Sample records for nanoarchaeum equitans trna

  1. Proteomic Characterization of Cellular and Molecular Processes that Enable the Nanoarchaeum equitans-Ignicoccus hospitalis Relationship

    PubMed Central

    Giannone, Richard J.; Huber, Harald; Karpinets, Tatiana; Heimerl, Thomas; Küper, Ulf; Rachel, Reinhard; Keller, Martin; Hettich, Robert L.; Podar, Mircea

    2011-01-01

    Nanoarchaeum equitans, the only cultured representative of the Nanoarchaeota, is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. The molecular mechanisms that enable this relationship are unknown. Using whole-cell proteomics, differences in the relative abundance of >75% of predicted protein-coding genes from both Archaea were measured to identify the specific response of I. hospitalis to the presence of N. equitans on its surface. A purified N. equitans sample was also analyzed for evidence of interspecies protein transfer. The depth of cellular proteome coverage achieved here is amongst the highest reported for any organism. Based on changes in the proteome under the specific conditions of this study, I. hospitalis reacts to N. equitans by curtailing genetic information processing (replication, transcription) in lieu of intensifying its energetic, protein processing and cellular membrane functions. We found no evidence of significant Ignicoccus biosynthetic enzymes being transported to N. equitans. These results suggest that, under laboratory conditions, N. equitans diverts some of its host's metabolism and cell cycle control to compensate for its own metabolic shortcomings, thus appearing to be entirely dependent on small, transferable metabolites and energetic precursors from I. hospitalis. PMID:21826220

  2. Multi-omics analysis provides insight to the Ignicoccus hospitalis - Nanoarchaeum equitans association

    DOE PAGES

    Rawle, Rachel A.; Hamerly, Timothy; Tripet, Brian P.; ...

    2017-06-04

    Studies of interspecies interactions are inherently difficult due to the complex mechanisms which enable these relationships. A model system for studying interspecies interactions is the marine hyperthermophiles Ignicoccus hospitalis and Nanoarchaeum equitans. Recent independently-conducted ‘omics’ analyses have generated insights into the molecular factors modulating this association. However, significant questions remain about the nature of the interactions between these archaea. We jointly analyzed multiple levels of omics datasets obtained from published, independent transcriptomics, proteomics, and metabolomics analyses. DAVID identified functionally-related groups enriched when I. hospitalis is grown alone or in co-culture with N. equitans. Enriched molecular pathways were subsequently visualized usingmore » interaction maps generated using STRING. Key findings of our multi-level omics analysis indicated that I. hospitalis provides precursors to N. equitans for energy metabolism. Analysis indicated an overall reduction in diversity of metabolic precursors in the I. hospitalis–N. equitans co-culture, which has been connected to the differential use of ribosomal subunits and was previously unnoticed. We also identified differences in precursors linked to amino acid metabolism, NADH metabolism, and carbon fixation, providing new insights into the metabolic adaptions of I. hospitalis enabling the growth of N. equitans. In conclusion, this multi-omics analysis builds upon previously identified cellular patterns while offering new insights into mechanisms that enable the I. hospitalis–N. equitans association. This study applies statistical and visualization techniques to a mixed-source omics dataset to yield a more global insight into a complex system, that was not readily discernable from separate omics studies.« less

  3. Multi-omics analysis provides insight to the Ignicoccus hospitalis-Nanoarchaeum equitans association.

    PubMed

    Rawle, Rachel A; Hamerly, Timothy; Tripet, Brian P; Giannone, Richard J; Wurch, Louie; Hettich, Robert L; Podar, Mircea; Copié, Valerie; Bothner, Brian

    2017-09-01

    Studies of interspecies interactions are inherently difficult due to the complex mechanisms which enable these relationships. A model system for studying interspecies interactions is the marine hyperthermophiles Ignicoccus hospitalis and Nanoarchaeum equitans. Recent independently-conducted 'omics' analyses have generated insights into the molecular factors modulating this association. However, significant questions remain about the nature of the interactions between these archaea. We jointly analyzed multiple levels of omics datasets obtained from published, independent transcriptomics, proteomics, and metabolomics analyses. DAVID identified functionally-related groups enriched when I. hospitalis is grown alone or in co-culture with N. equitans. Enriched molecular pathways were subsequently visualized using interaction maps generated using STRING. Key findings of our multi-level omics analysis indicated that I. hospitalis provides precursors to N. equitans for energy metabolism. Analysis indicated an overall reduction in diversity of metabolic precursors in the I. hospitalis-N. equitans co-culture, which has been connected to the differential use of ribosomal subunits and was previously unnoticed. We also identified differences in precursors linked to amino acid metabolism, NADH metabolism, and carbon fixation, providing new insights into the metabolic adaptions of I. hospitalis enabling the growth of N. equitans. This multi-omics analysis builds upon previously identified cellular patterns while offering new insights into mechanisms that enable the I. hospitalis-N. equitans association. Our study applies statistical and visualization techniques to a mixed-source omics dataset to yield a more global insight into a complex system, that was not readily discernable from separate omics studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Ignicoccus hospitalis sp. nov., the host of 'Nanoarchaeum equitans'.

    PubMed

    Paper, Walter; Jahn, Ulrike; Hohn, Michael J; Kronner, Michaela; Näther, Daniela J; Burghardt, Tillmann; Rachel, Reinhard; Stetter, Karl O; Huber, Harald

    2007-04-01

    A novel chemolithoautotrophic and hyperthermophilic member of the genus Ignicoccus was isolated from a submarine hydrothermal system at the Kolbeinsey Ridge, to the north of Iceland. The new isolate showed high similarity to the two species described to date, Ignicoccus islandicus and Ignicoccus pacificus, in its physiological properties as well as in its unique cell architecture. However, phylogenetic analysis and investigations on the protein composition of the outer membrane demonstrated that the new isolate was clearly distinct from I. islandicus and I. pacificus. Furthermore, it is the only organism known so far which is able to serve as a host for 'Nanoarchaeum equitans', the only cultivated member of the 'Nanoarchaeota'. Therefore, the new isolate represents a novel species of the genus Ignicoccus, which we name Ignicoccus hospitalis sp. nov. (type strain KIN4/I(T)=DSM 18386(T)=JCM 14125(T)).

  5. A Complex Endomembrane System in the Archaeon Ignicoccus hospitalis Tapped by Nanoarchaeum equitans

    DOE PAGES

    Heimerl, Thomas; Flechsler, Jennifer; Pickl, Carolin; ...

    2017-06-13

    Based on serial sectioning, focused ion beam scanning electron microscopy (FIB/SEM), and electron tomography, we depict in detail the highly unusual anatomy of the marine hyperthermophilic crenarchaeon, Ignicoccus hospitalis. Our data support a complex and dynamic endomembrane system consisting of cytoplasmic protrusions, and with secretory function. Moreover, we reveal that the cytoplasm of the putative archaeal ectoparasite Nanoarchaeum equitans can get in direct contact with this endomembrane system, complementing and explaining recent proteomic, transcriptomic and metabolomic data on this inter-archaeal relationship. In addition, we identified a matrix of filamentous structures and/or tethers in the voluminous inter-membrane compartment (IMC) of I.more » hospitalis, which might be responsible for membrane dynamics. Overall, this unusual cellular compartmentalization, ultrastructure and dynamics in an archaeon that belongs to the recently proposed TACK superphylum prompts speculation that the eukaryotic endomembrane system might originate from Archaea.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawle, Rachel A.; Hamerly, Timothy; Tripet, Brian P.

    Studies of interspecies interactions are inherently difficult due to the complex mechanisms which enable these relationships. A model system for studying interspecies interactions is the marine hyperthermophiles Ignicoccus hospitalis and Nanoarchaeum equitans. Recent independently-conducted ‘omics’ analyses have generated insights into the molecular factors modulating this association. However, significant questions remain about the nature of the interactions between these archaea. We jointly analyzed multiple levels of omics datasets obtained from published, independent transcriptomics, proteomics, and metabolomics analyses. DAVID identified functionally-related groups enriched when I. hospitalis is grown alone or in co-culture with N. equitans. Enriched molecular pathways were subsequently visualized usingmore » interaction maps generated using STRING. Key findings of our multi-level omics analysis indicated that I. hospitalis provides precursors to N. equitans for energy metabolism. Analysis indicated an overall reduction in diversity of metabolic precursors in the I. hospitalis–N. equitans co-culture, which has been connected to the differential use of ribosomal subunits and was previously unnoticed. We also identified differences in precursors linked to amino acid metabolism, NADH metabolism, and carbon fixation, providing new insights into the metabolic adaptions of I. hospitalis enabling the growth of N. equitans. In conclusion, this multi-omics analysis builds upon previously identified cellular patterns while offering new insights into mechanisms that enable the I. hospitalis–N. equitans association. This study applies statistical and visualization techniques to a mixed-source omics dataset to yield a more global insight into a complex system, that was not readily discernable from separate omics studies.« less

  7. Untargeted metabolomics studies employing NMR and LC-MS reveal metabolic coupling between Nanoarcheum equitans and its archaeal host Ignicoccus hospitalis.

    PubMed

    Hamerly, Timothy; Tripet, Brian P; Tigges, Michelle; Giannone, Richard J; Wurch, Louie; Hettich, Robert L; Podar, Mircea; Copié, Valerie; Bothner, Brian

    2015-08-01

    Interspecies interactions are the basis of microbial community formation and infectious diseases. Systems biology enables the construction of complex models describing such interactions, leading to a better understanding of disease states and communities. However, before interactions between complex organisms can be understood, metabolic and energetic implications of simpler real-world host-microbe systems must be worked out. To this effect, untargeted metabolomics experiments were conducted and integrated with proteomics data to characterize key molecular-level interactions between two hyperthermophilic microbial species, both of which have reduced genomes. Metabolic changes and transfer of metabolites between the archaea Ignicoccus hospitalis and Nanoarcheum equitans were investigated using integrated LC-MS and NMR metabolomics. The study of such a system is challenging, as no genetic tools are available, growth in the laboratory is challenging, and mechanisms by which they interact are unknown. Together with information about relative enzyme levels obtained from shotgun proteomics, the metabolomics data provided useful insights into metabolic pathways and cellular networks of I. hospitalis that are impacted by the presence of N. equitans , including arginine, isoleucine, and CTP biosynthesis. On the organismal level, the data indicate that N. equitans exploits metabolites generated by I. hospitalis to satisfy its own metabolic needs. This finding is based on N. equitans 's consumption of a significant fraction of the metabolite pool in I. hospitalis that cannot solely be attributed to increased biomass production for N. equitans . Combining LC-MS and NMR metabolomics datasets improved coverage of the metabolome and enhanced the identification and quantitation of cellular metabolites.

  8. Structural Basis for a Unique ATP Synthase Core Complex from Nanoarcheaum equitans*

    PubMed Central

    Mohanty, Soumya; Jobichen, Chacko; Chichili, Vishnu Priyanka Reddy; Velázquez-Campoy, Adrián; Low, Boon Chuan; Hogue, Christopher W. V.; Sivaraman, J.

