Sample records for nano-tio2 long-term exposure

  1. Long-term exposure of bacterial and protozoan communities to TiO2 nanoparticles in an aerobic-sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Supha, Chitpisud; Boonto, Yuphada; Jindakaraked, Manee; Ananpattarachai, Jirapat; Kajitvichyanukul, Puangrat

    2015-06-01

    Titanium dioxide (TiO2) nanopowders at different concentrations (0-50 mg L-1) were injected into an aerobic-sequencing batch reactor (SBR) to investigate the effects of long-term exposure to nanoparticles on bacterial and protozoan communities. The detection of nanoparticles in the bioflocs was analyzed by scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The SBR wastewater experiments were conducted under the influence of ultraviolet light with photocatalytic TiO2. The intrusion of TiO2 nanoparticles was found both on the surface and inside of the bioflocs. The change of microbial population in terms of mixed liquor-suspended solids and the sludge volume index was monitored. The TiO2 nanoparticles tentatively exerted an adverse effect on the microbial population, causing the reduction of microorganisms (both bacteria and protozoa) in the SBR. The respiration inhibition rate of the bacteria was increased, and the viability of the microbial population was reduced at the high concentration (50 mg L-1) of TiO2. The decreasing number of protozoa in the presence of TiO2 nanoparticles during 20 days of treatment with 0.5 and 1.0 mg L-1 TiO2 is clearly demonstrated. The measured chemical oxygen demand (COD) in the effluent tends to increase with a long-term operation. The increase of COD in the system suggests a decrease in the efficiency of the wastewater treatment plant. However, the SBR can effectively remove the TiO2 nanoparticles (up to 50 mg L-1) from the effluent.

  2. Preparation of RuO2-TiO2/Nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium.

    PubMed

    Li, Dong; Guo, Xiaolei; Song, Haoran; Sun, Tianyi; Wan, Jiafeng

    2018-06-05

    Graphite-like material is widely used for preparing various electrodes for wastewater treatment. To enhance the electrochemical degradation efficiency of Nano-graphite (Nano-G) anode, RuO 2 -TiO 2 /Nano-G composite anode was prepared through the sol-gel method and hot-press technology. RuO 2 -TiO 2 /Nano-G composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N 2 adsorption-desorption. Results showed that RuO 2 , TiO 2 and Nano-G were composited successfully, and RuO 2 and TiO 2 nanoparticles were distributed uniformly on the surface of Nano-G sheet. Specific surface area of RuO 2 -TiO 2 /Nano-G composite was higher than that of TiO 2 /Nano-G composite and Nano-G. Electrochemical performances of RuO 2 -TiO 2 /Nano-G anode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy. RuO 2 -TiO 2 /Nano-G anode was applied to electrochemical degradation of ceftriaxone. The generation of hydroxyl radical (OH) was measured. Results demonstrated that RuO 2 -TiO 2 /Nano-G anode displayed enhanced electrochemical degradation efficiency towards ceftriaxone and yield of OH, which is derived from the synergetic effect between RuO 2 , TiO 2 and Nano-G, which enhance the specific surface area, improve the electrochemical oxidation activity and lower the charge transfer resistance. Besides, the possible degradation intermediates and pathways of ceftriaxone sodium were identified. This study may provide a viable and promising prospect for RuO 2 -TiO 2 /Nano-G anode towards effective electrochemical degradation of antibiotics from wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Establishment of Airborne Nanoparticle Exposure Chamber System to Assess Nano TiO2 Induced Mice Lung Effects

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Hua; Li, Jui-Ping; Huang, Nai-Chun; Yang, Chung-Shi; Chen, Jen-Kun

    2011-12-01

    A great many governments have schemed their top priority to support the research and development of emerging nanotechnology, which lead to increasing products containing nanomaterials. However, platforms and protocols to evaluate the safety of nanomaterials are not yet established. We therefore design and fabricate a nanoparticle exposure chamber system (NECS) and try to standardize protocols to assess potential health risk of inhalable nanoparticles. This platform comprises: (1) nano-aerosol generators to produce homogeneous airborne nanoparticles, (2) double isolated container to prevent from unexpected exposure to humans, (3) gas supply system for housing animals or incubating cultured cells, and (4) system for automatic control and airborne nanoparticle analysis. The NECS providing multiple functions includes: (1) a secure environment to handle nanomaterials, (2) real-time measurement for the size and distribution of airborne nanoparticles, (3) SOP of safety evaluation for nanomaterials, and (4) key technology for the development of inhalable pharmaceuticals. We used NECS to mimic occupational environment for exploring potential adverse effects of TiO2 nanoparticles. The adult male ICR mice were exposed to 25nm, well-characterized TiO2 particles for 1 and 4 weeks. More than 90% of the inhaled TiO2 nanoparticles deposit in lung tissue, which tends to be captured by alveolar macrophages. Pulmonary function test does not show significant physiological changes between one and 4 weeks exposure. For plasma biochemistry analysis, there are no obvious inflammation responses after exposure for one and 4 weeks; however, disruption of alveolar septa and increased thickness of alveolar epithelial cells were observed. According to our results, the NECS together with our protocols show comprehensive integration and ideally fit the standard of OECD guildelines-TG403, TG412, TG413; it can be further customized to fulfill diverse demands of industry, government, and third party

  4. Minimum ignition temperature of nano and micro Ti powder clouds in the presence of inert nano TiO2 powder.

    PubMed

    Yuan, Chunmiao; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-30

    Minimum ignition temperature (MIT) of micro Ti powder increased gradually with increases in nano-sized TiO2 employed as an inertant. Solid TiO2 inertant significantly reduced ignition hazard of micro Ti powder in contact with hot surfaces. The MIT of nano Ti powder remained low (583 K), however, even with 90% TiO2. The MIT of micro Ti powder, when mixed with nano Ti powder at concentrations as low as 10%, decreased so dramatically that its application as a solid fuel may be possible. A simple MIT model was proposed for aggregate particle size estimation and better understanding of the inerting effect of nano TiO2 on MIT. Estimated particle size was 1.46-1.51 μm larger than that in the 20-L sphere due to poor dispersion in the BAM oven. Calculated MITs were lower than corresponding empirically determined values for micro Ti powder because nano-sized TiO2 coated the micro Ti powder, thereby decreasing its reaction kinetics. In the case of nano Ti powder, nano-sized TiO2 facilitated dispersion of nano Ti powder which resulted in a calculated MIT that was greater than the experimentally determined value. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Durable Self-Cleaning Coatings for Architectural Surfaces by Incorporation of TiO2 Nano-Particles into Hydroxyapatite Films

    PubMed Central

    Sassoni, Enrico; D’Amen, Eros; Roveri, Norberto

    2018-01-01

    To prevent soiling of marble exposed outdoors, the use of TiO2 nano-particles has been proposed in the literature by two main routes, both raising durability issues: (i) direct application to marble surface, with the risk of particle leaching by rainfall; (ii) particle incorporation into inorganic or organic coatings, with the risk of organic coating degradation catalyzed by TiO2 photoactivity. Here, we investigated the combination of nano-TiO2 and hydroxyapatite (HAP), previously developed for marble protection against dissolution in rain and mechanical consolidation. HAP-TiO2 combination was investigated by two routes: (i) sequential application of HAP followed by nano-TiO2 (“H+T”); (ii) simultaneous application by introducing nano-TiO2 into the phosphate solution used to form HAP (“HT”). The self-cleaning ability was evaluated before and after prolonged exposure to simulated rain. “H+T” and “HT” coatings exhibited much better resistance to nano-TiO2 leaching by rain, compared to TiO2 alone. In “H+T” samples, TiO2 nano-particles adhere better to HAP (having flower-like morphology and high specific surface area) than to marble. In “HT” samples, thanks to chemical bonds between nano-TiO2 and HAP, the particles are firmly incorporated in the HAP coating, which protects them from leaching by rain, without diminishing their photoactivity and without being degraded by them. PMID:29360789

  6. The Acute Liver Injury in Mice Caused by Nano-Anatase TiO2

    NASA Astrophysics Data System (ADS)

    Ma, Linglan; Zhao, Jinfang; Wang, Jue; Liu, Jie; Duan, Yanmei; Liu, Huiting; Li, Na; Yan, Jingying; Ruan, Jie; Wang, Han; Hong, Fashui

    2009-11-01

    Although it is known that nano-TiO2 or other nanoparticles can induce liver toxicities, the mechanisms and the molecular pathogenesis are still unclear. In this study, nano-anatase TiO2 (5 nm) was injected into the abdominal cavity of ICR mice for consecutive 14 days, and the inflammatory responses of liver of mice was investigated. The results showed the obvious titanium accumulation in liver DNA, histopathological changes and hepatocytes apoptosis of mice liver, and the liver function damaged by higher doses nano-anatase TiO2. The real-time quantitative RT-PCR and ELISA analyses showed that nano-anatase TiO2 can significantly alter the mRNA and protein expressions of several inflammatory cytokines, including nucleic factor-κB, macrophage migration inhibitory factor, tumor necrosis factor-α, interleukin-6, interleukin-1β, cross-reaction protein, interleukin-4, and interleukin-10. Our results also implied that the inflammatory responses and liver injury may be involved in nano-anatase TiO2-induced liver toxicity.

  7. Effects of exposure to nano and bulk sized TiO2 and CuO in Lemna minor.

    PubMed

    Dolenc Koce, Jasna

    2017-10-01

    Nanoparticles of TiO 2 and CuO are among most commonly used nanoparticles, and elevated concentrations of them are expected to be found in all environments, including aquatic. A standard growth inhibition test ISO/CD 20079 was used to determine the toxicity of nano sized and larger micro sized (bulk) particles in the concentrations of 0.1, 1, 10, 100 and 1000 μM CuO and TiO 2 on common duckweed (Lemna minor L.). Both nano and bulk CuO particles caused changes in the structure and function of treated plants. The number of fronds and colonies decreased by as much as 78%, the length of roots and fronds decreased by 99% and 14%, respectively. Furthermore, photochemical efficiency was reduced by up to 35%, and the activities of antioxidative enzymes guaiacol peroxidase, ascorbate peroxidase and glutathione reductase increased by more than 240%. The altered physiological state of the CuO exposed plants was also reflected in the elevated occurrence of necrosis and bleaching in the duckweed colonies. Nano sized particles of CuO proved more phytotoxic than bulk particles, and the effects of both studied CuO sizes were concentration dependent. On the other hand, both bulk and nano sized particles of TiO 2 caused no severe phytotoxic effects, there was no concentration dependence and they could be considered as non-harmful to common duckweed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Study on preparation of SnO2-TiO2/Nano-graphite composite anode and electro-catalytic degradation of ceftriaxone sodium.

    PubMed

    Guo, Xiaolei; Wan, Jiafeng; Yu, Xiujuan; Lin, Yuhui

    2016-12-01

    In order to improve the electro-catalytic activity and catalytic reaction rate of graphite-like material, Tin dioxide-Titanium dioxide/Nano-graphite (SnO 2 -TiO 2 /Nano-G) composite was synthesized by a sol-gel method and SnO 2 -TiO 2 /Nano-G electrode was prepared in hot-press approach. The composite was characterized by X-ray photoelectron spectroscopy, fourier transform infrared, Raman, N 2 adsorption-desorption, scanning electrons microscopy, transmission electron microscopy and X-ray diffraction. The electrochemical performance of the SnO 2 -TiO 2 /Nano-G anode electrode was investigated via cyclic voltammetry and electrochemical impedance spectroscopy. The electro-catalytic performance was evaluated by the degradation of ceftriaxone sodium and the yield of ·OH radicals in the reaction system. The results demonstrated that TiO 2 , SnO 2 and Nano-G were composited successfully, and TiO 2 and SnO 2 particles dispersed on the surface and interlamination of the Nano-G uniformly. The specific surface area of SnO 2 modified anode was higher than that of TiO 2 /Nano-G anode and the degradation rate of ceftriaxone sodium within 120 min on SnO 2 -TiO 2 /Nano-G electrode was 98.7% at applied bias of 2.0 V. The highly efficient electro-chemical property of SnO 2 -TiO 2 /Nano-G electrode was attributed to the admirable conductive property of the Nano-G and SnO 2 -TiO 2 /Nano-G electrode. Moreover, the contribution of reactive species ·OH was detected, indicating the considerable electro-catalytic activity of SnO 2 -TiO 2 /Nano-G electrode. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Species sensitivity and dependence on exposure conditions impacting the phototoxicity of TiO2 nanoparticles to benthic organisms

    EPA Science Inventory

    Toxicity of TiO2 nanoparticles (nano-TiO2) to aquatic organisms can be greatly increased upon the exposure to ultraviolet radiation (UV). This phenomenon has received some attention for pelagic species, however, investigations of nano-TiO2 phototoxicity in benthic organisms are s...

  10. Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO2

    NASA Astrophysics Data System (ADS)

    Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas; Fadil, Ahmed; Syväjärvi, Mikael; Petersen, Paul Michael; Ou, Haiyan

    2016-07-01

    Nano-textured surfaces have played a key role in optoelectronic materials to enhance the light extraction efficiency. In this work, morphology and optical properties of nano-textured SiC covered with atomic layer deposited (ALD) TiO2 were investigated. In order to obtain a high quality surface for TiO2 deposition, a three-step cleaning procedure was introduced after RIE etching. The morphology of anatase TiO2 indicates that the nano-textured substrate has a much higher surface nucleated grain density than a flat substrate at the beginning of the deposition process. The corresponding reflectance increases with TiO2 thickness due to increased surface diffuse reflection. The passivation effect of ALD TiO2 thin film on the nano-textured fluorescent 6H-SiC sample was also investigated and a PL intensity improvement of 8.05% was obtained due to the surface passivation.

  11. Sunscreens with Titanium Dioxide (TiO2) Nano-Particles: A Societal Experiment

    PubMed Central

    van de Poel, Ibo; Osseweijer, Patricia

    2010-01-01

    The risks of novel technologies, such as nano(bio)technology cannot be fully assessed due to the existing uncertainties surrounding their introduction into society. Consequently, the introduction of innovative technologies can be conceptualised as a societal experiment, which is a helpful approach to evaluate moral acceptability. This approach is illustrated with the marketing of sunscreens containing nano-sized titanium dioxide (TiO2) particles. We argue that the marketing of this TiO2 nanomaterial in UV protective cosmetics is ethically undesirable, since it violates four reasonable moral conditions for societal experimentation (absence of alternatives, controllability, limited informed consent, and continuing evaluation). To remedy the current way nano-sized TiO2 containing sunscreens are utilised, we suggest five complementing actions (closing the gap, setup monitoring tools, continuing review, designing for safety, and regulative improvements) so that its marketing can become more acceptable. PMID:20835397

  12. Fabrication of a pure TiO2 thin film using a self-polymeric titania nano-sol and its properties.

    PubMed

    Park, Won-Kyu; Song, Jeong-Hwan; Kim, Soo-Ryong; Kim, Tae-Hyun; Iwasaki, Mitusnobo

    2012-02-01

    A pure TiO2 thin film without adding any organic binder was fabricated by using a self-polymeric titania nano-sol (14 mass%), which was prepared by the acid peptization method. The particle size distribution in the 14 mass% TiO2 sol, in which almost of particles had a size below 10.2 nm and the crystal phase confirmed by X-ray diffraction analysis was anatase. The diluted nano-sol had a capability to form a thin film at a low temperature (100-400 degrees C) on the slide glass by dipping method. The average thickness of a coating film was measured to be about 0.25-0.30 microm. A coated film had a high refractive index over 1.88 at least irrespective of the heat-treatment even at room temperature drying and showed a super-hydrophilicity (< 5 degrees) after 20 minutes under Ultra Violet light irradiation, and it sustained in the darkness during a long period over 7 days depending on the heat-treatment conditions. Atomic Force Microscopic observation shows that the morphology of a heat-treated film had a relationship with the long-term hydrophilicity in the darkness.

  13. Impact of nano and bulk ZrO2, TiO2 particles on soil nutrient contents and PGPR.

    PubMed

    Karunakaran, Gopalu; Suriyaprabha, Rangaraj; Manivasakan, Palanisamy; Yuvakkumar, Rathinam; Rajendran, Venkatachalam; Kannan, Narayanasamy

    2013-01-01

    Currently, nanometal oxides are used extensively in different industries such as medicine, cosmetics and food. The increased consumption of nanoparticles (NPs) leads the necessity to understand the fate of the nanoparticles in the environment. The present study focused on the ecotoxicological behaviour of bulk and nano ZrO2 (Zirconia) and TiO2 (Titania) particles on PGPR (plant growth promoting rhizobacteria), soil and its nutrient contents. The microbial susceptibility study showed that nano TiO2 had 13 +/- 0.9 mm (B. megaterium), 15 +/- 0.2 mm (P. fluorescens), 16 +/- 0.2 mm (A. vinelandii) and 12 +/- 0.3 mm (B. brevis) zones of inhibition. However, nano and bulk ZrO2 particles were non-toxic to PGPR. In addition, it was found that toxicity varied depends on the medium of reaction. The soil study showed that nano TiO2 was found to be highly toxic, whereas bulk TiO2 was less toxic towards soil bacterial populations at 1000 mg L(-1). In contrast, nano and bulk ZrO2 were found to be inert at 1000 mg L(-1). The observed zeta potential and hydrophobicity of TiO2 particles causes more toxic than ZrO2 in parallel with particle size. However, nano TiO2 decreases the microbial population as well as nutrient level of the soil but not zirconia. Our finding shows that the mechanism of toxicity depends on size, hydrophobic potential and zeta potential of the metal oxide particles. Thus, it is necessary to take safety measures during the disposal and use of such toxic nanoparticles in the soil to prevent their hazardous effects.

  14. Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation.

    PubMed

    Wang, Jun; Jiang, Zhe; Zhang, Liqun; Kang, Pingli; Xie, Yingpeng; Lv, Yanhui; Xu, Rui; Zhang, Xiangdong

    2009-02-01

    Here, a novel sonocatalyst, composite TiO2/ZnO powder, was prepared through the combination of nano-sized TiO2 and ZnO powders. Because of the appropriate adsorbability to organic pollutants and special crystal interphase between TiO2 and ZnO particles, the composite TiO2/ZnO powder exhibits a high sonocatalytic activity under ultrasonic irradiation during the degradation of acid red B. Especially, the sonocatalytic activity of composite TiO2/ZnO powder with 4:1 molar proportion treated at 500 degrees C for 50 min showed obvious improvement compared with pure nano-sized TiO2 and ZnO powders. When the experimental conditions such as 10mg/L acid red B concentration, 1.0 g/L catalyst addition amount, pH=7.0, 20 degrees C system temperature, 100 min ultrasonic time and 50 mL total volume were adopted, the satisfactory degradation ratio and rate were obtained. All experiments indicate that the sonocatalytic method using composite TiO2/ZnO powder may be a more advisable choice for the treatments of non- or low-transparent organic wastewaters in future.

  15. [Study on anti-coagulant property of radio frequency sputtering nano-sized TiO2 thin films].

    PubMed

    Tang, Xiaoshan; Li, Da

    2010-12-01

    Nano-TiO2 thin films were prepared by Radio frequency (RF) sputtering on pyrolytic carbon substrates. The influences of sputtering power on the structure and the surface morphology of TiO2 thin films were investigated by X-ray diffraction (XRD), and by scanning electron microscopy (SEM). The results show that the TiO2 films change to anatase through the optimum of sputtering power. The mean diameter of nano-particle is about 30 nm. The anti-coagulant property of TiO2 thin films was observed through platelet adhesion in vitro. The result of experiment reveals the amount of thrombus on the TiO2 thin films being much less than that on the pyrolytic carbon. It also indicates that the RF sputtering Nano-sized TiO2 thin films will be a new kind of promising materials applied to artificial heart valve and endovascular stent.

  16. Long- and short-term exposure to PM2.5 and mortality: using novel exposure models.

    PubMed

    Kloog, Itai; Ridgway, Bill; Koutrakis, Petros; Coull, Brent A; Schwartz, Joel D

    2013-07-01

    Many studies have reported associations between ambient particulate matter (PM) and adverse health effects, focused on either short-term (acute) or long-term (chronic) PM exposures. For chronic effects, the studied cohorts have rarely been representative of the population. We present a novel exposure model combining satellite aerosol optical depth and land-use data to investigate both the long- and short-term effects of PM2.5 exposures on population mortality in Massachusetts, United States, for the years 2000-2008. All deaths were geocoded. We performed two separate analyses: a time-series analysis (for short-term exposure) where counts in each geographic grid cell were regressed against cell-specific short-term PM2.5 exposure, temperature, socioeconomic data, lung cancer rates (as a surrogate for smoking), and a spline of time (to control for season and trends). In addition, for long-term exposure, we performed a relative incidence analysis using two long-term exposure metrics: regional 10 × 10 km PM2.5 predictions and local deviations from the cell average based on land use within 50 m of the residence. We tested whether these predicted the proportion of deaths from PM-related causes (cardiovascular and respiratory diseases). For short-term exposure, we found that for every 10-µg/m increase in PM 2.5 exposure there was a 2.8% increase in PM-related mortality (95% confidence interval [CI] = 2.0-3.5). For the long-term exposure at the grid cell level, we found an odds ratio (OR) for every 10-µg/m increase in long-term PM2.5 exposure of 1.6 (CI = 1.5-1.8) for particle-related diseases. Local PM2.5 had an OR of 1.4 (CI = 1.3-1.5), which was independent of and additive to the grid cell effect. We have developed a novel PM2.5 exposure model based on remote sensing data to assess both short- and long-term human exposures. Our approach allows us to gain spatial resolution in acute effects and an assessment of long-term effects in the entire population rather than a

  17. Sonocatalytic degradation of humic acid by N-doped TiO2 nano-particle in aqueous solution.

    PubMed

    Kamani, Hossein; Nasseri, Simin; Khoobi, Mehdi; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein

    2016-01-01

    Un-doped and N-doped TiO2 nano-particles with different nitrogen contents were successfully synthesized by a simple sol-gel method, and were characterized by X-ray diffraction, field emission scanning electron microscopy, Energy dispersive X-ray analysis and UV-visible diffuse reflectance spectra techniques. Then enhancement of sonocatalytic degradation of humic acid by un-doped and N-doped TiO2 nano-particles in aqueous environment was investigated. The effects of various parameters such as initial concentration of humic acid, N-doping, and the degradation kinetics were investigated. The results of characterization techniques affirmed that the synthesis of un-doped and N-doped TiO2 nano-particles was successful. Degradation of humic acid by using different nano-particles obeyed the first-order kinetic. Among various nano-particles, N-doped TiO2 with molar doping ratio of 6 % and band gap of 2.92 eV, exhibited the highest sonocatalytic degradation with an apparent-first-order rate constant of 1.56 × 10(-2) min(-1). The high degradation rate was associated with the lower band gap energy and well-formed anatase phase. The addition of nano-catalysts could enhance the degradation efficiency of humic acid as well as N-doped TiO2 with a molar ratio of 6 %N/Ti was found the best nano-catalyst among the investigated catalysts. The sonocatalytic degradation with nitrogen doped semiconductors could be a suitable oxidation process for removal of refractory pollutants such as humic acid from aqueous solution.

  18. Photocatalytic properties of nano-structured TiO2-carbon films obtained by means of electrophoretic deposition.

    PubMed

    Peralta-Hernández, J M; Manríquez, J; Meas-Vong, Y; Rodríguez, Francisco J; Chapman, Thomas W; Maldonado, Manuel I; Godínez, Luis A

    2007-08-17

    Recent studies have shown that the light-absorption and photocatalytic efficiencies of TiO2 can be improved by coupling TiO2 nano-particles with nonmetallic dopants, such as carbon. In this paper, we describe the electrophoretic preparation of a novel TiO2-carbon nano-composite photocatalyst on a glass indium thin oxide (ITO) substrate. The objective is to take better advantage of the (e-/h+) pair generated by photoexcitation of semiconducting TiO2 particles. The transfer of electrons (e-) into adjacent carbon nano-particles promotes reduction of oxygen to produce hydrogen peroxide (H2O2) which, in the presence of iron ions, can subsequently form hydroxyl radicals (*OH) via the Fenton reaction. At the same time, *OH is formed from water by the (h+) holes in the TiO2. Thus, the *OH oxidant is produced by two routes. The efficiency of this photolytic-Fenton process was tested with a model organic compound, Orange-II (OG-II) azo dye, which is employed in the textile industry.

  19. Comparative study of neurologic effects of nano-TiO2 versus SiO2 after direct intracerebral exposure in mice

    NASA Astrophysics Data System (ADS)

    Balvay, A.; Thieriet, N.; Lakhdar, L.; Bencsik, A.

    2013-04-01

    Titanium and silicon dioxide nanoparticles (TiO2 and SiO2 NPs) are now in daily use in many commercial products of which food, sunscreens, toothpastes or cosmetics. However, their effects on human body, especially on the central nervous system, are still unclear. The aim of this study was to determine whether direct exposition of the brain to TiO2 and SiO2 NPs results in alternations in nervous system function. C57Bl6 mice were exposed to 5 and 10 μg doses of TiO2 and SiO2 NPs through intracerebroventricular administration using a stereotaxic approach. Then the neurologic effects were investigated using motor performance parameters, measured on a rotarod at 20 rpm or at an accelerating rod (from 4 to 40 rpm). Before and after injection, motor activity is registered individually for each mouse exposed, once a week, for 8 weeks. Besides, a group of 3 mice is culled at 1, 2, 3, 4 and 8 weeks after exposure in order to study the time dependant effect on the histopathology of the brain (gliosis, inflammatory process...). Both rotarod tests (accelerating and at 20 rpm) showed that TiO2 and SiO2 NPs exposure could significantly impair the motor performances, even several weeks after initial acute exposure. The first examination of the brain histopathology revealed microglial activation. As it appeared to grow throughout the brain in a time dependant manner this suggests the induction of a long lasting neuroinflammation. These primary findings indicated that exposure to TiO2 and SiO2 NPs could possibly impair the locomotor ability and this deficit may be possibly attributed at least to an inflammatory process maintained till 8 weeks after exposure in the mouse brain. To fully investigate the neurotoxicological consequences of TiO2 and SiO2 NPs exposure, brain contents in these NPs will be also investigated as well as other alterations like neurotransmitter levels. These preliminary data already underline the necessity of more in vivo studies to better characterize TiO2

  20. Migration of Ag- and TiO2-(Nano)particles from textiles into artificial sweat under physical stress: experiments and exposure modeling.

    PubMed

    von Goetz, N; Lorenz, C; Windler, L; Nowack, B; Heuberger, M; Hungerbühler, K

    2013-09-03

    Engineered nanoparticles (ENP) are increasingly used to functionalize textiles taking advantage, e.g., of the antimicrobial activity of silver (Ag)-ENP or the UV-absorption of titania (TiO2)-ENP. Mobilization and migration of ENPs from the textile into human sweat can result in dermal exposure to these nanoobjects and their aggregates and agglomerates (NOAA). In this study we assessed exposure to NOAA migrating from commercially available textiles to artificial sweat by an experimental setup that simulates wear-and-tear during physical activity. By combining physical stress with incubation in alkaline and acidic artificial sweat solutions we experimentally realized a worst case scenario for wearing functionalized textiles during sports activities. This experimental approach is not limited to NOAA, but can be used for any other textile additive. Out of four investigated textiles, one T-shirt and one pair of trousers with claimed antimicrobial properties were found to release Ag <450 nm in detectable amounts (23-74 μg/g/L). Textiles containing TiO2 for UV protection did not release significant amounts of TiO2 <450 nm, but the antimicrobial T-shirt released both TiO2 and Ag <450 nm. The silver was present in dissolved and particulate form, whereas TiO2 was mainly found as particulate. On the basis of our experimental results we calculated external dermal exposure to Ag and TiO2 for male and female adults per use. For silver, maximal amounts of 17.1 and 8.2 μg/kg body weight were calculated for total and particulate Ag <450 nm, respectively. For TiO2, the exposure levels amount to maximal 11.6 μg/kg body weight for total (mainly particulate) TiO2. In comparison with other human exposure pathways, dermal exposure to NOAA from textiles can be considered comparably minor for TiO2-NOAA, but not for Ag-NOAA.

  1. Application of nitrogen-doped TiO2 nano-tubes in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Tran, Vy Anh; Truong, Trieu Thinh; Phan, Thu Anh Pham; Nguyen, Trang Ngoc; Huynh, Tuan Van; Agresti, Antonio; Pescetelli, Sara; Le, Tien Khoa; Di Carlo, Aldo; Lund, Torben; Le, So-Nhu; Nguyen, Phuong Tuyet

    2017-03-01

    Our research aimed to improve the overall energy conversion efficiency of DSCs by applying nitrogen-doped TiO2 nano-tubes (N-TNT) for the preparation of DSCs photo-anodes. The none-doped TiO2 nano-tubes (TNTs) were synthesized by alkaline hydrothermal treatment of Degussa P25 TiO2 particles in 10 M NaOH. The nano-tubes were N-doped by reflux in various concentrations of NH4NO3. The effects of nitrogen doping on the structure, morphology, and crystallography of N-TNT were analyzed by transmission electron microscopy (TEM), infrared spectroscopy (IR), Raman spectroscopy, and X-ray photoelectron spectra (XPS). DSCs fabricated with doped N-TNT and TNT was characterized by J-V measurements. Results showed that nitrogen doping significantly enhanced the efficiency of N-TNT cells, reaching the optimum value (η = 7.36%) with 2 M nitrogen dopant, compared to η = 4.75% of TNT cells. The high efficiency of the N-TNT cells was attributed to increased current density due to the reduction of dark current in the DSCs.

  2. Murine liver damage caused by exposure to nano-titanium dioxide

    NASA Astrophysics Data System (ADS)

    Hong, Jie; Zhang, Yu-Qing

    2016-03-01

    Due to its unique physiochemical properties, nano-titanium dioxide (nano-TiO2) is widely used in all aspects of people’s daily lives, bringing it into increasing contact with humans. Thus, this material’s security issues for humans have become a heavily researched subject. Nano-TiO2 can enter the body through the mouth, skin, respiratory tract or in other ways, after which it enters the blood circulation and is deposited in the liver, changing biochemical indicators and causing liver inflammation. Meanwhile, the light sensitivity of these nanoparticles allows them to become media-generating reactive oxygen species (ROS), causing an imbalance between oxidation and anti-oxidation that leads to oxidative stress and liver damage. Nano-TiO2 can be transported into cells via phagocytosis, where the nanoparticles bind to the mitochondrial membrane, resulting in the disintegration of the membrane and the electron transport chain within the mitochondria. Thus, more ROS are produced. Nano-TiO2 can also enter the nucleus, where it can directly embed into or indirectly affect DNA, thereby causing DNA breakage or affecting gene expression. These effects include increased mRNA and protein expression levels of inflammation-related factors and decreased mRNA and protein expression levels of IκB and IL-2, resulting in inflammation. Long-term inflammation of the liver causes HSC cell activation, and extracellular matrix (ECM) deposition is promoted by multiple signalling pathways, resulting in liver fibrosis. In this paper, the latest progress on murine liver injury induced by environmental TiO2 is systematically described. The toxicity of nano-TiO2 also depends on size, exposure time, surface properties, dosage, administration route, and its surface modification. Therefore, its toxic effects in humans should be studied in greater depth. This paper also provides useful reference information regarding the safe use of nano-TiO2 in the future.

  3. Oxidative stress mediated toxicity of TiO2 nanoparticles after a concentration and time dependent exposure of the aquatic macrophyte Hydrilla verticillata.

    PubMed

    Spengler, Annette; Wanninger, Lena; Pflugmacher, Stephan

    2017-09-01

    The present study focused on oxidative stress effects in the aquatic macrophyte Hydrilla verticillata after exposure to titanium dioxide nanoparticles (TiO 2 -NPs). Experiments were conducted with different TiO 2 -NPs and concentrations (0.1 mg/L and 10 mg/L) in a time-dependent manner (0 h, 24 h, 48 h, 96 h, 168 h). To assess various levels of the oxidative stress response in H. verticillata, the level of hydrogen peroxide (H 2 O 2 ), the ratio of reduced to oxidized glutathione (GSH/GSSG), and activities of the antioxidative enzymes catalase (CAT) and glutathione reductase (GR) were evaluated. Study results imply oxidative stress effects after TiO 2 -NP exposure as adaptations in plant metabolism became apparent to counteract increased ROS formation. All TiO 2 -NPs caused elevated activities of the enzymes CAT and GR. Moreover, decreased ratios of GSH/GSSG indicated an activation of GSH-dependent pathways counteracting ROS formation. Plants exposed to a bulk-sized control revealed a size-dependent influence on the antioxidative stress response. As H 2 O 2 level increases were solely detected after exposure to 10 mg/L TiO 2 -NPs and nano-exposed plants showed normalization in its antioxidative stress response after 168h of exposure, it can be suggested that macrophytes are able to cope with currently predicted low-level exposures to TiO 2 -NPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Amorphisation and recrystallisation study of lithium intercalation into TiO2 nano-architecture.

    NASA Astrophysics Data System (ADS)

    Matshaba, M. G.; Sayle, D. C.; Sayle, T. X. T.; Ngoepe, P. E.

    2017-02-01

    Titanium dioxide is playing an increasingly significant role in easing environmental and energy concerns. Its rich variety of polymorphic crystal structures has facilitated a wide range of applications such as photo-catalysis, photo-splitting of water, photoelectrochromic devices, insulators in metal oxide, semiconductors devices, dye sensitized solar cells (DSSCs) (energy conversions), rechargeable lithium batteries (electrochemical storage). The complex structural aspects in nano TiO2, are elucidated by microscopic visualization and quantification of the microstructure for electrode materials, since cell performance and various aging mechanisms depend strongly on the appearance and changes in the microstructure. Recent studies on MnO2 have demonstrated that amorphisation and recrystallisation simulation method can adequately generate various nanostructures, for Li-ion battery compounds. The method was also previously employed to produce nano-TiO2. In the current study, the approach is used to study lithiated nanoporous structure for TiO2 which have been extensively studied experimentally, as mentioned above. Molecular graphic images showing microstructural features, including voids and channels have accommodated lithium’s during lithiation and delithiation. Preliminary lithiation of TiO2 will be considered.

  5. Facile synthesis of flake-like TiO2/C nano-composites for photocatalytic H2 evolution under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Yan, Baolin; Zhou, Juan; Liang, Xiaoyu; Song, Kainan; Su, Xintai

    2017-01-01

    The production of H2 by photocatalytic water splitting has become a promising approach for clean, economical, and renewable evolution of H2 by using solar energy. In spite of tremendous efforts, the present challenge for materials scientists is to build a highly active photocatalytic system with high efficiency and low cost. Here we report a facile method for the preparation of TiO2/C nano-flakes, which was used as an efficient visible-light photocatalyst for H2 evolution. This composite material was prepared by using a phase-transfer strategy combined with salt-template calcination treatment. The results showed that anatase TiO2 nanoparticles with the diameter of ∼10 nm were uniformly dispersed on the carbon nano-flakes. In addition, the samples prepared at 600 °C (denoted as T600) endowed a larger surface area of 196 m2 g-1 and higher light absorption, resulting in enhanced photocatalytic activity. Further, the T600 product reached a high H2 production rate of 57.2 μmol h-1 under visible-light irradiation. This unusual photocatalytic activity arose from the positive synergetic effect between the TiO2 and carbon in this hybrid catalyst. This work highlights the potential of TiO2/C nano-flakes in the field of photocatalytic H2 evolution under visible-light irradiation.

  6. Sol-gel-Derived nano-sized double layer anti-reflection coatings (SiO2/TiO2) for low-cost solar cell fabrication.

    PubMed

    Lee, Seung Jun; Hur, Man Gyu; Yoon, Dae Ho

    2013-11-01

    We investigate nano-sized double layer anti-reflection coatings (ARCs) using a TiO2 and SiO2 sol-gel solution process for mono-crystalline silicon solar cells. The process can be easily adapted for spraying sol-gel coatings to reduce manufacturing cost. The spray-coated SiO2/TiO2 nano-sized double layer ARCs were deposited on mono-crystalline silicon solar cells, and they showed good optical properties. The spray coating process is a lower-cost fabrication process for large-scale coating than vacuum deposition processes such as PECVD. The measured average optical reflectance (300-1200 nm) was about approximately 8% for SiO2/TiO2 nano-sized double layer ARCs. The electrical parameters of a mono-crystalline silicon solar cell and reflection losses show that the SiO2/TiO2 stacks can improve cell efficiency by 0.2% compared to a non-coated mono-crystalline silicon solar cell. In the results, good correlation between theoretical and experimental data was obtained. We expect that the sol-gel spray-coated mono-crystalline silicon solar cells have high potential for low-cost solar cell fabrication.

  7. The Effect of TiO2 Doped Photocatalytic Nano-Additives on the Hydration and Microstructure of Portland and High Alumina Cements

    PubMed Central

    Pérez-Nicolás, María; Alvarez, José Ignacio

    2017-01-01

    Mortars with two different binders (Portland cement (PC) and high alumina cement (HAC)) were modified upon the bulk incorporation of nano-structured photocatalytic additives (bare TiO2, and TiO2 doped with either iron (Fe-TiO2) or vanadium (V-TiO2)). Plastic and hardened state properties of these mortars were assessed in order to study the influence of these nano-additives. Water demand was increased, slightly by bare TiO2 and Fe-TiO2, and strongly by V-TiO2, in agreement with the reduction of the particle size and the tendency to agglomerate. Isothermal calorimetry showed that hydration of the cementitious matrices was accelerated due to additional nucleation sites offered by the nano-additives. TiO2 and doped TiO2 did not show pozzolanic reactivity in the binding systems. Changes in the pore size distribution, mainly the filler effect of the nano-additives, accounted for the increase in compressive strengths measured for HAC mortars. A complex microstructure was seen in calcium aluminate cement mortars, strongly dependent on the curing conditions. Fe-TiO2 was found to be homogeneously distributed whereas the tendency of V-TiO2 to agglomerate was evidenced by elemental distribution maps. Water absorption capacity was not affected by the nano-additive incorporation in HAC mortars, which is a favourable feature for the application of these mortars. PMID:29036917

  8. Oxidative stress response of the aquatic macrophyte Hydrilla verticillata exposed to TiO2 nanoparticles.

    PubMed

    Okupnik, Annette; Pflugmacher, Stephan

    2016-11-01

    The present study investigated the effects of titanium dioxide nanoparticles (TiO 2 -NPs) on the oxidative stress response in Hydrilla verticillata. Macrophytes were exposed to different concentrations of TiO 2 -NPs (0 mg/L, 0.01 mg/L, 0.1 mg/L, 1 mg/L, and 10 mg/L) for 24 h, based on currently predicted levels of nano-TiO 2 in surface waters. In addition, TiO 2 -NPs with varying crystalline status were used to assess the potential influence of crystalline phases on oxidative stress responses. The level of hydrogen peroxide (H 2 O 2 ), reduced and oxidized glutathione (GSH and GSSG), and activities of the antioxidative enzymes peroxidase (POD), catalase (CAT), and glutathione reductase (GR) were measured and compared with a bulk counterpart. Although POD was not considered to be active, the results imply an activation of the enzymatic defense system, because increased CAT and GR activities were observed. Exposure to bulk TiO 2 revealed lower enzyme activities at all exposure concentrations, suggesting a nano-specific influence on the antioxidative defense mechanisms in H. verticillata. Moreover, all TiO 2 -NP concentrations resulted in a decreased GSH/GSSG ratio, indicating high GSH-dependent metabolic activity to protect against the destructive effects of reactive oxygen species (ROS) generated during nano-TiO 2 exposure. As the level of H 2 O 2 was solely elevated after exposure to 10 mg/L of P25, it appears plausible that the adaptive metabolic mechanisms of H. verticillata are able to cope with environmentally relevant concentrations of TiO 2 -NPs. Environ Toxicol Chem 2016;35:2859-2866. © 2016 SETAC. © 2016 SETAC.

  9. Exposure to TiO2 nanoparticles increases Staphylococcusaureusinfection of HeLa cells

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Wei, Ming-Tzo; Walker, Stephen. G.; Wang, Hong Zhan; Gondon, Chris; Brink, Peter; Guterman, Shoshana; Zawacki, Emma; Applebaum, Eliana; Rafailovich, Miriam; Ou-Yang, H. Daniel; Mironava, Tatsiana

    TiO2 is one of the most common nanoparticles in industry from food additives to energy generation. Even though TiO2 is also used as an anti-bacterial agent in combination with UV, we found that, in the absence of UV, exposure of HeLa cells to TiO2 nanoparticles largely increased their risk of bacterial invasion. HeLa cells cultured with low dosage rutile and anatase TiO2 nanoparticles (0.1 mg/ml) for 24 hrs prior to exposure to bacteria had 350% and 250% respectively more bacteria infected per cell. The increase was attributed to increased LDH leakage, and changes in the mechanical response of the cell membrane. On the other hand, macrophages exposed to TiO2 particles ingested 40% fewer bacteria, further increasing the risk of infection. In combination, these two factors raise serious concerns regarding the impact of exposure to TiO2 nanoparticles on the ability of organisms to resist bacterial infection.

  10. Hierarchical TiO2/C micro-nano spheres as high-performance anode materials for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Xiao; Zhang, Zhihui; Tian, Jianliya; Xu, Beibei; Ping, Qiushi; Wang, Baofeng

    The hierarchical TiO2/C microspheres were obtained via a facile method of in-situ hydrolysis and spray drying. Antase TiO2 nanoparticles were coherent to microspheres TiO2/C due to the pyrolysis of carbon source (PVP). Besides, the favorable electron transfer from carbon to TiO2 improves the electronic conductivity of TiO2 via the presence of Ti-C bond within TiO2/C composite. Charge-discharge tests show that TiO2/C microspheres delivered a good rate capability of 106.1mAhg‑1 at the high current density of 5Ag‑1 and an enhanced cyclic capacity. The superior electrochemical performance could be ascribed to the porous micro-nano structure, smaller crystal size and increased conductivity. The synthesis of TiO2/C microspheres is easy to scale up for satisfying high-performance sodium storage.

  11. Molecular mechanism of composite nanoparticles TiO2/WO3/GO-induced activity changes of catalase and superoxide dismutase.

    PubMed

    Hao, Xiaoyan; Zhang, Li; Zheng, Xin; Zong, Wansong; Liu, Chunguang

    2018-06-21

    More and more composite nano-photocatalysts were developed by doping, modifying and coupling, which expanded its application but resulted in pollution due to the unrecyclability. Composite photocatalyst TiO 2 /WO 3 /GO, as a model, was evaluated by exploring the molecular mechanism of TiO 2 /WO 3 /GO-induced activity changes of catalase (CAT) and superoxide dismutase (SOD). Results showed that TiO 2 /WO 3 /GO could lead to conformational and functional changes of CAT and SOD. The activity of both CAT and SOD increased depending on the exposure dose of TiO 2 /WO 3 /GO. The change skeleton structure and increase of α-helix content of CAT and SOD were certificated with UV-vis absorption and CD measurements. Intrinsic fluorescence of CAT and SOD were quenched by dynamic quenching. Micro-environment of amino acid residues of CAT and SOD became more hydrophilic, and the microenvironment of Trp residues was more vulnerable than Tyr residues with TiO 2 /WO 3 /GO exposure. In addition, inhibitory comparison between GO, TiO 2 , WO 3 and TiO 2 /WO 3 /GO was made, results showed that composite nano-photocatalyst exhibited different inhibitory compared to their parent nano-particles. Copyright © 2018. Published by Elsevier B.V.

  12. Micro-size spherical TiO2(B) secondary particles as anode materials for high-power and long-life lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Takami, Norio; Harada, Yasuhiro; Iwasaki, Takuya; Hoshina, Keigo; Yoshida, Yorikazu

    2015-01-01

    Electrochemical properties of micro-size spherical TiO2(B) secondary particles have been investigated in order to develop TiO2(B) anodes for lithium-ion batteries with high-power and long-life performance. The spherical TiO2(B) electrodes with a small amount of a carbon conductor additive had a high electrode density of 2.2 g cm-3 and a volumetric reversible capacity of 475 mAh cm-3 comparable to that of graphite electrodes. Compared with nano-size needle-like TiO2(B) electrodes, the spherical TiO2(B) electrodes exhibited higher-rate discharge capability and longer-cycle life performance. The impedance of the TiO2(B)/electrolyte interface model indicated that the charge transfer resistance Rc and the passivating film resistance Rf of the spherical TiO2(B) were much smaller than those of the needle-like one. The high-rate discharge and the long-cycle performance of the spherical TiO2(B) electrode are attributed to the superior electronic connective property and Rc and Rf values smaller than those of the needle-like one. Lithium-ion cells using the spherical TiO2(B) anodes and LiNi0.8Co0.1Mn0.1O2 cathode with a capacity of 2.8 Ah exhibited a high energy density of 100 Wh kg-1, a high output power density of 1800 W kg-1 for 10 s pulse, and a long cycle life of more than 3000 cycles.

  13. Engendering Long-Term Air and Light Stability of a TiO2-Supported Porphyrinic Dye via Atomic Layer Deposition.

    PubMed

    Hoffeditz, William L; Son, Ho-Jin; Pellin, Michael J; Farha, Omar K; Hupp, Joseph T

    2016-12-21

    Organic and porphyrin-based chromophores are prevalent in liquid-junction photovoltaic and photocatalytic solar-cell chemistry; however, their long-term air and light instability may limit their practicality in real world technologies. Here, we describe the protection of a zinc porphyrin dye, adsorbed on nanoparticulate TiO 2 , from air and light degradation by a protective coating of alumina grown with a previously developed post-treatment atomic layer deposition (ALD) technique. The protective Al 2 O 3 ALD layer is deposited using dimethylaluminum isopropoxide as an Al source; in contrast to the ubiquitous ALD precursor trimethylaluminum, dimethylaluminum isopropoxide does not degrade the zinc porphyrin dye, as confirmed by UV-vis measurements. The growth of this protective ALD layer around the dye can be monitored by an in-reactor quartz crystal microbalance (QCM). Furthermore, greater than 80% of porphyrin light absorption is retained over ∼1 month of exposure to air and light when the protective coating is present, whereas almost complete loss of porphyrin absorption is observed in less than 2 days in the absence of the ALD protective layer. Applying the Al 2 O 3 post-treatment technique to the TiO 2 -adsorbed dye allows the dye to remain in electronic contact with both the semiconductor surface and a surrounding electrolyte solution, the combination of which makes this technique promising for numerous other electrochemical photovoltaic and photocatalytic applications, especially those involving the dye-sensitized evolution of oxygen.

  14. A polymer solution technique for the synthesis of nano-sized Li 2TiO 3 ceramic breeder powders

    NASA Astrophysics Data System (ADS)

    Jung, Choong-Hwan; Lee, Sang Jin; Kriven, Waltraud M.; Park, Ji-Yeon; Ryu, Woo-Seog

    2008-02-01

    Nano-sized Li 2TiO 3 powder was fabricated by an organic-inorganic solution route. A steric entrapment route employing ethylene glycol was used for the preparation of the nano-sized Li 2TiO 3 particles. Titanium isopropoxide and lithium nitrate were dissolved in liquid-type ethylene glycol without any precipitation. With the optimum amount of the polymer, the metal cations (Li and Ti) were dispersed in the solution and a homogeneous polymeric network was formed. The organic-inorganic precursor gels were turned to crystalline powders through an oxidation reaction during a calcination process. The dried precursor gel showed the carbon-free Li 2TiO 3 crystalline form which was observed above 400 °C. The primary particle size of the carbon-free Li 2TiO 3 was about 70 nm, and the structure of the crystallized powder was porous and agglomerated. The powder compact was densified to 92% of TD at a relatively low sintering temperature of 1100 °C for 2 h.

  15. Modeling TiO2 nanoparticle phototoxicity: The importance of chemical concentration, ultraviolet radiation intensity, and time

    EPA Science Inventory

    Toxicity of TiO2 nanoparticles (nano-TiO2) to aquatic organisms can be greatly increased upon the exposure to ultraviolet radiation (UV). This phenomenon has received some attention for pelagic species, however, investigations of nano-TiO2 phototoxicity in benthic organisms are s...

  16. Toxicity of Food-Grade TiO2 to Commensal Intestinal and Transient Food-Borne Bacteria: New Insights Using Nano-SIMS and Synchrotron UV Fluorescence Imaging.

    PubMed

    Radziwill-Bienkowska, Joanna M; Talbot, Pauline; Kamphuis, Jasper B J; Robert, Véronique; Cartier, Christel; Fourquaux, Isabelle; Lentzen, Esther; Audinot, Jean-Nicolas; Jamme, Frédéric; Réfrégiers, Matthieu; Bardowski, Jacek K; Langella, Philippe; Kowalczyk, Magdalena; Houdeau, Eric; Thomas, Muriel; Mercier-Bonin, Muriel

    2018-01-01

    Titanium dioxide (TiO 2 ) is commonly used as a food additive (E171 in the EU) for its whitening and opacifying properties. However, a risk of intestinal barrier disruption, including dysbiosis of the gut microbiota, is increasingly suspected because of the presence of a nano-sized fraction in this additive. We hypothesized that food-grade E171 and Aeroxyde P25 (identical to the NM-105 OECD reference nanomaterial in the European Union Joint Research Centre) interact with both commensal intestinal bacteria and transient food-borne bacteria under non-UV-irradiated conditions. Based on differences in their physicochemical properties, we expect a difference in their respective effects. To test these hypotheses, we chose a panel of eight Gram-positive/Gram-negative bacterial strains, isolated from different biotopes and belonging to the species Escherichia coli , Lactobacillus rhamnosus , Lactococcus lactis (subsp. lactis and cremoris ), Streptococcus thermophilus , and Lactobacillus sakei . Bacterial cells were exposed to food-grade E171 vs. P25 in vitro and the interactions were explored with innovative (nano)imaging methods. The ability of bacteria to trap TiO 2 was demonstrated using synchrotron UV fluorescence imaging with single cell resolution. Subsequent alterations in the growth profiles were shown, notably for the transient food-borne L. lactis and the commensal intestinal E. coli in contact with food-grade TiO 2 . However, for both species, the reduction in cell cultivability remained moderate, and the morphological and ultrastructural damages, observed with electron microscopy, were restricted to a small number of cells. E. coli exposed to food-grade TiO 2 showed some internalization of TiO 2 (7% of cells), observed with high-resolution nano-secondary ion mass spectrometry (Nano-SIMS) chemical imaging. Taken together, these data show that E171 may be trapped by commensal and transient food-borne bacteria within the gut. In return, it may induce some

  17. Toxicity of Food-Grade TiO2 to Commensal Intestinal and Transient Food-Borne Bacteria: New Insights Using Nano-SIMS and Synchrotron UV Fluorescence Imaging

    PubMed Central

    Radziwill-Bienkowska, Joanna M.; Talbot, Pauline; Kamphuis, Jasper B. J.; Robert, Véronique; Cartier, Christel; Fourquaux, Isabelle; Lentzen, Esther; Audinot, Jean-Nicolas; Jamme, Frédéric; Réfrégiers, Matthieu; Bardowski, Jacek K.; Langella, Philippe; Kowalczyk, Magdalena; Houdeau, Eric; Thomas, Muriel; Mercier-Bonin, Muriel

    2018-01-01

    Titanium dioxide (TiO2) is commonly used as a food additive (E171 in the EU) for its whitening and opacifying properties. However, a risk of intestinal barrier disruption, including dysbiosis of the gut microbiota, is increasingly suspected because of the presence of a nano-sized fraction in this additive. We hypothesized that food-grade E171 and Aeroxyde P25 (identical to the NM-105 OECD reference nanomaterial in the European Union Joint Research Centre) interact with both commensal intestinal bacteria and transient food-borne bacteria under non-UV-irradiated conditions. Based on differences in their physicochemical properties, we expect a difference in their respective effects. To test these hypotheses, we chose a panel of eight Gram-positive/Gram-negative bacterial strains, isolated from different biotopes and belonging to the species Escherichia coli, Lactobacillus rhamnosus, Lactococcus lactis (subsp. lactis and cremoris), Streptococcus thermophilus, and Lactobacillus sakei. Bacterial cells were exposed to food-grade E171 vs. P25 in vitro and the interactions were explored with innovative (nano)imaging methods. The ability of bacteria to trap TiO2 was demonstrated using synchrotron UV fluorescence imaging with single cell resolution. Subsequent alterations in the growth profiles were shown, notably for the transient food-borne L. lactis and the commensal intestinal E. coli in contact with food-grade TiO2. However, for both species, the reduction in cell cultivability remained moderate, and the morphological and ultrastructural damages, observed with electron microscopy, were restricted to a small number of cells. E. coli exposed to food-grade TiO2 showed some internalization of TiO2 (7% of cells), observed with high-resolution nano-secondary ion mass spectrometry (Nano-SIMS) chemical imaging. Taken together, these data show that E171 may be trapped by commensal and transient food-borne bacteria within the gut. In return, it may induce some physiological

  18. Comparative study of three magnetic nano-particles (FeSO4, FeSO4/SiO2, FeSO4/SiO2/TiO2) in plasmid DNA extraction.

    PubMed

    Rahnama, H; Sattarzadeh, A; Kazemi, F; Ahmadi, N; Sanjarian, F; Zand, Z

    2016-11-15

    Recent updates on Magnetic Nano-Particles (MNPs) based separation of nucleic acids have received more attention due to their easy manipulation, simplicity, ease of automation and cost-effectiveness. It has been indicated that DNA molecules absorb on solid surfaces via hydrogen-bonding, and hydrophobic and electrostatic interactions. These properties highly depend on the surface condition of the solid support. Therefore, surface modification of MNPs may enhance their functionality and specification. In the present study, we functionalized Fe3O4 nano-particle surface utilizing SiO2 and TiO2 layer as Fe3O4/SiO2 and Fe3O4/SiO2/TiO2 and then compare their functionality in the adsorption of plasmid DNA molecules with the naked Fe3O4 nano-particles. The result obtained showed that the purity and amount of DNA extracted by Fe3O4 coated by SiO2 or SiO2/TiO2 were higher than the naked Fe3O4 nano-particles. Furthermore, we obtained pH 8 and 1.5 M NaCl as an optimal condition for desorption of DNA from MNPs. The result further showed that, 0.2 mg nano-particle and 10 min at 55 °C are the optimal conditions for DNA desorption from nano-particles. In conclusion, we recommended Fe3O4/SiO2/TiO2 as a new MNP for separation of DNA molecules from biological sources. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Photocatalytic activity of self-assembled porous TiO2 nano-columns array fabricated by oblique angle sputter deposition

    NASA Astrophysics Data System (ADS)

    Shi, Pengjun; Li, Xibo; Zhang, Qiuju; Yi, Zao; Luo, Jiangshan

    2018-04-01

    A well-separated and oriented TiO2 nano-columns arrays with porous structure were fabricated by the oblique angle sputter deposition technique and subsequently annealing at 450 °C in Ar/O2 mixed atmosphere. The deposited substrate was firstly modified by a template of self-assembled close-packed arrays of 500 nm-diameter silica (SiO2) spheres. Scanning electronic microscopic (SEM) images show that the porous columnar nanostructure is formed as a result of the geometric shadowing effect and surface diffusion of the adatoms in oblique angle deposition (OAD). X-ray diffraction (XRD) measurements reveal that the physically OAD film with annealing treatment are generally mixed phase of rutile and anatase TiO2 polymorphic forms. The morphology induced absorbance and band gap tuning by different substrates was demonstrated by the UV–vis spectroscopy. The well-separated one-dimensional (1D) nano-columns array with specific large porous surface area is beneficial for charge separation in photocatalytic degradation. Compared with compact thin film, such self-assembled porous TiO2 nano-columns array fabricated by oblique angle sputter deposition performed an enhanced visible light induced photocatalytic activity by decomposing methyl orange (MO) solution. The well-designed periodic array-structured porous TiO2 films by using modified patterned substrates has been demonstrated significantly increased absorption edge in the UV-visible light region with a narrower optical band gap, which are expected to be favorable for application in photovoltaic, lithium-ion insertion and photocatalytic, etc.

  20. Effects of Structural Properties of Electrospun TiO2 Nano-fiber Meshes on their Osteogenic Potential

    PubMed Central

    Wang, Xiaokun; Gittens, Rolando A.; Song, Rosemary; Tannenbaum, Rina; Olivares-Navarrete, Rene; Schwartz, Zvi; Chen, Haifeng; Boyan, Barbara D.

    2011-01-01

    Ideal outcomes in the field of tissue engineering and regenerative medicine involve biomaterials that can enhance cell differentiation and production of local factors for natural tissue regeneration without the use of systemic drugs. Biomaterials typically used in tissue engineering applications include polymeric scaffolds that mimic the 3-D structural environment of the native tissue, but these are often functionalized with proteins or small peptides to improve their biological performance. For bone applications, titanium (Ti) implants, or more appropriately the titania (TiO2) passive oxide layer formed on their surface, have been shown to enhance osteoblast differentiation in vitro and to promote osseointegration in vivo. In this study we evaluated the effect on osteoblast differentiation of pure TiO2 nano-fiber meshes with different surface micro-roughness and nano-fiber diameters, prepared by the electrospinning method. MG63 cells were seeded on TiO2 meshes, and cell number, differentiation markers and local factor production were analyzed. The results showed that cells grew throughout the entire surfaces and with similar morphology in all groups. Cell number was sensitive to surface micro-roughness, whereas cell differentiation and local factor production was regulated by both surface roughness and nano-fiber diameter. These results indicate that scaffold structural cues alone can be used to drive cell differentiation and create an osteogenic environment without the use of exogenous factors. PMID:22075122

  1. Rapid synthesis of rutile TiO2 nano-flowers by dealloying Cu60Ti30Y10 metallic glasses

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Pan, Ye; Wu, Shikai; Zhang, Enming; Dai, Weiji

    2018-01-01

    The 3D nanostructure rutile TiO2 photocatalyst was rapidly synthesized by dealloying method using Cu60Ti30Y10 amorphous ribbons as precursors. The preparation period was kept down to just 3 h, which is much shorter than those of the samples by dealloying Cu60Ti30Al10, Cu70Ti30 and Cu60Ti30Sn10. The synthesized sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). XRD and XPS reveal the successful synthesis of rutile TiO2. The SEM and TEM images show that the synthesized rutile TiO2 nano-material presents homogeneous distributed 3D nanoflowers structure, which is composed of large quantities of fine rice-like nanorods (40-150 nm in diameter and 100-250 nm in length). BET specific surface areas of the samples were investigated by N2 adsorption-desorption isotherms, the fabricated rutile TiO2 exhibits very high specific surface area (194.08 m2/g). The photocatalytic activities of the samples were evaluated by degrading rhodamine B (RhB) dye (10 mg/L) under the irradiation of both simulated visible light (λ > 420 nm) and ultraviolet (UV) light (λ = 365 nm). The results show that the photocatalytic activity of rutile TiO2 prepared by dealloying Cu60Ti30Y10 amorphous ribbons is higher than those of commercial rutile and the sample synthesized by dealloying Cu70Ti30 precursors. The advantages of both short preparation period and superior photocatalytic activity suggest that Cu60Ti30Y10 metallic glasses are really a kind of perfect titanium source for rapidly fabricating high efficient TiO2 nano-materials. In addition, the influence of chemical composition of the amorphous precursors on preparation period of the rutile TiO2 nano-material was investigated from the point of view of standard electrode potentials.

  2. TiO2 micro-nano-hybrid surface to alleviate biological aging of UV-photofunctionalized titanium

    PubMed Central

    Iwasa, Fuminori; Tsukimura, Naoki; Sugita, Yoshihiko; Kanuru, Rajita Kodali; Kubo, Katsutoshi; Hasnain, Hafiz; Att, Wael; Ogawa, Takahiro

    2011-01-01

    Bioactivity and osteoconductivity of titanium degrade over time after surface processing. This time-dependent degradation is substantial and defined as the biological aging of titanium. UV treatment has shown to reactivate the aged surfaces, a process known as photofunctionalization. This study determined whether there is a difference in the behavior of biological aging for titanium with micro-nano-hybrid topography and titanium with microtopography alone, following functionalization. Titanium disks were acid etched to create micropits on the surface. Micro-nano-hybrid surfaces were created by depositioning 300-nm diameter TiO2 nodules onto the micropits using a previously established self-assembly protocol. These disks were stored for 8 weeks in the dark to allow sufficient aging, then treated with UV light for 48 hours. Rat bone marrow–derived osteoblasts were cultured on fresh disks (immediately after UV treatment), 3-day-old disks (disks stored for 3 days after UV treatment), and 7-day- old disks. The rates of cell attachment, spread, proliferation, and levels of alkaline phosphatase activity, and calcium deposition were reduced by 30%–50% on micropit surfaces, depending on the age of the titanium. In contrast, 7-day-old hybrid surfaces maintained equivalent levels of bioactivity compared with the fresh surfaces. Both micropit and micro-nano-hybrid surfaces were superhydrophilic immediately after UV treatment. However, after 7 days, the micro-nano- hybrid surfaces became hydrorepellent, while the micropit surfaces remained hydrophilic. The sustained bioactivity levels of the micro-nano-hybrid surfaces were nullified by treating these surfaces with Cl−anions. A thin TiO2 coating on the micropit surface without the formation of nanonodules did not result in the prevention or alleviation of the time-dependent decrease in biological activity. In conclusion, the micro-nano-hybrid titanium surfaces may slow the rate of time-dependent degradation of titanium

  3. TiO2 micro-nano-hybrid surface to alleviate biological aging of UV-photofunctionalized titanium.

    PubMed

    Iwasa, Fuminori; Tsukimura, Naoki; Sugita, Yoshihiko; Kanuru, Rajita Kodali; Kubo, Katsutoshi; Hasnain, Hafiz; Att, Wael; Ogawa, Takahiro

    2011-01-01

    Bioactivity and osteoconductivity of titanium degrade over time after surface processing. This time-dependent degradation is substantial and defined as the biological aging of titanium. UV treatment has shown to reactivate the aged surfaces, a process known as photofunctionalization. This study determined whether there is a difference in the behavior of biological aging for titanium with micro-nano-hybrid topography and titanium with microtopography alone, following functionalization. Titanium disks were acid etched to create micropits on the surface. Micro-nano-hybrid surfaces were created by depositioning 300-nm diameter TiO(2) nodules onto the micropits using a previously established self-assembly protocol. These disks were stored for 8 weeks in the dark to allow sufficient aging, then treated with UV light for 48 hours. Rat bone marrow-derived osteoblasts were cultured on fresh disks (immediately after UV treatment), 3-day-old disks (disks stored for 3 days after UV treatment), and 7-day- old disks. The rates of cell attachment, spread, proliferation, and levels of alkaline phosphatase activity, and calcium deposition were reduced by 30%-50% on micropit surfaces, depending on the age of the titanium. In contrast, 7-day-old hybrid surfaces maintained equivalent levels of bioactivity compared with the fresh surfaces. Both micropit and micro-nano-hybrid surfaces were superhydrophilic immediately after UV treatment. However, after 7 days, the micro-nano- hybrid surfaces became hydrorepellent, while the micropit surfaces remained hydrophilic. The sustained bioactivity levels of the micro-nano-hybrid surfaces were nullified by treating these surfaces with Cl(-)anions. A thin TiO(2) coating on the micropit surface without the formation of nanonodules did not result in the prevention or alleviation of the time-dependent decrease in biological activity. In conclusion, the micro-nano-hybrid titanium surfaces may slow the rate of time-dependent degradation of titanium

  4. Synthesis, characterization and sonocatalytic applications of nano-structured carbon based TiO2 catalysts.

    PubMed

    Choi, Jongbok; Cui, Mingcan; Lee, Yonghyeon; Kim, Jeonggwan; Yoon, Yeomin; Jang, Min; Khim, Jeehyeong

    2018-05-01

    In order to enhance sonocatalytic oxidation of a recalcitrant organic pollutant, rhodamine B (RhB), it is necessary to study the fundamental aspects of sonocatalysis. In this study, TiO 2 -incorporated nano-structured carbon (i.e., carbon nanotubes (CNTs) or graphene (GR)) composites were synthesized by coating TiO 2 on CNTs or GR of different mass percentages (0.5, 1, 5, and 10 wt%) by a facile hydrothermal method. The sonocatalytic degradation rates of RhB were examined for the effect of ultrasound (US) frequency and calcination temperature by using the prepared TiO 2 -NSC composites. Since US frequency affected the sonoluminescence (SL) intensities, it was proposed that there exists a correlation between the surface area or band-gap of the sonocatalysts and the degradation kinetic constants of RhB. In addition, the reusability of TiO 2 -GR composites was also investigated. Overall, the performance of TiO 2 -GRs prepared by the hydrothermal method was better than that of calcined TiO 2 -CNTs. Among TiO 2 -GRs, 5% GR incorporated media (TiO 2 -GR-5) showed the best performance. Interestingly, the kinetic constants of sonocatalysts prepared under hydrothermal conditions had a negative linear relationship with the band-gap energy for the corresponding media. Furthermore, the strongest SL intensity and highest degradation rates of RhB for both carbonaceous composites were observed at 500 kHz. The kinetic constants of calcined media decreased linearly as the specific area of the media decreased, while the band-gap energy could not be correlated with the kinetic constants. The GR combined TiO 2 composite might be a good sonocatalyst in wastewater treatment using ultrasound-based oxidation because of its high stability. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Germination and early plant development of 10 plant species exposed to Nano TiO2 and CeO2

    EPA Science Inventory

    Ten agronomic plant species were exposed to different concentrations of nano-TiO2 or CeO2 (0, 250, 500 and 1000 ug/l) and followed to examine effects on germination and early seedling development. For TiO2, cabbage showed increased and corn decreased percent germination, while ...

  6. TiO2 Nanoparticles Are Phototoxic to Marine Phytoplankton

    PubMed Central

    Miller, Robert J.; Bennett, Samuel; Keller, Arturo A.; Pease, Scott; Lenihan, Hunter S.

    2012-01-01

    Nanoparticulate titanium dioxide (TiO2) is highly photoactive, and its function as a photocatalyst drives much of the application demand for TiO2. Because TiO2 generates reactive oxygen species (ROS) when exposed to ultraviolet radiation (UVR), nanoparticulate TiO2 has been used in antibacterial coatings and wastewater disinfection, and has been investigated as an anti-cancer agent. Oxidative stress mediated by photoactive TiO2 is the likely mechanism of its toxicity, and experiments demonstrating cytotoxicity of TiO2 have used exposure to strong artificial sources of ultraviolet radiation (UVR). In vivo tests of TiO2 toxicity with aquatic organisms have typically shown low toxicity, and results across studies have been variable. No work has demonstrated that photoactivity causes environmental toxicity of TiO2 under natural levels of UVR. Here we show that relatively low levels of ultraviolet light, consistent with those found in nature, can induce toxicity of TiO2 nanoparticles to marine phytoplankton, the most important primary producers on Earth. No effect of TiO2 on phytoplankton was found in treatments where UV light was blocked. Under low intensity UVR, ROS in seawater increased with increasing nano-TiO2 concentration. These increases may lead to increased overall oxidative stress in seawater contaminated by TiO2, and cause decreased resiliency of marine ecosystems. Phototoxicity must be considered when evaluating environmental impacts of nanomaterials, many of which are photoactive. PMID:22276179

  7. Effects of Long-Term Exposure to Zinc Oxide Nanoparticles on Development, Zinc Metabolism and Biodistribution of Minerals (Zn, Fe, Cu, Mn) in Mice

    PubMed Central

    Wang, Chao; Lu, Jianjun; Zhou, Le; Li, Jun; Xu, Jiaman; Li, Weijian; Zhang, Lili; Zhong, Xiang; Wang, Tian

    2016-01-01

    Zinc oxide nanoparticles (nano-ZnOs) are widely used and possess great potentials in agriculture and biomedicine. It is inevitable for human exposure to these nanoparticles. However, no study had been conducted to investigate the long term effects of nano-ZnOs. This study aimed at investigating effects of nano-ZnOs on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, and Mn) in mice from week 3 to 35. After the characteristics of nano-ZnOs were determined, they were added into the basal diet at 0, 50, 500 and 5000 mg/kg. Results indicated that added 50 and 500 mg/kg nano-ZnOs showed minimal toxicity. However, 5000 mg/kg nano-ZnOs significantly decreased body weight (from week 4 to 16) and increased the relative weights of the pancreas, brain and lung. Added 5000 mg/kg nano-ZnOs significantly increased the serum glutamic-pyruvic transaminase activity and zinc content, and significantly enhanced mRNA expression of zinc metabolism-related genes, including metallothionein 1(32.66 folds), metallothionein 2 (31.42 folds), ZIP8 (2.21folds), ZIP14 (2.45 folds), ZnT1 (4.76 folds), ZnT2 (6.19 folds) and ZnT4 (1.82 folds). The biodistribution determination showed that there was a significant accumulation of zinc in the liver, pancreas, kidney, and bones (tibia and fibula) after receiving 5000 mg/kg nano-ZnO diet, while no significant effects on Cu, Fe, and Mn levels, except for liver Fe content and pancreas Mn level. Our results demonstrated that long term exposure to 50 and 500 mg/kg nano-ZnO diets showed minimal toxicity. However, high dose of nano-ZnOs (5000 mg/kg) caused toxicity on development, and altered the zinc metabolism and biodistribution in mice. PMID:27732669

  8. Effects of Long-Term Exposure to Zinc Oxide Nanoparticles on Development, Zinc Metabolism and Biodistribution of Minerals (Zn, Fe, Cu, Mn) in Mice.

    PubMed

    Wang, Chao; Lu, Jianjun; Zhou, Le; Li, Jun; Xu, Jiaman; Li, Weijian; Zhang, Lili; Zhong, Xiang; Wang, Tian

    2016-01-01

    Zinc oxide nanoparticles (nano-ZnOs) are widely used and possess great potentials in agriculture and biomedicine. It is inevitable for human exposure to these nanoparticles. However, no study had been conducted to investigate the long term effects of nano-ZnOs. This study aimed at investigating effects of nano-ZnOs on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, and Mn) in mice from week 3 to 35. After the characteristics of nano-ZnOs were determined, they were added into the basal diet at 0, 50, 500 and 5000 mg/kg. Results indicated that added 50 and 500 mg/kg nano-ZnOs showed minimal toxicity. However, 5000 mg/kg nano-ZnOs significantly decreased body weight (from week 4 to 16) and increased the relative weights of the pancreas, brain and lung. Added 5000 mg/kg nano-ZnOs significantly increased the serum glutamic-pyruvic transaminase activity and zinc content, and significantly enhanced mRNA expression of zinc metabolism-related genes, including metallothionein 1(32.66 folds), metallothionein 2 (31.42 folds), ZIP8 (2.21folds), ZIP14 (2.45 folds), ZnT1 (4.76 folds), ZnT2 (6.19 folds) and ZnT4 (1.82 folds). The biodistribution determination showed that there was a significant accumulation of zinc in the liver, pancreas, kidney, and bones (tibia and fibula) after receiving 5000 mg/kg nano-ZnO diet, while no significant effects on Cu, Fe, and Mn levels, except for liver Fe content and pancreas Mn level. Our results demonstrated that long term exposure to 50 and 500 mg/kg nano-ZnO diets showed minimal toxicity. However, high dose of nano-ZnOs (5000 mg/kg) caused toxicity on development, and altered the zinc metabolism and biodistribution in mice.

  9. Efficient and rapid degradation of Congo red dye with TiO2 based nano-photocatalysts

    NASA Astrophysics Data System (ADS)

    Narayan, Himanshu; Alemu, Hailemichael

    2017-04-01

    Degradation of Congo red (CR) dye with TiO2 based nano-photocatalyst (NPC) loaded with Nd3+ and Er3+ ions is reported. The chemical route of synthesis through co-precipitation/hydrolysis (CPH) was employed to produce NPCs with general composition TiO2[R2O3]x, {x = 0.1, 0.2; R □ Nd, Er} and particle size within 12 - 16 nm. Photocatalytic degradation under visible light was measured in terms of the percent degradation of CR in 180 min ({C}180\\prime), time taken to degrade to half of the initial CR concentration (t1/2) and apparent rate constant (kobs). For both doping types, values of {C}180\\prime close to 100% were obtained with x = 0.2 NPCs, indicating complete removal of the dye. For the same NPCs, very high values of kobs were found; 2.91 × 10-2 min-1 and 2.36 × 10-2 min-1, for Nd3+ and Er3+ loaded NPCs, respectively, suggesting very rapid degradation. Other NPCs with x = 0.1, also showed reasonably good and fast degradation of CR. The observations may be attributed to the small particle size of the NPCs. Moreover, from the DRS results it is observed that the addition of Nd3+ and Er3+ ions apparently introduces intermediate energy levels within the band gap of TiO2. Such new levels seem to support photocatalysis because they act as electron traps leading to effective suppression of the undesired e-/h+ recombination. To some meaningful extent they also facilitate the absorption of visible irradiations required in the process.

  10. Construction of AgBr nano-cakes decorated Ti3+ self-doped TiO2 nanorods/nanosheets photoelectrode and its enhanced visible light driven photocatalytic and photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoyong; Zhang, Huixuan; Guo, Ruonan; Cheng, Xiuwen; Cheng, Qingfeng

    2018-05-01

    In the study, AgBr nano-cakes decorated Ti3+ self-doped TiO2 nanorods/nanosheets (AgBr-Ti3+/TiO2 NRs/NSs) photoelectrode with enhanced visible light driven photocatalytic (PC) and photoelectrochemical (PECH) performance has been successfully fabricated by hydrothermal reaction, followed by sodium borohydride reduction and then successive ionic layer adsorption and reaction (SILAR) treatment. Afterwards, series of characterizations were conducted to study the physicochemical properties of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Results indicated that AgBr nano-cakes with sizes varying from 110 to 180 nm were uniformly decorated on the surface of Ti3+/TiO2 NRs/NSs to form AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Moreover, PC activity of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode was measured by degradation of methylene blue (MB). It was found that AgBr-Ti3+/TiO2 NRs/NSs photoelectrode exhibited higher PC activity (98.7%) than that of other samples within 150 min visible light illumination, owing to the enhancement of visible light harvesting and effective separation of photoproduced charges. Thus, AgBr nano-cakes and Ti3+ exerted a huge influence on the PC and PECH properties of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Furthermore, the possible enhanced visible light driven PC mechanism of AgBr-Ti3+/TiO2 NRs/NSs was proposed and confirmed.

  11. Photodegradation of organic matter in fresh garbage leachate using immobilized nano-sized TiO2 as catalysts.

    PubMed

    Chen, C; Xie, Q; Hu, B Q; Zhao, X L

    2014-01-01

    Two immobilized nano-sized TiO2 catalysts, TiO2/activated carbon (TiO2/AC) and TiO2/silica gel (SG) (TiO2/SG), were prepared by the sol-gel method, and their use in the photocatalytic degradation of organic matter in fresh garbage leachate under UV irradiation was investigated. The influences of the catalyst dosage, the initial solution pH, H2O2 addition and the reuse of the catalysts were evaluated. The degradation of organic matter was assessed based on the decrease of the chemical oxygen demand (COD) in the leachate. The results indicated that the degradation of the COD obeyed first-order kinetics in the presence of both photocatalysts. The degradation rate of COD was found to increase with increasing catalyst dosage up to 9 g/L for TiO2/AC and 6 g/L for TiO2/SG, above which the degradation began to attenuate. Furthermore, the degradation rate first increased and then decreased as the solution pH increased from 2 to 14, and the degradation rate increased as the amount of H2O2 increased to 2.93 mM, after which it remained constant. No obvious decrease in the rate of COD degradation was observed during the first four repeated uses of the photocatalysts, indicating that the catalysts could be recovered and reused. Compared with TiO2/AC, TiO2/SG exhibited higher efficiency in photocatalyzing the degradation of COD in garbage leachate.

  12. Photoinactivation and Toxicity of Nano-sized TiO2 on Paint Microflora Using Visible Lights

    NASA Astrophysics Data System (ADS)

    Obidi, Olayide; Halverson, Larry

    2016-04-01

    Traditional TiO2 has been used as an antimicrobial additive to paints, but more recently the use of TiO2 nanoparticles (NPs) has been proposed as an alternative because of its ability to induce oxidative damage to the cell membrane of bacteria. This study focused on how photoinactivation of TiO2 NPs by fluorescent and halogen lights (400-700 nm) influenced survival of Bacillus sphaericus (Gram-positive bacterium) and Klebsiella pneumoniae (Gram-negative bacterium) isolated from spoiled paints. The loss of viability of the test organisms in the presence of TiO2 NPs determined by culturable (plate) count technique indicated a decrease in viable bacteria that was predominant after 24-h exposure. The TiO2 NPs showed higher antibacterial performance under fluorescent light than halogen light with increasing irradiation time and confirms the photokilling effect of TiO2 NPs. TiO2 NPs were also bactericidal under dark conditions, suggesting potential antibacterial applications in the paint industry.

  13. Atlantic cod actively avoid CO2 and predator odour, even after long-term CO2 exposure.

    PubMed

    Jutfelt, Fredrik; Hedgärde, Maria

    2013-12-27

    The rising atmospheric CO2 level is continuously driving the dissolution of more CO2 into the oceans, and some emission scenarios project that the surface waters may reach 1000 μatm by the end of the century. It is not known if fish can detect moderately elevated CO2 levels, and if they avoid areas with high CO2. If so, avoidance behaviour to water with high CO2 could affect movement patterns and migrations of fish in the future. It is also being increasingly recognized that fish behaviour can be altered by exposure to CO2. Therefore this study investigated how long-term exposure to elevated pCO2 affects predator avoidance and CO2 avoidance in juvenile Atlantic cod (Gadus morhua). The fish were exposed to control water or CO2-enriched water (1000 μatm) for six weeks before being subjected to tests of behaviour. Despite long term exposure to elevated pCO2 the cod still strongly avoided the smell of a predator. These data are surprising because several coral reef fish have demonstrated reversal of olfactory responses after CO2 exposure, turning avoidance of predator cues into preference for predator cues. Fish from both treatment groups also demonstrated strong avoidance of CO2 when presented with the choice of control or CO2-acidified water, indicating that habituation to the CO2 sensory stimuli is negligible. As Atlantic cod maintained normal behavioural responses to olfactory cues, they may be tolerant to CO2-induced behavioural changes. The results also suggest that despite the long-term exposure to CO2-acidified water, the fish still preferred the control water over CO2-acidified water. Therefore, in the future, fish may alter their movements and migrations in search of waters with a lower CO2 content.

  14. Atlantic cod actively avoid CO2 and predator odour, even after long-term CO2 exposure

    PubMed Central

    2013-01-01

    Introduction The rising atmospheric CO2 level is continuously driving the dissolution of more CO2 into the oceans, and some emission scenarios project that the surface waters may reach 1000 μatm by the end of the century. It is not known if fish can detect moderately elevated CO2 levels, and if they avoid areas with high CO2. If so, avoidance behaviour to water with high CO2 could affect movement patterns and migrations of fish in the future. It is also being increasingly recognized that fish behaviour can be altered by exposure to CO2. Therefore this study investigated how long-term exposure to elevated pCO2 affects predator avoidance and CO2 avoidance in juvenile Atlantic cod (Gadus morhua). The fish were exposed to control water or CO2-enriched water (1000 μatm) for six weeks before being subjected to tests of behaviour. Results Despite long term exposure to elevated pCO2 the cod still strongly avoided the smell of a predator. These data are surprising because several coral reef fish have demonstrated reversal of olfactory responses after CO2 exposure, turning avoidance of predator cues into preference for predator cues. Fish from both treatment groups also demonstrated strong avoidance of CO2 when presented with the choice of control or CO2-acidified water, indicating that habituation to the CO2 sensory stimuli is negligible. Conclusions As Atlantic cod maintained normal behavioural responses to olfactory cues, they may be tolerant to CO2-induced behavioural changes. The results also suggest that despite the long-term exposure to CO2-acidified water, the fish still preferred the control water over CO2-acidified water. Therefore, in the future, fish may alter their movements and migrations in search of waters with a lower CO2 content. PMID:24373523

  15. The nano-TiO2 exposure can induce hepatic inflammation involving in a JAK-STAT signalling pathway

    NASA Astrophysics Data System (ADS)

    Hong, Jie; Hong, Fashui; Ze, Yuguan; Zhang, Yu-Qing

    2016-06-01

    TiO2 nanoparticles (TiO2 NPs) have unique physiochemical properties and thus are widely used in daily life. However, these nanoparticles also have potential toxic effects in humans and animals, and the issue of the security TiO2 NPs has also gained prominence. In this article, mice were administered a gavage instillation of 2.5, 5, or 10 mg/kg body weight TiO2 NPs (5-6 nm) for 90 days. We investigated whether TiO2 NPs activate the JAK-STAT signalling pathway, causing nano-TiO2-induced hepatic toxicity. The results demonstrated that with increasing doses of TiO2 NPs the body weights of the mice body decreased, and the liver index, liver dysfunction, infiltration of inflammatory cells, and hepatocyte apoptosis and necrosis increased. Moreover, liver inflammation was accompanied by increased expression of Janus kinase 2, the signal transducers and activators of transcription 3, interleukin-6, cyclooxygenase-2, neutrophil gelatinase-associated lipocalin, purinergic receptor-7, and epithelial neutrophil-activating protein-78 and decreased expression of suppressors of cytokine signalling-1, peroxisome proliferator-activated receptor-γ, and peroxisome proliferator-activated receptor gamma coactivator-1 alpha. In summary, the activation of the JAK-STAT pathway may be involved in the hepatic inflammation induced by chronic nano-TiO2 toxicity.

  16. Modulation of physiological responses with TiO2 nano-particle in Azolla pinnata R.Br. under 2,4-D toxicity.

    PubMed

    De, Arnab Kumar; Ghosh, Arijit; Debnath, Subhas Chandra; Sarkar, Bipul; Saha, Indraneel; Adak, Malay Kumar

    2018-06-05

    The present work is emphasised with the herbicidal tolerance of Azolla pinnata R.Br. and its modulation with TiO 2 nano-particle. Both carbohydrate and nitrogen metabolism were effected with 2,4-D as herbicide and in few cases TiO 2 -NP had recovered few detrimental effects. From the nutrient status in Azolla it recorded the recovery of nitrogen as well as potassium by TiO 2 -NP but not in case of phosphorus. However, a conversion of nitrate to ammonium was more induced by TiO 2 -NP under herbicidal toxicity. Similar results were obtained for inter-conversion of amino acid-nitrate pool, but no changes with glutamine synthase activity with TiO 2 -NP. Initially, the effects of 2,4-D was monitored with changes of chlorophyll content but had not been recovered with nanoparticle. Photosynthetic reserves expressed as both total and reducing sugar were insensitive to TiO 2 -NP interference but activity of soluble and wall bound invertase was in reverse trend as compared to control. The 2,4-D mediated changes of redox and its oxidative stress was ameliorated in plants with over expressed ADH activity. As a whole the Azolla bio system with TiO 2 supplementation may be useful in sustenance against 2,4-D toxicity through recovery of nitrogen metabolism. Thus, Azolla-TiO 2 -NP bio system would be realised to monitor the herbicidal toxicity in soil and its possible bioremediation.

  17. Long-term exposure to endogenous levels of tributyltin decreases GluR2 expression and increases neuronal vulnerability to glutamate.

    PubMed

    Nakatsu, Yusuke; Kotake, Yaichiro; Takishita, Tomoko; Ohta, Shigeru

    2009-10-15

    Tributyltin (TBT), an endocrine-disrupting chemical, has been used commercially as a heat stabilizer, agricultural pesticide and component of antifouling paints. In this study, we investigated the effect of long-term exposure to endogenous levels of TBT on neuronal glutamate receptors. Cultured rat cortical neurons were exposed to 1-50 nM TBT for 9 days (from day 2 to day 10 in vitro). The number of neurons was reduced by long-term exposure to 50 nM TBT, but not to 1-20 nM TBT. Long-term exposure to 20 nM TBT decreased the mRNA expression of glutamate receptors NR1, NR2A, GluR1 and GluR2, and increased that of NR2B, GluR3 and GluR4. GluR2 protein was also reduced by long-term exposure to TBT. Because AMPA receptor lacking GluR2 exhibits Ca2+ permeability, we investigated whether Ca2+ influx or glutamate toxicity was affected. Indeed, glutamate-induced Ca2+ influx was increased in TBT-treated neurons. Consistent with this, neurons became more susceptible to glutamate toxicity as a result of long-term exposure to TBT and this susceptibility was abolished by an antagonist of GluR2-lacking AMPA receptor. Thus, it is suggested that long-term exposure to endogenous levels of TBT induces a decrease of GluR2 protein, causing neurons become more susceptible to glutamate toxicity.

  18. Fabrication of Al2O3 coated 2D TiO2 nanoparticle photonic crystal layers by reverse nano-imprint lithography and plasma enhanced atomic layer deposition.

    PubMed

    Kim, Ki-Kang; Ko, Ki-Young; Ahn, Jinho

    2013-10-01

    This paper reports simple process to enhance the extraction efficiency of photoluminescence (PL) from Eu-doped yttrium oxide (Y2O3:Eu3+) thin-film phosphor (TFP). Two-dimensional (2D) photonic crystal layer (PCL) was fabricated on Y2O3:Eu3+ phosphor films by reverse nano-imprint method using TiO2 nanoparticle solution as a nano-imprint resin and a 2D hole-patterned PDMS stamp. Atomic scale controlled Al2O3 deposition was performed onto this 2D nanoparticle PCL for the optimization of the photonic crystal pattern size and stabilization of TiO2 nanoparticle column structure. As a result, the light extraction efficiency of the Y2O3:Eu3+ phosphor film was improved by 2.0 times compared to the conventional Y2O3:Eu3+ phosphor film.

  19. Sonosynthesis of nano TiO2 on wool using titanium isopropoxide or butoxide in acidic media producing multifunctional fabric.

    PubMed

    Behzadnia, Amir; Montazer, Majid; Rashidi, Abousaeid; Rad, Mahnaz Mahmoudi

    2014-09-01

    This study presents a novel idea to prepare nanocrystalline structure of TiO2 under ambient pressure at 60-65 °C using in situ sonochemical synthesis by hydrolysis of either titanium isopropoxide or titanium butoxide in an acidic aqueous solution. The nano titanium dioxide coated wool fabrics possess significant antibacterial/antifungal activity and self-cleaning property by discoloring Methylene blue stain under sunlight irradiation. This process has no negative effect on cytotoxicity and tensile strength of the sonotreated fabric even reduces alkaline solubility and photoyellowing and improves hydrophilicity. More titanium isopropoxide or titanium butoxide as a precursor led to higher photocatalytic activities of the treated fabrics. Also introducing more ethanol improved the adsorption of TiO2 on the wool fabric surface leading to enhanced photocatalytic activity. EDS and XRD patterns, SEM images, X-ray mapping confirmed the presence of nano TiO2 particles on the fabric surface. The role of both solvent and precursor concentrations on the various properties of the fabric was investigated and the optimized conditions were obtained using response surface methodology. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells.

    PubMed

    Kim, In-Sun; Baek, Miri; Choi, Soo-Jin

    2010-05-01

    The increased applications of nanoparticles in a wide range of industrial fields raise the concern about their potential toxicity to human. The aim of this study was to assess and compare the toxicity of four different oxide nanoparticles (Al2O3, CeO2, TiO2 and ZnO) to human lung epithelial cells, A549 carcinoma cells and L-132 normal cells, in vitro. We focused on the toxicological effects of the present nanoparticles on cell proliferation, cell viability, membrane integrity and oxidative stress. The long-term cytotoxicity of nanoparticles was also evaluated by employing the clonogenic assay. Among four nanoparticles tested, ZnO exhibited the highest cytotoxicity in terms of cell proliferation, cell viability, membrane integrity and colony formation in both cell lines. Al2O3, CeO2 and TiO2 showed little adverse effects on cell proliferation and cell viability. However, TiO2 induced oxidative stress in a concentration- and time-dependent manner. CeO2 caused membrane damage and inhibited colony formation in long-term, but with different degree depending on cell lines. Al2O3 seems to be less toxic than the other nanoparticles even after long time exposure. These results highlight the need for caution during manufacturing process of nanomaterials as well as further investigation on the toxicity mechanism.

  1. Phototoxicity of TiO2 nanoparticles to a freshwater benthic amphipod: are benthic systems at risk?

    EPA Science Inventory

    This study investigated phototoxicity of TiO2 nanoparticles (nano-TiO2) to a freshwater benthic amphipod (Hyalella azteca) using 48-h and 96-h bioassays. Thorough monitoring of particle interactions with exposure media (Lake Superior water, LSW) and the surface of organisms was p...

  2. Toxicological aspects of photocatalytic degradation of selected xenobiotics with nano-sized Mn-doped TiO2.

    PubMed

    Ozmen, Murat; Güngördü, Abbas; Erdemoglu, Sema; Ozmen, Nesrin; Asilturk, Meltem

    2015-08-01

    The toxic effects of two selected xenobiotics, bisphenol A (BPA) and atrazine (ATZ), were evaluated after photocatalytic degradation using nano-sized, Mn-doped TiO2. Undoped and Mn-doped TiO2 nanoparticles were synthesized. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), UV-vis-diffuse reflectance spectra (DRS), X-ray fluorescence spectroscopy (XRF), and BET surface area. The photocatalytic efficiency of the undoped and Mn-doped TiO2 was evaluated for BPA and ATZ. The toxicity of the synthesized photocatalysts and photocatalytic by-products of BPA and ATZ was determined using frog embryos and tadpoles, zebrafish embryos, and bioluminescent bacteria. Possible toxic effects were also evaluated using selected enzyme biomarkers. The results showed that Mn-doped TiO2 nanoparticles did not cause significant lethality in Xenopus laevis embryos and tadpoles, but nonfiltered samples caused lethality in zebrafish. Furthermore, Mn-doping of TiO2 increased the photocatalytic degradation capability of nanoparticles, and it successfully degraded BPA and AZT, but degradation of AZT caused an increase of the lethal effects on both tadpoles and fish embryos. Degradation of BPA caused a significant reduction of lethal effects, especially after 2-4h of degradation. However, biochemical assays showed that both Mn-doped TiO2 and the degradation by-products caused a significant change of selected biomarkers on X. laevis tadpoles; thus, the ecological risks of Mn-doped TiO2 should be considered due to nanomaterial applications and for spilled nanoparticles in an aquatic ecosystem. Also, the risk of nanoparticles should be considered using indicator reference biochemical markers to verify the environmental health impacts. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Intensification of electrochemiluminescence of luminol on TiO2 supported Au atomic cluster nano-hybrid modified electrode.

