and target gas molecules, as well as efficient electron-hole charge separation and transfer.

  18. Superiority of solar Fenton oxidation over TiO2 photocatalysis for the degradation of trimethoprim in secondary treated effluents.

    PubMed

    Michael, I; Hapeshi, E; Michael, C; Fatta-Kassinos, D

    2013-01-01

    The overall aim of this work was to examine the degradation of trimethoprim (TMP), which is an antibacterial agent, during the application of two advanced oxidation process (AOP) systems in secondary treated domestic effluents. The homogeneous solar Fenton process (hv/Fe(2+)/H2O2) and heterogeneous photocatalysis with titanium dioxide (TiO2) suspensions were tested. It was found that the degradation of TMP depends on several parameters such as the amount of iron salt and H2O2, concentration of TiO2, pH of solution, solar irradiation, temperature and initial substrate concentration. The optimum dosages of Fe(2+) and H2O2 for homogeneous ([Fe(2+)] = 5 mg L(-1), [H2O2] = 3.062 mmol L(-1)) and TiO2 ([TiO2] = 3 g L(-1)) for heterogeneous photocatalysis were established. The study indicated that the degradation of TMP during the solar Fenton process is described by a pseudo-first-order reaction and the substrate degradation during the heterogeneous photocatalysis by the Langmuir-Hinshelwood kinetics. The toxicity of the treated samples was evaluated using a Daphnia magna bioassay and was finally decreased by both processes. The results indicated that solar Fenton is more effective than the solar TiO2 process, yielding complete degradation of the examined substrate within 30 min of illumination and dissolved organic carbon (DOC) reduction of about 44% whereas the respective values for the TiO2 process were ∼70% degradation of TMP within 120 min of treatment and 13% DOC removal.

  19. TiO2 Hollow Spheres: One-Pot Synthesis and Enhanced Photocatalysis

    NASA Astrophysics Data System (ADS)

    Jia, Changchao; Cao, Yongqiang; Yang, Ping

    2013-04-01

    Hollow TiO2 microspheres were successfully fabricated by metal salts with low solubility in ethanol acting as intelligent templates using a simple one-pot solvothermal method. Hollow spheres with large diameter were obtained using CuSO4ṡ5H2O as templates while small ones were obtained using Sr(NO3)2 as templates. It is found that titanium precursor plays an important role for the morphology of samples. Solid TiO2 microspheres were prepared by using titanium tetrabutoxide (TBT). In contrast, bowl-like hollow microspheres were obtained by using titanium tetrachloride (TiCl4). Furthermore, the amount of H2O can stimulate the hydrolysis rate of TiCl4 to form solid spheres. Compared with solid microspheres, hollow TiO2 microspheres depending on their interior cavity structure exhibited enhanced photocatalysis efficiency for the UV-light photodegradation of methyl orange. Quantificationally, the apparent photocatalytic degradation pseudo-first-rate constant of the hollow microspheres is 1.25 times of that of the solid ones.

  20. Rational design of carbon and TiO2 assembly materials: covered or strewn, which is better for photocatalysis?

    PubMed

    Cui, Guan-wei; Wang, Wei-liang; Ma, Ming-yue; Zhang, Ming; Xia, Xin-yuan; Han, Feng-yun; Shi, Xi-feng; Zhao, Ying-qiang; Dong, Yu-bin; Tang, Bo

    2013-07-21

    The rational design of carbonaceous hybrid nanostructures is very important for obtaining high photoactivity. TiO2 particles strewn with an optimal quantity of carbon nanodots have a much higher photoactivity than that of TiO2 covered with a carbon layer, showing the importance of carbon morphology in the photocatalysis of carbonaceous hybrid nanostructures.

  1. Preparation of RuO2-TiO2/Nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium.

    PubMed

    Li, Dong; Guo, Xiaolei; Song, Haoran; Sun, Tianyi; Wan, Jiafeng

    2018-06-05

    Graphite-like material is widely used for preparing various electrodes for wastewater treatment. To enhance the electrochemical degradation efficiency of Nano-graphite (Nano-G) anode, RuO 2 -TiO 2 /Nano-G composite anode was prepared through the sol-gel method and hot-press technology. RuO 2 -TiO 2 /Nano-G composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N 2 adsorption-desorption. Results showed that RuO 2 , TiO 2 and Nano-G were composited successfully, and RuO 2 and TiO 2 nanoparticles were distributed uniformly on the surface of Nano-G sheet. Specific surface area of RuO 2 -TiO 2 /Nano-G composite was higher than that of TiO 2 /Nano-G composite and Nano-G. Electrochemical performances of RuO 2 -TiO 2 /Nano-G anode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy. RuO 2 -TiO 2 /Nano-G anode was applied to electrochemical degradation of ceftriaxone. The generation of hydroxyl radical (OH) was measured. Results demonstrated that RuO 2 -TiO 2 /Nano-G anode displayed enhanced electrochemical degradation efficiency towards ceftriaxone and yield of OH, which is derived from the synergetic effect between RuO 2 , TiO 2 and Nano-G, which enhance the specific surface area, improve the electrochemical oxidation activity and lower the charge transfer resistance. Besides, the possible degradation intermediates and pathways of ceftriaxone sodium were identified. This study may provide a viable and promising prospect for RuO 2 -TiO 2 /Nano-G anode towards effective electrochemical degradation of antibiotics from wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays

    NASA Astrophysics Data System (ADS)

    Shuang, Shuang; Lv, Ruitao; Xie, Zheng; Zhang, Zhengjun

    2016-05-01

    The low quantum yields and lack of visible light utilization hinder the practical application of TiO2 in high-performance photocatalysis. Herein, we present a design of TiO2 nanopillar arrays (NPAs) decorated with both Au and Pt nanoparticles (NPs) directly synthesized through successive ion layer adsorption and reaction (SILAR) at room temperature. Au/Pt NPs with sizes of ~4 nm are well-dispersed on the TiO2 NPAs as evidenced by electron microscopic analyses. The present design of Au/Pt co-decoration on the TiO2 NPAs shows much higher visible and ultraviolet (UV) light absorption response, which leads to remarkably enhanced photocatalytic activities on both the dye degradation and photoelectrochemical (PEC) performance. Its photocatalytic reaction efficiency is 21 and 13 times higher than that of pure TiO2 sample under UV-vis and visible light, respectively. This great enhancement can be attributed to the synergy of electron-sink function of Pt and surface plasmon resonance (SPR) of Au NPs, which significantly improves charge separation of photoexcited TiO2. Our studies demonstrate that through rational design of composite nanostructures one can harvest visible light through the SPR effect to enhance the photocatalytic activities initiated by UV-light, and thus realize more effectively utilization of the whole solar spectrum for energy conversion.

  3. Remediation of 17-α-ethinylestradiol aqueous solution by photocatalysis and electrochemically-assisted photocatalysis using TiO2 and TiO2/WO3 electrodes irradiated by a solar simulator.

    PubMed

    Oliveira, Haroldo G; Ferreira, Leticia H; Bertazzoli, Rodnei; Longo, Claudia

    2015-04-01

    TiO2 and TiO2/WO3 electrodes, irradiated by a solar simulator in configurations for heterogeneous photocatalysis (HP) and electrochemically-assisted HP (EHP), were used to remediate aqueous solutions containing 10 mg L(-1) (34 μmol L(-1)) of 17-α-ethinylestradiol (EE2), active component of most oral contraceptives. The photocatalysts consisted of 4.5 μm thick porous films of TiO2 and TiO2/WO3 (molar ratio W/Ti of 12%) deposited on transparent electrodes from aqueous suspensions of TiO2 particles and WO3 precursors, followed by thermal treatment at 450 (°)C. First, an energy diagram was organized with photoelectrochemical and UV-Vis absorption spectroscopy data and revealed that EE2 could be directly oxidized by the photogenerated holes at the semiconductor surfaces, considering the relative HOMO level for EE2 and the semiconductor valence band edges. Also, for the irradiated hybrid photocatalyst, electrons in TiO2 should be transferred to WO3 conduction band, while holes move toward TiO2 valence band, improving charge separation. The remediated EE2 solutions were analyzed by fluorescence, HPLC and total organic carbon measurements. As expected from the energy diagram, both photocatalysts promoted the EE2 oxidation in HP configuration; after 4 h, the EE2 concentration decayed to 6.2 mg L(-1) (35% of EE2 removal) with irradiated TiO2 while TiO2/WO3 electrode resulted in 45% EE2 removal. A higher performance was achieved in EHP systems, when a Pt wire was introduced as a counter-electrode and the photoelectrodes were biased at +0.7 V; then, the EE2 removal corresponded to 48 and 54% for the TiO2 and TiO2/WO3, respectively. The hybrid TiO2/WO3, when compared to TiO2 electrode, exhibited enhanced sunlight harvesting and improved separation of photogenerated charge carriers, resulting in higher performance for removing this contaminant of emerging concern from aqueous solution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Elementary photocatalytic chemistry on TiO2 surfaces.

    PubMed

    Guo, Qing; Zhou, Chuanyao; Ma, Zhibo; Ren, Zefeng; Fan, Hongjun; Yang, Xueming

    2016-07-07

    Photocatalytic hydrogen production and pollutant degradation provided both great opportunities and challenges in the field of sustainable energy and environmental science. Over the past few decades, we have witnessed fast growing interest and efforts in developing new photocatalysts, improving catalytic efficiency and exploring the reaction mechanism at the atomic and molecular levels. Owing to its relatively high efficiency, nontoxicity, low cost and high stability, TiO2 becomes one of the most extensively investigated metal oxides in semiconductor photocatalysis. Fundamental studies on well characterized single crystals using ultrahigh vacuum based surface science techniques could provide key microscopic insight into the underlying mechanism of photocatalysis. In this review, we have summarized recent progress in the photocatalytic chemistry of hydrogen, water, oxygen, carbon monoxide, alcohols, aldehydes, ketones and carboxylic acids on TiO2 surfaces. We focused this review mainly on the rutile TiO2(110) surface, but some results on the rutile TiO2(011), anatase TiO2(101) and (001) surfaces are also discussed. These studies provided fundamental insights into surface photocatalysis as well as stimulated new investigations in this exciting field. At the end of this review, we have discussed how these studies can help us to develop new photocatalysis models.

  5. Evaluation of solar photocatalysis using TiO2 slurry in the inactivation of Cryptosporidium parvum oocysts in water.

    PubMed

    Abeledo-Lameiro, María Jesús; Ares-Mazás, Elvira; Gómez-Couso, Hipólito

    2016-10-01

    Cryptosporidium is a genus of enteric protozoan parasites of medical and veterinary importance, whose oocysts have been reported to occur in different types of water worldwide, offering a great resistant to the water treatment processes. Heterogeneous solar photocatalysis using titanium dioxide (TiO2) slurry was evaluated on inactivation of Cryptosporidium parvum oocysts in water. Suspensions of TiO2 (0, 63, 100 and 200mg/L) in distilled water (DW) or simulated municipal wastewater treatment plant (MWTP) effluent spiked with C. parvum oocysts were exposed to simulated solar radiation. The use of TiO2 slurry at concentrations of 100 and 200mg/L in DW yielded a high level of oocyst inactivation after 5h of exposure (4.16±2.35% and 15.03±4.54%, respectively, vs 99.33±0.58%, initial value), representing a good improvement relative to the results obtained in the samples exposed without TiO2 (51.06±9.35%). However, in the assays carried out using simulated MWTP effluent, addition of the photocatalyst did not offer better results. Examination of the samples under bright field and epifluorescence microscopy revealed the existence of aggregates comprising TiO2 particles and parasitic forms, which size increased as the concentration of catalyst and the exposure time increased, while the intensity of fluorescence of the oocyst walls decreased. After photocatalytic disinfection process, the recovery of TiO2 slurry by sedimentation provided a substantial reduction in the parasitic load in treated water samples (57.81±1.10% and 82.10±2.64% for 200mg/L of TiO2 in DW and in simulated MWTP effluent, respectively). Although further studies are need to optimize TiO2 photocatalytic disinfection against Cryptosporidium, the results obtained in the present study show the effectiveness of solar photocatalysis using TiO2 slurry in the inactivation of C. parvum oocysts in distilled water. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Minimum ignition temperature of nano and micro Ti powder clouds in the presence of inert nano TiO2 powder.

    PubMed

    Yuan, Chunmiao; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-30

    Minimum ignition temperature (MIT) of micro Ti powder increased gradually with increases in nano-sized TiO2 employed as an inertant. Solid TiO2 inertant significantly reduced ignition hazard of micro Ti powder in contact with hot surfaces. The MIT of nano Ti powder remained low (583 K), however, even with 90% TiO2. The MIT of micro Ti powder, when mixed with nano Ti powder at concentrations as low as 10%, decreased so dramatically that its application as a solid fuel may be possible. A simple MIT model was proposed for aggregate particle size estimation and better understanding of the inerting effect of nano TiO2 on MIT. Estimated particle size was 1.46-1.51 μm larger than that in the 20-L sphere due to poor dispersion in the BAM oven. Calculated MITs were lower than corresponding empirically determined values for micro Ti powder because nano-sized TiO2 coated the micro Ti powder, thereby decreasing its reaction kinetics. In the case of nano Ti powder, nano-sized TiO2 facilitated dispersion of nano Ti powder which resulted in a calculated MIT that was greater than the experimentally determined value. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Elementary Chemical Reactions in Surface Photocatalysis

    NASA Astrophysics Data System (ADS)

    Guo, Qing; Zhou, Chuanyao; Ma, Zhibo; Ren, Zefeng; Fan, Hongjun; Yang, Xueming

    2018-04-01

    Photocatalytic hydrogen evolution and organic degradation on oxide materials have been extensively investigated in the last two decades. Great efforts have been dedicated to the study of photocatalytic reaction mechanisms of a variety of molecules on TiO2 surfaces by using surface science methods under ultra-high vacuum (UHV) conditions, providing fundamental understanding of surface chemical reactions in photocatalysis. In this review, we summarize the recent progress in the study of photocatalysis of several important species (water, methanol, and aldehydes) on different TiO2 surfaces. The results of these studies have provided us deep insights into the elementary processes of surface photocatalysis and stimulated a new frontier of research in this area. Based on the results of these studies, a new dynamics-based photocatalysis model is also discussed.

  8. The Acute Liver Injury in Mice Caused by Nano-Anatase TiO2

    NASA Astrophysics Data System (ADS)

    Ma, Linglan; Zhao, Jinfang; Wang, Jue; Liu, Jie; Duan, Yanmei; Liu, Huiting; Li, Na; Yan, Jingying; Ruan, Jie; Wang, Han; Hong, Fashui

    2009-11-01

    Although it is known that nano-TiO2 or other nanoparticles can induce liver toxicities, the mechanisms and the molecular pathogenesis are still unclear. In this study, nano-anatase TiO2 (5 nm) was injected into the abdominal cavity of ICR mice for consecutive 14 days, and the inflammatory responses of liver of mice was investigated. The results showed the obvious titanium accumulation in liver DNA, histopathological changes and hepatocytes apoptosis of mice liver, and the liver function damaged by higher doses nano-anatase TiO2. The real-time quantitative RT-PCR and ELISA analyses showed that nano-anatase TiO2 can significantly alter the mRNA and protein expressions of several inflammatory cytokines, including nucleic factor-κB, macrophage migration inhibitory factor, tumor necrosis factor-α, interleukin-6, interleukin-1β, cross-reaction protein, interleukin-4, and interleukin-10. Our results also implied that the inflammatory responses and liver injury may be involved in nano-anatase TiO2-induced liver toxicity.

  9. Synergetic Effect of Ultrasound, the Heterogeneous Fenton Reaction and Photocatalysis by TiO2 Loaded on Nickel Foam on the Degradation of Pollutants

    PubMed Central

    Qiu, Shan; Xu, Shanwen; Li, Guangming; Yang, Jixian

    2016-01-01

    The synergistic effect of ultrasound, the heterogeneous Fenton reaction and photocatalysis was studied using a nickel foam (NF)-supporting TiO2 system and rhodamine B (RhB) as a target. The NF-supporting TiO2 system was prepared by depositing TiO2 on the skeleton of NF repeatedly and then calcining it. To optimize the conditions and parameters, the catalytic activity was tested in four systems (ultrasound alone (US), nickel foam (NF), US/NF and NF/US/H2O2). The optimal conditions were fixed at 0.1 g/mL NF, initial 5.00 mg/L RhB, 300 W ultrasonic power, pH = 3 and 5.00 mg/L H2O2. The effects of the dissolution of nickel from NF and quenching of the Fenton reaction were studied on degradation efficiency. When the heterogeneous Fenton reaction is combined with TiO2-photocatalysis, the pollutant removal efficiency is enhanced significantly. Through this synergistic effect, 22% and 80% acetochlor was degraded within 10 min and 80 min, respectively. PMID:28773580

  10. Synergistic effects of graphene quantum dot sensitization and nitrogen doping of ordered mesoporous TiO2 thin films for water splitting photocatalysis(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Islam, Syed Z.; Wanninayake, Namal; Reed, Allen D.; Kim, Doo-Young; Rankin, Stephen E.

    2016-10-01

    The optical and electronic properties of TiO2 thin films provide tremendous opportunities in several applications including photocatalysis, photovoltaics and photoconductors for energy production. Despite many attractive features of TiO2, critical challenges include the innate inability of TiO2 to absorb visible light and the fast recombination of photoexcited charge carriers. In this study, we prepared ordered mesoporous TiO2 films co-modified by graphene quantum dot sensitization and nitrogen doping (GQD-N-TiO2) for hydrogen production from photoelectrochemical water splitting under visible light irradiation. First, cubic ordered mesoporous TiO2 films were prepared by a surfactant templated sol-gel method. Then, TiO2 films were treated with N2/Ar plasma for the incorporation of substitutional N atoms into the lattice of TiO2. GQDs were prepared by chemically oxidizing carbon nano-onions. The immobilization of GQDs was accomplished by reacting carboxyl groups of GQDs with amine groups of N-TiO2 developed by the prior immobilization of (3-aminopropyl)triethoxysilane (APTES). Successful immobilization of GQDs onto N-TiO2 was probed by UV-Vis, FT-IR, and scanning electron microscopy. Further, zeta potential and contact angle measurements showed enhanced surface charge and hydrophilicity, confirming the successful immobilization of GQDs. The GQD-N-TiO2, N-TiO2 and GQD-TiO2 films showed 400 times, 130 times and 8 times photocurrent enhancement, respectively, compared to TiO2 films for water splitting with a halogen bulb light source. This outstanding enhancement is attributed to the high surface area of mesoporous films and synergistic effects of nitrogen doping and GQD sensitization resulting in enhanced visible light absorption, efficient charge separation and transport.

  11. Wet-Chemical Preparation of TiO2-Based Composites with Different Morphologies and Photocatalytic Properties

    PubMed Central

    Xiang, Liqin; Zhao, Xiaopeng

    2017-01-01

    TiO2-based composites have been paid significant attention in the photocatalysis field. The size, crystallinity and nanomorphology of TiO2 materials have an important effect on the photocatalytic efficiency. The synthesis and photocatalytic activity of TiO2-based materials have been widely investigated in past decades. Based on our group’s research works on TiO2 materials, this review introduces several methods for the fabrication of TiO2, rare-earth-doped TiO2 and noble-metal-decorated TiO2 particles with different morphologies. We focused on the preparation and the formation mechanism of TiO2-based materials with unique structures including spheres, hollow spheres, porous spheres, hollow porous spheres and urchin-like spheres. The photocatalytical activity of urchin-like TiO2, noble metal nanoparticle-decorated 3D (three-dimensional) urchin-like TiO2 and bimetallic core/shell nanoparticle-decorated urchin-like hierarchical TiO2 are briefly discussed. PMID:28991208

  12. Study on preparation of SnO2-TiO2/Nano-graphite composite anode and electro-catalytic degradation of ceftriaxone sodium.

    PubMed

    Guo, Xiaolei; Wan, Jiafeng; Yu, Xiujuan; Lin, Yuhui

    2016-12-01

    In order to improve the electro-catalytic activity and catalytic reaction rate of graphite-like material, Tin dioxide-Titanium dioxide/Nano-graphite (SnO 2 -TiO 2 /Nano-G) composite was synthesized by a sol-gel method and SnO 2 -TiO 2 /Nano-G electrode was prepared in hot-press approach. The composite was characterized by X-ray photoelectron spectroscopy, fourier transform infrared, Raman, N 2 adsorption-desorption, scanning electrons microscopy, transmission electron microscopy and X-ray diffraction. The electrochemical performance of the SnO 2 -TiO 2 /Nano-G anode electrode was investigated via cyclic voltammetry and electrochemical impedance spectroscopy. The electro-catalytic performance was evaluated by the degradation of ceftriaxone sodium and the yield of ·OH radicals in the reaction system. The results demonstrated that TiO 2 , SnO 2 and Nano-G were composited successfully, and TiO 2 and SnO 2 particles dispersed on the surface and interlamination of the Nano-G uniformly. The specific surface area of SnO 2 modified anode was higher than that of TiO 2 /Nano-G anode and the degradation rate of ceftriaxone sodium within 120 min on SnO 2 -TiO 2 /Nano-G electrode was 98.7% at applied bias of 2.0 V. The highly efficient electro-chemical property of SnO 2 -TiO 2 /Nano-G electrode was attributed to the admirable conductive property of the Nano-G and SnO 2 -TiO 2 /Nano-G electrode. Moreover, the contribution of reactive species ·OH was detected, indicating the considerable electro-catalytic activity of SnO 2 -TiO 2 /Nano-G electrode. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Mechanism of strong visible light photocatalysis by Ag2O-nanoparticle-decorated monoclinic TiO2(B) porous nanorods

    NASA Astrophysics Data System (ADS)

    Paul, Kamal Kumar; Ghosh, Ramesh; Giri, P. K.

    2016-08-01

    We report on the ultra-high rate of photodegradation of organic dyes under visible light illumination on Ag2O-nanoparticle-decorated (NP) porous pure B-phase TiO2 (TiO2(B)) nanorods (NRs) grown by a solvothermal route. The as-grown TiO2(B) NRs are found to be nanoporous in nature and the Ag2O NPs are uniformly decorated over its surface, since most of the pores work as nucleation sites for the growth of Ag2O NPs. The effective band gap of the TiO2(B)/Ag2O heterostructure (HS), with a weight ratio of 1:1, has been significantly reduced to 1.68 eV from the pure TiO2(B) band gap of 2.8 eV. Steady state and time-resolved photoluminescence (PL) studies show the reduced intensity of visible PL and slower recombination dynamics in the HS samples. The photocatalytic degradation efficiency of the TiO2(B)/Ag2O HS has been investigated using aqueous methyl orange and methylene blue as reference dyes under visible light (390-800 nm) irradiation. It is found that photodegradation by the TiO2(B)/Ag2O HS is about one order of magnitude higher than that of bare TiO2(B) NRs and Ag2O NPs. The optimized TiO2(B)/Ag2O HS exhibited the highest photocatalytic efficiency, with 88.2% degradation for 30 min irradiation. The corresponding first order degradation rate constant is 0.071 min-1, which is four times higher than the reported values. Furthermore, cyclic stability studies show the high stability of the HS photocatalyst for up to four cycles of use. The major improvement in photocatalytic efficiency has been explained on the basis of enhanced visible light absorption and band-bending-induced efficient charge separation in the HS. Our results demonstrate the long-term stability and superiority of the TiO2(B)/Ag2O HS over the bare TiO2(B) NRs and other TiO2-based photocatalysts for its cutting edge application in hydrogen production and environmental cleaning driven by solar light photocatalysis.

  14. Synthesis, characterization and sonocatalytic applications of nano-structured carbon based TiO2 catalysts.

    PubMed

    Choi, Jongbok; Cui, Mingcan; Lee, Yonghyeon; Kim, Jeonggwan; Yoon, Yeomin; Jang, Min; Khim, Jeehyeong

    2018-05-01

    In order to enhance sonocatalytic oxidation of a recalcitrant organic pollutant, rhodamine B (RhB), it is necessary to study the fundamental aspects of sonocatalysis. In this study, TiO 2 -incorporated nano-structured carbon (i.e., carbon nanotubes (CNTs) or graphene (GR)) composites were synthesized by coating TiO 2 on CNTs or GR of different mass percentages (0.5, 1, 5, and 10 wt%) by a facile hydrothermal method. The sonocatalytic degradation rates of RhB were examined for the effect of ultrasound (US) frequency and calcination temperature by using the prepared TiO 2 -NSC composites. Since US frequency affected the sonoluminescence (SL) intensities, it was proposed that there exists a correlation between the surface area or band-gap of the sonocatalysts and the degradation kinetic constants of RhB. In addition, the reusability of TiO 2 -GR composites was also investigated. Overall, the performance of TiO 2 -GRs prepared by the hydrothermal method was better than that of calcined TiO 2 -CNTs. Among TiO 2 -GRs, 5% GR incorporated media (TiO 2 -GR-5) showed the best performance. Interestingly, the kinetic constants of sonocatalysts prepared under hydrothermal conditions had a negative linear relationship with the band-gap energy for the corresponding media. Furthermore, the strongest SL intensity and highest degradation rates of RhB for both carbonaceous composites were observed at 500 kHz. The kinetic constants of calcined media decreased linearly as the specific area of the media decreased, while the band-gap energy could not be correlated with the kinetic constants. The GR combined TiO 2 composite might be a good sonocatalyst in wastewater treatment using ultrasound-based oxidation because of its high stability. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO2

    NASA Astrophysics Data System (ADS)

    Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas; Fadil, Ahmed; Syväjärvi, Mikael; Petersen, Paul Michael; Ou, Haiyan

    2016-07-01

    Nano-textured surfaces have played a key role in optoelectronic materials to enhance the light extraction efficiency. In this work, morphology and optical properties of nano-textured SiC covered with atomic layer deposited (ALD) TiO2 were investigated. In order to obtain a high quality surface for TiO2 deposition, a three-step cleaning procedure was introduced after RIE etching. The morphology of anatase TiO2 indicates that the nano-textured substrate has a much higher surface nucleated grain density than a flat substrate at the beginning of the deposition process. The corresponding reflectance increases with TiO2 thickness due to increased surface diffuse reflection. The passivation effect of ALD TiO2 thin film on the nano-textured fluorescent 6H-SiC sample was also investigated and a PL intensity improvement of 8.05% was obtained due to the surface passivation.

  16. Immobilized TiO2 on glass spheres applied to heterogeneous photocatalysis: photoactivity, leaching and regeneration process.

    PubMed

    Cunha, Deivisson Lopes; Kuznetsov, Alexei; Achete, Carlos Alberto; Machado, Antonio Eduardo da Hora; Marques, Marcia

    2018-01-01

    Heterogeneous photocatalysis using titanium dioxide as catalyst is an attractive advanced oxidation process due to its high chemical stability, good performance and low cost. When immobilized in a supporting material, additional benefits are achieved in the treatment. The purpose of this study was to develop a simple protocol for impregnation of TiO 2 -P25 on borosilicate glass spheres and evaluate its efficiency in the photocatalytic degradation using an oxidizable substrate (methylene blue), in a Compound Parabolic Concentrator (CPC) reactor. The assays were conducted at lab-scale using radiation, which simulated the solar spectrum. TiO 2 leaching from the glass and the catalyst regeneration were both demonstrated. A very low leaching ratio (0.03%) was observed after 24 h of treatment, suggesting that deposition of TiO 2 resulted in good adhesion and stability of the photocatalyst on the surface of borosilicate. This deposition was successfully achieved after calcination of the photocatalyst at 400 °C (TiO 2 -400 °C). The TiO 2 film was immobilized on glass spheres and the powder was characterized by scanning electron microscopy (SEM), X-ray diffraction and BET. This characterization suggested that thermal treatment did not introduce substantial changes in the measured microstructural characteristics of the photocatalyst. The immobilized photocatalyst degraded more than 96% of the MB in up to 90 min of reaction. The photocatalytic activity decreased after four photocatalytic cycles, but it was recovered by the removal of contaminants adsorbed on the active sites after washing in water under UV-Vis irradiation. Based on these results, the TiO 2 -400 °C coated on glass spheres is potentially a very attractive option for removal of persistent contaminants present in the environment.

  17. Immobilized TiO2 on glass spheres applied to heterogeneous photocatalysis: photoactivity, leaching and regeneration process

    PubMed Central

    Kuznetsov, Alexei; Achete, Carlos Alberto; Machado, Antonio Eduardo da Hora; Marques, Marcia

    2018-01-01

    Heterogeneous photocatalysis using titanium dioxide as catalyst is an attractive advanced oxidation process due to its high chemical stability, good performance and low cost. When immobilized in a supporting material, additional benefits are achieved in the treatment. The purpose of this study was to develop a simple protocol for impregnation of TiO2-P25 on borosilicate glass spheres and evaluate its efficiency in the photocatalytic degradation using an oxidizable substrate (methylene blue), in a Compound Parabolic Concentrator (CPC) reactor. The assays were conducted at lab-scale using radiation, which simulated the solar spectrum. TiO2 leaching from the glass and the catalyst regeneration were both demonstrated. A very low leaching ratio (0.03%) was observed after 24 h of treatment, suggesting that deposition of TiO2 resulted in good adhesion and stability of the photocatalyst on the surface of borosilicate. This deposition was successfully achieved after calcination of the photocatalyst at 400 °C (TiO2-400 °C). The TiO2 film was immobilized on glass spheres and the powder was characterized by scanning electron microscopy (SEM), X-ray diffraction and BET. This characterization suggested that thermal treatment did not introduce substantial changes in the measured microstructural characteristics of the photocatalyst. The immobilized photocatalyst degraded more than 96% of the MB in up to 90 min of reaction. The photocatalytic activity decreased after four photocatalytic cycles, but it was recovered by the removal of contaminants adsorbed on the active sites after washing in water under UV-Vis irradiation. Based on these results, the TiO2-400 °C coated on glass spheres is potentially a very attractive option for removal of persistent contaminants present in the environment. PMID:29527416

  18. Sunscreens with Titanium Dioxide (TiO2) Nano-Particles: A Societal Experiment

    PubMed Central

    van de Poel, Ibo; Osseweijer, Patricia

    2010-01-01

    The risks of novel technologies, such as nano(bio)technology cannot be fully assessed due to the existing uncertainties surrounding their introduction into society. Consequently, the introduction of innovative technologies can be conceptualised as a societal experiment, which is a helpful approach to evaluate moral acceptability. This approach is illustrated with the marketing of sunscreens containing nano-sized titanium dioxide (TiO2) particles. We argue that the marketing of this TiO2 nanomaterial in UV protective cosmetics is ethically undesirable, since it violates four reasonable moral conditions for societal experimentation (absence of alternatives, controllability, limited informed consent, and continuing evaluation). To remedy the current way nano-sized TiO2 containing sunscreens are utilised, we suggest five complementing actions (closing the gap, setup monitoring tools, continuing review, designing for safety, and regulative improvements) so that its marketing can become more acceptable. PMID:20835397

  19. Impact of nano and bulk ZrO2, TiO2 particles on soil nutrient contents and PGPR.

    PubMed

    Karunakaran, Gopalu; Suriyaprabha, Rangaraj; Manivasakan, Palanisamy; Yuvakkumar, Rathinam; Rajendran, Venkatachalam; Kannan, Narayanasamy

    2013-01-01

    Currently, nanometal oxides are used extensively in different industries such as medicine, cosmetics and food. The increased consumption of nanoparticles (NPs) leads the necessity to understand the fate of the nanoparticles in the environment. The present study focused on the ecotoxicological behaviour of bulk and nano ZrO2 (Zirconia) and TiO2 (Titania) particles on PGPR (plant growth promoting rhizobacteria), soil and its nutrient contents. The microbial susceptibility study showed that nano TiO2 had 13 +/- 0.9 mm (B. megaterium), 15 +/- 0.2 mm (P. fluorescens), 16 +/- 0.2 mm (A. vinelandii) and 12 +/- 0.3 mm (B. brevis) zones of inhibition. However, nano and bulk ZrO2 particles were non-toxic to PGPR. In addition, it was found that toxicity varied depends on the medium of reaction. The soil study showed that nano TiO2 was found to be highly toxic, whereas bulk TiO2 was less toxic towards soil bacterial populations at 1000 mg L(-1). In contrast, nano and bulk ZrO2 were found to be inert at 1000 mg L(-1). The observed zeta potential and hydrophobicity of TiO2 particles causes more toxic than ZrO2 in parallel with particle size. However, nano TiO2 decreases the microbial population as well as nutrient level of the soil but not zirconia. Our finding shows that the mechanism of toxicity depends on size, hydrophobic potential and zeta potential of the metal oxide particles. Thus, it is necessary to take safety measures during the disposal and use of such toxic nanoparticles in the soil to prevent their hazardous effects.

  20. Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation.

    PubMed

    Wang, Jun; Jiang, Zhe; Zhang, Liqun; Kang, Pingli; Xie, Yingpeng; Lv, Yanhui; Xu, Rui; Zhang, Xiangdong

    2009-02-01

    Here, a novel sonocatalyst, composite TiO2/ZnO powder, was prepared through the combination of nano-sized TiO2 and ZnO powders. Because of the appropriate adsorbability to organic pollutants and special crystal interphase between TiO2 and ZnO particles, the composite TiO2/ZnO powder exhibits a high sonocatalytic activity under ultrasonic irradiation during the degradation of acid red B. Especially, the sonocatalytic activity of composite TiO2/ZnO powder with 4:1 molar proportion treated at 500 degrees C for 50 min showed obvious improvement compared with pure nano-sized TiO2 and ZnO powders. When the experimental conditions such as 10mg/L acid red B concentration, 1.0 g/L catalyst addition amount, pH=7.0, 20 degrees C system temperature, 100 min ultrasonic time and 50 mL total volume were adopted, the satisfactory degradation ratio and rate were obtained. All experiments indicate that the sonocatalytic method using composite TiO2/ZnO powder may be a more advisable choice for the treatments of non- or low-transparent organic wastewaters in future.

  1. [Study on anti-coagulant property of radio frequency sputtering nano-sized TiO2 thin films].

    PubMed

    Tang, Xiaoshan; Li, Da

    2010-12-01

    Nano-TiO2 thin films were prepared by Radio frequency (RF) sputtering on pyrolytic carbon substrates. The influences of sputtering power on the structure and the surface morphology of TiO2 thin films were investigated by X-ray diffraction (XRD), and by scanning electron microscopy (SEM). The results show that the TiO2 films change to anatase through the optimum of sputtering power. The mean diameter of nano-particle is about 30 nm. The anti-coagulant property of TiO2 thin films was observed through platelet adhesion in vitro. The result of experiment reveals the amount of thrombus on the TiO2 thin films being much less than that on the pyrolytic carbon. It also indicates that the RF sputtering Nano-sized TiO2 thin films will be a new kind of promising materials applied to artificial heart valve and endovascular stent.

  2. Removal of antibiotic cloxacillin by means of electrochemical oxidation, TiO2 photocatalysis, and photo-Fenton processes: analysis of degradation pathways and effect of the water matrix on the elimination of antimicrobial activity.

    PubMed

    Serna-Galvis, Efraim A; Giraldo-Aguirre, Ana L; Silva-Agredo, Javier; Flórez-Acosta, Oscar A; Torres-Palma, Ricardo A

    2017-03-01

    This study evaluates the treatment of the antibiotic cloxacillin (CLX) in water by means of electrochemical oxidation, TiO 2 photocatalysis, and the photo-Fenton system. The three treatments completely removed cloxacillin and eliminated the residual antimicrobial activity from synthetic pharmaceutical wastewater containing the antibiotic, commercial excipients, and inorganic ions. However, significant differences in the degradation routes were found. In the photo-Fenton process, the hydroxyl radical was involved in the antibiotic removal, while in the TiO 2 photocatalysis process, the action of both the holes and the adsorbed hydroxyl radicals degraded the pollutant. In the electrochemical treatment (using a Ti/IrO 2 anode in sodium chloride as supporting electrolyte), oxidation via HClO played the main role in the removal of CLX. The analysis of initial by-products showed five different mechanistic pathways: oxidation of the thioether group, opening of the central β-lactam ring, breakdown of the secondary amide, hydroxylation of the aromatic ring, and decarboxylation. All the oxidation processes exhibited the three first pathways. Moreover, the aromatic ring hydroxylation was found in both photochemical treatments, while the decarboxylation of the pollutant was only observed in the TiO 2 photocatalysis process. As a consequence of the degradation routes and mechanistic pathways, the elimination of organic carbon was different. After 480 and 240 min, the TiO 2 photocatalysis and photo-Fenton processes achieved ∼45 and ∼15 % of mineralization, respectively. During the electrochemical treatment, 100 % of the organic carbon remained even after the antibiotic was treated four times the time needed to degrade it. In contrast, in all processes, a natural matrix (mineral water) did not considerably inhibit pollutant elimination. However, the presence of glucose in the water significantly affected the degradation of CLX by means of TiO 2 photocatalysis.

  3. Sonocatalytic degradation of humic acid by N-doped TiO2 nano-particle in aqueous solution.

    PubMed

    Kamani, Hossein; Nasseri, Simin; Khoobi, Mehdi; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein

    2016-01-01

    Un-doped and N-doped TiO2 nano-particles with different nitrogen contents were successfully synthesized by a simple sol-gel method, and were characterized by X-ray diffraction, field emission scanning electron microscopy, Energy dispersive X-ray analysis and UV-visible diffuse reflectance spectra techniques. Then enhancement of sonocatalytic degradation of humic acid by un-doped and N-doped TiO2 nano-particles in aqueous environment was investigated. The effects of various parameters such as initial concentration of humic acid, N-doping, and the degradation kinetics were investigated. The results of characterization techniques affirmed that the synthesis of un-doped and N-doped TiO2 nano-particles was successful. Degradation of humic acid by using different nano-particles obeyed the first-order kinetic. Among various nano-particles, N-doped TiO2 with molar doping ratio of 6 % and band gap of 2.92 eV, exhibited the highest sonocatalytic degradation with an apparent-first-order rate constant of 1.56 × 10(-2) min(-1). The high degradation rate was associated with the lower band gap energy and well-formed anatase phase. The addition of nano-catalysts could enhance the degradation efficiency of humic acid as well as N-doped TiO2 with a molar ratio of 6 %N/Ti was found the best nano-catalyst among the investigated catalysts. The sonocatalytic degradation with nitrogen doped semiconductors could be a suitable oxidation process for removal of refractory pollutants such as humic acid from aqueous solution.

  4. Inactivation and injury of total coliform bacteria after primary disinfection of drinking water by TiO2 photocatalysis.

    PubMed

    Rizzo, Luigi

    2009-06-15

    In this study the potential application of TiO(2) photocatalysis as primary disinfection system of drinking water was investigated in terms of coliform bacteria inactivation and injury. As model water the effluent of biological denitrification unit for nitrate removal from groundwater, which is characterized by high organic matter and bacteria release, was used. The injury of photocatalysis on coliform bacteria was characterized by means of selective (mEndo) and less selective (mT7) culture media. Different catalyst loadings as well as photolysis and adsorption effects were investigated. Photocatalysis was effective in coliform bacteria inactivation (91-99% after 60 min irradiation time, depending on both catalyst loading and initial density of coliform bacteria detected by mEndo), although no total removal was observed after 60 min irradiation time. The contribution of adsorption mechanism was significant (60-98% after 60 min, depending on catalyst loading) compared to previous investigations probably due to the nature of source water rich in particulate organic matter and biofilm. Photocatalysis process did not result in any irreversible injury (98.8% being the higher injury) under investigated conditions, thus a bacteria regrowth may take place under optimum environment conditions if any final disinfection process (e.g., chlorine or chlorine dioxide) is not used.

  5. Solar photolysis versus TiO2-mediated solar photocatalysis: a kinetic study of the degradation of naproxen and diclofenac in various water matrices.

    PubMed

    Kanakaraju, Devagi; Motti, Cherie A; Glass, Beverley D; Oelgemöller, Michael

    2016-09-01

    Given that drugs and their degradation products are likely to occur as concoctions in wastewater, the degradation of a mixture of two nonsteroidal anti-inflammatory drugs (NSAIDs), diclofenac (DCF) and naproxen (NPX), was investigated by solar photolysis and titanium dioxide (TiO2)-mediated solar photocatalysis using an immersion-well photoreactor. An equimolar ratio (1:1) of both NSAIDs in distilled water, drinking water, and river water was subjected to solar degradation. Solar photolysis of the DCF and NPX mixture was competitive particularly in drinking water and river water, as both drugs have the ability to undergo photolysis. However, the addition of TiO2 in the mixture significantly enhanced the degradation rate of both APIs compared to solar photolysis alone. Mineralization, as measured by chemical oxygen demand (COD), was incomplete under all conditions investigated. TiO2-mediated solar photocatalytic degradation of DCF and NPX mixtures produced 15 identifiable degradants corresponding to degradation of the individual NSAIDs, while two degradation products with much higher molecular weight than the parent NSAIDs were identified by liquid chromatography mass spectrometry (LC-MS) and Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS). This study showed that the solar light intensity and the water matrix appear to be the main factors influencing the overall performance of the solar photolysis and TiO2-mediated solar photocatalysis for degradation of DCF and NPX mixtures.

  6. Photocatalytic properties of nano-structured TiO2-carbon films obtained by means of electrophoretic deposition.

    PubMed

    Peralta-Hernández, J M; Manríquez, J; Meas-Vong, Y; Rodríguez, Francisco J; Chapman, Thomas W; Maldonado, Manuel I; Godínez, Luis A

    2007-08-17

    Recent studies have shown that the light-absorption and photocatalytic efficiencies of TiO2 can be improved by coupling TiO2 nano-particles with nonmetallic dopants, such as carbon. In this paper, we describe the electrophoretic preparation of a novel TiO2-carbon nano-composite photocatalyst on a glass indium thin oxide (ITO) substrate. The objective is to take better advantage of the (e-/h+) pair generated by photoexcitation of semiconducting TiO2 particles. The transfer of electrons (e-) into adjacent carbon nano-particles promotes reduction of oxygen to produce hydrogen peroxide (H2O2) which, in the presence of iron ions, can subsequently form hydroxyl radicals (*OH) via the Fenton reaction. At the same time, *OH is formed from water by the (h+) holes in the TiO2. Thus, the *OH oxidant is produced by two routes. The efficiency of this photolytic-Fenton process was tested with a model organic compound, Orange-II (OG-II) azo dye, which is employed in the textile industry.

  7. Degradation of imidacloprid in water by photo-Fenton and TiO2 photocatalysis at a solar pilot plant: a comparative study.

    PubMed

    Malato, S; Caceres, J; Agüera, A; Mezcua, M; Hernando, D; Vial, J; Fernández-Alba, A R

    2001-11-01

    The technical feasibility, mechanisms, and performance of degradation of aqueous imidacloprid have been studied at pilot scale in two well-defined photocatalytic systems of special interest because natural UV light can be used: heterogeneous photocatalysis with titanium dioxide and homogeneous photocatalysis by photo-Fenton. Equivalent pilot-scale and field conditions used for both allowed adequate comparison of the degree of mineralization and toxicity achieved as well as the transformation products generated in route to mineralization by both systems. Ninety-five percent of mineralization (<2.0 mg/L) was reached after 250 min of photocatalytic treatment with Fenton and 450 min with TiO2, meaning that TOC disappears 2.4 times faster with photo-Fenton photocatalytic treatment than with TiO2. The Daphnia Magna test for final residual TOC does not reveal anytoxic behavior. Transformation products evaluated by GC-MS/AED after two SPE procedures and LC-IC were the same in both cases. The main differences between the two processes are in the amount of transformation products (TPs) generated, not in the TPs detected which were always the same. At the end of both processes low concentration (<0.1 mg/L) of 2 pyrrolidinone (transformation product) remains in the dissolution and around 1 mg/L of formate in the case of photo-Fenton.

  8. Super-hydrophobic Silver-Doped TiO2 @ Polycarbonate Coatings Created on Various Material Substrates with Visible-Light Photocatalysis for Self-Cleaning Contaminant Degradation.

    PubMed

    Li, Zhengjian; Sun, Zongzhao; Duan, Zhiqiang; Li, Rui; Yang, Yanli; Wang, Jingyi; Lv, Xiaoxia; Qi, Wei; Wang, Hua

    2017-02-20

    In the present work, a facile and efficient fabrication method has been developed for creating super-hydrophobic coatings of silver-doped TiO 2 @polycarbonate (TiO 2 (Ag)@PC) on the substrates of different materials with photocatalytic self-cleaning performances simply by the "dipping and drying" process. The substrates were first patterned with glue and then deposited with the dopamine-capped TiO 2 (Ag)@PC (DA-TiO 2 (Ag)@PC) nanocomposites, followed by the further etching with dimethylbenzene. The so prepared super-hydrophobic E-DA-TiO 2 (Ag)@PC coatings could present the lotus leaf-like porous architectures, high adhesion stability, and especially the visible-light photocatalysis for organic contaminant degradation, thus promising the wide outdoor and indoor applications like water proofing, metal erosion protection, and surface self-cleaning.

  9. Super-hydrophobic Silver-Doped TiO2 @ Polycarbonate Coatings Created on Various Material Substrates with Visible-Light Photocatalysis for Self-Cleaning Contaminant Degradation

    NASA Astrophysics Data System (ADS)

    Li, Zhengjian; Sun, Zongzhao; Duan, Zhiqiang; Li, Rui; Yang, Yanli; Wang, Jingyi; Lv, Xiaoxia; Qi, Wei; Wang, Hua

    2017-02-01

    In the present work, a facile and efficient fabrication method has been developed for creating super-hydrophobic coatings of silver-doped TiO2@polycarbonate (TiO2 (Ag)@PC) on the substrates of different materials with photocatalytic self-cleaning performances simply by the “dipping and drying” process. The substrates were first patterned with glue and then deposited with the dopamine-capped TiO2 (Ag)@PC (DA-TiO2 (Ag)@PC) nanocomposites, followed by the further etching with dimethylbenzene. The so prepared super-hydrophobic E-DA-TiO2(Ag)@PC coatings could present the lotus leaf-like porous architectures, high adhesion stability, and especially the visible-light photocatalysis for organic contaminant degradation, thus promising the wide outdoor and indoor applications like water proofing, metal erosion protection, and surface self-cleaning.

  10. Application of nitrogen-doped TiO2 nano-tubes in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Tran, Vy Anh; Truong, Trieu Thinh; Phan, Thu Anh Pham; Nguyen, Trang Ngoc; Huynh, Tuan Van; Agresti, Antonio; Pescetelli, Sara; Le, Tien Khoa; Di Carlo, Aldo; Lund, Torben; Le, So-Nhu; Nguyen, Phuong Tuyet

    2017-03-01

    Our research aimed to improve the overall energy conversion efficiency of DSCs by applying nitrogen-doped TiO2 nano-tubes (N-TNT) for the preparation of DSCs photo-anodes. The none-doped TiO2 nano-tubes (TNTs) were synthesized by alkaline hydrothermal treatment of Degussa P25 TiO2 particles in 10 M NaOH. The nano-tubes were N-doped by reflux in various concentrations of NH4NO3. The effects of nitrogen doping on the structure, morphology, and crystallography of N-TNT were analyzed by transmission electron microscopy (TEM), infrared spectroscopy (IR), Raman spectroscopy, and X-ray photoelectron spectra (XPS). DSCs fabricated with doped N-TNT and TNT was characterized by J-V measurements. Results showed that nitrogen doping significantly enhanced the efficiency of N-TNT cells, reaching the optimum value (η = 7.36%) with 2 M nitrogen dopant, compared to η = 4.75% of TNT cells. The high efficiency of the N-TNT cells was attributed to increased current density due to the reduction of dark current in the DSCs.

  11. TiO2 Photocatalysis in Aromatic "Redox Tag"-Guided Intermolecular Formal [2 + 2] Cycloadditions.

    PubMed

    Okada, Yohei; Maeta, Naoya; Nakayama, Kaii; Kamiya, Hidehiro

    2018-05-04

    Since the pioneering work by Macmillan, Yoon, and Stephenson, homogeneous photoredox catalysis has occupied a central place in new reaction development in the field of organic chemistry. While heterogeneous semiconductor photocatalysis has also been studied extensively, it has generally been recognized as a redox option in inorganic chemistry where such "photocatalysis" is most often used to catalyze carbon-carbon bond cleavage and not in organic chemistry where bond formation is usually the focal point. Herein, we demonstrate that titanium dioxide photocatalysis is a powerful redox option to construct carbon-carbon bonds by using intermolecular formal [2 + 2] cycloadditions as models. Synergy between excited electrons and holes generated upon irradiation is expected to promote the overall net redox neutral process. Key for the successful application is the use of a lithium perchlorate/nitromethane electrolyte solution, which exhibits remarkable Lewis acidity to facilitate the reactions of carbon-centered radical cations with carbon nucleophiles. The reaction mechanism is reasonably understood based on both intermolecular and intramolecular single electron transfer regulated by an aromatic "redox tag". Most of the reactions were completed in less than 30 min even in aqueous and/or aerobic conditions without the need for sacrificial reducing or oxidizing substrates generally required for homogeneous photoredox catalysis.

  12. Durable Self-Cleaning Coatings for Architectural Surfaces by Incorporation of TiO2 Nano-Particles into Hydroxyapatite Films

    PubMed Central

    Sassoni, Enrico; D’Amen, Eros; Roveri, Norberto

    2018-01-01

    To prevent soiling of marble exposed outdoors, the use of TiO2 nano-particles has been proposed in the literature by two main routes, both raising durability issues: (i) direct application to marble surface, with the risk of particle leaching by rainfall; (ii) particle incorporation into inorganic or organic coatings, with the risk of organic coating degradation catalyzed by TiO2 photoactivity. Here, we investigated the combination of nano-TiO2 and hydroxyapatite (HAP), previously developed for marble protection against dissolution in rain and mechanical consolidation. HAP-TiO2 combination was investigated by two routes: (i) sequential application of HAP followed by nano-TiO2 (“H+T”); (ii) simultaneous application by introducing nano-TiO2 into the phosphate solution used to form HAP (“HT”). The self-cleaning ability was evaluated before and after prolonged exposure to simulated rain. “H+T” and “HT” coatings exhibited much better resistance to nano-TiO2 leaching by rain, compared to TiO2 alone. In “H+T” samples, TiO2 nano-particles adhere better to HAP (having flower-like morphology and high specific surface area) than to marble. In “HT” samples, thanks to chemical bonds between nano-TiO2 and HAP, the particles are firmly incorporated in the HAP coating, which protects them from leaching by rain, without diminishing their photoactivity and without being degraded by them. PMID:29360789

  13. Engineering the Surface/Interface Structures of Titanium Dioxide Micro and Nano Architectures towards Environmental and Electrochemical Applications

    PubMed Central

    Wang, Xiaoliang; Zhao, Yanyan; Mølhave, Kristian

    2017-01-01

    Titanium dioxide (TiO2) materials have been intensively studied in the past years because of many varied applications. This mini review article focuses on TiO2 micro and nano architectures with the prevalent crystal structures (anatase, rutile, brookite, and TiO2(B)), and summarizes the major advances in the surface and interface engineering and applications in environmental and electrochemical applications. We analyze the advantages of surface/interface engineered TiO2 micro and nano structures, and present the principles and growth mechanisms of TiO2 nanostructures via different strategies, with an emphasis on rational control of the surface and interface structures. We further discuss the applications of TiO2 micro and nano architectures in photocatalysis, lithium/sodium ion batteries, and Li–S batteries. Throughout the discussion, the relationship between the device performance and the surface/interface structures of TiO2 micro and nano structures will be highlighted. Then, we discuss the phase transitions of TiO2 nanostructures and possible strategies of improving the phase stability. The review concludes with a perspective on the current challenges and future research directions. PMID:29120393

  14. Super-hydrophobic Silver-Doped TiO2 @ Polycarbonate Coatings Created on Various Material Substrates with Visible-Light Photocatalysis for Self-Cleaning Contaminant Degradation

    PubMed Central

    Li, Zhengjian; Sun, Zongzhao; Duan, Zhiqiang; Li, Rui; Yang, Yanli; Wang, Jingyi; Lv, Xiaoxia; Qi, Wei; Wang, Hua

    2017-01-01

    In the present work, a facile and efficient fabrication method has been developed for creating super-hydrophobic coatings of silver-doped TiO2@polycarbonate (TiO2 (Ag)@PC) on the substrates of different materials with photocatalytic self-cleaning performances simply by the “dipping and drying” process. The substrates were first patterned with glue and then deposited with the dopamine-capped TiO2 (Ag)@PC (DA-TiO2 (Ag)@PC) nanocomposites, followed by the further etching with dimethylbenzene. The so prepared super-hydrophobic E-DA-TiO2(Ag)@PC coatings could present the lotus leaf-like porous architectures, high adhesion stability, and especially the visible-light photocatalysis for organic contaminant degradation, thus promising the wide outdoor and indoor applications like water proofing, metal erosion protection, and surface self-cleaning. PMID:28218285

  15. Photocatalytic quartz fiber felts with carbon-connected TiO2 nanoparticles for capillarity-driven continuous-flow water treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofei; Su, Xiaowen; Gao, Wenqiang; Wang, Fulei; Liu, Zhihe; Zhan, Jie; Liu, Baishan; Wang, Ruosong; Liu, Hong; Sang, Yuanhua

    2018-06-01

    Immobility of photocatalysts on substrates is a vital factor for the practical application of photocatalysis in polluted water/air treatment. In this study, TiO2 homogenously loaded quartz fiber felt was prepared by assembling of carboxyl-contained organic molecules functionalized TiO2 nanoparticles on the surface of amino group-modified quartz fiber by electrostatic adsorption between them and followed by an anneal process. The immobilization of TiO2 nanoparticles overcomes one main obstacle of the photocatalysts recycling in photocatalysis application. In addition, a plasma treatment endowed the hybrid photocatalyst a high hydrophilic property. Due to the homogeneous distribution of TiO2, charge carriers' separation by carbon, and full contact between water and the photocatalyst derived from the high hydrophilia, the TiO2/quartz fiber felt shows excellent photocatalytic performance. Based on the stable loading and the capillarity effect of the contacted fibers photocatalyst, a demo capillarity-driven continuous-flow water treatment photocatalysis reactor was designed and built up. The TiO2 nanoparticle/quartz fiber hybrid photocatalyst can disposal organic contaminants in actual industrial waste water from a dyeing factory in the continuous-flow reactor. The chemical oxygen demand (COD) of the industrial waste water was decreased from 104 to 45 mg/L, overcoming the problem of deep water treatment which is difficult to solve by other methods. This study provides a new photocatalyst and reaction mode for the continuous-flow photocatalysis application.

  16. Ultra-Sensitive Humidity Sensor Based on Optical Properties of Graphene Oxide and Nano-Anatase TiO2.

    PubMed

    Ghadiry, Mahdiar; Gholami, Mehrdad; Lai, C K; Ahmad, Harith; Chong, W Y

    2016-01-01

    Generally, in a waveguide-based humidity sensors, increasing the relative humidity (RH) causes the cladding refractive index (RI) to increase due to cladding water absorption. However, if graphene oxide (GO) is used, a reverse phenomenon is seen due to a gap increase in graphene layers. In this paper, this interesting property is applied in order to fabricate differential humidity sensor using the difference between RI of reduced GO (rGO) and nano-anatase TiO2 in a chip. First, a new approach is proposed to prepare high quality nano-anatase TiO2 in solution form making the fabrication process simple and straightforward. Then, the resulted solutions (TiO2 and GO) are effortlessly drop casted and reduced on SU8 two channels waveguide and extensively examined against several humid conditions. Investigating the sensitivity and performance (response time) of the device, reveals a great linearity in a wide range of RH (35% to 98%) and a variation of more than 30 dB in transmitted optical power with a response time of only ~0.7 sec. The effect of coating concentration and UV treatment are studied on the performance and repeatability of the sensor and the attributed mechanisms explained. In addition, we report that using the current approach, devices with high sensitivity and very low response time of only 0.3 sec can be fabricated. Also, the proposed device was comprehensively compared with other state of the art proposed sensors in the literature and the results were promising. Since high sensitivity ~0.47dB/%RH and high dynamic performances were demonstrated, this sensor is a proper choice for biomedical applications.

  17. Ultra-Sensitive Humidity Sensor Based on Optical Properties of Graphene Oxide and Nano-Anatase TiO2

    PubMed Central

    Ghadiry, Mahdiar; Gholami, Mehrdad; Lai, C. K.; Ahmad, Harith; Chong, W. Y.

    2016-01-01

    Generally, in a waveguide-based humidity sensors, increasing the relative humidity (RH) causes the cladding refractive index (RI) to increase due to cladding water absorption. However, if graphene oxide (GO) is used, a reverse phenomenon is seen due to a gap increase in graphene layers. In this paper, this interesting property is applied in order to fabricate differential humidity sensor using the difference between RI of reduced GO (rGO) and nano-anatase TiO2 in a chip. First, a new approach is proposed to prepare high quality nano-anatase TiO2 in solution form making the fabrication process simple and straightforward. Then, the resulted solutions (TiO2 and GO) are effortlessly drop casted and reduced on SU8 two channels waveguide and extensively examined against several humid conditions. Investigating the sensitivity and performance (response time) of the device, reveals a great linearity in a wide range of RH (35% to 98%) and a variation of more than 30 dB in transmitted optical power with a response time of only ~0.7 sec. The effect of coating concentration and UV treatment are studied on the performance and repeatability of the sensor and the attributed mechanisms explained. In addition, we report that using the current approach, devices with high sensitivity and very low response time of only 0.3 sec can be fabricated. Also, the proposed device was comprehensively compared with other state of the art proposed sensors in the literature and the results were promising. Since high sensitivity ~0.47dB/%RH and high dynamic performances were demonstrated, this sensor is a proper choice for biomedical applications. PMID:27101247

  18. Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater.

    PubMed

    Moreira, Nuno F F; Narciso-da-Rocha, Carlos; Polo-López, M Inmaculada; Pastrana-Martínez, Luisa M; Faria, Joaquim L; Manaia, Célia M; Fernández-Ibáñez, Pilar; Nunes, Olga C; Silva, Adrián M T

    2018-05-15

    Solar-driven advanced oxidation processes were studied in a pilot-scale photoreactor, as tertiary treatments of effluents from an urban wastewater treatment plant. Solar-H 2 O 2 , heterogeneous photocatalysis (with and/or without the addition of H 2 O 2 and employing three different photocatalysts) and the photo-Fenton process were investigated. Chemical (sulfamethoxazole, carbamazepine, and diclofenac) and biological contaminants (faecal contamination indicators, their antibiotic resistant counterparts, 16S rRNA and antibiotic resistance genes), as well as the whole bacterial community, were characterized. Heterogeneous photocatalysis using TiO 2 -P25 and assisted with H 2 O 2 (P25/H 2 O 2 ) was the most efficient process on the degradation of the chemical organic micropollutants, attaining levels below the limits of quantification in less than 4 h of treatment (corresponding to Q UV  < 40 kJ L -1 ). This performance was followed by the same process without H 2 O 2 , using TiO 2 -P25 or a composite material based on graphene oxide and TiO 2 . Regarding the biological indicators, total faecal coliforms and enterococci and their antibiotic resistant (tetracycline and ciprofloxacin) counterparts were reduced to values close, or beneath, the detection limit (1 CFU 100 mL -1 ) for all treatments employing H 2 O 2 , even upon storage of the treated wastewater for 3-days. Moreover, P25/H 2 O 2 and solar-H 2 O 2 were the most efficient processes in the reduction of the abundance (gene copy number per volume of wastewater) of the analysed genes. However, this reduction was transient for 16S rRNA, intI1 and sul1 genes, since after 3-days storage of the treated wastewater their abundance increased to values close to pre-treatment levels. Similar behaviour was observed for the genes qnrS (using TiO 2 -P25), bla CTX-M and bla TEM (using TiO 2 -P25 and TiO 2 -P25/H 2 O 2 ). Interestingly, higher proportions of sequence reads affiliated to the phylum Proteobacteria

  19. UV-driven microvalve based on a micro-nano TiO2/SiO2 composite surface for microscale flow control

    NASA Astrophysics Data System (ADS)

    Guo, Ting; Meng, Tao; Li, Wei; Qin, Jilong; Tong, Zhiping; Zhang, Qing; Li, Xueru

    2014-03-01

    This paper presents a novel ultraviolet (UV)-driven microvalve based on the concept of inserting a trimethyl chlorosilane (CTMS) modified TiO2/SiO2 composite patch of switchable wettability in a microfluidic system. A unique micro-nano hierarchical structure was designed and used to enhance the overall wetting contrast with the aim of improving the wetting-based valve performances. Field-emission scanning electron microscopy (FE-SEM) and x-ray photoelectron spectroscopy (XPS) were used to characterize the morphology and chemical composition of the surface. UV-driven wettability conversion on the patched microchannel was investigated using water column relative height tests, and the results confirmed the significant improvement of the hierarchical structure with the surface hydrophobic/hydrophilic conversion, which produced enhancements of 276% and 95% of the water-repellent and water-sucking pressures, respectively, compared with those of the single-scale TiO2 nanopatterned structure. Accordingly, a good reversible and repeated on-off performance was identified by the valve tests, highlighting the potential application of the novel microvalve in the efficient control of microscale flow.

  20. Selective isolation of the electron or hole in photocatalysis: ZnO-TiO2 and TiO2-ZnO core-shell structured heterojunction nanofibers via electrospinning and atomic layer deposition.

    PubMed

    Kayaci, Fatma; Vempati, Sesha; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi; Uyar, Tamer

    2014-06-07

    Heterojunctions are a well-studied material combination in photocatalysis studies, the majority of which aim to improve the efficacy of the catalysts. Developing novel catalysts begs the question of which photo-generated charge carrier is more efficient in the process of catalysis and the associated mechanism. To address this issue we have fabricated core-shell heterojunction (CSHJ) nanofibers from ZnO and TiO2 in two combinations where only the 'shell' part of the heterojunction is exposed to the environment to participate in the photocatalysis. Core and shell structures were fabricated via electrospinning and atomic layer deposition, respectively which were then subjected to calcination. These CSHJs were characterized and studied for photocatalytic activity (PCA). These two combinations expose electrons or holes selectively to the environment. Under suitable illumination of the ZnO-TiO2 CSHJ, e/h pairs are created mainly in TiO2 and the electrons take part in catalysis (i.e. reduce the organic dye) at the conduction band or oxygen vacancy sites of the 'shell', while holes migrate to the core of the structure. Conversely, holes take part in catalysis and electrons diffuse to the core in the case of a TiO2-ZnO CSHJ. The results further revealed that the TiO2-ZnO CSHJ shows ∼1.6 times faster PCA when compared to the ZnO-TiO2 CSHJ because of efficient hole capture by oxygen vacancies, and the lower mobility of holes.

  1. Comparative study of three magnetic nano-particles (FeSO4, FeSO4/SiO2, FeSO4/SiO2/TiO2) in plasmid DNA extraction.

    PubMed

    Rahnama, H; Sattarzadeh, A; Kazemi, F; Ahmadi, N; Sanjarian, F; Zand, Z

    2016-11-15

    Recent updates on Magnetic Nano-Particles (MNPs) based separation of nucleic acids have received more attention due to their easy manipulation, simplicity, ease of automation and cost-effectiveness. It has been indicated that DNA molecules absorb on solid surfaces via hydrogen-bonding, and hydrophobic and electrostatic interactions. These properties highly depend on the surface condition of the solid support. Therefore, surface modification of MNPs may enhance their functionality and specification. In the present study, we functionalized Fe3O4 nano-particle surface utilizing SiO2 and TiO2 layer as Fe3O4/SiO2 and Fe3O4/SiO2/TiO2 and then compare their functionality in the adsorption of plasmid DNA molecules with the naked Fe3O4 nano-particles. The result obtained showed that the purity and amount of DNA extracted by Fe3O4 coated by SiO2 or SiO2/TiO2 were higher than the naked Fe3O4 nano-particles. Furthermore, we obtained pH 8 and 1.5 M NaCl as an optimal condition for desorption of DNA from MNPs. The result further showed that, 0.2 mg nano-particle and 10 min at 55 °C are the optimal conditions for DNA desorption from nano-particles. In conclusion, we recommended Fe3O4/SiO2/TiO2 as a new MNP for separation of DNA molecules from biological sources. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Enhanced near-infrared photocatalysis of NaYF4:Yb, Tm/CdS/TiO2 composites.

    PubMed

    Guo, Xingyuan; Di, Weihua; Chen, Changfeng; Liu, Chunxu; Wang, Xue; Qin, Weiping

    2014-01-21

    The previous works by our group (Chem. Commun., 2010, 46, 2304-2306; ACS Catal., 2013, 3, 405-412; Phys. Chem. Chem. Phys., 2013, 15, 14681-14688) have reported the near-infrared-driven photocatalysis of broadband semiconductor TiO2 or ZnO that was combined with upconverting luminescence particles to form a core-shell structure. However, the photocatalytic efficiency is low for this new type of photocatalysts. In this work, NaYF4:Yb,Tm/CdS/TiO2 composites for NIR photocatalysis were prepared by linking CdS and TiO2 nanocrystals on the NaYF4:Yb,Tm microcrystal surfaces. CdS and TiO2 were well interacted to form a heterojunction structure. The energy transfer between NaYF4:Yb,Tm and the semiconductors CdS and TiO2 was investigated by steady-state and dynamic fluorescence spectroscopy. The photocatalytic activities of the as-prepared composites were evaluated by the degradation of methylene blue in aqueous solution upon NIR irradiation. Significantly, it was found that the united adhesions of CdS and TiO2 on the NaYF4:Yb,Tm particle surfaces showed much higher catalytic activities than the individual adhesion of CdS or TiO2 on the NaYF4:Yb,Tm surfaces. This was attributed mainly to the effective separation of the photogenerated electron-hole pairs due to the charge transfer across the CdS-TiO2 interface driven by the band potential difference between them. The presented composite structure of upconverting luminescence materials coupled with narrow/wide semiconductor heterojunctions provides a new model for improved NIR photocatalysis.

  3. Preparation of novel poly(vinylidene fluoride)/TiO2 photocatalysis membranes for use in direct contact membrane distillation

    NASA Astrophysics Data System (ADS)

    Li, Yukun; Dong, Shuying; Zhu, Liang

    2018-03-01

    Immobilization of TiO2 is a potential approach to obtain photocatalytic membranes that could eliminate concentration polarization in sewage disposal for direct contact membrane distillation (DCMD) process. A simple non-solvent-induced phase separation (NIPS) method was proposed to prepare poly(vinylidene fluoride) (PVDF) membrane, and the double-coating technology was further used to prepare the self-cleaning membranes with different TiO2 content. The effects of TiO2 nano-particles on membrane crystal form, morphology, porosity, pore size, pore size distribution, hydrophobicity, permeation, and photocatalytic efficiency were investigated, respectively. The flux of the prepared membranes is higher than the membrane (MS) provided by Membrane Solutions, LLC, in DCMD process. The contact angle between water and membrane could be increased 22° by introducing photocatalytic layer containing TiO2. During the photocatalytic test, 65.78-96.31% degrading rate of 15 mg/L Rhodamine B (RhB) was achieved. The relative flux of the membrane T-3 can be recovered to 0.96 in photocatalysis-membrane reactor for 8 h UV radiation. The fabricated membrane has great potential in high-salty dyeing wastewater treatment due to its high hydrophobicity and photocatalytic capability. [Figure not available: see fulltext.

  4. Synergistic Effect of Atmospheric-pressure Plasma and TiO2 Photocatalysis on Inactivation of Escherichia coli Cells in Aqueous Media

    NASA Astrophysics Data System (ADS)

    Zhou, Renwu; Zhou, Rusen; Zhang, Xianhui; Li, Jiangwei; Wang, Xingquan; Chen, Qiang; Yang, Size; Chen, Zhong; Bazaka, Kateryna; (Ken) Ostrikov, Kostya

    2016-12-01

    Atmospheric-pressure plasma and TiO2 photocatalysis have been widely investigated separately for the management and reduction of microorganisms in aqueous solutions. In this paper, the two methods were combined in order to achieve a more profound understanding of their interactions in disinfection of water contaminated by Escherichia coli. Under water discharges carried out by microplasma jet arrays can result in a rapid inactivation of E. coli cells. The inactivation efficiency is largely dependent on the feed gases used, the plasma treatment time, and the discharge power. Compared to atmospheric-pressure N2, He and air microplasma arrays, O2 microplasma had the highest activity against E. coli cells in aqueous solution, and showed >99.9% bacterial inactivation efficiency within 4 min. Addition of TiO2 photocatalytic film to the plasma discharge reactor significantly enhanced the inactivation efficiency of the O2 microplasma system, decreasing the time required to achieve 99.9% killing of E. coli cells to 1 min. This may be attributed to the enhancement of ROS generation due to high catalytic activity and stability of the TiO2 photocatalyst in the combined plasma-TiO2 systems. Present work demonstrated the synergistic effect of the two agents, which can be correlated in order to maximize treatment efficiency.

  5. Facile synthesis of flake-like TiO2/C nano-composites for photocatalytic H2 evolution under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Yan, Baolin; Zhou, Juan; Liang, Xiaoyu; Song, Kainan; Su, Xintai

    2017-01-01

    The production of H2 by photocatalytic water splitting has become a promising approach for clean, economical, and renewable evolution of H2 by using solar energy. In spite of tremendous efforts, the present challenge for materials scientists is to build a highly active photocatalytic system with high efficiency and low cost. Here we report a facile method for the preparation of TiO2/C nano-flakes, which was used as an efficient visible-light photocatalyst for H2 evolution. This composite material was prepared by using a phase-transfer strategy combined with salt-template calcination treatment. The results showed that anatase TiO2 nanoparticles with the diameter of ∼10 nm were uniformly dispersed on the carbon nano-flakes. In addition, the samples prepared at 600 °C (denoted as T600) endowed a larger surface area of 196 m2 g-1 and higher light absorption, resulting in enhanced photocatalytic activity. Further, the T600 product reached a high H2 production rate of 57.2 μmol h-1 under visible-light irradiation. This unusual photocatalytic activity arose from the positive synergetic effect between the TiO2 and carbon in this hybrid catalyst. This work highlights the potential of TiO2/C nano-flakes in the field of photocatalytic H2 evolution under visible-light irradiation.

  6. Sol-gel-Derived nano-sized double layer anti-reflection coatings (SiO2/TiO2) for low-cost solar cell fabrication.

    PubMed

    Lee, Seung Jun; Hur, Man Gyu; Yoon, Dae Ho

    2013-11-01

    We investigate nano-sized double layer anti-reflection coatings (ARCs) using a TiO2 and SiO2 sol-gel solution process for mono-crystalline silicon solar cells. The process can be easily adapted for spraying sol-gel coatings to reduce manufacturing cost. The spray-coated SiO2/TiO2 nano-sized double layer ARCs were deposited on mono-crystalline silicon solar cells, and they showed good optical properties. The spray coating process is a lower-cost fabrication process for large-scale coating than vacuum deposition processes such as PECVD. The measured average optical reflectance (300-1200 nm) was about approximately 8% for SiO2/TiO2 nano-sized double layer ARCs. The electrical parameters of a mono-crystalline silicon solar cell and reflection losses show that the SiO2/TiO2 stacks can improve cell efficiency by 0.2% compared to a non-coated mono-crystalline silicon solar cell. In the results, good correlation between theoretical and experimental data was obtained. We expect that the sol-gel spray-coated mono-crystalline silicon solar cells have high potential for low-cost solar cell fabrication.

  7. The Effect of TiO2 Doped Photocatalytic Nano-Additives on the Hydration and Microstructure of Portland and High Alumina Cements

    PubMed Central

    Pérez-Nicolás, María; Alvarez, José Ignacio

    2017-01-01

    Mortars with two different binders (Portland cement (PC) and high alumina cement (HAC)) were modified upon the bulk incorporation of nano-structured photocatalytic additives (bare TiO2, and TiO2 doped with either iron (Fe-TiO2) or vanadium (V-TiO2)). Plastic and hardened state properties of these mortars were assessed in order to study the influence of these nano-additives. Water demand was increased, slightly by bare TiO2 and Fe-TiO2, and strongly by V-TiO2, in agreement with the reduction of the particle size and the tendency to agglomerate. Isothermal calorimetry showed that hydration of the cementitious matrices was accelerated due to additional nucleation sites offered by the nano-additives. TiO2 and doped TiO2 did not show pozzolanic reactivity in the binding systems. Changes in the pore size distribution, mainly the filler effect of the nano-additives, accounted for the increase in compressive strengths measured for HAC mortars. A complex microstructure was seen in calcium aluminate cement mortars, strongly dependent on the curing conditions. Fe-TiO2 was found to be homogeneously distributed whereas the tendency of V-TiO2 to agglomerate was evidenced by elemental distribution maps. Water absorption capacity was not affected by the nano-additive incorporation in HAC mortars, which is a favourable feature for the application of these mortars. PMID:29036917

  8. Constructing inverse V-type TiO2-based photocatalyst via bio-template approach to enhance the photosynthetic water oxidation

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghui; Zhou, Han; Ding, Jian; Zhang, Fan; Fan, Tongxiang; Zhang, Di

    2015-08-01

    Bio-template approach was employed to construct inverse V-type TiO2-based photocatalyst with well distributed AgBr in TiO2 matrix by making dead Troides Helena wings with inverse V-type scales as the template. A cross-linked titanium precursor with homogenous hydrolytic rate, good liquidity, and low viscosity was employed to facilitate a perfect duplication of the template and the dispersion of AgBr based on appropriate pretreatment of the template by alkali and acid. The as-synthesized inverse V-type TiO2/AgBr can be turned into inverse V-type TiO2/Ag0 from AgBr photolysis during photocatalysis to achieve in situ deposition of Ag0 in TiO2 matrix, by this approach, to avoid the deformation of surface microstructure inherited from the template. The result showed that the cooperation of perfect inverse V-type structure and the well distributed TiO2/Ag0 microstructures can efficiently boost the photosynthetic water oxidation compared to non-inverse V-type TiO2/Ag0 and TiO2/Ag0 without using template. The anti-reflection function of inverse V-type structure and the plasmatic effect of Ag0 might be able to account for the enhanced photon capture and efficient photoelectric conversion.

  9. Three-dimensional TiO2/Au nanoparticles for plasmon enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Yu, Jianyu; Zhou, Lin; Wang, Yang; Tan, Yingling; Wang, Zhenlin; Zhu, Shining; Zhu, Jia

    2018-03-01

    The mechanisms of plasmonic nanostructures assisted photocatalytic processes are fundamental and of great importance and interest for decades. Therefore, we adopt a unique porous structure of three-dimensional TiO2/Au nanoparticles to experimentally explore the potential mechanisms of rhodamine B (RhB) based photocatalytic degradation. The highly efficient absorbance measured across the entire ultraviolet and infrared regions shows the broadband light harvesting capability and photocatalytic activity, in which the direct bandgap transition, plasmon sensitization as well as the plasmonic photothermal effect can be beneficial for the photocatalytic reaction. The RhB photocatalytic degradation experiments were conducted systematically under solar irradiance with finely chosen optical filters. Apart from the ultraviolet-driven degradation of TiO2, the plasmon assisted photocatalytic rate of our TiO2/Au structure can be enhanced by >30% as compared to the referenced TiO2 structure (equivalent to 2-4 times promotion with respect to the same quantity of the active material TiO2). Detailed wavelength-dependent analyses have revealed that the visible-driven degradation rate can be enhanced by 10 times because of the plasmon sensitization effect; while infrared-driven degradation rate is enhanced by 4 times as well for the plasmonic photothermal effect, respectively. Our experimental results may provide a clear understanding for the wavelength-dependent plasmon enhanced photocatalytic processes.

  10. Synergistic Effect of Atmospheric-pressure Plasma and TiO2 Photocatalysis on Inactivation of Escherichia coli Cells in Aqueous Media

    PubMed Central

    Zhou, Renwu; Zhou, Rusen; Zhang, Xianhui; Li, Jiangwei; Wang, Xingquan; Chen, Qiang; Yang, Size; Chen, Zhong; Bazaka, Kateryna; (Ken) Ostrikov, Kostya

    2016-01-01

    Atmospheric-pressure plasma and TiO2 photocatalysis have been widely investigated separately for the management and reduction of microorganisms in aqueous solutions. In this paper, the two methods were combined in order to achieve a more profound understanding of their interactions in disinfection of water contaminated by Escherichia coli. Under water discharges carried out by microplasma jet arrays can result in a rapid inactivation of E. coli cells. The inactivation efficiency is largely dependent on the feed gases used, the plasma treatment time, and the discharge power. Compared to atmospheric-pressure N2, He and air microplasma arrays, O2 microplasma had the highest activity against E. coli cells in aqueous solution, and showed >99.9% bacterial inactivation efficiency within 4 min. Addition of TiO2 photocatalytic film to the plasma discharge reactor significantly enhanced the inactivation efficiency of the O2 microplasma system, decreasing the time required to achieve 99.9% killing of E. coli cells to 1 min. This may be attributed to the enhancement of ROS generation due to high catalytic activity and stability of the TiO2 photocatalyst in the combined plasma-TiO2 systems. Present work demonstrated the synergistic effect of the two agents, which can be correlated in order to maximize treatment efficiency. PMID:28004829

  11. Photocatalytic degradation of pharmaceutical wastes by alginate supported TiO2 nanoparticles in packed bed photo reactor (PBPR).

    PubMed

    Sarkar, Santanu; Chakraborty, Sudip; Bhattacharjee, Chiranjib

    2015-11-01

    In recent years deposal of pharmaceutical wastes has become a major problem globally. Therefore, it is necessary to removes pharmaceutical waste from the municipal as well as industrial effluents before its discharge. The convectional wastewater and biological treatments are generally failed to separate different drugs from wastewater streams. Thus, heterogeneous photocatalysis process becomes lucrative method for reduction of detrimental effects of pharmaceutical compounds. The main disadvantage of the process is the reuse or recycle of photocatalysis is a tedious job. In this work, the degradation of aqueous solution of chlorhexidine digluconate (CHD), an antibiotic drug, by heterogeneous photocatalysis was study using supported TiO2 nanoparticle. The major concern of this study is to bring down the limitations of suspension mode heterogeneous photocatalysis by implementation of immobilized TiO2 with help of calcium alginate beads. The alginate supported catalyst beads was characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDAX) as well as the characteristic crystalline forms of TiO2 nanoparticle was confirmed by XRD. The degradation efficiency of TiO2 impregnated alginate beads (TIAB) was compared with the performance of free TiO2 suspension. Although, the degradation efficiency was reduced considerably using TIAB but the recycle and reuse of catalyst was increased quite appreciably. The kinetic parameters related to this work have also been measure. Moreover, to study the susceptibility of the present system photocatalysis of other three drugs ibuprofen (IBP), atenolol (ATL) and carbamazepine (CBZ) has been carried out using immobilized TiO2. The continuous mode operation in PBPR has ensured the applicability of alginate beads along with TiO2 in wastewater treatment. The variation of residence time has significant impact on the performance of PBPR. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Hierarchical TiO2/C micro-nano spheres as high-performance anode materials for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Xiao; Zhang, Zhihui; Tian, Jianliya; Xu, Beibei; Ping, Qiushi; Wang, Baofeng

    The hierarchical TiO2/C microspheres were obtained via a facile method of in-situ hydrolysis and spray drying. Antase TiO2 nanoparticles were coherent to microspheres TiO2/C due to the pyrolysis of carbon source (PVP). Besides, the favorable electron transfer from carbon to TiO2 improves the electronic conductivity of TiO2 via the presence of Ti-C bond within TiO2/C composite. Charge-discharge tests show that TiO2/C microspheres delivered a good rate capability of 106.1mAhg‑1 at the high current density of 5Ag‑1 and an enhanced cyclic capacity. The superior electrochemical performance could be ascribed to the porous micro-nano structure, smaller crystal size and increased conductivity. The synthesis of TiO2/C microspheres is easy to scale up for satisfying high-performance sodium storage.

  13. Photodegradation of some brominated and phenolic micropollutants in raw hospital wastewater with CeO2 and TiO2 nanoparticles.