    2015-01-01

    ATP synthesis is a critical and universal life process carried out by ATP synthases. Whereas eukaryotic and prokaryotic ATP synthases are well characterized, archaeal ATP synthases are relatively poorly understood. The hyperthermophilic archaeal parasite, Nanoarcheaum equitans, lacks several subunits of the ATP synthase and is suspected to be energetically dependent on its host, Ignicoccus hospitalis. This suggests that this ATP synthase might be a rudimentary machine. Here, we report the crystal structures and biophysical studies of the regulatory subunit, NeqB, the apo-NeqAB, and NeqAB in complex with nucleotides, ADP, and adenylyl-imidodiphosphate (non-hydrolysable analog of ATP). NeqB is ∼20 amino acids shorter at its C terminus than its homologs, but this does not impede its binding with NeqA to form the complex. The heterodimeric NeqAB complex assumes a closed, rigid conformation irrespective of nucleotide binding; this differs from its homologs, which require conformational changes for catalytic activity. Thus, although N. equitans possesses an ATP synthase core A3B3 hexameric complex, it might not function as a bona fide ATP synthase. PMID:26370083

  9. Untargeted metabolomics studies employing NMR and LC–MS reveal metabolic coupling between Nanoarcheum equitans and its archaeal host Ignicoccus hospitalis

    DOE PAGES

    Hamerly, Timothy; Tripet, Brian P.; Tigges, Michelle; ...

    2014-11-05

    Interactions between species are the basis of microbial community formation and infectious diseases. Systems biology enables the construction of complex models describing such interactions, leading to a better understanding of disease states and communities. However, before interactions between complex organisms can be understood, metabolic and energetic implications of simpler real-world host-microbe systems must be worked out. To this effect, untargeted metabolomics experiments were conducted and integrated with proteomics data to characterize key molecular-level interactions between two hyperthermophilic microbial species, both of which have reduced genomes. Metabolic changes and transfer of metabolites between the archaea Ignicoccus hospitalis and Nanoarcheum equitans weremore » investigated using integrated LC–MS and NMR metabolomics. The study of such a system is challenging, as no genetic tools are available, growth in the laboratory is challenging, and mechanisms by which they interact are unknown. Together with information about relative enzyme levels obtained from shotgun proteomics, the metabolomics data provided useful insights into metabolic pathways and cellular networks of I. hospitalis that are impacted by the presence of N. equitans, including arginine, isoleucine, and CTP biosynthesis. On the organismal level, the data indicate that N. equitans exploits metabolites generated by I. hospitalis to satisfy its own metabolic needs. Lastly, this finding is based on N. equitans’s consumption of a significant fraction of the metabolite pool in I. hospitalis that cannot solely be attributed to increased biomass production for N. equitans. Combining LC–MS and NMR metabolomics datasets improved coverage of the metabolome and enhanced the identification and quantitation of cellular metabolites.« less

  10. Untargeted metabolomics studies employing NMR and LC-MS reveal metabolic coupling between Nanoarcheum equitans and its archaeal host Ignicoccus hospitalis

    PubMed Central

    Hamerly, Timothy; Tripet, Brian P.; Tigges, Michelle; Giannone, Richard J.; Wurch, Louie; Hettich, Robert L.; Podar, Mircea; Copié, Valerie; Bothner, Brian

    2014-01-01

    Interspecies interactions are the basis of microbial community formation and infectious diseases. Systems biology enables the construction of complex models describing such interactions, leading to a better understanding of disease states and communities. However, before interactions between complex organisms can be understood, metabolic and energetic implications of simpler real-world host-microbe systems must be worked out. To this effect, untargeted metabolomics experiments were conducted and integrated with proteomics data to characterize key molecular-level interactions between two hyperthermophilic microbial species, both of which have reduced genomes. Metabolic changes and transfer of metabolites between the archaea Ignicoccus hospitalis and Nanoarcheum equitans were investigated using integrated LC-MS and NMR metabolomics. The study of such a system is challenging, as no genetic tools are available, growth in the laboratory is challenging, and mechanisms by which they interact are unknown. Together with information about relative enzyme levels obtained from shotgun proteomics, the metabolomics data provided useful insights into metabolic pathways and cellular networks of I. hospitalis that are impacted by the presence of N. equitans, including arginine, isoleucine, and CTP biosynthesis. On the organismal level, the data indicate that N. equitans exploits metabolites generated by I. hospitalis to satisfy its own metabolic needs. This finding is based on N. equitans’s consumption of a significant fraction of the metabolite pool in I. hospitalis that cannot solely be attributed to increased biomass production for N. equitans. Combining LC-MS and NMR metabolomics datasets improved coverage of the metabolome and enhanced the identification and quantitation of cellular metabolites. PMID:26273237

  11. Methylated nucleosides in tRNA and tRNA methyltransferases

    PubMed Central

    Hori, Hiroyuki

    2014-01-01

    To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed. PMID:24904644

  12. Insights into archaeal evolution and symbiosis from the genomes of a Nanoarchaeon and its crenarchaeal host from Yellowstone National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podar, Mircea; Graham, David E; Reysenbach, Anna-Louise

    A hyperthemophilic member of the Nanoarchaeota from Obsidian Pool, a thermal feature in Yellowstone National Park was characterized using single cell isolation and sequencing, together with its putative host, a Sulfolobales archaeon. This first representative of a non-marine Nanoarchaeota (Nst1) resembles Nanoarchaeum equitans by lacking most biosynthetic capabilities, the two forming a deep-branching archaeal lineage. However, the Nst1 genome is over 20% larger, encodes a complete gluconeogenesis pathway and a full complement of archaeal flagellum proteins. Comparison of the two genomes suggests that the marine and terrestrial Nanoarchaeota lineages share a common ancestor that was already a symbiont of anothermore » archaeon. With a larger genome, a smaller repertoire of split protein encoding genes and no split non-contiguous tRNAs, Nst1 appears to have experienced less severe genome reduction than N. equitans. The inferred host of Nst1 is potentially autotrophic, with a streamlined genome and simplified central and energetic metabolism as compared to other Sulfolobales. The two distinct Nanoarchaeota-host genomic data sets offer insights into the evolution of archaeal symbiosis and parasitism and will further enable studies of the cellular and molecular mechanisms of these relationships.« less

  13. Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park

    PubMed Central

    2013-01-01

    Background A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes. Results The first terrestrial hyperthermophilic member of the Nanoarchaeota was collected from Obsidian Pool, a thermal feature in Yellowstone National Park, separated by single cell isolation, and sequenced together with its putative host, a Sulfolobales archaeon. Both the new Nanoarchaeota (Nst1) and N. equitans lack most biosynthetic capabilities, and phylogenetic analysis of ribosomal RNA and protein sequences indicates that the two form a deep-branching archaeal lineage. However, the Nst1 genome is more than 20% larger, and encodes a complete gluconeogenesis pathway as well as the full complement of archaeal flagellum proteins. With a larger genome, a smaller repertoire of split protein encoding genes and no split non-contiguous tRNAs, Nst1 appears to have experienced less severe genome reduction than N. equitans. These findings imply that, rather than representing ancestral characters, the extremely compact genomes and multiple split genes of Nanoarchaeota are derived characters associated with their symbiotic or parasitic lifestyle. The inferred host of Nst1 is potentially autotrophic, with a streamlined genome and simplified central and energetic metabolism as compared to other Sulfolobales. Conclusions Comparison of the N. equitans and Nst1 genomes suggests that the marine and terrestrial lineages of Nanoarchaeota share a common ancestor that was already a symbiont of another archaeon. The two distinct Nanoarchaeota-host genomic data sets offer novel insights into the evolution of archaeal symbiosis and parasitism, enabling further studies of the cellular and molecular mechanisms of these relationships. Reviewers This article was reviewed by Patrick Forterre, Bettina Siebers (nominated by Michael Galperin) and Purification Lopez-Garcia PMID:23607440

  14. Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park.

    PubMed

    Podar, Mircea; Makarova, Kira S; Graham, David E; Wolf, Yuri I; Koonin, Eugene V; Reysenbach, Anna-Louise

    2013-04-22

    A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes. The first terrestrial hyperthermophilic member of the Nanoarchaeota was collected from Obsidian Pool, a thermal feature in Yellowstone National Park, separated by single cell isolation, and sequenced together with its putative host, a Sulfolobales archaeon. Both the new Nanoarchaeota (Nst1) and N. equitans lack most biosynthetic capabilities, and phylogenetic analysis of ribosomal RNA and protein sequences indicates that the two form a deep-branching archaeal lineage. However, the Nst1 genome is more than 20% larger, and encodes a complete gluconeogenesis pathway as well as the full complement of archaeal flagellum proteins. With a larger genome, a smaller repertoire of split protein encoding genes and no split non-contiguous tRNAs, Nst1 appears to have experienced less severe genome reduction than N. equitans. These findings imply that, rather than representing ancestral characters, the extremely compact genomes and multiple split genes of Nanoarchaeota are derived characters associated with their symbiotic or parasitic lifestyle. The inferred host of Nst1 is potentially autotrophic, with a streamlined genome and simplified central and energetic metabolism as compared to other Sulfolobales. Comparison of the N. equitans and Nst1 genomes suggests that the marine and terrestrial lineages of Nanoarchaeota share a common ancestor that was already a symbiont of another archaeon. The two distinct Nanoarchaeota-host genomic data sets offer novel insights into the evolution of archaeal symbiosis and parasitism, enabling further studies of the cellular and molecular mechanisms of these relationships. This article was reviewed by Patrick Forterre, Bettina Siebers (nominated by Michael Galperin) and Purification Lopez-Garcia.

  15. RNA versatility governs tRNA function: Why tRNA flexibility is essential beyond the translation cycle.

    PubMed

    Kuhn, Claus-D

    2016-05-01

    tRNAs undergo multiple conformational changes during the translation cycle that are required for tRNA translocation and proper communication between the ribosome and translation factors. Recent structural data on how destabilized tRNAs utilize the CCA-adding enzyme to proofread themselves put a spotlight on tRNA flexibility beyond the translation cycle. In analogy to tRNA surveillance, this review finds that other processes also exploit versatile tRNA folding to achieve, amongst others, specific aminoacylation, translational regulation by riboswitches or a block of bacterial translation. tRNA flexibility is thereby not restricted to the hinges utilized during translation. In contrast, the flexibility of tRNA is distributed all over its L-shape and is actively exploited by the tRNA-interacting partners to discriminate one tRNA from another. Since the majority of tRNA modifications also modulate tRNA flexibility it seems that cells devote enormous resources to tightly sense and regulate tRNA structure. This is likely required for error-free protein synthesis. © 2016 WILEY Periodicals, Inc.