    PubMed

    Yu, Zhimin; Wei, Xiuhua; Yan, Jilin; Tu, Yifeng

    2012-04-21

    With TiO(2) nanoparticles as carrier, a supported nano-material of Au atomic cluster/TiO(2) nano-hybrid was synthesized. It was then modified onto the surface of indium tin oxide (ITO) by Nafion to act as a working electrode for exciting the electrochemiluminescence (ECL) of luminol. The properties of the nano-hybrid and the modified electrode were characterized by XRD, XPS, electronic microscopy, electrochemistry and spectroscopy. The experimental results demonstrated that the modification of this nano-hybrid onto the ITO electrode efficiently intensified the ECL of luminol. It was also revealed that the ECL intensity of luminol on this modified electrode showed very sensitive responses to oxygen and hydrogen peroxide. The detection limits for dissolved oxygen and hydrogen peroxide were 2 μg L(-1) and 5.5 × 10(-12) M, respectively. Besides the discussion of the intensifying mechanism of this nano-hybrid for ECL of luminol, the developed method was also applied for monitoring dissolved oxygen and evaluating the scavenging efficiency of reactive oxygen species of the Ganoderma lucidum spore.

  4. Minimizing of the boundary friction coefficient in automotive engines using Al2O3 and TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed Kamal Ahmed; Xianjun, Hou; Elagouz, Ahmed; Essa, F. A.; Abdelkareem, Mohamed A. A.

    2016-12-01

    Minimizing of the boundary friction coefficient is critical for engine efficiency improvement. It is known that the tribological behavior has a major role in controlling the performance of automotive engines in terms of the fuel consumption. The purpose of this research is an experimental study to minimize the boundary friction coefficient via nano-lubricant additives. The tribological characteristics of Al2O3 and TiO2 nano-lubricants were evaluated under reciprocating test conditions to simulate a piston ring/cylinder liner interface in automotive engines. The nanoparticles were suspended in a commercially available lubricant in a concentration of 0.25 wt.% to formulate the nano-lubricants. The Al2O3 and TiO2 nanoparticles had sizes of 8-12 and 10 nm, respectively. The experimental results have shown that the boundary friction coefficient reduced by 35-51% near the top and bottom dead center of the stroke (TDC and BDC) for the Al2O3 and TiO2 nano-lubricants, respectively. The anti-wear mechanism was generated via the formation of protective films on the worn surfaces of the ring and liner. These results will be a promising approach for improving fuel economy in automotive.

  5. Chronic TiO2 nanoparticle exposure to a benthic organism, Hyalella azteca: Impact of solar UV radiation and material surface coatings on toxicity

    EPA Science Inventory

    The present study examined the chronic toxicity of TiO2 nanoparticles (nano-TiO2) to a representative benthic species, Hyalella azteca, using an industry standard, P25, and a coated nano-TiO2 used in commercial products. There is limited information on the chronic effects of nano...

  6. Photocatalytic degradation of Rhodamine B dye using Fe doped TiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Barkhade, Tejal; Banerjee, Indrani

    2018-05-01

    The unique properties of titanium dioxide (TiO2) such as high photo catalytic activity, high chemical stability and low toxicity have made it a suitable photocatalyst in recent decades. The effect of modification of TiO2 with doping of iron on its characteristics and photo catalytic efficiency was studied. The change in band gap energy of TiO2 nanoparticles after doping with Fe has been studied. Significant enhancement in photo catalytic property of TiO2 after Fe doping under light exposure conditions has been investigated. Acute exposure to non-biodegradable Rhodamine B resulted in many health problems like burning of eyes, skin irritation, nasal burning, and chest pain etc. Therefore, degradation of this dye is needed to save environment and animals. Considering the similar radius of Fe3+ and Ti4+ ions (respectively 0.64 Å and 0.68 Å), titanium position in the lattice of TiO2 can be replaced by iron cations easily. The undoped and Fe doped TiO2 nano composites were synthesized by sol-gel method, in which 1.0M% of Fe was doped with TiO2 and then the samples were characterized by using FE-SEM, UV-Visible diffuse spectroscopy, Raman Spectroscopy, and FTIR. Photo catalytic degradation of Rhodamine B dye experiment was carried out in visible light range. After 90 min time duration pink colour of dye turned colourless, indicating significant degradation rate with time.

  7. Electrospinning preparation of oxygen-deficient nano TiO2-x/carbon fibre membrane as a self-standing high performance anode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Jing, Mao-xiang; Li, Jing-quan; Han, Chong; Yao, Shan-shan; Zhang, Ji; Zhai, Hong-ai; Chen, Li-li; Shen, Xiang-qian; Xiao, Ke-song

    2017-07-01

    Improving the specific capacity and electronic conductivity of TiO2 can boost its practical application as a promising anode material for lithium ion batteries. In this work, a three-dimensional networking oxygen-deficient nano TiO2-x/carbon fibre membrane was achieved by combining the electrospinning process with a hot-press sintering method and directly used as a self-standing anode. With the synergistic effects of three-dimensional conductive networks, surface oxygen deficiency, high specific surface area and high porosity, binder-free and self-standing structure, etc., the nano TiO2-x/carbon fibre membrane electrode displays a high electrochemical reaction kinetics and a high specific capacity. The reversible capacity could be jointly generated from porous carbon, full-lithiation of TiO2 and interfacial lithium storage. At a current density of 100 mA g-1, the reversible discharge capacity can reach 464 mA h g-1. Even at 500 mA g-1, the discharge capacity still remains at 312 mA h g-1. Compared with pure carbon fibre and TiO2 powder, the TiO2-x/C fibre membrane electrode also exhibits an excellent cycle performance with a discharge capacity of 209 mA h g-1 after 700 cycles at the current density of 300 mA g-1, and the coulombic efficiency always remains at approximately 100%.

  8. Disruption of Autolysis in Bacillus subtilis using TiO2 Nanoparticles

    PubMed Central

    McGivney, Eric; Han, Linchen; Avellan, Astrid; VanBriesen, Jeanne; Gregory, Kelvin B.

    2017-01-01

    In contrast to many nanotoxicity studies where nanoparticles (NPs) are observed to be toxic or reduce viable cells in a population of bacteria, we observed that increasing concentration of TiO2 NPs increased the cell survival of Bacillus subtilis in autolysis-inducing buffer by 0.5 to 5 orders of magnitude over an 8 hour exposure. Molecular investigations revealed that TiO2 NPs prevent or delay cell autolysis, an important survival and growth-regulating process in bacterial populations. Overall, the results suggest two potential mechanisms for the disruption of autolysis by TiO2 NPs in a concentration dependent manner: (i) directly, through TiO2 NP deposition on the cell wall, delaying the collapse of the protonmotive-force and preventing the onset of autolysis; and (ii) indirectly, through adsorption of autolysins on TiO2 NP, limiting the activity of released autolysins and preventing further lytic activity. Enhanced darkfield microscopy coupled to hyperspectral analysis was used to map TiO2 deposition on B. subtilis cell walls and released enzymes, supporting both mechanisms of autolysis interference. The disruption of autolysis in B. subtilis cultures by TiO2 NPs suggests the mechanisms and kinetics of cell death may be influenced by nano-scale metal oxide materials, which are abundant in natural systems. PMID:28303908

  9. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata.

    PubMed

    Aruoja, Villem; Dubourguier, Henri-Charles; Kasemets, Kaja; Kahru, Anne

    2009-02-01

    Toxicities of ZnO, TiO2 and CuO nanoparticles to Pseudokirchneriella subcapitata were determined using OECD 201 algal growth inhibition test taking in account potential shading of light. The results showed that the shading effect by nanoparticles was negligible. ZnO nanoparticles were most toxic followed by nano CuO and nano TiO2. The toxicities of bulk and nano ZnO particles were both similar to that of ZnSO4 (72 h EC50 approximately 0.04 mg Zn/l). Thus, in this low concentration range the toxicity was attributed solely to solubilized Zn2+ ions. Bulk TiO2 (EC50=35.9 mg Ti/l) and bulk CuO (EC50=11.55 mg Cu/l) were less toxic than their nano formulations (EC50=5.83 mg Ti/l and 0.71 mg Cu/l). NOEC (no-observed-effect-concentrations) that may be used for risk assessment purposes for bulk and nano ZnO did not differ (approximately 0.02 mg Zn/l). NOEC for nano CuO was 0.42 mg Cu/l and for bulk CuO 8.03 mg Cu/l. For nano TiO2 the NOEC was 0.98 mg Ti/l and for bulk TiO2 10.1 mg Ti/l. Nano TiO2 formed characteristic aggregates entrapping algal cells that may contribute to the toxic effect of nano TiO2 to algae. At 72 h EC50 values of nano CuO and CuO, 25% of copper from nano CuO was bioavailable and only 0.18% of copper from bulk CuO. Thus, according to recombinant bacterial and yeast Cu-sensors, copper from nano CuO was 141-fold more bioavailable than from bulk CuO. Also, toxic effects of Cu oxides to algae were due to bioavailable copper ions. To our knowledge, this is one of the first systematic studies on effects of metal oxide nanoparticles on algal growth and the first describing toxic effects of nano CuO towards algae.

  10. Characterization of manufactured TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Motzkus, C.; Macé, T.; Vaslin-Reimann, S.; Ausset, P.; Maillé, M.

    2013-04-01

    Technological advances in nanomaterials have allowed the development of new applications in industry, increasing the probability of finding airborne manufactured and engineered nano-objects in the workplace, as well as in ambient air. Scientific studies on health and environmental risks have indicated that airborne nano-objects in ambient air have potential adverse effects on the health of exposed workers and the general population. For regulatory purposes, ambient measurements of particulate matter are based on the determination of mass concentrations for PM10 and PM2.5, as regulated in the European Directive 2008/50/EC. However, this legislation is not suitable for airborne manufactured and engineered nano-objects. Parameters characterising ultrafine particles, such as particle number concentration and size distribution, are under consideration for future health-based legislation, to monitor workplaces and to control industrial processes. Currently, there are no existing regulations covering manufactured airborne nano-objects. There is therefore a clear, unaddressed need to focus on the toxicology and exposure assessment of nano-objects such as titanium dioxide (TiO2), which are manufactured and engineered in large quantities in industry. To perform reliable toxicology studies it is necessary to determine the relevant characteristics of nano-objects, such as morphology, surface area, agglomeration, chemical composition, particle size and concentration, by applying traceable methods. Manufacturing of nanomaterials, and their use in industrial applications, also require traceable characterisation of the nanomaterials, particularly for quality control of the process. The present study arises from the OECD WPMN sponsorship programme, supported by the French Agency for Environmental and Occupational Health Safety (ANSES), in order to develop analytical methods for the characterization of TiO2 nanoparticles in size and count size distribution, based on different

  11. Exposure assessment of workplace manufacturing titanium dioxide particles

    NASA Astrophysics Data System (ADS)

    Xu, Huadong; Zhao, Lin; Chen, Zhangjian; Zhou, Jingwen; Tang, Shichuan; Kong, Fanling; Li, Xinwei; Yan, Ling; Zhang, Ji; Jia, Guang

    2016-10-01

    With the widespread use of titanium dioxide (TiO2) human exposure is inevitable, but the exposure data on TiO2 are still limited. This study adopted off-line filter-based sampling combined with real-time activity-based monitoring to measure the concentrations in a workplace manufacturing TiO2 (primary diameter: 194 ± 108 nm). Mass concentrations (MCs) of aerosol particles in the packaging workshop (total dust: 3.17 mg/m3, nano dust: 1.22 mg/m3) were much higher than those in the milling workshop (total dust: 0.79 mg/m3, nano dust: 0.31 mg/m3) and executive office (total dust: 0.44 mg/m3, nano dust: 0.19 mg/m3). However, the MCs of TiO2 were at a relatively low level in the packaging workshop (total TiO2: 46.4 μg/m3, nano TiO2: 16.7 μg/m3) and milling workshop (total TiO2: 39.4 μg/m3, nano TiO2: 19.4 μg/m3) by ICP-MS. The number concentration (NC), surface area concentration (SAC) of aerosol particles potentially deposited in alveolar (SACA), and tracheobronchial (SACTB) regions of lungs in the packaging workshop were (1.04 ± 0.89) × 105 particles/cm3, 414.49 ± 395.07, and 86.01 ± 83.18 μm2/cm3, respectively, which were all significantly higher than those of the milling workshop [(0.12 ± 0.40) × 105 particles/cm3, 75.38 ± 45.23, and 17.60 ± 9.22 μm2/cm3, respectively] as well as executive office and outdoor background ( p < 0.05). Activity-related characteristics were found in both workshops, and the time-variant characteristics showed very similar trends for 3 days in the packaging workshop. Our study provides important data of TiO2 particles exposure in the workplace.

  12. Electrospinning preparation of oxygen-deficient nano TiO2-x/carbon fibre membrane as a self-standing high performance anode for Li-ion batteries

    PubMed Central

    Li, Jing-quan; Han, Chong; Yao, Shan-shan; Zhang, Ji; Zhai, Hong-ai; Chen, Li-li; Shen, Xiang-qian; Xiao, Ke-song

    2017-01-01

    Improving the specific capacity and electronic conductivity of TiO2 can boost its practical application as a promising anode material for lithium ion batteries. In this work, a three-dimensional networking oxygen-deficient nano TiO2-x/carbon fibre membrane was achieved by combining the electrospinning process with a hot-press sintering method and directly used as a self-standing anode. With the synergistic effects of three-dimensional conductive networks, surface oxygen deficiency, high specific surface area and high porosity, binder-free and self-standing structure, etc., the nano TiO2-x/carbon fibre membrane electrode displays a high electrochemical reaction kinetics and a high specific capacity. The reversible capacity could be jointly generated from porous carbon, full-lithiation of TiO2 and interfacial lithium storage. At a current density of 100 mA g−1, the reversible discharge capacity can reach 464 mA h g−1. Even at 500 mA g−1, the discharge capacity still remains at 312 mA h g−1. Compared with pure carbon fibre and TiO2 powder, the TiO2-x/C fibre membrane electrode also exhibits an excellent cycle performance with a discharge capacity of 209 mA h g−1 after 700 cycles at the current density of 300 mA g−1, and the coulombic efficiency always remains at approximately 100%. PMID:28791160

  13. [Accumulative effects and long-term persistence of subliminal mere exposure].

    PubMed

    Kawakami, Naoaki; Yoshida, Fujio

    2011-10-01

    We examined the accumulative effects and long-term persistence of subliminal mere exposure. An accumulative exposure condition (100 exposures distributed over five days) and a massed exposure condition (100 exposures in one day) were used in a Go/No-go Association Task (GNAT), with assessments of likability from Time 1 (just after) to Time 6 (after three months). First, a single stimulus was shown subliminally for a total of 100 times. The results indicated that mere exposure effects occurred equally often at Time 1. However, after Time 2, likability gradually decreased under the massed exposure condition, while it did not decrease under the accumulative exposure condition until Time 6. Second, in order to investigate the effect of multiple exposure, five stimuli belonging to a common category were shown 20 times each, for a total of 100 times. An ANOVA suggested that massed exposure had an instantaneous effect on likability, whereas accumulative exposure had a long-term persistence effect. Also, multiple exposures strengthened the mere exposure effect.

  14. VALIDATION OF A METHOD FOR ESTIMATING LONG-TERM EXPOSURES BASED ON SHORT-TERM MEASUREMENTS

    EPA Science Inventory

    A method for estimating long-term exposures from short-term measurements is validated using data from a recent EPA study of exposure to fine particles. The method was developed a decade ago but long-term exposure data to validate it did not exist until recently. In this paper, ...

  15. A Facile Method for Loading CeO2 Nanoparticles on Anodic TiO2 Nanotube Arrays.

    PubMed

    Liao, Yulong; Yuan, Botao; Zhang, Dainan; Wang, Xiaoyi; Li, Yuanxun; Wen, Qiye; Zhang, Huaiwu; Zhong, Zhiyong

    2018-04-03

    In this paper, a facile method was proposed to load CeO 2 nanoparticles (NPs) on anodic TiO 2 nanotube (NT) arrays, which leads to a formation of CeO 2 /TiO 2 heterojunctions. Highly ordered anatase phase TiO 2 NT arrays were fabricated by using anodic oxidation method, then these individual TiO 2 NTs were used as tiny "nano-containers" to load a small amount of Ce(NO 3 ) 3 solutions. The loaded anodic TiO 2 NTs were baked and heated to a high temperature of 450 °C, under which the Ce(NO 3 ) 3 would be thermally decomposed inside those nano-containers. After the thermal decomposition of Ce(NO 3 ) 3 , cubic crystal CeO 2 NPs were obtained and successfully loaded into the anodic TiO 2 NT arrays. The prepared CeO 2 /TiO 2 heterojunction structures were characterized by a variety of analytical technologies, including XRD, SEM, and Raman spectra. This study provides a facile approach to prepare CeO 2 /TiO 2 films, which could be very useful for environmental and energy-related areas.

  16. Bioaccumulation, Sub-acute Toxicity, and Tissue Distribution of Engineered Titanium Dioxide (TiO2) Nanoparticles in Goldfish (Carassius auratus)

    PubMed Central

    Ates, Mehmet; Demir, Veysel; Adiguzel, Ragip; Arslan, Zikri

    2014-01-01

    The increased use of nano-sized materials is likely to result in the release of these particles into the environment. It is, however, unclear if these materials are harmful to aquatic animals. In this study, the sub-lethal effects of exposure of low and high concentrations of titanium dioxide nanoparticles (TiO2 NPs) on goldfish (Carassius auratus) were investigated. Tissues, including intestine, gills, muscle, and brain were analyzed for Ti content by ICP-MS. Accumulation of TiO2 NPs increased from 42.71 to 110.68 ppb in the intestine and from 4.10 to 9.86 ppb in the gills of the goldfish with increasing exposure dose from 10 to 100 mg/L TiO2 NPs. No significant accumulation in the muscle and brain of the fish was detected. Malondialdehyde (MDA) as a biomarker of lipid oxidation was detected in the liver of the goldfish. Moreover, TiO2 NPs exposure inhibited growth of the goldfish. Although there was an increase (8.1%) in the body weights of the goldfish for the control group, in the low and high exposure groups 1.8% increase and 19.7 % decrease were measured respectively. PMID:25383077

  17. Hybrid TiO2 -Ruthenium Nano-photosensitizer Synergistically Produces Reactive Oxygen Species in both Hypoxic and Normoxic Conditions.

    PubMed

    Gilson, Rebecca C; Black, Kvar C L; Lane, Daniel D; Achilefu, Samuel

    2017-08-28

    Photodynamic therapy (PDT) is widely used to treat diverse diseases, but its dependence on oxygen to produce cytotoxic reactive oxygen species (ROS) diminishes the therapeutic effect in a hypoxic environment, such as solid tumors. Herein, we developed a ROS-producing hybrid nanoparticle-based photosensitizer capable of maintaining high levels of ROS under both normoxic and hypoxic conditions. Conjugation of a ruthenium complex (N3) to a TiO 2 nanoparticle afforded TiO 2 -N3. Upon exposure of TiO 2 -N3 to light, the N3 injected electrons into TiO 2 to produce three- and four-fold more hydroxyl radicals and hydrogen peroxide, respectively, than TiO 2 at 160 mmHg. TiO 2 -N3 maintained three-fold higher hydroxyl radicals than TiO 2 under hypoxic conditions via N3-facilitated electron-hole reduction of adsorbed water molecules. The incorporation of N3 transformed TiO 2 from a dual type I and II PDT agent to a predominantly type I photosensitizer, irrespective of the oxygen content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Long-term evaluation of TiO2-based 68Ge/68Ga generators and optimized automation of [68Ga]DOTATOC radiosynthesis.

    PubMed

    Lin, Mai; Ranganathan, David; Mori, Tetsuya; Hagooly, Aviv; Rossin, Raffaella; Welch, Michael J; Lapi, Suzanne E

    2012-10-01

    Interest in using (68)Ga is rapidly increasing for clinical PET applications due to its favorable imaging characteristics and increased accessibility. The focus of this study was to provide our long-term evaluations of the two TiO(2)-based (68)Ge/(68)Ga generators and develop an optimized automation strategy to synthesize [(68)Ga]DOTATOC by using HEPES as a buffer system. This data will be useful in standardizing the evaluation of (68)Ge/(68)Ga generators and automation strategies to comply with regulatory issues for clinical use. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Application of concrete surfaces as novel substrate for immobilization of TiO2 nano powder in photocatalytic treatment of phenolic water.

    PubMed

    Delnavaz, Mohammad; Ayati, Bita; Ganjidoust, Hossein; Sanjabi, Sohrab

    2015-01-01

    In this study, concrete application as a substrate for TiO2 nano powder immobilization in heterogeneous photocatalytic process was evaluated. TiO2 immobilization on the pervious concrete surface was done by different procedures containing slurry method (SM), cement mixed method (CMM) and different concrete sealer formulations. Irradiation of TiO2 was prepared by UV-A and UV-C lamps. Phenolic wastewater was selected as a pollutant and efficiency of the process was determined in various operation conditions including influent phenol concentration, pH, TiO2 concentration, immobilization method and UV lamp intensity. The removal efficiency of photocatalytic process in 4 h irradiation time and phenol concentration ranges of 25-500 mg/L was more than 80 %. Intermediates were identified by GC/Mass and spectrophotometric analysis. According to the results, photocatalytic reactions followed the pseudo-first-order kinetics and can effectively treate phenol under optimal conditions.

  20. Ultra-Sensitive Humidity Sensor Based on Optical Properties of Graphene Oxide and Nano-Anatase TiO2.

    PubMed

    Ghadiry, Mahdiar; Gholami, Mehrdad; Lai, C K; Ahmad, Harith; Chong, W Y

    2016-01-01

    Generally, in a waveguide-based humidity sensors, increasing the relative humidity (RH) causes the cladding refractive index (RI) to increase due to cladding water absorption. However, if graphene oxide (GO) is used, a reverse phenomenon is seen due to a gap increase in graphene layers. In this paper, this interesting property is applied in order to fabricate differential humidity sensor using the difference between RI of reduced GO (rGO) and nano-anatase TiO2 in a chip. First, a new approach is proposed to prepare high quality nano-anatase TiO2 in solution form making the fabrication process simple and straightforward. Then, the resulted solutions (TiO2 and GO) are effortlessly drop casted and reduced on SU8 two channels waveguide and extensively examined against several humid conditions. Investigating the sensitivity and performance (response time) of the device, reveals a great linearity in a wide range of RH (35% to 98%) and a variation of more than 30 dB in transmitted optical power with a response time of only ~0.7 sec. The effect of coating concentration and UV treatment are studied on the performance and repeatability of the sensor and the attributed mechanisms explained. In addition, we report that using the current approach, devices with high sensitivity and very low response time of only 0.3 sec can be fabricated. Also, the proposed device was comprehensively compared with other state of the art proposed sensors in the literature and the results were promising. Since high sensitivity ~0.47dB/%RH and high dynamic performances were demonstrated, this sensor is a proper choice for biomedical applications.

  1. Ultra-Sensitive Humidity Sensor Based on Optical Properties of Graphene Oxide and Nano-Anatase TiO2

    PubMed Central

    Ghadiry, Mahdiar; Gholami, Mehrdad; Lai, C. K.; Ahmad, Harith; Chong, W. Y.

    2016-01-01

    Generally, in a waveguide-based humidity sensors, increasing the relative humidity (RH) causes the cladding refractive index (RI) to increase due to cladding water absorption. However, if graphene oxide (GO) is used, a reverse phenomenon is seen due to a gap increase in graphene layers. In this paper, this interesting property is applied in order to fabricate differential humidity sensor using the difference between RI of reduced GO (rGO) and nano-anatase TiO2 in a chip. First, a new approach is proposed to prepare high quality nano-anatase TiO2 in solution form making the fabrication process simple and straightforward. Then, the resulted solutions (TiO2 and GO) are effortlessly drop casted and reduced on SU8 two channels waveguide and extensively examined against several humid conditions. Investigating the sensitivity and performance (response time) of the device, reveals a great linearity in a wide range of RH (35% to 98%) and a variation of more than 30 dB in transmitted optical power with a response time of only ~0.7 sec. The effect of coating concentration and UV treatment are studied on the performance and repeatability of the sensor and the attributed mechanisms explained. In addition, we report that using the current approach, devices with high sensitivity and very low response time of only 0.3 sec can be fabricated. Also, the proposed device was comprehensively compared with other state of the art proposed sensors in the literature and the results were promising. Since high sensitivity ~0.47dB/%RH and high dynamic performances were demonstrated, this sensor is a proper choice for biomedical applications. PMID:27101247

  2. A standardized non-instrumental tool for characterizing workstations concerned with exposure to engineered nanomaterials

    NASA Astrophysics Data System (ADS)

    Canu I, Guseva; C, Ducros; S, Ducamp; L, Delabre; S, Audignon-Durand; C, Durand; Y, Iwatsubo; D, Jezewski-Serra; Bihan O, Le; S, Malard; A, Radauceanu; M, Reynier; M, Ricaud; O, Witschger

    2015-05-01

    The French national epidemiological surveillance program EpiNano aims at surveying mid- and long-term health effects possibly related with occupational exposure to either carbon nanotubes or titanium dioxide nanoparticles (TiO2). EpiNano is limited to workers potentially exposed to these nanomaterials including their aggregates and agglomerates. In order to identify those workers during the in-field industrial hygiene visits, a standardized non-instrumental method is necessary especially for epidemiologists and occupational physicians unfamiliar with nanoparticle and nanomaterial exposure metrology. A working group, Quintet ExpoNano, including national experts in nanomaterial metrology and occupational hygiene reviewed available methods, resources and their practice in order to develop a standardized tool for conducting company industrial hygiene visits and collecting necessary information. This tool, entitled “Onsite technical logbook”, includes 3 parts: company, workplace, and workstation allowing a detailed description of each task, process and exposure surrounding conditions. This logbook is intended to be completed during the company industrial hygiene visit. Each visit is conducted jointly by an industrial hygienist and an epidemiologist of the program and lasts one or two days depending on the company size. When all collected information is computerized using friendly-using software, it is possible to classify workstations with respect to their potential direct and/or indirect exposure. Workers appointed to workstations classified as concerned with exposure are considered as eligible for EpiNano program and invited to participate. Since January 2014, the Onsite technical logbook has been used in ten company visits. The companies visited were mostly involved in research and development. A total of 53 workstations with potential exposure to nanomaterials were pre-selected and observed: 5 with TiO2, 16 with single-walled carbon nanotubes, 27 multiwalled

  3. A new nano-TiO2 immobilized biodegradable polymer with self-cleaning properties.

    PubMed

    Sökmen, Münevver; Tatlıdil, Ilknur; Breen, Chris; Clegg, Francis; Buruk, Celal Kurtuluş; Sivlim, Tuğba; Akkan, Senay

    2011-03-15

    This study concentrated on the direct immobilization of anatase nano titanium dioxide particles (TiO(2), 10nm particle size) into or onto a biodegradable polymer, polycaprolactone, by solvent-cast processes. The self-cleaning, namely photocatalytic properties of the produced materials were tested by photocatalytic removal of methylene blue as model compound and antimicrobial properties were investigated using Candida albicans as model microorganism. Produced TiO(2) immobilized polymer successfully removed methylene blue (MB, 1 × 10(-5)M) from aqueous solution without additional pH arrangement employing a UV-A light (365 nm) source. Almost 83.2% of dye was removed or decomposed by 5 wt% TiO(2) immobilized into PCL (0.08 g) and removal percentage reached to 94.2% with 5 wt% TiO(2) immobilized onto PCL after a 150 min exposure period. Although removal percentage decrease with increased ionic strength and usage of a visible light source, produced materials were still effective. TiO(2) immobilized onto PCL (5 wt%) was quite effective killing almost 54% of C. albicans (2 × 10(6)CFU/mL) after only 60 min exposure with a near visible light source. Control experiments employing PCL alone in the presence and absence of light were ineffective under the same condition. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Study on the enhanced adsorption properties of lysozyme on polyacrylic acid modified TiO2 nano-adsorbents

    NASA Astrophysics Data System (ADS)

    Liu, Yufeng; Jin, Zu; Meng, Hao; Zhang, Xia

    2018-01-01

    The adsorption and immobilization of enzymes onto solid carriers has been focused on due to their many advantages, such as improved stability against a thermal or organic solvent and a good cycle usability. TiO2 nanoparticles is one of excellent nano-adsorbents owing to its excellent biocompatibility, non-inflammatory, and abundant surface hydroxyl groups, which are convenient to be combined with various functional groups. In this paper polyacrylic acid (PAA) modified TiO2 nanoparticles were synthesized through an in situ light-induced polymerization of acrylic acid on the surface of TiO2 nanoparticles. The structure and surface physicochemical properties of the PAA/TiO2 nanoparticles were characterized by TEM, XRD, FT-IR, Zeta potential measurements and TG-DSC. The experimental results showed that the isoelectric point of PAA/TiO2 significantly reduced to 1.82 compared with that of pure TiO2 nanoparticles (6.08). In the adsorption tests of lysozyme (Lyz), the PAA/TiO2 nanoparticles displayed enhanced adsorption activity compared with pristine TiO2. The maximum adsorption capacity of PAA/TiO2 for Lyz was 225.9 mg g-1 under the optimum conditions where the initial concentration of Lyz was 300 mg ml-1, the addition amount of PAA/TiO2 was 6.4 mg, the adsorption time was 30 min and the pH value was 7.0. The sodium dodecyl sulfate (SDS, 0.5%) presented the best efficiency (76.86%) in the removal of adsorbed Lyz, and the PAA/TiO2 nanoparticles showed excellent adsorption stability based on five cyclic adsorption-desorption tests. The fitting calculation results of the adsorption isotherm and the thermodynamics indicated the adsorption was an exothermic, entropy increasing, spontaneous and monomolecular layer adsorption process.

  5. Long-term air pollution exposure and cardio- respiratory mortality: a review

    PubMed Central

    2013-01-01

    Current day concentrations of ambient air pollution have been associated with a range of adverse health effects, particularly mortality and morbidity due to cardiovascular and respiratory diseases. In this review, we summarize the evidence from epidemiological studies on long-term exposure to fine and coarse particles, nitrogen dioxide (NO2) and elemental carbon on mortality from all-causes, cardiovascular disease and respiratory disease. We also summarize the findings on potentially susceptible subgroups across studies. We identified studies through a search in the databases Medline and Scopus and previous reviews until January 2013 and performed a meta-analysis if more than five studies were available for the same exposure metric. There is a significant number of new studies on long-term air pollution exposure, covering a wider geographic area, including Asia. These recent studies support associations found in previous cohort studies on PM2.5. The pooled effect estimate expressed as excess risk per 10 μg/m3 increase in PM2.5 exposure was 6% (95% CI 4, 8%) for all-cause and 11% (95% CI 5, 16%) for cardiovascular mortality. Long-term exposure to PM2.5 was more associated with mortality from cardiovascular disease (particularly ischemic heart disease) than from non-malignant respiratory diseases (pooled estimate 3% (95% CI −6, 13%)). Significant heterogeneity in PM2.5 effect estimates was found across studies, likely related to differences in particle composition, infiltration of particles indoors, population characteristics and methodological differences in exposure assessment and confounder control. All-cause mortality was significantly associated with elemental carbon (pooled estimate per 1 μg/m3 6% (95% CI 5, 7%)) and NO2 (pooled estimate per 10 μg/m3 5% (95% CI 3, 8%)), both markers of combustion sources. There was little evidence for an association between long term coarse particulate matter exposure and mortality, possibly due to the small number of

  6. Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii.

    PubMed

    Chen, Lanzhou; Zhou, Lina; Liu, Yongding; Deng, Songqiang; Wu, Hao; Wang, Gaohong

    2012-10-01

    The toxicological effects of nanometer titanium dioxide (nano-TiO2) on a unicellular green alga Chlamydomonas reinhardtii were assessed by investigating the changes of the physiology and cyto-ultrastructure of this species under treatment. We found that nano-TiO2 inhibited photosynthetic efficiency and cell growth, but the content of chlorophyll a content in algae did not change, while carotenoid and chlorophyll b contents increased. Malondialdehyde (MDA) content reached maximum values after 8h exposure and then decreased to a moderately low level at 72 h. Electron microscopy images indicated that as concentrations of nano-TiO2 increased, a large number of C. reinhardtii cells were noted to be damaged: the number of chloroplasts declined, various other organelles were degraded, plasmolysis occurred, and TiO2 nanoparticles were found to be located inside cell wall and membrane. It was also noted that cell surface was surrounded by TiO2 particles, which could present an obstacle to the exchange of substances between the cell and its surrounding environment. To sum up, the effect of nano-TiO2 on C. reinhardtii included cell surface aggregation, photosynthesis inhibition, lipid peroxidation and new protein synthesis, while the response of C. reinhardtii to nano-TiO2 was a rapid process which occurs during 24 h after exposing and may relate to physiological stress system to mitigate damage. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  7. Antibacterial performance of nano polypropylene filter media containing nano-TiO2 and clay particles

    NASA Astrophysics Data System (ADS)

    Shafiee, Sara; Zarrebini, Mohammad; Naghashzargar, Elham; Semnani, Dariush

    2015-10-01

    Disinfection and elimination of pathogenic microorganisms from liquid can be achieved by filtration process using antibacterial filter media. The advent of nanotechnology has facilitated the introduction of membranes consisting of nano-fiber in filtration operations. The melt electro-spun fibers due to their extremely small diameters are used in the production of this particular filtration medium. In this work, antibacterial polypropylene filter medium containing clay particles and nano-TiO2 were made using melt electro-spun technology. Antibacterial performance of polypropylene nano-filters was evaluated using E. coli bacteria. Additionally, filtration efficiency of the samples in terms fiber diameter, filter porosity, and fiber distribution using image processing technique was determined. Air permeability and dust aerosol tests were conducted to establish the suitability of the samples as a filter medium. It was concluded that as far as antibacterial property is concerned, nano-fibers filter media containing clay particles are preferential to similar media containing TiO2 nanoparticles.

  8. Associations of Short-Term and Long-Term Exposure to Ambient Air Pollutants With Hypertension: A Systematic Review and Meta-Analysis.

    PubMed

    Cai, Yuanyuan; Zhang, Bo; Ke, Weixia; Feng, Baixiang; Lin, Hualiang; Xiao, Jianpeng; Zeng, Weilin; Li, Xing; Tao, Jun; Yang, Zuyao; Ma, Wenjun; Liu, Tao

    2016-07-01

    Hypertension is a major disease of burden worldwide. Previous studies have indicated that air pollution might be a risk factor for hypertension, but the results were controversial. To fill this gap, we performed a meta-analysis of epidemiological studies to investigate the associations of short-term and long-term exposure to ambient air pollutants with hypertension. We searched all of the studies published before September 1, 2015, on the associations of ozone (O3), carbon monoxide (CO), nitrogen oxide (NO2 and NOX), sulfur dioxide (SO2), and particulate matter (PM10 and PM2.5) with hypertension in the English electronic databases. A pooled odds ratio (OR) for hypertension in association with each 10 μg/m(3) increase in air pollutant was calculated by a random-effects model (for studies with significant heterogeneity) or a fixed-effect model (for studies without significant heterogeneity). A total of 17 studies examining the effects of short-term (n=6) and long-term exposure (n=11) to air pollutants were identified. Short-term exposure to SO2 (OR=1.046, 95% confidence interval [CI]: 1.012-1.081), PM2.5 (OR=1.069, 95% CI: 1.003-1.141), and PM10 (OR=1.024, 95% CI: 1.016-1.032) were significantly associated with hypertension. Long-term exposure (a 10 μg/m(3) increase) to NO2 (OR=1.034, 95% CI: 1.005-1.063) and PM10 (OR=1.054, 95% CI: 1.036-1.072) had significant associations with hypertension. Exposure to other ambient air pollutants (short-term exposure to NO2, O3, and CO and long-term exposure to NOx, PM2.5, and SO2) also had positive relationships with hypertension, but lacked statistical significance. Our results suggest that short-term or long-term exposure to some air pollutants may increase the risk of hypertension. © 2016 American Heart Association, Inc.

  9. Relationship between cognition function and hippocampus structure after long-term microwave exposure.

    PubMed

    Zhao, Li; Peng, Rui Yun; Wang, Shui Ming; Wang, Li Feng; Gao, Ya Bing; Dong, Ji; Li, Xiang; Su, Zhen Tao

    2012-04-01

    To analyze the effects of long-term microwave exposure on hippocampal structure and function in the rat. Experiments were performed on 184 male Wistar rats (three exposure groups and a sham group). Microwaves were applied daily for 6 min over 1 month at average power densities of 2.5, 5, and 10 mW/cm2. Learning and memory abilities were assessed by Morris water maze. High performance liquid chromatography was used to detect neurotransmitter concentrations in the hippocampus. Hippocampal structures were observed by histopathological analysis. Following long-term microwave exposure there was a significant decrease in learning and memory activity in the 7 d, 14 d, and 1 m in all three microwave exposure groups. Neurotransmitter concentrations of four amino acids (glutamate, aspartic acid, glycine, and gamma-aminobutyric acid) in hippocampus were increased in the 2.5 and 5 mW/cm2 groups and decreased in the 10 mW/cm2 group. There was evidence of neuronal degeneration and enlarged perivascular spaces in the hippocampus in the microwave exposure groups. Further, mitochondria became swollen and cristae were disordered. The rough endoplasmic reticulum exhibited sacculated distension and there was a decrease in the quantity of synaptic vesicles. These data suggest that the hippocampus can be injured by long-term microwave exposure, which might result in impairment of cognitive function due to neurotransmitter disruption.

  10. Toxicity and trophic transfer of P25 TiO2 NPs from Dunaliella salina to Artemia salina: Effect of dietary and waterborne exposure.

    PubMed

    Bhuvaneshwari, M; Thiagarajan, Vignesh; Nemade, Prateek; Chandrasekaran, N; Mukherjee, Amitava

    2018-01-01

    The recent increase in nanoparticle (P25 TiO 2 NPs) usage has led to concerns regarding their potential implications on environment and human health. The food chain is the central pathway for nanoparticle transfer from lower to high trophic level organisms. The current study relies on the investigation of toxicity and trophic transfer potential of TiO 2 NPs from marine algae Dunaliella salina to marine crustacean Artemia salina. Toxicity was measured in two different modes of exposure such as waterborne (exposure of TiO 2 NPs to Artemia) and dietary exposure (NP-accumulated algal cells are used to feed the Artemia). The toxicity and accumulation of TiO 2 NPs in marine algae D. salina were also studied. Artemia was found to be more sensitive to TiO 2 NPs (48h LC 50 of 4.21mgL -1 ) as compared to marine algae, D. salina (48h LC 50 of 11.35mgL -1 ). The toxicity, uptake, and accumulation of TiO 2 NPs were observed to be more in waterborne exposure as compared to dietary exposure. Waterborne exposure seemed to cause higher ROS production and antioxidant enzyme (SOD and CAT) activity as compared to dietary exposure of TiO 2 NPs in Artemia. There were no observed biomagnification (BMF) and trophic transfer from algae to Artemia through dietary exposure. Histopathological studies confirmed the morphological and internal damages in Artemia. This study reiterates the possible effects of the different modes of exposure on trophic transfer potential of TiO 2 NPs and eventually the consequences on aquatic environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Long-Term Fine Particulate Matter Exposure and Major Depressive Disorder in a Community-Based Urban Cohort

    PubMed Central

    Kim, Kyoung-Nam; Lim, Youn-Hee; Bae, Hyun Joo; Kim, Myounghee; Jung, Kweon; Hong, Yun-Chul

    2016-01-01

    Background: Previous studies have associated short-term air pollution exposure with depression. Although an animal study showed an association between long-term exposure to particulate matter ≤ 2.5 μm (PM2.5) and depression, epidemiological studies assessing the long-term association are scarce. Objective: We aimed to determine the association between long-term PM2.5 exposure and major depressive disorder (MDD). Methods: A total of 27,270 participants 15–79 years of age who maintained an address within the same districts in Seoul, Republic of Korea, throughout the entire study period (between 2002 and 2010) and without a previous MDD diagnosis were analyzed. We used three district-specific exposure indices as measures of long-term PM2.5 exposure. Cox proportional hazards models adjusted for potential confounding factors and measured at district and individual levels were constructed. We further conducted stratified analyses according to underlying chronic diseases such as diabetes mellitus, cardiovascular disease, and chronic obstructive pulmonary disease. Results: The risk of MDD during the follow-up period (2008–2010) increased with an increase of 10 μg/m3 in PM2.5 in 2007 [hazard ratio (HR) = 1.44; 95% CI: 1.17, 1.78], PM2.5 between 2007 and 2010 (HR = 1.59; 95% CI: 1.02, 2.49), and 12-month moving average of PM2.5 until an event or censor (HR = 1.47; 95% CI: 1.14, 1.90). The association between long-term PM2.5 exposure and MDD was greater in participants with underlying chronic diseases than in participants without these diseases. Conclusion: Long-term PM2.5 exposure increased the risk of MDD among the general population. Individuals with underlying chronic diseases are more vulnerable to long-term PM2.5 exposure. Citation: Kim KN, Lim YH, Bae HJ, Kim M, Jung K, Hong YC. 2016. Long-term fine particulate matter exposure and major depressive disorder in a community-based urban cohort. Environ Health Perspect 124:1547–1553; http://dx.doi.org/10

  12. Microstructure and antibacterial property of in situ TiO(2) nanotube layers/titanium biocomposites.

    PubMed

    Cui, C X; Gao, X; Qi, Y M; Liu, S J; Sun, J B

    2012-04-01

    The TiO(2) nanotube layer was in situ synthesized on the surface of pure titanium by the electrochemical anodic oxidation. The diameter of nano- TiO(2) nanotubes was about 70~100 nm. The surface morphology and phase compositions of TiO(2) nanotube layers were observed and analyzed using the scanning electron microscope (SEM). The important processing parameters, including anodizing voltage, reaction time, concentration of electrolyte, were optimized in more detail. The photocatalytic activity of the nano- TiO(2) nanotube layers prepared with optimal conditions was evaluated via the photodegradation of methylthionine in aqueous solution. The antibacterial property of TiO(2) nanotube layers prepared with optimal conditions was evaluated by inoculating Streptococcus mutans on the TiO(2) nanotube layers in vitro. The results showed that TiO(2) nanotube layers/Ti biocomposites had very good antibacterial activity to resist Streptococcus mutans. As a dental implant biomaterial, in situ TiO(2) nanotube layer/Ti biocomposite has better and wider application prospects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Synthesis and characterization of a mixed phase of anatase TiO2 and TiO2(B) by low pressure chemical vapour deposition (LPCVD) for high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chimupala, Y.; Hyett, G.; Simpson, R.; Brydson, R.

    2014-06-01

    This project is concerned with enhancing photocatalytic activity by preparing a mixed phase of nano-sized TiO2. TiO2 thin films were synthesized by using Low Pressure Chemical Vapour Deposition (LPCVD). Titanium isopropoxide and N2 gas were used as the precursor and carrier gas respectively. The effects of reaction temperature, carrier gas flow rate and deposited area were studied. TiO2 thin films with nano-sized TiO2 particles were obtained under suitable conditions and SEM, TEM, powder XRD and Raman spectroscopy were employed to characterize the phase and physical appearance of synthesized materials. Preliminary results show that a dual phase (TiO2(B) and anatase) thin film nanopowder was successfully prepared by LPCVD with needle- and polygonal plate-shape crystallites respectively. This thin film deposit produced a preferred orientation of TiO2(B) needles in the [001] direction of average crystallite size 50-80 nm in length and 5-10 nm in width, whilst the crystallite size of anatase polygonal-plates was around 200 nm. The optimal LPCVD condition for preparing this mixed phase of TiO2 was 600°C with a 1 mL/s N2 flow rate.

  14. Effects of TiO2 nanoparticles on the NO2 - levels in cell culture media analysed by Griess colorimetric methods

    NASA Astrophysics Data System (ADS)

    Popescu, Traian; Lupu, Andreea R.; Diamandescu, Lucian; Tarabasanu-Mihaila, Doina; Teodorescu, Valentin S.; Raditoiu, Valentin; Purcar, Violeta; Vlaicu, Aurel M.

    2013-02-01

    The Griess assay has been used to determine the possible changes in the measured NO2 - concentrations induced by TiO2 nanoparticles in three types of nitrite-containing samples: aqueous NaNO2 solutions with known concentrations, and two types of cell culture media—Roswell Park Memorial Institute medium (RPMI-1640) and Dulbecco's Modified Eagle Medium (DMEM-F12) used either as delivered or enriched in NO2 - by NaNO2 addition. We have used three types of titania with average particle sizes between 10 and 30 nm: Degussa P25 and two other samples (undoped and Fe3+-doped anatase TiO2) synthesised by a hydrothermal route in our laboratory. The structural, morphological, optical and physicochemical characteristics of the used materials have been studied by X-ray diffraction, transmission electron microscopy (EDX), Mössbauer spectroscopy, Brunauer-Emmett-Teller nitrogen adsorption, UV-Vis reflectance spectroscopy, dynamic light scattering and diffuse reflectance infrared Fourier transform spectroscopy. The opacity and sedimentation behaviour of the studied TiO2 suspensions have been investigated by photometric attenuance measurements at 540 nm. To account for the photocatalytic properties of titania in a biologically relevant context, multiple Griess tests have been performed under controlled exposure to laboratory natural daylight illumination. The results show significant variations of light attenuance (associated with NO2 - concentrations in the Griess test) depending on the opacity, sedimentation behaviour, NO2 - adsorption and photocatalytic properties of the tested TiO2 nanomaterials. These findings identify material characteristics recommended to be considered when analysing the results of Griess tests performed in biological studies involving TiO2 nanoparticles.

  15. Efficient dechlorination of chlorinated solvent pollutants under UV irradiation by using the synthesized TiO2 nano-sheets in aqueous phase.

    PubMed

    Ndong, Landry Biyoghe Bi; Ibondou, Murielle Primaelle; Miao, Zhouwei; Gu, Xiaogang; Lu, Shuguang; Qiu, Zhaofu; Sui, Qian; Mbadinga, Serge Maurice

    2014-05-01

    Titanium dioxide (TiO2), which is the widely used photo-catalyst, has been synthesized by simple hydrothermal solution containing tetrabutyl titanate and hydrofluoric acid. The synthesized product has been applied to photo-degradation in aqueous phase of chlorinated solvents, namely tetrachloroethene (PCE), trichloroethene (TCE) and 1,1,1-trichloroethane (TCA). The photo-degradation results revealed that the degradation of these harmful chemicals was better in UV/synthesized TiO2 system compared to UV/commercial P25 system and UV only system. The photo-catalytic efficiency of the synthesized TiO2 was 1.4, 1.8 and 3.0 folds higher compared to the commercial P25 for TCA, TCE and PCE degradation, respectively. Moreover, using nitrobenzene (NB) as a probe of hydroxyl radical (·OH), the degradation rate was better over UV/synthesized TiO2, suggesting the high concentration of ·OH generated in UV/synthesized TiO2 system. In addition, ·OH concentration was confirmed by the strong peak displayed in EPR analysis over UV/synthesized TiO2 system. The characterization result using XRD and TEM showed that the synthesized TiO2 was in anatase form and consisted of well-defined sheet-shaped structures having a rectangular outline with a thickness of 4 nm, side length of 50 nm and width of 33 nm and a surface 90.3 m(2)/g. XPS analysis revealed that ≡Ti-F bond was formed on the surface of the synthesized TiO2. The above results on both photocatalytic activity and the surface analysis demonstrated the good applicability of the synthesized TiO2 nano-sheets for the remediation of chlorinated solvent contaminated groundwater. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  16. Effects of the exposure of TiO2 nanoparticles on basil (Ocimum basilicum) for two generations.

    PubMed

    Tan, Wenjuan; Du, Wenchao; Darrouzet-Nardi, Anthony J; Hernandez-Viezcas, Jose A; Ye, Yuqing; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2018-09-15

    There is a lack of information about the transgenerational effects of titanium dioxide nanoparticles (nano-TiO 2 ) in plants. This study aimed to evaluate the impacts of successive exposure of nano-TiO 2 with different surface properties to basil (Ocimum basilicum). Seeds from plants exposed or re-exposed to pristine, hydrophobic, or hydrophilic nano-TiO 2 were cultivated for 65 days in soil unamended or amended with 750 mg·kg -1 of the respective particles. Plant growth, concentration of titanium and essential elements, as well as content of carbohydrates and chlorophyll were evaluated. There were no differences on Ti concentration in roots of plants sequentially exposed to pristine or hydrophobic nano-TiO 2 , or in roots of plants exposed to the corresponding particle, only in the second cycle. However, sequential exposure to hydrophilic particles resulted in 65.2% less Ti in roots, compared to roots of plants exposed the same particles, only in the second cycle. The Ti concentrations in shoots were similar in all treatments. On the other hand, pristine and hydrophilic particles reduced Mg in root by 115% and 81%, respectively, while pristine and hydrophobic particles reduced Ni in shoot by 84% and 75%, respectively, compared to unexposed plants in both cycles. Sequential exposure to pristine nano-TiO 2 increased stomatal conductance (214%, p ≤ 0.10), compared to plants that were never exposed. Hydrophobic and hydrophilic nano-TiO 2 reduced chlorophyll b (52%) and total chlorophyll (30%) but increased total sugar (186%) and reducing sugar (145%), compared to unexposed plants in both cycles. Sequential exposure to hydrophobic or hydrophilic nano-TiO 2 resulted in more adverse effects on photosynthesis but in positive effects on plant growth, compared to pristine nano-TiO 2 . Copyright © 2018 Elsevier B.V. All rights reserved.

  17. [Photophysical properties of poly (2-methoxy-5-octyloxy)-p-phenylene vinylene/TiO2 nano-composites].

    PubMed

    Sun, Jian-ping; Weng, Jia-bao; Cheng, Yun-tao; Lin, Ting; Huang, Xiao-zhu

    2008-12-01

    The photoelectric composites of poly (2-methoxy-5-octyloxy)-p-phenylene vinylene/nanometer TiO2 (PMOCOPV/ TiO2) with different nanometer TiOz amount were synthesized through dehydrochlorination in-situ polymerization. The results of Fourier transform infrared spectroscopy and Raman spectroscopy indicated that the surface of nanometer TiO2 was coated with PMOCOPV. UV-Vis spectrum showed that the absorption of PMOCOPV/TiO2 nano-composites was strengthened in the range of violet and visible light with the contents of TiO2 increasing. The composite dimensions were observed by highly resolution transmission electron microscope, PMOCOPV/TiO2 nano-composites dispersed uniformly and possessed core-shell structure, the diameter of PMOCOPV/TiO2 was measured to be about 30 nm, and the thickness of the PMOCOPV coating was about 8-10 nm. Photoluminescence spectroscopy indicated that the maximum emission wavelength of the PMOCOPV/TiO2 was red-shifted with increasing TiO2 concentration. The fluorescence lifetime of PMOCOPV/TiO2 was about 1 ns. The intensity and lifetime of fluorescence was increased remarkably with the contents of TiO2 increasing. The mechanism of the strengthened fluorescence quantum efficiency and fluorescence intensity of PMOCOPV/TiO2 was investigated through the charge transfer, exciton dissociation and potential energy in PMOCOPV/TiO2 nano-composites.

  18. Association Between Satellite-based Estimates of Long-term PM2.5 Exposure and Coronary Artery Disease

    EPA Science Inventory

    Background: Epidemiological studies have identified associations between long-term PM2.5 exposure and cardiovascular events, though most have relied on concentrations from central-site air quality monitors. Methods: We utilized a cohort of 5679 patients who had undergone cardiac ...

  19. Declining Pulmonary Function in Populations with Long-term Exposure to Polycyclic Aromatic Hydrocarbons-Enriched PM2.5.

    PubMed

    Shen, Meili; Xing, Jie; Ji, Qianpeng; Li, Zhihui; Wang, Yanhua; Zhao, Hongwei; Wang, Qingrong; Wang, Ting; Yu, Liwei; Zhang, Xiuchuan; Sun, Yaxin; Zhang, Zhihu; Niu, Yong; Wang, Huanqiang; Chen, Wen; Dai, Yufei; Su, Wenge; Duan, Huawei

    2018-06-05

    This study assesses the effects of long-term exposure to ambient air pollutants on inflammatory response and lung function. We selected 390 male coke oven workers with exposure to polycyclic aromatic hydrocarbons (PAHs) and fine particulate matter (PM 2.5 ) and 115 control workers. The average duration in the exposed group was 9.10 years. The total amount of PAHs was more enriched in PM 2.5 which collected from the coke oven workshops compared with the control areas. Correspondingly, the internal PAHs exposure indicated by urinary 1-hydroxypyrene (1-OHP) in the exposure group increased 25.7-fold compared to that of the control group. Moreover, the increasing level of urinary 1-OHP was associated with the decrease of forced expiratory volume in 1 s to forced vital capacity ratio (FEV 1 /FVC). In non-current smokers of exposure group, inverse correlation of 1-OHP with FEV 1 /FVC was also found. Particularly, an exposure duration-dependent decline in FEV 1 /FVC and mean forced expiratory flow between 25% and 75% of forced vital capacity (FEF 25-75% ) indicated that small airways were functionally obstructed. Furthermore, the increasing serum high-sensitivity C-reactive protein (hs-CRP) was correlated with the decline in pulmonary function in all subjects. These findings provide a clue that long-term exposure to PAHs-enriched PM 2.5 impairs pulmonary function in occupational population.

  20. Long-Term Aircraft Noise Exposure and Body Mass Index, Waist Circumference, and Type 2 Diabetes: A Prospective Study

    PubMed Central

    Hilding, Agneta; Pyko, Andrei; Bluhm, Gösta; Pershagen, Göran; Östenson, Claes-Göran

    2014-01-01

    Background: Long-term aircraft noise exposure may increase the risk of cardiovascular disease, but no study has investigated chronic effects on the metabolic system. Objectives: The aim of this study was to investigate effects of long-term aircraft noise exposure on body mass index (BMI), waist circumference, and type 2 diabetes. Furthermore, we explored the modifying effects of sleep disturbance. Methods: This prospective cohort study of residents of Stockholm County, Sweden, followed 5,156 participants with normal baseline oral glucose tolerance tests (OGTT) for up to 10 years. Exposure to aircraft noise was estimated based on residential history. Information on outcomes and confounders was obtained from baseline and follow-up surveys and examinations, and participants who developed prediabetes or type 2 diabetes were identified by self-reported physician diagnosis or OGTT at follow-up. Adjusted associations were assessed by linear, logistic, and random-effects models. Results: The mean (± SD) increases in BMI and waist circumference during follow-up were 1.09 ± 1.97 kg/m2 and 4.39 ± 6.39 cm, respectively. The cumulative incidence of prediabetes and type 2 diabetes was 8% and 3%, respectively. Based on an ordinal noise variable, a 5-dB(A) increase in aircraft noise was associated with a greater increase in waist circumference of 1.51 cm (95% CI: 1.13, 1.89), fully adjusted. This association appeared particularly strong among those who did not change their home address during the study period, which may be a result of lower exposure misclassification. However, no clear associations were found for BMI or type 2 diabetes. Furthermore, sleep disturbances did not appear to modify the associations with aircraft noise. Conclusions: Long-term aircraft noise exposure may be linked to metabolic outcomes, in particular increased waist circumference. Citation: Eriksson C, Hilding A, Pyko A, Bluhm G, Pershagen G, Östenson CG. 2014. Long-term aircraft noise exposure and

  1. Long-term exposure to air pollution and cardiorespiratory disease in the California teachers study cohort.

    PubMed

    Lipsett, Michael J; Ostro, Bart D; Reynolds, Peggy; Goldberg, Debbie; Hertz, Andrew; Jerrett, Michael; Smith, Daniel F; Garcia, Cynthia; Chang, Ellen T; Bernstein, Leslie

    2011-10-01

    Several studies have linked long-term exposure to particulate air pollution with increased cardiopulmonary mortality; only two have also examined incident circulatory disease. To examine associations of individualized long-term exposures to particulate and gaseous air pollution with incident myocardial infarction and stroke, as well as all-cause and cause specific mortality. We estimated long-term residential air pollution exposure for more than 100,000 participants in the California Teachers Study, a prospective cohort of female public school professionals.We linked geocoded residential addresses with inverse distance-weighted monthly pollutant surfaces for two measures of particulate matter and for several gaseous pollutants. We examined associations between exposure to these pollutants and risks of incident myocardial infarction and stroke, and of all-cause and cause-specific mortality, using Cox proportional hazards models. We found elevated hazard ratios linking long-term exposure to particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5), scaled to an increment of 10 μg/m3 with mortality from ischemic heart disease (IHD) (1.20; 95% confidence interval [CI], 1.02-1.41) and, particularly among postmenopausal women, incident stroke (1.19; 95% CI, 1.02-1.38). Long-term exposure to particulate matter less than 10 μm in aerodynamic diameter (PM10) was associated with elevated risks for IHD mortality (1.06; 95% CI, 0.99-1.14) and incident stroke (1.06; 95% CI, 1.00-1.13), while exposure to nitrogen oxides was associated with elevated risks for IHD and all cardiovascular mortality. This study provides evidence linking long-term exposure to PM2.5 and PM10 with increased risks of incident stroke as well as IHD mortality; exposure to nitrogen oxides was also related to death from cardiovascular diseases.

  2. The effect of titanium dioxide (TiO2) nano-objects, and their aggregates and agglomerates greater than 100nm (NOAA) on microbes under UV irradiation.

    PubMed

    Yamada, Ikuho; Nomura, Kazuki; Iwahashi, Hitoshi; Horie, Masanori

    2016-01-01

    Today, nanoparticles are used in many products. One of the most common nanoparticles is titanium dioxide (TiO2). These particles generate reactive oxygen species (ROS) upon UV irradiation. Although nanoparticles are very useful in many products, there are concerns about their biological and ecological effects when released into the environment. Thus, it was assessed that the effect of TiO2 nano-objects, and their aggregates and agglomerates greater than 100nm (NOAA) on microbes under UV irradiation by using Escherichia coli and Saccharomyces cerevisiae. ROS generation was evaluated by adding TiO2 nanoparticles and methylene blue to distilled water. We also assessed growth inhibition by adding TiO2 nanoparticles and microbes in minimal agar medium. Moreover, microbial inactivation was assessed by adding TiO2 nanoparticles and microbes to PBS. Upon UV irradiation, TiO2-NOAAs decomposed methylene blue and generated ROS. TiO2-NOAAs also decomposed methylene blue in minimal agar medium under UV irradiation; however, they did not inhibit microbial growth. Surprisingly, TiO2-NOAAs in the medium protect microbes from UV irradiation as colony formation was observed only near TiO2-NOAAs. In PBS, TiO2-NOAAs did not inactivate microbes but instead protected microbes from lethal UV irradiation. These results suggest that the amount of ROS generated by TiO2-NOAAs is not enough to inactivate microbes. In fact, our results suggest that TiO2-NOAAs may protect microbes from UV irradiations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Epitaxial Growth of Lattice-Mismatched Core-Shell TiO2 @MoS2 for Enhanced Lithium-Ion Storage.

    PubMed

    Dai, Rui; Zhang, Anqi; Pan, Zhichang; Al-Enizi, Abdullah M; Elzatahry, Ahmed A; Hu, Linfeng; Zheng, Gengfeng

    2016-05-01

    Core-shell structured nanohybrids are currently of significant interest due to their synergetic properties and enhanced performances. However, the restriction of lattice mismatch remains a severe obstacle for heterogrowth of various core-shells with two distinct crystal structures. Herein, a controlled synthesis of lattice-mismatched core-shell TiO2 @MoS2 nano-onion heterostructures is successfully developed, using unilamellar Ti0.87 O2 nanosheets as the starting material and the subsequent epitaxial growth of MoS2 on TiO2 . The formation of these core-shell nano-onions is attributed to an amorphous layer-induced heterogrowth mechanism. The number of MoS2 layers can be well tuned from few to over ten layers, enabling layer-dependent synergistic effects. The core-shell TiO2 @MoS2 nano-onion heterostructures exhibit significantly enhanced energy storage performance as lithium-ion battery anodes. The approach has also been extended to other lattice-mismatched systems such as TiO2 @MoSe2 , thus suggesting a new strategy for the growth of well-designed lattice-mismatched core-shell structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Experimental study and analysis of lubricants dispersed with nano Cu and TiO2 in a four-stroke two wheeler

    NASA Astrophysics Data System (ADS)

    Sarma, Pullela K.; Srinivas, Vadapalli; Rao, Vedula Dharma; Kumar, Ayyagari Kiran

    2011-12-01

    The present investigation summarizes detailed experimental studies with standard lubricants of commercial quality known as Racer-4 of Hindustan Petroleum Corporation (India) dispersed with different mass concentrations of nanoparticles of Cu and TiO2. The test bench is fabricated with a four-stroke Hero-Honda motorbike hydraulically loaded at the rear wheel with proper instrumentation to record the fuel consumption, the load on the rear wheel, and the linear velocity. The whole range of data obtained on a stationery bike is subjected to regression analysis to arrive at various relationships between fuel consumption as a function of brake power, linear velocity, and percentage mass concentration of nanoparticles in the lubricant. The empirical relation correlates with the observed data with reasonable accuracy. Further, extension of the analysis by developing a mathematical model has revealed a definite improvement in brake thermal efficiency which ultimately affects the fuel economy by diminishing frictional power in the system with the introduction of nanoparticles into the lubricant. The performance of the engine seems to be better with nano Cu-Racer-4 combination than the one with nano TiO2.

  5. Experimental study and analysis of lubricants dispersed with nano Cu and TiO2 in a four-stroke two wheeler

    PubMed Central

    2011-01-01

    The present investigation summarizes detailed experimental studies with standard lubricants of commercial quality known as Racer-4 of Hindustan Petroleum Corporation (India) dispersed with different mass concentrations of nanoparticles of Cu and TiO2. The test bench is fabricated with a four-stroke Hero-Honda motorbike hydraulically loaded at the rear wheel with proper instrumentation to record the fuel consumption, the load on the rear wheel, and the linear velocity. The whole range of data obtained on a stationery bike is subjected to regression analysis to arrive at various relationships between fuel consumption as a function of brake power, linear velocity, and percentage mass concentration of nanoparticles in the lubricant. The empirical relation correlates with the observed data with reasonable accuracy. Further, extension of the analysis by developing a mathematical model has revealed a definite improvement in brake thermal efficiency which ultimately affects the fuel economy by diminishing frictional power in the system with the introduction of nanoparticles into the lubricant. The performance of the engine seems to be better with nano Cu-Racer-4 combination than the one with nano TiO2. PMID:21711765

  6. Experimental study and analysis of lubricants dispersed with nano Cu and TiO2 in a four-stroke two wheeler.

    PubMed

    Sarma, Pullela K; Srinivas, Vadapalli; Rao, Vedula Dharma; Kumar, Ayyagari Kiran

    2011-03-17

    The present investigation summarizes detailed experimental studies with standard lubricants of commercial quality known as Racer-4 of Hindustan Petroleum Corporation (India) dispersed with different mass concentrations of nanoparticles of Cu and TiO2. The test bench is fabricated with a four-stroke Hero-Honda motorbike hydraulically loaded at the rear wheel with proper instrumentation to record the fuel consumption, the load on the rear wheel, and the linear velocity. The whole range of data obtained on a stationery bike is subjected to regression analysis to arrive at various relationships between fuel consumption as a function of brake power, linear velocity, and percentage mass concentration of nanoparticles in the lubricant. The empirical relation correlates with the observed data with reasonable accuracy. Further, extension of the analysis by developing a mathematical model has revealed a definite improvement in brake thermal efficiency which ultimately affects the fuel economy by diminishing frictional power in the system with the introduction of nanoparticles into the lubricant. The performance of the engine seems to be better with nano Cu-Racer-4 combination than the one with nano TiO2.

  7. Quantitative characterization of TiO2 nanoparticle release from textiles by conventional and single particle ICP-MS

    NASA Astrophysics Data System (ADS)

    Mackevica, Aiga; Olsson, Mikael Emil; Hansen, Steffen Foss

    2018-01-01

    TiO2 is ubiquitously present in a wide range of everyday items, both as an intentionally incorporated additive and naturally occurring constituent. It can be found in a wide range of consumer products, including personal care products, food contact materials, and textiles. Normal use of these products may lead to consumer and/or environmental exposure to TiO2, possibly in form of nanoparticles. The aim of this study is to perform a leaching test and apply state-of-the-art methods to investigate nano-TiO2 and total Ti release from five types of commercially available conventional textiles: table placemats, wet wipes, microfiber cloths, and two types of baby bodysuits, with Ti contents ranging from 2.63 to 1448 μg/g. Released particle analysis was performed using conventional and single particle inductively coupled plasma mass spectrometry (ICP-MS and spICP-MS), in conjunction with transmission electron microscopy (TEM), to measure total and particulate TiO2 release by mass and particle number, as well as size distribution. Less than 1% of the initial Ti content was released over 24 h of leaching, with the highest releases reaching 3.13 μg/g. The fraction of nano-TiO2 released varied among fabric types and represented 0-80% of total TiO2 release. Particle mode sizes were 50-75 nm, and TEM imaging revealed particles in sizes of 80-200 nm. This study highlights the importance of using a multi-method approach to obtain quantitative release data that is able to provide an indication regarding particle number, size distribution, and mass concentration, all of which can help in understanding the fate and exposure of nanoparticles.

  8. Long-term traffic-related exposures and asthma onset in schoolchildren in oslo, norway.

    PubMed

    Oftedal, Bente; Nystad, Wenche; Brunekreef, Bert; Nafstad, Per

    2009-05-01

    Whether there is a causal relation between long-term exposure to traffic and asthma development is so far not clear. This may be explained by inaccurate exposure assessment. We investigated the associations of long-term traffic-related exposures with asthma onset assessed retrospectively and respiratory symptoms in 9- to 10-year-old children. We collected information on respiratory outcomes and potential confounding variables by parental questionnaire in 2,871 children in Oslo. Nitrogen dioxide exposure was assessed by the EPISODE dispersion model and assigned at updated individual addresses during lifetime. Distance to major road was assigned at birth address and address by date of questionnaire. Cox proportional hazard regression and logistic regression were used. We did not find positive associations between any long-term traffic-related exposure and onset of doctor-diagnosed asthma. An interquartile range (IQR) increase of NO(2) exposure before asthma onset was associated with an adjusted risk ratio of 0.82 [95% confidence interval (CI), 0.67-1.02]. Handling early asthma cases (children < 4 years of age) with recovery during follow-up as noncases gave a less negative association. The associations for late asthma onset (>/= 4 years of age) were positive but not statistically significant. For current symptoms, an IQR increase of previous year's NO(2) exposure was associated with adjusted odds ratios of 1.01 (95% CI, 0.83-1.23) for wheeze, 1.10 (95% CI, 0.79-1.51) for severe wheeze, and 1.01 (95% CI, 0.84-1.21) for dry cough. We were not able to find positive associations of long-term traffic-related exposures with asthma onset or with current respiratory symptoms in 9- to 10-year-old children in Oslo.

  9. UV-driven microvalve based on a micro-nano TiO2/SiO2 composite surface for microscale flow control

    NASA Astrophysics Data System (ADS)

    Guo, Ting; Meng, Tao; Li, Wei; Qin, Jilong; Tong, Zhiping; Zhang, Qing; Li, Xueru

    2014-03-01

    This paper presents a novel ultraviolet (UV)-driven microvalve based on the concept of inserting a trimethyl chlorosilane (CTMS) modified TiO2/SiO2 composite patch of switchable wettability in a microfluidic system. A unique micro-nano hierarchical structure was designed and used to enhance the overall wetting contrast with the aim of improving the wetting-based valve performances. Field-emission scanning electron microscopy (FE-SEM) and x-ray photoelectron spectroscopy (XPS) were used to characterize the morphology and chemical composition of the surface. UV-driven wettability conversion on the patched microchannel was investigated using water column relative height tests, and the results confirmed the significant improvement of the hierarchical structure with the surface hydrophobic/hydrophilic conversion, which produced enhancements of 276% and 95% of the water-repellent and water-sucking pressures, respectively, compared with those of the single-scale TiO2 nanopatterned structure. Accordingly, a good reversible and repeated on-off performance was identified by the valve tests, highlighting the potential application of the novel microvalve in the efficient control of microscale flow.

  10. Influence of surfactant and annealing temperature on optical properties of sol-gel derived nano-crystalline TiO2 thin films.

    PubMed

    Vishwas, M; Sharma, Sudhir Kumar; Rao, K Narasimha; Mohan, S; Gowda, K V Arjuna; Chakradhar, R P S

    2010-03-01

    Titanium dioxide thin films have been synthesized by sol-gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 degrees C. The influence of surfactant and annealing temperature on optical properties of TiO(2) thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO(2) films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO(2) films was estimated by Tauc's method at different annealing temperature. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Long-term aircraft noise exposure and body mass index, waist circumference, and type 2 diabetes: a prospective study.

    PubMed

    Eriksson, Charlotta; Hilding, Agneta; Pyko, Andrei; Bluhm, Gösta; Pershagen, Göran; Östenson, Claes-Göran

    2014-07-01

    Long-term aircraft noise exposure may increase the risk of cardiovascular disease, but no study has investigated chronic effects on the metabolic system. The aim of this study was to investigate effects of long-term aircraft noise exposure on body mass index (BMI), waist circumference, and type 2 diabetes. Furthermore, we explored the modifying effects of sleep disturbance. This prospective cohort study of residents of Stockholm County, Sweden, followed 5,156 participants with normal baseline oral glucose tolerance tests (OGTT) for up to 10 years. Exposure to aircraft noise was estimated based on residential history. Information on outcomes and confounders was obtained from baseline and follow-up surveys and examinations, and participants who developed prediabetes or type 2 diabetes were identified by self-reported physician diagnosis or OGTT at follow-up. Adjusted associations were assessed by linear, logistic, and random-effects models. The mean (± SD) increases in BMI and waist circumference during follow-up were 1.09 ± 1.97 kg/m2 and 4.39 ± 6.39 cm, respectively. The cumulative incidence of prediabetes and type 2 diabetes was 8% and 3%, respectively. Based on an ordinal noise variable, a 5-dB(A) increase in aircraft noise was associated with a greater increase in waist circumference of 1.51 cm (95% CI: 1.13, 1.89), fully adjusted. This association appeared particularly strong among those who did not change their home address during the study period, which may be a result of lower exposure misclassification. However, no clear associations were found for BMI or type 2 diabetes. Furthermore, sleep disturbances did not appear to modify the associations with aircraft noise. Long-term aircraft noise exposure may be linked to metabolic outcomes, in particular increased waist circumference.

  12. A novel bio-mimicking, planar nano-edge microelectrode enables enhanced long-term neural recording

    NASA Astrophysics Data System (ADS)

    Wijdenes, Pierre; Ali, Hasan; Armstrong, Ryden; Zaidi, Wali; Dalton, Colin; Syed, Naweed I.

    2016-10-01

    Our inability to accurately monitor individual neurons and their synaptic activity precludes fundamental understanding of brain function under normal and various pathological conditions. However, recent breakthroughs in micro- and nano-scale fabrication processes have advanced the development of neuro-electronic hybrid technology. Among such devices are three-dimensional and planar electrodes, offering the advantages of either high fidelity or longer-term recordings respectively. Here, we present the next generation of planar microelectrode arrays with “nano-edges” that enable long-term (≥1 month) and high fidelity recordings at a resolution 15 times higher than traditional planar electrodes. This novel technology enables better understanding of brain function and offers a tremendous opportunity towards the development of future bionic hybrids and drug discovery devices.

  13. Early-life exposure to fibroblast growth factor-2 facilitates context-dependent long-term memory in developing rats.

    PubMed

    Graham, Bronwyn M; Richardson, Rick

    2010-06-01

    Fibroblast growth factor-2 (FGF2) is a potent neurotrophic factor that is involved in brain development and the formation of long-term memory. It has recently been shown that acute FGF2, administered at the time of learning, enhances long-term memory for contextual fear conditioning as well as extinction of conditioned fear in developing rats. As other research has shown that administering FGF2 on the first day of life leads to long-term morphological changes in the hippocampus, in the present study we investigated whether early life exposure to FGF2 affects contextual fear conditioning, and renewal following extinction, later in life. Experiment 1 demonstrated that a single injection of FGF2 on Postnatal Day (PND) 1 did not lead to any detectable changes in contextual fear conditioning in PND 16 or PND 23 rats. Experiments 2 and 3 demonstrated that 5 days of injections of FGF2 (from PND 1-5) facilitated contextual fear conditioning in PND 16 and PND 23 rats. Experiment 4 demonstrated that the observed facilitation of memory was not due to FGF2 increasing rats' sensitivity to foot shock. Experiment 5 showed that early life exposure to FGF2 did not affect learning about a discrete conditioned stimulus, but did allow PND 16 rats to use contextual information in more complex ways, leading to context-dependent extinction of conditioned fear. These results further implicate FGF2 as a critical signal involved in the development of learning and memory.

  14. Nano-sized TiO2 (nTiO2) induces metabolic perturbations in Physarum polycephalum macroplasmodium to counter oxidative stress under dark conditions.

    PubMed

    Zhang, Zhi; Liang, Zhi Cheng; Zhang, Jian Hua; Tian, Sheng Li; Le Qu, Jun; Tang, Jiao Ning; De Liu, Shi

    2018-06-15

    Nano-sized TiO 2 (nTiO 2 ) exerts an oxidative effect on cells upon exposure to solar or UV irradiation and ecotoxicity of the nTiO 2 is an urgent concern. Little information is available regarding the effect of TiO 2 on cells under dark conditions. Metabolomics is a unique approach to the discovery of biomarkers of nTiO 2 cytotoxicity, and leads to the identification of perturbed metabolic pathways and the mechanism underlying nTiO 2 toxicity. In the present study, gas chromatography mass spectrometry (GC/MS)-based metabolomics was performed to investigate the effect of nTiO 2 on sensitive cells (P. polycephalum macroplasmodium) under dark conditions. According to the multivariate pattern recognition analysis, at least 60 potential metabolic biomarkers related to sugar metabolism, amino acid metabolism, nucleotide metabolism, polyamine biosynthesis, and secondary metabolites pathways were significantly perturbed by nTiO 2 . Notably, many metabolic biomarkers and pathways were related to anti-oxidant mechanisms in the living organism, suggesting that nTiO 2 may induce oxidative stress, even under dark conditions. This speculation was further validated by the biochemical levels of reactive oxygen species (ROS), 8-hydroxy-2-deoxyguanosine (8-OHdG), and total soluble phenols (TSP). We inferred that the oxidative stress might be related to nTiO 2 -induced imbalance of cellular ROS. To the best of our knowledge, the present study is the first to investigate the nTiO 2 -induced metabolic perturbations in slime mold, provide a new perspective of the mechanism underlying nTiO 2 toxicity under dark conditions, and show that metabolomics can be employed as a rapid, reliable and powerful tool to investigate the interaction among organisms, the environment, and nanomaterials. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Application of nano-TiO2/LDPE composite film on photocatalytic oxidation degradation of dichloromethane.

    PubMed

    Suwannahong, Kowit; Liengcharernsit, Winai; Sanongraj, Wipada; Kruenate, Jittiporn

    2012-09-01

    This study focused on the photocatalytic destruction of dichloromethane (DCM) in indoor air using the nano-TiO2/LDPE composite film as an economical photocatalyst. The nano-TiO2 was dispersed in a polyethylene matrix to form composite film. The photocatalytic activity of the nano-TiO2/LDPE composite films was evaluated through the degradation of dichloromethane(DCM) under UV-C irradiance at specific wavelength of 254 nm. The percentage of nano-TiO2 contents varied from 0, 5, and 10% (wt cat./wt LDPE composite film). The results derived from the kinetic model revealed that the photocatalytic rates of 5 and 10 wt.% nano-TiO2/ LDPE composite films follow the first order reaction while the rate of the film without TiO2 followed the zero order reaction. At low concentration of DCM, the rate of photocatalytic degradation of the DCM was slower than that at high DCM concentration. The 10 wt.% of TiO2 content of the nano-TiO2/LDPE composite film yielded the highest degradation efficiency of 78%, followed by the removal efficiency of 55% for the 5 wt.% of TiO2 content of the nano-TiO2/LDPE composite film. In contrast with the composite film containing nano-TiO2, the LDPE film without adding nano-TiO2 expressed the degradation efficiency of 28%.

  16. The Application of Nano-TiO2 Photo Semiconductors in Agriculture

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Sun, Changjiao; Zhao, Xiang; Cui, Bo; Zeng, Zhanghua; Wang, Anqi; Liu, Guoqiang; Cui, Haixin

    2016-11-01

    Nanometer-sized titanium dioxide (TiO2) is an environmentally friendly optical semiconductor material. It has wide application value in many fields due to its excellent structural, optical, and chemical properties. The photocatalytic process of nano-TiO2 converts light energy into electrical or chemical energy under mild conditions. In recent years, the study and application of nano-TiO2 in the agricultural sector has gradually attracted attention. The nano-TiO2 applications of degrading pesticides, plant germination and growth, crop disease control, water purification, pesticide residue detection, etc. are good prospects. This review describes all of these applications and the research status and development, including the underlying principles, features, comprehensive applications, functional modification, and potential future directions, for TiO2 in agriculture.

  17. Toward responsible development and effective risk management of nano-enabled products in the U.S. construction industry

    NASA Astrophysics Data System (ADS)

    West, Gavin H.; Lippy, Bruce E.; Cooper, Michael R.; Marsick, Daniel; Burrelli, Leonard G.; Griffin, Kelsey N.; Segrave, Alan M.

    2016-02-01

    The global construction sector is experiencing major improvements to building materials used in large quantities through commercial applications of nanotechnology. Nano-enabled construction products hold great promise for energy efficiency and resource conservation, but risk assessments lag as new products emerge. This paper presents results from an inventory, survey, and exposure assessment conducted by the authors and explores these findings in the broader context of evolving research trends and responsible development of nanotechnology. An inventory of 458 reportedly nano-enabled construction products provided insight into product availability, potential exposures, and deficiencies in risk communication that are barriers to adoption of proactive safety measures. Seasoned construction trainers surveyed were largely unaware of the availability of nano-enabled construction products. Exposure assessment demonstrated the effectiveness of ventilation to reduce exposures during mechanical abrasion of photocatalytic tiles containing titanium dioxide (TiO2). Dissociated particles of TiO2 just above the nanoscale (138 nm) were detected in the debris collected during cutting of the tiles, but measurements were below recommended exposure limits for TiO2. Exposure assessments remain scarce, and toxicological understanding primarily pertains to unincorporated nanomaterials; less is known about the occupational risks of nano-enabled construction products across their life cycle. Further research is needed to characterize and quantify exposure to debris released from nanocomposite materials for realistic risk assessment, and to ascertain how nanocomposite matrices, fillers, and degradation forces interact to affect release dynamics. Improving risk communication strategies and implementing safe work practices will cultivate responsible development of nanotechnology in construction, as will multidisciplinary research efforts.

  18. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.

    PubMed

    Chunmiao, Yuan; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-15

    The inerting effect of nano-sized TiO2 powder on ignition sensitivity of nano and micro Ti powders was investigated with a Mike 3 apparatus. "A little is not good enough" is also suitable for micro Ti powders mixed with nano-sized solid inertants. MIE of the mixtures did not significantly increase until the TiO2 percentage exceeded 50%. Nano-sized TiO2 powders were ineffective as an inertant when mixed with nano Ti powders, especially at higher dust loadings. Even with 90% nano TiO2 powder, mixtures still showed high ignition sensitivity because the statistic energy was as low as 2.1 mJ. Layer fires induced by ignited but unburned metal particles may occur for micro Ti powders mixed with nano TiO2 powders following a low level dust explosion. Such layer fires could lead to a violent dust explosion after a second dispersion. Thus, additional attention is needed to prevent metallic layer fires even where electric spark potential is low. In the case of nano Ti powder, no layer fires were observed because of less flammable material involved in the mixtures investigated, and faster flame propagation in nanoparticle clouds. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Long-term Exposure to PM2.5 and Mortality Among Older Adults in the Southeastern US.

    PubMed

    Wang, Yan; Shi, Liuhua; Lee, Mihye; Liu, Pengfei; Di, Qian; Zanobetti, Antonella; Schwartz, Joel D

    2017-03-01

    Little is known about what factors modify the effect of long-term exposure to PM2.5 on mortality, in part because in most previous studies certain groups such as rural residents and individuals with lower socioeconomic status (SES) are under-represented. We studied 13.1 million Medicare beneficiaries (age ≥65) residing in seven southeastern US states during 2000-2013 with 95 million person-years of follow-up. We predicted annual average of PM2.5 in each zip code tabulation area (ZCTA) using a hybrid spatiotemporal model. We fit Cox proportional hazards models to estimate the association between long-term PM2.5 and mortality. We tested effect modification by individual-level covariates (race, sex, eligibility for both Medicare and Medicaid, and medical history), neighborhood-level covariates (urbanicity, percentage below poverty level, lower education, median income, and median home value), mean summer temperature, and mass fraction of 11 PM2.5 components. The hazard ratio (HR) for death was 1.021 (95% confidence interval: 1.019, 1.022) per 1 μg m increase in annual PM2.5. The HR decreased with age. It was higher among males, non-whites, dual-eligible individuals, and beneficiaries with previous hospital admissions. It was higher in neighborhoods with lower SES or higher urbanicity. The HR increased with mean summer temperature. The risk associated with PM2.5 increased with relative concentration of elemental carbon, vanadium, copper, calcium, and iron and decreased with nitrate, organic carbon, and sulfate. Associations between long-term PM2.5 exposure and death were modified by individual-level, neighborhood-level variables, temperature, and chemical compositions.

  20. Short-term exposure to JP-8 jet fuel results in long-term immunotoxicity.

    PubMed

    Harris, D T; Sakiestewa, D; Robledo, R F; Witten, M

    1997-01-01

    Chronic exposure to jet fuel has been shown to have adverse effects on human liver function, to cause emotional dysfunction, to cause abnormal electroencephalograms, to cause shortened attention spans, and to decrease sensorimotor speed. Due to the decision by the United States Air Force to implement the widespread use of JP-8 jet fuel in its operations, a thorough understanding of its potential effects upon exposed personnel is both critical and necessary. Exposure to potential environmental toxicants such as JP-8 may have significant effects on host systems beyond those readily visible (i.e., physiology, cardiology, respiratory, etc.); e.g., the immune system. Previous studies have shown that short-term, low concentration JP-8 exposure had significant effects on the immune system, which should have serious consequences for the exposed host in terms of susceptibility to infectious agents. If these alterations in immune function were long-lasting, it might also result in an increased likelihood of development and/or progression of cancer, as well as autoimmune disease. In the current study, mice were exposed for 1 h/day for 7 days to a moderate (1000 mg/m3) and a high (2500 mg/m3) concentration of aerosolized JP-8 jet fuel to stimulate occupational exposures. One to 28 days after the last exposure the mice were analyzed for effects of the exposure on their immune systems. It was observed that decrease in viable immune cell numbers and immune organ weights found at 24 h after exposure persisted for extended periods of time. Further, JP-8 exposure resulted in significantly decreased immune infection, as analyzed by mitogenesis assays, which persisted for up to 4 weeks post-exposure. Thus, short-term exposure of mice to JP-8 jet fuel caused significant toxicological effects on the immune system, which were long-lasting and persistent. It appears that the immune system may be the most sensitive indicator of toxicological damage due to JP-8 exposure. Such long-term

  1. Preconcentration and speciation of ultra-trace Se (IV) and Se (VI) in environmental water samples with nano-sized TiO2 colloid and determination by HG-AFS.

    PubMed

    Fu, Jiaqi; Zhang, Xu; Qian, Shahua; Zhang, Lin

    2012-05-30

    A united method for speciation analysis of Se (IV) and Se (VI) in environmental water samples was developed using nano-sized TiO(2) colloid as adsorbent and hydride generation atomic fluorescence spectrometry (HG-AFS) as determination means. When the pH values of bulk solution were between 6.0 and 7.0, successful adsorption onto 1 mL nano-sized TiO(2) colloid (0.2%) was achieved for more than 97.0% of Se (IV) while Se (VI) barely got adsorbed. Therefore, the method made it possible to preconcentrate and determine Se (IV) and Se (VI) separately. The precipitated TiO(2) with concentrated selenium was directly converted to colloid without desorption. Selenium in the resulting colloid was then determined by HG-AFS. The detection limits (3σ) and relative standard deviations (R.S.D) of this method were 24 ng/L and 42 ng/L, 7.8% (n=6) and 7.0% (n=6) for Se (IV) and Se (VI), respectively. This simple, sensitive, and united method was successfully applied to the separation and speciation of ultra-trace Se (IV) and Se (VI) in environmental water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Prenatal alcohol exposure and long-term developmental consequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spohr, H.L.; Willms, J.; Steinhausen, H.C.

    Fetal alcohol syndrome (FAS) is a leading cause of congenital mental retardation but little is known about the long-term development and adolescent outcome of children with FAS. In a 10-year follow-up study of 60 patients diagnosed as having FAS in infancy and childhood, the authors investigated the long-term sequelae of intrauterine alcohol exposure. The authors found that the characteristic craniofacial malformations of FAS diminish with time, but microcephaly and, to a lesser degree, short stature and underweight (in boys) persist; in female adolescents body weight normalizes. Persistent mental retardation is the major sequela of intrauterine alcohol exposure in many cases,more » and environmental and educational factors do not have strong compensatory effects on the intellectual development of affected children.« less

  3. Effect of long-term (2 years) exposure of mouse brains to global system for mobile communication (GSM) radiofrequency fields on astrocytic immunoreactivity.

    PubMed

    Court-Kowalski, Stefan; Finnie, John W; Manavis, Jim; Blumbergs, Peter C; Helps, Stephen C; Vink, Robert

    2015-04-01

    This study was designed to determine whether long-term (2 years) brain exposure to mobile telephone radiofrequency (RF) fields produces any astrocytic activation as these glia react to a wide range of neural perturbations by astrogliosis. Using a purpose-designed exposure system at 900 MHz, mice were given a single, far-field whole body exposure at a specific absorption rate of 4 W/kg on five successive days per week for 104 weeks. Control mice were sham-exposed or freely mobile in a cage to control any stress caused by immobilization in the exposure module. Brains were perfusion-fixed with 4% paraformaldehyde and three coronal levels immunostained for glial fibrillary acidic protein (GFAP). These brain slices were then examined by light microscopy and the amount of this immunomarker quantified using a color deconvolution method. There was no change in astrocytic GFAP immunostaining in brains after long-term exposure to mobile telephony microwaves compared to control (sham-exposed or freely moving caged mice). It was concluded that long-term (2 years) exposure of murine brains to mobile telephone RF fields did not produce any astrocytic reaction (astrogliosis) detectable by GFAP immunostaining. © 2015 Wiley Periodicals, Inc.

  4. Long-term exposure to air pollution is associated with biological aging

    PubMed Central

    Ward-Caviness, Cavin K.; Nwanaji-Enwerem, Jamaji C.; Wolf, Kathrin; Wahl, Simone; Colicino, Elena; Trevisi, Letizia; Kloog, Itai; Just, Allan C.; Vokonas, Pantel; Cyrys, Josef; Gieger, Christian; Schwartz, Joel; Baccarelli, Andrea A.; Schneider, Alexandra; Peters, Annette

    2016-01-01

    Long-term exposure to air pollution is associated with age-related diseases. We explored the association between accelerated biological aging and air pollution, a potential mechanism linking air pollution and health. We estimated long-term exposure to PM10, PM2.5, PM2.5 absorbance/black carbon (BC), and NOx via land-use regression models in individuals from the KORA F4 cohort. Accelerated biological aging was assessed using telomere length (TeloAA) and three epigenetic measures: DNA methylation age acceleration (DNAmAA), extrinsic epigenetic age acceleration (correlated with immune cell counts, EEAA), and intrinsic epigenetic age acceleration (independent of immune cell counts, IEAA). We also investigated sex-specific associations between air pollution and biological aging, given the published association between sex and aging measures. In KORA an interquartile range (0.97 μg/m3) increase in PM2.5 was associated with a 0.33 y increase in EEAA (CI = 0.01, 0.64; P = 0.04). BC and NOx (indicators or traffic exposure) were associated with DNAmAA and IEAA in women, while TeloAA was inversely associated with BC in men. We replicated this inverse BC-TeloAA association in the Normative Aging Study, a male cohort based in the USA. A multiple phenotype analysis in KORA F4 combining all aging measures showed that BC and PM10 were broadly associated with biological aging in men. Thus, we conclude that long-term exposure to air pollution is associated with biological aging measures, potentially in a sex-specific manner. However, many of the associations were relatively weak and further replication of overall and sex-specific associations is warranted. PMID:27793020

  5. Long-term exposure to air pollution is associated with biological aging.

    PubMed

    Ward-Caviness, Cavin K; Nwanaji-Enwerem, Jamaji C; Wolf, Kathrin; Wahl, Simone; Colicino, Elena; Trevisi, Letizia; Kloog, Itai; Just, Allan C; Vokonas, Pantel; Cyrys, Josef; Gieger, Christian; Schwartz, Joel; Baccarelli, Andrea A; Schneider, Alexandra; Peters, Annette

    2016-11-15

    Long-term exposure to air pollution is associated with age-related diseases. We explored the association between accelerated biological aging and air pollution, a potential mechanism linking air pollution and health. We estimated long-term exposure to PM10, PM2.5, PM2.5 absorbance/black carbon (BC), and NOx via land-use regression models in individuals from the KORA F4 cohort. Accelerated biological aging was assessed using telomere length (TeloAA) and three epigenetic measures: DNA methylation age acceleration (DNAmAA), extrinsic epigenetic age acceleration (correlated with immune cell counts, EEAA), and intrinsic epigenetic age acceleration (independent of immune cell counts, IEAA). We also investigated sex-specific associations between air pollution and biological aging, given the published association between sex and aging measures. In KORA an interquartile range (0.97 µg/m3) increase in PM2.5 was associated with a 0.33 y increase in EEAA (CI = 0.01, 0.64; P = 0.04). BC and NOx (indicators or traffic exposure) were associated with DNAmAA and IEAA in women, while TeloAA was inversely associated with BC in men. We replicated this inverse BC-TeloAA association in the Normative Aging Study, a male cohort based in the USA. A multiple phenotype analysis in KORA F4 combining all aging measures showed that BC and PM10 were broadly associated with biological aging in men. Thus, we conclude that long-term exposure to air pollution is associated with biological aging measures, potentially in a sex-specific manner. However, many of the associations were relatively weak and further replication of overall and sex-specific associations is warranted.