    PubMed

    Sponza, Delia Teresa; Güney, Gökçe

    2017-11-01

    In this study, the degradations of 2,3,4,5,6-pentabromotoluene (PBT), 2,3,4,5,6-pentabromoethyl benzene (PBEB), triclosan (TCS) and gemfibrozil (GFZ) in raw hospital wastewater were investigated with cerium (IV) oxide and titanium (IV) oxide nanoparticles considering the mechanisms of adsorption, photolysis, and photocatalysis with UV-C lamps. The effects of nano-CeO 2 and nano-TiO 2 concentrations, irradiation times, UV light powers and hospital wastewater pH on the photodegradation yields of micropollutants namely PBT, PBEB, TCS and GFZ were investigated throughout photocatalysis. The nano-TiO 2 produced had an anatase phase with crystalline shape with a surface area of 205 m 2 g -1 and an average size of 11.50 nm. The CeO 2 nanoparticles had a spherical shape with a higher surface area (302 m 2 g -1 ) than that of TiO 2 and a lower average size (8.11 nm). It was found that the removals of PBT, PBEB, TCS and GFZ with adsorption (5.7%-17.1%) and photolysis (9.0%-15.9%) were not significant for both nanoparticles. The photodegradation of PBT (92%), PBEB (90%), TCS (97%) and GFZ (95%) with nano-CeO 2 gave better results than nano-TiO 2 (90%, 87%, 94% and 93% for PBT, PBEB, TCS and GFZ, respectively) under optimum experimental conditions (0.50 g L -1 nano-CeO 2, 45 min irradiation time, 25 °C temperature, pH = 8.50, 210 W UV light power). Both nanoparticles were reused effectively after photo-removals of the micropollutants from the hospital wastewater. The lowest photodegradation yields were 80%, 78%, 75% and 74% for TCS, GFZ, PBT and PBEB, respectively, with nano-TiO 2 after six sequential treatments. The lowest photodegradation yields were 86%, 83%, 80% and 79% for the same micropollutants, respectively, with nano-CeO 2 after six sequential treatments. The cost to treat 1 m 3 raw hospital wastewater were 8.70 € and 2.28 €, for the photocatalytic treatments with nano-TiO 2 and nano-CeO 2 , respectively.

  14. Photodegradation of organic matter in fresh garbage leachate using immobilized nano-sized TiO2 as catalysts.

    PubMed

    Chen, C; Xie, Q; Hu, B Q; Zhao, X L

    2014-01-01

    Two immobilized nano-sized TiO2 catalysts, TiO2/activated carbon (TiO2/AC) and TiO2/silica gel (SG) (TiO2/SG), were prepared by the sol-gel method, and their use in the photocatalytic degradation of organic matter in fresh garbage leachate under UV irradiation was investigated. The influences of the catalyst dosage, the initial solution pH, H2O2 addition and the reuse of the catalysts were evaluated. The degradation of organic matter was assessed based on the decrease of the chemical oxygen demand (COD) in the leachate. The results indicated that the degradation of the COD obeyed first-order kinetics in the presence of both photocatalysts. The degradation rate of COD was found to increase with increasing catalyst dosage up to 9 g/L for TiO2/AC and 6 g/L for TiO2/SG, above which the degradation began to attenuate. Furthermore, the degradation rate first increased and then decreased as the solution pH increased from 2 to 14, and the degradation rate increased as the amount of H2O2 increased to 2.93 mM, after which it remained constant. No obvious decrease in the rate of COD degradation was observed during the first four repeated uses of the photocatalysts, indicating that the catalysts could be recovered and reused. Compared with TiO2/AC, TiO2/SG exhibited higher efficiency in photocatalyzing the degradation of COD in garbage leachate.

  15. Noble metal nanoparticle-decorated TiO2 nanobelts for enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    He, Haiyan; Yang, Ping; Jia, Changchao; Miao, Yanping; Zhao, Jie; Du, Yingying

    2014-07-01

    TiO2 nanobelts have been fabricated through a hydrothermal method and subsequently sulfuric-acid-corrosion-treated for a rough surface. Noble metal nanoparticles such as Ag and Au were deposited on the coarse surface of TiO2 nanobelts via a coprecipitation procedure. Ag-TiO2 nanobelts were prepared in ethanolic solution contained silver nitrate (AgNO3) and sodium hydroxide (NaOH). Au-TiO2 nanobelts were obtained in chloroauric acid (HAuCl4) using sodium borohydride (NaBH4) as the reductant. It is confirmed by the results of XRD patterns together with the SEM images that the composite of noble metal and TiO2 nanobelts were obtained successfully and the Ag or Au nanoparticles were well-dispersed on the TiO2 nanobelts. Moreover, the as-prepared Ag and Au nanoparticle-decorated TiO2 nanobelts represent an enhanced photocatalytic activity compared with pure TiO2 nanobelts, which is due to the fact that the Ag and Au nanoparticles on the surface of TiO2 nanobelts act as sinks for the photogenerated electrons and promote the separation of the electrons and holes.

  16. Phosphate Changes Effect of Humic Acids on TiO2 Photocatalysis: From Inhibition to Mitigation of Electron-Hole Recombination.

    PubMed

    Long, Mingce; Brame, Jonathon; Qin, Fan; Bao, Jiming; Li, Qilin; Alvarez, Pedro J J

    2017-01-03

    A major challenge for photocatalytic water purification with TiO 2 is the strong inhibitory effect of natural organic matter (NOM), which can scavenge photogenerated holes and radicals and occlude ROS generation sites upon adsorption. This study shows that phosphate counteracts the inhibitory effect of humic acids (HA) by decreasing HA adsorption and mitigating electron-hole recombination. As a measure of the inhibitory effect of HA, the ratios of first-order reaction rate constants between photocatalytic phenol degradation in the absence versus presence of HA were calculated. This ratio was very high, up to 5.72 at 30 mg/L HA and pH 4.8 without phosphate, but was decreased to 0.76 (5 mg/L HA, pH 8.4) with 2 mM phosphate. The latter ratio indicates a surprising favorable effect of HA on TiO 2 photocatalysis. FTIR analyses suggest that this favorable effect is likely due to a change in the conformation of adsorbed HA, from a multiligand exchange arrangement to a complexation predominantly between COOH groups in HA and the TiO 2 surface in the presence of phosphate. This configuration can reduce hole consumption and facilitate electron transfer to O 2 by the adsorbed HA (indicated by linear sweep voltammetry), which mitigates electron-hole recombination and enhances contaminant degradation. A decrease in HA surface adsorption and hole scavenging (the predominant inhibitory mechanisms of HA) by phosphate (2 mM) was indicated by a 50% decrease in the photocatalytic degradation rate of HA and 80% decrease in the decay rate coefficient of interfacial-related photooxidation in photocurrent transients. These results, which were validated with other compounds (FFA and cimetidine), indicate that anchoring phosphate - or anions that exert similar effects on the TiO 2 surface - might be a feasible strategy to counteract the inhibitory effect of NOM during photocatalytic water treatment.

  17. Photocatalysis-assisted water filtration: using TiO2-coated vertically aligned multi-walled carbon nanotube array for removal of Escherichia coli O157:H7.

    PubMed

    Oza, Goldie; Pandey, Sunil; Gupta, Arvind; Shinde, Sachin; Mewada, Ashmi; Jagadale, Pravin; Sharon, Maheshwar; Sharon, Madhuri

    2013-10-01

    A porous ceramic was coated with vertically aligned multi-walled carbon nanotubes (MWCNTs) by spray pyrolysis. Titanium dioxide (TiO2) nanoparticles were then coated onto this densely aligned MWCNT. The presence of TiO2/MWCNT interfacial arrays was confirmed by X-ray diffraction (XRD), scanning electron microscope-energy dispersive analysis of X-ray (SEM-EDAX) and transmission electron microscope (TEM). This is a novel report in which water loaded with a most dreadful enterohemorrhagic pathogenic strain of Escherichia coli O157:H7 was filtered through TiO2/MWCNT coated porous ceramic filter and then analysed. Bacterial removal performance was found to be significantly lower in control i.e. plain porous ceramic (P<0.05) as compared to TiO2/MWCNT coated ceramic. The photocatalytic killing rate constant for TiO2-ceramic and MWCNT/TiO2-ceramic under fluorescent light was found be 1.45×10(-2) min(-1) and 2.23×10(-2) min(-1) respectively. Further, when I-V characteristics were performed for TiO2/MWCNT composite, it was corroborated that the current under light irradiation is comparatively higher than that in dark, thus proving it to be photocatalytically efficient system. The enhanced photocatalysis may be a contribution of increased surface area and charge transfer rate as a consequence of aligned MWCNT network. © 2013 Elsevier B.V. All rights reserved.

  18. The feasibility of using combined TiO2 photocatalysis oxidation and MBBR process for advanced treatment of biologically pretreated coal gasification wastewater.

    PubMed

    Xu, Peng; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Wang, Dexin; Li, Kun; Zhao, Qian

    2015-01-01

    The study examined the feasibility of using combined heterogeneous photocatalysis oxidation (HPO) and moving bed biofilm reactor (MBBR) process for advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that the TOC removal efficiency was significantly improved in HPO. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that the HPO could be employed to eliminate bio-refractory and toxic compounds. Meanwhile, the BOD5/COD of the raw wastewater was increased from 0.08 to 0.49. Furthermore, in the integration of TiO2 photocatalysis oxidation and MBBR process, the effluent of COD, BOD5, TOC, NH4(+)-N and TN were 22.1 mg/L, 1.1 mg/L, 11.8 mg/L, 4.1mg/L and 13.7 mg/L, respectively, which all met class-I criteria of the Integrated Wastewater Discharge Standard (GB18918-2002, China). The total operating cost was 2.8CNY/t. Therefore, there is great potential for the combined system in engineering applications as a final treatment for biologically pretreated CGW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The effect of nano-TiO2 photocatalysis on the antioxidant activities of Cu, Zn-SOD at physiological pH.

    PubMed

    Zheng, Wen; Zou, Hai-Feng; Lv, Shao-Wu; Lin, Yan-Hong; Wang, Min; Yan, Fei; Sheng, Ye; Song, Yan-Hua; Chen, Jie; Zheng, Ke-Yan

    2017-09-01

    Security issues of nanoparticles on biological toxicity and potential environmental risk have attracted more and more attention with the rapid development and wide applications of nanotechnology. In this work, we explored the effect and probable mechanism of nano-TiO 2 on antioxidant activity of copper, zinc superoxide dismutase (Cu, Zn-SOD) under natural light and mixed light at physiological pH. Nano-TiO 2 was prepared by sol-hydrothermal method, and then characterized by X-ray Diffraction (XRD) and Transmission electron micrographs (TEM). The Cu, Zn-SOD was purified by sephadex G75 chromatography and qualitatively analyzed by sodium dodecyl sulfate polypropylene amide gel electrophoresis (SDS-PAGE). The effect and mechanism were elucidated base on Fourier Transform Infrared Spectrometer (FT-IR), Circular Dichroism (CD), zeta potential, and electron spin resonance (ESR) methods. Accompanying the results of FT-IR, CD and zeta potential, it could be concluded that nano-TiO 2 had no effect on the antioxidant activity of Cu, Zn-SOD by comparing the relative activity under natural light at physiological pH. But the relative activity of Cu, Zn-SOD significantly decreased along with the increase of nano-TiO 2 concentration under the mixed light. The results of ESR showed the cause of this phenomenon was the Cu(II) in the active site of Cu, Zn-SOD was reduced to Cu(I) by H 2 O 2 and decreased the content of active Cu, Zn-SOD. The reduction can be inhibited by catalase. Excess O 2 ·- produced by nano-TiO 2 photocatalysis under mixed light accumulated a mass of H 2 O 2 through disproportionation reaction in this experimental condition. The results show that nano-TiO 2 cannot affect the antioxidant activity of Cu, Zn-SOD in daily life. The study on the effect of nano-TiO 2 on Cu, Zn-SOD will provide a valid theory support for biological safety and the toxicological effect mechanism of nanomaterials on enzyme. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Nano Titanium Monoxide Crystals and Unusual Superconductivity at 11 K.

    PubMed

    Xu, Jijian; Wang, Dong; Yao, Heliang; Bu, Kejun; Pan, Jie; He, Jianqiao; Xu, Fangfang; Hong, Zhanglian; Chen, Xiaobo; Huang, Fuqiang

    2018-03-01

    Nano TiO 2 is investigated intensely due to extraordinary photoelectric performances in photocatalysis, new-type solar cells, etc., but only very few synthesis and physical properties have been reported on nanostructured TiO or other low valent titanium-containing oxides. Here, a core-shell nanoparticle made of TiO core covered with a ≈5 nm shell of amorphous TiO 1+ x is newly constructed via a controllable reduction method to synthesize nano TiO core and subsequent soft oxidation to form the shell (TiO 1+ x ). The physical properties measurements of electrical transport and magnetism indicate these TiO@TiO 1+ x nanocrystals are a type-ІІ superconductor of a recorded T c onset = 11 K in the binary Ti-O system. This unusual superconductivity could be attributed to the interfacial effect due to the nearly linear gradient of O/Ti ratio across the outer amorphous layer. This novel synthetic method and enhanced superconductivity could open up possibilities in interface superconductivity of nanostructured composites with well-controlled interfaces. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A polymer solution technique for the synthesis of nano-sized Li 2TiO 3 ceramic breeder powders

    NASA Astrophysics Data System (ADS)

    Jung, Choong-Hwan; Lee, Sang Jin; Kriven, Waltraud M.; Park, Ji-Yeon; Ryu, Woo-Seog

    2008-02-01

    Nano-sized Li 2TiO 3 powder was fabricated by an organic-inorganic solution route. A steric entrapment route employing ethylene glycol was used for the preparation of the nano-sized Li 2TiO 3 particles. Titanium isopropoxide and lithium nitrate were dissolved in liquid-type ethylene glycol without any precipitation. With the optimum amount of the polymer, the metal cations (Li and Ti) were dispersed in the solution and a homogeneous polymeric network was formed. The organic-inorganic precursor gels were turned to crystalline powders through an oxidation reaction during a calcination process. The dried precursor gel showed the carbon-free Li 2TiO 3 crystalline form which was observed above 400 °C. The primary particle size of the carbon-free Li 2TiO 3 was about 70 nm, and the structure of the crystallized powder was porous and agglomerated. The powder compact was densified to 92% of TD at a relatively low sintering temperature of 1100 °C for 2 h.

  2. The investigation of photo-induced chemiluminescence on Co2+-doped TiO2 nanoparticles and its analytical application.

    PubMed

    Li, Guixin; Nan, Hongyan; Zheng, Xingwang

    2009-07-01

    A novel space- and time-resolved photo-induced chemiluminescence (PICL) analytical method was developed based on the photocatalysis of the Co2+-doped TiO2 nanoparticles. The PICL reaction procedure under the photocatalysis of Co2+-doped TiO2 nanoparticles was investigated using cyclic voltammetry and potentiometry. Meanwhile, the effect of the electrical double layer outside the Co2+-doped TiO2 nanoparticles on the PICL was investigated by contrasting with the Co2+-doped TiO2-SiO2 core-shell nanoparticles. Significantly, the CL intensity increased apparently and the time of the CL was prolonged in the presence of procaterol hydrochloride because the mechanism of the enhanced PICL reaction may be modified. The route of the PICL was changed due to the participation of the procaterol hydrochloride enriched at the surface of the Co2+-doped TiO2-SiO2 in the PICL reaction, which prolonged the time of the CL reaction and resulted in the long-term PICL. The analytical characteristics of the proposed in-situ PICL method were investigated using the procaterol hydrochloride as the model analyte. The investigation results showed that this new PICL analytical method offered higher sensitivity to the analysis of the procaterol hydrochloride and the PICL intensity was linear with the concentration of the procaterol hydrochloride in the range from ca. 2.0 x 10(-10) to 1.0 x 10(-8) g mL(-1).

  3. Synthesis of nanodimensional TiO2 thin films.

    PubMed

    Thakurdesai, Madhavi; Mohanty, T; John, J; Rao, T K Gundu; Raychaudhuri, Pratap; Bhattacharyya, V; Kanjilal, D

    2008-08-01

    Nanodimensional TiO2 has wide application in the field of photocatalysis, photovoltaic and photochromic devices. In present investigation TiO2 thin films deposited by pulsed laser deposition method are irradiated by 100 MeV Ag ion beam to achieve growth of nanophases. The nanostructure evolution is characterized by atomic force microscopy (AFM). The phases of TiO2 formed after irradiation are identified by glancing angle X-ray diffraction and Raman spectroscopy. The particle radius estimated by AFM varies from 10-13 nm. Anatase phase of TiO2 is formed after irradiation. The blue shift observed in UV-VIS absorption spectra indicates the nanostructure formation. The shape and size of nanoparticles formed due to high electronic excitation depend upon thickness of the film.

  4. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Pan, Xiaoyang; Yang, Min-Quan; Fu, Xianzhi; Zhang, Nan; Xu, Yi-Jun

    2013-04-01

    Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the synthesis of defective TiO2 with oxygen vacancies, and the defect related properties of TiO2 including structural, electronic, optical, dissociative adsorption and reductive properties, which are intimately related to the photocatalytic performance of TiO2. In particular, photocatalytic applications with regard to defective TiO2 are outlined. In addition, we offer some perspectives on the challenge and new direction for future research in this field. We hope that this tutorial minireview would provide some useful contribution to the future design and fabrication of defective semiconductor-based nanomaterials for diverse photocatalytic applications.Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the

  5. Photocatalytic activity of self-assembled porous TiO2 nano-columns array fabricated by oblique angle sputter deposition

    NASA Astrophysics Data System (ADS)

    Shi, Pengjun; Li, Xibo; Zhang, Qiuju; Yi, Zao; Luo, Jiangshan

    2018-04-01

    A well-separated and oriented TiO2 nano-columns arrays with porous structure were fabricated by the oblique angle sputter deposition technique and subsequently annealing at 450 °C in Ar/O2 mixed atmosphere. The deposited substrate was firstly modified by a template of self-assembled close-packed arrays of 500 nm-diameter silica (SiO2) spheres. Scanning electronic microscopic (SEM) images show that the porous columnar nanostructure is formed as a result of the geometric shadowing effect and surface diffusion of the adatoms in oblique angle deposition (OAD). X-ray diffraction (XRD) measurements reveal that the physically OAD film with annealing treatment are generally mixed phase of rutile and anatase TiO2 polymorphic forms. The morphology induced absorbance and band gap tuning by different substrates was demonstrated by the UV–vis spectroscopy. The well-separated one-dimensional (1D) nano-columns array with specific large porous surface area is beneficial for charge separation in photocatalytic degradation. Compared with compact thin film, such self-assembled porous TiO2 nano-columns array fabricated by oblique angle sputter deposition performed an enhanced visible light induced photocatalytic activity by decomposing methyl orange (MO) solution. The well-designed periodic array-structured porous TiO2 films by using modified patterned substrates has been demonstrated significantly increased absorption edge in the UV-visible light region with a narrower optical band gap, which are expected to be favorable for application in photovoltaic, lithium-ion insertion and photocatalytic, etc.

  6. Effects of Structural Properties of Electrospun TiO2 Nano-fiber Meshes on their Osteogenic Potential

    PubMed Central

    Wang, Xiaokun; Gittens, Rolando A.; Song, Rosemary; Tannenbaum, Rina; Olivares-Navarrete, Rene; Schwartz, Zvi; Chen, Haifeng; Boyan, Barbara D.

    2011-01-01

    Ideal outcomes in the field of tissue engineering and regenerative medicine involve biomaterials that can enhance cell differentiation and production of local factors for natural tissue regeneration without the use of systemic drugs. Biomaterials typically used in tissue engineering applications include polymeric scaffolds that mimic the 3-D structural environment of the native tissue, but these are often functionalized with proteins or small peptides to improve their biological performance. For bone applications, titanium (Ti) implants, or more appropriately the titania (TiO2) passive oxide layer formed on their surface, have been shown to enhance osteoblast differentiation in vitro and to promote osseointegration in vivo. In this study we evaluated the effect on osteoblast differentiation of pure TiO2 nano-fiber meshes with different surface micro-roughness and nano-fiber diameters, prepared by the electrospinning method. MG63 cells were seeded on TiO2 meshes, and cell number, differentiation markers and local factor production were analyzed. The results showed that cells grew throughout the entire surfaces and with similar morphology in all groups. Cell number was sensitive to surface micro-roughness, whereas cell differentiation and local factor production was regulated by both surface roughness and nano-fiber diameter. These results indicate that scaffold structural cues alone can be used to drive cell differentiation and create an osteogenic environment without the use of exogenous factors. PMID:22075122

  7. Effects of exposure to nano and bulk sized TiO2 and CuO in Lemna minor.

    PubMed

    Dolenc Koce, Jasna

    2017-10-01

    Nanoparticles of TiO 2 and CuO are among most commonly used nanoparticles, and elevated concentrations of them are expected to be found in all environments, including aquatic. A standard growth inhibition test ISO/CD 20079 was used to determine the toxicity of nano sized and larger micro sized (bulk) particles in the concentrations of 0.1, 1, 10, 100 and 1000 μM CuO and TiO 2 on common duckweed (Lemna minor L.). Both nano and bulk CuO particles caused changes in the structure and function of treated plants. The number of fronds and colonies decreased by as much as 78%, the length of roots and fronds decreased by 99% and 14%, respectively. Furthermore, photochemical efficiency was reduced by up to 35%, and the activities of antioxidative enzymes guaiacol peroxidase, ascorbate peroxidase and glutathione reductase increased by more than 240%. The altered physiological state of the CuO exposed plants was also reflected in the elevated occurrence of necrosis and bleaching in the duckweed colonies. Nano sized particles of CuO proved more phytotoxic than bulk particles, and the effects of both studied CuO sizes were concentration dependent. On the other hand, both bulk and nano sized particles of TiO 2 caused no severe phytotoxic effects, there was no concentration dependence and they could be considered as non-harmful to common duckweed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. An innovative ultrasound, Fe(2+) and TiO(2) photoassisted process for bisphenol A mineralization.

    PubMed

    Torres-Palma, Ricardo A; Nieto, Jessica I; Combet, Evelyne; Pétrier, Christian; Pulgarin, Cesar

    2010-04-01

    This paper explores the degradation of a model pollutant, bisphenol A, by an advanced oxidation process that combines sonolysis, Fe(2+), and TiO(2) in a photoassisted process. Experiments were done under saturated oxygen conditions. The effect of different Fe(2+) (0.56 and 5.6 mg/L) and TiO(2) (10 and 50 mg/L) concentrations was investigated on both the elimination and mineralization of the pollutant. A pronounced synergistic effect that led to the complete and rapid elimination of dissolved organic carbon (DOC) was observed even at low catalyst loadings. In this system, almost a complete removal of DOC (93%) was observed after 4 h using 10 and 5.6 mg/L of TiO(2) and Fe(2+), respectively, whereas at the same time, only 5, 6, and 22% of DOC was removed by an individual process alone (TiO(2) photocatalysis, ultrasound, and photo-Fenton, respectively). In this system, ultrasound has the principal role of eliminating the initial substrate and providing hydrogen peroxide for the photocatalytic systems, while photo-Fenton and TiO(2) photocatalysis are mainly responsible for the transformation of the intermediates in CO(2) and H(2)O. The role of H(2)O(2) generated from the sonochemical process is also discussed. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  9. Study on the photocatalytic reaction kinetics in a TiO2 nanoparticles coated microreactor integrated microfluidics device.

    PubMed

    Liu, Ai-Lin; Li, Zhong-Qiu; Wu, Zeng-Qiang; Xia, Xing-Hua

    2018-05-15

    For study of the photocatalytic reaction kinetics in a confined microsystem, a photocatalysis microreactor integrated on a microfluidic device has been fabricated using an on-line UV/vis detector. The performance of the photocatalysis microreactor is evaluated by the photocatalytic degradation of Rhodamine B chosen as model target by using commercial titanium dioxide (Degussa P25, TiO 2 ) nanoparticles as a photocatalyst. Results show that the photocatalytic reaction occurs via the Langmuir-Hinshelwood mechanism and the photocatalysis kinetics in the confined microsystem (r = 0.359 min -1 ) is about 10 times larger than that in macrosystem (r = 0.033 min -1 ). In addition, the photocatalysis activity of the immobilized TiO 2 nanoparticles in the microreactor exhibits good stability under flowing conditions. The present microchip device offers an interesting platform for screening of photocatalysts and exploration of photocatalysis mechanisms and kinetics. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Rapid synthesis of rutile TiO2 nano-flowers by dealloying Cu60Ti30Y10 metallic glasses

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Pan, Ye; Wu, Shikai; Zhang, Enming; Dai, Weiji

    2018-01-01

    The 3D nanostructure rutile TiO2 photocatalyst was rapidly synthesized by dealloying method using Cu60Ti30Y10 amorphous ribbons as precursors. The preparation period was kept down to just 3 h, which is much shorter than those of the samples by dealloying Cu60Ti30Al10, Cu70Ti30 and Cu60Ti30Sn10. The synthesized sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). XRD and XPS reveal the successful synthesis of rutile TiO2. The SEM and TEM images show that the synthesized rutile TiO2 nano-material presents homogeneous distributed 3D nanoflowers structure, which is composed of large quantities of fine rice-like nanorods (40-150 nm in diameter and 100-250 nm in length). BET specific surface areas of the samples were investigated by N2 adsorption-desorption isotherms, the fabricated rutile TiO2 exhibits very high specific surface area (194.08 m2/g). The photocatalytic activities of the samples were evaluated by degrading rhodamine B (RhB) dye (10 mg/L) under the irradiation of both simulated visible light (λ > 420 nm) and ultraviolet (UV) light (λ = 365 nm). The results show that the photocatalytic activity of rutile TiO2 prepared by dealloying Cu60Ti30Y10 amorphous ribbons is higher than those of commercial rutile and the sample synthesized by dealloying Cu70Ti30 precursors. The advantages of both short preparation period and superior photocatalytic activity suggest that Cu60Ti30Y10 metallic glasses are really a kind of perfect titanium source for rapidly fabricating high efficient TiO2 nano-materials. In addition, the influence of chemical composition of the amorphous precursors on preparation period of the rutile TiO2 nano-material was investigated from the point of view of standard electrode potentials.

  11. Comparative study of the effect of pharmaceutical additives on the elimination of antibiotic activity during the treatment of oxacillin in water by the photo-Fenton, TiO2-photocatalysis and electrochemical processes.

    PubMed

    Serna-Galvis, Efraim A; Silva-Agredo, Javier; Giraldo, Ana L; Flórez-Acosta, Oscar A; Torres-Palma, Ricardo A

    2016-01-15

    Synthetic pharmaceutical effluents loaded with the β-lactam antibiotic oxacillin were treated using advanced oxidation processes (the photo-Fenton system and TiO2 photocatalysis) and chloride mediated electrochemical oxidation (with Ti/IrO2 anodes). Combinations of the antibiotic with excipients (mannitol or tartaric acid), an active ingredient (calcium carbonate, i.e. bicarbonate ions due to the pH) and a cleaning agent (sodium lauryl ether sulfate) were considered. Additionally, urban wastewater that had undergone biological treatment was doped with oxacillin and treated with the tested systems. The evolution of antimicrobial activity was monitored as a parameter of processes efficiency. Although the two advanced oxidation processes (AOPs) differ only in the way they produce OH, marked differences were observed between them. There were also differences between the AOPs and the electrochemical system. Interestingly, each additive had a different effect on each treatment. For water loaded with mannitol, electrochemical treatment was the most suitable option because the additive did not significantly affect the efficiency of the system. Due to the formation of a complex with Fe(3+), tartaric acid accelerated the elimination of antibiotic activity during the photo-Fenton process. For TiO2 photocatalysis, the presence of bicarbonate ions contributed to antibiotic activity elimination through the possible formation of carbonate and bicarbonate radicals. Sodium lauryl ether sulfate negatively affected all of the processes. However, due to the higher selectivity of HOCl compared with OH, electrochemical oxidation showed the least inhibited efficiency. For the urban wastewater doped with oxacillin, TiO2 photocatalysis was the most efficient process. These results will help select the most suitable technology for the treatment of water polluted with β-lactam antibiotics. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. TiO2 micro-nano-hybrid surface to alleviate biological aging of UV-photofunctionalized titanium

    PubMed Central

    Iwasa, Fuminori; Tsukimura, Naoki; Sugita, Yoshihiko; Kanuru, Rajita Kodali; Kubo, Katsutoshi; Hasnain, Hafiz; Att, Wael; Ogawa, Takahiro

    2011-01-01

    Bioactivity and osteoconductivity of titanium degrade over time after surface processing. This time-dependent degradation is substantial and defined as the biological aging of titanium. UV treatment has shown to reactivate the aged surfaces, a process known as photofunctionalization. This study determined whether there is a difference in the behavior of biological aging for titanium with micro-nano-hybrid topography and titanium with microtopography alone, following functionalization. Titanium disks were acid etched to create micropits on the surface. Micro-nano-hybrid surfaces were created by depositioning 300-nm diameter TiO2 nodules onto the micropits using a previously established self-assembly protocol. These disks were stored for 8 weeks in the dark to allow sufficient aging, then treated with UV light for 48 hours. Rat bone marrow–derived osteoblasts were cultured on fresh disks (immediately after UV treatment), 3-day-old disks (disks stored for 3 days after UV treatment), and 7-day- old disks. The rates of cell attachment, spread, proliferation, and levels of alkaline phosphatase activity, and calcium deposition were reduced by 30%–50% on micropit surfaces, depending on the age of the titanium. In contrast, 7-day-old hybrid surfaces maintained equivalent levels of bioactivity compared with the fresh surfaces. Both micropit and micro-nano-hybrid surfaces were superhydrophilic immediately after UV treatment. However, after 7 days, the micro-nano- hybrid surfaces became hydrorepellent, while the micropit surfaces remained hydrophilic. The sustained bioactivity levels of the micro-nano-hybrid surfaces were nullified by treating these surfaces with Cl−anions. A thin TiO2 coating on the micropit surface without the formation of nanonodules did not result in the prevention or alleviation of the time-dependent decrease in biological activity. In conclusion, the micro-nano-hybrid titanium surfaces may slow the rate of time-dependent degradation of titanium

  13. TiO2 micro-nano-hybrid surface to alleviate biological aging of UV-photofunctionalized titanium.

    PubMed

    Iwasa, Fuminori; Tsukimura, Naoki; Sugita, Yoshihiko; Kanuru, Rajita Kodali; Kubo, Katsutoshi; Hasnain, Hafiz; Att, Wael; Ogawa, Takahiro

    2011-01-01

    Bioactivity and osteoconductivity of titanium degrade over time after surface processing. This time-dependent degradation is substantial and defined as the biological aging of titanium. UV treatment has shown to reactivate the aged surfaces, a process known as photofunctionalization. This study determined whether there is a difference in the behavior of biological aging for titanium with micro-nano-hybrid topography and titanium with microtopography alone, following functionalization. Titanium disks were acid etched to create micropits on the surface. Micro-nano-hybrid surfaces were created by depositioning 300-nm diameter TiO(2) nodules onto the micropits using a previously established self-assembly protocol. These disks were stored for 8 weeks in the dark to allow sufficient aging, then treated with UV light for 48 hours. Rat bone marrow-derived osteoblasts were cultured on fresh disks (immediately after UV treatment), 3-day-old disks (disks stored for 3 days after UV treatment), and 7-day- old disks. The rates of cell attachment, spread, proliferation, and levels of alkaline phosphatase activity, and calcium deposition were reduced by 30%-50% on micropit surfaces, depending on the age of the titanium. In contrast, 7-day-old hybrid surfaces maintained equivalent levels of bioactivity compared with the fresh surfaces. Both micropit and micro-nano-hybrid surfaces were superhydrophilic immediately after UV treatment. However, after 7 days, the micro-nano- hybrid surfaces became hydrorepellent, while the micropit surfaces remained hydrophilic. The sustained bioactivity levels of the micro-nano-hybrid surfaces were nullified by treating these surfaces with Cl(-)anions. A thin TiO(2) coating on the micropit surface without the formation of nanonodules did not result in the prevention or alleviation of the time-dependent decrease in biological activity. In conclusion, the micro-nano-hybrid titanium surfaces may slow the rate of time-dependent degradation of titanium

  14. Inactivation of pathogenic bacteria inoculated onto a Bacto™ agar model surface using TiO2-UVC photocatalysis, UVC and chlorine treatments.

    PubMed

    Yoo, S; Ghafoor, K; Kim, S; Sun, Y W; Kim, J U; Yang, K; Lee, D-U; Shahbaz, H M; Park, J

    2015-09-01

    The aim of this study was to study inactivation of different pathogenic bacteria on agar model surface using TiO2-UV photocatalysis (TUVP). A unified food surface model was simulated using Bacto(™) agar, a routinely used microbial medium. The foodborne pathogenic bacteria Escherichia coli K12 (as a surrogate for E. coli O157:H7), Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes were inoculated onto the agar surface, followed by investigation of TUVP-assisted inactivation and morphological changes in bacterial cells. The TUVP process showed higher bacterial inactivation, particularly for Gram-negative bacteria, than UVC alone and a control (dark reaction). A TUVP treatment of 17·2 mW cm(-2) (30% lower than the UVC light intensity) reduced the microbial load on the agar surface by 4·5-6·0 log CFU cm(-2). UVC treatment of 23·7 mW cm(-2) caused 3·0-5·3 log CFU cm(-2) reduction. The use of agar model surface is effective for investigation of bacterial disinfection and TUVP is a promising nonthermal technique. The results showing effects of photocatalysis and other treatments for inactivation of bacterial pathogens on model surface can be useful for applying such processes for disinfection of fruit, vegetables and other similar surfaces. © 2015 The Society for Applied Microbiology.

  15. Controlled synthesis and facets-dependent photocatalysis of TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Roy, Nitish; Park, Yohan; Sohn, Youngku; Pradhan, Debabrata

    2015-04-01

    Titanium dioxide (TiO2) is a wide band gap semiconductor that has been extensively used in several environmental applications including degradation of organic hazardous chemicals, water splitting to generate hydrogen, dye sensitized solar cells, self cleaning agents, and pigments. Herein we demonstrate the synthesis of TiO2 nanocrystals (NCs) with the shapes of ellipsoids, rods, cuboids, and sheets with different exposed facets using a noncorrosive and nontoxic chemical (i.e. diethanolamine) as the shape controlling agent, unlike hydrofluoric acid commonly used. The TiO2 NCs of diverse shapes with different exposed facets were tested for photocatalytic hydroxyl radical (OH•) formation, which determines their photocatalytic behavior and the results were compared with the standard P-25 Degussa. The formation rate of OH• per specific surface area was found to be >6 fold higher for rod-shaped TiO2 NCs than that of commercial Degussa P25 catalyst. The highest photocatalytic activity of rod-shaped TiO2 NCs is ascribed to the unique chemical environment of {010} exposed facets which facilitates the electron/hole separation in presence of {101} facets.

  16. MoSe2 modified TiO2 nanotube arrays with superior photoelectrochemical performance

    NASA Astrophysics Data System (ADS)

    Zhang, Yaping; Zhu, Haifeng; Yu, Lianqing; He, Jiandong; Huang, Chengxing

    2018-04-01

    TiO2 nanotube arrays (TNTs) are first prepared by anodization Ti foils in ethylene glycol electrolyte. Then, MoSe2 deposites electrochemically on TNTs. The as-synthesized MoSe2/TiO2 composite has a much higher photocurrent density of 1.07 mA cm‑2 at 0 V than pure TNTs of 0.38 mA cm‑2, which suggests that the MoSe2/TiO2 composite film has optimum photoelectrocatalysis properties. The electron transport resistances of the MoSe2/TiO2 decreases to half of pure TiO2, at 295.6 ohm/cm2. Both photocurrent-time and Mott-Schottky plots indicate MoSe2 a p-type semiconductor characteristics. MoSe2/TiO2 composite can achieve a maximum 5 orders of magnitude enhancement in carrier density (4.650 × 1027 cm‑3) than that of pure TiO2 arrays. It can be attributed to p-n heterojunction formed between MoSe2 and TiO2, and the composite can be potentially applied in photoelectrochemical, photocatalysis fields.

  17. Germination and early plant development of 10 plant species exposed to Nano TiO2 and CeO2

    EPA Science Inventory

    Ten agronomic plant species were exposed to different concentrations of nano-TiO2 or CeO2 (0, 250, 500 and 1000 ug/l) and followed to examine effects on germination and early seedling development. For TiO2, cabbage showed increased and corn decreased percent germination, while ...

  18. Parathion degradation and toxicity reduction in solar photocatalysis and photolysis.

    PubMed

    Zoh, K D; Kim, T S; Kim, J G; Choi, K; Yi, S M

    2006-01-01

    The solar photocatalytic degradation of methyl parathion was investigated using a circulating TiO2/solar light reactor. Under solar photocatalysis condition, parathion was more effectively degraded than solar photolysis and TiO2-only conditions. With solar photocatalysis, 20 mg/L of parathion was completely degraded within 60 min with a TOC decrease of 63% after 150 min. The main ionic byproducts during photocatalysis recovered from parathion degradation were mainly as NO3-, NO2- and NH4+, 80% of the sulphur as SO4(2-), and 5% of phosphorus as PO4(3-). The organic intermediates 4-nitrophenol and methyl paraoxon were also identified, and these were further degraded in solar photocatalytic condition. Two different bioassays (Vibrio fischeri and Daphnia magna) were used to test the acute toxicity of solutions treated by solar photocatalysis and photolysis. The Microtox test using V. fischeri showed that the toxicity expressed as EC50 (%) value increased from 5.5% to >82% in solar photocatalysis, indicating that the treated solution is non-toxic, but only increased from 4.9 to 20.5% after 150 min in solar photolysis. The acute toxicity test using D. magna showed that EC50 (%) increased from 0.05 to 1.08% under solar photocatalysis, but only increased to 0.12% after 150 min with solar photolysis, indicating the solution is still toxic. The pattern of toxicity reduction parallels the decrease in TOC and the parathion concentrations.

  19. [Simultaneous desulfurization and denitrification by TiO2/ACF under different irradiation].

    PubMed

    Han, Jing; Zhao, Yi

    2009-04-15

    The supported TiO2 photocatalysts were prepared in laboratory, and the experiments of simultaneous desulfurization and denitrification were carried out by self-designed photocatalysis reactor. The optimal experimental conditions were achieved, and the efficiencies of simultaneous desulfurization and denitrification under two different light sources were compared. The results show that the oxygen content of flue gas, reaction temperature, flue gas humidity and irradiation intensity are most essential factors to photocatalysis. For TiO2/ACF, the removal efficiencies of 99.7% for SO2 and 64.3% for NO are obtained respectively at optimal experimental conditions under UV irradiation. For TiO2/ACF, the removal efficiencies of 97.5% for SO2 and 49.6% for NO are achieved respectively at optimal experimental conditions under the visible light irradiation. The results of five times parallel experiments indicate standard deviation S of parallel data is little. The mechanism of removal for SO2 and NO is proposed under two light sources by ion chromatography analysis of the absorption liquid.

  20. Advances in porous and high-energy (001)-faceted anatase TiO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Umar, Akrajas Ali; Md Saad, Siti Khatijah; Ali Umar, Marjoni Imamora; Rahman, Mohd Yusri Abd; Oyama, Munetaka

    2018-01-01

    In this review, we present a summary of research to date on the anatase polymorph of TiO2 nanostructures containing high-energy facet, particularly (001) plane, with porous structure, covering their synthesis and their application in photocatalysis as well as a review of any attempts to modify their electrical, optical and photocatalytic properties via doping. After giving a brief introduction on the role of crystalline facet on the physico-chemical properties of the anatase TiO2, we discuss the electrical and optical properties of pristine anatase TiO2 and after being doped with both metal and non-metals dopants. We then continue to the discussion of the electrical properties of (001) faceted anatase TiO2 and their modification upon being prepared in the form of porous morphology. Before coming to the review of the photocatalytic properties of the (001) faceted anatase and (001) with porous morphology in selected photocatalysis application, such as photodegradation of organic pollutant, hydrogenation reaction, water splitting, etc., we discuss the synthetic strategy for the preparation of them. We then end our discussion by giving an outlook on future strategy for development of research related to high-energy faceted and porous anatase TiO2.

  1. Heterogeneous photocatalysis using TiO2 modified with hydrotalcite and iron oxide under UV-visible irradiation for color and toxicity reduction in secondary textile mill effluent.

    PubMed

    Arcanjo, Gemima Santos; Mounteer, Ann H; Bellato, Carlos Roberto; Silva, Laís Miguelina Marçal da; Brant Dias, Santos Henrique; Silva, Priscila Romana da

    2018-04-01

    The objective of this study was to evaluate ADMI color removal from a biologically treated textile mill effluent by heterogeneous photocatalysis with UV-visible irradiation (UV-vis) using a novel catalyst composed of TiO 2 supported on hydrotalcite and doped with iron oxide (HT/Fe/TiO 2 ). Simulated biological treatment of solutions of the dyes (50 mg/L) used in the greatest amounts at the mill where the textile effluent was collected resulted in no color removal in reactive dye solutions and about 50% color removal in vat dye solutions, after 96 h, indicating that the secondary effluent still contained a large proportion of anionic reactive dyes. Photocatalytic treatments were carried out with TiO 2 and HT/Fe/TiO 2 of Fe:Ti molar ratios of 0.25, 0.5, 0.75 and 1, with varying catalyst doses (0-3 mg/L), initial pH values (4-10) and UV-vis times (0-6 h). The highest ADMI color removal with unmodified TiO 2 was found at a dose of 2 g/L and pH 4, an impractical pH value for industrial application. The most efficient composite was HT/Fe/TiO 2 1 at pH 10, also at a dose of 2 g/L, which provided more complete ADMI color removal, from 303 to 9 ADMI color units (96%), than unmodified TiO 2 , from 303 to 37 ADMI color units (88%), under the same conditions. Hydroxyl radicals were responsible for the color reduction, since when 2-propanol, an OH scavenger, was added color removal was very low. For this reason, the HT/Fe/TiO 2 1 composite performed better at pH 10, because the higher concentration of hydroxide ions present at higher pH favored hydroxyl radical formation. COD reductions were relatively low and similar, approximately 20% for both catalysts after 6 h under UV-vis, because of the low initial COD (78 mg/L). Secondary effluent toxicity to Daphnia similis (EC 50  = 70.7%) was reduced by photocatalysis with TiO 2 (EC 50  = 95.0%) and the HT/Fe/TiO 2 1 composite (EC 50  = 78.6%). HT/Fe/TiO 2 1 was reused five times and still lowered

  2. Fabrication of TiO2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment

    NASA Astrophysics Data System (ADS)

    Qian, Yingjia; Chi, Lina; Zhou, Weili; Yu, Zhenjiang; Zhang, Zhongzhi; Zhang, Zhenjia; Jiang, Zheng

    2016-01-01

    Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO2, we successfully fixed TiO2 functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO2 attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti4+. The TiO2 surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO2/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO2, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.

  3. Photochemical degradation of triazine herbicides - comparison of homogeneous and heterogeneous photocatalysis.

    PubMed

    Klementova, Sarka; Zlamal, Martin

    2013-04-01

    Photochemical degradation of atrazine under different conditions was studied and compared, namely degradation via photocatalysis on TiO2, UV C photolysis, and homogeneous photocatalysis in the presence of added ferric ions. The reaction rate constants in heterogeneous photocatalytic reactions on TiO2 and of photolytic degradation by means of UV C light are similar, 0.018 min(-1) and 0.020 min(-1), respectively. The reaction rate constants in homogeneous photocatalytic reactions with Fe(III) added depend strongly on the Fe(III) concentration, 0.0017 min(-1) for 1.6 × 10(-6) mol l(-1) Fe(III) to 0.105 min(-1) for 3.3 × 10(-4) mol l(-1) Fe(III). In all types of reactions, dechlorination was observed; in homogeneous photocatalytic reactions and in UV C (250-300 nm) photolysis, dechlorination proceeds with a 1 : 1 stoichiometry to atrazine degradation, in photocatalytic reactions on TiO2, dechlorination measured as chloride ion release reaches only 1/5 of the substrate degradation. In photocatalytic reactions on TiO2, mineralisation of 40% carbon was observed.

  4. Municipal wastewater spiramycin removal by conventional treatments and heterogeneous photocatalysis.

    PubMed

    Lofrano, G; Libralato, G; Casaburi, A; Siciliano, A; Iannece, P; Guida, M; Pucci, L; Dentice, E F; Carotenuto, M

    2018-05-15

    This study assessed the effects and removal options of the macrolide spiramycin, currently used for both in human and veterinary medicine- with a special focus on advanced oxidation processes based on heterogeneous TiO 2 _ assisted photocatalysis. Spiramycin real concentrations were investigated on a seasonal basis in a municipal wastewater treatment plant (up to 35μgL -1 ), while its removal kinetics were studied considering both aqueous solutions and real wastewater samples, including by-products toxicity assessment. High variability of spiramycin removal by activated sludge treatments (from 9% (wintertime) to >99.9% (summertime)) was observed on a seasonal basis. Preliminary results showed that a total spiramycin removal (>99.9%) is achieved with 0.1gL -1 of TiO 2 in aqueous solution after 80min. Integrated toxicity showed residual slight acute effects in the photocatalytic treated solutions, independently from the amount of TiO 2 used, and could be linked to the presence of intermediate compounds. Photolysis of wastewater samples collected after activated sludge treatment during summer season (SPY 5μgL -1 ) allowed a full SPY removal after 80min. When photocatalysis with 0.1gL -1 of TiO 2 was carried out in wastewater samples collected in winter season (SPY 30μgL -1 ) after AS treatment, SPY removal was up to 91% after 80min. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Preparation of Ag@AgCl-doped TiO2/sepiolite and its photocatalytic mechanism under visible light.

    PubMed

    Liu, Shaomin; Zhu, Dinglong; Zhu, Jinglin; Yang, Qing; Wu, Huijun

    2017-10-01

    A cube-like Ag@AgCl-doped TiO 2 /sepiolite (denoted Ag@AgCl-TiO 2 /sepiolite) was successfully synthesized via a novel method. X-ray diffraction, scanning electron microscopy, energy dispersion X-ray fluorescence, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and diffuse reflectance ultraviolet-visible spectroscopy were performed to determine the structure and physicochemical properties of Ag@AgCl-TiO 2 /sepiolite. SEM micrographs revealed that Ag@AgCl nanoparticles and TiO 2 film are well deposited on the surface of tube-like sepiolite. As a result, Ag@AgCl-TiO 2 /sepiolite exhibits a red shift relative to TiO 2 /sepiolite. Photocatalytic experiments demonstrated that the dosage of catalysts plays an important role during photocatalysis. The photoelectrochemical activities of Ag@AgCl-TiO 2 /sepiolite and TiO 2 /sepiolite were also investigated. Photocurrent responses confirmed that the ability of Ag@AgCl-TiO 2 /sepiolite to separate photo-generated electron-hole pairs is stronger than that of TiO 2 /sepiolite. Methylene Blue degradation is also improved under alkaline conditions and visible light irradiation because more OH is produced by visible light excitation. This excellent catalytic ability is mainly attributed to the formed Ag nanoparticles and the Schottky barrier at the Ag/TiO 2 interface. Active species analysis indicated that O 2 - and h + are implicated as active species in photocatalysis. Therefore, catalysts are excited to produce abundant electron-hole pairs after they absorb photons in photocatalysis. Copyright © 2017. Published by Elsevier B.V.

  6. Construction of AgBr nano-cakes decorated Ti3+ self-doped TiO2 nanorods/nanosheets photoelectrode and its enhanced visible light driven photocatalytic and photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoyong; Zhang, Huixuan; Guo, Ruonan; Cheng, Xiuwen; Cheng, Qingfeng

    2018-05-01

    In the study, AgBr nano-cakes decorated Ti3+ self-doped TiO2 nanorods/nanosheets (AgBr-Ti3+/TiO2 NRs/NSs) photoelectrode with enhanced visible light driven photocatalytic (PC) and photoelectrochemical (PECH) performance has been successfully fabricated by hydrothermal reaction, followed by sodium borohydride reduction and then successive ionic layer adsorption and reaction (SILAR) treatment. Afterwards, series of characterizations were conducted to study the physicochemical properties of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Results indicated that AgBr nano-cakes with sizes varying from 110 to 180 nm were uniformly decorated on the surface of Ti3+/TiO2 NRs/NSs to form AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Moreover, PC activity of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode was measured by degradation of methylene blue (MB). It was found that AgBr-Ti3+/TiO2 NRs/NSs photoelectrode exhibited higher PC activity (98.7%) than that of other samples within 150 min visible light illumination, owing to the enhancement of visible light harvesting and effective separation of photoproduced charges. Thus, AgBr nano-cakes and Ti3+ exerted a huge influence on the PC and PECH properties of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Furthermore, the possible enhanced visible light driven PC mechanism of AgBr-Ti3+/TiO2 NRs/NSs was proposed and confirmed.

  7. Photolithographically Patterned TiO2 Films for Electrolyte-Gated Transistors.

    PubMed

    Valitova, Irina; Kumar, Prajwal; Meng, Xiang; Soavi, Francesca; Santato, Clara; Cicoira, Fabio

    2016-06-15

    Metal oxides constitute a class of materials whose properties cover the entire range from insulators to semiconductors to metals. Most metal oxides are abundant and accessible at moderate cost. Metal oxides are widely investigated as channel materials in transistors, including electrolyte-gated transistors, where the charge carrier density can be modulated by orders of magnitude upon application of relatively low electrical bias (2 V). Electrolyte gating offers the opportunity to envisage new applications in flexible and printed electronics as well as to improve our current understanding of fundamental processes in electronic materials, e.g. insulator/metal transitions. In this work, we employ photolithographically patterned TiO2 films as channels for electrolyte-gated transistors. TiO2 stands out for its biocompatibility and wide use in sensing, electrochromics, photovoltaics and photocatalysis. We fabricated TiO2 electrolyte-gated transistors using an original unconventional parylene-based patterning technique. By using a combination of electrochemical and charge carrier transport measurements we demonstrated that patterning improves the performance of electrolyte-gated TiO2 transistors with respect to their unpatterned counterparts. Patterned electrolyte-gated (EG) TiO2 transistors show threshold voltages of about 0.9 V, ON/OFF ratios as high as 1 × 10(5), and electron mobility above 1 cm(2)/(V s).

  8. [Photocatalysis characterization of titanium dioxide supported on natural clinoplilolite].

    PubMed

    Fang, Songsheng; Jiang, Yinshan; Wang, Yujie; Bao, Changli; Song, Bo

    2003-07-01

    This paper studied preparing photocatalyst supported on natural clinoplilolite, photocatalysis degrading to methyl orange solution as photocatalysis function test, solar as light resource, explored the synthesize condition and affect factors of its catalysis activity. The capability of catalyst was evaluated by decolor rate and COD removal rate. The samples was described by XRD, IR and specific surface area. Studied result showed that catalyst prepared by combination of tetrabutyl titanate and natural clinoplilolite dryed under 120 degrees C for 6 hours then calcined under 200 degrees C had the best photocatalysis activity. Degrading rate of methyl orange solution increased with the quantity of TiO2/zeolite and additional oxidant H2O2 increasing, but superfluous H2O2 can also restrain the photocatalysis activity of titanium dioxide supported on clinoplilolite. Methyl orange solution had the best degrading rate as pH value between 2 to 5.

  9. TiO2-Based Nanoheterostructures for Promoting Gas Sensitivity Performance: Designs, Developments, and Prospects

    PubMed Central

    Wang, Yuan; Wu, Tao; Zhou, Yun; Meng, Chuanmin; Zhu, Wenjun; Liu, Lixin

    2017-01-01

    Gas sensors based on titanium dioxide (TiO2) have attracted much public attention during the past decades due to their excellent potential for applications in environmental pollution remediation, transportation industries, personal safety, biology, and medicine. Numerous efforts have therefore been devoted to improving the sensing performance of TiO2. In those effects, the construct of nanoheterostructures is a promising tactic in gas sensing modification, which shows superior sensing performance to that of the single component-based sensors. In this review, we briefly summarize and highlight the development of TiO2-based heterostructure gas sensing materials with diverse models, including semiconductor/semiconductor nanoheterostructures, noble metal/semiconductor nanoheterostructures, carbon-group-materials/semiconductor nano- heterostructures, and organic/inorganic nanoheterostructures, which have been investigated for effective enhancement of gas sensing properties through the increase of sensitivity, selectivity, and stability, decrease of optimal work temperature and response/recovery time, and minimization of detectable levels. PMID:28846621

  10. Modulation of physiological responses with TiO2 nano-particle in Azolla pinnata R.Br. under 2,4-D toxicity.

    PubMed

    De, Arnab Kumar; Ghosh, Arijit; Debnath, Subhas Chandra; Sarkar, Bipul; Saha, Indraneel; Adak, Malay Kumar

    2018-06-05

    The present work is emphasised with the herbicidal tolerance of Azolla pinnata R.Br. and its modulation with TiO 2 nano-particle. Both carbohydrate and nitrogen metabolism were effected with 2,4-D as herbicide and in few cases TiO 2 -NP had recovered few detrimental effects. From the nutrient status in Azolla it recorded the recovery of nitrogen as well as potassium by TiO 2 -NP but not in case of phosphorus. However, a conversion of nitrate to ammonium was more induced by TiO 2 -NP under herbicidal toxicity. Similar results were obtained for inter-conversion of amino acid-nitrate pool, but no changes with glutamine synthase activity with TiO 2 -NP. Initially, the effects of 2,4-D was monitored with changes of chlorophyll content but had not been recovered with nanoparticle. Photosynthetic reserves expressed as both total and reducing sugar were insensitive to TiO 2 -NP interference but activity of soluble and wall bound invertase was in reverse trend as compared to control. The 2,4-D mediated changes of redox and its oxidative stress was ameliorated in plants with over expressed ADH activity. As a whole the Azolla bio system with TiO 2 supplementation may be useful in sustenance against 2,4-D toxicity through recovery of nitrogen metabolism. Thus, Azolla-TiO 2 -NP bio system would be realised to monitor the herbicidal toxicity in soil and its possible bioremediation.

  11. Photocatalysis as an Effective Advanced Oxidation Process

    EPA Science Inventory

    Photocatalysis is generally referred to as the acceleration of a photoreaction by the presence of a semiconductor catalyst such as titanium dioxide (TiO2) or zinc oxide (ZnO). Photocatalytic materials can be prepared by using various methods such as a sol-gel process, solution pr...

  12. Toxicity of Food-Grade TiO2 to Commensal Intestinal and Transient Food-Borne Bacteria: New Insights Using Nano-SIMS and Synchrotron UV Fluorescence Imaging.

    PubMed

    Radziwill-Bienkowska, Joanna M; Talbot, Pauline; Kamphuis, Jasper B J; Robert, Véronique; Cartier, Christel; Fourquaux, Isabelle; Lentzen, Esther; Audinot, Jean-Nicolas; Jamme, Frédéric; Réfrégiers, Matthieu; Bardowski, Jacek K; Langella, Philippe; Kowalczyk, Magdalena; Houdeau, Eric; Thomas, Muriel; Mercier-Bonin, Muriel

    2018-01-01

    Titanium dioxide (TiO 2 ) is commonly used as a food additive (E171 in the EU) for its whitening and opacifying properties. However, a risk of intestinal barrier disruption, including dysbiosis of the gut microbiota, is increasingly suspected because of the presence of a nano-sized fraction in this additive. We hypothesized that food-grade E171 and Aeroxyde P25 (identical to the NM-105 OECD reference nanomaterial in the European Union Joint Research Centre) interact with both commensal intestinal bacteria and transient food-borne bacteria under non-UV-irradiated conditions. Based on differences in their physicochemical properties, we expect a difference in their respective effects. To test these hypotheses, we chose a panel of eight Gram-positive/Gram-negative bacterial strains, isolated from different biotopes and belonging to the species Escherichia coli , Lactobacillus rhamnosus , Lactococcus lactis (subsp. lactis and cremoris ), Streptococcus thermophilus , and Lactobacillus sakei . Bacterial cells were exposed to food-grade E171 vs. P25 in vitro and the interactions were explored with innovative (nano)imaging methods. The ability of bacteria to trap TiO 2 was demonstrated using synchrotron UV fluorescence imaging with single cell resolution. Subsequent alterations in the growth profiles were shown, notably for the transient food-borne L. lactis and the commensal intestinal E. coli in contact with food-grade TiO 2 . However, for both species, the reduction in cell cultivability remained moderate, and the morphological and ultrastructural damages, observed with electron microscopy, were restricted to a small number of cells. E. coli exposed to food-grade TiO 2 showed some internalization of TiO 2 (7% of cells), observed with high-resolution nano-secondary ion mass spectrometry (Nano-SIMS) chemical imaging. Taken together, these data show that E171 may be trapped by commensal and transient food-borne bacteria within the gut. In return, it may induce some

  13. Toxicity of Food-Grade TiO2 to Commensal Intestinal and Transient Food-Borne Bacteria: New Insights Using Nano-SIMS and Synchrotron UV Fluorescence Imaging

    PubMed Central

    Radziwill-Bienkowska, Joanna M.; Talbot, Pauline; Kamphuis, Jasper B. J.; Robert, Véronique; Cartier, Christel; Fourquaux, Isabelle; Lentzen, Esther; Audinot, Jean-Nicolas; Jamme, Frédéric; Réfrégiers, Matthieu; Bardowski, Jacek K.; Langella, Philippe; Kowalczyk, Magdalena; Houdeau, Eric; Thomas, Muriel; Mercier-Bonin, Muriel

    2018-01-01

    Titanium dioxide (TiO2) is commonly used as a food additive (E171 in the EU) for its whitening and opacifying properties. However, a risk of intestinal barrier disruption, including dysbiosis of the gut microbiota, is increasingly suspected because of the presence of a nano-sized fraction in this additive. We hypothesized that food-grade E171 and Aeroxyde P25 (identical to the NM-105 OECD reference nanomaterial in the European Union Joint Research Centre) interact with both commensal intestinal bacteria and transient food-borne bacteria under non-UV-irradiated conditions. Based on differences in their physicochemical properties, we expect a difference in their respective effects. To test these hypotheses, we chose a panel of eight Gram-positive/Gram-negative bacterial strains, isolated from different biotopes and belonging to the species Escherichia coli, Lactobacillus rhamnosus, Lactococcus lactis (subsp. lactis and cremoris), Streptococcus thermophilus, and Lactobacillus sakei. Bacterial cells were exposed to food-grade E171 vs. P25 in vitro and the interactions were explored with innovative (nano)imaging methods. The ability of bacteria to trap TiO2 was demonstrated using synchrotron UV fluorescence imaging with single cell resolution. Subsequent alterations in the growth profiles were shown, notably for the transient food-borne L. lactis and the commensal intestinal E. coli in contact with food-grade TiO2. However, for both species, the reduction in cell cultivability remained moderate, and the morphological and ultrastructural damages, observed with electron microscopy, were restricted to a small number of cells. E. coli exposed to food-grade TiO2 showed some internalization of TiO2 (7% of cells), observed with high-resolution nano-secondary ion mass spectrometry (Nano-SIMS) chemical imaging. Taken together, these data show that E171 may be trapped by commensal and transient food-borne bacteria within the gut. In return, it may induce some physiological

  14. Excess electrons in reduced rutile and anatase TiO2

    NASA Astrophysics Data System (ADS)

    Yin, Wen-Jin; Wen, Bo; Zhou, Chuanyao; Selloni, Annabella; Liu, Li-Min

    2018-05-01

    As a prototypical photocatalyst, TiO2 is a material of scientific and technological interest. In photocatalysis and other applications, TiO2 is often reduced, behaving as an n-type semiconductor with unique physico-chemical properties. In this review, we summarize recent advances in the understanding of the fundamental properties and applications of excess electrons in reduced, undoped TiO2. We discuss the characteristics of excess electrons in the bulk and at the surface of rutile and anatase TiO2 focusing on their localization, spatial distribution, energy levels, and dynamical properties. We examine specific features of the electronic states for photoexcited TiO2, for intrinsic oxygen vacancy and Ti interstitial defects, and for surface hydroxyls. We discuss similarities and differences in the behaviors of excess electrons in the rutile and anatase phases. Finally, we consider the effect of excess electrons on the reactivity, focusing on the interaction between excess electrons and adsorbates.

  15. Preparation of TiO2-ZnO and its activity test in sonophotocatalytic degradation of phenol

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Novitasari

    2016-02-01

    Synthesis of TiO2-ZnO and its activity test in Sono photocatalysis degradation of phenol has been conducted. The synthesis was performed by the sol-gel mechanism by using titanium isopropoxide and zinc acetate as precursors with the Ti: Zn ratio of 5:1. Characterization of material were conducted by x-ray diffraction analysis, surface area analysis and also diffuse reflectance UV-Visible spectrophotometry. The material obtained from the synthesis was tested in photocatalysis, Sono catalysis and Sono photocatalysis degradation of phenol solution. Results showed that material exhibited the activity of varied mechanism o- phenol degradation. In advance, the Sono photocatalysis degradation produced the synergy index of 1.169 compared to both photocatalysis and Sono catalysis.

  16. TiO2-Based Nanomaterials for Gas Sensing-Influence of Anatase and Rutile Contributions.

    PubMed

    Zakrzewska, K; Radecka, M

    2017-12-01

    The paper deals with application of three nanomaterial systems: undoped TiO 2 , chromium-doped TiO 2 :Cr and TiO 2 -SnO 2 synthesized by flame spray synthesis (FSS) technique for hydrogen sensing. The emphasis is put on the role of anatase and rutile polymorphic forms of TiO 2 in enhancing sensitivity towards reducing gases. Anatase-to-rutile transformation is achieved by annealing of undoped TiO 2 in air at 700 °C, specific Cr doping and modification with SnO 2 . Undoped TiO 2 and TiO 2 -SnO 2 exhibit n-type behaviour and while TiO 2 : 5 at.% Cr is a p-type semiconductor. X-ray diffraction (XRD) has been applied to determine anatase-to-rutile weight ratio as well as anatase and rutile crystal size. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been used to characterize the structure and morphological parameters. Optical reflectometry enabled to find and compare the band gaps E g of anatase and rutile predominated compositions. Electrical properties, i.e. the electrical conductivity and values of constant phase element (CPE), have been established on the basis of impedance spectroscopy. Dynamic responses of the electrical resistance as a function of hydrogen concentration revealed that predominance of rutile in anatase/rutile mixture is beneficial for gas sensing. Partial transformation to rutile in all three material systems under study resulted in an increased sensitivity towards hydrogen. It is proposed that this effect can be explained in a similar way as in photocatalysis, i.e. by specific band alignment and electron transfer from rutile to anatase to facilitate oxygen preadsorption on the surface of anatase grains.

  17. Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis.

    PubMed

    Yang, Liming; Yu, Liya E; Ray, Madhumita B

    2008-07-01

    In this study, photo/photocatalytic oxidation of common analgesic and antipyretic drug, paracetamol (acetaminophen), was investigated to determine the optimal operating conditions for degradation in water. UVA (365 nm) radiation alone degraded negligible amount of paracetamol, whereas paracetamol concentration decreased substantially under an irradiation of UVC (254 nm) with marginal changes in total organic carbon (TOC). In the presence of TiO2, much faster photodegradation of paracetamol and effective mineralization occurred; more than 95% of 2.0mM paracetamol was degraded within 80 min. The degradation rate constant decreased with an increase in the initial concentration of paracetamol, while it increased with light intensity and oxygen concentration. The degradation rate also increased with TiO2 loading until a concentration of 0.8 g L(-1). The degradation rate slowly increased between pH 3.5 and 9.5, but significantly decreased with increasing pH between 9.5 and 11.0. Based on the experimental data, a kinetic equation describing paracetamol photocatalytic degradation with various process parameters is obtained.

  18. Assessing the effects of UVA photocatalysis on soot-coated TiO2-containing mortars.

    PubMed

    De la Rosa, José M; Miller, Ana Z; Pozo-Antonio, J Santiago; González-Pérez, José A; Jiménez-Morillo, Nicasio T; Dionisio, Amelia

    2017-12-15

    The deposition of soot on building surfaces darkens their colour and leads to undesirable black crusts, which are one of the most serious problems on the conservation of built cultural heritage. As a preventive strategy, self-cleaning systems based on the use of titanium dioxide (TiO 2 ) coatings have been employed on building materials for degrading organic compounds deposited on building surfaces, improving their durability and performance. In this study, the self-cleaning effect of TiO 2 -containing mortars coated with diesel soot has been appraised under laboratory conditions. The mortar samples were manufactured using lime putty and two different doses of TiO 2 (2.5% and 5%). The lime mortars were then coated with diesel engine soot and irradiated with ultraviolet A (UVA) illumination for 30days. The photocatalytic efficiency was evaluated by visual inspection, field emission scanning electron microscopy (FESEM) and colour spectrophotometry. Changes in the chemical composition of the soot particles (including persistent organic pollutants) were assessed by analytical pyrolysis (Py-GC/MS) and solid state 13 C NMR spectroscopy. The FESEM and colour spectrophotometry revealed that the soot-coated TiO 2 -containing mortars promoted a self-cleaning effect after UVA irradiation. The combination of analytical pyrolysis and 13 C solid state NMR showed that the UVA irradiation caused the cracking of polycyclic aromatic structures and n-alkyl compounds of the diesel soot and its transformation into methyl polymers. Our findings also revealed that the inclusion of TiO 2 in the lime mortar formulations catalysed these transformations promoting the self-cleaning of the soot-stained mortars. The combined action of TiO 2 and UVA irradiation is a promising proxy to clean lime mortars affected by soot deposition. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effective nitrogen doping into TiO2 (N-TiO2) for visible light response photocatalysis.

    PubMed

    Yoshida, Tomoko; Niimi, Satoshi; Yamamoto, Muneaki; Nomoto, Toyokazu; Yagi, Shinya

    2015-06-01

    The thickness-controlled TiO2 thin films are fabricated by the pulsed laser deposition (PLD) method. These samples function as photocatalysts under UV light irradiation and the reaction rate depends on the TiO2 thickness, i.e., with an increase of thickness, it increases to the maximum, followed by decreasing to be constant. Such variation of the reaction rate is fundamentally explained by the competitive production and annihilation processes of photogenerated electrons and holes in TiO2 films, and the optimum TiO2 thickness is estimated to be ca. 10nm. We also tried to dope nitrogen into the effective depth region (ca. 10nm) of TiO2 by an ion implantation technique. The nitrogen doped TiO2 enhanced photocatalytic activity under visible-light irradiation. XANES and XPS analyses indicated two types of chemical state of nitrogen, one photo-catalytically active N substituting the O sites and the other inactive NOx (1⩽x⩽2) species. In the valence band XPS spectrum of the high active sample, the additional electronic states were observed just above the valence band edge of a TiO2. The electronic state would be originated from the substituting nitrogen and be responsible for the band gap narrowing, i.e., visible light response of TiO2 photocatalysts. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Synergistic effect of the presence of suspended and dissolved matter on the removal of cyanide from coking wastewater by TiO2 photocatalysis.

    PubMed

    Pueyo, Noelia; Miguel, Natividad; Mosteo, Rosa; Ovelleiro, José L; Ormad, María P

    2017-01-28

    This study assesses the influence of the presence of suspended and dissolved matter on the efficiency of TiO 2 photocatalysis for the removal of cyanide from coking wastewater. Photocatalytic processes were carried out at basic pH (pH 9) with titanium dioxide (1 g/L), artificial radiation (290-800 nm) and during different time periods (20-100 min). The first assays applied in aqueous solutions achieved promising results in terms of removing cyanide. The maximum cyanide removal obtained in coking wastewater was 89% after 80 min of irradiation in the presence of suspended and dissolved matter. The presence of suspended matter composed of coal improves the efficiency of the photocatalytic process due to the synergistic effect between carbon and TiO 2 . The absence of dissolved matter also improves the process due to the minimization of the hydroxyl radical scavenging effect produced by carbonate and bicarbonate ions. On the other hand, the presence of certain species in the real matrix such as silicon increases the activity of the titanium dioxide catalyst. In consequence, the improvement achieved by the photocatalytic process for the removal of cyanide in the absence of dissolved matter is counteracted.

  1. Characterization of TiO2-based semiconductors for photocatalysis by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Ângelo, Joana; Magalhães, Pedro; Andrade, Luísa; Mendes, Adélio

    2016-11-01

    The photocatalytic activity of a commercial titanium dioxide (P25) and of an in-house prepared P25/graphene composite is assessed according to standard ISO 22197-1:2007. The photoactivity performances of bare and composite TiO2-based materials were further studied by electrochemical impedance spectroscopy (EIS) technique to better understand the function of the graphene in the composite. EIS experiments were performed using a three-electrode configuration, which allows obtaining more detailed information about the complex charge transfer phenomena at the semiconductor/electrolyte interface. The Randles equivalent circuit was selected as the most suitable for modelling the present photocatalysts. The use of the graphene composite allows a more effective charge separation with lower charge transfer resistance and less e-/h+ recombination on the composite photocatalyst, reflected in the higher values of NO conversion.

  2. Fabrication of Al2O3 coated 2D TiO2 nanoparticle photonic crystal layers by reverse nano-imprint lithography and plasma enhanced atomic layer deposition.

    PubMed

    Kim, Ki-Kang; Ko, Ki-Young; Ahn, Jinho

    2013-10-01

    This paper reports simple process to enhance the extraction efficiency of photoluminescence (PL) from Eu-doped yttrium oxide (Y2O3:Eu3+) thin-film phosphor (TFP). Two-dimensional (2D) photonic crystal layer (PCL) was fabricated on Y2O3:Eu3+ phosphor films by reverse nano-imprint method using TiO2 nanoparticle solution as a nano-imprint resin and a 2D hole-patterned PDMS stamp. Atomic scale controlled Al2O3 deposition was performed onto this 2D nanoparticle PCL for the optimization of the photonic crystal pattern size and stabilization of TiO2 nanoparticle column structure. As a result, the light extraction efficiency of the Y2O3:Eu3+ phosphor film was improved by 2.0 times compared to the conventional Y2O3:Eu3+ phosphor film.

  3. Study on the enhanced adsorption properties of lysozyme on polyacrylic acid modified TiO2 nano-adsorbents

    NASA Astrophysics Data System (ADS)

    Liu, Yufeng; Jin, Zu; Meng, Hao; Zhang, Xia

    2018-01-01

    The adsorption and immobilization of enzymes onto solid carriers has been focused on due to their many advantages, such as improved stability against a thermal or organic solvent and a good cycle usability. TiO2 nanoparticles is one of excellent nano-adsorbents owing to its excellent biocompatibility, non-inflammatory, and abundant surface hydroxyl groups, which are convenient to be combined with various functional groups. In this paper polyacrylic acid (PAA) modified TiO2 nanoparticles were synthesized through an in situ light-induced polymerization of acrylic acid on the surface of TiO2 nanoparticles. The structure and surface physicochemical properties of the PAA/TiO2 nanoparticles were characterized by TEM, XRD, FT-IR, Zeta potential measurements and TG-DSC. The experimental results showed that the isoelectric point of PAA/TiO2 significantly reduced to 1.82 compared with that of pure TiO2 nanoparticles (6.08). In the adsorption tests of lysozyme (Lyz), the PAA/TiO2 nanoparticles displayed enhanced adsorption activity compared with pristine TiO2. The maximum adsorption capacity of PAA/TiO2 for Lyz was 225.9 mg g-1 under the optimum conditions where the initial concentration of Lyz was 300 mg ml-1, the addition amount of PAA/TiO2 was 6.4 mg, the adsorption time was 30 min and the pH value was 7.0. The sodium dodecyl sulfate (SDS, 0.5%) presented the best efficiency (76.86%) in the removal of adsorbed Lyz, and the PAA/TiO2 nanoparticles showed excellent adsorption stability based on five cyclic adsorption-desorption tests. The fitting calculation results of the adsorption isotherm and the thermodynamics indicated the adsorption was an exothermic, entropy increasing, spontaneous and monomolecular layer adsorption process.

  4. Photocatalysis of zinc oxide nanotip array/titanium oxide film heterojunction prepared by aqueous solution deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Lee, Bo-Wei; Kao, Chen-Yu

    2017-05-01

    A TiO2 film was prepared on indium tin oxide (ITO)/glass by aqueous solution deposition (ASD) with precursors of ammonium hexafluoro-titanate and boric acid at 40 °C. The photocatalysis of annealed TiO2 film increases with increasing growth time and decreases with increasing growth times longer than 60 min. A ZnO nanotip array was prepared on ZnO seed layer/TiO2 film/glass by aqueous solution deposition with precursors of zinc nitrate and ammonium hydroxide at 70 °C. The photocatalysis of ASD-ZnO/ASD-TiO2 film/ITO glass can be better than that of P25.

  5. Sonosynthesis of nano TiO2 on wool using titanium isopropoxide or butoxide in acidic media producing multifunctional fabric.

    PubMed

    Behzadnia, Amir; Montazer, Majid; Rashidi, Abousaeid; Rad, Mahnaz Mahmoudi

    2014-09-01

    This study presents a novel idea to prepare nanocrystalline structure of TiO2 under ambient pressure at 60-65 °C using in situ sonochemical synthesis by hydrolysis of either titanium isopropoxide or titanium butoxide in an acidic aqueous solution. The nano titanium dioxide coated wool fabrics possess significant antibacterial/antifungal activity and self-cleaning property by discoloring Methylene blue stain under sunlight irradiation. This process has no negative effect on cytotoxicity and tensile strength of the sonotreated fabric even reduces alkaline solubility and photoyellowing and improves hydrophilicity. More titanium isopropoxide or titanium butoxide as a precursor led to higher photocatalytic activities of the treated fabrics. Also introducing more ethanol improved the adsorption of TiO2 on the wool fabric surface leading to enhanced photocatalytic activity. EDS and XRD patterns, SEM images, X-ray mapping confirmed the presence of nano TiO2 particles on the fabric surface. The role of both solvent and precursor concentrations on the various properties of the fabric was investigated and the optimized conditions were obtained using response surface methodology. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Charge transfer between biogenic jarosite derived Fe3+and TiO2 enhances visible light photocatalytic activity of TiO2.

    PubMed

    Chowdhury, Mahabubur; Shoko, Sipiwe; Cummings, Fransciuos; Fester, Veruscha; Ojumu, Tunde Victor

    2017-04-01

    In this work, we have shown that mining waste derived Fe 3+ can be used to enhance the photocatalytic activity of TiO 2 . This will allow us to harness a waste product from the mines, and utilize it to enhance TiO 2 photocatalytic waste water treatment efficiency. An organic linker mediated route was utilized to create a composite of TiO 2 and biogenic jarosite. Evidence of FeOTi bonding in the TiO 2 /jarosite composite was apparent from the FTIR, EFTEM, EELS and ELNEFS analysis. The as prepared material showed enhanced photocatalytic activity compared to pristine TiO 2 , biogenic jarosite and mechanically mixed sample of jarosite and TiO 2 under both simulated and natural solar irradiation. The prepared material can reduce the electrical energy consumption by 4 times compared to pristine P25 for degradation of organic pollutant in water. The material also showed good recyclability. Results obtained from sedimentation experiments showed that the larger sized jarosite material provided the surface to TiO 2 nanoparticles, which increases the settling rate of the materials. This allowed simple and efficient recovery of the catalyst from the reaction system after completion of photocatalysis. Enhanced photocatalytic activity of the composite material was due to effective charge transfer between TiO 2 and jarosite derived Fe 3+ as was shown from the EELS and ELNEFS. Generation of OH was supported by photoluminesence (PL) experiments. Copyright © 2016. Published by Elsevier B.V.

  7. Microwave-assisted solvothermal synthesis of hierarchical TiO2 microspheres for efficient electro-field-assisted-photocatalytic removal of tributyltin in tannery wastewater.

    PubMed

    Zhao, Yang; Huang, Zhiding; Chang, Wenkai; Wei, Chao; Feng, Xugen; Ma, Lin; Qi, Xiaoxia; Li, Zenghe

    2017-07-01

    Organotin compounds have been widely used in recent decades, however, the residential tributyltin (TBT) in environment has potential harmful effects on human health due to the disruption of endocrine system even at trace level. Herein, this work reports on an effective electro-field-assisted-photocatalytic technique for removal of TBT by applying an electric field to photocatalysis of as-prepared hierarchical TiO 2 microspheres. The synthesis of catalytic materials is based on a self-assembly process induced by microwave-assisted solvothermal reaction. Hierarchical TiO 2 microspheres consisting of nanowires can be obtained in short time with this facile method and possess high surface area and superior optical properties. As the catalyst, it was found that the reaction rate constant of electro-field-assisted-photocatalytic removal (0.0488 min -1 ) of TBT exhibited almost a 9 fold improvement as compared to that of photocatalysis (0.0052 min -1 ). The proposed mechanism of electro-field-assisted-photocatalytic removal of TBT was verified by using 117 Sn-enriched TBT spike solution as an isotopic tracer. In addition, varying impacts from some key reaction conditions, such as voltage of potential, pH value and the presence of Cr and formaldehyde were also discussed. The overall satisfactory TBT removal performance of the proposed electro-field-assisted-photocatalysis procedure with hierarchical TiO 2 microspheres, which was validated using actual tannery wastewater samples from three different kinds of tanning procedures. These attributes suggest that this electro-field-assisted-photocatalysis may have broad applications for the treatment of tannery wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Enhanced removal of toxic Cr(VI) in tannery wastewater by photoelectrocatalysis with synthetic TiO2 hollow spheres

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Chang, Wenkai; Huang, Zhiding; Feng, Xugen; Ma, Lin; Qi, Xiaoxia; Li, Zenghe

    2017-05-01

    Owing to the acute toxicity and mobility, the Cr(VI) in tannery wastewater is a huge threat to biological and environmental systems. Herein, an effective photoelectrocatalytic reduction of Cr(VI) was carried out by applying electric field to photocatalysis of as-prepared TiO2 spheres. The synthesis of spherical TiO2 catalytic materials with hollow structure and high surface areas was based on a self-assembly process induced by a mixture of organic acetic acid and ethanol. The possible formation mechanism of TiO2 spheres was proposed and verified by acid concentration-dependent and temperature-dependent experiments. It was found that the reaction rate constant of photoelectrocatalytic reduction of Cr(VI) exhibited an almost 3 fold improvement (0.0362 min-1) as compared to that of photocatalysis (0.0126 min-1). As a result, the mechanism of photoelectrocatalytic reduction of Cr(VI) was described according to the simultaneous determination of Cr(VI), Cr(III) and total Cr in the system. In addition, the effect of pH value and voltage of potential were also discussed. Moreover, this photoelectrocatalysis with TiO2 hollow spheres exhibited excellent activity for reduction of Cr(VI) in actual tannery wastewater produced from three different tanning procedures. These attributes suggest that this photoelectrocatalysis has strong potential applications in the treatment of tannery pollutants.

  9. Microbial disinfection of water with endotoxin degradation by photocatalysis using Ag@TiO2 core shell nanoparticles.

    PubMed

    S, Sreeja; K, Vidya Shetty

    2016-09-01

    The studies on photocatalytic disinfection of water contaminated with Escherichia coli using Ag core and TiO2 shell (Ag@TiO2) nanoparticles under UV irradiation showed that these nanoparticles are very efficient in water disinfection both in their free and immobilised form. Complete disinfection of 40 × 10(8) CFU/mL could be achieved in 60 min with 0.4 g/L catalyst loading and in 35 min with 1 g/L catalyst loading. Ag@TiO2 nanoparticles were found to be superior to TiO2 nanoparticles in photocatalytic disinfection of water. Kinetics of disinfection followed Chick's law, and the pseudo-first-order rate constant was 0.0168 min(-1) for a catalyst loading of 0.1 g/L. Disinfection of water and degradation of endotoxins (harmful disinfection residual) occurred simultaneously during photocatalysis thereby making the treated water safe for use. Endotoxin degradation showed a shifting order of kinetics. The rate of photocatalysis with nanoparticles immobilised in cellulose acetate film was marginally lower as compared to that of free nanoparticles. Negligible Ag ion leakage and re-growth of cells post-photo-catalytic treatment of water confirmed that complete disintegration of E. coli occurred during photocatalysis making the treated water safe for use. Therefore, Ag@TiO2 nanoparticles have a potential for large-scale application in drinking water treatment plants and household purification units.