  16. The Catalytic Domain of Topological Knot tRNA Methyltransferase (TrmH) Discriminates between Substrate tRNA and Nonsubstrate tRNA via an Induced-fit Process*

    PubMed Central

    Ochi, Anna; Makabe, Koki; Yamagami, Ryota; Hirata, Akira; Sakaguchi, Reiko; Hou, Ya-Ming; Watanabe, Kazunori; Nureki, Osamu; Kuwajima, Kunihiro; Hori, Hiroyuki

    2013-01-01

    A conserved guanosine at position 18 (G18) in the D-loop of tRNAs is often modified to 2′-O-methylguanosine (Gm). Formation of Gm18 in eubacterial tRNA is catalyzed by tRNA (Gm18) methyltransferase (TrmH). TrmH enzymes can be divided into two types based on their substrate tRNA specificity. Type I TrmH, including Thermus thermophilus TrmH, can modify all tRNA species, whereas type II TrmH, for example Escherichia coli TrmH, modifies only a subset of tRNA species. Our previous crystal study showed that T. thermophilus TrmH is a class IV S-adenosyl-l-methionine-dependent methyltransferase, which maintains a topological knot structure in the catalytic domain. Because TrmH enzymes have short stretches at the N and C termini instead of a clear RNA binding domain, these stretches are believed to be involved in tRNA recognition. In this study, we demonstrate by site-directed mutagenesis that both N- and C-terminal regions function in tRNA binding. However, in vitro and in vivo chimera protein studies, in which four chimeric proteins of type I and II TrmHs were used, demonstrated that the catalytic domain discriminates substrate tRNAs from nonsubstrate tRNAs. Thus, the N- and C-terminal regions do not function in the substrate tRNA discrimination process. Pre-steady state analysis of complex formation between mutant TrmH proteins and tRNA by stopped-flow fluorescence measurement revealed that the C-terminal region works in the initial binding process, in which nonsubstrate tRNA is not excluded, and that structural movement of the motif 2 region of the catalytic domain in an induced-fit process is involved in substrate tRNA discrimination. PMID:23867454

  17. tRNA biology charges to the front

    PubMed Central

    Phizicky, Eric M.; Hopper, Anita K.

    2010-01-01

    tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis. PMID:20810645

  18. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment.

    PubMed

    Wurch, Louie; Giannone, Richard J; Belisle, Bernard S; Swift, Carolyn; Utturkar, Sagar; Hettich, Robert L; Reysenbach, Anna-Louise; Podar, Mircea

    2016-07-05

    Biological features can be inferred, based on genomic data, for many microbial lineages that remain uncultured. However, cultivation is important for characterizing an organism's physiology and testing its genome-encoded potential. Here we use single-cell genomics to infer cultivation conditions for the isolation of an ectosymbiotic Nanoarchaeota ('Nanopusillus acidilobi') and its host (Acidilobus, a crenarchaeote) from a terrestrial geothermal environment. The cells of 'Nanopusillus' are among the smallest known cellular organisms (100-300 nm). They appear to have a complete genetic information processing machinery, but lack almost all primary biosynthetic functions as well as respiration and ATP synthesis. Genomic and proteomic comparison with its distant relative, the marine Nanoarchaeum equitans illustrate an ancient, common evolutionary history of adaptation of the Nanoarchaeota to ectosymbiosis, so far unique among the Archaea.

  19. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment

    DOE PAGES

    Wurch, Louie; Giannone, Richard J.; Belisle, Bernard S.; ...

    2016-07-05

    Biological features can be inferred, based on genomic data, for many microbial lineages that remain uncultured. However, cultivation is important for characterizing an organism’s physiology and testing its genome-encoded potential. Here we use single-cell genomics to infer cultivation conditions for the isolation of an ectosymbiotic Nanoarchaeota (‘Nanopusillus acidilobi’) and its host (Acidilobus, a crenarchaeote) from a terrestrial geothermal environment. The cells of ‘Nanopusillus’ are among the smallest known cellular organisms (100–300 nm). They appear to have a complete genetic information processing machinery, but lack almost all primary biosynthetic functions as well as respiration and ATP synthesis. Lastly, genomic and proteomicmore » comparison with its distant relative, the marine Nanoarchaeum equitans illustrate an ancient, common evolutionary history of adaptation of the Nanoarchaeota to ectosymbiosis, so far unique among the Archaea.« less

  20. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurch, Louie; Giannone, Richard J.; Belisle, Bernard S.

    Biological features can be inferred, based on genomic data, for many microbial lineages that remain uncultured. However, cultivation is important for characterizing an organism’s physiology and testing its genome-encoded potential. Here we use single-cell genomics to infer cultivation conditions for the isolation of an ectosymbiotic Nanoarchaeota (‘Nanopusillus acidilobi’) and its host (Acidilobus, a crenarchaeote) from a terrestrial geothermal environment. The cells of ‘Nanopusillus’ are among the smallest known cellular organisms (100–300 nm). They appear to have a complete genetic information processing machinery, but lack almost all primary biosynthetic functions as well as respiration and ATP synthesis. Lastly, genomic and proteomicmore » comparison with its distant relative, the marine Nanoarchaeum equitans illustrate an ancient, common evolutionary history of adaptation of the Nanoarchaeota to ectosymbiosis, so far unique among the Archaea.« less

  1. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment

    PubMed Central

    Wurch, Louie; Giannone, Richard J.; Belisle, Bernard S.; Swift, Carolyn; Utturkar, Sagar; Hettich, Robert L.; Reysenbach, Anna-Louise; Podar, Mircea

    2016-01-01

    Biological features can be inferred, based on genomic data, for many microbial lineages that remain uncultured. However, cultivation is important for characterizing an organism's physiology and testing its genome-encoded potential. Here we use single-cell genomics to infer cultivation conditions for the isolation of an ectosymbiotic Nanoarchaeota (‘Nanopusillus acidilobi') and its host (Acidilobus, a crenarchaeote) from a terrestrial geothermal environment. The cells of ‘Nanopusillus' are among the smallest known cellular organisms (100–300 nm). They appear to have a complete genetic information processing machinery, but lack almost all primary biosynthetic functions as well as respiration and ATP synthesis. Genomic and proteomic comparison with its distant relative, the marine Nanoarchaeum equitans illustrate an ancient, common evolutionary history of adaptation of the Nanoarchaeota to ectosymbiosis, so far unique among the Archaea. PMID:27378076

  2. Characterization of two key enzymes for aromatic amino acid biosynthesis in symbiotic archaea.

    PubMed

    Shlaifer, Irina; Turnbull, Joanne L

    2016-07-01

    Biosynthesis of L-tyrosine (L-Tyr) and L-phenylalanine (L-Phe) is directed by the interplay of three enzymes. Chorismate mutase (CM) catalyzes the rearrangement of chorismate to prephenate, which can be either converted to hydroxyphenylpyruvate by prephenate dehydrogenase (PD) or to phenylpyruvate by prephenate dehydratase (PDT). This work reports the first characterization of a trifunctional PD-CM-PDT from the smallest hyperthermophilic archaeon Nanoarchaeum equitans and a bifunctional CM-PD from its host, the crenarchaeon Ignicoccus hospitalis. Hexa-histidine tagged proteins were expressed in Escherichia coli and purified by affinity chromatography. Specific activities determined for the trifunctional enzyme were 21, 80, and 30 U/mg for CM, PD, and PDT, respectively, and 47 and 21 U/mg for bifunctional CM and PD, respectively. Unlike most PDs, these two archaeal enzymes were insensitive to regulation by L-Tyr and preferred NADP(+) to NAD(+) as a cofactor. Both the enzymes were highly thermally stable and exhibited maximal activity at 90 °C. N. equitans PDT was feedback inhibited by L-Phe (Ki = 0.8 µM) in a non-competitive fashion consistent with L-Phe's combination at a site separate from that of prephenate. Our results suggest that PD from the unique symbiotic archaeal pair encompass a distinct subfamily of prephenate dehydrogenases with regard to their regulation and co-substrate specificity.

  3. Rescuing Those Left Behind: Recovering and Characterizing Underdigested Membrane and Hydrophobic Proteins To Enhance Proteome Measurement Depth.

    PubMed

    Giannone, Richard J; Wurch, Louie L; Podar, Mircea; Hettich, Robert L

    2015-08-04

    The marine archaeon Nanoarchaeum equitans is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. As this interaction is thought to be membrane-associated, involving a myriad of membrane-anchored proteins, proteomic efforts to better characterize this difficult to analyze interface are paramount to uncovering the mechanism of their association. By extending multienzyme digestion strategies that use sample filtration to recover underdigested proteins for reprocessing/consecutive proteolytic digestion, we applied chymotrypsin to redigest the proteinaceous material left over after initial proteolysis with trypsin of sodium dodecyl sulfate (SDS)-extracted I. hospitalis-N. equitans proteins. Using this method, we show that proteins with increased hydrophobic character, including membrane proteins with multiple transmembrane helices, are enriched and recovered in the underdigested fraction. Chymotryptic reprocessing provided significant sequence coverage gains in both soluble and hydrophobic proteins alike, with the latter benefiting more so in terms of membrane protein representation. These gains were despite a large proportion of high-quality peptide spectra remaining unassigned in the underdigested fraction suggesting high levels of protein modification on these often surface-exposed proteins. Importantly, these gains were achieved without applying extensive fractionation strategies usually required for thorough characterization of membrane-associated proteins and were facilitated by the generation of a distinct, complementary set of peptides that aid in both the identification and quantitation of this important, under-represented class of proteins.

  4. tRNA travels from the cytoplasm to organelles

    PubMed Central

    Rubio, Mary Anne T.; Hopper, Anita K.

    2011-01-01

    Transfer RNAs (tRNAs) encoded by the nuclear genome are surprisingly dynamic. Although tRNAs function in protein synthesis occurring on cytoplasmic ribosomes, tRNAs can transit from the cytoplasm to the nucleus and then again return to the cytoplasm by a process known as the tRNA retrograde process. Subsets of the cytoplasmic tRNAs are also imported into mitochondria and function in mitochondrial protein synthesis. The numbers of tRNA species that are imported into mitchondria differ among organisms, ranging from just a few to the entire set needed to decode mitochondrially encoded mRNAs. For some tRNAs, import is dependent on the mitochondrial protein import machinery, whereas the majority of tRNA mitochondrial import is independent of this machinery. Although cytoplasmic proteins and proteins located on the mitochondrial surface participating in the tRNA import process have been described for several organisms, the identity of these proteins differ among organisms. Likewise, the tRNA determinants required for mitochondrial import differ among tRNA species and organisms. Here, we present an overview and discuss the current state of knowledge regarding the mechanisms involved in the tRNA retrograde process and continue with an overview of tRNA import into mitochondria. Finally, we highlight areas of future research to understand the function and regulation of movement of tRNAs between the cytoplasm and organelles. PMID:21976284

  5. An aminoacylation-dependent nuclear tRNA export pathway in yeast.

    PubMed

    Grosshans, H; Hurt, E; Simos, G

    2000-04-01

    Yeast Los1p, the homolog of human exportin-t, mediates nuclear export of tRNA. Using fluorescence in situ hybridization, we could show that the export of some intronless tRNA species is not detectably affected by the disruption of LOS1. To find other factors that facilitate tRNA export, we performed a suppressor screen of a synthetically lethal los1 mutant and identified the essential translation elongation factor eEF-1A. Mutations in eEF-1A impaired nuclear export of all tRNAs tested, which included both spliced and intronless species. An even stronger defect in nuclear exit of tRNA was observed under conditions that inhibited tRNA aminoacylation. In all cases, inhibition of tRNA export led to nucleolar accumulation of mature tRNAs. Our data show that tRNA aminoacylation and eEF-1A are required for efficient nuclear tRNA export in yeast and suggest coordination between the protein translation and the nuclear tRNA processing and transport machineries.