  6. VALIDATION OF A METHOD FOR ESTIMATING LONG-TERM EXPOSURES BASED ON SHORT-TERM MEASUREMENTS

    EPA Science Inventory

    A method for estimating long-term exposures from short-term measurements is validated using data from a recent EPA study of exposure to fine particles. The method was developed a decade ago but data to validate it did not exist until recently. In this paper, data from repeated ...

  7. Numerical simulation of gender differences in a long-term microgravity exposure

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni

    The objective of this work is to analyse and simulate gender differences when individuals are exposed to long-term microgravity. Risk probability of a health impairment which may put in jeopardy a long-term mission is also evaluated. Computer simulations are becoming a promising research line of work, as physiological models become more and more sophisticated and reliable. Technological advances in state-of-the-art hardware technology and software allow nowadays for better and more accurate simulations of complex phenomena, such as the response of the human cardiovascular system to long-term exposure to microgravity. Experimental data for long-term missions are difficult to achieve and reproduce, therefore the predictions of computer simulations are of a major importance in this field. Our approach is based on a previous model developed and implemented in our laboratory (NELME: Numerical Evaluation of Long-term Microgravity Effects). The software simulates the behaviour of the cardiovascular system and different human organs, has a modular architecture, and allows to introduce perturbations such as physical exercise or countermeasures. The implementation is based on a complex electricallike model of this control system, using inexpensive software development frameworks, and has been tested and validated with the available experimental data. Gender differences have been implemented for this specific work, as an adjustment of a number of parameters that are included in the model. Women versus men physiological differences have been therefore taken into account, based upon estimations from the physiology bibliography. A number of simulations have been carried out for long-term exposure to microgravity. Gravity varying from Earth-based to zero, and time exposure are the two main variables involved in the construction of results, including responses to patterns of physical aerobical exercise, and also thermal stress simulating an extra-vehicular activity. Results show

  8. The significance of nanomaterial post-exposure responses in Daphnia magna standard acute immobilisation assay: Example with testing TiO2 nanoparticles.

    PubMed

    Novak, Sara; Jemec Kokalj, Anita; Hočevar, Matej; Godec, Matjaž; Drobne, Damjana

    2018-05-15

    One of the most widely used aquatic standarized tests for the toxicity screening of chemicals is the acute toxicity test with the freshwater crustacean Daphnia magna, which has also been applied in the toxicity screening of manufactured nanoparticles (NPs). However, in the case of non-soluble NPs most of the results of this test have showed no effect. The aim of the work presented here was to modify the standardized test by the least possible extent to make it more sensitive for non-soluble particles. The standard acute immobilisation assay with daphnids was modified by prolonging the exposure period and by measuring additional endpoints. Daphnids were exposed to TiO 2 NPs in a standard acute test (48h of exposure), a standard acute test (48h of exposure) followed by 24h recovery period in clean medium or a prolonged exposure in the NPs solutions totaling 72h. Together with immobility, the adsorption of NPs to body surfaces was also observed as an alternative measure of the NPs effects. Our results showed almost no effect of TiO 2 NPs on D. magna after the 48h standard acute test, while immobility was increased when the exposure period to TiO 2 NPs was prolonged from 48h to 72h. Even when daphnids were transferred to clean medium for additional 24h after 48h of exposure to TiO 2 NPs the immobility increased. We conclude that by transferring the daphnids to clean medium at the end of the 48h exposure to TiO 2 NPs, the delayed effects of the tested material can be seen. This methodological step could improve the sensitivity of D. magna test as a model in nanomaterial environmental risk assessment. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Effect of particle size on band gap and DC electrical conductivity of TiO2 nanomaterial

    NASA Astrophysics Data System (ADS)

    Avinash, B. S.; Chaturmukha, V. S.; Jayanna, H. S.; Naveen, C. S.; Rajeeva, M. P.; Harish, B. M.; Suresh, S.; Lamani, Ashok R.

    2016-05-01

    Materials reduced to the Nano scale can exhibit different properties compared to what they exhibit on a micro scale, enabling unique applications. When TiO2 is reduced to Nano scale it shows unique properties, of which the electrical aspect is highly important. This paper presents increase in the energy gap and decrease in conductivity with decrease in particle size of pure Nano TiO2 synthesized by hydrolysis and peptization of titanium isopropoxide. Aqueous solution with various pH and peptizing the resultant suspension will form Nano TiO2 at different particle sizes. As the pH of the solution is made acidic reduction in the particle size is observed. And it is confirmed from XRD using Scherer formula and SEM, as prepared samples are studied for UV absorbance, and DC conductivity from room temperature to 400°C. From the tauc plot it was observed, and calculated the energy band gap increases as the particle size decreases and shown TiO2 is direct band gap. From Arrhenius plot clearly we encountered, decrease in the conductivity for the decrease in particle size due to hopping of charge carriers and it is evident that, we can tailor the band gap by varying particle size.

  10. Optimal levels of oxygen deficiency in the visible light photocatalyst TiO2-x and long-term stability of catalytic performance

    NASA Astrophysics Data System (ADS)

    Nakano, Takuma; Ito, Ryosuke; Kogoshi, Sumio; Katayama, Noboru

    2016-11-01

    The dependence of the visible light-responsive photocatalytic activity of oxygen deficient TiO2 (TiO2-x) prepared by Ar/H2 plasma surface treatment on the degree of oxygen deficiency (x) was assessed to determine the deficiency region associated with highest performance. The highest activity was obtained at x=0.06 (TiO1.94). The maximum visible light activity for this material, estimated from the formaldehyde (HCHO) removal rate, was three times higher than that exhibited by nitrogen-doped TiO2 (TiO2-xNx). The catalytic ability was found to decrease over the first week after fabrication of the material, after which it became stable, and the performance of TiO2-x at this point was found to be nearly equal to that of TiO2-xNx. The results of ab initio calculations of density of states for TiO2-x suggest that new oxygen deficiency states emerge at almost the exact center between the valence and conduction bands when x>0.06, which increases the recombination rate between electrons and holes. Therefore the declining performance of TiO2-x at larger x values is attributed to the emergence of new oxygen deficient states.

  11. Dispersions of geometric TiO2 nanomaterials and their toxicity to RPMI 2650 nasal epithelial cells

    NASA Astrophysics Data System (ADS)

    Tilly, Trevor B.; Kerr, Lei L.; Braydich-Stolle, Laura K.; Schlager, John J.; Hussain, Saber M.

    2014-11-01

    Titanium dioxide (TiO2) based nanofilaments—nanotube, nanowire, nanorod—have gained interest for industrial, electrical, and as of recent, medical applications due to their superior performance over TiO2 nanoparticles. Safety assessment of these nanomaterials is critical to protect workers, patients, and bystanders as these technologies become widely implemented. Additionally, TiO2 based nanofilaments can easily be inhaled by humans and their high aspect ratio, much like asbestos fibers, may make them toxic in the respiratory system. The tendency of TiO2 nanofilaments to aggregate makes evaluating their nanotoxicity difficult and the results controversial, because incomplete dispersion results in larger particle sizes that are no longer in the nano dimensional size range. TiO2 nanofilaments are aggregated and difficult to disperse homogeneously in solution by conventional methods, such as sonication and vortexing. In this study, a microfluidic device was utilized to produce stable, homogeneous dosing solutions necessary for in vitro toxicity evaluation by eliminating any toxicity caused by aggregated TiO2 nanomaterials. The toxicity results could then be directly correlated to the TiO2 nanostructure itself. The toxicity of four TiO2 nanogeometries—nanotube, nanowire, nanorod, and nanoparticle—were assessed in RPMI 2650 human nasal epithelial cells at representative day, week, and month in vitro exposure dosages of 10, 50, 100 μg/ml, respectively. All TiO2 based nanomaterials dispersed by the microfluidic method were nontoxic to RPMI 2650 cells at the concentrations tested, whereas higher concentrations of 100 μg/ml of nanowires and nanotubes dispersed by sonication reduced viability up to 27 %, indicating that in vitro toxicity results may be controlled by the dispersion of dosing solutions.

  12. Fabrication of chitin-chitosan/nano TiO2-composite scaffolds for tissue engineering applications.

    PubMed

    Jayakumar, R; Ramachandran, Roshni; Divyarani, V V; Chennazhi, K P; Tamura, H; Nair, S V

    2011-03-01

    In this study, we prepared chitin-chitosan/nano TiO(2) composite scaffolds using lyophilization technique for bone tissue engineering. The prepared composite scaffold was characterized using SEM, XRD, FTIR and TGA. In addition, swelling, degradation and biomineralization capability of the composite scaffolds were evaluated. The developed composite scaffold showed controlled swelling and degradation when compared to the control scaffold. Cytocompatibility of the scaffold was assessed by MTT assay and cell attachment studies using osteoblast-like cells (MG-63), fibroblast cells (L929) and human mesenchymal stem cells (hMSCs). Results indicated no sign of toxicity and cells were found attached to the pore walls within the scaffolds. These results suggested that the developed composite scaffold possess the prerequisites for tissue engineering scaffolds and it can be used for tissue engineering applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Examining the Contemporaneous, Short-Term, and Long-Term Effects of Secondary Exposure to Violence on Adolescent Substance Use.

    PubMed

    Zimmerman, Gregory M; Kushner, Mackenzie

    2017-09-01

    The relationship between secondary exposure to violence-defined as witnessing violence in the home, community, or school-and adolescent substance use is well-documented. Yet, multi-wave empirical studies examining this relationship are sparse. In addition, studies have only begun to examine whether this relationship varies by the situational components of the violent event. Using data from the Project on Human Development in Chicago Neighborhoods (PHDCN), this study examines the contemporaneous, short-term, and long-term effects of secondary exposure to violence on substance use, and whether witnessing violence in which a weapon is present has a different impact on adolescent substance use than does witnessing violence without a weapon. Hierarchical logistic regression models on a racially and ethnically diverse sample of 1670 youth (51.5% female) residing in 79 neighborhoods indicated that: (1) the effects of secondary exposure to violence on alcohol and marijuana use were enduring, albeit attenuated, over time; (2) the effect of secondary exposure to violence on illicit drug use was suppressed in the short-term but significant in the long-term; (3) witnessing violence without a weapon was salient for alcohol and marijuana use at all time points; and (4) witnessing violence with a weapon impacted illicit drug use in the long-term. The results suggest that addressing the consequences of secondary exposure to violence requires prolonged intervention efforts and that the study of secondary exposure to violence requires a more nuanced approach that accounts for situational aspects of the violent event.

  14. Nano-titanium dioxide induced cardiac injury in rat under oxidative stress.

    PubMed

    Sha, BaoYong; Gao, Wei; Wang, ShuQi; Li, Wei; Liang, Xuan; Xu, Feng; Lu, Tian Jian

    2013-08-01

    Heart diseases, which are related to oxidative stress (OS), negatively affect millions of people from kids to the elderly. Titanium dioxide (TiO2) has widespread applications in our daily life, especially nanoscale TiO2. Compared to the high risk of particulate matter (≤2.5μm) in air to heart disease patients, related research of TiO2 on diseased body is still unknown, which suggest us to explore the potential effects of nanoscale and microscale TiO2 to heart under OS conditions. Here, we used alloxan to induce OS conditions in rat, and investigated the response of heart tissue to TiO2 in healthy and alloxan treated rats. Compared with NMs treatment only, the synergistic interaction between OS conditions and nano-TiO2 significantly reduced the heart-related function indexes, inducing pathological changes of myocardium with significantly increased levels of cardiac troponin I and creatine kinase-MB. In contrast with the void response of micro-TiO2 to heart functions in alloxan treated rats, aggravation of OS conditions might play an important role in cardiac injury after alloxan and nano-TiO2 dual exposure. Our results demonstrated that OS conditions enhanced the adverse effects of nano-TiO2 to heart, suggesting that the use of NMs in stressed conditions (e.g., drug delivery) needs to be carefully monitored. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Effect of long-term exposure of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on testes functions.

    PubMed

    Dasdag, Suleyman; Taş, Muzaffer; Akdag, Mehmet Zulkuf; Yegin, Korkut

    2015-03-01

    The aim of this study was to investigate long-term effects of radiofrequency radiation (RFR) emitted from a Wireless Fidelity (Wi-Fi) system on testes. The study was carried out on 16 Wistar Albino adult male rats by dividing them into two groups such as sham (n: 8) and exposure (n: 8). Rats in the exposure group were exposed to 2.4 GHz RFR radiation for 24 h/d during 12 months (1 year). The same procedure was applied to the rats in the sham control group except the Wi-Fi system was turned off. Immediately after the last exposure, rats were sacrificed and reproductive organs were removed. Motility (%), concentration (×10(6)/mL), tail defects (%), head defects (%) and total morphologic defects (%) of sperms and weight of testes (g), left epididymis (g), prostate (g), seminal vesicles (g) were determined. Seminiferous tubules diameter (μm) and tunica albuginea thickness (μm) were also measured. However, the results were evaluated by using Johnsen's score. Head defects increased in the exposure group (p < 0.05) while weight of the epididymis and seminal vesicles, seminiferous tubules diameter and tunica albuginea thickness were decreased in the exposure group (p < 0.01, p < 0.001, p < 0.0001). However, other alterations of other parameters were not found significant (p > 0.05). In conclusion, we observed that long-term exposure of 2.4 GHz RF emitted from Wi-Fi (2420 μW/kg, 1 g average) affects some of the reproductive parameters of male rats. We suggest Wi-Fi users to avoid long-term exposure of RF emissions from Wi-Fi equipment.

  16. Long-Term CO2 Exposure Experiments - Geochemical Effects on Brine-Saturated Reservoir Sandstone

    NASA Astrophysics Data System (ADS)

    Fischer, Sebastian; Zemke, Kornelia; Liebscher, Axel; Wandrey, Maren

    2010-05-01

    The injection of CO2 into deep saline aquifers is the most promising strategy for the reduction of CO2 emissions to the atmosphere via long-term geological storage. The study is part of the CO2SINK project conducted at Ketzin, situated 40 km west of Berlin. There, food grade CO2 has been pumped into the Upper Triassic Stuttgart Formation since June 2008. The main objective of the experimental program is to investigate the effects of long-term CO2 exposure on the physico-chemical properties of the reservoir rock. To achieve this goal, core samples from observation well Ktzi 202 have been saturated with synthetic brine and exposed to CO2 in high quality steel autoclaves at simulated reservoir P-T-conditions of 5.5 MPa and 40 ° C. The synthetic brine had a composition representative of the formation fluid (Förster et al., 2006) of 172.8 g/l NaCl, 8.0 g/l MgCl2×2H2O, 4.8 g/l CaCl2×2H2O and 0.6 g/l KCl. After 15 months, the first set of CO2-exposed samples was removed from the pressure vessels. Thin sections, XRD, SEM as well as EMP data were used to determine the mineralogical features of the reservoir rocks before and after the experiments. Additionally, NMR relaxation and MP was performed to measure poroperm and pore size distribution values of the twin samples. The analyzed samples are fine- to medium grained, moderately well- to well sorted and weakly consolidated sandstones. Quartz and plagioclase are the major components, while K-feldspar, hematite, white & dark mica, chlorite and illite are present in minor and varying amounts. Cements are composed of analcime, dolomite and anhydrite. Some samples show mm- to cm-scale cross-beddings. The laminae comprise lighter, quartz- and feldspar-dominated layers and dark-brownish layers with notably less quartz and feldspars. The results are consistent with those of Blaschke et al. (2008). The plagioclase composition indicates preferred dissolution of the Ca-component and a trend toward albite-rich phases or even pure

  17. Highly Ordered TiO2 Microcones with High Rate Performance for Enhanced Lithium-Ion Storage.

    PubMed

    Rhee, Oonhee; Lee, Gibaek; Choi, Jinsub

    2016-06-15

    The perpendicularly oriented anatase TiO2 microcones for Li-ion battery application were synthesized via anodization of a Ti foil in aqueous HF + H3PO4 solution. The TiO2 microcones exhibited a high active surface area with a hollow core depending on applied voltage and reaction time, confirmed by SEM, XRD and TEM with EDS mapping. Li insertion/desertion into TiO2 microcones was evaluated for the first time in half-cell configuration in terms of various current density and long-term cyclability. The electrochemical experiments demonstrated that the as-prepared TiO2 microcones as anode material exhibited 3 times higher capacity as compared with TiO2 nanotubular structures, excellent rate performance (0.054 mAhcm(-2) even at 50 C) and reliable capacity retention during 500 cycles, which was attributed to facile diffusion of Li-ions induced in hollow anatase TiO2 microcones structure with multilayered nanofragment.

  18. Long-term exposure to noise impairs cortical sound processing and attention control.

    PubMed

    Kujala, Teija; Shtyrov, Yury; Winkler, Istvan; Saher, Marieke; Tervaniemi, Mari; Sallinen, Mikael; Teder-Sälejärvi, Wolfgang; Alho, Kimmo; Reinikainen, Kalevi; Näätänen, Risto

    2004-11-01

    Long-term exposure to noise impairs human health, causing pathological changes in the inner ear as well as other anatomical and physiological deficits. Numerous individuals are daily exposed to excessive noise. However, there is a lack of systematic research on the effects of noise on cortical function. Here we report data showing that long-term exposure to noise has a persistent effect on central auditory processing and leads to concurrent behavioral deficits. We found that speech-sound discrimination was impaired in noise-exposed individuals, as indicated by behavioral responses and the mismatch negativity brain response. Furthermore, irrelevant sounds increased the distractibility of the noise-exposed subjects, which was shown by increased interference in task performance and aberrant brain responses. These results demonstrate that long-term exposure to noise has long-lasting detrimental effects on central auditory processing and attention control.

  19. In field conditions, commercial pigment grade TiO2 was not harmful to terrestrial isopods but reduced leaf litter fragmentation.

    PubMed

    Jemec, Anita; Kos, Monika; Drobne, Damjana; Koponen, Ismo Kalevi; Vukić, Jovan; Ferreira, Nuno G C; Loureiro, Susana; McShane, Heather V A

    2016-11-15

    We investigated the effects of a commercial pigment grade rutile TiO2 on the terrestrial isopod Porcellio scaber in three locations that differed in terms of abiotic and biotic conditions: the laboratory, open air, and the closed barn. Mortality and isopod energy reserves (digestive gland total proteins, lipids and carbohydrates) were not affected following 14days exposure to up to 1000mg TiO2 per kg dry leaves (mg/kg) under any experimental scenario. However, in the field tests, isopods consumption of TiO2-coated leaves was reduced compared to that of uncoated leaves and the decrease was not dose-dependent. The highest reduction was in the closed barn (45-56%) rather than in the open-air (38-40%). In laboratory-based food choice tests, isopods neither preferred nor avoided leaves coated with TiO2, suggesting that rather than sensing the TiO2 on the leaves directly, the isopods under open-air and barn exposure responded to altered attractiveness and/or palatability of the TiO2 amended leaves. We propose that this could be due to altered microbial population on the leaves, a hypothesis that requires further investigation. Although short-term exposure to atmospheric deposition of up to 1000mg/kg commercial TiO2 is unlikely to pose an immediate threat to isopod mortality and energy balance, reduced leaf feeding may have implications for the decomposition of plant material. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. TiO2 quantum dots embedded in bamboo-like porous carbon nanotubes as ultra high power and long life anodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Tang, Yakun; Liu, Lang; Wang, Xingchao; Jia, Dianzeng; Xia, Wei; Zhao, Zongbin; Qiu, Jieshan

    2016-07-01

    TiO2 quantum dots embedded in bamboo-like porous carbon nanotubes have been constructed through the pyrolysis of sulfonated polymer nanotubes and TiO2 hybrids. The TiO2 quantum dots are formed during the pyrolysis, due to the space confinement within the highly cross-linked copolymer networks. The sulfonation degree of the polymer nanotubes is a critical factor to ensure the formation of the unique interpenetrating structure. The nanocomposites exhibit high reversible capacity of 523 mAh g-1 at 100 mA g-1 after 200 cycles, excellent rate capability and superior long-term cycling stability at high current density, which could attain a high discharge capacity of 189 mAh g-1 at 2000 mA g-1 for up to 2000 cycles. The enhanced electrochemical performance of the nanocomposites benefit from the uniform distribution of TiO2 quantum dots, high electronic conductivity of porous carbons and unique interpenetrating structure, which simultaneously solved the major problems of TiO2 anode facing the pulverization, loss of electrical contact and particle aggregation.

  1. Synthesis and characterization of nano TiO2-SiO2: PVA composite - a novel route

    NASA Astrophysics Data System (ADS)

    Venckatesh, Rajendran; Balachandaran, Kartha; Sivaraj, Rajeshwari

    2012-07-01

    A novel, simple, less time consuming and cost-effective sol-gel method has been developed to synthesize nano titania-silica with polyvinyl alcohol (PVA) composite relatively at low temperature in acidic pH. Titania sol is prepared by hydrolysis of titanium tetrachloride and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6 h and dried at room temperature with the addition of PVA solution. The resulting powders were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FT-IR), UV-visible spectroscopy and thermal techniques. The grain size of the particles was calculated by X-ray diffraction; surface morphology and chemical composition were determined from scanning electron microscopy-energy dispersive spectroscopy; metal oxide stretching was confirmed from FT-IR spectroscopy; bandgap was calculated using UV-visible spectroscopy, and thermal stability of the prepared composite was determined by thermogravimetric/differential thermal analysis. Since TiO2 got agglomerated on the surface of SiO2, effective absorptive sites increase which in turn increase the photocatalytic efficiency of the resulting composite.

  2. Recent and long-term occupational noise exposure and salivary cortisol level.

    PubMed

    Stokholm, Zara Ann; Hansen, Åse Marie; Grynderup, Matias Brødsgaard; Bonde, Jens Peter; Christensen, Kent Lodberg; Frederiksen, Thomas Winther; Lund, Søren Peter; Vestergaard, Jesper Medom; Kolstad, Henrik Albert

    2014-01-01

    Environmental and occupational noise exposure have been related to increased risk of cardiovascular disease, hypothetically mediated by stress-activation of the hypothalamic-pituitary-adrenal (HPA) axis. The objective of this study was to investigate the relation between recent and long-term occupational noise exposure and cortisol level measured off work to assess a possible sustained HPA-axis effect. We included 501 industrial, finance, and service workers who were followed for 24h during work, leisure, and sleep. Ambient occupational noise exposure levels were recorded every 5s by personal dosimeters and we calculated the full-shift LAEq value and estimated duration and cumulative exposure based on their work histories since 1980. For 332 workers who kept a log-book on the use of hearing protection devices (HPD), we subtracted 10 dB from every noise recording obtained during HPD use and estimated the noise level at the ear. Salivary cortisol concentration was measured at 20.00 h, the following day at awakening, and 30 min after awakening on average 5, 14 and 14.5h after finishing work. The mean ambient noise exposure level was 79.9 dB(A) [range: 55.0-98.9] and the mean estimated level at the ear 77.7 dB(A) [range: 55.0-94.2]. In linear and mixed regression models that adjusted for age, sex, current smoking, heavy alcohol consumption, personal income, BMI, leisure-time noise exposure level, time since occupational noise exposure ceased, awakening time, and time of saliva sampling, we observed no statistically significant exposure response relation between recent, or long-term ambient occupational noise exposure level and any cortisol parameter off work. This was neither the case for recent noise level at the ear. To conclude, neither recent nor long-term occupational noise exposure levels were associated with increased cortisol level off work. Thus, our results do not indicate that a sustained activation of the HPA axis, as measured by cortisol, is involved in

  3. Long-term Exposure to Fine Particulate Matter Air Pollution and Mortality Among Canadian Women.

    PubMed

    Villeneuve, Paul J; Weichenthal, Scott A; Crouse, Daniel; Miller, Anthony B; To, Teresa; Martin, Randall V; van Donkelaar, Aaron; Wall, Claus; Burnett, Richard T

    2015-07-01

    Long-term exposure to fine particulate matter (PM2.5) has been associated with increased mortality, especially from cardiovascular disease. There are, however, uncertainties about the nature of the exposure-response relation at lower concentrations. In Canada, where ambient air pollution levels are substantially lower than in most other countries, there have been few attempts to study associations between long-term exposure to PM2.5 and mortality. We present a prospective cohort analysis of 89,248 women who enrolled in the Canadian National Breast Screening Study between 1980 and 1985, and for whom residential measures of PM2.5 could be assigned. We derived individual-level estimates of long-term exposure to PM2.5 from satellite observations. We linked cohort records to national mortality data to ascertain mortality between 1980 and 2005. We used Cox proportional hazards models to characterize associations between PM2.5 and several causes of death. The hazard ratios (HRs) and 95% confidence intervals (CIs) computed from these models were adjusted for several individual and neighborhood-level characteristics. The cohort was composed predominantly of Canadian-born (82%) and married (80%) women. The median residential concentration of PM2.5 was 9.1 μg/m(3) (standard deviation = 3.4). In fully adjusted models, a 10 μg/m(3) increase in PM2.5 exposure was associated with elevated risks of nonaccidental (HR: 1.12; 95% CI = 1.04, 1.19), and ischemic heart disease mortality (HR: 1.34; 95% CI = 1.09, 1.66). The findings from this study provide additional support for the hypothesis that exposure to very low levels of ambient PM2.5 increases the risk of cardiovascular mortality.

  4. Nanoparticle size and combined toxicity of TiO2 and DSLS (surfactant) contribute to lysosomal responses in digestive cells of mussels exposed to TiO2 nanoparticles.

    PubMed

    Jimeno-Romero, A; Oron, M; Cajaraville, M P; Soto, M; Marigómez, I

    2016-10-01

    The aim of this investigation was to understand the bioaccumulation, cell and tissue distribution and biological effects of disodium laureth sulfosuccinate (DSLS)-stabilised TiO2 nanoparticles (NPs) in marine mussels, Mytilus galloprovincialis. Mussels were exposed in vivo to 0.1, 1 and 10 mg Ti/L either as TiO2 NPs (60 and 180 nm) or bulk TiO2, as well as to DSLS alone. A significant Ti accumulation was observed in mussels exposed to TiO2 NPs, which were localised in endosomes, lysosomes and residual bodies of digestive cells, and in the lumen of digestive tubules, as demonstrated by ultrastructural observations and electron probe X-ray microanalysis. TiO2 NPs of 60 nm were internalised within digestive cell lysosomes to a higher extent than TiO2 NPs of 180 nm, as confirmed by the quantification of black silver deposits after autometallography. The latter were localised mainly forming large aggregates in the lumen of the gut. Consequently, lysosomal membrane stability (LMS) was significantly reduced upon exposure to both TiO2 NPs although more markedly after exposure to TiO2-60 NPs. Exposure to bulk TiO2 and to DSLS also affected the stability of the lysosomal membrane. Thus, effects on the lysosomal membrane depended on the nanoparticle size and on the combined biological effects of TiO2 and DSLS.

  5. Microstructure and properties of Cu-Sn-Zn-TiO 2 nano-composite coatings on mild steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Weidong; Cao, Di; Jin, Yunxue

    Cu-Sn-Zn coatings have been widely used in industry for their unique properties, such as good conductivity, high corrosion resistance and excellent solderability. To further improve the mechanical performance of Cu-Sn-Zn coatings, powder-enhanced method was applied and Cu-Sn-Zn-TiO 2 nano-composite coatings with different TiO 2 concentration were fabricated. The microstructure of Cu-Sn-Zn-TiO 2 nano-composite coatings were investigated by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The mechanical properties of coatings including microhardness and wear resistance were studied. The results indicate that the incorporation of TiO 2 nanoparticle can significantly influence the properties of Cu-Sn-Zn coatings. The microhardness of Cu-Sn-Zn coatingmore » was increased to 383 HV from 330 HV with 1 g/L TiO 2 addition. Also, the corrosion resistance of coating was enhanced. The effects of TiO 2 nanoparticle concentration on the microstructure, mechanical properties and corrosion resistance of Cu-Sn-Zn-TiO 2 nano-composite coatings were discussed.« less

  6. Microstructure and properties of Cu-Sn-Zn-TiO 2 nano-composite coatings on mild steel

    DOE PAGES

    Gao, Weidong; Cao, Di; Jin, Yunxue; ...

    2018-04-18

    Cu-Sn-Zn coatings have been widely used in industry for their unique properties, such as good conductivity, high corrosion resistance and excellent solderability. To further improve the mechanical performance of Cu-Sn-Zn coatings, powder-enhanced method was applied and Cu-Sn-Zn-TiO 2 nano-composite coatings with different TiO 2 concentration were fabricated. The microstructure of Cu-Sn-Zn-TiO 2 nano-composite coatings were investigated by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The mechanical properties of coatings including microhardness and wear resistance were studied. The results indicate that the incorporation of TiO 2 nanoparticle can significantly influence the properties of Cu-Sn-Zn coatings. The microhardness of Cu-Sn-Zn coatingmore » was increased to 383 HV from 330 HV with 1 g/L TiO 2 addition. Also, the corrosion resistance of coating was enhanced. The effects of TiO 2 nanoparticle concentration on the microstructure, mechanical properties and corrosion resistance of Cu-Sn-Zn-TiO 2 nano-composite coatings were discussed.« less

  7. Preparation, characterization, and application of titanium nano-tube array in dye-sensitized solar cells

    PubMed Central

    2012-01-01

    The vertically orientated TiO2 nanotube array (TNA) decorated with TiO2 nano-particles was successfully fabricated by electrochemically anodizing titanium (Ti) foils followed by Ti-precursor post-treatment and annealing process. The TNA morphology characterized by SEM and TEM was found to be filled with TiO2 nano-particles interior and exterior of the TiO2 nano-tubes after titanium (IV) n-butoxide (TnB) treatment, whereas TiO2 nano-particles were only found inside of TiO2 nano-tubes upon titanium tetrachloride (TiCl4) treatment. The efficiency in TNA-based DSSCs was improved by both TnB and TiCl4 treatment presumably due to the increase of dye adsorption. PMID:22353282

  8. Evaluation of effects of long term exposure on lethal toxicity with mammals.

    PubMed

    Verma, Vibha; Yu, Qiming J; Connell, Des W

    2014-02-01

    The relationship between exposure time (LT50) and lethal exposure concentration (LC50) has been evaluated over relatively long exposure times using a novel parameter, Normal Life Expectancy (NLT), as a long term toxicity point. The model equation, ln(LT50) = aLC50(ν) + b, where a, b and ν are constants, was evaluated by plotting lnLT50 against LC50 using available toxicity data based on inhalation exposure from 7 species of mammals. With each specific toxicant a single consistent relationship was observed for all mammals with ν always <1. Use of NLT as a long term toxicity point provided a valuable limiting point for long exposure times. With organic compounds, the Kow can be used to calculate the model constants a and v where these are unknown. The model can be used to characterise toxicity to specific mammals and then be extended to estimate toxicity at any exposure time with other mammals. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. Improved tribocorrosion performance of bio-functionalized TiO2 nanotubes under two-cycle sliding actions in artificial saliva.

    PubMed

    Alves, Sofia A; Rossi, André L; Ribeiro, Ana R; Toptan, Fatih; Pinto, Ana M; Shokuhfar, Tolou; Celis, Jean-Pierre; Rocha, Luís A

    2018-04-01

    electrochemical protection and resistance to mechanical wear. This study provides fundamental and new insights for the development of multifunctional TiO 2 NTs with long-term biomechanical stability and improved clinical outcomes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Long-Term Mechanical Behavior of Nano Silica Sol Grouting

    PubMed Central

    Zhang, Nong; Zhang, Chenghao; Qian, Deyu; Han, Changliang; Yang, Sen

    2018-01-01

    The longevity of grouting has a significant effect on the safe and sustainable operation of many engineering projects. A 500-day experiment was carried out to study the long-term mechanical behavior of nano silica sol grouting. The nano silica sol was activated with different proportions of a NaCl catalyst and cured under fluctuating temperature and humidity conditions. The mechanical parameters of the grout samples were tested using an electrohydraulic uniaxial compression tester and an improved Vicat instrument. Scanning electron microscope, X-ray diffraction, and ultrasonic velocity tests were carried out to analyze the strength change micro-mechanism. Tests showed that as the catalyst dosage in the grout mix is decreased, the curves on the graphs showing changes in the weight and geometric parameters of the samples over time could be divided into three stages, a shrinkage stage, a stable stage, and a second shrinkage stage. The catalyst improved the stability of the samples and reduced moisture loss. Temperature rise was also a driving force for moisture loss. Uniaxial compressive stress-strain curves for all of the samples were elastoplastic. The curves for uniaxial compression strength and secant modulus plotted against time could be divided into three stages. Sample brittleness increased with time and the brittleness index increased with higher catalyst dosages in the latter part of the curing time. Plastic strength-time curves exhibit allometric scaling. Curing conditions mainly affect the compactness, and then affect the strength. PMID:29337897

  11. Synthesis of TiO2 nano-powders prepared from purified sulphate leach liquor of red mud.

    PubMed

    Tsakiridis, P E; Oustadakis, P; Katsiapi, A; Perraki, M; Agatzini-Leonardou, S

    2011-10-30

    The research work presented in this paper is focused on the development of a purification process of red mud sulphate leach liquor for the recovery of titanium oxide (TiO(2)) nano-powders in the form of anatase. Initially, titanium was extracted over iron and aluminium from the leach liquor by solvent extraction using Cyanex 272 in toluene, at pH: 0.3 and T: 25°C, with 40% extractant concentration. Stripping of the loaded, with titanium, organic phase was carried out by diluted HCl (3 mol/L) at ambient temperature. Finally, the recovery of titanium nano-powder, in the form of anatase, was performed by chemical precipitation at pH: 6 and T: 95°C, using 10 wt% MgO pulp as neutralizing agent. The produced precipitates were characterized by X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric/differential thermal analysis (TGA/DTA). Their morphological characteristics and microstructure were studied by scanning electron microscopy (SEM). High grade titanium white precipitate, in the form of anatase, was obtained. Iron concentration in the precipitate did not exceed 0.3%, whereas no aluminium was detected. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Lung function growth in children with long-term exposure to air pollutants in Mexico City.

    PubMed

    Rojas-Martinez, Rosalba; Perez-Padilla, Rogelio; Olaiz-Fernandez, Gustavo; Mendoza-Alvarado, Laura; Moreno-Macias, Hortensia; Fortoul, Teresa; McDonnell, William; Loomis, Dana; Romieu, Isabelle

    2007-08-15

    Although short-term exposure to air pollution has been associated with acute, reversible lung function decrements, the impact of long-term exposure has not been well established. To evaluate the association between long-term exposure to ozone (O(3)), particulate matter less than 10 mum in diameter (PM(10)), and nitrogen dioxide (NO(2)) and lung function growth in Mexico City schoolchildren. A dynamic cohort of 3,170 children aged 8 years at baseline was followed from April 23, 1996, through May 19, 1999. The children attended 39 randomly selected elementary schools located near 10 air quality monitoring stations and were visited every 6 months. Statistical analyses were performed using general linear mixed models. After adjusting for acute exposure and other potential confounding factors, deficits in FVC and FEV(1) growth over the 3-year follow-up period were significantly associated with exposure to O(3), PM(10), and NO(2). In multipollutant models, an interquartile range (IQR) increase in mean O(3) concentration (IQR, 11.3 ppb) was associated with an annual deficit in FEV(1) of 12 ml in girls and 4 ml in boys, an IQR range (IQR, 36.4 microg/m(3)) increase in PM(10) with an annual deficit in FEV(1) of 11 ml in girls and 15 ml in boys, and an IQR range (IQR, 12.0 ppb) increase in NO(2) with an annual deficit in FEV(1) of 30 ml in girls and 25 ml in boys. We conclude that long-term exposure to O(3), PM(10), and NO(2) is associated with a deficit in FVC and FEV(1) growth among schoolchildren living in Mexico City.

  13. Evaluation of the content of TiO2 nanoparticles in the coatings of chewing gums.

    PubMed

    Dudefoi, William; Terrisse, Hélène; Popa, Aurelian Florin; Gautron, Eric; Humbert, Bernard; Ropers, Marie-Hélène

    2018-02-01

    Titanium dioxide is a metal oxide used as a white pigment in many food categories, including confectionery. Due to differences in the mass fraction of nanoparticles contained in TiO 2 , the estimated intakes of TiO 2 nanoparticles differ by a factor of 10 in the literature. To resolve this problem, a better estimation of the mass of nanoparticles present in food products is needed. In this study, we focused our efforts on chewing gum, which is one of the food products contributing most to the intake of TiO 2 . The coatings of four kinds of chewing gum, where the presence of TiO 2 was confirmed by Raman spectroscopy, were extracted in aqueous phases. The extracts were analysed by transmission electron microscopy (TEM), X-ray diffraction, Fourier Transform Raman spectroscopy, and inductively coupled plasma atomic emission spectroscopy (ICP-AES) to establish their chemical composition, crystallinity and size distribution. The coatings of the four chewing gums differ chemically from each other, and more specifically the amount of TiO 2 varies from one coating to another. TiO 2 particles constitute the entire coating of some chewing gums, whereas for others, TiO 2 particles are embedded in an organic matrix and/or mixed with minerals like calcium carbonate, talc, or magnesium silicate. We found 1.1 ± 0.3 to 17.3 ± 0.9 mg TiO 2 particles per piece of chewing gum, with a mean diameter of 135 ± 42 nm. TiO 2 nanoparticles account for 19 ± 4% of all particles, which represents a mass fraction of 4.2 ± 0.1% on average. The intake of nanoparticles is thus highly dependent on the kind of chewing gum, with an estimated range extending from 0.04 ± 0.01 to 0.81 ± 0.04 mg of nano-TiO 2 per piece of chewing gum. These data should serve to refine the exposure scenario.

  14. A novel perovskite solar cell design using aligned TiO2 nano-bundles grown on a sputtered Ti layer and a benzothiadiazole-based, dopant-free hole-transporting material.

    PubMed

    Ameen, Sadia; Nazim, M; Akhtar, M Shaheer; Nazeeruddin, Mohammad Khaja; Shin, Hyung-Shik

    2017-11-16

    This work highlights the utilization of a novel hole-transporting material (HTM) derived from benzothiadiazole: 4-(3,5-bis(trifluoromethyl)phenyl)-7-(5'-hexyl-[2,2'-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole (CF-BTz-ThR) and aligned TiO 2 nano-bundles (TiO 2 NBs) as the electron transporting layer (ETL) for perovskite solar cells (PSCs). The aligned TiO 2 NBs were grown on titanium (Ti)-coated FTO substrates using a facile hydrothermal method. The newly designed CF-BTz-ThR molecule with suitable highest occupied molecular orbital (HOMO) favored the effective hole injection from perovskite deposited aligned TiO 2 NBs thin film. The PSCs demonstrated a power conversion efficiency (PCE) of ∼15.4% with a short circuit current density (J sc ) of ∼22.42 mA cm -2 and an open circuit voltage (V oc ) of ∼1.02 V. The efficiency data show the importance of proper molecular engineering whilst highlighting the advantages of dopant-free HTMs in PSCs.

  15. Hydrogenated TiO2 nanotube arrays for supercapacitors.

    PubMed

    Lu, Xihong; Wang, Gongming; Zhai, Teng; Yu, Minghao; Gan, Jiayong; Tong, Yexiang; Li, Yat

    2012-03-14

    We report a new and general strategy for improving the capacitive properties of TiO(2) materials for supercapacitors, involving the synthesis of hydrogenated TiO(2) nanotube arrays (NTAs). The hydrogenated TiO(2) (denoted as H-TiO(2)) were obtained by calcination of anodized TiO(2) NTAs in hydrogen atmosphere in a range of temperatures between 300 to 600 °C. The H-TiO(2) NTAs prepared at 400 °C yields the largest specific capacitance of 3.24 mF cm(-2) at a scan rate of 100 mV s(-1), which is 40 times higher than the capacitance obtained from air-annealed TiO(2) NTAs at the same conditions. Importantly, H-TiO(2) NTAs also show remarkable rate capability with 68% areal capacitance retained when the scan rate increase from 10 to 1000 mV s(-1), as well as outstanding long-term cycling stability with only 3.1% reduction of initial specific capacitance after 10,000 cycles. The prominent electrochemical capacitive properties of H-TiO(2) are attributed to the enhanced carrier density and increased density of hydroxyl group on TiO(2) surface, as a result of hydrogenation. Furthermore, we demonstrate that H-TiO(2) NTAs is a good scaffold to support MnO(2) nanoparticles. The capacitor electrodes made by electrochemical deposition of MnO(2) nanoparticles on H-TiO(2) NTAs achieve a remarkable specific capacitance of 912 F g(-1) at a scan rate of 10 mV s(-1) (based on the mass of MnO(2)). The ability to improve the capacitive properties of TiO(2) electrode materials should open up new opportunities for high-performance supercapacitors. © 2012 American Chemical Society

  16. The role of poly(methacrylic acid) conformation on dispersion behavior of nano TiO2 powder

    NASA Astrophysics Data System (ADS)

    Singh, Bimal P.; Nayak, Sasmita; Samal, Samata; Bhattacharjee, Sarama; Besra, Laxmidhar

    2012-02-01

    To exploit the advantages of nanoparticles for various applications, controlling the dispersion and agglomeration is of paramount importance. Agglomeration and dispersion behavior of titanium dioxide (TiO2) nanoparticles was investigated using electrokinetic and surface chemical properties. Nanoparticles are generally stabilized by the adsorption of a dispersant (polyelectrolyte) layer around the particle surface and in this connection ammonium salt of polymethacrylic acid (Darvan C) was used as dispersant to stabilize the suspension. The dosages of polyelectrolyte were optimized to get best dispersion stability by techniques namely particle charge detector (13.75 mg/g) and adsorption (14.57 mg/g). The surface charge of TiO2 particles changed significantly in presence of dispersant Darvan C and isoelectric point (iep) shifted significantly towards lower pH from 5.99 to 3.37. The shift in iep has been quantified in terms of free energy of interaction between the surface sites of TiO2 and the adsorbing dispersant Darvan C. Free energies of adsorption were calculated by electrokinetic data (-9.8 RT unit) and adsorption isotherms (-10.56 RT unit), which corroborated well. The adsorption isotherms are of typical Langmuir type and employed for calculation of free energy. The results indicated that adsorption occurs mainly through electrostatic interactions between the dispersant molecule and the TiO2 surface apart from hydrophobic interactions.

  17. Effect of molarity on sol-gel routed nano TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Lourduraj, Stephen; Williams, Rayar Victor

    The nanostructured titanium dioxide (TiO2) thin films have been prepared for the molar concentrations of titanium tetra isopropoxide (TTIP) 0.05M, 0.1M, 0.15M and 0.2M by sol-gel routed spin coating technique with calcination at 450∘C. The processing parameters such as, pH value (8), catalyst HCl (0.1ml), spin speed (3000rpm) and calcination temperature (450∘C) are optimized. The crystalline nature and surface morphology were analyzed by XRD, SEM and AFM analysis. The XRD results confirm that the films are crystalline with anatase phase, and are nanostructured. The SEM micrographs of the TiO2 film reveal the spherical nature of the particle. AFM analysis establishes that the uniformity of the TiO2 thin film was optimized at 0.2M. The optical measurements show that the transmittance depends on the molarity, and the optical band gap energy of TiO2 films is found to be inversely proportional to molarity. The I-V characteristics exhibit that the molarity strongly influences the electrical conductivity of the film. The results indicate that the significant effect of molarity on structural, optical and electrical properties of the nanostructured TiO2 thin films will be useful to photovoltaic application.

  18. Effect of laser irradiation on the structural, morphological and electrical properties of polycrystalline TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Khan, M. I.; Ali, Asghar

    TiO2 thin film is deposited on glass substrate by sol-gel dip coating technique. After deposition, films were irradiated by continuous wave (CW) diode laser at an angle of 45°. XRD shows both the anatase and brookite phases of TiO2. Nano particles of regular and control sizes are appeared in SEM micrographs. Therefore, shape and size of nano particles can be control by using Laser irradiation. The average sheet resistivity of TiO2 thin film irradiated by 0, 2, 4 and 6 min are 6.72 × 105, 5.32 × 105, 3.44 × 105 and 4.95 × 105 (ohm-m) respectively, according to four point probe.

  19. Robust binder-free anodes assembled with ultralong mischcrystal TiO2 nanowires and reduced graphene oxide for high-rate and long cycle life lithium-ion storage

    NASA Astrophysics Data System (ADS)

    Shi, Yongzheng; Yang, Dongzhi; Yu, Ruomeng; Liu, Yaxin; Hao, Shu-Meng; Zhang, Shiyi; Qu, Jin; Yu, Zhong-Zhen

    2018-04-01

    To satisfy increasing power demands of mobile devices and electric vehicles, rationally designed electrodes with short diffusion length are highly imperative to provide highly efficient ion and electron transport paths for high-rate and long-life lithium-ion batteries. Herein, binder-free electrodes with the robust three-dimensional conductive network are prepared by assembling ultralong TiO2 nanowires with reduced graphene oxide (RGO) sheets for high-performance lithium-ion storage. Ultralong TiO2 nanowires are synthesized and used to construct an interconnecting network that avoids the use of inert auxiliary additives of polymer binders and conductive agents. By thermal annealing, a small amount of anatase is generated in situ in the TiO2(B) nanowires to form abundant TiO2(B)/anatase interfaces for accommodating additional lithium ions. Simultaneously, RGO sheets efficiently enhance the electronic conductivity and enlarge the specific surface area of the TiO2/RGO nanocomposite. The robust 3D network in the binder-free electrode not only effectively avoids the agglomeration of TiO2/RGO components during the long-term charging/discharging process, but also provides direct and fast ion/electron transport paths. The binder-free electrode exhibits a high reversible capacity of 259.9 mA h g-1 at 0.1 C and an excellent cycling performance with a high reversible capacity of 111.9 mA h g-1 at 25 C after 5000 cycles.

  20. Phototoxicity and Dosimetry of Nano-scaleTitanium Dioxide in Aquatic Organisms

    EPA Science Inventory

    We have been testing nanoscale TiO2 (primarily Evonik P25) in acute exposures to identify and quantify its phototoxicity under solar simulated radiation (SSR), and to develop dose metrics reflective of both nano-scale properties and the photon component of its potency. Several e...

  1. Phototoxicity and Dosimetry of Nano-scale Titanium Dioxide in Aquatic Organisms

    EPA Science Inventory

    We have been testing nanoscale TiO2 (primarily Evonik P25) in acute exposures to identify and quantify its phototoxicity under solar simulated radiation (SSR), and to develop dose metrics reflective of both nano-scale properties and the photon component of its potency. Several e...

  2. Studies on Nano-Engineered TiO2 Photo Catalyst for Effective Degradation of Dye

    NASA Astrophysics Data System (ADS)

    Sowmya, S. R.; Madhu, G. M.; Hashir, Mohammed

    2018-02-01

    All Heterogeneous photo catalysis employing efficient photo-catalyst is the advanced dye degradation technology for the purification of textile effluent. The present work focuses on Congo red dye degradation employing synthesized Ag doped TiO2 nanoparticles as photocatalyst which is characterized using SEM, XRD and FTIR. Studies are conducted to study the effect of various parameters such as initial dye concentration, catalyst loading and pH of solution. Ag Doped TiO2 photocatalyst improve the efficacy of TiO2 by reducing high band gap and electron hole recombination of TiO2. The reaction kinetics is analyzed and the process is found to follow pseudo first order kinetics.

  3. Exercise during Short-Term and Long-Term Continuous Exposure to Hypoxia Exacerbates Sleep-Related Periodic Breathing

    PubMed Central

    Tellez, Helio Fernandez; Morrison, Shawnda A.; Neyt, Xavier; Mairesse, Olivier; Piacentini, Maria Francesca; Macdonald-Nethercott, Eoin; Pangerc, Andrej; Dolenc-Groselj, Leja; Eiken, Ola; Pattyn, Nathalie; Mekjavic, Igor B.; Meeusen, Romain

    2016-01-01

    Study Objectives: Exposure to hypoxia elevates chemosensitivity, which can lead to periodic breathing. Exercise impacts gas exchange, altering chemosensitivity; however, interactions between sleep, exercise and chronic hypoxic exposure have not been examined. This study investigated whether exercise exacerbates sleep-related periodic breathing in hypoxia. Methods: Two experimental phases. Short-Term Phase: a laboratory controlled, group-design study in which 16 active, healthy men (age: 25 ± 3 y, height: 1.79 ± 0.06 m, mass: 74 ± 8 kg) were confined to a normobaric hypoxic environment (FIO2 = 0.139 ± 0.003, 4,000 m) for 10 days, after random assignment to a sedentary (control, CON) or cycle-exercise group (EX). Long-Term Phase: conducted at the Concordia Antarctic Research Station (3,800 m equivalent at the Equator) where 14 men (age: 36 ± 9 y, height: 1.77 ± 0.09 m, mass: 75 ± 10 kg) lived for 12–14 months, continuously confined. Participants were stratified post hoc based on self-reported physical activity levels. We quantified apnea-hypopnea index (AHI) and physical activity variables. Results: Short-Term Phase: mean AHI scores were significantly elevated in the EX group compared to CON (Night1 = CON: 39 ± 51, EX: 91 ± 59; Night10 = CON: 32 ± 32, EX: 92 ± 48; P = 0.046). Long-Term Phase: AHI was correlated to mean exercise time (R2 = 0.4857; P = 0.008) and the coefficient of variation in night oxyhemoglobin saturation (SpO2; R2 = 0.3062; P = 0.049). Conclusions: Data indicate that exercise (physical activity) per se affects night SpO2 concentrations and AHI after a minimum of two bouts of moderate-intensity hypoxic exercise, while habitual physical activity in hypobaric hypoxic confinement affects breathing during sleep, up to 13+ months' duration Citation: Tellez HF, Morrison SA, Neyt X, Mairesse O, Piacentini MF, Macdonald-Nethercott E, Pangerc A, Dolenc-Groselj L, Eiken O, Pattyn N, Mekjavic IB, Meeusen R. Exercise during short-term and long-term

  4. Comparison of Benzene & Toluene removal from synthetic polluted air with use of Nano photocatalyticTiO2/ ZNO process.

    PubMed

    Gholami, Mitra; Nassehinia, Hamid Reza; Jonidi-Jafari, Ahmad; Nasseri, Simin; Esrafili, Ali

    2014-02-05

    Mono aromatic hydrocarbons (BTEX) are a group of hazardous pollutants which originate from sources such as refineries, gas, and oil extraction fields, petrochemicals and paint and glue industries.Conventional methods, including incineration, condensation, adsorption and absorption have been used for removal of VOCs. None of these methods is economical for removal of pollutants of polluted air with low to moderate concentrations. The heterogeneous photocatalytic processes involve the chemical reactions to convert pollutant to carbon dioxide and water. The aim of this paper is a comparison of Benzene & Toluene removal from synthetic polluted air using a Nano photocatalytic TiO2/ ZNO process. The X-ray diffraction (XRD) patterns showed that Nano crystals of TiO2 and ZNO were in anatase and rutile phases. Toluene & benzene were decomposed by TiO2/ ZNO Nano photocatalyst and UV radiation. Kruskal-wallis Test demonstrated that there are significant differences (pvalue < 0.05) between pollutant concentrations in different operational conditions. Degradation of toluene & benzene increases with increasing UV intensity and decreasing initial concentrations. Effect of TiO2/ZNO Nano photocatalyst on benzene is less than that on toluene. In this research, Toluene & benzene removal by TiO2/ZNO and UV followed first-order reactions.

  5. Comparison of Benzene & Toluene removal from synthetic polluted air with use of Nano photocatalyticTiO2/ ZNO process

    PubMed Central

    2014-01-01

    Background Mono aromatic hydrocarbons (BTEX) are a group of hazardous pollutants which originate from sources such as refineries, gas, and oil extraction fields, petrochemicals and paint and glue industries. Conventional methods, including incineration, condensation, adsorption and absorption have been used for removal of VOCs. None of these methods is economical for removal of pollutants of polluted air with low to moderate concentrations. The heterogeneous photocatalytic processes involve the chemical reactions to convert pollutant to carbon dioxide and water. The aim of this paper is a comparison of Benzene & Toluene removal from synthetic polluted air using a Nano photocatalytic TiO2/ ZNO process. Results The X-ray diffraction (XRD) patterns showed that Nano crystals of TiO2 and ZNO were in anatase and rutile phases. Toluene & benzene were decomposed by TiO2/ ZNO Nano photocatalyst and UV radiation. Kruskal-wallis Test demonstrated that there are significant differences (pvalue < 0.05) between pollutant concentrations in different operational conditions. Conclusions Degradation of toluene & benzene increases with increasing UV intensity and decreasing initial concentrations. Effect of TiO2/ZNO Nano photocatalyst on benzene is less than that on toluene. In this research, Toluene & benzene removal by TiO2/ZNO and UV followed first-order reactions. PMID:24499601

  6. Long-term exposure to ambient particulate matter (PM2.5) is associated with platelet counts in adults.

    PubMed

    Zhang, Zilong; Chan, Ta-Chien; Guo, Cui; Chang, Ly-Yun; Lin, Changqing; Chuang, Yuan Chieh; Jiang, Wun Kai; Ho, Kin Fai; Tam, Tony; Woo, Kam S; Lau, Alexis K H; Lao, Xiang Qian

    2018-05-09

    The prothrombotic effects of particulate matter (PM) may underlie the association of air pollution with increased risks of cardiovascular disease. This study aimed to investigate the association between long-term exposure to PM with an aerodynamic diameter ≤2.5 μm (PM 2.5 ) and platelet counts, a marker of coagulation profiles. The study participants were from a cohort consisting of 362,396 Taiwanese adults who participated in a standard medical examination program between 2001 and 2014. Platelet counts were measured through Complete Blood Count tests. A satellite-based spatio-temporal model was used to estimate 2-year average ambient PM 2.5 concentration at each participant's address. Mixed-effects linear regression models were used to investigate the association between PM 2.5 exposure and platelet counts. This analysis included 175,959 men with 396,248 observations and 186,437 women with 397,877 observations. Every 10-μg/m 3 increment in the 2-year average PM 2.5 was associated with increases of 0.42% (95% CI: 0.38%, 0.47%) and 0.49% (95% CI: 0.44%, 0.54%) in platelet counts in men and women, respectively. A series of sensitivity analyses, including an analysis in participants free of cardiometabolic disorders, confirmed the robustness of the observed associations. Baseline data analyses showed that every 10-μg/m 3 increment in PM 2.5 was associated with higher risk of 17% and 14% of having elevated platelet counts (≥90th percentile) in men and women, respectively. Long-term exposure to PM 2.5 appears to be associated with increased platelet counts, indicating potential adverse effects on blood coagulability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Graphene quantum dots to enhance the photocatalytic hydrogen evolution efficiency of anatase TiO2 with exposed {001} facet.

    PubMed

    Yu, Shan; Zhong, Yun-Qian; Yu, Bao-Quan; Cai, Shi-Yi; Wu, Li-Zhu; Zhou, Ying

    2016-07-27

    Hydrogen evolution through photocatalysis is promising with respect to the environmental problems and challenges of energy shortage that we encounter today. In this paper, we have combined graphene quantum dots (GQDs) and {001} faceted anatase TiO2 (with an exposed percentage of 65-75%) together for effective photocatalytic hydrogen evolution. A series of characterizations including X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy and UV-visible absorption spectroscopy have been carried out to study the structure of the as-prepared GQDs/{001}TiO2 composite. It turns out that GQDs could be effectively decorated on {001}TiO2 sheet without changing its intrinsic structure. With an optimum loading amount of GQDs (0.5 wt% to {001}TiO2), GQDs/{001}TiO2 exhibits a hydrogen evolution efficiency 8 times higher than that of bare {001}TiO2, which is a significantly more obvious improvement than many other photocatalytic systems relevant to GQDs and TiO2 hybrids. In addition, GQDs/{001}TiO2 could stand long-term photocatalytic experiments. Photocurrent tests show that such an improvement of the photocatalytic efficiency over GQDs/{001}TiO2 may originate from a higher charge separation efficiency. The present study could offer reference for the construction of photocatalytic hydrogen evolution systems with low cost and long term stability.

  8. Influence of TiCl4 precursor in hydrothermal synthesis of TiO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Kartikay, Purnendu; Nemala, Siva Sankar; Mallick, Sudhanshu

    2017-05-01

    Rutile TiO2 films were deposited on the FTO substrate by the hydrothermal process using TTIP and TiCl4 as the titania precursor. Our study manifestly exhibits the influence of TiCl4 precursor on the hydrothermal growth of the TiO2 structure. The morphology of prepared film varies from nano-cauliflower to nano-flower to nano-parallelepiped rod-like structure with the addition of TiCl4 as the precursor. When TiCl4 is introduced in the precursor HCl corresponding to four times of the Ti4+ concentration is generated as a by-product during the reaction, these additional HCl promotes the etching of the nanostructure enabling the nanostructure to unfurl. We conclude that the tailoring of the nanostructure can be performed by addition of TiCl4 in the precursor

  9. Effect of TiO2 nano fillers on the electrical conductivity of PSAN/TiO2 polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Ningaraju, S.; Munirathnamma, L. M.; Kumar, K. V. Aneesh; Ravikumar, H. B.

    2016-05-01

    The microstructural characterization of Polystyrene co-acrylonitrile and Titanium dioxide (PSAN/TiO2) nanocomposites has been performed by Positron Annihilation Lifetime Spectroscopy. The decrease of positron lifetime parameters viz. o-Ps lifetime (τ3) and free volume size (Vf) up to 0.6 wt% of TiO2 is attributed to the filling of free volume holes by TiO2 nanoparticles. The increased free volume size (Vf) after 0.6 wt% of TiO2 indicates the formation of interface due to TiO2 nanoclusters. The variation of electrical conductivity at the lower and higher concentration of TiO2 in (PSAN/TiO2) nanocomposites is attributed to the blocking effect and space charge effect respectively.

  10. Long-Term Air Pollution Exposure and Blood Pressure in the Sister Study

    PubMed Central

    Chan, Stephanie H.; Van Hee, Victor C.; Bergen, Silas; Szpiro, Adam A.; DeRoo, Lisa A.; London, Stephanie J.; Marshall, Julian D.; Sandler, Dale P.

    2015-01-01

    Background Exposure to air pollution has been consistently associated with cardiovascular morbidity and mortality, but mechanisms remain uncertain. Associations with blood pressure (BP) may help to explain the cardiovascular effects of air pollution. Objective We examined the cross-sectional relationship between long-term (annual average) residential air pollution exposure and BP in the National Institute of Environmental Health Sciences’ Sister Study, a large U.S. cohort study investigating risk factors for breast cancer and other outcomes. Methods This analysis included 43,629 women 35–76 years of age, enrolled 2003–2009, who had a sister with breast cancer. Geographic information systems contributed to satellite-based nitrogen dioxide (NO2) and fine particulate matter (≤ 2.5 μm; PM2.5) predictions at participant residences at study entry. Generalized additive models were used to examine the relationship between pollutants and measured BP at study entry, adjusting for cardiovascular disease risk factors and including thin plate splines for potential spatial confounding. Results A 10-μg/m3 increase in PM2.5 was associated with 1.4-mmHg higher systolic BP (95% CI: 0.6, 2.3; p < 0.001), 1.0-mmHg higher pulse pressure (95% CI: 0.4, 1.7; p = 0.001), 0.8-mmHg higher mean arterial pressure (95% CI: 0.2, 1.4; p = 0.01), and no significant association with diastolic BP. A 10-ppb increase in NO2 was associated with a 0.4-mmHg (95% CI: 0.2, 0.6; p < 0.001) higher pulse pressure. Conclusions Long-term PM2.5 and NO2 exposures were associated with higher blood pressure. On a population scale, such air pollution–related increases in blood pressure could, in part, account for the increases in cardiovascular disease morbidity and mortality seen in prior studies. Citation Chan SH, Van Hee VC, Bergen S, Szpiro AA, DeRoo LA, London SJ, Marshall JD, Kaufman JD, Sandler DP. 2015. Long-term air pollution exposure and blood pressure in the Sister Study. Environ Health

  11. A study of the uptake and biodistribution of nano-titanium dioxide using in vitro and in vivo models of oral intake

    NASA Astrophysics Data System (ADS)

    MacNicoll, Alan; Kelly, Mick; Aksoy, Hatice; Kramer, Evelien; Bouwmeester, Hans; Chaudhry, Qasim

    2015-02-01

    Certain food additives may contain a sizeable fraction of particles in the nanoscale. However, little is known about the fate, behaviour and toxicological effects of orally-ingested nanoparticles. This study investigated the uptake and biodistribution of nano- and larger-sized titanium dioxide (TiO2) using an in vitro model of gut epithelium and in vivo in rat. The results of the in vivo study showed that oral administration of 5 mg/kg body weight of TiO2 nano- or larger particles did not lead to any significant translocation of TiO2 (measured as titanium) either to blood, urine or to various organs in rat at any of the time intervals studied over a 96 h post-administration period. Different methods used for dispersing particles did not affect the uptake, and orally administered TiO2 was found excreted in the faeces over a period of time. The in vitro study provided further evidence for the lack of translocation of TiO2 across the gut epithelium model. The overall evidence from both in vivo and in vitro studies did not support that oral ingestion of nano- or larger particles of TiO2 via food would result in any significant internal exposure of the consumer to the nanoparticles. The dietary TiO2 nanoparticles are likely to be excreted in the faeces.

  12. Effect of TiO2 on the Gas Sensing Features of TiO2/PANi Nanocomposites

    PubMed Central

    Huyen, Duong Ngoc; Tung, Nguyen Trong; Thien, Nguyen Duc; Thanh, Le Hai

    2011-01-01

    A nanocomposite of titanium dioxide (TiO2) and polyaniline (PANi) was synthesized by in-situ chemical polymerization using aniline (ANi) monomer and TiCl4 as precursors. SEM pictures show that the nanocomposite was created in the form of long PANi chains decorated with TiO2 nanoparticles. FTIR, Raman and UV-Vis spectra reveal that the PANi component undergoes an electronic structure modification as a result of the TiO2 and PANi interaction. The electrical resistor of the nanocomposite is highly sensitive to oxygen and NH3 gas, accounting for the physical adsorption of these gases. A nanocomposite with around 55% TiO2 shows an oxygen sensitivity of 600–700%, 20–25 times higher than that of neat PANi. The n-p contacts between TiO2 nanoparticles and PANi matrix give rise to variety of shallow donors and acceptor levels in the PANi band gap which enhance the physical adsorption of gas molecules. PMID:22319389

  13. Long-term effect of noise exposure during military service in South Korea.

    PubMed

    Kim, SungHee; Lim, Eun Jung; Kim, Tae Hoon; Park, Jun Ho

    2017-02-01

    Most Korean men spend at least two years in the military service usually in their early twenties. The aim of this study was to identify the long-term effect of exposure to military noise during military service by comparing two regressions of age-related hearing loss between groups with and without exposure to military noise. Cross-sectional observational study. Finally, 4079 subjects were included, among 10,286 data of men's audiogram from January 2004 to April 2010. We excluded repeated testers and any subjects who had other known external causes or had an asymmetric audiogram. We grouped subjects with exposure to military noise (N = 3163) and those without as the control group (N = 916). There was a significant effect of exposure to military noise at 4 and 8 kHz after controlling for the effect of age. The annual threshold deterioration rates were faster in the military noise exposed group than in the control group at 1, 2 and 4 kHz (p < 0.05). The long-term effect of exposure to military noise on age-related hearing loss showed an adding effect at 8 kHz and an accelerating effect in the frequency region from 1 to 4 kHz.

  14. Effects of nano anatase-rutile TiO2 volume fraction with natural dye containing anthocyanin on the dye sensitized solar cell performance

    NASA Astrophysics Data System (ADS)

    Agustini, S.; Wahyuono, R. A.; Sawitri, D.; Risanti, D. D.

    2013-09-01

    Since its first development, efforts to improve efficiency of Dye Sensitized Solar Cell (DSSC) are continuously carried out, either through selection of dye materials, the type of semiconductor, counter electrode design or the sandwiched structure. It is widely known that anatase and rutile are phases of TiO2 that often being used for fabrication of DSSC. Rutile is thermodynamically more stable phase having band-gap suitable for absorption of sunlight spectrum. On the other hand, anatase has higher electrical conductivity, capability to adsorp dye as well as higher electron diffusion coefficient than those of rutile. Present research uses mangosteen pericarp and Rhoeo spathacea extracted in ethanol as natural dye containing anthocyanin. These dyes were characterized by using UV-Vis and FTIR, showing that the absorption maxima peaks obtained at 389 nm and 413 nm, for mangosteen and Rhoeo spathacea, respectively. The nano TiO2 was prepared by means of co-precipitation method. The particle size were 9-11 nm and 54.5 nm for anatase and rutile, respectively, according to Scherrer's equation. DSSCs were fabricated in various volume fractions of anatase and rutile TiO2. The fabricated DSSCs were tested under 17 mW/cm2 of solar irradiation. The current-voltage (I-V) characteristic of DSSCs employing 75%: 25% volume fraction of anatase and rutile TiO2 have outstanding result than others. The highest conversion efficiencies of 0.037% and 0.013% are obtained for DSSC employing natural dye extract from mangosteen pericarp and Rhoeo spathacea, respectively.

  15. Cellulose acetate-based SiO2/TiO2 hybrid microsphere composite aerogel films for water-in-oil emulsion separation

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Ma, Jianjun; Ling, Jing; Li, Na; Wang, Di; Yue, Fan; Xu, Shimei

    2018-03-01

    The cellulose acetate (CA)/SiO2-TiO2 hybrid microsphere composite aerogel films were successfully fabricated via water vapor-induced phase inversion of CA solution and simultaneous hydrolysis/condensation of 3-aminopropyltrimethoxysilane (APTMS) and tetrabutyl titanate (TBT) at room temperature. Micro-nano hierarchical structure was constructed on the surface of the film. The film could separate nano-sized surfactant-stabilized water-in-oil emulsions only under gravity. The flux of the film for the emulsion separation was up to 667 L m-2 h-1, while the separation efficiency was up to 99.99 wt%. Meanwhile, the film exhibited excellent stability during multiple cycles. Moreover, the film performed excellent photo-degradation performance under UV light due to the photocatalytic ability of TiO2. Facile preparation, good separation and potential biodegradation maked the CA/SiO2-TiO2 hybrid microsphere composite aerogel films a candidate in oil/water separation application.

  16. RBS, TEM and SEM Characterization of Gold Nanoclusters in TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shutthanandan, V; Zhang, Yanwen; Wang, Chong M.

    2004-05-01

    Nucleation of gold nanoclusters in TiO2(110) single crystal using ion implantation and subsequent annealing were studied by Rutherford backscattering spectrometry /channeling (RBS/C), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Approximately 1000 Au2+/nm2 was implanted at room temperature in TiO2(110) substrates. TEM and SEM measurements revel that rounded nanoclusters were formed during the implantation. In contrast subsequent annealing in air for 10 hours at 1275 K promoted the formation of faceted (rectangular shaped) Au nano structures in TiO2. RBS channeling measurements further reveled that Au atoms randomly occupied in the host TiO2 lattice during the implantation. However, some ofmore » the gold atoms were moved into the Ti lattice position after annealing.« less

  17. Nano-CuO impairs spatial cognition associated with inhibiting hippocampal long-term potentiation via affecting glutamatergic neurotransmission in rats.

    PubMed

    Li, Xiaoliang; Sun, Wei; An, Lei

    2018-06-01

    Manufactured metal nanoparticles and their applications are continuously expanding because of their unique characteristics while their increasing use may predispose to potential health problems. Several studies have reported the adverse effects of copper oxide nanoparticles (nano-CuO) relative to ecotoxicity and cell toxicity, whereas little is known about the neurotoxicity of nano-CuO. The present study aimed to examine its effects on spatial cognition, hippocampal function, and the possible mechanisms. Male Wistar rats were used to establish an animal model, and nano-CuO was administered at a dose of 0.5 mg/kg/day for 2 weeks. The Morris water maze (MWM) test was employed to evaluate learning and memory. The long-term potentiation (LTP) from Schaffer collaterals to the hippocampal CA1 region, and the effects of nano-CuO on synases were recorded in the hippocampal CA1 neurons of rats. MWM test showed that learning and memory abilities were impaired significantly by nano-CuO ( p < 0.05). The LTP test demonstrated that the field excitatory postsynaptic potential (fEPSP) slopes were significantly lower in nano-CuO-treated groups compared with the control group ( p < 0.01). Furthermore, the data of whole-cell patch-clamp experiments showed that nano-CuO markedly depressed the frequencies of both spontaneous excitatory postsynaptic currents (sEPSCs) and miniature EPSCs (mEPSCs), indicating an effect of nano-CuO on inhibiting the release frequency of glutamate presynapticly ( p < 0.01). Meanwhile, the amplitudes of both sEPSC and mEPSC were significantly reduced in nano-CuO-treated animals, which suggested that the effect of nano-CuO modulates postsynaptic receptor kinetics ( p < 0.01). Paired pulse facilitation (PPF) ( p < 0.05) and the expression of NR2A, but not NR2B, of N-methyl-d-aspartate (NMDA) subunits ( p < 0.05), were decreased significantly. In conclusion, nano-CuO impaired glutamate transmission presynapticly and postsynapticly, which may contribute

  18. Electron-Selective TiO 2 Contact for Cu(In,Ga)Se 2 Solar Cells

    DOE PAGES

    Hsu, Weitse; Sutter-Fella, Carolin M.; Hettick, Mark; ...

    2015-11-03

    The non-toxic and wide bandgap material TiO 2 is explored as an n-type buffer layer on p-type Cu(In,Ga)Se 2 (CIGS) absorber layer for thin film solar cells. The amorphous TiO 2 thin film deposited by atomic layer deposition process at low temperatures shows conformal coverage on the CIGS absorber layer. Solar cells from non-vacuum deposited CIGS absorbers with TiO 2 buffer layer result in a high short-circuit current density of 38.9 mA/cm 2 as compared to 36.9 mA/cm 2 measured in the reference cell with CdS buffer layer, without compromising open-circuit voltage. The significant photocurrent gain, mainly in the UVmore » part of the spectrum, can be attributed to the low parasitic absorption loss in the ultrathin TiO 2 layer (~10 nm) with a larger bandgap of 3.4 eV compared to 2.4 eV of the traditionally used CdS. Overall the solar cell conversion efficiency was improved from 9.5% to 9.9% by substituting the CdS by TiO 2 on an active cell area of 10.5 mm2. In conclusion, optimized TiO 2/CIGS solar cells show excellent long-term stability. The results imply that TiO 2 is a promising buffer layer material for CIGS solar cells, avoiding the toxic CdS buffer layer with added performance advantage.« less

  19. TiO2 nanocomposites: Preparation, characterization, mechanical and biological properties

    NASA Astrophysics Data System (ADS)

    Koşarsoy, Gözde; Şen, Elif Hilal; Aksöz, Nilüfer; İde, Semra; Aksoy, Hüsnü

    2014-11-01

    Some novel nanocomposites, which contain different concentrations of TiO2 nanopowders, were firstly prepared by using marble dust with convenient chemical components. Their nano structures characterized and distributions of the nano-aggregations related with internal structural content of the samples have been determined by X-ray Scattering Methods (SAXS and WAXS) and mechanical properties were determined by using strain-stress measurements to increase their potential usage possibility as building materials in health and research centers. In the last and important part of the study, Candida albicans and Aspergillus niger which are a significant risk to medical patients were used to investigate originally prepared nanostructured samples' photocatalyst effect. During the last part of the study, effect of UV and visible light on photocatalyst nanocomposites were also researched. Heterogeneous photocatalysts can carry out advanced oxidation processes used for an antimicrobial effect on microorganisms. TiO2 nanoparticles as one of heterogeneous photocatalysts have been shown to exhibit strong cytotoxicity when exposed to UV and visible light.

  20. Long-term exposure to constituents of fine particulate air pollution and mortality: results from the California Teachers Study.

    PubMed

    Ostro, Bart; Lipsett, Michael; Reynolds, Peggy; Goldberg, Debbie; Hertz, Andrew; Garcia, Cynthia; Henderson, Katherine D; Bernstein, Leslie

    2010-03-01

    Several studies have reported associations between long-term exposure to ambient fine particulate matter (PM) and cardiovascular mortality. However, the health impacts of long-term exposure to specific constituents of PM(2.5) (PM with aerodynamic diameter < or = 2.5 microm) have not been explored. We used data from the California Teachers Study, a prospective cohort of active and former female public school professionals. We developed estimates of long-term exposures to PM(2.5) and several of its constituents, including elemental carbon, organic carbon (OC), sulfates, nitrates, iron, potassium, silicon, and zinc. Monthly averages of exposure were created using pollution data from June 2002 through July 2007. We included participants whose residential addresses were within 8 and 30 km of a monitor collecting PM(2.5) constituent data. Hazard ratios (HRs) were estimated for long-term exposure for mortality from all nontraumatic causes, cardiopulmonary disease, ischemic heart disease (IHD), and pulmonary disease. Approximately 45,000 women with 2,600 deaths lived within 30 km of a monitor. We observed associations of all-cause, cardiopulmonary, and IHD mortality with PM(2.5) mass and each of its measured constituents, and between pulmonary mortality and several constituents. For example, for cardiopulmonary mortality, HRs for interquartile ranges of PM(2.5), OC, and sulfates were 1.55 [95% confidence interval (CI), 1.431.69], 1.80 (95% CI, 1.681.93), and 1.79 (95% CI, 1.582.03), respectively. Subsequent analyses indicated that, of the constituents analyzed, OC and sulfates had the strongest associations with all four outcomes. Long-term exposures to PM(2.5) and several of its constituents were associated with increased risks of all-cause and cardiopulmonary mortality in this cohort. Constituents derived from combustion of fossil fuel (including diesel), as well as those of crustal origin, were associated with some of the greatest risks. These results provide additional

  1. NanoTIO(2) (UV-Titan) does not induce ESTR mutations in the germline of prenatally exposed female mice.

    PubMed

    Boisen, Anne Mette Zenner; Shipley, Thomas; Jackson, Petra; Hougaard, Karin Sørig; Wallin, Håkan; Yauk, Carole L; Vogel, Ulla

    2012-06-01

    Particulate air pollution has been linked to an increased risk of cardiovascular disease and cancer. Animal studies have shown that inhalation of air particulates induces mutations in the male germline. Expanded simple tandem repeat (ESTR) loci in mice are sensitive markers of mutagenic effects on male germ cells resulting from environmental exposures; however, female germ cells have received little attention. Oocytes may be vulnerable during stages of active cell division (e.g., during fetal development). Accordingly, an increase in germline ESTR mutations in female mice prenatally exposed to radiation has previously been reported. Here we investigate the effects of nanoparticles on the female germline. Since pulmonary exposure to nanosized titanium dioxide (nanoTiO(2)) produces a long-lasting inflammatory response in mice, it was chosen for the present study. Pregnant C57BL/6 mice were exposed by whole-body inhalation to the nanoTiO(2) UV-Titan L181 (~42.4 mg UV-Titan/m(3)) or filtered clean air on gestation days (GD) 8-18. Female C57BL/6 F1 offspring were raised to maturity and mated with unexposed CBA males. The F2 descendents were collected and ESTR germline mutation rates in this generation were estimated from full pedigrees (mother, father, offspring) of F1 female mice (192 UV-Titan-exposed F2 offspring and 164 F2 controls). ESTR mutation rates of 0.029 (maternal allele) and 0.047 (paternal allele) in UV-Titan-exposed F2 offspring were not statistically different from those of F2 controls: 0.037 (maternal allele) and 0.061 (paternal allele). We found no evidence for increased ESTR mutation rates in F1 females exposed in utero to UV-Titan nanoparticles from GD8-18 relative to control females.

  2. Preparation and solar-light photocatalytic activity of TiO2 composites: TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, S. G.; Wang, J.; Li, Y.; Ma, C. H.; Zhang, L.

    2014-12-01

    Three TiO2 loaded composites, TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite, were prepared in order to improve the solar-light photocatalytic activity of TiO2. The results showed that the photocatalytic activity could obviously be enhanced by loading appropriate amount of inorganic mineral materials. Meanwhile, TiO2 content, heat-treatment temperature and heat-treatment time on the photocatalytic activity were reviewed. Otherwise, the effect of solar light irradiation time and dye concentration on the photocatalytic degradation of Acid Red B was investigated. Furthermore, the degradation mechanism and adsorption process were also discussed.

  3. Sonocatalytic degradation of an anthraquinone dye using TiO2-biochar nanocomposite.

    PubMed

    Khataee, Alireza; Kayan, Berkant; Gholami, Peyman; Kalderis, Dimitrios; Akay, Sema

    2017-11-01

    TiO 2 -biochar (TiO 2 -BC) nanocomposite was synthesized by sol-gel method. The characteristics of the prepared nanocomposite were examined using X-ray fluorescence, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and N 2 adsorption-desorption analysis. The performance of synthesized TiO 2 -BC nanocomposite as efficient sonocatalyst was studied for the degradation of Reactive Blue 69 (RB69). Sonocatalytic degradation of RB69 in the presence of TiO 2 -BC nanocomposite could be explained by the mechanisms of hot spots and sonoluminescence. The optimized values for main operational parameters were determined as pH of 7, TiO 2 -BC dosage of 1.5g/L, RB69 initial concentration of 20mg/L and ultrasonic power of 300W. Furthermore, the effect of OH, h + and O 2 - scavengers on the RB69 degradation efficiency was studied. Gas chromatography-mass spectroscopy analysis was used to identify intermediate compounds formed during the RB69 degradation. The results of repeated applications of TiO 2 -BC in the sonocatalytic process verified its stability in long-term usage. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Structure and corrosion behaviour of electrodeposited Co-Mo/TiO2 nano-composite coatings

    NASA Astrophysics Data System (ADS)

    Krawiec, H.; Vignal, V.; Latkiewicz, M.; Herbst, F.

    2018-01-01

    The structure and the corrosion behaviour in the Ringer's solution of Co-Mo/TiO2 nano-composite coatings have been investigated. They consist of aggregates of TiO2 nanoparticles uniformly distributed in a Co-Mo alloy matrix (crystallite size of about 2 nm). Both nodular (thickness less than 20 μm) and globular structures (thickness greater than 20 μm) have been observed using field-emission scanning electron microscopy. Under potentiostatic control (in Ringer's solution), oxidation of the coating first occurs followed by (with increasing applied potential) both oxidation and selective dissolution of Co. At the OCP value, Co is oxidized in the form of Co2+-based compounds (CoO, Co(OH)2 or α-CoMoO4) in the coating. This process only occurs in the outermost part of the coating. Therefore, the bulk properties of the coating are not affected after long-term ageing in the Ringer's solution at OCP.

  5. Nanoporous TiO2 nanoparticle assemblies with mesoscale morphologies: nano-cabbage versus sea-anemone

    NASA Astrophysics Data System (ADS)

    Darbandi, Masih; Gebre, Tesfaye; Mitchell, Lucas; Erwin, William; Bardhan, Rizia; Levan, M. Douglas; Mochena, Mogus D.; Dickerson, James H.

    2014-05-01

    We report the novel synthesis of nanoporous TiO2 nanoparticle ensembles with unique mesoscale morphologies. Constituent nanoparticles evolved into multifaceted assemblies, exhibiting excellent crystallinity and enhanced photocatalytic activity compared with commercial TiO2. Such materials could be exploited for applications, like organic pollutant degradation.We report the novel synthesis of nanoporous TiO2 nanoparticle ensembles with unique mesoscale morphologies. Constituent nanoparticles evolved into multifaceted assemblies, exhibiting excellent crystallinity and enhanced photocatalytic activity compared with commercial TiO2. Such materials could be exploited for applications, like organic pollutant degradation. Electronic supplementary information (ESI) available: Synthesis and characterization procedures, TEM/XRD of samples prepared at different temperature and water content, table of nitrogen adsorption-desorption values of different samples. See DOI: 10.1039/c3nr06154j

  6. Color stability of pigmented maxillofacial silicone elastomer: effects of nano-oxides as opacifiers.

    PubMed

    Han, Ying; Zhao, Yimin; Xie, Chao; Powers, John M; Kiat-amnuay, Sudarat

    2010-01-01

    This study evaluated the effects of nano-oxides on the color stability of pigmented silicone A-2186 maxillofacial prosthetic elastomers before and after artificial aging. Each of three widely used UV-shielding nano-sized particle oxides (TiO(2), ZnO, CeO(2)), based on recent survey of the industry at 1%, 2%, 2.5% concentrations were combined with each of five intrinsic silicone pigment types (no pigments, red, yellow, blue, and a mixture of the three pigments). Silicone A-2186 without nano-oxides or pigments served as control, for a total of 46 experimental groups of elastomers. In each group of the study, all specimens were aged in an artificial aging chamber for an energy exposure of 450kJ/m(2). CIE L*a*b* values were measured by a spectrophotometer. The 50:50% perceptibility (ΔE*=1.1) and acceptability threshold (ΔE*=3.0) were used in interpretation of recorded color differences. Color differences after aging were subjected to three-way analysis of variance. Means were compared by Fisher's PLSD intervals at the 0.05 level of significance. Yellow pigments mixed with all three nano-oxides at all intervals increased ΔE* values significantly from 3.7 up to 8.4. When mixed pigment groups were considered, TiO(2) at 2%, and 2.5% exhibited the smallest color changes, followed by ZnO and CeO(2), respectively (p<0.001). At 1%, CeO(2) exhibited the smallest color changes, followed by TiO(2) and ZnO, respectively (p<0.001). The smallest color differences, observed for nano-oxides groups, were recorded for CeO(2) at 1%, and TiO(2) at 2% and 2.5%. When the nano-oxides were tested at all concentrations, CeO(2) groups overall had the most color changes, and TiO(2) groups had the least. All ΔE* values of the mixed pigment groups were below the 50:50% acceptability threshold (ΔE*=1.2-2.3, below 3.0) except 2% CeO(2) (ΔE*=4.2). 1% nano-CeO(2) and 2% and 2.5% nano-TiO(2) used as opacifiers for silicone A-2186 maxillofacial prostheses with mixed pigments exhibited the least

  7. Molecular design of TiO2 for gigantic red shift via sublattice substitution.

    PubMed

    Shao, Guosheng; Deng, Quanrong; Wan, Lin; Guo, Meilan; Xia, Xiaohong; Gao, Yun

    2010-11-01

    The effects of 3d transition metal doping in TiO2 phases have been simulated in detail. The results of modelling indicate that Mn has the biggest potential among 3d transition metals, for the reduction of energy gap and the introduction of effective intermediate bands to allow multi-band optical absorption. On the basis of theoretical formulation, we have incorporated considerable amount of Mn in nano-crystalline TiO2 materials. Mn doped samples demonstrate significant red shift in the optical absorption edge, with a secondary absorption edge corresponding to theoretically predicted intermediate bands/states. The gigantic red shift achievable in Mn-doped TiO2 is expected to extend the useful TiO2 functionalities well beyond the UV threshold via the optical absorption of both visible and infrared photon irradiance.

  8. Phototoxicity of TiO2 Nanoparticles under Solar Radiation to Two Aquatic Species: Daphnia magna and Japanese Medaka

    EPA Science Inventory

    One target of development and application of TiO2 nanoparticles (nano-TiO2) is photochemical degredation of contaminants and photo-killing of microbes and fouling organisms. However, few ecotoxicological studies have focused on this aspect of nano-TiO2, specifically whether this ...

  9. Early Life Fructose Exposure and Its Implications for Long-Term Cardiometabolic Health in Offspring.

    PubMed

    Zheng, Jia; Feng, Qianyun; Zhang, Qian; Wang, Tong; Xiao, Xinhua

    2016-11-01

    It has become increasingly clear that maternal nutrition can strongly influence the susceptibility of adult offspring to cardiometabolic disease. For decades, it has been thought that excessive intake of fructose, such as sugar-sweetened beverages and foods, has been linked to increased risk of obesity, type 2 diabetes, and cardiovascular disease in various populations. These deleterious effects of excess fructose consumption in adults are well researched, but limited data are available on the long-term effects of high fructose exposure during gestation, lactation, and infancy. This review aims to examine the evidence linking early life fructose exposure during critical periods of development and its implications for long-term cardiometabolic health in offspring.

  10. Effects of humic acids on the aggregation and sorption of nano-TiO2.

    PubMed

    Li, Yanjie; Yang, Chen; Guo, Xuetao; Dang, Zhi; Li, Xiaoqin; Zhang, Qian

    2015-01-01

    In this study, humic acids (HAs) from three sources, peat, sediment and straw, used to coat nano-TiO2 were investigated. The results indicated that HAs isolated from peat were aromatic-rich, whereas those isolated from sediment and straw were aliphatic-rich. The nano-TiO2 sedimentation experiments indicated that the presence of aromatic-rich HAs was more capable of stabilizing nano-TiO2 particles than was the presence of aliphatic-rich HAs. This result is because the deionized phenolic groups in the HAs were preferentially adsorbed on the nano-TiO2 surfaces, which generated a higher charge density on the nano-TiO2 surfaces and caused stronger repulsive forces among particles. Furthermore, the aromatic-rich TiO2-HA complexes exhibited a greater sorption capacity than the aliphatic-rich TiO2-HAs complexes and nonlinear phenanthrene sorption because of their higher affinity and the condensed state of aromatic fractions. Note that natural organic matters, such as humic acids, in aquatic environments can not only increase the stability of nanoparticles but can also influence the mobility of hydrophobic organic compounds (HOCs). Copyright © 2014. Published by Elsevier Ltd.

  11. Mesoporous TiO2 nanosheets anchored on graphene for ultra long life Na-ion batteries.

    PubMed

    Zhang, Ruifang; Wang, Yuankun; Zhou, Han; Lang, Jinxin; Xu, Jingjing; Xiang, Yang; Ding, Shujiang

    2018-06-01

    Sodium-ion batteries, which have a similar electrochemical reaction mechanism to lithium-ion batteries, have been considered as one of the most potential lithium-ion battery alternatives due to the rich reserves of sodium. However, it is very hard to find appropriate electrode materials imputing the large radius of sodium-ion. TiO 2 is particularly interesting as anodes for sodium-ion batteries due to their reasonable operation voltage, cost, and nontoxicity. To obtain a better electrochemical property, mesoporous TiO 2 nanosheets (NSs)/reduced graphene oxide (rGO) composites have been synthesized via a scalable hydrothermal-solvothermal method with a subsequent calcination process. Benefitting from unique structure design, TiO 2 NSs@rGO exhibits a superior cycle stability (90 mAh g -1 after 10 000 cycles at a high current rate of 20 C) and satisfactory rate performance (97.3 mAh g -1 at 25 C). To our knowledge, such ultra long cycle life has not previously been reported.

  12. Mesoporous TiO2 nanosheets anchored on graphene for ultra long life Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Ruifang; Wang, Yuankun; Zhou, Han; Lang, Jinxin; Xu, Jingjing; Xiang, Yang; Ding, Shujiang

    2018-06-01

    Sodium-ion batteries, which have a similar electrochemical reaction mechanism to lithium-ion batteries, have been considered as one of the most potential lithium-ion battery alternatives due to the rich reserves of sodium. However, it is very hard to find appropriate electrode materials imputing the large radius of sodium-ion. TiO2 is particularly interesting as anodes for sodium-ion batteries due to their reasonable operation voltage, cost, and nontoxicity. To obtain a better electrochemical property, mesoporous TiO2 nanosheets (NSs)/reduced graphene oxide (rGO) composites have been synthesized via a scalable hydrothermal-solvothermal method with a subsequent calcination process. Benefitting from unique structure design, TiO2 NSs@rGO exhibits a superior cycle stability (90 mAh g‑1 after 10 000 cycles at a high current rate of 20 C) and satisfactory rate performance (97.3 mAh g‑1 at 25 C). To our knowledge, such ultra long cycle life has not previously been reported.

  13. Epigenetics as a mechanism linking developmental exposures to long-term toxicity.

    PubMed

    Barouki, R; Melén, E; Herceg, Z; Beckers, J; Chen, J; Karagas, M; Puga, A; Xia, Y; Chadwick, L; Yan, W; Audouze, K; Slama, R; Heindel, J; Grandjean, P; Kawamoto, T; Nohara, K

    2018-05-01

    A variety of experimental and epidemiological studies lend support to the Developmental Origin of Health and Disease (DOHaD) concept. Yet, the actual mechanisms accounting for mid- and long-term effects of early-life exposures remain unclear. Epigenetic alterations such as changes in DNA methylation, histone modifications and the expression of certain RNAs have been suggested as possible mediators of long-term health effects of environmental stressors. This report captures discussions and conclusions debated during the last Prenatal Programming and Toxicity meeting held in Japan. Its first aim is to propose a number of criteria that are critical to support the primary contribution of epigenetics in DOHaD and intergenerational transmission of environmental stressors effects. The main criteria are the full characterization of the stressors, the actual window of exposure, the target tissue and function, the specificity of the epigenetic changes and the biological plausibility of the linkage between those changes and health outcomes. The second aim is to discuss long-term effects of a number of stressors such as smoking, air pollution and endocrine disruptors in order to identify the arguments supporting the involvement of an epigenetic mechanism. Based on the developed criteria, missing evidence and suggestions for future research will be identified. The third aim is to critically analyze the evidence supporting the involvement of epigenetic mechanisms in intergenerational and transgenerational effects of environmental exposure and to particularly discuss the role of placenta and sperm. While the article is not a systematic review and is not meant to be exhaustive, it critically assesses the contribution of epigenetics in the long-term effects of environmental exposures as well as provides insight for future research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating

    NASA Astrophysics Data System (ADS)

    Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan; Xie, Xi

    2017-12-01

    Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials.