  10. Synthesis of novel 3D SnO flower-like hierarchical architectures self-assembled by nano-leaves and its photocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yongkui; Wang, Fengping, E-mail: fpwang@ustb.edu.cn; Iqbal, M. Zubair

    Highlights: • Novel 3D SnO flowers self-assembled by 2D nano-leaves were synthesized by hydrothermal method. • The SnO nano-leaf is of single crystalline nature. • The band gap of 2.59 eV of as-prepared products was obtained. • The as-synthesized material will be a promising photocatalytic material. - Abstract: In this report, the novel 3D SnO flower-like hierarchical architectures self-assembled by 2D SnO nano-leaves are successfully synthesized via template-free hydrothermal approach under facile conditions. The high-resolution transmission electron microscopy results demonstrate that the 2D nano-leaves structure is of single crystalline nature. The band gap 2.59 eV for prepared product is obtainedmore » from UV–vis diffuse reflectance spectrum. The photocatalysis of the as prepared SnO for degrading methyl orange (MO) has been studied. A good photocatalytic activity is obtained and the mechanism is discussed in detail. Results indicate that the SnO nanostructures are the potential candidates for photocatalyst applications.« less

  11. First-principles study on codoping effect to enhance photocatalytic activity of anatase TiO2

    NASA Astrophysics Data System (ADS)

    Bai, Yujie; Zhang, Qinfang; Zheng, Fubao; Yang, Yun; Meng, Qiangqiang; Zhu, Lei; Wang, Baolin

    2017-03-01

    Codopant is an effective approach to modify the bandgap and band edge positions of transition metal oxide. Here, the electronic structures as well as the optical properties of pristine, mono-doped (N/P/Sb) and codoped (Sb, N/P) anatase TiO2 have been systematically investigated based on density functional theory calculations. It is found that mono-doped TiO2 exhibits either unoccupied or partially occupied intermediate state within the energy gap, which promotes the recombination of electron-hole pairs. However, the presence of (Sb, N/P) codopant not only effectively reduces the width of bandgap by introducing delocalized occupied intermediate states, but also adjusts the band edge alignment to enhance the hydrogen evolution activity of TiO2. Moreover, the optical absorption spectrum for (Sb, N/P) codoped TiO2, which is favored under oxygen-rich condition, demonstrates the improvement of its visible light absorption. These findings will promote the potential application of (Sb, N/P) codoped TiO2 photocatalysis for water splitting under visible light irradiation.

  12. Toxicological aspects of photocatalytic degradation of selected xenobiotics with nano-sized Mn-doped TiO2.

    PubMed

    Ozmen, Murat; Güngördü, Abbas; Erdemoglu, Sema; Ozmen, Nesrin; Asilturk, Meltem

    2015-08-01

    The toxic effects of two selected xenobiotics, bisphenol A (BPA) and atrazine (ATZ), were evaluated after photocatalytic degradation using nano-sized, Mn-doped TiO2. Undoped and Mn-doped TiO2 nanoparticles were synthesized. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), UV-vis-diffuse reflectance spectra (DRS), X-ray fluorescence spectroscopy (XRF), and BET surface area. The photocatalytic efficiency of the undoped and Mn-doped TiO2 was evaluated for BPA and ATZ. The toxicity of the synthesized photocatalysts and photocatalytic by-products of BPA and ATZ was determined using frog embryos and tadpoles, zebrafish embryos, and bioluminescent bacteria. Possible toxic effects were also evaluated using selected enzyme biomarkers. The results showed that Mn-doped TiO2 nanoparticles did not cause significant lethality in Xenopus laevis embryos and tadpoles, but nonfiltered samples caused lethality in zebrafish. Furthermore, Mn-doping of TiO2 increased the photocatalytic degradation capability of nanoparticles, and it successfully degraded BPA and AZT, but degradation of AZT caused an increase of the lethal effects on both tadpoles and fish embryos. Degradation of BPA caused a significant reduction of lethal effects, especially after 2-4h of degradation. However, biochemical assays showed that both Mn-doped TiO2 and the degradation by-products caused a significant change of selected biomarkers on X. laevis tadpoles; thus, the ecological risks of Mn-doped TiO2 should be considered due to nanomaterial applications and for spilled nanoparticles in an aquatic ecosystem. Also, the risk of nanoparticles should be considered using indicator reference biochemical markers to verify the environmental health impacts. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Intensification of electrochemiluminescence of luminol on TiO2 supported Au atomic cluster nano-hybrid modified electrode.

    PubMed

    Yu, Zhimin; Wei, Xiuhua; Yan, Jilin; Tu, Yifeng

    2012-04-21

    With TiO(2) nanoparticles as carrier, a supported nano-material of Au atomic cluster/TiO(2) nano-hybrid was synthesized. It was then modified onto the surface of indium tin oxide (ITO) by Nafion to act as a working electrode for exciting the electrochemiluminescence (ECL) of luminol. The properties of the nano-hybrid and the modified electrode were characterized by XRD, XPS, electronic microscopy, electrochemistry and spectroscopy. The experimental results demonstrated that the modification of this nano-hybrid onto the ITO electrode efficiently intensified the ECL of luminol. It was also revealed that the ECL intensity of luminol on this modified electrode showed very sensitive responses to oxygen and hydrogen peroxide. The detection limits for dissolved oxygen and hydrogen peroxide were 2 μg L(-1) and 5.5 × 10(-12) M, respectively. Besides the discussion of the intensifying mechanism of this nano-hybrid for ECL of luminol, the developed method was also applied for monitoring dissolved oxygen and evaluating the scavenging efficiency of reactive oxygen species of the Ganoderma lucidum spore.

  14. Treatment of chlorinated solvents by TiO2 photocatalysis and photo-Fenton: influence of operating conditions in a solar pilot plant.

    PubMed

    Rodríguez, S Malato; Gálvez, J Blanco; Rubio, Manuel I Maldonado; Ibáñez, P Fernández; Gernjak, W; Alberola, I Oller

    2005-01-01

    Titanium dioxide photocatalysis (using 20 0mg l(-1) of TiO2), under aerobic and anaerobic conditions, and photo-Fenton (2 and 56 mg l(-1) iron) were applied to the treatment of different NBCS (non-biodegradable chlorinated solvents), such as dichloroethane, dichloromethane and trichloromethane dissolved in water at 50 mg l(-1). All the tests were performed in a 35-l solar pilot plant with compound parabolic collectors (CPCs) under natural illumination. The two solar treatments were compared with attention to chloride release and TOC mineralisation, as the main parameters. Photo-Fenton was found to be the more appropriate treatment for these compounds, assuming volatilisation as a drawback of photocatalytic degradation of NBCS dissolved in water. In this context, several operating parameters related to NBCS degradation, e.g., treatment time, temperature, hydrogen peroxide consumption and volatility of parent compounds are discussed. The correct choice of operating conditions can very often diminish the problem of volatilisation during treatment.

  15. High surface area TiO2/SBA-15 nanocomposites: Synthesis, microstructure and adsorption-enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Wei, J. Q.; Chen, X. J.; Wang, P. F.; Han, Y. B.; Xu, J. C.; Hong, B.; Jin, H. X.; Jin, D. F.; Peng, X. L.; Li, J.; Yang, Y. T.; Ge, H. L.; Wang, X. Q.

    2018-06-01

    Mesoporous SBA-15 was used to anchor TiO2 nanoparticles into the mesopores to form high surface area TiO2/SBA-15 nanocomposites, and then the influence of mesoporous-structure on the photocatalytic performance was investigated. TiO2/SBA-15 nanocomposites possessed the high specific surface area and appropriate pore size, indicating the excellent adsorption performance. TiO2/SBA-15 nanocomposites exhibited the higher photocatalytic activity to degrade dyes (methylene blue: MB) than TiO2 (removing SBA-15), which should attributed to the excellent adsorption performance of the nanocomposites. MB was absorbed to form the higher concentration near TiO2/SBA-15 photocatalysts, and the photocatalytic degradation for MB was improved.

  16. Electrospinning preparation of oxygen-deficient nano TiO2-x/carbon fibre membrane as a self-standing high performance anode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Jing, Mao-xiang; Li, Jing-quan; Han, Chong; Yao, Shan-shan; Zhang, Ji; Zhai, Hong-ai; Chen, Li-li; Shen, Xiang-qian; Xiao, Ke-song

    2017-07-01

    Improving the specific capacity and electronic conductivity of TiO2 can boost its practical application as a promising anode material for lithium ion batteries. In this work, a three-dimensional networking oxygen-deficient nano TiO2-x/carbon fibre membrane was achieved by combining the electrospinning process with a hot-press sintering method and directly used as a self-standing anode. With the synergistic effects of three-dimensional conductive networks, surface oxygen deficiency, high specific surface area and high porosity, binder-free and self-standing structure, etc., the nano TiO2-x/carbon fibre membrane electrode displays a high electrochemical reaction kinetics and a high specific capacity. The reversible capacity could be jointly generated from porous carbon, full-lithiation of TiO2 and interfacial lithium storage. At a current density of 100 mA g-1, the reversible discharge capacity can reach 464 mA h g-1. Even at 500 mA g-1, the discharge capacity still remains at 312 mA h g-1. Compared with pure carbon fibre and TiO2 powder, the TiO2-x/C fibre membrane electrode also exhibits an excellent cycle performance with a discharge capacity of 209 mA h g-1 after 700 cycles at the current density of 300 mA g-1, and the coulombic efficiency always remains at approximately 100%.

  17. Photo-induced transformation process at gold clusters-semiconductor interface: Implications for the complexity of gold clusters-based photocatalysis

    PubMed Central

    Liu, Siqi; Xu, Yi-Jun

    2016-01-01

    The recent thrust in utilizing atomically precise organic ligands protected gold clusters (Au clusters) as photosensitizer coupled with semiconductors for nano-catalysts has led to the claims of improved efficiency in photocatalysis. Nonetheless, the influence of photo-stability of organic ligands protected-Au clusters at the Au/semiconductor interface on the photocatalytic properties remains rather elusive. Taking Au clusters–TiO2 composites as a prototype, we for the first time demonstrate the photo-induced transformation of small molecular-like Au clusters to larger metallic Au nanoparticles under different illumination conditions, which leads to the diverse photocatalytic reaction mechanism. This transformation process undergoes a diffusion/aggregation mechanism accompanied with the onslaught of Au clusters by active oxygen species and holes resulting from photo-excited TiO2 and Au clusters. However, such Au clusters aggregation can be efficiently inhibited by tuning reaction conditions. This work would trigger rational structural design and fine condition control of organic ligands protected-metal clusters-semiconductor composites for diverse photocatalytic applications with long-term photo-stability. PMID:26947754

  18. Photo-induced transformation process at gold clusters-semiconductor interface: Implications for the complexity of gold clusters-based photocatalysis

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Xu, Yi-Jun

    2016-03-01

    The recent thrust in utilizing atomically precise organic ligands protected gold clusters (Au clusters) as photosensitizer coupled with semiconductors for nano-catalysts has led to the claims of improved efficiency in photocatalysis. Nonetheless, the influence of photo-stability of organic ligands protected-Au clusters at the Au/semiconductor interface on the photocatalytic properties remains rather elusive. Taking Au clusters-TiO2 composites as a prototype, we for the first time demonstrate the photo-induced transformation of small molecular-like Au clusters to larger metallic Au nanoparticles under different illumination conditions, which leads to the diverse photocatalytic reaction mechanism. This transformation process undergoes a diffusion/aggregation mechanism accompanied with the onslaught of Au clusters by active oxygen species and holes resulting from photo-excited TiO2 and Au clusters. However, such Au clusters aggregation can be efficiently inhibited by tuning reaction conditions. This work would trigger rational structural design and fine condition control of organic ligands protected-metal clusters-semiconductor composites for diverse photocatalytic applications with long-term photo-stability.

  19. Self-sterilization using silicone catheters coated with Ag and TiO2 nanocomposite thin film.

    PubMed

    Yao, Yanyan; Ohko, Yoshihisa; Sekiguchi, Yuki; Fujishima, Akira; Kubota, Yoshinobu

    2008-05-01

    Ag/titanium dioxide (TiO(2))-coated silicon catheters were easily fabricated with Ag nanoparticles deposition on both the inside wall and the outside wall of TiO(2)-coated catheters by TiO(2) photocatalysis. This is an application of the silicon catheters coated with TiO(2), which possess a self-sterilizing and self-cleaning property combining with UV light illumination (Ohko et al., J Biomed Mater Res: Appl Biomater 2001;58:97). Ag/TiO(2)-coated silicon catheters exhibited a strong bactericidal effect even in the dark. When the 2-5 x 10(5) of colony-forming units of Escherichia coli, Pseudomonas aeruginosa, or Staphylococcus aureus were respectively applied to the surface of the Ag/TiO(2) catheters, which were loaded with approximately 15 nmol cm(-2) of Ag, 99% effective sterilization occurred in a very short time: 20 min for E. coli, 60 min for P. aeruginosa, and 90 min for S. aureus. Additionally, the Ag/TiO(2)-coated catheters possessed a strong self-cleaning property. Using UV illumination, the photocatalytic decomposition rate of methylene blue dye representing the self-cleaning capability, on an Ag/TiO(2) catheter which was loaded with 2 nmol cm(-2) of Ag, was approximately 1.2 times higher (at maximum) than that on TiO(2) coating alone. Furthermore, the Ag nanoparticles can be pre-eminently and uniformly deposited onto the TiO(2) coating, and the amount of Ag was easily controllable from a few nanomoles per square centimeter to approximately 70 nmol cm(-2) by changing the UV illumination time for TiO(2) photocatalysis. This type of catheter shows a great promise in lowering the incidence of catheter-related bacterial infections. Copyright 2007 Wiley Periodicals, Inc.

  20. Uniform Gold-Nanoparticle-Decorated {001}-Faceted Anatase TiO2 Nanosheets for Enhanced Solar-Light Photocatalytic Reactions.

    PubMed

    Shi, Huimin; Zhang, Shi; Zhu, Xupeng; Liu, Yu; Wang, Tao; Jiang, Tian; Zhang, Guanhua; Duan, Huigao

    2017-10-25

    The {001}-faceted anatase TiO 2 micro-/nanocrystals have been widely investigated for enhancing the photocatalysis and photoelectrochemical performance of TiO 2 nanostructures, but their practical applications still require improved energy conversion efficiency under solar-light and enhanced cycling stability. In this work, we demonstrate the controlled growth of ultrathin {001}-faceted anatase TiO 2 nanosheets on flexible carbon cloth for enhancing the cycling stability, and the solar-light photocatalytic performance of the synthesized TiO 2 nanosheets can be significantly improved by decorating with vapor-phase-deposited uniformly distributed plasmonic gold nanoparticles. The fabricated Au-TiO 2 hybrid system shows an 8-fold solar-light photocatalysis enhancement factor in photodegrading Rhodamine B, a high photocurrent density of 300 μA cm -2 under the illumination of AM 1.5G, and 100% recyclability under a consecutive long-term cycling measurement. Combined with electromagnetic simulations and systematic control experiments, it is believed that the tandem-type separation and transition of plasmon-induced hot electrons from Au nanoparticles to the {001} facet of anatase TiO 2 , and then to the neighboring {101} facet, is responsible for the enhanced solar-light photochemical performance of the hybrid system. The Au-TiO 2 nanosheet system addresses well the problems of the limited solar-light response of anatase TiO 2 and fast recombination of photogenerated electron-hole pairs, representing a promising high-performance recyclable solar-light-responding system for practical photocatalytic reactions.

  1. Angle dependence in slow photon photocatalysis using TiO2 inverse opals

    NASA Astrophysics Data System (ADS)

    Curti, Mariano; Zvitco, Gonzalo; Grela, María Alejandra; Mendive, Cecilia B.

    2018-03-01

    The slow photon effect was studied by means of the photocatalytic degradation of stearic acid over TiO2 inverse opals. The comparison of the degradation rates over inverse opals with those obtained over disordered structures at different irradiation angles showed that the irradiation at the blue edge of the stopband leads to the activation of the effect, evidenced by an improvement factor of 1.8 ± 0.6 in the reaction rate for irradiation at 40°. The rigorous coupled-wave analysis (RCWA) method was employed to confirm the source of the enhancement; simulated spectra showed an enhancement in the absorption of the TiO2 matrix that composes the inverse opal at a 40° irradiation angle, owing to an appropriate position of the stopband in relation to the absorption onset of TiO2.

  2. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata.

    PubMed

    Aruoja, Villem; Dubourguier, Henri-Charles; Kasemets, Kaja; Kahru, Anne

    2009-02-01

    Toxicities of ZnO, TiO2 and CuO nanoparticles to Pseudokirchneriella subcapitata were determined using OECD 201 algal growth inhibition test taking in account potential shading of light. The results showed that the shading effect by nanoparticles was negligible. ZnO nanoparticles were most toxic followed by nano CuO and nano TiO2. The toxicities of bulk and nano ZnO particles were both similar to that of ZnSO4 (72 h EC50 approximately 0.04 mg Zn/l). Thus, in this low concentration range the toxicity was attributed solely to solubilized Zn2+ ions. Bulk TiO2 (EC50=35.9 mg Ti/l) and bulk CuO (EC50=11.55 mg Cu/l) were less toxic than their nano formulations (EC50=5.83 mg Ti/l and 0.71 mg Cu/l). NOEC (no-observed-effect-concentrations) that may be used for risk assessment purposes for bulk and nano ZnO did not differ (approximately 0.02 mg Zn/l). NOEC for nano CuO was 0.42 mg Cu/l and for bulk CuO 8.03 mg Cu/l. For nano TiO2 the NOEC was 0.98 mg Ti/l and for bulk TiO2 10.1 mg Ti/l. Nano TiO2 formed characteristic aggregates entrapping algal cells that may contribute to the toxic effect of nano TiO2 to algae. At 72 h EC50 values of nano CuO and CuO, 25% of copper from nano CuO was bioavailable and only 0.18% of copper from bulk CuO. Thus, according to recombinant bacterial and yeast Cu-sensors, copper from nano CuO was 141-fold more bioavailable than from bulk CuO. Also, toxic effects of Cu oxides to algae were due to bioavailable copper ions. To our knowledge, this is one of the first systematic studies on effects of metal oxide nanoparticles on algal growth and the first describing toxic effects of nano CuO towards algae.

  3. Visible Light Photocatalysis via CdS/ TiO 2 Nanocomposite Materials

    DOE PAGES

    Srinivasan, Sesha S.; Wade, Jeremy; Stefanakos, Elias K.

    2006-01-01

    Nmore » anostructured colloidal semiconductors with heterogeneous photocatalytic behavior have drawn considerable attention over the past few years. This is due to their large surface area, high redox potential of the photogenerated charge carriers, and selective reduction/oxidation of different classes of organic compounds. In the present paper, we have carried out a systematic synthesis of nanostructured CdS- TiO 2 via reverse micelle process. The structural and microstructural characterizations of the as-prepared CdS- TiO 2 nanocomposites are determined using XRD and SEM-EDS techniques. The visible light assisted photocatalytic performance is monitored by means of degradation of phenol in water suspension.« less

  4. Visible-Light-Responsive Photocatalysis: Ag-Doped TiO2 Catalyst Development and Reactor Design Testing

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Hintze, Paul E.; Meier, Anne; Shah, Malay G.; Devor, Robert W.; Surma, Jan M.; Maloney, Phillip R.; Bauer, Brint M.; Mazyck, David W.

    2016-01-01

    In recent years, the alteration of titanium dioxide to become visible-light-responsive (VLR) has been a major focus in the field of photocatalysis. Currently, bare titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Hg-vapor fluorescent light sources are used in photocatalytic oxidation (PCO) reactors to provide adequate levels of ultraviolet light for catalyst activation; these mercury-containing lamps, however, hinder the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. VLR-TiO2 would allow for use of ambient visible solar radiation or highly efficient visible wavelength LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Over the past three years, Kennedy Space Center has developed a VLR Ag-doped TiO2 catalyst with a band gap of 2.72 eV and promising photocatalytic activity. Catalyst immobilization techniques, including incorporation of the catalyst into a sorbent material, were examined. Extensive modeling of a reactor test bed mimicking air duct work with throughput similar to that seen on the International Space Station was completed to determine optimal reactor design. A bench-scale reactor with the novel catalyst and high-efficiency blue LEDs was challenged with several common volatile organic compounds (VOCs) found in ISS cabin air to evaluate the system's ability to perform high-throughput trace contaminant removal. The ultimate goal for this testing was to determine if the unit would be useful in pre-heat exchanger operations to lessen condensed VOCs in recovered water thus lowering the burden of VOC removal for water purification systems.

  5. Investigation of TiO2 based Mixed-metal Oxide Catalysts for the Production of Hydrogen

    NASA Astrophysics Data System (ADS)

    Luo, Si

    Abstract of the Dissertation. Investigation of TiO2 based Mixed-metal Oxide Catalysts for the Production of Hydrogen. by. Si Luo. Doctor of Philosophy. in. Chemistry. Stony Brook University. 2017. The environmental impacts of fossil fuel consumption and the resulting global warming have attracted increasing attention to technologies and fuels that are both sustainable and renewable in the 21st century. To date, hydrogen has been proposed as an encouraging candidate of the next generation of chemical fuels, which meets all demands for carbon free and efficient chemistries that could be produced from a variety of sources. However, despite tremendous efforts, there is a clear need to develop new catalysts for the production of hydrogen through catalytic processes that are sustainable, such as in the photocatalytic splitting of water (PCS: H2O → H2 + 0.5O2) and the water-gas shift process (WGS: CO + H2O → H2 + CO2). This thesis is primarily motivated by this challenge and has focused on the photochemical and thermal production of H2 by the employment of novel TiO2 based catalysts. TiO2 is one of the most widely studied photocatalysts in all history, due to its relatively high activity, robust stability, safety and low cost. In this thesis, several TiO2-based mixed metal oxide nano catalysts (CeOx-TiO2, Ru-TiO2, Ga-TiO2) have been synthesized with carefully controlled morphology/structure and with inclusion of co-catalysts (Pt). These novel materials were comprehensively characterized to better understand their morphology, crystal structure, and electronic properties in an attempt to unravel phenomena responsible for high catalytic performance for the production of H2 from H2O. We have discovered the importance of low-dimensional metal oxide and interfacial stabilized nano-scaled mixed metal oxides for H2 production, while learning how best to tune such structure to optimize both thermal and photochemical conversion. Optimized structure and/or composition have been

  6. Structure of a model TiO2 photocatalytic interface

    NASA Astrophysics Data System (ADS)

    Hussain, H.; Tocci, G.; Woolcot, T.; Torrelles, X.; Pang, C. L.; Humphrey, D. S.; Yim, C. M.; Grinter, D. C.; Cabailh, G.; Bikondoa, O.; Lindsay, R.; Zegenhagen, J.; Michaelides, A.; Thornton, G.

    2017-04-01

    The interaction of water with TiO2 is crucial to many of its practical applications, including photocatalytic water splitting. Following the first demonstration of this phenomenon 40 years ago there have been numerous studies of the rutile single-crystal TiO2(110) interface with water. This has provided an atomic-level understanding of the water-TiO2 interaction. However, nearly all of the previous studies of water/TiO2 interfaces involve water in the vapour phase. Here, we explore the interfacial structure between liquid water and a rutile TiO2(110) surface pre-characterized at the atomic level. Scanning tunnelling microscopy and surface X-ray diffraction are used to determine the structure, which is comprised of an ordered array of hydroxyl molecules with molecular water in the second layer. Static and dynamic density functional theory calculations suggest that a possible mechanism for formation of the hydroxyl overlayer involves the mixed adsorption of O2 and H2O on a partially defected surface. The quantitative structural properties derived here provide a basis with which to explore the atomistic properties and hence mechanisms involved in TiO2 photocatalysis.

  7. Cellulose acetate-based SiO2/TiO2 hybrid microsphere composite aerogel films for water-in-oil emulsion separation

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Ma, Jianjun; Ling, Jing; Li, Na; Wang, Di; Yue, Fan; Xu, Shimei

    2018-03-01

    The cellulose acetate (CA)/SiO2-TiO2 hybrid microsphere composite aerogel films were successfully fabricated via water vapor-induced phase inversion of CA solution and simultaneous hydrolysis/condensation of 3-aminopropyltrimethoxysilane (APTMS) and tetrabutyl titanate (TBT) at room temperature. Micro-nano hierarchical structure was constructed on the surface of the film. The film could separate nano-sized surfactant-stabilized water-in-oil emulsions only under gravity. The flux of the film for the emulsion separation was up to 667 L m-2 h-1, while the separation efficiency was up to 99.99 wt%. Meanwhile, the film exhibited excellent stability during multiple cycles. Moreover, the film performed excellent photo-degradation performance under UV light due to the photocatalytic ability of TiO2. Facile preparation, good separation and potential biodegradation maked the CA/SiO2-TiO2 hybrid microsphere composite aerogel films a candidate in oil/water separation application.

  8. Electrospinning preparation of oxygen-deficient nano TiO2-x/carbon fibre membrane as a self-standing high performance anode for Li-ion batteries

    PubMed Central

    Li, Jing-quan; Han, Chong; Yao, Shan-shan; Zhang, Ji; Zhai, Hong-ai; Chen, Li-li; Shen, Xiang-qian; Xiao, Ke-song

    2017-01-01

    Improving the specific capacity and electronic conductivity of TiO2 can boost its practical application as a promising anode material for lithium ion batteries. In this work, a three-dimensional networking oxygen-deficient nano TiO2-x/carbon fibre membrane was achieved by combining the electrospinning process with a hot-press sintering method and directly used as a self-standing anode. With the synergistic effects of three-dimensional conductive networks, surface oxygen deficiency, high specific surface area and high porosity, binder-free and self-standing structure, etc., the nano TiO2-x/carbon fibre membrane electrode displays a high electrochemical reaction kinetics and a high specific capacity. The reversible capacity could be jointly generated from porous carbon, full-lithiation of TiO2 and interfacial lithium storage. At a current density of 100 mA g−1, the reversible discharge capacity can reach 464 mA h g−1. Even at 500 mA g−1, the discharge capacity still remains at 312 mA h g−1. Compared with pure carbon fibre and TiO2 powder, the TiO2-x/C fibre membrane electrode also exhibits an excellent cycle performance with a discharge capacity of 209 mA h g−1 after 700 cycles at the current density of 300 mA g−1, and the coulombic efficiency always remains at approximately 100%. PMID:28791160

  9. TiO2/porous adsorbents: Recent advances and novel applications.

    PubMed

    MiarAlipour, Shayan; Friedmann, Donia; Scott, Jason; Amal, Rose

    2018-01-05

    This article reviews two interrelated areas of research: the first is the use of TiO 2 -supported adsorbent materials as enhanced heterogeneous photocatalysts and their application to various reactions for organic pollutant removal from air and water; the second is the combination of adsorbent materials with TiO 2 photocatalysts which aims to efficiently regenerate adsorbent materials using illumination. By reviewing both areas of research, the following topics are covered; (i) photocatalytic activation of TiO 2; (ii) related properties of photocatalytic TiO 2; (iii) shortcomings of photocatalytic processes; (iv) preparation methods of composite TiO 2 /adsorbent materials and their photocatalytic performance; (v) properties of common adsorbents and their applications for pollutant removal from air and water; (vi) adsorbent regeneration methods and their economic and operational issues; (vii) conclusions and future outlooks. This topic has not been previously reviewed to such an extent, and considerable knowledge can be gained from assembling the large number of studies on adsorption-photocatalysis combinations. As such, this review provides guidance for researchers working in the fields of environmental and chemical engineering focussing on organic pollutant removal and the engineering of new high performance photocatalytic TiO 2 -supported porous adsorbent materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Characterization of manufactured TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Motzkus, C.; Macé, T.; Vaslin-Reimann, S.; Ausset, P.; Maillé, M.

    2013-04-01

    Technological advances in nanomaterials have allowed the development of new applications in industry, increasing the probability of finding airborne manufactured and engineered nano-objects in the workplace, as well as in ambient air. Scientific studies on health and environmental risks have indicated that airborne nano-objects in ambient air have potential adverse effects on the health of exposed workers and the general population. For regulatory purposes, ambient measurements of particulate matter are based on the determination of mass concentrations for PM10 and PM2.5, as regulated in the European Directive 2008/50/EC. However, this legislation is not suitable for airborne manufactured and engineered nano-objects. Parameters characterising ultrafine particles, such as particle number concentration and size distribution, are under consideration for future health-based legislation, to monitor workplaces and to control industrial processes. Currently, there are no existing regulations covering manufactured airborne nano-objects. There is therefore a clear, unaddressed need to focus on the toxicology and exposure assessment of nano-objects such as titanium dioxide (TiO2), which are manufactured and engineered in large quantities in industry. To perform reliable toxicology studies it is necessary to determine the relevant characteristics of nano-objects, such as morphology, surface area, agglomeration, chemical composition, particle size and concentration, by applying traceable methods. Manufacturing of nanomaterials, and their use in industrial applications, also require traceable characterisation of the nanomaterials, particularly for quality control of the process. The present study arises from the OECD WPMN sponsorship programme, supported by the French Agency for Environmental and Occupational Health Safety (ANSES), in order to develop analytical methods for the characterization of TiO2 nanoparticles in size and count size distribution, based on different

  11. GW quasiparticle bandgaps of anatase TiO2 starting from DFT + U.

    PubMed

    Patrick, Christopher E; Giustino, Feliciano

    2012-05-23

    We investigate the quasiparticle band structure of anatase TiO(2), a wide gap semiconductor widely employed in photovoltaics and photocatalysis. We obtain GW quasiparticle energies starting from density-functional theory (DFT) calculations including Hubbard U corrections. Using a simple iterative procedure we determine the value of the Hubbard parameter yielding a vanishing quasiparticle correction to the fundamental bandgap of anatase TiO(2). The bandgap (3.3 eV) calculated using this optimal Hubbard parameter is smaller than the value obtained by applying many-body perturbation theory to standard DFT eigenstates and eigenvalues (3.7 eV). We extend our analysis to the rutile polymorph of TiO(2) and reach similar conclusions. Our work highlights the role of the starting non-interacting Hamiltonian in the calculation of GW quasiparticle energies in TiO(2) and suggests an optimal Hubbard parameter for future calculations.

  12. A novel perovskite solar cell design using aligned TiO2 nano-bundles grown on a sputtered Ti layer and a benzothiadiazole-based, dopant-free hole-transporting material.

    PubMed

    Ameen, Sadia; Nazim, M; Akhtar, M Shaheer; Nazeeruddin, Mohammad Khaja; Shin, Hyung-Shik

    2017-11-16

    This work highlights the utilization of a novel hole-transporting material (HTM) derived from benzothiadiazole: 4-(3,5-bis(trifluoromethyl)phenyl)-7-(5'-hexyl-[2,2'-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole (CF-BTz-ThR) and aligned TiO 2 nano-bundles (TiO 2 NBs) as the electron transporting layer (ETL) for perovskite solar cells (PSCs). The aligned TiO 2 NBs were grown on titanium (Ti)-coated FTO substrates using a facile hydrothermal method. The newly designed CF-BTz-ThR molecule with suitable highest occupied molecular orbital (HOMO) favored the effective hole injection from perovskite deposited aligned TiO 2 NBs thin film. The PSCs demonstrated a power conversion efficiency (PCE) of ∼15.4% with a short circuit current density (J sc ) of ∼22.42 mA cm -2 and an open circuit voltage (V oc ) of ∼1.02 V. The efficiency data show the importance of proper molecular engineering whilst highlighting the advantages of dopant-free HTMs in PSCs.

  13. The Synthesis of a Core-Shell Photocatalyst Material YF3:Ho3+@TiO2 and Investigation of Its Photocatalytic Properties

    PubMed Central

    Xu, Xuan; Zhou, Shiyu; Long, Jun; Wu, Tianhu; Fan, Zihong

    2017-01-01

    In this paper, YF3:Ho3+@TiO2 core-shell nanomaterials were prepared by hydrolysis of tetra-n-butyl titanate (TBOT) using polyvinylpyrrolidone K-30 (PVP) as the coupling agent. Characterization methods including X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) under TEM, X-ray photoelectron spectroscopy (XPS), fluorescence spectrometry, ultraviolet-visible diffuse reflectance spectroscopy, and electron spin resonance (ESR) were used to characterize the properties and working mechanism of the prepared photocatalyst material. They indicated that the core phase YF3 nanoparticles were successfully coated with a TiO2 shell and the length of the composite was roughly 100 nm. The Ho3+ single-doped YF3:Ho3+@TiO2 displayed strong visible absorption peaks with wavelengths of 450, 537, and 644 nm, respectively. By selecting these three peaks as excitation wavelengths, we could observe 288 nm (5D4→5I8) ultraviolet emission, which confirmed that there was indeed an energy transfer from YF3:Ho3+ to anatase TiO2. In addition, this paper investigated the influences of different TBOT dosages on photocatalysis performance of the as-prepared photocatalyst material. Results showed that the YF3:Ho3+@TiO2 core-shell nanomaterial was an advanced visible-light-driven catalyst, which decomposed approximately 67% of rhodamine b (RhB) and 34.6% of phenol after 10 h of photocatalysis reaction. Compared with the blank experiment, the photocatalysis efficiency was significantly improved. Finally, the visible-light-responsive photocatalytic mechanism of YF3:Ho3+@TiO2 core-shell materials and the influencing factors of photocatalytic degradation were investigated to study the apparent kinetics, which provides a theoretical basis for improving the structural design and functions of this new type of catalytic material. PMID:28772662

  14. [Decontamination of chemical warfare agents by photocatalysis].

    PubMed

    Hirakawa, Tsutomu; Mera, Nobuaki; Sano, Taizo; Negishi, Nobuaki; Takeuchi, Koji

    2009-01-01

    Photocatalysis has been widely applied to solar-energy conversion and environmental purification. Photocatalyst, typically titanium dioxide (TiO(2)), produces active oxygen species under irradiation of ultraviolet light, and can decompose not only conventional pollutants but also different types of hazardous substances at mild conditions. We have recently started the study of photocatalytic decontamination of chemical warfare agents (CWAs) under collaboration with the National Research Institute of Police Science. This article reviews environmental applications of semiconductor photocatalysis, decontamination methods for CWAs, and previous photocatalytic studies applied to CWA degradation, together with some of our results obtained with CWAs and their simulant compounds. The data indicate that photocatalysis, which may not always give a striking power, certainly helps detoxification of such hazardous compounds. Unfortunately, there are not enough data obtained with real CWAs due to the difficulty in handling. We will add more scientific data using CWAs in the near future to develop useful decontamination systems that can reduce the damage caused by possible terrorism.

  15. Constructing Ordered Three-Dimensional TiO2 Channels for Enhanced Visible-Light Photocatalytic Performance in CO2 Conversion Induced by Au Nanoparticles.

    PubMed

    Xue, Hairong; Wang, Tao; Gong, Hao; Guo, Hu; Fan, Xiaoli; Gao, Bin; Feng, Yaya; Meng, Xianguang; Huang, Xianli; He, Jianping

    2018-03-02

    As a typical photocatalyst for CO 2 reduction, practical applications of TiO 2 still suffer from low photocatalytic efficiency and limited visible-light absorption. Herein, a novel Au-nanoparticle (NP)-decorated ordered mesoporous TiO 2 (OMT) composite (OMT-Au) was successfully fabricated, in which Au NPs were uniformly dispersed on the OMT. Due to the surface plasmon resonance (SPR) effect derived from the excited Au NPs, the TiO 2 shows high photocatalytic performance for CO 2 reduction under visible light. The ordered mesoporous TiO 2 exhibits superior material and structure, with a high surface area that offers more catalytically active sites. More importantly, the three-dimensional transport channels ensure the smooth flow of gas molecules, highly efficient CO 2 adsorption, and the fast and steady transmission of hot electrons excited from the Au NPs, which lead to a further improvement in the photocatalytic performance. These results highlight the possibility of improving the photocatalysis for CO 2 reduction under visible light by constructing OMT-based Au-SPR-induced photocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A Facile Method for Loading CeO2 Nanoparticles on Anodic TiO2 Nanotube Arrays.

    PubMed

    Liao, Yulong; Yuan, Botao; Zhang, Dainan; Wang, Xiaoyi; Li, Yuanxun; Wen, Qiye; Zhang, Huaiwu; Zhong, Zhiyong

    2018-04-03

    In this paper, a facile method was proposed to load CeO 2 nanoparticles (NPs) on anodic TiO 2 nanotube (NT) arrays, which leads to a formation of CeO 2 /TiO 2 heterojunctions. Highly ordered anatase phase TiO 2 NT arrays were fabricated by using anodic oxidation method, then these individual TiO 2 NTs were used as tiny "nano-containers" to load a small amount of Ce(NO 3 ) 3 solutions. The loaded anodic TiO 2 NTs were baked and heated to a high temperature of 450 °C, under which the Ce(NO 3 ) 3 would be thermally decomposed inside those nano-containers. After the thermal decomposition of Ce(NO 3 ) 3 , cubic crystal CeO 2 NPs were obtained and successfully loaded into the anodic TiO 2 NT arrays. The prepared CeO 2 /TiO 2 heterojunction structures were characterized by a variety of analytical technologies, including XRD, SEM, and Raman spectra. This study provides a facile approach to prepare CeO 2 /TiO 2 films, which could be very useful for environmental and energy-related areas.

  17. Voltammetric sensor for buzepide methiodide determination based on TiO2 nanoparticle-modified carbon paste electrode.

    PubMed

    Kalanur, Shankara S; Seetharamappa, Jaldappagari; Prashanth, S N

    2010-07-01

    In this work, we have prepared nano-material modified carbon paste electrode (CPE) for the sensing of an antidepressant, buzepide methiodide (BZP) by incorporating TiO2 nanoparticles in carbon paste matrix. Electrochemical studies indicated that the TiO2 nanoparticles efficiently increased the electron transfer kinetics between drug and the electrode. Compared with the nonmodified CPE, the TiO2-modified CPE greatly enhances the oxidation signal of BZP with negative shift in peak potential. Based on this, we have proposed a sensitive, rapid and convenient electrochemical method for the determination of BZP. Under the optimized conditions, the oxidation peak current of BZP is found to be proportional to its concentration in the range of 5 x 10(-8) to 5 x 10(-5)M with a detection limit of 8.2 x 10(-9)M. Finally, this sensing method was successfully applied for the determination of BZP in human blood serum and urine samples with good recoveries. 2010 Elsevier B.V. All rights reserved.

  18. Treatment of wastewater containing Reactive Brilliant Blue KN-R using TiO2/BC composite as heterogeneous photocatalyst and adsorbent.

    PubMed

    Zhang, Shici; Lu, Xujie

    2018-09-01

    Heterogeneous photocatalysis namely titanium dioxide (TiO 2 ) supported on coconut shell biochar (BC) was synthesized by sol-gel method (calcined at 450 °C) in the paper, which was innovatively applied to the decolorization of Reactive Brilliant Blue KN-R. The transmission electron microscopy (TEM) and X-ray diffraction patterns (XRD) results demonstrated that anatase TiO 2 film was firmly immobilized on the surface and pores of BC. The photocatalysis tests under UV high pressure xenon lamp (300 W) showed highest decolorization efficiency occurred at strong acid and alkali conditions (pH = 1 and 11) reached as 99.71% and 96.99% respectively within 60 min. Therefore, the TiO 2 /BC composites demonstrated both photocatalytic and adsorption capacity on KN-R decolorized, and presented quite durable and reusable in regeneration cycles, indicating a widely application possibility in anthraquinones dyeing wastewater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Application of concrete surfaces as novel substrate for immobilization of TiO2 nano powder in photocatalytic treatment of phenolic water.

    PubMed

    Delnavaz, Mohammad; Ayati, Bita; Ganjidoust, Hossein; Sanjabi, Sohrab

    2015-01-01

    In this study, concrete application as a substrate for TiO2 nano powder immobilization in heterogeneous photocatalytic process was evaluated. TiO2 immobilization on the pervious concrete surface was done by different procedures containing slurry method (SM), cement mixed method (CMM) and different concrete sealer formulations. Irradiation of TiO2 was prepared by UV-A and UV-C lamps. Phenolic wastewater was selected as a pollutant and efficiency of the process was determined in various operation conditions including influent phenol concentration, pH, TiO2 concentration, immobilization method and UV lamp intensity. The removal efficiency of photocatalytic process in 4 h irradiation time and phenol concentration ranges of 25-500 mg/L was more than 80 %. Intermediates were identified by GC/Mass and spectrophotometric analysis. According to the results, photocatalytic reactions followed the pseudo-first-order kinetics and can effectively treate phenol under optimal conditions.

  20. Structure of a model TiO2 photocatalytic interface.

    PubMed

    Hussain, H; Tocci, G; Woolcot, T; Torrelles, X; Pang, C L; Humphrey, D S; Yim, C M; Grinter, D C; Cabailh, G; Bikondoa, O; Lindsay, R; Zegenhagen, J; Michaelides, A; Thornton, G

    2017-04-01

    The interaction of water with TiO 2 is crucial to many of its practical applications, including photocatalytic water splitting. Following the first demonstration of this phenomenon 40 years ago there have been numerous studies of the rutile single-crystal TiO 2 (110) interface with water. This has provided an atomic-level understanding of the water-TiO 2 interaction. However, nearly all of the previous studies of water/TiO 2 interfaces involve water in the vapour phase. Here, we explore the interfacial structure between liquid water and a rutile TiO 2 (110) surface pre-characterized at the atomic level. Scanning tunnelling microscopy and surface X-ray diffraction are used to determine the structure, which is comprised of an ordered array of hydroxyl molecules with molecular water in the second layer. Static and dynamic density functional theory calculations suggest that a possible mechanism for formation of the hydroxyl overlayer involves the mixed adsorption of O 2 and H 2 O on a partially defected surface. The quantitative structural properties derived here provide a basis with which to explore the atomistic properties and hence mechanisms involved in TiO 2 photocatalysis.

  1. Density functional theory studies of TiO2 for photocatalysis and Li storage applications

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Hoon; Lee, Ji Il; Lee, Dong Ki; Lee, Gyu Heon; Kang, Jeung Ku

    We present two theory-experiment collaboration studies of anatase TiO2 for energy applications. First, we discuss a hydrogen-nitrogen co-doped TiO2 (HN-TiO2) as a photocatalyst, and show that the interstitially introduced HN contributes to the increase of solar-to-fuel conversion efficiency. We find that the variation of valence band maximum (VBM) of NH-TiO2 extends the photoactive spectrum to the visible light, and argue that created mid-gap states produce efficient electron and hole conduction channels. Next, we consider experimentally fabricated hierarchical TiO2 nanocrystals integrated with binder-free porous graphene (PG) network foam for a Li storage application. It was found that the TiO2-PG facilitated rapid ionic transfer during the Li-ion insertion/extraction process. We clarify the mechanisms by showing that Li ion migration into the TiO2-PG interface stabilize the binder-free oxide-graphene interface. Atomistic mechanism of Li ion insertion and migration is discussed by comparing cases between an isolated Li ion, when the crowding effect is included, and when the surface Li ions are present. We found that the supply of additional surface Li ions significantly reduce the Li insertion barrier, driving a spontaneous domino-like concerted Li insertion at the oxide surface region.

  2. Removal of aqueous chromium and environmental CO2 by using photocatalytic TiO2 doped with tungsten.

    PubMed

    Trejo-Valdez, M; Hernández-Guzmán, S R; Manriquez-Ramírez, M E; Sobral, H; Martínez-Gutiérrez, H; Torres-Torres, C

    2018-05-15

    Removal of hexavalent chromium was accomplished by using photocatalyst materials of TiO 2 doped with tungsten oxide, environmental air as oxygen supply and white light as irradiation source. Dichromate anions in concentration ranges of 50 to 1000 μg/L were removed by means of aqueous dispersions of TiO 2 doped with tungsten. The aqueous chromium analyses were performed by Differential Pulse Voltammetry technique. Additionally, mineralization of CO 2 gas was promoted by the photocatalysis process, as was clearly shown by Raman spectroscopy and X-ray Photoelectron Spectroscopy (XPS) analyses obtained from the TiO 2 samples recovered after photocatalytic experiments. Results of sample analyses by Scanning Electron Microscopy (SEM) and High Resolution Transmission Electron Microscopy (HRTEM) are presented and discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Preparation, characterization, and application of titanium nano-tube array in dye-sensitized solar cells

    PubMed Central

    2012-01-01

    The vertically orientated TiO2 nanotube array (TNA) decorated with TiO2 nano-particles was successfully fabricated by electrochemically anodizing titanium (Ti) foils followed by Ti-precursor post-treatment and annealing process. The TNA morphology characterized by SEM and TEM was found to be filled with TiO2 nano-particles interior and exterior of the TiO2 nano-tubes after titanium (IV) n-butoxide (TnB) treatment, whereas TiO2 nano-particles were only found inside of TiO2 nano-tubes upon titanium tetrachloride (TiCl4) treatment. The efficiency in TNA-based DSSCs was improved by both TnB and TiCl4 treatment presumably due to the increase of dye adsorption. PMID:22353282

  4. Photocatalytic Applications of Electrospun TiO2 Nanofibres Embedded with Bimodal Sized and Prismatic Gold Nanoparticles.

    PubMed

    Gopika, G; Asha, A M; Sivakumar, N; Balakrishnan, A; Nair, S V; Subramanian, K R V

    2015-09-01

    In this paper, we have synthesized electrospun TiO2 nanofibers embedded with bimodal sized and prismatic gold nanoparticles. The surface plasmons generated in the gold nanoparticles were used to enhance the performance of photocatalysis. The photocatalytic conversion efficiencies of these bimodal sized/prismatic gold nanoparticles when embedded in electrospun TiO2 fibres showed an enhancement of upto 60% over bare fiber systems and also show higher efficiencies than electrospun fibrous systems embedded with unimodal sized gold nanoparticles. Anisotropic bimodal gold nanoparticles show the highest degree of photocatalytic activity. This may be attributed to greater density/concentration of nanoparticles with higher effective surface area and formation of a junction between the smaller and larger nanoparticles. Such a bimodally distributed range of nanoparticles could also lead to greater trapping of charge carriers at the TiO2 conduction band edge and promoting catalytic reactions on account of these trapped charges. This enhanced photocatalytic activity is explained by invoking different operating mechanisms such as improved surface area, greater trapping, coarse plasmon resonance and band effects. Thus, a useful applicability of the gold nanoparticles is shown in the area of photocatalysis.

  5. ESR investigation of ROS generated by H2O2 bleaching with TiO2 coated HAp.

    PubMed

    Saita, Makiko; Kobayashi, Kyo; Kobatashi, Kyou; Yoshino, Fumihiko; Hase, Hiriko; Nonami, Toru; Kimoto, Katsuhiko; Lee, Masaichi-Chang-il

    2012-01-01

    It is well known that clinical bleaching can be achieved with a solution of 30% hydrogen peroxide (H2O2) or H2O2/titanium dioxide (TiO2) combination. This study examined the hypothesis that TiO2 coated with hydroxyapatite (HAp-TiO2) can generate reactive oxygen species (ROS). ROS are generated via photocatalysis using electron spin resonance (ESR). The bleaching properties of HAp-TiO2 in the presence of H2O2 can be measured using hematoporphyrin litmus paper and extracted teeth. We demonstrate that superoxides (O2(•-)) and hydroxyl radicals (HO(•)) can be generated through excitation of anatase TiO2, rutile TiO2, anatase HAp-TiO2, and rutile HAp-TiO2 in the presence of H2O2. The combination of R HAp-TiO2 with H2O2 produced the highest level of HO(•) generation and the most marked bleaching effects of all the samples. The superior bleaching effects exhibited by R HAp-TiO2 with H2O2 suggest that this combination may lead to novel methods for the clinical application of bleaching treatments.

  6. TiO2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices.

    PubMed

    Zhang, Hanyu; Wang, Zhaowei; Li, Ruining; Guo, Jialei; Li, Yan; Zhu, Junmin; Xie, Xiaoyun

    2017-10-01

    Heterogeneous photocatalysis namely titanium dioxide supported on reed straw biochar (acid pre-treated) (TiO 2 /pBC) was synthesized by sol-gel method. The morphology, surface area and structure of TiO 2 /pBC were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and X-ray diffraction (XRD). Low calcination condition maintained the structure of biochar completely and prevented the agglomeration of TiO 2 particles. Due to the combination of adsorption and photocatalysis, TiO 2 /pBC performed higher removal efficiency of sulfamethoxazole (SMX) than pure TiO 2 powder under UV light irradiation. The photocatalytic degradation (PCD) of SMX was also studied with the water collected from the Yellow River. Three high concentration inorganic anions (Cl - , NO 3 - , SO 4 2- ) of the river exerted certain degree of detrimental effects on the contaminant degradation. TiO 2 /pBC showed stable photocatalytic activity after five sequential PCD cycles. The biochar was able to promote further PCD on TiO 2 by adsorbing SMX and intermediates thereby prolonging the separation lifetime of electrons (e - ) and valence band hole (h + ). The transformation intermediates of SMX were identified and three possible degradation reactions of hydroxylation, opening of isoxazole ring and cleavage of SN bond might occur during the PCD of SMX. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. HETEROGENOUS PHOTOCATALYSIS ON AEROSOL PROCESSED NANOSTRUCTURED TITANIA PARTICLES: ROLE OF PARTICLE SIZE

    EPA Science Inventory

    Heterogenous photocatalysis with TiO2 has been extensively investigated as a method to oxidize organic pollutants in water and air, including phenols, chlorinated hydrocarbons, and other hydrocarbons. In addition, the use of titanium dioxide as a photocatalyst has also been demon...

  8. Production and Characterization of TiO2 Nanofilms for Hemocompatible and Photocatalytic Applications

    NASA Astrophysics Data System (ADS)

    Schvezov, C. E.; Vera, M. L.; Schuster, J. M.; Rosenberger, M. R.

    2017-10-01

    Titanium dioxide (TiO2) coatings are currently produced for hemocompatible and photocatalytic applications by using two techniques: sol-gel and anodic oxidation. In this review, the research advances on TiO2 nanofilms produced with these techniques are presented, with a focus on different aspects such as process parameters, morphology, roughness, crystal structure, adhesion, wear and erosion resistance, corrosion resistance, hemocompatibility, toxicity, plaque and bacterial adhesion, and heterogeneous photocatalysis of immobilized porous material. This review was presented at the 3rd Pan American Materials Congress at the 2017 TMS Annual Meeting and Exhibition in San Diego, California, USA.

  9. Water on Graphene-Coated TiO2: Role of Atomic Vacancies

    PubMed Central

    2018-01-01

    Beyond two-dimensional (2D) materials, interfaces between 2D materials and underlying supports or 2D-coated metal or metal oxide nanoparticles exhibit excellent properties and promising applications. The hybrid interface between graphene and anatase TiO2 shows great importance in photocatalytic, catalytic, and nanomedical applications due to the excellent and complementary properties of the two materials. Water, as a ubiquitous and essential element in practical conditions and in the human body, plays a significant role in the applications of graphene/TiO2 composites for both electronic devices and nanomedicine. Carbon vacancies, as common defects in chemically prepared graphene, also need to be considered for the application of graphene-based materials. Therefore, the behavior of water on top and at the interface of defective graphene on anatase TiO2 surface was systematically investigated by dispersion-corrected hybrid density functional calculations. The presence of the substrate only slightly enhances the on-top adsorption and reduces the on-top dissociation of water on defective graphene. However, at the interface, dissociated water is largely preferred compared with undissociated water on bare TiO2 surface, showing a prominent cover effect. Reduced TiO2 may further induce oxygen diffusion into the bulk. Our results are helpful to understand how the presence of water in the surrounding environment affects structural and electronic properties of the graphene/TiO2 interface and thus its application in photocatalysis, electronic devices, and nanomedicine. PMID:29368503

  10. Fabrication of a pure TiO2 thin film using a self-polymeric titania nano-sol and its properties.

    PubMed

    Park, Won-Kyu; Song, Jeong-Hwan; Kim, Soo-Ryong; Kim, Tae-Hyun; Iwasaki, Mitusnobo

    2012-02-01

    A pure TiO2 thin film without adding any organic binder was fabricated by using a self-polymeric titania nano-sol (14 mass%), which was prepared by the acid peptization method. The particle size distribution in the 14 mass% TiO2 sol, in which almost of particles had a size below 10.2 nm and the crystal phase confirmed by X-ray diffraction analysis was anatase. The diluted nano-sol had a capability to form a thin film at a low temperature (100-400 degrees C) on the slide glass by dipping method. The average thickness of a coating film was measured to be about 0.25-0.30 microm. A coated film had a high refractive index over 1.88 at least irrespective of the heat-treatment even at room temperature drying and showed a super-hydrophilicity (< 5 degrees) after 20 minutes under Ultra Violet light irradiation, and it sustained in the darkness during a long period over 7 days depending on the heat-treatment conditions. Atomic Force Microscopic observation shows that the morphology of a heat-treated film had a relationship with the long-term hydrophilicity in the darkness.

  11. Removal of pharmaceutically active compounds from synthetic and real aqueous mixtures and simultaneous disinfection by supported TiO2/UV-A, H2O2/UV-A, and TiO2/H2O2/UV-A processes.

    PubMed

    Bosio, Morgana; Satyro, Suéllen; Bassin, João Paulo; Saggioro, Enrico; Dezotti, Márcia

    2018-05-01

    Pharmaceutically active compounds are carried into aquatic bodies along with domestic sewage, industrial and agricultural wastewater discharges. Psychotropic drugs, which can be toxic to the biota, have been detected in natural waters in different parts of the world. Conventional water treatments, such as activated sludge, do not properly remove these recalcitrant substances, so the development of processes able to eliminate these compounds becomes very important. Advanced oxidation processes are considered clean technologies, capable of achieving high rates of organic compounds degradation, and can be an efficient alternative to conventional treatments. In this study, the degradation of alprazolam, clonazepam, diazepam, lorazepam, and carbamazepine was evaluated through TiO 2 /UV-A, H 2 O 2 /UV-A, and TiO 2 /H 2 O 2 /UV-A, using sunlight and artificial irradiation. While using TiO 2 in suspension, best results were found at [TiO 2 ] = 0.1 g L -1 . H 2 O 2 /UV-A displayed better results under acidic conditions, achieving from 60 to 80% of removal. When WWTP was used, degradation decreased around 50% for both processes, TiO 2 /UV-A and H 2 O 2 /UV-A, indicating a strong matrix effect. The combination of both processes was shown to be an adequate approach, since removal increased up to 90%. H 2 O 2 /UV-A was used for disinfecting the aqueous matrices, while mineralization was obtained by TiO 2 -photocatalysis.

  12. Synthesis of nanosize MCM-41 loaded with TiO 2 and study of its photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Sadjadi, M. S.; Farhadyar, N.; Zare, K.

    2009-07-01

    In recent years, nanosized mesoporous materials have received significant attention due to their impact in different processes. Several diverse applications of these materials, e.g. high density magnetic recording, magnetic fluids, magnetic refrigeration as well as in photocatalysis, solar cells, photosensors, have triggered considerable research activities in the area of nanotechnology. In this work, nanosize MCM-41 was synthesized and loaded then with TiO 2 using tetra butoxy titanium (TBT). As prepared TiO 2 loaded materials was investigated by using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR). The photocatalytic activity of the prepared TiO 2 loaded MCM-41 was finally evaluated by the degradation of methyl orange under irradiation of UV light. The result showed that TiO 2 loaded on nanosize MCM-41 has higher photocatalytic activity than that of TiO 2.

  13. Photocatalysis of sub-ppm limonene over multiwalled carbon nanotubes/titania composite nanofiber under visible-light irradiation.

    PubMed

    Jo, Wan-Kuen; Kang, Hyun-Jung

    2015-01-01

    This study was conducted under visible-light exposure to investigate the photocatalytic characteristics of a multiwalled carbon nanotube/titania (TiO2) composite nanofiber (MTCN) using a continuous-flow tubular reactor. The MTCN was prepared by a sol-gel process, followed by an electrospinning technique. The photocatalytic decomposition efficiency for limonene on the MTCN was higher than those obtained from reference TiO2 nanofibers or P25 TiO2, and the experimental results agreed well with the Langmuir-Hinshelwood model. The CO concentrations generated during the photocatalysis did not reach levels toxic to humans. The mineralization efficiency for limonene on the MTCN was also higher than that for P25 TiO2. Moreover, the mineralization efficiency obtained using the MTCN increased steeply from 8.3 to 91.1% as the residence time increased from 7.8 to 78.0s, compared to the increase in the decomposition efficiencies for limonene from 90.1 to 99.9%. Three gas-phase intermediates (methacrolein, acetic acid, and limonene oxide) were quantitatively determined for the photocatalysis for limonene over the MTCN, whereas only two intermediates (acetic acid and limonene oxide) were quantitatively determined over P25 TiO2. Other provisional gas-phase intermediates included cyclopropyl methyl ketone and 2-ethylbutanal. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Microstructure and antibacterial property of in situ TiO(2) nanotube layers/titanium biocomposites.

    PubMed

    Cui, C X; Gao, X; Qi, Y M; Liu, S J; Sun, J B

    2012-04-01

    The TiO(2) nanotube layer was in situ synthesized on the surface of pure titanium by the electrochemical anodic oxidation. The diameter of nano- TiO(2) nanotubes was about 70~100 nm. The surface morphology and phase compositions of TiO(2) nanotube layers were observed and analyzed using the scanning electron microscope (SEM). The important processing parameters, including anodizing voltage, reaction time, concentration of electrolyte, were optimized in more detail. The photocatalytic activity of the nano- TiO(2) nanotube layers prepared with optimal conditions was evaluated via the photodegradation of methylthionine in aqueous solution. The antibacterial property of TiO(2) nanotube layers prepared with optimal conditions was evaluated by inoculating Streptococcus mutans on the TiO(2) nanotube layers in vitro. The results showed that TiO(2) nanotube layers/Ti biocomposites had very good antibacterial activity to resist Streptococcus mutans. As a dental implant biomaterial, in situ TiO(2) nanotube layer/Ti biocomposite has better and wider application prospects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Facile fabrication of transparent TiO2-C@TiO2-C free-standing film for visible-light photocatalytic application

    NASA Astrophysics Data System (ADS)

    Hu, Luyang; Zhang, Yumin; Zhang, Shanmei; Li, Benxia

    2017-02-01

    A transparent TiO2-C@TiO2-C free-standing film has been synthesized by two-step hydrothermal method and subsequent thermal annealing. The chemical composition and morphological features of the TiO2-C@TiO2-C film are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and N2 adsorption-desorption measurement. The results indicate that the flower-like micro/nanostructure TiO2-C particle layers are intimately inhered to porous TiO2-C fibers. The fibers in film are interconnected each other to form a three-dimensional reticulate microstructure, and exhibit intense visible light absorption and high adsorptivity of dye molecules. The interaction between TiO2 and its surface carbon layer in TiO2-C particle promotes the generation of Ti-O-C bonds, which leads to effective charge transfer. Under visible-light irradiation, TiO2-C@TiO2-C film presents enhanced photocatalytic activity for degradation of methylene blue. This work may provide a new viewpoint for designing transparent photocatalytic film for promising applications in heterogeneous photocatalysis.

  16. Synthesis and characterization of a mixed phase of anatase TiO2 and TiO2(B) by low pressure chemical vapour deposition (LPCVD) for high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chimupala, Y.; Hyett, G.; Simpson, R.; Brydson, R.

    2014-06-01

    This project is concerned with enhancing photocatalytic activity by preparing a mixed phase of nano-sized TiO2. TiO2 thin films were synthesized by using Low Pressure Chemical Vapour Deposition (LPCVD). Titanium isopropoxide and N2 gas were used as the precursor and carrier gas respectively. The effects of reaction temperature, carrier gas flow rate and deposited area were studied. TiO2 thin films with nano-sized TiO2 particles were obtained under suitable conditions and SEM, TEM, powder XRD and Raman spectroscopy were employed to characterize the phase and physical appearance of synthesized materials. Preliminary results show that a dual phase (TiO2(B) and anatase) thin film nanopowder was successfully prepared by LPCVD with needle- and polygonal plate-shape crystallites respectively. This thin film deposit produced a preferred orientation of TiO2(B) needles in the [001] direction of average crystallite size 50-80 nm in length and 5-10 nm in width, whilst the crystallite size of anatase polygonal-plates was around 200 nm. The optimal LPCVD condition for preparing this mixed phase of TiO2 was 600°C with a 1 mL/s N2 flow rate.

  17. The orderly nano array of truncated octahedra Cu2O nanocrystals with the enhancement of visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wei, Xiaofeng; Pan, Jiaqi; Mei, Jie; Zheng, Yingying; Cui, Can; Li, Chaorong

    2018-07-01

    The orderly nano array is able to improve the light utilization efficiency and has been thought to be a promising way for advancing photocatalysis. The orderly nano array of truncated octahedra Cu2O nanocrystals have been successfully fabricated by the facile solution-based one-step reduction and self-assembly method. The results of XRD, SEM and TEM indicate that the Cu2O nano array is successfully assembled on the Si substrate. The photocatalytic activity of the Cu2O orderly nano array is investigated under visible light irradiation, and it is demonstrated to be significantly enhanced after the Cu2O is self-assembled orderly. Furthermore, the surface orderly structure of the nano array is considered as the main reason for the enhancement.

  18. In situ glow discharge plasma electrolytic synthesis of reduced TiO2 for enhanced visible light photocatalysis

    NASA Astrophysics Data System (ADS)

    Feng, Guang; Wu, Botao; Qayyum Khan, Abdul; Zeng, Heping

    2018-05-01

    Reduced titanium dioxide (TiO2‑x) due to its extraordinary visible light absorption has been widely investigated in photodegradation and water splitting nowadays. However, conventional routes to synthesize reduced TiO2 usually demand multiple preparation steps, harsh controlled conditions or expensive facilities. Here we developed a single-step in situ approach to prepare the gray TiO2‑x nanoparticles (sub-10 nm) effectively by the glow discharge plasma electrolysis (GDPE) under atmospheric pressure. The co-existence of self-doped oxygen vacancies and Ti3+ in the generated TiO2‑x nanoparticles is demonstrated by electron paramagnetic resonance (EPR). The tunable ratio of bulk/surface defect can be realized by controlling the glow discharge power directly. It should be noticed that Ti3+ in the synthesized TiO2‑x are quite stable in ambient air. The UV–vis spectra of gray TiO2‑x show an enhanced visible light absorption, which leads to high visible-light photocatalytic activity. Moreover, the as-prepared TiO2‑x after 6 months storage still shows excellent stability during photocatalytic reactions. Owing to its simplicity and effectivity, this preparation method with GDPE should provide a large-scale production for TiO2‑x with high photoactivity.

  19. Cd/In-Codoped TiO2 nanochips for high-efficiency photocatalytic dye degradation.

    PubMed

    Liu, Dongliang; Huang, Peng; Liu, Yong; Wu, Zhou; Li, Dongsheng; Guo, Jun; Wu, Tao

    2018-05-01

    Titanium dioxide has been widely investigated in the field of photocatalysis research. However, the wide bandgap (3.2 eV) greatly limits its practical applications because only ultraviolet light can be absorbed by bare TiO2. Herein, we report a facile approach to prepare Cd/In-codoped TiO2 nanochips with the capability of visible light absorption. Such bimetallic-doped TiO2 was synthesized through a two-step process: Cd/In/S-TiO2 gels were first synthesized by mixing the preformed Cd-In-S supertetrahedral nanoclusters with a titanium source, and the subsequent pyrolytic process effectively converted the gels into Cd/In-TiO2 nanochips with a thickness of ∼2.19 nm and a uniform diameter of ∼10.60 nm. Interestingly, the absorption band of Cd/In-TiO2 nanochips was adjusted by pyrolysis temperature, which further regulated the photocatalytic efficiency of dye degradation under visible light. Current research demonstrates that doping TiO2 by multimetallic sulfide nanoclusters opens up a new door to further enrich the dopants in TiO2 and broaden their potential applications.

  20. Photocatalytic degradation of commercially sourced naphthenic acids by TiO2-graphene composite nanomaterial.

    PubMed

    Liu, Juncheng; Wang, Lin; Tang, Jingchun; Ma, Jianli

    2016-04-01

    Naphthenic acids (NAs) are a major contributor to the toxicity in oil sands process-affected water (OSPW), which is produced by hot water extraction of bitumen. NAs are extremely difficult to be degraded due to its complex ring and side chain structure. Photocatalysis is recognized as a promising technology in the removal of refractory organic pollutants. In this work, TiO2-graphene (P25-GR) composites were synthesized by means of solvothermal method. The results showed that P25-GR composite exhibited better photocatalytic activity than pure P25. The removal efficiency of naphthenic acids in acid solution was higher than that in neutral and alkaline solutions. It was the first report ever known on the photodegradation of NAs based on graphene, and this process achieved a higher removal rate than other photocatalysis degradation of NAs in a shorter reaction time. LC/MS analysis showed that macromolecular NAs (carbon number 17-22, z value -2) were easy to be degraded than the micromolecular ones (carbon number 11-16, z value -2). Furthermore, the reactive oxygen species that play the main role in the photocatalysis system were studied. It was found that holes and ·OH were the main reactive species in the UV/P25-GR photocatalysis system. Given the high removal efficiency of refractory organic pollutants and the short degradation time, photodegradation based on composite catalysts has a broad and practical prospect. The study on the photodegradation of commercially sourced NAs may provide a guidance for the degradation of OSPW NAs by this method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Efficient dechlorination of chlorinated solvent pollutants under UV irradiation by using the synthesized TiO2 nano-sheets in aqueous phase.

    PubMed

    Ndong, Landry Biyoghe Bi; Ibondou, Murielle Primaelle; Miao, Zhouwei; Gu, Xiaogang; Lu, Shuguang; Qiu, Zhaofu; Sui, Qian; Mbadinga, Serge Maurice

    2014-05-01

    Titanium dioxide (TiO2), which is the widely used photo-catalyst, has been synthesized by simple hydrothermal solution containing tetrabutyl titanate and hydrofluoric acid. The synthesized product has been applied to photo-degradation in aqueous phase of chlorinated solvents, namely tetrachloroethene (PCE), trichloroethene (TCE) and 1,1,1-trichloroethane (TCA). The photo-degradation results revealed that the degradation of these harmful chemicals was better in UV/synthesized TiO2 system compared to UV/commercial P25 system and UV only system. The photo-catalytic efficiency of the synthesized TiO2 was 1.4, 1.8 and 3.0 folds higher compared to the commercial P25 for TCA, TCE and PCE degradation, respectively. Moreover, using nitrobenzene (NB) as a probe of hydroxyl radical (·OH), the degradation rate was better over UV/synthesized TiO2, suggesting the high concentration of ·OH generated in UV/synthesized TiO2 system. In addition, ·OH concentration was confirmed by the strong peak displayed in EPR analysis over UV/synthesized TiO2 system. The characterization result using XRD and TEM showed that the synthesized TiO2 was in anatase form and consisted of well-defined sheet-shaped structures having a rectangular outline with a thickness of 4 nm, side length of 50 nm and width of 33 nm and a surface 90.3 m(2)/g. XPS analysis revealed that ≡Ti-F bond was formed on the surface of the synthesized TiO2. The above results on both photocatalytic activity and the surface analysis demonstrated the good applicability of the synthesized TiO2 nano-sheets for the remediation of chlorinated solvent contaminated groundwater. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  2. Construction of anatase/rutile TiO2 hollow boxes for highly efficient photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Jia, Changchao; Zhang, Xiao; Yang, Ping

    2018-02-01

    Hollow TiO2 hierarchical boxes with suitable anatase and rutile ratios were designed for photocatalysis. The unique hierarchical structure was fabricated via a Topotactic synthetic method. CaTiO3 cubes were acted as the sacrificial templates to create TiO2 hollow hierarchical boxes with well-defined phase distribution. The phase composition of the hollow TiO2 hierarchical boxes is similar to that of TiO2 P25 nanoparticles (∼80% anatase, and 20% rutile). Compared with nanaoparticles, TiO2 hollow boxes with hierarchical structures exhibited an excellent performance in the photocatalytic degradation of methylene blue organic pollutant. Quantificationally, the degradation rate of the hollow boxes is higher than that of TiO2 P25 nanoparticles by a factor of 2.7. This is ascribed that hollow structure provide an opportunity for using incident light more efficiently. The surface hierarchical and well-organized porous structures are beneficial to supply more active sites and enough transport channels for reactant molecules. The boxes consist of single crystal anatase and rutile combined well with each other, which gives photon-generated carriers transfer efficiently.

  3. Markedly Enhanced Surface Hydroxyl Groups of TiO2 Nanoparticles with Superior Water-Dispersibility for Photocatalysis

    PubMed Central

    Wu, Chung-Yi; Tu, Kuan-Ju; Deng, Jin-Pei; Lo, Yu-Shiu; Wu, Chien-Hou

    2017-01-01

    The benefits of increasing the number of surface hydroxyls on TiO2 nanoparticles (NPs) are known for environmental and energy applications; however, the roles of the hydroxyl groups have not been characterized and distinguished. Herein, TiO2 NPs with abundant surface hydroxyl groups were prepared using commercial titanium dioxide (ST-01) powder pretreated with alkaline hydrogen peroxide. Through this simple treatment, the pure anatase phase was retained with an average crystallite size of 5 nm and the surface hydroxyl group density was enhanced to 12.0 OH/nm2, estimated by thermogravimetric analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Especially, this treatment increased the amounts of terminal hydroxyls five- to six-fold, which could raise the isoelectric point and the positive charges on the TiO2 surface in water. The photocatalytic efficiency of the obtained TiO2 NPs was investigated by the photodegradation of sulforhodamine B under visible light irradiation as a function of TiO2 content, pH of solution, and initial dye concentration. The high surface hydroxyl group density of TiO2 NPs can not only enhance water-dispersibility but also promote dye sensitization by generating more hydroxyl radicals. PMID:28772926

  4. TiO2 used as photocatalyst for rhodamine B degradation under solar radiation

    NASA Astrophysics Data System (ADS)

    Ariyanti, Dessy; Maillot, Mathilde; Gao, Wei

    2017-07-01

    Transition metal oxide photocatalysis is a relatively new method representing advanced oxidation process to be applied in industrial wastewater treatment especially for degradation of organic pollutants. We investigate TiO2 as a photocatalyst for the photocatalytic degradation of Rhodamine B (RhB) under simulated sunlight. Various parameters and their effectiveness have been studied. The effects of processing parameters including catalyst loading and feed concentration were investigated; and the degradation pathway was proposed based on the UHPLC-MS analysis. The result showed that a higher kinetic rate can be obtained by employing low catalyst loading and feed concentration, i.e., 0.5 g/L of TiO2 loading and 5 ppm of RhB concentration, respectively. For this particular system, the optimum degradation rate (k) can achieve 0.297/min. The effectiveness of solar light-TiO2 system for RhB degradation shows this method can be used for wastewater treatment.

  5. Low-frequency ultrasound induces oxygen vacancies formation and visible light absorption in TiO2 P-25 nanoparticles.

    PubMed

    Osorio-Vargas, Paula A; Pulgarin, Cesar; Sienkiewicz, Andrzej; Pizzio, Luis R; Blanco, Mirta N; Torres-Palma, Ricardo A; Pétrier, Christian; Rengifo-Herrera, Julián A

    2012-05-01

    Low-frequency ultrasound (LFUS) irradiation induces morphological, optical and surface changes in the commercial nano-TiO(2)-based photocatalyst, Evonik-Degussa P-25. Low-temperature electron spin resonance (ESR) measurements performed on this material provided the first experimental evidence for the formation of oxygen vacancies (V(o)), which were also found responsible for the visible-light absorption. The V(o) surface defects might result from high-speed inter-particle collisions and shock waves generated by LFUS sonication impacting the TiO(2) particles. This is in contrast to a number of well-established technologies, where the formation of oxygen vacancies on the TiO(2) surface often requires harsh technological conditions and complicated procedures, such as annealing at high temperatures, radio-frequency-induced plasma or ion sputtering. Thus, this study reports for the first time the preparation of visible-light responsive TiO(2)-based photocatalysts by using a simple LFUS-based approach to induce oxygen vacancies at the nano-TiO(2) surface. These findings might open new avenues for synthesis of novel nano-TiO(2)-based photocatalysts capable of destroying water or airborne pollutants and microorganisms under visible light illumination. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. [Photophysical properties of poly (2-methoxy-5-octyloxy)-p-phenylene vinylene/TiO2 nano-composites].

    PubMed

    Sun, Jian-ping; Weng, Jia-bao; Cheng, Yun-tao; Lin, Ting; Huang, Xiao-zhu

    2008-12-01

    The photoelectric composites of poly (2-methoxy-5-octyloxy)-p-phenylene vinylene/nanometer TiO2 (PMOCOPV/ TiO2) with different nanometer TiOz amount were synthesized through dehydrochlorination in-situ polymerization. The results of Fourier transform infrared spectroscopy and Raman spectroscopy indicated that the surface of nanometer TiO2 was coated with PMOCOPV. UV-Vis spectrum showed that the absorption of PMOCOPV/TiO2 nano-composites was strengthened in the range of violet and visible light with the contents of TiO2 increasing. The composite dimensions were observed by highly resolution transmission electron microscope, PMOCOPV/TiO2 nano-composites dispersed uniformly and possessed core-shell structure, the diameter of PMOCOPV/TiO2 was measured to be about 30 nm, and the thickness of the PMOCOPV coating was about 8-10 nm. Photoluminescence spectroscopy indicated that the maximum emission wavelength of the PMOCOPV/TiO2 was red-shifted with increasing TiO2 concentration. The fluorescence lifetime of PMOCOPV/TiO2 was about 1 ns. The intensity and lifetime of fluorescence was increased remarkably with the contents of TiO2 increasing. The mechanism of the strengthened fluorescence quantum efficiency and fluorescence intensity of PMOCOPV/TiO2 was investigated through the charge transfer, exciton dissociation and potential energy in PMOCOPV/TiO2 nano-composites.

  7. Oxidative stress response of the aquatic macrophyte Hydrilla verticillata exposed to TiO2 nanoparticles.

    PubMed

    Okupnik, Annette; Pflugmacher, Stephan

    2016-11-01

    The present study investigated the effects of titanium dioxide nanoparticles (TiO 2 -NPs) on the oxidative stress response in Hydrilla verticillata. Macrophytes were exposed to different concentrations of TiO 2 -NPs (0 mg/L, 0.01 mg/L, 0.1 mg/L, 1 mg/L, and 10 mg/L) for 24 h, based on currently predicted levels of nano-TiO 2 in surface waters. In addition, TiO 2 -NPs with varying crystalline status were used to assess the potential influence of crystalline phases on oxidative stress responses. The level of hydrogen peroxide (H 2 O 2 ), reduced and oxidized glutathione (GSH and GSSG), and activities of the antioxidative enzymes peroxidase (POD), catalase (CAT), and glutathione reductase (GR) were measured and compared with a bulk counterpart. Although POD was not considered to be active, the results imply an activation of the enzymatic defense system, because increased CAT and GR activities were observed. Exposure to bulk TiO 2 revealed lower enzyme activities at all exposure concentrations, suggesting a nano-specific influence on the antioxidative defense mechanisms in H. verticillata. Moreover, all TiO 2 -NP concentrations resulted in a decreased GSH/GSSG ratio, indicating high GSH-dependent metabolic activity to protect against the destructive effects of reactive oxygen species (ROS) generated during nano-TiO 2 exposure. As the level of H 2 O 2 was solely elevated after exposure to 10 mg/L of P25, it appears plausible that the adaptive metabolic mechanisms of H. verticillata are able to cope with environmentally relevant concentrations of TiO 2 -NPs. Environ Toxicol Chem 2016;35:2859-2866. © 2016 SETAC. © 2016 SETAC.

  8. Effect of dissolved ozone or ferric ions on photodegradation of thiacloprid in presence of different TiO2 catalysts.

    PubMed

    Cernigoj, Urh; Stangar, Urska Lavrencic; Jirkovský, Jaromír

    2010-05-15

    Combining TiO(2) photocatalysis with inorganic oxidants (such as O(3) and H(2)O(2)) or transition metal ions (Fe(3+), Cu(2+) and Ag(+)) often leads to a synergic effect. Electron transfer between TiO(2) and the oxidant is usually involved. Accordingly, the degree of synergy could be influenced by TiO(2) surface area. With this in mind, the disappearance of thiacloprid, a neonicotinoid insecticide, was studied applying various photochemical AOPs and different TiO(2) photocatalysts. In photocatalytic ozonation experiments, synergic effect of three different TiO(2) photocatalysts was quantified. Higher surface area resulted in a more pronounced synergic effect but an increasing amount of TiO(2) did not influence the degree of the synergy. This supports the theory that the synergy is a consequence of adsorption of ozone on the TiO(2) surface. No synergy was observed in photocatalytic degradation of thiacloprid in the presence of dissolved iron(III) species performed under varied experimental conditions (concentration, age of iron(III) solution, different TiO(2) films, usage of TiO(2) slurries). This goes against the literature for different organic compounds (i.e., monuron). It indicates different roles of iron(III) in the photodegradation of different organic molecules. Moreover, TiO(2) surface area did not affect photodegradation efficiency in iron(III)-based experiments which could confirm absence of electron transfer between TiO(2) photocatalyst and iron(III). Copyright (c) 2009 Elsevier B.V. All rights reserved.

  9. Visible Light-activated TiO2 photocatalytic Films; Synthesis, Characterization and Environmental Application for the Destruction of Microcystin-LR

    EPA Science Inventory

    Titanium dioxide (TiO2) photocatalysis has become one of the most effective advanced oxidation technologies (AOTs) for the treatment of persistent organic contaminants. To generate hydroxyl radicals, a non-selective, reactive oxidizing species and responsible for the oxidation of...

  10. Nanoplasmonically Engineered Interfaces on Amorphous TiO2 for Highly Efficient Photocatalysis in Hydrogen Evolution.

    PubMed

    Liang, Huijun; Meng, Qiuxia; Wang, Xiaobing; Zhang, Hucheng; Wang, Jianji

    2018-04-25

    The nanoplasmonic metal-driven photocatalytic activity depends heavily on the spacing between metal nanoparticles (NPs) and semiconductors, and this work shows that ethylene glycol (EG) is an ideal candidate for interface spacer. Controlling the synthetic systems at pH 3, the composite of Ag NPs with EG-stabilized amorphous TiO 2 (Ag/TiO 2 -3) was synthesized by the facile light-induced reduction. It is verified that EG spacers can set up suitable geometric arrangement in the composite: the twin hydroxyls act as stabilizers to bind Ag NPs and TiO 2 together and the nonconductive alkyl chains consisting only of two CH 2 are able to separate the two building blocks completely and also provide the shortest channels for an efficient transfer of radiation energies to reach TiO 2 . Employed as photocatalysts in hydrogen evolution under visible light, amorphous TiO 2 hardly exhibits the catalytic activity due to high defect density, whereas Ag/TiO 2 -3 represents a remarkably high catalytic efficiency. The enhancement mechanism of the reaction rate is proposed by the analysis of the compositional, structural, and optical properties from a series of Ag/TiO 2 composites.

  11. 1-D and 2-D morphology of metal cation co-doped (Zn, Mn) TiO2 and investigation of their photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Benjwal, Poonam; De, Bibekananda; Kar, Kamal K.