  6. An aminoacylation-dependent nuclear tRNA export pathway in yeast

    PubMed Central

    Grosshans, Helge; Hurt, Ed; Simos, George

    2000-01-01

    Yeast Los1p, the homolog of human exportin-t, mediates nuclear export of tRNA. Using fluorescence in situ hybridization, we could show that the export of some intronless tRNA species is not detectably affected by the disruption of LOS1. To find other factors that facilitate tRNA export, we performed a suppressor screen of a synthetically lethal los1 mutant and identified the essential translation elongation factor eEF-1A. Mutations in eEF-1A impaired nuclear export of all tRNAs tested, which included both spliced and intronless species. An even stronger defect in nuclear exit of tRNA was observed under conditions that inhibited tRNA aminoacylation. In all cases, inhibition of tRNA export led to nucleolar accumulation of mature tRNAs. Our data show that tRNA aminoacylation and eEF-1A are required for efficient nuclear tRNA export in yeast and suggest coordination between the protein translation and the nuclear tRNA processing and transport machineries. PMID:10766739

  7. Posttranscriptional modification of tRNA in thermophilic archaea (Archaebacteria).

    PubMed Central

    Edmonds, C G; Crain, P F; Gupta, R; Hashizume, T; Hocart, C H; Kowalak, J A; Pomerantz, S C; Stetter, K O; McCloskey, J A

    1991-01-01

    Nucleoside modification has been studied in unfractionated tRNA from 11 thermophilic archaea (archaebacteria), including phylogenetically diverse representatives of thermophilic methanogens and sulfur-metabolizing hyperthermophiles which grow optimally in the temperature range of 56 (Thermoplasma acidophilum) to 105 degrees C (Pyrodictium occultum), and for comparison from the most thermophilic bacterium (eubacterium) known, Thermotoga maritima (80 degrees C). Nine nucleosides are found to be unique to the archaea, six of which are structurally novel in being modified both in the base and by methylation in ribose and occur primarily in tRNA from the extreme thermophiles in the Crenarchaeota of the archaeal phylogenetic tree. 2-Thiothymine occurs in tRNA from Thermococcus sp., and constitutes the only known occurrence of the thymine moiety in archaeal RNA, in contrast to its near-ubiquitous presence in tRNA from bacteria and eukarya. A total of 33 modified nucleosides are rigorously characterized in archaeal tRNA in the present study, demonstrating that the structural range of posttranscriptional modifications in archaeal tRNA is more extensive than previously known. From a phylogenetic standpoint, certain tRNA modifications occur in the archaea which are otherwise unique to either the bacterial or eukaryal domain, although the overall patterns of modification are more typical of eukaryotes than bacteria. PMID:1708763

  8. Loss of a Conserved tRNA Anticodon Modification Perturbs Plant Immunity

    PubMed Central

    López, Ana; Castelló, María José; Gil, María José; Zheng, Bo; Chen, Peng; Vera, Pablo

    2015-01-01

    tRNA is the most highly modified class of RNA species, and modifications are found in tRNAs from all organisms that have been examined. Despite their vastly different chemical structures and their presence in different tRNAs, occurring in different locations in tRNA, the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent discoveries have revealed unprecedented complexity in the modification patterns of tRNA, their regulation and function, suggesting that each modified nucleoside in tRNA may have its own specific function. However, in plants, our knowledge on the role of individual tRNA modifications and how they are regulated is very limited. In a genetic screen designed to identify factors regulating disease resistance and activation of defenses in Arabidopsis, we identified SUPPRESSOR OF CSB3 9 (SCS9). Our results reveal SCS9 encodes a tRNA methyltransferase that mediates the 2´-O-ribose methylation of selected tRNA species in the anticodon loop. These SCS9-mediated tRNA modifications enhance during the course of infection with the bacterial pathogen Pseudomonas syringae DC3000, and lack of such tRNA modification, as observed in scs9 mutants, severely compromise plant immunity against the same pathogen without affecting the salicylic acid (SA) signaling pathway which regulates plant immune responses. Our results support a model that gives importance to the control of certain tRNA modifications for mounting an effective immune response in Arabidopsis, and therefore expands the repertoire of molecular components essential for an efficient disease resistance response. PMID:26492405

  9. tRNA wobble modifications and protein homeostasis

    PubMed Central

    Ranjan, Namit; Rodnina, Marina V.

    2016-01-01

    Abstract tRNA is a central component of the protein synthesis machinery in the cell. In living cells, tRNAs undergo numerous post-transcriptional modifications. In particular, modifications at the anticodon loop play an important role in ensuring efficient protein synthesis, maintaining protein homeostasis, and helping cell adaptation and survival. Hypo-modification of the wobble position of the tRNA anticodon loop is of particular relevance for translation regulation and is implicated in various human diseases. In this review we summarize recent evidence of how methyl and thiol modifications in eukaryotic tRNA at position 34 affect cellular fitness and modulate regulatory circuits at normal conditions and under stress. PMID:27335723

  10. Processing of Archaebacterial Intron-Containing tRNA Gene Transcripts.

    DTIC Science & Technology

    1987-07-31

    1{ 1. Project Goals: A. To determine the mechanism of tRNA intron processing in the halophilic archaebacteria. B. Characterize and compare the...enzyme(s) responsible for the removal of 5’-flanking sequences from halophilic and sulfur-dependent tRNA gene transcripts. C. Examine the structure and...distribution of tRNA introns in the halophilic archaebacteria. 2. Accomplishments: A. Intron processing mechanism We have succeeded in our primary

  11. From genomes to metabolomes: Understanding mechanisms of symbiosis and cell-cell signaling using the archaeal system Ignicoccus-Nanoarchaeum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podar, Mircea; Hettich, Robert; Copie, Valerie

    The main objective of this project was to use symbiotic Nanoarchaeaota, a group of thermophilic Archaea that are obligate symbionts/parasites on other Archaea, to develop an integrated multi-omic approach to study inter-species interactions as well as to understand fundamental mechanism that enable such relationships. As part of this grant we have achieved a number of important milestone on both technical and scientific levels. On the technical side, we developed immunofluorescence labeling and tracking methods to follow Nanoarchaeota in cultures and in environmental samples, we applied such methods in conjunction with flow cytometry to quantify and isolate uncultured representatives from themore » environment and characterized them by single cell genomics. On the proteomics side, we developed a more efficient and sensitive method to recover and semi-quantitatively measure membrane proteins, while achieving high total cellular proteome coverage (70-80% of the predicted proteome). Metabolomic analyses used complementary NMR and LC/GC mass spectrometry and led to the identification of novel lipids in these organisms as well as quantification of some of the major metabolites. Importantly, using several informatics approaches we were also able to integrate the transcriptomic, proteomic and metabolomic datasets, revealing aspects of the interspecies interaction that were not evident in the single omic analyses (manuscript in review). On the science side we determined that N. equitans and I. hospitalis are metabolically coupled and that N. equitans is strictly dependent on its host both for metabolic precursors and energetic needs. The actual mechanism by which small molecules move across the cell membrane remains unknown. The Ignicoccus host responds to the metabolic and energetic burned by upregulating of key primary metabolism steps and ATP synthesis. The two species have co-evolved, aspect that we determined by comparative genomics with other species of Ignicoccus

  12. Internal control regions for transcription of eukaryotic tRNA genes.

    PubMed Central

    Sharp, S; DeFranco, D; Dingermann, T; Farrell, P; Söll, D

    1981-01-01

    We have identified the region within a eukaryotic tRNA gene required for initiation of transcription. These results were obtained by systematically constructing deletions extending from the 5' or the 3' flanking regions into a cloned Drosophila tRNAArg gene by using nuclease BAL 31. The ability of the newly generated deletion clones to direct the in vitro synthesis of tRNA precursors was measured in transcription systems from Xenopus laevis oocytes, Drosophila Kc cells, and HeLa cells. Two control regions within the coding sequence were identified. The first was essential for transcription and was contained between nucleotides 8 and 25 of the mature tRNA sequence. Genes devoid of the second control region, which was contained between nucleotides 50 and 58 of the mature tRNA sequence, could be transcribed but with reduced efficiency. Thus, the promoter regions within a tRNA gene encode the tRNA sequences of the D stem and D loop, the invariant uridine at position 8, and the semi-invariant G-T-psi-C sequence. Images PMID:6947245

  13. Regulation of tRNA Bidirectional Nuclear-Cytoplasmic Trafficking in Saccharomyces cerevisiae

    PubMed Central

    Murthi, Athulaprabha; Shaheen, Hussam H.; Huang, Hsiao-Yun; Preston, Melanie A.; Lai, Tsung-Po; Phizicky, Eric M.

    2010-01-01

    tRNAs in yeast and vertebrate cells move bidirectionally and reversibly between the nucleus and the cytoplasm. We investigated roles of members of the β-importin family in tRNA subcellular dynamics. Retrograde import of tRNA into the nucleus is dependent, directly or indirectly, upon Mtr10. tRNA nuclear export utilizes at least two members of the β-importin family. The β-importins involved in nuclear export have shared and exclusive functions. Los1 functions in both the tRNA primary export and the tRNA reexport processes. Msn5 is unable to export tRNAs in the primary round of export if the tRNAs are encoded by intron-containing genes, and for these tRNAs Msn5 functions primarily in their reexport to the cytoplasm. The data support a model in which tRNA retrograde import to the nucleus is a constitutive process; in contrast, reexport of the imported tRNAs back to the cytoplasm is regulated by the availability of nutrients to cells and by tRNA aminoacylation in the nucleus. Finally, we implicate Tef1, the yeast orthologue of translation elongation factor eEF1A, in the tRNA reexport process and show that its subcellular distribution between the nucleus and cytoplasm is dependent upon Mtr10 and Msn5. PMID:20032305

  14. Regulation of tRNA bidirectional nuclear-cytoplasmic trafficking in Saccharomyces cerevisiae.

    PubMed

    Murthi, Athulaprabha; Shaheen, Hussam H; Huang, Hsiao-Yun; Preston, Melanie A; Lai, Tsung-Po; Phizicky, Eric M; Hopper, Anita K

    2010-02-15

    tRNAs in yeast and vertebrate cells move bidirectionally and reversibly between the nucleus and the cytoplasm. We investigated roles of members of the beta-importin family in tRNA subcellular dynamics. Retrograde import of tRNA into the nucleus is dependent, directly or indirectly, upon Mtr10. tRNA nuclear export utilizes at least two members of the beta-importin family. The beta-importins involved in nuclear export have shared and exclusive functions. Los1 functions in both the tRNA primary export and the tRNA reexport processes. Msn5 is unable to export tRNAs in the primary round of export if the tRNAs are encoded by intron-containing genes, and for these tRNAs Msn5 functions primarily in their reexport to the cytoplasm. The data support a model in which tRNA retrograde import to the nucleus is a constitutive process; in contrast, reexport of the imported tRNAs back to the cytoplasm is regulated by the availability of nutrients to cells and by tRNA aminoacylation in the nucleus. Finally, we implicate Tef1, the yeast orthologue of translation elongation factor eEF1A, in the tRNA reexport process and show that its subcellular distribution between the nucleus and cytoplasm is dependent upon Mtr10 and Msn5.