  15. TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating

    PubMed Central

    Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan

    2017-01-01

    Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials. PMID:29308265

  16. Long-term exposure to airborne particles and arterial stiffness: the Multi-Ethnic Study of Atherosclerosis (MESA).

    PubMed

    O'Neill, Marie S; Diez-Roux, Ana V; Auchincloss, Amy H; Shen, Mingwu; Lima, João A; Polak, Joseph F; Barr, R Graham; Kaufman, Joel; Jacobs, David R

    2011-06-01

    Increased arterial stiffness could represent an intermediate subclinical outcome in the mechanistic pathway underlying associations between average long-term pollution exposure and cardiovascular events. We hypothesized that 20 years of exposure to particulate matter (PM) ≤ 2.5 and 10 μm in aerodynamic diameter (PM2.5 and PM10, respectively) would be positively associated with arterial stiffness in 3,996 participants from the Multi-Ethnic Study of Atherosclerosis (MESA) who were seen at six U.S. study sites. We assigned pollution exposure during two decades preceding a clinical exam (2000-2002) using observed PM10 from monitors nearest participants' residences and PM10 and PM2.5 imputed from a space-time model. We examined three log-transformed arterial stiffness outcome measures: Young's modulus (YM) from carotid artery ultrasound and large (C1) and small (C2) artery vessel compliance from the radial artery pulse wave. All associations are expressed per 10 μg/m3 increment in PM and were adjusted for weather, age, sex, race, glucose, triglycerides, diabetes, waist:hip ratio, seated mean arterial pressure, smoking status, pack-years, cigarettes per day, environmental tobacco smoke, and physical activity. C1 and C2 models were further adjusted for heart rate, weight, and height. Long-term average particle exposure was not associated with greater arterial stiffness measured by YM, C1, or C2, and the few associations observed were not robust across metrics and adjustment schemes. Long-term particle mass exposure did not appear to be associated with greater arterial stiffness in this study sample.

  17. Efficient photodecomposition of herbicide imazapyr over mesoporous Ga2O3-TiO2 nanocomposites.

    PubMed

    Ismail, Adel A; Abdelfattah, Ibrahim; Faisal, M; Helal, Ahmed

    2018-01-15

    The unabated release of herbicide imazapyr into the soil and groundwater led to crop destruction and several pollution-related concerns. In this contribution, heterogeneous photocatalytic technique was employed utilizing mesoporous Ga 2 O 3 -TiO 2 nanocomposites for degrading imazapyr herbicide as a model pollutant molecule. Mesoporous Ga 2 O 3 -TiO 2 nanocomposites with varied Ga 2 O 3 contents (0-5wt%) were synthesized through sol-gel process. XRD and Raman spectra exhibited extremely crystalline anatase TiO 2 phase at low Ga 2 O 3 content which gradually reduced with the increase of Ga 2 O 3 content. TEM images display uniform TiO 2 particles (10±2nm) with mesoporous structure. The mesoporous TiO 2 exhibits large surface areas of 167m 2 g -1 , diminished to 108m 2 g -1 upon 5% Ga 2 O 3 incorporation, with tunable mesopore diameter in the range of 3-9nm. The photocatalytic efficiency of synthesized Ga 2 O 3 -TiO 2 nanocomposites was assessed by degrading imazapyr herbicide and comparing with commercial photocatalyst UV-100 and mesoporous Ga 2 O 3 under UV illumination. 0.1% Ga 2 O 3 -TiO 2 nanocomposite is considered the optimum photocatalyst, which degrades 98% of imazapyr herbicide within 180min. Also, the photodegradation rate of imazapyr using 0.1% Ga 2 O 3 -TiO 2 nanocomposite is nearly 10 and 3-fold higher than that of mesoporous Ga 2 O 3 and UV-100, respectively. The high photonic efficiency and long-term stability of the mesoporous Ga 2 O 3 -TiO 2 nanocomposites are ascribed to its stronger oxidative capability in comparison with either mesoporous TiO 2 , Ga 2 O 3 or commercial UV-100. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. [Effect of TiO2-SiO2-SnOx film with different firing temperatures on bond strength of low-fusing dental porcelain to pure titanium].

    PubMed

    Zhang, Zichuan; Zhang, Pei

    2015-07-01

    To evaluate the influence of TiO(2)-SiO(2)-SnOx nano-coatings with different firing temperatures on the bond strength of low-fusing dental porcelain to pure titanium. The surface of pure titanium was coated uniformly with TiO(2)-SiO(2)-SnOx nano-coatings by solution-gelatin (Sol-Gel) technology and then fired at 300 °C (group A) or 750 °C (group B) for 1 h. The specimens without any coatings were the control group (group C). There were 10 specimens in each group. Dental porcelain was sintered on the surface of titanium specimens. Surface roughness and contact angle of the coatings were also detected. The titanium-porcelain bond strength was investigated according to YY 0621-2008 standards using three-point flexure bond test. The phase composition of the TiO(2)-SiO(2)-SnOx nano-coatings was characterized by X-ray diffraction(XRD). The interface of titanium-porcelain and TiO(2)-SiO(2)-SnOx nano-coatings were observed using scanning electron microscope (SEM). No rutile phase was found in these specimens of group A and group B. The surface roughness of group A, B, C was (0.97 ± 0.06), (0.99 ± 0.03), (0.96 ± 0.07) µm, respectively. No significant difference was found among the three groups. Compared with that of group C (64.37° ± 3.01°), contact angles detected in group A (52.04° ± 3.15°) and group B (85.27° ± 4.17°) were significantly different (P < 0.05). The bond strength of titanium-porcelain in group A [(35.66 ± 2.65) MPa] was significantly increased compared with those in group B [(26.18 ± 2.22) MPa] and group C [(31.66 ± 3.52) MPa]. SEM photomicrographs of titanium-porcelain interface morphology of the specimens before porcelain sintering showed that TiO(2)-SiO(2)-SnOx nano-coatings in group A were compact and homogeneous with petty cracks and those in group B was loose and arranged disorderly. TiO(2)-SiO(2)-SnOx nano-coating fired at 300 °C is significantly effective in improving the titanium-porcelain bond strength.

  19. Long-term continuous corticosterone treatment decreases VEGF receptor-2 expression in frontal cortex.

    PubMed

    Howell, Kristy R; Kutiyanawalla, Ammar; Pillai, Anilkumar

    2011-01-01

    Stress and increased glucocorticoid levels are associated with many neuropsychiatric disorders including schizophrenia and depression. Recently, the role of vascular endothelial factor receptor-2 (VEGFR2/Flk1) signaling has been implicated in stress-mediated neuroplasticity. However, the mechanism of regulation of VEGF/Flk1 signaling under long-term continuous glucocorticoid exposure has not been elucidated. We examined the possible effects of long-term continuous glucocorticoid exposure on VEGF/Flk1 signaling in cultured cortical neurons in vitro, mouse frontal cortex in vivo, and in post mortem human prefrontal cortex of both control and schizophrenia subjects. We found that long-term continuous exposure to corticosterone (CORT, a natural glucocorticoid) reduced Flk1 protein levels both in vitro and in vivo. CORT treatment resulted in alterations in signaling molecules downstream to Flk1 such as PTEN, Akt and mTOR. We demonstrated that CORT-induced changes in Flk1 levels are mediated through glucocorticoid receptor (GR) and calcium. A significant reduction in Flk1-GR interaction was observed following CORT exposure. Interestingly, VEGF levels were increased in cortex, but decreased in serum following CORT treatment. Moreover, significant reductions in Flk1 and GR protein levels were found in postmortem prefrontal cortex samples from schizophrenia subjects. The alterations in VEGF/Flk1 signaling following long-term continuous CORT exposure represents a molecular mechanism of the neurobiological effects of chronic stress.

  20. Adaptations of the vestibular system to short and long-term exposures to altered gravity

    NASA Astrophysics Data System (ADS)

    Bruce, L. L.

    2003-10-01

    Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival of a given organism. The development and maintenance of vestibular connections are controlled by environmental gravitational stimulation as well as genetically controlled molecular interactions. This paper describes the effects of hypergravity on axonal growth and dendritic morphology, respectively. Two aspects of this vestibular adaptation are examined: (1) How does long-term exposure to hypergravity affect the development of vestibular axons? (2) How does short-term exposure to extremely rapid changes in gravity, such as those that occur during shuttle launch and landing, affect dendrites of the vestibulocerebellar system? To study the effects of longterm exposures to altered gravity, embryonic rats that developed in hypergravity were compared to microgravity-exposed and control rats. Examination of the vestibular projections from epithelia devoted to linear and angular acceleration revealed that the terminal fields segregate differently in rat embryos that gestated in each of the gravitational environments.To study the effects of short-term exposures to altered gravity, mice were exposed briefly to strong vestibular stimuli and the vestibulocerebellum was examined for any resulting morphological changes. My data show that these stimuli cause intense vestibular excitation of cerebellar Purkinje cells, which induce up-regulation of clathrin-mediated endocytosis and other morphological changes that are comparable to those seen in long-term depression. This system provides a basis for studying how the vestibular environment can modify cerebellar function, allowing animals to adapt to new environments.

  1. Improved conversion efficiency of dye sensitized solar cell using Zn doped TiO2-ZrO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Tomar, Laxmi J.; Bhatt, Piyush J.; Desai, Rahul K.; Chakrabarty, B. S.; Panchal, C. J.

    2016-05-01

    TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were prepared by hydrothermal method for dye sensitized solar cell (DSSC) application. The structural and optical properties were investigated by X -ray diffraction (XRD) and UV-Visible spectroscopy respectively. XRD results revealed the formation of material in nano size. The average crystallite size is 22.32 nm, 17.41 nm and 6.31 nm for TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites respectively. The optical bandgap varies from 2.04 eV to 3.75 eV. Dye sensitized solar cells were fabricated using the prepared material. Pomegranate juice was used as a sensitizer and graphite coated conducting glass plate was used as counter electrode. The I - V characteristics were recorded to measure photo response of DSSC. Photovoltaic parameter like open circuit voltage, power conversion efficiency, and fill factor were evaluated for fabricated solar cell. The power conversion efficiency of DSSC fabricated with TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were found 0.71%, 1.97% and 4.58% respectively.

  2. Long-Term PM2.5 Exposure and Respiratory, Cancer, and Cardiovascular Mortality in Older US Adults.

    PubMed

    Pun, Vivian C; Kazemiparkouhi, Fatemeh; Manjourides, Justin; Suh, Helen H

    2017-10-15

    The impact of chronic exposure to fine particulate matter (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM2.5)) on respiratory disease and lung cancer mortality is poorly understood. In a cohort of 18.9 million Medicare beneficiaries (4.2 million deaths) living across the conterminous United States between 2000 and 2008, we examined the association between chronic PM2.5 exposure and cause-specific mortality. We evaluated confounding through adjustment for neighborhood behavioral covariates and decomposition of PM2.5 into 2 spatiotemporal scales. We found significantly positive associations of 12-month moving average PM2.5 exposures (per 10-μg/m3 increase) with respiratory, chronic obstructive pulmonary disease, and pneumonia mortality, with risk ratios ranging from 1.10 to 1.24. We also found significant PM2.5-associated elevated risks for cardiovascular and lung cancer mortality. Risk ratios generally increased with longer moving averages; for example, an elevation in 60-month moving average PM2.5 exposures was linked to 1.33 times the lung cancer mortality risk (95% confidence interval: 1.24, 1.40), as compared with 1.13 (95% confidence interval: 1.11, 1.15) for 12-month moving average exposures. Observed associations were robust in multivariable models, although evidence of unmeasured confounding remained. In this large cohort of US elderly, we provide important new evidence that long-term PM2.5 exposure is significantly related to increased mortality from respiratory disease, lung cancer, and cardiovascular disease. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Physiological performance of the intertidal Manila clam (Ruditapes philippinarum) to long-term daily rhythms of air exposure

    PubMed Central

    Yin, Xuwang; Chen, Peng; Chen, Hai; Jin, Wen; Yan, Xiwu

    2017-01-01

    Intertidal organisms, especially the sessile species, often experience long-term periodic air exposure during their lives. Learning the biochemical and physiological responses of intertidal organisms to long-term periodic air exposure and the relationship to duration of air exposure provides insight into adaptation to this variably stressful environment. We studied the Manila clam, Ruditapes philippinarum, an important species in world aquaculture, as a model to evaluate survival, growth, lipid composition, oxygen consumption, oxidative damage, and antioxidant enzyme activity in relation to the duration of air exposure in a long-term (60 days) laboratory study of varying durations of periodic emersion and re-immersion. Our results show: (1) clams undergoing a longer period of air exposure had lower survival and growth compared to those given a shorter exposure, (2) levels of oxidative damage and activities of antioxidant enzymes were higher in all air exposure treatments, but did not increase with duration of air exposure, and (3) the content of docosahexaenoic acid increased with duration of air exposure. Our results can largely be interpreted in the context of the energy expenditure by the clams caused by aerobic metabolism during the daily cycle of emersion and re-immersion and the roles of docosahexaenoic acid against oxidative stress. PMID:28128354

  4. Historic air pollution exposure and long-term mortality risks in England and Wales: prospective longitudinal cohort study

    PubMed Central

    Hansell, Anna; Ghosh, Rebecca E; Blangiardo, Marta; Perkins, Chloe; Vienneau, Danielle; Goffe, Kayoung; Briggs, David; Gulliver, John

    2016-01-01

    Introduction Long-term air pollution exposure contributes to mortality but there are few studies examining effects of very long-term (>25 years) exposures. Methods This study investigated modelled air pollution concentrations at residence for 1971, 1981, 1991 (black smoke (BS) and SO2) and 2001 (PM10) in relation to mortality up to 2009 in 367 658 members of the longitudinal survey, a 1% sample of the English Census. Outcomes were all-cause (excluding accidents), cardiovascular (CV) and respiratory mortality. Results BS and SO2 exposures remained associated with mortality decades after exposure—BS exposure in 1971 was significantly associated with all-cause (OR 1.02 (95% CI 1.01 to 1.04)) and respiratory (OR 1.05 (95% CI 1.01 to 1.09)) mortality in 2002–2009 (ORs expressed per 10 μg/m3). Largest effect sizes were seen for more recent exposures and for respiratory disease. PM10 exposure in 2001 was associated with all outcomes in 2002–2009 with stronger associations for respiratory (OR 1.22 (95% CI 1.04 to 1.44)) than CV mortality (OR 1.12 (95% CI 1.01 to 1.25)). Adjusting PM10 for past BS and SO2 exposures in 1971, 1981 and 1991 reduced the all-cause OR to 1.16 (95% CI 1.07 to 1.26) while CV and respiratory associations lost significance, suggesting confounding by past air pollution exposure, but there was no evidence for effect modification. Limitations include limited information on confounding by smoking and exposure misclassification of historic exposures. Conclusions This large national study suggests that air pollution exposure has long-term effects on mortality that persist decades after exposure, and that historic air pollution exposures influence current estimates of associations between air pollution and mortality. PMID:26856365

  5. Hyperbranched TiO2-CdS nano-heterostructures for highly efficient photoelectrochemical photoanodes.

    PubMed

    Mezzetti, Alessandro; Balandeh, Mehrdad; Luo, Jingshan; Bellani, Sebastiano; Tacca, Alessandra; Divitini, Giorgio; Cheng, Chuanwei; Ducati, Caterina; Meda, Laura; Fan, Hongjin; Di Fonzo, Fabio

    2018-08-17

    Quasi-1D-hyperbranched TiO 2 nanostructures are grown via pulsed laser deposition and sensitized with thin layers of CdS to act as a highly efficient photoelectrochemical photoanode. The device properties are systematically investigated by optimizing the height of TiO 2 scaffold structure and thickness of the CdS sensitizing layer, achieving photocurrent values up to 6.6 mA cm -2 and reaching saturation with applied biases as low as 0.35 V RHE . The high internal conversion efficiency of these devices is to be found in the efficient charge generation and injection of the thin CdS photoactive film and in the enhanced charge transport properties of the hyperbranched TiO 2 scaffold. Hence, the proposed device represents a promising architecture for heterostructures capable of achieving high solar-to-hydrogen efficiency.

  6. Long-Term Exposure to Traffic-Related Air Pollution and Risk of Incident Atrial Fibrillation: A Cohort Study.

    PubMed

    Monrad, Maria; Sajadieh, Ahmad; Christensen, Jeppe Schultz; Ketzel, Matthias; Raaschou-Nielsen, Ole; Tjønneland, Anne; Overvad, Kim; Loft, Steffen; Sørensen, Mette

    2017-03-01

    Atrial fibrillation is the most common sustained arrhythmia and is associated with cardiovascular morbidity and mortality. The few studies conducted on short-term effects of air pollution on episodes of atrial fibrillation indicate a positive association, though not consistently. The aim of this study was to evaluate the long-term impact of traffic-related air pollution on incidence of atrial fibrillation in the general population. In the Danish Diet, Cancer, and Health cohort of 57,053 people 50-64 years old at enrollment in 1993-1997, we identified 2,700 cases of first-ever hospital admission for atrial fibrillation from enrollment to end of follow-up in 2011. For all cohort members, exposure to traffic-related air pollution assessed as nitrogen dioxide (NO 2 ) and nitrogen oxides (NO x ) was estimated at all present and past residential addresses from 1984 to 2011 using a validated dispersion model. We used Cox proportional hazard model to estimate associations between long-term residential exposure to NO 2 and NO x and risk of atrial fibrillation, after adjusting for lifestyle and socioeconomic position. A 10 μg/m 3 higher 10-year time-weighted mean exposure to NO 2 preceding diagnosis was associated with an 8% higher risk of atrial fibrillation [incidence rate ratio: 1.08; 95% confidence interval (CI): 1.01, 1.14] in adjusted analysis. Though weaker, similar results were obtained for long-term residential exposure to NO x . We found no clear tendencies regarding effect modification of the association between NO 2 and atrial fibrillation by sex, smoking, hypertension or myocardial infarction. We found long-term residential traffic-related air pollution to be associated with higher risk of atrial fibrillation. Accordingly, the present findings lend further support to the demand for abatement of air pollution. Citation: Monrad M, Sajadieh A, Christensen JS, Ketzel M, Raaschou-Nielsen O, Tjønneland A, Overvad K, Loft S, Sørensen M. 2017. Long-term exposure to

  7. Histopathological effects following short-term coexposure of Cyprinus carpio to nanoparticles of TiO2 and CuO.

    PubMed

    Mansouri, Borhan; Maleki, Afshin; Davari, Behroz; Johari, Seyed Ali; Shahmoradi, Behzad; Mohammadi, Ebrahim; Shahsavari, Siros

    2016-10-01

    The aim of this research was to investigate the coexposure of nanoparticles of titanium dioxide (TiO2) and copper oxide (CuO) on the alterations of the gill, intestine, kidney, and liver tissues of carps (Cyprinus carpio). In this study, carps (length 23 ± 1.5 cm; weight 13 ± 1.3 g) were divided into six groups of 15 each and exposed to 2.5 and 5.0 mg L(-1) of CuO nanoparticles (NPs), 10.0 mg L(-1) of TiO2 NPs, and 2.5 and 5.0 mg L(-1) of CuO NPs + 10.0 mg L(-1) of TiO2 NP mixture. Fish were sampled for histopathological studies after hematoxylin-eosin staining. Results indicated that the more kinds of histopathology anomalies observed with CuO NP and TiO2 NP mixture were broadly of the same type as CuO NPs and TiO2 NPs alone, but the severity or incidence of injuries of gill, intestine, liver, and kidney of carps in the mixture of CuO NPs + TiO2 NPs was higher than that of each NP alone. Moreover, behavioral changes in carps exposed to CuO NP and TiO2 NP mixture such as hyperactivity, loss of balance, and convulsions were higher than those to CuO NPs and TiO2 NPs alone. In conclusion, the presence of TiO2 NPs enhanced the effects of NPs of copper oxide in terms of histopathological changes in carps.

  8. MD Simulation on Collision Behavior Between Nano-Scale TiO₂ Particles During Vacuum Cold Spraying.

    PubMed

    Yao, Hai-Long; Yang, Guan-Jun; Li, Chang-Jiu

    2018-04-01

    Particle collision behavior influences significantly inter-nano particle bonding formation during the nano-ceramic coating deposition by vacuum cold spraying (or aerosol deposition method). In order to illuminate the collision behavior between nano-scale ceramic particles, molecular dynamic simulation was applied to explore impact process between nano-scale TiO2 particles through controlling impact velocities. Results show that the recoil efficiency of the nano-scale TiO2 particle is decreased with the increase of the impact velocity. Nano-scale TiO2 particle exhibits localized plastic deformation during collision at low velocities, while it is intensively deformed by collision at high velocities. This intensive deformation promotes the nano-particle adhesion rather than rebounding off. A relationship between the adhesion energy and the rebound energy is established for the bonding formation of the nano-scale TiO2 particle. The adhesion energy required to the bonding formation between nano-scale ceramic particles can be produced by high velocity collision.

  9. Long-term air pollution exposure and cardio- respiratory mortality: a review.

    PubMed

    Hoek, Gerard; Krishnan, Ranjini M; Beelen, Rob; Peters, Annette; Ostro, Bart; Brunekreef, Bert; Kaufman, Joel D

    2013-05-28

    Current day concentrations of ambient air pollution have been associated with a range of adverse health effects, particularly mortality and morbidity due to cardiovascular and respiratory diseases. In this review, we summarize the evidence from epidemiological studies on long-term exposure to fine and coarse particles, nitrogen dioxide (NO2) and elemental carbon on mortality from all-causes, cardiovascular disease and respiratory disease. We also summarize the findings on potentially susceptible subgroups across studies. We identified studies through a search in the databases Medline and Scopus and previous reviews until January 2013 and performed a meta-analysis if more than five studies were available for the same exposure metric.

  10. Study of TiO2 anatase nano and microstructures with dominant {001} facets for NO oxidation.

    PubMed

    Sofianou, Maria-Veronica; Trapalis, Christos; Psycharis, Vassils; Boukos, Nikos; Vaimakis, Tiverios; Yu, Jiaguo; Wang, Wenguang

    2012-11-01

    TiO(2) anatase nanoplates and hollow microspheres were fabricated by a solvothermal-hydrothermal method using titanium isopropoxide as a titanium precursor and hydrofluoric acid as a capping agent in order to enhance the formation of the {001} crystal facets of the anatase nanocrystals. These different morphological structures of TiO(2) anatase can be achieved by only changing the solvent, keeping the amount of the precursor and of the capping agent identical during the solvothermal-hydrothermal process. After calcination of the samples, the adsorbed fluoride atoms on the {001} crystal facets of the TiO(2) anatase nanocrystals were completely removed from their surface according to XPS analysis. The calcined TiO(2) anatase structures were higher crystallized and the specific surface area of the catalysts increased, enhancing their photocatalytic activity in comparison to the non-calcined TiO(2) anatase structures. All TiO(2) anatase samples with adsorbed as well as non-adsorbed fluoride atoms on their {001} crystal facets, exhibited a higher photonic efficiency than Degussa P25, which was used as a reference. The fluoride free TiO(2) anatase nanoplates exhibited the best photocatalytic activity in oxidizing the NO gas to NO(2) and NO(3) (-).

  11. Effects of P25 TiO2 Nanoparticles on the Free Radical-Scavenging Ability of Antioxidants upon Their Exposure to Simulated Sunlight.

    PubMed

    Li, Meng; Chong, Yu; Fu, Peter P; Xia, Qingsu; Croley, Timothy R; Lo, Y Martin; Yin, Jun-Jie

    2017-11-15

    Although nanosized ingredients, including TiO 2 nanoparticles (NPs), can be found in a wide range of consumer products, little is known about the effects these particles have on other active compounds in product matrices. These NPs can interact with reactive oxygen species (ROS), potentially disrupting or canceling the benefits expected from antioxidants. We used electron spin resonance spectrometry to assess changes in the antioxidant capacities of six dietary antioxidants (ascorbic acid, α-tocopherol, glutathione, cysteine, epicatechin, and epicatechin gallate) during exposure to P25 TiO 2 and/or simulated sunlight. Specifically, we determined the ability of these antioxidants to scavenge 1-diphenyl-2-picryl-hydrazyl radical, superoxide radical, and hydroxyl radical. Exposure to simulated sunlight alone did not lead to noticeable changes in radical-scavenging abilities; however, in combination with P25 TiO 2 NPs, the scavenging abilities of most antioxidants were weakened. We found glutathione to be the most resistant to treatment with sunlight and NPs among these six antioxidants.

  12. Long-term exposure to air pollution and the risk of suicide death: A population-based cohort study.

    PubMed

    Min, Jin-Young; Kim, Hye-Jin; Min, Kyoung-Bok

    2018-07-01

    Suicide is a major public health problem. Previous studies have reported a significant association between acute exposure to air pollution and suicide; little attention has been paid to the long-term effects of air pollution on risk of suicide. We investigated whether long-term exposure to particulate matter of ≤10μm in diameter (PM 10 ), nitrogen dioxide (NO 2 ), and sulfur dioxide (SO 2 ) would be associated with a greater risk of death by suicide. The study sample comprised 265,749 adults enrolled in the National Health Insurance Service-National Sample Cohort (2002-2013) in South Korea. Suicide death was defined as per ICD-10 code. Data on air pollution exposure used nationwide monitoring data, and individual exposure levels were assigned using geographic information systems. Air pollution exposure was categorized as the interquartile range (IQR) and quartiles. Hazards ratios (HRs) were calculated for the occurrence of suicide death after adjusting for potential covariates. During the study period, 564 (0.2%) subjects died from suicide. Increases in IQR pollutants (7.5μg/m 3 for PM 10 , 11.8ppb for NO 2 , and 0.8ppb for SO 2 ) significantly increased HR for suicide death [PM 10 : HR=3.09 (95% CI: 2.63-3.63); NO 2 : HR=1.33 (95% CI: 1.09-1.64); and SO 2 : HR=1.15 (95% CI: 1.07-1.24)]. Compared with the lowest level of air pollutants (Quartile 1), the risk of suicide significantly increased in the highest quartile level (Quartile 4) for PM 10 (HR=4.03; 95% CI: 2.97-5.47) and SO 2 (HR=1.65; 95% CI: 1.29-2.11) and in the third quartile for NO 2 (HR=1.52; 95% CI: 1.17-1.96). HRs for subjects with a physical or mental disorder were higher than that those for subjects without the disorder. Subjects living in metropolitan areas were more vulnerable to long-term PM 10 exposure than those living in non-metropolitan areas. Long-term exposure to air pollution was associated with a significantly increased risk of suicide death. People having underlying diseases or

  13. [Preparation and Photocatalytic Properties of Supported TiO2 Photocatalytic Material].

    PubMed

    Guo, Yu; Jin, Yu-jia; Wu, Hong-mei; Li, Dong-xin

    2015-06-01

    Titanium dioxide (TiO2) supported on spherical alumina substrate was prepared by using sol-gel method combined with dip-coating process. The surface morphology and structure of the synthesized samples were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) pattern. The results show that the morphology of the supported TiO2 composite material was obviously different from that of the original support. It reveals a layer formed by anatase TiO2 nanoparticles of 10-20 nm was deposited on the alumina substrate. Energy dispersive X-ray spectroscopy (EDX) analyses on the spherical alumina substrate and the resulting TiO2 composite catalyst were performed to determine the TiO2 loading content in the samples. It indicates that the TiO2 loading content on alumina substrate could be effectively increased by increasing the times of dip-coating alumina support in TiO2 sol. When dip-coating times increased to 5, the TiO2 loading content increased from 3.8 Wt. % to 15.7 Wt. %. In addition, the photocatalytic performances of the supported TiO2 materials prepared by different dip-coating times have been investigated by degrading methylene blue. It was found that the surface morphology of the supported TiO2 material was not only improved, but also the photocatalytic activity could be promoted significantly by increasing the dip-coating times. When the alumina substrate was dip-coated in TiO2 sol from 1 to 4 times, the degradation rate of methylene blue increased from 40% to 83.1%. However, after dip-coating the alumina support in TiO2 sol for 5 times, the degradation of methylene blue was only up to 85.6%. This indicates that the photocatalytic activity increased slowly when the TiO2 content in the supported catalyst was up to some extent. It is attributed to the continuous dip-coating resulted in less opportunities and weak intensity of illumination for the TiO2 nano-particles that under lower layer. The photocatalytic activity was relatively stable

  14. Photocatalytic bacterial inactivation by TiO2-coated surfaces

    PubMed Central

    2013-01-01

    The aim of this study was the evaluation of the photoactivated antibacterial activity of titanium dioxide (TiO2)-coated surfaces. Bacterial inactivation was evaluated using TiO2-coated Petri dishes. The experimental conditions optimized with Petri dishes were used to test the antibacterial effect of TiO2-coated ceramic tiles. The best antibacterial effect with Petri dishes was observed at 180, 60, 30 and 20 min of exposure for Escherichia coli, Staphylococcus aureus, Pseudomonas putida and Listeria innocua, respectively. The ceramic tiles demonstrated a photoactivated bactericidal effect at the same exposure time. In general, no differences were observed between the antibacterial effect obtained with Petri dishes and tiles. However, the photochemical activity of Petri dishes was greater than the activity of the tiles. Results obtained indicates that the TiO2-coated surfaces showed a photoactivated bactericidal effect with all bacteria tested highlighting that the titania could be used in the ceramic and building industry for the production of coated surfaces to be placed in microbiologically sensitive environments, such as the hospital and food industry. PMID:24090112

  15. Fungal community composition and function after long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3

    Treesearch

    Ivan P. Edwards; Donald R. Zak

    2011-01-01

    The long-term effects of rising atmospheric carbon dioxide (CO2) and tropospheric O3 concentrations on fungal communities in soil are not well understood. Here, we examine fungal community composition and the activities of cellobiohydrolase and N-acetylglucosaminidase (NAG) after 10 years of exposure to 1...

  16. Enhancement of photocatalytic degradation of furfural and acetophenone in water media using nano-TiO2-SiO2 deposited on cementitious materials.

    PubMed

    Soltan, Sahar; Jafari, Hoda; Afshar, Shahrara; Zabihi, Omid

    2016-10-01

    In the present study, silicon dioxide (SiO 2 ) nanoparticles were loaded to titanium dioxide (TiO 2 ) nano-particles by sol-gel method to make a high porosity photocatalyst nano-hybrid. These photocatalysts were synthesized using titanium tetrachloride and tetraethyl orthosilicate as titanium and silicon sources, respectively, and characterized by X-ray powder diffraction (XRD) and scanning electron microscope methods. Subsequently, the optimizations of the component and operation conditions were investigated. Then, nano-sized TiO 2 and TiO 2 -SiO 2 were supported on concrete bricks by the dip coating process. The photocatalytic activity of nano photocatalysts under UV irradiation was examined by studying the decomposition of aqueous solutions of furfural and acetophenone (10 mg/L) as model of organic pollutants to CO 2 and H 2 O at room temperature. A decrease in the concentration of these pollutants was assayed by using UV-visible absorption, gas chromatography technique, and chemical oxygen demand. The removal of these pollutants from water using the concrete-supported photocatalysts under UV irradiation was performed with a greater efficiency, which does not require an additional separation stage to recover the catalyst. Therefore, it would be applicable to use in industrial wastewater treatment at room temperature and atmospheric pressure within the optimized pH range.

  17. Multi-Layered TiO2 Films towards Enhancement of Escherichia coli Inactivation

    PubMed Central

    Yoriya, Sorachon; Chumphu, Angkana; Pookmanee, Pusit; Laithong, Wreerat; Thepa, Sirichai; Songprakorp, Roongrojana

    2016-01-01

    Crystalline TiO2 has shown its great photocatalytic properties in bacterial inactivation. This work presents a design fabrication of low-cost, layered TiO2 films assembled reactors and a study of their performance for a better understanding to elucidate the photocatalytic effect on inactivation of E. coli in water. The ability to reduce the number of bacteria in water samples for the layered TiO2 composing reactors has been investigated as a function of time, while varying the parameters of light sources, initial concentration of bacteria, and ratios of TiO2 film area and volume of water. Herein, the layered TiO2 films have been fabricated on the glass plates by thermal spray coating prior to screen printing, allowing a good adhesion of the films. Surface topology and crystallographic phase of TiO2 for the screen-printed active layer have been characterized, resulting in the ratio of anatase:rutile being 80:20. Under exposure to sunlight and a given condition employed in this study, the optimized film area:water volume of 1:2.62 has shown a significant ability to reduce the E. coli cells in water samples. The ratio of surface area of photocatalytic active base to volume of water medium is believed to play a predominant role facilitating the cells inactivation. The kinetic rate of inactivation and its behavior are also described in terms of adsorption of reaction species at different contact times. PMID:28773930

  18. Low doses of TiO2-polyethylene glycol nanoparticles stimulate proliferation of hepatocyte cells

    NASA Astrophysics Data System (ADS)

    Sun, Qingqing; Kanehira, Koki; Taniguchi, Akiyoshi

    2016-01-01

    This paper describes the effect of low concentrations of 100 nm polyethylene glycol-modified TiO2 nanoparticles (TiO2-PEG NPs) on HepG2 hepatocellular carcinoma cells. Proliferation of HepG2 cells increased significantly when the cells were exposed to low doses (<100 μg ml-1) of TiO2-PEG NPs. These results were further confirmed by cell counting experiments and cell cycle assays. Cellular uptake assays were performed to determine why HepG2 cells proliferate with low-dose exposure to TiO2-PEG NPs. The results showed that exposure to lower doses of NPs led to less cellular uptake, which in turn decreased cytotoxicity. We therefore hypothesized that TiO2-PEG NPs could affect the activity of hepatocyte growth factor receptors (HGFRs), which bind to hepatocyte growth factor and stimulate cell proliferation. The localization of HGFRs on the surface of the cell membrane was detected via immunofluorescence staining and confocal microscopy. The results showed that HGFRs aggregate after exposure to TiO2-PEG NPs. In conclusion, our results indicate that TiO2-PEG NPs have the potential to promote proliferation of HepG2 cells through HGFR aggregation and suggest that NPs not only exhibit cytotoxicity but also affect cellular responses.

  19. Bacterial bioluminescence response to long-term exposure to reverse osmosis treated effluents from dye industries.

    PubMed

    Ravindran, J; Manikandan, B; Shirodkar, P V; Francis, K X; Mani Murali, R; Vethamony, P

    2014-10-01

    The bacterial bioluminescence assay is one of the novel means for toxicity detection. The bioluminescence response of 2 marine bioluminescent bacteria was tested upon their long-term exposure to 9 different reverse osmosis (RO) rejects with varying chemical composition sampled from various dye industries. Bioluminescent bacteria were cultured in the RO reject samples, at different concentrations, and their growth rate and luminescence was measured for 24 h. The RO reject samples caused sublethal effects upon exposure and retarded the growth of bacteria, confirming their toxic nature. Further, continuation of the exposure showed that the initial luminescence, though reduced, recovered and increased beyond the control cultures irrespective of cell density, and finally decreased once again. The present study emphasizes the need of evolving a long-term exposure assay and shows that the method followed in this study is suitable to evaluate the toxicants that exert delayed toxicity, using lower concentrations of toxicants as well as coloured samples.

  20. Synergistic Effects of Nano-Sized Titanium Dioxide and Zinc on the Photosynthetic Capacity and Survival of Anabaena sp.

    PubMed Central

    Tang, Yulin; Li, Shuyan; Qiao, Junlian; Wang, Hongtao; Li, Lei

    2013-01-01

    Anabaena sp. was used to examine the toxicity of exposure to a nano-TiO2 suspension, Zn2+ solution, and mixtures of nano-TiO2 and Zn2+ suspensions. Typical chlorophyll fluorescence parameters, including effective quantum yield, photosynthetic efficiency and maximal electron transport rate, were measured by a pulse-amplitude modulated fluorometer. Nano-TiO2 particles exhibited no significant toxicity at concentrations lower than 10.0 mg/L. The 96 h concentration for the 50% maximal effect (EC50) of Zn2+ alone to Anabaena sp. was 0.38 ± 0.004 mg/L. The presence of nano-TiO2 at low concentrations (<1.0 mg/L) significantly enhanced the toxicity of Zn2+ and consequently reduced the EC50 value to 0.29 ± 0.003 mg/L. However, the toxicity of the Zn2+/TiO2 system decreased with increasing nano-TiO2 concentration because of the substantial adsorption of Zn2+ by nano-TiO2. The toxicity curve of the Zn2+/TiO2 system as a function of incremental nano-TiO2 concentrations was parabolic. The toxicity significantly increased at the initial stage, reached its maximum, and then decreased with increasing nano-TiO2 concentration. Hydrodynamic sizes, concentration of nano-TiO2 and Zn2+ loaded nano-TiO2 were the main parameters for synergistic toxicity. PMID:23852017

  1. Characterization and Comparison of Photocatalytic Activity Silver Ion doped on TiO2(TiO2/Ag+) and Silver Ion doped on Black TiO2(Black TiO2/Ag+)

    NASA Astrophysics Data System (ADS)

    Kim, Jin Yi; Sim, Ho Hyung; Song, Sinae; Noh, Yeoung Ah; Lee, Hong Woon; Taik Kim, Hee

    2018-03-01

    Titanium dioxide (TiO2) is one of the representative ceramic materials containing photocatalyst, optic and antibacterial activity. The hydroxyl radical in TiO2 applies to the intensive oxidizing agent, hence TiO2 is suitable to use photocatalytic materials. Black TiO2was prepared through reduction of amorphous TiO2 conducting under H2 which leads to color changes. Its black color is proven that absorbs 100% light across the whole-visible light, drawing enhancement of photocatalytic property. In this study, we aimed to compare the photocatalytic activity of silver ion doped on TiO2(TiO2/Ag+) and silver ion doped on black TiO2(black TiO2/Ag+) under visible light range. TiO2/Ag+ was fabricated following steps. 1) TiO2 was synthesized by a sol-gel method from Titanium tetraisopropoxide (TTIP). 2) Then AgNO3 was added during an aging process step for silver ion doping on the surface of TiO2. Moreover, Black TiO2/Ag+ was obtained same as TiO2/Ag+ except for calcination under H2. The samples were characterized X-ray diffraction (XRD), UV-visible reflectance (UV-vis DRS), and Methylene Blue degradation test. XRD analysis confirmed morphology of TiO2. The band gap of black TiO2/Ag+ was confirmed (2.6 eV) through UV-vis DRS, which was lower than TiO2/Ag+ (2.9 eV). The photocatalytic effect was conducted by methylene blue degradation test. It demonstrated that black TiO2/Ag+ had a photocatalytic effect under UV light also visible light.

  2. Band edge engineering of TiO2@DNA nanohybrids and implications for capacitive energy storage devices

    NASA Astrophysics Data System (ADS)

    Imani, Roghayeh; Pazoki, Meysam; Tiwari, Ashutosh; Boschloo, G.; Turner, Anthony P. F.; Kralj-Iglič, V.; Iglič, Aleš

    2015-06-01

    Novel mesoporous TiO2@DNA nanohybrid electrodes, combining covalently encoded DNA with mesoporous TiO2 microbeads using dopamine as a linker, were prepared and characterised for application in supercapacitors. Detailed information about donor density, charge transfer resistance and chemical capacitance, which have an important role in the performance of an electrochemical device, were studied by electrochemical methods. The results indicated the improvement of electrochemical performance of the TiO2 nanohybrid electrode by DNA surface functionalisation. A supercapacitor was constructed from TiO2@DNA nanohybrids with PBS as the electrolyte. From the supercapacitor experiment, it was found that the addition of DNA played an important role in improving the specific capacitance (Cs) of the TiO2 supercapacitor. The highest Cs value of 8 F g-1 was observed for TiO2@DNA nanohybrids. The nanohybrid electrodes were shown to be stable over long-term cycling, retaining 95% of their initial specific capacitance after 1500 cycles.Novel mesoporous TiO2@DNA nanohybrid electrodes, combining covalently encoded DNA with mesoporous TiO2 microbeads using dopamine as a linker, were prepared and characterised for application in supercapacitors. Detailed information about donor density, charge transfer resistance and chemical capacitance, which have an important role in the performance of an electrochemical device, were studied by electrochemical methods. The results indicated the improvement of electrochemical performance of the TiO2 nanohybrid electrode by DNA surface functionalisation. A supercapacitor was constructed from TiO2@DNA nanohybrids with PBS as the electrolyte. From the supercapacitor experiment, it was found that the addition of DNA played an important role in improving the specific capacitance (Cs) of the TiO2 supercapacitor. The highest Cs value of 8 F g-1 was observed for TiO2@DNA nanohybrids. The nanohybrid electrodes were shown to be stable over long-term cycling

  3. Hybrid micro/nano-topography of a TiO2 nanotube-coated commercial zirconia femoral knee implant promotes bone cell adhesion in vitro.

    PubMed

    Frandsen, Christine J; Noh, Kunbae; Brammer, Karla S; Johnston, Gary; Jin, Sungho

    2013-07-01

    Various approaches have been studied to engineer the implant surface to enhance bone in-growth properties, particularly using micro- and nano-topography. In this study, the behavior of osteoblast (bone) cells was analyzed in response to a titanium oxide (TiO2) nanotube-coated commercial zirconia femoral knee implant consisting of a combined surface structure of a micro-roughened surface with the nanotube coating. The osteoblast cells demonstrated high degrees of adhesion and integration into the surface of the nanotube-coated implant material, indicating preferential cell behavior on this surface when compared to the bare implant. The results of this brief study provide sufficient evidence to encourage future studies. The development of such hierarchical micro- and nano-topographical features, as demonstrated in this work, can provide insightful designs for advanced bone-inducing material coatings on ceramic orthopedic implant surfaces. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Toxicogenomics analysis of mouse lung responses following exposure to titanium dioxide nanomaterials reveal their disease potential at high doses

    PubMed Central

    Rahman, Luna; Wu, Dongmei; Johnston, Michael; William, Andrew; Halappanavar, Sabina

    2017-01-01

    Titanium dioxide nanoparticles (TiO2NPs) induce lung inflammation in experimental animals. In this study, we conducted a comprehensive toxicogenomic analysis of lung responses in mice exposed to six individual TiO2NPs exhibiting different sizes (8, 20 and 300nm), crystalline structure (anatase, rutile or anatase/rutile) and surface modifications (hydrophobic or hydrophilic) to investigate whether the mechanisms leading to TiO2NP-induced lung inflammation are property specific. A detailed histopathological analysis was conducted to investigate the long-term disease implications of acute exposure to TiO2NPs. C57BL/6 mice were exposed to 18, 54, 162 or 486 µg of TiO2NPs/mouse via single intratracheal instillation. Controls were exposed to dispersion medium only. Bronchoalveolar lavage fluid (BALF) and lung tissue were sampled on 1, 28 and 90 days post-exposure. Although all TiO2NPs induced lung inflammation as measured by the neutrophil influx in BALF, rutile-type TiO2NPs induced higher inflammation with the hydrophilic rutile TiO2NP showing the maximum increase. Accordingly, the rutile TiO2NPs induced higher number of differentially expressed genes. Histopathological analysis of lung sections on Day 90 post-exposure showed increased collagen staining and fibrosis-like changes following exposure to the rutile TiO2NPs at the highest dose tested. Among the anatase, the smallest TiO2NP of 8nm showed the maximum response. The anatase TiO2NP of 300nm was the least responsive of all. The results suggest that the severity of lung inflammation is property specific; however, the underlying mechanisms (genes and pathways perturbed) leading to inflammation were the same for all particle types. While the particle size clearly influenced the overall acute lung responses, a combination of small size, crystalline structure and hydrophilic surface contributed to the long-term pathological effects observed at the highest dose (486 µg/mouse). Although the dose at which the

  5. Selection of a novel peptide aptamer with high affinity for TiO2-nanoparticle through a direct electroporation with TiO2-binding phage complexes.

    PubMed

    Inoue, Ippei; Ishikawa, Yasuaki; Uraoka, Yukiharu; Yamashita, Ichiro; Yasueda, Hisashi

    2016-11-01

    We have developed an easy and rapid screening method of peptide aptamers with high affinity for a target material TiO 2 using M13 phage-display and panning procedure. In a selection step, the phage-substrate complexes and Escherichia coli cells were directly applied by electric pulse for electroporation, without separating the objective phages from the TiO 2 nanoparticles. Using this simple and rapid method, we obtained a novel peptide aptamer (named ST-1 with the sequence AYPQKFNNNFMS) with highly strong binding activity for TiO 2 . A cage-shaped protein fused with both ST-1 and an available carbon nanotube-affinity peptide was designed and produced in E. coli. The multi-functional supraprotein could efficiently mineralize a titanium-compound around the surface of single-wall carbon nanotubes (SWNTs), indicating that the ST-1 is valuable in the fabrication of nano-composite materials with titanium-compounds. The structural analysis of ST-1 variants indicated the importance of the N-terminal region (as a motif of AXPQKX 6 S) of the aptamer in the TiO 2 -binding activity. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Long-term exposure to air pollution is associated with survival following acute coronary syndrome

    PubMed Central

    Tonne, Cathryn; Wilkinson, Paul

    2013-01-01

    Aims The aim of this study was to determine (i) whether long-term exposure to air pollution was associated with all-cause mortality using the Myocardial Ischaemia National Audit Project (MINAP) data for England and Wales, and (ii) the extent to which exposure to air pollution contributed to socioeconomic inequalities in prognosis. Methods and results Records of patients admitted to hospital with acute coronary syndrome (ACS) in MINAP collected under the National Institute for Cardiovascular Outcomes Research were linked to modelled annual average air pollution concentrations for 2004–10. Hazard ratios for mortality starting 28 days after admission were estimated using Cox proportional hazards models. Among the 154 204 patients included in the cohort, the average follow-up was 3.7 years and there were 39 863 deaths. Mortality rates were higher for individuals exposed to higher levels of particles with a diameter of ≤2.5 µm (PM2.5; PM, particulate matter): the fully adjusted hazard ratio for a 10 µg/m3 increase in PM2.5 was 1.20 (95% CI 1.04–1.38). No associations were observed for larger particles or oxides of nitrogen. Air pollution explained socioeconomic inequalities in survival to only a small extent. Conclusion Mortality from all causes was higher among individuals with greater exposure to PM2.5 in survivors of hospital admission for ACS in England and Wales. Despite higher exposure to PM2.5 among those from more deprived areas, such exposure was a minor contribution to the socioeconomic inequalities in prognosis following ACS. Our findings add to the evidence of mortality associated with long-term exposure to fine particles. PMID:23423735

  7. Enhancing antimicrobial activity of TiO2/Ti by torularhodin bioinspired surface modification.

    PubMed

    Ungureanu, Camelia; Dumitriu, Cristina; Popescu, Simona; Enculescu, Monica; Tofan, Vlad; Popescu, Marian; Pirvu, Cristian

    2016-02-01

    Implant-associated infections are a major cause of morbidity and mortality. This study was performed using titanium samples coated by anodization with a titanium dioxide (TiO2) shielded nanotube layer. TiO2/Ti surface was modified by simple immersion in torularhodin solution and by using a mussel-inspired method based on polydopamine as bio adhesive for torularhodin immobilization. SEM analysis revealed tubular microstructures of torularhodin and the PDA ability to function as a catchy anchor between torularhodin and TiO2 surface. Corrosion resistance was associated with TiO2 barrier oxide layer and nano-organized oxide layer and the torularhodin surface modification does not bring significant changes in resistance of the oxide layer. Our results demonstrated that the torularhodin modified TiO2/Ti surface could effectively prevent adhesion and proliferation of Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, and Pseudomonas aeruginosa. The new modified titanium surface showed good biocompatibility and well-behaved haemocompatibility. This biomaterial with enhanced antimicrobial activity holds great potential for future biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Exchange of TiO2 nanoparticles between streams and streambeds.

    PubMed

    Boncagni, Natalia Ticiana; Otaegui, Justo Manuel; Warner, Evelyn; Curran, Trisha; Ren, Jianhong; de Cortalezzi, Maria Marta Fidalgo

    2009-10-15

    The expanding use of manufactured nanoparticles has increased the potential for their release into the natural environment. Particularly, TiO2 nanoparticles pose significant exposure risk to humans and other living species due to their extensive use in a wide range of fields. To better understand the environmental and health risks associated with the release of TiO2 nanoparticles, knowledge on their fate and transport is needed. This study evaluates the transport of two different TiO2 nanoparticles: one commercially available (P25 TiO2 and the other synthesized at a lab scale (synthesized TiO2). Laboratory flume, column, and batch experiments were conducted to investigate the processes dominating the transport of TiO2 nanoparticles between streams and streambeds and to characterize the properties of these nanoparticles under different physicochemical conditions. Results show that the synthesized TiO2 was more stable compared to the P25 TiO2, which underwent significant aggregation under the same experimental conditions. As a result, P25 TiO2 deposited at a faster rate than the synthesized TiO2 in the streambed. Both types of TiO2 nanoparticles deposited in the streambed were easily released when the stream velocity was increased. The aggregation and deposition of P25 TiO2 were highly dependent on pH. A process-based colloid exchange model was applied to interpret the observed transport behavior of the TiO2 nanoparticles.

  9. Long-Term Exposure to Ambient Air Pollution and Subclinical Cerebrovascular Disease in NOMAS (the Northern Manhattan Study).

    PubMed

    Kulick, Erin R; Wellenius, Gregory A; Kaufman, Joel D; DeRosa, Janet T; Kinney, Patrick L; Cheung, Ying Kuen; Wright, Clinton B; Sacco, Ralph L; Elkind, Mitchell S

    2017-07-01

    Long-term exposure to ambient air pollution is associated with higher risk of cardiovascular disease and stroke. We hypothesized that long-term exposure to air pollution would be associated with magnetic resonance imaging markers of subclinical cerebrovascular disease. Participants were 1075 stroke-free individuals aged ≥50 years drawn from the magnetic resonance imaging subcohort of the Northern Manhattan Study who had lived at the same residence for at least 2 years before magnetic resonance imaging. Cross-sectional associations between ambient air pollution and subclinical cerebrovascular disease were analyzed. We found an association between distance to roadway, a proxy for residential exposure to traffic pollution, and white matter hyperintensity volume; however, after adjusting for risk factors, this relationship was no longer present. All other associations between pollutant measures and white matter hyperintensity volume were null. There was no clear association between exposure to air pollutants and subclinical brain infarcts or total cerebral brain volume. We found no evidence that long-term exposure to ambient air pollution is independently associated with subclinical cerebrovascular disease in an urban population-based cohort. © 2017 American Heart Association, Inc.

  10. Long term neurocognitive impact of low dose prenatal methylmercury exposure in Hong Kong.

    PubMed

    Lam, Hugh Simon; Kwok, Ka Ming; Chan, Peggy Hiu Ying; So, Hung Kwan; Li, Albert Martin; Ng, Pak Cheung; Fok, Tai Fai

    2013-04-01

    International studies suggest that low dose prenatal methylmercury exposure (>29 nmol/L) has long-term adverse neurocognitive effects. There is evidence that the majority of children in Hong Kong exceed this level as a result of high fish consumption of mothers during pregnancy. To study whether there are any associations between low-dose prenatal methylmercury exposure and neurocognitive outcomes in Hong Kong children. All 1057 children from the original birth cohort were eligible for entry into the study, except children with conditions that would affect neurocognitive development, but were unrelated to methylmercury exposure. Subjects were assessed by a wide panel of tests covering a broad range of neurocognitive functions: Hong Kong Wechsler Intelligence Scale for Children (HK-WISC), Hong Kong List Learning Test (HKLLT), Tests of Everyday Attention for Children (TEACH), Boston Naming Test, and Grooved Pegboard Test. 608 subjects were recruited (median age 8.2 years, IQR 7.3, 8.8; 53.9% boys). After correction by confounders including child age and sex, multivariate analysis showed that cord blood mercury concentration was significantly associated with three subtests: Picture Arrangement of HK-WISC (coefficient -0.944, P=0.049) and Short and Long Delay Recall Difference of the HKLLT (coefficient -1.087, P=0.007 and coefficient -1.161, P=0.005, respectively), i.e., performance worsened with increasing prenatal methylmercury exposure in these subtests. Small, but statistically significant adverse associations between prenatal methylmercury exposure and long-term neurocognitive effects (a visual sequencing task and retention ability of verbal memory) were found in our study. These effects are compatible with findings of studies with higher prenatal methylmercury exposure levels and suggest that safe strategies to further reduce exposure levels in Hong Kong are desirable. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Thin film nano-photocatalyts with low band gap energy for gas phase degradation of p-xylene: TiO2 doped Cr, UiO66-NH2 and LaBO3 (B  =  Fe, Mn, and Co)

    NASA Astrophysics Data System (ADS)

    Loc Luu, Cam; Thuy Van Nguyen, Thi; Nguyen, Tri; Nguyen, Phung Anh; Hoang, Tien Cuong; Ha, Cam Anh

    2018-03-01

    By dip-coating technique the thin films of nano-photocatalysts TiO2, Cr-doped TiO2, LaBO3 perovskites (B  =  Fe, Mn, and Co) prepared by sol-gel method, and UiO66-NH2 prepared by a solvothermal were obtained and employed for gas phase degradation of p-xylene. Physicochemical characteristics of the catalysts were examined by the methods of BET, SEM, TEM, XRD, FT-IR, TGA, Raman and UV-vis spectroscopies. The thickness of film was determined by a Veeco-American Dektek 6M instrument. The activity of catalysts was evaluated in deep photooxidation of p-xylene in a microflow reactor at room temperature with the radiation sources of a UV (λ  =  365 nm) and LED lamps (λ  =  400-510 nm). The obtained results showed that TiO2 and TiO2 doped Cr thin films was featured by an anatase phase with nanoparticles of 10-100 nm. Doping TiO2 with 0.1%mol Cr2O3 led to reduce band gap energy from 3.01 down to 1.99 eV and extend the spectrum of photon absorption to the visible region (λ  =  622 nm). LaBO3 perovkite thin films were also featured by a crystal phase with average particle nanosize of 8-40 nm, a BET surface area of 17.6-32.7 m2 g-1 and band gap energy of 1.87-2.20 eV. UiO66-NH2 was obtained in the ball shape of 100-200 nm, a BET surface area of 576 m2 g-1 and a band gap energy of 2.83 eV. The low band gap energy nano-photocatalysts based on Cr-doped TiO2 and LaBO3 perovskites exhibited highly stable and active for photo-degradation of p-xylene in the gas phase under radiation of UV-vis light. Perovskite LaFeO3 and Cr-TiO2 thin films were the best photocatalysts with a decomposition yield being reached up to 1.70 g p-xylene/g cat.

  12. Historic air pollution exposure and long-term mortality risks in England and Wales: prospective longitudinal cohort study.

    PubMed

    Hansell, Anna; Ghosh, Rebecca E; Blangiardo, Marta; Perkins, Chloe; Vienneau, Danielle; Goffe, Kayoung; Briggs, David; Gulliver, John

    2016-04-01

    Long-term air pollution exposure contributes to mortality but there are few studies examining effects of very long-term (>25 years) exposures. This study investigated modelled air pollution concentrations at residence for 1971, 1981, 1991 (black smoke (BS) and SO2) and 2001 (PM10) in relation to mortality up to 2009 in 367,658 members of the longitudinal survey, a 1% sample of the English Census. Outcomes were all-cause (excluding accidents), cardiovascular (CV) and respiratory mortality. BS and SO2 exposures remained associated with mortality decades after exposure-BS exposure in 1971 was significantly associated with all-cause (OR 1.02 (95% CI 1.01 to 1.04)) and respiratory (OR 1.05 (95% CI 1.01 to 1.09)) mortality in 2002-2009 (ORs expressed per 10 μg/m(3)). Largest effect sizes were seen for more recent exposures and for respiratory disease. PM10 exposure in 2001 was associated with all outcomes in 2002-2009 with stronger associations for respiratory (OR 1.22 (95% CI 1.04 to 1.44)) than CV mortality (OR 1.12 (95% CI 1.01 to 1.25)). Adjusting PM10 for past BS and SO2 exposures in 1971, 1981 and 1991 reduced the all-cause OR to 1.16 (95% CI 1.07 to 1.26) while CV and respiratory associations lost significance, suggesting confounding by past air pollution exposure, but there was no evidence for effect modification. Limitations include limited information on confounding by smoking and exposure misclassification of historic exposures. This large national study suggests that air pollution exposure has long-term effects on mortality that persist decades after exposure, and that historic air pollution exposures influence current estimates of associations between air pollution and mortality. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Prostaglandin E2 enhances long-term repopulation but does not permanently alter inherent stem cell competitiveness.

    PubMed

    Hoggatt, Jonathan; Mohammad, Khalid S; Singh, Pratibha; Pelus, Louis M

    2013-10-24

    Hematopoietic stem cell (HSC) transplantation is a lifesaving therapy for malignant and nonmalignant hematologic diseases and metabolic disorders. Although successful, hematopoietic transplantation can be hindered by inadequate stem cell number or poor engrafting efficiency. To overcome these deficits, we and others have previously reported the HSC-enhancing ability of a short-term exposure of prostaglandin E2 (PGE2); this strategy has now progressed to phase 1 clinical trials in double cord blood transplantation. To further analyze the short- and long-term effects of HSC exposure to PGE2, we followed the repopulation kinetics of PGE2-treated hematopoietic grafts through 5 serial transplantations and compared inherent long-term competitiveness in a HSC head-to-head secondary transplantation model. Treatment with PGE2 did not result in a long-term increase in HSC competitiveness, lineage bias, or enhanced proliferative potential, demonstrating that pulse exposure to PGE2 results in transient increases in HSC homing and engraftment potential.

  14. Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers.

    PubMed

    Wang, Bin; Zhang, Hongchao; Qin, Yuan; Wang, Xi; Ni, Xiaowu; Shen, Zhonghua; Lu, Jian

    2011-07-10

    To study the differences between the damaging of thin film components induced by long-pulse and short-pulse lasers, a model of single layer TiO(2) film components with platinum high-absorptance inclusions was established. The temperature rises of TiO(2) films with inclusions of different sizes and different depths induced by a 1 ms long-pulse and a 10 ns short-pulse lasers were analyzed based on temperature field theory. The results show that there is a radius range of inclusions that corresponds to high temperature rises. Short-pulse lasers are more sensitive to high-absorptance inclusions and long-pulse lasers are more easily damage the substrate. The first-damage decision method is drawn from calculations. © 2011 Optical Society of America

  15. Tribological Properties of TiO2/SiO2 Double Layer Coatings Deposited on CP-Ti

    NASA Astrophysics Data System (ADS)

    Çomakli, O.; Yazici, M.; Yetim, T.; Yetim, A. F.; Çelik, A.

    In the present paper, the influences of different double layer on wear and scratch performances of commercially pure Titanium (CP-Ti) were investigated. TiO2/SiO2 and SiO2/TiO2 double layer coatings were deposited on CP-Ti by sol-gel dip coating process and calcined at 750∘C. The phase structure, cross-sectional morphology, composition, wear track morphologies, adhesion properties, hardness and roughness of uncoated and coated samples were characterized with X-ray diffraction, scanning electron microscopy (SEM), nano-indentation technique, scratch tester and 3D profilometer. Also, the tribological performances of all samples were investigated by a pin-on-disc tribo-tester against Al2O3 ball. Results showed that hardness, elastic modulus and adhesion resistance of double layer coated samples were higher than untreated CP-Ti. It was found that these properties of TiO2/SiO2 double layer coatings have higher than SiO2/TiO2 double layer coating. Additionally, the lowest friction coefficient and wear rates were obtained from TiO2/SiO2 double layer coatings. Therefore, it was seen that phase structure, hardness and film adhesion are important factors on the tribological properties of double layer coatings.

  16. Enhanced bio-concentration of tris(1,3-dichloro-2-propyl) phosphate in the presence of nano-TiO2 can lead to adverse reproductive outcomes in zebrafish.

    PubMed

    Ren, Xin; Zhao, Xuesong; Duan, Xiaoyue; Fang, Ziwei

    2018-02-01

    Interactions between organic toxicants and nano-particles in the aquatic environment may modify toxicant bioavailability and consequently the toxicant's fate and toxicity. To evaluate the potential impact of nano-titanium dioxide (TiO 2 ) on the bio-concentration and reproductive endocrine disruption of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) in fish, a comparative bioaccumulation study was conducted on zebrafish (Danio rerio, AB strain) treated with 0, 5.74, 23.6, or 90.7 μg L -1 TDCIPP alone or co-exposed to TDCIPP and 0.09 mg L -1 nano-TiO 2 for 21 days. Nano-TiO 2 can absorb TDCIPP and nano-TiO 2 is taken up into zebrafish. Chemical measurements showed that TDCIPP was bio-concentrated in zebrafish, and the highest level was detected in the liver, followed by the brain and gonads. Compared with TDCIPP treatment, increased tissue burdens of both TDCIPP were observed in the liver, brain, and gonads suggesting that nano-TiO 2 adsorbed TDCIPP and acted as a carrier facilitating the uptake and translocation of TDCIPP in tissues. Higher bio-concentration in the presence of nano-TiO 2 resulted in a significant decrease in the hepatic-somatic index, gonad-somatic index and brain-somatic index in F0 females but not F0 males. Moreover, a further gender-dependent reduction in testosterone (T), estradiol (E2), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), and induction of plasma vitellogenin (VTG) concentrations in adults were observed following co-exposure. Co-exposure also inhibited egg production and caused significant developmental toxicity in F1 larvae. The results obtained using this multi-marker approach suggested that nano-TiO 2 is a carrier of TDCIPP and accelerated its bio-concentration in adult zebrafish, resulting in adverse reproduction outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Long-term exposure to ambient air pollution and mortality in a Chinese tuberculosis cohort.

    PubMed

    Peng, Zhuoxin; Liu, Cong; Xu, Biao; Kan, Haidong; Wang, Weibing

    2017-02-15

    Evidence for the relationship between exposure to ambient air pollution and the mortality of tuberculosis (TB) patients is limited. We analyzed the association between long-term exposure to particulate matter <2.5μm in diameter (PM 2.5 ) and cause-specific mortality in a Chinese TB patients cohort from 2003 to 2013. Data from the Global Burden of Disease 2013 estimate were used to assess yearly average concentrations of PM 2.5 and ozone at the household addresses of participants. Cox regression was used to calculate adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) for cause-specific mortality, controlling for demographic and other TB-related factors. There were 4444 eligible subjects, including 891 deaths, over a median follow-up of 2464days. Per an interquartile range increase (2.06μg/m 3 ), multivariable analysis indicated that exposure to PM 2.5 was significantly associated with overall mortality (aHR=1.30, 95% CI: 1.19, 1.42), mortality from TB (aHR=1.46, 95% CI: 1.15, 1.85), respiratory cancers (aHR=1.72, 95% CI: 1.36, 2.19), other respiratory diseases (aHR=1.19, 95% CI: 1.02, 1.38), and other cancers (aHR=1.76, 95% CI: 1.33, 2.32). Long-term exposure to PM 2.5 increases the risk of death from TB and other diseases among TB patients. It suggests that the control of ambient air pollution may help decreasing the mortality caused by TB. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes

    PubMed Central

    Tucci, P; Porta, G; Agostini, M; Dinsdale, D; Iavicoli, I; Cain, K; Finazzi-Agró, A; Melino, G; Willis, A

    2013-01-01

    The long-term health risks of nanoparticles remain poorly understood, which is a serious concern given their prevalence in the environment from increased industrial and domestic use. The extent to which such compounds contribute to cellular toxicity is unclear, and although it is known that induction of oxidative stress pathways is associated with this process, the proteins and the metabolic pathways involved with nanoparticle-mediated oxidative stress and toxicity are largely unknown. To investigate this problem further, the effect of TiO2 on the HaCaT human keratinocyte cell line was examined. The data show that although TiO2 does not affect cell cycle phase distribution, nor cell death, these nanoparticles have a considerable and rapid effect on mitochondrial function. Metabolic analysis was performed to identify 268 metabolites of the specific pathways involved and 85 biochemical metabolites were found to be significantly altered, many of which are known to be associated with the cellular stress response. Importantly, the uptake of nanoparticles into the cultured cells was restricted to phagosomes, TiO2 nanoparticles did not enter into the nucleus or any other cytoplasmic organelle. No other morphological changes were detected after 24-h exposure consistent with a specific role of mitochondria in this response. PMID:23519118

  19. Exercise during Short-Term and Long-Term Continuous Exposure to Hypoxia Exacerbates Sleep-Related Periodic Breathing.

    PubMed

    Tellez, Helio Fernandez; Morrison, Shawnda A; Neyt, Xavier; Mairesse, Olivier; Piacentini, Maria Francesca; Macdonald-Nethercott, Eoin; Pangerc, Andrej; Dolenc-Groselj, Leja; Eiken, Ola; Pattyn, Nathalie; Mekjavic, Igor B; Meeusen, Romain

    2016-04-01

    Exposure to hypoxia elevates chemosensitivity, which can lead to periodic breathing. Exercise impacts gas exchange, altering chemosensitivity; however, interactions between sleep, exercise and chronic hypoxic exposure have not been examined. This study investigated whether exercise exacerbates sleep-related periodic breathing in hypoxia. Two experimental phases. Short-Term Phase: a laboratory controlled, group-design study in which 16 active, healthy men (age: 25 ± 3 y, height: 1.79 ± 0.06 m, mass: 74 ± 8 kg) were confined to a normobaric hypoxic environment (FIO2 = 0.139 ± 0.003, 4,000 m) for 10 days, after random assignment to a sedentary (control, CON) or cycle-exercise group (EX). Long-Term Phase: conducted at the Concordia Antarctic Research Station (3,800 m equivalent at the Equator) where 14 men (age: 36 ± 9 y, height: 1.77 ± 0.09 m, mass: 75 ± 10 kg) lived for 12-14 months, continuously confined. Participants were stratified post hoc based on self-reported physical activity levels. We quantified apnea-hypopnea index (AHI) and physical activity variables. Short-Term Phase: mean AHI scores were significantly elevated in the EX group compared to CON (Night1 = CON: 39 ± 51, EX: 91 ± 59; Night10 = CON: 32 ± 32, EX: 92 ± 48; P = 0.046). Long-Term Phase: AHI was correlated to mean exercise time (R(2) = 0.4857; P = 0.008) and the coefficient of variation in night oxyhemoglobin saturation (SpO2; R(2) = 0.3062; P = 0.049). Data indicate that exercise (physical activity) per se affects night SpO2 concentrations and AHI after a minimum of two bouts of moderate-intensity hypoxic exercise, while habitual physical activity in hypobaric hypoxic confinement affects breathing during sleep, up to 13+ months' duration. © 2016 Associated Professional Sleep Societies, LLC.

  20. Fabrication of a Highly Sensitive Single Aligned TiO2 and Gold Nanoparticle Embedded TiO2 Nano-Fiber Gas Sensor.

    PubMed

    Nikfarjam, Alireza; Hosseini, Seyedsina; Salehifar, Nahideh

    2017-05-10

    In this research, a single-aligned nanofiber of pure TiO 2 and gold nanoparticle (GNP)-TiO 2 were fabricated using a novel electro-spinning procedure equipped with secondary electrostatic fields on highly sharp triangular and rectangular electrodes provided for gas sensing applications. The sol used for spinning nanofiber consisted of titanium tetraisopropoxide (C 12 H 28 O 4 Ti), acetic acid (CH 3 COOH), ethanol (C 2 H 5 OH), polyvinylpyrrolidone (PVP), and gold nanoparticle solution. FE-SEM, TEM, and XRD were used to characterize the single nanofiber. In triangular electrodes, the electrostatic voltage for aligning single nanofiber between electrodes depends on the angle tip of the electrode, which was around 1.4-2.1, 2-2.9, and 3.2-4.1 kV for 30°, 45°, and 60°, respectively. However, by changing the shape of the electrodes to rectangular samples and by increasing distance between electrodes from 100 to 200 μm, electro-spinning applied voltage decreased. Response of pure TiO 2 single nanofiber sensor was measured for 30-200 ppb carbon monoxide gas. The triangular sample revealed better response and lower threshold than the rectangular sample. Adding appropriate amounts of GNP decreased the operating temperature and increased the responses. CO concentration threshold for the pure TiO 2 and GNP-TiO 2 triangular samples was about 5 ppb and 700 ppt, respectively.

  1. Assessment of personal exposure to airborne nanomaterials: Evaluation of a novel sampler

    NASA Astrophysics Data System (ADS)

    Faure, Bertrand; Dozol, Hélène; Brouard, Christophe; Guiot, Arnaud; Clavaguera, Simon

    2017-06-01

    A novel sampler, the NANOBADGE, has been developed to assess personal exposure to nano-objects, agglomerates and aggregates (NOAA) at the workplace. The NANOBADGE collects particles on filters subsequently analyzed by X-Ray Fluorescence spectroscopy (XRF), which provides a mass-based quantification with chemical selectivity. The NANOBADGE was benchmarked against a scanning mobility particle sizer (SMPS) and a DiSCmini by carrying out simultaneous measurements on test aerosols of ZnO or TiO2 for particle sizes between 20 and 400 nm for which the DiSCmini has its highest accuracy. The effective density and shape of the NOAA present in the test aerosols were determined experimentally to compare number-based data obtained with the SMPS and the DiSCmini with mass-based data obtained with the NANOBADGE. The agreement between the SMPS and the NANOBADGE sampler was within ± 25 % on all test aerosols. The converted DiSCmini data matched the SMPS and sampler data for polydisperse aerosols in the specified size range as long as the DiSCmini assumptions meet the aerosol characteristics (i.e. lognormal size distribution with a given geometric standard deviation σg = 1.9). The detection limits of the NANOBADGE sampler were in the order of tens of nanograms per filter, which is low enough to reliably detect exposure levels below the recommended exposure limit (REL) of the National Institute for Occupational Safety and Health (NIOSH) and the Institut National de Recherche et de Sécurité (INRS) for ultrafine ZnO and TiO2 even for short-term exposure situations.

  2. Low doses of TiO2-polyethylene glycol nanoparticles stimulate proliferation of hepatocyte cells

    PubMed Central

    Sun, Qingqing; Kanehira, Koki; Taniguchi, Akiyoshi

    2016-01-01

    Abstract This paper describes the effect of low concentrations of 100 nm polyethylene glycol-modified TiO2 nanoparticles (TiO2-PEG NPs) on HepG2 hepatocellular carcinoma cells. Proliferation of HepG2 cells increased significantly when the cells were exposed to low doses (<100 μg ml–1) of TiO2-PEG NPs. These results were further confirmed by cell counting experiments and cell cycle assays. Cellular uptake assays were performed to determine why HepG2 cells proliferate with low-dose exposure to TiO2-PEG NPs. The results showed that exposure to lower doses of NPs led to less cellular uptake, which in turn decreased cytotoxicity. We therefore hypothesized that TiO2-PEG NPs could affect the activity of hepatocyte growth factor receptors (HGFRs), which bind to hepatocyte growth factor and stimulate cell proliferation. The localization of HGFRs on the surface of the cell membrane was detected via immunofluorescence staining and confocal microscopy. The results showed that HGFRs aggregate after exposure to TiO2-PEG NPs. In conclusion, our results indicate that TiO2-PEG NPs have the potential to promote proliferation of HepG2 cells through HGFR aggregation and suggest that NPs not only exhibit cytotoxicity but also affect cellular responses. PMID:27877913

  3. Fast fabrication of long TiO2 nanotube array with high photoelectrochemical property on flexible stainless steel.

    PubMed

    Tao, Jie; Wu, Tao; Gao, Peng

    2012-03-01

    Oriented highly ordered long TiO2 nanotube array films with nanopore structure and high photoelectrochemical property were fabricated on flexible stainless steel substrate (50 microm) by anodization treatment of titanium thin films in a short time. The samples were characterized by means of field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and photoelectrochemical methods, respectively. The results showed that Ti films deposited at the condition of 0.7 Pa Ar pressure and 96 W sputtering power at room temperature was uniform and dense with good homogeneity and high crystallinity. The voltage and the anodization time both played significant roles in the formation of TiO2 nanopore-nanotube array film. The optimal voltage was 60 V and the anodization time is less than 30 min by anodizing Ti films in ethylene glycerol containing 0.5% (w) NH4F and 3% (w) H2O. The growth rate of TiO2 nanotube array was as high as 340 nm/min. Moreover, the photocurrent-potential curves, photocurrent response curves and electrochemical impedance spectra results indicated that the TiO2 nanotube array film with the nanoporous structure exhibited a better photo-response ability and photoelectrochemical performance than the ordinary TiO2 nanotube array film. The reason is that the nanoporous structure on the surface of the nanotube array can separate the photo electron-hole pairs more efficiently and completely than the tubular structure.

  4. Environmental risk assessment of engineered nano-SiO2 , nano iron oxides, nano-CeO2 , nano-Al2 O3 , and quantum dots.

    PubMed

    Wang, Yan; Nowack, Bernd

    2018-05-01

    Many research studies have endeavored to investigate the ecotoxicological hazards of engineered nanomaterials (ENMs). However, little is known regarding the actual environmental risks of ENMs, combining both hazard and exposure data. The aim of the present study was to quantify the environmental risks for nano-Al 2 O 3 , nano-SiO 2 , nano iron oxides, nano-CeO 2 , and quantum dots by comparing the predicted environmental concentrations (PECs) with the predicted-no-effect concentrations (PNECs). The PEC values of these 5 ENMs in freshwaters in 2020 for northern Europe and southeastern Europe were taken from a published dynamic probabilistic material flow analysis model. The PNEC values were calculated using probabilistic species sensitivity distribution (SSD). The order of the PNEC values was quantum dots < nano-CeO 2  < nano iron oxides < nano-Al 2 O 3  < nano-SiO 2 . The risks posed by these 5 ENMs were demonstrated to be in the reverse order: nano-Al 2 O 3  > nano-SiO 2  > nano iron oxides > nano-CeO 2  > quantum dots. However, all risk characterization values are 4 to 8 orders of magnitude lower than 1, and no risk was therefore predicted for any of the investigated ENMs at the estimated release level in 2020. Compared to static models, the dynamic material flow model allowed us to use PEC values based on a more complex parameterization, considering a dynamic input over time and time-dependent release of ENMs. The probabilistic SSD approach makes it possible to include all available data to estimate hazards of ENMs by considering the whole range of variability between studies and material types. The risk-assessment approach is therefore able to handle the uncertainty and variability associated with the collected data. The results of the present study provide a scientific foundation for risk-based regulatory decisions of the investigated ENMs. Environ Toxicol Chem 2018;37:1387-1395. © 2018 SETAC. © 2018 SETAC.

  5. Mortality Associations with Long-Term Exposure to Outdoor Air Pollution in a National English Cohort

    PubMed Central

    Carey, Iain M.; Kent, Andrew J.; van Staa, Tjeerd; Cook, Derek G.; Anderson, H. Ross

    2013-01-01

    Rationale: Cohort evidence linking long-term exposure to outdoor particulate air pollution and mortality has come largely from the United States. There is relatively little evidence from nationally representative cohorts in other countries. Objectives: To investigate the relationship between long-term exposure to a range of pollutants and causes of death in a national English cohort. Methods: A total of 835,607 patients aged 40–89 years registered with 205 general practices were followed from 2003–2007. Annual average concentrations in 2002 for particulate matter with a median aerodynamic diameter less than 10 (PM10) and less than 2.5 μm (PM2.5), nitrogen dioxide (NO2), ozone, and sulfur dioxide (SO2) at 1 km2 resolution, estimated from emission-based models, were linked to residential postcode. Deaths (n = 83,103) were ascertained from linkage to death certificates, and hazard ratios (HRs) for all- and cause-specific mortality for pollutants were estimated for interquartile pollutant changes from Cox models adjusting for age, sex, smoking, body mass index, and area-level socioeconomic status markers. Measurements and Main Results: Residential concentrations of all pollutants except ozone were positively associated with all-cause mortality (HR, 1.02, 1.03, and 1.04 for PM2.5, NO2, and SO2, respectively). Associations for PM2.5, NO2, and SO2 were larger for respiratory deaths (HR, 1.09 each) and lung cancer (HR, 1.02, 1.06, and 1.05) but nearer unity for cardiovascular deaths (1.00, 1.00, and 1.04). Conclusions: These results strengthen the evidence linking long-term ambient air pollution exposure to increased all-cause mortality. However, the stronger associations with respiratory mortality are not consistent with most US studies in which associations with cardiovascular causes of death tend to predominate. PMID:23590261

  6. Low-frequency ultrasound induces oxygen vacancies formation and visible light absorption in TiO2 P-25 nanoparticles.

    PubMed

    Osorio-Vargas, Paula A; Pulgarin, Cesar; Sienkiewicz, Andrzej; Pizzio, Luis R; Blanco, Mirta N; Torres-Palma, Ricardo A; Pétrier, Christian; Rengifo-Herrera, Julián A

    2012-05-01

    Low-frequency ultrasound (LFUS) irradiation induces morphological, optical and surface changes in the commercial nano-TiO(2)-based photocatalyst, Evonik-Degussa P-25. Low-temperature electron spin resonance (ESR) measurements performed on this material provided the first experimental evidence for the formation of oxygen vacancies (V(o)), which were also found responsible for the visible-light absorption. The V(o) surface defects might result from high-speed inter-particle collisions and shock waves generated by LFUS sonication impacting the TiO(2) particles. This is in contrast to a number of well-established technologies, where the formation of oxygen vacancies on the TiO(2) surface often requires harsh technological conditions and complicated procedures, such as annealing at high temperatures, radio-frequency-induced plasma or ion sputtering. Thus, this study reports for the first time the preparation of visible-light responsive TiO(2)-based photocatalysts by using a simple LFUS-based approach to induce oxygen vacancies at the nano-TiO(2) surface. These findings might open new avenues for synthesis of novel nano-TiO(2)-based photocatalysts capable of destroying water or airborne pollutants and microorganisms under visible light illumination. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Occupational dermal exposure to nanoparticles and nano-enabled products: Part 2, exploration of exposure processes and methods of assessment.

    PubMed

    Brouwer, Derk H; Spaan, Suzanne; Roff, Martin; Sleeuwenhoek, Anne; Tuinman, Ilse; Goede, Henk; van Duuren-Stuurman, Birgit; Filon, Francesca Larese; Bello, Dhimiter; Cherrie, John W

    2016-08-01

    Over the past decade, the primary focus of nanotoxicology and nanoenvironmental health and safety efforts has been largely on inhalation exposure to engineered nanomaterials, at the production stage, and much less on considering risks along the life cycle of nano-enabled products. Dermal exposure to nanomaterials and its health impact has been studied to a much lesser extent, and mostly in the context of intentional exposure to nano-enabled products such as in nanomedicine, cosmetics and personal care products. How concerning is dermal exposure to such nanoparticles in the context of occupational exposures? When and how should we measure it? In the first of a series of two papers (Larese Filon et al., 2016), we focused our attention on identifying conditions or situations, i.e. a combination of nanoparticle physico-chemical properties, skin barrier integrity, and occupations with high prevalence of skin disease, which deserve further investigation. This second paper focuses on the broad question of dermal exposure assessment to nanoparticles and attempts to give an overview of the mechanisms of occupational dermal exposure to nanoparticles and nano-enabled products and explores feasibility and adequacy of various methods of quantifying dermal exposure to NOAA. We provide here a conceptual framework for screening, prioritization, and assessment of dermal exposure to NOAA in occupational settings, and integrate it into a proposed framework for risk assessment. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Long-term low-level arsenic exposure is associated with poorer neuropsychological functioning: a Project FRONTIER study.

    PubMed

    O'Bryant, Sid E; Edwards, Melissa; Menon, Chloe V; Gong, Gordon; Barber, Robert

    2011-03-01

    Exposure to elements in groundwater (toxic or beneficial) is commonplace yet, outside of lead and mercury, little research has examined the impact of many commonly occurring environmental exposures on mental abilities during the aging process. Inorganic arsenic is a known neurotoxin that has both neurodevelopmental and neurocognitive consequences. The aim of this study was to examine the potential association between current and long-term arsenic exposure and detailed neuropsychological functioning in a sample of rural-dwelling adults and elders. Data were analyzed from 434 participants (133 men and 301 women) of Project FRONTIER, a community-based participatory research study of the epidemiology of health issues of rural-dwelling adults and elders. The results of the study showed that GIS-based groundwater arsenic exposure (current and long-term) was significantly related to poorer scores in language, visuospatial skills, and executive functioning. Additionally, long-term low-level exposure to arsenic was significantly correlated to poorer scores in global cognition, processing speed and immediate memory. The finding of a correlation between arsenic and the domains of executive functioning and memory is of critical importance as these are cognitive domains that reflect the earliest manifestations of Alzheimer's disease. Additional work is warranted given the population health implications associated with long-term low-level arsenic exposure.

  9. Observation the Distribution of Titanium Dioxide Nano-particles in an Experimental Tumor Tissue by a Raman Microscope

    NASA Astrophysics Data System (ADS)

    Bibin, Andriana B.; Kume, Kyo; Tsutumi, Kotaro; Fukunaga, Yukihiro; Ito, Shinnji; Imamura, Yoshiaki; Miyoshi, Norio

    2011-12-01

    One of the most important technologies of the 21st century is nanotechnology. Many researchers will have been focusing to employ nanotechnology for medical purpose. Our team was interested in focusing to the application of titanium dioxide (TiO2), as nano-particles, for medical purpose especially drug delivery for the cancer and tumor. The administrations of TiO2 nano-particle via the oral administration of the interface layer particles into the mouse transplanted squamous-cell-carcinoma (SCC) have already conducted. Histology study and Raman spectroscope data were applied to the serial section of frozen tumor tissue in order to observe the distribution of TiO2 nano-particle within the SCC tissue. We used near infrared laser Raman microscopy system, the wavelength is 785 nm. Hematoxyline & eosin stained image and the Raman microscopy system were also used for analyzing the photodynamic therapy (PDT) with 5-ALA and TiO2-particle-sol [TiO2]-ALA-treated tumor samples. As the result, we demonstrated the distribution of TiO2, where TiO2 particles were detected to be distributed in the blood vessel at the bleeding in the SCC tumor tissue. PDT with TiO2 nano-particles that is presented in the SCC-transplanted mouse tumor model can cause the enhancement of photodynamic reaction by nano-particles. Therefore, the combinations of PDT with TiO2 nano-particles may have a possibility to be introduced to the human body in near future for diagnose and PDT treatment of the tumor.

  10. Morphology and thermal stability of nano titanium dioxide filled natural rubber prepared by latex mixing method

    NASA Astrophysics Data System (ADS)

    Hayeemasae, N.; Surya, I.; Ismail, H.

    2018-02-01

    This paper deals with the morphology and thermal stability of nano Titanium Dioxide (TiO2) filled natural rubber composites. This study also suggests a new method of incorporating TiO2. Aqueous dispersions of nano TiO2at the loadings of 0, 2, 4, 6 and 8 phr were dispersed in natural rubber latex, the resulting compounds were then dried prior to mixing it with other ingredients on a two-roll mill. By applying this technique, the homogeneity of the compound is significantly improved. This can be clearly seen from the morphology observed. Adding TiO2 results in shifting the decomposition temperature and char residue irrespective of the loadings of nano TiO2.

  11. Influence of the surface chemistry on TiO2 - TiO2 nanocontact forces as measured by an UHV-AFM

    NASA Astrophysics Data System (ADS)

    Kunze, Christian; Giner, Ignacio; Torun, Boray; Grundmeier, Guido

    2014-03-01

    Particle-wall contact forces between a TiO2 film coated AFM tip and TiO2(1 1 0) single crystal surfaces were analyzed by means of UHV-AFM. As a reference system an octadecylphosphonic acid monolayer covered TiO2(1 1 0) surface was studied. The defect chemistry of the TiO2 substrate was modified by Ar ion bombardment, water dosing at 3 × 10-6 Pa and an annealing step at 473 K which resulted in a varying density of Ti(III) states. The observed contact forces are correlated to the surface defect density and are discussed in terms of the change in the electronic structure and its influence on the Hamaker constant.

  12. Association between long-term exposure to air pollution and mortality in France: A 25-year follow-up study.

    PubMed

    Bentayeb, Malek; Wagner, Verene; Stempfelet, Morgane; Zins, Marie; Goldberg, Marcel; Pascal, Mathilde; Larrieu, Sophie; Beaudeau, Pascal; Cassadou, Sylvie; Eilstein, Daniel; Filleul, Laurent; Le Tertre, Alain; Medina, Sylvia; Pascal, Laurence; Prouvost, Helene; Quénel, Philippe; Zeghnoun, Abdelkrim; Lefranc, Agnes

    2015-12-01

    Long-term exposure to air pollution (AP) has been shown to have an impact on mortality in numerous countries, but since 2005 no data exists for France. We analyzed the association between long-term exposure to air pollution and mortality at the individual level in a large French cohort followed from 1989 to 2013. The study sample consisted of 20,327 adults working at the French national electricity and gas company EDF-GDF. Annual exposure to PM10, PM10–2.5, PM2.5, NO2, O3, SO2, and benzene was assessed for the place of residence of participants using a chemistry-transport model and taking residential history into account. Hazard ratios were estimated using a Cox proportional-hazards regression model, adjusted for selected individual and contextual risk factors. Hazard ratios were computed for an interquartile range (IQR) increase in air pollutant concentrations. The cohort recorded 1967 non-accidental deaths. Long-term exposures to b aseline PM2.5, PM10-25, NO2 and benzene were associated with an increase in non-accidental mortality (Hazard Ratio, HR = 1.09; 95% CI: 0.99, 1.20 per 5.9 μg/m3, PM10-25; HR=1.09; 95% CI: 1.04, 1.15 per 2.2 μg/m3, NO2: HR=1.14; 95% CI: 0.99, 1.31 per 19.3 μg/m3 and benzene: HR=1.10; 95% CI: 1.00, 1.22 per 1.7 μg/m3).The strongest association was found for PM10: HR = 1.14; 95% CI: 1.05, 1.25 per 7.8 μg/m3. PM10, PM10-25 and SO2 were associated with non-accidental mortality when using time varying exposure. No significant associations were observed between air pollution and cardiovascular and respiratory mortality. Long-term exposure to fine particles, nitrogen dioxide, sulfur dioxide and benzene is associated with an increased risk of non-accidental mortality in France. Our results strengthen existing evidence that outdoor air pollution is a significant environmental risk factor for mortality. Due to the limited sample size and the nature of our study (occupational), further investigations are needed in France with a larger

  13. Long-term Reductions in the Population of GABAergic Interneurons in the Mouse Hippocampus following Developmental Ethanol Exposure.

    PubMed

    Bird, Clark W; Taylor, Devin H; Pinkowski, Natalie J; Chavez, G Jill; Valenzuela, C Fernando

    2018-07-15

    Developmental exposure to ethanol leads to a constellation of cognitive and behavioral abnormalities known as Fetal Alcohol Spectrum Disorders (FASDs). Many cell types throughout the central nervous system are negatively impacted by gestational alcohol exposure, including inhibitory, GABAergic interneurons. Little evidence exists, however, describing the long-term impact of fetal alcohol exposure on survival of interneurons within the hippocampal formation, which is critical for learning and memory processes that are impaired in individuals with FASDs. Mice expressing Venus yellow fluorescent protein in inhibitory interneurons were exposed to vaporized ethanol during the third trimester equivalent of human gestation (postnatal days 2-9), and the long-term effects on interneuron numbers were measured using unbiased stereology at P90. In adulthood, interneuron populations were reduced in every hippocampal region examined. Moreover, we found that a single exposure to ethanol at P7 caused robust activation of apoptotic neurodegeneration of interneurons in the hilus, granule cell layer, CA1 and CA3 regions of the hippocampus. These studies demonstrate that developmental ethanol exposure has a long-term impact on hippocampal interneuron survivability, and may provide a mechanism partially explaining deficits in hippocampal function and hippocampus-dependent behaviors in those afflicted with FASDs. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. A three-dimensional carbon nano-network for high performance lithium ion batteries

    DOE PAGES

    Tian, Miao; Wang, Wei; Liu, Yang; ...

    2014-11-20

    Three-dimensional (3D) network structure has been envisioned as a superior architecture for lithium ion battery (LIB) electrodes, which enhances both ion and electron transport to significantly improve battery performance. Herein, a 3D carbon nano-network is fabricated through chemical vapor deposition of carbon on a scalably manufactured 3D porous anodic alumina (PAA) template. As a demonstration on the applicability of 3D carbon nano-network for LIB electrodes, the low conductivity active material, TiO 2, is then uniformly coated on the 3D carbon nano-network using atomic layer deposition. High power performance is demonstrated in the 3D C/TiO 2 electrodes, where the parallel tubesmore » and gaps in the 3D carbon nano-network facilitates fast Li ion transport. A large areal capacity of ~0.37 mAh·cm –2 is achieved due to the large TiO 2 mass loading in the 60 µm-thick 3D C/TiO 2 electrodes. At a test rate of C/5, the 3D C/TiO 2 electrode with 18 nm-thick TiO 2 delivers a high gravimetric capacity of ~240 mAh g –1, calculated with the mass of the whole electrode. A long cycle life of over 1000 cycles with a capacity retention of 91% is demonstrated at 1C. In this study, the effects of the electrical conductivity of carbon nano-network, ion diffusion, and the electrolyte permeability on the rate performance of these 3D C/TiO 2 electrodes are systematically studied.« less

  15. Ultra-long Pt nanolawns supported on TiO2-coated carbon fibers as 3D hybrid catalyst for methanol oxidation

    PubMed Central

    2012-01-01

    In this study, TiO2 thin film photocatalyst on carbon fibers was used to synthesize ultra-long single crystalline Pt nanowires via a simple photoreduction route (thermally activated photoreduction). It also acted as a co-catalytic material with Pt. Taking advantage of the high-aspect ratio of the Pt nanostructure as well as the excellent catalytic activity of TiO2, this hybrid structure has the great potential as the active anode in direct methanol fuel cells. The electrochemical results indicate that TiO2 is capable of transforming CO-like poisoning species on the Pt surface during methanol oxidation and contributes to a high CO tolerance of this Pt nanowire/TiO2 hybrid structure. PMID:22546416

  16. Ultra-long Pt nanolawns supported on TiO2-coated carbon fibers as 3D hybrid catalyst for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Shen, Yu-Lin; Chen, Shih-Yun; Song, Jenn-Ming; Chen, In-Gann

    2012-06-01

    In this study, TiO2 thin film photocatalyst on carbon fibers was used to synthesize ultra-long single crystalline Pt nanowires via a simple photoreduction route (thermally activated photoreduction). It also acted as a co-catalytic material with Pt. Taking advantage of the high-aspect ratio of the Pt nanostructure as well as the excellent catalytic activity of TiO2, this hybrid structure has the great potential as the active anode in direct methanol fuel cells. The electrochemical results indicate that TiO2 is capable of transforming CO-like poisoning species on the Pt surface during methanol oxidation and contributes to a high CO tolerance of this Pt nanowire/TiO2 hybrid structure.