    2018-01-01

    Morphology and electronic bandgap of titania (TiO2) are considered to be the primary factors for determining the photocatalytic efficiency, as they determine the number of active sites for the photocatalytic reactions. In the present study, two different morphologies of TiO2 (nanosphere and nanorod) with varying Zn and Mn co-doping were synthesized by solvothermal and hydrothermal methods to examine their photocatalytic efficiency by methylene blue degradation. The co-doped photocatalysts were characterized by XRD, XPS, SEM, TEM, Raman, FTIR and UV-vis DRS. Further, a comparison has been made with co-doped TiO2 nanospheres and TiO2 nanorods, where Zn, Mn co-doped TiO2 nanorods show higher photocatalytic activity compared to nanospheres. This higher photocatalytic activity of co-doped TiO2 is attributed to its polymorphic phases, as they act as heterojunctions for TiO2. Further, being 1-D nanostructure, the TiO2 nanorods exhibit the straight diffusion path for charge carriers, which reduces the recombination possibilities. The obtained results suggest that the photocatalysis efficiency of TiO2 can be significantly enhanced by tailoring the shape and co-doping concentration, which enforce a new concept for developing the new nanostructures of TiO2.

  12. The effect of titanium dioxide (TiO2) nano-objects, and their aggregates and agglomerates greater than 100nm (NOAA) on microbes under UV irradiation.

    PubMed

    Yamada, Ikuho; Nomura, Kazuki; Iwahashi, Hitoshi; Horie, Masanori

    2016-01-01

    Today, nanoparticles are used in many products. One of the most common nanoparticles is titanium dioxide (TiO2). These particles generate reactive oxygen species (ROS) upon UV irradiation. Although nanoparticles are very useful in many products, there are concerns about their biological and ecological effects when released into the environment. Thus, it was assessed that the effect of TiO2 nano-objects, and their aggregates and agglomerates greater than 100nm (NOAA) on microbes under UV irradiation by using Escherichia coli and Saccharomyces cerevisiae. ROS generation was evaluated by adding TiO2 nanoparticles and methylene blue to distilled water. We also assessed growth inhibition by adding TiO2 nanoparticles and microbes in minimal agar medium. Moreover, microbial inactivation was assessed by adding TiO2 nanoparticles and microbes to PBS. Upon UV irradiation, TiO2-NOAAs decomposed methylene blue and generated ROS. TiO2-NOAAs also decomposed methylene blue in minimal agar medium under UV irradiation; however, they did not inhibit microbial growth. Surprisingly, TiO2-NOAAs in the medium protect microbes from UV irradiation as colony formation was observed only near TiO2-NOAAs. In PBS, TiO2-NOAAs did not inactivate microbes but instead protected microbes from lethal UV irradiation. These results suggest that the amount of ROS generated by TiO2-NOAAs is not enough to inactivate microbes. In fact, our results suggest that TiO2-NOAAs may protect microbes from UV irradiations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Efficient photodegradation of organic dye using anatase TiO2 plants as catalyst

    NASA Astrophysics Data System (ADS)

    Bahadur, Jitendra; Pal, Kaushik

    2017-11-01

    Anatase TiO2 hierarchical nanostructures with higher photocatalytic activity are of special importance in various applications. We have reported the synthesis of TiO2 as water chestnut plants like morphology via facile hydrothermal method, by using Titanium (IV) butoxide (TBOT) as a precursor solution. It is found that TiO2 nanoparticles work as seed and completely convert into water chestnut plants like structure or morphology, which are composed of crystallized anatase nanocrystals. X-ray diffraction spectra confirmed the presence of anatase phase of crystallized TiO2 plants (TPs). The average life time delay for generated charge carriers in TPs was calculated to be around 2.45 ns, which reflects slow recombination of charge carriers. The prepared TPs show excellent photocatalytic performance when applied in photo degradation of Rhodamine B organic dye. The unique features exhibited by TPs make them a promising candidate for vast potential applications in field such as solar cells, photocatalysis, supercapacitor, lithium ion batteries and some related fields.[Figure not available: see fulltext.

  14. Low-temperature electrodeposition approach leading to robust mesoscopic anatase TiO2 films

    NASA Astrophysics Data System (ADS)

    Patra, Snehangshu; Andriamiadamanana, Christian; Tulodziecki, Michal; Davoisne, Carine; Taberna, Pierre-Louis; Sauvage, Frédéric

    2016-02-01

    Anatase TiO2, a wide bandgap semiconductor, likely the most worldwide studied inorganic material for many practical applications, offers unequal characteristics for applications in photocatalysis and sun energy conversion. However, the lack of controllable, cost-effective methods for scalable fabrication of homogeneous thin films of anatase TiO2 at low temperatures (ie. < 100 °C) renders up-to-date deposition processes unsuited to flexible plastic supports or to smart textile fibres, thus limiting these wearable and easy-to-integrate emerging technologies. Here, we present a very versatile template-free method for producing robust mesoporous films of nanocrystalline anatase TiO2 at temperatures of/or below 80 °C. The individual assembly of the mesoscopic particles forming ever-demonstrated high optical quality beads of TiO2 affords, with this simple methodology, efficient light capture and confinement into the photo-anode, which in flexible dye-sensitized solar cell technology translates into a remarkable power conversion efficiency of 7.2% under A.M.1.5G conditions.

  15. Low-temperature electrodeposition approach leading to robust mesoscopic anatase TiO2 films

    PubMed Central

    Patra, Snehangshu; Andriamiadamanana, Christian; Tulodziecki, Michal; Davoisne, Carine; Taberna, Pierre-Louis; Sauvage, Frédéric

    2016-01-01

    Anatase TiO2, a wide bandgap semiconductor, likely the most worldwide studied inorganic material for many practical applications, offers unequal characteristics for applications in photocatalysis and sun energy conversion. However, the lack of controllable, cost-effective methods for scalable fabrication of homogeneous thin films of anatase TiO2 at low temperatures (ie. < 100 °C) renders up-to-date deposition processes unsuited to flexible plastic supports or to smart textile fibres, thus limiting these wearable and easy-to-integrate emerging technologies. Here, we present a very versatile template-free method for producing robust mesoporous films of nanocrystalline anatase TiO2 at temperatures of/or below 80 °C. The individual assembly of the mesoscopic particles forming ever-demonstrated high optical quality beads of TiO2 affords, with this simple methodology, efficient light capture and confinement into the photo-anode, which in flexible dye-sensitized solar cell technology translates into a remarkable power conversion efficiency of 7.2% under A.M.1.5G conditions. PMID:26911529

  16. A micro oxygen sensor based on a nano sol-gel TiO2 thin film.

    PubMed

    Wang, Hairong; Chen, Lei; Wang, Jiaxin; Sun, Quantao; Zhao, Yulong

    2014-09-03

    An oxygen gas microsensor based on nanostructured sol-gel TiO2 thin films with a buried Pd layer was developed on a silicon substrate. The nanostructured titania thin films for O2 sensors were prepared by the sol-gel process and became anatase after heat treatment. A sandwich TiO2 square board with an area of 350 μm × 350 μm was defined by both wet etching and dry etching processes and the wet one was applied in the final process due to its advantages of easy control for the final structure. A pair of 150 nm Pt micro interdigitated electrodes with 50 nm Ti buffer layer was fabricated on the board by a lift-off process. The sensor chip was tested in a furnace with changing the O2 concentration from 1.0% to 20% by monitoring its electrical resistance. Results showed that after several testing cycles the sensor's output becomes stable, and its sensitivity is 0.054 with deviation 2.65 × 10(-4) and hysteresis is 8.5%. Due to its simple fabrication process, the sensor has potential for application in environmental monitoring, where lower power consumption and small size are required.

  17. Epitaxial Growth of Lattice-Mismatched Core-Shell TiO2 @MoS2 for Enhanced Lithium-Ion Storage.

    PubMed

    Dai, Rui; Zhang, Anqi; Pan, Zhichang; Al-Enizi, Abdullah M; Elzatahry, Ahmed A; Hu, Linfeng; Zheng, Gengfeng

    2016-05-01

    Core-shell structured nanohybrids are currently of significant interest due to their synergetic properties and enhanced performances. However, the restriction of lattice mismatch remains a severe obstacle for heterogrowth of various core-shells with two distinct crystal structures. Herein, a controlled synthesis of lattice-mismatched core-shell TiO2 @MoS2 nano-onion heterostructures is successfully developed, using unilamellar Ti0.87 O2 nanosheets as the starting material and the subsequent epitaxial growth of MoS2 on TiO2 . The formation of these core-shell nano-onions is attributed to an amorphous layer-induced heterogrowth mechanism. The number of MoS2 layers can be well tuned from few to over ten layers, enabling layer-dependent synergistic effects. The core-shell TiO2 @MoS2 nano-onion heterostructures exhibit significantly enhanced energy storage performance as lithium-ion battery anodes. The approach has also been extended to other lattice-mismatched systems such as TiO2 @MoSe2 , thus suggesting a new strategy for the growth of well-designed lattice-mismatched core-shell structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Experimental study and analysis of lubricants dispersed with nano Cu and TiO2 in a four-stroke two wheeler

    NASA Astrophysics Data System (ADS)

    Sarma, Pullela K.; Srinivas, Vadapalli; Rao, Vedula Dharma; Kumar, Ayyagari Kiran

    2011-12-01

    The present investigation summarizes detailed experimental studies with standard lubricants of commercial quality known as Racer-4 of Hindustan Petroleum Corporation (India) dispersed with different mass concentrations of nanoparticles of Cu and TiO2. The test bench is fabricated with a four-stroke Hero-Honda motorbike hydraulically loaded at the rear wheel with proper instrumentation to record the fuel consumption, the load on the rear wheel, and the linear velocity. The whole range of data obtained on a stationery bike is subjected to regression analysis to arrive at various relationships between fuel consumption as a function of brake power, linear velocity, and percentage mass concentration of nanoparticles in the lubricant. The empirical relation correlates with the observed data with reasonable accuracy. Further, extension of the analysis by developing a mathematical model has revealed a definite improvement in brake thermal efficiency which ultimately affects the fuel economy by diminishing frictional power in the system with the introduction of nanoparticles into the lubricant. The performance of the engine seems to be better with nano Cu-Racer-4 combination than the one with nano TiO2.

  19. Experimental study and analysis of lubricants dispersed with nano Cu and TiO2 in a four-stroke two wheeler

    PubMed Central

    2011-01-01

    The present investigation summarizes detailed experimental studies with standard lubricants of commercial quality known as Racer-4 of Hindustan Petroleum Corporation (India) dispersed with different mass concentrations of nanoparticles of Cu and TiO2. The test bench is fabricated with a four-stroke Hero-Honda motorbike hydraulically loaded at the rear wheel with proper instrumentation to record the fuel consumption, the load on the rear wheel, and the linear velocity. The whole range of data obtained on a stationery bike is subjected to regression analysis to arrive at various relationships between fuel consumption as a function of brake power, linear velocity, and percentage mass concentration of nanoparticles in the lubricant. The empirical relation correlates with the observed data with reasonable accuracy. Further, extension of the analysis by developing a mathematical model has revealed a definite improvement in brake thermal efficiency which ultimately affects the fuel economy by diminishing frictional power in the system with the introduction of nanoparticles into the lubricant. The performance of the engine seems to be better with nano Cu-Racer-4 combination than the one with nano TiO2. PMID:21711765

  20. Experimental study and analysis of lubricants dispersed with nano Cu and TiO2 in a four-stroke two wheeler.

    PubMed

    Sarma, Pullela K; Srinivas, Vadapalli; Rao, Vedula Dharma; Kumar, Ayyagari Kiran

    2011-03-17

    The present investigation summarizes detailed experimental studies with standard lubricants of commercial quality known as Racer-4 of Hindustan Petroleum Corporation (India) dispersed with different mass concentrations of nanoparticles of Cu and TiO2. The test bench is fabricated with a four-stroke Hero-Honda motorbike hydraulically loaded at the rear wheel with proper instrumentation to record the fuel consumption, the load on the rear wheel, and the linear velocity. The whole range of data obtained on a stationery bike is subjected to regression analysis to arrive at various relationships between fuel consumption as a function of brake power, linear velocity, and percentage mass concentration of nanoparticles in the lubricant. The empirical relation correlates with the observed data with reasonable accuracy. Further, extension of the analysis by developing a mathematical model has revealed a definite improvement in brake thermal efficiency which ultimately affects the fuel economy by diminishing frictional power in the system with the introduction of nanoparticles into the lubricant. The performance of the engine seems to be better with nano Cu-Racer-4 combination than the one with nano TiO2.

  1. Polarization-Dependent Raman Spectroscopy of Epitaxial TiO 2 (B) Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jokisaari, Jacob R.; Bayerl, Dylan; Zhang, Kui

    2015-12-08

    The bronze polymorph of titanium dioxide, known as TiO 2(B), has promising photochemical and electronic properties for potential applications in Li-ion batteries, photocatalysis, chemical sensing, and solar cells. In contrast to previous studies performed with powder samples, which often suffer from impurities and lattice water, here we report Raman spectra from highly crystalline TiO 2(B) films epitaxially grown on Si substrates with a thin SrTiO 3 buffer layer. The reduced background from the Si substrate significantly benefits acquisition of polarization-dependent Raman spectra collected from the high-quality thin films, which are compared to nanopowder results reported in the literature. The experimentalmore » spectra were compared with density functional theory calculations to analyze the atomic displacements associated with each Raman-active vibrational mode. These results provide a standard reference for further investigation of the crystallinity, structure, composition, and properties of TiO 2(B) materials with Raman spectroscopy.« less

  2. Solar Fenton and solar TiO2 catalytic treatment of ofloxacin in secondary treated effluents: evaluation of operational and kinetic parameters.

    PubMed

    Michael, I; Hapeshi, E; Michael, C; Fatta-Kassinos, D

    2010-10-01

    Two different technical approaches based on advanced oxidation processes (AOPs), solar Fenton homogeneous photocatalysis (hv/Fe(2+)/H(2)O(2)) and heterogeneous photocatalysis with titanium dioxide (TiO(2)) suspensions were studied for the chemical degradation of the fluoroquinolone ofloxacin in secondary treated effluents. A bench-scale solar simulator in combination with an appropriate photochemical batch reactor was used to evaluate and select the optimal oxidation conditions of ofloxacin spiked in secondary treated domestic effluents. The concentration profile of the examined substrate during degradation was determined by UV/Vis spectrophotometry. Mineralization was monitored by measuring the dissolved organic carbon (DOC). The concentrations of Fe(2+) and H(2)O(2) were the key factors for the solar Fenton process, while the most important parameter of the heterogeneous photocatalysis was proved to be the catalyst loading. Kinetic analyses indicated that the photodegradation of ofloxacin can be described by a pseudo-first-order reaction. The rate constant (k) for the solar Fenton process was determined at different Fe(2+) and H(2)O(2) concentrations whereas the Langmuir-Hinshelwood (LH) kinetic expression was used to assess the kinetics of the heterogeneous photocatalytic process. The conversion of ofloxacin depends on several parameters based on the various experimental conditions, which were investigated. A Daphnia magna bioassay was used to evaluate the potential toxicity of the parent compound and its photo-oxidation by-products in different stages of oxidation. In the present study solar Fenton has been demonstrated to be more effective than the solar TiO(2) process, yielding complete degradation of the examined substrate and DOC reduction of about 50% in 30 min of the photocatalytic treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. In-situ fabrication of diketopyrrolopyrrole-carbazole-based conjugated polymer/TiO2 heterojunction for enhanced visible light photocatalysis

    NASA Astrophysics Data System (ADS)

    Yang, Long; Yu, Yuyan; Zhang, Jianling; Chen, Fu; Meng, Xiao; Qiu, Yong; Dan, Yi; Jiang, Long

    2018-03-01

    Aiming at developing highly efficient photocatalysts by broadening the light-harvesting region and suppressing photo-generated electron-hole recombination simultaneously, this work reports rational design and fabrication of donor-acceptor (D-A) conjugated polymer/TiO2 heterojunction catalyst with strong interfacial interactions by a facile in-situ thermal treatment. To expand the light-harvesting window, soluable conjugated copolymers with D-A architecture are prepared by Pd-mediated polycondensation of diketopyrrolopyrrole (DPP) and t-butoxycarbonyl (t-Boc) modified carbazole (Car), and used as visible-light-harvesting antenna to couple with TiO2 nanocrystals. The DPP-Car/TiO2 composites show wide range absorption in 300-1000 nm. To improve the interfacial binding at the interface, a facile in-situ thermal treatment is carried out to cleave the pendant t-Boc groups in carbazole units and liberate the polar amino groups (-NH-) which strongly bind to the surface of TiO2 through dipole-dipole interactions, forming a heterojunction interface. This in-situ thermal treatment changes the surface elemental distribution of TiO2, reinforces the interface bonding at the boundary of conjugated polymers/TiO2 and finally improves the photocatalytic efficiency of DPP-Car/TiO2 under visible-light irradiation. The interface changes are characterized and verified through Fourier-transform infrared spectroscopy (FT-IR), photo images, UV/Vis (solution state and powder diffuse reflection spectroscopy), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fluorescence, scanning electron microscopy(SEM) and transmission electron microscopy (TEM) techniques. This study provides a new strategy to avoid the low solubility of D-A conjugated polymers and construct highly-efficient conjugated polymer/TiO2 heterojunction by enforcing the interface contact and facilitating charge or energy transfer for the applications in photocatalysis.

  4. Influence of surfactant and annealing temperature on optical properties of sol-gel derived nano-crystalline TiO2 thin films.

    PubMed

    Vishwas, M; Sharma, Sudhir Kumar; Rao, K Narasimha; Mohan, S; Gowda, K V Arjuna; Chakradhar, R P S

    2010-03-01

    Titanium dioxide thin films have been synthesized by sol-gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 degrees C. The influence of surfactant and annealing temperature on optical properties of TiO(2) thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO(2) films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO(2) films was estimated by Tauc's method at different annealing temperature. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Highly ordered Fe3+/TiO2 nanotube arrays for efficient photocataltyic degradation of nitrobenzene

    NASA Astrophysics Data System (ADS)

    Zhang, Yiyang; Gu, Di; Zhu, Lingyue; Wang, Baohui

    2017-10-01

    Highly ordered TiO2 nanotube arrays (TiO2 NTs) were prepared through a facile two-step electrochemical anodization, subsequently, active iron ions were introduced into the TiO2 NTs via a direct impregnation method. The XPS results showed that the iron elements existed in TiO2 NTs in the form of Fe3+ ions. Compared with the undoped TiO2 NTs, the absorption edge of Fe3+/TiO2 NTs showed an overt red shift and the photocurrent improved obviously, which indicated that Fe3+/TiO2 had a much higher photocatalytic activity. The optimal doping content was tested to be 0.1 mol/L which could make the photocatalytic activity of TiO2 NTs obviously improves under both visible and ultraviolent light. The prepared samples were adopted as photocatalyst to degrade nitrobenzene (NB). The reaction rate constants ks under UV light were in the order kone-stepTiO2NTs = 0.00338 TiO NTs = 0.00455 TiO NTs = 0.00736 which showed the superior photocatalysis activity of Fe3+/TiO2 NTs. The final degradation products were probed to be CO2 and H2O, which demonstrated that NB could be completely mineralized to harmless inorganic substance. The mechanism of NB degradation with Fe3+/TiO2 was also discussed and the quenching experiments further confirm that rad OH, h+ and rad O2- are active intermediates in the process of photocatalytic degradation.

  6. Morphology control of rutile TiO2 with tunable bandgap by preformed β-FeOOH nanoparticles.

    PubMed

    Chen, Zheming; Wang, Feng; Balachandran, Subramanian; Li, Gen; Liu, Peng; Ding, Yanfen; Zhang, Shimin; Yang, Mingshu

    2018-03-23

    Rutile TiO 2 are widely used for applications of coatings, cosmetics, photoelectric devices and so on. However, effective control of well-defined morphology, size and composition of rutile TiO 2 nanoparticles from agglomeration has always been a challenge. A new synthesis strategy was proposed to prepare rutile TiO 2 with controllable morphology varied from flower-like structures to single-separated nanorods. The β-FeOOH nanoparticles were generated by the hydrolysis of FeCl 3 solution and could prevent the aggregation of TiO 2 nanocrystals at early stages of the reaction; thus, could control the morphology of rutile nanoparticles. The morphology of rutile TiO 2 nanoparticles could be controllably regulated from flower-like structures to individually separated nanorods. Meanwhile, the preformed β-FeOOH also played a role of dopant. Fe ions were substitutionally doped into the bulk lattice of TiO 2 nanocrystals and reduced the bandgap, which extended the solar radiation absorption range of rutile TiO 2 . The prepared TiO 2 may be suitable for novel UV-blue light shielding agents and many other applications in photoelectric devices, photocatalysis, and so on due to its small size, unprecedented discrete rod-like structure and unique UV-vis light permeability.

  7. Morphology control of rutile TiO2 with tunable bandgap by preformed β-FeOOH nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Zheming; Wang, Feng; Balachandran, Subramanian; Li, Gen; Liu, Peng; Ding, Yanfen; Zhang, Shimin; Yang, Mingshu

    2018-03-01

    Rutile TiO2 are widely used for applications of coatings, cosmetics, photoelectric devices and so on. However, effective control of well-defined morphology, size and composition of rutile TiO2 nanoparticles from agglomeration has always been a challenge. A new synthesis strategy was proposed to prepare rutile TiO2 with controllable morphology varied from flower-like structures to single-separated nanorods. The β-FeOOH nanoparticles were generated by the hydrolysis of FeCl3 solution and could prevent the aggregation of TiO2 nanocrystals at early stages of the reaction; thus, could control the morphology of rutile nanoparticles. The morphology of rutile TiO2 nanoparticles could be controllably regulated from flower-like structures to individually separated nanorods. Meanwhile, the preformed β-FeOOH also played a role of dopant. Fe ions were substitutionally doped into the bulk lattice of TiO2 nanocrystals and reduced the bandgap, which extended the solar radiation absorption range of rutile TiO2. The prepared TiO2 may be suitable for novel UV-blue light shielding agents and many other applications in photoelectric devices, photocatalysis, and so on due to its small size, unprecedented discrete rod-like structure and unique UV-vis light permeability.

  8. Selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation.

    PubMed

    Miao, Guang; Ye, Feiyan; Wu, Luoming; Ren, Xiaoling; Xiao, Jing; Li, Zhong; Wang, Haihui

    2015-12-30

    This study investigates selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation. The TiO2/SiO2 adsorbents were prepared and then characterized by N2 adsorption, X-ray diffraction and X-ray photoelectron spectroscopy. Adsorption isotherms, selectivity and kinetics of TiO2/SiO2 were measured in a UV built-in batch reactor. It was concluded that (a) with the employment of UV-irradiation, high organosulfur uptake of 5.12 mg/g was achieved on the optimized 0.3TiO2/0.7SiO2 adsorbent at low sulfur concentration of 15 ppmw-S, and its adsorption selectivity over naphthalene was up to 325.5; (b) highly dispersed TiO2 served as the photocatalytic sites for DBT oxidation, while SiO2 acted as the selective adsorption sites for the corresponding oxidized DBT using TiO2 as a promoter, the two types of active sites worked cooperatively to achieve the high adsorption selectivity of TiO2/SiO2; (c) The kinetic rate-determining step for the UV photocatalysis-assisted adsorptive desulfurization (PADS) over TiO2/SiO2 was DBT oxidation; (d) consecutive adsorption-regeneration cycles suggested that the 0.3TiO2/0.7SiO2 adsorbent can be regenerated by acetonitrile washing followed with oxidative air treatment. This work demonstrated an effective PADS approach to greatly enhance adsorption capacity and selectivity of thiophenic compounds at low concentrations for deep desulfurization under ambient conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Formaldehyde gas sensor based on TiO2 thin membrane integrated with nano silicon structure

    NASA Astrophysics Data System (ADS)

    Zheng, Xuan; Ming, An-jie; Ye, Li; Chen, Feng-hua; Sun, Xi-long; Liu, Wei-bing; Li, Chao-bo; Ou, Wen; Wang, Wei-bing; Chen, Da-peng

    2016-07-01

    An innovative formaldehyde gas sensor based on thin membrane type metal oxide of TiO2 layer was designed and fabricated. This sensor under ultraviolet (UV) light emitting diode (LED) illumination exhibits a higher response to formaldehyde than that without UV illumination at low temperature. The sensitivities of the sensor under steady working condition were calculated for different gas concentrations. The sensitivity to formaldehyde of 7.14 mg/m3 is about 15.91 under UV illumination with response time of 580 s and recovery time of 500 s. The device was fabricated through micro-electro-mechanical system (MEMS) processing technology. First, plasma immersion ion implantation (PIII) was adopted to form black polysilicon, then a nanoscale TiO2 membrane with thickness of 53 nm was deposited by DC reactive magnetron sputtering to obtain the sensing layer. By such fabrication approaches, the nanoscale polysilicon presents continuous rough surface with thickness of 50 nm, which could improve the porosity of the sensing membrane. The fabrication process can be mass-produced for the MEMS process compatibility.

  10. Enhanced Adsorption and Photocatalytic Activities of Co-Doped TiO2 Immobilized on Silica for Paraquat

    NASA Astrophysics Data System (ADS)

    Nghia, Nguyen Manh; Negishi, Nobuaki; Hue, Nguyen Thi

    2018-01-01

    We studied the adsorption and photocatalysis of paraquat in an aqueous solution with cobalt-doped TiO2 supported on mesoporous silica gel. With Co concentration increasing from 0% to 9%, it was found that the TiO2 anatase phase remained unchanged and the Co was uniformly distributed, while the band gap energy decreased from 3.32 eV to 2.64 eV. The drop in band gap energy leads to the Co-TiO2/silica gel photocatalyst oxidation of paraquat to NH4 + and NO3 - products under visible light. Relative to TiO2, the incorporation of Co into TiO2 led to an increase in the adsorption ability against the paraquat. A possible mechanism of the paraquat degradation may be that the paraquat was selectively adsorbed onto the Co-TiO2/silica gel photocatalyst before light irradiation and after that the paraquat was continuously photodecomposed.

  11. Electrospinning Titanium Dioxide (TiO2) nanofiber for dye sensitized solar cells based on Bryophyta as a sensitizer

    NASA Astrophysics Data System (ADS)

    Asma Ilahi, Novita; Suryana, Risa; Nurrosyid, Fahru; Kusuma, N. T. Linda

    2017-01-01

    From an engineering and economic perspective, immobilized TiO2 nanocatalysts are preferred in a variety of applications. In this study, TiO2 polymer solution was synthesized using ethanol, acetic acid, polyvinylpyrrolidone (PVP), and titanium tetra isopropoxide (TTIP). TiO2 solution was deposited on the FTO substrate by electrospinning method to obtain nano-sized layer. Capillary of syringes given a positive DC voltage of 6 kV to produce nanofiber, then annealed at 450 °C for 3 hours. Chlorophyll has obtained from extracted moss through a chromatographic process to used for dye. TiO2 nanofiber layer manufactured with varied by time and characterized by UV-Vis and IV-meter. The result exhibited a maximum efficiency of 0,0036% and significant absorption at 350 nm-500 nm wavelength.

  12. Dye-sensitized TiO2-catalyzed photodegradation of sulfamethoxazole under blue or yellow light.

    PubMed

    Lu, Norman; Yeh, Yun-Peng; Wang, Guan-Bo; Feng, Tsung-Yao; Shih, Yang-Hsin; Chen, Dong

    2017-01-01

    Visible light-induced photocatalysis is potentially advantageous and could be an efficient approach to degrade contaminants because it can be used to selectively target specific wavelength for decomposition of organic contaminants in water and wastewater. This study demonstrates the photodegradation of sulfamethoxazole (SMX) using [Pt(3,3'-dicarboxy-2,2'-bpy)(1,2-benzenedithiolate)] (Complex 1)-sensitized and [Pt(4,4'-dicarboxy-2,2'-bpy)(1,2-benzenedithiolate)] (Complex 2)-sensitized titanium dioxide (TiO 2 ) under blue or yellow light (420 or 580 nm, respectively) irradiation in water. The Complex 1-sensitized TiO 2 photocatalytic oxidation of SMX reached almost 100 % removal under 420 nm irradiation for 3 h in water. In addition, the formation of hydroxyl radicals can be facilitated by bubbling O 2 during the photodegradation in which an effective decomposition of SMX was observed. Based on HPLC and UV-Vis studies of the decomposed products, it was found that SMX underwent cleavage of aromatic rings during the photodegradation process.

  13. Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis.

    PubMed

    Qiu, Bocheng; Zhou, Yi; Ma, Yunfei; Yang, Xiaolong; Sheng, Weiqin; Xing, Mingyang; Zhang, Jinlong

    2015-02-26

    This study developed a facile approach for preparing Ti(3+) self-doped TiO2-graphene photocatalyst by a one-step vacuum activation technology involved a relative lower temperature, which could be activated by the visible light owing to the synergistic effect among Ti(3+) doping, some new intersurface bonds generation and graphene oxide reduction. Compared with the traditional methods, the vacuum activation involves a low temperature and low-costing, which can achieve the reduction of GO, the self doping of Ti(3+) in TiO2 and the loading of TiO2 nanoparticles on GR surface at the same time. These resulting TiO2-graphene composites show the high photodegradation rate of MO, high hydrogen evolution activity and excellent IPCE in the visible light irradiation. The facile vacuum activation method can provide an effective and practical approach to improve the performance of TiO2-graphene and other metal oxides-graphene towards their practical photocatalytic applications.

  14. Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Qiu, Bocheng; Zhou, Yi; Ma, Yunfei; Yang, Xiaolong; Sheng, Weiqin; Xing, Mingyang; Zhang, Jinlong

    2015-02-01

    This study developed a facile approach for preparing Ti3+ self-doped TiO2-graphene photocatalyst by a one-step vacuum activation technology involved a relative lower temperature, which could be activated by the visible light owing to the synergistic effect among Ti3+ doping, some new intersurface bonds generation and graphene oxide reduction. Compared with the traditional methods, the vacuum activation involves a low temperature and low-costing, which can achieve the reduction of GO, the self doping of Ti3+ in TiO2 and the loading of TiO2 nanoparticles on GR surface at the same time. These resulting TiO2-graphene composites show the high photodegradation rate of MO, high hydrogen evolution activity and excellent IPCE in the visible light irradiation. The facile vacuum activation method can provide an effective and practical approach to improve the performance of TiO2-graphene and other metal oxides-graphene towards their practical photocatalytic applications.

  15. Rhodamine B in dissolved and nano-bound forms: Indicators for light-based advanced oxidation processes.

    PubMed

    Shabat-Hadas, Efrat; Mamane, Hadas; Gitis, Vitaly

    2017-10-01

    Rhodamine B (RhB) is a water-soluble fluorescent dye that is often used to determine flux and flow direction in biotechnological and environmental applications. In the current research, RhB in soluble (termed free) and virus-bound (termed nano-bound) forms was used as an efficiency indicator for three environmental processes. The degradation of free and nano-bound RhB by (i) direct UV photolysis and (ii) UV/H 2 O 2 advanced oxidation process (AOP) was studied in a collimated beam apparatus equipped with medium-pressure mercury vapor lamp. The degradation by (iii) solar light-induced photocatalysis was studied in a solar simulator with titanium dioxide and bismuth photocatalysts. Results showed negligible RhB degradation by direct UV and solar light, and its nearly linear degradation by UV/H 2 O 2 and photocatalysis/photosensitization in the presence of a solid catalyst. Considerable adsorption of free RhB on bismuth-based catalyst vs. no adsorption of nano-bound RhB on this catalyst or of any form of the dye on titanium dioxide produced two important conclusions. First, the better degradation of free RhB by the bismuth catalyst suggests that close proximity of a catalyst hole and the decomposing molecule significantly influences degradation. Second, the soluble form of the dye might not be the best option for its use as an indicator. Nano-bound RhB showed high potential as an AOP indicator, featuring possible separation from water after the analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. In Situ Fabrication of Hierarchically Branched TiO2 Nanostructures: Enhanced Performance in Photocatalytic H2 Evolution and Li-Ion Batteries.

    PubMed

    Yang, Guorui; Wang, Ling; Peng, Shengjie; Wang, Jianan; Ji, Dongxiao; Yan, Wei; Ramakrishna, Seeram

    2017-12-01

    1D branched TiO 2 nanomaterials play a significant role in efficient photocatalysis and high-performance lithium ion batteries. In contrast to the typical methods which generally have to employ epitaxial growth, the direct in situ growth of hierarchically branched TiO 2 nanofibers by a combination of the electrospinning technique and the alkali-hydrothermal process is presented in this work. Such the branched nanofibers exhibit improvement in terms of photocatalytic hydrogen evolution (0.41 mmol g -1 h -1 ), in comparison to the conventional TiO 2 nanofibers (0.11 mmol g -1 h -1 ) and P25 (0.082 mmol g -1 h -1 ). Furthermore, these nanofibers also deliver higher lithium specific capacity at different current densities, and the specific capacity at the rate of 2 C is as high as 201. 0 mAh g -1 , roughly two times higher than that of the pristine TiO 2 nanofibers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Micro Oxygen Sensor Based on a Nano Sol-Gel TiO2 Thin Film

    PubMed Central

    Wang, Hairong; Chen, Lei; Wang, Jiaxin; Sun, Quantao; Zhao, Yulong

    2014-01-01

    An oxygen gas microsensor based on nanostructured sol-gel TiO2 thin films with a buried Pd layer was developed on a silicon substrate. The nanostructured titania thin films for O2 sensors were prepared by the sol-gel process and became anatase after heat treatment. A sandwich TiO2 square board with an area of 350 μm × 350 μm was defined by both wet etching and dry etching processes and the wet one was applied in the final process due to its advantages of easy control for the final structure. A pair of 150 nm Pt micro interdigitated electrodes with 50 nm Ti buffer layer was fabricated on the board by a lift-off process. The sensor chip was tested in a furnace with changing the O2 concentration from 1.0% to 20% by monitoring its electrical resistance. Results showed that after several testing cycles the sensor's output becomes stable, and its sensitivity is 0.054 with deviation 2.65 × 10−4 and hysteresis is 8.5%. Due to its simple fabrication process, the sensor has potential for application in environmental monitoring, where lower power consumption and small size are required. PMID:25192312

  18. Enhanced photocatalytic degradation of dyes under sunlight using biocompatible TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Bharati, B.; Sonkar, A. K.; Singh, N.; Dash, D.; Rath, Chandana

    2017-08-01

    As TiO2 is one of the most popular photocatalysts, we have studied here the photocatalytic degradation of the most common dyestuffs like rhodamine B (RhB), congo red (CR) and methylene blue (MB), which mainly come from the textile and photographic industries using nanoparticles of TiO2. Nanoparticles of TiO2 synthesized through a simple and cost effective sol-gel technique crystallizes in the anatase phase, showing a band gap less than that of bulk value. Particles consisting of coherently scattered domains of size 33 nm are found to be agglomerated and polycrystalline in nature. While the degradation rates of MB, CR and RhB after irradiating with a renewable source of energy, i.e. sunlight, show 100% degradation, TiO2 irradiated with UV light of 4.8 eV shows a much slower degradation rate. To use the waste water after photocatalysis, we examine further the biocompatibile nature of the TiO2 nanoparticles by platelet interaction activity, hemolysis effect and MTT assay. It is worth mentioning here that TiO2 nanoparticles are found to be highly hemocompatible, show no platelet aggregation, and the level of intracellular ROS in human platelets does not show significant change in ROS level. We conclude that TiO2 nanoparticles constitute an excellent photocatalyst and biocompatible material, and that after photocatalytic degradation of dye effluents obtained from textile industries, purified water can be used in agriculture and domestic sectors.

  19. In situ modification of cell-culture scaffolds by photocatalysis of visible-light-responsive TiO2 film

    NASA Astrophysics Data System (ADS)

    Kono, Sho; Furusawa, Kohei; Kurotobi, Atsushi; Hattori, Kohei; Yamamoto, Hideaki; Hirano-Iwata, Ayumi; Tanii, Takashi

    2018-02-01

    We propose a novel process to modify the cell affinity of scaffolds in a cell-culture environment using the photocatalytic activity of visible-light (VL)-responsive TiO2. The proposed process is the improved version of our previous demonstration in which ultraviolet (UV)-responsive TiO2 was utilized. In that demonstration, we showed that cell-repellent molecules on TiO2 were decomposed and replaced with cell-permissive molecules upon UV exposure in the medium where cells are being cultured. However, UV irradiation involves taking the risk of inducing damage to the cells. In this work, a TiO2 film was sputter-deposited on a quartz coverslip at 640 °C without O2 gas injection to create a rutile structure containing oxygen defects, which is known to exhibit photocatalytic activity upon VL exposure. We show that the cell adhesion site and migration area can be controlled with the photocatalytic activity of the VL-responsive TiO2 film, while the cellular oxidative stress is reduced markedly by the substitution of VL for UV.

  20. Differently ordered TiO2 nanoarrays regulated by solvent polarity, and their photocatalytic performances

    NASA Astrophysics Data System (ADS)

    Hu, Wenyuan; Dong, Faqin; Zhang, Jing; Liu, Mingxue; He, Huichao; Wu, Yadong; Yang, Dingming; Deng, Hongquan

    2018-06-01

    Special TiO2 arrays with exposed facets were prepared in different solvents by low- temperature solvothermal synthesis. The morphology, phase and photocatalytic performance influenced by the various solvent polarities were characterized using field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectra and electrochemical testing. The results show that differences of solvent polarity are the main force driving differences in array growth; therefore, anatase TiO2 arrays with different crystal facets can be synthesized by tuning solvent polarity. TiO2 arrays prepared in cyclohexane are the best at oxidizing methyl orange through photocatalysis, followed by arrays prepared in toluene and ethanol. Arrays prepared in toluene are the best at reducing Cr(VI) photocatalytically, followed by those prepared in cyclohexane and ethanol. These differences in photocatalytic power are due to the ratio among the different crystal facets that are exposed, which affects the migration behavior of the photogenerated electrons and holes. In addition, the probable growth mechanisms of self-assembled ordered TiO2 arrays in different solvents are described.

  1. Application of nano-TiO2/LDPE composite film on photocatalytic oxidation degradation of dichloromethane.

    PubMed

    Suwannahong, Kowit; Liengcharernsit, Winai; Sanongraj, Wipada; Kruenate, Jittiporn

    2012-09-01

    This study focused on the photocatalytic destruction of dichloromethane (DCM) in indoor air using the nano-TiO2/LDPE composite film as an economical photocatalyst. The nano-TiO2 was dispersed in a polyethylene matrix to form composite film. The photocatalytic activity of the nano-TiO2/LDPE composite films was evaluated through the degradation of dichloromethane(DCM) under UV-C irradiance at specific wavelength of 254 nm. The percentage of nano-TiO2 contents varied from 0, 5, and 10% (wt cat./wt LDPE composite film). The results derived from the kinetic model revealed that the photocatalytic rates of 5 and 10 wt.% nano-TiO2/ LDPE composite films follow the first order reaction while the rate of the film without TiO2 followed the zero order reaction. At low concentration of DCM, the rate of photocatalytic degradation of the DCM was slower than that at high DCM concentration. The 10 wt.% of TiO2 content of the nano-TiO2/LDPE composite film yielded the highest degradation efficiency of 78%, followed by the removal efficiency of 55% for the 5 wt.% of TiO2 content of the nano-TiO2/LDPE composite film. In contrast with the composite film containing nano-TiO2, the LDPE film without adding nano-TiO2 expressed the degradation efficiency of 28%.

  2. New insight into the disinfection mechanism of Fusarium monoliforme and Aspergillus niger by TiO2 photocatalyst under low intensity UVA light.

    PubMed

    Pokhum, Chonlada; Viboonratanasri, Duangamon; Chawengkijwanich, Chamorn

    2017-11-01

    Titanium dioxide (TiO 2) photocatalytic reaction has great potential for the disinfection of harmful pathogens. However, the disinfection mechanisms of TiO 2 photocatalysis are not yet well-known for fungi and protozoa. In this work, the photocatalytic disinfection mechanism of Fusarium monoliforme and Aspergillus niger under low intensity UVA light (365nm, <10W/m 2 ) was studied at the ultrastructural level. Photocatalytic treatments showed that the photocatalytic oxidation of 10% TiO 2 based paint was efficacious in the complete disinfection of F. monoliforme under low intensity UVA light. No growth of F. monoliforme was observed on agar plate in the subsequent dark. Transmission electron microscopy (TEM) of F. monoliforme exposed to TiO 2 photocatalysis treatment showed a distinct damage to electron-dense outer cell wall, but not to an underlying electron-transparent layer cell wall. The TEM image revealed that the UVA-light only did not damage cell wall, cell membrane and cellular organelles. Unlike, A. niger was more sensitive to UVA-light. Serious destructions of cell membrane and cellular organelles were shown in A. niger exposed to UVA-light only and photocatalytic treatments. However, morphological change in A. niger cell wall was only observed in photocatalytic treatment. Changes to the outermost melanin like layer and cell wall of A. niger spore due to photocatalytic treatment were greatly apparent while the intracellular organelles of A. niger spore were not affected. Therefore, regrowth of A. niger on agar plate was expected from the germination of A. niger spore in the subsequent dark. These observations give a better understanding of the photocatalytic disinfection mechanism toward fungi. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The Application of Nano-TiO2 Photo Semiconductors in Agriculture

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Sun, Changjiao; Zhao, Xiang; Cui, Bo; Zeng, Zhanghua; Wang, Anqi; Liu, Guoqiang; Cui, Haixin

    2016-11-01

    Nanometer-sized titanium dioxide (TiO2) is an environmentally friendly optical semiconductor material. It has wide application value in many fields due to its excellent structural, optical, and chemical properties. The photocatalytic process of nano-TiO2 converts light energy into electrical or chemical energy under mild conditions. In recent years, the study and application of nano-TiO2 in the agricultural sector has gradually attracted attention. The nano-TiO2 applications of degrading pesticides, plant germination and growth, crop disease control, water purification, pesticide residue detection, etc. are good prospects. This review describes all of these applications and the research status and development, including the underlying principles, features, comprehensive applications, functional modification, and potential future directions, for TiO2 in agriculture.

  4. Low cost synthesis of TiO2-C nanocomposite powder for high efficiency visible light photocatalysis

    NASA Astrophysics Data System (ADS)

    Mohapatra, A. K.; Nayak, J.

    2018-04-01

    Titanium dioxide-carbon nanocomposite powder was synthesized via a low cost chemical route using oleic acid and titanium tetra-isopropoxide. Since the carbon remained mainly on the surface of the TiO2 nanoparticles, the powder had black color. The composition of the powder was analyzed by X-ray photoelectron spectroscopy and the structure was studied with X-ray diffraction and transmission electron microscopy. The visible photocatalytic activity of the black TiO2 powder was investigated by studying the photo-bleaching of methylene blue under visible light. Our experimental observation showed that the black-TiO2 powder had a higher visible photocatalytic activity compared to the commercial TiO2 powder (P25 Degussa).

  5. Fabrication of a TiO2@porphyrin nanofiber hybrid material: a highly efficient photocatalyst under simulated sunlight irradiation

    NASA Astrophysics Data System (ADS)

    La, Duong Duc; Rananaware, Anushri; Phuong Nguyen Thi, Hoai; Jones, Lathe; Bhosale, Sheshanath V.

    2017-03-01

    The solar spectrum consists of 8% UV radiation, while 45% of solar energy is from visible light. It is therefore desirable to fabricate a hybrid material which is able to harvest energy from a wide range of photons from the sun for applications such as solar cells, photovoltaics, and photocatalysis. In this study we report on the fabrication of a TiO2@porphyrin hybrid material by surfactant-assisted co-assembly of monomeric porphyrin molecules with TiO2 nanoparticles. The obtained TiO2@porphyrin composite shows excellent integration of TiO2 particles with diameters of 15-30 nm into aggregated porphyrin nanofibers, which have a width of 70-90 nm and are several µm long. SEM, XPS, XRD, FTIR, UV-Vis and fluorescence spectroscopy were employed to characterize the TiO2@TCPP hybrid material. This material exhibits efficient photocatalytic performance under simulated sunlight, due to synergistic photocatalytic activities of the porphyrin aggregates in visible light and TiO2 particles in the UV region. A plausible mechanism for photocatalytic degradation is also proposed and discussed.

  6. TiO2 Nanoparticles Are Phototoxic to Marine Phytoplankton

    PubMed Central

    Miller, Robert J.; Bennett, Samuel; Keller, Arturo A.; Pease, Scott; Lenihan, Hunter S.

    2012-01-01

    Nanoparticulate titanium dioxide (TiO2) is highly photoactive, and its function as a photocatalyst drives much of the application demand for TiO2. Because TiO2 generates reactive oxygen species (ROS) when exposed to ultraviolet radiation (UVR), nanoparticulate TiO2 has been used in antibacterial coatings and wastewater disinfection, and has been investigated as an anti-cancer agent. Oxidative stress mediated by photoactive TiO2 is the likely mechanism of its toxicity, and experiments demonstrating cytotoxicity of TiO2 have used exposure to strong artificial sources of ultraviolet radiation (UVR). In vivo tests of TiO2 toxicity with aquatic organisms have typically shown low toxicity, and results across studies have been variable. No work has demonstrated that photoactivity causes environmental toxicity of TiO2 under natural levels of UVR. Here we show that relatively low levels of ultraviolet light, consistent with those found in nature, can induce toxicity of TiO2 nanoparticles to marine phytoplankton, the most important primary producers on Earth. No effect of TiO2 on phytoplankton was found in treatments where UV light was blocked. Under low intensity UVR, ROS in seawater increased with increasing nano-TiO2 concentration. These increases may lead to increased overall oxidative stress in seawater contaminated by TiO2, and cause decreased resiliency of marine ecosystems. Phototoxicity must be considered when evaluating environmental impacts of nanomaterials, many of which are photoactive. PMID:22276179

  7. Visible light-induced photocatalytic degradation of Reactive Blue-19 over highly efficient polyaniline-TiO2 nanocomposite: a comparative study with solar and UV photocatalysis.

    PubMed

    Kalikeri, Shankramma; Kamath, Nidhi; Gadgil, Dhanashri Jayant; Shetty Kodialbail, Vidya

    2018-02-01

    Polyaniline-TiO 2 (PANI-TiO 2 ) nanocomposite was prepared by in situ polymerisation method. X-ray diffractogram (XRD) showed the formation of PANI-TiO 2 nanocomposite with the average crystallite size of 46 nm containing anatase TiO 2 . The PANI-TiO 2 nanocomposite consisted of short-chained fibrous structure of PANI with spherical TiO 2 nanoparticles dispersed at the tips and edge of the fibres. The average hydrodynamic diameter of the nanocomposite was 99.5 nm. The band gap energy was 2.1 eV which showed its ability to absorb light in the visible range. The nanocomposite exhibited better visible light-mediated photocatalytic activity than TiO 2 (Degussa P25) in terms of degradation of Reactive Blue (RB-19) dye. The photocatalysis was favoured under initial acidic pH, and complete degradation of 50 mg/L dye could be achieved at optimum catalyst loading of 1 g/L. The kinetics of degradation followed the Langmuir-Hinshelhood model. PANI-TiO 2 nanocomposite showed almost similar photocatalytic activity under UV and visible light as well as in the solar light which comprises of radiation in both UV and visible light range. Chemical oxygen demand removal of 86% could also be achieved under visible light, confirming that simultaneous mineralization of the dye occurred during photocatalysis. PANI-TiO 2 nanocomposites are promising photocatalysts for the treatment of industrial wastewater containing RB-19 dye.

  8. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.

    PubMed

    Chunmiao, Yuan; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-15

    The inerting effect of nano-sized TiO2 powder on ignition sensitivity of nano and micro Ti powders was investigated with a Mike 3 apparatus. "A little is not good enough" is also suitable for micro Ti powders mixed with nano-sized solid inertants. MIE of the mixtures did not significantly increase until the TiO2 percentage exceeded 50%. Nano-sized TiO2 powders were ineffective as an inertant when mixed with nano Ti powders, especially at higher dust loadings. Even with 90% nano TiO2 powder, mixtures still showed high ignition sensitivity because the statistic energy was as low as 2.1 mJ. Layer fires induced by ignited but unburned metal particles may occur for micro Ti powders mixed with nano TiO2 powders following a low level dust explosion. Such layer fires could lead to a violent dust explosion after a second dispersion. Thus, additional attention is needed to prevent metallic layer fires even where electric spark potential is low. In the case of nano Ti powder, no layer fires were observed because of less flammable material involved in the mixtures investigated, and faster flame propagation in nanoparticle clouds. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The detrimental influence of bacteria (E. coli, Shigella and Salmonella) on the degradation of organic compounds (and vice versa) in TiO2 photocatalysis and near-neutral photo-Fenton processes under simulated solar light.

    PubMed

    Moncayo-Lasso, Alejandro; Mora-Arismendi, Luis Enrique; Rengifo-Herrera, Julián Andrés; Sanabria, Janeth; Benítez, Norberto; Pulgarin, César

    2012-05-01

    TiO2 photocatalytic and near-neutral photo-Fenton processes were tested under simulated solar light to degrade two models of natural organic matter - resorcinol (R) (which should interact strongly with TiO2 surfaces) and hydroquinone (H) - separately or in the presence of bacteria. Under similar oxidative conditions, inactivation of Escherichia coli, Shigella sonnei and Salmonella typhimurium was carried out in the absence and in the presence of 10 mg L(-1) of R and H. The 100% abatement of R and H by using a TiO2 photocatalytic process in the absence of bacteria was observed in 90 min for R and in 120 min for H, while in the presence of microorganisms abatement was only of 55% and 35% for R and H, respectively. Photo-Fenton reagent at pH 5.0 completely removed R and H in 40 min, whereas in the presence of microorganisms their degradation was of 60% to 80%. On the other hand, 2 h of TiO2 photocatalytic process inactivated S. typhimurium and E. coli cells in three and six orders of magnitude, respectively, while S. sonnei was completely inactivated in 10 min. In the presence of R or H, the bacterial inactivation via TiO2 photocatalysis was significantly decreased. With photo-Fenton reagent at pH 5 all the microorganisms tested were completely inactivated in 40 min of simulated solar light irradiation in the absence of organics. When R and H were present, bacterial photo-Fenton inactivation was less affected. The obtained results suggest that in both TiO2 and iron photo-assisted processes, there is competition between organic substances and bacteria simultaneously present for generated reactive oxygen species (ROS). This competition is most important in heterogeneous systems, mainly when there are strong organic-TiO2 surface interactions, as in the resorcinol case, suggesting that bacteria-TiO2 interactions could play a key role in photocatalytic cell inactivation processes.

  10. A review on mechanical properties of magnesium based nano composites

    NASA Astrophysics Data System (ADS)

    Tarafder, Nilanjan; Prasad, M. Lakshmi Vara

    2018-04-01

    A review was done on Magnesium (Mg) based composite materials reinforced with different nano particles such as TiO2, Cu, Y2O3, SiC, ZrO2 and Al2O3. TiO2 and Al2O3 nanoparticles were synthesised by melt deposition process. Cu, Y2O3, SiC and ZrO2 nanoparticles were synthesised by powder metallurgy process. Composite microstructural characteristics shows that the nano-size reinforcements are uniformly distributed in the composite matrix and also minimum porosity with solid interfacial integrity. The mechanical properties showed yield strength improvement by 0.2 percentage and Ultimate tensile strength (UTS) was also improved for all the nano-particles. But UTS was adversely affected with TiO2 reinforcement while ductility was increased. With Cu reinforcement elastic modulus, hardness and fracture resistance increased and improved the co-efficient of thermal expansion (CTE) of Mg based matrix. By Y2O3 reinforcement hardness, fracture resistance was improved and ductility reached maximum by 0.22 volume percentage of Y2O3 and decreased with succeeding increase in Y2O3 reinforcement. The readings exposed that mechanical properties were gathered from the composite comprising 2.0 weight percentage of Y2O3. Ductility and fracture resistance increased with ZrO2 reinforcement in Mg matrix. Using Al2O3 as reinforcement in Mg composite matrix hardness, elastic modulus and ductility was increased but porosity reduced with well interfacial integrity. Dissipation of energy in the form of damping capacity was resolved by classical vibration theory. The result showed that an increasing up to 0.4 volume percentage alumina content increases the damping capacity up to 34 percent. In another sample, addition of 2 weight percentage nano-Al2O3 particles showed big possibility in reducing CTE from 27.9-25.9×10-6 K-1 in Magnesium, tensile and yield strength amplified by 40MPa. In another test, Mg/1.1Al2O3 nanocomposite was manufactured by solidification process followed by hot extrusion

  11. Preconcentration and speciation of ultra-trace Se (IV) and Se (VI) in environmental water samples with nano-sized TiO2 colloid and determination by HG-AFS.

    PubMed

    Fu, Jiaqi; Zhang, Xu; Qian, Shahua; Zhang, Lin

    2012-05-30

    A united method for speciation analysis of Se (IV) and Se (VI) in environmental water samples was developed using nano-sized TiO(2) colloid as adsorbent and hydride generation atomic fluorescence spectrometry (HG-AFS) as determination means. When the pH values of bulk solution were between 6.0 and 7.0, successful adsorption onto 1 mL nano-sized TiO(2) colloid (0.2%) was achieved for more than 97.0% of Se (IV) while Se (VI) barely got adsorbed. Therefore, the method made it possible to preconcentrate and determine Se (IV) and Se (VI) separately. The precipitated TiO(2) with concentrated selenium was directly converted to colloid without desorption. Selenium in the resulting colloid was then determined by HG-AFS. The detection limits (3σ) and relative standard deviations (R.S.D) of this method were 24 ng/L and 42 ng/L, 7.8% (n=6) and 7.0% (n=6) for Se (IV) and Se (VI), respectively. This simple, sensitive, and united method was successfully applied to the separation and speciation of ultra-trace Se (IV) and Se (VI) in environmental water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Photocatalytic Oxidation of Acetone Over High Thermally Stable TiO2 Nanosheets With Exposed (001) Facets.

    PubMed

    Shi, Ting; Duan, Youyu; Lv, Kangle; Hu, Zhao; Li, Qin; Li, Mei; Li, Xiaofang

    2018-01-01

    Anatase TiO 2 (A-TiO 2 ) usually exhibits superior photocatalytic activity than rutile TiO 2 (R-TiO 2 ). However, the phase transformation from A-TiO 2 to R-TiO 2 will inevitably happens when the calcination temperature is up to 600°C, which hampers the practical applications of TiO 2 photocatalysis in hyperthermal situations. In this paper, high energy faceted TiO 2 nanosheets (TiO 2 -NSs) with super thermal stability was prepared by calcination of TiOF 2 cubes. With increase in the calcination temperature from 300 to 600°C, TiOF 2 transforms into TiO 2 hollow nanoboxes (TiO 2 -HNBs) assembly from TiO 2 -NSs via Ostwald Rippening process. Almost all of the TiO 2 -HNBs are disassembled into discrete TiO 2 -NSs when calcination temperature is higher than 700°C. Phase transformation from A-TiO 2 to R-TiO 2 begins at 1000°C. Only when the calcination temperature is higher than 1200°C can all the TiO 2 -NSs transforms into R-TiO 2 . The 500°C-calcined sample (T500) exhibits the highest photoreactivity toward acetone oxidation possibly because of the production of high energy TiO 2 -NSs with exposed high energy (001) facets and the surface adsorbed fluorine. Surface oxygen vacancy, due to the heat-induced removal of surface adsorbed fluoride ions, is responsible for the high thermal stability of TiO 2 -NSs which are prepared by calcination of TiOF 2 cubes.

  13. Photocatalysis applications of some hybrid polymeric composites incorporating TiO2 nanoparticles and their combinations with SiO2/Fe2O3

    PubMed Central

    Buruiana, Tinca; Melinte, Violeta; Buruiana, Emil C

    2017-01-01

    Polymer nanocomposites containing titanium oxide nanoparticles (TiO2 NPs) combined with other inorganic components (Si–O–Si or/and γ-Fe2O3) were prepared by the dispersion of premade NPs (nanocrystalline TiO2, TiO2/SiO2, TiO2/Fe2O3, TiO2/SiO2/Fe2O3) within a photopolymerizable urethane dimethacrylate (polytetrahydrofuran-urethane dimethacrylate, PTHF-UDMA). The physicochemical characterization of nanoparticles and hybrid polymeric composites with 10 wt % NPs (S1–S4) was realized through XRD, TEM and FTIR analyses. The mean size (10–30 nm) and the crystallinity of the NPs varied as a function of the inorganic constituent. The catalytic activity of these hybrid films was tested for the photodegradation of phenol, hydroquinone and dopamine in aqueous solution under UV or visible-light irradiation. The best results were obtained for the films with TiO2/Fe2O3 or TiO2/SiO2/Fe2O3 NPs. The degradation of the mentioned model pollutants varied between 71% and 100% (after 250 min of irradiation) depending on the composition of the hybrid film tested and the light applied (UV–visible light). Also, it was established that such hybrid films can be reused at least for five cycles, without losing too much of the photocatalytic efficiency (ca. 7%). These findings could have implications in the development of new nanocatalysts. PMID:28243566

  14. Recent Progress in Photocatalysis Mediated by Colloidal II-VI Nanocrystals

    PubMed Central

    Wilker, Molly B; Schnitzenbaumer, Kyle J; Dukovic, Gordana

    2012-01-01

    The use of photoexcited electrons and holes in semiconductor nanocrystals as reduction and oxidation reagents is an intriguing way of harvesting photon energy to drive chemical reactions. This review focuses on recent research efforts to understand and control the photocatalytic processes mediated by colloidal II-VI nanocrystalline materials, such as cadmium and zinc chalcogenides. First, we highlight how nanocrystal properties govern the rates and efficiencies of charge-transfer processes relevant to photocatalysis. We then describe the use of nanocrystal catalyst heterostructures for fuel-forming reactions, most commonly H2 generation. Finally, we review the use of nanocrystal photocatalysis as a synthetic tool for metal–semiconductor nano-heterostructures. PMID:24115781

  15. Enhancing antimicrobial activity of TiO2/Ti by torularhodin bioinspired surface modification.

    PubMed

    Ungureanu, Camelia; Dumitriu, Cristina; Popescu, Simona; Enculescu, Monica; Tofan, Vlad; Popescu, Marian; Pirvu, Cristian

    2016-02-01

    Implant-associated infections are a major cause of morbidity and mortality. This study was performed using titanium samples coated by anodization with a titanium dioxide (TiO2) shielded nanotube layer. TiO2/Ti surface was modified by simple immersion in torularhodin solution and by using a mussel-inspired method based on polydopamine as bio adhesive for torularhodin immobilization. SEM analysis revealed tubular microstructures of torularhodin and the PDA ability to function as a catchy anchor between torularhodin and TiO2 surface. Corrosion resistance was associated with TiO2 barrier oxide layer and nano-organized oxide layer and the torularhodin surface modification does not bring significant changes in resistance of the oxide layer. Our results demonstrated that the torularhodin modified TiO2/Ti surface could effectively prevent adhesion and proliferation of Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, and Pseudomonas aeruginosa. The new modified titanium surface showed good biocompatibility and well-behaved haemocompatibility. This biomaterial with enhanced antimicrobial activity holds great potential for future biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Preparation of Fe3O4/TiO2 magnetic mesoporous composites for photocatalytic degradation of organic pollutants.

    PubMed

    Zhang, Hongfeng; He, Xiu; Zhao, Weiwei; Peng, Yu; Sun, Donglan; Li, Hao; Wang, Xiaocong

    2017-04-01

    Fe 3 O 4 /TiO 2 magnetic mesoporous composites were synthesized through a sol-gel method with tetra-n-butyl titanate as precursor and surfactant P123 as template. The as-prepared Fe 3 O 4 /TiO 2 composites were characterized by X-ray diffraction, diffuse reflectance spectroscopy, nitrogen adsorption-desorption isotherm and pore size distribution. The as-synthesized products were applied as photocatalysis for the degradation of Acid Black ATT and tannery wastewater under UV lamp irradiation. Fe 3 O 4 /TiO 2 -8 composites containing Fe 3 O 4 of 8 wt% were selected as model catalysts. The optimal catalyst dosage was 3 g/L in this photocalytic system. The magnetic Fe 3 O 4 /TiO 2 composites possessed good photocatalytic stability and durability. This approach may provide a platform to prepare a magnetic composite to optimize the catalytic ability.

  17. Superior environment resistance of quartz crystal microbalance with anatase TiO2/ZnO nanorod composite films

    NASA Astrophysics Data System (ADS)

    Qiang, Wei; Wei, Li; Shaodan, Wang; Yu, Bai

    2015-08-01

    The precise measurement of quartz crystal microbalance (QCM) in the detection and weighing of organic gas molecules is achieved due to excellent superhydrophobicity of a deposited film composite. Photocatalysis is utilized as a method for the self-cleaning of organic molecules on the QCM for extended long-term stability in the precision of the instrument. In this paper, ZnO nanorod array is prepared via in situ methods on the QCM coated with Au film via hydrothermal process. Subsequently, a TiO2/ZnO composite film is synthesized by surface modification with TiO2 via sol-gel methods. Results show the anatase TiO2/ZnO nanorod composite film with a sharp, pencil-like structure exhibiting excellent superhydrophobicity (water contact angle of 155°), non-sticking water properties, and an autonomous cleaning property under UV irradiation. The anatase TiO2/ZnO nanorod composite film facilitates the precise measurement and extended lifetime of the QCM for the detection of organic gas molecules.

  18. Molecular mechanism of composite nanoparticles TiO2/WO3/GO-induced activity changes of catalase and superoxide dismutase.

    PubMed

    Hao, Xiaoyan; Zhang, Li; Zheng, Xin; Zong, Wansong; Liu, Chunguang

    2018-06-21

    More and more composite nano-photocatalysts were developed by doping, modifying and coupling, which expanded its application but resulted in pollution due to the unrecyclability. Composite photocatalyst TiO 2 /WO 3 /GO, as a model, was evaluated by exploring the molecular mechanism of TiO 2 /WO 3 /GO-induced activity changes of catalase (CAT) and superoxide dismutase (SOD). Results showed that TiO 2 /WO 3 /GO could lead to conformational and functional changes of CAT and SOD. The activity of both CAT and SOD increased depending on the exposure dose of TiO 2 /WO 3 /GO. The change skeleton structure and increase of α-helix content of CAT and SOD were certificated with UV-vis absorption and CD measurements. Intrinsic fluorescence of CAT and SOD were quenched by dynamic quenching. Micro-environment of amino acid residues of CAT and SOD became more hydrophilic, and the microenvironment of Trp residues was more vulnerable than Tyr residues with TiO 2 /WO 3 /GO exposure. In addition, inhibitory comparison between GO, TiO 2 , WO 3 and TiO 2 /WO 3 /GO was made, results showed that composite nano-photocatalyst exhibited different inhibitory compared to their parent nano-particles. Copyright © 2018. Published by Elsevier B.V.

  19. Effect of particle size on band gap and DC electrical conductivity of TiO2 nanomaterial

    NASA Astrophysics Data System (ADS)

    Avinash, B. S.; Chaturmukha, V. S.; Jayanna, H. S.; Naveen, C. S.; Rajeeva, M. P.; Harish, B. M.; Suresh, S.; Lamani, Ashok R.

    2016-05-01

    Materials reduced to the Nano scale can exhibit different properties compared to what they exhibit on a micro scale, enabling unique applications. When TiO2 is reduced to Nano scale it shows unique properties, of which the electrical aspect is highly important. This paper presents increase in the energy gap and decrease in conductivity with decrease in particle size of pure Nano TiO2 synthesized by hydrolysis and peptization of titanium isopropoxide. Aqueous solution with various pH and peptizing the resultant suspension will form Nano TiO2 at different particle sizes. As the pH of the solution is made acidic reduction in the particle size is observed. And it is confirmed from XRD using Scherer formula and SEM, as prepared samples are studied for UV absorbance, and DC conductivity from room temperature to 400°C. From the tauc plot it was observed, and calculated the energy band gap increases as the particle size decreases and shown TiO2 is direct band gap. From Arrhenius plot clearly we encountered, decrease in the conductivity for the decrease in particle size due to hopping of charge carriers and it is evident that, we can tailor the band gap by varying particle size.

  20. Generating Color from Polydisperse, Near Micron-Sized TiO2 Particles.

    PubMed

    Alam, Al-Mahmnur; Baek, Kyungnae; Son, Jieun; Pei, Yi-Rong; Kim, Dong Ha; Choy, Jin-Ho; Hyun, Jerome K

    2017-07-19

    Single particle Mie calculations of near micron-sized TiO 2 particles predict strong light scattering dominating the visible range that would give rise to a white appearance. We demonstrate that a polydisperse collection of these "white" particles can result in the generation of visible colors through ensemble scattering. The weighted averaging of the scattering over the particle size distribution modifies the sharp, multiple, high order scattering modes from individual particles into broad variations in the collective extinction. These extinction variations are apparent as visible colors for particles suspended in organic solvent at low concentration, or for a monolayer of particles supported on a transparent substrate viewed in front of a white light source. We further exploit the color variations on optical sensitivity to the surrounding environment to promote micron-sized TiO 2 particles as stable and robust agents for detecting the optical index of homogeneous media with high contrast sensitivities. Such distribution-modulated scattering properties provide TiO 2 particles an intriguing opportunity to impart color and optical sensitivity to their widespread electronic and chemical platforms such as antibacterial windows, catalysis, photocatalysis, optical sensors, and photovoltaics.

  1. TiO₂ sol-gel for formaldehyde photodegradation using polymeric support: photocatalysis efficiency versus material stability.

    PubMed

    Curcio, Monique S; Oliveira, Michel P; Waldman, Walter R; Sánchez, Benigno; Canela, Maria Cristina

    2015-01-01

    Photocatalysts supported on polymers are not frequently used in heterogeneous photocatalysis because of problems such as wettability and stability that affect photocatalysis conditions. In this work, we used polypropylene as support for TiO2 sol-gel to evaluate its stability and efficiency under UV radiation. We also tested the effect of the thermo-pressing PP/TiO2 system on the photocatalytic efficiency and stability under UV radiation. The films were characterized by scanning electron microscopy (SEM), UV-Vis spectroscopy and X-ray diffraction (XRD). The SEM micrographs showed that the films of TiO2 sol-gel onto PP has approximately 1.0-μm thick and regular surface and the generation of polypropylene nanowires on hot-pressed samples. XRD showed the formation of TiO2 anatase on the surface of the films made by dip-coating. All photocatalysts were tested in decontaminating air-containing gaseous formaldehyde (70 ppmv) presenting degradation of the target compound to the limit of detection. The photocatalysts showed no deactivation during the entire period tested (30 h), and its reuse after washing showed better photocatalytic performance than on first use. The photocatalyst showed the best results were tested for 360 h with no observed deactivation. Aging studies showed that the film of TiO2 causes different effects on the photostability of composites, with stabilizing effect when exposed to most energetic UVC radiation (λmax = 254 nm) and degradative effects when exposed to UVA radiation (λmax = 365 nm).

  2. Fabrication of chitin-chitosan/nano TiO2-composite scaffolds for tissue engineering applications.

    PubMed

    Jayakumar, R; Ramachandran, Roshni; Divyarani, V V; Chennazhi, K P; Tamura, H; Nair, S V

    2011-03-01

    In this study, we prepared chitin-chitosan/nano TiO(2) composite scaffolds using lyophilization technique for bone tissue engineering. The prepared composite scaffold was characterized using SEM, XRD, FTIR and TGA. In addition, swelling, degradation and biomineralization capability of the composite scaffolds were evaluated. The developed composite scaffold showed controlled swelling and degradation when compared to the control scaffold. Cytocompatibility of the scaffold was assessed by MTT assay and cell attachment studies using osteoblast-like cells (MG-63), fibroblast cells (L929) and human mesenchymal stem cells (hMSCs). Results indicated no sign of toxicity and cells were found attached to the pore walls within the scaffolds. These results suggested that the developed composite scaffold possess the prerequisites for tissue engineering scaffolds and it can be used for tissue engineering applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. TiO2-Based Advanced Oxidation Nanotechnologies For Water Purification And Reuse

    EPA Science Inventory

    TiO2 photocatalysis, one of the UV-based advanced oxidation technologies (AOTs) and nanotechnologies (AONs), has attracted great attention for the development of efficient water treatment and purification systems due to the effectiveness of TiO2 to generate ...

  4. Minimizing of the boundary friction coefficient in automotive engines using Al2O3 and TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed Kamal Ahmed; Xianjun, Hou; Elagouz, Ahmed; Essa, F. A.; Abdelkareem, Mohamed A. A.

    2016-12-01

    Minimizing of the boundary friction coefficient is critical for engine efficiency improvement. It is known that the tribological behavior has a major role in controlling the performance of automotive engines in terms of the fuel consumption. The purpose of this research is an experimental study to minimize the boundary friction coefficient via nano-lubricant additives. The tribological characteristics of Al2O3 and TiO2 nano-lubricants were evaluated under reciprocating test conditions to simulate a piston ring/cylinder liner interface in automotive engines. The nanoparticles were suspended in a commercially available lubricant in a concentration of 0.25 wt.% to formulate the nano-lubricants. The Al2O3 and TiO2 nanoparticles had sizes of 8-12 and 10 nm, respectively. The experimental results have shown that the boundary friction coefficient reduced by 35-51% near the top and bottom dead center of the stroke (TDC and BDC) for the Al2O3 and TiO2 nano-lubricants, respectively. The anti-wear mechanism was generated via the formation of protective films on the worn surfaces of the ring and liner. These results will be a promising approach for improving fuel economy in automotive.

  5. Achieving phase transformation and structure control of crystalline anatase TiO2@C hybrids from titanium glycolate precursor and glucose molecules.

    PubMed

    Cheng, Gang; Stadler, Florian J

    2015-01-15

    Considerable efforts have focused on functional TiO2@carbonaceous hybrid nanostructured materials (TiO2@C) to satisfy the future requirements of environmental photocatalysis and energy storage using these advanced materials. In this study, we developed a two-step solution-phase reaction to prepare hybrid TiO2@C with tuneable structure and composition from the hydrothermal carbonization (HTC) of glucose. X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA) were used to determine the crystallite size, composition, and phase purity. The results of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high resolution TEM (HRTEM) showed that the morphology of the as-synthesized TiO2@C hybrids could be controlled by varying the amount of glucose, also acting as the carbon source. Based on the observations made with different glucose concentrations, a formation mechanism of nanoparticulate and nanoporous TiO2@C hybrids was proposed. In addition, the as-synthesized TiO2@C hybrids with different compositions and structures showed enhanced adsorption of visible light and improved dye-adsorption capacity, which supported their potential use as photocatalysts with good activity. This new synthetic approach, using a nanoprecursor, provides a simple and versatile way to prepare TiO2@C hybrids with tuneable composition, structures, and properties, and is expected to lead to a family of composites with designed properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Hybrid TiO2 -Ruthenium Nano-photosensitizer Synergistically Produces Reactive Oxygen Species in both Hypoxic and Normoxic Conditions.

    PubMed

    Gilson, Rebecca C; Black, Kvar C L; Lane, Daniel D; Achilefu, Samuel

    2017-08-28

    Photodynamic therapy (PDT) is widely used to treat diverse diseases, but its dependence on oxygen to produce cytotoxic reactive oxygen species (ROS) diminishes the therapeutic effect in a hypoxic environment, such as solid tumors. Herein, we developed a ROS-producing hybrid nanoparticle-based photosensitizer capable of maintaining high levels of ROS under both normoxic and hypoxic conditions. Conjugation of a ruthenium complex (N3) to a TiO 2 nanoparticle afforded TiO 2 -N3. Upon exposure of TiO 2 -N3 to light, the N3 injected electrons into TiO 2 to produce three- and four-fold more hydroxyl radicals and hydrogen peroxide, respectively, than TiO 2 at 160 mmHg. TiO 2 -N3 maintained three-fold higher hydroxyl radicals than TiO 2 under hypoxic conditions via N3-facilitated electron-hole reduction of adsorbed water molecules. The incorporation of N3 transformed TiO 2 from a dual type I and II PDT agent to a predominantly type I photosensitizer, irrespective of the oxygen content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fabrication and assembly of two-dimensional TiO2/WO3·H2O heterostructures with type II band alignment for enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Wang, Yun; Zhou, Xiaofang; Zheng, Xiaoli; Xu, Qun; Chen, Zhimin; Ren, Yumei; Yan, Bo

    2017-05-01

    The recombination of photo-induced charges is one of the main issues to limit the large-scale applications in photocatalysis and photoelectrocatalysis. To improve the charge separation, we fabricate a novel type II 2D ultrathin TiO2/WO3·H2O heterostructures with the assistance of supercritical CO2 (SC CO2) in this work. The as-fabricated heterostructures possess high photocatalytic activity for the degradation of methyl orange(MO) and high photocurrent response under simulated solar light (AM 1.5). For the TiO2/WO3·H2O heterostructures, the MO solution could be degraded by 95.5% in 150 min, and the photocurrent density reaches to 6.5 μA cm-2, exhibiting a significant enhancement compared with pure TiO2 and WO3·H2O nanosheets.

  8. X-ray spectroscopies studies of the 3d transition metal oxides and applications of photocatalysis

    DOE PAGES

    Ye, Yifan; Kapilashrami, Mukes; Chuang, Cheng-Hao; ...

    2017-02-08

    Some recent advances in synchrotron based x-ray spectroscopy enable materials scientists to emanate fingerprints on important materials properties, e.g., electronic, optical, structural, and magnetic properties, in real-time and under nearly real-world conditions. This characterization, then, in combination with optimized materials synthesis routes and tailored morphological properties could contribute greatly to the advances in solid-state electronics and renewable energy technologies. In connection to this, such perspective reflects the current materials research in the space of emerging energy technologies, namely photocatalysis, with a focus on transition metal oxides, mainly on the Fe 2O 3- and TiO 2-based materials.

  9. Sonophotocatalytic degradation of dye C.I. Acid Orange 7 by TiO2 and Ag nanoparticles immobilized on corona pretreated polypropylene non-woven fabric.

    PubMed

    Marković, Darka; Šaponjić, Zoran; Radoičić, Marija; Radetić, Tamara; Vodnik, Vesna; Potkonjak, Branislav; Radetić, Maja

    2015-05-01

    This study discusses the possibility of using corona pre-treated polypropylene (PP) non-woven fabric as a support for immobilization of colloidal TiO2 and Ag nanoparticles in order to remove dye C.I. Acid Orange 7 from aqueous solution. Dye removal efficiency by sonocatalysis, photocatalysis and sonophotocatalysis was evaluated on corona pre-treated fabric loaded with TiO2 nanoparticles, corona pre-treated fabric double loaded with TiO2 nanoparticles and corona pre-treated fabrics loaded with TiO2 nanoparticles before and after deposition of Ag nanoparticles. In addition, the stability of PP non-woven fabric during these processes was investigated. The substrates were characterized by SEM, EDX and AAS analyses. The change of the dye concentration was evaluated by UV-VIS spectrophotometry. Unlike sonocatalysis and photocatalysis, complete dye removal from both solution and non-woven fabric was obtained already after 240-270 min of sonophotocatalysis. Corona pre-treated PP non-woven fabric loaded with Ag nanoparticles prior to deposition of TiO2 nanoparticles provided excellent degradation efficiency and superior reusability. Sonophotocatalytic degradation of dye in the presence of all investigated samples was the most prominent in acidic conditions. Although this nanocomposite system ensured fast discoloration of dye solution, TOC values of water measured after sonophotocatalysis were not satisfactory because of PP degradation. Therefore, it is suggested to include TOC evaluation in each case study where different supports for TiO2 nanoparticles are used since these nanoparticles may guarantee the dye removal from solution but the stability of support could be problematic causing even more serious environmental impact. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Atomically engineered epitaxial anatase TiO 2 metal-semiconductor field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Brian S. Y.; Minohara, Makoto; Hikita, Yasuyuki

    Here, anatase TiO 2 is a promising material for a vast array of electronic, energy, and environmental applications, including photocatalysis, photovoltaics, and sensors. A key requirement for these applications is the ability to modulate its electrical properties without dominant dopant scattering and while maintaining high carrier mobility. Here, we demonstrate the room temperature field-effect modulation of the conducting epitaxial interface between anatase TiO 2 and LaAlO 3 (001), which arises for LaO-terminated LaAlO 3, while the AlO 2-terminated interface is insulating. This approach, together with the metal-semiconductor field-effect transistor geometry, naturally bypasses the gate/channel interface traps, resulting in a highmore » field-effect mobility μ FE of 3.14 cm 2 (V s) –1 approaching 98% of the corresponding Hall mobility μ Hall. Accordingly, the channel conductivity is modulated over 6 orders of magnitude over a gate voltage range of ~4 V.« less

  11. Atomically engineered epitaxial anatase TiO 2 metal-semiconductor field-effect transistors

    DOE PAGES

    Kim, Brian S. Y.; Minohara, Makoto; Hikita, Yasuyuki; ...

    2018-03-26

    Here, anatase TiO 2 is a promising material for a vast array of electronic, energy, and environmental applications, including photocatalysis, photovoltaics, and sensors. A key requirement for these applications is the ability to modulate its electrical properties without dominant dopant scattering and while maintaining high carrier mobility. Here, we demonstrate the room temperature field-effect modulation of the conducting epitaxial interface between anatase TiO 2 and LaAlO 3 (001), which arises for LaO-terminated LaAlO 3, while the AlO 2-terminated interface is insulating. This approach, together with the metal-semiconductor field-effect transistor geometry, naturally bypasses the gate/channel interface traps, resulting in a highmore » field-effect mobility μ FE of 3.14 cm 2 (V s) –1 approaching 98% of the corresponding Hall mobility μ Hall. Accordingly, the channel conductivity is modulated over 6 orders of magnitude over a gate voltage range of ~4 V.« less

  12. Atomically engineered epitaxial anatase TiO2 metal-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Kim, Brian S. Y.; Minohara, Makoto; Hikita, Yasuyuki; Bell, Christopher; Hwang, Harold Y.

    2018-03-01

    Anatase TiO2 is a promising material for a vast array of electronic, energy, and environmental applications, including photocatalysis, photovoltaics, and sensors. A key requirement for these applications is the ability to modulate its electrical properties without dominant dopant scattering and while maintaining high carrier mobility. Here, we demonstrate the room temperature field-effect modulation of the conducting epitaxial interface between anatase TiO2 and LaAlO3 (001), which arises for LaO-terminated LaAlO3, while the AlO2-terminated interface is insulating. This approach, together with the metal-semiconductor field-effect transistor geometry, naturally bypasses the gate/channel interface traps, resulting in a high field-effect mobility μ FE of 3.14 cm2 (V s)-1 approaching 98% of the corresponding Hall mobility μ Hall . Accordingly, the channel conductivity is modulated over 6 orders of magnitude over a gate voltage range of ˜4 V.

  13. Graphene quantum dots to enhance the photocatalytic hydrogen evolution efficiency of anatase TiO2 with exposed {001} facet.

    PubMed

    Yu, Shan; Zhong, Yun-Qian; Yu, Bao-Quan; Cai, Shi-Yi; Wu, Li-Zhu; Zhou, Ying

    2016-07-27

    Hydrogen evolution through photocatalysis is promising with respect to the environmental problems and challenges of energy shortage that we encounter today. In this paper, we have combined graphene quantum dots (GQDs) and {001} faceted anatase TiO2 (with an exposed percentage of 65-75%) together for effective photocatalytic hydrogen evolution. A series of characterizations including X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy and UV-visible absorption spectroscopy have been carried out to study the structure of the as-prepared GQDs/{001}TiO2 composite. It turns out that GQDs could be effectively decorated on {001}TiO2 sheet without changing its intrinsic structure. With an optimum loading amount of GQDs (0.5 wt% to {001}TiO2), GQDs/{001}TiO2 exhibits a hydrogen evolution efficiency 8 times higher than that of bare {001}TiO2, which is a significantly more obvious improvement than many other photocatalytic systems relevant to GQDs and TiO2 hybrids. In addition, GQDs/{001}TiO2 could stand long-term photocatalytic experiments. Photocurrent tests show that such an improvement of the photocatalytic efficiency over GQDs/{001}TiO2 may originate from a higher charge separation efficiency. The present study could offer reference for the construction of photocatalytic hydrogen evolution systems with low cost and long term stability.

  14. Enhanced adsorbability and photocatalytic activity of TiO2-graphene composite for polycyclic aromatic hydrocarbons removal in aqueous phase.