  15. tRNA gene copy number variation in humans

    PubMed Central

    Iben, James R.; Maraia, Richard J.

    2014-01-01

    The human tRNAome consists of more than 500 interspersed tRNA genes comprising 51 anticodon families of largely unequal copy number. We examined tRNA gene copy number variation (tgCNV) in six individuals; two kindreds of two parents and a child, using high coverage whole genome sequence data. Such differences may be important because translation of some mRNAs is sensitive to the relative amounts of tRNAs and because tRNA competition determines translational efficiency vs. fidelity and production of native vs. misfolded proteins. We identified several tRNA gene clusters with CNV, which in some cases were part of larger iterations. In addition there was an isolated tRNALysCUU gene that was absent as a homozygous deletion in one of the parents. When assessed by semiquantitative PCR in 98 DNA samples representing a wide variety of ethnicities, this allele was found deleted in hetero- or homozygosity in all groups at ~50% frequency. This is the first report of copy number variation of human tRNA genes. We conclude that tgCNV exists at significant levels among individual humans and discuss the results in terms of genetic diversity and prior genome wide association studies (GWAS) that suggest the importance of the ratio of tRNALys isoacceptors in Type-2 diabetes. PMID:24342656

  16. Shaping tRNA

    ERIC Educational Resources Information Center

    Priano, Christine

    2013-01-01

    This model-building activity provides a quick, visual, hands-on tool that allows students to examine more carefully the cloverleaf structure of a typical tRNA molecule. When used as a supplement to lessons that involve gene expression, this exercise reinforces several concepts in molecular genetics, including nucleotide base-pairing rules, the…

  17. Capture, Unfolding, and Detection of Individual tRNA Molecules Using a Nanopore Device

    PubMed Central

    Smith, Andrew M.; Abu-Shumays, Robin; Akeson, Mark; Bernick, David L.

    2015-01-01

    Transfer RNAs (tRNA) are the most common RNA molecules in cells and have critical roles as both translators of the genetic code and regulators of protein synthesis. As such, numerous methods have focused on studying tRNA abundance and regulation, with the most widely used methods being RNA-seq and microarrays. Though revolutionary to transcriptomics, these assays are limited by an inability to encode tRNA modifications in the requisite cDNA. These modifications are abundant in tRNA and critical to their function. Here, we describe proof-of-concept experiments where individual tRNA molecules are examined as linear strands using a biological nanopore. This method utilizes an enzymatically ligated synthetic DNA adapter to concentrate tRNA at the lipid bilayer of the nanopore device and efficiently denature individual tRNA molecules, as they are pulled through the α-hemolysin (α-HL) nanopore. Additionally, the DNA adapter provides a loading site for ϕ29 DNA polymerase (ϕ29 DNAP), which acts as a brake on the translocating tRNA. This increases the dwell time of adapted tRNA in the nanopore, allowing us to identify the region of the nanopore signal that is produced by the translocating tRNA itself. Using adapter-modified Escherichia coli tRNAfMet and tRNALys, we show that the nanopore signal during controlled translocation is dependent on the identity of the tRNA. This confirms that adapter-modified tRNA can translocate end-to-end through nanopores and provide the foundation for future work in direct sequencing of individual transfer RNA with a nanopore-based device. PMID:26157798

  18. Molecular mimicry between protein and tRNA.

    PubMed

    Nakamura, Y

    2001-01-01

    Mimicry is a sophisticated development in animals, fish, and plants that allows them to fool others by imitating a shape or color for diverse purposes, such as to prey, evade, lure, pollinate, or threaten. This is not restricted to the macro-world, but extends to the micro-world as molecular mimicry. Recent advances in structural and molecular biology uncovered a set of translation factors that resembles a tRNA shape and, in one case, even mimics a tRNA function for deciphering the genetic code. Nature must have evolved this art of molecular mimicry between protein and ribonucleic acid by using different protein structures until the translation factors sat in the cockpit of a ribosome machine, on behalf of tRNA, and achieved diverse actions. Structural, functional, and evolutionary aspects of molecular mimicry will be discussed.

  19. Genome-wide screen uncovers novel pathways for tRNA processing and nuclear-cytoplasmic dynamics.

    PubMed

    Wu, Jingyan; Bao, Alicia; Chatterjee, Kunal; Wan, Yao; Hopper, Anita K

    2015-12-15

    Transfer ribonucleic acids (tRNAs) are essential for protein synthesis. However, key gene products involved in tRNA biogenesis and subcellular movement remain to be discovered. We conducted the first comprehensive unbiased analysis of the role of nearly an entire proteome in tRNA biology and describe 162 novel and 12 previously known Saccharomyces cerevisiae gene products that function in tRNA processing, turnover, and subcellular movement. tRNA nuclear export is of particular interest because it is essential, but the known tRNA exporters (Los1 [exportin-t] and Msn5 [exportin-5]) are unessential. We report that mutations of CRM1 (Exportin-1), MEX67/MTR2 (TAP/p15), and five nucleoporins cause accumulation of unspliced tRNA, a hallmark of defective tRNA nuclear export. CRM1 mutation genetically interacts with los1Δ and causes altered tRNA nuclear-cytoplasmic distribution. The data implicate roles for the protein and mRNA nuclear export machineries in tRNA nuclear export. Mutations of genes encoding actin cytoskeleton components and mitochondrial outer membrane proteins also cause accumulation of unspliced tRNA, likely due to defective splicing on mitochondria. Additional gene products, such as chromatin modification enzymes, have unanticipated effects on pre-tRNA end processing. Thus, this genome-wide screen uncovered putative novel pathways for tRNA nuclear export and extensive links between tRNA biology and other aspects of cell physiology. © 2015 Wu et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Genome-wide screen uncovers novel pathways for tRNA processing and nuclear–cytoplasmic dynamics

    PubMed Central

    Wu, Jingyan; Bao, Alicia; Chatterjee, Kunal; Wan, Yao; Hopper, Anita K.

    2015-01-01

    Transfer ribonucleic acids (tRNAs) are essential for protein synthesis. However, key gene products involved in tRNA biogenesis and subcellular movement remain to be discovered. We conducted the first comprehensive unbiased analysis of the role of nearly an entire proteome in tRNA biology and describe 162 novel and 12 previously known Saccharomyces cerevisiae gene products that function in tRNA processing, turnover, and subcellular movement. tRNA nuclear export is of particular interest because it is essential, but the known tRNA exporters (Los1 [exportin-t] and Msn5 [exportin-5]) are unessential. We report that mutations of CRM1 (Exportin-1), MEX67/MTR2 (TAP/p15), and five nucleoporins cause accumulation of unspliced tRNA, a hallmark of defective tRNA nuclear export. CRM1 mutation genetically interacts with los1Δ and causes altered tRNA nuclear–cytoplasmic distribution. The data implicate roles for the protein and mRNA nuclear export machineries in tRNA nuclear export. Mutations of genes encoding actin cytoskeleton components and mitochondrial outer membrane proteins also cause accumulation of unspliced tRNA, likely due to defective splicing on mitochondria. Additional gene products, such as chromatin modification enzymes, have unanticipated effects on pre-tRNA end processing. Thus, this genome-wide screen uncovered putative novel pathways for tRNA nuclear export and extensive links between tRNA biology and other aspects of cell physiology. PMID:26680305

  1. tRNA nuclear export in saccharomyces cerevisiae: in situ hybridization analysis.

    PubMed

    Sarkar, S; Hopper, A K

    1998-11-01

    To understand the factors specifically affecting tRNA nuclear export, we adapted in situ hybridization procedures to locate endogenous levels of individual tRNA families in wild-type and mutant yeast cells. Our studies of tRNAs encoded by genes lacking introns show that nucleoporin Nup116p affects both poly(A) RNA and tRNA export, whereas Nup159p affects only poly(A) RNA export. Los1p is similar to exportin-t, which facilitates vertebrate tRNA export. A los1 deletion mutation affects tRNA but not poly(A) RNA export. The data support the notion that Los1p and exportin-t are functional homologues. Because LOS1 is nonessential, tRNA export in vertebrate and yeast cells likely involves factors in addition to exportin-t. Mutation of RNA1, which encodes RanGAP, causes nuclear accumulation of tRNAs and poly(A) RNA. Many yeast mutants, including those with the rna1-1 mutation, affect both pre-tRNA splicing and RNA export. Our studies of the location of intron-containing pre-tRNAs in the rna1-1 mutant rule out the possibility that this results from tRNA export occurring before splicing. Our results also argue against inappropriate subnuclear compartmentalization causing defects in pre-tRNA splicing. Rather, the data support "feedback" of nucleus/cytosol exchange to the pre-tRNA splicing machinery.

  2. Distribution of Cytokinin-active Ribonucleosides in Wheat Germ tRNA Species 1

    PubMed Central

    Struxness, Leslie A.; Armstrong, Donald J.; Gillam, Ian; Tener, Gordon M.; Burrows, William J.; Skoog, Folke

    1979-01-01

    The distribution of cytokinin activity in wheat (Triticum aestivum) germ tRNA fractionated by BD-cellulose and RPC-5 chromatography has been examined. As in other organisms, the cytokinin moieties in wheat germ tRNA appear to be restricted to tRNA species that would be expected to respond to codons beginning with U. Only a few of the wheat germ tRNA species in this coding group actually contain cytokinin modifications. Cytokinin activity was associated with isoaccepting tRNASer species and with a minor tRNALeu species from wheat germ. All other wheat germ tRNA species corresponding to codons beginning with U were devoid of cytokinin activity in the tobacco callus bioassay. PMID:16660688

  3. Impaired tRNA nuclear export links DNA damage and cell-cycle checkpoint.

    PubMed

    Ghavidel, Ata; Kislinger, Thomas; Pogoutse, Oxana; Sopko, Richelle; Jurisica, Igor; Emili, Andrew

    2007-11-30

    In response to genotoxic stress, cells evoke a plethora of physiological responses collectively aimed at enhancing viability and maintaining the integrity of the genome. Here, we report that unspliced tRNA rapidly accumulates in the nuclei of yeast Saccharomyces cerevisiae after DNA damage. This response requires an intact MEC1- and RAD53-dependent signaling pathway that impedes the nuclear export of intron-containing tRNA via differential relocalization of the karyopherin Los1 to the cytoplasm. The accumulation of unspliced tRNA in the nucleus signals the activation of Gcn4 transcription factor, which, in turn, contributes to cell-cycle arrest in G1 in part by delaying accumulation of the cyclin Cln2. The regulated nucleocytoplasmic tRNA trafficking thus constitutes an integral physiological adaptation to DNA damage. These data further illustrate how signal-mediated crosstalk between distinct functional modules, namely, tRNA nucleocytoplasmic trafficking, protein synthesis, and checkpoint execution, allows for functional coupling of tRNA biogenesis and cell-cycle progression.