  17. Eosin-Y sensitized core-shell TiO2-ZnO nano-structured photoanodes for dye-sensitized solar cell applications.

    PubMed

    Manikandan, V S; Palai, Akshaya K; Mohanty, Smita; Nayak, Sanjay K

    2018-06-01

    In the current investigation, TiO 2 and TiO 2 -ZnO (core-shell) spherical nanoparticles were synthesized by simple combined hydrolysis and refluxing method. A TiO 2 core nanomaterial on the shell material of ZnO was synthesized by utilizing variable ratios of ZnO. The structural characterization of TiO 2 -ZnO core/shell nanoparticles were done by XRD analysis. The spherical structured morphology of the TiO 2 -ZnO has been confirmed through field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) studies. The UV-visible spectra of TiO 2 -ZnO nanostructures were also compared with the pristine TiO 2 to investigate the shift of wavelength. The TiO 2 -ZnO core/shell nanoparticles at the interface efficiently collect the photogenarated electrons from ZnO and also ZnO act a barrier for reduced charge recombination of electrolyte and dye-nanoparticles interface. This combination improved the light absorption which induced the charge transfer ability and dye loading capacity of core-shell nanoparticles. An enhancement in the short circuit current (J sc ) from 1.67 mA/cm 2 to 2.1 mA/cm 2 has been observed for TiO 2 -ZnObased photoanode (with platinum free counter electrode), promises an improvement in the energy conversion efficiency by 57% in comparison with that of the DSSCs based on the pristine TiO 2 . Henceforth, TiO 2 -ZnO photoelectrode in ZnO will effectively act as barrier at the interface of TiO 2 -ZnO and TiO 2 , ensuring the potential for DSSC application. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Toxicological effect of TiO2 nanoparticle-induced myocarditis in mice

    NASA Astrophysics Data System (ADS)

    Hong, Fashui; Wang, Ling; Yu, Xiaohong; Zhou, Yingjun; Hong, Jie; Sheng, Lei

    2015-08-01

    Currently, impacts of exposure to TiO2 nanoparticles (NPs) on the cardiovascular system are not well understood. The aim of this study was to investigate whether TiO2 NPs induce myocarditis and its underlying molecular mechanism in the cardiac inflammation in mice. Mice were exposed to TiO2 NPs for 6 months; biochemical parameters of serum and expression of Th1-related and Th2-related cytokines in the heart were investigated. The results showed that TiO2 NP exposure resulted in cardiac lesions coupling with pulmonary inflammation; increases of aspartate aminotransferase (AST), creatine kinase (CK), C-reaction protein (CRP), lactate dehydrogenase (LDH), alpha-hydroxybutyrate dehydrogenase (HBDH), adhesion molecule-1 (ICAM-1), and monocyte chemoattractant protein-1 (MCP-1) levels; and a reduction of nitric oxide (NOx) level in the serum. These were associated with increases of nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), interleukin (IL)-4, IL-6, transforming growth factor-β (TGF-β), creatine kinase, CRP, adhesion molecule-1, and monocyte chemoattractant protein-1, interferon-γ (IFN-γ), signal transducers and activators of transcription (STAT)1, STAT3, or STAT6, GATA-binding domain-3, GATA-binding domain-4, endothelin-1 expression levels, and T-box expressed in T cells expression level that is the master regulator of pro-inflammatory cytokines and transcription factors in the heart. These findings imply that TiO2 NP exposure may increase the occurrence and development of cardiovascular diseases.

  19. High Blood Pressure and Long-Term Exposure to Indoor Noise and Air Pollution from Road Traffic

    PubMed Central

    Künzli, Nino; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Vila, Joan; Bouso, Laura; Deltell, Alexandre; Marrugat, Jaume; Ramos, Rafel; Sunyer, Jordi; Elosua, Roberto; Basagaña, Xavier

    2014-01-01

    Background: Traffic noise has been associated with prevalence of hypertension, but reports are inconsistent for blood pressure (BP). To ascertain noise effects and to disentangle them from those suspected to be from traffic-related air pollution, it may be essential to estimate people’s noise exposure indoors in bedrooms. Objectives: We analyzed associations between long-term exposure to indoor traffic noise in bedrooms and prevalent hypertension and systolic (SBP) and diastolic (DBP) BP, considering long-term exposure to outdoor nitrogen dioxide (NO2). Methods: We evaluated 1,926 cohort participants at baseline (years 2003–2006; Girona, Spain). Outdoor annual average levels of nighttime traffic noise (Lnight) and NO2 were estimated at postal addresses with a detailed traffic noise model and a land-use regression model, respectively. Individual indoor traffic Lnight levels were derived from outdoor Lnight with application of insulations provided by reported noise-reducing factors. We assessed associations for hypertension and BP with multi-exposure logistic and linear regression models, respectively. Results: Median levels were 27.1 dB(A) (indoor Lnight), 56.7 dB(A) (outdoor Lnight), and 26.8 μg/m3 (NO2). Spearman correlations between outdoor and indoor Lnight with NO2 were 0.75 and 0.23, respectively. Indoor Lnight was associated both with hypertension (OR = 1.06; 95% CI: 0.99, 1.13) and SBP (β = 0.72; 95% CI: 0.29, 1.15) per 5 dB(A); and NO2 was associated with hypertension (OR = 1.16; 95% CI: 0.99, 1.36), SBP (β = 1.23; 95% CI: 0.21, 2.25), and DBP (β⊇= 0.56; 95% CI: –0.03, 1.14) per 10 μg/m3. In the outdoor noise model, Lnight was associated only with hypertension and NO2 with BP only. The indoor noise–SBP association was stronger and statistically significant with a threshold at 30 dB(A). Conclusion: Long-term exposure to indoor traffic noise was associated with prevalent hypertension and SBP, independently of NO2. Associations were less

  20. Long-Term Exposure to Particulate Matter and Self-Reported Hypertension: A Prospective Analysis in the Nurses' Health Study.

    PubMed

    Zhang, Zhenyu; Laden, Francine; Forman, John P; Hart, Jaime E

    2016-09-01

    Studies have suggested associations between elevated blood pressure and short-term air pollution exposures, but the evidence is mixed regarding long-term exposures on incidence of hypertension. We examined the association of hypertension incidence with long-term residential exposures to ambient particulate matter (PM) and residential distance to roadway. We estimated 24-month and cumulative average exposures to PM10, PM2.5, and PM2.5-10 and residential distance to road for women participating in the prospective nationwide Nurses' Health Study. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated for incident hypertension from 1988 to 2008 using Cox proportional hazards models adjusted for potential confounders. We considered effect modification by age, diet, diabetes, obesity, region, and latitude. Among 74,880 participants, 36,812 incident cases of hypertension were observed during 960,041 person-years. In multivariable models, 10-μg/m3 increases in 24-month average PM10, PM2.5, and PM2.5-10 were associated with small increases in the incidence of hypertension (HR: 1.02, 95% CI: 1.00, 1.04; HR: 1.04, 95% CI: 1.00, 1.07; and HR: 1.03, 95% CI: 1.00, 1.07, respectively). Associations were stronger among women < 65 years of age (HR: 1.04, 95% CI: 1.01, 1.06; HR: 1.07, 95% CI: 1.02, 1.12; and HR: 1.05, 95% CI: 1.01, 1.09, respectively) and the obese (HR: 1.07, 95% CI: 1.04, 1.12; HR: 1.15, 95% CI: 1.07, 1.23; and HR: 1.13, 95% CI: 1.07, 1.19, respectively), with p-values for interaction < 0.05 for all models except age and PM2.5-10. There was no association with roadway proximity. Long-term exposure to particulate matter was associated with small increases in risk of incident hypertension, particularly among younger women and the obese. Zhang Z, Laden F, Forman JP, Hart JE. 2016. Long-term exposure to particulate matter and self-reported hypertension: a prospective analysis in the Nurses' Health Study. Environ Health Perspect 124:1414-1420;

  1. The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana.

    PubMed

    Ze, Yuguan; Liu, Chao; Wang, Ling; Hong, Mengmeng; Hong, Fashui

    2011-11-01

    Recent studies demonstrated that titanium dioxide nanoparticles (TiO2 NPs) could significantly promote photosynthesis and plant growth, but its mechanism is still unclear. In this article, we studied the mechanism of light absorption and transfer of chloroplasts of Arabidopsis thaliana caused by TiO2 NPs treated. The results showed that TiO2 NPs could induce significant increases of light-harvesting complex II (LHCII) b gene expression and LHCII II content on the thylakoid membrane in A. thaliana, and the increases in LHCII were higher than the non-nano TiO2 (bulk-TiO2) treatment. Meanwhile, spectroscopy assays indicated that TiO2 NPs obviously increased the absorption peak intensity of the chloroplast in red and blue region, the fluorescence quantum yield near 680 nm, the excitation peak intensity near 440 and 480 nm and/or near 650 and 680 nm of the chloroplast. TiO2 NPs treatment could reduce F480/F440 ratio and increase F650/F680 ratio and accelerate the rate of whole chain electron transport and oxygen evolution of the chloroplast. However, the photosynthesis improvement of the non-nanoTiO2 treatment was far less effective than TiO2 NPs treatment. Taken together, TiO2 NPs could promote the light absorption of chloroplast, regulate the distribution of light energy from PS I to PS II by increasing LHCII and accelerate the transformation from light energy to electronic energy, water photolysis, and oxygen evolution.

  2. A universal cooperative assembly-directed method for coating of mesoporous TiO2 nanoshells with enhanced lithium storage properties

    PubMed Central

    Guan, Bu Yuan; Yu, Le; Li, Ju; Lou, Xiong Wen (David)

    2016-01-01

    TiO2 is exceptionally useful, but it remains a great challenge to develop a universal method to coat TiO2 nanoshells on different functional materials. We report a one-pot, low-temperature, and facile method that can rapidly form mesoporous TiO2 shells on various inorganic, organic, and inorganic-organic composite materials, including silica-based, metal, metal oxide, organic polymer, carbon-based, and metal-organic framework nanomaterials via a cooperative assembly-directed strategy. In constructing hollow, core-shell, and yolk-shell geometries, both amorphous and crystalline TiO2 nanoshells are demonstrated with excellent control. When used as electrode materials for lithium ion batteries, these crystalline TiO2 nanoshells composed of very small nanocrystals exhibit remarkably long-term cycling stability over 1000 cycles. The electrochemical properties demonstrate that these TiO2 nanoshells are promising anode materials. PMID:26973879

  3. Engineering the Surface/Interface Structures of Titanium Dioxide Micro and Nano Architectures towards Environmental and Electrochemical Applications

    PubMed Central

    Wang, Xiaoliang; Zhao, Yanyan; Mølhave, Kristian

    2017-01-01

    Titanium dioxide (TiO2) materials have been intensively studied in the past years because of many varied applications. This mini review article focuses on TiO2 micro and nano architectures with the prevalent crystal structures (anatase, rutile, brookite, and TiO2(B)), and summarizes the major advances in the surface and interface engineering and applications in environmental and electrochemical applications. We analyze the advantages of surface/interface engineered TiO2 micro and nano structures, and present the principles and growth mechanisms of TiO2 nanostructures via different strategies, with an emphasis on rational control of the surface and interface structures. We further discuss the applications of TiO2 micro and nano architectures in photocatalysis, lithium/sodium ion batteries, and Li–S batteries. Throughout the discussion, the relationship between the device performance and the surface/interface structures of TiO2 micro and nano structures will be highlighted. Then, we discuss the phase transitions of TiO2 nanostructures and possible strategies of improving the phase stability. The review concludes with a perspective on the current challenges and future research directions. PMID:29120393

  4. Different effects of long-term exposures to SO2 and NO2 air pollutants on asthma severity in young adults.

    PubMed

    Greenberg, Nili; Carel, Rafael S; Derazne, Estela; Bibi, Haim; Shpriz, Manor; Tzur, Dorit; Portnov, Boris A

    2016-01-01

    Numerous studies demonstrated that exposure to ambient air pollutants contributes to severity and frequency of asthma exacerbations. However, whether common air pollutants, such as nitrogen dioxide (NO2) and sulfur dioxide (SO2), exert differential effects on asthma occurrence and severity is unclear. The aim of this investigation was to determine whether exposure to NO2 and/or SO2 may initiate different long-term effects on prevalence and severity of asthma in young adults. Medical records of 137,040 males, 17 years old, who underwent standard premilitary service health examinations during 1999-2008 were examined. Air-pollution data for NO2 and SO2 were linked to the place of residence of each subject. The influence of specific air pollutants on asthma prevalence and severity was evaluated using bivariate logistic regression, controlling for individuals' sociodemographic attributes. For both ambient air pollutants, there was a significant dose-response effect on severity of asthma at ambient concentrations below the current National Ambient Air Quality Standards. However, in residential areas with high levels of SO2 (13.3-592.7µg/m(3)) and high levels of NO2 (27.2-43.2µg/m(3)) the risk of asthma occurrence was significantly higher than that in residential areas with high levels of NO2 (27.2-43.2 µg/m(3)) and intermediate levels (6.7-13.3 µg/m(3)) of SO2 pollution. The effects of exposure to SO2 and NO2 air pollutants on the respiratory airways system appear to differ, with possible implications regarding medical management, even in cases of exposure to mixtures of these pollutants.

  5. Associations between long-term exposure to chemical constituents of fine particulate matter (PM2.5) and mortality in Medicare enrollees in the eastern United States.

    PubMed

    Chung, Yeonseung; Dominici, Francesca; Wang, Yun; Coull, Brent A; Bell, Michelle L

    2015-05-01

    Several epidemiological studies have reported that long-term exposure to fine particulate matter (PM2.5) is associated with higher mortality. Evidence regarding contributions of PM2.5 constituents is inconclusive. We assembled a data set of 12.5 million Medicare enrollees (≥ 65 years of age) to determine which PM2.5 constituents are a) associated with mortality controlling for previous-year PM2.5 total mass (main effect); and b) elevated in locations exhibiting stronger associations between previous-year PM2.5 and mortality (effect modification). For 518 PM2.5 monitoring locations (eastern United States, 2000-2006), we calculated monthly mortality rates, monthly long-term (previous 1-year average) PM2.5, and 7-year averages (2000-2006) of major PM2.5 constituents [elemental carbon (EC), organic carbon matter (OCM), sulfate (SO42-), silicon (Si), nitrate (NO3-), and sodium (Na)] and community-level variables. We applied a Bayesian hierarchical model to estimate location-specific mortality rates associated with previous-year PM2.5 (model level 1) and identify constituents that contributed to the spatial variability of mortality, and constituents that modified associations between previous-year PM2.5 and mortality (model level 2), controlling for community-level confounders. One-standard deviation (SD) increases in 7-year average EC, Si, and NO3- concentrations were associated with 1.3% [95% posterior interval (PI): 0.3, 2.2], 1.4% (95% PI: 0.6, 2.4), and 1.2% (95% PI: 0.4, 2.1) increases in monthly mortality, controlling for previous-year PM2.5. Associations between previous-year PM2.5 and mortality were stronger in combination with 1-SD increases in SO42- and Na. Long-term exposures to PM2.5 and several constituents were associated with mortality in the elderly population of the eastern United States. Moreover, some constituents increased the association between long-term exposure to PM2.5 and mortality. These results provide new evidence that chemical composition

  6. Influence of calcinated and non calcinated nanobioglass particles on hardness and bioactivity of sol-gel-derived TiO2-SiO2 nano composite coatings on stainless steel substrates.

    PubMed

    Dadash, Mohammad Saleh; Karbasi, Saeed; Esfahani, Mojtaba Nasr; Ebrahimi, Mohammad Reza; Vali, Hojatollah

    2011-04-01

    Thick films of calcinated and non calcinated nanobioglass (NBG)-titania composite coatings were prepared on stainless steel substrates by alkoxide sol-gel process. Dip-coating method was used for the films preparation. The morphology, structure and composition of the nano composite films were evaluated using environmental scanning electron microscope, X-ray diffraction and Fourier transform infrared spectroscope. The SEM investigation results showed that prepared thick NBG-titania films are smooth and free of macrocracking, fracture or flaking. The grain size of these films was uniform and nano scale (50-60 nm) which confirmed with TEM. Also FTIR confirmed the presence of Si-O-Si bands on the calcinated NBG-titania films. The hardness of the prepared films (TiO(2)-calcinated NBG and TiO(2)-Non calcinated NBG) was compared by using micro hardness test method. The results verified that the presence of calcinated NBG particles in NBG-titania composite enhanced gradually the mechanical data of the prepared films. The in vitro bioactivity of these films was discussed based on the analysis of the variations of Ca and P concentrations in the simulated body fluid (SBF) and their surface morphologies against immersion time. Surface morphology and Si-O-Si bands were found to be of great importance with respect to the bioactivity of the studied films. The results showed that calcinated NBG-titania films have better bioactivity than non calcinated NBG-titania films.

  7. Long-term Autophagy and Nrf2 Signaling in the Hippocampi of Developing Mice after Carbon Ion Exposure

    NASA Astrophysics Data System (ADS)

    Ye, Fei; Zhao, Ting; Liu, Xiongxiong; Jin, Xiaodong; Liu, Xinguo; Wang, Tieshan; Li, Qiang

    2015-12-01

    To explore charged particle radiation-induced long-term hippocampus damage, we investigated the expression of autophagy and antioxidant Nrf2 signaling-related proteins in the mouse hippocampus after carbon ion radiation. Heads of immature female Balb/c mice were irradiated with carbon ions of different LETs at various doses. Behavioral tests were performed on the mice after maturation. Acute and chronic expression of LC3-II, p62/SQSTM1, nuclear Nrf2, activated caspase-3 and the Bax/Bcl-2 ratio were measured in the hippocampi. Secondary X-ray insult was adopted to amplify potential damages. Long-term behavioral changes were observed in high-LET carbon ion-irradiated mice. There were no differences in the rates of LC3-II induction and p62/SQSTM1 degradation compared to the control group regardless of whether the mice received the secondary X-ray insult. A high nuclear Nrf2 content and low apoptosis level in hippocampal cells subjected to secondary X-rays were observed for the mice exposed to relatively low-LET carbon ions. Therefore, carbon ion exposure in the immature mouse led to an LET-dependent behavioral change after maturation. Although autophagy was intact, the persistently high nuclear Nrf2 content in the hippocampus might account for the unchanged behavioral pattern in mice exposed to the relatively low-LET carbon ions and the subsequent increased radioresistance of the hippocampus.

  8. Critical review of the safety assessment of titanium dioxide additives in food.

    PubMed

    Winkler, Hans Christian; Notter, Tina; Meyer, Urs; Naegeli, Hanspeter

    2018-06-01

    Nanomaterial engineering provides an important technological advance that offers substantial benefits for applications not only in the production and processing, but also in the packaging and storage of food. An expanding commercialization of nanomaterials as part of the modern diet will substantially increase their oral intake worldwide. While the risk of particle inhalation received much attention, gaps of knowledge exist regarding possible adverse health effects due to gastrointestinal exposure. This problem is highlighted by pigment-grade titanium dioxide (TiO 2 ), which confers a white color and increased opacity with an optimal particle diameter of 200-300 nm. However, size distribution analyses showed that batches of food-grade TiO 2 always comprise a nano-sized fraction as inevitable byproduct of the manufacturing processes. Submicron-sized TiO 2 particles, in Europe listed as E 171, are widely used as a food additive although the relevant risk assessment has never been satisfactorily completed. For example, it is not possible to derive a safe daily intake of TiO 2 from the available long-term feeding studies in rodents. Also, the use of TiO 2 particles in the food sector leads to highest exposures in children, but only few studies address the vulnerability of this particular age group. Extrapolation of animal studies to humans is also problematic due to knowledge gaps as to local gastrointestinal effects of TiO 2 particles, primarily on the mucosa and the gut-associated lymphoid system. Tissue distributions after oral administration of TiO 2 differ from other exposure routes, thus limiting the relevance of data obtained from inhalation or parenteral injections. Such difficulties and uncertainties emerging in the retrospective assessment of TiO 2 particles exemplify the need for a fit-to-purpose data requirement for the future evaluation of novel nano-sized or submicron-sized particles added deliberately to food.

  9. Deliquescence behavior of photo-irradiated single NaNO3 droplets

    NASA Astrophysics Data System (ADS)

    Seng, Samantha; Guo, Fangqin; Tobon, Yeny A.; Ishikawa, Tomoki; Moreau, Myriam; Ishizaka, Shoji; Sobanska, Sophie

    2018-06-01

    Nitrate-containing particles are ubiquitous in the troposphere because of their secondary production due to anthropogenic emissions of NOx from the combustion of fossil fuels. Nitrate ions are recognized as photoactive species that may contribute to the formation of oxidants in the atmosphere through heterogeneous photochemical reactions. The chemical transformation of aerosol particles in the atmosphere often leads to modification of the particles' hygroscopic properties. Although the photo-transformation of nitrate ions into nitrite within aerosol particles has been investigated, the influence of the photoproducts formation on the hygroscopic behavior of particles has not been reported. In this study, we examined the hygroscopic properties of single, ultraviolet-irradiated NaNO3 droplets using Raman microspectrometry. We are the first demonstrated that irradiating NaNO3 particles affects their hygroscopic behavior. For short-term exposures, regarding hygroscopic behavior, the irradiated particles exhibited two-stage transitions that were clearly reproduced in the experimental NaNO3-NaNO2 phase diagram. The production of NO2- decreased the deliquescence relative humidity values. For long irradiation times (>5 h), these values are even more affected by the additional production of peroxynitrite and carbonate ions in individual droplets. The NaNO3-NaNO2 deliquescence phase diagram cannot explain the hygroscopic behavior of long-term irradiated particles. Finally, we demonstrated the influence that CO2 has on the photo-transformation process in NaNO3 droplets.

  10. Long-Term Impairment of Sound Processing in the Auditory Midbrain by Daily Short-Term Exposure to Moderate Noise.

    PubMed

    Cheng, Liang; Wang, Shao-Hui; Peng, Kang; Liao, Xiao-Mei

    2017-01-01

    Most citizen people are exposed daily to environmental noise at moderate levels with a short duration. The aim of the present study was to determine the effects of daily short-term exposure to moderate noise on sound level processing in the auditory midbrain. Sound processing properties of auditory midbrain neurons were recorded in anesthetized mice exposed to moderate noise (80 dB SPL, 2 h/d for 6 weeks) and were compared with those from age-matched controls. Neurons in exposed mice had a higher minimum threshold and maximum response intensity, a longer first spike latency, and a higher slope and narrower dynamic range for rate level function. However, these observed changes were greater in neurons with the best frequency within the noise exposure frequency range compared with those outside the frequency range. These sound processing properties also remained abnormal after a 12-week period of recovery in a quiet laboratory environment after completion of noise exposure. In conclusion, even daily short-term exposure to moderate noise can cause long-term impairment of sound level processing in a frequency-specific manner in auditory midbrain neurons.

  11. Long-Term Impairment of Sound Processing in the Auditory Midbrain by Daily Short-Term Exposure to Moderate Noise

    PubMed Central

    Cheng, Liang; Wang, Shao-Hui; Peng, Kang

    2017-01-01

    Most citizen people are exposed daily to environmental noise at moderate levels with a short duration. The aim of the present study was to determine the effects of daily short-term exposure to moderate noise on sound level processing in the auditory midbrain. Sound processing properties of auditory midbrain neurons were recorded in anesthetized mice exposed to moderate noise (80 dB SPL, 2 h/d for 6 weeks) and were compared with those from age-matched controls. Neurons in exposed mice had a higher minimum threshold and maximum response intensity, a longer first spike latency, and a higher slope and narrower dynamic range for rate level function. However, these observed changes were greater in neurons with the best frequency within the noise exposure frequency range compared with those outside the frequency range. These sound processing properties also remained abnormal after a 12-week period of recovery in a quiet laboratory environment after completion of noise exposure. In conclusion, even daily short-term exposure to moderate noise can cause long-term impairment of sound level processing in a frequency-specific manner in auditory midbrain neurons. PMID:28589040

  12. [Fluorescence spectra and quantum yield of TiO2 nanocrystals synthesized by alcohothermal method].

    PubMed

    Song, Cui-Hong; Li, Yan-Ting; Li, Jing; Wei, Yong-Ju; Hu, Yu-Zhu; Wei, Yu

    2008-01-01

    Fluorescence spectra and fluorescence quantum yield of TiO2 nanocrystals were studied. Using tetra n-butyl titanate as a starting material, a facile alcohothermal technique was used to synthesize TiO2 nanocrystals. As can be seen from the transmittance electron microscopy (TEM) image, TiO2 nanocrystals with a relatively uniform particle size distribution of < 10 nm are present in the transparent sol. The transparent sol presents a strong stable fluorescence emission with a maximum at 450 nm, which is greatly dependent on the size quantization effects, defect energy level and the surface state of TiO2 nanocrystals. The quantum yield (gamma) of TiO2 was determined by the relative comparison procedure, using freshly prepared analytical purity quinine sulfate in 0.05 mol x L(-1) H2SO4 as a relative quantum yield standard. The emission quantum yield of TiO2 nanocrystals prepared in alcoholic media was calculated to be about 0.20 at wavelengths ranging from 330 to 370 nm, which was much higher than the values reported in previous works. So, it is supposed that nano-TiO2 will be applied as a potential quantum dots fluorescence probe in biological analysis.

  13. Synthesis of hybrid cellulose nanocomposite bonded with dopamine SiO2/TiO2 and its antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ramesh, Sivalingam; Kim, Gwang-Hoon; Kim, Jaehwan; Kim, Joo-Hyung

    2015-04-01

    Organic-inorganic hybrid material based cellulose was synthesized by the sol-gel approach. The explosion of activity in this area in the past decade has made tremendous progress in industry or academic both fundamental understanding of sol-gel process and applications of new functionalized hybrid materials. In this present research work, we focused on cellulose-dopamine functionalized SiO2/TiO2 hybrid nanocomposite by sol-gel process. The cellulose-dopamine hybrid nanocomposite was synthesized via γ-aminopropyltriethoxysilane (γ-APTES) coupling agent by in-situ sol-gel process. The chemical structure of cellulose-amine functionalized dopamine bonding to cellulose structure with covalent cross linking hybrids was confirmed by FTIR spectral analysis. The morphological analysis of cellulose-dopamine nanoSiO2/TiO2 hybrid nanocomposite materials was characterized by XRD, SEM and TEM. From this different analysis results indicate that the optical transparency, thermal stability, control morphology of cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite. Furthermore cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite was tested against pathogenic bacteria for antimicrobial activity.

  14. Long term impairment of cognitive functions and alterations of NMDAR subunits after continuous microwave exposure.

    PubMed

    Wang, Hui; Tan, Shengzhi; Xu, Xinping; Zhao, Li; Zhang, Jing; Yao, Binwei; Gao, Yabing; Zhou, Hongmei; Peng, Ruiyun

    2017-11-01

    The long term effects of continuous microwave exposure cannot be ignored for the simulation of the real environment and increasing concerns about the negative cognitive effects of microwave exposure. In this study, 220 male Wistar rats were exposed by a 2.856GHz radiation source with the average power density of 0, 2.5, 5 and 10mW/cm 2 for 6min/day, 5days/week and up to 6weeks. The MWM task, the EEG analysis, the hippocampus structure observation and the western blot were applied until the 12months after microwave exposure to detect the spatial learning and memory abilities, the cortical electrical activity, changes of hippocampal structure and the NMDAR subunits expressions. Results found that the rats in the 10mW/cm 2 group showed the decline of spatial learning and memory abilities and EEG disorders (the decrease of EEG frequencies, and increase of EEG amplitudes and delta wave powers). Moreover, changes of basic structure and ultrastructure of hippocampus also found in the 10 and 5mW/cm 2 groups. The decrease of NR 2A, 2B and p-NR2B might contribute to the impairment of cognitive functions. Our findings suggested that the continuous microwave exposure could cause the dose-dependent long term impairment of spatial learning and memory, the abnormalities of EEG and the hippocampal structure injuries. The decrease of NMDAR key subunits and phosphorylation of NR 2B might contribute to the cognitive impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Report: Discussion on the development of nano Ag/TiO2 coating bracket and its antibacterial property and biocompatibility in orthodontic treatment.

    PubMed

    Zhang, Ronghe; Zhang, Weiwei; Bai, Xueyan; Song, Xiaotong; Wang, Chunyan; Gao, Xinxin; Tian, Xubiao; Liu, Fengzhen

    2015-03-01

    This paper aims to explore the antibacterial property of nano Ag/TiO2 coating bracket for the common bacteria in oral cavity, and discuss its biocompatibility. Micro morphology in the surface of nano Ag/TiO2 coating bracket was detected by scanning electron microscope (SEM), and surface roughness of ordinary mental bracket, nano TiO2 coating bracket and nano Ag/TiO2 coating bracket were measured. First, antibacterial property of nano Ag/TiO2 coating bracket on the common bacteria in oral cavity was studied by sticking membrane method. Secondly, bonding strength of nano TiO2 coating and nano Ag/TiO2 coating bracket in groups were detected by scratching test. The result showed that, the synthetic nano Ag/TiO2 coating was nanogranular films with rigorous organizational structure, presenting as smooth and clean surface, and antibacterial rate of nano Ag/TiO2 coating for the common bacteria in oral cavity for 20 min was more than 79% in the dark. All the findings suggested that, nano Ag/TiO2 coating bracket not only has antibacterial effect but also has good biocompatibility, therefore, it can satisfy the clinical request of orthodontic treatment.

  16. Arsenite removal from aqueous solutions by γ-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption.

    PubMed

    Yu, Lian; Peng, Xianjia; Ni, Fan; Li, Jin; Wang, Dongsheng; Luan, Zhaokun

    2013-02-15

    A novel Fe-Ti binary oxide magnetic nanoparticles which combined the photocatalytic oxidation property of TiO(2) and the high adsorption capacity and magnetic property of γ-Fe(2)O(3) have been synthesized using a coprecipitation and simultaneous oxidation method. The as-prepared samples were characterized by powder XRD, TEM, TG-DTA, VSM and BET methods. Photocatalytic oxidation of arsenite, the effect of solution pH values and initial As(III) concentration on arsenite removal were investigated in laboratory experiments. Batch experimental results showed that under UV light, As(III) can be efficiently oxidized to As(V) by dissolved O(2) in γ-Fe(2)O(3)-TiO(2) nanoparticle suspensions at various pH values. At the same time, As(V) was effectively removed by adsorption onto the surface of nanoparticles. The maximum removal capability of the nano-material for arsenite was 33.03 mg/g at pH 7.0. Among all the common coexisting ions investigated, phosphate was the greatest competitor with arsenic for adsorptive sites on the nano-material. Regeneration studies verified that the γ-Fe(2)O(3)-TiO(2) nanoparticles, which underwent five successive adsorption-desorption processes, still retained comparable catalysis and adsorption performance, indicating the excellent stability of the nanoparticles. The excellent photocatalytic oxidation performance and high uptake capability of the magnetic nano-material make it potentially attractive material for the removal of As(III) from water. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Long term exposure to air pollution and mortality in an elderly cohort in Hong Kong.

    PubMed

    Yang, Yang; Tang, Robert; Qiu, Hong; Lai, Poh-Chin; Wong, Paulina; Thach, Thuan-Quoc; Allen, Ryan; Brauer, Michael; Tian, Linwei; Barratt, Benjamin

    2018-08-01

    Several studies have reported associations between long term exposure to air pollutants and cause-specific mortality. However, since the concentrations of air pollutants in Asia are much higher compared to those reported in North American and European cohort studies, cohort studies on long term effects of air pollutants in Asia are needed for disease burden assessment and to inform policy. To assess the effects of long-term exposure to particulate matter with aerodynamic diameter < 2.5 μm (PM 2.5 ), black carbon (BC) and nitrogen dioxide (NO 2 ) on cause-specific mortality in an elderly cohort in Hong Kong. In a cohort of 66,820 participants who were older than or equal to 65 years old in Hong Kong from 1998 to 2011, air pollutant concentrations were estimated by land use regression and assigned to the residential addresses of all participants at baseline and for each year during a 11 year follow up period. Hazard ratios (HRs) of cause-specific mortality (including all natural cause, cardiovascular and respiratory mortality) associated with air pollutants were estimated with Cox models, including a number of personal and area-level socioeconomic, demographic, and lifestyle factors. The median concentration of PM 2.5 during the baseline period was 42.2 μg/m 3 with an IQR of 5.5 μg/m 3 , 12.1 (9.6) μg/m 3 for BC and 104 (25.6) μg/m 3 for NO 2 . For PM 2.5 , adjusted HR per IQR increase and per 10 μg/m 3 for natural cause mortality was 1.03 (95%CI: 1.01, 1.06) and 1.06 (95%CI: 1.02, 1.11) respectively. The corresponding HR were 1.06 (95%CI: 1.02, 1.10) and 1.01 (95%CI: 0.96, 1.06) for cardiovascular disease and respiratory disease mortality, respectively. For BC, the HR of an interquartile range increase for all natural cause mortality was 1.03 (95%CI: 1.00, 1.05). The corresponding HR was 1.07 (95%CI: 1.03, 1.11) and 0.99 (95%CI: 0.94, 1.04) for cardiovascular disease and respiratory disease mortality. For NO 2 , almost all HRs were

  18. Effect of long-term exposure to Low Earth Orbit (LEO) space environment

    NASA Technical Reports Server (NTRS)

    Zimcik, D. G.

    1987-01-01

    Data obtained from components and materials from the Solar Maximum Mission satellite are presented and compared to data for similar materials obtained from the Advanced Composite Materials Exposure to Space Experiment (ACOMEX) flown on Shuttle mission STS-41G. In addition to evaluation of surface erosion and mass loss that may be of importance to very long-term missions, comparisons of solar absorptance and thermal emittance measurements for both long and short term exposures were made. Although the ratio of absorptance over emittance can be altered by proper choice of materials to ensure a proper operating environment for the spacecraft, once the thermal design is established, it is important that the material properties not change in order to maintain the operating environment for many payload and bus items such as electronics, batteries, fuel, etc. However, data presented show significant changes after short exposure in low Earth environment. Moreover, the measured changes are shown to differ according to the manner of exposure, i.e., normal or oblique, which also affects the resultant eroded surface morphology. These results identify constraints to be considered in development of flight experiments or laboratory testing.

  19. Scalable Synthesis of Triple-Core-Shell Nanostructures of TiO2 @MnO2 @C for High Performance Supercapacitors Using Structure-Guided Combustion Waves.

    PubMed

    Shin, Dongjoon; Shin, Jungho; Yeo, Taehan; Hwang, Hayoung; Park, Seonghyun; Choi, Wonjoon

    2018-03-01

    Core-shell nanostructures of metal oxides and carbon-based materials have emerged as outstanding electrode materials for supercapacitors and batteries. However, their synthesis requires complex procedures that incur high costs and long processing times. Herein, a new route is proposed for synthesizing triple-core-shell nanoparticles of TiO 2 @MnO 2 @C using structure-guided combustion waves (SGCWs), which originate from incomplete combustion inside chemical-fuel-wrapped nanostructures, and their application in supercapacitor electrodes. SGCWs transform TiO 2 to TiO 2 @C and TiO 2 @MnO 2 to TiO 2 @MnO 2 @C via the incompletely combusted carbonaceous fuels under an open-air atmosphere, in seconds. The synthesized carbon layers act as templates for MnO 2 shells in TiO 2 @C and organic shells of TiO 2 @MnO 2 @C. The TiO 2 @MnO 2 @C-based electrodes exhibit a greater specific capacitance (488 F g -1 at 5 mV s -1 ) and capacitance retention (97.4% after 10 000 cycles at 1.0 V s -1 ), while the absence of MnO 2 and carbon shells reveals a severe degradation in the specific capacitance and capacitance retention. Because the core-TiO 2 nanoparticles and carbon shell prevent the deformation of the inner and outer sides of the MnO 2 shell, the nanostructures of the TiO 2 @MnO 2 @C are preserved despite the long-term cycling, giving the superior performance. This SGCW-driven fabrication enables the scalable synthesis of multiple-core-shell structures applicable to diverse electrochemical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Anatase titanium dioxide nanoparticles in mice: evidence for induced structural and functional sperm defects after short-, but not long-, term exposure

    PubMed Central

    Smith, Michelle A; Michael, Rowan; Aravindan, Rolands G; Dash, Soma; Shah, Syed I; Galileo, Deni S; Martin-DeLeon, Patricia A

    2015-01-01

    Titanium dioxide (TiO2) nanoparticles (TNPs) are widely used commercially and exist in a variety of products. To determine if anatase TNPs (ATNPs) in doses smaller than previously used reach the scrotum after entry in the body at a distant location and induce sperm defects, 100% ATNP (2.5 or 5 mg kg−1 body weight) was administered intraperitoneally to adult males for three consecutive days, followed by sacrifice 1, 2, 3, or 5 weeks later (long-) or 24, 48 or 120 h (short-term exposure). Transmission electron microscopy revealed the presence of ANTP in scrotal adipose tissues collected 120 h postinjection when cytokine evaluation showed an inflammatory response in epididymal tissues and fluid. At 120 h and up to 3 weeks postinjection, testicular histology revealed enlarged interstitial spaces. Significantly increased numbers of terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling-positive (apoptotic) germ (P = 0.002) and interstitial space cells (P = 0.04) were detected in treated males. Caudal epididymal sperm from the short-term, but not a long-term, arm showed significantly (P < 0.001) increased frequencies of flagellar abnormalities, excess residual cytoplasm (ERC), and unreacted acrosomes in treated versus controls (dose-response relationship). A novel correlation between ERC and unreacted acrosomes was uncovered. At 120 h, there were significant decreases in hyperactivated motility (P < 0.001) and mitochondrial membrane potential (P < 0.05), and increased reactive oxygen species levels (P < 0.00001) in treated versus control sperm. These results indicate that at 4–8 days postinjection, ANTP induce structural and functional sperm defects associated with infertility, and DNA damage via oxidative stress. Sperm defects were transient as they were not detected 10 days to 5 weeks postinjection. PMID:25370207

  1. Sun exposure and protection behaviors among long-term melanoma survivors and non-cancer controls

    PubMed Central

    Vogel, Rachel Isaksson; Strayer, Lori G.; Engelman, Leah; Nelson, Heather H.; Blaes, Anne H.; Anderson, Kristin E.; Lazovich, DeAnn

    2016-01-01

    Introduction Melanoma is considered a generally preventable cancer, with excessive ultraviolet radiation (UVR) exposure being a strong causal factor. UVR exposure following a melanoma diagnosis can be modified to reduce risk of second primary melanomas. The goal of this study was to compare measures of UVR exposure and protection behaviors between long-term melanoma survivors and controls. Methods Participants from a previously conducted case-control study were recruited for a cross-sectional survey. Melanoma cases were 25–59 years old at diagnosis; controls were age and sex matched. Participants were asked about UVR exposure and protection measures used in the past year and comparisons between melanoma survivors and controls were conducted using logistic regression models, adjusting for potential confounders. Results A total of 726 (67.7%) long-term melanoma survivors and 657 (60.9%) controls completed the follow-up survey. Melanoma survivors were significantly less likely to report high sun exposure on a typical weekday (OR=0.72 [0.55–0.94]), sunburns (OR=0.40 [0.30–0.53]), or indoor tanning (OR=0.20 [0.09–0.44]) than controls; however high sun exposure on a typical weekend day was similar. Report of optimal sun protection behaviors were higher in melanoma survivors compared to controls. However, a few melanoma survivors reported indoor tanning, 10% reported intentionally seeking sun to tan, and 20% reported sunburns. Conclusion Although long term melanoma survivors reported healthier UVR exposure and protection behaviors compared to controls, a sizeable proportion still reported elevated sun exposure, sunburns, and suboptimal UVR protection behaviors. Impact Opportunities remain for improving sun protection to reduce future melanoma risk among melanoma survivors. PMID:28254810

  2. Development of Electrodeposited Zn/nano-TiO2 Composite Coatings with Enhanced Corrosion Performance

    NASA Astrophysics Data System (ADS)

    Benea, L.; Dănăilă, E.

    2017-06-01

    Pure zinc coatings have been found ineffective when are used in aggressive environments such as those which contain chlorides or industrial pollutants [1]. In this paper, Zn/nano-TiO2 composite coatings with various contents of TiO2 nanoparticles (diameter size of 10 nm) were prepared on low-carbon steel by electro-codeposition technique. The deposition was carried out at different cathodic potentials ranging from -1600 mV to -2100 mV for different deposition times between 5-15 min. Pure Zn coatings were also produced under the same experimental conditions for comparison. Present work aims to investigate the effects of selected electrodeposition parameters (cathodic potential, TiO2 nanoparticle concentration in the plating bath and electrodeposition time) on the corrosion behavior of electrodeposited Zn/nano-TiO2 composite obtained. The corrosion experiments were performed in natural seawater, using electrochemical methods such as open circuit potential, potentiodynamic polarization and linear polarization resistance. The results showed that the inclusion of TiO2 nanoparticles into zinc matrix lead to an improved corrosion resistance comparatively with pure zinc coatings obtained under similar conditions.

  3. Long term response of rats to single intratracheal exposure of Libby amphibole or amosite

    EPA Science Inventory

    In former mine workers and residents of Libby, Montana, exposure to amphibolecontaminated vermiculite has been associated with increased incidences of asbestosis and mesothelioma. In this study, we investigated long-term effects of Libby amphibole (LA) exposure relative to the w...

  4. Stroke and long-term exposure to outdoor air pollution from nitrogen dioxide: a cohort study.

    PubMed

    Andersen, Zorana J; Kristiansen, Luise C; Andersen, Klaus K; Olsen, Tom S; Hvidberg, Martin; Jensen, Steen S; Ketzel, Matthias; Loft, Steffen; Sørensen, Mette; Tjønneland, Anne; Overvad, Kim; Raaschou-Nielsen, Ole

    2012-02-01

    Years of exposure to tobacco smoke substantially increase the risk for stroke. Whether long-term exposure to outdoor air pollution can lead to stroke is not yet established. We examined the association between long-term exposure to traffic-related air pollution and incident and fatal stroke in a prospective cohort study. We followed 57,053 participants of the Danish Diet, Cancer and Health cohort in the Hospital Discharge Register for the first-ever hospital admission for stroke (incident stroke) between baseline (1993-1997) and 2006 and defined fatal strokes as death within 30 days of admission. We associated the estimated mean levels of nitrogen dioxide at residential addresses since 1971 to incident and fatal stroke by Cox regression analyses and examined the effects by stroke subtypes: ischemic, hemorrhagic, and nonspecified stroke. Over a mean follow-up of 9.8 years of 52,215 eligible subjects, there were 1984 (3.8%) first-ever (incident) hospital admissions for stroke of whom 142 (7.2%) died within 30 days. We detected borderline significant associations between mean nitrogen dioxide levels at residence since 1971 and incident stroke (hazard ratio, 1.05; 95% CI, 0.99-1.11, per interquartile range increase) and stroke hospitalization followed by death within 30 days (1.22; 1.00-1.50). The associations were strongest for nonspecified and ischemic strokes, whereas no association was detected with hemorrhagic stroke. Long-term exposure to traffic-related air pollution may contribute to the development of ischemic but not hemorrhagic stroke, especially severe ischemic strokes leading to death within 30 days.

  5. Long-term exposure to particulate matter, NO2 and the oxidative potential of particulates and diabetes prevalence in a large national health survey.

    PubMed

    Strak, Maciej; Janssen, Nicole; Beelen, Rob; Schmitz, Oliver; Vaartjes, Ilonca; Karssenberg, Derek; van den Brink, Carolien; Bots, Michiel L; Dijst, Martin; Brunekreef, Bert; Hoek, Gerard

    2017-11-01

    The evidence from observational epidemiological studies of a link between long-term air pollution exposure and diabetes prevalence and incidence is currently mixed. Some studies found the strongest associations of diabetes with fine particles, other studies with nitrogen dioxide and some studies found no associations. Our aim was to investigate associations between long-term exposure to multiple air pollutants and diabetes prevalence in a large national survey in the Netherlands. We performed a cross-sectional analysis using the 2012 Dutch national health survey to investigate the associations between the 2009 annual average concentrations of multiple air pollutants (PM 10 , PM 2.5 , PM 10-2.5 , PM 2.5 absorbance, OP DTT , OP ESR and NO 2 ) and diabetes prevalence, among 289,703 adults. Air pollution exposure was assessed by land use regression models. Diabetes was defined based on a combined measure of self-reported physician diagnosis and medication prescription from an external database. Using logistic regression, we adjusted for potential confounders, including neighborhood- and individual socio-economic status and lifestyle-related risk factors such as smoking habits, alcohol consumption, physical activity and BMI. After adjustment for potential confounders, all pollutants (except PM 2.5 ) were associated with diabetes prevalence. In two-pollutant models, NO 2 and OP DTT remained associated with increased diabetes prevalence. For NO 2 and OP DTT , single-pollutant ORs per interquartile range were 1.07 (95% CI: 1.05, 1.09) and 1.08 (95% CI: 1.05, 1.10), respectively. Stratified analysis showed no consistent effect modification by any of the included known diabetes risk factors. Long-term residential air pollution exposure was associated with diabetes prevalence in a large health survey in the Netherlands, strengthening the evidence of air pollution being an important diabetes risk factor. Most consistent associations were observed for NO 2 and oxidative

  6. Effect of annealing on the structural and optical properties of TiO2 powder prepared by sol-gel route

    NASA Astrophysics Data System (ADS)

    Halder, Nilanjan; Misra, Kamakhya Prakash

    2016-05-01

    Using titanium isopropoxide as the precursor, Titanium dioxide (TiO2) powder was synthesized via sol-gel method, a promising low temperature route for preparing nanosized metal oxide semiconductors with good homogeneity at low cost. The as-prepared nano powder was thermally treated in air at 550, 650, 750, 900 and 1100°C for 1hr after drying at room temperature and used for further characterization. X-ray diffraction measurements showed that the annealing treatment has a strong impact on the crystal phase of TiO2 samples. The crystallite size as calculated from Debye Scherer formula lies in the range 29-69 nm and is found to increase with increase in annealing temperature. Photoluminescence studies exhibit an improvement in the optical efficiency of the samples with post synthesis heat treatment. Annealing at temperature above 900°C results in a degradation of the structural and optical quality of the TiO2 nano powder samples.

  7. Direct access to highly crystalline mesoporous nano TiO2 using sterically bulky organic acid templates

    NASA Astrophysics Data System (ADS)

    Bakre, Pratibha V.; Tilve, S. G.

    2018-05-01

    Sterically bulky monocarboxylic acid templates pivalic acid and phenoxyacetic acid are reported for the first time as organic templates in the sol-gel synthesis of TiO2. Mesoporous nanoparticulates of pure anatase phase and of well defined size were synthesized. The characterization of the materials prepared was done by various methods such as XRD, SEM, TEM, FTIR, UV-DRS, BET, etc. The prepared TiO2 samples were evaluated for the day light photodegradation of methylene blue by comparing with Degussa P25 and templates free synthesized TiO2 and were found to be more efficient.

  8. Effects of TiO2 nano glass ionomer cements against normal and cancer oral cells.

    PubMed

    Garcia-Contreras, Rene; Scougall-Vilchis, Rogelio J; Contreras-Bulnes, Rosalia; Kanda, Yumiko; Nakajima, Hiroshi; Sakagami, Hiroshi

    2014-01-01

    Incorporation of nanoparticles (NPs) into the glass ionomer cements (GICs) is known to improve their mechanical and antibacterial properties. The present study aimed to investigate the possible cytotoxicity and pro-inflammation effect of three different powdered GICs (base, core build and restorative) prepared with and without titanium dioxide (TiO2) nanoparticles. Each GIC was blended with TiO2 nanopowder, anatase phase, particle size <25 nm at 3% and 5% (w/w), and the GIC blocks of cements were prepared in a metal mold. The GICs/TiO2 nanoparticles cements were smashed up with a mortar and pestle to a fine powder, and then subjected to the sterilization by autoclaving. Human oral squamous cell carcinoma cell lines (HCS-2, HSC-3, HSC-4, Ca9-22) and human normal oral cells [gingival fibroblast (HGF), pulp (HPC) and periodontal ligament fibroblast (HPLF)] were incubated with different concentrations of GICs in the presence or absence of TiO2 nanoparticles, and the viable cell number was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. Prostaglandin E2 was quantified by enzyme-linked immunosorbent assay (ELISA). Changes in fine cell structure were assessed by transmission electron microscopy. Cancer cells exhibited moderate cytotoxicity after 48 h of incubation, regardless of the type of GIC and the presence or absence of TiO2 NPs. GICs induced much lower cytotoxicity against normal cells, but induced prostaglandin E2 production, in a synergistic wanner with interleukin-1β. The present study shows acceptable to moderate biocompatibility of GICs impregnated with TiO2 nanoparticles, as well as its pro-inflammatory effects at higher concentrations. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Atomic layer deposition TiO 2-Al 2O 3 stack: An improved gate dielectric on Ga-polar GaN metal oxide semiconductor capacitors

    DOE PAGES

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.; ...

    2014-10-15

    This research focuses on the benefits and properties of TiO 2-Al 2O 3 nano-stack thin films deposited on Ga 2O 3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO 2, 7.1 nm Al 2O 3 and 2 nm Ga 2O 3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectronmore » spectroscopy (XPS) depth profile, was negligible for GaN pretreated by thermal oxidation in O 2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO 2-Al 2O 3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al 2O 3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 10 11 cm -2. The gate leakage current density (J=2.81× 10 -8 A/cm 2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO 2/Al 2O 3 for serving as the gate oxide on Ga 2O 3/GaN based MOS devices.« less

  10. Atomic layer deposition TiO 2-Al 2O 3 stack: An improved gate dielectric on Ga-polar GaN metal oxide semiconductor capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.

    This research focuses on the benefits and properties of TiO 2-Al 2O 3 nano-stack thin films deposited on Ga 2O 3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO 2, 7.1 nm Al 2O 3 and 2 nm Ga 2O 3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectronmore » spectroscopy (XPS) depth profile, was negligible for GaN pretreated by thermal oxidation in O 2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO 2-Al 2O 3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al 2O 3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 10 11 cm -2. The gate leakage current density (J=2.81× 10 -8 A/cm 2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO 2/Al 2O 3 for serving as the gate oxide on Ga 2O 3/GaN based MOS devices.« less

  11. Long-term pulmonary complications of chemical weapons exposure in former poison gas factory workers.

    PubMed

    Nishimura, Yoshifumi; Iwamoto, Hiroshi; Ishikawa, Nobuhisa; Hattori, Noboru; Horimasu, Yasushi; Ohshimo, Shinichiro; Fujitaka, Kazunori; Kondo, Keiichi; Hamada, Hironobu; Awai, Kazuo; Kohno, Nobuoki

    2016-07-01

    Sulfur mustard (SM) and lewisite are vesicant chemical warfare agents that can cause skin blistering and chronic lung complications. During 1929-1945, a Japanese factory produced poisonous gases, which included SM, lewisite and other chemical weapons. The aim of this study was to investigate the chest computed tomography (CT) findings among long-term survivors who worked at this factory. During 2009-2012, we evaluated chest CT findings from 346 long-term survivors who worked at the poison gas factory. Skin lesions were used as an indicator of significant exposure to vesicant agents. Among the 346 individuals, 53 (15%) individuals experienced skin lesions while working at the factory, and chest CT revealed abnormal findings in 179 individuals (52%). Emphysema was the most common CT finding and was observed in 75 individuals (22%), while honeycombing was observed in 8 individuals (2%). Emphysema and honeycombing were more prevalent among individuals with skin lesions, compared to individuals without skin lesions. Multivariate analyses revealed significant associations between the presence of emphysema and skin lesions (p = 0.008). Among individuals who never smoked, individuals with skin lesions (n = 26) exhibited a significantly higher rate of emphysema, compared to individuals without skin lesions (n = 200) (35% versus 7%, respectively; p < 0.001). Among the long-term survivors who worked at the poison gas factory, a history of skin lesions was associated with the presence of emphysema, even among never smokers, which suggests that emphysema might be a long-term complication of exposure to chemical warfare agents.

  12. Defective TiO 2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells

    DOE PAGES

    Li, Yanbo; Cooper, Jason K.; Liu, Wenjun; ...

    2016-08-18

    Formation of planar heterojunction perovskite solar cells exhibiting both high efficiency and stability under continuous operation remains a challenge. Here, we show this can be achieved by using a defective TiO 2 thin film as the electron transport layer. TiO 2 layers with native defects are deposited by electron beam evaporation in an oxygen-deficient environment. Deep-level hole traps are introduced in the TiO 2 layers and contribute to a high photoconductive gain and reduced photocatalytic activity. The high photoconductivity of the TiO 2 electron transport layer leads to improved efficiency for the fabricated planar devices. A maximum power conversion efficiencymore » of 19.0% and an average PCE of 17.5% are achieved. In addition, the reduced photocatalytic activity of the TiO 2 layer leads to enhanced long-Term stability for the planar devices. Under continuous operation near the maximum power point, an efficiency of over 15.4% is demonstrated for 100 h.« less

  13. Effect of nanoporous TiO2 coating and anodized Ca2+ modification of titanium surfaces on early microbial biofilm formation

    PubMed Central

    2011-01-01

    Background The soft tissue around dental implants forms a barrier between the oral environment and the peri-implant bone and a crucial factor for long-term success of therapy is development of a good abutment/soft-tissue seal. Sol-gel derived nanoporous TiO2 coatings have been shown to enhance soft-tissue attachment but their effect on adhesion and biofilm formation by oral bacteria is unknown. Methods We have investigated how the properties of surfaces that may be used on abutments: turned titanium, sol-gel nanoporous TiO2 coated surfaces and anodized Ca2+ modified surfaces, affect biofilm formation by two early colonizers of the oral cavity: Streptococcus sanguinis and Actinomyces naeslundii. The bacteria were detected using 16S rRNA fluorescence in situ hybridization together with confocal laser scanning microscopy. Results Interferometry and atomic force microscopy revealed all the surfaces to be smooth (Sa ≤ 0.22 μm). Incubation with a consortium of S. sanguinis and A. naeslundii showed no differences in adhesion between the surfaces over 2 hours. After 14 hours, the level of biofilm growth was low and again, no differences between the surfaces were seen. The presence of saliva increased the biofilm biovolume of S. sanguinis and A. naeslundii ten-fold compared to when saliva was absent and this was due to increased adhesion rather than biofilm growth. Conclusions Nano-topographical modification of smooth titanium surfaces had no effect on adhesion or early biofilm formation by S. sanguinis and A. naeslundii as compared to turned surfaces or those treated with anodic oxidation in the presence of Ca2+. The presence of saliva led to a significantly greater biofilm biovolume but no significant differences were seen between the test surfaces. These data thus suggest that modification with sol-gel derived nanoporous TiO2, which has been shown to improve osseointegration and soft-tissue healing in vivo, does not cause greater biofilm formation by the two oral

  14. Markers of lipid oxidative damage among office workers exposed intermittently to air pollutants including nanoTiO2 particles.

    PubMed

    Pelclova, Daniela; Zdimal, Vladimir; Kacer, Petr; Komarc, Martin; Fenclova, Zdenka; Vlckova, Stepanka; Zikova, Nadezda; Schwarz, Jaroslav; Makes, Otakar; Navratil, Tomas; Zakharov, Sergey; Bello, Dhimiter

    2017-03-01

    Nanoscale titanium dioxide (nanoTiO2) is a commercially important nanomaterial used in numerous applications. Experimental studies with nanotitania have documented lung injury and inflammation, oxidative stress, and genotoxicity. Production workers in TiO2 manufacturing with a high proportion of nanoparticles and a mixture of other air pollutants, such as gases and organic aerosols, had increased markers of oxidative stress, including DNA and protein damage, as well as lipid peroxidation in their exhaled breath condensate (EBC) compared to unexposed controls. Office workers were observed to get intermittent exposures to nanoTiO2 during their process monitoring. The aim of this study was to investigate the impact of such short-term exposures on the markers of health effects in office workers relative to production workers from the same factory. Twenty-two office employees were examined. They were occupationally exposed to (nano)TiO2 aerosol during their daily visits of the production area for an average of 14±9 min/day. Median particle number concentration in office workers while in the production area was 2.32×104/cm3. About 80% of the particles were <100 nm in diameter. A panel of biomarkers of lipid oxidation, specifically malondialdehyde (MDA), 4-hydroxy-trans-hexenal (HHE), 4-hydroxy-trans-nonenal (HNE), 8-isoprostaglandin F2α (8-isoprostane), and aldehydes C6-C12, were studied in the EBC and urine of office workers and 14 unexposed controls. Nine markers of lipid oxidation were elevated in the EBC of office employees relative to controls (p<0.05); only 8-isoprostane and C11 were not increased. Significant association was found in the multivariate analysis between their employment in the TiO2 production plant and EBC markers of lipid oxidation. No association was seen with age, lifestyle factors, or environmental air contamination. The EBC markers in office employees reached about 50% of the levels measured in production workers, and the difference between

  15. Long-term Autophagy and Nrf2 Signaling in the Hippocampi of Developing Mice after Carbon Ion Exposure

    PubMed Central

    Ye, Fei; Zhao, Ting; Liu, Xiongxiong; Jin, Xiaodong; Liu, Xinguo; Wang, Tieshan; Li, Qiang

    2015-01-01

    To explore charged particle radiation-induced long-term hippocampus damage, we investigated the expression of autophagy and antioxidant Nrf2 signaling-related proteins in the mouse hippocampus after carbon ion radiation. Heads of immature female Balb/c mice were irradiated with carbon ions of different LETs at various doses. Behavioral tests were performed on the mice after maturation. Acute and chronic expression of LC3-II, p62/SQSTM1, nuclear Nrf2, activated caspase-3 and the Bax/Bcl-2 ratio were measured in the hippocampi. Secondary X-ray insult was adopted to amplify potential damages. Long-term behavioral changes were observed in high-LET carbon ion-irradiated mice. There were no differences in the rates of LC3-II induction and p62/SQSTM1 degradation compared to the control group regardless of whether the mice received the secondary X-ray insult. A high nuclear Nrf2 content and low apoptosis level in hippocampal cells subjected to secondary X-rays were observed for the mice exposed to relatively low-LET carbon ions. Therefore, carbon ion exposure in the immature mouse led to an LET-dependent behavioral change after maturation. Although autophagy was intact, the persistently high nuclear Nrf2 content in the hippocampus might account for the unchanged behavioral pattern in mice exposed to the relatively low-LET carbon ions and the subsequent increased radioresistance of the hippocampus. PMID:26689155

  16. Gas sensing properties of very thin TiO2 films prepared by atomic layer deposition (ALD)

    NASA Astrophysics Data System (ADS)

    Boyadjiev, S.; Georgieva, V.; Vergov, L.; Baji, Zs; Gáber, F.; Szilágyi, I. M.

    2014-11-01

    Very thin titanium dioxide (TiO2) films of less than 10 nm were deposited by atomic layer deposition (ALD) in order to study their gas sensing properties. Applying the quartz crystal microbalance (QCM) method, prototype structures with the TiO2 ALD deposited thin films were tested for sensitivity to NO2. Although being very thin, the films were sensitive at room temperature and could register low concentrations as 50-100 ppm. The sorption is fully reversible and the films seem to be capable to detect for long term. These initial results for very thin ALD deposited TiO2 films give a promising approach for producing gas sensors working at room temperature on a fast, simple and cost-effective technology.

  17. Genotoxic potential of TiO2 on bottlenose dolphin leukocytes.

    PubMed

    Bernardeschi, Margherita; Guidi, Patrizia; Scarcelli, Vittoria; Frenzilli, Giada; Nigro, Marco

    2010-01-01

    Titanium dioxide is extensively used in a variety of products, including industrial materials and cosmetics. Studies mainly performed on human cell lines and in vivo exposure on experimental animals have raised concern about the toxic effects of ultrafine titanium dioxide; however, scarce information is available about its impact on aquatic life. The aim of this article was to assess the genotoxic potential of TiO(2) (anatase and rutile) on bottlenose dolphin leukocytes. Blood samples were obtained from four male and one female specimens reared at the Adriatic SeaWorld "Oltremare" (Riccione, Italy). Leukocytes were isolated by the lyses procedure and in vitro exposed to TiO(2) in RPMI. Experimental solutions were sonicated immediately before dosing the cells. Three exposure times (4, 24 and 48 h) and three doses (20, 50 and 100 microg/ml) were tested. Genotoxicity was detected by the single-cell gel electrophoresis (or comet assay) at pH > or = 13, assessing single/double-strand breaks and alkali-labile sites. Cytotoxicity was also detected by the Trypan blue exclusion method. Results showed that both the crystalline forms of TiO(2) were genotoxic for bottlenose dolphin leukocytes, with a statistically significant increase of DNA fragmentation after exposure to 50 and 100 microg/ml for 24 and 48 h. Although preliminary, these are the first data regarding the genetic susceptibility of toothed cetaceans toward an "emerging" pollutant, such as TiO(2) particles.

  18. High blood pressure and long-term exposure to indoor noise and air pollution from road traffic.

    PubMed

    Foraster, Maria; Künzli, Nino; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Vila, Joan; Bouso, Laura; Deltell, Alexandre; Marrugat, Jaume; Ramos, Rafel; Sunyer, Jordi; Elosua, Roberto; Basagaña, Xavier

    2014-11-01

    Traffic noise has been associated with prevalence of hypertension, but reports are inconsistent for blood pressure (BP). To ascertain noise effects and to disentangle them from those suspected to be from traffic-related air pollution, it may be essential to estimate people's noise exposure indoors in bedrooms. We analyzed associations between long-term exposure to indoor traffic noise in bedrooms and prevalent hypertension and systolic (SBP) and diastolic (DBP) BP, considering long-term exposure to outdoor nitrogen dioxide (NO2). We evaluated 1,926 cohort participants at baseline (years 2003-2006; Girona, Spain). Outdoor annual average levels of nighttime traffic noise (Lnight) and NO2 were estimated at postal addresses with a detailed traffic noise model and a land-use regression model, respectively. Individual indoor traffic Lnight levels were derived from outdoor Lnight with application of insulations provided by reported noise-reducing factors. We assessed associations for hypertension and BP with multi-exposure logistic and linear regression models, respectively. Median levels were 27.1 dB(A) (indoor Lnight), 56.7 dB(A) (outdoor Lnight), and 26.8 μg/m3 (NO2). Spearman correlations between outdoor and indoor Lnight with NO2 were 0.75 and 0.23, respectively. Indoor Lnight was associated both with hypertension (OR = 1.06; 95% CI: 0.99, 1.13) and SBP (β = 0.72; 95% CI: 0.29, 1.15) per 5 dB(A); and NO2 was associated with hypertension (OR = 1.16; 95% CI: 0.99, 1.36), SBP (β = 1.23; 95% CI: 0.21, 2.25), and DBP (β⊇= 0.56; 95% CI: -0.03, 1.14) per 10 μg/m3. In the outdoor noise model, Lnight was associated only with hypertension and NO2 with BP only. The indoor noise-SBP association was stronger and statistically significant with a threshold at 30 dB(A). Long-term exposure to indoor traffic noise was associated with prevalent hypertension and SBP, independently of NO2. Associations were less consistent for outdoor traffic Lnight and likely affected by

  19. Comparative study on short- and long-term behavioral consequences of organophosphate exposure: relationship to AChE mRNA expression.

    PubMed

    López-Granero, Caridad; Cardona, Diana; Giménez, Estela; Lozano, Rafael; Barril, José; Aschner, Michael; Sánchez-Santed, Fernando; Cañadas, Fernando

    2014-01-01

    Organophosphates (OPs) affect behavior by inhibiting acetylcholinesterase (AChE). While the cognitive short-term effects may be directly attributed to this inhibition, the mechanisms that underlie OP's long-term cognitive effects remain controversial and poorly understood. Accordingly, two experiments were designed to assess the effects of OPs on cognition, and to ascertain whether both the short- and long-term effects of are AChE-dependent. A single subcutaneous dose of 250 mg/kg chlorpyrifos (CPF), 1.5mg/kg diisopropylphosphorofluoridate (DFP) or 15 mg/kg parathion (PTN) was administered to male Wistar rats. Spatial learning was evaluated 72 h or 23 weeks after exposure, and impulsive choice was tested at 10 and 30 weeks following OPs administration (experiment 1 and 2, respectively). Brain soluble and membrane-bound AChE activity, synaptic AChE-S mRNA, read-through AChE-R mRNA and brain acylpeptide hydrolase (APH) activity (as alternative non-cholinergic target) were analyzed upon completion of the behavioral testing (17 and 37 weeks after OPs exposure). Both short- and long-term CPF treatment caused statistically significant effects on spatial learning, while PTN treatment led only to statistically significant short-term effects. Neither CPF, DFP nor PTN affected the long-term impulsivity response. Long-term exposure to CPF and DFP significantly decreased AChE-S and AChE-R mRNA, while in the PTN treated group only AChE-S mRNA levels were decreased. However, after long-term OP exposure, soluble and membrane-bound AChE activity was indistinguishable from controls. Finally, no changes were noted in brain APH activity in response to OP treatment. Taken together, this study demonstrates long-term effects of OPs on AChE-S and AChE-R mRNA in the absence of changes in AChE soluble and membrane-bound activity. Thus, changes in AChE mRNA expression imply non-catalytic properties of the AChE enzyme. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Nano-Scaled Particles of Titanium Dioxide Convert Benign Mouse Fibrosarcoma Cells into Aggressive Tumor Cells

    PubMed Central

    Onuma, Kunishige; Sato, Yu; Ogawara, Satomi; Shirasawa, Nobuyuki; Kobayashi, Masanobu; Yoshitake, Jun; Yoshimura, Tetsuhiko; Iigo, Masaaki; Fujii, Junichi; Okada, Futoshi

    2009-01-01

    Nanoparticles are prevalent in both commercial and medicinal products; however, the contribution of nanomaterials to carcinogenesis remains unclear. We therefore examined the effects of nano-sized titanium dioxide (TiO2) on poorly tumorigenic and nonmetastatic QR-32 fibrosarcoma cells. We found that mice that were cotransplanted subcutaneously with QR-32 cells and nano-sized TiO2, either uncoated (TiO2−1, hydrophilic) or coated with stearic acid (TiO22, hydrophobic), did not form tumors. However, QR-32 cells became tumorigenic after injection into sites previously implanted with TiO2−1, but not TiO22, and these developing tumors acquired metastatic phenotypes. No differences were observed either histologically or in inflammatory cytokine mRNA expression between TiO2−1 and TiO22 treatments. However, TiO22, but not TiO2−1, generated high levels of reactive oxygen species (ROS) in cell-free conditions. Although both TiO2−1 and TiO22 resulted in intracellular ROS formation, TiO22 elicited a stronger response, resulting in cytotoxicity to the QR-32 cells. Moreover, TiO22, but not TiO2−1, led to the development of nuclear interstices and multinucleate cells. Cells that survived the TiO2 toxicity acquired a tumorigenic phenotype. TiO2-induced ROS formation and its related cell injury were inhibited by the addition of antioxidant N-acetyl-l-cysteine. These results indicate that nano-sized TiO2 has the potential to convert benign tumor cells into malignant ones through the generation of ROS in the target cells. PMID:19815711

  1. Monoclinic β-Li2TiO3 nanocrystalline particles employing novel urea assisted solid state route: Synthesis, characterization and sintering behavior

    NASA Astrophysics Data System (ADS)

    Tripathi, Biranchi M.; Mohanty, Trupti; Prakash, Deep; Tyagi, A. K.; Sinha, P. K.

    2017-07-01

    Pure phase monoclinic nano-crystalline Li2TiO3 powder was synthesized by a novel urea assisted solid state synthesis method using readily available and economical precursors. A single phase and well crystalline Li2TiO3 powder has been obtained at slightly lower temperature (600-700 °C) and shorter duration (2 h) as compared to the conventional solid state method. The proposed method has significant advantages in comparison to other viable methods mainly in terms of phase purity, powder properties and sinterability. Analysis of chemical composition using inductively coupled plasma atomic emission spectroscopy (ICP-AES) shows no loss of lithium from Li2TiO3 in the proposed method. The emergence of monoclinic Li2TiO3 phase was confirmed by X-ray diffraction (XRD) pattern of as-synthesized powder. The crystallite size of Li2TiO3 powder was calculated to be in the range of 15-80 nm, which varied as a function of urea composition and temperature. The morphology of as-prepared Li2TiO3 powders was examined by scanning electron microscope (SEM). The effect of urea composition on phase and morphology was investigated so as to delineate the role of urea. Upon sintering at < 1000 °C temperature, the Li2TiO3 powder compact attained about 98% of the theoretical density with fine grained (grain size: 2-3 μm) microstructure. It indicates excellent sinter-ability of Li2TiO3 powder synthesized by the proposed method. The fine grained structure is desirable for better tritium breeding performance of Li2TiO3. Electrochemical impedance spectroscopy at variable temperature showed good electrical properties of Li2TiO3. The proposed method is simple, anticipated to be cost effective and convenient to realise for large scale production of phase pure nanocrystalline and having significantly enhanced sinter-ability Li2TiO3 powder.

  2. Effects of TiO2 and Co3O4 Nanoparticles on Circulating Angiogenic Cells

    PubMed Central

    Spigoni, Valentina; Cito, Monia; Alinovi, Rossella; Pinelli, Silvana; Passeri, Giovanni; Zavaroni, Ivana; Goldoni, Matteo; Campanini, Marco; Aliatis, Irene; Mutti, Antonio

    2015-01-01

    Background and Aim Sparse evidence suggests a possible link between exposure to airborne nanoparticles (NPs) and cardiovascular (CV) risk, perhaps through mechanisms involving oxidative stress and inflammation. We assessed the effects of TiO2 and Co3O4 NPs in human circulating angiogenic cells (CACs), which take part in vascular endothelium repair/replacement. Methods CACs were isolated from healthy donors’ buffy coats after culturing lymphomonocytes on fibronectin-coated dishes in endothelial medium for 7 days. CACs were pre-incubated with increasing concentration of TiO2 and Co3O4 (from 1 to 100 μg/ml) to test the effects of NP – characterized by Transmission Electron Microscopy – on CAC viability, apoptosis (caspase 3/7 activation), function (fibronectin adhesion assay), oxidative stress and inflammatory cytokine gene expression. Results Neither oxidative stress nor cell death were associated with exposure to TiO2 NP (except at the highest concentration tested), which, however, induced a higher pro-inflammatory effect compared to Co3O4 NPs (p<0.01). Exposure to Co3O4 NPs significantly reduced cell viability (p<0.01) and increased caspase activity (p<0.01), lipid peroxidation end-products (p<0.05) and pro-inflammatory cytokine gene expression (p<0.05 or lower). Notably, CAC functional activity was impaired after exposure to both TiO2 (p<0.05 or lower) and Co3O4 (p<0.01) NPs. Conclusions In vitro exposure to TiO2 and Co3O4 NPs exerts detrimental effects on CAC viability and function, possibly mediated by accelerated apoptosis, increased oxidant stress (Co3O4 NPs only) and enhancement of inflammatory pathways (both TiO2 and Co3O4 NPs). Such adverse effects may be relevant for a potential role of exposure to TiO2 and Co3O4 NPs in enhancing CV risk in humans. PMID:25803285

  3. Association between Long-Term Exposure to Particulate Matter Air Pollution and Mortality in a South Korean National Cohort: Comparison across Different Exposure Assessment Approaches

    PubMed Central

    Kim, Sun-Young; Kim, Ho

    2017-01-01

    Increasing numbers of cohort studies have reported that long-term exposure to ambient particulate matter is associated with mortality. However, there has been little evidence from Asian countries. We aimed to explore the association between long-term exposure to particulate matter with a diameter ≤10 µm (PM10) and mortality in South Korea, using a nationwide population-based cohort and an improved exposure assessment (EA) incorporating time-varying concentrations and residential addresses (EA1). We also compared the association across different EA approaches. We used information from 275,337 people who underwent health screening from 2002 to 2006 and who had follow-up data for 12 years in the National Health Insurance Service-National Sample Cohort. Individual exposures were computed as 5-year averages using predicted residential district-specific annual-average PM10 concentrations for 2002–2006. We estimated hazard ratios (HRs) of non-accidental and five cause-specific mortalities per 10 µg/m3 increase in PM10 using the Cox proportional hazards model. Then, we compared the association of EA1 with three other approaches based on time-varying concentrations and/or addresses: predictions in each year and addresses at baseline (EA2); predictions at baseline and addresses in each year (EA3); and predictions and addresses at baseline (EA4). We found a marginal association between long-term PM10 and non-accidental mortality. The HRs of five cause-specific mortalities were mostly higher than that of non-accidental mortality, but statistically insignificant. In the comparison between EA approaches, the HRs of EA1 were similar to those of EA2 but higher than EA3 and EA4. Our findings confirmed the association between long-term exposure to PM10 and mortality based on a population-representative cohort in South Korea, and suggested the importance of assessing individual exposure incorporating air pollution changes over time. PMID:28946613

  4. Maintenance of C sinks sustains enhanced C assimilation during long-term exposure to elevated [CO2] in Mojave Desert shrubs.

    PubMed

    Aranjuelo, Iker; Ebbets, Allison L; Evans, R Dave; Tissue, David T; Nogués, Salvador; van Gestel, Natasja; Payton, Paxton; Ebbert, Volker; Adams, Williams W; Nowak, Robert S; Smith, Stanley D

    2011-10-01

    During the first few years of elevated atmospheric [CO(2)] treatment at the Nevada Desert FACE Facility, photosynthetic downregulation was observed in desert shrubs grown under elevated [CO(2)], especially under relatively wet environmental conditions. Nonetheless, those plants maintained increased A (sat) (photosynthetic performance at saturating light and treatment [CO(2)]) under wet conditions, but to a much lesser extent under dry conditions. To determine if plants continued to downregulate during long-term exposure to elevated [CO(2)], responses of photosynthesis to elevated [CO(2)] were examined in two dominant Mojave Desert shrubs, the evergreen Larrea tridentata and the drought-deciduous Ambrosia dumosa, during the eighth full growing season of elevated [CO(2)] treatment at the NDFF. A comprehensive suite of physiological processes were collected. Furthermore, we used C labeling of air to assess carbon allocation and partitioning as measures of C sink activity. Results show that elevated [CO(2)] enhanced photosynthetic performance and plant water status in Larrea, especially during periods of environmental stress, but not in Ambrosia. δ(13)C analyses indicate that Larrea under elevated [CO(2)] allocated a greater proportion of newly assimilated C to C sinks than Ambrosia. Maintenance by Larrea of C sinks during the dry season partially explained the reduced [CO(2)] effect on leaf carbohydrate content during summer, which in turn lessened carbohydrate build-up and feedback inhibition of photosynthesis. δ(13)C results also showed that in a year when plant growth reached the highest rates in 5 years, 4% (Larrea) and 7% (Ambrosia) of C in newly emerging organs were remobilized from C that was assimilated and stored for at least 2 years prior to the current study. Thus, after 8 years of continuous exposure to elevated [CO(2)], both desert perennials maintained their photosynthetic capacities under elevated [CO(2)]. We conclude that C storage, remobilization

  5. [Blood cerebrospinal fluid barrier damage of rats induced by lead acetate or nano-lead exposure].

    PubMed

    Feng, P P; Zhai, F J; Jiang, S F; Wu, J Z; Xue, L; Zheng, M M; Zhou, L L; Meng, C Y; Cao, M Y; Zhang, Y S

    2016-05-20

    To investigate the damage of blood-cerebrospinal fluid barrier (BCB) of rats induced by lead and nano-lead exposure in order to provide the basis for mechanism study of lead neurotoxicity. 39 male rats were randomly divided into control group, lead acetate exposed group and nano-lead exposed group. Rats in lead acetate exposed group and nano-lead exposed group were given 20 mg/kg lead acetate or nano-lead by oral gavage and rats in control groups were given the same amount saline for 9 weeks.Morris maze was used to test the learning function, serum albumin and CSF albumin were determined by ELISA. Confocal laser scanning microscope was applied to detect ZO-1 and Occludin protein expression in choroid plexus, real time-PCR was used to test the expression of ZO-1 and Occludin mRNA expression. Pathological changes of choroid plexus cells were observed by the electron microscopy. Compared with the control group, the escape latency of rats in lead acetate or nano-lead exposure group were longer and times of across platform were less. The levels of CSF albumin and the CSF albumin index in lead acetate or nano-lead exposed rats were obviously higher, and the fluorescence intensity of ZO-1, Occludin as well as mRNA expressions were lower than those in control group(P<0.05). Compared with lead acetate exposed group, the levels of CSF albumin and the CSF albumin index in nano-lead exposure group were higher. The fluorescence intensity and mRNA expressions of ZO-1, Occludin in nano-lead exposure group were than those in lead acetate group(P<0.05). Electron microscopy revealed that lead acetate or nano-lead exposure could induce shorter microvillus of choroid plexus epithelial cells, mitochondrion destruction and partial disconnection in intracellular junctions between two adjacent epithelial cells. Lead acetate and nano-lead exposed can result in the blood-cerebrospinal fluid barrier damage, which may involve in the process of lead induced neurotoxicity. Meanwhile, nano

  6. Copper Bioaccumulation and Depuration in Common Carp (Cyprinus carpio) Following Co-exposure to TiO2 and CuO Nanoparticles.

    PubMed

    Mansouri, Borhan; Maleki, Afshin; Johari, Seyed Ali; Shahmoradi, Behzad; Mohammadi, Ebrahim; Shahsavari, Siros; Davari, Behroz

    2016-11-01

    Metal oxide nanoparticles (NPs), such as TiO 2 and CuO, are widely applied in an increasing number of products and applications, and therefore their release to the aquatic ecosystems is unavoidable. However, little is known about joint toxicity of different NPs on tissues of aquatic organisms, such as fish. This study was conducted to assess the uptake and depuration of Cu following exposure to CuO NPs in the presence of TiO 2 NPs in the liver, intestine, muscle, and gill of common carp, Cyprinus carpio. Carps with a mean total length of 23 ± 1.5 cm and mean weight of 13 ± 1.3 g were divided into 6 groups of 15 each (1 control group) and exposed to TiO 2 NPs, CuO NPs, and a mixture of TiO 2 and CuO NPs for periods of 20 days for uptake and 10 days for depuration. The determination of total Cu concentration was carried out by an ICP-OES. The order of Cu uptake in different tissues of the carps was liver > gill > muscle > intestine in both levels of CuO NPs alone; results showed that the total Cu concentrations in the presence of TiO 2 nanoparticles were increased and were in the sequence of liver > gill > intestine > muscle. In depuration period, Cu concentrations were decreased in all treatments in the sequence of gill > intestine > muscle > liver. Uptake of Cu in different tissues of common carp increased with increasing concentration and time and was tissues- and time-dependent. In conclusion, this study suggested that the uptake of Cu in the tissues of common carp increased in the joint presence of TiO 2 NPs.

  7. Biotoxicity of TiO2 Nanoparticles on Raphidocelis subcapitata Microalgae Exemplified by Membrane Deformation

    PubMed Central

    Ozkaleli, Merve; Erdem, Ayca

    2018-01-01

    TiO2 nanoparticles (NPs), which are mainly used in consumer products (mostly cosmetics), have been found to cause ecotoxic effects in the aquatic environment. The green algae Raphidocelis subcapitata, as a representative of primary producers of the freshwater ecosystem, has been frequently used to study the effects of metal oxide NPs. An ecotoxicity study was conducted herein to investigate the effects of TiO2 NPs on survival and membrane deformation of algal cells. Five different concentrations of nano-TiO2 particles (1, 10, 50, 100 and 500 mg/L) were prepared in synthetic surface water samples with five different water quality characteristics (pH 6.4–8.4, hardness 10–320 mg CaCO3/L, ionic strength 0.2–8 mM, and alkalinity 10–245 mg CaCO3/L). Results showed a significant increase in the hydrodynamic diameter of NPs with respect to both NP concentrations and ionic content of the test system. A soft synthetic freshwater system at pH 7.3 ± 0.2 appeared to provide the most effective water type, with more than 95% algal mortality observed at 50, 100 and 500 mg/L NP concentrations. At high exposure concentrations, increased malondialdehyde formations were observed. Moreover, due to membrane deformation, TEM images correlated the uptake of the NPs. PMID:29495534

  8. Hydrothermal synthesis of TiO2/WO3 compositions and their photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Pyachin, Sergey A.; Karpovich, Natalia F.; Zaitsev, Alexey V.; Makarevich, Konstantin S.; Burkov, Alexander A.; Ustinov, Alexander Yu.

    2016-11-01

    Photocatalytic activity, optical properties, thermal stability, phase patterns and morphology of nano-size TiO2/WO3 compositions obtained from organic precursors through hydrothermal synthesis have been studied. It has been shown that doping of anatase nanoparticles with tungsten W+6 results in particle diameter reduction from 35 to 10 nm; decrease in width of the band gap from 3.15 eV to 2.91 eV and increase in temperature of phase transition of anatase to rutile up to 980oC. Catalytic activity of TiO2/WO3 (4 mol.%) composition under photochemical methylene blue (MB) oxidation by simulated solar light exceeds that of undoped anatase (obtained in the same way) 6-fold.

  9. Associations between long-term exposure to ambient particulate air pollution and type 2 diabetes prevalence, blood glucose and glycosylated hemoglobin levels in China

    PubMed Central

    Zhao, Yaohui; Ma, Zongwei; Bi, Jun; Liu, Yang; Meng, Xia; Wang, Yafeng; Cai, Jing; Chen, Renjie; Kan, Haidong

    2016-01-01

    Background The evidence for an association between particulate air pollution and type 2 diabetes mellitus (T2DM) in developing countries was very scarce. Objective To investigate the associations of long-term exposure to fine particulate matter (PM2.5) with T2DM prevalence and with fasting glucose and glycosylated hemoglobin (HbA1c) levels in China. Methods This is a cross-sectional study based on a nation-wide baseline survey of 11,847 adults who participated in the China Health and Retirement Longitudinal Study from June 2011 to March 2012. The average residential exposure to PM2.5 for each participant in the same period was estimated using a satellite-based spatial statistical model. We determined the association between PM2.5 and T2DM prevalence by multivariable logistic regression models. We also evaluated the association between PM2.5 and fasting glucose and HbA1c levels using multivariable linear regression models. Stratification analyses were conducted to explore potential effect modification. Results We identified 1,760 cases of T2DM, corresponding to 14.9% of the study population. The average PM2.5 exposure for all participants was 72.6 μg/m3 during the study period. An interquartile range increase in PM2.5 (41.1μg/m3) was significantly associated with increased T2DM prevalence (prevalence ratio, PR=1.14), and elevated levels of fasting glucose (0.26 mmol/L) and HbA1c (0.08%). The associations of PM2.5 with T2DM prevalence and with fasting glucose and HbA1c were stronger in several subgroups. Conclusions This nationwide cross-sectional study suggested that long-term exposure to PM2.5 might increase the risk of T2DM in China. PMID:27148900

  10. TiO2-Nanofillers Effects on Some Properties of Highly- Impact Resin Using Different Processing Techniques.

    PubMed

    Aziz, Hawraa Khalid

    2018-01-01

    The criteria of conventional curing of polymethyl methacrylate do not match the standard properties of the denture base materials. This research was conducted to investigate the addition of TiO 2 nano practical on impact strength, thermal conductivity and color stability of acrylic resin cured by microwave in comparison to the conventional cured of heat-polymerized acrylic resin. 120 specimens made of high impact acrylic resin were divided into two main groups according to the type of curing (water bath, microwave), then each group was subdivided into two groups according to the addition of 3% TiO 2 nano-fillers and control group (without the addition of TiO 2 0%). Each group was subdivided according to the type of test into 3 groups with 10 specimens for each group. Data were statistically analyzed using Student t-test to detect the significant differences between tested and control groups at significance level ( P <0.05). According to curing type methods, the results showed that there was a significant decrease in impact strength of microwaved cured resin, but there was no significant difference in the thermal conductivity and color stability of resin. In addition, by using nanofiller, there was a significant increase in the impact strength and color stability with the addition of 3% TiO 2 nanofillers, but no significant difference was found in the thermal conductivity of the acrylic resin. The microwave curing of acrylic resin had no change in the color stability and thermal conductivity in comparison to the water bath, but the impact strength was decreased. The addition of 3% TiO 2 improved the impact and the color stability, but the thermal conductivity did not change.

  11. Improved photoelectrical performance of graphene supported highly crystallized anatase TiO2

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Sun, Qiong; Zhao, Mei; Li, Yang; Liu, Qiuhong; Dong, Lifeng

    2015-08-01

    In this study, titanium oxysulfate (TiOSO4) and graphene were used as titanium source and supporter, respectively, to synthesize anatase TiO2-graphene (TiO2-G) composite. Crystal structure, morphology, and composition of TiO2-G were investigated by X-ray diffraction, scanning electron microscope, transmission electron microscope, and thermogravimetric analysis. Both TiO2-G and blank TiO2 powders exhibit spindle-shaped structure with the long axis along [001]. Compared to unsupported TiO2, TiO2 nanoparticles uniformly formed on graphene surface. When fabricated into dye-sensitized solar cells, photoelectrical conversion efficiency of TiO2-G (2.3 %) was much higher than that of blank TiO2 (0.89 %) prepared at the same conditions. Moreover, high sintering temperature enhanced photoelectrical performance of the composite. When the temperature was increased from 450 to 600 °C, the efficiency was improved from 1.5 to 2.6 %. The findings above demonstrate that TiO2-G has great potential for applications in dye-sensitized solar cells.

  12. Efficient Perovskite Solar Cells Depending on TiO2 Nanorod Arrays.

    PubMed

    Li, Xin; Dai, Si-Min; Zhu, Pei; Deng, Lin-Long; Xie, Su-Yuan; Cui, Qian; Chen, Hong; Wang, Ning; Lin, Hong

    2016-08-24

    Perovskite solar cells (PSCs) with TiO2 materials have attracted much attention due to their high photovoltaic performance. Aligned TiO2 nanorods have long been used for potential application in highly efficient perovskite solar cells, but the previously reported efficiencies of perovskite solar cells based on TiO2 nanorod arrays were underrated. Here we show a solvothermal method based on a modified ketone-HCl system with the addition of organic acids suitable for modulation of the TiO2 nanorod array films to fabricate highly efficient perovskite solar cells. Photovoltaic measurements indicated that efficient nanorod-structured perovskite solar cells can be achieved with the length of the nanorods as long as approximately 200 nm. A record efficiency of 18.22% under the reverse scan direction has been optimized by avoiding direct contact between the TiO2 nanorods and the hole transport materials, eliminating the organic residues on the nanorod surfaces using UV-ozone treatment and tuning the nanorod array morphologies through addition of different organic acids in the solvothermal process.

  13. Silver doped TiO2 nano crystallites for dye-sensitized solar cell (DSSC) applications

    NASA Astrophysics Data System (ADS)

    Sakthivel, T.; Ashok Kumar, K.; Ramanathan, Rajajeyaganthan; Senthilselvan, J.; Jagannathan, K.

    2017-12-01

    This communication deals with the synthesis of Ag doped TiO2 nanoparticles with different doping concentrations prepared by reduction method for the possible usage of photo anode material in DSSC. The prepared nanoparticles are characterized by x-ray diffraction to study their structural properties which confirms the formation of mixed anatase-rutile crystalline phases. The particulate size, shape and surface morphology are examined using FESEM which indicates agglomerated nanostructures with the average particle size of 20-25 nm. The UV-visible absorption spectra showed enhanced absorption in the visible range in accordance with the doping concentration of Ag with a red shift in their absorption edge. The interfacial charge transport phenomena of the DSSCs are determined by electrochemical impedance spectroscopy (EIS) and the corresponding efficiencies are calculated using J-V curve. In the present work, the UV active TiO2 and Ag doped TiO2 nanoparticles are employed as photoanode for the fabrication of DSSCs based on N3 dye and maximum power conversion efficiency of 1.544% is realized.

  14. Electrospinning Titanium Dioxide (TiO2) nanofiber for dye sensitized solar cells based on Bryophyta as a sensitizer

    NASA Astrophysics Data System (ADS)

    Asma Ilahi, Novita; Suryana, Risa; Nurrosyid, Fahru; Kusuma, N. T. Linda

    2017-01-01

    From an engineering and economic perspective, immobilized TiO2 nanocatalysts are preferred in a variety of applications. In this study, TiO2 polymer solution was synthesized using ethanol, acetic acid, polyvinylpyrrolidone (PVP), and titanium tetra isopropoxide (TTIP). TiO2 solution was deposited on the FTO substrate by electrospinning method to obtain nano-sized layer. Capillary of syringes given a positive DC voltage of 6 kV to produce nanofiber, then annealed at 450 °C for 3 hours. Chlorophyll has obtained from extracted moss through a chromatographic process to used for dye. TiO2 nanofiber layer manufactured with varied by time and characterized by UV-Vis and IV-meter. The result exhibited a maximum efficiency of 0,0036% and significant absorption at 350 nm-500 nm wavelength.