    PubMed

    Bai, Hongzhen; Zhou, Jun; Zhang, Hongjian; Tang, Guping

    2017-02-01

    Photodegradation via titanium dioxide (TiO 2 ) has been used to remove polycyclic aromatic hydrocarbons (PAHs) from environmental media broadly. In this study, a series of TiO 2 -graphene composites (P25-GR) with different GR weight ratios were synthesized via hydrothermal reaction of graphene oxide (GO) and P25. Their structures were characterized and the proprieties were tested in aqueous phase. Phenanthrene (PHE), fluoranthene (FLAN), and benzo[a]pyrene (BaP) were selected as models of PAHs. The experiment indicated that P25-2.5%GR exhibited enhancement in both adsorption and photodegradation, ∼80% of PAHs were removed after 2h photocatalysis. The influence of photodegradation rate was studied, including PAHs initial concentration and pH. Aromatic intermediates were identified during the reaction process and the degradation pathways were portrayed. This work explored the enhanced photocatalysis performance was attributed to the PAH-selective adsorbability and the strong electron transfer ability of the composite. The analysis of the degradation intermediates confirmed that the reaction proceeded with the formation of free radicals, leading to the gradual PAH mineralization. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Synthesis of hybrid cellulose nanocomposite bonded with dopamine SiO2/TiO2 and its antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ramesh, Sivalingam; Kim, Gwang-Hoon; Kim, Jaehwan; Kim, Joo-Hyung

    2015-04-01

    Organic-inorganic hybrid material based cellulose was synthesized by the sol-gel approach. The explosion of activity in this area in the past decade has made tremendous progress in industry or academic both fundamental understanding of sol-gel process and applications of new functionalized hybrid materials. In this present research work, we focused on cellulose-dopamine functionalized SiO2/TiO2 hybrid nanocomposite by sol-gel process. The cellulose-dopamine hybrid nanocomposite was synthesized via γ-aminopropyltriethoxysilane (γ-APTES) coupling agent by in-situ sol-gel process. The chemical structure of cellulose-amine functionalized dopamine bonding to cellulose structure with covalent cross linking hybrids was confirmed by FTIR spectral analysis. The morphological analysis of cellulose-dopamine nanoSiO2/TiO2 hybrid nanocomposite materials was characterized by XRD, SEM and TEM. From this different analysis results indicate that the optical transparency, thermal stability, control morphology of cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite. Furthermore cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite was tested against pathogenic bacteria for antimicrobial activity.

  16. Pertinent parameters in photo-generation of electrons: Comparative study of anatase-based nano-TiO2 suspensions.

    PubMed

    Martel, D; Guerra, A; Turek, P; Weiss, J; Vileno, B

    2016-04-01

    In the field of solar fuel cells, the development of efficient photo-converting semiconductors remains a major challenge. A rational analysis of experimental photocatalytic results obtained with material in colloïdal suspensions is needed to access fundamental knowledge required to improve the design and properties of new materials. In this study, a simple system electron donor/nano-TiO2 is considered and examined via spin scavenging electron paramagnetic resonance as well as a panel of analytical techniques (composition, optical spectroscopy and dynamic light scattering) for selected type of nano-TiO2. Independent variables (pH, electron donor concentration and TiO2 amount) have been varied and interdependent variables (aggregate size, aggregate surface vs. volume and acid/base groups distribution) are discussed. This work shows that reliable understanding involves thoughtful combination of interdependent parameters, whereas the specific surface area seems not a pertinent parameter. The conclusion emphasizes the difficulty to identify the key features of the mechanisms governing photocatalytic properties in nano-TiO2. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Synthesis and characterization of nano TiO2-SiO2: PVA composite - a novel route

    NASA Astrophysics Data System (ADS)

    Venckatesh, Rajendran; Balachandaran, Kartha; Sivaraj, Rajeshwari

    2012-07-01

    A novel, simple, less time consuming and cost-effective sol-gel method has been developed to synthesize nano titania-silica with polyvinyl alcohol (PVA) composite relatively at low temperature in acidic pH. Titania sol is prepared by hydrolysis of titanium tetrachloride and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6 h and dried at room temperature with the addition of PVA solution. The resulting powders were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FT-IR), UV-visible spectroscopy and thermal techniques. The grain size of the particles was calculated by X-ray diffraction; surface morphology and chemical composition were determined from scanning electron microscopy-energy dispersive spectroscopy; metal oxide stretching was confirmed from FT-IR spectroscopy; bandgap was calculated using UV-visible spectroscopy, and thermal stability of the prepared composite was determined by thermogravimetric/differential thermal analysis. Since TiO2 got agglomerated on the surface of SiO2, effective absorptive sites increase which in turn increase the photocatalytic efficiency of the resulting composite.

  18. Preparation, stabilization and characterization of TiO(2) on thin polyethylene films (LDPE). Photocatalytic applications.

    PubMed

    Zhiyong, Yu; Mielczarski, E; Mielczarski, J; Laub, D; Buffat, Ph; Klehm, U; Albers, P; Lee, K; Kulik, A; Kiwi-Minsker, L; Renken, A; Kiwi, J

    2007-02-01

    An innovative way to fix preformed nanocrystalline TiO(2) on low-density polyethylene film (LDPE-TiO(2)) is presented. The LDPE-TiO(2) film was able to mediate the complete photodiscoloration of Orange II using about seven times less catalyst than a TiO(2) suspension and proceeded with a photonic efficiency of approximately 0.02. The catalyst shows photostability over long operational periods during the photodiscoloration of the azo dye Orange II. The LDPE-TiO(2) catalyst leads to full dye discoloration under simulated solar light but only to a 30% TOC reduction since long-lived intermediates generated in solution seem to preclude full mineralization of the dye. Physical insight is provided into the mechanism of stabilization of the LDPE-TiO(2) composite during the photocatalytic process by X-ray photoelectron spectroscopy (XPS). The adherence of TiO(2) on LDPE is investigated by electron microscopy (EM) and atomic force microscopy (AFM). The thickness of the TiO(2) film is seen to vary between 1.25 and 1.69 microm for an unused LDPE-TiO(2) film and between 1.31 and 1.50 microm for a sample irradiated 10h during Orange II discoloration pointing out to a higher compactness of the TiO(2) film after the photocatalysis.

  19. Microstructure and properties of Cu-Sn-Zn-TiO 2 nano-composite coatings on mild steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Weidong; Cao, Di; Jin, Yunxue

    Cu-Sn-Zn coatings have been widely used in industry for their unique properties, such as good conductivity, high corrosion resistance and excellent solderability. To further improve the mechanical performance of Cu-Sn-Zn coatings, powder-enhanced method was applied and Cu-Sn-Zn-TiO 2 nano-composite coatings with different TiO 2 concentration were fabricated. The microstructure of Cu-Sn-Zn-TiO 2 nano-composite coatings were investigated by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The mechanical properties of coatings including microhardness and wear resistance were studied. The results indicate that the incorporation of TiO 2 nanoparticle can significantly influence the properties of Cu-Sn-Zn coatings. The microhardness of Cu-Sn-Zn coatingmore » was increased to 383 HV from 330 HV with 1 g/L TiO 2 addition. Also, the corrosion resistance of coating was enhanced. The effects of TiO 2 nanoparticle concentration on the microstructure, mechanical properties and corrosion resistance of Cu-Sn-Zn-TiO 2 nano-composite coatings were discussed.« less

  20. Microstructure and properties of Cu-Sn-Zn-TiO 2 nano-composite coatings on mild steel

    DOE PAGES

    Gao, Weidong; Cao, Di; Jin, Yunxue; ...

    2018-04-18

    Cu-Sn-Zn coatings have been widely used in industry for their unique properties, such as good conductivity, high corrosion resistance and excellent solderability. To further improve the mechanical performance of Cu-Sn-Zn coatings, powder-enhanced method was applied and Cu-Sn-Zn-TiO 2 nano-composite coatings with different TiO 2 concentration were fabricated. The microstructure of Cu-Sn-Zn-TiO 2 nano-composite coatings were investigated by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The mechanical properties of coatings including microhardness and wear resistance were studied. The results indicate that the incorporation of TiO 2 nanoparticle can significantly influence the properties of Cu-Sn-Zn coatings. The microhardness of Cu-Sn-Zn coatingmore » was increased to 383 HV from 330 HV with 1 g/L TiO 2 addition. Also, the corrosion resistance of coating was enhanced. The effects of TiO 2 nanoparticle concentration on the microstructure, mechanical properties and corrosion resistance of Cu-Sn-Zn-TiO 2 nano-composite coatings were discussed.« less

  1. Thin film nano-photocatalyts with low band gap energy for gas phase degradation of p-xylene: TiO2 doped Cr, UiO66-NH2 and LaBO3 (B  =  Fe, Mn, and Co)

    NASA Astrophysics Data System (ADS)

    Loc Luu, Cam; Thuy Van Nguyen, Thi; Nguyen, Tri; Nguyen, Phung Anh; Hoang, Tien Cuong; Ha, Cam Anh

    2018-03-01

    By dip-coating technique the thin films of nano-photocatalysts TiO2, Cr-doped TiO2, LaBO3 perovskites (B  =  Fe, Mn, and Co) prepared by sol-gel method, and UiO66-NH2 prepared by a solvothermal were obtained and employed for gas phase degradation of p-xylene. Physicochemical characteristics of the catalysts were examined by the methods of BET, SEM, TEM, XRD, FT-IR, TGA, Raman and UV-vis spectroscopies. The thickness of film was determined by a Veeco-American Dektek 6M instrument. The activity of catalysts was evaluated in deep photooxidation of p-xylene in a microflow reactor at room temperature with the radiation sources of a UV (λ  =  365 nm) and LED lamps (λ  =  400-510 nm). The obtained results showed that TiO2 and TiO2 doped Cr thin films was featured by an anatase phase with nanoparticles of 10-100 nm. Doping TiO2 with 0.1%mol Cr2O3 led to reduce band gap energy from 3.01 down to 1.99 eV and extend the spectrum of photon absorption to the visible region (λ  =  622 nm). LaBO3 perovkite thin films were also featured by a crystal phase with average particle nanosize of 8-40 nm, a BET surface area of 17.6-32.7 m2 g-1 and band gap energy of 1.87-2.20 eV. UiO66-NH2 was obtained in the ball shape of 100-200 nm, a BET surface area of 576 m2 g-1 and a band gap energy of 2.83 eV. The low band gap energy nano-photocatalysts based on Cr-doped TiO2 and LaBO3 perovskites exhibited highly stable and active for photo-degradation of p-xylene in the gas phase under radiation of UV-vis light. Perovskite LaFeO3 and Cr-TiO2 thin films were the best photocatalysts with a decomposition yield being reached up to 1.70 g p-xylene/g cat.

  2. The Photocatalysis of N,N-diethyl-m-toluamide (DEET) Using Dispersions of Degussa P-25 TiO2 Particles

    EPA Science Inventory

    The photocatalysis of N,N-diethyl-meta-toluamide (DEET) was examined using aqueous Degussa P-25 TiO2 dispersions and a 350 nm high pressure Hg lamp UV reactor. Various concentrations of humic acid (HA) were added to the photocatalytic sample matrix in order to simulat...

  3. Impact of TiO2 on the chemical and biological transformation of formulated chiral-metalaxyl in agricultural soils.

    PubMed

    Huang, Junxing; Zhang, Xu; Liang, Chuanzhou; Hu, Jun

    2018-04-15

    The impacts of TiO 2 on the chemical and biological transformation of racemic metalaxyl wettable powder (rac-metalaxyl WP) in agricultural soils, and soil microorganisms were investigated. Under simulated solar irradiation, TiO 2 highly promoted the transformation of rac-metalaxyl WP without changing the enantiomer fraction, with the promotion amplitude (60-1280%) being dependent on TiO 2 characteristics. TiO 2 characteristics showed different influence on the transformation of rac-metalaxyl WP in soils and aqueous solutions because their characteristics changed differently in soils. The impact of the mancozeb and other co-constituents on the transformation of rac-metalaxyl WP was smaller in soil media than in aqueous solution. Autoclave sterilization changed soil properties and subsequently weakened the promotion effects of TiO 2 on the chemical transformations of rac-metalaxyl WP to 0-233%. Microorganism biomass and bacterial community were not statistically significant changed by TiO 2 exposure regardless of rac-metalaxyl WP, suggesting that the promotional effects occurred mainly through chemical processes. The results also showed TiO 2 -soil interactions may be strengthened with TiO 2 (Degussa P25) aging time in soils, which decreased its promotion amplitude from 1060% (without aging) to 880% (aging for 20 days). Intermediate formed in soil biological transformation process was different from that in TiO 2 photocatalysis process. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Influence of calcinated and non calcinated nanobioglass particles on hardness and bioactivity of sol-gel-derived TiO2-SiO2 nano composite coatings on stainless steel substrates.

    PubMed

    Dadash, Mohammad Saleh; Karbasi, Saeed; Esfahani, Mojtaba Nasr; Ebrahimi, Mohammad Reza; Vali, Hojatollah

    2011-04-01

    Thick films of calcinated and non calcinated nanobioglass (NBG)-titania composite coatings were prepared on stainless steel substrates by alkoxide sol-gel process. Dip-coating method was used for the films preparation. The morphology, structure and composition of the nano composite films were evaluated using environmental scanning electron microscope, X-ray diffraction and Fourier transform infrared spectroscope. The SEM investigation results showed that prepared thick NBG-titania films are smooth and free of macrocracking, fracture or flaking. The grain size of these films was uniform and nano scale (50-60 nm) which confirmed with TEM. Also FTIR confirmed the presence of Si-O-Si bands on the calcinated NBG-titania films. The hardness of the prepared films (TiO(2)-calcinated NBG and TiO(2)-Non calcinated NBG) was compared by using micro hardness test method. The results verified that the presence of calcinated NBG particles in NBG-titania composite enhanced gradually the mechanical data of the prepared films. The in vitro bioactivity of these films was discussed based on the analysis of the variations of Ca and P concentrations in the simulated body fluid (SBF) and their surface morphologies against immersion time. Surface morphology and Si-O-Si bands were found to be of great importance with respect to the bioactivity of the studied films. The results showed that calcinated NBG-titania films have better bioactivity than non calcinated NBG-titania films.

  5. Nanostructured TiO2-based gas sensors with enhanced sensitivity to reducing gases

    PubMed Central

    Kusior, Anna; Trenczek-Zajac, Anita

    2016-01-01

    2D TiO2 thin films and 3D flower-like TiO2-based nanostructures, also decorated with SnO2, were prepared by chemical and thermal oxidation of Ti substrates, respectively. The crystal structure, morphology and gas sensing properties of the TiO2-based sensing materials were investigated. 2D TiO2 thin films crystallized mainly in the form of rutile, while the flower-like 3D nanostructures as anatase. The sensor based on the 2D TiO2 showed the best performance for H2 detection, while the flower-like 3D nanostructures exhibited enhanced selectivity to CO(CH3)2 after sensitization by SnO2 nanoparticles. The sensor response time was of the order of several seconds. Their fast response, high sensitivity to selected gas species, improved selectivity and stability suggest that the SnO2-decorated flower-like 3D nanostructures are a promising material for application as an acetone sensor. PMID:28144521

  6. Synthesis of hierarchically meso-macroporous TiO2/CdS heterojunction photocatalysts with excellent visible-light photocatalytic activity.

    PubMed

    Zhao, Haixin; Cui, Shu; Yang, Lan; Li, Guodong; Li, Nan; Li, Xiaotian

    2018-02-15

    Photocatalysts with a hierarchically porous structure have attracted considerable attention owing to their wide pore size distribution and high surface area, which enhance the efficiency of transporting species to active sites. In this study, hierarchically meso-macroporous TiO 2 photocatalysts decorated with highly dispersed CdS nanoparticles were synthesized via hydrolysis, followed by a hydrothermal treatment. The textural mesopores and interconnected pore framework provided more accessible active sites and efficient mass transport for the photocatalytic process. The light collection efficiency was enhanced because of multiple scattering of incident light in the macropores. Moreover, the formation of a heterojunction between the CdS and TiO 2 nanoparticles extended the photoresponse of TiO 2 to the visible-light range and enhanced the charge separation efficiency. Therefore, the hierarchically meso-macroporous TiO 2 /CdS photocatalysts exhibited excellent photocatalytic activity for the degradation of rhodaming B under visible-light irradiation. Trapping experiments demonstrated that superoxide radicals (O 2 - ) and hydroxyl radicals (OH) were the main active species in photocatalysis. A reasonable photocatalytic mechanism of TiO 2 /CdS heterojunction photocatalysts was also presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Synthesis of TiO2 nano-powders prepared from purified sulphate leach liquor of red mud.

    PubMed

    Tsakiridis, P E; Oustadakis, P; Katsiapi, A; Perraki, M; Agatzini-Leonardou, S

    2011-10-30

    The research work presented in this paper is focused on the development of a purification process of red mud sulphate leach liquor for the recovery of titanium oxide (TiO(2)) nano-powders in the form of anatase. Initially, titanium was extracted over iron and aluminium from the leach liquor by solvent extraction using Cyanex 272 in toluene, at pH: 0.3 and T: 25°C, with 40% extractant concentration. Stripping of the loaded, with titanium, organic phase was carried out by diluted HCl (3 mol/L) at ambient temperature. Finally, the recovery of titanium nano-powder, in the form of anatase, was performed by chemical precipitation at pH: 6 and T: 95°C, using 10 wt% MgO pulp as neutralizing agent. The produced precipitates were characterized by X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric/differential thermal analysis (TGA/DTA). Their morphological characteristics and microstructure were studied by scanning electron microscopy (SEM). High grade titanium white precipitate, in the form of anatase, was obtained. Iron concentration in the precipitate did not exceed 0.3%, whereas no aluminium was detected. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Conjugated polymer/nanocrystal nanocomposites for renewable energy applications in photovoltaics and photocatalysis.

    PubMed

    Su, Yu-Wei; Lin, Wei-Hao; Hsu, Yung-Jung; Wei, Kung-Hwa

    2014-11-01

    Conjugated polymer/nanocrystal composites have attracted much attention for use in renewable energy applications because of their versatile and synergistic optical and electronic properties. Upon absorbing photons, charge separation occurs in the nanocrystals, generating electrons and holes for photocurrent flow or reduction/oxidation (redox) reactions under proper conditions. Incorporating these nanocrystals into conjugated polymers can complement the visible light absorption range of the polymers for photovoltaics applications or allow the polymers to sensitize or immobilize the nanocrystals for photocatalysis. Here, the current developments of conjugated polymer/nanocrystal nanocomposites for bulk heterojunction-type photovoltaics incorporating Cd- and Pb-based nanocrystals or quantum dots are reviewed. The effects of manipulating the organic ligands and the concentration of the nanocrystal precursor, critical factors that affect the shape and aggregation of the nanocrystals, are also discussed. In the conclusion, the mechanisms through which conjugated polymers can sensitize semiconductor nanocrystals (TiO2 , ZnO) to ensure efficient charge separation, as well as how they can support immobilized nanocrystals for use in photocatalysis, are addressed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Eosin-Y sensitized core-shell TiO2-ZnO nano-structured photoanodes for dye-sensitized solar cell applications.

    PubMed

    Manikandan, V S; Palai, Akshaya K; Mohanty, Smita; Nayak, Sanjay K

    2018-06-01

    In the current investigation, TiO 2 and TiO 2 -ZnO (core-shell) spherical nanoparticles were synthesized by simple combined hydrolysis and refluxing method. A TiO 2 core nanomaterial on the shell material of ZnO was synthesized by utilizing variable ratios of ZnO. The structural characterization of TiO 2 -ZnO core/shell nanoparticles were done by XRD analysis. The spherical structured morphology of the TiO 2 -ZnO has been confirmed through field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) studies. The UV-visible spectra of TiO 2 -ZnO nanostructures were also compared with the pristine TiO 2 to investigate the shift of wavelength. The TiO 2 -ZnO core/shell nanoparticles at the interface efficiently collect the photogenarated electrons from ZnO and also ZnO act a barrier for reduced charge recombination of electrolyte and dye-nanoparticles interface. This combination improved the light absorption which induced the charge transfer ability and dye loading capacity of core-shell nanoparticles. An enhancement in the short circuit current (J sc ) from 1.67 mA/cm 2 to 2.1 mA/cm 2 has been observed for TiO 2 -ZnObased photoanode (with platinum free counter electrode), promises an improvement in the energy conversion efficiency by 57% in comparison with that of the DSSCs based on the pristine TiO 2 . Henceforth, TiO 2 -ZnO photoelectrode in ZnO will effectively act as barrier at the interface of TiO 2 -ZnO and TiO 2 , ensuring the potential for DSSC application. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Establishment of Airborne Nanoparticle Exposure Chamber System to Assess Nano TiO2 Induced Mice Lung Effects

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Hua; Li, Jui-Ping; Huang, Nai-Chun; Yang, Chung-Shi; Chen, Jen-Kun

    2011-12-01

    A great many governments have schemed their top priority to support the research and development of emerging nanotechnology, which lead to increasing products containing nanomaterials. However, platforms and protocols to evaluate the safety of nanomaterials are not yet established. We therefore design and fabricate a nanoparticle exposure chamber system (NECS) and try to standardize protocols to assess potential health risk of inhalable nanoparticles. This platform comprises: (1) nano-aerosol generators to produce homogeneous airborne nanoparticles, (2) double isolated container to prevent from unexpected exposure to humans, (3) gas supply system for housing animals or incubating cultured cells, and (4) system for automatic control and airborne nanoparticle analysis. The NECS providing multiple functions includes: (1) a secure environment to handle nanomaterials, (2) real-time measurement for the size and distribution of airborne nanoparticles, (3) SOP of safety evaluation for nanomaterials, and (4) key technology for the development of inhalable pharmaceuticals. We used NECS to mimic occupational environment for exploring potential adverse effects of TiO2 nanoparticles. The adult male ICR mice were exposed to 25nm, well-characterized TiO2 particles for 1 and 4 weeks. More than 90% of the inhaled TiO2 nanoparticles deposit in lung tissue, which tends to be captured by alveolar macrophages. Pulmonary function test does not show significant physiological changes between one and 4 weeks exposure. For plasma biochemistry analysis, there are no obvious inflammation responses after exposure for one and 4 weeks; however, disruption of alveolar septa and increased thickness of alveolar epithelial cells were observed. According to our results, the NECS together with our protocols show comprehensive integration and ideally fit the standard of OECD guildelines-TG403, TG412, TG413; it can be further customized to fulfill diverse demands of industry, government, and third party

  11. Photoinactivation and Toxicity of Nano-sized TiO2 on Paint Microflora Using Visible Lights

    NASA Astrophysics Data System (ADS)

    Obidi, Olayide; Halverson, Larry

    2016-04-01

    Traditional TiO2 has been used as an antimicrobial additive to paints, but more recently the use of TiO2 nanoparticles (NPs) has been proposed as an alternative because of its ability to induce oxidative damage to the cell membrane of bacteria. This study focused on how photoinactivation of TiO2 NPs by fluorescent and halogen lights (400-700 nm) influenced survival of Bacillus sphaericus (Gram-positive bacterium) and Klebsiella pneumoniae (Gram-negative bacterium) isolated from spoiled paints. The loss of viability of the test organisms in the presence of TiO2 NPs determined by culturable (plate) count technique indicated a decrease in viable bacteria that was predominant after 24-h exposure. The TiO2 NPs showed higher antibacterial performance under fluorescent light than halogen light with increasing irradiation time and confirms the photokilling effect of TiO2 NPs. TiO2 NPs were also bactericidal under dark conditions, suggesting potential antibacterial applications in the paint industry.

  12. Dispersions of geometric TiO2 nanomaterials and their toxicity to RPMI 2650 nasal epithelial cells

    NASA Astrophysics Data System (ADS)

    Tilly, Trevor B.; Kerr, Lei L.; Braydich-Stolle, Laura K.; Schlager, John J.; Hussain, Saber M.

    2014-11-01

    Titanium dioxide (TiO2) based nanofilaments—nanotube, nanowire, nanorod—have gained interest for industrial, electrical, and as of recent, medical applications due to their superior performance over TiO2 nanoparticles. Safety assessment of these nanomaterials is critical to protect workers, patients, and bystanders as these technologies become widely implemented. Additionally, TiO2 based nanofilaments can easily be inhaled by humans and their high aspect ratio, much like asbestos fibers, may make them toxic in the respiratory system. The tendency of TiO2 nanofilaments to aggregate makes evaluating their nanotoxicity difficult and the results controversial, because incomplete dispersion results in larger particle sizes that are no longer in the nano dimensional size range. TiO2 nanofilaments are aggregated and difficult to disperse homogeneously in solution by conventional methods, such as sonication and vortexing. In this study, a microfluidic device was utilized to produce stable, homogeneous dosing solutions necessary for in vitro toxicity evaluation by eliminating any toxicity caused by aggregated TiO2 nanomaterials. The toxicity results could then be directly correlated to the TiO2 nanostructure itself. The toxicity of four TiO2 nanogeometries—nanotube, nanowire, nanorod, and nanoparticle—were assessed in RPMI 2650 human nasal epithelial cells at representative day, week, and month in vitro exposure dosages of 10, 50, 100 μg/ml, respectively. All TiO2 based nanomaterials dispersed by the microfluidic method were nontoxic to RPMI 2650 cells at the concentrations tested, whereas higher concentrations of 100 μg/ml of nanowires and nanotubes dispersed by sonication reduced viability up to 27 %, indicating that in vitro toxicity results may be controlled by the dispersion of dosing solutions.

  13. Synergistic operation of photocatalytic degradation and Fenton process by magnetic Fe3O4 loaded TiO2

    NASA Astrophysics Data System (ADS)

    Sun, Qiong; Hong, Yong; Liu, Qiuhong; Dong, Lifeng

    2018-02-01

    The magnetic Fe3O4 loaded anatase TiO2 photocatalysts with different mass ratios were successfully synthesized by a one-step convenient calcining method. The morphology and structure analysis revealed that Fe3O4 was formed in TiO2 with very fine-grained particles. After a small amount of Fe3O4 loaded onto TiO2, the photocatalytic property enhanced obviously for the degradation of organic dye. Furthermore, the photo-Fenton-like catalysis of the iron-containing samples could also be induced after the addition of hydrogen peroxide. The apparent kinetic constant of the reaction that catalyzed by Fe-TiO2 was about 5.3 and 8.3 times of that catalyzed by TiO2 or Fe3O4 only, respectively, proving an effective synergistic contribution of the photocatalysis and Fenton reaction in the composite. Compared with Fe3O4 or free Fe3+ ions, only 13% of iron in TiO2 dissolved into acidic solution (25% for Fe3O4 and 100% for Fe3+) after the reaction, which confirmed the iron had been well immobilized onto TiO2. In addition, the extremely stable photocatalytic activity in cycling experiments proved the immobilized iron had been tightly attached onto TiO2, indicating the great potential of the catalyst for practical applications.

  14. A novel synthesis method for TiO2 particles with magnetic Fe3O4 cores.

    PubMed

    Dong, Qi; Zhang, Keqiang; An, Yi

    2014-01-01

    TiO2@(AC/Fe3O4) (AC is activated carbon) was prepared by using AC and Fe3O4 as joint support. The morphological features, crystal structure, and magnetism of the final product were characterized. The results indicate that TiO2 particles formed on the surface of AC and Fe3O4; the sizes of TiO2 and Fe3O4 were 0.5 and 0.7 μm respectively, and that of AC fell within a wide range. The highly crystalline cubic structures of the TiO2 particles was in accord with the standard X-ray diffractometry spectrum of magnetite and anatase. The maximum saturation magnetization of TiO2@(AC/Fe3O4) was 75 emu g(-1), which was enough to support magnetic recovery. The rate of methylene blue (MB) removal photocatalyzed by TiO2@(AC/Fe3O4) was higher by 50% than that achieved with AC/Fe3O4 photocatalysis, and similar to that achieved with TiO2@AC. The removal rate (kobs) decreased drastically from 1.77 × 10(-2) to 9.36 × 10(-3)min(-1) when the initial concentration of MB solution increased from 2.0 to 5.0 mg L(-1). The kobs value increased from 9.41 × 10(-3) to 1.34 × 10(-2)min(-1) with increasing photocatalyst dosage from 0.2 to 1.0 g, then slightly decreased to 1.33 × 10(-2)min(-1) at 2.0 g dosage.

  15. Effect of molarity on sol-gel routed nano TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Lourduraj, Stephen; Williams, Rayar Victor

    The nanostructured titanium dioxide (TiO2) thin films have been prepared for the molar concentrations of titanium tetra isopropoxide (TTIP) 0.05M, 0.1M, 0.15M and 0.2M by sol-gel routed spin coating technique with calcination at 450∘C. The processing parameters such as, pH value (8), catalyst HCl (0.1ml), spin speed (3000rpm) and calcination temperature (450∘C) are optimized. The crystalline nature and surface morphology were analyzed by XRD, SEM and AFM analysis. The XRD results confirm that the films are crystalline with anatase phase, and are nanostructured. The SEM micrographs of the TiO2 film reveal the spherical nature of the particle. AFM analysis establishes that the uniformity of the TiO2 thin film was optimized at 0.2M. The optical measurements show that the transmittance depends on the molarity, and the optical band gap energy of TiO2 films is found to be inversely proportional to molarity. The I-V characteristics exhibit that the molarity strongly influences the electrical conductivity of the film. The results indicate that the significant effect of molarity on structural, optical and electrical properties of the nanostructured TiO2 thin films will be useful to photovoltaic application.

  16. Modeling TiO2 nanoparticle phototoxicity: The importance of chemical concentration, ultraviolet radiation intensity, and time

    EPA Science Inventory

    Toxicity of TiO2 nanoparticles (nano-TiO2) to aquatic organisms can be greatly increased upon the exposure to ultraviolet radiation (UV). This phenomenon has received some attention for pelagic species, however, investigations of nano-TiO2 phototoxicity in benthic organisms are s...

  17. Effect of laser irradiation on the structural, morphological and electrical properties of polycrystalline TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Khan, M. I.; Ali, Asghar

    TiO2 thin film is deposited on glass substrate by sol-gel dip coating technique. After deposition, films were irradiated by continuous wave (CW) diode laser at an angle of 45°. XRD shows both the anatase and brookite phases of TiO2. Nano particles of regular and control sizes are appeared in SEM micrographs. Therefore, shape and size of nano particles can be control by using Laser irradiation. The average sheet resistivity of TiO2 thin film irradiated by 0, 2, 4 and 6 min are 6.72 × 105, 5.32 × 105, 3.44 × 105 and 4.95 × 105 (ohm-m) respectively, according to four point probe.

  18. Rough gold films as broadband absorbers for plasmonic enhancement of TiO2 photocurrent over 400–800 nm

    PubMed Central

    Tan, Furui; Li, Tenghao; Wang, Ning; Lai, Sin Ki; Tsoi, Chi Chung; Yu, Weixing; Zhang, Xuming

    2016-01-01

    Recent years have witnessed an increasing interest in highly-efficient absorbers of visible light for the conversion of solar energy into electrochemical energy. This study presents a TiO2-Au bilayer that consists of a rough Au film under a TiO2 film, which aims to enhance the photocurrent of TiO2 over the whole visible region and may be the first attempt to use rough Au films to sensitize TiO2. Experiments show that the bilayer structure gives the optimal optical and photoelectrochemical performance when the TiO2 layer is 30 nm thick and the Au film is 100 nm, measuring the absorption 80–90% over 400–800 nm and the photocurrent intensity of 15 μA·cm−2, much better than those of the TiO2-AuNP hybrid (i.e., Au nanoparticle covered by the TiO2 film) and the bare TiO2 film. The superior properties of the TiO2-Au bilayer can be attributed to the rough Au film as the plasmonic visible-light sensitizer and the photoactive TiO2 film as the electron accepter. As the Au film is fully covered by the TiO2 film, the TiO2-Au bilayer avoids the photocorrosion and leakage of Au materials and is expected to be stable for long-term operation, making it an excellent photoelectrode for the conversion of solar energy into electrochemical energy in the applications of water splitting, photocatalysis and photosynthesis. PMID:27608836

  19. Novel high potential visible-light-active photocatalyst of CNT/Mo, S-codoped TiO2 hetero-nanostructure

    NASA Astrophysics Data System (ADS)

    Hamadanian, M.; Shamshiri, M.; Jabbari, V.

    2014-10-01

    The current study deals with synthesize of novel nanophotocatalysts of CNT/Mo,S-codoped TiO2 by reacting between titanium isopropoxide (Ti(OC3H7)4) and CNT in aqueous ammonia and subsequent calcining of hydrolysis of the products. The prepared catalysts were characterized by N2 adsorption-desorption measurements, XRD, SEM, TEM, EDX, FT-IR, and UV-vis DRS spectroscopy. SEM and TEM images exhibited uniform coverage of CNT with anatase TiO2 nanoclusters. It was also demonstrated that the presence of S and Mo within the TiO2 acts as electrons traps and prevents the charge recombination and also enables the TiO2 photocatalyst to be active in visible-light region. Moreover, the CNT/Mo,S-doped TiO2 nanohybrids has been proven to has a excellent photocatalytic performance in photodecomposition of Congored (CR), at which the rate of decomposition reaches 100% in only 20 and 30 min under UV and visible-light irradiation, respectively. The enhanced photocatalytic activity was ascribed to the synergetic effects of excellent electrical property of CNT and metal-non-metal codoping. Finally, which to best of our knowledge is done for the first time, we have demonstrated that Mo- and S-doped TiO2 decorated over CNT, or CNT/Mo,S-codoped TiO2, may have high potential applications in photocatalysis and environmental protection with superior catalytic activity under visible-light illumination.

  20. Studies on Nano-Engineered TiO2 Photo Catalyst for Effective Degradation of Dye

    NASA Astrophysics Data System (ADS)

    Sowmya, S. R.; Madhu, G. M.; Hashir, Mohammed

    2018-02-01

    All Heterogeneous photo catalysis employing efficient photo-catalyst is the advanced dye degradation technology for the purification of textile effluent. The present work focuses on Congo red dye degradation employing synthesized Ag doped TiO2 nanoparticles as photocatalyst which is characterized using SEM, XRD and FTIR. Studies are conducted to study the effect of various parameters such as initial dye concentration, catalyst loading and pH of solution. Ag Doped TiO2 photocatalyst improve the efficacy of TiO2 by reducing high band gap and electron hole recombination of TiO2. The reaction kinetics is analyzed and the process is found to follow pseudo first order kinetics.

  1. Comparison of Benzene & Toluene removal from synthetic polluted air with use of Nano photocatalyticTiO2/ ZNO process.

    PubMed

    Gholami, Mitra; Nassehinia, Hamid Reza; Jonidi-Jafari, Ahmad; Nasseri, Simin; Esrafili, Ali

    2014-02-05

    Mono aromatic hydrocarbons (BTEX) are a group of hazardous pollutants which originate from sources such as refineries, gas, and oil extraction fields, petrochemicals and paint and glue industries.Conventional methods, including incineration, condensation, adsorption and absorption have been used for removal of VOCs. None of these methods is economical for removal of pollutants of polluted air with low to moderate concentrations. The heterogeneous photocatalytic processes involve the chemical reactions to convert pollutant to carbon dioxide and water. The aim of this paper is a comparison of Benzene & Toluene removal from synthetic polluted air using a Nano photocatalytic TiO2/ ZNO process. The X-ray diffraction (XRD) patterns showed that Nano crystals of TiO2 and ZNO were in anatase and rutile phases. Toluene & benzene were decomposed by TiO2/ ZNO Nano photocatalyst and UV radiation. Kruskal-wallis Test demonstrated that there are significant differences (pvalue < 0.05) between pollutant concentrations in different operational conditions. Degradation of toluene & benzene increases with increasing UV intensity and decreasing initial concentrations. Effect of TiO2/ZNO Nano photocatalyst on benzene is less than that on toluene. In this research, Toluene & benzene removal by TiO2/ZNO and UV followed first-order reactions.

  2. Comparison of Benzene & Toluene removal from synthetic polluted air with use of Nano photocatalyticTiO2/ ZNO process

    PubMed Central

    2014-01-01

    Background Mono aromatic hydrocarbons (BTEX) are a group of hazardous pollutants which originate from sources such as refineries, gas, and oil extraction fields, petrochemicals and paint and glue industries. Conventional methods, including incineration, condensation, adsorption and absorption have been used for removal of VOCs. None of these methods is economical for removal of pollutants of polluted air with low to moderate concentrations. The heterogeneous photocatalytic processes involve the chemical reactions to convert pollutant to carbon dioxide and water. The aim of this paper is a comparison of Benzene & Toluene removal from synthetic polluted air using a Nano photocatalytic TiO2/ ZNO process. Results The X-ray diffraction (XRD) patterns showed that Nano crystals of TiO2 and ZNO were in anatase and rutile phases. Toluene & benzene were decomposed by TiO2/ ZNO Nano photocatalyst and UV radiation. Kruskal-wallis Test demonstrated that there are significant differences (pvalue < 0.05) between pollutant concentrations in different operational conditions. Conclusions Degradation of toluene & benzene increases with increasing UV intensity and decreasing initial concentrations. Effect of TiO2/ZNO Nano photocatalyst on benzene is less than that on toluene. In this research, Toluene & benzene removal by TiO2/ZNO and UV followed first-order reactions. PMID:24499601

  3. Silver doped TiO2 nano crystallites for dye-sensitized solar cell (DSSC) applications

    NASA Astrophysics Data System (ADS)

    Sakthivel, T.; Ashok Kumar, K.; Ramanathan, Rajajeyaganthan; Senthilselvan, J.; Jagannathan, K.

    2017-12-01

    This communication deals with the synthesis of Ag doped TiO2 nanoparticles with different doping concentrations prepared by reduction method for the possible usage of photo anode material in DSSC. The prepared nanoparticles are characterized by x-ray diffraction to study their structural properties which confirms the formation of mixed anatase-rutile crystalline phases. The particulate size, shape and surface morphology are examined using FESEM which indicates agglomerated nanostructures with the average particle size of 20-25 nm. The UV-visible absorption spectra showed enhanced absorption in the visible range in accordance with the doping concentration of Ag with a red shift in their absorption edge. The interfacial charge transport phenomena of the DSSCs are determined by electrochemical impedance spectroscopy (EIS) and the corresponding efficiencies are calculated using J-V curve. In the present work, the UV active TiO2 and Ag doped TiO2 nanoparticles are employed as photoanode for the fabrication of DSSCs based on N3 dye and maximum power conversion efficiency of 1.544% is realized.

  4. Immobilization of TiO2 Nanoparticles on Chlorella pyrenoidosa Cells for Enhanced Visible-Light-Driven Photocatalysis

    PubMed Central

    Cai, Aijun; Guo, Aiying; Ma, Zichuan

    2017-01-01

    TiO2 nanoparticles are immobilized on chlorella cells using the hydrothermal method. The morphology, structure, and the visible-light-driven photocatalytic activity of the prepared chlorella/TiO2 composite are investigated by various methods. The chlorella/TiO2 composite is found to exhibit larger average sizes and higher visible-light intensities. The sensitization of the photosynthesis pigment originating from chlorella cells provides the anatase TiO2 with higher photocatalytic activities under the visible-light irradiation. The latter is linked to the highly efficient charge separation of the electron/hole pairs. The results also suggest that the photocatalytic activity of the composite remains substantial after four cycles, suggesting a good stability. PMID:28772899

  5. Environmental green chemistry as defined by photocatalysis.

    PubMed

    Herrmann, J-M; Duchamp, C; Karkmaz, M; Hoai, Bui Thu; Lachheb, H; Puzenat, E; Guillard, C

    2007-07-31

    Photocatalysis is efficient in several fields. Firstly, in selective mild oxidation: oxidation of gas and liquid hydrocarbons (alkanes, alkenes, cyclo-alkanes, aromatics) into aldehydes and ketons. Primary and secondary alcohols are also oxidized into their corresponding aldehydes or ketones. The high selectivity was ascribed to a photoactive neutral, atomic oxygen species. Once platinized (only 0.5wt.% Pt) titania may catalyze reactions involving hydrogen (deuterium-alkane isotopic exchange and alcohol dehydrogenation). For fine chemicals, high initial selectivities enable titania to address most of the twelve principles of "green chemistry", such as the synthesis of 4-tert-butyl-benzaldehyde, an important intermediate in perfume industry by direct selective oxidation of 4-tert-butyl-toluene with air. A new field recently appeared: thio-photocatalysis. Oxygen was replaced by sulfur, using H(2)S as a convenient and reactive source. For instance, the conversion of propene in 1-propanthiol was successfully obtained. The reaction was performed using either CdS or TiO(2). The latter was much more active than CdS. In environmental photocatalysis, titania becomes a total oxidation catalyst once in presence of water because of the photogeneration of OH radicals by neutralization of OH(-) surface groups by positive holes. Many toxic inorganic ions are oxidized in their harmless upper oxidized state. The total degradation of organic pollutants (pesticides, herbicides, insecticides, fungicides, dyes, etc. ...) is the main field of water photocatalytic decontamination. The UVA solar spectrum can de advantageously used as demonstrated by many campaigns performed in the solar pilot plant at the "Plataforma Solar de Almeria" (Spain).

  6. Lattice distortion mechanism study of TiO2 nanoparticles during photocatalysis degradation and reactivation

    NASA Astrophysics Data System (ADS)

    Wu, Wenhui; Xue, Xudong; Jiang, Xudong; Zhang, Yupeng; Wu, Yichu; Pan, Chunxu

    2015-05-01

    In this paper, the photocatalytic process of TiO2 (P25) is directly characterized by using a positron annihilation lifetime spectroscopy (PALS), high-resolution transmission electron microscopy (HRTEM), Photoluminescence spectroscopy (PL) and UV Raman spectroscopy (Raman). The experimental results reveal that: 1) From PALS measurements, because τ1 and τ2 values and their intensity (I1 and I2) assigned to the different size and amounts of defects, respectively, their variations indicate the formation of different types and amounts of defects during the absorption and degradation. 2) HRTEM observations show that the lattice images become partly blurring when the methylene blue is fully degradated, and clear again after exposed in the air for 30 days. According to the results, we propose a mechanism that the lattice distortion induces the defects as electron capture sites and provides energy for improving photocatalytic process. Meanwhile, the lattice distortion relaxation after exposing in the air for 30 days perfectly explains the gradual deactivation of TiO2, because the smaller vacancy defects grow and agglomerate through the several photocatalytic processes. The instrumental PL and Raman are also used to analyze the samples and approved the results of PALS and HRTEM.

  7. TiO2/ZnO and ZnO/TiO2 core/shell nanofibers prepared by electrospinning and atomic layer deposition for photocatalysis and gas sensing

    NASA Astrophysics Data System (ADS)

    Boyadjiev, Stefan I.; Kéri, Orsolya; Bárdos, Péter; Firkala, Tamás; Gáber, Fanni; Nagy, Zsombor K.; Baji, Zsófia; Takács, Máté; Szilágyi, Imre M.

    2017-12-01

    In the present work, core TiO2 and ZnO oxide nanofibers were prepared by electrospinning, then shell oxide (ZnO, TiO2) layers were deposited on them by atomic layer deposition (ALD). The aim of preparing ZnO and TiO2 nanofibers, as well as ZnO/TiO2 and TiO2/ZnO nanocomposites is to study the interaction between the oxide materials when a pure oxide fiber is covered with thin film of the other oxide, and explore the influence of exchanging the core and shell materials on their photocatalytic and gas sensing properties. The composition, structure and morphology of the pure and composite nanofibers were studied by SEM-EDX, TEM, XRD, FTIR, UV-vis and Raman. The photocatalytic activity of the as-prepared materials was analyzed by UV-vis spectroscopy through decomposing aqueous methyl orange under UV irradiation. The gas sensing of the nanofibers was investigated by detecting 100 ppm NH3 at 150 and 220 °C using interdigital electrode based sensors.

  8. Optical properties of titanium-di-oxide (TiO2) prepared by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Rahman, Kazi Hasibur; Biswas, Sayari; Kar, Asit Kumar

    2018-05-01

    Research on titanate and its derived TiO2 nanostructures with large specific surface area have received great attention due to their enhanced efficiency in photocatalysis, DSSC etc. Here, in this communication TiO2 powder has been prepared by hydrothermal method at 180 °C. In this work we have shown the changes in optical properties of the powder with two different sintering temperatures ‒ 500 °C and 800 °C. The as prepared powder was also studied. FESEM images show spherical particles for the as prepared samples which look more like agglomeration after sintering. Band gaps of the prepared samples were calculated from UV-Vis spectroscopy which lies in the range 2.85 eV ‒ 3.13 eV. The photoluminescence (PL) spectra of the prepared samples were recorded at room temperature in the range of 300‒700 nm. It shows two distinct peaks at 412 nm and 425 nm.

  9. The nature of chlorine-inhibition of photocatalytic degradation of dichloroacetic acid in a TiO2-based microreactor.

    PubMed

    Krivec, M; Dillert, R; Bahnemann, D W; Mehle, A; Štrancar, J; Dražić, G

    2014-07-28

    Photocatalytic degradation of dichloroacetic acid (DCA) was studied in a continuous-flow set-up using a titanium microreactor with an immobilized double-layered TiO2 nanoparticle/nanotube film. Chloride ions, formed during the degradation process, negatively affect the photocatalytic efficiency and at a certain concentration (approximately 0.5 mM) completely stop the reaction in the microreactor. Two proposed mechanisms of inhibition with chloride ions, competitive adsorption and photogenerated-hole scavenging, have been proposed and investigated by adsorption isotherms and electron paramagnetic resonance (EPR) measurements. The results show that chloride ions block the DCA adsorption sites on the titania surface and reduce the amount of adsorbed DCA molecules. The scavenging effect of chloride ions during photocatalysis through the formation of chlorine radicals was not detected.

  10. Influence of TiCl4 precursor in hydrothermal synthesis of TiO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Kartikay, Purnendu; Nemala, Siva Sankar; Mallick, Sudhanshu

    2017-05-01

    Rutile TiO2 films were deposited on the FTO substrate by the hydrothermal process using TTIP and TiCl4 as the titania precursor. Our study manifestly exhibits the influence of TiCl4 precursor on the hydrothermal growth of the TiO2 structure. The morphology of prepared film varies from nano-cauliflower to nano-flower to nano-parallelepiped rod-like structure with the addition of TiCl4 as the precursor. When TiCl4 is introduced in the precursor HCl corresponding to four times of the Ti4+ concentration is generated as a by-product during the reaction, these additional HCl promotes the etching of the nanostructure enabling the nanostructure to unfurl. We conclude that the tailoring of the nanostructure can be performed by addition of TiCl4 in the precursor

  11. Effect of TiO2 nano fillers on the electrical conductivity of PSAN/TiO2 polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Ningaraju, S.; Munirathnamma, L. M.; Kumar, K. V. Aneesh; Ravikumar, H. B.

    2016-05-01

    The microstructural characterization of Polystyrene co-acrylonitrile and Titanium dioxide (PSAN/TiO2) nanocomposites has been performed by Positron Annihilation Lifetime Spectroscopy. The decrease of positron lifetime parameters viz. o-Ps lifetime (τ3) and free volume size (Vf) up to 0.6 wt% of TiO2 is attributed to the filling of free volume holes by TiO2 nanoparticles. The increased free volume size (Vf) after 0.6 wt% of TiO2 indicates the formation of interface due to TiO2 nanoclusters. The variation of electrical conductivity at the lower and higher concentration of TiO2 in (PSAN/TiO2) nanocomposites is attributed to the blocking effect and space charge effect respectively.

  12. Cotton fibers nano-TiO{sub 2} composites prepared by as-assembly process and the photocatalytic activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, J.H., E-mail: xiajianhan@163.com; Hsu, C.T.; Qin, D.D.

    Graphical abstract: Display Omitted Highlights: ► TiO{sub 2} nanoparticles self-assemble process under the assistant of carboxylic group. ► The carboxylic group was introduced by displacement reaction. ► The loading amount of nano-TiO{sub 2} was depended on the displacement degree of C-6-OH. ► UV–Vis experiments showed these fibers had efficient photocatalysis. ► The degradation reaction Rhodamine 6G under UV light obeys zero-order rate law. -- Abstract: This paper describes photocatalytic cotton fibers produced by a TiO{sub 2} nanoparticle self-assembly process with the assistance of carboxylic groups. The carboxylic group was introduced by a displacement reaction, the molecular structure of the glucosemore » unit was studied by utilizing solid {sup 13}C NMR. The appearance of the prepared fibers was observed by scanning electron microscopy, it was found that nano-TiO{sub 2} coated uniformly on the fiber surface. The loading amount of nano-TiO{sub 2} was depended on the displacement degree of C-6-OH. UV–Vis experiments showed these coated fibers undergo photocatalysis efficiently. The degradation reaction of Rhodamine 6G under UV light obeys the zero-order rate law.« less

  13. Structural properties of TiO2 nanomaterials

    NASA Astrophysics Data System (ADS)

    Kusior, Anna; Banas, Joanna; Trenczek-Zajac, Anita; Zubrzycka, Paulina; Micek-Ilnicka, Anna; Radecka, Marta

    2018-04-01

    The surface of solids is characterized by active, energy-rich sites that determine physicochemical interaction with gaseous and liquid media and possible applications in photocatalysis. The behavior of materials in such processes is related to their form and amount of various species, especially water and forms of oxygen adsorbed on the surface. The preparation of materials with controlled morphology, which includes modifications of the size, geometry, and composition, is currently an important way of optimizing properties, as many of them depend on not only the size and phase composition, but also on shape. Hydroxylated centers on the surface, which can be treated as trapping sites, are particularly significant. Water adsorbed on the surface bridging hydroxyl groups can distinctly modulate the properties of the surface of titania. The saturation of the surface with hydroxyl groups may improve the photocatalytic properties. TiO2 nanomaterials were obtained via different methods. SEM and TEM analysis were performed to study the morphology. The analysis of XRD and Raman data revealed a phase composition of obtained materials. To examine the surface properties, FTIR absorption spectra of TiO2 nanomaterials were recorded. The photocatalytic activity of titanium dioxide nanoparticles was investigated through the decomposition of methylene blue. It was demonstrated that each surface modification affects the amount of adsorbed hydroxyl groups. The different contributions of the two species to the ν(H2O) FTIR bands for different nanostructures result from the preparation conditions. It was noted that pre-adsorbed water (the surface-bridging hydroxyl) might significantly modulate the surface properties of the material. The increase in hydroxyl group density on the titanium dioxide surface enhances the effectiveness of the photocatalytic processes. It was demonstrated that flower-like titania obtained via hydrothermal synthesis exhibits the weakest catalytic activity, in

  14. Interface engineered construction of porous g-C3N4/TiO2 heterostructure for enhanced photocatalysis of organic pollutants

    NASA Astrophysics Data System (ADS)

    Li, Ya-Nan; Chen, Zhao-Yang; Wang, Min-Qiang; Zhang, Long-zhen; Bao, Shu-Juan

    2018-05-01

    A porous g-C3N4/TiO2 with hierarchical heterostructure has been successfully fabricated through a in situ assembling of small needle-like TiO2 on the surface of ultrathin g-C3N4 sheets. The ultrathin g-C3N4 sheets with carbon vacancies and rich hydroxyl groups were found to facilitate the nucleation and in situ growth of TiO2 and also to modulate the surface chemical activity of the g-C3N4/TiO2 hierarchical heterostructure. The as-designed photocatalytic heterojunction degraded Acid Orange with 82% efficiency after 10 min under simulated solar light, and possessed excellent cycle stability. Relative physical characterizations and photochemical experiments reveal that engineering the interface/surface of g-C3N4 plays a vital role in effectively constructing heterostructures of g-C3N4/TiO2, thus realizing efficient photoinduced electron-hole separation during photocatalytic process.

  15. Effects of TiO2 nano glass ionomer cements against normal and cancer oral cells.

    PubMed

    Garcia-Contreras, Rene; Scougall-Vilchis, Rogelio J; Contreras-Bulnes, Rosalia; Kanda, Yumiko; Nakajima, Hiroshi; Sakagami, Hiroshi

    2014-01-01

    Incorporation of nanoparticles (NPs) into the glass ionomer cements (GICs) is known to improve their mechanical and antibacterial properties. The present study aimed to investigate the possible cytotoxicity and pro-inflammation effect of three different powdered GICs (base, core build and restorative) prepared with and without titanium dioxide (TiO2) nanoparticles. Each GIC was blended with TiO2 nanopowder, anatase phase, particle size <25 nm at 3% and 5% (w/w), and the GIC blocks of cements were prepared in a metal mold. The GICs/TiO2 nanoparticles cements were smashed up with a mortar and pestle to a fine powder, and then subjected to the sterilization by autoclaving. Human oral squamous cell carcinoma cell lines (HCS-2, HSC-3, HSC-4, Ca9-22) and human normal oral cells [gingival fibroblast (HGF), pulp (HPC) and periodontal ligament fibroblast (HPLF)] were incubated with different concentrations of GICs in the presence or absence of TiO2 nanoparticles, and the viable cell number was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. Prostaglandin E2 was quantified by enzyme-linked immunosorbent assay (ELISA). Changes in fine cell structure were assessed by transmission electron microscopy. Cancer cells exhibited moderate cytotoxicity after 48 h of incubation, regardless of the type of GIC and the presence or absence of TiO2 NPs. GICs induced much lower cytotoxicity against normal cells, but induced prostaglandin E2 production, in a synergistic wanner with interleukin-1β. The present study shows acceptable to moderate biocompatibility of GICs impregnated with TiO2 nanoparticles, as well as its pro-inflammatory effects at higher concentrations. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Atomic layer deposition TiO 2-Al 2O 3 stack: An improved gate dielectric on Ga-polar GaN metal oxide semiconductor capacitors

    DOE PAGES

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.; ...

    2014-10-15

    This research focuses on the benefits and properties of TiO 2-Al 2O 3 nano-stack thin films deposited on Ga 2O 3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO 2, 7.1 nm Al 2O 3 and 2 nm Ga 2O 3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectronmore » spectroscopy (XPS) depth profile, was negligible for GaN pretreated by thermal oxidation in O 2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO 2-Al 2O 3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al 2O 3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 10 11 cm -2. The gate leakage current density (J=2.81× 10 -8 A/cm 2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO 2/Al 2O 3 for serving as the gate oxide on Ga 2O 3/GaN based MOS devices.« less

  17. Atomic layer deposition TiO 2-Al 2O 3 stack: An improved gate dielectric on Ga-polar GaN metal oxide semiconductor capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.

    This research focuses on the benefits and properties of TiO 2-Al 2O 3 nano-stack thin films deposited on Ga 2O 3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO 2, 7.1 nm Al 2O 3 and 2 nm Ga 2O 3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectronmore » spectroscopy (XPS) depth profile, was negligible for GaN pretreated by thermal oxidation in O 2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO 2-Al 2O 3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al 2O 3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 10 11 cm -2. The gate leakage current density (J=2.81× 10 -8 A/cm 2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO 2/Al 2O 3 for serving as the gate oxide on Ga 2O 3/GaN based MOS devices.« less

  18. Increased visible-light photocatalytic activity of TiO2 via band gap manipulation

    NASA Astrophysics Data System (ADS)

    Pennington, Ashley Marie

    Hydrogen gas is a clean burning fuel that has potential applications in stationary and mobile power generation and energy storage, but is commercially produced from non-renewable fossil natural gas. Using renewable biomass as the hydrocarbon feed instead could provide sustainable and carbon-neutral hydrogen. We focus on photocatalytic oxidation and reforming of methanol over modified titanium dioxide (TiO2) nanoparticles to produce hydrogen gas. Methanol is used as a model for biomass sugars. By using a photocatalyst, we aim to circumvent the high energy cost of carrying out endothermic reactions at commercial scale. TiO2 is a semiconductor metal oxide of particular interest in photocatalysis due to its photoactivity under ultraviolet illumination and its stability under catalytic reaction conditions. However, TiO2 primarily absorbs ultraviolet light, with little absorption of visible light. While an effective band gap for absorbance of photons from visible light is 1.7 eV, TiO2 polymorphs rutile and anatase, have band gaps of 3.03 eV and 3.20 eV respectively, which indicate ultraviolet light. As most of incident solar radiation is visible light, we hypothesize that decreasing the band gap of TiO2 will increase the efficiency of TiO2 as a visible-light active photocatalyst. We propose to modify the band gap of TiO2 by manipulating the catalyst structure and composition via metal nanoparticle deposition and heteroatom doping in order to more efficiently utilize solar radiation. Of the metal-modified Degussa P25 TiO2 samples (P25), the copper and nickel modified samples, 1%Cu/P25 and 1%Ni/P25 yielded the lowest band gap of 3.05 eV each. A difference of 0.22 eV from the unmodified P25. Under visible light illumination 1%Ni/P25 and 1%Pt/P25 had the highest conversion of methanol of 9.9% and 9.6%, respectively.

  19. Effects of nano anatase-rutile TiO2 volume fraction with natural dye containing anthocyanin on the dye sensitized solar cell performance

    NASA Astrophysics Data System (ADS)

    Agustini, S.; Wahyuono, R. A.; Sawitri, D.; Risanti, D. D.

    2013-09-01

    Since its first development, efforts to improve efficiency of Dye Sensitized Solar Cell (DSSC) are continuously carried out, either through selection of dye materials, the type of semiconductor, counter electrode design or the sandwiched structure. It is widely known that anatase and rutile are phases of TiO2 that often being used for fabrication of DSSC. Rutile is thermodynamically more stable phase having band-gap suitable for absorption of sunlight spectrum. On the other hand, anatase has higher electrical conductivity, capability to adsorp dye as well as higher electron diffusion coefficient than those of rutile. Present research uses mangosteen pericarp and Rhoeo spathacea extracted in ethanol as natural dye containing anthocyanin. These dyes were characterized by using UV-Vis and FTIR, showing that the absorption maxima peaks obtained at 389 nm and 413 nm, for mangosteen and Rhoeo spathacea, respectively. The nano TiO2 was prepared by means of co-precipitation method. The particle size were 9-11 nm and 54.5 nm for anatase and rutile, respectively, according to Scherrer's equation. DSSCs were fabricated in various volume fractions of anatase and rutile TiO2. The fabricated DSSCs were tested under 17 mW/cm2 of solar irradiation. The current-voltage (I-V) characteristic of DSSCs employing 75%: 25% volume fraction of anatase and rutile TiO2 have outstanding result than others. The highest conversion efficiencies of 0.037% and 0.013% are obtained for DSSC employing natural dye extract from mangosteen pericarp and Rhoeo spathacea, respectively.

  20. RBS, TEM and SEM Characterization of Gold Nanoclusters in TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shutthanandan, V; Zhang, Yanwen; Wang, Chong M.

    2004-05-01

    Nucleation of gold nanoclusters in TiO2(110) single crystal using ion implantation and subsequent annealing were studied by Rutherford backscattering spectrometry /channeling (RBS/C), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Approximately 1000 Au2+/nm2 was implanted at room temperature in TiO2(110) substrates. TEM and SEM measurements revel that rounded nanoclusters were formed during the implantation. In contrast subsequent annealing in air for 10 hours at 1275 K promoted the formation of faceted (rectangular shaped) Au nano structures in TiO2. RBS channeling measurements further reveled that Au atoms randomly occupied in the host TiO2 lattice during the implantation. However, some ofmore » the gold atoms were moved into the Ti lattice position after annealing.« less

  1. Solar photocatalysis for treatment of Acid Yellow-17 (AY-17) dye contaminated water using Ag@TiO2 core-shell structured nanoparticles.

    PubMed

    Khanna, Ankita; Shetty K, Vidya

    2013-08-01

    Wastewater released from textile industries causes water pollution, and it needs to be treated before discharge to the environment by cost effective technologies. Solar photocatalysis is a promising technology for the treatment of dye wastewater. The Ag@TiO2 nanoparticles comprising of Ag core and TiO2 shell (Ag@TiO2) have unique photocatalytic property of inhibition of electron-hole recombination and visible light absorption, which makes it a promising photocatalyst for use in solar photocatalysis and with higher photocatalytic rate. Therefore, in the present work, the Ag@TiO2 nanoparticles synthesized by one pot method with postcalcination step has been used for the degradation of Acid Yellow-17 (AY-17) dye under solar light irradiation. The Ag@TiO2 nanoparticles were characterized using thermogravimetric-differential thermal analysis, X-ray diffraction, transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray analysis. The catalyst has been found to be very effective in solar photocatalysis of AY-17, as compared to other catalysts. The effects of pH, catalyst loading, initial dye concentration, and oxidants on photocatalysis were also studied. The optimized parameters for degradation of AY-17 using Ag@TiO2 were found to be pH 3, dye/catalyst ratio of 1:10 (g/g), and 2 g/L of (NH4)2S2O8 as oxidant. Efficient decolorization and mineralization of AY-17 was achieved. The kinetics of color, total organic carbon, and chemical oxygen demand removal followed the Langmuir-Hinshelwood model. Ag@TiO2 catalyst can be reused thrice without much decline in efficiency. The catalyst exhibited its potential as economic photocatalyst for treatment of dye wastewater.

  2. TiO2 nanocomposites: Preparation, characterization, mechanical and biological properties

    NASA Astrophysics Data System (ADS)

    Koşarsoy, Gözde; Şen, Elif Hilal; Aksöz, Nilüfer; İde, Semra; Aksoy, Hüsnü

    2014-11-01

    Some novel nanocomposites, which contain different concentrations of TiO2 nanopowders, were firstly prepared by using marble dust with convenient chemical components. Their nano structures characterized and distributions of the nano-aggregations related with internal structural content of the samples have been determined by X-ray Scattering Methods (SAXS and WAXS) and mechanical properties were determined by using strain-stress measurements to increase their potential usage possibility as building materials in health and research centers. In the last and important part of the study, Candida albicans and Aspergillus niger which are a significant risk to medical patients were used to investigate originally prepared nanostructured samples' photocatalyst effect. During the last part of the study, effect of UV and visible light on photocatalyst nanocomposites were also researched. Heterogeneous photocatalysts can carry out advanced oxidation processes used for an antimicrobial effect on microorganisms. TiO2 nanoparticles as one of heterogeneous photocatalysts have been shown to exhibit strong cytotoxicity when exposed to UV and visible light.

  3. Nanostructured Titanium Oxide Film- And Membrane-Based Photocatalysis For Water Treatment

    EPA Science Inventory

    Titanium Oxide (TiO2) photocatalysis, one of the ultraviolet (UV)-based advanced oxidation technologies (AOTs) and nanotechnologies (AONs), has attracted great attention for the development of efficient water treatment and purification systems due to the effectiveness ...

  4. Preparation and solar-light photocatalytic activity of TiO2 composites: TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, S. G.; Wang, J.; Li, Y.; Ma, C. H.; Zhang, L.

    2014-12-01

    Three TiO2 loaded composites, TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite, were prepared in order to improve the solar-light photocatalytic activity of TiO2. The results showed that the photocatalytic activity could obviously be enhanced by loading appropriate amount of inorganic mineral materials. Meanwhile, TiO2 content, heat-treatment temperature and heat-treatment time on the photocatalytic activity were reviewed. Otherwise, the effect of solar light irradiation time and dye concentration on the photocatalytic degradation of Acid Red B was investigated. Furthermore, the degradation mechanism and adsorption process were also discussed.

  5. Photocatalytic hollow TiO2 and ZnO nanospheres prepared by atomic layer deposition.

    PubMed

    Justh, Nóra; Bakos, László Péter; Hernádi, Klára; Kiss, Gabriella; Réti, Balázs; Erdélyi, Zoltán; Parditka, Bence; Szilágyi, Imre Miklós

    2017-06-28

    Carbon nanospheres (CNSs) were prepared by hydrothermal synthesis, and coated with TiO 2 and ZnO nanofilms by atomic layer deposition. Subsequently, through burning out the carbon core templates hollow metal oxide nanospheres were obtained. The substrates, the carbon-metal oxide composites and the hollow nanospheres were characterized with TG/DTA-MS, FTIR, Raman, XRD, SEM-EDX, TEM-SAED and their photocatalytic activity was also investigated. The results indicate that CNSs are not beneficial for photocatalysis, but the crystalline hollow metal oxide nanospheres have considerable photocatalytic activity.

  6. Density functional theory study of atomic and electronic properties of defects in reduced anatase TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Morita, Kazuki; Yasuoka, Kenji

    2018-03-01

    Anatase TiO2 nanocrystals have received considerable attention owing to their promising applications in photocatalysis, photovoltaics, and fuel cells. Although experimental evidence has shown that the performance of nanocrystals can be significantly improved through reduction, the mechanistic basis of this enhancement remains unclear. To shed a light on the chemistry of reduced anatase TiO2 nanocrystals, density functional theory were used to investigate the properties of defects and excess electrons. We demonstrated that oxygen vacancies are stable both on the surface and at the sub-surface of the nanocrystal, while titanium interstitials prefer sub-surface sites. Different defect locations possessed different excess electron structures, which contributed to deep and shallow states in the band gap of the nanocrystals. Furthermore, valence band tailing was observed, resulting in band gap narrowing. The theoretical results presented here deepen our understanding, and show the potential of defects to considerably change the macroscopic properties of anatase TiO2 nanocrystals.

  7. TiO2-Nanofillers Effects on Some Properties of Highly- Impact Resin Using Different Processing Techniques.

    PubMed

    Aziz, Hawraa Khalid

    2018-01-01

    The criteria of conventional curing of polymethyl methacrylate do not match the standard properties of the denture base materials. This research was conducted to investigate the addition of TiO 2 nano practical on impact strength, thermal conductivity and color stability of acrylic resin cured by microwave in comparison to the conventional cured of heat-polymerized acrylic resin. 120 specimens made of high impact acrylic resin were divided into two main groups according to the type of curing (water bath, microwave), then each group was subdivided into two groups according to the addition of 3% TiO 2 nano-fillers and control group (without the addition of TiO 2 0%). Each group was subdivided according to the type of test into 3 groups with 10 specimens for each group. Data were statistically analyzed using Student t-test to detect the significant differences between tested and control groups at significance level ( P <0.05). According to curing type methods, the results showed that there was a significant decrease in impact strength of microwaved cured resin, but there was no significant difference in the thermal conductivity and color stability of resin. In addition, by using nanofiller, there was a significant increase in the impact strength and color stability with the addition of 3% TiO 2 nanofillers, but no significant difference was found in the thermal conductivity of the acrylic resin. The microwave curing of acrylic resin had no change in the color stability and thermal conductivity in comparison to the water bath, but the impact strength was decreased. The addition of 3% TiO 2 improved the impact and the color stability, but the thermal conductivity did not change.

  8. Combination of ozonation and photocatalysis for pharmaceutical wastewater treatment

    NASA Astrophysics Data System (ADS)

    Ratnawati, Enjarlis, Slamet

    2017-11-01

    The chemical oxygen demand (COD) and phenol removal from pharmaceutical wastewater were investigated using configuration of two circulation batch reactors in a series with ozonation and photocatalytic processes. The ozonation is conducted with O3/granulated activated carbon (O3/GAC), whereas photocatalysis with TiO2 that immobilized on pumice stone (PS-TiO2). The effect of circulation flow rate (10; 12; 15 L/min) and the amount PS-TiO2 (200 g, 250 g, 300 g) were examined. Wastewater of 20 L was circulated pass through the pipe that injected with O3 by the ozone generator, and subsequently flow through two GAC columns, and finally, go through photoreactor that contains photocatalyst PS-TiO2 which equipped with mercury lamp as a photon source. At a time interval, COD and phenol concentration were measured to assess the performance of the process. FESEM imaging confirmed that TiO2 was successfully impregnated on PS, as corroborated by EDX spectra. Meanwhile, degradation process indicated that the combined ozonation and photocatalytic processes (O3/GAC-TiO2) is more efficient compared to the ozonation and photocatalysis alone. For combination process with the circulation flow rate of 10 L/min and 300 g of PS-TiO2,the influent COD of around 1000 ppm are effectively degraded to a final effluent COD of 290 ppm (71% removal) and initial phenol concentration of 4.75 ppm down to 0 ppm for 4 h which this condition fulfill the discharge standards quality. Therefore, this portable prototype reactor is effective that can be used in the pharmaceutical wastewater treatment. For the future, this process condition will be developed for orientation on the industrial applications (portable equipment) since pharmaceutical industries produce wastewater relatively in the small amount.

  9. Highly efficient TiO2-based microreactor for photocatalytic applications.

    PubMed

    Krivec, Matic; Žagar, Kristina; Suhadolnik, Luka; Čeh, Miran; Dražić, Goran

    2013-09-25

    A photocatalytic, TiO2-based microreactor is designed and fabricated on a metal-titanium foil. The microchannel is mechanically engraved in the substrate foil, and a double-layered TiO2 anatase film is immobilized on its inner walls with a two-step synthesis, which included anodization and a hydrothermal treatment. X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirm the presence of an approximately 10-μm-thick layer of titania nanotubes and anatase nanoparticles. The SEM and transmission electron microscopy (TEM) of the cross sections show a dense interface between the titanium substrate and the TiO2 nanotubes. An additional layer of TiO2-anatase nanoparticles on the top of the film provides a large, photocatalytic surface area. The metal-titanium substrate with a functionalized serpentine channel is sealed with UV-transparent Plexiglas, and four 0.8-mW UV LEDs combined with a power controller on a small printed-circuit board are fixed over the substrate. The photocatalytic activity and the kinetic properties for the degradation of caffeine are provided, and the longer-term stability of the TiO2 film is evaluated. The results show that after 6 months of use and 3600 working cycles the microreactor still exhibits 60% of its initial efficiency.

  10. Nanoporous TiO2 nanoparticle assemblies with mesoscale morphologies: nano-cabbage versus sea-anemone

    NASA Astrophysics Data System (ADS)

    Darbandi, Masih; Gebre, Tesfaye; Mitchell, Lucas; Erwin, William; Bardhan, Rizia; Levan, M. Douglas; Mochena, Mogus D.; Dickerson, James H.

    2014-05-01

    We report the novel synthesis of nanoporous TiO2 nanoparticle ensembles with unique mesoscale morphologies. Constituent nanoparticles evolved into multifaceted assemblies, exhibiting excellent crystallinity and enhanced photocatalytic activity compared with commercial TiO2. Such materials could be exploited for applications, like organic pollutant degradation.We report the novel synthesis of nanoporous TiO2 nanoparticle ensembles with unique mesoscale morphologies. Constituent nanoparticles evolved into multifaceted assemblies, exhibiting excellent crystallinity and enhanced photocatalytic activity compared with commercial TiO2. Such materials could be exploited for applications, like organic pollutant degradation. Electronic supplementary information (ESI) available: Synthesis and characterization procedures, TEM/XRD of samples prepared at different temperature and water content, table of nitrogen adsorption-desorption values of different samples. See DOI: 10.1039/c3nr06154j

  11. Implementation of a spike-based perceptron learning rule using TiO2-x memristors.

    PubMed

    Mostafa, Hesham; Khiat, Ali; Serb, Alexander; Mayr, Christian G; Indiveri, Giacomo; Prodromakis, Themis

    2015-01-01

    Synaptic plasticity plays a crucial role in allowing neural networks to learn and adapt to various input environments. Neuromorphic systems need to implement plastic synapses to obtain basic "cognitive" capabilities such as learning. One promising and scalable approach for implementing neuromorphic synapses is to use nano-scale memristors as synaptic elements. In this paper we propose a hybrid CMOS-memristor system comprising CMOS neurons interconnected through TiO2-x memristors, and spike-based learning circuits that modulate the conductance of the memristive synapse elements according to a spike-based Perceptron plasticity rule. We highlight a number of advantages for using this spike-based plasticity rule as compared to other forms of spike timing dependent plasticity (STDP) rules. We provide experimental proof-of-concept results with two silicon neurons connected through a memristive synapse that show how the CMOS plasticity circuits can induce stable changes in memristor conductances, giving rise to increased synaptic strength after a potentiation episode and to decreased strength after a depression episode.

  12. Nano-sized TiO2 (nTiO2) induces metabolic perturbations in Physarum polycephalum macroplasmodium to counter oxidative stress under dark conditions.

    PubMed

    Zhang, Zhi; Liang, Zhi Cheng; Zhang, Jian Hua; Tian, Sheng Li; Le Qu, Jun; Tang, Jiao Ning; De Liu, Shi

    2018-06-15

    Nano-sized TiO 2 (nTiO 2 ) exerts an oxidative effect on cells upon exposure to solar or UV irradiation and ecotoxicity of the nTiO 2 is an urgent concern. Little information is available regarding the effect of TiO 2 on cells under dark conditions. Metabolomics is a unique approach to the discovery of biomarkers of nTiO 2 cytotoxicity, and leads to the identification of perturbed metabolic pathways and the mechanism underlying nTiO 2 toxicity. In the present study, gas chromatography mass spectrometry (GC/MS)-based metabolomics was performed to investigate the effect of nTiO 2 on sensitive cells (P. polycephalum macroplasmodium) under dark conditions. According to the multivariate pattern recognition analysis, at least 60 potential metabolic biomarkers related to sugar metabolism, amino acid metabolism, nucleotide metabolism, polyamine biosynthesis, and secondary metabolites pathways were significantly perturbed by nTiO 2 . Notably, many metabolic biomarkers and pathways were related to anti-oxidant mechanisms in the living organism, suggesting that nTiO 2 may induce oxidative stress, even under dark conditions. This speculation was further validated by the biochemical levels of reactive oxygen species (ROS), 8-hydroxy-2-deoxyguanosine (8-OHdG), and total soluble phenols (TSP). We inferred that the oxidative stress might be related to nTiO 2 -induced imbalance of cellular ROS. To the best of our knowledge, the present study is the first to investigate the nTiO 2 -induced metabolic perturbations in slime mold, provide a new perspective of the mechanism underlying nTiO 2 toxicity under dark conditions, and show that metabolomics can be employed as a rapid, reliable and powerful tool to investigate the interaction among organisms, the environment, and nanomaterials. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Facile decoration of TiO2 nanoparticles on graphene for solar degradation of organic dye

    NASA Astrophysics Data System (ADS)

    Salem, Shiva; Salem, Amin; Rezaei, Mostafa

    2016-11-01

    The reduced graphene oxide is interesting material for the synthesis of TiO2-based photocatalyst. In the present investigation, blackberry fruit, which contains high levels of anthocyanins and other phenolic compounds, was employed as a reducing agent mainly due to its high antioxidant capacity. The nano-crystalline TiO2 was decorated on different amounts of graphene oxide with sol-gel method and then the photocatalytic activity for degradation of cationic dye was evaluated by UV spectroscopy to achieve the optimum content of graphene oxide. The decoration of anatase nanoparticles on prepared reduced graphene oxide was investigated by X-ray diffraction, scanning and transmission electron microscopy techniques. The new composite gives significantly higher activity when is compared to the compositions fabricated by graphene oxide. The compact layer provides a large TiO2-graphene contact area and reduces the electron recombination. The decoration of TiO2 nanoparticles, 5-10 nm, on the graphene oxide reduced by blackberry juice further improves the dye removal. The results imply that the nanoparticle decoration is the key strategy to increase the degradation capacity.

  14. Molecular design of TiO2 for gigantic red shift via sublattice substitution.

    PubMed

    Shao, Guosheng; Deng, Quanrong; Wan, Lin; Guo, Meilan; Xia, Xiaohong; Gao, Yun

    2010-11-01

    The effects of 3d transition metal doping in TiO2 phases have been simulated in detail. The results of modelling indicate that Mn has the biggest potential among 3d transition metals, for the reduction of energy gap and the introduction of effective intermediate bands to allow multi-band optical absorption. On the basis of theoretical formulation, we have incorporated considerable amount of Mn in nano-crystalline TiO2 materials. Mn doped samples demonstrate significant red shift in the optical absorption edge, with a secondary absorption edge corresponding to theoretically predicted intermediate bands/states. The gigantic red shift achievable in Mn-doped TiO2 is expected to extend the useful TiO2 functionalities well beyond the UV threshold via the optical absorption of both visible and infrared photon irradiance.

  15. Phototoxicity of TiO2 Nanoparticles under Solar Radiation to Two Aquatic Species: Daphnia magna and Japanese Medaka

    EPA Science Inventory

    One target of development and application of TiO2 nanoparticles (nano-TiO2) is photochemical degredation of contaminants and photo-killing of microbes and fouling organisms. However, few ecotoxicological studies have focused on this aspect of nano-TiO2, specifically whether this ...

  16. Using Nanomaterials to Solve Environmental Problems: Advancing the Science and Engineering of Photocatalysis

    NASA Astrophysics Data System (ADS)

    Brame, Jonathon Andrew

    Photocatalysis is a process by which materials can transfer light energy into chemical energy in the form of reactive oxygen species (ROS), which can then oxidize chemical and biological contaminants in water. Whereas photocatalysis offers the potential to treat many recalcitrant priority pollutants in a cost-effective manner, it has yet to become a viable, wide-spread treatment option due to implementation barriers that include limitations in treatment efficiency and relatively high costs of some photocatalytic material. This thesis seeks to increase the applicability and understanding of nanomaterial-enhanced photocatalytic oxidation processes to help overcome these barriers. Increased photocatalytic efficiency can be accomplished through informed choice of ROS-producing materials. For example, hydroxyl radicals are shown to be much more susceptible to hindrance by natural organic matter (NOM), phosphate and wastewater treatment plant effluent than 1O 2, which is only slightly inhibited by NOM and not by phosphate or wastewater effluent. Additionally, a novel crystallization mechanism for photocatalytic TiO2 nanotubes enabled photo-production of multiple ROS types. This "cocktail" of reactive oxygen species contributed to increased efficiency. Novel applications for nanotechnology-enhanced photocatalysis were demonstrated at the lab scale. These include (1) photocatalytic pre-treatment of weathered oil from the 2010 Gulf oil spill, which increased soluble organic carbon content (indicative of increased bioavailability) by 60% and enhanced subsequent biodegradation by 37%; and (2) a water disinfection case study in rural Swaziland, which produced a prototype fluidized bed photoreactor capable of removing 99.9% of bacteria and viruses in <60 seconds. These projects show both a variety of applications for photocatalysis, and ways to increase its efficiency and effectiveness. To achieve wide-spread implementation, however, the price of photocatalysis must be reduced

  17. Chalcogenide Sensitized Carbon Based TiO2 Nanomaterial For Solar Driven Applications

    NASA Astrophysics Data System (ADS)

    Pathak, Pawan

    The demand for renewable energy is growing because fossils fuels are depleting at a rapid pace. Solar energy an abundant green energy resource. Utilizing this resource in a smart manner can resolve energy-crisis related issues. Sun light can be efficiently harvested using semiconductor based materials by utilizing photo-generated charges for numerous beneficial applications. The main goal of this thesis is to synthesize different nanostructures of TiO2, develop a novel method of coupling and synthesizing chalcogenide nanocrystals with TiO2 and to study the charge transportation effects of the various carbon allotropes in the chalcogenide nanocrystal sensitized TiO2 nanostructure. We have fabricated different nanostructures of TiO2 as solar energy harvesting materials. Effects of the different phases of TiO2 have also been studied. The anatase phase of TiO2 is more photoactive than the rutile phase of TiO2, and the higher dimension of the TiO2 can increase the surface area of the material which can produce higher photocurrent. Since TiO2 only absorbs in the UV range; to increase the absorbance TiO2 should be coupled to visible light absorbing materials. This dissertation presents a simple approach to synthesize and couple chalcogenide nanocrystals with TiO2 nanostructure to form a heterostructured composite. An atmospheric pressure based, single precursor, one-pot approach has been developed and tested to assemble chalcogenide nanocrystal on the TiO2 surface. Surface characterization using microscopy, X-ray diffraction, and elemental analysis indicates the formation of nanocrystals along the nanotube walls and inter-tubular spacing. Optical measurements indicate that the chalcogenide nanocrystals absorb in the visible region and demonstrate an increase in photocurrent in comparison to bare TiO2 nanostructure. The CdS synthesized TiO2 nanostructure produced the highest photocurrent as measured in the three electrode system. We have also assembled the PbS nanocrystal

  18. Effects of humic acids on the aggregation and sorption of nano-TiO2.

    PubMed

    Li, Yanjie; Yang, Chen; Guo, Xuetao; Dang, Zhi; Li, Xiaoqin; Zhang, Qian

    2015-01-01

    In this study, humic acids (HAs) from three sources, peat, sediment and straw, used to coat nano-TiO2 were investigated. The results indicated that HAs isolated from peat were aromatic-rich, whereas those isolated from sediment and straw were aliphatic-rich. The nano-TiO2 sedimentation experiments indicated that the presence of aromatic-rich HAs was more capable of stabilizing nano-TiO2 particles than was the presence of aliphatic-rich HAs. This result is because the deionized phenolic groups in the HAs were preferentially adsorbed on the nano-TiO2 surfaces, which generated a higher charge density on the nano-TiO2 surfaces and caused stronger repulsive forces among particles. Furthermore, the aromatic-rich TiO2-HA complexes exhibited a greater sorption capacity than the aliphatic-rich TiO2-HAs complexes and nonlinear phenanthrene sorption because of their higher affinity and the condensed state of aromatic fractions. Note that natural organic matters, such as humic acids, in aquatic environments can not only increase the stability of nanoparticles but can also influence the mobility of hydrophobic organic compounds (HOCs). Copyright © 2014. Published by Elsevier Ltd.