  4. Functional expansion of human tRNA synthetases achieved by structural inventions

    PubMed Central

    Guo, Min; Schimmel, Paul; Yang, Xiang-Lei

    2010-01-01

    Known as an essential component of the translational apparatus, the aminoacyl-tRNA synthetase family catalyzes the first step reaction in protein synthesis, that is, to specifically attach each amino acid to its cognate tRNA. While preserving this essential role, tRNA synthetases developed other roles during evolution. Human tRNA synthetases, in particular, have diverse functions in different pathways involving angiogenesis, inflammation and apoptosis. The functional diversity is further illustrated in the association with various diseases through genetic mutations that do not affect aminoacylation or protein synthesis. Here we review the accumulated knowledge on how human tRNA synthetases used structural inventions to achieve functional expansions. PMID:19932696

  5. tRNA Nuclear Export in Saccharomyces cerevisiae: In Situ Hybridization Analysis

    PubMed Central

    Sarkar, Srimonti; Hopper, Anita K.

    1998-01-01

    To understand the factors specifically affecting tRNA nuclear export, we adapted in situ hybridization procedures to locate endogenous levels of individual tRNA families in wild-type and mutant yeast cells. Our studies of tRNAs encoded by genes lacking introns show that nucleoporin Nup116p affects both poly(A) RNA and tRNA export, whereas Nup159p affects only poly(A) RNA export. Los1p is similar to exportin-t, which facilitates vertebrate tRNA export. A los1 deletion mutation affects tRNA but not poly(A) RNA export. The data support the notion that Los1p and exportin-t are functional homologues. Because LOS1 is nonessential, tRNA export in vertebrate and yeast cells likely involves factors in addition to exportin-t. Mutation of RNA1, which encodes RanGAP, causes nuclear accumulation of tRNAs and poly(A) RNA. Many yeast mutants, including those with the rna1-1 mutation, affect both pre-tRNA splicing and RNA export. Our studies of the location of intron-containing pre-tRNAs in the rna1-1 mutant rule out the possibility that this results from tRNA export occurring before splicing. Our results also argue against inappropriate subnuclear compartmentalization causing defects in pre-tRNA splicing. Rather, the data support “feedback” of nucleus/cytosol exchange to the pre-tRNA splicing machinery. PMID:9802895

  6. Inorganic phosphate deprivation causes tRNA nuclear accumulation via retrograde transport in Saccharomyces cerevisiae.

    PubMed

    Hurto, Rebecca L; Tong, Amy Hin Yan; Boone, Charles; Hopper, Anita K

    2007-06-01

    Nuclear export of tRNA is an essential eukaryotic function, yet the one known yeast tRNA nuclear exporter, Los1, is nonessential. Moreover recent studies have shown that tRNAs can move retrograde from the cytosol to the nucleus by an undefined process. Therefore, additional gene products involved in tRNA nucleus-cytosol dynamics have yet to be identified. Synthetic genetic array (SGA) analysis was employed to identify proteins involved in Los1-independent tRNA transport and in regulating tRNA nucleus-cytosol distribution. These studies uncovered synthetic interactions between los1Delta and pho88Delta involved in inorganic phopsphate uptake. Further analysis revealed that inorganic phosphate deprivation causes transient, temperature-dependent nuclear accumulation of mature cytoplasmic tRNA within nuclei via a Mtr10- and retrograde-dependent pathway, providing a novel connection between tRNA subcellular dynamics and phosphate availability.

  7. Inorganic Phosphate Deprivation Causes tRNA Nuclear Accumulation via Retrograde Transport in Saccharomyces cerevisiae

    PubMed Central

    Hurto, Rebecca L.; Tong, Amy Hin Yan; Boone, Charles; Hopper, Anita K.

    2007-01-01

    Nuclear export of tRNA is an essential eukaryotic function, yet the one known yeast tRNA nuclear exporter, Los1, is nonessential. Moreover recent studies have shown that tRNAs can move retrograde from the cytosol to the nucleus by an undefined process. Therefore, additional gene products involved in tRNA nucleus–cytosol dynamics have yet to be identified. Synthetic genetic array (SGA) analysis was employed to identify proteins involved in Los1-independent tRNA transport and in regulating tRNA nucleus–cytosol distribution. These studies uncovered synthetic interactions between los1Δ and pho88Δ involved in inorganic phopshate uptake. Further analysis revealed that inorganic phosphate deprivation causes transient, temperature-dependent nuclear accumulation of mature cytoplasmic tRNA within nuclei via a Mtr10- and retrograde-dependent pathway, providing a novel connection between tRNA subcellular dynamics and phosphate availability. PMID:17409072

  8. The Selenocysteine tRNA STAF-Binding Region is Essential for Adequate Selenocysteine tRNA Status, Selenoprotein Expression and Early Age Survival of Mice

    USDA-ARS?s Scientific Manuscript database

    STAF is a transcription activating factor for a number of RNA Pol III-and RNA Pol II-dependent genes including the selenocysteine (Sec) tRNA gene. Here, the role of STAF in regulating expression of Sec tRNA and selenoproteins was examined in an invivo model. Heterozygous inactivation of the Staf gen...

  9. Beyond tRNA cleavage: novel essential function for yeast tRNA splicing endonuclease unrelated to tRNA processing

    PubMed Central

    Dhungel, Nripesh; Hopper, Anita K.

    2012-01-01

    Pre-tRNA splicing is an essential process in all eukaryotes. In yeast and vertebrates, the enzyme catalyzing intron removal from pre-tRNA is a heterotetrameric complex (splicing endonuclease [SEN] complex). Although the SEN complex is conserved, the subcellular location where pre-tRNA splicing occurs is not. In yeast, the SEN complex is located at the cytoplasmic surface of mitochondria, whereas in vertebrates, pre-tRNA splicing is nuclear. We engineered yeast to mimic the vertebrate cell biology and demonstrate that all three steps of pre-tRNA splicing, as well as tRNA nuclear export and aminoacylation, occur efficiently when the SEN complex is nuclear. However, nuclear pre-tRNA splicing fails to complement growth defects of cells with defective mitochondrial-located splicing, suggesting that the yeast SEN complex surprisingly serves a novel and essential function in the cytoplasm that is unrelated to tRNA splicing. The novel function requires all four SEN complex subunits and the catalytic core. A subset of pre-rRNAs accumulates when the SEN complex is restricted to the nucleus, indicating that the SEN complex moonlights in rRNA processing. Thus, findings suggest that selection for the subcellular distribution of the SEN complex may reside not in its canonical, but rather in a novel, activity. PMID:22391451

  10. Role of Nuclear Pools of Aminoacyl-tRNA Synthetases in tRNA Nuclear Export

    PubMed Central

    Azad, Abul K.; Stanford, David R.; Sarkar, Srimonti; Hopper, Anita K.

    2001-01-01

    Reports of nuclear tRNA aminoacylation and its role in tRNA nuclear export (Lund and Dahlberg, 1998; Sarkar et al., 1999; Grosshans et al., 2000a) have led to the prediction that there should be nuclear pools of aminoacyl-tRNA synthetases. We report that in budding yeast there are nuclear pools of tyrosyl-tRNA synthetase, Tys1p. By sequence alignments we predicted a Tys1p nuclear localization sequence and showed it to be sufficient for nuclear location of a passenger protein. Mutations of this nuclear localization sequence in endogenous Tys1p reduce nuclear Tys1p pools, indicating that the motif is also important for nucleus location. The mutations do not significantly affect catalytic activity, but they do cause defects in export of tRNAs to the cytosol. Despite export defects, the cells are viable, indicating that nuclear tRNA aminoacylation is not required for all tRNA nuclear export paths. Because the tRNA nuclear exportin, Los1p, is also unessential, we tested whether tRNA aminoacylation and Los1p operate in alternative tRNA nuclear export paths. No genetic interactions between aminoacyl-tRNA synthetases and Los1p were detected, indicating that tRNA nuclear aminoacylation and Los1p operate in the same export pathway or there are more than two pathways for tRNA nuclear export. PMID:11359929

  11. Role of nuclear pools of aminoacyl-tRNA synthetases in tRNA nuclear export.

    PubMed

    Azad, A K; Stanford, D R; Sarkar, S; Hopper, A K

    2001-05-01

    Reports of nuclear tRNA aminoacylation and its role in tRNA nuclear export (Lund and Dahlberg, 1998; Sarkar et al., 1999; Grosshans et al., 20001) have led to the prediction that there should be nuclear pools of aminoacyl-tRNA synthetases. We report that in budding yeast there are nuclear pools of tyrosyl-tRNA synthetase, Tys1p. By sequence alignments we predicted a Tys1p nuclear localization sequence and showed it to be sufficient for nuclear location of a passenger protein. Mutations of this nuclear localization sequence in endogenous Tys1p reduce nuclear Tys1p pools, indicating that the motif is also important for nucleus location. The mutations do not significantly affect catalytic activity, but they do cause defects in export of tRNAs to the cytosol. Despite export defects, the cells are viable, indicating that nuclear tRNA aminoacylation is not required for all tRNA nuclear export paths. Because the tRNA nuclear exportin, Los1p, is also unessential, we tested whether tRNA aminoacylation and Los1p operate in alternative tRNA nuclear export paths. No genetic interactions between aminoacyl-tRNA synthetases and Los1p were detected, indicating that tRNA nuclear aminoacylation and Los1p operate in the same export pathway or there are more than two pathways for tRNA nuclear export.

  12. Structural insights into translational recoding by frameshift suppressor tRNA SufJ

    DOE PAGES

    Fagan, Crystal E.; Maehigashi, Tatsuya; Dunkle, Jack A.; ...

    2014-10-28

    The three-nucleotide mRNA reading frame is tightly regulated during translation to ensure accurate protein expression. Translation errors that lead to aberrant protein production can result from the uncoupled movement of the tRNA in either the 5' or 3' direction on mRNA. Here, we report the biochemical and structural characterization of +1 frameshift suppressor tRNA SufJ, a tRNA known to decode four, instead of three, nucleotides. Frameshift suppressor tRNA SufJ contains an insertion 5' to its anticodon, expanding the anticodon loop from seven to eight nucleotides. Our results indicate that the expansion of the anticodon loop of either ASL SufJ ormore » tRNA SufJ does not affect its affinity for the A site of the ribosome. Structural analyses of both ASL SufJ and ASL Thr bound to the Thermus thermophilus 70S ribosome demonstrate both ASLs decode in the zero frame. Although the anticodon loop residues 34–37 are superimposable with canonical seven-nucleotide ASLs, the single C31.5 insertion between nucleotides 31 and 32 in ASL SufJ imposes a conformational change of the anticodon stem, that repositions and tilts the ASL toward the back of the A site. Further modeling analyses reveal that this tilting would cause a distortion in full-length A-site tRNA SufJ during tRNA selection and possibly impede gripping of the anticodon stem by 16S rRNA nucleotides in the P site. Together, these data implicate tRNA distortion as a major driver of noncanonical translation events such as frameshifting.« less

  13. Nuclear pore proteins are involved in the biogenesis of functional tRNA.

    PubMed

    Simos, G; Tekotte, H; Grosjean, H; Segref, A; Sharma, K; Tollervey, D; Hurt, E C

    1996-05-01

    Los1p and Pus1p, which are involved in tRNA biogenesis, were found in a genetic screen for components interacting with the nuclear pore protein Nsp1p. LOS1, PUS1 and NSP1 interact functionally, since the combination of mutations in the three genes causes synthetic lethality. Pus1p is an intranuclear protein which exhibits a nucleotide-specific and intron-dependent tRNA pseudouridine synthase activity. Los1p was shown previously to be required for efficient pre-tRNA splicing; we report here that Los1p localizes to the nuclear pores and is linked functionally to several components of the tRNA biogenesis machinery including Pus1p and Tfc4p. When the formation of functional tRNA was analyzed by an in vivo assay, the los1(-) pus1(-) double mutant, as well as several thermosensitive nucleoporin mutants including nsp1, nup116, nup133 and nup85, exhibited loss of suppressor tRNA activity even at permissive temperatures. These data suggest that nuclear pore proteins are required for the biogenesis of functional tRNA.