  15. Sol-gel TiO2 films as NO2 gas sensors

    NASA Astrophysics Data System (ADS)

    Georgieva, V.; Gadjanova, V.; Grechnikov, A.; Donkov, N.; Sendova-Vassileva, M.; Stefanov, P.; Kirilov, R.

    2014-05-01

    TiO2 films were prepared by a sol-gel technique with commercial TiO2 powder as a source material (P25 Degussa AG). After a special treatment, printing paste was prepared. The TiO2 layers were formed by means of drop-coating on Si-control wafers and on the Au-electrodes of quartz resonators. The surface morphology of the films was examined by scanning electron microscopy (SEM). Their structure was studied by Raman spectroscopy and the surface composition was determined by X-ray photoelectron spectroscopy (XPS). The layers had a grain-like surface morphology and consisted mainly of anatase TiO2 phase. The sensitivity of the TiO2 films to NO2 was assessed by the quartz crystal microbalance (QCM) technique. To this end, the films were deposited on both sides of a 16-MHz QCM. The sensing characteristic of the TiO2-QCM structure was investigated by measuring the resonant frequency shift (ΔF) of the QCM due to the mass loading caused by NO2 adsorption. The Sauerbrey equation was applied to establish the correlation between the QCM frequency changes measured after exposure to different NO2 concentrations and the mass-loading of the QCM. The experiments were carried out in a dynamic mode on a special laboratory setup with complete control of the process parameters. The TiO2 films were tested in the NO2 concentration interval from 10 ppm to 5000 ppm. It was found that a TiO2 loading of the QCM by 5.76 kHz corresponded to a system sensitive to NO2 concentrations above 250 ppm. On the basis of the frequency-time characteristics (FTCs) measured, AF at different NO2 concentrations was defined, the adsorption/desorption cycles were studied and the response and recovery times were estimated. The results obtained show that the process is reversible in the NO2 interval investigated. The results further suggested that TiO2 films prepared by a sol-gel method on a QCM can be used as a sensor element for NO2 detection.

  16. Bifunctional ultraviolet/ultrasound responsive composite TiO2/polyelectrolyte microcapsules

    NASA Astrophysics Data System (ADS)

    Gao, Hui; Wen, Dongsheng; Tarakina, Nadezda V.; Liang, Jierong; Bushby, Andy J.; Sukhorukov, Gleb B.

    2016-02-01

    Designing and fabricating multifunctional microcapsules are of considerable interest in both academic and industrial research aspects. This work reports an innovative approach to fabricate composite capsules with high UV and ultrasound responsive functionalities that can be used as external triggers for controlled release, yet with enhanced mechanical strength that can make them survive in a harsh environment. Needle-like TiO2 nanoparticles (NPs) were produced in situ into layer-by-layer (LbL) polyelectrolyte (PE) shells through the hydrolysis of titanium butoxide (TIBO). These rigid TiO2 NPs yielded the formed capsules with excellent mechanical strength, showing a free standing structure. A possible mechanism is proposed for the special morphology formation of the TiO2 NPs and their reinforcing effects. Synergistically, their response to UV and ultrasound was visualized via SEM, with the results showing an irreversible shell rapture upon exposure to either UV or ultrasound irradiation. As expected, the release studies revealed that the dextran release from the TiO2/PE capsules was both UV-dependent and ultrasound-dependent. Besides, the biocompatibility of the capsules with the incorporation of amorphous TiO2 NPs was confirmed by an MTT assay experiment. All these pieces of evidence suggested a considerable potential medicinal application of TiO2/PE capsules for controlled drug delivery.Designing and fabricating multifunctional microcapsules are of considerable interest in both academic and industrial research aspects. This work reports an innovative approach to fabricate composite capsules with high UV and ultrasound responsive functionalities that can be used as external triggers for controlled release, yet with enhanced mechanical strength that can make them survive in a harsh environment. Needle-like TiO2 nanoparticles (NPs) were produced in situ into layer-by-layer (LbL) polyelectrolyte (PE) shells through the hydrolysis of titanium butoxide (TIBO). These

  17. TiO2 effect on crystallization mechanism and physical properties of nano glass-ceramics of MgO-Al2O3-SiO2 glass system.

    PubMed

    Jo, Sinae; Kang, Seunggu

    2013-05-01

    The effect of TiO2 on the degree of crystallization, thermal properties and microstructure for MgO-Al2O3-SiO2 glass-ceramics system containing 0-13 wt% TiO2 and 0-1.5 wt% B2O3 in which the cordierite is the main phase was studied. Using Kissinger and Augis-Bennett equations, the activation energy, 510 kJ/mol and Avrami constant, 1.8 were calculated showing the surface-oriented crystallization would be preferred. The alpha-cordierite phase was generated in the glass-ceramics of containing TiO2 of 0-5.6 wt%. However, for the glass-ceramics of TiO2 content above 7 wt%, an alpha-cordierite disappeared and micro-cordierite phase was formed. The glass-ceramics of no TiO2 added had spherical crystals of few tens nanometer size spread in the matrix. As TiO2 content increased up to 5.6 wt%, a lump of dendrite was formed. In the glass-ceramics containing TiO2 7-13 wt%, in which the main phase is micro-cordierite, the dendrite crystal disappeared and a few hundred nanometer sized crystal particles hold tightly each other were generated. The thermal conductivity of glass-ceramics of both a-cordierite and micro-cordierite base decreased with TiO2 contend added. The thermal conductivity of glass-ceramics of 1.5 wt% TiO2 added was 3.4 W/mK which is 36% higher than that of glass-ceramics of no TiO2 added. The sintering temperature for 1.5 wt% TiO2 glass-ceramics was 965 degrees C which could be concluded as to apply to LTCC process for LED packaging.

  18. Superhydrophilic TiO2 thin film by nanometer scale surface roughness and dangling bonds

    NASA Astrophysics Data System (ADS)

    Bharti, Bandna; Kumar, Santosh; Kumar, Rajesh

    2016-02-01

    A remarkable enhancement in the hydrophilic nature of titanium dioxide (TiO2) films is obtained by surface modification in DC-glow discharge plasma. Thin transparent TiO2 films were coated on glass substrate by sol-gel dip coating method, and exposed in DC-glow discharge plasma. The plasma exposed TiO2 film exhibited a significant change in its wetting property contact angle, which is a representative of wetting property, has reduced to considerable limits 3.02° and 1.85° from its initial value 54.40° and 48.82° for deionized water and ethylene glycol, respectively. It is elucidated that the hydrophilic property of plasma exposed TiO2 films dependent mainly upon nanometer scale surface roughness. Variation, from 4.6 nm to 19.8 nm, in the film surface roughness with exposure time was observed by atomic force microscopy (AFM). Analysis of variation in the values of contact angle and surface roughness with increasing plasma exposure time reveal that the surface roughness is the main factor which makes the modified TiO2 film superhydrophilic. However, a contribution of change in the surface states, to the hydrophilic property, is also observed for small values of the plasma exposure time. Based upon nanometer scale surface roughness and dangling bonds, a variation in the surface energy of TiO2 film from 49.38 to 88.92 mJ/m2 is also observed. X-ray photoelectron spectroscopy (XPS) results show change in the surface states of titanium and oxygen. The observed antifogging properties are the direct results of the development of the superhydrophilic wetting characteristics to TiO2 films.

  19. Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana.

    PubMed

    Bergami, E; Pugnalini, S; Vannuccini, M L; Manfra, L; Faleri, C; Savorelli, F; Dawson, K A; Corsi, I

    2017-08-01

    Plastic pollution has been globally recognized as a critical issue for marine ecosystems and nanoplastics constitute one of the last unexplored areas to understand the magnitude of this threat. However, current difficulties in sampling and identifying nano-sized debris make hard to assess their occurrence in marine environment. Polystyrene nanoparticles (PS NPs) are largely used as nanoplastics in ecotoxicological studies and although acute exposures have been already investigated, long-term toxicity on marine organisms is unknown. Our study aims at evaluating the effects of 40nm PS anionic carboxylated (PS-COOH) and 50nm cationic amino-modified (PS-NH 2 ) NPs in two planktonic species, the green microalga Dunaliella tertiolecta and the brine shrimp Artemia franciscana, respectively prey and predator. PS NP behaviour in exposure media was determined through DLS, while their toxicity to microalgae and brine shrimps evaluated through 72h growth inhibition test and 14 d long-term toxicity test respectively. Moreover, the expression of target genes (i.e. clap and cstb), having a role in brine shrimp larval growth and molting, was measured in 48h brine shrimp larvae. A different behaviour of the two PS NPs in exposure media as well as diverse toxicity to the two planktonic species was observed. PS-COOH formed micro-scale aggregates (Z-Average>1μm) and did not affect the growth of microalgae up to 50μg/ml or that of brine shrimps up to 10μg/ml. However, these negatively charged NPs were adsorbed on microalgae and accumulated (and excreted) in brine shrimps, suggesting a potential trophic transfer from prey to predator. On the opposite, PS-NH 2 -formed nano-scale aggregates (Z-Average<200nm), caused inhibition of algal growth (EC 50 =12.97μg/ml) and mortality in brine shrimps at 14 d (LC 50 =0.83μg/ml). Moreover, 1μg/ml PS-NH 2 significantly induced clap and cstb genes, explaining the physiological alterations (e.g. increase in molting) previously observed in 48h

  20. Ultrathin single-crystalline TiO2 nanosheets anchored on graphene to be hybrid network for high-rate and long cycle-life sodium battery electrode application

    NASA Astrophysics Data System (ADS)

    Shoaib, Anwer; Huang, Yongxin; Liu, Jia; Liu, Jiajia; Xu, Meng; Wang, Ziheng; Chen, Renjie; Zhang, Jiatao; Wu, Feng

    2017-02-01

    In view of the growing concern about energy management issues, sodium ion batteries (SIBs) as cheap and environmentally friendly devices have increasingly received wide research attentions. The high current rate and long cycle-life of SIBs are considered as two key parameters determining its potential for practical applications. In this work, the rigid single-crystalline anatase TiO2 nanosheets (NSs) with a thickness of ∼4 nm has been firstly prepared, based on which a stable nanostructured network consisting of ultrathin anatase TiO2 NSs homogeneously anchored on graphene through chemical bonding (TiO2 NSs-G) has fabricated by hydrothermal process and subsequent calcination treatment. The morphology, crystallization, chemical compositions and the intimate maximum contact between TiO2 NSs and graphene are confirmed by TEM, SEM, XRD, XPS and Raman characterizations. The results of electrochemical performance tests indicated that the TiO2 NSs-G hybrid network could be consider as a promising anode material for SIBs, in assessment of its remarkably high current rate and long cycle-life aside from the improved specific capacity, rate capability and cycle stability.

  1. Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm.

    PubMed

    Dhandapani, Perumal; Maruthamuthu, Sundram; Rajagopal, Gopalakrishnan

    2012-05-02

    The nano-TiO(2) was synthesized biologically employing Bacillus subtilis (FJ460362). These nanoparticles were characterized by FTIR, TGA-DTA, UV-Visible spectroscopy, XRD and TEM. FTIR and TGA results confirm that the organic impurities were completely removed while calcinating the resultant products. Band gap value was estimated from the UV-Visible spectrum and anatase crystal phase was confirmed by XRD. TEM images reveal that these particles were agglomerated; mostly spherical in shape with an average particle size of 10-30nm. The synthesized nano-TiO(2) particles were coated on glass slides, biofilm were grown and subjected to irradiation of polychromatic light to understand photocatalytic activity in controlling the aquatic biofilm. The bacterial killing process was established by Epi-fluorescence microscopy. The results reveal that biogenic TiO(2) nanomaterial acts as good photocatalyst by the generation of H(2)O(2) in the vicinity of the TiO(2)-biofilm interfaces to suppress the growth of the aquatic biofilm. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Increased photocatalytic activity induced by TiO2/Pt/SnO2 heterostructured films

    NASA Astrophysics Data System (ADS)

    Testoni, Glaucio O.; Amoresi, Rafael A. C.; Lustosa, Glauco M. M. M.; Costa, João P. C.; Nogueira, Marcelo V.; Ruiz, Miguel; Zaghete, Maria A.; Perazolli, Leinig A.

    2018-02-01

    In this work, a high photocatalytic activity was attained by intercalating a Pt layer between SnO2 and TiO2 semiconductors, which yielded a TiO2/Pt/SnO2 - type heterostructure used in the discoloration of blue methylene (MB) solution. The porous films and platinum layer were obtained by electrophoretic deposition and DC Sputtering, respectively, and were both characterized morphologically and structurally by FE-SEM and XRD. The films with the Pt interlayer were evaluated by photocatalytic activity through exposure to UV light. An increase in efficiency of 22% was obtained for these films compared to those without platinum deposition. Studies on the reutilization of the films pointed out high efficiency and recovery of the photocatalyst, rendering the methodology favorable for the construction of fixed bed photocatalytic reactors. A proposal associated with the mechanism is discussed in this work in terms of the difference in Schottky barrier between the semiconductors and the electrons transfer and trapping cycle. These are fundamental factors for boosting photocatalytic efficiency.

  3. Synthesis of TiO2 nanorods from titania and titanyl sulfate produced from ilmenite dissolution by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Munifa, R. M. I.; Saputri, L. N. M. Z.; Chasanah, U.

    2016-11-01

    TiO2 powder has been synthesized through hydrolysis-condensation of titanyl sulfate solution to a starting material of TiO2 nanorods formation. This processing was conducted by the solid separation of TiO2 from ilmenite by roasting ilmenite, acidic leaching (hydrolysis), and co-precipitation (condensation). Roasting of ilmenite was carried out by the addition of Na2S at a temperature of 800°C. While the acidic leaching process was conducted by sulfuric acid at a various concentrations of 3, 3.5, 4.5, 6, and 9 M. The result shown that the solubility optimum occurs in H2SO4 6 M condition. Separation of Fe impurities of TiO2 gel from titanyl sulfate (TiOSO4) solution was done through complexation using KCNS addition. The characteristic of TiO2 obtained using X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) showed good crystallinity and purity. Further treatment of the TiO2 is the formation of one-dimensional nano-size (1-D nanorods) through a hydrothermal method under basic condition NaOH 12M solution. TiO2 nanorods were confirmed by Transmission Electron Microscope (TEM) which indicated that the diameter of TiO2 nanorods was about 7.02 nm in size.

  4. Long-term human exposure to lead from different media and intake pathways.

    PubMed

    Pizzol, Massimo; Thomsen, Marianne; Andersen, Mikael Skou

    2010-10-15

    Lead (Pb) is well known as an environmental pollutant: it can accumulate in various media, so actual lead exposure reflects both historical and present contaminations. Two main challenges then emerge: obtaining updated information to gain an overall picture of the sources of exposure, and predicting the resulting internal body exposure levels and effects that occur under long-term exposure conditions. In this paper, a modeling approach is used to meet these challenges with reference to Danish exposure conditions. Levels of lead content in various media have been coupled with data for lead intake and absorption in the human body, for both children and adults. An age-dependent biokinetic model allows then for determination of the blood lead levels resulting from chronic exposure. The study shows that the actual intake of lead is up to 27% of the Provisional Tolerable Daily Intake (PTDI) for children and around 8% for adults. It is confirmed that the critical route of exposure is via ingestion, accounting for 99% of total lead intake, while inhalation contributes only to 1% of total lead intake. The resulting lead levels in the blood after 2 years of exposure to actual contamination conditions have been estimated as up to 2.2μg/dl in children and almost 1μg/dl in adults. Impacts from lead can occur even at such levels. The role of historical and present sources to lead in the environment is discussed, and, for specific child and adult exposure scenarios, external-internal concentration relationships for the direct linkage between lead in environmental media and resulting concentrations of lead in blood are then presented. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of Reactive Yellow-17.

    PubMed

    Rupa, A Valentine; Manikandan, D; Divakar, D; Sivakumar, T

    2007-08-25

    Nanoparticles of TiO(2) were synthesized by sol-gel technique and the photodeposition of about 1% Ag on TiO(2) particles was carried out. Ag-deposited TiO(2) catalyst was characterised by XRD, TEM and UV-vis spectroscopy. The Ag-TiO(2) catalyst was evaluated for their photocatalytic activity towards the degradation of Reactive Yellow-17 (RY-17) under UV and visible light irradiations. Then the results were compared with synthesized nano-TiO(2) sol and P-25 Degussa and the enhanced degradation was obtained with Ag-deposited TiO(2). This enhanced activity of Ag-TiO(2) may be attributed to the trapping of conduction band electrons. The effect of initial dye concentration, pH and electron acceptors such as H(2)O(2), K(2)S(2)O(8) on the photocatalytic activity were studied and the results obtained were fitted with Langmuir-Hinshelwood model to study the degradation kinetics and discussed in detail.

  6. Whole-Body Exposure to 28Si-Radiation Dose-Dependently Disrupts Dentate Gyrus Neurogenesis and Proliferation in the Short Term and New Neuron Survival and Contextual Fear Conditioning in the Long Term.

    PubMed

    Whoolery, Cody W; Walker, Angela K; Richardson, Devon R; Lucero, Melanie J; Reynolds, Ryan P; Beddow, David H; Clark, K Lyles; Shih, Hung-Ying; LeBlanc, Junie A; Cole, Mara G; Amaral, Wellington Z; Mukherjee, Shibani; Zhang, Shichuan; Ahn, Francisca; Bulin, Sarah E; DeCarolis, Nathan A; Rivera, Phillip D; Chen, Benjamin P C; Yun, Sanghee; Eisch, Amelia J

    2017-11-01

    Astronauts traveling to Mars will be exposed to chronic low doses of galactic cosmic space radiation, which contains highly charged, high-energy (HZE) particles. 56 Fe-HZE-particle exposure decreases hippocampal dentate gyrus (DG) neurogenesis and disrupts hippocampal function in young adult rodents, raising the possibility of impaired astronaut cognition and risk of mission failure. However, far less is known about how exposure to other HZE particles, such as 28 Si, influences hippocampal neurogenesis and function. To compare the influence of 28 Si exposure on indices of neurogenesis and hippocampal function with previous studies on 56 Fe exposure, 9-week-old C57BL/6J and Nestin-GFP mice (NGFP; made and maintained for 10 or more generations on a C57BL/6J background) received whole-body 28 Si-particle-radiation exposure (0, 0.2 and 1 Gy, 300 MeV/n, LET 67 KeV/μ, dose rate 1 Gy/min). For neurogenesis assessment, the NGFP mice were injected with the mitotic marker BrdU at 22 h postirradiation and brains were examined for indices of hippocampal proliferation and neurogenesis, including Ki67 + , BrdU + , BrdU + NeuN + and DCX + cell numbers at short- and long-term time points (24 h and 3 months postirradiation, respectively). In the short-term group, stereology revealed fewer Ki67 + , BrdU + and DCX + cells in 1-Gy-irradiated group relative to nonirradiated control mice, fewer Ki67 + and DCX + cells in 0.2 Gy group relative to control group and fewer BrdU + and DCX + cells in 1 Gy group relative to 0.2 Gy group. In contrast to the clearly observed radiation-induced, dose-dependent reductions in the short-term group across all markers, only a few neurogenesis indices were changed in the long-term irradiated groups. Notably, there were fewer surviving BrdU + cells in the 1 Gy group relative to 0- and 0.2-Gy-irradiated mice in the long-term group. When the short- and long-term groups were analyzed by sex, exposure to radiation had a similar effect on neurogenesis indices

  7. The sol-gel template synthesis of porous TiO2 for a high performance humidity sensor

    NASA Astrophysics Data System (ADS)

    Wang, Zhuyi; Shi, Liyi; Wu, Fengqing; Yuan, Shuai; Zhao, Yin; Zhang, Meihong

    2011-07-01

    This research develops a simple template assisted sol-gel process for preparing porous TiO2 for a high performance humidity sensor. Tetraethyl orthosilicate (TEOS) as a template was directly introduced into TiO2 sol formed by the hydrolysis and condensation of titanium alkoxide; the following calcination led to the formation of TiO2-SiO2 composite, and the selective removal of SiO2 by dilute HF solution led to the formation of porous structure in TiO2. The resulting porous TiO2-based sensor exhibits high sensitivity and linear response in the wide relative humidity (RH) range of 11%-95%, with an impedance variation of four orders of magnitude to humidity change. Moreover, it exhibits a rapid and highly reversible response characterized by a very small hysteresis of < 1% RH and a short response-recovery time (5 s for adsorption and 8 s for desorption), and a 30-day stability test also confirms its long-term stability. Compared with pure TiO2 prepared by the conventional sol-gel method, our product shows remarkably improved performance and good prospect for a high performance humidity sensor. The complex impedance spectra were used to elucidate its humidity sensing mechanism in detail.

  8. Antibody production in rats after long-term exposure to formaldehyde

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmstroem, M.R.; Rynnel-Dagoeoe, B.Wi.; Wilhelmsson, B.

    1989-09-01

    Sprague-Dawley rats were vaccinated with pneumococcal polysaccharide antigens and tetanus toxoid to evaluate the immunologic effects of long-term formaldehyde exposure. The antibody response to vaccination was measured 3 to 4 weeks later by enzyme-linked immunosorbent assay. An IgG response to pneumococcal polysaccharides and to tetanus toxoid was found in both the formaldehyde-exposed group and a control group of rats not exposed to formaldehyde. The IgM response to tetanus toxoid was significant in both groups but neither group showed a significant IgM response to pneumococcal polysaccharides. There were thus no signs of impaired B-cell function in rats exposed to a highmore » concentration (12.6 ppm) of formaldehyde for nearly 2 years.« less

  9. Effect of photocatalytic reduction of carbon dioxide by N-Zr co-doped nano TiO2.

    PubMed

    Zhang, Ru; Wang, Li; Kang, Zhuo; Li, Qiang; Pan, Huixian

    2017-11-01

    Modified sol-gel method was adopted to prepare TiO 2 , Zr-TiO 2 and N/Zr-TiO 2 composite catalyst. The as-synthesized photocatalysts were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Brunner- Emmet- Teller measurement and UV-Vis diffuse reflectance spectroscopy. And the photocatalytic performance toward CO 2 reduction was evaluated under ultraviolet light. The catalyst particles were demonstrated in the nanometer level size. When N and Zr are co-doped, on the one hand, Ti 4+ can be replaced by Zr 4  +, which leads to lattice distortion and inhibits electron-hole recombination. On the other hand, N enters into TiO 2 lattice gap to form O-Ti-N bond structure, and partial Ti 4+ are reduced to Ti 3+ . Compared with pristine TiO 2 , the specific surface area and the band gap of N/Zr-TiO 2 were improved and reduced, respectively. The N and Zr synergistically contribute to the obviously strengthened absorption intensity in visible region, as well as significantly improved photocatalytic activity. In the gas phase reactor, when the calcination temperature was 550°C, 0.125N/0.25Zr-TiO 2 composite performed the highest photocatalytic activity UV irradiation for 8 h, and the corresponding CH 4 yield was 11.837 µmol/g, which was 87.8% higher than that of pristine TiO 2 . For the visible light, the CH 4 yield was 9.003 µmol/g after 8 h irradiation, which was 83.9% higher than that of pristine TiO 2 .

  10. Biocompatibility of peritoneal dialysis fluids: long-term exposure of nonuremic rats.

    PubMed

    Musi, Barbara; Braide, Magnus; Carlsson, Ola; Wieslander, Anders; Albrektsson, Ann; Ketteler, Markus; Westenfeld, Ralf; Floege, Jürgen; Rippe, Bengt

    2004-01-01

    Long-term peritoneal dialysis (PD) leads to structural and functional changes in the peritoneum. The aim of the present study was to investigate the long-term effects of PD fluid components, glucose and glucose degradation products (GDP), and lactate-buffered solution on morphology and transport characteristics in a nonuremic rat model. Rats were subjected to two daily intraperitoneal injections (20 mL/day) during 12 weeks of one of the following: commercial PD fluid (Gambrosol, 4%; Gambro AB, Lund, Sweden), commercial PD fluid with low GDP levels (Gambrosol trio, 4%; Gambro AB), sterile-filtered PD fluid (4%) without GDP, or a glucose-free lactate-buffered PD fluid. Punctured and untreated controls were used. Following exposure, the rats underwent a single 4-hour PD dwell (30 mL, 4% glucose) to determine peritoneal function. Additionally, submesothelial tissue thickness, percentage of high mesothelial cells (perpendicular diameter > 2 microm), vascular density, vascular endothelial growth factor (VEGF), and transforming growth factor (TGF) beta1 mRNA expression were determined. Submesothelial collagen concentration was estimated by van Gieson staining. Submesothelial tissue thickness and vascular density, mediated by VEGF and TGFbeta production, in the diaphragmatic peritoneum increased significantly in rats exposed to any PD fluid. Gambrosol induced a marked increased fibrosis of the hepatic peritoneum. A significant increase in high mesothelial cells was observed in the Gambrosol group only. Net ultrafiltration was reduced in the Gambrosol and in the glucose-free groups compared to untreated controls. Small solute transport was unchanged, but all groups exposed to fluids showed significantly increased lymph flow. Our results show that long-term exposure to different components of PD fluids leads to mesothelial cell damage, submesothelial fibrosis, and neoangiogenesis. Mesothelial cell damage could be connected to the presence of GDP; the other changes were

  11. Polyacrylonitrile block copolymers for the preparation of a thin carbon coating around TiO2 nanorods for advanced lithium-ion batteries.

    PubMed

    Oschmann, Bernd; Bresser, Dominic; Tahir, Muhammad Nawaz; Fischer, Karl; Tremel, Wolfgang; Passerini, Stefano; Zentel, Rudolf

    2013-11-01

    Herein, a new method for the realization of a thin and homogenous carbonaceous particle coating, made by carbonizing RAFT polymerization derived block copolymers anchored on anatase TiO2 nanorods, is presented. These block copolymers consist of a short anchor block (based on dopamine) and a long, easily graphitizable block of polyacrylonitrile. The grafting of such block copolymers to TiO2 nanorods creates a polymer shell, which can be visualized by atomic force microscopy (AFM). Thermal treatment at 700 °C converts the polyacrylonitrile block to partially graphitic structures (as determined by Raman spectroscopy), establishing a thin carbon coating (as determined by transmission electron microscopy, TEM, analysis). The carbon-coated TiO2 nanorods show improved electrochemical performance in terms of achievable specific capacity and, particularly, long-term cycling stability by reducing the average capacity fading per cycle from 0.252 mAh g(-1) to only 0.075 mAh g(-1) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Comparing Acute Effects of a Nano-TiO2 Pigment on Cosmopolitan Freshwater Phototrophic Microbes Using High-Throughput Screening

    PubMed Central

    Binh, Chu Thi Thanh; Peterson, Christopher G.; Tong, Tiezheng; Gray, Kimberly A.; Gaillard, Jean-François; Kelly, John J.

    2015-01-01

    Production of titanium-dioxide nanomaterials (nano-TiO2) is increasing, leading to potential risks associated with unintended release of these materials into aquatic ecosystems. We investigated the acute effects of nano-TiO2 on metabolic activity and viability of algae and cyanobacteria using high-throughput screening. The responses of three diatoms (Surirella angusta, Cocconeis placentula, Achnanthidium lanceolatum), one green alga (Scenedesmus quadricauda), and three cyanobacteria (Microcystis aeruginosa, Gloeocapsa sp., Synechococcus cedrorum) to short-term exposure (15 to 60 min) to a common nano-TiO2 pigment (PW6; average crystallite size 81.5 nm) with simulated solar illumination were assessed. Five concentrations of nano-TiO2 (0.5, 2.5, 5, 10, and 25 mg L-1) were tested and a fluorescent reporter (fluorescein diacetate) was used to assess metabolic activity. Algae were sensitive to nano-TiO2, with all showing decreased metabolic activity after 30-min exposure to the lowest tested concentration. Microscopic observation of algae revealed increased abundance of dead cells with nano-TiO2 exposure. Cyanobacteria were less sensitive to nano-TiO2 than algae, with Gloeocapsa showing no significant decrease in activity with nano-TiO2 exposure and Synechococcus showing an increase in activity. These results suggest that nanomaterial contamination has the potential to alter the distribution of phototrophic microbial taxa within freshwater ecosystems. The higher resistance of cyanobacteria could have significant implications as cyanobacteria represent a less nutritious food source for higher trophic levels and some cyanobacteria can produce toxins and contribute to harmful algal blooms. PMID:25923116

  13. Constructing hierarchical submicrotubes from interconnected TiO2 nanocrystals for high reversible capacity and long-life lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Xin, Ling; Liu, Yong; Li, Baojun; Zhou, Xiang; Shen, Hui; Zhao, Wenxia; Liang, Chaolun

    2014-03-01

    Here, we report a facile hydrothermal approach for synthesizing anatase TiO2 hierarchical mesoporous submicrotubes (ATHMSs) with the aid of long-chain polymer as soft template. The TiO2 nanocrystals, with sizes of 6-8 nm, are well interconnected with each other to build tubular architectures with diameters of 0.3-1.5 μm and lengths of 10-25 μm. Such highly porous structures give rise to very large specific surface area of 201.9 m2 g-1 and 136.8 m2 g-1 for the as-prepared and annealed samples, respectively. By using structurally stable ATHMSs as anode materials for lithium-ion batteries, they exhibited high reversible capacity, long cycling life and excellent cycling stability. Even after 1000 cycles, such ATHMS electrodes retained a reversible discharge capacity as high as 150 mAh g-1 at the current density of 1700 mA g-1, maintaining 92% of the initial discharge capacity (163 mAh g-1).

  14. Long-Term Exposure to Environmental Concentrations of the Pharmaceutical Ethynylestradiol Causes Reproductive Failure in Fish

    PubMed Central

    Nash, Jon P.; Kime, David E.; Van der Ven, Leo T. M.; Wester, Piet W.; Brion, François; Maack, Gerd; Stahlschmidt-Allner, Petra; Tyler, Charles R.

    2004-01-01

    Heightened concern over endocrine-disrupting chemicals is driven by the hypothesis that they could reduce reproductive success and affect wildlife populations, but there is little evidence for this expectation. The pharmaceutical ethynylestradiol (EE2) is a potent endocrine modulator and is present in the aquatic environment at biologically active concentrations. To investigate impacts on reproductive success and mechanisms of disruption, we exposed breeding populations (n = 12) of zebrafish (Danio rerio) over multiple generations to environmentally relevant concentrations of EE2. Life-long exposure to 5 ng/L EE2 in the F1 generation caused a 56% reduction in fecundity and complete population failure with no fertilization. Conversely, the same level of exposure for up to 40 days in mature adults in the parental F0 generation had no impact on reproductive success. Infertility in the F1 generation after life-long exposure to 5 ng/L EE2 was due to disturbed sexual differentiation, with males having no functional testes and either undifferentiated or inter-sex gonads. These F1 males also showed a reduced vitellogenic response when compared with F0 males, indicating an acclimation to EE2 exposure. Depuration studies found only a partial recovery in reproductive capacity after 5 months. Significantly, even though the F1 males lacked functional testes, they showed male-pattern reproductive behavior, inducing the spawning act and competing with healthy males to disrupt fertilization. Endocrine disruption is therefore likely to affect breeding dynamics and reproductive success in group-spawning fish. Our findings raise major concerns about the population-level impacts for wildlife of long-term exposure to low concentrations of estrogenic endocrine disruptors. PMID:15579420

  15. Response of Simulated Drinking Water Biofilm Mechanical and Structural Properties to Long-Term Disinfectant Exposure.

    PubMed

    Shen, Yun; Huang, Conghui; Monroy, Guillermo L; Janjaroen, Dao; Derlon, Nicolas; Lin, Jie; Espinosa-Marzal, Rosa; Morgenroth, Eberhard; Boppart, Stephen A; Ashbolt, Nicholas J; Liu, Wen-Tso; Nguyen, Thanh H

    2016-02-16

    Mechanical and structural properties of biofilms influence the accumulation and release of pathogens in drinking water distribution systems (DWDS). Thus, understanding how long-term residual disinfectants exposure affects biofilm mechanical and structural properties is a necessary aspect for pathogen risk assessment and control. In this study, elastic modulus and structure of groundwater biofilms was monitored by atomic force microscopy (AFM) and optical coherence tomography (OCT) during three months of exposure to monochloramine or free chlorine. After the first month of disinfectant exposure, the mean stiffness of monochloramine- or free-chlorine-treated biofilms was 4 to 9 times higher than those before treatment. Meanwhile, the biofilm thickness decreased from 120 ± 8 μm to 93 ± 6-107 ± 11 μm. The increased surface stiffness and decreased biofilm thickness within the first month of disinfectant exposure was presumably due to the consumption of biomass. However, by the second to third month during disinfectant exposure, the biofilm mean stiffness showed a 2- to 4-fold decrease, and the biofilm thickness increased to 110 ± 7-129 ± 8 μm, suggesting that the biofilms adapted to disinfectant exposure. After three months of the disinfectant exposure process, the disinfected biofilms showed 2-5 times higher mean stiffness (as determined by AFM) and 6-13-fold higher ratios of protein over polysaccharide, as determined by differential staining and confocal laser scanning microscopy (CLSM), than the nondisinfected groundwater biofilms. However, the disinfected biofilms and nondisinfected biofilms showed statistically similar thicknesses (t test, p > 0.05), suggesting that long-term disinfection may not significantly remove net biomass. This study showed how biofilm mechanical and structural properties vary in response to a complex DWDS environment, which will contribute to further research on the risk assessment and control of biofilm-associated-pathogens in DWDS.

  16. Assessment of seasonality in exposure to dioxins, furans and dioxin-like PCBs by using long-term food-consumption data.

    PubMed

    Feinberg, M; Soler, L; Contenot, S; Verger, P

    2011-04-01

    According to the European Food Safety Authority (EFSA) guidance related to uncertainties in dietary exposure assessment, exposure assessment based on short-term food-consumption surveys, such as 24-h recalls or 2-day records, tend to overestimate long-term exposure because of the assumption that the dietary pattern will be similar day after day over a lifetime. The aim of this study was to make an assessment of dietary exposure to polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), also called 'dioxins' and 'dioxin-like PCBs', using long-term household purchase and consumption survey data collected by TNS-Secodip. Weekly purchases of the major dioxins and dl-PCB vector products of these contaminants were collected for 328 single-person households, who participated at TNS-Secodip consumption surveys from 2003 to 2005 and who were single-person households in order to estimate better their consumption. These data were combined with average contamination levels of food products. Weekly gross average exposure was estimated at 10.2 pg toxic equivalent (WHO TEQ) kg(-1) bw week(-1) (95% confidence interval [9.6, 10.9]). According to the typical shape of the distribution of individual weekly exposures, it is sensible to fit an exponential law to these data. The mean was therefore 12.1 pg WHO TEQ kg(-1) bw week(-1). This value is higher than the arithmetic mean because it better takes into account inter-individual variability. It was estimated that about 20% of persons in this sample were exceeding the current health-based guidance value mainly due to high consumption of seafood and/or dairy products. Thanks to long survey duration (3 years) and the weekly recording of food consumption, it was possible to demonstrate the actual seasonality of dietary exposure to dioxins and dl-PCBs with a maximum between March and September; similar seasonality is observable for fish consumption. Autoregressive integrated moving average (ARIMA) models were

  17. Phototoxicity of TiO2 Nanoparticles to Two Aquatic Species: Daphnia magna and Zebrafish (Danio rerio) Embryo

    EPA Science Inventory

    Ecotoxicological studies on TiO2 nanoparticles (nano-TiO2) are expanding rapidly due to their widespread use in both industrial and consumer products. However, few studies have focused on their potential phototoxicity related to the photocatalytic property of the material. In thi...

  18. LONG TERM RESPONSE OF RATS TO SINGLE INTRATRACHEAL EXPOSURE OF LIBBY AMPHIBOLE (LA) OR AMOSITE

    EPA Science Inventory

    In former mine workers of Libby, Montana, exposure to amphibole-contaminated vermiculite has been associated with increased incidences of asbestosis and mesothelioma. In this study, we investigated long term effects of Libby amphibole (LA) exposure in a rat model. Rat respirable ...

  19. Long-term effects of exposure to methamphetamine in adolescent rats.

    PubMed

    Ye, Tony; Pozos, Hilda; Phillips, Tamara J; Izquierdo, Alicia

    2014-05-01

    Flexible cognition is a set of processes mediated by the prefrontal cortex (PFC), an area of the brain that continues to develop during adolescence and into adulthood. Adult rodents exhibit impairments specific to reversal learning across various dosing regimens of methamphetamine (mAMPH). For adolescent rodents, ongoing PFC development can be assessed by discrimination reversal learning, a task dependent on frontostriatal integrity. The task may also index an increased vulnerability for mAMPH sampling in adulthood. The purpose of the present study was to investigate the long-term effects of escalating, adolescent mAMPH exposure on reversal learning, a PFC-dependent task (Experiment 1) and the likelihood of later sampling of mAMPH in adulthood (Experiment 2). Unlike previous research in adult-treated rats, our results show more generalized learning impairments after adolescent mAMPH exposure to include both attenuated visual discrimination as well as reversal learning. Additionally, we found that rats pre-exposed to mAMPH during adolescence consumed significantly more drug in adulthood. Intake of mAMPH was positively correlated with this learning. Taken together, these findings show that even modest exposure to mAMPH during adolescence may induce general learning impairments in adulthood, and an enduring sensitivity to the effects of mAMPH. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Long-term effects of exposure to methamphetamine in adolescent rats

    PubMed Central

    Ye, Tony; Pozos, Hilda; Phillips, Tamara J.; Izquierdo, Alicia

    2014-01-01

    Background Flexible cognition is a set of processes mediated by the prefrontal cortex (PFC), an area of the brain that continues to develop during adolescence and into adulthood. Adult rodents exhibit impairments specific to reversal learning across various dosing regimens of methamphetamine (mAMPH). For adolescent rodents, ongoing PFC development can be assessed by discrimination reversal learning, a task dependent on frontostriatal integrity. The task may also index an increased vulnerability for mAMPH sampling in adulthood. Methods The purpose of the present study was to investigate the long-term effects of escalating, adolescent mAMPH exposure on reversal learning, a PFC-dependent task (Experiment 1) and the likelihood of later sampling of mAMPH in adulthood (Experiment 2). Results Unlike previous research in adult-treated rats, our results show more generalized learning impairments after adolescent mAMPH exposure to include both attenuated visual discrimination as well as reversal learning. Additionally, we found that rats pre-exposed to mAMPH during adolescence consumed significantly more drug in adulthood. Intake of mAMPH was positively correlated with this learning. Conculsion Taken together, these findings show that even modest exposure to mAMPH during adolescence may induce general learning impairments in adulthood, and an enduring sensitivity to the effects of mAMPH. PMID:24629630

  1. TiO2 nanoparticles in seawater: Aggregation and interactions with the green alga Dunaliella tertiolecta.

    PubMed

    Morelli, Elisabetta; Gabellieri, Edi; Bonomini, Alessandra; Tognotti, Danika; Grassi, Giacomo; Corsi, Ilaria

    2018-02-01

    Titanium dioxide nanoparticles (TiO 2 NPs) have been widely employed in industrial applications, thus rising concern about their impact in the aquatic environment. In this study we investigated the chemical behaviour of TiO 2 NPs in the culture medium and its effect on the green alga Dunaliella tertiolecta, in terms of growth inhibition, oxidative stress, ROS (Reactive Oxygen Species) accumulation and chlorophyll content. In addition, the influence of exopolymeric substances (EPS) excreted by the microalgae on the stability of NPs has been evaluated. The physicochemical characterization showed a high propensity of TiO 2 NPs to form micrometric-sized aggregates within 30min, large enough to partially settle to the bottom of the test vessel. Indeed, an increasing amount of TiO 2 particles settled out with time, but the presence of EPS seemed to mitigate this behaviour in the first 6h of exposure where the main effects in D. tertiolecta were observed. TiO 2 NPs did not inhibit the 72-h growth rate of D. tertiolecta, nor affected the cellular chlorophyll concentration in the range 0.01-10mgL -1 . The time-course of ROS production showed an initial transient increase of ROS in TiO 2 NP-exposed algae compared to the control, concomitant with an enhancement of catalase activity. Interestingly, intracellular ROS was a small fraction of total ROS, the highest amount being extracellular. The occurrence of cell-mediated chemical transformations of TiO 2 NPs in the external medium, related to the presence of EPS, has been evaluated. Our results showed that carbohydrates were the major component of EPS, whereas proteins of medium molecular weight (20-80kDa) were preferentially bound to TiO 2 NPs, likely influencing their biological fate. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Method for simultaneous imaging of endogenous low molecular weight metabolites in mouse brain using TiO2 nanoparticles in nanoparticle-assisted laser desorption/ionization-imaging mass spectrometry.

    PubMed

    Shrivas, Kamlesh; Hayasaka, Takahiro; Sugiura, Yuki; Setou, Mitsutoshi

    2011-10-01

    We report the detection of a group of endogenous low molecular weight metabolites (LMWM) in mouse brain (80-500 Da) using TiO(2) nanoparticles (NPs) in nanoparticle-assisted laser desorption/ionization-imaging mass spectrometry (Nano-PALDI-IMS) without any washing and separation step prior to MS analysis. The identification of metabolites using TiO(2) NPs was compared with a conventional organic matrix 2,5-dihydroxybenzoic acid (DHB) where signals of 179 molecules were specific to TiO(2) NPs, 4 were specific to DHB, and 21 were common to both TiO(2) NPs and DHB. The use of TiO(2) NPs enabled the detection of a higher number of LMWM as compared to DHB and gold NPs as a matrix. This approach is a simple, inexpensive, washing, and separation free for imaging and identification of LMWM in mouse brain. We believe that the biochemical information from distinct regions of the brain using a Nano-PALDI-IMS will be helpful in elucidating the imbalances linked with diseases in biomedical samples.

  3. Differential Growth of and Nanoscale TiO2 Accumulation in Tetrahymena thermophila by Direct Feeding versus Trophic Transfer from Pseudomonas aeruginosa

    PubMed Central

    Mielke, Randall E.; Priester, John H.; Werlin, Rebecca A.; Gelb, Jeff; Horst, Allison M.; Orias, Eduardo

    2013-01-01

    Nanoscale titanium dioxide (TiO2) is increasingly used in consumer goods and is entering waste streams, thereby exposing and potentially affecting environmental microbes. Protozoans could either take up TiO2 directly from water and sediments or acquire TiO2 during bactivory (ingestion of bacteria) of TiO2-encrusted bacteria. Here, the route of exposure of the ciliated protozoan Tetrahymena thermophila to TiO2 was varied and the growth of, and uptake and accumulation of TiO2 by, T. thermophila were measured. While TiO2 did not affect T. thermophila swimming or cellular morphology, direct TiO2 exposure in rich growth medium resulted in a lower population yield. When TiO2 exposure was by bactivory of Pseudomonas aeruginosa, the T. thermophila population yield and growth rate were lower than those that occurred during the bactivory of non-TiO2-encrusted bacteria. Regardless of the feeding mode, T. thermophila cells internalized TiO2 into their food vacuoles. Biomagnification of TiO2 was not observed; this was attributed to the observation that TiO2 appeared to be unable to cross the food vacuole membrane and enter the cytoplasm. Nevertheless, our findings imply that TiO2 could be transferred into higher trophic levels within food webs and that the food web could be affected by the decreased growth rate and yield of organisms near the base of the web. PMID:23851096

  4. The highly efficient photocatalytic and light harvesting property of Ag-TiO2 with negative nano-holes structure inspired from cicada wings.

    PubMed

    Zada, Imran; Zhang, Wang; Zheng, Wangshu; Zhu, Yuying; Zhang, Zhijian; Zhang, Jianzhong; Imtiaz, Muhammad; Abbas, Waseem; Zhang, Di

    2017-12-08

    The negative replica of biomorphic TiO 2 with nano-holes structure has been effectively fabricated directly from nano-nipple arrays structure of cicada wings by using a simple, low-cost and highly effective sol-gel ultrasonic method. The nano-holes array structure was well maintained after calcination in air at 500 °C. The Ag nanoparticles (10 nm-25 nm) were homogeneously decorated on the surface and to the side wall of nano-holes structure. It was observed that the biomorphic Ag-TiO 2 showed remarkable photocatalytic activity by degradation of methyl blue (MB) under UV-vis light irradiation. The biomorphic Ag-TiO 2 with nano-holes structure showed superior photocatalytic activity compared to the biomorphic TiO 2 and commercial Degussa P25. This high-performance photocatalytic activity of the biomorphic Ag-TiO 2 may be attributed to the nano-holes structure, localized surface plasmon resonance (LSPR) property of the Ag nanoparticles, and enhanced electron-hole separation. Moreover, the biomorphic Ag-TiO 2 showed more absorption capability in the visible wavelength range. This work provides a new insight to design such a structure which may lead to a range of novel applications.

  5. Reactivation and reuse of TiO2-SnS2 composite catalyst for solar-driven water treatment.

    PubMed

    Kovacic, Marin; Kopcic, Nina; Kusic, Hrvoje; Stangar, Urska Lavrencic; Dionysiou, Dionysios D; Bozic, Ana Loncaric

    2018-01-01

    One of the most important features of photocatalytic materials intended to be used for water treatment is their long-term stability. The study is focused on the application of thermal and chemical treatments for the reactivation of TiO 2 -SnS 2 composite photocatalyst, prepared by hydrothermal synthesis and immobilized on the glass support using titania/silica binder. Such a catalytic system was applied in solar-driven treatment, solar/TiO 2 -SnS 2 /H 2 O 2 , for the purification of water contaminated with diclofenac (DCF). The effectiveness of studied reactivation methods for retaining TiO 2 -SnS 2 activity in consecutive cycles was evaluated on basis of DCF removal and conversion, and TOC removal and mineralization of organic content. Besides these water quality parameters, biodegradability changes in DCF aqueous solution treated by solar/TiO 2 -SnS 2 /H 2 O 2 process using simply reused (air-dried) and thermally and chemically reactivated composite photocatalyst through six consecutive cycles were monitored. It was established that both thermal and chemical reactivation retain TiO 2 -SnS 2 activity in the second cycle of its reuse. However, both treatments caused the alteration in the TiO 2 -SnS 2 morphology due to the partial transformation of visible-active SnS 2 into non-active SnO 2 . Such alteration, repeated through consecutive reactivation and reuse, was reflected through gradual activity loss of TiO 2 -SnS 2 composite in applied solar-driven water treatment.

  6. Nitrifying moving bed biofilm reactor (MBBR) biofilm and biomass response to long term exposure to 1 °C.

    PubMed

    Hoang, V; Delatolla, R; Abujamel, T; Mottawea, W; Gadbois, A; Laflamme, E; Stintzi, A

    2014-02-01

    This study aims to investigate moving bed biofilm reactor (MBBR) nitrification rates, nitrifying biofilm morphology, biomass viability as well as bacterial community shifts during long-term exposure to 1 °C. Long-term exposure to 1 °C is the key operational condition for potential ammonia removal upgrade units to numerous northern region treatment systems. The average laboratory MBBR ammonia removal rate after long-term exposure to 1 °C was measured to be 18 ± 5.1% as compared to the average removal rate at 20 °C. Biofilm morphology and specifically the thickness along with biomass viability at various depths in the biofilm were investigated using variable pressure electron scanning microscope (VPSEM) imaging and confocal laser scanning microscope (CLSM) imaging in combination with viability live/dead staining. The biofilm thickness along with the number of viable cells showed significant increases after long-term exposure to 1 °C. Hence, this study observed nitrifying bacteria with higher activities at warm temperatures and a slightly greater quantity of nitrifying bacteria with lower activities at cold temperatures in nitrifying MBBR biofilms. Using DNA sequencing analysis, Nitrosomonas and Nitrosospira (ammonia oxidizers) as well as Nitrospira (nitrite oxidizer) were identified and no population shift was observed between 20 °C and after long-term exposure to 1 °C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Salinity mediates the toxic effect of nano-TiO2 on the juvenile olive flounder Paralichthys olivaceus.

    PubMed

    Huang, Xizhi; Lan, Yawen; Liu, Zekang; Huang, Wei; Guo, Qindan; Liu, Liping; Hu, Menghong; Sui, Yanming; Wu, Fangli; Lu, Weiqun; Wang, Youji

    2018-06-04

    Increased production of engineered nanoparticles has raised extensive concern about the potential toxic effects on marine organisms living in estuarine and coastal environments. Meanwhile, salinity is one of the key environmental factors that may influence the physiological activities in flatfish species inhabiting in those waters due to fluctuations caused by freshwater input or rainfall. In this study, we investigated the oxidative stress and histopathological alteration of the juvenile Paralichthys olivaceus exposed to nano-TiO 2 (1 and 10 mg L -1 ) under salinities of 10 and 30 psu for 4 days. In the gills, Na + -K + -ATPase activity significantly deceased after 4 days 10 psu exposure without nano-TiO 2 compared with 1 day of acclimating the salinity from the normal salinity (30 psu) to 10 psu. Under this coastal salinity, low concentration (1 mg L -1 ) of nano-TiO 2 exerted significant impacts. In the liver, the activities of superoxide dismutase, catalase, the levels of lipid peroxide and malondialdehyde increased with nano-TiO 2 exposed under 30 psu. Such increase indicated an oxidative stress response. The result of the integrated biomarker responses showed that P. olivaceus can be adversely affected by high salinity and high concentration of nano-TiO 2 for a short-term (4 days) exposure. The histological analysis revealed the accompanying severe damages for the gill filaments. Principal component analysis further showed that the oxidative stress was associated with the nano-TiO 2 effect at normal salinity. These findings indicated that nano-TiO 2 and normal salinity exert synergistic effects on juvenile P. olivaceus, and low salinity plays a protective role in its physiological state upon short-term exposure to nano-TiO 2 . The mechanism of salinity mediating the toxic effects of NPs on estuarine fish should be further considered. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Differential effects of short- and long-term zolpidem treatment on recombinant α1β2γ2s subtype of GABAA receptors in vitro

    PubMed Central

    Vlainić, Josipa; Jembrek, Maja Jazvinšćak; Vlainić, Toni; Štrac, Dubravka Švob; Peričić, Danka

    2012-01-01

    Aim: Zolpidem is a non-benzodiazepine agonist at benzodiazepine binding site in GABAA receptors, which is increasingly prescribed. Recent studies suggest that prolonged zolpidem treatment induces tolerance. The aim of this study was to explore the adaptive changes in GABAA receptors following short and long-term exposure to zolpidem in vitro. Methods: Human embryonic kidney (HEK) 293 cells stably expressing recombinant α1β2γ2s GABAA receptors were exposed to zolpidem (1 and 10 μmol/L) for short-term (2 h daily for 1, 2, or 3 consecutive days) or long-term (continuously for 48 h). Radioligand binding studies were used to determine the parameters of [3H]flunitrazepam binding sites. Results: A single (2 h) or repeated (2 h daily for 2 or 3 d) short-term exposure to zolpidem affected neither the maximum number of [3H]flunitrazepam binding sites nor the affinity. In both control and short-term zolpidem treated groups, addition of GABA (1 nmol/L–1 mmol/L) enhanced [3H]flunitrazepam binding in a concentration-dependent manner. The maximum enhancement of [3H]flunitrazepam binding in short-term zolpidem treated group was not significantly different from that in the control group. In contrast, long-term exposure to zolpidem resulted in significantly increase in the maximum number of [3H]flunitrazepam binding sites without changing the affinity. Furthermore, long-term exposure to zolpidem significantly decreased the ability of GABA to stimulate [3H]flunitrazepam binding. Conclusion: The results suggest that continuous, but not intermittent and short-term, zolpidem-exposure is able to induce adaptive changes in GABAA receptors that could be related to the development of tolerance and dependence. PMID:22922343

  9. Mechanism of strong visible light photocatalysis by Ag2O-nanoparticle-decorated monoclinic TiO2(B) porous nanorods

    NASA Astrophysics Data System (ADS)

    Paul, Kamal Kumar; Ghosh, Ramesh; Giri, P. K.

    2016-08-01

    We report on the ultra-high rate of photodegradation of organic dyes under visible light illumination on Ag2O-nanoparticle-decorated (NP) porous pure B-phase TiO2 (TiO2(B)) nanorods (NRs) grown by a solvothermal route. The as-grown TiO2(B) NRs are found to be nanoporous in nature and the Ag2O NPs are uniformly decorated over its surface, since most of the pores work as nucleation sites for the growth of Ag2O NPs. The effective band gap of the TiO2(B)/Ag2O heterostructure (HS), with a weight ratio of 1:1, has been significantly reduced to 1.68 eV from the pure TiO2(B) band gap of 2.8 eV. Steady state and time-resolved photoluminescence (PL) studies show the reduced intensity of visible PL and slower recombination dynamics in the HS samples. The photocatalytic degradation efficiency of the TiO2(B)/Ag2O HS has been investigated using aqueous methyl orange and methylene blue as reference dyes under visible light (390-800 nm) irradiation. It is found that photodegradation by the TiO2(B)/Ag2O HS is about one order of magnitude higher than that of bare TiO2(B) NRs and Ag2O NPs. The optimized TiO2(B)/Ag2O HS exhibited the highest photocatalytic efficiency, with 88.2% degradation for 30 min irradiation. The corresponding first order degradation rate constant is 0.071 min-1, which is four times higher than the reported values. Furthermore, cyclic stability studies show the high stability of the HS photocatalyst for up to four cycles of use. The major improvement in photocatalytic efficiency has been explained on the basis of enhanced visible light absorption and band-bending-induced efficient charge separation in the HS. Our results demonstrate the long-term stability and superiority of the TiO2(B)/Ag2O HS over the bare TiO2(B) NRs and other TiO2-based photocatalysts for its cutting edge application in hydrogen production and environmental cleaning driven by solar light photocatalysis.

  10. DEVELOMENT AND EVALUATION OF A MODEL FOR ESTIMATING LONG-TERM AVERAGE OZONE EXPOSURES TO CHILDREN

    EPA Science Inventory

    Long-term average exposures of school-age children can be modelled using longitudinal measurements collected during the Harvard Southern California Chronic Ozone Exposure Study over a 12-month period: June, 1995-May, 1996. The data base contains over 200 young children with perso...

  11. Effects of Long Term Exposure of 900-1800 MHz Radiation Emitted from 2G Mobile Phone on Mice Hippocampus- A Histomorphometric Study.

    PubMed

    Mugunthan, Narayanaperumal; Shanmugasamy, Kathirvelu; Anbalagan, Jayaram; Rajanarayanan, Swamynathan; Meenachi, Swamynathan

    2016-08-01

    The advancement in the telecommunications technology with multi-functional added features in mobile phone, attracts more users of all age group. It is alarming to note that, the mobile phone use has increased amongst children and they are exposed to potentially harmful radiofrequency radiation in their lifetime. To investigate the long term exposure of 900 to 1800 MHz radiations emitted from 2G mobile phone in mice hippocampus at histomorphometric level. With due approval from institutional animal ethics committee, 36 mice were exposed to 2G mobile phone radiation, 48 minutes per day for a period of 30-180 days. The control group was kept under similar conditions without 2G exposure. Mice were sacrificed and the brain was removed from the first month to six months period. Brain was removed from the cranial cavity and hippocampus region was dissected out carefully and processed for routine histological study. Random serial sections were analysed under microscope for histomorphometric changes. For statistical analysis, independent t-test was used for comparing control and 2G exposed groups. The mean density of neurons in the hippocampus regions CA1, CA2 and DGDB from first to sixth month was significantly lower in the 2G exposed groups; however, in CA3 and DGVB, the 2G exposed mice showed significantly higher density of neurons. The mean nuclear diameter of neurons in the hippocampus region of CA1, CA2, CA3, DGDB and DGVB from first to sixth months showed lower nuclear diameter in 2G exposed mice. The long term exposure to 900-1800 MHz frequency radiations emitted from 2G mobile phone could cause significantly reduced neuron density and decreased nuclear diameter in the hippocampus neurons of mice.

  12. Effects of Long Term Exposure of 900-1800 MHz Radiation Emitted from 2G Mobile Phone on Mice Hippocampus- A Histomorphometric Study

    PubMed Central

    Shanmugasamy, Kathirvelu; Anbalagan, Jayaram; Rajanarayanan, Swamynathan; Meenachi, Swamynathan

    2016-01-01

    Introduction The advancement in the telecommunications technology with multi-functional added features in mobile phone, attracts more users of all age group. It is alarming to note that, the mobile phone use has increased amongst children and they are exposed to potentially harmful radiofrequency radiation in their lifetime. Aim To investigate the long term exposure of 900 to 1800 MHz radiations emitted from 2G mobile phone in mice hippocampus at histomorphometric level. Materials and Methods With due approval from institutional animal ethics committee, 36 mice were exposed to 2G mobile phone radiation, 48 minutes per day for a period of 30-180 days. The control group was kept under similar conditions without 2G exposure. Mice were sacrificed and the brain was removed from the first month to six months period. Brain was removed from the cranial cavity and hippocampus region was dissected out carefully and processed for routine histological study. Random serial sections were analysed under microscope for histomorphometric changes. For statistical analysis, independent t-test was used for comparing control and 2G exposed groups. Results The mean density of neurons in the hippocampus regions CA1, CA2 and DGDB from first to sixth month was significantly lower in the 2G exposed groups; however, in CA3 and DGVB, the 2G exposed mice showed significantly higher density of neurons. The mean nuclear diameter of neurons in the hippocampus region of CA1, CA2, CA3, DGDB and DGVB from first to sixth months showed lower nuclear diameter in 2G exposed mice. Conclusion The long term exposure to 900-1800 MHz frequency radiations emitted from 2G mobile phone could cause significantly reduced neuron density and decreased nuclear diameter in the hippocampus neurons of mice. PMID:27656427

  13. Effects of Long-Term Thermal Exposure on Commercially Pure Titanium Grade 2 Elevated-Temperature Tensile Properties

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2012-01-01

    Elevated-temperature tensile testing of commercially pure titanium (CP Ti) Grade 2 was conducted for as-received commercially produced sheet and following thermal exposure at 550 and 650 K (531 and 711 F) for times up to 5000 h. The tensile testing revealed some statistical differences between the 11 thermal treatments, but most thermal treatments were statistically equivalent. Previous data from room temperature tensile testing was combined with the new data to allow regression and development of mathematical models relating tensile properties to temperature and thermal exposure. The results indicate that thermal exposure temperature has a very small effect, whereas the thermal exposure duration has no statistically significant effects on the tensile properties. These results indicate that CP Ti Grade 2 will be thermally stable and suitable for long-duration space missions.

  14. n/p-Type changeable semiconductor TiO2 prepared from NTA

    NASA Astrophysics Data System (ADS)

    Li, Qiuye; Wang, Xiaodong; Jin, Zhensheng; Yang, Dagang; Zhang, Shunli; Guo, Xinyong; Yang, Jianjun; Zhang, Zhijun

    2007-10-01

    A novel kind of nano-sized TiO2 (anatase) was obtained by high-temperature (400-700°C) dehydration of nanotube titanic acid (H2Ti2O4(OH)2, NTA). The high-temperature (400-700°C) dehydrated nanotube titanic acids (HD-NTAs) with a unique defect structure exhibited a p-type semiconductor behavior under visible-light irradiation (λ≥420 nm, E photon=2.95 eV), whereas exhibited an n-type semiconductor behavior irradiated with UV light (λ=365 nm, E photon=3.40 eV).

  15. The investigation of photo-induced chemiluminescence on Co2+-doped TiO2 nanoparticles and its analytical application.

    PubMed

    Li, Guixin; Nan, Hongyan; Zheng, Xingwang

    2009-07-01

    A novel space- and time-resolved photo-induced chemiluminescence (PICL) analytical method was developed based on the photocatalysis of the Co2+-doped TiO2 nanoparticles. The PICL reaction procedure under the photocatalysis of Co2+-doped TiO2 nanoparticles was investigated using cyclic voltammetry and potentiometry. Meanwhile, the effect of the electrical double layer outside the Co2+-doped TiO2 nanoparticles on the PICL was investigated by contrasting with the Co2+-doped TiO2-SiO2 core-shell nanoparticles. Significantly, the CL intensity increased apparently and the time of the CL was prolonged in the presence of procaterol hydrochloride because the mechanism of the enhanced PICL reaction may be modified. The route of the PICL was changed due to the participation of the procaterol hydrochloride enriched at the surface of the Co2+-doped TiO2-SiO2 in the PICL reaction, which prolonged the time of the CL reaction and resulted in the long-term PICL. The analytical characteristics of the proposed in-situ PICL method were investigated using the procaterol hydrochloride as the model analyte. The investigation results showed that this new PICL analytical method offered higher sensitivity to the analysis of the procaterol hydrochloride and the PICL intensity was linear with the concentration of the procaterol hydrochloride in the range from ca. 2.0 x 10(-10) to 1.0 x 10(-8) g mL(-1).

  16. Association between long-term exposure to ambient air pollution and diabetes mortality in the US.

    PubMed

    Lim, Chris C; Hayes, Richard B; Ahn, Jiyoung; Shao, Yongzhao; Silverman, Debra T; Jones, Rena R; Garcia, Cynthia; Thurston, George D

    2018-05-17

    Recent mechanistic and epidemiological evidence implicates air pollution as a potential risk factor for diabetes; however, mortality risks have not been evaluated in a large US cohort assessing exposures to multiple pollutants with detailed consideration of personal risk factors for diabetes. We assessed the effects of long-term ambient air pollution exposures on diabetes mortality in the NIH-AARP Diet and Health Study, a cohort of approximately a half million subjects across the contiguous U.S. The cohort, with a follow-up period between 1995 and 2011, was linked to residential census tract estimates for annual mean concentration levels of PM 2.5 , NO 2 , and O 3 . Associations between the air pollutants and the risk of diabetes mortality (N = 3598) were evaluated using multivariate Cox proportional hazards models adjusted for both individual-level and census-level contextual covariates. Diabetes mortality was significantly associated with increasing levels of both PM 2.5 (HR = 1.19; 95% CI: 1.03-1.39 per 10 μg/m 3 ) and NO 2 (HR = 1.09; 95% CI: 1.01-1.18 per 10 ppb). The strength of the relationship was robust to alternate exposure assessments and model specifications. We also observed significant effect modification, with elevated mortality risks observed among those with higher BMI and lower levels of fruit consumption. We found that long-term exposure to PM 2.5 and NO 2 , but not O 3 , is related to increased risk of diabetes mortality in the U.S, with attenuation of adverse effects by lower BMI and higher fruit consumption, suggesting that air pollution is involved in the etiology and/or control of diabetes. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. An animal model of female adolescent cannabinoid exposure elicits a long-lasting deficit in presynaptic long-term plasticity.

    PubMed

    Lovelace, Jonathan W; Corches, Alex; Vieira, Philip A; Hiroto, Alex S; Mackie, Ken; Korzus, Edward

    2015-12-01

    Cannabis continues to be the most accessible and popular illicit recreational drug. Whereas current data link adolescence cannabinoid exposure to increased risk for dependence on other drugs, depression, anxiety disorders and psychosis, the mechanism(s) underlying these adverse effects remains controversial. Here we show in a mouse model of female adolescent cannabinoid exposure deficient endocannabinoid (eCB)-mediated signaling and presynaptic forms of long-term depression at adult central glutamatergic synapses in the prefrontal cortex. Increasing endocannabinoid levels by blockade of monoacylglycerol lipase, the primary enzyme responsible for degrading the endocannabinoid 2-arachidonoylglycerol (2-AG), with the specific inhibitor JZL 184 ameliorates eCB-LTD deficits. The observed deficit in cortical presynaptic signaling may represent a neural maladaptation underlying network instability and abnormal cognitive functioning. Our study suggests that adolescent cannabinoid exposure may permanently impair brain functions, including the brain's intrinsic ability to appropriately adapt to external influences. Published by Elsevier Ltd.

  18. An animal model of female adolescent cannabinoid exposure elicits a long-lasting deficit in presynaptic long-term plasticity

    PubMed Central

    Lovelace, Jonathan W.; Corches, Alex; Vieira, Philip A.; Mackie, Ken; Korzus, Edward

    2015-01-01

    Cannabis continues to be the most accessible and popular illicit recreational drug. Whereas current data link adolescence cannabinoid exposure to increased risk for dependence on other drugs, depression, anxiety disorders and psychosis, the mechanism(s) underlying these adverse effects remains controversial. Here we show in a mouse model of female adolescent cannabinoid exposure a deficient endocannabinoid (eCB)-mediated signaling and presynaptic forms of long-term depression at adult central glutamatergic synapses in the prefrontal cortex. Increasing endocannabinoid levels by blockade of monoacylglycerol lipase, the primary enzyme responsible for degrading the endocannabinoid 2-arachidonoylglycerol (2-AG), with the specific inhibitor JZL184 ameliorates these deficits. The observed deficit in cortical eCB-dependent signaling may represent a neural maladaptation underlying network instability and abnormal cognitive functioning. Our study suggests that adolescent cannabinoid exposure may permanently impair brain functions, including the brain’s intrinsic ability to appropriately adapt to external influences. PMID:25979486

  19. The effect of heat treatment on superhydrophilicity of TiO2 nano thin films

    NASA Astrophysics Data System (ADS)

    Ashkarran, A. A.; Mohammadizadeh, M. R.

    2007-11-01

    TiO2 thin films were synthesized by the sol-gel method and spin coating process. The calcination temperature was changed from 100 to 550°C. XRD patterns show increasing the content of polycrystalline anatase phase with increasing the calcination temperature. The AFM results indicate granular morphology of the films, which particle size changes from 22 to 166nm by increasing the calcination temperature. The RBS, EDX and Raman spectroscopy of the films show the ratio of Ti:O ~0.5, and diffusion of sodium ions from substrate into the layer, by increasing the calcination temperature. The UV-vis spectroscopy of the films indicates a red shift by increasing the calcination temperature. The contact angle meter experiment shows that superhydrophilicity of the films depends on the formation of anatase crystal structure and diffused sodium content from substrate to the layer. The best hydrophilicity property was observed at 450°C calcination temperature, where the film is converted to a superhydrophilic surface after 10min under 2mW/cm2 UV irradiation. Water droplet on TiO2 thin film on Si(111), Si(100), and quartz substrates is spread to smaller angles rather than glass and polycrystalline Si substrates under UV irradiation.

  20. Nitrogen-doping of bulk and nanotubular TiO2 photocatalysts by plasma-assisted atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Creatore, Mariadriana; Ma, Quan-Bao; El Boukili, Aishah; Gao, Lu; Verheijen, Marcel A.; Verhoeven, M. W. G. M. (Tiny); Hensen, Emiel. J. M.

    2015-03-01

    Plasma-assisted atomic layer deposition (PA-ALD) was adopted to deposit TiO2-xNx ultrathin layers on Si wafers, calcined Ti foils and nanotubular TiO2 arrays. A range of N content and chemical bond configurations were obtained by varying the background gas (O2 or N2) during the Ti precursor exposure, while the N2/H2-fed inductively coupled plasma exposure time was varied between 2 and 20 s. On calcined Ti foils, a positive effect from N doping on photocurrent density was observed when O2 was the background gas with a short plasma exposure time (5 and 10 s). This correlates with the presence of interstitial N states in the TiO2 with a binding energy of 400 eV (Ninterst) as measured by X-ray photoelectron spectroscopy. A longer plasma time or the use of N2 as background gas results in formation of N state with a binding energy of 396 eV (Nsubst) and very low photocurrents. These Nsubst are linked to the presence of Ti3+, which act as detrimental recombination center for photo-generated electron-hole pairs. On contrary, PA-ALD treated nanotubular TiO2 arrays show no variation of photocurrent density (with respect to the pristine nanotubes) upon different plasma exposure times and when the O2 recipe was adopted. This is attributed to constant N content in the PA-ALD TiO2-xNx, regardless of the adopted recipe.

  1. Interim results of long-term environmental exposures of advanced composites for aircraft applications

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1978-01-01

    Interim results from a number of ongoing, long-term environmental effects programs for composite materials are reported. The flight service experience is evaluated for 142 composite aircraft components after more than five years and one million successful component flight hours. Ground-based outdoor exposures of composite material coupons after 3 years of exposure at five sites have reached equilibrium levels of moisture pickup which are predictable. Solar ultraviolet-induced material loss is discussed for these same exposures. No significant degradation has been observed in residual strength for either stressed or unstressed specimens, or for exposures to aviation fuels and fluids.

  2. Reduction of adsorbed As(V) on nano-TiO2 by sulfate-reducing bacteria.

    PubMed

    Luo, Ting; Ye, Li; Ding, Cheng; Yan, Jinlong; Jing, Chuanyong

    2017-11-15

    Reduction of surface-bound arsenate [As(V)] and subsequent release into the aqueous phase contribute to elevated As in groundwater. However, this natural process is not fully understood, especially in the presence of sulfate-reducing bacteria (SRB). Gaining mechanistic insights into solid-As(V)-SRB interactions motivated our molecular level study on the fate of nano-TiO 2 bound As(V) in the presence of Desulfovibrio vulgaris DP4, a strain of SRB, using incubation and in situ ATR-FTIR experiments. The incubation results clearly revealed the reduction of As(V), either adsorbed on nano-TiO 2 or dissolved, in the presence of SRB. In contrast, this As(V) reduction was not observed in abiotic control experiments where sulfide was used as the reductant. Moreover, the reduction was faster for surface-bound As(V) than for dissolved As(V), as evidenced by the appearance of As(III) at 45h and 75h, respectively. ATR-FTIR results provided direct evidence that the surface-bound As(V) was reduced to As(III) on TiO 2 surfaces in the presence of SRB. In addition, the As(V) desorption from nano-TiO 2 was promoted by SRB relative to abiotic sulfide, due to the competition between As(V) and bacterial phosphate groups for TiO 2 surface sites. This competition was corroborated by the ATR-FTIR analysis, which showed inner-sphere surface complex formation by bacterial phosphate groups on TiO 2 surfaces. The results from this study highlight the importance of indirect bacteria-mediated As(V) reduction and release in geochemical systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Inflammatory markers in relation to long-term air pollution.

    PubMed

    Mostafavi, Nahid; Vlaanderen, Jelle; Chadeau-Hyam, Marc; Beelen, Rob; Modig, Lars; Palli, Domenico; Bergdahl, Ingvar A; Vineis, Paolo; Hoek, Gerard; Kyrtopoulos, Soterios Α; Vermeulen, Roel

    2015-08-01

    Long-term exposure to ambient air pollution can lead to chronic health effects such as cancer, cardiovascular and respiratory disease. Systemic inflammation has been hypothesized as a putative biological mechanism contributing to these adverse health effects. We evaluated the effect of long-term exposure to air pollution on blood markers of systemic inflammation. We measured a panel of 28 inflammatory markers in peripheral blood samples from 587 individuals that were biobanked as part of a prospective study. Participants were from Varese and Turin (Italy) and Umea (Sweden). Long-term air pollution estimates of nitrogen oxides (NOx) were available from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Linear mixed models adjusted for potential confounders were applied to assess the association between NOx and the markers of inflammation. Long-term exposure to NOx was associated with decreased levels of interleukin (IL)-2, IL-8, IL-10 and tumor necrosis factor-α in Italy, but not in Sweden. NOx exposure levels were considerably lower in Sweden than in Italy (Sweden: median (5th, 95th percentiles) 6.65 μg/m(3) (4.8, 19.7); Italy: median (5th, 95th percentiles) 94.2 μg/m(3) (7.8, 124.5)). Combining data from Italy and Sweden we only observed a significant association between long-term exposure to NOx and decreased levels of circulating IL-8. We observed some indication for perturbations in the inflammatory markers due to long-term exposure to NOx. Effects were stronger in Italy than in Sweden, potentially reflecting the difference in air pollution levels between the two cohorts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Study on The Application of Composed TiO2-diatomite in The Removal of Phenol in Water

    NASA Astrophysics Data System (ADS)

    Liu, S.; Li, J.

    2017-10-01

    As an environmentally friendly pollution control technology, TiO2 photocatalytic technology has a broad prospect in the field of environmental protection. In this paper, composed nano-TiO2-diatomite were prepared by depositing TiO2 nanoparticles on the surface of diatomite microparticles. The nano-TiO2/diatomite composed photocatalyst is used to remove phenol in water in a specific designed reaction box under 4 different operation factors such as different reaction time, different pollutant concentration, different UV light powers and different amount of catalytic powder. The experimental results indicate that the phenol removal percentages are influenced by the reaction time most significantly, the second is the phenol concentration, the next one is the photocatalyst amount and the UV light powers’ effect is quite limited. Tthe degradation of phenol typically slows down at the reaction time about 30 or 60 minutes. Besides that, the phenol removal kinetic removal rates were also investigated.

  5. Does respiratory health contribute to the effects of long-term air pollution exposure on cardiovascular mortality?

    PubMed

    Schikowski, Tamara; Sugiri, Dorothea; Ranft, Ulrich; Gehring, Ulrike; Heinrich, Joachim; Wichmann, H-Erich; Krämer, Ursula

    2007-03-07

    There is growing epidemiological evidence that short-term and long-term exposure to high levels of air pollution may increase cardiovascular morbidity and mortality. In addition, epidemiological studies have shown an association between air pollution exposure and respiratory health. To what extent the association between cardiovascular mortality and air pollution is driven by the impact of air pollution on respiratory health is unknown. The aim of this study was to investigate whether respiratory health at baseline contributes to the effects of long-term exposure to high levels of air pollution on cardiovascular mortality in a cohort of elderly women. We analyzed data from 4750 women, aged 55 at the baseline investigation in the years 1985-1994. 2593 of these women had their lung function tested by spirometry. Respiratory diseases and symptoms were asked by questionnaire. Ambient air pollution exposure was assessed by the concentrations of NO2 and total suspended particles at fixed monitoring sites and by the distance of residency to a major road. A mortality follow-up of these women was conducted between 2001 and 2003. For the statistical analysis, Cox' regression was used. Women with impaired lung function or pre-existing respiratory diseases had a higher risk of dying from cardiovascular causes. The impact of impaired lung function declined over time. The risk ratio (RR) of women with forced expiratory volume in one second (FEV1) of less than 80% predicted to die from cardiovascular causes was RR = 3.79 (95%CI: 1.64-8.74) at 5 years survival time and RR = 1.35 (95%CI: 0.66-2.77) at 12 years. The association between air pollution levels and cardiovascular death rate was strong and statistically significant. However, this association did only change marginally when including indicators of respiratory health into the regression analysis. Furthermore, no interaction between air pollution and respiratory health on cardiovascular mortality indicating a higher risk of

  6. Facile decoration of TiO2 nanoparticles on graphene for solar degradation of organic dye

    NASA Astrophysics Data System (ADS)

    Salem, Shiva; Salem, Amin; Rezaei, Mostafa

    2016-11-01

    The reduced graphene oxide is interesting material for the synthesis of TiO2-based photocatalyst. In the present investigation, blackberry fruit, which contains high levels of anthocyanins and other phenolic compounds, was employed as a reducing agent mainly due to its high antioxidant capacity. The nano-crystalline TiO2 was decorated on different amounts of graphene oxide with sol-gel method and then the photocatalytic activity for degradation of cationic dye was evaluated by UV spectroscopy to achieve the optimum content of graphene oxide. The decoration of anatase nanoparticles on prepared reduced graphene oxide was investigated by X-ray diffraction, scanning and transmission electron microscopy techniques. The new composite gives significantly higher activity when is compared to the compositions fabricated by graphene oxide. The compact layer provides a large TiO2-graphene contact area and reduces the electron recombination. The decoration of TiO2 nanoparticles, 5-10 nm, on the graphene oxide reduced by blackberry juice further improves the dye removal. The results imply that the nanoparticle decoration is the key strategy to increase the degradation capacity.

  7. Photodecomposition of volatile organic compounds using TiO2 nanoparticles.

    PubMed

    Jwo, Ching-Song; Chang, Ho; Kao, Mu-Jnug; Lin, Chi-Hsiang

    2007-06-01

    This study examined the photodecomposition of volatile organic compounds (VOCs) using TiO2 catalyst fabricated by the Submerged Arc Nanoparticle Synthesis System (SANSS). TiO2 catalyst was employed to decompose volatile organic compounds and compare with Degussa-P25 TiO2 in terms of decomposition efficiency. In the electric discharge manufacturing process, a Ti bar, applied as the electrode, was melted and vaporized under high temperature. The vaporized Ti powders were then rapidly quenched under low-temperature and low-pressure conditions in deionized water, thus nucleating and forming nanocrystalline powders uniformly dispersed in the base solvent. The average diameter of the TiO2 nanoparticles was 20 nm. X-ray diffraction analysis confirmed that the nanoparticles in the deionized water were Anatase type TiO2. It was found that gaseous toluene exposed to UV irradiation produced intermediates that were even harder to decompose. After 60-min photocomposition, Degussa-P25 TiO2 reduced the concentration of gaseous toluene to 8.18% while the concentration after decomposition by SANSS TiO2 catalyst dropped to 0.35%. Under UV irradiation at 253.7 +/- 184.9 nm, TiO2 prepared by SANSS can produce strong chemical debonding energy, thus showing great efficiency, superior to that of Degussa-P25 TiO2, in decomposing gaseous toluene and its intermediates.

  8. Synthesis of Nano-Ilmenite (FeTiO3) doped TiO2/Ti Electrode for Photoelectrocatalytic System

    NASA Astrophysics Data System (ADS)

    Hikmawati; Watoni, A. H.; Wibowo, D.; Maulidiyah; Nurdin, M.

    2017-11-01

    Ilmenite (FeTiO3) doped on Ti and TiO2/Ti electrodes were successfully prepared by using the sol-gel method. The structure, morphology, and optical properties of FeTiO3 are characterized by XRD, UV-Vis DRS, and SEM. The FeTiO3 and TiO2 greatly affect the photoelectrocatalysis performance characterized by Linear Sweep Voltammetry (LSV) and Cyclic Voltammetry (CV). The characterization result shows a band gap of FeTiO3 is 2.94 eV. XRD data showed that FeTiO3 formed at 2θ were 35.1° (110), 49.9° (024), and 61.2° (214). The morphology of FeTiO3/Ti and FeTiO3.TiO2/Ti using SEM shows that the formation of FeTiO3 thin layer signifies the Liquid Phase Deposition method effectively in the coating process. Photoelectrochemical (PEC) test showed that FeTiO3.TiO2/Ti electrode was highly oxidation responsive under visible light compared to the FeTiO3/Ti electrodes i.e. 7.87×10-4 A and 9.87×10-5 A. Degradation test of FeTiO3/Ti and FeTiO3.TiO2/Ti electrodes on titan yellow showed that the percentages of degradation with photoelectrocatalysis at 0.5 mg/L were 41% and 43%, respectively.

  9. Long-term exposure to traffic-related particulate matter impairs cognitive function in the elderly.

    PubMed

    Ranft, Ulrich; Schikowski, Tamara; Sugiri, Dorothee; Krutmann, Jean; Krämer, Ursula

    2009-11-01

    Animal studies have suggested that fine particulate matter (PM) can translocate from the upper respiratory tract to the brain and cause brain inflammation. Brain inflammation is involved in the pathogenesis of neurodegenerative diseases. Hypothesizing therefore that long-term exposure to fine PM might contribute to the development of Alzheimer's disease (AD), the objective of this study was to investigate the association between exposure to fine PM and mild cognitive impairment (MCI) which is associated with a high risk of progression to AD. A study group of 399 women aged 68-79 years who lived for more than 20 years at the same residential address has been assessed for long-term exposure to PM and tested for MCI. The exposure assessment comprised background concentration of PM(10) and traffic-related PM indicated by the distance of the residential address to the next busy road. The women were assessed for MCI by a battery of several neuropsychological tests and their odor identification ability. Consistent effects of traffic-related air pollution exposure on test performances including a dose-response relation were found. The associations were adjusted for potential confounders using regression analysis. These results indicate that chronic exposure to traffic-related PM may be involved in the pathogenesis of AD.

  10. Competitive short-term and long-term memory processes in spatial habituation.

    PubMed

    Sanderson, David J; Bannerman, David M

    2011-04-01

    Exposure to a spatial location leads to habituation of exploration such that, in a novelty preference test, rodents subsequently prefer exploring a novel location to the familiar location. According to Wagner's (1981) theory of memory, short-term and long-term habituation are caused by separate and sometimes opponent processes. In the present study, this dual-process account of memory was tested. Mice received a series of exposure training trials to a location before receiving a novelty preference test. The novelty preference was greater when tested after a short, rather than a long, interval. In contrast, the novelty preference was weaker when exposure training trials were separated by a short, rather than a long interval. Furthermore, it was found that long-term habituation was determined by the independent effects of the amount of exposure training and the number of exposure training trials when factors such as the intertrial interval and the cumulative intertrial interval were controlled. A final experiment demonstrated that a long-term reduction of exploration could be caused by a negative priming effect due to associations formed during exploration. These results provide evidence against a single-process account of habituation and suggest that spatial habituation is determined by both short-term, recency-based memory and long-term, incrementally strengthened memory.

  11. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    PubMed Central

    Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P<0.05). No significant differences were found in cell viability percentages between the two groups on the other days (P>0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001). L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive. PMID:24578816

  12. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles.

    PubMed

    Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco's Modified Eagle's Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P<0.05). No significant differences were found in cell viability percentages between the two groups on the other days (P>0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001). L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.

  13. Structural, Electrical and Optical Properties of TiO2 Thin Film Deposited on the Nano Porous Silicon Template

    NASA Astrophysics Data System (ADS)

    Bahar, Mahmood; Dermani, Ensieh Khalili

    The porous silicon (PSi), which is produced by the electrochemical etching, has been used as a substrate for the growth of the titanium oxide (TiO2) thin films. By using the EBPVD method, TiO2 thin films have been deposited on the surface of the PSi substrate. TiO2/PSi layers were annealed at the temperature of 400∘C, 500∘C and 600∘C for different tests. The morphology and structures of layers were investigated by the scanning electron microscopy (SEM) and X-ray diffraction (XRD). The current-voltage characteristic curves of samples and the ideality factor of heterojunction were studied. The results showed that the electrical properties of the samples change with increase in the annealing temperature. The optical properties of the prepared samples were investigated by using UV-Vis and photoluminescence (PL) spectroscopy. Green light emission of the PSi combined with the blue light and violet-blue emission obtained from the TiO2/PSi PL spectra. The results showed that the optical band gap energy of the PSi has increased from 1.86eV to 2.93eV due to the deposition of TiO2 thin film.

  14. Synthesis of TiO2 by solution combustion technique by mixed fuel approach for wLED applications

    NASA Astrophysics Data System (ADS)

    Venkatesha Babu K., R.; Renuka C., G.

    2018-05-01

    Synthesis of Ce3+ (0.25-0.75 mol %) doped TiO2 nanophosphors was done by solution combustion route using combination of fuels. The structural characterization of the nanophosphor was performed by PXRD, SEM and TEM. The estimated crystallite sizes are in the nano meter scale range. The Eg of pure and doped TiO2 were 3.10 and 3.23 eV respectively were estimated from DRS data. The CIE and CCT data reveals that the nanophosphor emits pale green and is useful for wLED at a temperature 4474K.

  15. Nuclear microscopy as a tool in TiO2 nanoparticles bioaccumulation studies in aquatic species

    NASA Astrophysics Data System (ADS)

    Pinheiro, Teresa; Moita, Liliana; Silva, Luís; Mendonça, Elsa; Picado, Ana

    2013-07-01

    Engineered Titanium nanoparticles are used for a wide range of applications from coatings, sunscreen cosmetic additives to solar cells or water treatment agents. Inevitably environmental exposure can be expected and data on the ecotoxicological evaluation of nanoparticles are still scarce. The potential effects of nanoparticles of titanium dioxide (TiO2) on two model organisms, the water flea, Daphnia magna and the duckweed Lemna minor, were examined in semichronic toxicity tests. Daphnia and Lemna were exposed to TiO2 nanoparticles (average particle size value of 28 ± 11 nm (n = 42); concentration range, 1.4-25 mg/L) by dietary route and growth in medium containing the nanoparticles of TiO2, respectively. Both morphology and microdistribution of Ti in the individuals were examined by nuclear microscopy techniques. A significant amount of TiO2 was found accumulated in Daphnia exposed to nanoparticles. Nuclear microscopy imaging revealed that Ti was localized only in the digestive tract of the Daphnia, which displayed difficulty in eliminating the nanoparticles from their body. Daphnia showed higher mortality when exposed to higher concentrations of TiO2 (>10 mg/L). The exposure to TiO2 nanoparticles above 25 mg/L caused morphological alterations in Lemna. The roots became stiff and fronds colorless. The Ti mapping of cross-sections of roots and fronds showed that Ti was mainly deposited in the epidermis of the fronds and roots, with minor internalization. In summary, exposure of aquatic organisms to TiO2 nanoparticles may alter the physiology of these organisms at individual and population levels, posing risks to aquatic ecosystems.

  16. Superior environment resistance of quartz crystal microbalance with anatase TiO2/ZnO nanorod composite films

    NASA Astrophysics Data System (ADS)

    Qiang, Wei; Wei, Li; Shaodan, Wang; Yu, Bai

    2015-08-01

    The precise measurement of quartz crystal microbalance (QCM) in the detection and weighing of organic gas molecules is achieved due to excellent superhydrophobicity of a deposited film composite. Photocatalysis is utilized as a method for the self-cleaning of organic molecules on the QCM for extended long-term stability in the precision of the instrument. In this paper, ZnO nanorod array is prepared via in situ methods on the QCM coated with Au film via hydrothermal process. Subsequently, a TiO2/ZnO composite film is synthesized by surface modification with TiO2 via sol-gel methods. Results show the anatase TiO2/ZnO nanorod composite film with a sharp, pencil-like structure exhibiting excellent superhydrophobicity (water contact angle of 155°), non-sticking water properties, and an autonomous cleaning property under UV irradiation. The anatase TiO2/ZnO nanorod composite film facilitates the precise measurement and extended lifetime of the QCM for the detection of organic gas molecules.

  17. Sevoflurane exposure during the neonatal period induces long-term memory impairment but not autism-like behaviors.

    PubMed

    Chung, Woosuk; Park, Saegeun; Hong, Jiso; Park, Sangil; Lee, Soomin; Heo, Junyoung; Kim, Daesoo; Ko, Youngkwon

    2015-10-01

    To examine whether neonatal exposure to sevoflurane induces autism-like behaviors in mice. There are continuing reports regarding the potential negative effects of anesthesia on the developing brain. Recently, several studies suggest that neurotoxicity caused by anesthesia may lead to neurodevelopmental impairments. However, unlike reports focusing on learning and memory, there are only a few animal studies focusing on neurodevelopmental disorders after general anesthesia. Therefore, we have focused on autism, a representative neurodevelopmental disorder. Neonatal mice (P6-7) were exposed to a titrated dose of sevoflurane for 6 h. Apoptosis was evaluated by assessing the expression level of cleaved (activated) caspase-3. Autism-like behaviors, general activity, anxiety level, and long-term memory were evaluated with multiple behavioral assays. Western blotting confirmed that neonatal exposure to sevoflurane increased the expression level of activated caspase-3, indicative of apoptosis. Mice exposed to sevoflurane also showed impaired long-term memory in fear tests. However, sevoflurane-exposed mice did not exhibit autism-like features in all of the following assays: social interaction (three-chamber test, caged social interaction), social communication (ultrasonic vocalization test), or repetitive behavior (self-grooming test, digging). There were also no differences in general activity (open field test, home cage activity) and anxiety (open field test, light-dark box) after sevoflurane exposure. Our results confirm previous studies that neonatal sevoflurane exposure causes neurodegeneration and long-term memory impairment in mice. However, sevoflurane did not induce autism-like features. Our study suggests that mice are more vulnerable to long-term memory deficits than autism-like behaviors after exposure to sevoflurane. © 2015 John Wiley & Sons Ltd.

  18. Band edge movement and structural modifications in transition metal doped TiO2 nanocrystals for the application of DSSC

    NASA Astrophysics Data System (ADS)

    Patle, L. B.; Huse, V. R.; Chaudhari, A. L.

    2017-10-01

    Nanocrystalline undoped and transition metal ion doped (TM:Cu2+, Mn2+ and Fe3+) TiO2 nanoparticles, with 1 mol% were synthesized by a simple and cost effective modified co-precipitation method at room temperature and were successfully used as photoanode for dye sensitized solar cell (DSSC). The effect of transition metal ions into TiO2 nano crystalline powder has been systematically investigated using x-ray diffraction (XRD), UV-Vis spectroscope, scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive x-ray spectroscopy (EDX). The results of XRD confirm nanocrystalline anatase tetragonal structure of prepared undoped and TM doped TiO2 semiconductor. The influence of doping on band edge movement has been estimated using UV-visible spectroscopy. The SEM results indicate that microscopic effect of doping on morphology of the TiO2. The peaks of EDX signify incorporation of transition metal cations into TiO2 lattice. The effect of doping on flat band potential was estimated using interpolation on Mott-Schottky plot. The performances of DSSCs of undoped and doped TiO2 photoelectrodes were investigated under light illumination. In comparison with undoped and (Cu2+, Fe3+) doped TiO2 photoanodes we found that incorporation of Mn2+ into TiO2 exhibits improvement in photoconversion efficiency (η). There is increase in photoconversion efficiency of DSSCs with Mn2+ doped TiO2 by 6% as compared to that of undoped TiO2 photoanode.

  19. Visible light photoactivity of Polypropylene coated Nano-TiO2 for dyes degradation in water

    PubMed Central

    Giovannetti, R.; Amato, C. A. D’; Zannotti, M.; Rommozzi, E.; Gunnella, R.; Minicucci, M.; Di Cicco, A.