  19. Disruption of Autolysis in Bacillus subtilis using TiO2 Nanoparticles

    PubMed Central

    McGivney, Eric; Han, Linchen; Avellan, Astrid; VanBriesen, Jeanne; Gregory, Kelvin B.

    2017-01-01

    In contrast to many nanotoxicity studies where nanoparticles (NPs) are observed to be toxic or reduce viable cells in a population of bacteria, we observed that increasing concentration of TiO2 NPs increased the cell survival of Bacillus subtilis in autolysis-inducing buffer by 0.5 to 5 orders of magnitude over an 8 hour exposure. Molecular investigations revealed that TiO2 NPs prevent or delay cell autolysis, an important survival and growth-regulating process in bacterial populations. Overall, the results suggest two potential mechanisms for the disruption of autolysis by TiO2 NPs in a concentration dependent manner: (i) directly, through TiO2 NP deposition on the cell wall, delaying the collapse of the protonmotive-force and preventing the onset of autolysis; and (ii) indirectly, through adsorption of autolysins on TiO2 NP, limiting the activity of released autolysins and preventing further lytic activity. Enhanced darkfield microscopy coupled to hyperspectral analysis was used to map TiO2 deposition on B. subtilis cell walls and released enzymes, supporting both mechanisms of autolysis interference. The disruption of autolysis in B. subtilis cultures by TiO2 NPs suggests the mechanisms and kinetics of cell death may be influenced by nano-scale metal oxide materials, which are abundant in natural systems. PMID:28303908

  20. TiO2 effect on crystallization mechanism and physical properties of nano glass-ceramics of MgO-Al2O3-SiO2 glass system.

    PubMed

    Jo, Sinae; Kang, Seunggu

    2013-05-01

    The effect of TiO2 on the degree of crystallization, thermal properties and microstructure for MgO-Al2O3-SiO2 glass-ceramics system containing 0-13 wt% TiO2 and 0-1.5 wt% B2O3 in which the cordierite is the main phase was studied. Using Kissinger and Augis-Bennett equations, the activation energy, 510 kJ/mol and Avrami constant, 1.8 were calculated showing the surface-oriented crystallization would be preferred. The alpha-cordierite phase was generated in the glass-ceramics of containing TiO2 of 0-5.6 wt%. However, for the glass-ceramics of TiO2 content above 7 wt%, an alpha-cordierite disappeared and micro-cordierite phase was formed. The glass-ceramics of no TiO2 added had spherical crystals of few tens nanometer size spread in the matrix. As TiO2 content increased up to 5.6 wt%, a lump of dendrite was formed. In the glass-ceramics containing TiO2 7-13 wt%, in which the main phase is micro-cordierite, the dendrite crystal disappeared and a few hundred nanometer sized crystal particles hold tightly each other were generated. The thermal conductivity of glass-ceramics of both a-cordierite and micro-cordierite base decreased with TiO2 contend added. The thermal conductivity of glass-ceramics of 1.5 wt% TiO2 added was 3.4 W/mK which is 36% higher than that of glass-ceramics of no TiO2 added. The sintering temperature for 1.5 wt% TiO2 glass-ceramics was 965 degrees C which could be concluded as to apply to LTCC process for LED packaging.

  1. TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating

    NASA Astrophysics Data System (ADS)

    Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan; Xie, Xi

    2017-12-01

    Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials.

  2. TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating

    PubMed Central

    Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan

    2017-01-01

    Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials. PMID:29308265

  3. Influence of different TiO2 blocking films on the photovoltaic performance of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Chenxi; Luo, Yudan; Chen, Xiaohong; Ou-Yang, Wei; Chen, Yiwei; Sun, Zhuo; Huang, Sumei

    2016-12-01

    Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic (PV) cells. Cell structures based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive and brisk advances, holding great potential to grow into a mature PV technology. High power conversion efficiency (PCE) values have been obtained from the mesoscopic configuration in which a few hundred nano-meter thick mesoporous scaffold (e.g. TiO2 or Al2O3) infiltrated by perovskite absorber was sandwiched between the electron and hole transport layers. A uniform and compact hole-blocking layer is necessary for high efficient perovskite-based thin film solar cells. In this study, we investigated the characteristics of TiO2 compact layer using various methods and its effects on the PV performance of perovskite solar cells. TiO2 compact layer was prepared by a sol-gel method based on titanium isopropoxide and HCl, spin-coating of titanium diisopropoxide bis (acetylacetonate), screen-printing of Dyesol's bocking layer titania paste, and a chemical bath deposition (CBD) technique via hydrolysis of TiCl4, respectively. The morphological and micro-structural properties of the formed compact TiO2 layers were characterized by scanning electronic microscopy and X-ray diffraction. The analyses of devices performance characteristics showed that surface morphologies of TiO2 compact films played a critical role in affecting the efficiencies. The nanocrystalline TiO2 film deposited via the CBD route acts as the most efficient hole-blocking layer and achieves the best performance in perovskite solar cells. The CBD-based TiO2 compact and dense layer offers a small series resistance and a large recombination resistance inside the device, and makes it possible to achieve a high power conversion efficiency of 12.80%.

  4. Low temperature RF plasma nitriding of self-organized TiO2 nanotubes for effective bandgap reduction

    NASA Astrophysics Data System (ADS)

    Bonelli, Thiago Scremin; Pereyra, Inés

    2018-06-01

    Titanium dioxide is a widely studied semiconductor material found in many nanostructured forms, presenting very interesting properties for several applications, particularly photocatalysis. TiO2 nanotubes have a high surface-to-volume ratio and functional electronic properties for light harvesting. Despite these manifold advantages, TiO2 photocatalytic activity is limited to UV radiation due to its large band gap. In this work, TiO2 nanotubes produced by electrochemical anodization were submitted to plasma nitriding processes in a PECVD reactor. The plasma parameters were evaluated to find the best conditions for gap reduction, in order to increase their photocatalytic activity. The pressure and RF power density were varied from 0.66 to 2.66 mbar and 0.22 to 3.51 W/cm2 respectively. The best gap reduction, to 2.80 eV, was achieved using a pressure of 1.33 mbar and 1.75 W/cm2 RF power at 320 °C, during a 2-h process. This leads to a 14% reduction in the band gap value and an increase of 25.3% in methylene blue reduction, doubling the range of solar photons absorption from 5 to 10% of the solar spectrum.

  5. [Effect of TiO2-SiO2-SnOx film with different firing temperatures on bond strength of low-fusing dental porcelain to pure titanium].

    PubMed

    Zhang, Zichuan; Zhang, Pei

    2015-07-01

    To evaluate the influence of TiO(2)-SiO(2)-SnOx nano-coatings with different firing temperatures on the bond strength of low-fusing dental porcelain to pure titanium. The surface of pure titanium was coated uniformly with TiO(2)-SiO(2)-SnOx nano-coatings by solution-gelatin (Sol-Gel) technology and then fired at 300 °C (group A) or 750 °C (group B) for 1 h. The specimens without any coatings were the control group (group C). There were 10 specimens in each group. Dental porcelain was sintered on the surface of titanium specimens. Surface roughness and contact angle of the coatings were also detected. The titanium-porcelain bond strength was investigated according to YY 0621-2008 standards using three-point flexure bond test. The phase composition of the TiO(2)-SiO(2)-SnOx nano-coatings was characterized by X-ray diffraction(XRD). The interface of titanium-porcelain and TiO(2)-SiO(2)-SnOx nano-coatings were observed using scanning electron microscope (SEM). No rutile phase was found in these specimens of group A and group B. The surface roughness of group A, B, C was (0.97 ± 0.06), (0.99 ± 0.03), (0.96 ± 0.07) µm, respectively. No significant difference was found among the three groups. Compared with that of group C (64.37° ± 3.01°), contact angles detected in group A (52.04° ± 3.15°) and group B (85.27° ± 4.17°) were significantly different (P < 0.05). The bond strength of titanium-porcelain in group A [(35.66 ± 2.65) MPa] was significantly increased compared with those in group B [(26.18 ± 2.22) MPa] and group C [(31.66 ± 3.52) MPa]. SEM photomicrographs of titanium-porcelain interface morphology of the specimens before porcelain sintering showed that TiO(2)-SiO(2)-SnOx nano-coatings in group A were compact and homogeneous with petty cracks and those in group B was loose and arranged disorderly. TiO(2)-SiO(2)-SnOx nano-coating fired at 300 °C is significantly effective in improving the titanium-porcelain bond strength.

  6. Species sensitivity and dependence on exposure conditions impacting the phototoxicity of TiO2 nanoparticles to benthic organisms

    EPA Science Inventory

    Toxicity of TiO2 nanoparticles (nano-TiO2) to aquatic organisms can be greatly increased upon the exposure to ultraviolet radiation (UV). This phenomenon has received some attention for pelagic species, however, investigations of nano-TiO2 phototoxicity in benthic organisms are s...

  7. Treatment of real industrial wastewaters through nano-TiO2 and nano-Fe2O3 photocatalysis: case study of mining and kraft pulp mill effluents.

    PubMed

    Nogueira, V; Lopes, I; Rocha-Santos, T A P; Gonçalves, F; Pereira, R

    2018-06-01

    High quantities of industrial wastewaters containing a wide range of organic and inorganic pollutants are being directly discharged into the environment, sometimes without proper treatment. Nanotechnology has a tremendous potential improving the existing treatments or even develop new treatment solutions. In this study, nano-TiO 2 or nano-Fe 2 O 3 was used for the photocatalytic treatment of kraft pulp mill effluent and mining effluent. The experiments with the organic effluent lead to reduction percentages of 93.3%, 68.4% and 89.8%, for colour, aromatic compounds and chemical oxygen demand, respectively, when treated with nano-TiO 2 /H 2 O 2 /UV and nano-Fe 2 O 3 /H 2 O 2 /UV, at pH 3.0. Significant removal of metals from the mining effluent was recorded but only for Zn, Al and Cd, the highest removal attained with 1.0 g L -1 of nano-TiO 2 /UV and nano-Fe 2 O 3 /UV. Regarding the toxicity of the organic effluent to Vibrio fischeri, it was reduced with the treatments combining the oxidant and the catalyst. However, for the inorganic effluent, the best reduction was achieved using 1.0 g L -1 of catalyst. In fact, the increase in dose of the catalyst, especially for nano-TiO 2 , enhanced toxicity reduction. Our results have shown that the use of these NMs seemed to be more effective in the organic effluent than in metal-rich effluent.

  8. Improved conversion efficiency of dye sensitized solar cell using Zn doped TiO2-ZrO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Tomar, Laxmi J.; Bhatt, Piyush J.; Desai, Rahul K.; Chakrabarty, B. S.; Panchal, C. J.

    2016-05-01

    TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were prepared by hydrothermal method for dye sensitized solar cell (DSSC) application. The structural and optical properties were investigated by X -ray diffraction (XRD) and UV-Visible spectroscopy respectively. XRD results revealed the formation of material in nano size. The average crystallite size is 22.32 nm, 17.41 nm and 6.31 nm for TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites respectively. The optical bandgap varies from 2.04 eV to 3.75 eV. Dye sensitized solar cells were fabricated using the prepared material. Pomegranate juice was used as a sensitizer and graphite coated conducting glass plate was used as counter electrode. The I - V characteristics were recorded to measure photo response of DSSC. Photovoltaic parameter like open circuit voltage, power conversion efficiency, and fill factor were evaluated for fabricated solar cell. The power conversion efficiency of DSSC fabricated with TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were found 0.71%, 1.97% and 4.58% respectively.

  9. TiO2-TiO2 composite resistive humidity sensor: ethanol crosssensitivity

    NASA Astrophysics Data System (ADS)

    Ghalamboran, Milad; Saedi, Yasin

    2016-03-01

    The fabrication method and characterization results of a TiO2-TiO2 composite bead used for humidity sensing along with its negative cross-sensitivity to ethanol vapor are reported. The bead shaped resistive sample sensors are fabricated by the drop-casting of a TiO2 slurry on two Pt wire segments. The dried bead is pre-fired at 750°C and subsequently impregnated with a Ti-based sol. The sample is ready for characterization after a thermal annealing at 600°C in air. Structurally, the bead is a composite of the micron-sized TiO2 crystallites embedded in a matrix of nanometric TiO2 particle aggregates. The performance of the beads as resistive humidity sensors is recorded at room temperature in standard humidity level chambers. Results evince the wide dynamic range of the sensors fabricated in the low relative humidity range. While the sensor conductance is not sensitive to ethanol vapor in dry air, in humid air, sensor's responses are negatively affected by the contaminant.

  10. Nanometals for Solar-to-Chemical Energy Conversion: From Semiconductor-Based Photocatalysis to Plasmon-Mediated Photocatalysis and Photo-Thermocatalysis.

    PubMed

    Meng, Xianguang; Liu, Lequan; Ouyang, Shuxin; Xu, Hua; Wang, Defa; Zhao, Naiqin; Ye, Jinhua

    2016-08-01

    Nanometal materials play very important roles in solar-to-chemical energy conversion due to their unique catalytic and optical characteristics. They have found wide applications from semiconductor photocatalysis to rapidly growing surface plasmon-mediated heterogeneous catalysis. The recent research achievements of nanometals are reviewed here, with regard to applications in semiconductor photocatalysis, plasmonic photocatalysis, and plasmonic photo-thermocatalysis. As the first important topic discussed here, the latest progress in the design of nanometal cocatalysts and their applications in semiconductor photocatalysis are introduced. Then, plasmonic photocatalysis and plasmonic photo-thermocatalysis are discussed. A better understanding of electron-driven and temperature-driven catalytic behaviors over plasmonic nanometals is helpful to bridge the present gap between the communities of photocatalysis and conventional catalysis controlled by temperature. The objective here is to provide instructive information on how to take the advantages of the unique functions of nanometals in different types of catalytic processes to improve the efficiency of solar-energy utilization for more practical artificial photosynthesis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Quantum dot sensitized solar cell based on TiO2/CdS/Ag2S heterostructure

    NASA Astrophysics Data System (ADS)

    Pawar, Sachin A.; Patil, Dipali S.; Kim, Jin Hyeok; Patil, Pramod S.; Shin, Jae Cheol

    2017-04-01

    Quantum dot sensitized solar cell (QDSSC) is fabricated based on a stepwise band structure of TiO2/CdS/Ag2S to improve the photoconversion efficiency of TiO2/CdS system by incorporating a low band gap Ag2S QDs. Vertically aligned TiO2 nanorods assembly is prepared by a simple hydrothermal technique. The formation of CdS and Ag2S QDs over TiO2 nanorods assembly as a photoanode is carried out by successive ionic layer adsorption and reaction (SILAR) technique. The synthesized electrode materials are characterized by XRD, XPS, field emission scanning electron microscopy (FE-SEM), Optical, solar cell and electrochemical performances. The results designate that the QDs of CdS and Ag2S have efficiently covered exterior surfaces of TiO2 nanorods assembly. A cautious evaluation between TiO2/CdS and TiO2/CdS/Ag2S sensitized cells tells that CdS and Ag2S synergetically helps to enhance the light harvesting ability. Under AM 1.5G illumination, the photoanodes show an improved power conversion efficiency of 1.87%, in an aqueous polysulfide electrolyte with short-circuit photocurrent density of 7.03 mA cm-2 which is four fold higher than that of a TiO2/CdS system.

  12. TiO2 fotokatalyse in de gasfase van morfologisch ontwerp tot plasmoneffecten

    NASA Astrophysics Data System (ADS)

    Verbruggen, Sammy

    In this PhD TiO2 gas phase photocatalysis is investigated in all its facets. Work has been done on the level of the reactor as well as the catalyst and structural as well as electronic improvements have been proposed. Apart from actual experiments, also theoretical models and a techno-economic assessment have been carried out. The first main achievement is the development of a cost and material-efficient immobilization method and testing procedure. The design, based on glass bead supports packed around a lamp in a cylindrical glass reactor tube, offers the advantages of good immobilization, efficient light utilization, intimate contact with gaseous pollutants and a catalyst weight gain by a factor of 25 compared to self-supporting pellets. The reactor is used for performing a cost effectiveness analysis on six different commercial photocatalytic materials. The second achievement is the fundamental insight that is gathered in the driving factors for gas phase photocatalytic reactions. Structural properties such as large surface area and accessible pores seem to dominate over electronic properties. This knowledge is exploited in the development of well-immobilized, spacious T1O2 thin films. These films are prepared by depositing a thin, conformal TiO2 layer onto sacrificial carbonaceous templates by means of atomic layer deposition. After calcination, the sacrificial template is removed, TiO2 is crystallized into the anatase phase and the as-deposited continuous TiO2 layer has transformed into an interconnected network of nanoparticles. This way open thin films are prepared with surface area enhancement factors of up to 260 with regard to a dense, flat TiO 2 film. Thus obtained films exhibit superior photocatalytic activity compared to a commercial reference film. The final achievement is the extension of TiO2 photoactivity toward the visible light region of the spectrum. This is done by exploiting surface plasmon resonance effects of gold-silver alloy nanoparticles

  13. MoS2 quantum dots@TiO2 nanotube composites with enhanced photoexcited charge separation and high-efficiency visible-light driven photocatalysis

    NASA Astrophysics Data System (ADS)

    Zhao, Fenfen; Rong, Yuefei; Wan, Junmin; Hu, Zhiwen; Peng, Zhiqin; Wang, Bing

    2018-03-01

    MoS2 quantum dots (QDs) that are 5 nm in size were deposited on the surface of ultrathin TiO2 nanotubes (TNTs) with 5 nm wall thickness by using an improved hydrothermal method to form a MoS2 QDs@TNT visible-light photocatalyst. The ultrathin TNTs with high percentage of photocatalytic reactive facets were fabricated by the commercially available TiO2 nanoparticles (P25) through an improved hydrothermal method, and the MoS2 QDs were acquired by using a surfactant-assisted technique. The novel MoS2 QDs@TNT photocatalysts showed excellent photocatalytic activity with a decolorization rate of 92% or approximately 3.5 times more than that of pure TNTs for the high initial concentration of methylene blue solution (20 mg l-1) within 40 min under visible-light irradiation. MoS2 as the co-catalysts favored the broadening of TNTs into the visible-light absorption scope. The quantum confinement and edge effects of the MoS2 QDs and the heterojunction formed between the MoS2 QDs and TNTs efficiently extended the lifetime of photoinduced charges, impeded the recombination of photoexcited electron-hole pairs, and improved the visible-light-driven high-efficiency photocatalysis.

  14. An In-situ Real-Time Optical Fiber Sensor Based on Surface Plasmon Resonance for Monitoring the Growth of TiO2 Thin Films

    PubMed Central

    Tsao, Yu-Chia; Tsai, Woo-Hu; Shih, Wen-Ching; Wu, Mu-Shiang

    2013-01-01

    An optical fiber sensor based on surface plasmon resonance (SPR) is proposed for monitoring the thickness of deposited nano-thin films. A side-polished multimode SPR optical fiber sensor with an 850 nm-LD is used as the transducing element for real-time monitoring of the deposited TiO2 thin films. The SPR optical fiber sensor was installed in the TiO2 sputtering system in order to measure the thickness of the deposited sample during TiO2 deposition. The SPR response declined in real-time in relation to the growth of the thickness of the TiO2 thin film. Our results show the same trend of the SPR response in real-time and in spectra taken before and after deposition. The SPR transmitted intensity changes by approximately 18.76% corresponding to 50 nm of deposited TiO2 thin film. We have shown that optical fiber sensors utilizing SPR have the potential for real-time monitoring of the SPR technology of nanometer film thickness. The compact size of the SPR fiber sensor enables it to be positioned inside the deposition chamber, and it could thus measure the film thickness directly in real-time. This technology also has potential application for monitoring the deposition of other materials. Moreover, in-situ real-time SPR optical fiber sensor technology is in inexpensive, disposable technique that has anti-interference properties, and the potential to enable on-line monitoring and monitoring of organic coatings. PMID:23881144

  15. An in-situ real-time optical fiber sensor based on surface plasmon resonance for monitoring the growth of TiO2 thin films.

    PubMed

    Tsao, Yu-Chia; Tsai, Woo-Hu; Shih, Wen-Ching; Wu, Mu-Shiang

    2013-07-23

    An optical fiber sensor based on surface plasmon resonance (SPR) is proposed for monitoring the thickness of deposited nano-thin films. A side-polished multimode SPR optical fiber sensor with an 850 nm-LD is used as the transducing element for real-time monitoring of the deposited TiO2 thin films. The SPR optical fiber sensor was installed in the TiO2 sputtering system in order to measure the thickness of the deposited sample during TiO2 deposition. The SPR response declined in real-time in relation to the growth of the thickness of the TiO2 thin film. Our results show the same trend of the SPR response in real-time and in spectra taken before and after deposition. The SPR transmitted intensity changes by approximately 18.76% corresponding to 50 nm of deposited TiO2 thin film. We have shown that optical fiber sensors utilizing SPR have the potential for real-time monitoring of the SPR technology of nanometer film thickness. The compact size of the SPR fiber sensor enables it to be positioned inside the deposition chamber, and it could thus measure the film thickness directly in real-time. This technology also has potential application for monitoring the deposition of other materials. Moreover, in-situ real-time SPR optical fiber sensor technology is in inexpensive, disposable technique that has anti-interference properties, and the potential to enable on-line monitoring and monitoring of organic coatings.

  16. Photocatalysis and the origin of life: synthesis of nucleoside bases from formamide on TiO2(001) single surfaces.

    PubMed

    Senanayake, S D; Idriss, H

    2006-01-31

    We report the conversion of a large fraction of formamide (NH(2)CHO) to high-molecular-weight compounds attributed to nucleoside bases on the surface of a TiO(2) (001) single crystal in ultra-high vacuum conditions. If true, we present previously unreported evidence for making biologically relevant molecules from a C1 compound on any single crystal surface in high vacuum and in dry conditions. An UV light of 3.2 eV was necessary to make the reaction. This UV light excites the semiconductor surface but not directly the adsorbed formamide molecules or the reaction products. There thus is no need to use high energy in the form of photons or electrical discharge to make the carbon-carbon and carbon-nitrogen bonds necessary for life. Consequently, the reaction products may accumulate with time and may not be subject to decomposition by the excitation source. The formation of these molecules, by surface reaction of formamide, is proof that some minerals in the form of oxide semiconductors are active materials for making high-molecular-weight organic molecules that may have acted as precursors for biological compounds required for life in the universe.

  17. Hyperbranched TiO2-CdS nano-heterostructures for highly efficient photoelectrochemical photoanodes.

    PubMed

    Mezzetti, Alessandro; Balandeh, Mehrdad; Luo, Jingshan; Bellani, Sebastiano; Tacca, Alessandra; Divitini, Giorgio; Cheng, Chuanwei; Ducati, Caterina; Meda, Laura; Fan, Hongjin; Di Fonzo, Fabio

    2018-08-17

    Quasi-1D-hyperbranched TiO 2 nanostructures are grown via pulsed laser deposition and sensitized with thin layers of CdS to act as a highly efficient photoelectrochemical photoanode. The device properties are systematically investigated by optimizing the height of TiO 2 scaffold structure and thickness of the CdS sensitizing layer, achieving photocurrent values up to 6.6 mA cm -2 and reaching saturation with applied biases as low as 0.35 V RHE . The high internal conversion efficiency of these devices is to be found in the efficient charge generation and injection of the thin CdS photoactive film and in the enhanced charge transport properties of the hyperbranched TiO 2 scaffold. Hence, the proposed device represents a promising architecture for heterostructures capable of achieving high solar-to-hydrogen efficiency.

  18. Quasiparticle Interfacial Level Alignment of Highly Hybridized Frontier Levels: H2O on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Migani, Annapaola; Mowbray, Duncan J.; Zhao, Jin

    Knowledge of the frontier levels’ alignment prior to photoirradiation is necessary to achieve a complete quantitative description of H2O photocatalysis on TiO2(110). Although H2O on rutile TiO2(110) has been thoroughly studied both experimentally and theoretically, a quantitative value for the energy of the highest H2O occupied levels is still lacking. For experiment, this is due to the H2O levels being obscured by hybridization with TiO2(110) levels in the difference spectra obtained via ultraviolet photoemission spectroscopy (UPS). For theory, this is due to inherent difficulties in properly describing many-body effects at the H2O–TiO2(110) interface. Using the projected density of states (DOS)more » from state-of-the-art quasiparticle (QP) G0W0, we disentangle the adsorbate and surface contributions to the complex UPS spectra of H2O on TiO2(110). We perform this separation as a function of H2O coverage and dissociation on stoichiometric and reduced surfaces. Due to hybridization with the TiO2(110) surface, the H2O 3a1 and 1b1 levels are broadened into several peaks between 5 and 1 eV below the TiO2(110) valence band maximum (VBM). These peaks have both intermolecular and interfacial bonding and antibonding character. We find the highest occupied levels of H2O adsorbed intact and dissociated on stoichiometric TiO2(110) are 1.1 and 0.9 eV below the VBM. We also find a similar energy of 1.1 eV for the highest occupied levels of H2O when adsorbed dissociatively on a bridging O vacancy of the reduced surface. In both cases, these energies are significantly higher (by 0.6 to 2.6 eV) than those estimated from UPS difference spectra, which are inconclusive in this energy region. Finally, we apply self-consistent QPGW (scQPGW1) to obtain the ionization potential of the H2O–TiO2(110) interface.« less

  19. Quasiparticle interfacial level alignment of highly hybridized frontier levels: H2O on TiO2(110).

    PubMed

    Migani, Annapaola; Mowbray, Duncan J; Zhao, Jin; Petek, Hrvoje

    2015-01-13

    Knowledge of the frontier levels' alignment prior to photoirradiation is necessary to achieve a complete quantitative description of H2O photocatalysis on TiO2(110). Although H2O on rutile TiO2(110) has been thoroughly studied both experimentally and theoretically, a quantitative value for the energy of the highest H2O occupied levels is still lacking. For experiment, this is due to the H2O levels being obscured by hybridization with TiO2(110) levels in the difference spectra obtained via ultraviolet photoemission spectroscopy (UPS). For theory, this is due to inherent difficulties in properly describing many-body effects at the H2O-TiO2(110) interface. Using the projected density of states (DOS) from state-of-the-art quasiparticle (QP) G0W0, we disentangle the adsorbate and surface contributions to the complex UPS spectra of H2O on TiO2(110). We perform this separation as a function of H2O coverage and dissociation on stoichiometric and reduced surfaces. Due to hybridization with the TiO2(110) surface, the H2O 3a1 and 1b1 levels are broadened into several peaks between 5 and 1 eV below the TiO2(110) valence band maximum (VBM). These peaks have both intermolecular and interfacial bonding and antibonding character. We find the highest occupied levels of H2O adsorbed intact and dissociated on stoichiometric TiO2(110) are 1.1 and 0.9 eV below the VBM. We also find a similar energy of 1.1 eV for the highest occupied levels of H2O when adsorbed dissociatively on a bridging O vacancy of the reduced surface. In both cases, these energies are significantly higher (by 0.6 to 2.6 eV) than those estimated from UPS difference spectra, which are inconclusive in this energy region. Finally, we apply self-consistent QPGW (scQPGW1) to obtain the ionization potential of the H2O-TiO2(110) interface.

  20. TiO2 as a photocatalyst for control of the aquatic invasive alga, Cladophora, under natural and artificial light

    USGS Publications Warehouse

    Peller, J.R.; Whitman, R.L.; Griffith, S.; Harris, P.; Peller, C.; Scalzitti, J.

    2007-01-01

    Cladophora, a nuisance and invasive, filamentous algae (Chlorophyta), massively accumulates along the shores of the lower Great Lakes each summer causing great economic damage and compromising recreational opportunity and perhaps public health. In vitro experiments showed that Cladophora samples were physically and biologically degraded when subjected to TiO2-mediated photocatalysis. For the most successful photocatalytic process, TiO2 was immobilized on a glass surface and used in combination with either sunlight or artificial UV light. The loss of vital algal pigments was monitored using UV–vis spectrophotometry, and cell structural changes were determined by microscopic observation. Cladophora, in the presence of TiO2-covered glass beads, experienced a loss of chloroplast pigments after 2 h of UV lamp light irradiation. In a separate experiment, sunlight exposure over 4 days (∼24 h) resulted in the complete oxidative degradation of the green chloroplast pigments, verified by the UV spectra of the algal extracts. These results suggest that TiO2, mobilized on sunlit silicates may be useful in controlling growth and survival of this alga in the Great Lakes, thus mitigating many of the economic, aesthetic ecological impacts of this invasive alga.

  1. MD Simulation on Collision Behavior Between Nano-Scale TiO₂ Particles During Vacuum Cold Spraying.

    PubMed

    Yao, Hai-Long; Yang, Guan-Jun; Li, Chang-Jiu

    2018-04-01

    Particle collision behavior influences significantly inter-nano particle bonding formation during the nano-ceramic coating deposition by vacuum cold spraying (or aerosol deposition method). In order to illuminate the collision behavior between nano-scale ceramic particles, molecular dynamic simulation was applied to explore impact process between nano-scale TiO2 particles through controlling impact velocities. Results show that the recoil efficiency of the nano-scale TiO2 particle is decreased with the increase of the impact velocity. Nano-scale TiO2 particle exhibits localized plastic deformation during collision at low velocities, while it is intensively deformed by collision at high velocities. This intensive deformation promotes the nano-particle adhesion rather than rebounding off. A relationship between the adhesion energy and the rebound energy is established for the bonding formation of the nano-scale TiO2 particle. The adhesion energy required to the bonding formation between nano-scale ceramic particles can be produced by high velocity collision.

  2. Study of TiO2 anatase nano and microstructures with dominant {001} facets for NO oxidation.

    PubMed

    Sofianou, Maria-Veronica; Trapalis, Christos; Psycharis, Vassils; Boukos, Nikos; Vaimakis, Tiverios; Yu, Jiaguo; Wang, Wenguang

    2012-11-01

    TiO(2) anatase nanoplates and hollow microspheres were fabricated by a solvothermal-hydrothermal method using titanium isopropoxide as a titanium precursor and hydrofluoric acid as a capping agent in order to enhance the formation of the {001} crystal facets of the anatase nanocrystals. These different morphological structures of TiO(2) anatase can be achieved by only changing the solvent, keeping the amount of the precursor and of the capping agent identical during the solvothermal-hydrothermal process. After calcination of the samples, the adsorbed fluoride atoms on the {001} crystal facets of the TiO(2) anatase nanocrystals were completely removed from their surface according to XPS analysis. The calcined TiO(2) anatase structures were higher crystallized and the specific surface area of the catalysts increased, enhancing their photocatalytic activity in comparison to the non-calcined TiO(2) anatase structures. All TiO(2) anatase samples with adsorbed as well as non-adsorbed fluoride atoms on their {001} crystal facets, exhibited a higher photonic efficiency than Degussa P25, which was used as a reference. The fluoride free TiO(2) anatase nanoplates exhibited the best photocatalytic activity in oxidizing the NO gas to NO(2) and NO(3) (-).

  3. Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films.

    PubMed

    Alrousan, Dheaya M A; Dunlop, Patrick S M; McMurray, Trudy A; Byrne, J Anthony

    2009-01-01

    Photocatalysis is a promising method for the disinfection of potable water in developing countries where solar irradiation can be employed, thus reducing the cost of treatment. In addition to microbial contamination, water normally contains suspended solids, dissolved inorganic ions and organic compounds (mainly humic substances) which may affect the efficacy of solar photocatalysis. In this work the photocatalytic and photolytic inactivation rates of Escherichia coli using immobilised nanoparticle TiO2 films were found to be significantly lower in surface water samples in comparison to distilled water. The presence of nitrate and sulphate anions spiked into distilled water resulted in a decrease in the rate of photocatalytic disinfection. The presence of humic acid, at the concentration found in the surface water, was found to have a more pronounced affect, significantly decreasing the rate of disinfection. Adjusting the initial pH of the water did not markedly affect the photocatalytic disinfection rate, within the narrow range studied.

  4. Investigation of energy band alignments and interfacial properties of rutile NMO2/TiO2 (NM = Ru, Rh, Os, and Ir) by first-principles calculations.

    PubMed

    Yang, Chen; Zhao, Zong-Yan

    2017-11-08

    In the field of photocatalysis, constructing hetero-structures is an efficient strategy to improve quantum efficiency. However, a lattice mismatch often induces unfavorable interfacial states that can act as recombination centers for photo-generated electron-hole pairs. If the hetero-structure's components have the same crystal structure, this disadvantage can be easily avoided. Conversely, in the process of loading a noble metal co-catalyst onto the TiO 2 surface, a transition layer of noble metal oxides is often formed between the TiO 2 layer and the noble metal layer. In this article, interfacial properties of hetero-structures composed of a noble metal dioxide and TiO 2 with a rutile crystal structure have been systematically investigated using first-principles calculations. In particular, the Schottky barrier height, band bending, and energy band alignments are studied to provide evidence for practical applications. In all cases, no interfacial states exist in the forbidden band of TiO 2 , and the interfacial formation energy is very small. A strong internal electric field generated by interfacial electron transfer leads to an efficient separation of photo-generated carriers and band bending. Because of the differences in the atomic properties of the components, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures demonstrate band dividing, while RhO 2 /TiO 2 and IrO 2 /TiO 2 hetero-structures have a pseudo-gap near the Fermi energy level. Furthermore, NMO 2 /TiO 2 hetero-structures show upward band bending. Conversely, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures present a relatively strong infrared light absorption, while RhO 2 /TiO 2 and IrO 2 /TiO 2 hetero-structures show an obvious absorption edge in the visible light region. Overall, considering all aspects of their properties, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures are more suitable than others for improving the photocatalytic performance of TiO 2 . These findings will provide useful information

  5. Characterization, Degradation, and Reaction Pathways of Indoor Toluene over Visible-light-driven S, Zn Co-doped TiO2

    NASA Astrophysics Data System (ADS)

    Chu, H.; Lin, Y. H.; Lin, C. Y.

    2017-01-01

    Sulfur and Zinc co-doped TiO2 prepared by a sol-gel method to degrade toluene under a fluorescent lamp was investigated. The results indicate that S,Zn co-doped TiO2 photocatalysts are mainly nano-size with an anatase phase structure. The degradation reactions of toluene were performed under various operation conditions. The results show that the toluene conversion increases with increasing toluene concentration and decreasing relative humidity. Based on the results of activity test, S0.05Zn0.001/TiO2 was chosen for further studies. The main oxidation products of toluene photodegradation are CO2, H2O, benzyl alcohol, acetone, butadiene and acetic acid. Two possible mechanisms have been developed for photodegradation of toluene in a dry and a humid environment.

  6. Photocatalytic properties of P25-doped TiO2 composite film synthesized via sol-gel method on cement substrate.

    PubMed

    Guo, Xiang; Rao, Lei; Wang, Peifang; Wang, Chao; Ao, Yanhui; Jiang, Tao; Wang, Wanzhong

    2018-04-01

    TiO 2 films have received increasing attention for the removal of organic pollutants via photocatalysis. To develop a simple and effective method for improving the photodegradation efficiency of pollutants in surface water, we herein examined the preparation of a P25-TiO 2 composite film on a cement substrate via a sol-gel method. In this case, Rhodamine B (RhB) was employed as the target organic pollutant. The self-generated TiO 2 film and the P25-TiO 2 composite film were characterized by X-ray diffraction (XRD), N 2 adsorption/desorption measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and diffuse reflectance spectroscopy (DRS). The photodegradation efficiencies of the two films were studied by RhB removal in water under UV (ultraviolet) irradiation. Over 4day exposure, the P25-TiO 2 composite film exhibited higher photocatalytic performance than the self-generated TiO 2 film. The photodegradation rate indicated that the efficiency of the P25-TiO 2 composite film was enhanced by the addition of the rutile phase Degussa P25 powder. As such, cooperation between the anatase TiO 2 and rutile P25 nanoparticles was beneficial for separation of the photo-induced electrons and holes. In addition, the influence of P25 doping on the P25-TiO 2 composite films was evaluated. We found that up to a certain saturation point, increased doping enhanced the photodegradation ability of the composite film. Thus, we herein demonstrated that the doping of P25 powders is a simple but effective strategy to prepare a P25-TiO 2 composite film on a cement substrate, and the resulting film exhibits excellent removal efficiency in the degradation of organic pollutants. Copyright © 2017. Published by Elsevier B.V.

  7. [Preparation and Photocatalytic Properties of Supported TiO2 Photocatalytic Material].

    PubMed

    Guo, Yu; Jin, Yu-jia; Wu, Hong-mei; Li, Dong-xin

    2015-06-01

    Titanium dioxide (TiO2) supported on spherical alumina substrate was prepared by using sol-gel method combined with dip-coating process. The surface morphology and structure of the synthesized samples were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) pattern. The results show that the morphology of the supported TiO2 composite material was obviously different from that of the original support. It reveals a layer formed by anatase TiO2 nanoparticles of 10-20 nm was deposited on the alumina substrate. Energy dispersive X-ray spectroscopy (EDX) analyses on the spherical alumina substrate and the resulting TiO2 composite catalyst were performed to determine the TiO2 loading content in the samples. It indicates that the TiO2 loading content on alumina substrate could be effectively increased by increasing the times of dip-coating alumina support in TiO2 sol. When dip-coating times increased to 5, the TiO2 loading content increased from 3.8 Wt. % to 15.7 Wt. %. In addition, the photocatalytic performances of the supported TiO2 materials prepared by different dip-coating times have been investigated by degrading methylene blue. It was found that the surface morphology of the supported TiO2 material was not only improved, but also the photocatalytic activity could be promoted significantly by increasing the dip-coating times. When the alumina substrate was dip-coated in TiO2 sol from 1 to 4 times, the degradation rate of methylene blue increased from 40% to 83.1%. However, after dip-coating the alumina support in TiO2 sol for 5 times, the degradation of methylene blue was only up to 85.6%. This indicates that the photocatalytic activity increased slowly when the TiO2 content in the supported catalyst was up to some extent. It is attributed to the continuous dip-coating resulted in less opportunities and weak intensity of illumination for the TiO2 nano-particles that under lower layer. The photocatalytic activity was relatively stable

  8. Heterogeneous Photocatalysis and Photoelectrocatalysis: From Unselective Abatement of Noxious Species to Selective Production of High-Value Chemicals.

    PubMed

    Augugliaro, Vincenzo; Camera-Roda, Giovanni; Loddo, Vittorio; Palmisano, Giovanni; Palmisano, Leonardo; Soria, Javier; Yurdakal, Sedat

    2015-05-21

    Heterogeneous photocatalysis and photoelectrocatalysis have been considered as oxidation technologies to abate unselectively noxious species. This article focuses instead on the utilization of these methods for selective syntheses of organic molecules. Some promising reactions have been reported in the presence of various TiO2 samples and the important role played by the amorphous phase has been discussed. The low solubility of most of the organic compounds in water limits the utilization of photocatalysis. Dimethyl carbonate has been proposed as an alternative green organic solvent. The recovery of the products by coupling photocatalysis with pervaporation membrane technology seems to be a solution for future industrial applications. As far as photoelectrocatalysis is concerned, a decrease in recombination of the photogenerated pairs occurs, enhancing the rate of the oxidation reactions and the quantum yield. Another benefit is to avoid reaction(s) between the intermediates and the substrate, as anodic and cathodic reactions take place in different places.

  9. Quantum Dot Sensitized Solar Cells Based on TiO2/AgInS2

    NASA Astrophysics Data System (ADS)

    Pawar, Sachin A.; Jeong, Jae Pil; Patil, Dipali S.; More, Vivek M.; Lee, Rochelle S.; Shin, Jae Cheol; Choi, Won Jun

    2018-05-01

    Quantum dot heterojunctions with type-II band alignment can efficiently separate photogenerated electron-hole pairs and, hence, are useful for solar cell studies. In this study, a quantum dot sensitized solar cell (QDSSC) made of TiO2/AgInS2 is achieved to boost the photoconversion efficiency for the TiO2-based system by varying the AgInS2 layer's thickness. The TiO2 nanorods array film is prepared by using a simple hydrothermal technique. The formation of a AgInS2 QD-sensitized TiO2-nanorod photoelectrode is carried out by successive ionic layer adsorption and reaction (SILAR) technique. The effect of the QD layer on the performance of the solar cell is studied by varying the SILAR cycles of the QD coating. The synthesized electrode materials are characterized by using X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy and solar cell performances. The results indicate that the nanocrystals have effectively covered the outer surfaces of the TiO2 nanorods. The interfacial structure of quantum dots (QDs)/TiO2 is also investigated, and the growth interface is verified. A careful comparison between TiO2/AgInS2 sensitized cells reveals that the trasfer of electrons and hole proceeds efficiently, the recombination is suppressed for the optimum thickness of the QD layer and light from the entire visible spectrum is utilised. Under AM 1.5G illumination, a high photocurrent of 1.36 mAcm-2 with an improved power conversion efficiency of 0.48% is obtained. The solar cell properties of our photoanodes suggest that the TiO2 nanorod array films co-sensitized by AgInS2 nanoclusters have potential applications in solar cells.

  10. Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles.

    PubMed

    Arora, Priya; Fermah, Alisha; Rajput, Jaspreet Kaur; Singh, Harminder; Badhan, Jigyasa

    2017-08-01

    In this work, Cu-loaded Fe 3 O 4 @TiO 2 core shell nanoparticles were prepared in a single pot by coating of TiO 2 on Fe 3 O 4 nanoparticles followed by Cu loading. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), Brunauer-Emmett- Teller (BET), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), and valence band X-ray photoelectron spectroscopy (VB XPS) techniques were used for characterization of as prepared nanoparticles. Synergism between copper and titania was evaluated by studying the solar light-driven photodegradation of Congo red dye solution in the presence of Fe 3 O 4 @TiO 2 nanoparticles on one side and Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles on the other side. The latter performed better than the former catalyst, indicating the enhanced activity of copper-loaded catalyst. Further photodegradation was studied by three means, i.e., under ultraviolet (UV), refluxing, and solar radiations. Cu-loaded Fe 3 O 4 @TiO 2 enhanced the degradation efficiency of Congo red dye. Thus, Cu act possibly by reducing the band gap of TiO 2 and widening the optical response of semiconductor, as a result of which solar light could be used to carry out photocatalysis. Graphical abstract Photodegradation of congo red over Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles.

  11. Enhancement of photocatalytic degradation of furfural and acetophenone in water media using nano-TiO2-SiO2 deposited on cementitious materials.

    PubMed

    Soltan, Sahar; Jafari, Hoda; Afshar, Shahrara; Zabihi, Omid

    2016-10-01

    In the present study, silicon dioxide (SiO 2 ) nanoparticles were loaded to titanium dioxide (TiO 2 ) nano-particles by sol-gel method to make a high porosity photocatalyst nano-hybrid. These photocatalysts were synthesized using titanium tetrachloride and tetraethyl orthosilicate as titanium and silicon sources, respectively, and characterized by X-ray powder diffraction (XRD) and scanning electron microscope methods. Subsequently, the optimizations of the component and operation conditions were investigated. Then, nano-sized TiO 2 and TiO 2 -SiO 2 were supported on concrete bricks by the dip coating process. The photocatalytic activity of nano photocatalysts under UV irradiation was examined by studying the decomposition of aqueous solutions of furfural and acetophenone (10 mg/L) as model of organic pollutants to CO 2 and H 2 O at room temperature. A decrease in the concentration of these pollutants was assayed by using UV-visible absorption, gas chromatography technique, and chemical oxygen demand. The removal of these pollutants from water using the concrete-supported photocatalysts under UV irradiation was performed with a greater efficiency, which does not require an additional separation stage to recover the catalyst. Therefore, it would be applicable to use in industrial wastewater treatment at room temperature and atmospheric pressure within the optimized pH range.

  12. Photoelectrocatalytic degradation of atrazine by boron-fluorine co-doped TiO2 nanotube arrays.

    PubMed

    Wang, He-Xuan; Zhu, Li-Nan; Guo, Fu-Qiao

    2018-06-23

    Atrazine, one of the most widespread herbicides in the world, is considered as an environmental estrogen and has potential carcinogenicity. In this study, atrazine was degraded on boron-fluorine co-doped TiO 2 nanotube arrays (B, F-TiO 2 NTAs), which had similar morphology with the pristine TiO 2 NTAs. The structure and morphology of TiO 2 nanotube samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-visible diffuse reflectance spectroscopy (DRS). It showed that the decoration of fluorine and boron made both the absorption in the visible region enhanced and the band edge absorption shifted. The efficiency of atrazine degradation by B, F-TiO 2 NTAs through photoelectrocatalysis was investigated by current, solution pH, and electrolyte concentration, respectively. The atrazine removal rate reached 76% through photoelectrocatalytic reaction by B, F-TiO 2 NTAs, which was 46% higher than that under the photocatalysis process. Moreover, the maximum degradation rate was achieved at pH of 6 in 0.01 M of Na 2 SO 4 electrolyte solution under a current of 0.02 A and visible light for 2 h in the presence of B, F-TiO 2 NTAs. These results showed that B, F-TiO 2 NTAs exhibit remarkable photoelectrocatalytic activity in degradation of atrazine.

  13. The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO2 nanostructures of different shapes

    NASA Astrophysics Data System (ADS)

    Grover, Inderpreet Singh; Singh, Satnam; Pal, Bonamali

    2013-09-01

    Titania based nanocatalysts such as sodium titanates of different morphology having superior surface properties are getting wide importance in photocatalysis research. Despite having sodium (Na) contents and its high temperature synthesis (that generally deteriorate the photoreactivity), these Na-titanates often exhibit better photoactivity than P25-TiO2 catalyst. Hence, this work demonstrated the influence of crystal structure, BET surface area, surface charge, zeta potential (ζ) and metal loading on the photocatalytic activity of as-prepared sodium titanate nanotube (TNT) and titania nanorod (TNR). Straw like hollow orthorhombic-TNT (Na2Ti2O5·H2O) particles (W = 9-12 nm and L = 82-115 nm) and rice like pure anatase-TNR particles (W = 8-13 nm and L = 81-134 nm) are obtained by the hydrothermal treatment of P25-TiO2 with NaOH, which in fact, altered the net surface charge of TNT and TNR particles. The observed ζ = -2.82 (P25-TiO2), -13.5 (TNT) and -22.5 mV (TNR) are significantly altered by the Ag and Cu deposition. It has been found here that TNT displayed best photocatalytic activity for the imidacloprid insecticide (C9H10ClN5O2) degradation to CO2 formation under UV irradiation because of its largest surface area 176 m2 g-1 among the catalysts studied.

  14. Low temperature synthesis of polyaniline-crystalline TiO2-halloysite composite nanotubes with enhanced visible light photocatalytic activity.

    PubMed

    Li, Cuiping; Wang, Jie; Guo, Hong; Ding, Shujiang

    2015-11-15

    A series of one-dimensional polyaniline-crystalline TiO2-halloysite composite nanotubes with different mass ratio of polyaniline to TiO2 are facilely prepared by employing the low-temperature synthesis of crystalline TiO2 on halloysite nanotubes. The halloysite nanotubes can adsorb TiO2/polyaniline precursors and induce TiO2 nanocrystals/polyaniline to grow on the support in situ simultaneously. By simply adjusting the acidity of reaction system, PANI-crystalline TiO2-HA composite nanotubes composed of anatase, a mixed phase TiO2 and different PANI redox state are obtained. The XRD and UV-vis results show that the surface polyaniline sensitization has no effect on the crystalline structure of halloysite and TiO2 and the light response of TiO2 is extended to visible-light regions. Photocatalysis test results reveal the photocatalytic activity will be affected by the pH value and the volume ratio of ANI to TTIP. The highest photocatalytic activity is achieved with the composite photocatalysts prepared at pH 0.5 and 1% volume ratio of ANI and TTIP owing to the sensitizing effect of polyaniline and the charge transfer from the photoexcited PANI sensitizer to TiO2. Moreover, the PANI-TiO2-HA composite nanotubes synthesized by one-step at pH 0.5 with 1% volume ratio of ANI to TTIP exhibit higher visible light photocatalytic activity than those synthesized by the two-step. Heterogeneous PANI-TiO2-HA composite nanotubes prepared at pH 0.5 exhibit a higher degradation activity than that prepared at pH 1.5. The redoped experiment proves that the PANI redox state plays the main contribution to the enhanced visible light catalytic degradation efficiency of PANI-TiO2-HA prepared at pH 0.5. Furthermore, the heterogeneous PANI-crystalline TiO2-HA nanotubes have good photocatalytic stability and can be reused four times with only gradual loss of activity under visible light irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Facile synthesis of bird's nest-like TiO2 microstructure with exposed (001) facets for photocatalytic degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Zhang, Guozhong; Zhang, Shuqu; Wang, Longlu; Liu, Ran; Zeng, Yunxiong; Xia, Xinnian; Liu, Yutang; Luo, Shenglian

    2017-01-01

    The scrupulous design of hierarchical structure and highly active crystal facets exposure is essential for the creation of photocatalytic system. However, it is still a big challenge for scrupulous design of TiO2 architectures. In this paper, bird's nest-like anatase TiO2 microstructure with exposed highly active (001) surface has been successfully synthesized by a facile one-step solvothermal method. Methylene blue (MB) is chosen as a model pollutant to evaluate photocatalytic activity of as-obtained TiO2 samples. The results show that the photocatalytic activity of the bird's nest-like sample is more excellent than P25 in the degradation of MB due to high specific surface area and highly active (001) crystal facets exposure when tested under simulated solar light. Besides, it can be readily separated from the photocatalytic system by sedimentation after photocatalytic reaction, which is a significant advantage against conventional powder photocatalyst. The bird's nest-like microspheres with novel structure may have potential application in photocatalysis and other fields.

  16. Evaluation of natural organic matter changes from Lake Hohloh by three-dimensional excitation-emission matrix fluorescence spectroscopy during TiO(2)/UV process.

    PubMed

    Valencia, Sergio; Marín, Juan M; Restrepo, Gloria; Frimmel, Fritz H

    2014-03-15

    This study shows the changes of natural organic matter (NOM) from Lake Hohloh, (Black Forest, Germany) during heterogeneous photocatalysis with TiO2 (TiO2/UV). The effect of pH on the adsorption of NOM onto TiO2 in the dark and TiO2/UV degradation of NOM was followed using three-dimensional excitation-emission matrix (EEM) fluorescence. At pH values between 4 and 9, the NOM was adsorbed onto TiO2 in the dark with a greater decrease in the fluorescence intensity and in the spectral shapes, especially under acidic pH conditions. However, at pH = 10 there was not adsorption on NOM which led to a negligible changes the fluorescence intensity. A significant high linear correlation was observed between the DOC adsorption onto TiO2 and the maximum fluorescence intensity. Additionally, the NOM adsorption onto TiO2 and its TiO2/UV degradation shifted the fluorescence maxima toward shorter wavelengths in the EEM contour plots, with a decrease in aromaticity. These changes were accompanied by a substantial decrease in the organically bound halogens adsorbable on activated carbon (AOXFP) and the trihalomethane formation potential (THMFP). Thus, the decrease in maximum fluorescence intensity can be used as an indicator of AOXFP and TTHMFP removal efficiency. Therefore, fluorescence spectroscopy is a robust analytical technique for evaluate TiO2/UV removal of NOM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Characterization and Comparison of Photocatalytic Activity Silver Ion doped on TiO2(TiO2/Ag+) and Silver Ion doped on Black TiO2(Black TiO2/Ag+)

    NASA Astrophysics Data System (ADS)

    Kim, Jin Yi; Sim, Ho Hyung; Song, Sinae; Noh, Yeoung Ah; Lee, Hong Woon; Taik Kim, Hee

    2018-03-01

    Titanium dioxide (TiO2) is one of the representative ceramic materials containing photocatalyst, optic and antibacterial activity. The hydroxyl radical in TiO2 applies to the intensive oxidizing agent, hence TiO2 is suitable to use photocatalytic materials. Black TiO2was prepared through reduction of amorphous TiO2 conducting under H2 which leads to color changes. Its black color is proven that absorbs 100% light across the whole-visible light, drawing enhancement of photocatalytic property. In this study, we aimed to compare the photocatalytic activity of silver ion doped on TiO2(TiO2/Ag+) and silver ion doped on black TiO2(black TiO2/Ag+) under visible light range. TiO2/Ag+ was fabricated following steps. 1) TiO2 was synthesized by a sol-gel method from Titanium tetraisopropoxide (TTIP). 2) Then AgNO3 was added during an aging process step for silver ion doping on the surface of TiO2. Moreover, Black TiO2/Ag+ was obtained same as TiO2/Ag+ except for calcination under H2. The samples were characterized X-ray diffraction (XRD), UV-visible reflectance (UV-vis DRS), and Methylene Blue degradation test. XRD analysis confirmed morphology of TiO2. The band gap of black TiO2/Ag+ was confirmed (2.6 eV) through UV-vis DRS, which was lower than TiO2/Ag+ (2.9 eV). The photocatalytic effect was conducted by methylene blue degradation test. It demonstrated that black TiO2/Ag+ had a photocatalytic effect under UV light also visible light.

  18. Antibacterial performance of nano polypropylene filter media containing nano-TiO2 and clay particles

    NASA Astrophysics Data System (ADS)

    Shafiee, Sara; Zarrebini, Mohammad; Naghashzargar, Elham; Semnani, Dariush

    2015-10-01

    Disinfection and elimination of pathogenic microorganisms from liquid can be achieved by filtration process using antibacterial filter media. The advent of nanotechnology has facilitated the introduction of membranes consisting of nano-fiber in filtration operations. The melt electro-spun fibers due to their extremely small diameters are used in the production of this particular filtration medium. In this work, antibacterial polypropylene filter medium containing clay particles and nano-TiO2 were made using melt electro-spun technology. Antibacterial performance of polypropylene nano-filters was evaluated using E. coli bacteria. Additionally, filtration efficiency of the samples in terms fiber diameter, filter porosity, and fiber distribution using image processing technique was determined. Air permeability and dust aerosol tests were conducted to establish the suitability of the samples as a filter medium. It was concluded that as far as antibacterial property is concerned, nano-fibers filter media containing clay particles are preferential to similar media containing TiO2 nanoparticles.

  19. TiO2-based photocatalytic disinfection of microbes in aqueous media: A review.

    PubMed

    Laxma Reddy, P Venkata; Kavitha, Beluri; Kumar Reddy, Police Anil; Kim, Ki-Hyun

    2017-04-01

    The TiO 2 based photocatalyst has great potential for the disinfection/inactivation of harmful pathogens (such as E.coli in aqueous media) along with its well-known usefulness on various chemical pollutants. The disinfection property of TiO 2 is primarily attributed to surface generation of reactive oxygen species (ROS) as well as free metal ions formation. Furthermore, its disinfection capacity and overall performance can be significantly improved through modifications of the TiO 2 material. In this review, we provide a brief survey on the effect of various TiO 2 materials in the disinfection of a wide range of environmentally harmful microbial pathogens (e.g., bacteria, fungi, algae, and viruses) in aqueous media. The influencing factors (such as reactor design, water chemistry, and TiO 2 modifications) of such processes are discussed along with the mechanisms of such disinfection. It is believed that the combined application of disinfection and decontamination will greatly enhance the utilization of TiO 2 photocatalyst as a potential alternative to conventional methods of water purification. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Hybrid micro/nano-topography of a TiO2 nanotube-coated commercial zirconia femoral knee implant promotes bone cell adhesion in vitro.

    PubMed

    Frandsen, Christine J; Noh, Kunbae; Brammer, Karla S; Johnston, Gary; Jin, Sungho

    2013-07-01

    Various approaches have been studied to engineer the implant surface to enhance bone in-growth properties, particularly using micro- and nano-topography. In this study, the behavior of osteoblast (bone) cells was analyzed in response to a titanium oxide (TiO2) nanotube-coated commercial zirconia femoral knee implant consisting of a combined surface structure of a micro-roughened surface with the nanotube coating. The osteoblast cells demonstrated high degrees of adhesion and integration into the surface of the nanotube-coated implant material, indicating preferential cell behavior on this surface when compared to the bare implant. The results of this brief study provide sufficient evidence to encourage future studies. The development of such hierarchical micro- and nano-topographical features, as demonstrated in this work, can provide insightful designs for advanced bone-inducing material coatings on ceramic orthopedic implant surfaces. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Selection of a novel peptide aptamer with high affinity for TiO2-nanoparticle through a direct electroporation with TiO2-binding phage complexes.

    PubMed

    Inoue, Ippei; Ishikawa, Yasuaki; Uraoka, Yukiharu; Yamashita, Ichiro; Yasueda, Hisashi

    2016-11-01

    We have developed an easy and rapid screening method of peptide aptamers with high affinity for a target material TiO 2 using M13 phage-display and panning procedure. In a selection step, the phage-substrate complexes and Escherichia coli cells were directly applied by electric pulse for electroporation, without separating the objective phages from the TiO 2 nanoparticles. Using this simple and rapid method, we obtained a novel peptide aptamer (named ST-1 with the sequence AYPQKFNNNFMS) with highly strong binding activity for TiO 2 . A cage-shaped protein fused with both ST-1 and an available carbon nanotube-affinity peptide was designed and produced in E. coli. The multi-functional supraprotein could efficiently mineralize a titanium-compound around the surface of single-wall carbon nanotubes (SWNTs), indicating that the ST-1 is valuable in the fabrication of nano-composite materials with titanium-compounds. The structural analysis of ST-1 variants indicated the importance of the N-terminal region (as a motif of AXPQKX 6 S) of the aptamer in the TiO 2 -binding activity. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Rational Design of Multifunctional Fe@γ-Fe2 O3 @H-TiO2 Nanocomposites with Enhanced Magnetic and Photoconversion Effects for Wide Applications: From Photocatalysis to Imaging-Guided Photothermal Cancer Therapy.

    PubMed

    Wang, Meifang; Deng, Kerong; Lü, Wei; Deng, Xiaoran; Li, Kai; Shi, Yanshu; Ding, Binbin; Cheng, Ziyong; Xing, Bengang; Han, Gang; Hou, Zhiyao; Lin, Jun

    2018-03-01

    Titanium dioxide (TiO 2 ) has been widely investigated and used in many areas due to its high refractive index and ultraviolet light absorption, but the lack of absorption in the visible-near infrared (Vis-NIR) region limits its application. Herein, multifunctional Fe@γ-Fe 2 O 3 @H-TiO 2 nanocomposites (NCs) with multilayer-structure are synthesized by one-step hydrogen reduction, which show remarkably improved magnetic and photoconversion effects as a promising generalists for photocatalysis, bioimaging, and photothermal therapy (PTT). Hydrogenation is used to turn white TiO 2 in to hydrogenated TiO 2 (H-TiO 2 ), thus improving the absorption in the Vis-NIR region. Based on the excellent solar-driven photocatalytic activities of the H-TiO 2 shell, the Fe@γ-Fe 2 O 3 magnetic core is introduced to make it convenient for separating and recovering the catalytic agents. More importantly, Fe@γ-Fe 2 O 3 @H-TiO 2 NCs show enhanced photothermal conversion efficiency due to more circuit loops for electron transitions between H-TiO 2 and γ-Fe 2 O 3 , and the electronic structures of Fe@γ-Fe 2 O 3 @H-TiO 2 NCs are calculated using the Vienna ab initio simulation package based on the density functional theory to account for the results. The reported core-shell NCs can serve as an NIR-responsive photothermal agent for magnetic-targeted photothermal therapy and as a multimodal imaging probe for cancer including infrared photothermal imaging, magnetic resonance imaging, and photoacoustic imaging. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mini Review of TiO2 -Based Multifunctional Nanocomposites for Near-Infrared Light-Responsive Phototherapy.

    PubMed

    Wang, Meifang; Hou, Zhiyao; Al Kheraif, Abdulaziz A; Xing, Bengang; Lin, Jun

    2018-06-25

    Phototherapy with the properties of specific spatial/temporal selectivity and minimal invasiveness has been acknowledged as one of the most promising cancer therapy types. Among all the photoactive substance for phototherapy, titanium dioxide (TiO 2 ) nanomaterials are paid more and more attention due to their outstanding photocatalytic properties, prominent biocompatibility, and excellent chemical stability. However, the wide bandgap (3.0-3.2 eV) of TiO 2 limits its absorption only to the ultraviolet (UV) light region. For a long time, UV light-stimulated TiO 2 was applied in the phototherapy researches of tumors located in the skin layer, while it is unsatisfactory for most deep-tissue tumors. Due to the maximum penetration into tissue existing in the near-infrared (NIR) region, how to use NIR light to trigger photochemical reaction of TiO 2 remains a big challenge. In this review, two strategies to develop and construct NIR-triggered TiO 2 -based nanocomposites (NCs) for phototherapy are summarized, and the relevant mechanism and background knowledge of TiO 2 -based phototherapy are also given in order to better understand the application value and current situation of TiO 2 in phototherapy. Finally, the challenges and research directions of TiO 2 in the future clinic phototherapy application are also discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nanocomposites based on thermoplastic elastomers with functional basis of nano titanium dioxide

    NASA Astrophysics Data System (ADS)

    Yulovskaya, V. D.; Kuz'micheva, G. M.; Klechkovskaya, V. V.; Orekhov, A. S.; Zubavichus, Ya. V.; Domoroshchina, E. N.; Shegay, A. V.

    2016-03-01

    Nanocomposites based on a thermoplastic elastomer (TPE) (low-density polyethylene (LDPE) and 1,2-polybutadiene in a ratio of 60/40) with functional titanium dioxide nanoparticles of different nature, TiO2/TPE, have been prepared and investigated by a complex of methods (X-ray diffraction analysis using X-ray and synchrotron radiation beams, scanning electron microscopy, transmission electron microscopy, and X-ray energy-dispersive spectroscopy). The morphology of the composites is found to be somewhat different, depending on the TiO2 characteristics. It is revealed that nanocomposites with cellular or porous structures containing nano-TiO2 aggregates with a large specific surface and large sizes of crystallites and nanoparticles exhibit the best deformation‒strength and fatigue properties and stability to the effect of active media under conditions of ozone and vapor‒air aging.

  5. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile.

    PubMed

    Yan, Junqing; Wu, Guangjun; Guan, Naijia; Li, Landong; Li, Zhuoxin; Cao, Xingzhong

    2013-07-14

    The sole effect of surface/bulk defects of TiO2 samples on their photocatalytic activity was investigated. Nano-sized anatase and rutile TiO2 were prepared by hydrothermal method and their surface/bulk defects were adjusted simply by calcination at different temperatures, i.e. 400-700 °C. High temperature calcinations induced the growth of crystalline sizes and a decrease in the surface areas, while the crystalline phase and the exposed facets were kept unchanged during calcination, as indicated by the characterization results from XRD, Raman, nitrogen adsorption-desorption, TEM and UV-Vis spectra. The existence of surface/bulk defects in calcined TiO2 samples was confirmed by photoluminescence and XPS spectra, and the surface/bulk defect ratio was quantitatively analyzed according to positron annihilation results. The photocatalytic activity of calcined TiO2 samples was evaluated in the photocatalytic reforming of methanol and the photocatalytic oxidation of α-phenethyl alcohol. Based on the characterization and catalytic results, a direct correlation between the surface specific photocatalytic activity and the surface/bulk defect density ratio could be drawn for both anatase TiO2 and rutile TiO2. The surface defects of TiO2, i.e. oxygen vacancy clusters, could promote the separation of electron-hole pairs under irradiation, and therefore, enhance the activity during photocatalytic reaction.

  6. Tribological Properties of TiO2/SiO2 Double Layer Coatings Deposited on CP-Ti

    NASA Astrophysics Data System (ADS)

    Çomakli, O.; Yazici, M.; Yetim, T.; Yetim, A. F.; Çelik, A.

    In the present paper, the influences of different double layer on wear and scratch performances of commercially pure Titanium (CP-Ti) were investigated. TiO2/SiO2 and SiO2/TiO2 double layer coatings were deposited on CP-Ti by sol-gel dip coating process and calcined at 750∘C. The phase structure, cross-sectional morphology, composition, wear track morphologies, adhesion properties, hardness and roughness of uncoated and coated samples were characterized with X-ray diffraction, scanning electron microscopy (SEM), nano-indentation technique, scratch tester and 3D profilometer. Also, the tribological performances of all samples were investigated by a pin-on-disc tribo-tester against Al2O3 ball. Results showed that hardness, elastic modulus and adhesion resistance of double layer coated samples were higher than untreated CP-Ti. It was found that these properties of TiO2/SiO2 double layer coatings have higher than SiO2/TiO2 double layer coating. Additionally, the lowest friction coefficient and wear rates were obtained from TiO2/SiO2 double layer coatings. Therefore, it was seen that phase structure, hardness and film adhesion are important factors on the tribological properties of double layer coatings.

  7. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures

    PubMed Central

    Banerjee, Arghya Narayan

    2011-01-01

    Recent advances in basic fabrication techniques of TiO2-based nanomaterials such as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques have been adopted by various research groups around the world. Our research focus has been mainly on various deposition parameters used for fabricating nanostructured materials, including TiO2-organic/inorganic nanocomposite materials. Technically, TiO2 shows relatively high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO2. The development of photocatalysts exhibiting high reactivity under visible light allows the main part of the solar spectrum to be used. Visible light-activated TiO2 could be prepared by doping or sensitizing. As far as doping of TiO2 is concerned, in obtaining tailored material with improved properties, metal and nonmetal doping has been performed in the context of improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO2 represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity. Therefore, applications of TiO2 in terms of photocatalytic activities are discussed here. The basic mechanisms of the photoactivities of TiO2 and nanostructures are considered alongside band structure engineering and surface modification in nanostructured TiO2 in the context of doping. The article reviews the basic structural, optical, and electrical properties of TiO2, followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional TiO2 nanomaterials. Applications and future directions of nanostructured TiO2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via dye-sensitized solar cells, photokilling and self-cleaning effect, photo-oxidation of organic pollutant, wastewater management, and

  8. Fabrication of a Highly Sensitive Single Aligned TiO2 and Gold Nanoparticle Embedded TiO2 Nano-Fiber Gas Sensor.

    PubMed

    Nikfarjam, Alireza; Hosseini, Seyedsina; Salehifar, Nahideh

    2017-05-10

    In this research, a single-aligned nanofiber of pure TiO 2 and gold nanoparticle (GNP)-TiO 2 were fabricated using a novel electro-spinning procedure equipped with secondary electrostatic fields on highly sharp triangular and rectangular electrodes provided for gas sensing applications. The sol used for spinning nanofiber consisted of titanium tetraisopropoxide (C 12 H 28 O 4 Ti), acetic acid (CH 3 COOH), ethanol (C 2 H 5 OH), polyvinylpyrrolidone (PVP), and gold nanoparticle solution. FE-SEM, TEM, and XRD were used to characterize the single nanofiber. In triangular electrodes, the electrostatic voltage for aligning single nanofiber between electrodes depends on the angle tip of the electrode, which was around 1.4-2.1, 2-2.9, and 3.2-4.1 kV for 30°, 45°, and 60°, respectively. However, by changing the shape of the electrodes to rectangular samples and by increasing distance between electrodes from 100 to 200 μm, electro-spinning applied voltage decreased. Response of pure TiO 2 single nanofiber sensor was measured for 30-200 ppb carbon monoxide gas. The triangular sample revealed better response and lower threshold than the rectangular sample. Adding appropriate amounts of GNP decreased the operating temperature and increased the responses. CO concentration threshold for the pure TiO 2 and GNP-TiO 2 triangular samples was about 5 ppb and 700 ppt, respectively.

  9. The nano-TiO2 exposure can induce hepatic inflammation involving in a JAK-STAT signalling pathway

    NASA Astrophysics Data System (ADS)

    Hong, Jie; Hong, Fashui; Ze, Yuguan; Zhang, Yu-Qing

    2016-06-01

    TiO2 nanoparticles (TiO2 NPs) have unique physiochemical properties and thus are widely used in daily life. However, these nanoparticles also have potential toxic effects in humans and animals, and the issue of the security TiO2 NPs has also gained prominence. In this article, mice were administered a gavage instillation of 2.5, 5, or 10 mg/kg body weight TiO2 NPs (5-6 nm) for 90 days. We investigated whether TiO2 NPs activate the JAK-STAT signalling pathway, causing nano-TiO2-induced hepatic toxicity. The results demonstrated that with increasing doses of TiO2 NPs the body weights of the mice body decreased, and the liver index, liver dysfunction, infiltration of inflammatory cells, and hepatocyte apoptosis and necrosis increased. Moreover, liver inflammation was accompanied by increased expression of Janus kinase 2, the signal transducers and activators of transcription 3, interleukin-6, cyclooxygenase-2, neutrophil gelatinase-associated lipocalin, purinergic receptor-7, and epithelial neutrophil-activating protein-78 and decreased expression of suppressors of cytokine signalling-1, peroxisome proliferator-activated receptor-γ, and peroxisome proliferator-activated receptor gamma coactivator-1 alpha. In summary, the activation of the JAK-STAT pathway may be involved in the hepatic inflammation induced by chronic nano-TiO2 toxicity.

  10. Solar-based detoxification of phenol and p-nitrophenol by sequential TiO2 photocatalysis and photosynthetically aerated biological treatment.

    PubMed

    Essam, Tamer; Aly Amin, Magdy; El Tayeb, Ossama; Mattiasson, Bo; Guieysse, Benoit

    2007-04-01

    Simulated solar UV/TiO(2) photocatalysis was efficient to detoxify a mixture of 100 mgphenoll(-1) and 50 mgp-nitrophenol (PNP) l(-1) and allow the subsequent biodegradation of the remaining pollutants and their photocatalytic products under photosynthetic aeration with Chlorella vulgaris. Photocatalytic degradation of phenol and PNP was well described by pseudo-first order kinetics (r(2)>0.98) with removal rate constants of 1.9x10(-4) and 2.8x10(-4)min(-1), respectively, when the pollutants were provided together and 5.7x10(-4) and 9.7x10(-4)min(-1), respectively, when they were provided individually. Photocatalytic pre-treatment of the mixture during 60 h removed 50+/-1% and 62+/-2% of the phenol and PNP initially present but only 11+/-3% of the initial COD. Hydroquinone, nitrate and catechol were identified as PNP photocatalytic products and catechol and hydroquinone as phenol photocatalytic products. Subsequent biological treatment of the pre-treated samples removed the remaining contaminants and their photocatalytic products as well as 81-83% of the initial COD, allowing complete detoxification of the mixture to C. vulgaris. Similar detoxification efficiencies were recorded after biological treatment of the irradiated mixture with activated sludge microflora or with an acclimated consortia composed of a phenol-degrading Alcaligenes sp. and a PNP-degrading Arthrobacter sp., although the acclimated strains biodegraded the remaining pollutants faster. Biological treatment of the non-irradiated mixture was inefficient due to C. vulgaris inhibition.

  11. Influence of energy band alignment in mixed crystalline TiO2 nanotube arrays: good for photocatalysis, bad for electron transfer

    NASA Astrophysics Data System (ADS)

    Mohammadpour, Raheleh

    2017-12-01

    Despite the wide application ranges of TiO2, the precise explanation of the charge transport dynamic through a mixed crystal phase of this semiconductor has remained elusive. Here, in this research, mixed-phase TiO2 nanotube arrays (TNTAs) consisting of anatase and 0-15% rutile phases has been formed through various annealing processes and employed as a photoelectrode of a photovoltaic cell. Wide ranges of optoelectronic experiments have been employed to explore the band alignment position, as well as the depth and density of trap states in TNTAs. Short circuit potential, as well as open circuit potential measurements specified that the band alignment of more than 0.2 eV exists between the anatase and rutile phase Fermi levels, with a higher electron affinity for anatase; this can result in a potential barrier in crystallite interfaces and the deterioration of electron mobility through mixed phase structures. Moreover, a higher density of shallow localized trap states below the conduction band with more depth (133 meV in anatase to 247 meV in 15% rutile phase) and also deep oxygen vacancy traps have been explored upon introducing the rutile phase. Based on our results, employing TiO2 nanotubes as just the electron transport medium in mixed crystalline phases can deteriorate the charge transport mechanism, however, in photocatalytic applications when both electrons and holes are present, a robust charge separation in crystalline anatase/rutile interphases will result in better performances.

  12. Large bandgap narrowing in rutile TiO2 aimed towards visible light applications and its correlation with vacancy-type defects history and transformation

    NASA Astrophysics Data System (ADS)

    Nair, Radhika V.; Gayathri, P. K.; Siva Gummaluri, Venkata; Nambissan, P. M. G.; Vijayan, C.

    2018-01-01

    Extension of photoactivity of TiO2 to the visible region is achievable via effective control over the intrinsic defects such as oxygen and Ti vacancies, which has several applications in visible photocatalysis and sensing. We present here the first observation of an apparent bandgap narrowing and bandgap tuning effect due to vacancy cluster transformation in rutile TiO2 structures to 1.84 eV from the bulk bandgap of 3 eV. A gradual transformation of divacancies (V Ti-O) to tri vacancies ({{V}Ti-O-T{{i-}}} ) achieved through a controlled solvothermal scheme appears to result in an apparent narrowing bandgap and tunability, as supported by positron annihilation lifetime and electron paramagnetic resonance spectroscopy measurements. Visible photocatalytic activity of the samples is demonstrated in terms of photodegradation of rhodamine B dye molecules.

  13. Chronic TiO2 nanoparticle exposure to a benthic organism, Hyalella azteca: Impact of solar UV radiation and material surface coatings on toxicity

    EPA Science Inventory

    The present study examined the chronic toxicity of TiO2 nanoparticles (nano-TiO2) to a representative benthic species, Hyalella azteca, using an industry standard, P25, and a coated nano-TiO2 used in commercial products. There is limited information on the chronic effects of nano...

  14. Highly concentrated phenolic wastewater treatment by heterogeneous and homogeneous photocatalysis: mechanism study by FTIR-ATR.

    PubMed

    Araña, J; Tello-Rendón, E; Doña-Rodríguez, J M; Campo, C V; Herrera-Melidán, J A; González-Díaz; Pérez-Peña, J

    2001-01-01

    The degradation of high phenol concentrations (1 g/L) in water solutions by TiO2 photocatalysis and the photo-Fenton reaction has been studied. From the obtained data it may be suggested that degradation of phenol by TiO2-UV takes place onto the catalyst surface by means of peroxo-compounds formation. At low phenol concentrations other mechanism, the insertion of OH. radicals, may be favored. On the other hand, highly concentrated phenol aqueous solutions treatment by the photo-Fenton reaction gives rise to the formation of polyphenolic polymers. These seem to reduce the process rate. Degradation intermediates have been identified by HPLC and FTIR. The FTIR study of the catalyst surface has shown infrared bands attributable to different chemisorbed peroxo-compounds, formates, ortho-formates and carboxylates that can inactivate the catalyst.

  15. TiO2-BASED Composite Films for the Photodegradation of Oxytetracycline

    NASA Astrophysics Data System (ADS)

    Li, Hui; Guan, Ling-Xiao; Feng, Ji-Jun; Li, Fang; Yao, Ming-Ming

    2015-02-01

    The spread of the antibiotic oxytetracycline (OTC) has been thought as a threat to the safety of drinking water. In this paper, the photocatalytic activity of the nanocrystalline Fe/Ca co-doped TiO2-SiO2 composite film for the degradation of OTC was studied. The films were characterized by field emission scanning electron microscopy (FE-SEM) equipped with energy-dispersive spectroscopy (EDS), N2 adsorption/desorption isotherms, photoluminescence (PL) spectra, and UV-Vis diffraction reflectance absorption spectra (DRS). The FE-SEM results indicated that the Fe/Ca co-doped TiO2-SiO2 film was composed of smaller nanoparticles compared to pure TiO2 or TiO2-SiO2 film. The BET surface area results showed that the specific surface area of the pure TiO2, TiO2-SiO2 and Ca2+/Fe3+ co-doped TiO2-SiO2 is 118.3 m2g-1, 294.3 m2g-1 and 393.7 m2g-1, respectively. The DRS and PL spectra revealed that the Fe/Ca co-doped TiO2-SiO2 film had strong visible light adsorption and diminished electrons/holes recombination. Experimental results showed that the Fe/Ca co-doped TiO2-SiO2 film is effective in the degradation of OTC under both UV and visible light irradiation.

  16. Cellular toxicity of TiO2-based nanofilaments.

    PubMed

    Magrez, Arnaud; Horváth, Lenke; Smajda, Rita; Salicio, Valérie; Pasquier, Nathalie; Forró, László; Schwaller, Beat

    2009-08-25

    At present, nanofilaments are not exclusively based on carbon atoms but can be produced from many inorganic materials in the form of nanotubes and nanowires. It is essential to systematically assess the acute toxicity of these newly synthesized materials since it cannot be predicted from the known toxicity of the same material in another form. Here, the cellular toxicity of TiO2-based nanofilaments was studied in relation to their morphology and surface chemistry. These structures produced by hydrothermal treatment were titanate nanotubes and nanowires with a Na(x)TiO(2+delta) composition. The cytotoxic effect was mainly evaluated by MTT assays combined with direct cell counting and cytopathological analyses of the lung tumor cells. Our work clearly demonstrated that the presence of Na(x)TiO(2+delta) nanofilaments had a strong dose-dependent effect on cell proliferation and cell death. Nanofilament internalization and alterations in cell morphology were observed. Acid treatment performed to substitute Na(+) with H(+) in the Na(x)TiO(2+delta) nanofilaments strongly enhanced the cytotoxic action. This effect was attributed to structural imperfections, which are left by the atom diffusion during the substitution. On the basis of our findings, we conclude that TiO2-based nanofilaments are cytotoxic and thus precautions should be taken during their manipulation.

  17. Observation the Distribution of Titanium Dioxide Nano-particles in an Experimental Tumor Tissue by a Raman Microscope

    NASA Astrophysics Data System (ADS)

    Bibin, Andriana B.; Kume, Kyo; Tsutumi, Kotaro; Fukunaga, Yukihiro; Ito, Shinnji; Imamura, Yoshiaki; Miyoshi, Norio

    2011-12-01

    One of the most important technologies of the 21st century is nanotechnology. Many researchers will have been focusing to employ nanotechnology for medical purpose. Our team was interested in focusing to the application of titanium dioxide (TiO2), as nano-particles, for medical purpose especially drug delivery for the cancer and tumor. The administrations of TiO2 nano-particle via the oral administration of the interface layer particles into the mouse transplanted squamous-cell-carcinoma (SCC) have already conducted. Histology study and Raman spectroscope data were applied to the serial section of frozen tumor tissue in order to observe the distribution of TiO2 nano-particle within the SCC tissue. We used near infrared laser Raman microscopy system, the wavelength is 785 nm. Hematoxyline & eosin stained image and the Raman microscopy system were also used for analyzing the photodynamic therapy (PDT) with 5-ALA and TiO2-particle-sol [TiO2]-ALA-treated tumor samples. As the result, we demonstrated the distribution of TiO2, where TiO2 particles were detected to be distributed in the blood vessel at the bleeding in the SCC tumor tissue. PDT with TiO2 nano-particles that is presented in the SCC-transplanted mouse tumor model can cause the enhancement of photodynamic reaction by nano-particles. Therefore, the combinations of PDT with TiO2 nano-particles may have a possibility to be introduced to the human body in near future for diagnose and PDT treatment of the tumor.