  14. Nuclear pore proteins are involved in the biogenesis of functional tRNA.

    PubMed Central

    Simos, G; Tekotte, H; Grosjean, H; Segref, A; Sharma, K; Tollervey, D; Hurt, E C

    1996-01-01

    Los1p and Pus1p, which are involved in tRNA biogenesis, were found in a genetic screen for components interacting with the nuclear pore protein Nsp1p. LOS1, PUS1 and NSP1 interact functionally, since the combination of mutations in the three genes causes synthetic lethality. Pus1p is an intranuclear protein which exhibits a nucleotide-specific and intron-dependent tRNA pseudouridine synthase activity. Los1p was shown previously to be required for efficient pre-tRNA splicing; we report here that Los1p localizes to the nuclear pores and is linked functionally to several components of the tRNA biogenesis machinery including Pus1p and Tfc4p. When the formation of functional tRNA was analyzed by an in vivo assay, the los1(-) pus1(-) double mutant, as well as several thermosensitive nucleoporin mutants including nsp1, nup116, nup133 and nup85, exhibited loss of suppressor tRNA activity even at permissive temperatures. These data suggest that nuclear pore proteins are required for the biogenesis of functional tRNA. Images PMID:8641292

  15. Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements

    PubMed Central

    Jühling, Frank; Pütz, Joern; Bernt, Matthias; Donath, Alexander; Middendorf, Martin; Florentz, Catherine; Stadler, Peter F.

    2012-01-01

    Transfer RNAs (tRNAs) are present in all types of cells as well as in organelles. tRNAs of animal mitochondria show a low level of primary sequence conservation and exhibit ‘bizarre’ secondary structures, lacking complete domains of the common cloverleaf. Such sequences are hard to detect and hence frequently missed in computational analyses and mitochondrial genome annotation. Here, we introduce an automatic annotation procedure for mitochondrial tRNA genes in Metazoa based on sequence and structural information in manually curated covariance models. The method, applied to re-annotate 1876 available metazoan mitochondrial RefSeq genomes, allows to distinguish between remaining functional genes and degrading ‘pseudogenes’, even at early stages of divergence. The subsequent analysis of a comprehensive set of mitochondrial tRNA genes gives new insights into the evolution of structures of mitochondrial tRNA sequences as well as into the mechanisms of genome rearrangements. We find frequent losses of tRNA genes concentrated in basal Metazoa, frequent independent losses of individual parts of tRNA genes, particularly in Arthropoda, and wide-spread conserved overlaps of tRNAs in opposite reading direction. Direct evidence for several recent Tandem Duplication-Random Loss events is gained, demonstrating that this mechanism has an impact on the appearance of new mitochondrial gene orders. PMID:22139921

  16. P-body components, Dhh1 and Pat1, are involved in tRNA nuclear-cytoplasmic dynamics

    PubMed Central

    Hurto, Rebecca L.; Hopper, Anita K.

    2011-01-01

    The nuclear-cytoplasmic distribution of tRNA depends on the balance between tRNA nuclear export/re-export and retrograde tRNA nuclear import in Saccharomyces cerevisiae. The distribution of tRNA is sensitive to nutrient availability as cells deprived of various nutrients exhibit tRNA nuclear accumulation. Starvation induces numerous events that result in translational repression and P-body formation. This study investigated the possible coordination of these responses with tRNA nuclear-cytoplasmic distribution. Dhh1 and Pat1 function in parallel to promote translation repression and P-body formation in response to starvation. Loss of both, Dhh1 and Pat1, results in a failure to repress translation and to induce P-body formation in response to glucose starvation. This study reports that nutrient deprived dhh1 pat1 cells also fail to accumulate tRNA within nuclei. Conversely, inhibition of translation initiation and induction of P-body formation by overproduction of Dhh1 or Pat1 cause tRNA nuclear accumulation in nutrient-replete conditions. Also, loss of the mRNA decapping activator, Lsm1, causes tRNA nuclear accumulation. However, the coordination between P-body formation, translation repression, and tRNA distribution is limited to the early part of the P-body formation/translation repression pathway as loss of mRNA decapping or 5′ to 3′ degradation does not influence tRNA nuclear-cytoplasmic dynamics. The data provide the first link between P-body formation/translation initiation and tRNA nuclear-cytoplasmic dynamics. The current model is that Dhh1 and Pat1 function in parallel to promote starvation-induced tRNA nuclear accumulation. PMID:21398402

  17. tRNA modification profiles of the fast-proliferating cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Chao; Niu, Leilei; Song, Wei

    Despite the recent progress in RNA modification study, a comprehensive modification profile is still lacking for mammalian cells. Using a quantitative HPLC/MS/MS assay, we present here a study where RNA modifications are examined in term of the major RNA species. With paired slow- and fast-proliferating cell lines, distinct RNA modification profiles are first revealed for diverse RNA species. Compared to mRNAs, increased ribose and nucleobase modifications are shown for the highly-structured tRNAs and rRNAs, lending support to their contribution to the formation of high-order structures. This study also reveals a dynamic tRNA modification profile in the fast-proliferating cells. In additionmore » to cultured cells, this unique tRNA profile has been further confirmed with endometrial cancers and their adjacent normal tissues. Taken together, the results indicate that tRNA is a actively regulated RNA species in the fast-proliferating cancer cells, and suggest that they may play a more active role in biological process than expected. -- Highlights: •RNA modifications were first examined in term of the major RNA species. •A dynamic tRNA modifications was characterized for the fast-proliferating cells. •The unique tRNA profile was confirmed with endometrial cancers and their adjacent normal tissues. •tRNA was predicted as an actively regulated RNA species in the fast-proliferating cancer cells.« less

  18. Review: transport of tRNA out of the nucleus-direct channeling to the ribosome?

    PubMed

    Grosshans, H; Simos, G; Hurt, E

    2000-04-01

    Although tRNA was the first substrate whose export from the nuclei of eukaryotic cells had been shown to be carrier-mediated and active, it has only been in the last 2 years that the first mechanistic details of this nucleocytoplasmic transport pathway have begun to emerge. A member of the importin/karyopherin beta superfamily, Los1p in yeast and Xpo-t in vertebrates, has been shown to export tRNA in cooperation with the small GTPase Ran (Gsp1p) from the nucleus into the cytoplasm, where tRNA becomes available for translation. However, Los1p is not essential for viability in yeast cells, suggesting that alternative tRNA export pathways exist. Recent results show that aminoacylation and a translation factor are also required for efficient nuclear tRNA export. Thus, protein translation and nuclear export of tRNA appear to be coupled processes. Copyright 2000 Academic Press.

  19. Processing of Archaebacterial Intron-Containing tRNA Gene Transcripts

    DTIC Science & Technology

    1988-07-27

    number) The overall goal of this project is to develop an understanding of tRNA gene structure and transcript processing in the halophilic Archaebacteria...containing precursor tRNAs in the halophilic Archaebecteria suggest that tRNATr p may be the only interrupted tR?4A gene in these organisms...1 August 1986 RESEARCH OBJECTIVE: To determine the mechanism of tRNA intron processing in the halophilic archaebacteria; characterize the enzyme

  20. Quality Control Pathways for Nucleus-Encoded Eukaryotic tRNA Biosynthesis and Subcellular Trafficking

    PubMed Central

    Huang, Hsiao-Yun

    2015-01-01

    tRNAs perform an essential role in translating the genetic code. They are long-lived RNAs that are generated via numerous posttranscriptional steps. Eukaryotic cells have evolved numerous layers of quality control mechanisms to ensure that the tRNAs are appropriately structured, processed, and modified. We describe the known tRNA quality control processes that check tRNAs and correct or destroy aberrant tRNAs. These mechanisms employ two types of exonucleases, CCA end addition, tRNA nuclear aminoacylation, and tRNA subcellular traffic. We arrange these processes in order of the steps that occur from generation of precursor tRNAs by RNA polymerase (Pol) III transcription to end maturation and modification in the nucleus to splicing and additional modifications in the cytoplasm. Finally, we discuss the tRNA retrograde pathway, which allows tRNA reimport into the nucleus for degradation or repair. PMID:25848089

  1. Mod5 protein binds to tRNA gene complexes and affects local transcriptional silencing

    PubMed Central

    Pratt-Hyatt, Matthew; Pai, Dave A.; Haeusler, Rebecca A.; Wozniak, Glenn G.; Good, Paul D.; Miller, Erin L.; McLeod, Ian X.; Yates, John R.; Hopper, Anita K.; Engelke, David R.

    2013-01-01

    The tRNA gene-mediated (tgm) silencing of RNA polymerase II promoters is dependent on subnuclear clustering of the tRNA genes, but genetic analysis shows that the silencing requires additional mechanisms. We have identified proteins that bind tRNA gene transcription complexes and are required for tgm silencing but not required for gene clustering. One of the proteins, Mod5, is a tRNA modifying enzyme that adds an N6-isopentenyl adenosine modification at position 37 on a small number of tRNAs in the cytoplasm, although a subpopulation of Mod5 is also found in the nucleus. Recent publications have also shown that Mod5 has tumor suppressor characteristics in humans as well as confers drug resistance through prion-like misfolding in yeast. Here, we show that a subpopulation of Mod5 associates with tRNA gene complexes in the nucleolus. This association occurs and is required for tgm silencing regardless of whether the pre-tRNA transcripts are substrates for Mod5 modification. In addition, Mod5 is bound to nuclear pre-tRNA transcripts, although they are not substrates for the A37 modification. Lastly, we show that truncation of the tRNA transcript to remove the normal tRNA structure also alleviates silencing, suggesting that synthesis of intact pre-tRNAs is required for the silencing mechanism. These results are discussed in light of recent results showing that silencing near tRNA genes also requires chromatin modification. PMID:23898186

  2. Effect of PEG and mPEG-anthracene on tRNA aggregation and particle formation.

    PubMed

    Froehlich, E; Mandeville, J S; Arnold, D; Kreplak, L; Tajmir-Riahi, H A

    2012-01-09

    Poly(ethylene glycol) (PEG) and its derivatives are synthetic polymers with major applications in gene and drug delivery systems. Synthetic polymers are also used to transport miRNA and siRNA in vitro. We studied the interaction of tRNA with several PEGs of different compositions, such as PEG 3350, PEG 6000, and mPEG-anthracene under physiological conditions. FTIR, UV-visible, CD, and fluorescence spectroscopic methods as well as atomic force microscopy (AFM) were used to analyze the PEG binding mode, the binding constant, and the effects of polymer complexation on tRNA stability, aggregation, and particle formation. Structural analysis showed that PEG-tRNA interaction occurs via RNA bases and the backbone phosphate group with both hydrophilic and hydrophobic contacts. The overall binding constants of K(PEG 3350-tRNA)= 1.9 (±0.5) × 10(4) M(-1), K(PEG 6000-tRNA) = 8.9 (±1) × 10(4) M(-1), and K(mPEG-anthracene)= 1.2 (±0.40) × 10(3) M(-1) show stronger polymer-RNA complexation by PEG 6000 and by PEG 3350 than the mPEG-anthracene. AFM imaging showed that PEG complexes contain on average one tRNA with PEG 3350, five tRNA with PEG 6000, and ten tRNA molecules with mPEG-anthracene. tRNA aggregation and particle formation occurred at high polymer concentrations, whereas it remains in A-family structure.