    2015-01-01

    The use of Polypropylene as support material for nano-TiO2 photocatalyst in the photodegradation of Alizarin Red S in water solutions under the action of visible light was investigated. The optimization of TiO2 pastes preparation using two commercial TiO2, Aeroxide P-25 and Anatase, was performed and a green low-cost dip-coating procedure was developed. Scanning electron microscopy, Atomic Force Microscopy and X-Ray Diffraction analysis were used in order to obtain morphological and structural information of as-prepared TiO2 on support material. Equilibrium and kinetics aspects in the adsorption and successive photodegradation of Alizarin Red S, as reference dye, are described using polypropylene-TiO2 films in the Visible/TiO2/water reactor showing efficient dyes degradation. PMID:26627118

  20. Assessing Photocatalytic Oxidation Using Modified TiO 2 Nanomaterials for Virus Inactivation in Drinking Water: Mechanisms and Application

    NASA Astrophysics Data System (ADS)

    Liga, Michael Vincent

    Photocatalytic oxidation is an alternative water treatment method under consideration for disinfecting water. Chlorine disinfection can form harmful byproducts, and some viruses (e.g. adenoviruses) are resistant to other alternative disinfection methods. Photocatalytic oxidation using nano-sized photocatalytic particles (e.g. TiO2, fullerene) holds promise; however, it is limited by its low efficiency and long required treatment times. This research focuses on improving virus inactivation by photocatalytic oxidation by modifying catalysts for improved activity, by analyzing virus inactivation kinetics, and by elucidating the inactivation mechanisms of adenovirus serotype 2 (AdV2) and bacteriophage MS2. Modifying TiO2 with silver (nAg/TiO2) or silica (SiO2-TiO2) improves the inactivation kinetics of bacteriophage MS2 by a factor of 3-10. nAg/ TiO2 increases hydroxyl radical (HO·) production while SiO2 increases the adsorption of MS2 to TiO 2. These results suggest that modifying the photocatalyst surface to increase contaminant adsorption is an important improvement strategy along with increasing HO· production. The inactivation kinetics of AdV2 by P25 TiO2 is much slower than the MS2 inactivation kinetics and displays a strong shoulder, which is not present in the MS2 kinetics. nAg/TiO2 initially improves the inactivation rate of AdV2. SiO2-TiO2 reduces the AdV2 inactivation kinetics since adsorption is not significantly enhanced, as it is with MS2. Amino-C60 is highly effective for AdV2 inactivation under visible light irradiation, making it a good material for use in solar disinfection systems. The efficacy of amino-fullerene also demonstrates that singlet oxygen is effective for AdV2 inactivation. When exposed to irradiated TiO2, AdV2 hexon proteins are heavily damaged resulting in the release of DNA. DNA damage is also present but may occur after capsids break. With MS2, the host interaction protein is rapidly damaged, but not the coat protein. The kinetics

  1. Associations of Residential Long-Term Air Pollution Exposures and Satellite-Derived Greenness with Insulin Resistance in German Adolescents

    PubMed Central

    Thiering, Elisabeth; Markevych, Iana; Brüske, Irene; Fuertes, Elaine; Kratzsch, Jürgen; Sugiri, Dorothea; Hoffmann, Barbara; von Berg, Andrea; Bauer, Carl-Peter; Koletzko, Sibylle; Berdel, Dietrich; Heinrich, Joachim

    2016-01-01

    Background: Epidemiological studies have identified associations between air pollution and green space access with type 2 diabetes in adults. However, it remains unclear to what extent associations with greenness are attributable to air pollution exposure. Objectives: We aimed to investigate associations between long-term exposure to air pollution and satellite-derived greenness with insulin resistance in adolescents. Methods: A total of 837 participants of two German birth cohorts (LISAplus and GINIplus) were included in the analysis. Generalized additive models were used to determine the association of individual satellite-derived greenness defined by the Normalized Difference Vegetation Index (NDVI), long-term air pollution exposure estimated by land-use regression (LUR) models with insulin resistance (HOMA-IR) in 15-year-old adolescents. Models were adjusted for study area, cohort, socioeconomic, and individual characteristics such as body mass index, physical activity, and smoking. Results: Increases of 2 SDs in nitrogen dioxide (NO2; 8.9 μg/m3) and particulate matter ≤ 10 μm in diameter (PM10; 6.7 μg/m3) were significantly associated with 11.4% (95% CI: 4.4, 18.9) and 11.4% (95% CI: 0.4, 23.7) higher HOMA-IR. A 2-SD increase in NDVI in a 1,000-m buffer (0.2 units) was significantly associated with a lower HOMA-IR (–7.4%; 95% CI: –13.3, –1.1). Associations tended to be stronger in adolescents who spent more time outside and in those with lower socioeconomic status. In combined models including both air pollution and greenness, only NO2 remained significantly associated with HOMA-IR, whereas effect estimates for all other exposures attenuated after adjustment for NO2. Conclusions: NO2, often considered as a marker of traffic, was independently associated with insulin resistance. The observed association between higher greenness exposure and lower HOMA-IR in adolescents might thus be attributable mainly to the lower co-exposure to traffic-related air

  2. TiO2-Based Nanoheterostructures for Promoting Gas Sensitivity Performance: Designs, Developments, and Prospects

    PubMed Central

    Wang, Yuan; Wu, Tao; Zhou, Yun; Meng, Chuanmin; Zhu, Wenjun; Liu, Lixin

    2017-01-01

    Gas sensors based on titanium dioxide (TiO2) have attracted much public attention during the past decades due to their excellent potential for applications in environmental pollution remediation, transportation industries, personal safety, biology, and medicine. Numerous efforts have therefore been devoted to improving the sensing performance of TiO2. In those effects, the construct of nanoheterostructures is a promising tactic in gas sensing modification, which shows superior sensing performance to that of the single component-based sensors. In this review, we briefly summarize and highlight the development of TiO2-based heterostructure gas sensing materials with diverse models, including semiconductor/semiconductor nanoheterostructures, noble metal/semiconductor nanoheterostructures, carbon-group-materials/semiconductor nano- heterostructures, and organic/inorganic nanoheterostructures, which have been investigated for effective enhancement of gas sensing properties through the increase of sensitivity, selectivity, and stability, decrease of optimal work temperature and response/recovery time, and minimization of detectable levels. PMID:28846621

  3. S180 cell growth on low ion energy plasma treated TiO 2 thin films

    NASA Astrophysics Data System (ADS)

    Dhayal, Marshal; Cho, Su-In; Moon, Jun Young; Cho, Su-Jin; Zykova, Anna

    2008-03-01

    X-ray photoelectron spectroscopy (XPS) was used to characterise the effects of low energy (<2 eV) argon ion plasma surface modification of TiO 2 thin films deposited by radio frequency (RF) magnetron sputter system. The low energy argon ion plasma surface modification of TiO 2 in a two-stage hybrid system had increased the proportion of surface states of TiO 2 as Ti 3+. The proportion of carbon atoms as alcohol/ether (C sbnd OX) was decreased with increase the RF power and carbon atoms as carbonyl (C dbnd O) functionality had increased for low RF power treatment. The proportion of C( dbnd O)OX functionality at the surface was decreased at low power and further increase in power has showed an increase in its relive proportion at the surface. The growth of S180 cells was observed and it seems that cells are uniformly spreads on tissue culture polystyrene surface and untreated TiO 2 surfaces whereas small-localised cell free area can be seen on plasma treated TiO 2 surfaces which may be due to decrease in C( dbnd O)OX, increase in C dbnd O and active sites at the surface. A relatively large variation in the surface functionalities with no change in the surface roughness was achieved by different RF plasma treatments of TiO 2 surface whereas no significant change in S180 cell growth with different plasma treatments. This may be because cell growth on TiO 2 was mainly influenced by nano-surface characteristics of oxide films rather than surface chemistry.

  4. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    NASA Astrophysics Data System (ADS)

    Loiola, Rodrigo Azevedo; Dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-06-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.

  5. Mechanism underlying the effect of long-term exposure to low dose of pesticides on DNA integrity.

    PubMed

    Alleva, Renata; Manzella, Nicola; Gaetani, Simona; Bacchetti, Tiziana; Bracci, Massimo; Ciarapica, Veronica; Monaco, Federica; Borghi, Battista; Amati, Monica; Ferretti, Gianna; Tomasetti, Marco

    2018-04-01

    Pesticides, including herbicides, insecticides and fungicides, are widely used in intensive agriculture. Recently, the long-term effects of pesticide exposure were found to be associated with many diseases. In this study, we evaluated the long-term effect of low-level exposure to a mixture of pesticides on DNA damage response (DDR) in relation to individual detoxifying variability. A residential population chronically exposed to pesticides was enrolled, biological/environmental pesticide levels; paroxonase 1 (PON-1) activity and 192 Q/R polymorphism and DDR were evaluated at three different periods of pesticide exposure. OGG1-dependent DNA repair activity was decreased in relation to pesticide exposure. The increase of DNA lesions and pesticide levels in the intensive pesticide-spraying period was independent on PON-1 activity. Next, human bronchial epithelial and neuronal cells were used as a model for in vitro evaluation of the mechanistic effect of pesticides. Pesticides induced mitochondrial dysfunction leading to ROS formation. ROS from mitochondria induced DNA damage, which in turn induced OGG1-dependent DNA repair activity through 8-oxoguanine DNA glycosylase 1 (OGG1) expression and activation. Even though OGG1 was overexpressed, an inhibition of its activity, associated with DNA lesion accumulation, was found at prolonged pesticide-exposure. A post-translational regulation of OGG1 by pesticide may be postulated. Taken together, long-term exposure to low-levels of pesticides affects DDR resulting in accumulation of DNA lesions that eventually may lead to cancer or neurological disorders. © 2018 Wiley Periodicals, Inc.

  6. TiO2-TiO2 composite resistive humidity sensor: ethanol crosssensitivity

    NASA Astrophysics Data System (ADS)

    Ghalamboran, Milad; Saedi, Yasin

    2016-03-01

    The fabrication method and characterization results of a TiO2-TiO2 composite bead used for humidity sensing along with its negative cross-sensitivity to ethanol vapor are reported. The bead shaped resistive sample sensors are fabricated by the drop-casting of a TiO2 slurry on two Pt wire segments. The dried bead is pre-fired at 750°C and subsequently impregnated with a Ti-based sol. The sample is ready for characterization after a thermal annealing at 600°C in air. Structurally, the bead is a composite of the micron-sized TiO2 crystallites embedded in a matrix of nanometric TiO2 particle aggregates. The performance of the beads as resistive humidity sensors is recorded at room temperature in standard humidity level chambers. Results evince the wide dynamic range of the sensors fabricated in the low relative humidity range. While the sensor conductance is not sensitive to ethanol vapor in dry air, in humid air, sensor's responses are negatively affected by the contaminant.

  7. The Long-Term Impacts of Medicaid Exposure in Early Childhood: Evidence from the Program's Origin*

    PubMed Central

    Boudreaux, Michel H.; Golberstein, Ezra; McAlpine, Donna D.

    2016-01-01

    This paper examines the long-term impact of exposure to Medicaid in early childhood on adult health and economic status. The staggered timing of Medicaid's adoption across the states created meaningful variation in cumulative exposure to Medicaid for birth cohorts that are now in adulthood. Analyses of the Panel Study of Income Dynamics suggest exposure to Medicaid in early childhood (age 0-5) is associated with statistically significant and meaningful improvements in adult health (age 25-54), and this effect is only seen in subgroups targeted by the program. Results for economic outcomes are imprecise and we are unable to come to definitive conclusions. Using separate data we find evidence of two mechanisms that could plausibly link Medicaid's introduction to long-term outcomes: contemporaneous increases in health services utilization for children and reductions in family medical debt. PMID:26763123

  8. Hierarchical TiO2/C nanocomposite monoliths with a robust scaffolding architecture, mesopore-macropore network and TiO2-C heterostructure for high-performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Huang, Hai-Bo; Yang, Yue; Chen, Li-Hua; Wang, Yun; Huang, Shao-Zhuan; Tao, Jia-Wei; Ma, Xiao-Ting; Hasan, Tawfique; Li, Yu; Xu, Yan; Su, Bao-Lian

    2016-05-01

    Engineering hierarchical structures of electrode materials is a powerful strategy for optimizing the electrochemical performance of an anode material for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical TiO2/C nanocomposite monoliths by mediated mineralization and carbonization using bacterial cellulose (BC) as a scaffolding template as well as a carbon source. TiO2/C has a robust scaffolding architecture, a mesopore-macropore network and TiO2-C heterostructure. TiO2/C-500, obtained by calcination at 500 °C in nitrogen, contains an anatase TiO2-C heterostructure with a specific surface area of 66.5 m2 g-1. When evaluated as an anode material at 0.5 C, TiO2/C-500 exhibits a high and reversible lithium storage capacity of 188 mA h g-1, an excellent initial capacity of 283 mA h g-1, a long cycle life with a 94% coulombic efficiency preserved after 200 cycles, and a very low charge transfer resistance. The superior electrochemical performance of TiO2/C-500 is attributed to the synergistic effect of high electrical conductivity, anatase TiO2-C heterostructure, mesopore-macropore network and robust scaffolding architecture. The current material strategy affords a general approach for the design of complex inorganic nanocomposites with structural stability, and tunable and interconnected hierarchical porosity that may lead to the next generation of electrochemical supercapacitors with high energy efficiency and superior power density.Engineering hierarchical structures of electrode materials is a powerful strategy for optimizing the electrochemical performance of an anode material for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical TiO2/C nanocomposite monoliths by mediated mineralization and carbonization using bacterial cellulose (BC) as a scaffolding template as well as a carbon source. TiO2/C has a robust scaffolding architecture, a mesopore-macropore network and TiO2-C heterostructure. TiO2/C-500

  9. CHILDHOOD RESPIRATORY SYMPTOMS, HOSPITAL ADMISSIONS, AND LONG-TERM EXPOSURE TO AIRBORNE PARTICULATE MATTER

    EPA Science Inventory

    The effects of long-term exposure to air pollution on respiratory symptoms and respiratory hospitalization (for asthma, bronchitis or pneumonia) were assessed in a cross-sectional study of children (ages 7--11 years, N=667) living in a moderately industrialized city in Central Sl...

  10. Hospital admissions for ischemic stroke: does long-term exposure to air pollution interact with major risk factors?

    PubMed

    Oudin, Anna; Strömberg, Ulf; Jakobsson, Kristina; Stroh, Emilie; Lindgren, Arne G; Norrving, Bo; Pessah-Rasmussen, Hélène; Engström, Gunnar; Björk, Jonas

    2011-01-01

    The aim was to investigate whether the effects of major risk factors for ischemic stroke were modified by long-term exposure to air pollution in Scania, southern Sweden. Cases were defined as first-ever ischemic strokes in patients born between 1923 and 1965 during 2001-2006 (n = 7,244). Data were collected from The Swedish National Stroke Register (Riks-stroke) and the Malmö and Lund Stroke Registers. Population controls were matched on age and sex. Modeled outdoor annual mean NO(x) concentrations were used as proxy for long-term exposure to air pollution. Heterogeneity across NO(x) categories was tested for smoking, hypertension, diabetes mellitus, atrial fibrillation and physical inactivity. Data were analyzed as case-control data and to some extent as case-only data, with logistic regression analysis. The case-control odds ratios for ischemic stroke in association with diabetes were 1.3 [95% confidence interval (CI): 1.1-1.6] and 2.0 (95% CI: 1.2-3.4) in the lowest and highest NO(x) category, respectively (p value for testing heterogeneity across the categories = 0.056). The case-only approach gave further support for the risk associated with diabetes to increase with NO(x) (p for trend = 0.033). We observed no main effect of mean NO(x) or any conclusive effect modifications between NO(x) and smoking, hypertension, atrial fibrillation or physical inactivity. In a low-level air pollution area, the risk for ischemic stroke associated with diabetes seemed to increase with long-term exposure to air pollution. Copyright © 2010 S. Karger AG, Basel.

  11. Analysis of Nerve Agent Metabolites from Hair for Long-Term Verification of Nerve Agent Exposure

    DTIC Science & Technology

    2016-05-09

    Analysis of Nerve Agent Metabolites from Hair for Long-Term Verification of Nerve Agent Exposure Amanda S. Appel,† John H. McDonough,‡ Joseph D...feasible. In this study, hair was evaluated as a long-term repository of nerve agent hydrolysis products. Pinacolyl methylphosphonic acid (PMPA...hydrolysis product of soman) and isopropyl methylphosphonic acid (IMPA; hydrolysis product of sarin) were extracted from hair samples with N,N

  12. Molecular mechanisms of phoxim-induced silk gland damage and TiO2 nanoparticle-attenuated damage in Bombyx mori.

    PubMed

    Li, Bing; Yu, Xiaohong; Gui, Suxin; Xie, Yi; Zhao, Xiaoyang; Hong, Jie; Sun, Qingqing; Sang, Xuezi; Sheng, Lei; Cheng, Zhe; Cheng, Jie; Hu, Rengping; Wang, Ling; Shen, Weide; Hong, Fashui

    2014-06-01

    Phoxim is a useful organophosphate (OP) pesticide used in agriculture in China, however, exposure to this pesticide can result in a significant reduction in cocooning in Bombyx mori (B. mori). Titanium dioxide nanoparticles (TiO2 NPs) have been shown to decrease phoxim-induced toxicity in B. mori; however, very little is known about the molecular mechanisms of silk gland damage due to OP exposure and repair of gland damage by TiO2 NP pretreatment. In the present study, exposure to phoxim resulted in a significant reduction in cocooning rate in addition to silk gland damage, whereas TiO2 NP attenuated phoxim-induced gland damage, increased the antioxidant capacity of the gland, and increased cocooning rate in B. mori. Furthermore, digital gene expression data suggested that phoxim exposure led to significant alterations in the expression of 833 genes. In particular, phoxim exposure caused significant down-regulation of Fib-L, Ser2, Ser3, and P25 genes involved in silk protein synthesis, and up-regulation of SFGH, UCH3, and Salhh genes involved in silk protein hydrolysis. A combination of both phoxim and TiO2 NP treatment resulted in marked changes in the expression of 754 genes, while treatment with TiO2 NPs led to significant alterations in the expression of 308 genes. Importantly, pretreatment with TiO2 NPs increased Fib-L, Ser2, Ser3, and P25 expression, and decreased SFGH, UCH3, and Salhh expression in silk protein in the silk gland under phoxim stress. Therefore, Fib-L, Ser2, Ser3, P25, SFGH, UCH3, and Salhh may be potential biomarkers of silk gland toxicity in B. mori caused by phoxim exposure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Carbides Evolution in a Ni-16Mo-7Cr Base Superalloy during Long-Term Thermal Exposure

    PubMed Central

    Han, Fenfen; Jiang, Li; Ye, Xiangxi; Lu, Yanling; Li, Zhijun; Zhou, Xingtai

    2017-01-01

    The effect of long-term thermal exposure on the carbide evolution in a Ni-16Mo-7Cr base superalloy was investigated. The results show that M12C carbides are mainly precipitated on the grain boundaries during thermal exposure, and the primary massive M6C carbides can be completely transformed to M12C carbides in situ at temperatures above 750 °C for long-term thermal exposure. The transformation from M6C carbides to M12C carbides is attributed to the release of C atoms from M6C, which results in the morphology changes of massive carbides, and stabilization of the sizes of M12C carbides precipitated on the grain boundaries. PMID:28772881

  14. Long-term exposure to high air pollution induces cumulative DNA damages in traffic policemen.

    PubMed

    Tan, Chaochao; Lu, Shijie; Wang, Yupeng; Zhu, Yan; Shi, Ting; Lin, Mingyue; Deng, Zhonghua; Wang, Zhu; Song, Nana; Li, Shuna; Yang, Pingting; Yang, Liyan; Liu, Yuanyuan; Chen, Zhiheng; Xu, Keqian

    2017-09-01

    The specific effects of long-term exposure to high air pollution on human health and biological remain unclear. To explore the adverse health effects as well as biological mechanisms and biomarkers for durative exposure to air pollution, 183 traffic policemen and 88 office policemen were enrolled in this study. The concentration of PM2.5 in both the traffic and office policemen's working environments were obtained. Detailed personal questionnaires were completed and levels of inflammation, oxidative stress and DNA damage markers of all participants were analyzed in this study. The average PM2.5 concentration of the intersections of main roads and the offices of control group were 132.4±48.9μg/m 3 and 50.80±38.6μg/m 3 , respectively. The traffic policemen, who stably exposed to at least 2 times higher PM2.5 in their work area as compared with the control group, have a median average duration of 7.00years, and average cumulative intersection duty time reached 8030h. No statistically significant differences in the levels of inflammation markers were observed between the traffic and office policemen. However, the DNA damage markers in traffic policemen shared significant positive correlation with cumulative intersection duty time and higher than those in the office policemen. Multiple linear regression analysis demonstrated that the increase of cumulative intersection duty time by 1h per day for one year was associated with the increase in 8-hydroxy-20-deoxyguanosine of 0.329% (95% CI: 0.249% to 0.409%), tail DNA of 0.051% (95% CI: 0.041% to 0.061%), micronucleus frequency of 0.036‰ (95% CI: 0.03‰ to 0.043‰), and a decrease in glutathione of 0.482% (95% CI: -0.652% to -0.313%). These findings suggest that long-term exposure to high air pollution could induce cumulative DNA damages, supporting the hypothesis that durative exposure to air pollution is associated with an increased risk of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Photochemical tuning of ultrathin TiO2/ p-Si p-n junction properties via UV-induced H doping

    NASA Astrophysics Data System (ADS)

    Lee, Sang Yeon; Kim, Jinseo; Ahn, Byungmin; Cho, In Sun; Yu, Hak Ki; Seo, Hyungtak

    2017-03-01

    We report a modified TiO2/ p-Si electronic structure that uses ultraviolet exposure for the incorporation of H. This structure was characterized using various photoelectron spectroscopic techniques. The ultraviolet (UV) exposure of the TiO2 surface allowed the Fermi energy level to be tuned by the insertion of H radicals, which induced changes in the heterojunction TiO2/ p-Si diode properties. The UV exposure of the TiO2 surface was performed in air. On UVexposure, a photochemical reaction involving the incorporation of UV-induced H radicals led to the creation of a surface Ti-O-OH group and caused interstitial H doping (Ti-H-O) in the bulk, which modified the electronic structures in different ways, depending on the location of the H. On the basis of the band alignment determined using a combined spectroscopic analysis, it is suggested that the UV-induced H incorporation into the TiO2 could be utilized for the systematic tuning of the heterojunction property for solar cells, photocatalytic applications, and capacitors.

  16. Influence of Au and TiO2 structures on hydrogen dissociation over TiO2/Au(100)

    NASA Astrophysics Data System (ADS)

    Nakamura, I.; Mantoku, H.; Furukawa, T.; Takahashi, A.; Fujitani, T.

    2012-11-01

    We performed H2-D2 exchange reactions over TiOx/Au(100) and compared the observed reaction kinetics with those reported for TiOx/Au(111) in order to clarify the influence of the Au and TiO2 structures on dissociation of H2 molecules. Low energy electron diffraction observations showed that the TiO2 produced on Au(100) was disordered, in contrast to the comparatively ordered TiO2 structure formed on Au(111). The activation energies and the turnover frequencies for HD formation over TiO2/Au(100) agreed well with those for TiO2/Au(111), clearly indicating that the hydrogen dissociation sites created over TiO2/Au(100) were the perimeter interface between stoichiometric TiO2 and Au, as was previously concluded for TiO2/Au(111). We concluded that the creation of active sites for hydrogen dissociation was independent of the Au and TiO2 structures consisting perimeter interface, and that local bonds that formed between Au and O atoms of stoichiometric TiO2 were essential for the creation of active sites.

  17. Thermal degradation of TiO2 nanotubes on titanium

    NASA Astrophysics Data System (ADS)

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2014-10-01

    The objective of this research was to study thermal degradation behavior of TiO2 nanotubes on titanium (Ti). TiO2 nanotubes were grown via anodization method on commercially pure Ti (Cp-Ti) discs using two different electrolytes, 1 vol. % HF in deionized (DI) water and 1 vol. % HF + 0.5 wt. % NH4F + 10 vol. % DI water in ethylene glycol, to obtain nanotubes with two different lengths, 300 nm and 950 nm keeping the nanotube diameter constant at 100 ± 20 nm. As grown TiO2 nanotubes were subjected to heat treatment to understand thermal degradation as a function of both temperature and hold time. The signs of degradation were observed mainly when amorphous nanotubes started to crystallize, however the crystallization temperature varied based on TiO2 nanotubes length and anodizing condition. Overall, 300 nm nanotubes were thermally stable at least up to 400 °C for 12 h, while the 950 nm long nanotubes show signs of degradation from 400 °C for 6 h only. Clearly, length of nanotubes, heat treatment temperature as well as hold times show influence toward degradation kinetics of TiO2 nanotubes on titanium.

  18. Adaptations of the vestibular system to short and long-term exposures to altered gravity

    NASA Astrophysics Data System (ADS)

    Bruce, L.

    Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival. We are studying two aspects of this vestibular adaptation: (1) How does long-term exposure to microgravity and hypergravity affect the development of vestibular afferents? (2) How does short- term exposure to extremely rapid changes in gravity, such as those that occur during launch and landing, affect the vestibular system. During space flight the gravistatic receptors in the otolith organs are effectively unloaded. In hypergravity conditions they are overloaded. However, the angular acceleration receptors of the semicircular canals receive relatively normal stimulation in both micro- and hypergravity.Rat embryos exposed to microgravity from gestation day 10 (prior to vestibular function) until gestation day 20 (vestibular system is somewhat functional) showed that afferents from the posterior vertical canal projecting to the medial vestibular nucleus developed similarly in microgravity, hypergravity, and in controls . However, afferents from the saccule showed delayed development in microgravity as compared to development in hypergravity and in controls. Cerebellar plasticity is crucial for modification of sensory-motor control and learning. Thus we explored the possibility that strong vestibular stimuli would modify cerebellar motor control (i.e., eye movement, postural control, gut motility) by altering the morphology of cerebellar Purkinje cells. To study the effects of short-term exposures to strong vestibular stimuli we focused on structural changes in the vestibulo-cerebellum that are caused by strong vestibular stimuli. Adult mice were exposed to various combinations of constant and/or rapidly changing angular and linear accelerations for 8.5 min (the time length of shuttle launch). Our data shows that these stimuli cause intense excitation of cerebellar Purkinje cells, inducing up-regulation of clathrin-mediated endocytosis

  19. Long-term exposure to PM2.5 lowers influenza virus resistance via down-regulating pulmonary macrophage Kdm6a and mediates histones modification in IL-6 and IFN-β promoter regions.

    PubMed

    Ma, Jing-Hui; Song, Shao-Hua; Guo, Meng; Zhou, Ji; Liu, Fang; Peng, Li; Fu, Zhi-Ren

    2017-11-18

    Atmospheric particulates, especially PM2.5, not only damage the respiratory system, but also play important roles in pulmonary immunity. China is influenced by atmospheric diffusion conditions, industrial manufacturers, and heating and discharging. PM2.5 levels in the air rise substantially in the winter, which is also a period of flu high-incidence. Although an epidemiological link exists between PM2.5 and flu, we do not understand how long-term PM2.5 inhalation affects pulmonary immunity and the influenza virus response. Our study has prepared an in vivo PM2.5 mouse pharyngeal wall drop-in model and has found that PM2.5 exposure leads to mouse inflammatory injuries and furthers influenza A infection. Our results suggest that short-term exposure to PM2.5 significantly enhances the survival rate of influenza A-contaminated mice, while long-term PM2.5 inhalation lowers the capacity of pulmonary macrophages to secrete IL-6 and IFN-β. A disorder in the pulmonary innate defense system results in increased death rates following influenza infection. On a macromolecular level, this mechamism involves Kdm6a down-regulation after long-term exposure to PM 2.5 and a resultant increase in H3K4 and H3K9 methylation in IL-6 and IFN-β promoter regions. In summary, PM2.5 causes injuries of lung tissue cells and downregulates immune defense mechanisms in the lung. Copyright © 2017. Published by Elsevier Inc.

  20. Rough gold films as broadband absorbers for plasmonic enhancement of TiO2 photocurrent over 400–800 nm

    PubMed Central

    Tan, Furui; Li, Tenghao; Wang, Ning; Lai, Sin Ki; Tsoi, Chi Chung; Yu, Weixing; Zhang, Xuming

    2016-01-01

    Recent years have witnessed an increasing interest in highly-efficient absorbers of visible light for the conversion of solar energy into electrochemical energy. This study presents a TiO2-Au bilayer that consists of a rough Au film under a TiO2 film, which aims to enhance the photocurrent of TiO2 over the whole visible region and may be the first attempt to use rough Au films to sensitize TiO2. Experiments show that the bilayer structure gives the optimal optical and photoelectrochemical performance when the TiO2 layer is 30 nm thick and the Au film is 100 nm, measuring the absorption 80–90% over 400–800 nm and the photocurrent intensity of 15 μA·cm−2, much better than those of the TiO2-AuNP hybrid (i.e., Au nanoparticle covered by the TiO2 film) and the bare TiO2 film. The superior properties of the TiO2-Au bilayer can be attributed to the rough Au film as the plasmonic visible-light sensitizer and the photoactive TiO2 film as the electron accepter. As the Au film is fully covered by the TiO2 film, the TiO2-Au bilayer avoids the photocorrosion and leakage of Au materials and is expected to be stable for long-term operation, making it an excellent photoelectrode for the conversion of solar energy into electrochemical energy in the applications of water splitting, photocatalysis and photosynthesis. PMID:27608836

  1. Phase Equilibrium of TiO2 Nanocrystals in Flame-Assisted Chemical Vapor Deposition.

    PubMed

    Liu, Changran; Camacho, Joaquin; Wang, Hai

    2018-01-19

    Nano-scale titanium oxide (TiO 2 ) is a material useful for a wide range of applications. In a previous study, we showed that TiO 2 nanoparticles of both rutile and anatase crystal phases could be synthesized over the size range of 5 to 20 nm in flame-assisted chemical vapor deposition. Rutile was unexpectedly dominant in oxygen-lean synthesis conditions, whereas anatase is the preferred phase in oxygen-rich gases. The observation is in contrast to the 14 nm rutile-anatase crossover size derived from the existing crystal-phase equilibrium model. In the present work, we made additional measurements over a wider range of synthesis conditions; the results confirm the earlier observations. We propose an improved model for the surface energy that considers the role of oxygen desorption at high temperatures. The model successfully explains the observations made in the current and previous work. The current results provide a useful path to designing flame-assisted chemical vapor deposition of TiO 2 nanocrystals with controllable crystal phases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Relationship between nano/micro structure and physical properties of TiO2-sodium caseinate composite films.

    PubMed

    Montes-de-Oca-Ávalos, Juan Manuel; Altamura, Davide; Candal, Roberto Jorge; Scattarella, Francesco; Siliqi, Dritan; Giannini, Cinzia; Herrera, María Lidia

    2018-03-01

    Films obtained by casting, starting from conventional emulsions (CE), nanoemulsions (NE) or their gels, which led to different structures, with the aim of explore the relationship between structure and physical properties, were prepared. Sodium caseinate was used as the matrix, glycerol as plasticizer, glucono-delta-lactone as acidulant to form the gels, and TiO 2 nanoparticles as reinforcement to improve physical behavior. Structural characterization was performed by SAXS and WAXS (Small and Wide Angle X-ray Scattering, respectively), combined with confocal and scanning electron microscopy. The results demonstrate that the incorporation of the lipid phase does not notably modify the mechanical properties of the films compared to solution films. Films from NE were more stable against oil release than those from CE. Incorporation of TiO 2 improved mechanical properties as measured by dynamical mechanical analysis (DMA) and uniaxial tensile tests. TiO 2 macroscopic spatial distribution homogeneity and the nanostructure character of NE films were confirmed by mapping the q-dependent scattering intensity in scanning SAXS experiments. SAXS microscopies indicated a higher intrinsic homogeneity of NE films compared to CE films, independently of the TiO 2 load. NE-films containing structures with smaller and more homogeneously distributed building blocks showed greater potential for food applications than the films prepared from sodium caseinate solutions, which are the best known films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The photoelectrocatalytic activity, long term stability and corrosion performance of NiMo deposited titanium oxide nano-tubes for hydrogen production in alkaline medium

    NASA Astrophysics Data System (ADS)

    Mert, Mehmet Erman; Mert, Başak Doğru; Kardaş, Gülfeza; Yazıcı, Birgül

    2017-11-01

    In this study, titanium oxide nano-tubes are doped with Ni and Mo particles with various chemical compositions, in order to put forth the efficiency of single and binary coatings on hydrogen evolution reaction (HER) in 1 M KOH. The characterization was achieved by cyclic voltammetry, scanning electron microscopy and energy dispersive X-ray analysis. The water wettability characteristics of electrode surfaces were investigated using contact angle. The long-term catalyst stability and corrosion performance were determined by current-potential curves and electrochemical impedance spectroscopy. Furthermore, photoelectrochemical behavior was determined via linear sweep voltammetry. Results showed that, nano-structured Ni and Mo deposited titanium oxide nano-tubes decrease the hydrogen over potential and increase HER efficiency, it is stable over 168 h electrolysis and it exhibits higher corrosion performance.

  4. The potential use of diisononyl phthalate metabolites hair as biomarkers to assess long-term exposure demonstrated by a rat model.

    PubMed

    Hsu, Jen-Yi; Ho, Hsin-Hui; Liao, Pao-Chi

    2015-01-01

    Diisononyl phthalate (DINP) is a widely used industrial plasticizer. People come into contact with this chemical by using plastic products made with it. Human health can be adversely affected by long-term DINP exposure. However, because the body rapidly excretes DINP metabolites, the use of single-point urine analysis to assess long-term exposure may produce inconsistent results in epidemiologic studies. Hair analysis has a useful place in biomonitoring, particularly in estimating long-term or historical exposure for some chemicals. Several studies have reported using hair analysis to assess the concentrations of heavy metals, drugs and organic pollutants in humans. As a biomarker, DINP metabolites were measured in rat hair in animal experiments to evaluated long-term exposure to DINP. In addition, we evaluated the correlation between the levels of DINP metabolites in hair and in urine. The levels of DINP metabolites in rat hair were significantly higher in the exposure group, relative to the control group (p<0.05). DINP metabolites had a positive correlation with increasing administered dose. Significant positive correlations for MINP, MOINP and MHINP were found between hair and urine (r=0.86, r=0.79 and r=0.74, respectively, p<0.05). Several metabolites in urine showed earlier saturation than in hair. In this report, we detected eight metabolites in hair and demonstrate that hair analysis has potential applications in the assessment of long-term exposure to DINP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Selective adsorption of bovine hemoglobin on functional TiO2 nano-adsorbents: surface physic-chemical properties determined adsorption activity

    NASA Astrophysics Data System (ADS)

    Guo, Shiguang; Zhang, Jianghua; Shao, Mingxue; Zhang, Xia; Liu, Yufeng; Xu, Junli; Meng, Hao; Han, Yide

    2015-04-01

    Surface functionalized nanoparticles are efficient adsorbents which have shown good potential for protein separation. In this work, we chose two different types of organic molecules, oleic acid (OA) and 3-glycidoxypropyltrimethoxy silane (GPTMS), to functionalize the surface of TiO2 nanoparticles, and we studied the effects of this modification on their surface physicochemical properties in correlation with their selective adsorption of proteins. The results showed that the surface zeta potential and the surface water wettability of the modified TiO2 were significantly changed in comparison with the original TiO2 nanoparticles. The adsorption activities of bovine hemoglobin (BHb) and bovine serum albumin (BSA) on these functionalized TiO2 samples were investigated under different conditions, including pH values, contact time, ion strength, and initial protein concentration. In comparison with the non-specific adsorption of original TiO2, however, both the OA-TiO2 and GPTMS-TiO2 exhibited increased BHb adsorption and decreased BSA adsorption at the same time. Using a binary protein mixture as the adsorption object, a higher separation factor (SF) was obtained for OA-TiO2 under optimum conditions. The different adsorption activities of BHb and BSA on the modified TiO2 were correlated with different interactions at the protein/solid interface, and the chemical force as well as the electrostatic force played an important role in the selective adsorption process.

  6. Change of exposure response over time and long-term risk of silicosis among a cohort of Chinese pottery workers.

    PubMed

    Sun, Yi; Bochmann, Frank; Morfeld, Peter; Ulm, Kurt; Liu, Yuewei; Wang, Heijiao; Yang, Lei; Chen, Weihong

    2011-07-01

    An analysis was conducted on a cohort of Chinese pottery workers to estimate the exposure-response relationship between respirable crystalline silica dust exposure and the incidence of radiographically diagnosed silicosis, and to estimate the long-term risk of developing silicosis until the age of 65. The cohort comprised 3,250 employees with a median follow-up duration of around 37 years. Incident cases of silicosis were identified via silicosis registries (Chinese X-ray stage I, similar to International Labor Organisation classification scheme profusion category 1/1). Individual exposure to respirable crystalline silica dust was estimated based on over 100,000 historical dust measurements. The association between dust exposure, incidence and long-time risk of silicosis was quantified by Poisson regression analysis adjusted for age and smoking. The risk of silicosis depended not only on the cumulative respirable crystalline silica dust exposures, but also on the time-dependent respirable crystalline silica dust exposure pattern (long-term average concentration, highest annual concentration ever experienced and time since first exposure). A long-term "excess" risk of silicosis of approximately 1.5/1,000 was estimated among workers with all annual respirable crystalline silica dust concentration estimates less than 0.1 mg/m(3), using the German measurement strategy. This study indicates the importance of proper consideration of exposure information in risk quantification in epidemiological studies.

  7. Toxicity of nanotitanium dioxide (TiO2-NP) on human monocytes and their mitochondria.

    PubMed

    Ghanbary, Fatemeh; Seydi, Enaytollah; Naserzadeh, Parvaneh; Salimi, Ahmad

    2018-03-01

    The effect of nanotitanium dioxide (TiO 2 -NP) in human monocytes is still unknown. Therefore, an understanding of probable cytotoxicity of TiO 2 -NP on human monocytes and underlining the mechanisms involved is of significant interest. The aim of this study was to assess the cytotoxicity of TiO 2 -NP on human monocytes. Using biochemical and flow cytometry assessments, we demonstrated that addition of TiO 2 -NP at 10 μg/ml concentration to monocytes induced cytotoxicity following 12 h. The TiO 2 -NP-induced cytotoxicity on monocytes was associated with intracellular reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP) collapse, lysosomal membrane injury, lipid peroxidation, and depletion of glutathione. According to our results, TiO 2 -NP triggers oxidative stress and organelles damages in monocytes which are important cells in defense against foreign agents. Finally, our findings suggest that use of antioxidants and mitochondrial/lysosomal protective agents could be of benefit for the people in the exposure with TiO 2 -NP.

  8. A single exposure to severe stressors causes long-term desensitisation of the physiological response to the homotypic stressor.

    PubMed

    Armario, Antonio; Vallès, Astrid; Dal-Zotto, Silvina; Márquez, Cristina; Belda, Xavier

    2004-09-01

    Although some laboratories have reported that a single session of stress is able to induce a long-lasting sensitisation of the hypothalamic-pituitary-adrenal (HPA) response to further exposures to stress, we have found that a single exposure to severe emotional (immobilisation, restraint or shock) or systemic (endotoxin) stressors reduces the responsiveness of the HPA to the same, but not to a novel (heterotypic), stressor, in which case a slight sensitisation was observed. Long-term desensitisation has been found to reduce not only secretion of peripheral HPA hormones (ACTH and corticosterone), but also to reduce responses of central components of the HPA axis (c-fos and CRF gene expression at the level of the paraventricular nucleus of the hypothalamus, PVN). In addition, desensitisation also applies to the impact of the stressor on food intake and, probably, to stress-induced hyperglycaemia. The development of long-term desensitisation of the HPA axis does not appear to be a universal consequence of exposure to severe stressors as it was not observed in response to insulin-induced hypoglycaemia. Whether or not the development of long-term effects of stress depend on the specific pathways activated by particular stressors remains to be tested. The observed desensitisation of the HPA axis in response to the homotypic stressor shows two special features which makes it difficult to be interpreted in terms of an habituation-like process: (a) the effect increased with time (days to weeks) elapsed between the first and second exposure to the stressor, suggesting a progressive maturational process; and (b) the stronger the stressor the greater the long-term desensitisation. Therefore, it is possible that desensitisation of the HPA axis is the sum of two different phenomena: long-term effects and habituation-like processes. The contribution of the former may be more relevant with severe stressors and longer inter-stress intervals, and that of the latter with mild

  9. Hydrogenated TiO 2@reduced graphene oxide sandwich-like nanosheets for high voltage supercapacitor applications

    DOE PAGES

    Pham, Viet Hung; Nguyen-Phan, Thuy-Duong; Tong, Xiao; ...

    2017-10-09

    Hydrogenated TiO 2 has recently attracted considerable attention as potential electrode materials for supercapacitors due to its abundance, low cost, high conductivity, remarkable rate capability, and outstanding long-term cycling stability. In this paper, we demonstrate the synthesis of hydrogenated TiO 2 nanoparticles anchored on reduced graphene oxide nanosheets (HTG) in the form of sandwich-like nanosheet composites. Further, we explored their implementation as electrode materials for high voltage, symmetric supercapacitors, operating in the voltage window of 0–1.8 V. The HTGs were prepared by a sol-gel method, followed by hydrogenation in the temperature range 300–500 °C. Of the prepared composites, HTG preparedmore » at 400 °C exhibited the largest specific capacitance of 51 F g -1 at the current density of 1.0 A g -1 and excellent rate capability with 82.5% capacitance retention as the current density increased 40-fold, from 0.5 to 20.0 A g -1. HTG's excellent rate capability was attributed to its sandwich-like nanostructure, in which ultrasmall hydrogenated TiO 2 nanoparticles densely anchored onto both surfaces of the two-dimensional reduced graphene oxide sheets. Moreover, HTG-based supercapacitors also exhibited long-term cycling stability with the retention over 80% of its initial capacitance after 10,000 cycles. Finally, these properties suggest that HTG is a promising electrode material for the scalable manufacture of high-performance supercapacitors.« less

  10. Hydrogenated TiO 2@reduced graphene oxide sandwich-like nanosheets for high voltage supercapacitor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Viet Hung; Nguyen-Phan, Thuy-Duong; Tong, Xiao

    Hydrogenated TiO 2 has recently attracted considerable attention as potential electrode materials for supercapacitors due to its abundance, low cost, high conductivity, remarkable rate capability, and outstanding long-term cycling stability. In this paper, we demonstrate the synthesis of hydrogenated TiO 2 nanoparticles anchored on reduced graphene oxide nanosheets (HTG) in the form of sandwich-like nanosheet composites. Further, we explored their implementation as electrode materials for high voltage, symmetric supercapacitors, operating in the voltage window of 0–1.8 V. The HTGs were prepared by a sol-gel method, followed by hydrogenation in the temperature range 300–500 °C. Of the prepared composites, HTG preparedmore » at 400 °C exhibited the largest specific capacitance of 51 F g -1 at the current density of 1.0 A g -1 and excellent rate capability with 82.5% capacitance retention as the current density increased 40-fold, from 0.5 to 20.0 A g -1. HTG's excellent rate capability was attributed to its sandwich-like nanostructure, in which ultrasmall hydrogenated TiO 2 nanoparticles densely anchored onto both surfaces of the two-dimensional reduced graphene oxide sheets. Moreover, HTG-based supercapacitors also exhibited long-term cycling stability with the retention over 80% of its initial capacitance after 10,000 cycles. Finally, these properties suggest that HTG is a promising electrode material for the scalable manufacture of high-performance supercapacitors.« less

  11. TiO2--a prototypical memristive material.

    PubMed

    Szot, K; Rogala, M; Speier, W; Klusek, Z; Besmehn, A; Waser, R

    2011-06-24

    Redox-based memristive switching has been observed in many binary transition metal oxides and related compounds. Since, on the one hand, many recent reports utilize TiO(2) for their studies of the memristive phenomenon and, on the other hand, there is a long history of the electronic structure and the crystallographic structure of TiO(2) under the impact of reduction and oxidation processes, we selected this material as a prototypical material to provide deeper insight into the mechanisms behind memristive switching. In part I, we briefly outline the results of the historical and recent studies of electroforming and resistive switching of TiO(2)-based cells. We describe the (tiny) stoichiometrical range for TiO(2 - x) as a homogeneous compound, the aggregation of point defects (oxygen vacancies) into extended defects, and the formation of the various Magnéli phases. Furthermore, we discuss the driving forces for these solid-state reactions from the thermodynamical point of view. In part II, we provide new experimental details about the hierarchical transformation of TiO(2) single crystals into Magnéli phases, and vice versa, under the influence of chemical, electrical and thermal gradients, on the basis of the macroscopic and nanoscopic measurements. Those include thermogravimetry, high-temperature x-ray diffraction (XRD), high-temperature conductivity measurements, as well as low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy (XPS), and LC-AFM (atomic force microscope equipped with a conducting tip) studies. Conclusions are drawn concerning the relevant parameters that need to be controlled in order to tailor the memristive properties.

  12. Chronic impacts of TiO2 nanoparticles on Populus nigra L. leaf decomposition in freshwater ecosystem.

    PubMed

    Du, Jingjing; Zhang, Yuyan; Guo, Wei; Li, Ningyun; Gao, Chaoshuai; Cui, Minghui; Lin, Zhongdian; Wei, Mingbao; Zhang, Hongzhong

    2018-05-15

    Titanium dioxide (TiO 2 ) nanoparticles have been applied in diverse commercial products, which could lead to toxic effects on aquatic microbes and would inhibit some important ecosystem processes. The study aimed to investigate the chronic impacts of TiO 2 nanoparticles with different concentrations (5, 50, and 500 mg L -1 ) on Populus nigra L. leaf decomposition in the freshwater ecosystem. After 50 d of decomposing, a significant decrease in decomposition rates was observed with higher concentrations of TiO 2 nanoparticles. During the period of litter decomposition, exposure of TiO 2 nanoparticles led to decreases in extracellular enzyme activities, which was caused by the reduction of microbial especially fungal biomass. In addition, the diversity and composition of the fungal community associated with litter decomposition were strongly affected by the concentrations of TiO 2 nanoparticles. The diversity and composition of the fungal community associated with litter decomposition was strongly affected. The abundance of Tricladium chaetocladium decreased with the increasing concentrations of TiO 2 nanoparticles, indicating the little contribution of the species to the litter decomposition. In conclusion, this study provided the evidence for the chronic exposure effects of TiO 2 nanoparticles on the litter decomposition and further the functions of freshwater ecosystems. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Long-term exposure to residential ambient fine and coarse particulate matter and incident hypertension in post-menopausal women.

    PubMed

    Honda, Trenton; Eliot, Melissa N; Eaton, Charles B; Whitsel, Eric; Stewart, James D; Mu, Lina; Suh, Helen; Szpiro, Adam; Kaufman, Joel D; Vedal, Sverre; Wellenius, Gregory A

    2017-08-01

    Long-term exposure to ambient particulate matter (PM) has been previously linked with higher risk of cardiovascular events. This association may be mediated, at least partly, by increasing the risk of incident hypertension, a key determinant of cardiovascular risk. However, whether long-term exposure to PM is associated with incident hypertension remains unclear. Using national geostatistical models incorporating geographic covariates and spatial smoothing, we estimated annual average concentrations of residential fine (PM 2.5 ), respirable (PM 10 ), and course (PM 10-2.5 ) fractions of particulate matter among 44,255 post-menopausal women free of hypertension enrolled in the Women's Health Initiative (WHI) clinical trials. We used time-varying Cox proportional hazards models to evaluate the association between long-term average residential pollutant concentrations and incident hypertension, adjusting for potential confounding by sociodemographic factors, medical history, neighborhood socioeconomic measures, WHI study clinical site, clinical trial, and randomization arm. During 298,383 person-years of follow-up, 14,511 participants developed incident hypertension. The adjusted hazard ratios per interquartile range (IQR) increase in PM 2.5 , PM 10 , and PM 10-2.5 were 1.13 (95% CI: 1.08, 1.17), 1.06 (1.03, 1.10), and 1.01 (95% CI: 0.97, 1.04), respectively. Statistically significant concentration-response relationships were identified for PM 2.5 and PM 10 fractions. The association between PM 2.5 and hypertension was more pronounced among non-white participants and those residing in the Northeastern United States. In this cohort of post-menopausal women, ambient fine and respirable particulate matter exposures were associated with higher incidence rates of hypertension. These results suggest that particulate matter may be an important modifiable risk factor for hypertension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Association of modeled long-term personal exposure to ultrafine particles with inflammatory and coagulation biomarkers.

    PubMed

    Lane, Kevin J; Levy, Jonathan I; Scammell, Madeleine K; Peters, Junenette L; Patton, Allison P; Reisner, Ellin; Lowe, Lydia; Zamore, Wig; Durant, John L; Brugge, Doug

    2016-01-01

    Long-term exposure to fine particulate matter has been linked to cardiovascular disease and systemic inflammatory responses; however, evidence is limited regarding the effects of long-term exposure to ultrafine particulate matter (UFP, <100nm). We used a cross-sectional study design to examine the association of long-term exposure to near-highway UFP with measures of systemic inflammation and coagulation. We analyzed blood samples from 408 individuals aged 40-91years living in three near-highway and three urban background areas in and near Boston, Massachusetts. We conducted mobile monitoring of particle number concentration (PNC) in each area, and used the data to develop and validate highly resolved spatiotemporal (hourly, 20m) PNC regression models. These models were linked with participant time-activity data to determine individual time-activity adjusted (TAA) annual average PNC exposures. Multivariable regression modeling and stratification were used to assess the association between TAA-PNC and single peripheral blood measures of high-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), tumor-necrosis factor alpha receptor II (TNFRII) and fibrinogen. After adjusting for age, sex, education, body mass index, smoking and race/ethnicity, an interquartile-range (10,000particles/cm(3)) increase in TAA-PNC had a positive non-significant association with a 14.0% (95% CI: -4.6%, 36.2%) positive difference in hsCRP, an 8.9% (95% CI: -0.4%, 10.9%) positive difference in IL-6, and a 5.1% (95% CI: -0.4%, 10.9%) positive difference in TNFRII. Stratification by race/ethnicity revealed that TAA-PNC had larger effect estimates for all three inflammatory markers and was significantly associated with hsCRP and TNFRII in white non-Hispanic, but not East Asian participants. Fibrinogen had a negative non-significant association with TAA-PNC. Our findings suggest an association between annual average near-highway TAA-PNC and subclinical inflammatory markers of CVD risk

  15. A paradoxical response of the rat organism to long-term inhalation of silica-containing submicron (predominantly nanoscale) particles of a collected industrial aerosol at realistic exposure levels.

    PubMed

    Sutunkova, Marina P; Solovyeva, Svetlana N; Katsnelson, Boris A; Gurvich, Vladimir B; Privalova, Larisa I; Minigalieva, Ilzira A; Slyshkina, Tatyana V; Valamina, Irene E; Makeyev, Oleg H; Shur, Vladimir Ya; Zubarev, Ilya V; Kuznetsov, Dmitry K; Shishkina, Ekaterina V

    2017-06-01

    While engineered SiO 2 nanoparticle toxicity is being widely investigated, mostly on cell lines or in acute animal experiments, the practical importance of as well as the theoretical interest in industrial condensation aerosols with a high SiO 2 particle content seems to be neglected. That is why, to the best of our knowledge, long-term inhalation exposure to nano-SiO 2 has not been undertaken in experimental nanotoxicology studies. To correct this data gap, female white rats were exposed for 3 or 6 months 5 times a week, 4h a day to an aerosol containing predominantly submicron (nanoscale included) particles of amorphous silica at an exposure concentration of 2.6±0.6 or 10.6±2.1mg/m 3 . This material had been collected from the flue-gas ducts of electric ore smelting furnaces that were producing elemental silicon, subsequently sieved through a<2μm screen and redispersed to feed a computerized "nose only" inhalation system. In an auxiliary experiment using a single-shot intratracheal instillation of these particles, it was shown that they induced a pulmonary cell response comparable with that of a highly cytotoxic and fibrogenic quartz powder, namely DQ12. However, in long-term inhalation tests, the aerosol studied proved to be of very low systemic toxicity and negligible pulmonary fibrogenicity. This paradox may be explained by a low SiO 2 retention in the lungs and other organs due to the relatively high solubility of these nanoparticles. nasal penetration of nanoparticles into the brain as well as their genotoxic action were found in the same experiment, results that make one give a cautious overall assessment of this aerosol as an occupational or environmental hazard. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Defect-rich TiO2-δ nanocrystals confined in a mooncake-shaped porous carbon matrix as an advanced Na ion battery anode

    NASA Astrophysics Data System (ADS)

    He, Hanna; Zhang, Qi; Wang, Haiyan; Zhang, Hehe; Li, Jiadong; Peng, Zhiguang; Tang, Yougen; Shao, Minhua

    2017-06-01

    Inferior electronic conductivity and sluggish sodium ion diffusion are still two big challenges for TiO2 anode material for Na ion batteries (SIBs). Herein, we synthesize TiO2/C composites by the pyrolysis of MIL-125(Ti) precursor and successfully introduce defects to TiO2/C composite by a simple magnesium reduction. The as-prepared defect-rich TiO2-δ/C composite shows mooncake-shaped morphology consisting of TiO2-δ nanocrystals with an average particle size of 5 nm well dispersed in the carbon matrix. When used as a SIBs anode, the defect-rich TiO2-δ/C composite exhibits a high reversible capacity of 330.2 mAh g-1 at 50 mA g-1 at the voltage range of 0.001-3.0 V and long-term cycling stability with negligible decay after 5000 cycles. Compared with other four TiO2/C samples, the electrochemical performance of defect-rich TiO2-δ/C is highly improved, which may benefit from the enhanced electronic/ionic conductivities owing to the defect-rich features, high surface area rendering shortened electronic and ionic diffusion path, and the suppress of the TiO2 crystal aggregation during sodiation and desodiation process by the carbon matrix.

  17. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile.

    PubMed

    Yan, Junqing; Wu, Guangjun; Guan, Naijia; Li, Landong; Li, Zhuoxin; Cao, Xingzhong

    2013-07-14

    The sole effect of surface/bulk defects of TiO2 samples on their photocatalytic activity was investigated. Nano-sized anatase and rutile TiO2 were prepared by hydrothermal method and their surface/bulk defects were adjusted simply by calcination at different temperatures, i.e. 400-700 °C. High temperature calcinations induced the growth of crystalline sizes and a decrease in the surface areas, while the crystalline phase and the exposed facets were kept unchanged during calcination, as indicated by the characterization results from XRD, Raman, nitrogen adsorption-desorption, TEM and UV-Vis spectra. The existence of surface/bulk defects in calcined TiO2 samples was confirmed by photoluminescence and XPS spectra, and the surface/bulk defect ratio was quantitatively analyzed according to positron annihilation results. The photocatalytic activity of calcined TiO2 samples was evaluated in the photocatalytic reforming of methanol and the photocatalytic oxidation of α-phenethyl alcohol. Based on the characterization and catalytic results, a direct correlation between the surface specific photocatalytic activity and the surface/bulk defect density ratio could be drawn for both anatase TiO2 and rutile TiO2. The surface defects of TiO2, i.e. oxygen vacancy clusters, could promote the separation of electron-hole pairs under irradiation, and therefore, enhance the activity during photocatalytic reaction.

  18. Long-Term Exposure to Ozone and Life Expectancy in the United States, 2002 to 2008

    PubMed Central

    Li, Chaoyang; Balluz, Lina S.; Vaidyanathan, Ambarish; Wen, Xiao-Jun; Hao, Yongping; Qualters, Judith R.

    2016-01-01

    Abstract Long-term exposure to ground-level ozone is associated with increased risk of morbidity and mortality. The association remains uncertain between long-term exposure to ozone and life expectancy. We assessed the associations between seasonal mean daily 8-hour maximum (8-hr max) ozone concentrations measured during the ozone monitoring seasons and life expectancy at birth in 3109 counties of the conterminous U.S. during 2002 to 2008. We used latent class growth analysis to identify latent classes of counties that had distinct mean levels and rates of change in ozone concentrations over the 7-year period and used linear regression analysis to determine differences in life expectancy by ozone levels. We identified 3 classes of counties with distinct seasonal mean daily 8-hr max ozone concentrations and rates of change. When compared with the counties with the lowest ozone concentrations, the counties with the highest ozone concentrations had 1.7- and 1.4-year lower mean life expectancy in males and females (both P < 0.0001), respectively. The associations remained statistically significant after controlling for potential confounding effects of seasonal mean PM2.5 concentrations and other selected environmental, demographic, socio-economic, and health-related factors (both P < 0.0001). A 5 ppb higher ozone concentration was associated with 0.25 year lower life expectancy in males (95% CI: −0.30 to −0.19) and 0.21 year in females (95% CI: −0.25 to −0.17). We identified 3 classes of counties with distinct mean levels and rates of change in ozone concentrations. Our findings suggest that long-term exposure to a higher ozone concentration may be associated with a lower life expectancy. PMID:26886595

  19. Effects of Long-Term Dust Exposure on Human Respiratory System Health in Minqin County, China.

    PubMed

    Wang, Jinyu; Li, Sheng; Wang, Shigong; Shang, Kezheng

    2015-01-01

    The aim of this study was to assess the effects of long-term sand dust exposure on human respiratory health. Dust events break out frequently in Minqin County, northwest China, whereas Pingliang City, northwest China, is rarely influenced by dust events. Therefore, Minqin and Pingliang were selected as sand dust exposure region and control area, respectively. The incidence of respiratory system diseases and symptoms was determined through a structured respiratory health questionnaire (ATS-DLD-78-A) and personal interviews. The subjects comprised 728 farmers (Minqin, 424; Pingliang, 304) aged 40 years or older, who had nondocumented occupational history to industrial dust exposure. Prevalences (odds ratio [OR], 95% confidence interval [CI]) of chronic rhinitis, chronic bronchitis, and chronic cough increased 9.6% (3.141, 1.776-5.555), 7.5% (2.468, 1.421-4.286), and 10.2% (1.787, 1.246-2.563) in Minqin comparison with Pingliang, respectively, and the differences were significant (p <.01).

  20. Long-term exposure to ambient ozone and mortality: a quantitative systematic review and meta-analysis of evidence from cohort studies.

    PubMed

    Atkinson, R W; Butland, B K; Dimitroulopoulou, C; Heal, M R; Stedman, J R; Carslaw, N; Jarvis, D; Heaviside, C; Vardoulakis, S; Walton, H; Anderson, H R

    2016-02-23

    While there is good evidence for associations between short-term exposure to ozone and a range of adverse health outcomes, the evidence from narrative reviews for long-term exposure is suggestive of associations with respiratory mortality only. We conducted a systematic, quantitative evaluation of the evidence from cohort studies, reporting associations between long-term exposure to ozone and mortality. Cohort studies published in peer-reviewed journals indexed in EMBASE and MEDLINE to September 2015 and PubMed to October 2015 and cited in reviews/key publications were identified via search strings using terms relating to study design, pollutant and health outcome. Study details and estimate information were extracted and used to calculate standardised effect estimates expressed as HRs per 10 ppb increment in long-term ozone concentrations. 14 publications from 8 cohorts presented results for ozone and all-cause and cause-specific mortality. We found no evidence of associations between long-term annual O3 concentrations and the risk of death from all causes, cardiovascular or respiratory diseases, or lung cancer. 4 cohorts assessed ozone concentrations measured during the warm season. Summary HRs for cardiovascular and respiratory causes of death derived from 3 cohorts were 1.01 (95% CI 1.00 to 1.02) and 1.03 (95% CI 1.01 to 1.05) per 10 ppb, respectively. Our quantitative review revealed a paucity of independent studies regarding the associations between long-term exposure to ozone and mortality. The potential impact of climate change and increasing anthropogenic emissions of ozone precursors on ozone levels worldwide suggests further studies of the long-term effects of exposure to high ozone levels are warranted. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. Estrogen-mediated impairment of macrophageal uptake of environmental TiO2 particles to explain inflammatory effect of TiO2 on airways during pregnancy.

    PubMed

    Zhang, Yiming; Mikhaylova, Lyudmila; Kobzik, Lester; Fedulov, Alexey V

    2015-01-01

    Innate defenses against environmental particulate exposures can become deficient when physiological background of the organism is unbalanced. Even those exposures considered innocuous may then become harmful. For example, one of the important inherent risks of pregnancy is increased inflammatory responsiveness in the airways, which extends to exposures considered otherwise innocuous: it has been observed that normally "inert" particulates become inflammatory in pregnancy. They lead to enhanced airway inflammation associated with increased asthma risk in the offspring in the BALB/c model. It was hypothesized that pregnancy hormones alter macrophageal uptake and clearance of particles. This study shows that the phagocytic activity of alveolar macrophages (AM) and RAW264.7 cells against titanium dioxide (TiO2) was inhibited in pregnancy by ∼ 10% and in vitro by estradiol by ∼ 20%; progesterone potentiated this effect. Hence, enhanced inflammation in pregnancy as an outcome of exposure to the "inert" TiO2 may be due to an effect of pregnancy hormones which decrease the ability of the airways to clear the particles. AM (at 10(6) cells/recipient) isogenically transplanted from pregnant mothers into airways of recipients were able to confer the phenotype of inflammatory response to TiO2 (PMN counts of 1.62 [± 0.19] × 10(5)/ml versus 0.61 [± 0.13] × 10(5)/ml in control). Because this small amount of transferred AM could not replace the AM population in the recipients' lungs, it is postulated that the effect is mediated by inhibitory signaling factors that AM produce and release; hence, a list of probable molecules was identified via genome-wide microarray.

  2. TiO2 Nanorods Decorated with Pd Nanoparticles for Enhanced Liquefied Petroleum Gas Sensing Performance.

    PubMed

    Dhawale, Dattatray S; Gujar, Tanaji P; Lokhande, Chandrakant D

    2017-08-15

    Development of highly sensitive and selective semiconductor-based metal oxide sensor devices to detect toxic, explosive, flammable, and pollutant gases is still a challenging research topic. In the present work, we systematically enhanced the liquefied petroleum gas (LPG) sensing performance of chemical bath deposited TiO 2 nanorods by decorating Pd nanoparticle catalyst. Surface morphology with elemental mapping, crystal structure, composition and oxidation states, and surface area measurements of pristine TiO 2 and Pd:TiO 2 nanorods was examined by high resolution transmission electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption characterization techniques. LPG sensing performance of pristine TiO 2 and Pd:TiO 2 nanorods was investigated in different LPG concentration and operating temperature ranges. The LPG response of 21% for pristine TiO 2 nanorods is enhanced to 49% after Pd catalyst decoration with reasonably fast response and recovery times. Further, the sensor exhibited long-term stability, which could be due to the strong metal support (Pd:TiO 2 ) interaction and catalytic properties offered by the Pd nanoparticle catalyst. The work described herein demonstrates a general and scalable approach that provides a promising route for rational design of variety of sensor devices for LPG detection.

  3. Rapid detection of TiO2 (E171) in table sugar using Raman spectroscopy.

    PubMed

    Tan, Chen; Zhao, Bin; Zhang, Zhiyun; He, Lili

    2017-02-01

    The potential toxic effects of titanium dioxide (TiO 2 ) to humans remain debatable despite its broad application as a food additive. Thus, confirmation of the existence of TiO 2 particles in food matrices and subsequently quantifying them are becoming increasingly critical. This study developed a facile, rapid (< 30 min) and highly reliable method to detect and quantify TiO 2 particles (E171) from food products (e.g., table sugar) by Raman spectroscopy. To detect TiO 2 particles from sugar solution, sequential centrifugation and washing procedures were effectively applied to separate and recover 97% of TiO 2 particles from the sugar solution. The peak intensity of TiO 2 sensitively responded to the concentration of TiO 2 with a limit of detection (LOD) of 0.073 mg kg -1 . In the case of sugar granules, a mapping technique was applied to directly estimate the level of TiO 2 , which can be potentially used for rapid online monitoring. The plot of averaged intensity to TiO 2 concentration in the sugar granules exhibited a good linear relationship in the wide range of 5-2000 mg kg -1 , with an LOD of 8.46 mg kg -1 . Additionally, we applied Raman spectroscopy to prove the presence of TiO 2 in sugar-coated doughnuts. This study begins to fill in the analytical gaps that exist regarding the rapid detection and quantification of TiO 2 in food, which facilitate the risk assessment of TiO 2 through food exposure.

  4. Long-term exposure to ambient ultrafine particles and respiratory disease incidence in in Toronto, Canada: a cohort study.

    PubMed

    Weichenthal, Scott; Bai, Li; Hatzopoulou, Marianne; Van Ryswyk, Keith; Kwong, Jeffrey C; Jerrett, Michael; van Donkelaar, Aaron; Martin, Randall V; Burnett, Richard T; Lu, Hong; Chen, Hong

    2017-06-19

    Little is known about the long-term health effects of ambient ultrafine particles (<0.1 μm) (UFPs) including their association with respiratory disease incidence. In this study, we examined the relationship between long-term exposure to ambient UFPs and the incidence of lung cancer, adult-onset asthma, and chronic obstructive pulmonary disease (COPD). Our study cohort included approximately 1.1 million adults who resided in Toronto, Canada and who were followed for disease incidence between 1996 and 2012. UFP exposures were assigned to residential locations using a land use regression model. Random-effect Cox proportional hazard models were used to estimate hazard ratios (HRs) describing the association between ambient UFPs and respiratory disease incidence adjusting for ambient fine particulate air pollution (PM 2.5 ), NO 2 , and other individual/neighbourhood-level covariates. In total, 74,543 incident cases of COPD, 87,141 cases of asthma, and 12,908 cases of lung cancer were observed during follow-up period. In single pollutant models, each interquartile increase in ambient UFPs was associated with incident COPD (HR = 1.06, 95% CI: 1.05, 1.09) but not asthma (HR = 1.00, 95% CI: 1.00, 1.01) or lung cancer (HR = 1.00, 95% CI: 0.97, 1.03). Additional adjustment for NO 2 attenuated the association between UFPs and COPD and the HR was no longer elevated (HR = 1.01, 95% CI: 0.98, 1.03). PM 2.5 and NO 2 were each associated with increased incidence of all three outcomes but risk estimates for lung cancer were sensitive to indirect adjustment for smoking and body mass index. In general, we did not observe clear evidence of positive associations between long-term exposure to ambient UFPs and respiratory disease incidence independent of other air pollutants. Further replication is required as few studies have evaluated these relationships.

  5. Enhanced simultaneous PEC eradication of bacteria and antibiotics by facilely fabricated high-activity {001} facets TiO2 mounted onto TiO2 nanotubular photoanode.

    PubMed

    Li, Guiying; Nie, Xin; Chen, Jiangyao; Wong, Po Keung; An, Taicheng; Yamashita, Hiromi; Zhao, Huijun

    2016-09-15

    Biohazards and coexisted antibiotics are two groups of emerging contaminants presented in various aquatic environments. They can pose serious threat to the ecosystem and human health. As a result, inactivation of biohazards, degradation of antibiotics, and simultaneous removal of them are highly desired. In this work, a novel photoanode with a hierarchical structured {001} facets exposed nano-size single crystals (NSC) TiO2 top layer and a perpendicularly aligned TiO2 nanotube array (NTA) bottom layer (NSC/NTA) was successfully fabricated. The morphology and facets of anatase TiO2 nanoparticles covered on the top of NTA layer could be controlled by adjusting precalcination temperature and heating rate as the pure NTA was clamped with glasses. Appropriate recalcination can timely remove surface F from {001} facets, and the photocatalytic activity of the resultant photoanode was subsequently activated. NSC/NTA photoanode fabricated under 500 °C precalcination with 20 °C min(-1) followed by 550 °C recalcination possessed highest photoelectrocatalytic efficiency to simultaneously remove bacteria and antibiotics. Results suggest that two-step calcination is necessary for fabrication of high photocatalytic activity NSC/NTA photoanode. The capability of simultaneous eradication of bacteria and antibiotics shows great potential for development of a versatile approach to effectively purify various wastewaters contaminated with complex pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Characterization, Degradation, and Reaction Pathways of Indoor Toluene over Visible-light-driven S, Zn Co-doped TiO2

    NASA Astrophysics Data System (ADS)

    Chu, H.; Lin, Y. H.; Lin, C. Y.

    2017-01-01

    Sulfur and Zinc co-doped TiO2 prepared by a sol-gel method to degrade toluene under a fluorescent lamp was investigated. The results indicate that S,Zn co-doped TiO2 photocatalysts are mainly nano-size with an anatase phase structure. The degradation reactions of toluene were performed under various operation conditions. The results show that the toluene conversion increases with increasing toluene concentration and decreasing relative humidity. Based on the results of activity test, S0.05Zn0.001/TiO2 was chosen for further studies. The main oxidation products of toluene photodegradation are CO2, H2O, benzyl alcohol, acetone, butadiene and acetic acid. Two possible mechanisms have been developed for photodegradation of toluene in a dry and a humid environment.

  7. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light.

    PubMed

    Ananpattarachai, Jirapat; Seraphin, Supapan; Kajitvichyanukul, Puangrat

    2016-02-01

    This work reports on synthesis, characterization, adsorption ability, formation rate of hydroxyl radicals (OH(•)), photocatalytic oxidation kinetics, and mineralization ability of C-doped titanium dioxide (TiO2), N-doped TiO2, and C,N co-doped TiO2 prepared by the sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy were used to analyze the titania. The rate of formation of OH(•) for each type of titania was determined, and the OH-index was calculated. The kinetics of as-synthesized TiO2 catalysts in photocatalytic oxidation of 2-chlorophenol (2-CP) under visible light irradiation were evaluated. Results revealed that nitrogen was incorporated into the lattice of titania with the structure of O-Ti-N linkages in N-doped TiO2 and C,N co-doped TiO2. Carbon was joined to the Ti-O-C bond in the C-doped TiO2 and C,N co-doped TiO2. The 2-CP adsorption ability of C,N co-doped TiO2 and C-doped TiO2 originated from a layer composed of a complex carbonaceous mixture at the surface of TiO2. C,N co-doped TiO2 had highest formation rate of OH(•) and photocatalytic activity due to a synergistic effect of carbon and nitrogen co-doping. The order of photocatalytic activity per unit surface area was the same as that of the formation rate of OH(•) unit surface area in the following order: C,N co-doped TiO2 > C-doped TiO2 > N-doped TiO2 > undoped TiO2.

  8. Long-Term Exposure to High Altitude Affects Conflict Control in the Conflict-Resolving Stage

    PubMed Central

    Wu, Jianhui; Wang, Baoxi; Guo, Shichun; Luo, Ping; Han, Buxin

    2015-01-01

    The neurocognitive basis of the effect of long-term high altitude exposure on conflict control is unclear. Event related potentials (ERPs) were recorded in a flanker task to investigate the influence of high altitude on conflict control in the high-altitude group (who had lived at high altitude for three years but were born at low altitude) and the low-altitude group (living in low altitude only). Although altitude effect was not significant at the behavioral level, ERPs showed cognitive conflict modulation. The interaction between group and trial type was significant: P3 amplitude was greater in the low-altitude group than in the high-altitude group in the incongruent trial. This result suggests that long-term exposure to high altitude affects conflict control in the conflict-resolving stage, and that attentional resources are decreased to resist the conflict control in the high-altitude group. PMID:26671280

  9. Voltammetric sensor for buzepide methiodide determination based on TiO2 nanoparticle-modified carbon paste electrode.

    PubMed

    Kalanur, Shankara S; Seetharamappa, Jaldappagari; Prashanth, S N

    2010-07-01

    In this work, we have prepared nano-material modified carbon paste electrode (CPE) for the sensing of an antidepressant, buzepide methiodide (BZP) by incorporating TiO2 nanoparticles in carbon paste matrix. Electrochemical studies indicated that the TiO2 nanoparticles efficiently increased the electron transfer kinetics between drug and the electrode. Compared with the nonmodified CPE, the TiO2-modified CPE greatly enhances the oxidation signal of BZP with negative shift in peak potential. Based on this, we have proposed a sensitive, rapid and convenient electrochemical method for the determination of BZP. Under the optimized conditions, the oxidation peak current of BZP is found to be proportional to its concentration in the range of 5 x 10(-8) to 5 x 10(-5)M with a detection limit of 8.2 x 10(-9)M. Finally, this sensing method was successfully applied for the determination of BZP in human blood serum and urine samples with good recoveries. 2010 Elsevier B.V. All rights reserved.

  10. In situ modification of cell-culture scaffolds by photocatalysis of visible-light-responsive TiO2 film

    NASA Astrophysics Data System (ADS)

    Kono, Sho; Furusawa, Kohei; Kurotobi, Atsushi; Hattori, Kohei; Yamamoto, Hideaki; Hirano-Iwata, Ayumi; Tanii, Takashi

    2018-02-01

    We propose a novel process to modify the cell affinity of scaffolds in a cell-culture environment using the photocatalytic activity of visible-light (VL)-responsive TiO2. The proposed process is the improved version of our previous demonstration in which ultraviolet (UV)-responsive TiO2 was utilized. In that demonstration, we showed that cell-repellent molecules on TiO2 were decomposed and replaced with cell-permissive molecules upon UV exposure in the medium where cells are being cultured. However, UV irradiation involves taking the risk of inducing damage to the cells. In this work, a TiO2 film was sputter-deposited on a quartz coverslip at 640 °C without O2 gas injection to create a rutile structure containing oxygen defects, which is known to exhibit photocatalytic activity upon VL exposure. We show that the cell adhesion site and migration area can be controlled with the photocatalytic activity of the VL-responsive TiO2 film, while the cellular oxidative stress is reduced markedly by the substitution of VL for UV.

  11. Investigation of TiO2 based Mixed-metal Oxide Catalysts for the Production of Hydrogen

    NASA Astrophysics Data System (ADS)

    Luo, Si

    Abstract of the Dissertation. Investigation of TiO2 based Mixed-metal Oxide Catalysts for the Production of Hydrogen. by. Si Luo. Doctor of Philosophy. in. Chemistry. Stony Brook University. 2017. The environmental impacts of fossil fuel consumption and the resulting global warming have attracted increasing attention to technologies and fuels that are both sustainable and renewable in the 21st century. To date, hydrogen has been proposed as an encouraging candidate of the next generation of chemical fuels, which meets all demands for carbon free and efficient chemistries that could be produced from a variety of sources. However, despite tremendous efforts, there is a clear need to develop new catalysts for the production of hydrogen through catalytic processes that are sustainable, such as in the photocatalytic splitting of water (PCS: H2O → H2 + 0.5O2) and the water-gas shift process (WGS: CO + H2O → H2 + CO2). This thesis is primarily motivated by this challenge and has focused on the photochemical and thermal production of H2 by the employment of novel TiO2 based catalysts. TiO2 is one of the most widely studied photocatalysts in all history, due to its relatively high activity, robust stability, safety and low cost. In this thesis, several TiO2-based mixed metal oxide nano catalysts (CeOx-TiO2, Ru-TiO2, Ga-TiO2) have been synthesized with carefully controlled morphology/structure and with inclusion of co-catalysts (Pt). These novel materials were comprehensively characterized to better understand their morphology, crystal structure, and electronic properties in an attempt to unravel phenomena responsible for high catalytic performance for the production of H2 from H2O. We have discovered the importance of low-dimensional metal oxide and interfacial stabilized nano-scaled mixed metal oxides for H2 production, while learning how best to tune such structure to optimize both thermal and photochemical conversion. Optimized structure and/or composition have been

  12. TiO2 nanoparticles cause mitochondrial dysfunction, activate inflammatory responses, and attenuate phagocytosis in macrophages: A proteomic and metabolomic insight.

    PubMed

    Chen, Qun; Wang, Ningning; Zhu, Mingjiang; Lu, Jianhong; Zhong, Huiqin; Xue, Xinli; Guo, Shuoyuan; Li, Min; Wei, Xinben; Tao, Yongzhen; Yin, Huiyong

    2018-05-01

    Titanium dioxide nanoparticles (TiO 2 NPs) are widely used in food and cosmetics but the health impact of human exposure remains poorly defined. Emerging evidence suggests that TiO 2 NPs may elicit immune responses by acting on macrophages. Our proteomic study showed that treatment of macrophages with TiO 2 NPs led to significant re-organization of cell membrane and activation of inflammation. These observations were further corroborated with transmission electron microscopy (TEM) experiments, which demonstrated that TiO 2 NPs were trapped inside of multi-vesicular bodies (MVB) through endocytotic pathways. TiO 2 NP caused significant mitochondrial dysfunction by increasing levels of mitochondrial reactive oxygen species (ROS), decreasing ATP generation, and decreasing metabolic flux in tricarboxylic acid (TCA) cycle from 13 C-labelled glutamine using GC-MS-based metabolic flux analysis. Further lipidomic analysis showed that TiO 2 NPs significantly decreased levels of cardiolipins, an important class of mitochondrial phospholipids for maintaining proper function of electron transport chains. Furthermore, TiO 2 NP exposure activates inflammatory responses by increasing mRNA levels of TNF-α, iNOS, and COX-2. Consistently, our targeted metabolomic analysis showed significantly increased production of COX-2 metabolites including PGD 2 , PGE 2 , and 15d-PGJ 2 . In addition, TiO 2 NP also caused significant attenuation of phagocytotic function of macrophages. In summary, our studies utilizing multiple powerful omic techniques suggest that human exposure of TiO 2 NPs may have profound impact on macrophage function through activating inflammatory responses and causing mitochondrial dysfunction without physical presence in mitochondria. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Longitudinal study of long-term smoking behaviour by biomarker-supported determination of exposure to smoke.

    PubMed

    Cunningham, Anthony; Sommarström, Johan; Sisodiya, Ajit S; Errington, Graham; Prasad, Krishna

    2014-04-12

    Long-term studies of smokers who switch to lower nicotine yield cigarettes have been identified by the World Health Organization Study Group TobReg and the US Food and Drug Administration as one key area where new knowledge is required to guide science based regulation. The limited number of long-term switching studies have concluded that smokers who switch to lower nicotine yield cigarettes show evidence of partial compensation. Since the European Union tobacco product directive of 2001 introduced tar and nicotine yield ceilings, there has been no long-term observational switching study. To address the limitations of previous studies where smokers were forced switched for relatively short durations, we plan to undertake a long-term study of spontaneous switching which is appropriately powered and includes non-switchers as a control group. Healthy adult smokers aged 21-64 years will be enrolled into this 5-year non-residential, multicentre study across 10 cities in Germany. They will be assessed at 10 timepoints with 6 month intervals during which inclusion criteria will be reassessed and spent cigarette filter tips, saliva and 24 h urine samples will be collected. These samples will be used to determine average daily cigarette consumption, estimate mouth-level exposure to tar and nicotine and measure selected biomarkers of exposure, respectively. Spontaneous changes in subjects' preferred cigarette products and any consequent change in tar or nicotine yield will be monitored. Subjects will be required to complete questionnaires on quality of life, smoking behaviours, smoking-related sensory attributes and recent life changes. The planned study is anticipated to contribute to understanding smokers' behaviours and their consequent exposure to smoke constituents. It will also allow assessment of compensatory changes in their behaviour following spontaneous switching of cigarette product smoked. Data from this study are expected to provide insights into study design

  14. Long-term neuroendocrine and behavioural effects of a single exposure to stress in adult animals.

    PubMed

    Armario, Antonio; Escorihuela, Rosa M; Nadal, Roser

    2008-08-01

    There is now considerable evidence for long-lasting sequels of stress. A single exposure to high intensity predominantly emotional stressors such as immobilisation in wooden-boards (IMO) induces long-term (days to weeks) desensitization of the hypothalamic-pituitary-adrenal (HPA) response to the same (homotypic) stressor, whereas the response to novel (heterotypic) stressors was enhanced. In addition, long-lasting changes in behaviour have been described after a single exposure to brief or more prolonged sessions of shocks, predator, predator odour, underwater stress or a combination of three stressors on 1 day. The most consistent changes are reduced entries into the open arms of the elevated plus-maze and enhanced acoustic startle response, both reflecting enhanced anxiety. However, it is unclear whether there is any relationship between the intensity of the stressors, as evaluated by the main physiological indexes of stress (e.g. HPA axis), the putative traumatic experience they represent and their long-term behavioural consequences. This is particularly critical when trying to model post-traumatic stress disorders (PTSD), which demands a great effort to validate such putative models.

  15. Mortality assessment attributed to long-term exposure to fine particles in ambient air of the megacity of Tehran, Iran.

    PubMed

    Yarahmadi, Maryam; Hadei, Mostafa; Nazari, Seyed Saeed Hashemi; Conti, Gea Oliveri; Alipour, Mohammd Reza; Ferrante, Margherita; Shahsavani, Abbas

    2018-05-01

    Few studies regarding the health effects of long-term exposure to particulate matter with an aerodynamic diameter of 2.5 μm or less (PM 2.5 ) have been carried out in Asia or the Middle East. The objective of our study was to assess total, lung cancer and chronic obstructive pulmonary disease (COPD) mortality attributed to long-term exposure to PM 2.5 among adults aged over 30 years in Tehran from March 2013 to March 2016 using AirQ + software. AirQ + modeling software was used to estimate the number of deaths attributed to PM 2.5 concentrations higher than 10 μg m -3 . Air quality data were obtained from the Department of Environment (DOE) and Tehran Air Quality Control Company (TAQCC). Only valid stations with data completeness of 75% in all 3 years were selected for entry into the model. The 3-year average of the 24-h concentrations was 39.17 μg m -3 . The results showed that the annual average concentration of PM 2.5 in 2015-2016 was reduced by 13% compared to that in 2013-2014. The annual average number of all natural, COPD, and lung cancer deaths attributable to long-term exposure to PM 2.5 in adults aged more than 30 years was 5073, 158, and 142 cases, respectively. The results of all three health endpoints indicate that the mortality attributable to PM 2.5 decreased yearly from 2013 to 2016 and that the reduced mortality was related to a corresponding reduction in the PM 2.5 concentration. Considering these first positive results, the steps that have been currently taken for reducing air pollution in Tehran should be continued to further improve the already positive effects of these measures on reducing health outcomes.

  16. The Long-Term Economic Impact of in Utero and Postnatal Exposure to Malaria

    ERIC Educational Resources Information Center

    Barreca, Alan I.

    2010-01-01

    I use an instrumental-variables identification strategy and historical data from the United States to estimate the long-term economic impact of in utero and postnatal exposure to malaria. My research design matches adults in the 1960 Decennial Census to the malaria death rate in their respective state and year of birth. To address potential…

  17. Effect of TiO2 nanoparticles on aerobic granulation of algal-bacterial symbiosis system and nutrients removal from synthetic wastewater.

    PubMed

    Li, Bing; Huang, Wenli; Zhang, Chao; Feng, Sisi; Zhang, Zhenya; Lei, Zhongfang; Sugiura, Norio

    2015-01-01

    The influence of TiO2 nanoparticles (TiO2-NPs) (10-50mg/L) on aerobic granulation of algal-bacterial symbiosis system was investigated by using two identical sequencing batch reactors (SBRs). Although little adverse effect was observed on their nitritation efficiency (98-100% in both reactors), algal-bacterial granules in the control SBR (Rc) gradually lost stability mainly brought about by algae growth. TiO2-NPs addition to RT was found to enhance the granulation process achieving stable and compact algal-bacterial granules with remarkably improved nitratation thus little nitrite accumulation in RT when influent TiO2-NPs⩾30mg/L. Despite almost similar organics and phosphorus removals obtained in both reactors, the stably high nitratation efficiency in addition to much stable granular structure in RT suggests that TiO2-NPs addition might be a promising remedy for the long-term operation of algal-bacterial granular system, most probably attributable to the stimulated excretion of extracellular polymeric substances and less filamentous TM7. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2.

    PubMed

    Benner, Ina; Diner, Rachel E; Lefebvre, Stephane C; Li, Dian; Komada, Tomoko; Carpenter, Edward J; Stillman, Jonathon H

    2013-01-01

    Increased atmospheric pCO2 is expected to render future oceans warmer and more acidic than they are at present. Calcifying organisms such as coccolithophores that fix and export carbon into the deep sea provide feedbacks to increasing atmospheric pCO2. Acclimation experiments suggest negative effects of warming and acidification on coccolithophore calcification, but the ability of these organisms to adapt to future environmental conditions is not well understood. Here, we tested the combined effect of pCO2 and temperature on the coccolithophore Emiliania huxleyi over more than 700 generations. Cells increased inorganic carbon content and calcification rate under warm and acidified conditions compared with ambient conditions, whereas organic carbon content and primary production did not show any change. In contrast to findings from short-term experiments, our results suggest that long-term acclimation or adaptation could change, or even reverse, negative calcification responses in E. huxleyi and its feedback to the global carbon cycle. Genome-wide profiles of gene expression using RNA-seq revealed that genes thought to be essential for calcification are not those that are most strongly differentially expressed under long-term exposure to future ocean conditions. Rather, differentially expressed genes observed here represent new targets to study responses to ocean acidification and warming.

  19. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2

    PubMed Central

    Benner, Ina; Diner, Rachel E.; Lefebvre, Stephane C.; Li, Dian; Komada, Tomoko; Carpenter, Edward J.; Stillman, Jonathon H.

    2013-01-01

    Increased atmospheric pCO2 is expected to render future oceans warmer and more acidic than they are at present. Calcifying organisms such as coccolithophores that fix and export carbon into the deep sea provide feedbacks to increasing atmospheric pCO2. Acclimation experiments suggest negative effects of warming and acidification on coccolithophore calcification, but the ability of these organisms to adapt to future environmental conditions is not well understood. Here, we tested the combined effect of pCO2 and temperature on the coccolithophore Emiliania huxleyi over more than 700 generations. Cells increased inorganic carbon content and calcification rate under warm and acidified conditions compared with ambient conditions, whereas organic carbon content and primary production did not show any change. In contrast to findings from short-term experiments, our results suggest that long-term acclimation or adaptation could change, or even reverse, negative calcification responses in E. huxleyi and its feedback to the global carbon cycle. Genome-wide profiles of gene expression using RNA-seq revealed that genes thought to be essential for calcification are not those that are most strongly differentially expressed under long-term exposure to future ocean conditions. Rather, differentially expressed genes observed here represent new targets to study responses to ocean acidification and warming. PMID:23980248

  20. Metabolic profiling of goldfish (Carassius auratis) after long-term glyphosate-based herbicide exposure.

    PubMed

    Li, Ming-Hui; Ruan, Ling-Yu; Zhou, Jin-Wei; Fu, Yong-Hong; Jiang, Lei; Zhao, He; Wang, Jun-Song

    2017-07-01

    Glyphosate is an efficient herbicide widely used worldwide. However, its toxicity to non-targeted organisms has not been fully elucidated. In this study, the toxicity of glyphosate-based herbicide was evaluated on goldfish (Carassius auratus) after long-term exposure. Tissues of brains, kidneys and livers were collected and submitted to NMR-based metabolomics analysis and histopathological inspection. Plasma was collected and the blood biochemical indexes of AST, ALT, BUN, CRE, LDH, SOD, GSH-Px, GR and MDA were measured. Long-term glyphosate exposure caused disorders of blood biochemical indexes and renal tissue injury in goldfish. Metabolomics analysis combined with correlation network analysis uncovered significant perturbations in oxidative stress, energy metabolism, amino acids metabolism and nucleosides metabolism in glyphosate dosed fish, which provide new clues to the toxicity of glyphosate. This integrated metabolomics approach showed its applicability in discovering the toxic mechanisms of pesticides, which provided new strategy for the assessment of the environmental risk of herbicides to non-target organisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Diffusion tensor imaging reveals changes in the adult rat brain following long-term and passive moderate acoustic exposure.

    PubMed

    Abdoli, Sherwin; Ho, Leon C; Zhang, Jevin W; Dong, Celia M; Lau, Condon; Wu, Ed X

    2016-12-01

    This study investigated neuroanatomical changes following long-term acoustic exposure at moderate sound pressure level (SPL) under passive conditions, without coupled behavioral training. The authors utilized diffusion tensor imaging (DTI) to detect morphological changes in white matter. DTIs from adult rats (n = 8) exposed to continuous acoustic exposure at moderate SPL for 2 months were compared with DTIs from rats (n = 8) reared under standard acoustic conditions. Two distinct forms of DTI analysis were applied in a sequential manner. First, DTI images were analyzed using voxel-based statistics which revealed greater fractional anisotropy (FA) of the pyramidal tract and decreased FA of the tectospinal tract and trigeminothalamic tract of the exposed rats. Region of interest analysis confirmed (p < 0.05) that FA had increased in the pyramidal tract but did not show a statistically significant difference in the FA of the tectospinal or trigeminothalamic tract. The results of the authors show that long-term and passive acoustic exposure at moderate SPL increases the organization of white matter in the pyramidal tract.

  2. UV exposure modulates hemidesmosome plasticity, contributing to long-term pigmentation in human skin

    PubMed Central

    Coelho, Sergio G.; Valencia, Julio C.; Yin, Lanlan; Smuda, Christoph; Mahns, Andre; Kolbe, Ludger; Miller, Sharon A.; Beer, Janusz Z.; Zhang, Guofeng; Tuma, Pamela L.; Hearing, Vincent J.