  18. Morphology and thermal stability of nano titanium dioxide filled natural rubber prepared by latex mixing method

    NASA Astrophysics Data System (ADS)

    Hayeemasae, N.; Surya, I.; Ismail, H.

    2018-02-01

    This paper deals with the morphology and thermal stability of nano Titanium Dioxide (TiO2) filled natural rubber composites. This study also suggests a new method of incorporating TiO2. Aqueous dispersions of nano TiO2at the loadings of 0, 2, 4, 6 and 8 phr were dispersed in natural rubber latex, the resulting compounds were then dried prior to mixing it with other ingredients on a two-roll mill. By applying this technique, the homogeneity of the compound is significantly improved. This can be clearly seen from the morphology observed. Adding TiO2 results in shifting the decomposition temperature and char residue irrespective of the loadings of nano TiO2.

  19. Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii.

    PubMed

    Chen, Lanzhou; Zhou, Lina; Liu, Yongding; Deng, Songqiang; Wu, Hao; Wang, Gaohong

    2012-10-01

    The toxicological effects of nanometer titanium dioxide (nano-TiO2) on a unicellular green alga Chlamydomonas reinhardtii were assessed by investigating the changes of the physiology and cyto-ultrastructure of this species under treatment. We found that nano-TiO2 inhibited photosynthetic efficiency and cell growth, but the content of chlorophyll a content in algae did not change, while carotenoid and chlorophyll b contents increased. Malondialdehyde (MDA) content reached maximum values after 8h exposure and then decreased to a moderately low level at 72 h. Electron microscopy images indicated that as concentrations of nano-TiO2 increased, a large number of C. reinhardtii cells were noted to be damaged: the number of chloroplasts declined, various other organelles were degraded, plasmolysis occurred, and TiO2 nanoparticles were found to be located inside cell wall and membrane. It was also noted that cell surface was surrounded by TiO2 particles, which could present an obstacle to the exchange of substances between the cell and its surrounding environment. To sum up, the effect of nano-TiO2 on C. reinhardtii included cell surface aggregation, photosynthesis inhibition, lipid peroxidation and new protein synthesis, while the response of C. reinhardtii to nano-TiO2 was a rapid process which occurs during 24 h after exposing and may relate to physiological stress system to mitigate damage. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  20. Effects of TiO2 nanoparticles on the NO2 - levels in cell culture media analysed by Griess colorimetric methods

    NASA Astrophysics Data System (ADS)

    Popescu, Traian; Lupu, Andreea R.; Diamandescu, Lucian; Tarabasanu-Mihaila, Doina; Teodorescu, Valentin S.; Raditoiu, Valentin; Purcar, Violeta; Vlaicu, Aurel M.

    2013-02-01

    The Griess assay has been used to determine the possible changes in the measured NO2 - concentrations induced by TiO2 nanoparticles in three types of nitrite-containing samples: aqueous NaNO2 solutions with known concentrations, and two types of cell culture media—Roswell Park Memorial Institute medium (RPMI-1640) and Dulbecco's Modified Eagle Medium (DMEM-F12) used either as delivered or enriched in NO2 - by NaNO2 addition. We have used three types of titania with average particle sizes between 10 and 30 nm: Degussa P25 and two other samples (undoped and Fe3+-doped anatase TiO2) synthesised by a hydrothermal route in our laboratory. The structural, morphological, optical and physicochemical characteristics of the used materials have been studied by X-ray diffraction, transmission electron microscopy (EDX), Mössbauer spectroscopy, Brunauer-Emmett-Teller nitrogen adsorption, UV-Vis reflectance spectroscopy, dynamic light scattering and diffuse reflectance infrared Fourier transform spectroscopy. The opacity and sedimentation behaviour of the studied TiO2 suspensions have been investigated by photometric attenuance measurements at 540 nm. To account for the photocatalytic properties of titania in a biologically relevant context, multiple Griess tests have been performed under controlled exposure to laboratory natural daylight illumination. The results show significant variations of light attenuance (associated with NO2 - concentrations in the Griess test) depending on the opacity, sedimentation behaviour, NO2 - adsorption and photocatalytic properties of the tested TiO2 nanomaterials. These findings identify material characteristics recommended to be considered when analysing the results of Griess tests performed in biological studies involving TiO2 nanoparticles.

  1. Cation coordination reactions on nanocrystals: surface/interface, doping control and advanced photocatalysis applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Jiatao

    2016-10-01

    Abstract: Including the shape and size effect, the controllable doping, hetero-composite and surface/interface are the prerequisite of colloidal nanocrystals for exploring their optoelectronic properties, such as fluorescence, plasmon-exciton coupling, efficient electron/hole separation, and enhanced photocatalysis applications. By controlling soft acid-base coordination reactions between cation molecular complexes and colloidal nanocrystals, we showed that chemical thermodynamics could drive nanoscale monocrystalline growth of the semiconductor shell on metal nano-substrates and the substitutional heterovalent doping in semiconductor nanocrystals. We have demonstrated evolution of relative position of Au and II-VI semiconductor in Au-Semi from symmetric to asymmetric configuration, different phosphines initiated morphology engineering, oriented attachment of quantum dots into micrometer nanosheets with synergistic control of surface/interface and doing, which can further lead to fine tuning of plasmon-exciton coupling. Therefore, different hydrogen photocatalytic performance, Plasmon enhanced photocatalysis properties have been achieved further which lead to the fine tuning of plasmon-exciton coupling. Substitutional heterovalent doping here enables the tailoring of optical, electronic properties and photocatalysis applications of semiconductor nanocrystals because of electronic impurities (p-, n-type doping) control. References: (1) J. Gui, J. Zhang*, et al. Angew. Chem. Int. Ed. 2015, 54, 3683. (2) Q. Zhao, J. Zhang*, etc., Adv. Mater. 2014, 26, 1387. (3) J. Liu, Q. Zhao, S. G. Wang*, J. Zhang*, etc., Adv. Mater. 2015, 27-2753-2761. (4) H. Qian, J. Zhang*, etc., NPG Asia Mater. (2015) 7, e152. (5) M. Ji, M. Xu, etc., J. Zhang*, Adv. Mater. 2016, in proof. (6) S. Yu, J. T. Zhang, Y. Tang, M. Ouyang*, Nano Lett. 2015, 15, 6282-6288. (7) J. Zhang, Y. Tang, K. Lee and M. Ouyang*, Science 2010, 327, 1634. (8) J. Zhang, Y. Tang, K. Lee, M. Ouyang*, Nature 2010, 466

  2. Inverse kinetic solvent isotope effect in TiO2 photocatalytic dehalogenation of non-adsorbable aromatic halides: a proton-induced pathway.

    PubMed

    Chang, Wei; Sun, Chunyan; Pang, Xibin; Sheng, Hua; Li, Yue; Ji, Hongwei; Song, Wenjing; Chen, Chuncheng; Ma, Wanhong; Zhao, Jincai

    2015-02-09

    An efficient redox reaction between organic substrates in solution and photoinduced h(+) vb /e(-) cb on the surface of photocatalysts requires the substrates or solvent to be adsorbed onto the surface, and is consequentially marked by a normal kinetic solvent isotope effect (KSIE ≥ 1). Reported herein is a universal inverse KSIE (0.6-0.8 at 298 K) for the reductive dehalogenation of aromatic halides which cannot adsorb onto TiO2 in a [D0 ]methanol/[D4 ]methanol solution. Combined with in situ ATR-FTIR spectroscopy investigations, a previously unknown pathway for the transformation of these aromatic halides in TiO2 photocatalysis was identified: a proton adduct intermediate, induced by released H(+) /D(+) from solvent oxidation, accompanies a change in hybridization from sp(2) to sp(3) at a carbon atom of the aromatic halides. The protonation event leads these aromatic halides to adsorb onto the TiO2 surface and an ET reaction to form dehalogenated products follows. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Fabrication of predominantly Mn4+ -doped TiO2 nanoparticles under equilibrium conditions and their application as visible-light photocatalyts.

    PubMed

    Wang, Lijie; Fan, Jiajie; Cao, Zetan; Zheng, Yichao; Yao, Zhiqiang; Shao, Guosheng; Hu, Junhua

    2014-07-01

    The chemical state of a transition-metal dopant in TiO(2) can intrinsically determine the performance of the doped material in applications such as photocatalysis and photovoltaics. In this study, manganese-doped TiO2 is fabricated by a near-equilibrium process, in which the TiO(2) precursor powder precipitates from a hydrothermally obtained transparent mother solution. The doping level and subsequent thermal treatment influence the morphology and crystallization of the TiO(2) samples. FTIR spectroscopy and X-ray photoelectron spectroscopy analyses indicate that the manganese dopant is substitutionally incorporated by replacing Ti(4+) cations. The absorption band edge can be gradually shifted to 1.8 eV by increasing the nominal manganese content to 10 at %. Manganese atoms doped into the titanium lattice are associated with the dominant 4+ valence oxidation state, which introduces two curved, intermediate bands within the band gap and results in a significant enhancement in photoabsorption and the quantity of photogenerated hydroxyl radicals. Additionally, the high photocatalytic performance of manganese-doped TiO(2) is also attributed to the low oxygen content, owing to the equilibrium fabrication conditions. This work provides an important strategy to control the chemical and defect states of dopants by using an equilibrium fabrication process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana.

    PubMed

    Ze, Yuguan; Liu, Chao; Wang, Ling; Hong, Mengmeng; Hong, Fashui

    2011-11-01

    Recent studies demonstrated that titanium dioxide nanoparticles (TiO2 NPs) could significantly promote photosynthesis and plant growth, but its mechanism is still unclear. In this article, we studied the mechanism of light absorption and transfer of chloroplasts of Arabidopsis thaliana caused by TiO2 NPs treated. The results showed that TiO2 NPs could induce significant increases of light-harvesting complex II (LHCII) b gene expression and LHCII II content on the thylakoid membrane in A. thaliana, and the increases in LHCII were higher than the non-nano TiO2 (bulk-TiO2) treatment. Meanwhile, spectroscopy assays indicated that TiO2 NPs obviously increased the absorption peak intensity of the chloroplast in red and blue region, the fluorescence quantum yield near 680 nm, the excitation peak intensity near 440 and 480 nm and/or near 650 and 680 nm of the chloroplast. TiO2 NPs treatment could reduce F480/F440 ratio and increase F650/F680 ratio and accelerate the rate of whole chain electron transport and oxygen evolution of the chloroplast. However, the photosynthesis improvement of the non-nanoTiO2 treatment was far less effective than TiO2 NPs treatment. Taken together, TiO2 NPs could promote the light absorption of chloroplast, regulate the distribution of light energy from PS I to PS II by increasing LHCII and accelerate the transformation from light energy to electronic energy, water photolysis, and oxygen evolution.

  5. Bulk magnetic terahertz metamaterial based on TiO2 microresonators(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kadlec, Christelle; Sindler, Michal; Dominec, Filip; Němec, Hynek; Elissalde, Catherine; Mounaix, Patrick; Kuzel, Petr

    2017-05-01

    Dielectric spheres with high permittivity represent a Mie resonance-based metamaterial. Owing to its high far-infrared permittivity and low dielectric losses, TiO2 is a suitable material for the realization of magnetic metamaterials based on micro-resonators for the terahertz (THz) range. In a previous work, we experimentally demonstrated the magnetic effective response of TiO 2 microspheres dispersed in air, forming nearly a single-layer sample enclosed between two sapphire wafers [1]. Here we embedded the polycrystalline TiO2 microparticles into a polyethylene matrix, which enabled us to prepare a rigid bulk metamaterial with a controllable concentration of micro- resonators. TiO2 microspheres with a diameter of a few tens of micrometers were prepared by a bottom up approach. A liquid suspension of TiO2 nanoparticles was first spray-dried producing fragile TiO2 microspheres. These were subsequently sintered in a furnace at 1200° C for two hours, in order to consolidate individually each sphere. The particles show polycrystalline rutile structure with a porosity of 15%. The microspheres were finally sieved and sorted along their diameters in order to obtain a narrow size distribution. They were mixed with polyethylene powder and a pressure of 14 MPa was used to prepare rigid pellets with random spatial distribution of the TiO2 microspheres. Using finite-difference time-domain simulations, we investigated how the filling fraction and the ratio between the permittivities of the microspheres and the host matrix affect the position and the strength of the magnetic response associated with the lowest Mie mode. We found that a range of negative effective magnetic permeability can be achieved for sufficiently high filling factors and contrasts between the permittivities of the resonators and the embedding medium. Using time-domain THz spectroscopy we experimentally characterized the response of the realized structures and confirmed the magnetic character of their

  6. Electrical, thermal, catalytic and magnetic properties of nano-structured materials and their applications

    NASA Astrophysics Data System (ADS)

    Liu, Zuwei

    properties are briefly reviewed in Chapter One, including the concepts of ferro-magnetism, plasmonics, photocatalysis, thermal emission, and Raman spectra of carbon nanotubes. In Chapter Two, we focus on the magnetic properties of ferro-magnetic cobalt nanowires with high crystalline quality synthesized via a low voltage electro-deposition method. The crystal structure of these Co nanowires is characterized by high resolution transmission electron microscopy and X-ray diffraction. The magnetic properties of individual nanowires and nanowire arrays are investigated by magnetic force microscope (MFM) and superconducting quantum interference device (SQUID) measurements. A theoretical model is developed to explain these experimental observations. In Chapter Three, we exploit the strong plasmon resonance of gold nanoparticles. We also demonstrate a new method for patterning SERS (surface enhanced Raman spectroscopy) aggregates of gold nanoparticles by using a focused laser beam to optically trap the nanoparticles in a water suspension. Raman spectroscopy is used to estimate the temperature in the laser spot during the in-situ aggregation, by measuring the Raman peak of the hydroxyl bond of water. In Chapter Four, we demonstrate plasmonic enhancement of photocatalytic water splitting under visible illumination by integrating strongly plasmonic Au nanoparticles with strongly catalytic TiO2. Electromagnetic simulations indicate that the near-field optical enhancement increases the electron-hole pair generation rate at the surface of the TiO2, thus increasing the amount of photo-generated charge contributing to catalysis. Our results suggest that enhancement factors many times larger than this are possible if this mechanism can be optimized. In Chapter Five, we study the Raman spectra and thermal emission spectra of individual suspended carbon nanotubes induced by electrical heating. Semiconducting and metallic devices exhibit different spectra, based on their distinctive band

  7. 3D Bi2S3/TiO2 cross-linked heterostructure: An efficient strategy to improve charge transport and separation for high photoelectrochemical performance

    NASA Astrophysics Data System (ADS)

    Han, Minmin; Jia, Junhong

    2016-10-01

    A novel 3D cross-linked heterostructure of TiO2 nanorods connecting with each other via ultrathin Bi2S3 nanosheets is constructed by a facile and effective strategy. The growth mechanism has been investigated and proposed based on the evolution of microstructure by changing the reaction parameters. Benefiting from the unique cross-linked heterostructure, the as-prepared Bi2S3 nanosheets modified TiO2 nanorods arrays could achieve a high energy conversion efficiency of 3.29% which is the highest value to date for Bi2S3-only sensitized solar cells as the reported highest value is 2.23% and other reported values are less than 1%. Furthermore, the photoelectrochemical studies clearly reveal that the novel cross-linked heterostructure exhibits much better activity than 0D nanoparticles decorated TiO2 nanorods under visible light irradiation, which may be primarily ascribed to the efficient electron transfer from 2D ultrathin Bi2S3 nanosheets to 1D TiO2 nanorod arrays. The promising results in this work confirm the advantages of cross-linked heterostructure and also undoubtedly offer an attractive synthesis strategy to fabricate other nanorod-based hierarchical architecture as well as nano-devices for solar energy conversion.

  8. A high efficiency microfluidic-based photocatalytic microreactor using electrospun nanofibrous TiO2 as a photocatalyst

    NASA Astrophysics Data System (ADS)

    Meng, Zhaoxu; Zhang, Xu; Qin, Jianhua

    2013-05-01

    We present a novel microfluidic-based photocatalytic microreactor by using electrospun nanofibrous TiO2 as a photocatalyst for the first time. The microreactor exhibits not only a simple fabrication process, but also much higher photocatalytic activity than that achieved by a TiO2 film microreactor.We present a novel microfluidic-based photocatalytic microreactor by using electrospun nanofibrous TiO2 as a photocatalyst for the first time. The microreactor exhibits not only a simple fabrication process, but also much higher photocatalytic activity than that achieved by a TiO2 film microreactor. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00775h

  9. Visible-Light Responsive Catalysts Using Quantum Dot-Modified TiO2 for Air and Water Purification

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Hintze, Paul E.; Clausen, Christian A.; Richards, Jeffrey T.

    2014-01-01

    Photocatalysis, the oxidation or reduction of contaminants by light-activated catalysts, utilizing titanium dioxide (TiO2) as the catalytic substrate has been widely studied for trace contaminant control in both air and water applications. The interest in this process is due primarily to its low energy consumption and capacity for catalyst regeneration. Titanium dioxide requires ultraviolet light for activation due to its relatively large band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors; however, the use of mercury precludes the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure.

  10. Fabrication of hierarchically porous TiO2 nanofibers by microemulsion electrospinning and their application as anode material for lithium-ion batteries.

    PubMed

    Zhang, Jin; Cai, Yibing; Hou, Xuebin; Song, Xiaofei; Lv, Pengfei; Zhou, Huimin; Wei, Qufu

    2017-01-01

    Titanium dioxide (TiO 2 ) nanofibers have been widely applied in various fields including photocatalysis, energy storage and solar cells due to the advantages of low cost, high abundance and nontoxicity. However, the low conductivity of ions and bulk electrons hinder its rapid development in lithium-ion batteries (LIB). In order to improve the electrochemical performances of TiO 2 nanomaterials as anode for LIB, hierarchically porous TiO 2 nanofibers with different tetrabutyl titanate (TBT)/paraffin oil ratios were prepared as anode for LIB via a versatile single-nozzle microemulsion electrospinning (ME-ES) method followed by calcining. The experimental results indicated that TiO 2 nanofibers with the higher TBT/paraffin oil ratio demonstrated more axially aligned channels and a larger specific surface area. Furthermore, they presented superior lithium-ion storage properties in terms of specific capacity, rate capability and cycling performance compared with solid TiO 2 nanofibers for LIB. The initial discharge and charge capacity of porous TiO 2 nanofibers with a TBT/paraffin oil ratio of 2.25 reached up to 634.72 and 390.42 mAh·g -1 , thus resulting in a coulombic efficiency of 61.51%; and the discharge capacity maintained 264.56 mAh·g -1 after 100 cycles, which was much higher than that of solid TiO 2 nanofibers. TiO 2 nanofibers with TBT/paraffin oil ratio of 2.25 still obtained a high reversible capacity of 204.53 mAh·g -1 when current density returned back to 40 mA·g -1 after 60 cycles at increasing stepwise current density from 40 mA·g -1 to 800 mA·g -1 . Herein, hierarchically porous TiO 2 nanofibers have the potential to be applied as anode for lithium-ion batteries in practical applications.

  11. [Fluorescence spectra and quantum yield of TiO2 nanocrystals synthesized by alcohothermal method].

    PubMed

    Song, Cui-Hong; Li, Yan-Ting; Li, Jing; Wei, Yong-Ju; Hu, Yu-Zhu; Wei, Yu

    2008-01-01

    Fluorescence spectra and fluorescence quantum yield of TiO2 nanocrystals were studied. Using tetra n-butyl titanate as a starting material, a facile alcohothermal technique was used to synthesize TiO2 nanocrystals. As can be seen from the transmittance electron microscopy (TEM) image, TiO2 nanocrystals with a relatively uniform particle size distribution of < 10 nm are present in the transparent sol. The transparent sol presents a strong stable fluorescence emission with a maximum at 450 nm, which is greatly dependent on the size quantization effects, defect energy level and the surface state of TiO2 nanocrystals. The quantum yield (gamma) of TiO2 was determined by the relative comparison procedure, using freshly prepared analytical purity quinine sulfate in 0.05 mol x L(-1) H2SO4 as a relative quantum yield standard. The emission quantum yield of TiO2 nanocrystals prepared in alcoholic media was calculated to be about 0.20 at wavelengths ranging from 330 to 370 nm, which was much higher than the values reported in previous works. So, it is supposed that nano-TiO2 will be applied as a potential quantum dots fluorescence probe in biological analysis.

  12. The layer boundary effect on multi-layer mesoporous TiO 2 film based dye sensitized solar cells

    DOE PAGES

    Xu, Feng; Zhu, Kai; Zhao, Yixin

    2016-10-10

    Multi-layer mesoporous TiO 2 prepared by screen printing is widely used for fabrication of high-efficiency dye-sensitized solar cells (DSSCs). Here, we compare the three types of ~10 um thick mesoporous TiO 2 films, which were screen printed as 1-, 2- and 4-layers using the same TiO 2 nanocrystal paste. The layer boundary of the multi-layer mesoporous TiO 2 films was observed in the cross-section SEM. The existence of a layer boundary could reduce the photoelectron diffusion length with the increase of layer number. However, the photoelectron diffusion lengths of the Z907 dye sensitized solar cells based on these different layeredmore » mesoporous TiO 2 films are all longer than the film thickness. Consequently, the photovoltaic performance seems to have little dependence on the layer number of the multi-layer TiO 2 based DSSCs.« less

  13. The layer boundary effect on multi-layer mesoporous TiO 2 film based dye sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Feng; Zhu, Kai; Zhao, Yixin

    Multi-layer mesoporous TiO 2 prepared by screen printing is widely used for fabrication of high-efficiency dye-sensitized solar cells (DSSCs). Here, we compare the three types of ~10 um thick mesoporous TiO 2 films, which were screen printed as 1-, 2- and 4-layers using the same TiO 2 nanocrystal paste. The layer boundary of the multi-layer mesoporous TiO 2 films was observed in the cross-section SEM. The existence of a layer boundary could reduce the photoelectron diffusion length with the increase of layer number. However, the photoelectron diffusion lengths of the Z907 dye sensitized solar cells based on these different layeredmore » mesoporous TiO 2 films are all longer than the film thickness. Consequently, the photovoltaic performance seems to have little dependence on the layer number of the multi-layer TiO 2 based DSSCs.« less

  14. Minimization of methabenzthiazuron residues in leaching water using amended soils and photocatalytic treatment with TiO2 and ZnO.

    PubMed

    Fenoll, José; Flores, Pilar; Hellín, Pilar; Hernández, Joaquín; Navarro, Simon

    2014-04-01

    In the present work, potential groundwater pollution by methabenzthiazuron (MTBU) and the effect of three different amendments (composted sheep manure, composted pine bark and spent coffee grounds) on its mobility were investigated under laboratory conditions. The efficiency of ZnO and TiO2 suspensions in the photocatalytic degradation of MTBU in leaching water was also investigated. The relative and cumulative breakthrough curves were obtained from disturbed soil columns. The presence and/or addition of organic matter drastically reduced the movement of the herbicide. On other hand, photocatalytic experiments showed that the addition of ZnO and TiO2 strongly enhances the degradation rate of this herbicide compared with the results of photolytic experiments under artificial light. ZnO appeared to be more effective in MTBU oxidation than TiO2. The results obtained point to the interest of using organic wastes and heterogeneous photocatalysis for reducing the pollution of groundwater by pesticide drainage. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  15. Report: Discussion on the development of nano Ag/TiO2 coating bracket and its antibacterial property and biocompatibility in orthodontic treatment.

    PubMed

    Zhang, Ronghe; Zhang, Weiwei; Bai, Xueyan; Song, Xiaotong; Wang, Chunyan; Gao, Xinxin; Tian, Xubiao; Liu, Fengzhen

    2015-03-01

    This paper aims to explore the antibacterial property of nano Ag/TiO2 coating bracket for the common bacteria in oral cavity, and discuss its biocompatibility. Micro morphology in the surface of nano Ag/TiO2 coating bracket was detected by scanning electron microscope (SEM), and surface roughness of ordinary mental bracket, nano TiO2 coating bracket and nano Ag/TiO2 coating bracket were measured. First, antibacterial property of nano Ag/TiO2 coating bracket on the common bacteria in oral cavity was studied by sticking membrane method. Secondly, bonding strength of nano TiO2 coating and nano Ag/TiO2 coating bracket in groups were detected by scratching test. The result showed that, the synthetic nano Ag/TiO2 coating was nanogranular films with rigorous organizational structure, presenting as smooth and clean surface, and antibacterial rate of nano Ag/TiO2 coating for the common bacteria in oral cavity for 20 min was more than 79% in the dark. All the findings suggested that, nano Ag/TiO2 coating bracket not only has antibacterial effect but also has good biocompatibility, therefore, it can satisfy the clinical request of orthodontic treatment.

  16. Arsenite removal from aqueous solutions by γ-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption.

    PubMed

    Yu, Lian; Peng, Xianjia; Ni, Fan; Li, Jin; Wang, Dongsheng; Luan, Zhaokun

    2013-02-15

    A novel Fe-Ti binary oxide magnetic nanoparticles which combined the photocatalytic oxidation property of TiO(2) and the high adsorption capacity and magnetic property of γ-Fe(2)O(3) have been synthesized using a coprecipitation and simultaneous oxidation method. The as-prepared samples were characterized by powder XRD, TEM, TG-DTA, VSM and BET methods. Photocatalytic oxidation of arsenite, the effect of solution pH values and initial As(III) concentration on arsenite removal were investigated in laboratory experiments. Batch experimental results showed that under UV light, As(III) can be efficiently oxidized to As(V) by dissolved O(2) in γ-Fe(2)O(3)-TiO(2) nanoparticle suspensions at various pH values. At the same time, As(V) was effectively removed by adsorption onto the surface of nanoparticles. The maximum removal capability of the nano-material for arsenite was 33.03 mg/g at pH 7.0. Among all the common coexisting ions investigated, phosphate was the greatest competitor with arsenic for adsorptive sites on the nano-material. Regeneration studies verified that the γ-Fe(2)O(3)-TiO(2) nanoparticles, which underwent five successive adsorption-desorption processes, still retained comparable catalysis and adsorption performance, indicating the excellent stability of the nanoparticles. The excellent photocatalytic oxidation performance and high uptake capability of the magnetic nano-material make it potentially attractive material for the removal of As(III) from water. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Preparation of nano-TiO2/diatomite-based porous ceramics and their photocatalytic kinetics for formaldehyde degradation

    NASA Astrophysics Data System (ADS)

    Gao, Ru-qin; Sun, Qian; Fang, Zhi; Li, Guo-ting; Jia, Meng-zhe; Hou, Xin-mei

    2018-01-01

    Diatomite-based porous ceramics were adopted as carriers to immobilize nano-TiO2 via a hydrolysis-deposition technique. The thermal degradation of as-prepared composites was investigated using thermogravimetric-differential thermal analysis, and the phase and microstructure were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The results indicated that the carriers were encapsulated by nano-TiO2 with a thickness of 300-450 nm. The main crystalline phase of TiO2 calcined at 650°C was anatase, and the average grain size was 8.3 nm. The FT-IR absorption bands at 955.38 cm-1 suggested that new chemical bonds among Ti, O, and Si had formed in the composites. The photocatalytic (PC) activity of the composites was investigated under UV irradiation. Furthermore, the photodegradation kinetics of formaldehyde was investigated using the composites as the cores of an air cleaner. A kinetics study showed that the reaction rate constants of the gas-phase PC reaction of formaldehyde were κ = 0.576 mg·m-3·min-1 and K = 0.048 m3/mg.

  18. Photocatalytic degradation of Rhodamine B dye using Fe doped TiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Barkhade, Tejal; Banerjee, Indrani

    2018-05-01

    The unique properties of titanium dioxide (TiO2) such as high photo catalytic activity, high chemical stability and low toxicity have made it a suitable photocatalyst in recent decades. The effect of modification of TiO2 with doping of iron on its characteristics and photo catalytic efficiency was studied. The change in band gap energy of TiO2 nanoparticles after doping with Fe has been studied. Significant enhancement in photo catalytic property of TiO2 after Fe doping under light exposure conditions has been investigated. Acute exposure to non-biodegradable Rhodamine B resulted in many health problems like burning of eyes, skin irritation, nasal burning, and chest pain etc. Therefore, degradation of this dye is needed to save environment and animals. Considering the similar radius of Fe3+ and Ti4+ ions (respectively 0.64 Å and 0.68 Å), titanium position in the lattice of TiO2 can be replaced by iron cations easily. The undoped and Fe doped TiO2 nano composites were synthesized by sol-gel method, in which 1.0M% of Fe was doped with TiO2 and then the samples were characterized by using FE-SEM, UV-Visible diffuse spectroscopy, Raman Spectroscopy, and FTIR. Photo catalytic degradation of Rhodamine B dye experiment was carried out in visible light range. After 90 min time duration pink colour of dye turned colourless, indicating significant degradation rate with time.

  19. A weak-light-responsive TiO2/g-C3N4 composite film: photocatalytic activity under low-intensity light irradiation.

    PubMed

    Wang, Peifang; Guo, Xiang; Rao, Lei; Wang, Chao; Guo, Yong; Zhang, Lixin

    2018-05-10

    A TiO 2 /g-C 3 N 4 composite photocatalytic film was prepared by in situ synthesis method and its photocatalytic capability under weak-visible-light condition was studied. The co-precursor with different ratio of melamine and TiO 2 sol-gel precursor were treated using ultrasonic mixing, physical deposition, and co-sintering method to form the smooth, white-yellow, and compact TiO 2 /g-C 3 N 4 composite films. The prepared TiO 2 /g-C 3 N 4 materials were characterized by SEM, TEM, EDS, XRD, BET, VBXPS, and UV-vis diffuse reflectance spectra. The results of composite showed that TiO 2 and g-C 3 N 4 have close interfacial connections which are favorable to charge transfer between these two semiconductors with suitable band structure, g-C 3 N 4 retard the anatase-to-rutile phase transition of TiO 2 significantly, the specific surface area were increased with g-C 3 N 4 ratio raised. Under weak-light irradiation, composite films photocatalytic experiments exhibited RhB removal efficiency approaching 90% after three recycles. Powders suspension degradation experiments revealed the removal efficiency of TiO 2 /g-C 3 N 4 (90.8%) was higher than pure TiO 2 (52.1%) and slightly lower than pure g-C 3 N 4 (96.6%). By control experiment, the enhanced photocatalysis is ascribed to the combination of TiO 2 and g-C 3 N 4 , which not only produced thin films with greater stability but also formed heterojunctions that can be favorable to charge transfer between these two semiconductors with suitable band structure. This study presents the potential application of photocatalytic film in the wastewater treatment under weak-light situation.

  20. Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension.

    PubMed

    Giraldo, Ana L; Peñuela, Gustavo A; Torres-Palma, Ricardo A; Pino, Nancy J; Palominos, Rodrigo A; Mansilla, Héctor D

    2010-10-01

    In the work presented here, a photocatalytic system using titanium Degussa P-25 in suspension was used to evaluate the degradation of 20mg L(-1) of antibiotic oxolinic acid (OA). The effects of catalyst load (0.2-1.5 g L(-1)) and pH (7.5-11) were evaluated and optimized using the surface response methodology and the Pareto diagram. In the range of variables studied, low pH values and 1.0 g L(-1) of TiO(2) favoured the efficiency of the process. Under optimal conditions the evolution of the substrate, chemical oxygen demand, dissolved organic carbon, toxicity and antimicrobial activity on Escherichia coli cultures were evaluated. The results indicate that, under optimal conditions, after 30 min, the TiO(2) photocatalytic system is able to eliminate both the substrate and the antimicrobial activity, and to reduce the toxicity of the solution by 60%. However, at the same time, ∼53% of both initial DOC and COD remain in solution. Thus, the photocatalytical system is able to transform the target compound into more oxidized by-products without antimicrobial activity and with a low toxicity. The study of OA by-products using liquid chromatography coupled with mass spectrometry, as well as the evaluation of OA degradation in acetonitrile media as solvent or in the presence of isopropanol and iodide suggest that the reaction is initiated by the photo-Kolbe reaction. Adsorption isotherm experiments in the dark indicated that under pH 7.5, adsorption corresponded to the Langmuir adsorption model, indicating the dependence of the reaction on an initial adsorption step. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Plant uptake-assisted round-the-clock photocatalysis for complete purification of aquaculture wastewater using sunlight.

    PubMed

    Bian, Zhenfeng; Cao, Fenglei; Zhu, Jian; Li, Hexing

    2015-02-17

    A novel reactor equipped with solar batteries, Bi2O3/TiO2 film photocatalyst, and celery plant was designed and used for purification of aquaculture wastewater. The Bi2O3/TiO2 film photocatalyst started photocatalytic degradation of organonitrogen compounds under irradiation of sunlight. Meanwhile, the solar batteries absorbed and converted excess sunlight into electric energy and then started UV lamps at night, leading to round-the-clock photocatalysis. Subsequently, the inorganic nitrogen species including NH4(+), NO2(-), and NO3(-) resulting from photocatalytic degradation of the organonitrogen compounds could subsequently be uptaken by the celery plant as the fertilizer to reduce the secondary pollution. It was found that, after 24 h circulation, both organonitrogen compounds and NO2(-) species were completely removed, while NH4(+) and NO3(-) contents also decreased by 30% and 50%, respectively. The reactor could be used repetitively, showing a good potential in practical application.

  2. Development of Electrodeposited Zn/nano-TiO2 Composite Coatings with Enhanced Corrosion Performance

    NASA Astrophysics Data System (ADS)

    Benea, L.; Dănăilă, E.

    2017-06-01

    Pure zinc coatings have been found ineffective when are used in aggressive environments such as those which contain chlorides or industrial pollutants [1]. In this paper, Zn/nano-TiO2 composite coatings with various contents of TiO2 nanoparticles (diameter size of 10 nm) were prepared on low-carbon steel by electro-codeposition technique. The deposition was carried out at different cathodic potentials ranging from -1600 mV to -2100 mV for different deposition times between 5-15 min. Pure Zn coatings were also produced under the same experimental conditions for comparison. Present work aims to investigate the effects of selected electrodeposition parameters (cathodic potential, TiO2 nanoparticle concentration in the plating bath and electrodeposition time) on the corrosion behavior of electrodeposited Zn/nano-TiO2 composite obtained. The corrosion experiments were performed in natural seawater, using electrochemical methods such as open circuit potential, potentiodynamic polarization and linear polarization resistance. The results showed that the inclusion of TiO2 nanoparticles into zinc matrix lead to an improved corrosion resistance comparatively with pure zinc coatings obtained under similar conditions.

  3. Color stability of pigmented maxillofacial silicone elastomer: effects of nano-oxides as opacifiers.

    PubMed

    Han, Ying; Zhao, Yimin; Xie, Chao; Powers, John M; Kiat-amnuay, Sudarat

    2010-01-01

    This study evaluated the effects of nano-oxides on the color stability of pigmented silicone A-2186 maxillofacial prosthetic elastomers before and after artificial aging. Each of three widely used UV-shielding nano-sized particle oxides (TiO(2), ZnO, CeO(2)), based on recent survey of the industry at 1%, 2%, 2.5% concentrations were combined with each of five intrinsic silicone pigment types (no pigments, red, yellow, blue, and a mixture of the three pigments). Silicone A-2186 without nano-oxides or pigments served as control, for a total of 46 experimental groups of elastomers. In each group of the study, all specimens were aged in an artificial aging chamber for an energy exposure of 450kJ/m(2). CIE L*a*b* values were measured by a spectrophotometer. The 50:50% perceptibility (ΔE*=1.1) and acceptability threshold (ΔE*=3.0) were used in interpretation of recorded color differences. Color differences after aging were subjected to three-way analysis of variance. Means were compared by Fisher's PLSD intervals at the 0.05 level of significance. Yellow pigments mixed with all three nano-oxides at all intervals increased ΔE* values significantly from 3.7 up to 8.4. When mixed pigment groups were considered, TiO(2) at 2%, and 2.5% exhibited the smallest color changes, followed by ZnO and CeO(2), respectively (p<0.001). At 1%, CeO(2) exhibited the smallest color changes, followed by TiO(2) and ZnO, respectively (p<0.001). The smallest color differences, observed for nano-oxides groups, were recorded for CeO(2) at 1%, and TiO(2) at 2% and 2.5%. When the nano-oxides were tested at all concentrations, CeO(2) groups overall had the most color changes, and TiO(2) groups had the least. All ΔE* values of the mixed pigment groups were below the 50:50% acceptability threshold (ΔE*=1.2-2.3, below 3.0) except 2% CeO(2) (ΔE*=4.2). 1% nano-CeO(2) and 2% and 2.5% nano-TiO(2) used as opacifiers for silicone A-2186 maxillofacial prostheses with mixed pigments exhibited the least

  4. Effect of annealing on the structural and optical properties of TiO2 powder prepared by sol-gel route

    NASA Astrophysics Data System (ADS)

    Halder, Nilanjan; Misra, Kamakhya Prakash

    2016-05-01

    Using titanium isopropoxide as the precursor, Titanium dioxide (TiO2) powder was synthesized via sol-gel method, a promising low temperature route for preparing nanosized metal oxide semiconductors with good homogeneity at low cost. The as-prepared nano powder was thermally treated in air at 550, 650, 750, 900 and 1100°C for 1hr after drying at room temperature and used for further characterization. X-ray diffraction measurements showed that the annealing treatment has a strong impact on the crystal phase of TiO2 samples. The crystallite size as calculated from Debye Scherer formula lies in the range 29-69 nm and is found to increase with increase in annealing temperature. Photoluminescence studies exhibit an improvement in the optical efficiency of the samples with post synthesis heat treatment. Annealing at temperature above 900°C results in a degradation of the structural and optical quality of the TiO2 nano powder samples.

  5. Direct access to highly crystalline mesoporous nano TiO2 using sterically bulky organic acid templates

    NASA Astrophysics Data System (ADS)

    Bakre, Pratibha V.; Tilve, S. G.

    2018-05-01

    Sterically bulky monocarboxylic acid templates pivalic acid and phenoxyacetic acid are reported for the first time as organic templates in the sol-gel synthesis of TiO2. Mesoporous nanoparticulates of pure anatase phase and of well defined size were synthesized. The characterization of the materials prepared was done by various methods such as XRD, SEM, TEM, FTIR, UV-DRS, BET, etc. The prepared TiO2 samples were evaluated for the day light photodegradation of methylene blue by comparing with Degussa P25 and templates free synthesized TiO2 and were found to be more efficient.

  6. Solar-chemical treatment of groundwater contaminated with petroleum at gas station sites: ex situ remediation using solar/TiO(2) photocatalysis and Solar Photo-Fenton.

    PubMed

    Cho, Ii-Hyoung; Kim, Young-Gyu; Yang, Jae-Kyu; Lee, Nae-Hyun; Lee, Seung-Mok

    2006-01-01

    Groundwater samples contaminated by BTEX (benzene, toluene, ethylbenzene, xylene isomers and TPHs (total petroleum hydrocarbons) were treated with advanced oxidation processes (AOPs), such as TiO(2) photocatalysis and Fe(2+)/H(2)O(2) exposed to solar light (37 degrees N and 128 degrees E) with an average intensity of 1.7 mW/cm(2) at 365 nm. These AOP processes showed feasibility in the treatment of groundwater contaminated with BTEX, TPH and TOC (Total Organic Carbon). Outdoor field tests showed that the degradation efficiency of each contaminant was higher in the Fe(2+)/H(2)O(2) system without solar light compared to the TiO(2)/solar light and H(2)O(2)/solar light systems. However, the TiO(2)/solar light and the Fe(2+)/H(2)O(2)/solar light systems showed significantly enhanced efficiencies in the degradation of BTEX, TPH and TOC with the additional use of H(2)O(2). Near complete degradation of BTEX and TPH was observed within 2 and 4 hrs, respectively, however, that of TOC was slower. Without pretreatment of the groundwater, fouling of the TiO(2), due to the ionic species present, was observed within 1 hr of operation, which resulted in the inhibition of further BTEX, TPH and TOC destruction. The degradation rate of n-alkanes with carbon numbers ranging from C10 to C15 was relatively greater than that of n-alknaes with carbon numbers ranging from C16 to C20. From this work, the AOP process (Fe(2+)/H(2)O(2)/solar light and TiO(2)/H(2)O(2)/solar light) illuminated with solar light was identified as an effective ex situ technique in the remediation of groundwater contaminated with petroleum.

  7. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO2 nanocrystals.

    PubMed

    Wu, Fan; Qiao, Qiquan; Bahrami, Behzad; Chen, Ke; Pathak, Rajesh; Tong, Yanhua; Li, Xiaoyi; Zhang, Tiansheng; Jian, Ronghua

    2018-05-25

    We present a method to synthesize CuO nanorod array/TiO 2 nanocrystals bulk heterojunction (BHJ) on fluorine-tin-oxide (FTO) glass, in which single-crystalline p-type semiconductor of the CuO nanorod array is grown on the FTO glass by hydrothermal reaction and the n-type semiconductor of the TiO 2 precursor is filled into the CuO nanorods to form well-organized nano-interpenetrating BHJ after air annealing. The interface charge transfer in CuO nanorod array/TiO 2 heterojunction is studied by Kelvin probe force microscopy (KPFM). KPFM results demonstrate that the CuO nanorod array/TiO 2 heterojunction can realize the transfer of photo-generated electrons from the CuO nanorod array to TiO 2 . In this work, a solar cell with the structure FTO/CuO nanoarray/TiO 2 /Al is successfully fabricated, which exhibits an open-circuit voltage (V oc ) of 0.20 V and short-circuit current density (J sc ) of 0.026 mA cm -2 under AM 1.5 illumination. KPFM studies indicate that the very low performance is caused by an undesirable interface charge transfer. The interfacial surface potential (SP) shows that the electron concentration in the CuO nanorod array changes considerably after illumination due to increased photo-generated electrons, but the change in the electron concentration in TiO 2 is much less than in CuO, which indicates that the injection efficiency of the photo-generated electrons from CuO to TiO 2 is not satisfactory, resulting in an undesirable J sc in the solar cell. The interface photovoltage from the KPFM measurement shows that the low V oc results from the small interfacial SP difference between CuO and TiO 2 because the low injected electron concentration cannot raise the Fermi level significantly in TiO 2 . This conclusion agrees with the measured work function results under illumination. Hence, improvement of the interfacial electron injection is primary for the CuO nanorod array/TiO 2 heterojunction solar cells.

  8. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Qiao, Qiquan; Bahrami, Behzad; Chen, Ke; Pathak, Rajesh; Tong, Yanhua; Li, Xiaoyi; Zhang, Tiansheng; Jian, Ronghua

    2018-05-01

    We present a method to synthesize CuO nanorod array/TiO2 nanocrystals bulk heterojunction (BHJ) on fluorine-tin-oxide (FTO) glass, in which single-crystalline p-type semiconductor of the CuO nanorod array is grown on the FTO glass by hydrothermal reaction and the n-type semiconductor of the TiO2 precursor is filled into the CuO nanorods to form well-organized nano-interpenetrating BHJ after air annealing. The interface charge transfer in CuO nanorod array/TiO2 heterojunction is studied by Kelvin probe force microscopy (KPFM). KPFM results demonstrate that the CuO nanorod array/TiO2 heterojunction can realize the transfer of photo-generated electrons from the CuO nanorod array to TiO2. In this work, a solar cell with the structure FTO/CuO nanoarray/TiO2/Al is successfully fabricated, which exhibits an open-circuit voltage (V oc) of 0.20 V and short-circuit current density (J sc) of 0.026 mA cm‑2 under AM 1.5 illumination. KPFM studies indicate that the very low performance is caused by an undesirable interface charge transfer. The interfacial surface potential (SP) shows that the electron concentration in the CuO nanorod array changes considerably after illumination due to increased photo-generated electrons, but the change in the electron concentration in TiO2 is much less than in CuO, which indicates that the injection efficiency of the photo-generated electrons from CuO to TiO2 is not satisfactory, resulting in an undesirable J sc in the solar cell. The interface photovoltage from the KPFM measurement shows that the low V oc results from the small interfacial SP difference between CuO and TiO2 because the low injected electron concentration cannot raise the Fermi level significantly in TiO2. This conclusion agrees with the measured work function results under illumination. Hence, improvement of the interfacial electron injection is primary for the CuO nanorod array/TiO2 heterojunction solar cells.

  9. Nano-TiO2-based photocatalytic disinfection of environmental surfaces contaminated by meticillin-resistant Staphylococcus aureus.

    PubMed

    Petti, S; Messano, G A

    2016-05-01

    Traditional cleaning and disinfection methods are inefficient for complete decontamination of hospital surfaces from meticillin-resistant Staphylococcus aureus (MRSA). Additional methods, such as nano-TiO2-based photocatalytic disinfection (PCD), could be helpful. To evaluate anti-MRSA activity of PCD on polyvinyl chloride (PVC) surfaces in natural-like conditions. Two identical PVC surfaces were used, and nano-TiO2 was incorporated into one of them. The surfaces were contaminated with MRSA isolated from hospitalized patients using a mist sprayer to simulate the mode of environmental contamination caused by a carrier. MRSA cell density was assessed before contamination until 180min after contamination using Rodac plates. The differences between test and control surfaces in terms of MRSA density and log MRSA density reduction were assessed using parametric and non-parametric statistical tests. Five strains were tested, and each strain was tested five times. The highest median MRSA densities [46.3 and 43.1 colony-forming units (cfu)/cm(2) for control and test surfaces, respectively] were detected 45min after contamination. Median MRSA densities 180min after contamination were 10.1 and 0.7cfu/cm(2) for control and test surfaces, respectively (P<0.01). Log MRSA density reduction attributable to PCD was 1.16logcfu/cm(2), corresponding to 93% reduction of the baseline MRSA contamination. The disinfectant activity remained stable throughout the 25 testing occasions, despite between-test cleaning and disinfection. The anti-MRSA activity of PCD was compatible with the benchmark for surface hygiene in hospitals (<1cfu/cm(2)), but required 3h of exposure to photocatalysis. Thus, PCD could be considered for non-clinical surfaces. However, for clinical surfaces, PCD should be regarded as supplemental to conventional decontamination procedures, rather than an alternative. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  10. Study of pyrolysed acid and based treated coconut coir as green photocatalyst substrate

    NASA Astrophysics Data System (ADS)

    Asim, Nilofar; Emdadi, Zeynab; Abdullah, N. A.; Mohammad, Masita; Badiei, Marzieh; Sopian, Kamaruzzaman

    2017-12-01

    This study investigates the possible contribution to sustainable development by utilizing agriculture waste materials to prepare a substrate for photo-catalysis application. The photocatalytic performance of impregnated TiO2 on acid and base- treated coconut coir (CC) and their pyrolysed form have been studied. The photocatalytic performance of impregnated TiO2 on acid treated CC improved compared to bare TiO2. However, the pyrolysed samples showed higher thermal stability and porosity compared to only treated CC, their catalytic performance was decreased. It seems that impregnated TiO2 undergo interaction with treated CC during pyrolysis. More investigations to reveal exact reason of this behavior is in progress.

  11. Photodegradation of ethylene by use of TiO2 sol-gel on polypropylene and on glass for application in the postharvest of papaya fruit.

    PubMed

    Lourenço, Ruth Evelyn R S; Linhares, Amanda A N; de Oliveira, André Vicente; da Silva, Marcelo Gomes; de Oliveira, Jurandi Gonçalves; Canela, Maria Cristina

    2017-03-01

    The papaya is a commercially important fruit commodity worldwide. Being a climacteric fruit, it is highly perishable. Thus, for the transportation of papaya fruit for long distances without loss of quality, it is necessary to avoid the autocatalytic effect of ethylene in accelerating the ripening of the fruit. This work addresses the application of heterogeneous photocatalysis to the degradation of ethylene. A TiO 2 sol-gel supported on polypropylene (PP) and on glass was used as the catalytic material, and a UV-A lamp was employed as the radiation source. Initially, a concentration of 500 ppbv ethylene was exposed to the catalyst material irradiated by UV-A radiation. A sensitive photoacoustic spectrometer was used to monitor the photocatalytic activity. The TiO 2 sol-gel supported on the glass substrate was more efficient than on the PP in degrading the ethylene. Under direct UV-A exposure, the skin appearance of 'Golden' papaya was damaged, depreciating the fruit quality and thus preventing its commercialization. However, the feasibility of the heterogeneous photocatalysis to preserve the fruit quality was achieved when ethylene was removed from the storage ambient using fans, and then, this plant hormone was degraded by a reactor set apart in a ventilation closed system.

  12. Highly Visible Light Responsive, Narrow Band gap TiO2 Nanoparticles Modified by Elemental Red Phosphorus for Photocatalysis and Photoelectrochemical Applications

    PubMed Central

    Ansari, Sajid Ali; Cho, Moo Hwan

    2016-01-01

    This paper reports that the introduction of elemental red phosphorus (RP) into TiO2 can shift the light absorption ability from the UV to the visible region, and confirmed that the optimal RP loading and milling time can effectively improve the visible light driven-photocatalytic activity of TiO2. The resulting RP-TiO2 nanohybrids were characterized systematically by a range of techniques and the photocatalytic ability of the RP-TiO2 photocatalysts was assessed further by the photodegradation of a model Rhodamine B pollutant under visible light irradiation. The results suggest that the RP-TiO2 has superior photodegradation ability for model contaminant decomposition compared to other well-known photocatalysts, such as TiO2 and other reference materials. Furthermore, as a photoelectrode, electrochemical impedance spectroscopy, differential pulse voltammetry, and linear scan voltammetry were also performed in the dark and under visible light irradiation. These photoelectrochemical performances of RP-TiO2 under visible light irradiation revealed more efficient photoexcited electron-hole separation and rapid charge transfer than under the dark condition, and thus improved photocatalytic activity. These findings show that the use of earth abundant and inexpensive red phosphorus instead of expensive plasmonic metals for inducing visible light responsive characteristics in TiO2 is an effective strategy for the efficient energy conversion of visible light. PMID:27146098

  13. Enhanced electrochromic properties of TiO2 nanoporous film prepared based on an assistance of polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Xu, Shunjian; Luo, Xiaorui; Xiao, Zonghu; Luo, Yongping; Zhong, Wei; Ou, Hui; Li, Yinshuai

    2017-01-01

    Polyethylene glycol (PEG) was employed as pore-forming agent to prepare TiO2 nanoporous film based on spin-coating a TiO2 nanoparticle mixed paste on fluorine doped tin oxide (FTO) glass. The electrochromic and optical properties of the obtained TiO2 film were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and UV-Vis spectrophotometer. The results show that the PEG in the mixed paste endows the TiO2 film with well-developed porous structure and improves the uniformity of the TiO2 film, which are helpful for the rapid intercalation and extraction of lithium ions within the TiO2 film and the strengthening of the diffuse reflection of visible light in the TiO2 film. As a result, the TiO2 film derived from the mixed paste with PEG displays higher electrochemical activity and more excellent electrochromic performances compared with the TiO2 film derived from the mixed paste without PEG. The switching times of coloration/bleaching are respectively 10.16/5.65 and 12.77/6.13 s for the TiO2 films with PEG and without PEG. The maximum value of the optical contrast of the TiO2 film with PEG is 21.2% while that of the optical contrast of the TiO2 film without PEG is 14.9%. Furthermore, the TiO2 film with PEG has better stability of the colored state than the TiO2 film without PEG.

  14. Compact light-emitting diode optical fiber immobilized TiO2 reactor for photocatalytic water treatment.

    PubMed

    O'Neal Tugaoen, Heather; Garcia-Segura, Sergi; Hristovski, Kiril; Westerhoff, Paul

    2018-02-01

    A key barrier to implementing photocatalysis is delivering light to photocatalysts that are in contact with aqueous pollutants. Slurry photocatalyst systems suffer from poor light penetration and require post-treatment to separate the catalyst. The alternative is to deposit photocatalysts on fixed films and deliver light onto the surface or the backside of the attached catalysts. In this study, TiO 2 -coated quartz optical fibers were coupled to light emitting diodes (OF/LED) to improve in situ light delivery. Design factors and mechanisms studied for OF/LEDs in a flow-through reactor included: (i) the influence of number of LED sources coupled to fibers and (ii) the use of multiple optical fibers bundled to a single LED. The light delivery mechanism from the optical fibers into the TiO 2 coatings is thoroughly discussed. To demonstrate influence of design variables, experiments were conducted in the reactor using the chlorinated pollutant para-chlorobenzoic acid (pCBA). From the degradation kinetics of pCBA, the quantum efficiencies (Φ) of oxidation and electrical energies per order (E EO ) were determined. The use of TiO 2 coated optical fiber bundles reduced the energy requirements to deliver photons and increased available surface area, which improved Φ and enhanced oxidative pollutant removal performance (E EO ). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Characterization of an LED based photoreactor to degrade 4-chlorophenol in an aqueous medium using coumarin (C-343) sensitized TiO2.

    PubMed

    Ghosh, Jyoti P; Langford, Cooper H; Achari, Gopal

    2008-10-16

    A detailed performance evaluation of a simple high intensity LED based photoreactor exploiting a narrow wavelength range of the LED to match the spectrum of a dye in a photocatalysis system is reported. A dye sensitized (coumarin-343, lambda max = 446 nm) TiO 2 photocatalyst was used for the degradation of 4-chlorophenol (4-CP) in an aqueous medium using the 436 nm LED based photoreactor. The LED reactor performed competitively with a conventional multilamp reactor and sunlight in the degradation of 4-CP. Light intensities entering the reaction vessel were measured by conventional ferrioxalate actinometry. The results can be fitted by approximate first order kinetic behavior in this system. Hydroxyl radicals were detected by spin trapping EPR, and effects of OH radical quenchers on kinetics suggest that the reaction is initiated by these radicals or their equivalents. LEDs operating at competitive intensities offer a number of advantages to the photochemist or the environmental engineer via long life, efficient current to light conversion, narrow bandwidth, forward directed output, and direct current power for remote operation. Matching light source spectrum to chromophore is a key.

  16. Water adsorption on TiO2 surfaces probed by soft X-ray spectroscopies: bulk materials vs. isolated nanoparticles

    PubMed Central

    Benkoula, Safia; Sublemontier, Olivier; Patanen, Minna; Nicolas, Christophe; Sirotti, Fausto; Naitabdi, Ahmed; Gaie-Levrel, François; Antonsson, Egill; Aureau, Damien; Ouf, François-Xavier; Wada, Shin-Ichi; Etcheberry, Arnaud; Ueda, Kiyoshi; Miron, Catalin

    2015-01-01

    We describe an experimental method to probe the adsorption of water at the surface of isolated, substrate-free TiO2 nanoparticles (NPs) based on soft X-ray spectroscopy in the gas phase using synchrotron radiation. To understand the interfacial properties between water and TiO2 surface, a water shell was adsorbed at the surface of TiO2 NPs. We used two different ways to control the hydration level of the NPs: in the first scheme, initially solvated NPs were dried and in the second one, dry NPs generated thanks to a commercial aerosol generator were exposed to water vapor. XPS was used to identify the signature of the water layer shell on the surface of the free TiO2 NPs and made it possible to follow the evolution of their hydration state. The results obtained allow the establishment of a qualitative determination of isolated NPs’ surface states, as well as to unravel water adsorption mechanisms. This method appears to be a unique approach to investigate the interface between an isolated nano-object and a solvent over-layer, paving the way towards new investigation methods in heterogeneous catalysis on nanomaterials. PMID:26462615

  17. Nano-Scaled Particles of Titanium Dioxide Convert Benign Mouse Fibrosarcoma Cells into Aggressive Tumor Cells

    PubMed Central

    Onuma, Kunishige; Sato, Yu; Ogawara, Satomi; Shirasawa, Nobuyuki; Kobayashi, Masanobu; Yoshitake, Jun; Yoshimura, Tetsuhiko; Iigo, Masaaki; Fujii, Junichi; Okada, Futoshi

    2009-01-01

    Nanoparticles are prevalent in both commercial and medicinal products; however, the contribution of nanomaterials to carcinogenesis remains unclear. We therefore examined the effects of nano-sized titanium dioxide (TiO2) on poorly tumorigenic and nonmetastatic QR-32 fibrosarcoma cells. We found that mice that were cotransplanted subcutaneously with QR-32 cells and nano-sized TiO2, either uncoated (TiO2−1, hydrophilic) or coated with stearic acid (TiO22, hydrophobic), did not form tumors. However, QR-32 cells became tumorigenic after injection into sites previously implanted with TiO2−1, but not TiO22, and these developing tumors acquired metastatic phenotypes. No differences were observed either histologically or in inflammatory cytokine mRNA expression between TiO2−1 and TiO22 treatments. However, TiO22, but not TiO2−1, generated high levels of reactive oxygen species (ROS) in cell-free conditions. Although both TiO2−1 and TiO22 resulted in intracellular ROS formation, TiO22 elicited a stronger response, resulting in cytotoxicity to the QR-32 cells. Moreover, TiO22, but not TiO2−1, led to the development of nuclear interstices and multinucleate cells. Cells that survived the TiO2 toxicity acquired a tumorigenic phenotype. TiO2-induced ROS formation and its related cell injury were inhibited by the addition of antioxidant N-acetyl-l-cysteine. These results indicate that nano-sized TiO2 has the potential to convert benign tumor cells into malignant ones through the generation of ROS in the target cells. PMID:19815711

  18. A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures

    PubMed Central

    Wang, Yuan; Liu, Lixin; Meng, Chuanmin; Zhou, Yun; Gao, Zhao; Li, Xuhai; Cao, Xiuxia; Xu, Liang; Zhu, Wenjun

    2016-01-01

    Much greater surface-to-volume ratio of hierarchical nanostructures renders them attract considerable interest as prototypical gas sensors. In this work, a novel resistive gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures is fabricated by a facile one-step synthetic process and the ethanol sensing performance of this device is characterized systematically, which shows faster response/recovery behavior, better selectivity, and higher sensitivity of about 9 times as compared to the pure TiO2 nanofibers. The enhanced sensitivity of the TiO2/Ag0.35V2O5 branched nanoheterostructures should be attributed to the extraordinary branched hierarchical structures and TiO2/Ag0.35V2O5 heterojunctions, which can eventually result in an obvious change of resistance upon ethanol exposure. This study not only indicates the gas sensing mechanism for performance enhancement of branched nanoheterostructures, but also proposes a rational approach to design nanostructure based chemical sensors with desirable performance. PMID:27615429

  19. A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Liu, Lixin; Meng, Chuanmin; Zhou, Yun; Gao, Zhao; Li, Xuhai; Cao, Xiuxia; Xu, Liang; Zhu, Wenjun

    2016-09-01

    Much greater surface-to-volume ratio of hierarchical nanostructures renders them attract considerable interest as prototypical gas sensors. In this work, a novel resistive gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures is fabricated by a facile one-step synthetic process and the ethanol sensing performance of this device is characterized systematically, which shows faster response/recovery behavior, better selectivity, and higher sensitivity of about 9 times as compared to the pure TiO2 nanofibers. The enhanced sensitivity of the TiO2/Ag0.35V2O5 branched nanoheterostructures should be attributed to the extraordinary branched hierarchical structures and TiO2/Ag0.35V2O5 heterojunctions, which can eventually result in an obvious change of resistance upon ethanol exposure. This study not only indicates the gas sensing mechanism for performance enhancement of branched nanoheterostructures, but also proposes a rational approach to design nanostructure based chemical sensors with desirable performance.

  20. Highly sensitive biofunctionalized mesoporous electrospun TiO(2) nanofiber based interface for biosensing.

    PubMed

    Mondal, Kunal; Ali, Md Azahar; Agrawal, Ved V; Malhotra, Bansi D; Sharma, Ashutosh

    2014-02-26

    The surface modified and aligned mesoporous anatase titania nanofiber mats (TiO2-NF) have been fabricated by electrospinning for esterified cholesterol detection by electrochemical technique. The electrospinning and porosity of mesoporous TiO2-NF were controlled by use of polyvinylpyrrolidone (PVP) as a sacrificial carrier polymer in the titanium isopropoxide precursor. The mesoporous TiO2-NF of diameters ranging from 30 to 60 nm were obtained by calcination at 470 °C and partially aligned on a rotating drum collector. The functional groups such as -COOH, -CHO etc. were introduced on TiO2-NF surface via oxygen plasma treatment making the surface hydrophilic. Cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) were covalently immobilized on the plasma treated surface of NF (cTiO2-NF) via N-ethyl-N0-(3-dimethylaminopropyl carbodiimide) and N-hydroxysuccinimide (EDC-NHS) chemistry. The high mesoporosity (∼61%) of the fibrous film allowed enhanced loading of the enzyme molecules in the TiO2-NF mat. The ChEt-ChOx/cTiO2-NF-based bioelectrode was used to detect esterified cholesterol using electrochemical technique. The high aspect ratio, surface area of aligned TiO2-NF showed excellent voltammetric and catalytic response resulting in improved detection limit (0.49 mM). The results of response studies of this biosensor show excellent sensitivity (181.6 μA/mg dL(-1)/cm(2)) and rapid detection (20 s). This proposed strategy of biomolecule detection is thus a promising platform for the development of miniaturized device for biosensing applications.

  1. Hydrothermal synthesis of TiO2/WO3 compositions and their photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Pyachin, Sergey A.; Karpovich, Natalia F.; Zaitsev, Alexey V.; Makarevich, Konstantin S.; Burkov, Alexander A.; Ustinov, Alexander Yu.

    2016-11-01

    Photocatalytic activity, optical properties, thermal stability, phase patterns and morphology of nano-size TiO2/WO3 compositions obtained from organic precursors through hydrothermal synthesis have been studied. It has been shown that doping of anatase nanoparticles with tungsten W+6 results in particle diameter reduction from 35 to 10 nm; decrease in width of the band gap from 3.15 eV to 2.91 eV and increase in temperature of phase transition of anatase to rutile up to 980oC. Catalytic activity of TiO2/WO3 (4 mol.%) composition under photochemical methylene blue (MB) oxidation by simulated solar light exceeds that of undoped anatase (obtained in the same way) 6-fold.

  2. Ferrate(VI) enhanced photocatalytic oxidation of pollutants in aqueous TiO2 suspensions.

    PubMed

    Sharma, Virender K; Graham, Nigel J D; Li, Xiang-Zhong; Yuan, Bao-Ling

    2010-02-01

    Photocatalytic oxidation using UV irradiation of TiO(2) has been studied extensively and has many potential industrial applications, including the degradation of recalcitrant contaminants in water and wastewater treatment. A limiting factor in the oxidation process is the recombination of conduction band electrons (e(-)(cb)) with electron holes (h(vb)(+)) on the irradiated TiO(2) surface; thus, in aqueous conditions, the presence of an effective electron scavenger will be beneficial to the efficiency of the oxidation process. Ferrate (FeO(4)(2-)) has received much recent attention as a water treatment chemical since it behaves simultaneously as an oxidant and coagulant. The combination of ferrate [Fe(VI)] with UV/TiO(2) photocatalysis offers an oxidation synergism arising from the Fe(VI) scavenging of e(-)(cb) and the corresponding beneficial formation of Fe(V) from the Fe(VI) reduction. This paper reviews recent studies concerning the photocatalytic oxidation of problematic pollutants with and without ferrate. The paper reviews the published results of laboratory experiments designed to follow the photocatalytic degradation of selected contaminants of environmental significance and the influence of the experimental conditions (e.g. pH, reactant concentrations and dissolved oxygen). The specific compounds are as follows: ammonia, cyanate, formic acid, bisphenol-A, dibutyl- and dimethyl-phthalate and microcystin-LR. The principal focus in these studies has been on the rates of reaction rather than on reaction pathways and products. The presence of UV/TiO(2) accelerates the chemical reduction of ferrate, and the reduction rate decreases with pH owing to deprotonation of ferrate ion. For all the selected contaminant substances, the photocatalytic oxidation rate was greater in the presence of ferrate, and this was believed to be synergistic rather than additive. The presence of dissolved oxygen in solution reduced the degradation rate of dimethyl phthalate in the

  3. Adsorption-photodegradation of humic acid in water by using ZnO coupled TiO2/bamboo charcoal under visible light irradiation.

    PubMed

    Wang, Xuejiang; Wu, Zhen; Wang, Yin; Wang, Wei; Wang, Xin; Bu, Yunjie; Zhao, Jianfu

    2013-11-15

    ZnO coupled TiO2/bamboo charcoal (ZnO-TiO2/BC) was prepared using the sol-gel method combined with microwave irradiation. The ZnO-TiO2/BC and TiO2/BC were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), N2 adsorption (BET), and UV-vis diffuse reflectance spectroscopy (UV-vis-DRS). The ZnO dopant promoted the transformation of anatase TiO2 to rutile phase, and a significant red shift of absorption edge was brought out due to the interfacial coupling effect between ZnO and TiO2 particles. The BET specific surface area and total pore volume decreased with ZnO doping, indicating that some micropores were blocked. SEM studies indicated that ZnO was almost uniformly deposited on the surface of the ZnO-TiO2/BC. The adsorption and photocatalytic degradation experiments showed that the photo-degrade efficiency for Zno-TiO2/BC was higher than that of TiO2/BC, and for both composites, the removal efficiency of HA increased as pH decreased from 10.0 to 2.0. The degradation of HA by ZnO-TiO2/BC and TiO2/BC fitted well with the Langmuir-Hinshelwood kinetics model, and HA degradation was achieved through a synergistic mechanism of adsorption and photocatalysis. ZnO-TiO2/BC could be used as an effective and alternative photocatalyst for the treatment of water contaminated by organic pollutants. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Phototoxicity of TiO2 nanoparticles to a freshwater benthic amphipod: are benthic systems at risk?

    EPA Science Inventory

    This study investigated phototoxicity of TiO2 nanoparticles (nano-TiO2) to a freshwater benthic amphipod (Hyalella azteca) using 48-h and 96-h bioassays. Thorough monitoring of particle interactions with exposure media (Lake Superior water, LSW) and the surface of organisms was p...

  5. Photo-electrochemical properties of graphene wrapped hierarchically branched nanostructures obtained through hydrothermally transformed TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Rambabu, Y.; Jaiswal, Manu; Roy, Somnath C.

    2017-10-01

    Hierarchically structured nanomaterials play an important role in both light absorption and separation of photo-generated charges. In the present study, hierarchically branched TiO2 nanostructures (HB-MLNTs) are obtained through hydrothermal transformation of electrochemically anodized TiO2 multi-leg nanotubes (MLNT) arrays. Photo-anodes based on HB-MLNTs demonstrated 5 fold increase in applied bias to photo-conversion efficiency (%ABPE) over that of TiO2 MLNTs without branches. Further, such nanostructures are wrapped with reduced graphene oxide (rGO) films to enhance the charge separation, which resulted in ∼6.5 times enhancement in %ABPE over that of bare MLNTs. We estimated charge transport (η tr) and charge transfer (η ct) efficiencies by analyzing the photo-current data. The ultra-fine nano branches grown on the MLNTs are effective in increasing light absorption through multiple scattering and improving charge transport/transfer efficiencies by enlarging semiconductor/electrolyte interface area. The charge transfer resistance, interfacial capacitance and electron decay time have been estimated through electrochemical impedance measurements which correlate with the results obtained from photocurrent measurements.

  6. Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm.

    PubMed

    Dhandapani, Perumal; Maruthamuthu, Sundram; Rajagopal, Gopalakrishnan

    2012-05-02

    The nano-TiO(2) was synthesized biologically employing Bacillus subtilis (FJ460362). These nanoparticles were characterized by FTIR, TGA-DTA, UV-Visible spectroscopy, XRD and TEM. FTIR and TGA results confirm that the organic impurities were completely removed while calcinating the resultant products. Band gap value was estimated from the UV-Visible spectrum and anatase crystal phase was confirmed by XRD. TEM images reveal that these particles were agglomerated; mostly spherical in shape with an average particle size of 10-30nm. The synthesized nano-TiO(2) particles were coated on glass slides, biofilm were grown and subjected to irradiation of polychromatic light to understand photocatalytic activity in controlling the aquatic biofilm. The bacterial killing process was established by Epi-fluorescence microscopy. The results reveal that biogenic TiO(2) nanomaterial acts as good photocatalyst by the generation of H(2)O(2) in the vicinity of the TiO(2)-biofilm interfaces to suppress the growth of the aquatic biofilm. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Photocatalytic antibacterial effects on TiO2-anatase upon UV-A and UV-A/VIS threshold irradiation.

    PubMed

    Wu, Yanyun; Geis-Gerstorfer, Jürgen; Scheideler, Lutz; Rupp, Frank

    2016-01-01

    Photocatalysis mediated by the anatase modification of titanium dioxide (TiO2) has shown antibacterial effects in medical applications. The aim of this study was to investigate the possibility of expanding the excitation wavelengths for photocatalytic antibacterial effects from ultraviolet (UV) into the visible light range. After deposition of salivary pellicle and adhesion of Streptococcus gordonii on anatase, different irradiation protocols were applied to induce photocatalysis: ultraviolet A (UV-A) > 320 nm; ultraviolet/visible (UV-A/VIS) light > 380 nm and > 390 nm; and VIS light 400-410 nm. A quartz crystal microbalance with dissipation (QCM-D) tests and microscopic examination were used to observe the photoinduced antibacterial effects. Salivary pellicle could be photocatalytically decomposed under all irradiation protocols. In contrast, effective photocatalytic attack of bacteria could be observed by UV-A as well as by UV-A/VIS at 380 nm < λ < 390 nm only. Wavelengths above 380 nm show promise for in situ therapeutic antifouling applications.

  8. Environmental risk assessment of engineered nano-SiO2 , nano iron oxides, nano-CeO2 , nano-Al2 O3 , and quantum dots.

    PubMed

    Wang, Yan; Nowack, Bernd

    2018-05-01

    Many research studies have endeavored to investigate the ecotoxicological hazards of engineered nanomaterials (ENMs). However, little is known regarding the actual environmental risks of ENMs, combining both hazard and exposure data. The aim of the present study was to quantify the environmental risks for nano-Al 2 O 3 , nano-SiO 2 , nano iron oxides, nano-CeO 2 , and quantum dots by comparing the predicted environmental concentrations (PECs) with the predicted-no-effect concentrations (PNECs). The PEC values of these 5 ENMs in freshwaters in 2020 for northern Europe and southeastern Europe were taken from a published dynamic probabilistic material flow analysis model. The PNEC values were calculated using probabilistic species sensitivity distribution (SSD). The order of the PNEC values was quantum dots < nano-CeO 2  < nano iron oxides < nano-Al 2 O 3  < nano-SiO 2 . The risks posed by these 5 ENMs were demonstrated to be in the reverse order: nano-Al 2 O 3  > nano-SiO 2  > nano iron oxides > nano-CeO 2  > quantum dots. However, all risk characterization values are 4 to 8 orders of magnitude lower than 1, and no risk was therefore predicted for any of the investigated ENMs at the estimated release level in 2020. Compared to static models, the dynamic material flow model allowed us to use PEC values based on a more complex parameterization, considering a dynamic input over time and time-dependent release of ENMs. The probabilistic SSD approach makes it possible to include all available data to estimate hazards of ENMs by considering the whole range of variability between studies and material types. The risk-assessment approach is therefore able to handle the uncertainty and variability associated with the collected data. The results of the present study provide a scientific foundation for risk-based regulatory decisions of the investigated ENMs. Environ Toxicol Chem 2018;37:1387-1395. © 2018 SETAC. © 2018 SETAC.

  9. Analysis of protein phosphorylation by monolithic extraction columns based on poly(divinylbenzene) containing embedded titanium dioxide and zirconium dioxide nano-powders.

    PubMed

    Rainer, Matthias; Sonderegger, Harald; Bakry, Rania; Huck, Christian W; Morandell, Sandra; Huber, Lukas A; Gjerde, Douglas T; Bonn, Günther K

    2008-11-01

    The potential of an organic monolith with incorporated titanium dioxide (TiO(2)) and zirconium dioxide (ZrO(2)) nanoparticles was evaluated for the selective enrichment of phosphorylated peptides from tryptic digests. A pipette tip was fitted with a monolith based on divinylbenzene (DVB) of highly porous structure, which allows sample to pass through the monolithic bed. The enrichment of phosphopeptides was enhanced by increasing the pipetting cycles during the sample preparation and a higher recovery could be achieved with adequate buffer systems. A complete automated process was developed for enrichment of phosphopeptides leading to high reproducibility and resulting in a robust method designed to minimize analytical variance while providing high sensitivity at high sample throughput. The effect of particle size on the selectivity of phosphopeptides was investigated by comparative studies with nano- and microscale TiO(2) and ZrO(2) powders. Eleven phosphopeptides from alpha-casein digest could be recovered by an optimized mixture of microscale TiO(2)/ZrO(2) particles, whereas nine additional phosphopeptides could be retained by the same mixture of nano-structured material. When compared to conventional immobilized metal-ion affinity chromatography and commercial phosphorylation-enrichment kits, higher selectivity was observed in case of self fabricated tips. About 20 phosphopeptides could be retained from alpha-casein and five from beta-casein digests by using TiO(2) and ZrO(2) based extraction tips. Further selectivity for phosphopeptides was demonstrated by enriching a digest of in vitro phosphorylated extracellular signal regulated kinase 1 (ERK1). Two phosphorylated peptides of ERK1 could be identified by MALDI-MS/MS measurements and a following MASCOT database search.

  10. Synthesis of TiO2 nanorods from titania and titanyl sulfate produced from ilmenite dissolution by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Munifa, R. M. I.; Saputri, L. N. M. Z.; Chasanah, U.

    2016-11-01

    TiO2 powder has been synthesized through hydrolysis-condensation of titanyl sulfate solution to a starting material of TiO2 nanorods formation. This processing was conducted by the solid separation of TiO2 from ilmenite by roasting ilmenite, acidic leaching (hydrolysis), and co-precipitation (condensation). Roasting of ilmenite was carried out by the addition of Na2S at a temperature of 800°C. While the acidic leaching process was conducted by sulfuric acid at a various concentrations of 3, 3.5, 4.5, 6, and 9 M. The result shown that the solubility optimum occurs in H2SO4 6 M condition. Separation of Fe impurities of TiO2 gel from titanyl sulfate (TiOSO4) solution was done through complexation using KCNS addition. The characteristic of TiO2 obtained using X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) showed good crystallinity and purity. Further treatment of the TiO2 is the formation of one-dimensional nano-size (1-D nanorods) through a hydrothermal method under basic condition NaOH 12M solution. TiO2 nanorods were confirmed by Transmission Electron Microscope (TEM) which indicated that the diameter of TiO2 nanorods was about 7.02 nm in size.

  11. N-Doped TiO2-Coated Ceramic Membrane for Carbamazepine Degradation in Different Water Qualities

    PubMed Central

    Luster, Enbal; Avisar, Dror; Horovitz, Inna; Lozzi, Luca; Baker, Mark A.; Grilli, Rossana; Mamane, Hadas

    2017-01-01

    The photocatalytic degradation of the model pollutant carbamazepine (CBZ) was investigated under simulated solar irradiation with an N-doped TiO2-coated Al2O3 photocatalytic membrane, using different water types. The photocatalytic membrane combines photocatalysis and membrane filtration in a single step. The impact of each individual constituent such as acidity, alkalinity, dissolved organic matter (DOM), divalent cations (Mg2+ and Ca2+), and Cl− on the degradation of CBZ was examined. CBZ in water was efficiently degraded by an N-doped TiO2-coated Al2O3 membrane. However, elements added to the water, which simulate the constituents of natural water, had an impact on the CBZ degradation. Water alkalinity inhibited CBZ degradation mostly due to increase in pH while radical scavenging by carbonate was more dominant at higher values (>200 mg/L as CaCO3). A negative effect of Ca2+ addition on photocatalytic degradation was found only in combination with phosphate buffer, probably caused by deposition of CaHPO4 or CaHPO4·2H2O on the catalyst surface. The presence of Cl− and Mg2+ ions had no effect on CBZ degradation. DOM significantly inhibited CBZ degradation for all tested background organic compounds. The photocatalytic activity of N-doped TiO2-coated Al2O3 membranes gradually decreased after continuous use; however, it was successfully regenerated by 0.1% HCl chemical cleaning. Nevertheless, dissolution of metals like Al and Ti should be monitored following acid cleaning. PMID:28758982

  12. Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of Reactive Yellow-17.

    PubMed

    Rupa, A Valentine; Manikandan, D; Divakar, D; Sivakumar, T

    2007-08-25

    Nanoparticles of TiO(2) were synthesized by sol-gel technique and the photodeposition of about 1% Ag on TiO(2) particles was carried out. Ag-deposited TiO(2) catalyst was characterised by XRD, TEM and UV-vis spectroscopy. The Ag-TiO(2) catalyst was evaluated for their photocatalytic activity towards the degradation of Reactive Yellow-17 (RY-17) under UV and visible light irradiations. Then the results were compared with synthesized nano-TiO(2) sol and P-25 Degussa and the enhanced degradation was obtained with Ag-deposited TiO(2). This enhanced activity of Ag-TiO(2) may be attributed to the trapping of conduction band electrons. The effect of initial dye concentration, pH and electron acceptors such as H(2)O(2), K(2)S(2)O(8) on the photocatalytic activity were studied and the results obtained were fitted with Langmuir-Hinshelwood model to study the degradation kinetics and discussed in detail.

  13. A Brown Mesoporous TiO2-x /MCF Composite with an Extremely High Quantum Yield of Solar Energy Photocatalysis for H2 Evolution.

    PubMed

    Xing, Mingyang; Zhang, Jinlong; Qiu, Bocheng; Tian, Baozhu; Anpo, Masakazu; Che, Michel

    2015-04-24

    A brown mesoporous TiO2-x /MCF composite with a high fluorine dopant concentration (8.01 at%) is synthesized by a vacuum activation method. It exhibits an excellent solar absorption and a record-breaking quantum yield (Φ = 46%) and a high photon-hydrogen energy conversion efficiency (η = 34%,) for solar photocatalytic H2 production, which are all higher than that of the black hydrogen-doped TiO2 (Φ = 35%, η = 24%). The MCFs serve to improve the adsorption of F atoms onto the TiO2 /MCF composite surface, which after the formation of oxygen vacancies by vacuum activation, facilitate the abundant substitution of these vacancies with F atoms. The decrease of recombination sites induced by high-concentration F doping and the synergistic effect between lattice Ti(3+)-F and surface Ti(3+)-F are responsible for the enhanced lifetime of electrons, the observed excellent absorption of solar light, and the photocatalytic production of H2 for these catalysts. The as-prepared F-doped composite is an ideal solar light-driven photocatalyst with great potential for applications ranging from the remediation of environmental pollution to the harnessing of solar energy for H2 production. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Selective separation and recovery of silver and copper from mixtures by photocatalysis

    NASA Astrophysics Data System (ADS)

    Ding, Mali; Zhang, Weijun; Xie, Zhaofeng; Lei, Rihua; Wang, Jianfang; Gao, Wei

    2017-07-01

    Separation and recovery of valuable metals including silver (Ag) and copper (Cu) from electronic waste mixtures are of great economic and environmental importance. Recent years, semiconductor photocatalysts have been investigated intensively for the removal of Ag from wastewater. Few studies have been carried out on the effect of pH and co-exist metal ions such as Cu on Ag. In this study, ZnO and TiO2 were applied as photocatalysts to target on the selective recovery Ag and Cu from its mixtures under UV light. The effects of pH, catalyst, ethylene-diamine tetraacetic acid (EDTA) on the Ag and Cu photo-reduction were studied. Modeling of Ag+ and Cu2+ with and without EDTA distribution together with metal precipitations was plotted against pH to understand the chemistry involved in photocatalysis. Experimental results showed that Ag+ photo-reduction was nearly completed by ZnO and TiO2 to Ag metal, while Cu2+ photo-reduction to Cu2O only occurs by ZnO in the presence of EDTA. This work illustrates that semiconductor photocatalysts are suitable for selective recovery of Ag and Cu from wastewaters.