    2014-01-01

    Human skin color, i.e. pigmentation, differs widely among individuals as do their responses to various types of ultraviolet radiation (UV) and their risks of skin cancer. In some individuals UV-induced pigmentation persists for months to years in a phenomenon termed long-lasting pigmentation (LLP). It is unclear whether LLP is an indicator of potential risk for skin cancer. LLP seems to have similar features to other forms of hyperpigmentation, e.g. solar lentigines or age spots, which are clinical markers of photodamage and risk factors for precancerous lesions. To investigate what UV-induced molecular changes may persist in individuals with LLP, clinical specimens from non-sunburn-inducing repeated UV exposures (UVA, UVB or UVA+UVB) at 4 months post-exposure (short-term LLP) were evaluated by microarray analysis and dataset mining. Validated targets were further evaluated in clinical specimens from 6 healthy individuals (3 LLP+ and 3 LLP-) followed for more than 9 months (long-term LLP) who initially received a single sunburn-inducing UVA+UVB exposure. The results support a UV-induced hyperpigmentation model in which basal keratinocytes have an impaired ability to remove melanin that leads to a compensatory mechanism by neighboring keratinocytes with increased proliferative capacity to maintain skin homeostasis. The attenuated expression of SOX7 and other hemidesmosomal components (integrin α6β4 and plectin) leads to increased melanosome uptake by keratinocytes and points to a spatial regulation within the epidermis. The reduced density of hemidesmosomes provides supporting evidence for plasticity at the epidermal-dermal junction. Altered hemidesmosome plasticity, and the sustained nature of LLP, may be mediated by the role of SOX7 in basal keratinocytes. The long-term sustained subtle changes detected are modest, but sufficient to create dramatic visual differences in skin color. These results suggest that the hyperpigmentation phenomenon leading to increased

  3. UV exposure modulates hemidesmosome plasticity, contributing to long-term pigmentation in human skin.

    PubMed

    Coelho, Sergio G; Valencia, Julio C; Yin, Lanlan; Smuda, Christoph; Mahns, Andre; Kolbe, Ludger; Miller, Sharon A; Beer, Janusz Z; Zhang, Guofeng; Tuma, Pamela L; Hearing, Vincent J

    2015-05-01

    Human skin colour, ie pigmentation, differs widely among individuals, as do their responses to various types of ultraviolet radiation (UV) and their risks of skin cancer. In some individuals, UV-induced pigmentation persists for months to years in a phenomenon termed long-lasting pigmentation (LLP). It is unclear whether LLP is an indicator of potential risk for skin cancer. LLP seems to have similar features to other forms of hyperpigmentation, eg solar lentigines or age spots, which are clinical markers of photodamage and risk factors for precancerous lesions. To investigate what UV-induced molecular changes may persist in individuals with LLP, clinical specimens from non-sunburn-inducing repeated UV exposures (UVA, UVB or UVA + UVB) at 4 months post-exposure (short-term LLP) were evaluated by microarray analysis and dataset mining. Validated targets were further evaluated in clinical specimens from six healthy individuals (three LLP+ and three LLP-) followed for more than 9 months (long-term LLP) who initially received a single sunburn-inducing UVA + UVB exposure. The results support a UV-induced hyperpigmentation model in which basal keratinocytes have an impaired ability to remove melanin that leads to a compensatory mechanism by neighbouring keratinocytes with increased proliferative capacity to maintain skin homeostasis. The attenuated expression of SOX7 and other hemidesmosomal components (integrin α6β4 and plectin) leads to increased melanosome uptake by keratinocytes and points to a spatial regulation within the epidermis. The reduced density of hemidesmosomes provides supporting evidence for plasticity at the epidermal-dermal junction. Altered hemidesmosome plasticity, and the sustained nature of LLP, may be mediated by the role of SOX7 in basal keratinocytes. The long-term sustained subtle changes detected are modest, but sufficient to create dramatic visual differences in skin colour. These results suggest that the hyperpigmentation phenomenon

  4. Uniform Gold-Nanoparticle-Decorated {001}-Faceted Anatase TiO2 Nanosheets for Enhanced Solar-Light Photocatalytic Reactions.

    PubMed

    Shi, Huimin; Zhang, Shi; Zhu, Xupeng; Liu, Yu; Wang, Tao; Jiang, Tian; Zhang, Guanhua; Duan, Huigao

    2017-10-25

    The {001}-faceted anatase TiO 2 micro-/nanocrystals have been widely investigated for enhancing the photocatalysis and photoelectrochemical performance of TiO 2 nanostructures, but their practical applications still require improved energy conversion efficiency under solar-light and enhanced cycling stability. In this work, we demonstrate the controlled growth of ultrathin {001}-faceted anatase TiO 2 nanosheets on flexible carbon cloth for enhancing the cycling stability, and the solar-light photocatalytic performance of the synthesized TiO 2 nanosheets can be significantly improved by decorating with vapor-phase-deposited uniformly distributed plasmonic gold nanoparticles. The fabricated Au-TiO 2 hybrid system shows an 8-fold solar-light photocatalysis enhancement factor in photodegrading Rhodamine B, a high photocurrent density of 300 μA cm -2 under the illumination of AM 1.5G, and 100% recyclability under a consecutive long-term cycling measurement. Combined with electromagnetic simulations and systematic control experiments, it is believed that the tandem-type separation and transition of plasmon-induced hot electrons from Au nanoparticles to the {001} facet of anatase TiO 2 , and then to the neighboring {101} facet, is responsible for the enhanced solar-light photochemical performance of the hybrid system. The Au-TiO 2 nanosheet system addresses well the problems of the limited solar-light response of anatase TiO 2 and fast recombination of photogenerated electron-hole pairs, representing a promising high-performance recyclable solar-light-responding system for practical photocatalytic reactions.

  5. Sol-gel preparation of self-cleaning SiO2-TiO2/SiO2-TiO2 double-layer antireflective coating for solar glass

    NASA Astrophysics Data System (ADS)

    Lin, Wensheng; Zheng, Jiaxian; Yan, Lianghong; Zhang, Xinxiang

    2018-03-01

    Self-cleaning SiO2-TiO2/SiO2-TiO2 double-layer antireflective (AR) coating is prepared by sol-gel process. SiO2 sol is prepared by using tetraethyl orthosilicate (TEOS) as precursor and ammonia as catalyst, while TiO2 sol was prepared by using tetrabutyl orthotitanate (TBOT) as precursor and hydrochloric acid as catalyst. The effect of TiO2 content on refractive index, abrasion-resistance and photo-catalytic activity of SiO2-TiO2 hybrid thin films or powders is systematically investigated. It is found that the refractive index of SiO2-TiO2 hybrid thin films increases gradually from 1.18 to 1.53 as the weight ratio of TiO2 to SiO2 increased from 0 to 1.0. The SiO2-TiO2 hybrid thin film and powder possesses good abrasion-resistance and photo-catalytic activity, respectively, as the weight ratio of TiO2 to SiO2 is 0.4. The degradation degree of Rhodamine B by SiO2-TiO2 hybrid powder is 88.3%. Finally, SiO2-TiO2/SiO2-TiO2 double-layer AR coating with high transmittance, abrasion-resistance and self-cleaning property is realized.

  6. Satellite-Based Estimates of Long-Term Exposure to Fine Particles and Association with Mortality in Elderly Hong Kong Residents

    PubMed Central

    Wong, Chit Ming; Tsang, Hilda; Thach, Thuan Quoc; Thomas, G. Neil; Lam, Kin Bong Hubert; Chan, King Pan; Yang, Lin; Lau, Alexis K.H.; Ayres, Jon G.; Lee, Siu Yin; Man Chan, Wai; Hedley, Anthony J.; Lam, Tai Hing

    2015-01-01

    Background A limited number of studies on long-term effects of particulate matter with aerodynamic diameter < 2.5 μm (PM2.5) on health suggest it can be an important cause of morbidity and mortality. In Asia where air quality is poor and deteriorating, local data on long-term effects of PM2.5 to support policy on air quality management are scarce. Objectives We assessed long-term effects of PM2.5 on the mortality in a single Asian city. Methods For 10–13 years, we followed up a cohort of 66,820 participants ≥ 65 years of age who were enrolled and interviewed in all 18 Elderly Health Centres of the Department of Health, Hong Kong, in 1998–2001. Their residential addresses were geocoded into x- and y-coordinates, and their proxy exposures to PM2.5 at their addresses in 1 × 1 km grids were estimated from the U.S. National Aeronautics and Space Administration (NASA) satellite data. We used Cox regression models to calculate hazard ratios (HRs) of mortality associated with PM2.5. Results Mortality HRs per 10-μg/m3 increase in PM2.5 were 1.14 (95% CI: 1.07, 1.22) for all natural causes, 1.22 (95% CI: 1.08, 1.39) for cardiovascular causes, 1.42 (95% CI: 1.16, 1.73) for ischemic heart disease, 1.24 (95% CI: 1.00, 1.53) for cerebrovascular disease, and 1.05 (95% CI: 0.90, 1.22) for respiratory causes. Conclusions Our methods in using NASA satellite data provide a readily accessible and affordable approach to estimation of a sufficient range of individual PM2.5 exposures in a single city. This approach can expand the capacity to conduct environmental accountability studies in areas with few measurements of fine particles. Citation Wong CM, Lai HK, Tsang H, Thach TQ, Thomas GN, Lam KB, Chan KP, Yang L, Lau AK, Ayres JG, Lee SY, Chan WM, Hedley AJ, Lam TH. 2015. Satellite-based estimates of long-term exposure to fine particles and association with mortality in elderly Hong Kong residents. Environ Health Perspect 123:1167–1172; http://dx.doi.org/10.1289/ehp.1408264

  7. Satellite-Based Estimates of Long-Term Exposure to Fine Particles and Association with Mortality in Elderly Hong Kong Residents.

    PubMed

    Wong, Chit Ming; Lai, Hak Kan; Tsang, Hilda; Thach, Thuan Quoc; Thomas, G Neil; Lam, Kin Bong Hubert; Chan, King Pan; Yang, Lin; Lau, Alexis K H; Ayres, Jon G; Lee, Siu Yin; Chan, Wai Man; Hedley, Anthony J; Lam, Tai Hing

    2015-11-01

    A limited number of studies on long-term effects of particulate matter with aerodynamic diameter < 2.5 μm (PM2.5) on health suggest it can be an important cause of morbidity and mortality. In Asia where air quality is poor and deteriorating, local data on long-term effects of PM2.5 to support policy on air quality management are scarce. We assessed long-term effects of PM2.5 on the mortality in a single Asian city. For 10-13 years, we followed up a cohort of 66,820 participants ≥ 65 years of age who were enrolled and interviewed in all 18 Elderly Health Centres of the Department of Health, Hong Kong, in 1998-2001. Their residential addresses were geocoded into x- and y-coordinates, and their proxy exposures to PM2.5 at their addresses in 1 × 1 km grids were estimated from the U.S. National Aeronautics and Space Administration (NASA) satellite data. We used Cox regression models to calculate hazard ratios (HRs) of mortality associated with PM2.5. Mortality HRs per 10-μg/m3 increase in PM2.5 were 1.14 (95% CI: 1.07, 1.22) for all natural causes, 1.22 (95% CI: 1.08, 1.39) for cardiovascular causes, 1.42 (95% CI: 1.16, 1.73) for ischemic heart disease, 1.24 (95% CI: 1.00, 1.53) for cerebrovascular disease, and 1.05 (95% CI: 0.90, 1.22) for respiratory causes. Our methods in using NASA satellite data provide a readily accessible and affordable approach to estimation of a sufficient range of individual PM2.5 exposures in a single city. This approach can expand the capacity to conduct environmental accountability studies in areas with few measurements of fine particles. Wong CM, Lai HK, Tsang H, Thach TQ, Thomas GN, Lam KB, Chan KP, Yang L, Lau AK, Ayres JG, Lee SY, Chan WM, Hedley AJ, Lam TH. 2015. Satellite-based estimates of long-term exposure to fine particles and association with mortality in elderly Hong Kong residents. Environ Health Perspect 123:1167-1172; http://dx.doi.org/10.1289/ehp.1408264.

  8. Trophic transfer and accumulation of TiO2 nanoparticles from clamworm (Perinereis aibuhitensis) to juvenile turbot (Scophthalmus maximus) along a marine benthic food chain.

    PubMed

    Wang, Zhenyu; Yin, Liyun; Zhao, Jian; Xing, Baoshan

    2016-05-15

    In the present work, we investigated the potential benthic trophic transfer of TiO2 nanoparticles (NPs) from clamworm (Perinereis aibuhitensis) to juvenile turbot (Scophthalmus maximus) and their related distribution and toxicity. TiO2 NPs (at 10, 50 and 100 mg/L) could be taken up by clamworms, and mainly accumulated in the lower-digestive tract. TiO2 NPs were able to transfer from clamworms to juvenile turbots. The accumulation of TiO2 NPs in juvenile turbots increased with increasing Ti contents in clamworms during the dietary exposure, however, no biomagnification (BMFs, 0.30-0.33) of TiO2 NPs was observed. For both dietary and waterborne exposure, accumulation of TiO2 NPs was higher in the gill, intestine and stomach of juvenile turbot, following by skin, liver, and muscle. During dietary exposure at Day 20, the growth of turbots was reduced, and abnormal symptoms of liver and spleen were detected. Moreover, both dietary (50 and 100 mg/L TiO2 NPs-treated clamworms) and waterborne (100 mg/L TiO2 NPs) exposures led to significantly lower protein and higher lipid contents, suggesting the nutrition quality reduction of turbots. The findings from this work highlighted the trophic transfer of TiO2 NPs in marine benthic food chain, leading to the potential negative impact on marine aquaculture and food quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Long-Term Exposure to Road Traffic Noise and Nitrogen Dioxide and Risk of Heart Failure: A Cohort Study

    PubMed Central

    Wendelboe Nielsen, Olav; Sajadieh, Ahmad; Ketzel, Matthias; Tjønneland, Anne; Overvad, Kim; Raaschou-Nielsen, Ole

    2017-01-01

    Background: Although air pollution and road traffic noise have been associated with higher risk of cardiovascular diseases, associations with heart failure have received only little attention. Objectives: We aimed to investigate whether long-term exposure to road traffic noise and nitrogen dioxide (NO2) were associated with incident heart failure. Methods: In a cohort of 57,053 people 50–64 y of age at enrollment in the period 1993–1997, we identified 2,550 cases of first-ever hospital admission for heart failure during a mean follow-up time of 13.4 y. Present and historical residential addresses from 1987 to 2011 were found in national registers, and road traffic noise (Lden) and NO2 were modeled for all addresses. Analyses were done using Cox proportional hazard model. Results: An interquartile range higher 10-y time-weighted mean exposure for Lden and NO2 was associated with incidence rate ratios (IRR) for heart failure of 1.14 (1.08–1.21) and 1.11 (1.07–1.16), respectively, in models adjusted for gender, lifestyle, and socioeconomic status. In models with mutual exposure adjustment, IRRs were 1.08 (1.00–1.16) for Lden and 1.07 (1.01–1.14) for NO2. We found statistically significant modification of the NO2–heart failure association by gender (strongest association among men), baseline hypertension (strongest association among hypertensive), and diabetes (strongest association among diabetics). The same tendencies were seen for noise, but interactions were not statistically significant. Conclusions: Long-term exposure to NO2 and road traffic noise was associated with higher risk of heart failure, mainly among men, in both single- and two-pollutant models. High exposure to both pollutants was associated with highest risk. https://doi.org/10.1289/EHP1272 PMID:28953453

  10. Effects of six priority controlled phthalate esters with long-term low-dose integrated exposure on male reproductive toxicity in rats.

    PubMed

    Gao, Hai-Tao; Xu, Run; Cao, Wei-Xin; Qian, Liang-Liang; Wang, Min; Lu, Lingeng; Xu, Qian; Yu, Shu-Qin

    2017-03-01

    Human beings are inevitably exposed to ubiquitous phthalate esters (PEs) surroundings. The purposes of this study were to investigate the effects of long-term low-dose exposure to the mixture of six priority controlled phthalate esters (MIXPs): dimethyl phthalate (DMP), diethyl phthalate (DEP), di(n-butyl) phthalate (DBP), butyl benzyl phthalate (BBP), di(2-ethyhexyl) phthalate (DEHP) and di-n-octyl phthalate (DNOP), on male rat reproductive system and further to explore the underlying mechanisms of the reproductive toxicity. The male rats were orally exposed to either sodium carboxymethyl cellulose as controls or MIXPs at three different low-doses by gavage for 15 weeks. Testosterone and luteinizing hormone (LH) in serum were analyzed, and pathological examinations were performed for toxicity evaluation. Steroidogenic proteins (StAR, P450scc, CYP17A1 and 17β-HSD), cell cycle and apoptosis-related proteins (p53, Chk1, Cdc2, CDK6, Bcl-2 and Bax) were measured for mechanisms exploration. MIXPs with long-term low-dose exposure could cause male reproductive toxicity to the rats, including the decrease of both serum and testicular testosterone, and the constructional damage of testis. These effects were related to down-regulated steroidogenic proteins, arresting cell cycle progression and promoting apoptosis in rat testicular cells. The results indicate that MIXPs with long-term low-dose exposure may pose male reproductive toxicity in human. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Initial formation behaviour of polypyrrole on single crystal TiO2 through photo-electrochemical reaction.

    PubMed

    Kawakita, Jin; Weitzel, Matthias

    2011-04-01

    Hybrid materials of the organic and inorganic semiconductors have a potential to show the better performance in the charge separation at the junction upon the photovoltaic action by the presence of the space charge layer in the inorganic semiconductor. In this study, the photo-anodic polymerization was selected as a fabrication method for the hybrid materials composed of TiO2 and polypyrrole on the basis of some advantages of this method. For the process control of the photo-anodic polymerization, it is important to elucidate the formation and growth mechanisms of the organic polymer. In this study, a flat sheet of single-crystal TiO2 was used as a well-defined surface for preparation of the organic polymer of pyrrole. Photo-anodic polarization behaviour was clarified and polypyrrole was prepared on TiO2. The formation process, especially the initial step was revealed by observation of polypyrrole with atomic force microscope (AFM) and statistical interpretation of the morphology of polypyrrole in the nano-scopic level. The formation process of polypyrrole on the TiO2 surface was summarized; (1) adsorption of precursors, (2) localized formation and growth of polypyrrole under the photo-illumination, and (3) homogenous growth of polypyrrole with the external current application under the photo-illumination.

  12. TiO2/bi A-SPAES(Ds 1.0) composite membranes for proton exchange membrane in direct methanol fuel cell (DMFC).

    PubMed

    Zhang, Ni; Zhong, Chuanqing; Xie, Bing; Liu, Huiling; Wang, Xingzu

    2014-09-01

    A series of TiO2/bi A-SPAES(Ds 1.0) composite membranes with various contents of nano-sized TiO2 particles were prepared through sol-gel method. Scanning electron microscopy (SEM) images indicated the TiO2 particles were well dispersed within polymer matrix. These membranes were used for proton exchange membrane (PEM) for performance evaluation in direct methanol fuel cell (DMFC). These composite membranes showed good thermal stability and mechanical strength. It was found that the water uptake of these membranes enhanced with the TiO2 amount increasing in these composite membranes. Meanwhile, the introduction of TiO2 particles increased the proton conductivity and reduced the methanol permeability. The proton conductivities of these composite membranes with 8% TiO2 particles (0.120 S/cm and 0.128 S/cm) were higher than those of Nafion 117 membrane (0.114 S/cm and 0.117 S/cm) at 80 degrees C and 100 degrees C. Specially, the methanol diffusion coefficient (1.2 x 10(-7) cm2/s) of the composite membrane with 8% TiO2 content was much lower than that of Nafion 117 membrane (2.1 x 10(-6) cm2/s). As a result, the TiO2/bi A-SPAES composite membrane was considered as a promising material for PEM in DMFC.

  13. Long-term exposure to microwave radiation provokes cancer growth: evidences from radars and mobile communication systems.

    PubMed

    Yakymenko, I; Sidorik, E; Kyrylenko, S; Chekhun, V

    2011-06-01

    In this review we discuss alarming epidemiological and experimental data on possible carcinogenic effects of long term exposure to low intensity microwave (MW) radiation. Recently, a number of reports revealed that under certain conditions the irradiation by low intensity MW can substantially induce cancer progression in humans and in animal models. The carcinogenic effect of MW irradiation is typically manifested after long term (up to 10 years and more) exposure. Nevertheless, even a year of operation of a powerful base transmitting station for mobile communication reportedly resulted in a dramatic increase of cancer incidence among population living nearby. In addition, model studies in rodents unveiled a significant increase in carcinogenesis after 17-24 months of MW exposure both in tumor-prone and intact animals. To that, such metabolic changes, as overproduction of reactive oxygen species, 8-hydroxi-2-deoxyguanosine formation, or ornithine decarboxylase activation under exposure to low intensity MW confirm a stress impact of this factor on living cells. We also address the issue of standards for assessment of biological effects of irradiation. It is now becoming increasingly evident that assessment of biological effects of non-ionizing radiation based on physical (thermal) approach used in recommendations of current regulatory bodies, including the International Commission on Non-Ionizing Radiation Protection (ICNIRP) Guidelines, requires urgent reevaluation. We conclude that recent data strongly point to the need for re-elaboration of the current safety limits for non-ionizing radiation using recently obtained knowledge. We also emphasize that the everyday exposure of both occupational and general public to MW radiation should be regulated based on a precautionary principles which imply maximum restriction of excessive exposure.

  14. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain.

    PubMed

    Shrivastava, Rupal; Raza, Saimah; Yadav, Abhishek; Kushwaha, Pramod; Flora, Swaran J S

    2014-07-01

    Nanomaterials are at the leading edge of the rapidly developing field of nanotechnology. However the information regarding toxicity of these nanoparticles on humans and environment is still deficient. The present study investigated the toxic effects of three metal oxide nanoparticles, TiO2, ZnO and Al2O3 on mouse erythrocytes, brain and liver. Male mice were administered a single oral dose of 500 mg/kg of each nanoparticles for 21 consecutive days. The results suggest that exposure to these nano metallic particles produced a significant oxidative stress in erythrocyte, liver and brain as evident from enhanced levels of Reactive Oxygen Species (ROS) and altered antioxidant enzymes activities. A significant increase in dopamine and norepinephrine levels in brain cerebral cortex and increased brain oxidative stress suggest neurotoxic potential of these nanoparticles. Transmission electron microscopic (TEM) analysis indicated the presence of these nanoparticles inside the cytoplasm and nucleus. These changes were also supported by the inhibition of CuZnSOD and MnSOD, considered as important biomarkers of oxidative stress. The toxic effects produced by these nanoparticles were more pronounced in the case of zinc oxide, followed by aluminum oxide and titanium dioxide, respectively. The present results further suggest the involvement of oxidative stress as one of the main mechanisms involved in nanoparticles induced toxic manifestations.

  15. Long-term health effects of chemical warfare agents on children following a single heavy exposure.

    PubMed

    Talabani, J M; Ali, A I; Kadir, A M; Rashid, R; Samin, F; Greenwood, D; Hay, Awm

    2017-01-01

    In the 1980s, villages in the Kurdistan region of Iraq were exposed to chemical weapons (CWs), which killed and injured thousands of civilians. There has been no clinical assessment of the long-term effects of CWs exposure on those injured. We report the first such evaluation of CW effects on long-term health of children. Patients from the CW-exposed areas were interviewed to assess previous and current clinical history and underwent clinical examination. The status of organs known to be targets of CWs, including skin, eyes, respiratory and neuromuscular systems, was assessed. Children of similar age and social background, but with no history of CW exposure, were selected as a control population. Results showed that 70% of children in the CWs group had chronic health problems in contrast to 3.3% in the unexposed group ( p < 0.0001). Fifty-five per cent of the CW-exposed group had long-term visual impairment but none in the unexposed population. Thirty-six per cent of the CW-exposed group had chronic dermatological conditions compared with 0.8% of the unexposed group ( p < 0.0001), 31% of the CWs group had neurological sequelae compared with 0.4% of the unexposed group ( p < 0.0001) and 51% of the CWs group had long-term respiratory problems compared with 1.5% of the unexposed group ( p < 0.0001). Respiratory complaints including asthma, chronic bronchitis and bronchiectasis were particularly common. Our study suggests that CWs used were probably a combination of sulphur mustard and organophosphate nerve agents. Results also indicate that the prevalence of acute and chronic health problems following exposure to CW agents appear to be higher in children compared with reported data in adults.

  16. Mesoporous inverse opal TiO2 film as light scattering layer for dye-sensitized solar cell.

    PubMed

    Jin, Mingshi; Kim, Sung Soo; Yoon, Minyoung; Li, Zhenghua; Lee, Yoon Yun; Kim, Ji Man

    2012-01-01

    The light harvesting efficiency of dye-sensitized solar cells was enhanced by using a scattering layer. Such as sphere type TiO2, inverse photonic crystal TiO2, hollow spherical TiO2. Among these materials, the TiO2 with inverse photonic crystal (IPC) structure, synthesized by self-assembly using spherical templates, has attracted much attention due to their photonic crystal characteristics and light scattering effects. However, when applied in the DSSCs, the surface area of IPC is very low that caused insufficient adsorption amount of dye molecules. In the present work, a scattering layer with mesoporous inverse photonic crystal (MIPC) TiO2 film was fabricated by the sol-gel reactions with surfactant-assisted sol-gel method using poly(methyl methacrylate) as the template and titanium (IV) isopropoxide as the TiO2 precursor. After removing the PMMA and surfactant, a highly ordered macroporous structure with mesopores were successfully obtained. The surface area and total pore volume of the MIPC were 82 m2/g and 0.31 cm3/g, respectively, which is much larger than those of the IPC. The DSSCs with the scattering layer of MIPC film exhibited 18 and 10% higher photo-conversion efficiency than those of cells only with a nano-crystalline TiO2 film and with scattering layer of IPC film. From UV-visible spectra of dye solutions, the MIPC film showed a higher amount of absorbed dye molecules than those of the reference and IPC films. Accordingly, an increase in the photo-current density through abundant adsorption of the dye, coupled with inherent light scattering ability can improve overall photo-conversion efficiency.

  17. [Toxic effects of nano-TiO2 on Gymnodinium breve].

    PubMed

    Li, Feng-Min; Zhao, Wei; Li, Yuan-Yuan; Tian, Zhi-Jia; Wang, Zhen-Yu

    2012-01-01

    In order to reveal the toxicity and mechanism of nano-TiO2 on algae, the inhibition effect, enzyme activity, oxygen free radicals of nano-TiO2 on the growth of G. breve were investigated. The results showed that G. breve was inhibited by nano-TiO2, and the 72 h-EC50 was 9.7 mg x L(-1). With the increasing concentration of nano-titanium dioxide, the activities of SOD decrease significantly (P < 0.05). The content of hydrogen peroxide radicals and the activities of CAT increase significantly (P < 0.05), and the content of superoxide anion shows the increasing trend. The content of hydrogen peroxide radicals was 0.083 U x mL(-1) in 0 mg x L(-1) nano-TiO2 suspension while that was 1.1 U x mL(-1) in control after 48 h. Through the study of 20 mg x L(-1) nano-titanium dioxide on G. breve at different times, the activities of SOD and CAT, the content of MDA are consistent, which the highest values is achieved at the exposure time of 12 hours and the lowest value is found at the exposure time of 48 hours. The content of hydroxyl radical increased significantly at the exposure time of 48 hours. The activity of SOD was 0.14 U x (10(7) cell x min)(-1) in G. breve at 12 h which was ten times higher than that at 48 h.

  18. Self-assembled chromophores within mesoporous nanocrystalline TiO2: towards biomimetic solar cells.

    PubMed

    Marek, Peter L; Sieger, Hermann; Scherer, Torsten; Hahn, Horst; Balaban, Teodor Silviu

    2009-06-01

    Artificial light-harvesting antennas consisting of self-assembled chromophores that mimic the natural pigments of photosynthetic bacteria have been inserted into voids induced in porous titania (TiO2, anatase) in order to investigate their suitability for hybrid solar cells. Mesoporous nanocrystalline TiO2 with additional uniform macropores was treated with precursor solutions of the pigment which was then induced to self-assemble within the voids. The chromophores were tailored to combine the self-assembly characteristics of the natural bacteriochlorophylls with the robustness of artificial Zn-porphyrins being stable for prolonged periods even upon heating to over 200 degrees C. They assemble on the TiO2 surface to form nano- to micro-crystalline structures with lengths from tens of nm up to several microm and show a photosensitization effect which is supposed to be dependent on the assembly size. The natural examples of these antennas are found in green sulfur bacteria which are able to use photosynthesis in deep water regions with minute light intensities. The implementation of biomimetic antennas for light harvesting and a better photon management may lead to a rise in efficiency of dye-sensitized solar cells also under low light illumination conditions.

  19. Long-term effects of methamphetamine exposure in adolescent mice on the future ovarian reserve in adulthood.

    PubMed

    Wang, Lan; Qu, Guoqiang; Dong, Xiyuan; Huang, Kai; Kumar, Molly; Ji, Licheng; Wang, Ya; Yao, Junning; Yang, Shulin; Wu, Ruxing; Zhang, Hanwang

    2016-02-03

    Currently, there is an increasing prevalence of adolescent exposure to methamphetamine (MA). However, there is a paucity of information concerning the long-term impact of early exposure to MA upon female fertility and ovarian reserve. The aim of this study was to investigate the effect of long-term MA exposure in adolescents on their ovarian reserve in adulthood. Adolescent mice received intraperitoneal injections of MA (5mg/kg, three times per week) or saline from the 21st postnatal day for an 8 week period. Morphological, histological, biochemical, hormonal and ethological parameters were evaluated. An impaired ovarian reserve and vitality was found in the group treated with MA, manifesting in morphological-apparent mitochondrial damage, an activated apoptosis pathway in the ovarian tissue, a downward expression of ovarian anti-Mullerian hormone (AMH), a decreased number of primordial and growing follicles, an increased number of atretic follicles, and a depressed secretion of AMH, estradiol and progesterone from granulosa cells. However, no significant difference was noticed regarding the estrous cycle, the mating ability and the fertility outcome in the reproductive age of the mice after a period of non-medication. The present results confirmed that a long term exposure to methamphetamine in adolescent mice does have an adverse impact on their ovarian reserve, which indicates that such an early abuse of MA might influence the fertility lifespan of the female mouse. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. LONG-TERM OCCUPATIONAL AND ENVIRONMENTAL EXPOSURE TO PENCONAZOLE AND TEBUCONAZOLE BY HAIR BIOMONITORING.

    PubMed

    Mercadante, Rosa; Polledri, Elisa; Moretto, Angelo; Fustinoni, Silvia

    2018-06-09

    Penconazole (PEN) and tebuconazole (TEB) are fungicides widely used in vineyards. The aim of this the study was to assess the suitability of hair to assess long-term exposure to PEN and TEB. Hair samples of agricultural workers exposed to PEN (AW-PEN, 18 subjects) or TEB (AW-TEB, 2 subjects) during the application of fungicides, agricultural workers relatives (AR, 4 subjects), and research staff technicians (RS, 5 subjects) were collected before (PRE-EXP) and after (POST-EXP) the application season. PEN in PRE-EXP samples was quantifiable in all AW and AR (medians from 1.4 to 7.9 pg/mg hair) and in one RS (1.4 pg/mg hair); PEN in POST-EXP samples was always quantifiable (medians from 2.6 to 23.7 pg/mg hair), with higher levels in AW. Comparing PRE- vs. POST-EXP samples, an increase in PEN level in AW and RS was found. TEB in PRE-EXP samples was quantifiable in most AW and AR (median from 2.1 to 15.5 pg/mg hair), but not in RS; TEB in POST-EXP samples was similarly quantifiable in AW and AR, and was quantifiable also in RS (from 1.4 to median of 141.3 pg/mg hair). Comparing PRE- vs. POST-EXP samples, an increase in TEB level in AW and RS was found. In AW, a positive correlation between the number of PEN treatments during the season and the POST-EXP level of PEN in hair was found (N = 8, Spearman rho = 0.794, p = 0.019). Our results suggest that PEN and TEB accumulate in hair during the agricultural season and that hair is a promising matrix for biomonitoring long-term exposure. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Assessing bisphenol A (BPA) exposure risk from long-term dietary intakes in Taiwan.

    PubMed

    Chen, Wei-Yu; Shen, Yi-Pei; Chen, Szu-Chieh

    2016-02-01

    Dietary intake is the major bisphenol A (BPA) exposure route in humans, and is a cause of BPA-related adverse effects. The large-scale exposure risk of humans to BPA through dietary sources in Taiwan is less well studied. The aim of this study was to assess the average daily dose (ADD) and hazardous quotient (HQ) of BPA exposure risk from long-term dietary intake of BPA, as well as BPA concentrations in different age-sex groups in Taiwan. We reanalyzed the BPA concentrations of regular daily food sources (rice, poultry, livestock, seafood, protein, fruits, and vegetables) and used a national dietary survey to estimate the contribution of variance to ADDs and potential human health effect for different age-sex groups. This study found that the daily consumption of chicken, pork/beef, and seafood were estimated to be 33.77 (Male)/22.65 (Female), 91.70 (M)/66.35 (F), and 54.15 (M)/40.78 (F) g/day, respectively. The highest BPA ADD was found in the 6-9 years age group (95% CI=0.0006-0.0027 mg/kg-bw/day), whereas the lowest BPA ADD was in the ≥65 years age group (0.0002-0.0020 mg/kg-bw/day). Based on the latest EFSA guidelines (0.004 mg/kg-bw/day), the 97.5 percentile HQ of BPA intake in different age-sex groups in Taiwan posed no risks through dietary intake. However, a combination of multiple exposure routes and long-term exposure in specific populations may be of concern in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Different modes of TiO2 uptake by Ceriodaphnia dubia: relevance to toxicity and bioaccumulation.

    PubMed

    Dalai, Swayamprava; Iswarya, V; Bhuvaneshwari, M; Pakrashi, Sunandan; Chandrasekaran, N; Mukherjee, Amitava

    2014-07-01

    The extensive environmental exposure of engineered metal oxide nanoparticles (NPs) may result in their bioaccumulation in aquatic organisms leading to their biotransfer in a food chain through various routes in a freshwater ecosystem. The present study focuses on the possible modes of TiO2 NP trophic transfer to Ceriodaphnia dubia, in presence and/absence of its diet, Scenedesmus obliquus (primary producer). The acute exposure studies (48h) were designed to have daphnids exposed to (i) the free NPs, (ii) both the free and the algae-borne NPs; and (iii) only the algae-borne NPs in separate tests to understand the possible routes of NP transfer. The dietary uptake of TiO2 NPs (algae-borne) was found to be the primary route for NP biotransfer with ∼70% of total NP uptake. Interestingly, in a separate study it was noticed that the NPs coated with algal exudates were easily taken up by daphnids as compared to pristine NPs of same concentrations, leading to their higher bioaccumulation. A chronic toxicity study, where daphnids were exposed to both free and algae-borne NPs for 21 days was undertaken to comprehend the TiO2 NP effect on daphnia growth and reproduction upon chronic exposure and also the bioaccumulation potential. Both acute and chronic exposure studies suggested higher bioaccumulation of TiO2 in daphnids when the particles were less toxic to the diet (algae). Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Electrochemical corrosion, wear and cell behavior of ZrO2/TiO2 alloyed layer on Ti-6Al-4V.

    PubMed

    Li, Jianfang; He, Xiaojing; Zhang, Guannan; Hang, Ruiqiang; Huang, Xiaobo; Tang, Bin; Zhang, Xiangyu

    2018-06-01

    Ti-6Al-4V (TC4) has received increasing attention as biomaterial but also raised concerns about the long-term safety of releasing of metal ions and poor wear resistance. In this work, an ZrO 2 /TiO 2 alloyed layer was prepared on TC4 by plasma surface alloying with Zr and subsequently annealed in the air for improved corrosion and wear resistant. To assess the corrosion performance of the alloyed layer, the specimens were measured by open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarization in simulated body fluid solution. The result shows that the ZrO 2 /TiO 2 alloyed layer exhibits strikingly high polarization resistance, wide passive region and very low current density, indicating the excellent corrosion resistance. The layer also displays significant improvement of wear resistance. Furthermore, the alloyed layer restricts cell adhesion and spreading. We infer that the ZrO 2 /TiO 2 alloyed layer might be potentially useful implanted devices such as biosensors, bioelectronics or drug delivery devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Long-term nicotine exposure dampens LPS-induced nerve-mediated airway hyperreactivity in murine airways.

    PubMed

    Xu, Yuan; Cardell, Lars-Olaf

    2017-09-01

    Nicotine is a major component of cigarette smoke. It causes addiction and is used clinically to aid smoke cessation. The aim of the present study is to investigate the effect of nicotine on lipopolysaccharide (LPS)-induced airway hyperreactivity (AHR) and to explore the potential involvement of neuronal mechanisms behind nicotine's effects in murine models in vivo and in vitro. BALB/c mice were exposed to nicotine in vivo via subcutaneous Alzet osmotic minipumps containing nicotine tartate salt solution (24 mg·kg -1 ·day -1 ) for 28 days. LPS (0.1 mg/ml, 20 µl) was administered intranasally for 3 consecutive days during the end of this period. Lung functions were measured with flexiVent. For the in vitro experiments, mice tracheae were organcultured with either nicotine (10 μM) or vehicle (DMSO, 0.1%) for 4 days. Contractile responses of the tracheal segments were measured in myographs following electric field stimulation (EFS; increasing frequencies of 0.2 to 12.8 Hz) before and after incubation with 10 µg/ml LPS for 1 h. Results showed that LPS induced AHR to methacholine in vivo and increased contractile responses to EFS in vitro. Interestingly, long-term nicotine exposure markedly dampened this LPS-induced AHR both in vitro and in vivo. Tetrodotoxin (TTX) inhibited LPS-induced AHR but did not further inhibit nicotine-suppressed AHR in vivo. In conclusion, long-term nicotine exposure dampened LPS-induced AHR. The effect of nicotine was mimicked by TTX, suggesting the involvement of neuronal mechanisms. This information might be used for evaluating the long-term effects of nicotine and further exploring of how tobacco products interact with bacterial airway infections. Copyright © 2017 the American Physiological Society.

  5. Infinite Coordination Polymer Nano- and Micro-Particles

    DTIC Science & Technology

    2015-06-12

    Mirkin, Tobin J. Marks, Joseph T. Hupp. SiO2 Aerogel-templated, Porous TiO2 Photoanodes for Enhanced Performances in Dye-Sensitized Solar Cells ...nano-scale ICPs and their selective surface functionalization, we examined if indeed these ICP-DNA hybrid structures could enter cells and...surface functionalization. In particular, we aimed to utilize this fundamental understanding for the realization of nano-scale ICP-biomolecule hybrids

  6. TiO2 nanotubes with different spacing, Fe2O3 decoration and their evaluation for Li-ion battery application

    NASA Astrophysics Data System (ADS)

    Ozkan, Selda; Cha, Gihoon; Mazare, Anca; Schmuki, Patrik

    2018-05-01

    In the present work, we report on the use of organized TiO2 nanotube (NT) layers with a regular intertube spacing for the growth of highly defined α-Fe2O3 nano-needles in the interspace. These α-Fe2O3 decorated TiO2 NTs are then explored for Li-ion battery applications and compared to classic close-packed (CP) NTs that are decorated with various amounts of nanoscale α-Fe2O3. We show that NTs with tube-to-tube spacing allow uniform decoration of individual NTs with regular arrangements of hematite nano-needles. The tube spacing also facilitates the electrolyte penetration as well as yielding better ion diffusion. While bare CP NTs show a higher capacitance of 71 μAh cm-2 compared to bare spaced NTs with a capacitance of 54 μAh cm-2, the hierarchical decoration with secondary metal oxide, α-Fe2O3, remarkably enhances the Li-ion battery performance. Namely, spaced NTs with α-Fe2O3 decoration have an areal capacitance of 477 μAh cm-2, i.e. they have nearly ˜8 times higher capacitance. However, the areal capacitance of CP NTs with α-Fe2O3 decoration saturates at 208 μAh cm-2, i.e. is limited to ˜3 times increase.

  7. TiO2 nanotubes with different spacing, Fe2O3 decoration and their evaluation for Li-ion battery application.

    PubMed

    Ozkan, Selda; Cha, Gihoon; Mazare, Anca; Schmuki, Patrik

    2018-05-11

    In the present work, we report on the use of organized TiO 2 nanotube (NT) layers with a regular intertube spacing for the growth of highly defined α-Fe 2 O 3 nano-needles in the interspace. These α-Fe 2 O 3 decorated TiO 2 NTs are then explored for Li-ion battery applications and compared to classic close-packed (CP) NTs that are decorated with various amounts of nanoscale α-Fe 2 O 3 . We show that NTs with tube-to-tube spacing allow uniform decoration of individual NTs with regular arrangements of hematite nano-needles. The tube spacing also facilitates the electrolyte penetration as well as yielding better ion diffusion. While bare CP NTs show a higher capacitance of 71 μAh cm -2 compared to bare spaced NTs with a capacitance of 54 μAh cm -2 , the hierarchical decoration with secondary metal oxide, α-Fe 2 O 3 , remarkably enhances the Li-ion battery performance. Namely, spaced NTs with α-Fe 2 O 3 decoration have an areal capacitance of 477 μAh cm -2 , i.e. they have nearly ∼8 times higher capacitance. However, the areal capacitance of CP NTs with α-Fe 2 O 3 decoration saturates at 208 μAh cm -2 , i.e. is limited to ∼3 times increase.

  8. Bioavailability and Effects of Manufactured TiO2 and Quantum Dot Nanomaterials to Environmental Microorganisms (Invited)

    NASA Astrophysics Data System (ADS)

    Holden, P. A.; Nadeau, J. L.; Stucky, G.; Priester, J.; Horst, A.; Vukanti, R.; Ge, Y.; Schimel, J.

    2010-12-01

    Whether through manufacturing processes, waste disposal or the use of consumer goods, manufactured nanomaterials enter soil, sediment and aquatic environments where their impacts are poorly understood. Ecosystem level scale impacts, for example on nutrient cycling and other pollutant biodegradation, are plausible if nanomaterials are bioavailable to, and negatively affect, microbes. Microbes may also contribute to trophic transfer and thus effects to higher organisms. We present data from studies of CdSe quantum dots (QDs) where direct toxicity of these particles and specific entry into bacteria are observed. Effects are similar for planktonic and biofilm bacteria, and biofilm exopolymers do not appear to reduce bioavailability to cells. QDs are taken up whole, retained, but also partially broken down in cells. While nano-TiO2 does not appear to enter cells, negative effects on growth are observed; effects of bacteria on TiO2 agglomerate stability are also observed which could impact nanomaterial transport in the environment. Soil microcosm studies suggest that nano-TiO2 is bioavailable to bacteria as effects on bacterial communities are observed. Taken together, these data support that nanoparticles can affect microorganisms, and thus the processes that they catalyze, and that such effects could manifest in the environment. Still weakly understood are actual environmental exposure levels, and controlling effects mechanisms under environmental conditions.

  9. Photocatalytic C60-amorphous TiO2 composites prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Justh, Nóra; Firkala, Tamás; László, Krisztina; Lábár, János; Szilágyi, Imre Miklós

    2017-10-01

    Nanocomposites of TiO2 and single fullerene (C60) molecule are prepared by atomic layer deposition (ALD). To create nucleation sites for the ALD reaction, the bare fullerene is functionalized by H2SO4/HNO3 treatment, which results in C60-SO3H. After a NaOH washing step the intermediate hydrolyzes into C60sbnd OH. This process and the consecutive ALD growth of TiO2 are monitored with FTIR, TG/DTA-MS, EDX, Raman, FTIR, XRD, and TEM measurements. Although the TiO2 grown by ALD at 80 and 160 °C onto fullerol is amorphous it enhances the decomposition of methyl orange under UV exposure. This study proves that amorphous TiO2 grown by low temperature ALD has photocatalytic activity, and it can be used e.g. as self-cleaning coatings also on heat sensitive substrates.

  10. Beryllium sensitization and disease among long-term and short-term workers in a beryllium ceramics plant.

    PubMed

    Henneberger, P K; Cumro, D; Deubner, D D; Kent, M S; McCawley, M; Kreiss, K

    2001-04-01

    Workers at a beryllium ceramics plant were tested for beryllium sensitization and disease in 1998 to determine whether the plant-wide prevalence of sensitization and disease had declined since the last screening in 1992; an elevated prevalence was associated with specific processes or with high exposures; exposure-response relationships differed for long-term workers hired before the last plant-wide screening and short-term workers hired since then. Current workers were asked to complete a questionnaire and to provide blood for the beryllium lymphocyte proliferation test (BeLPT). Those with an abnormal BeLPT were classified as sensitized, and were offered clinical evaluation for beryllium disease. Task- and time-specific measurements of airborne beryllium were combined with individual work histories to compute mean, cumulative, and peak beryllium exposures for each worker. The 151 participants represented 90% of 167 eligible workers. Fifteen (9.9% of 151) had an abnormal BeLPT and were split between long-term workers (8/77 = 10.4%) and short-term workers (7/74 = 9.5%). Beryllium disease was detected in 9.1% (7/77) of long-term workers but in only 1.4% (1/74) of short-term workers (P = 0.06), for an overall prevalence of 5.3% (8/151). These prevalences were similar to those observed in the earlier survey. The prevalence of sensitization was elevated in 1992 among machinists, and was still elevated in 1998 among long-term workers (7/40 = 18%) but not among short-term workers (2/36 = 6%) with machining experience. The prevalence of sensitization was also elevated in both groups of workers for the processes of lapping, forming, firing, and packaging. The data suggested a positive relationship between peak beryllium exposure and sensitization for long-term workers and between mean, cumulative, and peak exposure and sensitization for short-term workers, although these findings were not statistically significant. Long-term workers with either a high peak exposure or work

  11. Hydrothermal fabrication of few-layer MoS2 nanosheets within nanopores on TiO2 derived from MIL-125(Ti) for efficient photocatalytic H2 evolution

    NASA Astrophysics Data System (ADS)

    Ye, Fei; Li, Houfen; Yu, Hongtao; Chen, Shuo; Quan, Xie

    2017-12-01

    Protons tend to bond strongly with unsaturated-coordinate S element located at the edge of nano-MoS2 and are consequently reduced to H2. Therefore, increasing the active S atoms quantity will be a feasible approach to enhance hydrogen evolution. Herein we developed a porous TiO2 derived from metal organic frameworks (MOFs) as scaffold to restrict the growth and inhibit the aggregation of MoS2 nanosheets. As a result, the thickness of the prepared MoS2 nanosheets was less than 3 nm (1-4 layers), with more edges and active S atoms being exposed. This few-layer MoS2-porous TiO2 exhibits a H2 evolution rate of 897.5 μmol h-1 g-1, which is nearly twice as much as free-stand MoS2 nanosheets and twenty times more than physical mixture of MoS2 with porous TiO2. The high performance is attributed to that more active edge sites in few-layer MoS2-porous TiO2 are exposed than pure MoS2. This work provides a new method to construct MOFs derived porous structures for controlling MoS2 to expose active sites for HER.

  12. Ultrasmall TiO2-Coated Reduced Graphene Oxide Composite as a High-Rate and Long-Cycle-Life Anode Material for Sodium-Ion Batteries.

    PubMed

    Liu, Yao; Liu, Jingyuan; Bin, Duan; Hou, Mengyan; Tamirat, Andebet Gedamu; Wang, Yonggang; Xia, Yongyao

    2018-05-02

    Because of the low cost and abundant nature of the sodium element, sodium-ion batteries (SIBs) are attracting extensive attention, and a variety of SIB cathode materials have been discovered. However, the lack of high-performance anode materials is a major challenge of SIBs. Herein, we have synthesized ultrasmall TiO 2 -nanoparticle-coated reduced graphene oxide (TiO 2 @RGO) composites by using a one-pot hydrolysis method, which are then investigated as anode materials for SIBs. The morphology of TiO 2 @RGO has been characterized using transmission electron microscopy, indicating that the TiO 2 nanospheres uniformly grow on the surface of the RGO nanosheet. As-prepared TiO 2 @RGO composites exhibited a promising electrochemical performance in terms of cycling stability and rate capability, especially the initial cycle Coulombic efficiency of 60.7%, which is higher than that in previous reports. The kinetics of the electrode reaction has been investigated by cyclic voltammetry. The results indicate that the sodium-ion intercalation/extraction behavior is not controlled by the semiinfinite diffusion process, which gives rise to an outstanding rate performance. In addition, the electrochemical performance of TiO 2 @RGO composites in full cells, coupled with carbon-coated Na 3 V 2 (PO 4 ) 3 as the positive material, has been investigated. The discharge specific capacity was up to 117.2 mAh g -1 , and it remained at 84.6 mAh g -1 after 500 cycles under a current density of 2 A g -1 , which shows excellent cycling stability.

  13. Sub-toxic concentrations of nano-ZnO and nano-TiO2 suppress neurite outgrowth in differentiated PC12 cells.

    PubMed

    Irie, Tomohiko; Kawakami, Tsuyoshi; Sato, Kaoru; Usami, Makoto

    2017-01-01

    Nanomaterials have been extensively used in our daily life, and may also induce health effects and toxicity. Nanomaterials can translocate from the outside to internal organs, including the brain. For example, both nano-ZnO and nano-TiO 2 translocate into the brain via the olfactory pathway in rodents, possibly leading to toxic effects on the brain. Although the effects of nano-ZnO and nano-TiO 2 on neuronal viability or neuronal excitability have been studied, no work has focused on how these nanomaterials affect neuronal differentiation and development. In this study, we investigated the effects of nano-ZnO and nano-TiO 2 on neurite outgrowth of PC12 cells, a useful model system for neuronal differentiation. Surprisingly, the number, length, and branching of differentiated PC12 neurites were significantly suppressed by the 7-day exposure to nano-ZnO (in the range of 1.0 × 10 -4 to 1.0 × 10 -1 µg/mL), at which the cell viability was not affected. The number and length were also significantly inhibited by the 7-day exposure to nano-TiO 2 (1.0 × 10 -3 to 1.0 µg/mL), which did not have cytotoxic effects. These results demonstrate that the neurite outgrowth in differentiated PC12 cells was suppressed by sub-cytotoxic concentrations of nano-ZnO or nano-TiO 2 .

  14. Novel tiO2 nanocatalysts for wastewater purification: tapping energy from the sun.

    PubMed

    Liu, Y; Li, J; Qiu, X; Burda, C

    2006-01-01

    Water treatment using TiO2 semiconductor as a durable heterogeneous photocatalyst has been the focus of environmentalists in recent years. Currently, we developed an inexpensive and highly efficient approach for synthesizing nitrogen-doped TiO2 with lower band-gap energy that can respond to visible light. Doping on the molecular scale led to an enhanced nitrogen concentration of up to 21.8%. Reflectance measurements showed the synthesized N-doped TiO2 nanoparticles are catalytically active with the absorbance that extends into the visible region up to 600 nm. The water purification potential of this new class of compound was evaluated by studying the photodegradation of Acid Orange 7 (AO7) and E. coli. Experiments were conducted to compare the photocatalytic activities of N-doped TiO2 nanocatalysts and commercially available Degussa P25 power under identical solar light exposure. N-doped TiO2 demonstrated superior photocatalytic activities in both chemical compound degradation and bactericidal reactions. The result of this study shows the potential of applying new generations of catalyst for wastewater purification and disinfection.

  15. Surface Modified TiO2 Obscurants for Increased Safety and Performance

    DTIC Science & Technology

    2012-11-01

    based obscurant devices in performance. 15. SUBJECT TERMS Obscurant, visible, IR , smoke, TiO2, aerosol, particle, surface modification...hexamethyldimethoxysilane IR Infrared wavelength LabRAM Lab scale Resonant Acoustic Mixer from Resodyn Corporation LPM Liters Per Minute M106 Currently fielded (Army...trinitrophloroglucinol UV-Vis Ultraviolet-visible wavelengths KEYWORDS Obscurant, visible, IR , smoke, TiO2, aerosol, particle, surface modification

  16. Acute effects of TiO2 nanomaterials on the viability and taxonomic composition of aquatic bacterial communities assessed via high-throughput screening and next generation sequencing.

    PubMed

    Binh, Chu Thi Thanh; Tong, Tiezheng; Gaillard, Jean-François; Gray, Kimberly A; Kelly, John J

    2014-01-01

    The nanotechnology industry is growing rapidly, leading to concerns about the potential ecological consequences of the release of engineered nanomaterials (ENMs) to the environment. One challenge of assessing the ecological risks of ENMs is the incredible diversity of ENMs currently available and the rapid pace at which new ENMs are being developed. High-throughput screening (HTS) is a popular approach to assessing ENM cytotoxicity that offers the opportunity to rapidly test in parallel a wide range of ENMs at multiple concentrations. However, current HTS approaches generally test one cell type at a time, which limits their ability to predict responses of complex microbial communities. In this study toxicity screening via a HTS platform was used in combination with next generation sequencing (NGS) to assess responses of bacterial communities from two aquatic habitats, Lake Michigan (LM) and the Chicago River (CR), to short-term exposure in their native waters to several commercial TiO2 nanomaterials under simulated solar irradiation. Results demonstrate that bacterial communities from LM and CR differed in their sensitivity to nano-TiO2, with the community from CR being more resistant. NGS analysis revealed that the composition of the bacterial communities from LM and CR were significantly altered by exposure to nano-TiO2, including decreases in overall bacterial diversity, decreases in the relative abundance of Actinomycetales, Sphingobacteriales, Limnohabitans, and Flavobacterium, and a significant increase in Limnobacter. These results suggest that the release of nano-TiO2 to the environment has the potential to alter the composition of aquatic bacterial communities, which could have implications for the stability and function of aquatic ecosystems. The novel combination of HTS and NGS described in this study represents a major advance over current methods for assessing ENM ecotoxicity because the relative toxicities of multiple ENMs to thousands of naturally

  17. Acute Effects of TiO2 Nanomaterials on the Viability and Taxonomic Composition of Aquatic Bacterial Communities Assessed via High-Throughput Screening and Next Generation Sequencing

    PubMed Central

    Binh, Chu Thi Thanh; Tong, Tiezheng; Gaillard, Jean-François; Gray, Kimberly A.; Kelly, John J.

    2014-01-01

    The nanotechnology industry is growing rapidly, leading to concerns about the potential ecological consequences of the release of engineered nanomaterials (ENMs) to the environment. One challenge of assessing the ecological risks of ENMs is the incredible diversity of ENMs currently available and the rapid pace at which new ENMs are being developed. High-throughput screening (HTS) is a popular approach to assessing ENM cytotoxicity that offers the opportunity to rapidly test in parallel a wide range of ENMs at multiple concentrations. However, current HTS approaches generally test one cell type at a time, which limits their ability to predict responses of complex microbial communities. In this study toxicity screening via a HTS platform was used in combination with next generation sequencing (NGS) to assess responses of bacterial communities from two aquatic habitats, Lake Michigan (LM) and the Chicago River (CR), to short-term exposure in their native waters to several commercial TiO2 nanomaterials under simulated solar irradiation. Results demonstrate that bacterial communities from LM and CR differed in their sensitivity to nano-TiO2, with the community from CR being more resistant. NGS analysis revealed that the composition of the bacterial communities from LM and CR were significantly altered by exposure to nano-TiO2, including decreases in overall bacterial diversity, decreases in the relative abundance of Actinomycetales, Sphingobacteriales, Limnohabitans, and Flavobacterium, and a significant increase in Limnobacter. These results suggest that the release of nano-TiO2 to the environment has the potential to alter the composition of aquatic bacterial communities, which could have implications for the stability and function of aquatic ecosystems. The novel combination of HTS and NGS described in this study represents a major advance over current methods for assessing ENM ecotoxicity because the relative toxicities of multiple ENMs to thousands of naturally

  18. Food-grade TiO2 is trapped by intestinal mucus in vitro but does not impair mucin O-glycosylation and short-chain fatty acid synthesis in vivo: implications for gut barrier protection.

    PubMed

    Talbot, Pauline; Radziwill-Bienkowska, Joanna M; Kamphuis, Jasper B J; Steenkeste, Karine; Bettini, Sarah; Robert, Véronique; Noordine, Marie-Louise; Mayeur, Camille; Gaultier, Eric; Langella, Philippe; Robbe-Masselot, Catherine; Houdeau, Eric; Thomas, Muriel; Mercier-Bonin, Muriel

    2018-06-19

    Titanium dioxide (TiO 2 ) particles are commonly used as a food additive (E171 in the EU) for its whitening and opacifying properties. However, the risk of gut barrier disruption is an increasing concern because of the presence of a nano-sized fraction. Food-grade E171 may interact with mucus, a gut barrier protagonist still poorly explored in food nanotoxicology. To test this hypothesis, a comprehensive approach was performed to evaluate in vitro and in vivo interactions between TiO 2 and intestinal mucus, by comparing food-grade E171 with NM-105 (Aeroxyde P25) OECD reference nanomaterial. We tested E171-trapping properties of mucus in vitro using HT29-MTX intestinal epithelial cells. Time-lapse confocal laser scanning microscopy was performed without labeling to avoid modification of the particle surface. Near-UV irradiation of E171 TiO 2 particles at 364 nm resulted in fluorescence emission in the visible range, with a maximum at 510 nm. The penetration of E171 TiO 2 into the mucoid area of HT29-MTX cells was visualized in situ. One hour after exposure, TiO 2 particles accumulated inside "patchy" regions 20 µm above the substratum. The structure of mucus produced by HT29-MTX cells was characterized by MUC5AC immunofluorescence staining. The mucus layer was thin and organized into regular "islands" located approximately 20 µm above the substratum. The region-specific trapping of food-grade TiO 2 particles was attributed to this mucus patchy structure. We compared TiO 2 -mediated effects in vivo in rats after acute or sub-chronic oral daily administration of food-grade E171 and NM-105 at relevant exposure levels for humans. Cecal short-chain fatty acid profiles and gut mucin O-glycosylation patterns remained unchanged, irrespective of treatment. Food-grade TiO 2 is trapped by intestinal mucus in vitro but does not affect mucin O-glycosylation and short-chain fatty acid synthesis in vivo, suggesting the absence of a mucus barrier impairment under "healthy gut

  19. UV-responsive nano-sponge for oil absorption and desorption

    PubMed Central

    Kim, Do Hyun; Jung, Min Chan; Cho, So-Hye; Kim, Sang Hoon; Kim, Ho-Young; Lee, Heon Ju; Oh, Kyu Hwan; Moon, Myoung-Woon

    2015-01-01

    Controlled surface wettability for oil has been intensively studied to remove industrial oil waste or oil spill pollution from seas or rivers. In particular, external stimuli-induced special wetting materials, such as photo-responsive TiO2, have attracted considerable attention for oil-water separation. In this study, a novel method is reported to fabricate a nano-sponge which is composed of hydrophobic hydrocarbon and hydrophilic TiO2 nanoparticles for oil absorption or desorption that are responsive to UV irradiation. The hydrocarbon in the nano-sponge could selectively absorb oil from water, whereas the absorbed oil is released into the water by TiO2 in response to UV irradiation. The nano-sponge functionalized porous polydimethylsiloxane released more than 98% of the absorbed crude oil with UV irradiation and air-bubbling. It could be continuously reused while maintaining a high absorption capacity and desorption efficiency without incurring secondary air or water pollution. This smart oil absorption/desorption methodology with excellent selectivity and recyclability with almost perfect removal of absorbed oil can be applied for oil-water separation, oil spill cleanup and reuse of spilled oil. PMID:26260470

  20. Association of long-term exposure to local industry- and traffic-specific particulate matter with arterial blood pressure and incident hypertension.

    PubMed

    Fuks, Kateryna B; Weinmayr, Gudrun; Hennig, Frauke; Tzivian, Lilian; Moebus, Susanne; Jakobs, Hermann; Memmesheimer, Michael; Kälsch, Hagen; Andrich, Silke; Nonnemacher, Michael; Erbel, Raimund; Jöckel, Karl-Heinz; Hoffmann, Barbara

    2016-08-01

    Long-term exposure to fine particulate matter (PM2.5) may lead to increased blood pressure (BP). The role of industry- and traffic-specific PM2.5 remains unclear. We investigated the associations of residential long-term source-specific PM2.5 exposure with arterial BP and incident hypertension in the population-based Heinz Nixdorf Recall cohort study. We defined hypertension as systolic BP≥140mmHg, or diastolic BP≥90mmHg, or current use of BP lowering medication. Long-term concentrations of PM2.5 from all local sources (PM2.5ALL), local industry (PM2.5IND) and traffic (PM2.5TRA) were modeled with a dispersion and chemistry transport model (EURAD-CTM) with a 1km(2) resolution. We performed a cross-sectional analysis with BP and prevalent hypertension at baseline, using linear and logistic regression, respectively, and a longitudinal analysis with incident hypertension at 5-year follow-up, using Poisson regression with robust variance estimation. We adjusted for age, sex, body mass index, lifestyle, education, and major road proximity. Change in BP (mmHg), odds ratio (OR) and relative risk (RR) for hypertension were calculated per 1μg/m(3) of exposure concentration. PM2.5ALL was highly correlated with PM2.5IND (Spearman's ρ=0.92) and moderately with PM2.5TRA (ρ=0.42). In adjusted cross-sectional analysis with 4539 participants, we found positive associations of PM2.5ALL with systolic (0.42 [95%-CI: 0.03, 0.80]) and diastolic (0.25 [0.04, 0.46]) BP. Higher, but less precise estimates were found for PM2.5IND (systolic: 0.55 [-0.05, 1.14]; diastolic: 0.35 [0.03, 0.67]) and PM2.5TRA (systolic: 0.88 [-1.55, 3.31]; diastolic: 0.41 [-0.91, 1.73]). We found crude positive association of PM2.5TRA with prevalence (OR 1.41 [1.10, 1.80]) and incidence of hypertension (RR 1.38 [1.03, 1.85]), attenuating after adjustment (OR 1.19 [0.90, 1.58] and RR 1.28 [0.94, 1.72]). We found no association of PM2.5ALL and PM2.5IND with hypertension. Long-term exposures to all-source and

  1. Synthesis and structural characteristics of high surface area TiO2 aerogels by ultrasonic-assisted sol-gel method

    NASA Astrophysics Data System (ADS)

    Qingge, Feng; Huidong, Cai; Haiying, Lin; Siying, Qin; Zheng, Liu; Dachao, Ma; Yuyang, Ye

    2018-02-01

    TiO2 aerogel is a unique three-dimensional porous nano-particle material with the characteristics of high specific surface area and good light transmittance. In this paper, a novel method involving ultrasonic-assisted sol-gel, solvent exchange, and vacuum drying was successfully developed to synthesis the TiO2 aerogel. The morphology and properties of the prepared TiO2 aerogels were characterized by the Brunauer-Emmett-Teller theory (BET), x-ray diffraction, field-emission scanning electron microscopy, energy dispersive spectroscopy, thermogravimetric analysis-differential thermal analysis, Fourier transform infrared spectroscopy, and Raman spectroscopy. The adsorption and photocatalytic activity of TiO2 aerogels was evaluated by monitoring the degradation of Rhodamine B solution. Our results indicated that: (1) with an optimum ratio of Ti:H2O = 8:1 the BET surface area, average pore diameter, and total pore volume of TiO2 aerogel are enhanced to 563.6 m2 g-1, 3.01 nm, and 0.42 cm3 g-1, respectively; (2) the TiO2 aerogels possessed controllable crystal form depending on the thermal treatments conditions. The crystal face (101) of anatase, complete anatase, mixed state of anatase and rutile, and rutile were obtained by increasing the temperature from 200 °C-300 °C, from 400 °C-500 °C, 600 °C, and from 700 °C-1000 °C, respectively; and (3) the excellent catalytic activity of the as-prepared TiO2 aerogels for the ultraviolet photolytic degradation of Rhodamine B had attributed to the synergistic effect of adsorption and photoactivity.

  2. Fabrication of CDs/CdS-TiO2 ternary nano-composites for photocatalytic degradation of benzene and toluene under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Hua, Jianhao; Yang, Yaling

    2018-06-01

    An efficient cadmium sulfide quantum-dots (CdS QDs) and carbon dots (CDs) modified TiO2 photocatalyst (CdS/CDs-TiO2) was successfully fabricated. The as-prepared ternary nano-composites simultaneously improved the photo-corrosion of CdS and amplified its photocatalytic activity. The introduction of CdS QDs and CDs could enhance more absorbance of light, prevent the undesirable electron/hole recombination, and promote charge separation, which was important for the continuous formation of rad OH and rad O2- radicals. When the optimal mass ratio of CdS QDs to CDs was 3:1, above 90% degradation efficiencies were achieved for benzene within 1 h and toluene in 2 h, while that of pure TiO2 (P25), CdS QDs-TiO2, CDs-TiO2 nano-composites was around 15%. Owing to the symmetric structure and conjugation of methyl with benzene ring, the degradation of toluene was more difficult than benzene to carry on. The new fabricated nano-composites showed good prospective application of cleaning up refractory pollutants and the resource utilization.

  3. Stress-related endocrinological and psychopathological effects of short- and long-term 50Hz electromagnetic field exposure in rats.

    PubMed

    Szemerszky, Renáta; Zelena, Dóra; Barna, István; Bárdos, György

    2010-01-15

    It is believed that different electromagnetic fields do have beneficial and harmful biological effects. The aim of the present work was to study the long-term consequences of 50 Hz electromagnetic field (ELF-EMF) exposure with special focus on the development of chronic stress and stress-induced psychopathology. Adult male Sprague-Dawley rats were exposed to ELF-EMF (50 Hz, 0.5 mT) for 5 days, 8h daily (short) or for 4-6 weeks, 24h daily (long). Anxiety was studied in elevated plus maze test, whereas depression-like behavior of the long-treated group was examined in the forced swim test. Some days after behavioral examination, the animals were decapitated among resting conditions and organ weights, blood hormone levels as well as proopiomelanocortin mRNA level from the anterior lobe of the pituitary gland were measured. Both treatments were ineffective on somatic parameters, namely none of the changes characteristic to chronic stress (body weight reduction, thymus involution and adrenal gland hypertrophy) were present. An enhanced blood glucose level was found after prolonged ELF-EMF exposure (p=0.013). The hormonal stress reaction was similar in control and short-term exposed rats, but significant proopiomelanocortin elevation (p<0.000) and depressive-like behavior (enhanced floating time; p=0.006) were found following long-term ELF-EMF exposure. Taken together, long and continuous exposure to relatively high intensity electromagnetic field may count as a mild stress situation and could be a factor in the development of depressive state or metabolic disturbances. Although we should stress that the average intensity of the human exposure is normally much smaller than in the present experiment.

  4. Photocatalytic reduction of heavy metal ions on derivatized titanium dioxide nano-particle surface studied by XAFS

    NASA Astrophysics Data System (ADS)

    Chen, Lin X.; Rajh, Tijana; Mićić, Olga Wang, Zhiyu; Tiede, David M.; Thurnauer, Marion

    1997-12-01

    Photoreduction of heavy metal ions, Cu 2- and Hg 2+, on TiO 2 nano-particle surfaces, has been investigated by XAFS measurements. The effects of TiO 2 surface modification reagents on the reaction efficiency have been studied. We observed a significant reaction efficiency enhancement when amino acid alanine was added to a mixture of 0.01 M Cu 2+ and TiO 2 nano-particles. Fifty percent of the adsorbed Cu 2+ has been reduced to Cu 0 after 1-h illumination with a UV-enhanced xenon lamp. Photoreduction of Hg 2+ on TiO 2 colloid surfaces was also investigated without and with thiolactic acid (TLA). In this case, the photoreduction efficiency for Hg 2+ was lowered. Structures of metal ion surroundings in various complexes as well as their role in photoreduction of metal ions are discussed.

  5. Protein profiling as early detection biomarkers for TiO2 nanoparticle toxicity in Daphnia magna.

    PubMed

    Sá-Pereira, Paula; Diniz, Mário S; Moita, Liliana; Pinheiro, Teresa; Mendonça, Elsa; Paixão, Susana M; Picado, Ana

    2018-05-01

    The mode of action for nanoparticle (NP) toxicity in aquatic organisms is not yet fully understood. In this work, a strategy other than toxicity testing was applied to Daphnia magna exposed to TiO 2 -NPs: the use of nuclear microscopy and the assessment of protein profile. D. magna is a keystone species broadly used as a model system in ecotoxicology. Titanium (Ti) was found in the D. magna digestive tract, mainly in the gut. The penetration of Ti into the epithelial region was greater at higher exposure levels and also observed in eggs in the brood pouch. The protein profile of individuals exposed to different concentrations showed that 2.8 and 5.6 mg/L TiO 2 -NP concentrations induced an over-expression of the majority of proteins, in particular proteins with molecular weight of ∼120, 85 and 15 kDa, while 11.2 mg/L TiO 2 -NP had an inhibitory effect on protein expression. The Matrix-assisted laser desorption ionization with tandem time of flight mass spectrometry (MALDI-TOF/TOF MS) analysis of these proteins consistently identified them as vitellogenin (Vtg)-like proteins, associated with enzymes involved in redox balance. These results indicate that Vtg-like proteins are up-regulated in D. magna exposed to TiO 2 -NPs. Vitellogenesis is associated with the reproduction system, suggesting that TiO 2 -NP exposure can impair reproduction by affecting this process. The precise mode of action of TiO 2 -NPs is still unclear and the results from this study are a first attempt to identify specific proteins as potential markers of TiO 2 -NP toxicity in D. magna, providing useful information for future research.

  6. Size Effects in Dye-Sensitized TiO2 Clusters

    NASA Astrophysics Data System (ADS)

    Marom, Noa; Körzdörfer, Thomas; Ren, Xinguo; Tkatchenko, Alexandre; Chelikowsky, James

    2014-03-01

    The development of solar cells is driven by the need for clean and sustainable energy. Organic and dye sensitized cells are considered as promising technologies, particularly for large area, low cost applications. However, the efficiency of such cells is still far from the theoretical limit. Ab initio simulations may be used for computer-aided design of new materials and nano-structures for more efficient solar cells. It is essential to obtain an accurate description of the electronic structure, including the fundamental gaps and energy level alignment at the interfaces in the device active region. This requires going beyond ground-state DFT to the GW approximation. A recently developed GW method [PRB 86, 041110R (2012)] is applied to dye-sensitized TiO2 clusters [PRB 84, 245115 (2011)]. The effect of cluster size on the energy level alignment at the dye-TiO2 interface is discussed. With the increase in the TiO2 cluster size its gap narrows. The gap of the molecule attached to the cluster subsequently narrows due to screening. As a result, the energy level alignment at the interface changes in an unexpected way [Marom, Körzdörfer, Ren, Tkatchenko, Chelikowsky, to be published].

  7. Influence of long-term exposure to simulated acid rain on development, reproduction and acaricide susceptibility of the carmine spider mite, Tetranychus cinnabarinus

    PubMed Central

    Wang, Jin-Jun; Zhang, Jian-Ping; He, Lin; Zhao, Zhi-Mo

    2006-01-01

    Development, reproduction and acaricide susceptibility of Tetranychus cinnabarinus (Boisduvals) (Acari: Tetranychidae) were investigated after long-term (about 40 generations) exposure to various levels of acid rain; pH 2.5, 3.0, 4.0, and 5.6. Deionized water (pH 6.8) served as a control. The mites were reared on eggplant leaves at 28°C, 80%RH and a photoperiod of 14:10 (L:D) in the laboratory. The results showed that the duration of the immature stage was significantly affected by acid rain exposure. The shortest duration (8.90 days) was recorded for populations exposed to pH 5.6 acid rain, while the longest duration (9.37 days) occurred after exposure to pH 2.5 acid rain. Compared with the control population, adult longevity was shortened with an increase in acidity. Similarly, the oviposition duration was also shortened by an increase in acidity. Statistically, female fecundity did not differ significantly between pH 5.6, pH 4.0 and control populations, but did differ significantly between the control population and those exposed to pH 2.5 and pH 3.0 acid rain. This suggested that the mite suffered reproductive defects after long-term exposure to acid rain with higher acidity (pH 2.5 and 3.0). The intrinsic rate of increase among different populations was not significantly affected, but the net reproductive rate of populations exposed to pH 2.5 and 3.0 acid rain was significantly less than pH4.0, 5.6, and control populations. Bioassay results showed that after long-term exposure to acid rain, susceptibility of the mites to two acaricides, dichlorvos and fenpropathrin, did not change significantly. PMID:19537978

  8. TiO2 nanoparticles alleviate toxicity by reducing free Zn2+ ion in human primary epidermal keratinocytes exposed to ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Kathawala, Mustafa Hussain; Ng, Kee Woei; Loo, Say Chye Joachim

    2015-06-01

    Nanoparticles have been a subject of intense safety screenings due to their influx in various applications. Although recent studies have reported on the plausible cytotoxicity of nanoparticles, many of these focused only on single-material nanoparticles, while the cytotoxicity of dual-nanoparticle systems (e.g., ZnO with TiO2) has remained unexplored. For example, commercial products like sunscreens and cosmetics contain both nano-sized ZnO and TiO2, but cytotoxicity studies of such systems are meager. In this paper, the cytotoxicity of this dual-nanoparticle system comprising both ZnO and TiO2 was evaluated in vitro on skin-mimicking human primary epidermal keratinocytes (HPEKs). Inductively coupled plasma mass spectrometry, flow cytometry, and confocal microscopy were used to investigate the uptake of nanoparticles and free ions. Results revealed that ZnO nanoparticles were partially soluble (up to 20 μg ml-1 after 1 day) and could induce strong cytotoxicity as compared to the insoluble TiO2 nanoparticles which remained non-toxic until very high concentrations. It was found that TiO2 nanoparticles could play "vigilante" by protecting keratinocytes from acute toxicity of ZnO nanoparticles. This is in agreement with the observation that TiO2 nanoparticles caused an attenuation of free intracellular Zn2+ ions concentration, by adsorbing and immobilizing free Zn2+ ions. This study reveals a unique dual-nanoparticle observation in vitro on HPEKs, and highlights the importance of dual-nanoparticulate toxicity studies, especially in applications where more than one nanoparticle material-type is present.

  9. TiO2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor.

    PubMed

    Ferguson, Megan A; Hering, Janet G

    2006-07-01

    Compliance with the U.S. drinking water standard for arsenic (As) of 10 microg L(-1) is required in January 2006. This will necessitate implementation of treatment technologies for As removal by thousands of water suppliers. Although a variety of such technologies is available, most require preoxidation of As(III) to As(V) for efficient performance. Previous batch studies with illuminated TiO2 slurries have demonstrated that TiO2-photocatalyzed AS(III) oxidation occurs rapidly. This study examined reaction efficiency in a flow-through, fixed-bed reactor that provides a better model for treatment in practice. Glass beads were coated with mixed P25/sol gel TiO2 and employed in an upflow reactor irradiated from above. The reactor residence time, influent As(III) concentration, number of TiO2 coatings on the beads, solution matrix, and light source were varied to characterize this reaction and determine its feasibility for water treatment. Repeated usage of the same beads in multiple experiments or extended use was found to affect effluent As(V) concentrations but not the steady-state effluent As(III) concentration, which suggests that As(III) oxidation at the TiO2 surface undergoes dynamic sorption equilibration. Catalyst poisoning was not observed either from As(V) or from competitively adsorbing anions, although the higher steady-state effluent As(III) concentrations in synthetic groundwater compared to 5 mM NaNO3 indicated that competitive sorbates in the matrix partially hinder the reaction. A reactive transport model with rate constants proportional to incident light at each bead layer fit the experimental data well despite simplifying assumptions. TiO2-photocatalyzed oxidation of As(III) was also effective under natural sunlight. Limitations to the efficiency of As(III) oxidation in the fixed-bed reactor were attributable to constraints of the reactor geometry, which could be overcome by improved design. The fixed-bed TiO2 reactor offers an environmentally

  10. Preparation of Nano-TiO2-Coated SiO2 Microsphere Composite Material and Evaluation of Its Self-Cleaning Property

    PubMed Central

    Sun, Sijia; Deng, Tongrong; Ding, Hao; Chen, Ying; Chen, Wanting

    2017-01-01

    In order to improve the dispersion of nano-TiO2 particles and enhance its self-cleaning properties, including photocatalytic degradation of pollutants and surface hydrophilicity, we prepared nano-TiO2-coated SiO2 microsphere composite self-cleaning materials (SiO2–TiO2) by co-grinding SiO2 microspheres and TiO2 soliquid and calcining the ground product. The structure, morphology, and self-cleaning properties of the SiO2–TiO2 were characterized. The characterization results showed that the degradation efficiency of methyl orange by SiO2–TiO2 was 97%, which was significantly higher than that obtained by pure nano-TiO2. The minimum water contact angle of SiO2–TiO2 was 8°, indicating strong hydrophilicity and the good self-cleaning effect. The as-prepared SiO2–TiO2 was characterized by the nano-TiO2 particles uniformly coated on the SiO2 microspheres and distributed in the gap among the microspheres. The nano-TiO2 particles were in an anatase phase with the particle size of 15–20 nm. The nano-TiO2 particles were combined with SiO2 microspheres via the dehydroxylation of hydroxyl groups on their surfaces. PMID:29099774

  11. Long-Term Neurotoxic Effects of Early Life Exposure to Tetrachloroethylene-contaminated Drinking Water

    PubMed Central

    Aschengrau, Ann; Janulewicz, Patricia A.; White, Roberta F.; Vieira, Veronica M.; Gallagher, Lisa G.; Getz, Kelly D.; Webster, Thomas F.; Ozonoff, David M.

    2016-01-01

    Background Tetrachloroethene (PCE) is a common environmental and occupational contaminant and an acknowledged neurotoxicant. From 1968 through 1983 widespread contamination of public drinking water supplies with PCE occurred in the Cape Cod region of Massachusetts. The source of the contamination was a vinyl liner applied to the inner surface of water distribution pipes. Objectives A retrospective cohort study (“the Cape Cod Health Study”) was undertaken to examine possible health consequences of early life exposure to PCE-contaminated drinking water. This review describes the study methods and findings regarding the impact of prenatal and childhood exposure on neurological outcomes during early adulthood, including vision, neuropsychological functioning, brain structure, risky behaviors, and mental illness. The review also describes the strengths and challenges of conducting population-based epidemiological research in this unique setting. Methods Subjects were identified by cross-matching birth certificate and water system data. Information on health outcomes and confounding variables was collected from self-administered surveys (N= 1,689), neuropsychological tests (N=63), vision exam (N=63), and magnetic resonance imaging (N=42). Early life exposure to PCE was estimated using a leaching and transport model. The data analysis compared the occurrence of each health outcome among subjects with prenatal and early childhood PCE exposure to unexposed subjects while considering the impact of confounding variables. Results The study found evidence that early life exposure to PCE-contaminated drinking water has long-term neurotoxic effects. The strongest associations were seen with illicit drug use, bipolar disorder, and post-traumatic stress disorder. Key strengths of the study were availability of historical data on affected water systems, a relatively high exposure prevalence and wide range of exposure levels, and little confounding. Challenges arose mainly from

  12. Long-Term Ozone Exposure and Mortality in a Large Prospective Study

    PubMed Central

    Jerrett, Michael; Pope, C. Arden; Krewski, Daniel; Gapstur, Susan M.; Diver, W. Ryan; Beckerman, Bernardo S.; Marshall, Julian D.; Su, Jason; Crouse, Daniel L.; Burnett, Richard T.

    2016-01-01

    Rationale: Tropospheric ozone (O3) is potentially associated with cardiovascular disease risk and premature death. Results from long-term epidemiological studies on O3 are scarce and inconclusive. Objectives: In this study, we examined associations between chronic ambient O3 exposure and all-cause and cause-specific mortality in a large cohort of U.S. adults. Methods: Cancer Prevention Study II participants were enrolled in 1982. A total of 669,046 participants were analyzed, among whom 237,201 deaths occurred through 2004. We obtained estimates of O3 concentrations at the participant’s residence from a hierarchical Bayesian space–time model. Estimates of fine particulate matter (particulate matter with an aerodynamic diameter of up to 2.5 μm [PM2.5]) and NO2 concentrations were obtained from land use regression. Cox proportional hazards regression models were used to examine mortality associations adjusted for individual- and ecological-level covariates. Measurements and Main Results: In single-pollutant models, we observed significant positive associations between O3, PM2.5, and NO2 concentrations and all-cause and cause-specific mortality. In two-pollutant models adjusted for PM2.5, significant positive associations remained between O3 and all-cause (hazard ratio [HR] per 10 ppb, 1.02; 95% confidence interval [CI], 1.01–1.04), circulatory (HR, 1.03; 95% CI, 1.01–1.05), and respiratory mortality (HR, 1.12; 95% CI, 1.08–1.16) that were unchanged with further adjustment for NO2. We also observed positive mortality associations with both PM2.5 (both near source and regional) and NO2 in multipollutant models. Conclusions: Findings derived from this large-scale prospective study suggest that long-term ambient O3 contributes to risk of respiratory and circulatory mortality. Substantial health and environmental benefits may be achieved by implementing further measures aimed at controlling O3 concentrations. PMID:26680605

  13. Nano-Ceramic Coated Plastics

    NASA Technical Reports Server (NTRS)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (<100 C) is also a key to generating these ceramic coatings on the plastics. One possible way of processing nanoceramic coatings at low temperatures (< 90 C) is to take advantage of in-situ precipitated nanoparticles and nanostructures grown from aqueous solution. These nanostructures can be tailored to ceramic film formation and the subsequent microstructure development. In addition, the process provides environment- friendly processing because of the

  14. Low temperature destruction of PCDD/Fs over V2O5-CeO2/TiO2 catalyst with ozone.

    PubMed

    Yu, Ming-Feng; Lin, Xiao-Qing; Yan, Mi; Li, Xiao-Dong; Chen, Tong; Yan, Jian-Hua

    2016-09-01

    Catalytic destruction of PCDD/Fs (polychlorinated dibenzo-p-dioxins and furans) over V2O5-CeO2/TiO2 catalyst was investigated at a low temperature range of 140-180 °C, in the absence and presence of ozone (200 ppm). Nano-TiO2 support was used to prepare the catalyst by step impregnation method. A stable PCDD/Fs-generating system was established to support the catalytic destruction tests. In the presence of ozone alone, destruction efficiencies of PCDD/Fs are between 32.2 and 43.1 % with temperature increasing from 140 to 180 °C. The activity of V2O5-CeO2/TiO2 catalyst alone on PCDD/Fs destruction is also studied. The increase of temperature from 140 to 180 °C enhances the activity of catalyst with destruction efficiencies increasing from 54.7 to 73.4 %. However, ozone addition greatly enhances the catalytic activity of V2O5-CeO2/TiO2 catalyst on PCDD/Fs decomposition. At 180 °C, the destruction efficiency of PCDD/Fs achieved with V2O5-CeO2/TiO2 catalyst and ozone is above 86.0 %. It indicates that the combined use of ozone and catalyst reduces the reaction temperature of PCDD/Fs oxidation and offers a new method to destroy PCDD/Fs with high destruction efficiency at a low temperature. Furthermore, the destruction efficiencies of 17 toxic PCDD/F congeners, achieved with ozone alone, catalyst alone, and catalyst/ozone are analyzed.

  15. Long-Term Coarse Particulate Matter Exposure and Heart Rate Variability in the Multi-Ethnic Study of Atherosclerosis (MESA)

    PubMed Central

    Adhikari, Richa; D’Souza, Jennifer; Solimon, Elsayed Z.; Burke, Gregory L.; Daviglus, Martha; Jacobs, David R.; Park, Sung Kyun; Sheppard, Lianne; Thorne, Peter S.; Kaufman, Joel D.; Larson, Timothy V.; Adar, Sara D.

    2017-01-01

    Background Reduced heart rate variability, a marker of impaired cardiac autonomic function, has been linked to short-term exposure to airborne particles. This research adds to the literature by examining associations with long-term exposures to coarse particles (PM10-2.5). Methods Using electrocardiogram recordings from 2,780 participants (45-84 years) from three Multi-Ethnic Study of Atherosclerosis sites, we assessed the standard deviation of normal-to-normal intervals (SDNN) and root-mean square differences of successive normal-to-normal intervals (rMSSD) at a baseline (2000-2002) and follow-up (2010-2012) examination (mean visits/person=1.5). Annual average concentrations of PM10-2.5 mass, copper, zinc, phosphorus, silicon, and endotoxin were estimated using site-specific spatial prediction models. We assessed associations for baseline heart rate variability and rate of change in heart rate variability over time using multivariable mixed models adjusted for time, sociodemographic, lifestyle, health, and neighborhood confounders, including co-pollutants. Results In our primary models adjusted for demographic and lifestyle factors and site, PM10-2.5 mass was associated with 1.0% (95% CI: -4.1, 2.1%) lower SDNN levels per interquartile range of 2 μg/m3. Stronger associations, however, were observed prior to site adjustment and with increasing residential stablity. Similar patterns were found for rMSSD. We found little evidence for associations with other chemical species and with with the rate of change in heart rate variability, though endotoxin was associated with increasing heart rate variability over time. Conclusion We found only weak evidence that long-term PM10-2.5 exposures are associated with lowered heart rate variability. Stronger associations among residentially stable individuals suggest that confirmatory studies are needed. PMID:27035690

  16. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates

    NASA Astrophysics Data System (ADS)

    Ocakoglu, Kasim; Joya, Khurram S.; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T.

    2014-07-01

    Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ~120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates.Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The

  17. Synthesis and structural analysis of Fe doped TiO2 nanoparticles using Williamson Hall and Scherer Model

    NASA Astrophysics Data System (ADS)

    Patle, L. B.; Labhane, P. K.; Huse, V. R.; Gaikwad, K. D.; Chaudhari, A. L.

    2018-05-01

    The nanoparticles of Pure and doped Ti1-xFexO were synthesized by modified co-precipitation method successfully with nominal composite of x=0.0, 0.01, 0.03 and 0.05 at room temperature. The precursors were further calcined at 500°C for 6hrs in muffle furnace which results in the formation of different TiO2 phase compositions. The structural analysis carried out by XRD (Bruker D8 Cu-Kα1). X-ray peak broadening analysis was used to evaluate the crystalline sizes, the lattice parameters, atomic packing fraction, c/a ratio, X-ray density and Volume of unit cell. The Williamson Hall analysis is used to find grain size and Strain of prepared TiO2 nano particles. Crystalline TiO2 with a Tetragonal Anatase phase is confirmed by XRD results. The grain size of pure and Fe doped samples were found in the range of 10nm to 18nm. All the physical parameters of anatase tetragonal TiO2 nanoparticles were calculated more precisely using modified W-H plot a uniform deformation model (UDM). The results calculated from both the techniques were approximately similar.

  18. Long-term exposure to fine particulate matter, residential proximity to major roads and measures of brain structure.

    PubMed

    Wilker, Elissa H; Preis, Sarah R; Beiser, Alexa S; Wolf, Philip A; Au, Rhoda; Kloog, Itai; Li, Wenyuan; Schwartz, Joel; Koutrakis, Petros; DeCarli, Charles; Seshadri, Sudha; Mittleman, Murray A

    2015-05-01

    Long-term exposure to ambient air pollution is associated with cerebrovascular disease and cognitive impairment, but whether it is related to structural changes in the brain is not clear. We examined the associations between residential long-term exposure to ambient air pollution and markers of brain aging using magnetic resonance imaging. Framingham Offspring Study participants who attended the seventh examination were at least 60 years old and free of dementia and stroke were included. We evaluated associations between exposures (fine particulate matter [PM2.5] and residential proximity to major roadways) and measures of total cerebral brain volume, hippocampal volume, white matter hyperintensity volume (log-transformed and extensive white matter hyperintensity volume for age), and covert brain infarcts. Models were adjusted for age, clinical covariates, indicators of socioeconomic position, and temporal trends. A 2-μg/m(3) increase in PM2.5 was associated with -0.32% (95% confidence interval, -0.59 to -0.05) smaller total cerebral brain volume and 1.46 (95% confidence interval, 1.10 to 1.94) higher odds of covert brain infarcts. Living further away from a major roadway was associated with 0.10 (95% confidence interval, 0.01 to 0.19) greater log-transformed white matter hyperintensity volume for an interquartile range difference in distance, but no clear pattern of association was observed for extensive white matter. Exposure to elevated levels of PM2.5 was associated with smaller total cerebral brain volume, a marker of age-associated brain atrophy, and with higher odds of covert brain infarcts. These findings suggest that air pollution is associated with insidious effects on structural brain aging even in dementia- and stroke-free persons. © 2015 American Heart Association, Inc.

  19. Influence of different TiO2 blocking films on the photovoltaic performance of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Chenxi; Luo, Yudan; Chen, Xiaohong; Ou-Yang, Wei; Chen, Yiwei; Sun, Zhuo; Huang, Sumei

    2016-12-01

    Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic (PV) cells. Cell structures based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive and brisk advances, holding great potential to grow into a mature PV technology. High power conversion efficiency (PCE) values have been obtained from the mesoscopic configuration in which a few hundred nano-meter thick mesoporous scaffold (e.g. TiO2 or Al2O3) infiltrated by perovskite absorber was sandwiched between the electron and hole transport layers. A uniform and compact hole-blocking layer is necessary for high efficient perovskite-based thin film solar cells. In this study, we investigated the characteristics of TiO2 compact layer using various methods and its effects on the PV performance of perovskite solar cells. TiO2 compact layer was prepared by a sol-gel method based on titanium isopropoxide and HCl, spin-coating of titanium diisopropoxide bis (acetylacetonate), screen-printing of Dyesol's bocking layer titania paste, and a chemical bath deposition (CBD) technique via hydrolysis of TiCl4, respectively. The morphological and micro-structural properties of the formed compact TiO2 layers were characterized by scanning electronic microscopy and X-ray diffraction. The analyses of devices performance characteristics showed that surface morphologies of TiO2 compact films played a critical role in affecting the efficiencies. The nanocrystalline TiO2 film deposited via the CBD route acts as the most efficient hole-blocking layer and achieves the best performance in perovskite solar cells. The CBD-based TiO2 compact and dense layer offers a small series resistance and a large recombination resistance inside the device, and makes it possible to achieve a high power conversion efficiency of 12.80%.

  20. Nano Titanium Monoxide Crystals and Unusual Superconductivity at 11 K.

    PubMed

    Xu, Jijian; Wang, Dong; Yao, Heliang; Bu, Kejun; Pan, Jie; He, Jianqiao; Xu, Fangfang; Hong, Zhanglian; Chen, Xiaobo; Huang, Fuqiang

    2018-03-01

    Nano TiO 2 is investigated intensely due to extraordinary photoelectric performances in photocatalysis, new-type solar cells, etc., but only very few synthesis and physical properties have been reported on nanostructured TiO or other low valent titanium-containing oxides. Here, a core-shell nanoparticle made of TiO core covered with a ≈5 nm shell of amorphous TiO 1+ x is newly constructed via a controllable reduction method to synthesize nano TiO core and subsequent soft oxidation to form the shell (TiO 1+ x ). The physical properties measurements of electrical transport and magnetism indicate these TiO@TiO 1+ x nanocrystals are a type-ІІ superconductor of a recorded T c onset = 11 K in the binary Ti-O system. This unusual superconductivity could be attributed to the interfacial effect due to the nearly linear gradient of O/Ti ratio across the outer amorphous layer. This novel synthetic method and enhanced superconductivity could open up possibilities in interface superconductivity of nanostructured composites with well-controlled interfaces. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.