  15. Effect of photocatalytic reduction of carbon dioxide by N-Zr co-doped nano TiO2.

    PubMed

    Zhang, Ru; Wang, Li; Kang, Zhuo; Li, Qiang; Pan, Huixian

    2017-11-01

    Modified sol-gel method was adopted to prepare TiO 2 , Zr-TiO 2 and N/Zr-TiO 2 composite catalyst. The as-synthesized photocatalysts were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Brunner- Emmet- Teller measurement and UV-Vis diffuse reflectance spectroscopy. And the photocatalytic performance toward CO 2 reduction was evaluated under ultraviolet light. The catalyst particles were demonstrated in the nanometer level size. When N and Zr are co-doped, on the one hand, Ti 4+ can be replaced by Zr 4  +, which leads to lattice distortion and inhibits electron-hole recombination. On the other hand, N enters into TiO 2 lattice gap to form O-Ti-N bond structure, and partial Ti 4+ are reduced to Ti 3+ . Compared with pristine TiO 2 , the specific surface area and the band gap of N/Zr-TiO 2 were improved and reduced, respectively. The N and Zr synergistically contribute to the obviously strengthened absorption intensity in visible region, as well as significantly improved photocatalytic activity. In the gas phase reactor, when the calcination temperature was 550°C, 0.125N/0.25Zr-TiO 2 composite performed the highest photocatalytic activity UV irradiation for 8 h, and the corresponding CH 4 yield was 11.837 µmol/g, which was 87.8% higher than that of pristine TiO 2 . For the visible light, the CH 4 yield was 9.003 µmol/g after 8 h irradiation, which was 83.9% higher than that of pristine TiO 2 .

  16. Electronic coupling in iron oxide-modified TiO2 leads to a reduced band gap and charge separation for visible light active photocatalysis.

    PubMed

    Nolan, Michael

    2011-10-28

    In recent experiments Tada et al. have shown that TiO(2) surfaces modified with iron oxide display visible light photocatalytic activity. This paper presents first principles simulations of iron oxide clusters adsorbed at the rutile TiO(2) (110) surface to elucidate the origin of the visible light photocatalytic activity of iron oxide modified TiO(2). Small iron oxide clusters adsorb at rutile (110) surface and their presence shifts the valence band so that the band gap of the composite is narrowed towards the visible, thus confirming the origin of the visible light activity of this composite material. The presence of iron oxide at the TiO(2) surface leads to charge separation, which is the origin of enhanced photocatalytic efficiency, consistent with experimental photoluminesence and photocurrent data. Surface modification of a metal oxide is thus an interesting route in the development of visible light photocatalytic materials. This journal is © the Owner Societies 2011

  17. Monte-Carlo modelling of nano-material photocatalysis: bridging photocatalytic activity and microscopic charge kinetics.

    PubMed

    Liu, Baoshun

    2016-04-28

    In photocatalysis, it is known that light intensity, organic concentration, and temperature affect the photocatalytic activity by changing the microscopic kinetics of holes and electrons. However, how the microscopic kinetics of holes and electrons relates to the photocatalytic activity was not well known. In the present research, we developed a Monte-Carlo random walking model that involved all of the charge kinetics, including the photo-generation, the recombination, the transport, and the interfacial transfer of holes and electrons, to simulate the overall photocatalytic reaction, which we called a "computer experiment" of photocatalysis. By using this model, we simulated the effect of light intensity, temperature, and organic surface coverage on the photocatalytic activity and the density of the free electrons that accumulate in the simulated system. It was seen that the increase of light intensity increases the electron density and its mobility, which increases the probability for a hole/electron to find an electron/hole for recombination, and consequently led to an apparent kinetics that the quantum yield (QY) decreases with the increase of light intensity. It was also seen that the increase of organic surface coverage could increase the rate of hole interfacial transfer and result in the decrease of the probability for an electron to recombine with a hole. Moreover, the increase of organic coverage on the nano-material surface can also increase the accumulation of electrons, which enhances the mobility for electrons to undergo interfacial transfer, and finally leads to the increase of photocatalytic activity. The simulation showed that the temperature had a more complicated effect, as it can simultaneously change the activation of electrons, the interfacial transfer of holes, and the interfacial transfer of electrons. It was shown that the interfacial transfer of holes might play a main role at low temperature, with the temperature-dependence of QY

  18. Phototoxicity of TiO2 Nanoparticles to Two Aquatic Species: Daphnia magna and Zebrafish (Danio rerio) Embryo

    EPA Science Inventory

    Ecotoxicological studies on TiO2 nanoparticles (nano-TiO2) are expanding rapidly due to their widespread use in both industrial and consumer products. However, few studies have focused on their potential phototoxicity related to the photocatalytic property of the material. In thi...

  19. Recent Advances in TiO2 -Based Nanostructured Surfaces with Controllable Wettability and Adhesion.

    PubMed

    Lai, Yuekun; Huang, Jianying; Cui, Zequn; Ge, Mingzheng; Zhang, Ke-Qin; Chen, Zhong; Chi, Lifeng

    2016-04-27

    Bioinspired surfaces with special wettability and adhesion have attracted great interest in both fundamental research and industry applications. Various kinds of special wetting surfaces have been constructed by adjusting the topographical structure and chemical composition. Here, recent progress of the artificial superhydrophobic surfaces with high contrast in solid/liquid adhesion has been reviewed, with a focus on the bioinspired construction and applications of one-dimensional (1D) TiO2-based surfaces. In addition, the significant applications related to artificial super-wetting/antiwetting TiO2-based structure surfaces with controllable adhesion are summarized, e.g., self-cleaning, friction reduction, anti-fogging/icing, microfluidic manipulation, fog/water collection, oil/water separation, anti-bioadhesion, and micro-templates for patterning. Finally, the current challenges and future prospects of this renascent and rapidly developing field, especially with regard to 1D TiO2-based surfaces with special wettability and adhesion, are proposed and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Enhanced photoelectrochemical DNA sensor based on TiO2/Au hybrid structure.

    PubMed

    Liu, Xing-Pei; Chen, Jing-Shuai; Mao, Chang-Jie; Niu, He-Lin; Song, Ji-Ming; Jin, Bao-Kang

    2018-05-23

    A novel enhanced photoelectrochemical DNA sensor, based on a TiO 2 /Au hybrid electrode structure, was developed to detect target DNA. The sensor was developed by successively modifying fluorine-tin oxide (FTO) electrodes with TiO 2 nanoparticles, gold (Au) nanoparticles, hairpin DNA (DNA1), and CdSe-COOH quantum dots (QDs), which acted as signal amplification factors. In the absence of target DNA, the incubated DNA1 hairpin and the CdSe-COOH QDs were in close contact with the TiO 2 /Au electrode surface, leading to an enhanced photocurrent intensity due to the sensitization effect. After incubation of the modified electrode with the target DNA, the hairpin DNA changed into a double helix structure, and the CdSe QDs moved away from the TiO 2 /Au electrode surface, leading to a decreased sensitization effect and photoelectrochemical signal intensity. This novel DNA sensor exhibited stable, sensitive and reproducible detection of DNA from 0.1 μM to 10 fM, with a lower detection limit of 3 fM. It provided good specificity, reproducibility, stability and is a promising strategy for the detection of a variety of other DNA targets, for early clinical diagnosis of various diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Method for simultaneous imaging of endogenous low molecular weight metabolites in mouse brain using TiO2 nanoparticles in nanoparticle-assisted laser desorption/ionization-imaging mass spectrometry.

    PubMed

    Shrivas, Kamlesh; Hayasaka, Takahiro; Sugiura, Yuki; Setou, Mitsutoshi

    2011-10-01

    We report the detection of a group of endogenous low molecular weight metabolites (LMWM) in mouse brain (80-500 Da) using TiO(2) nanoparticles (NPs) in nanoparticle-assisted laser desorption/ionization-imaging mass spectrometry (Nano-PALDI-IMS) without any washing and separation step prior to MS analysis. The identification of metabolites using TiO(2) NPs was compared with a conventional organic matrix 2,5-dihydroxybenzoic acid (DHB) where signals of 179 molecules were specific to TiO(2) NPs, 4 were specific to DHB, and 21 were common to both TiO(2) NPs and DHB. The use of TiO(2) NPs enabled the detection of a higher number of LMWM as compared to DHB and gold NPs as a matrix. This approach is a simple, inexpensive, washing, and separation free for imaging and identification of LMWM in mouse brain. We believe that the biochemical information from distinct regions of the brain using a Nano-PALDI-IMS will be helpful in elucidating the imbalances linked with diseases in biomedical samples.

  2. LC/MS/MS structure elucidation of reaction intermediates formed during the TiO2 photocatalysis of microcystin-LR

    EPA Science Inventory

    Microcystin-LR (MC-LR), a cyanotoxin and emerging drinking water contaminant, was treated with TiO(2) photocatalysts immobilized on stainless steel plates as an alternative to nanoparticles in slurry. The reaction intermediates of MC-LR were identified with mass spectrometry (MS)...

  3. The highly efficient photocatalytic and light harvesting property of Ag-TiO2 with negative nano-holes structure inspired from cicada wings.

    PubMed

    Zada, Imran; Zhang, Wang; Zheng, Wangshu; Zhu, Yuying; Zhang, Zhijian; Zhang, Jianzhong; Imtiaz, Muhammad; Abbas, Waseem; Zhang, Di

    2017-12-08

    The negative replica of biomorphic TiO 2 with nano-holes structure has been effectively fabricated directly from nano-nipple arrays structure of cicada wings by using a simple, low-cost and highly effective sol-gel ultrasonic method. The nano-holes array structure was well maintained after calcination in air at 500 °C. The Ag nanoparticles (10 nm-25 nm) were homogeneously decorated on the surface and to the side wall of nano-holes structure. It was observed that the biomorphic Ag-TiO 2 showed remarkable photocatalytic activity by degradation of methyl blue (MB) under UV-vis light irradiation. The biomorphic Ag-TiO 2 with nano-holes structure showed superior photocatalytic activity compared to the biomorphic TiO 2 and commercial Degussa P25. This high-performance photocatalytic activity of the biomorphic Ag-TiO 2 may be attributed to the nano-holes structure, localized surface plasmon resonance (LSPR) property of the Ag nanoparticles, and enhanced electron-hole separation. Moreover, the biomorphic Ag-TiO 2 showed more absorption capability in the visible wavelength range. This work provides a new insight to design such a structure which may lead to a range of novel applications.

  4. Preliminary trial on degradation of waste activated sludge and simultaneous hydrogen production in a newly-developed solar photocatalytic reactor with AgX/TiO2-coated glass tubes.

    PubMed

    Liu, Chunguang; Lei, Zhongfang; Yang, Yingnan; Zhang, Zhenya

    2013-09-15

    A solar fluidized tubular photocatalytic reactor (SFTPR) with simple and efficient light collector was developed to degrade waste activated sludge (WAS) and simultaneously produce hydrogen. The photocatalyst was a TiO2 film doped by silver and silver compounds (AgX). The synthesized photocatalyst, AgX/TiO2, exhibited higher photocatalytic activity than TiO2 (99.5% and 30.6% of methyl orange removal, respectively). The installation of light collector could increase light intensity by 26%. For WAS treatment using the SFTPR, 69.1% of chemical oxygen demand (COD) removal and 7866.7 μmol H2/l-sludge of hydrogen production were achieved after solar photocatalysis for 72 h. The SFTPR could be a promising photocatalysis reactor to effectively degrade WAS with simultaneous hydrogen production. The results can also provide a useful base and reference for the application of photocatalysis on WAS degradation in practice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. n/p-Type changeable semiconductor TiO2 prepared from NTA

    NASA Astrophysics Data System (ADS)

    Li, Qiuye; Wang, Xiaodong; Jin, Zhensheng; Yang, Dagang; Zhang, Shunli; Guo, Xinyong; Yang, Jianjun; Zhang, Zhijun

    2007-10-01

    A novel kind of nano-sized TiO2 (anatase) was obtained by high-temperature (400-700°C) dehydration of nanotube titanic acid (H2Ti2O4(OH)2, NTA). The high-temperature (400-700°C) dehydrated nanotube titanic acids (HD-NTAs) with a unique defect structure exhibited a p-type semiconductor behavior under visible-light irradiation (λ≥420 nm, E photon=2.95 eV), whereas exhibited an n-type semiconductor behavior irradiated with UV light (λ=365 nm, E photon=3.40 eV).

  6. Methylparaben removal using heterogeneous photocatalysis: effect of operational parameters and mineralization/biodegradability studies.

    PubMed

    Zúñiga-Benítez, Henry; Peñuela, Gustavo A

    2017-03-01

    Methylparaben (MePB) is an organic compound employed mainly in the manufacture of different personal care products. However, it has been recently listed as a potential endocrine disrupter chemical. Therefore, the main objective of this work was to evaluate the degradation of MePB in aqueous solutions using heterogeneous photocatalysis with TiO 2 and hydrogen peroxide. In this way, effects of pH and the initial concentrations of catalyst, H 2 O 2 , and pollutant on treatment were analyzed. A face centered, central composite design was used for determination of the influence of each parameter in the process and the conditions under which the pollutant suffers the highest rates of degradation were selected. In general, results indicate that combination TiO 2 /H 2 O 2 /light irradiation leads to ∼90 % of substrate removal after 30 min of reaction and that hydroxyl free radicals are the main specie responsible for organic matter elimination. Finally, in terms of mineralization and biodegradability, experimental results indicated that part of the organic matter was transformed into CO 2 and water and the photo-treatment promoted an increase in samples biodegradability.

  7. The effect of heat treatment on superhydrophilicity of TiO2 nano thin films

    NASA Astrophysics Data System (ADS)

    Ashkarran, A. A.; Mohammadizadeh, M. R.

    2007-11-01

    TiO2 thin films were synthesized by the sol-gel method and spin coating process. The calcination temperature was changed from 100 to 550°C. XRD patterns show increasing the content of polycrystalline anatase phase with increasing the calcination temperature. The AFM results indicate granular morphology of the films, which particle size changes from 22 to 166nm by increasing the calcination temperature. The RBS, EDX and Raman spectroscopy of the films show the ratio of Ti:O ~0.5, and diffusion of sodium ions from substrate into the layer, by increasing the calcination temperature. The UV-vis spectroscopy of the films indicates a red shift by increasing the calcination temperature. The contact angle meter experiment shows that superhydrophilicity of the films depends on the formation of anatase crystal structure and diffused sodium content from substrate to the layer. The best hydrophilicity property was observed at 450°C calcination temperature, where the film is converted to a superhydrophilic surface after 10min under 2mW/cm2 UV irradiation. Water droplet on TiO2 thin film on Si(111), Si(100), and quartz substrates is spread to smaller angles rather than glass and polycrystalline Si substrates under UV irradiation.

  8. Pure rotational spectra of TiO and TiO2 in VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Kamiński, T.; Gottlieb, C. A.; Menten, K. M.; Patel, N. A.; Young, K. H.; Brünken, S.; Müller, H. S. P.; McCarthy, M. C.; Winters, J. M.; Decin, L.

    2013-03-01

    We report the first detection of pure rotational transitions of TiO and TiO2 at (sub-)millimeter wavelengths towards the red supergiant VY CMa. A rotational temperature, Trot, of about 250 K was derived for TiO2. Although Trot was not well constrained for TiO, it is likely somewhat higher than that of TiO2. The detection of the Ti oxides confirms that they are formed in the circumstellar envelopes of cool oxygen-rich stars and may be the "seeds" of inorganic-dust formation, but alternative explanations for our observation of TiO and TiO2 in the cooler regions of the envelope cannot be ruled out at this time. The observations suggest that a significant fraction of the oxides is not converted to dust, but instead remains in the gas phase throughout the outflow. Based on observations carried out with the Submillimeter Array and IRAM Plateau de Bure Interferometer.Plateau de Bure data (FITS file) is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A113

  9. Simultaneous photodegradation of VOC mixture by TiO2 powders.

    PubMed

    Stucchi, Marta; Galli, Federico; Bianchi, Claudia L; Pirola, Carlo; Boffito, Daria C; Biasioli, Franco; Capucci, Valentino

    2018-02-01

    Volatile and semi volatile organic compounds' concentration have dramatically increased in indoor environments in recent years. UV light promotes titanium dioxide, which oxidises various molecules; however, most of the studies report the degradation of a single VOC. Here, we investigate the photo-oxidation of 17 molecules in mixture to have a realistic test of TiO 2 efficacy. We compare P25, a nanometric catalyst, and 1077, a micrometric sample, that poses less health concerns. A proton-transfer-reaction mass spectrometer measured online the concentration of all the pollutants simultaneously. Aldehydes compete for the adsorption on both the catalyst's active sites and thus they degrade 70% and 55% with P25 and 1077 respectively. Considering the single pollutant oxidation, instead, aldehydes fully oxidize. Even though benzene is recalcitrant to degradation, P25 and 1077 reduced toluene's concentration to 97% and 96% in 55 min, respectively. Acetonitrile is refractory to photocatalysis. Copyright © 2017. Published by Elsevier Ltd.

  10. Reduction of adsorbed As(V) on nano-TiO2 by sulfate-reducing bacteria.

    PubMed

    Luo, Ting; Ye, Li; Ding, Cheng; Yan, Jinlong; Jing, Chuanyong

    2017-11-15

    Reduction of surface-bound arsenate [As(V)] and subsequent release into the aqueous phase contribute to elevated As in groundwater. However, this natural process is not fully understood, especially in the presence of sulfate-reducing bacteria (SRB). Gaining mechanistic insights into solid-As(V)-SRB interactions motivated our molecular level study on the fate of nano-TiO 2 bound As(V) in the presence of Desulfovibrio vulgaris DP4, a strain of SRB, using incubation and in situ ATR-FTIR experiments. The incubation results clearly revealed the reduction of As(V), either adsorbed on nano-TiO 2 or dissolved, in the presence of SRB. In contrast, this As(V) reduction was not observed in abiotic control experiments where sulfide was used as the reductant. Moreover, the reduction was faster for surface-bound As(V) than for dissolved As(V), as evidenced by the appearance of As(III) at 45h and 75h, respectively. ATR-FTIR results provided direct evidence that the surface-bound As(V) was reduced to As(III) on TiO 2 surfaces in the presence of SRB. In addition, the As(V) desorption from nano-TiO 2 was promoted by SRB relative to abiotic sulfide, due to the competition between As(V) and bacterial phosphate groups for TiO 2 surface sites. This competition was corroborated by the ATR-FTIR analysis, which showed inner-sphere surface complex formation by bacterial phosphate groups on TiO 2 surfaces. The results from this study highlight the importance of indirect bacteria-mediated As(V) reduction and release in geochemical systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. High-resolution photoelectron spectroscopy of TiO3H2-: Probing the TiO2- + H2O dissociative adduct

    NASA Astrophysics Data System (ADS)

    DeVine, Jessalyn A.; Abou Taka, Ali; Babin, Mark C.; Weichman, Marissa L.; Hratchian, Hrant P.; Neumark, Daniel M.

    2018-06-01

    Slow electron velocity-map imaging spectroscopy of cryogenically cooled TiO3H2- anions is used to probe the simplest titania/water reaction, TiO20/- + H2O. The resultant spectra show vibrationally resolved structure assigned to detachment from the cis-dihydroxide TiO(OH)2- geometry based on density functional theory calculations, demonstrating that for the reaction of the anionic TiO2- monomer with a single water molecule, the dissociative adduct (where the water is split) is energetically preferred over a molecularly adsorbed geometry. This work represents a significant improvement in resolution over previous measurements, yielding an electron affinity of 1.2529(4) eV as well as several vibrational frequencies for neutral TiO(OH)2. The energy resolution of the current results combined with photoelectron angular distributions reveals Herzberg-Teller coupling-induced transitions to Franck-Condon forbidden vibrational levels of the neutral ground state. A comparison to the previously measured spectrum of bare TiO2- indicates that reaction with water stabilizes neutral TiO2 more than the anion, providing insight into the fundamental chemical interactions between titania and water.

  12. Comparison of photocatalysis and photolysis of malathion, isomalathion, malaoxon, and commercial malathion--products and toxicity studies.

    PubMed

    Bavcon Kralj, M; Cernigoj, U; Franko, M; Trebse, P

    2007-11-01

    Malathion, one of the most widely applied insecticides, is still used in agriculture. There are many studies regarding its degradation under different experimental conditions, but few deal with its transformation products, i.e. malaoxon and isomalathion. Thus, malathion, malaoxon, isomalathion, and Radotion (one of its over 6000 commercial forms) were studied in terms of their degradation kinetics, identification of their transformation products, their toxicity, and their degree of mineralization, during UV photolysis (lambda = 254 nm) and TiO(2) photocatalysis (lambda = 355 nm). The degradation kinetics was similar for all four starting materials. More than 75% of theoretically expected sulfur in PS and P-S groups was oxidized after 240 min of photolysis and photocatalysis. On the other hand, less than 30% of stoichiometrically predicted amounts of phosphate was detected in the photolytic experiments, but more than 80% of expected phosphate was detected after photocatalytic treatment of all four organophosphorous materials. Several transformation products were identified by mass spectra of representative gas chromatographic peaks. Oxidation and isomerization were found as the main reactions of butenedioc acid diethyl esters and their analogs. The formation of malaoxon, isomalathion or trimethyl phosphate esters correlated well with the induced toxicity (inhibition of acetylcholinesterase), which was observed in photocatalysis of malathion and Radotion, and in photolysis of malaoxon and Radotion.

  13. Study on The Application of Composed TiO2-diatomite in The Removal of Phenol in Water

    NASA Astrophysics Data System (ADS)

    Liu, S.; Li, J.

    2017-10-01

    As an environmentally friendly pollution control technology, TiO2 photocatalytic technology has a broad prospect in the field of environmental protection. In this paper, composed nano-TiO2-diatomite were prepared by depositing TiO2 nanoparticles on the surface of diatomite microparticles. The nano-TiO2/diatomite composed photocatalyst is used to remove phenol in water in a specific designed reaction box under 4 different operation factors such as different reaction time, different pollutant concentration, different UV light powers and different amount of catalytic powder. The experimental results indicate that the phenol removal percentages are influenced by the reaction time most significantly, the second is the phenol concentration, the next one is the photocatalyst amount and the UV light powers’ effect is quite limited. Tthe degradation of phenol typically slows down at the reaction time about 30 or 60 minutes. Besides that, the phenol removal kinetic removal rates were also investigated.

  14. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties.

    PubMed

    Dastjerdi, Roya; Montazer, Majid

    2010-08-01

    Textiles can provide a suitable substrate to grow micro-organisms especially at appropriate humidity and temperature in contact to human body. Recently, increasing public concern about hygiene has been driving many investigations for anti-microbial modification of textiles. However, using many anti-microbial agents has been avoided because of their possible harmful or toxic effects. Application of inorganic nano-particles and their nano-composites would be a good alternative. This review paper has focused on the properties and applications of inorganic nano-structured materials with good anti-microbial activity potential for textile modification. The discussed nano-structured anti-microbial agents include TiO(2) nano-particles, metallic and non-metallic TiO(2) nano-composites, titania nanotubes (TNTs), silver nano-particles, silver-based nano-structured materials, gold nano-particles, zinc oxide nano-particles and nano-rods, copper nano-particles, carbon nanotubes (CNTs), nano-clay and its modified forms, gallium, liposomes loaded nano-particles, metallic and inorganic dendrimers nano-composite, nano-capsules and cyclodextrins containing nano-particles. This review is also concerned with the application methods for the modification of textiles using nano-structured materials. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Synthesis of Nano-Ilmenite (FeTiO3) doped TiO2/Ti Electrode for Photoelectrocatalytic System

    NASA Astrophysics Data System (ADS)

    Hikmawati; Watoni, A. H.; Wibowo, D.; Maulidiyah; Nurdin, M.

    2017-11-01

    Ilmenite (FeTiO3) doped on Ti and TiO2/Ti electrodes were successfully prepared by using the sol-gel method. The structure, morphology, and optical properties of FeTiO3 are characterized by XRD, UV-Vis DRS, and SEM. The FeTiO3 and TiO2 greatly affect the photoelectrocatalysis performance characterized by Linear Sweep Voltammetry (LSV) and Cyclic Voltammetry (CV). The characterization result shows a band gap of FeTiO3 is 2.94 eV. XRD data showed that FeTiO3 formed at 2θ were 35.1° (110), 49.9° (024), and 61.2° (214). The morphology of FeTiO3/Ti and FeTiO3.TiO2/Ti using SEM shows that the formation of FeTiO3 thin layer signifies the Liquid Phase Deposition method effectively in the coating process. Photoelectrochemical (PEC) test showed that FeTiO3.TiO2/Ti electrode was highly oxidation responsive under visible light compared to the FeTiO3/Ti electrodes i.e. 7.87×10-4 A and 9.87×10-5 A. Degradation test of FeTiO3/Ti and FeTiO3.TiO2/Ti electrodes on titan yellow showed that the percentages of degradation with photoelectrocatalysis at 0.5 mg/L were 41% and 43%, respectively.

  16. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    PubMed Central

    Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P<0.05). No significant differences were found in cell viability percentages between the two groups on the other days (P>0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001). L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive. PMID:24578816

  17. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles.

    PubMed

    Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco's Modified Eagle's Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P<0.05). No significant differences were found in cell viability percentages between the two groups on the other days (P>0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001). L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.

  18. Structural, Electrical and Optical Properties of TiO2 Thin Film Deposited on the Nano Porous Silicon Template

    NASA Astrophysics Data System (ADS)

    Bahar, Mahmood; Dermani, Ensieh Khalili

    The porous silicon (PSi), which is produced by the electrochemical etching, has been used as a substrate for the growth of the titanium oxide (TiO2) thin films. By using the EBPVD method, TiO2 thin films have been deposited on the surface of the PSi substrate. TiO2/PSi layers were annealed at the temperature of 400∘C, 500∘C and 600∘C for different tests. The morphology and structures of layers were investigated by the scanning electron microscopy (SEM) and X-ray diffraction (XRD). The current-voltage characteristic curves of samples and the ideality factor of heterojunction were studied. The results showed that the electrical properties of the samples change with increase in the annealing temperature. The optical properties of the prepared samples were investigated by using UV-Vis and photoluminescence (PL) spectroscopy. Green light emission of the PSi combined with the blue light and violet-blue emission obtained from the TiO2/PSi PL spectra. The results showed that the optical band gap energy of the PSi has increased from 1.86eV to 2.93eV due to the deposition of TiO2 thin film.

  19. Synthesis of TiO2 by solution combustion technique by mixed fuel approach for wLED applications

    NASA Astrophysics Data System (ADS)

    Venkatesha Babu K., R.; Renuka C., G.

    2018-05-01

    Synthesis of Ce3+ (0.25-0.75 mol %) doped TiO2 nanophosphors was done by solution combustion route using combination of fuels. The structural characterization of the nanophosphor was performed by PXRD, SEM and TEM. The estimated crystallite sizes are in the nano meter scale range. The Eg of pure and doped TiO2 were 3.10 and 3.23 eV respectively were estimated from DRS data. The CIE and CCT data reveals that the nanophosphor emits pale green and is useful for wLED at a temperature 4474K.

  20. A high efficiency microfluidic-based photocatalytic microreactor using electrospun nanofibrous TiO2 as a photocatalyst.

    PubMed

    Meng, Zhaoxu; Zhang, Xu; Qin, Jianhua

    2013-06-07

    We present a novel microfluidic-based photocatalytic microreactor by using electrospun nanofibrous TiO2 as a photocatalyst for the first time. The microreactor exhibits not only a simple fabrication process, but also much higher photocatalytic activity than that achieved by a TiO2 film microreactor.

  1. Optimizing the photochemical conversion of UV-vis light of silver-nanoparticles decorated TiO2 nanotubes based photoanodes

    NASA Astrophysics Data System (ADS)

    Gaidi, M.; Trabelsi, K.; Hajjaji, A.; Chourou, M. L.; Alhazaa, A. N.; Bessais, B.; El Khakani, M. A.

    2018-01-01

    Homogeneous decoration of TiO2 nanotubes (NTs) by Ag metallic nanoparticles (NPs) was carried out by a relatively simple photoreduction process. This Ag-NPs decoration was found to improve the photoconversion efficiency of the TiO2-NTs based photoanodes. The x-ray photoelectron spectroscopy and x-ray diffraction analyses confirmed that all the Ag-NPs are metallic and the underlying TiO2-NTs crystallize in the anatase phase after their annealing at 400 °C, respectively. Transmission electron microscopy observations have confirmed the effective decoration of the TiO2-NTs’ surface by Ag-NPs, and allowed to measure the average Ag-NPs size, which was found to increase linearly from (4 ± 2) nm to (16 ± 4) nm when the photoreduction time is increased from 5 to 20 min. The diffuse reflectivity of the Ag-NPs decorated TiO2-NTs was found to decrease significantly as compared to the undecorated TiO2-NTs. Interestingly, the Ag-NPs decorated TiO2-NTs exhibited a significantly enhanced photochemical response, under visible radiation, with regards to the undecorated NTs. This enhancement was found to reach its maximum for the TiO2-NTs decorated with Ag-NPs having the optimal average diameter of ˜8.5 nm. The maximum photoconversion efficiency of Ag-NPs decorated TiO2-NTs was about two times greater than for the undecorated ones. This improved photo-electro-chemical response is believed to be associated with the additional absorption of visible light of Ag-NPs through the localized surface plasmon resonance phenomenon. This interpretation is supported by the fact that the photoluminescence intensity of the Ag-NPs decorated TiO2-NTs was found to decrease significantly as compared to undecorated NTs, due to charge carriers trapping in the Ag NPs. This demonstrates that Ag-NPs decoration promotes photogenerated charges separation in the TiO2-NTs, increasing thereby their capacity for current photogeneration. The surface decoration of TiO2 NTs by noble metals NPs is expected to

  2. Optimizing the photochemical conversion of UV-vis light of silver-nanoparticles decorated TiO2 nanotubes based photoanodes.

    PubMed

    Gaidi, M; Trabelsi, K; Hajjaji, A; Chourou, M L; Alhazaa, A N; Bessais, B; El Khakani, M A

    2018-01-05

    Homogeneous decoration of TiO 2 nanotubes (NTs) by Ag metallic nanoparticles (NPs) was carried out by a relatively simple photoreduction process. This Ag-NPs decoration was found to improve the photoconversion efficiency of the TiO 2 -NTs based photoanodes. The x-ray photoelectron spectroscopy and x-ray diffraction analyses confirmed that all the Ag-NPs are metallic and the underlying TiO 2 -NTs crystallize in the anatase phase after their annealing at 400 °C, respectively. Transmission electron microscopy observations have confirmed the effective decoration of the TiO 2 -NTs' surface by Ag-NPs, and allowed to measure the average Ag-NPs size, which was found to increase linearly from (4 ± 2) nm to (16 ± 4) nm when the photoreduction time is increased from 5 to 20 min. The diffuse reflectivity of the Ag-NPs decorated TiO 2 -NTs was found to decrease significantly as compared to the undecorated TiO 2 -NTs. Interestingly, the Ag-NPs decorated TiO 2 -NTs exhibited a significantly enhanced photochemical response, under visible radiation, with regards to the undecorated NTs. This enhancement was found to reach its maximum for the TiO 2 -NTs decorated with Ag-NPs having the optimal average diameter of ∼8.5 nm. The maximum photoconversion efficiency of Ag-NPs decorated TiO 2 -NTs was about two times greater than for the undecorated ones. This improved photo-electro-chemical response is believed to be associated with the additional absorption of visible light of Ag-NPs through the localized surface plasmon resonance phenomenon. This interpretation is supported by the fact that the photoluminescence intensity of the Ag-NPs decorated TiO 2 -NTs was found to decrease significantly as compared to undecorated NTs, due to charge carriers trapping in the Ag NPs. This demonstrates that Ag-NPs decoration promotes photogenerated charges separation in the TiO 2 -NTs, increasing thereby their capacity for current photogeneration. The surface decoration of TiO 2 NTs by noble

  3. Photocatalytic TiO2 nanoparticles enhanced polymer antimicrobial coating

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojin; Yang, Zhendi; Tay, See Leng; Gao, Wei

    2014-01-01

    Copper (Cu) containing coatings can provide sustainable protection against microbial contamination. However, metallic Cu coatings have not been widely used due to the relatively high cost, poor corrosion resistance, and low compatibility with non-metal substrates. Titanium dioxide (TiO2) possesses antibacterial functions by its photocatalytic properties which can destroy bacteria or suppress their reproduction. TiO2 also has the function of improving the mechanical properties through particle dispersion strengthening. We have recently developed an innovative polymer based coating system containing fine particles of Cu and TiO2 nanoparticles. These polymer based coatings simultaneously display excellent antimicrobial and good mechanical properties. The results showed that the addition of TiO2 has improved the antimicrobial property under sunlight, which provides extended applications in outdoor environment. The elimination of 106 bacterial by contacting the coatings without TiO2 needs 5 h, while contacting with the Cu/TiO2- 1 wt.% TiO2 took only 2 h to kill the same amount of bacteria. The coatings also presented enhanced hardness and wear resistance after adding TiO2. The width of wear track decreased from 270 μm of the Cu-polymer coating to 206 μm of Cu/TiO2-polymer coatings with 10 wt.% TiO2. Synchrotron Infrared Microscopy was used to in-situ and in-vivo study the bacteria killing process at the molecular level. The real-time chemical images of bacterial activities showed that the bacterial cell membranes were damaged by the Cu and TiO2 containing coatings

  4. Band edge movement and structural modifications in transition metal doped TiO2 nanocrystals for the application of DSSC

    NASA Astrophysics Data System (ADS)

    Patle, L. B.; Huse, V. R.; Chaudhari, A. L.

    2017-10-01

    Nanocrystalline undoped and transition metal ion doped (TM:Cu2+, Mn2+ and Fe3+) TiO2 nanoparticles, with 1 mol% were synthesized by a simple and cost effective modified co-precipitation method at room temperature and were successfully used as photoanode for dye sensitized solar cell (DSSC). The effect of transition metal ions into TiO2 nano crystalline powder has been systematically investigated using x-ray diffraction (XRD), UV-Vis spectroscope, scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive x-ray spectroscopy (EDX). The results of XRD confirm nanocrystalline anatase tetragonal structure of prepared undoped and TM doped TiO2 semiconductor. The influence of doping on band edge movement has been estimated using UV-visible spectroscopy. The SEM results indicate that microscopic effect of doping on morphology of the TiO2. The peaks of EDX signify incorporation of transition metal cations into TiO2 lattice. The effect of doping on flat band potential was estimated using interpolation on Mott-Schottky plot. The performances of DSSCs of undoped and doped TiO2 photoelectrodes were investigated under light illumination. In comparison with undoped and (Cu2+, Fe3+) doped TiO2 photoanodes we found that incorporation of Mn2+ into TiO2 exhibits improvement in photoconversion efficiency (η). There is increase in photoconversion efficiency of DSSCs with Mn2+ doped TiO2 by 6% as compared to that of undoped TiO2 photoanode.

  5. Photocatalytic and adsorption properties of TiO2-pillared montmorillonite obtained by hydrothermally activated intercalation of titanium polyhydroxo complexes

    PubMed Central

    Ovchinnikov, Nikolay L; Karasev, Nikita S; Kochkina, Nataliya E; Agafonov, Alexander V; Vinogradov, Alexandr V

    2018-01-01

    We report on a new approach for the synthesis of TiO2-pillared montmorillonite, where the pillars exhibit a high degree of crystallinity (nanocrystals) representing a mixture of anatase and rutile phases. The structures exhibit improved adsorption and photocatalytic activity as a result of hydrothermally activated intercalation of titanium polyhydroxo complexes (i.e., TiCl4 hydrolysis products) in a solution with a concentration close to the sol formation limit. The materials, produced at various annealing temperatures from the intercalated samples, were characterized by infrared spectroscopy, differential scanning calorimetry (DSC)/thermogravimetric analysis (TGA), X-ray diffraction, dynamic light scattering (DLS) measurements, and liquefied nitrogen adsorption/desorption. The photocatalytic activity of the TiO2-pillared materials was studied using the degradation of anionic (methyl orange, MO) and cationic (rhodamine B, RhB) dyes in water under UV irradiation. The combined effect of adsorption and photocatalysis resulted in removal of 100% MO and 97.5% RhB (with an initial concentration of 40 mg/L and a photocatalyst-sorbent concentration of 1 g/L) in about 100 minutes. The produced TiO2-pillared montmorillonite showed increased photocatalytic activity as compared to the commercially available photocatalyst Degussa P25. PMID:29515950

  6. Visible light photoactivity of Polypropylene coated Nano-TiO2 for dyes degradation in water

    PubMed Central

    Giovannetti, R.; Amato, C. A. D’; Zannotti, M.; Rommozzi, E.; Gunnella, R.; Minicucci, M.; Di Cicco, A.

    2015-01-01

    The use of Polypropylene as support material for nano-TiO2 photocatalyst in the photodegradation of Alizarin Red S in water solutions under the action of visible light was investigated. The optimization of TiO2 pastes preparation using two commercial TiO2, Aeroxide P-25 and Anatase, was performed and a green low-cost dip-coating procedure was developed. Scanning electron microscopy, Atomic Force Microscopy and X-Ray Diffraction analysis were used in order to obtain morphological and structural information of as-prepared TiO2 on support material. Equilibrium and kinetics aspects in the adsorption and successive photodegradation of Alizarin Red S, as reference dye, are described using polypropylene-TiO2 films in the Visible/TiO2/water reactor showing efficient dyes degradation. PMID:26627118

  7. Development of DNA biosensor based on TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Nadzirah, Sh.; Hashim, U.; Rusop, M.

    2018-05-01

    A novel technique of DNA hybridization on the TiO2 nanoparticles film was developed by dropping a single droplet of target DNA onto the surface of TiO2 for the study of various concentrations of target DNA. The surface of TiO2 nanoparticle film was functionalized with APTES and covalently immobilized with 1 µM probe DNA on the silanized TiO2 nanoparticles surface. The effect of silanization, immobilization and hybridization were quantitatively measured by the output current signal obtained using a picoammeter. The 1 µM target DNA was found to be the most effective target towards the 1 µM probe DNA as the output current signal was within range; while the output current signal of the 10 µM target DNA was observed to beyond the range of the probe DNA control due to the excessive concentration as compared to the probe DNA. This approach has several advantages such as rapid, simple, low cost, and sensitive current signal during detection of different target DNA concentrations.

  8. Niobium Doping Effects on TiO2 Mesoscopic Electron Transport Layer-Based Perovskite Solar Cells.

    PubMed

    Kim, Dong Hoe; Han, Gill Sang; Seong, Won Mo; Lee, Jin-Wook; Kim, Byeong Jo; Park, Nam-Gyu; Hong, Kug Sun; Lee, Sangwook; Jung, Hyun Suk

    2015-07-20

    Perovskite solar cells (PSCs) are the most promising candidates as next-generation solar energy conversion systems. To design a highly efficient PSC, understanding electronic properties of mesoporous metal oxides is essential. Herein, we explore the effect of Nb doping of TiO2 on electronic structure and photovoltaic properties of PSCs. Light Nb doping (0.5 and 1.0 at %) increased the optical band gap slightly, but heavy doping (5.0 at %) distinctively decreased it. The relative Fermi level position of the conduction band is similar for the lightly Nb-doped TiO2 (NTO) and the undoped TiO2 whereas that of the heavy doped NTO decreased by as much as ∼0.3 eV. The lightly doped NTO-based PSCs exhibit 10 % higher efficiency than PSCs based on undoped TiO2 (from 12.2 % to 13.4 %) and 52 % higher than the PSCs utilizing heavy doped NTO (from 8.8 % to 13.4 %), which is attributed to fast electron injection/transport and preserved electron lifetime, verified by transient photocurrent decay and impedance studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effect of Coadsorbed Water on the Photodecomposition of Acetone on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.

    2008-06-10

    The influence of coadsorbed water on the photodecomposition of acetone on TiO2 was examined using temperature programmed desorption (TPD) and the rutile TiO2(110) surface as a model photocatalyst. Of the two major influences ascribed to water in the heterogeneous photocatalysis literature (promotion via OH radical supply and inhibition due to site blocking), only the negative influence of water was observed. As long as the total water and acetone coverage was maintained well below the first layer saturation coverage (‘1 ML’), little inhibition of acetone photodecomposition was observed. However, as the total water+acetone coverage exceeded 1 ML, acetone was preferentially displacedmore » from the first layer to physisorbed states by water and the extent of acetone photodecomposition attenuated. The displacement originated from water compressing acetone into high coverage regions where increased acetone-acetone repulsions caused displacement from the first layer. The immediate product of acetone photodecomposition was adsorbed acetate, which occupies twice as many surface sites per molecule as compared to acetone. Since the acetate intermediate was more stable on the TiO2(110) surface than either water or acetone (as gauged by TPD) and since its photodecomposition rate was less than that of acetone, additional surface sites were not opened up during acetone photodecomposition for previously displaced acetone molecules to re-enter the first layer. Results in this study suggest that increased molecular-level repulsions between organic molecules brought about by increased water coverage are as influential in the inhibiting effect of water on photooxidation rates as are water-organic repulsions.« less

  10. One pot synthesis of nanosized anion doped TiO2: Effect of irradiation of sound waves on surface morphology and optical properties

    NASA Astrophysics Data System (ADS)

    Sharotri, Nidhi; Sud, Dhiraj

    2015-08-01

    Commercialization of AOP's for remediation of pollutants from environmental matrix required the process to be operated by solar light. Semiconductor TiO2 has emerged as an effective and preferred photocatalyst in the field of environmental photocatalysis due to its; (i) biological and chemical inertness (ii) resistance to chemical and photo corrosion, (iii) can absorb natural UV light due to appropriate energetic separation between its valence and conduction band. However, unfortunately the optical band gap of TiO2 (3.0-3.23 eV) with absorption cut off ˜ 380 nm, enables it to harness only a small fraction (˜ 5%) of the entire solar spectrum. One of the current areas of research is modification of TiO2 photocatalyst. In present paper one pot greener synthesis from titanium isopropoxide and hydroxylamine hydrochloride has been used as titanium and nitrogen precursor under ultrasonic waves. The as synthesized TiO2 nanomaterials were dried at 100°C and further calcinated at different temperatures. The effect of reaction parameters such as ultrasonication time on the yield, surface morphology, spectroscopic data and optical properties was also investigated. The results confirm that the anatase phase is a main phase with a crystallite size of 35-77 nm and the calculated band gap of nanomaterials varies from 2.10-3.1 eV.

  11. Microwave absorption properties of polypyrrole-SrFe12O19-TiO2-epoxy resin nanocomposites: Optimization using response surface methodology

    NASA Astrophysics Data System (ADS)

    Seyed Dorraji, M. S.; Rasoulifard, M. H.; Amani-Ghadim, A. R.; Khodabandeloo, M. H.; Felekari, M.; Khoshrou, M. R.; hajimiri, I.

    2016-10-01

    At a few works are discussed about formation of heterogeneous composites with different distribution of particle shape and size that are used for electromagnetic absorption purposes. In this study a novel heterogeneous nanocpmposites is investigated. The nanocomposite has been successfully prepared based on epoxy resin including various nano-metal oxides (TiO2, SrFe12O19) and polypyrrole (PPy) by sol-gel and the solution chemistry method, respectively. The performance of prepared nanocomposite in absorption of microwave in X-band range was investigated and transmission line method by X-band waveguide straight was used to measure EM parameters of nanocomposites. The Response surface methodology (RSM) with central composite design (CCD) was utilized to study the effects of the wt.% TiO2 in SrFe12O19, wt.% Tio2-SrFe12O19 in PPy and wt.% TiO2-SrFe12O19-PPy in epoxy resin, on the microwave absorption properties with the absorber thickness of only 2 mm. The proposed quadratic model was in accordance with the experimental results with correlation coefficient of 96.5%. The optimum condition for maximum microwave absorption efficiency were wt.% TiO2 in SrFe12O19 of 70, wt.% TiO2-SrFe12O19 in PPy of 10 and wt.% TiO2-SrFe12O19-PPy in epoxy of 25. The sample prepared in optimal conditions indicated reflection loss of -15 dB corresponding to 97% absorption, at the range of 9.2-10.8 GHz.

  12. Removal of Hazardous Pollutants from Wastewaters: Applications of TiO 2 -SiO 2 Mixed Oxide Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasalingam, Shivatharsiny; Peng, Rui; Koodali, Ranjit T.

    The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP) have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the application ofmore » TiO 2 -SiO 2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.« less

  13. Removal of Hazardous Pollutants from Wastewaters: Applications of TiO 2 -SiO 2 Mixed Oxide Materials

    DOE PAGES

    Rasalingam, Shivatharsiny; Peng, Rui; Koodali, Ranjit T.

    2014-01-01

    The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP) have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the application ofmore » TiO 2 -SiO 2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.« less

  14. Wire-shaped perovskite solar cell based on TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyan; Kulkarni, Sneha A.; Li, Zhen; Xu, Wenjing; Batabyal, Sudip K.; Zhang, Sam; Cao, Anyuan; Wong, Lydia Helena

    2016-05-01

    In this work, a wire-shaped perovskite solar cell based on TiO2 nanotube (TNT) arrays is demonstrated for the first time by integrating a perovskite absorber on TNT-coated Ti wire. Anodization was adopted for the conformal growth of TNTs on Ti wire, together with the simultaneous formation of a compact TiO2 layer. A sequential step dipping process is employed to produce a uniform and compact perovskite layer on top of TNTs with conformal coverage as the efficient light absorber. Transparent carbon nanotube film is wrapped around Ti wire as the hole collector and counter electrode. The integrated perovskite solar cell wire by facile fabrication approaches shows a promising future in portable and wearable textile electronics.

  15. S180 cell growth on low ion energy plasma treated TiO 2 thin films

    NASA Astrophysics Data System (ADS)

    Dhayal, Marshal; Cho, Su-In; Moon, Jun Young; Cho, Su-Jin; Zykova, Anna

    2008-03-01

    X-ray photoelectron spectroscopy (XPS) was used to characterise the effects of low energy (<2 eV) argon ion plasma surface modification of TiO 2 thin films deposited by radio frequency (RF) magnetron sputter system. The low energy argon ion plasma surface modification of TiO 2 in a two-stage hybrid system had increased the proportion of surface states of TiO 2 as Ti 3+. The proportion of carbon atoms as alcohol/ether (C sbnd OX) was decreased with increase the RF power and carbon atoms as carbonyl (C dbnd O) functionality had increased for low RF power treatment. The proportion of C( dbnd O)OX functionality at the surface was decreased at low power and further increase in power has showed an increase in its relive proportion at the surface. The growth of S180 cells was observed and it seems that cells are uniformly spreads on tissue culture polystyrene surface and untreated TiO 2 surfaces whereas small-localised cell free area can be seen on plasma treated TiO 2 surfaces which may be due to decrease in C( dbnd O)OX, increase in C dbnd O and active sites at the surface. A relatively large variation in the surface functionalities with no change in the surface roughness was achieved by different RF plasma treatments of TiO 2 surface whereas no significant change in S180 cell growth with different plasma treatments. This may be because cell growth on TiO 2 was mainly influenced by nano-surface characteristics of oxide films rather than surface chemistry.

  16. Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations.

    PubMed

    Prieto-Rodriguez, L; Miralles-Cuevas, S; Oller, I; Agüera, A; Li Puma, G; Malato, S

    2012-04-15

    The optimal photocatalyst concentration for industrial wastewater treatment in current photoreactor designs is several hundreds of milligrams per liter. However, the elimination of emerging contaminants (ECs), which are present at extremely low concentrations in waste water treatment plants (WWTP) effluents might be accomplished at much lower catalyst (TiO(2)) concentrations. One of the main drawbacks of reducing catalyst loading below the optimum is the loss of useful photons which instead are transmitted through the TiO(2) suspension without being absorbed by the catalyst. Accordingly, in this work, laboratory and solar pilot-scale experiments were performed with real WWTP effluents to evaluate the kinetics of photocatalytic degradation of 52 emerging contaminants under realistic (ppb) concentrations. The analysis of the samples was accomplished by solid phase extraction (SPE) followed by liquid chromatography-mass spectrometry (LC-MS). In view of the results, low concentrations of TiO(2) of the order of tens of milligrams per liter were found to be insufficient for the degradation of the ECs in photoreactors with a short light-path length (29 cm). However, it was established that solar reactors of diameters of several hundreds of millimetres could be used for the efficient removal of ECs from WWTP effluents. The results presented show a general methodology for selecting the most efficient reactor diameter on the basis of the desired catalyst concentration. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. An introduction to photocatalysis through methylene blue photodegradation

    NASA Astrophysics Data System (ADS)

    Petit, Matthieu; Michez, Lisa; Raimundo, Jean-Manuel; Malinowski, Tuhiti; Dumas, Philippe

    2016-11-01

    We described a simple experimental set-up for lab work on the photocatalytic degradation of methylene blue by TiO2 nanoparticles. The photocatalysis process can be used for many applications. Treatments for diluted wastewater industries, air purifying in underground car parks, and preventing fouling on glass surfaces, are some of the potential applications of this phenomenon. The described experiment is easy to perform and the interpretation can be easily adapted to different levels of students, from high school students demonstrating their interest in sustainable development, to students obtaining a Masters in science departments who want to propose a full explanation for all phenomena of the photocatalytic process. Starting with a description of the experimental set-up, we analysed the photocatalyst nanoparticles and applied the Langmuir-Hinshelwood model to our experimental data. Finally we briefly discussed the respective energetic levels of the photocatalyst semiconductor and methylene blue.

  18. Solar physical vapor deposition preparation and microstructural characterization of TiO2 based nanophases for dye-sensitized solar cell applications.

    PubMed

    Negrea, Denis; Ducu, Catalin; Moga, Sorin; Malinovschi, Viorel; Monty, Claude J A; Vasile, Bogdan; Dorobantu, Dorel; Enachescu, Marian

    2012-11-01

    Titanium dioxide exists in three crystalline phases: anatase, rutile and brookite. Although rutile is thermodynamically more stable, anatase is considered as the most favorable phase for photocatalysis and solar energy conversion. Recent studies have shown a significant improvement of light harvesting and overall solar conversion efficiency of anatase nanoparticles in dye-sensitized solar cells (DSSCs) when using a mixture of anatase and rutile phases (10-15% rutile). TiO2 nanopowders have been prepared by a solar physical vapor deposition process (SPVD). This method has been developed in Odeillo-Font Romeu France using "heliotron" solar reactors working under concentrated sunlight in 2 kW solar furnaces. By controlling reactor's atmosphere type (air/argon) and gas pressure, several types of anatase/rutile nanophases have been obtained with slightly different microstructural properties and morphological characteristics. X-ray diffraction analyses (XRD) were performed on precursor and on the SPVD obtained nanopowders. Information concerning their phase composition and coherence diffraction domain (crystallites size and strain) was obtained. Nanopowders morphology has been studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  19. Removing volatile organic compounds in cooking fume by nano-sized TiO2 photocatalytic reaction combined with ozone oxidation technique.

    PubMed

    Li, Yu-Hua; Cheng, Su-Wen; Yuan, Chung-Shin; Lai, Tzu-Fan; Hung, Chung-Hsuang

    2018-06-05

    Chinese cooking fume is one of the sources of volatile organic compounds (VOCs) in the air. An innovative control technology combining photocatalytic degradation and ozone oxidation (UV/TiO 2 +O 3 ) was developed to decompose VOCs in the cooking fume. Fiberglass filter (FGF) coated with TiO 2 was prepared by an impregnation procedure. A continuous-flow reaction system was self-designed by combining photocatalysis with advanced ozone oxidation technique. By passing the simulated cooking fume through the FGF, the VOC decomposition efficiency in the cooking fume could be increased by about 10%. The decomposition efficiency of VOCs in the cooking fume increased and then decreased with the inlet VOC concentration. A maximum VOC decomposition efficiency of 64% was obtained at 100 ppm. Similar trend was observed for reaction temperature with the VOC decomposition efficiencies ranging from 64 to 68%. Moreover, inlet ozone concentration had a positive effect on the decomposition of VOCs in the cooking fume for inlet ozone≤1000 ppm and leveled off for inlet ozone>1000 ppm. 34% of VOC decomposition efficiency was achieved solely by ozone oxidation with or without near-UV irradiation. A maximum of 75% and 94% VOC decomposition efficiency could be achieved by O 3 +UV/TiO 2 and UV/TiO 2 +O 3 techniques, respectively. The maximum decomposition efficiencies of VOCs decreased to 79% for using UV/TiO 2 +O 3 technique with adding water in the oil fume. Comparing the chromatographical species of VOCs in the oil fume before and after the decomposition of VOCs by using UV/TiO 2 +O 3 technique, we found that both TVOC and VOC species in the oil fume were effectively decomposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Synergistic effects of TiO2 and Cu2O in UV/TiO2/zeolite-based systems on photodegradation of bisphenol A.

    PubMed

    Kuo, Chao-Yin; Wu, Chung-Hsin; Lin, Han-Yu

    2014-08-01

    In this study, TiO2/zeolite (TZ)-based composite was utilized to degrade bisphenol A (BPA) under ultraviolet (UV) irradiation. The effects of the TiO2 and Cu2O doses in TZ and Cu2O/TiO2/zeolite (CTZ) on the rate of BPA removal were identified, respectively. The surface area of TZ declined as the TiO2 loading increased. The photodegradation rate (k) of BPA in the TZ and CTZ systems fitted pseudo-first-order kinetics. Under UV (365 nm) irradiation, the k values of TiO2 (20%)/zeolite (80%), TiO2 (40%)/zeolite (60%), TiO2 (60%)/zeolite (40%), and TiO2 (80%)/zeolite (20%) were 0.51, 0.55, 0.97, and 0.91 h-1, respectively. In the UV (365nm)/TiO2 (60%)/zeolite (40%) system, the k values of CTZ with 1%, 5%, 10%, 20%, and 30% Cu2O added were 1.50, 1.04, 1.15, 1.88, and 0.47h-1, respectively. The photocatalytic activity of TZ was enhanced by adding Cu2O. The optimal dosage of TiO2 in the TZ system was 60% and that of Cu20 in the CTZ system was 20%. p-Hydroxybenzaldehyde (p-HBA), p-hydroxyacetophenone (p-HAP), p-hydroxybenzoic acid (p-HBA acid) and hydroquinone (HQ) were intermediates ofBPA photodegradation in the UV/TZ system and the rates of degradation followed the order HQ > p - HBA acid > BPA > p - HAP > p - HBA.

  1. Influence of Au and TiO2 structures on hydrogen dissociation over TiO2/Au(100)

    NASA Astrophysics Data System (ADS)

    Nakamura, I.; Mantoku, H.; Furukawa, T.; Takahashi, A.; Fujitani, T.

    2012-11-01

    We performed H2-D2 exchange reactions over TiOx/Au(100) and compared the observed reaction kinetics with those reported for TiOx/Au(111) in order to clarify the influence of the Au and TiO2 structures on dissociation of H2 molecules. Low energy electron diffraction observations showed that the TiO2 produced on Au(100) was disordered, in contrast to the comparatively ordered TiO2 structure formed on Au(111). The activation energies and the turnover frequencies for HD formation over TiO2/Au(100) agreed well with those for TiO2/Au(111), clearly indicating that the hydrogen dissociation sites created over TiO2/Au(100) were the perimeter interface between stoichiometric TiO2 and Au, as was previously concluded for TiO2/Au(111). We concluded that the creation of active sites for hydrogen dissociation was independent of the Au and TiO2 structures consisting perimeter interface, and that local bonds that formed between Au and O atoms of stoichiometric TiO2 were essential for the creation of active sites.

  2. Mechanical characterization of thin TiO2 films by means of microelectromechanical systems-based cantilevers

    NASA Astrophysics Data System (ADS)

    Adami, A.; Decarli, M.; Bartali, R.; Micheli, V.; Laidani, N.; Lorenzelli, L.

    2010-01-01

    The measurement of mechanical parameters by means of microcantilever structures offers a reliable and accurate alternative to traditional methods, especially when dealing with thin films, which are extensively used in microfabrication technology and nanotechnology. In this work, microelectromechanical systems (MEMS)-based piezoresistive cantilevers were realized and used for the determination of Young's modulus and residual stress of thin titanium dioxide (TiO2) deposited by sputtering from a TiO2 target using a rf plasma discharge. Films were deposited at different thicknesses, ranging from a few to a hundred nanometers. Dedicated silicon microcantilevers were designed through an optimization of geometrical parameters with the development of analytical as well as numerical models. Young's modulus and residual stress of sputtered TiO2 films were assessed by using both mechanical characterization based on scanning profilometers and piezoresistive sensing elements integrated in the silicon cantilevers. Results of MEMS-based characterization were combined with the tribological and morphological properties measured by microscratch test and x-ray diffraction analysis.

  3. Comparision of photocatalysis and photolysis processes for arsenic oxidation in water.

    PubMed

    Fontana, Klaiani B; Lenzi, Giane G; Seára, Eriton C R; Chaves, Eduardo S

    2018-04-30

    The oxidation of As(III) to As(V) in aqueous solution was evaluated using heterogeneous photocatalysis and photolysis. The influence of TiO 2 as catalyst in different crystalline (rutile, anatase) and commercial forms was evaluated in a batch reactor and an insignificant difference was observed between them. The process by photocatalysis reached up to 97% As(III) oxidation and no significant difference was observed comparing to results obtained by photolysis. The photolysis experiments (UV radiation only), also carried out in a batch system, showed a high oxidation rate of As(III) (90% in 20min). The influence of different matrices (well water, river water and public water supply) were evaluated. Additionally, the effect of As(V) concentration, generated during the oxidation process, was studied. Continuous photolysis experiments using only UV radiation were performed, resulting in a high As(III) oxidation rate. Using a flow rate of 5mLmin -1 and an initial concentration of As(III) 200µgL -1 , gave an oxidation percentage of As(III) of up to 72%, showing a simple and economical alternative to the oxidation step of As(III) to As(V) in the treatment of water contaminated with arsenic. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array

    NASA Astrophysics Data System (ADS)

    Lv, Zhibin; Yu, Jiefeng; Wu, Hongwei; Shang, Jian; Wang, Dan; Hou, Shaocong; Fu, Yongping; Wu, Kai; Zou, Dechun

    2012-02-01

    A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies.A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11532h

  5. Anti-flammable vinyl ester resin nano-composite with nano-titania

    NASA Astrophysics Data System (ADS)

    Das, Rajib

    Anti-flammable material is a common expectation for any industry and household applications to protect the material from fire accident. Polymer composites also play a significant role in preparing anti flammable materials. Vinyl ester resins (VERs) are thermosetting resins that have excellent mechanical and thermal properties of epoxy resins and Nanotitania is an inexpensive, nontoxic and biocompatible inorganic material. In this paper to investigate the flame retardency of polymer nanocomposites VER is used as polymer matrix and TiO2 is used as inorganic nanofiller.3-[2-(2-aminoethylamino) ethylamino]propyl-trimethoxysilane (TATMS), a kind of silane is used as a coupling agent to functionalize the surface of nanoTiO2 to improve its flame retardency by adding Si and N2 group. TGA test and FTIR test have been performed and different peaks for Si and N2 in the modified nanofiller and weight loss of fabricated nanofiller confirmed that fabrication method was successful. After that, nanocomposite sample of VERs reinforced with nano TiO2 prepared and the effects of different loadings on mechanical and flame retardant properties are investigated after and before the modification of nanofillers. From tensile test result it is found that up to 5% loading of modified nanofiller the tensile strength is 62 MPa that is almost as same as pure VER and the tensile strength of unmodified nanofiller based PNC is 68 MPa which is not significant improvement in its mechanical property. From MCC test of flame retardancy it is found that the normalized heat release capacity of modified nanofiller based nanocomposite is decreased by 27.7% than unmodified nanofiller based PNC that is 9.8%. Also the normalized total heat release of modified nanofiller based PNC is 21.4% than unmodified PNC that is 12.4%.

  6. Electrochemiluminescent pH sensor measured by the emission potential of TiO2 nanocrystals and its biosensing application.

    PubMed

    Liu, Xuan; Wang, Nianyue; Zhao, Wei; Jiang, Hui

    2015-02-01

    This work reports for the first time a potential-based nano-electrochemiluminescent (ECL) pH sensor, using anatase TiO2 nanocrystals (NCs) as the ECL probe. The first ECL peak potential of the TiO2 NCs shifted negatively with increasing pH, showing a linear range from -0.47 V (vs Ag/AgCl) at pH 3 to -1.06 V at pH 10. This phenomenon was attributed to the absorption of 'potential-determining ions' of OH(-) on the surface of TiO2 NCs, leading to larger impedance of the electron injection. Other common 'potential-determining ions', such as phosphate, induced a slight potential shift of 0.03 V at a concentration of 0.1 M. Using urease as an enzyme model, a urea biosensor was developed by the simultaneous modification of urease and TiO2 NCs on indium-tin oxide (ITO) electrodes. The biosensor, measured on the basis of the pH increase caused by the enzyme catalysis reaction, had a linear range of 0.01-2.0 mM, with a potential shift of 0.175 V. The as-prepared pH sensor, which has simple construction procedures and acceptable sensitivity and selectivity, may provide new avenues for the construction of ECL bioanalytical methodologies. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Phase Equilibrium of TiO2 Nanocrystals in Flame-Assisted Chemical Vapor Deposition.

    PubMed

    Liu, Changran; Camacho, Joaquin; Wang, Hai

    2018-01-19

    Nano-scale titanium oxide (TiO 2 ) is a material useful for a wide range of applications. In a previous study, we showed that TiO 2 nanoparticles of both rutile and anatase crystal phases could be synthesized over the size range of 5 to 20 nm in flame-assisted chemical vapor deposition. Rutile was unexpectedly dominant in oxygen-lean synthesis conditions, whereas anatase is the preferred phase in oxygen-rich gases. The observation is in contrast to the 14 nm rutile-anatase crossover size derived from the existing crystal-phase equilibrium model. In the present work, we made additional measurements over a wider range of synthesis conditions; the results confirm the earlier observations. We propose an improved model for the surface energy that considers the role of oxygen desorption at high temperatures. The model successfully explains the observations made in the current and previous work. The current results provide a useful path to designing flame-assisted chemical vapor deposition of TiO 2 nanocrystals with controllable crystal phases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The role of poly(methacrylic acid) conformation on dispersion behavior of nano TiO2 powder

    NASA Astrophysics Data System (ADS)

    Singh, Bimal P.; Nayak, Sasmita; Samal, Samata; Bhattacharjee, Sarama; Besra, Laxmidhar

    2012-02-01

    To exploit the advantages of nanoparticles for various applications, controlling the dispersion and agglomeration is of paramount importance. Agglomeration and dispersion behavior of titanium dioxide (TiO2) nanoparticles was investigated using electrokinetic and surface chemical properties. Nanoparticles are generally stabilized by the adsorption of a dispersant (polyelectrolyte) layer around the particle surface and in this connection ammonium salt of polymethacrylic acid (Darvan C) was used as dispersant to stabilize the suspension. The dosages of polyelectrolyte were optimized to get best dispersion stability by techniques namely particle charge detector (13.75 mg/g) and adsorption (14.57 mg/g). The surface charge of TiO2 particles changed significantly in presence of dispersant Darvan C and isoelectric point (iep) shifted significantly towards lower pH from 5.99 to 3.37. The shift in iep has been quantified in terms of free energy of interaction between the surface sites of TiO2 and the adsorbing dispersant Darvan C. Free energies of adsorption were calculated by electrokinetic data (-9.8 RT unit) and adsorption isotherms (-10.56 RT unit), which corroborated well. The adsorption isotherms are of typical Langmuir type and employed for calculation of free energy. The results indicated that adsorption occurs mainly through electrostatic interactions between the dispersant molecule and the TiO2 surface apart from hydrophobic interactions.

  9. Relationship between nano/micro structure and physical properties of TiO2-sodium caseinate composite films.

    PubMed

    Montes-de-Oca-Ávalos, Juan Manuel; Altamura, Davide; Candal, Roberto Jorge; Scattarella, Francesco; Siliqi, Dritan; Giannini, Cinzia; Herrera, María Lidia

    2018-03-01

    Films obtained by casting, starting from conventional emulsions (CE), nanoemulsions (NE) or their gels, which led to different structures, with the aim of explore the relationship between structure and physical properties, were prepared. Sodium caseinate was used as the matrix, glycerol as plasticizer, glucono-delta-lactone as acidulant to form the gels, and TiO 2 nanoparticles as reinforcement to improve physical behavior. Structural characterization was performed by SAXS and WAXS (Small and Wide Angle X-ray Scattering, respectively), combined with confocal and scanning electron microscopy. The results demonstrate that the incorporation of the lipid phase does not notably modify the mechanical properties of the films compared to solution films. Films from NE were more stable against oil release than those from CE. Incorporation of TiO 2 improved mechanical properties as measured by dynamical mechanical analysis (DMA) and uniaxial tensile tests. TiO 2 macroscopic spatial distribution homogeneity and the nanostructure character of NE films were confirmed by mapping the q-dependent scattering intensity in scanning SAXS experiments. SAXS microscopies indicated a higher intrinsic homogeneity of NE films compared to CE films, independently of the TiO 2 load. NE-films containing structures with smaller and more homogeneously distributed building blocks showed greater potential for food applications than the films prepared from sodium caseinate solutions, which are the best known films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Computational Screening of 2D Materials for Photocatalysis.

    PubMed

    Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G

    2015-03-19

    Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.

  11. Magnetic, electronic, optical, and photocatalytic properties of nonmetal- and halogen-doped anatase TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Fadlallah, M. M.

    2017-05-01

    The structure stability, magnetic, electronic, optical, and photocatalytic properties of nonmetal (B, C, N, P, and S), and halogen (F, Cl, Br, and I)-doped anatase TiO2 nanotubes (TNTs) have been investigated using spin polarized density functional theory. The N- and F-doped TNTs are the most stable among other doped TNTs. It is found that the magnetic moment of doped TNT is the difference between the number of the valence electrons of the dopant and host anion. All dopants decrease the band gap of TNT. The decrease in the band gap of nonmetal (C, N, P, and S)-doped TNTs, in particular N and P, is larger than that of halogen-doped TNTs due to the created states of the nonmetal dopant in the band gap. There is a good agreement between the calculation results and the experimental observations. Even though C-, N-, and P-doped TNTs have the lowest band gap, they cannot be used as a photocatalysis for water splitting. The B-, S-, and I-doped TiO2 nanotubes are of great potential as candidates for water splitting in the visible light range.

  12. A facile preparation of TiO2/ACF with Csbnd Ti bond and abundant hydroxyls and its enhanced photocatalytic activity for formaldehyde removal

    NASA Astrophysics Data System (ADS)

    Liu, R. F.; Li, W. B.; Peng, A. Y.

    2018-01-01

    The quantum yields and efficiency(ACF) was prepared via a modified deposition-precipitation method to facilitate its photon absorption and of photogenerated charge carriers have been the major issues for photocatalysis on titania catalyst. The TiO2/ACF catalyst with anatase TiO2 uniformly dispersed on activated carbon fibers electron transfer, thus improve the quantum yields and efficiency of the photogenerated electrons and holes. XPS analysis on the catalyst demonstrates the existence of Ti3+ and Ti2+ species, Csbnd Ti bond and abundant hydroxyls, which are also proved by UV-vis DRS and TG-DSC analysis. It is believed that the acid environment in preparation plays an essential role in the formation of Csbnd Ti bond and surface hydroxyls, which can be tuned by changing hydrothermal synthesis time. The Csbnd Ti bond can improve the electron transfer in the catalyst and the substantial surface hydroxyls lead to high absorption for UV lines and enhanced adsorption of water and formaldehyde, resulting in more active OH free radicals and the outstanding photocatalytic activity of TiO2/ACF, which is much higher than the titania powder for photocatalytic removal of low concentration formaldehyde. The essential role of surface hydroxyls for photocatalytic activity was confirmed surpassing that of chemical bond between carbon and titanium in TiO2-carbon composite for the first time.

  13. 3D hierarchical architecture based on 1D TiO2 nanorod and 2D MnO2 nanoflake for high performance supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Thakur, S.; Maiti, S.; Acharya, A.; Paul, T.; Besra, N.; Sarkar, S.; Chattopadhyay, K. K.

    2018-04-01

    Possibility of integration of manifold functionalities coupled with novel interface phenomenon generation in geometrically intricate hierarchical nanoform has made them greatly pertinent from both research and technological point of view. Here, oxide based hybrid has been realized by integrating 1D TiO2 nanorod with 2D MnO2 nanoflake via low temperature chemical route. Meticulous tunability over the hierarchical morphology was achieved by subtle variation of reaction parameter which in turn created difference in MnO2 growth over TiO2. Morphological features of the samples were examined by FESEM and TEM. Hybrid samples exhibited high electrochemical performance than pristine TiO2 nanorods. Registered electrochemical performance from TiO2-MnO2 hybrid was found to be ˜1024F/g at a current density of 0.66A/g which is ˜100 fold than TiO2 at same current density. Such enhanced performance is accounted from higher surface area and electrical conductivity of the hybrid.

  14. Selective adsorption of bovine hemoglobin on functional TiO2 nano-adsorbents: surface physic-chemical properties determined adsorption activity

    NASA Astrophysics Data System (ADS)

    Guo, Shiguang; Zhang, Jianghua; Shao, Mingxue; Zhang, Xia; Liu, Yufeng; Xu, Junli; Meng, Hao; Han, Yide

    2015-04-01

    Surface functionalized nanoparticles are efficient adsorbents which have shown good potential for protein separation. In this work, we chose two different types of organic molecules, oleic acid (OA) and 3-glycidoxypropyltrimethoxy silane (GPTMS), to functionalize the surface of TiO2 nanoparticles, and we studied the effects of this modification on their surface physicochemical properties in correlation with their selective adsorption of proteins. The results showed that the surface zeta potential and the surface water wettability of the modified TiO2 were significantly changed in comparison with the original TiO2 nanoparticles. The adsorption activities of bovine hemoglobin (BHb) and bovine serum albumin (BSA) on these functionalized TiO2 samples were investigated under different conditions, including pH values, contact time, ion strength, and initial protein concentration. In comparison with the non-specific adsorption of original TiO2, however, both the OA-TiO2 and GPTMS-TiO2 exhibited increased BHb adsorption and decreased BSA adsorption at the same time. Using a binary protein mixture as the adsorption object, a higher separation factor (SF) was obtained for OA-TiO2 under optimum conditions. The different adsorption activities of BHb and BSA on the modified TiO2 were correlated with different interactions at the protein/solid interface, and the chemical force as well as the electrostatic force played an important role in the selective adsorption process.

  15. Energy recovery during advanced wastewater treatment: simultaneous estrogenic activity removal and hydrogen production through solar photocatalysis.

    PubMed

    Zhang, Wenlong; Li, Yi; Wang, Chao; Wang, Peifang; Wang, Qing

    2013-03-01

    Simultaneous estrogenic activity removal and hydrogen production from secondary effluent were successfully achieved using TiO(2) microspheres modified with both platinum nanoparticles and phosphates (P-TiO(2)/Pt) for the first time. The coexistence of platinum and phosphate on the surface of TiO(2) microspheres was confirmed by transmission electron microscope, energy-dispersive X-ray and X-ray photoelectron spectroscopy analyses. P-TiO(2)/Pt microspheres showed a significantly higher photocatalytic activity than TiO(2) microspheres and TiO(2) powders (P25) for the removal of estrogenic activity from secondary effluent with the removal ratio of 100%, 58.2% and 48.5% in 200 min, respectively. Moreover, the marked production of hydrogen (photonic efficiency: 3.23 × 10(-3)) was accompanied by the removal of estrogenic activity only with P-TiO(2)/Pt as photocatalysts. The hydrogen production rate was increasing with decreased DO concentration in secondary effluent. Results of reactive oxygen species (ROS) evaluation during P-TiO(2)/Pt photocatalytic process showed that O(2)(-)and OH were dominant ROS in aerobic phase, while OH was the most abundant ROS in anoxic phase. Changes of effluent organic matter (EfOM) during photocatalysis revealed that aromatic, hydrophobic, and high molecular weight fractions of EfOM were preferentially transformed into non-humic, hydrophilic, and low MW fractions (e.g. aldehydes and carboxylic acids), which were continuously utilized as electron donors in hydrogen production process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Atomic layer deposition of nano-TiO2 thin films with enhanced biocompatibility and antimicrobial activity for orthopedic implants

    PubMed Central

    Liu, Luting; Bhatia, Ritwik; Webster, Thomas J

    2017-01-01

    Titanium (Ti) and its alloys have been extensively used as implant materials in orthopedic applications. Nevertheless, implants may fail due to a lack of osseointegration and/or infection. The aim of this in vitro study was to endow an implant surface with favorable biological properties by the dual modification of surface chemistry and nanostructured topography. The application of a nanostructured titanium dioxide (TiO2) coating on Ti-based implants has been proposed as a potential way to enhance tissue-implant interactions while inhibiting bacterial colonization simultaneously due to its chemical stability, biocompatibility, and antimicrobial properties. In this paper, temperature-controlled atomic layer deposition (ALD) was introduced for the first time to provide unique nanostructured TiO2 coatings on Ti substrates. The effect of nano-TiO2 coatings with different morphology and structure on human osteoblast and fibroblast functions and bacterial activities was investigated. In vitro results indicated that the TiO2 coating stimulated osteoblast adhesion and proliferation while suppressing fibroblast adhesion and proliferation compared to uncoated materials. In addition, the introduction of nano-TiO2 coatings was shown to inhibit gram-positive bacteria (Staphylococcus aureus), gram-negative bacteria (Escherichia coli), and antibiotic-resistant bacteria (methicillin-resistant Staphylococcus aureus), all without resorting to the use of antibiotics. Our results suggest that the increase in nanoscale roughness and greater surface hydrophilicity (surface energy) together could contribute to increased protein adsorption selectively, which may affect the cellular and bacterial activities. It was found that ALD-grown TiO2-coated samples with a moderate surface energy at 38.79 mJ/m2 showed relatively promising antibacterial properties and desirable cellular functions. The ALD technique provides a novel and effective strategy to produce TiO2 coatings with delicate control

  17. Exchange of TiO2 nanoparticles between streams and streambeds.

    PubMed

    Boncagni, Natalia Ticiana; Otaegui, Justo Manuel; Warner, Evelyn; Curran, Trisha; Ren, Jianhong; de Cortalezzi, Maria Marta Fidalgo

    2009-10-15

    The expanding use of manufactured nanoparticles has increased the potential for their release into the natural environment. Particularly, TiO2 nanoparticles pose significant exposure risk to humans and other living species due to their extensive use in a wide range of fields. To better understand the environmental and health risks associated with the release of TiO2 nanoparticles, knowledge on their fate and transport is needed. This study evaluates the transport of two different TiO2 nanoparticles: one commercially available (P25 TiO2 and the other synthesized at a lab scale (synthesized TiO2). Laboratory flume, column, and batch experiments were conducted to investigate the processes dominating the transport of TiO2 nanoparticles between streams and streambeds and to characterize the properties of these nanoparticles under different physicochemical conditions. Results show that the synthesized TiO2 was more stable compared to the P25 TiO2, which underwent significant aggregation under the same experimental conditions. As a result, P25 TiO2 deposited at a faster rate than the synthesized TiO2 in the streambed. Both types of TiO2 nanoparticles deposited in the streambed were easily released when the stream velocity was increased. The aggregation and deposition of P25 TiO2 were highly dependent on pH. A process-based colloid exchange model was applied to interpret the observed transport behavior of the TiO2 nanoparticles.

  18. A new nano-TiO2 immobilized biodegradable polymer with self-cleaning properties.

    PubMed

    Sökmen, Münevver; Tatlıdil, Ilknur; Breen, Chris; Clegg, Francis; Buruk, Celal Kurtuluş; Sivlim, Tuğba; Akkan, Senay

    2011-03-15

    This study concentrated on the direct immobilization of anatase nano titanium dioxide particles (TiO(2), 10nm particle size) into or onto a biodegradable polymer, polycaprolactone, by solvent-cast processes. The self-cleaning, namely photocatalytic properties of the produced materials were tested by photocatalytic removal of methylene blue as model compound and antimicrobial properties were investigated using Candida albicans as model microorganism. Produced TiO(2) immobilized polymer successfully removed methylene blue (MB, 1 × 10(-5)M) from aqueous solution without additional pH arrangement employing a UV-A light (365 nm) source. Almost 83.2% of dye was removed or decomposed by 5 wt% TiO(2) immobilized into PCL (0.08 g) and removal percentage reached to 94.2% with 5 wt% TiO(2) immobilized onto PCL after a 150 min exposure period. Although removal percentage decrease with increased ionic strength and usage of a visible light source, produced materials were still effective. TiO(2) immobilized onto PCL (5 wt%) was quite effective killing almost 54% of C. albicans (2 × 10(6)CFU/mL) after only 60 min exposure with a near visible light source. Control experiments employing PCL alone in the presence and absence of light were ineffective under the same condition. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Preparation and Characterization of TiO2-Based Photocatalysts by Chemical Vapour Deposition

    NASA Astrophysics Data System (ADS)

    Nacevski, Goran; Marinkovski, Mirko; Tomovska, Radmila; Fajgar, Radek

    In the present work, a novel technique for the preparation of TiO2-based photocatalysts modified with SiO2 is presented, using a pulsed ArF laser to induce a chemical vapor deposition process. The irradiated gas mixture was composed of TiCl4/SiCl4 precursors in excess of oxygen. Laser irradiation at 193 nm with a repetition frequency of 10 Hz induced the deposition of thin nano-sized mixed oxide films. In order to improve the photocatalytic activity of the catalysts and to expand the activity from the UV to the visible part of the spectrum, doping of the catalysts with chromium oxides was performed. For that aim, the same technique of catalyst preparation was used, irradiating the same gas mixture with the addition of chromyl chloride as Cr precursor. The thin films prepared were annealed up to 500°C in order to remove crystal defects, which could be responsible for poor photocatalytic activity. The dependence of structure and properties on reaction process and irradiation conditions (laser energy and fluence, precursors pressure) were examined. The main aim was to find the best conditions for the production of highly photoactive catalysts and to decrease deactivation processes during the photo-oxidation. The composition, structure and morphology of the oxide catalysts prepared were studied by various spectroscopies, electron microscopy and diffraction techniques.

  20. Multi-Scale-Porosity TiO2 scaffolds grown by innovative sputtering methods for high throughput hybrid photovoltaics

    PubMed Central

    Sanzaro, Salvatore; Smecca, Emanuele; Mannino, Giovanni; Bongiorno, Corrado; Pellegrino, Giovanna; Neri, Fortunato; Malandrino, Graziella; Catalano, Maria Rita; Condorelli, Guglielmo Guido; Iacobellis, Rosabianca; De Marco, Luisa; Spinella, Corrado; La Magna, Antonino; Alberti, Alessandra

    2016-01-01

    We propose an up-scalable, reliable, contamination-free, rod-like TiO2 material grown by a new method based on sputtering deposition concepts which offers a multi-scale porosity, namely: an intra-rods nano-porosity (1–5 nm) arising from the Thornton’s conditions and an extra-rods meso-porosity (10–50 nm) originating from the spatial separation of the Titanium and Oxygen sources combined with a grazing Ti flux. The procedure is simple, since it does not require any template layer to trigger the nano-structuring, and versatile, since porosity and layer thickness can be easily tuned; it is empowered by the lack of contaminations/solvents and by the structural stability of the material (at least) up to 500 °C. Our material gains porosity, stability and infiltration capability superior if compared to conventionally sputtered TiO2 layers. Its competition level with chemically synthesized reference counterparts is doubly demonstrated: in Dye Sensitized Solar Cells, by the infiltration and chemisorption of N-719 dye (∼1 × 1020 molecules/cm3); and in Perovskite Solar Cells, by the capillary infiltration of solution processed CH3NH3PbI3 which allowed reaching efficiency of 11.7%. Based on the demonstrated attitude of the material to be functionalized, its surface activity could be differently tailored on other molecules or gas species or liquids to enlarge the range of application in different fields. PMID:28000743