  3. The nuclear tRNA aminoacylation-dependent pathway may be the principal route used to export tRNA from the nucleus in Saccharomyces cerevisiae.

    PubMed

    Steiner-Mosonyi, Marta; Mangroo, Dev

    2004-03-15

    Nuclear tRNA export in Saccharomyces cerevisiae has been proposed to involve three pathways, designated Los1p-dependent, Los1p-independent nuclear aminoacylation-dependent, and Los1p- and nuclear aminoacylation-independent. Here, a comprehensive biochemical analysis was performed to identify tRNAs exported by the aminoacylation-dependent and -independent pathways of S. cerevisiae. Interestingly, the major tRNA species of at least 19 families were found in the aminoacylated form in the nucleus. tRNAs known to be exported by the export receptor Los1p were also aminoacylated in the nucleus of both wild-type and mutant Los1p strains. FISH (fluorescence in situ hybridization) analyses showed that tRNA(Tyr) co-localizes with the U18 small nucleolar RNA in the nucleolus of a tyrosyl-tRNA synthetase mutant strain defective in nuclear tRNA(Tyr) export because of a block in nuclear tRNA(Tyr) aminoacylation. tRNA(Tyr) was also found in the nucleolus of a utp8 mutant strain defective in nuclear tRNA export but not nuclear tRNA aminoacylation. These results strongly suggest that the nuclear aminoacylation-dependent pathway is principally responsible for tRNA export in S. cerevisiae and that Los1p is an export receptor of this pathway. It is also likely that in mammalian cells tRNAs are mainly exported from the nucleus by the nuclear aminoacylation-dependent pathway. In addition, the data are consistent with the idea that nuclear aminoacylation is used as a quality control mechanism for ensuring nuclear export of only mature and functional tRNAs, and that this quality assurance step occurs in the nucleolus.

  4. Tissue- and Time-Specific Expression of Otherwise Identical tRNA Genes

    PubMed Central

    Adir, Idan; Dahan, Orna; Broday, Limor; Pilpel, Yitzhak; Rechavi, Oded

    2016-01-01

    Codon usage bias affects protein translation because tRNAs that recognize synonymous codons differ in their abundance. Although the current dogma states that tRNA expression is exclusively regulated by intrinsic control elements (A- and B-box sequences), we revealed, using a reporter that monitors the levels of individual tRNA genes in Caenorhabditis elegans, that eight tryptophan tRNA genes, 100% identical in sequence, are expressed in different tissues and change their expression dynamically. Furthermore, the expression levels of the sup-7 tRNA gene at day 6 were found to predict the animal’s lifespan. We discovered that the expression of tRNAs that reside within introns of protein-coding genes is affected by the host gene’s promoter. Pairing between specific Pol II genes and the tRNAs that are contained in their introns is most likely adaptive, since a genome-wide analysis revealed that the presence of specific intronic tRNAs within specific orthologous genes is conserved across Caenorhabditis species. PMID:27560950

  5. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy.

    PubMed

    Fischer, Niels; Konevega, Andrey L; Wintermeyer, Wolfgang; Rodnina, Marina V; Stark, Holger

    2010-07-15

    The translocation step of protein synthesis entails large-scale rearrangements of the ribosome-transfer RNA (tRNA) complex. Here we have followed tRNA movement through the ribosome during translocation by time-resolved single-particle electron cryomicroscopy (cryo-EM). Unbiased computational sorting of cryo-EM images yielded 50 distinct three-dimensional reconstructions, showing the tRNAs in classical, hybrid and various novel intermediate states that provide trajectories and kinetic information about tRNA movement through the ribosome. The structures indicate how tRNA movement is coupled with global and local conformational changes of the ribosome, in particular of the head and body of the small ribosomal subunit, and show that dynamic interactions between tRNAs and ribosomal residues confine the path of the tRNAs through the ribosome. The temperature dependence of ribosome dynamics reveals a surprisingly flat energy landscape of conformational variations at physiological temperature. The ribosome functions as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to directed movement.

  6. tRNA and Its Activation Targets as Biomarkers and Regulators of Breast Cancer

    DTIC Science & Technology

    2013-09-01

    linked tRNA misregulation to cancer. We have previously reported that tRNA levels are significantly elevated in breast cancer and multiple myeloma ...significantly elevated in breast cancer and multiple myeloma cells. To further investigate the cellular and physiological effects of tRNA overexpression, we...tRNA levels are elevated in breast cancer and multiple myeloma cell lines (Pavon-Eternod et al. 2009; Zhou et al. 2009). Though abnormal RNA polymerase

  7. tRNA thiolation links translation to stress responses in Saccharomyces cerevisiae.

    PubMed

    Damon, Jadyn R; Pincus, David; Ploegh, Hidde L

    2015-01-15

    Although tRNA modifications have been well catalogued, the precise functions of many modifications and their roles in mediating gene expression are still being elucidated. Whereas tRNA modifications were long assumed to be constitutive, it is now apparent that the modification status of tRNAs changes in response to different environmental conditions. The URM1 pathway is required for thiolation of the cytoplasmic tRNAs tGlu(UUC), tGln(UUG), and tLys(UUU) in Saccharomyces cerevisiae. We demonstrate that URM1 pathway mutants have impaired translation, which results in increased basal activation of the Hsf1-mediated heat shock response; we also find that tRNA thiolation levels in wild-type cells decrease when cells are grown at elevated temperature. We show that defects in tRNA thiolation can be conditionally advantageous, conferring resistance to endoplasmic reticulum stress. URM1 pathway proteins are unstable and hence are more sensitive to changes in the translational capacity of cells, which is decreased in cells experiencing stresses. We propose a model in which a stress-induced decrease in translation results in decreased levels of URM1 pathway components, which results in decreased tRNA thiolation levels, which further serves to decrease translation. This mechanism ensures that tRNA thiolation and translation are tightly coupled and coregulated according to need. © 2015 Damon et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Incorporation of excess wild-type and mutant tRNA(3Lys) into human immunodeficiency virus type 1.

    PubMed Central

    Huang, Y; Mak, J; Cao, Q; Li, Z; Wainberg, M A; Kleiman, L

    1994-01-01

    Human immunodeficiency virus (HIV) particles produced in COS-7 cells transfected with HIV type 1 (HIV-1) proviral DNA contain 8 molecules of tRNA(3Lys) per 2 molecules of genomic RNA and 12 molecules of tRNA1,2Lys per 2 molecules of genomic RNA. When COS-7 cells are transfected with a plasmid containing both HIV-1 proviral DNA and a human tRNA3Lys gene, there is a large increase in the amount of cytoplasmic tRNA3Lys per microgram of total cellular RNA, and the tRNA3Lys content in the virus increases from 8 to 17 molecules per 2 molecules of genomic RNA. However, the total number of tRNALys molecules per 2 molecules of genomic RNA remains constant at 20; i.e., the viral tRNA1,2Lys content decreases from 12 to 3 molecules per 2 molecules of genomic RNA. All detectable tRNA3Lys is aminoacylated in the cytoplasm of infected cells and deacylated in the virus. When COS-7 cells are transfected with a plasmid containing both HIV-1 proviral DNA and a mutant amber suppressor tRNA3Lys gene (in which the anticodon is changed from TTT to CTA), there is also a large increase in the relative concentration of cytoplasmic tRNA3Lys, and the tRNA3Lys content in the virus increases from 8 to 15 molecules per 2 molecules of genomic RNA, with a decrease in viral tRNA1,2Lys from 12 to 5 molecules per 2 molecules of genomic RNA. Thus, the total number of molecules of tRNALys in the virion remains at 20. The alteration of the anticodon has little effect on the viral packaging of this mutant tRNA in spite of the fact that it no longer contains the modified base mcm 5s2U at position 34, and its ability to be aminoacylated is significantly impaired compared with that of wild-type tRNA3Lys. Viral particles which have incorporated either excess wild-type tRNA3Lys or mutant suppressor tRNA3Lys show no differences in viral infectivity compared with wild-type HIV-1. Images PMID:7966556

  9. Evidence that tRNA modifying enzymes are important in vivo targets for 5-fluorouracil in yeast

    PubMed Central

    Gustavsson, Marie; Ronne, Hans

    2008-01-01

    We have screened a collection of haploid yeast knockout strains for increased sensitivity to 5-fluorouracil (5-FU). A total of 138 5-FU sensitive strains were found. Mutants affecting rRNA and tRNA maturation were particularly sensitive to 5-FU, with the tRNA methylation mutant trm10 being the most sensitive mutant. This is intriguing since trm10, like many other tRNA modification mutants, lacks a phenotype under normal conditions. However, double mutants for nonessential tRNA modification enzymes are frequently temperature sensitive, due to destabilization of hypomodified tRNAs. We therefore tested if the sensitivity of our mutants to 5-FU is affected by the temperature. We found that the cytotoxic effect of 5-FU is strongly enhanced at 38°C for tRNA modification mutants. Furthermore, tRNA modification mutants show similar synthetic interactions for temperature sensitivity and sensitivity to 5-FU. A model is proposed for how 5-FU kills these mutants by reducing the number of tRNA modifications, thus destabilizing tRNA. Finally, we found that also wild-type cells are temperature sensitive at higher concentrations of 5-FU. This suggests that tRNA destabilization contributes to 5-FU cytotoxicity in wild-type cells and provides a possible explanation why hyperthermia can enhance the effect of 5-FU in cancer therapy. PMID:18314501

  10. Strategies for investigating nuclear-cytoplasmic tRNA dynamics in yeast and mammalian cells.

    PubMed

    Pierce, Jacqueline B; Chafe, Shawn C; Eswara, Manoja B K; van der Merwe, George; Mangroo, Dev

    2014-01-01

    Nuclear-cytoplasmic tRNA transport involves multiple pathways that are segregated by the involvement of distinct proteins. The tRNA export process begins in the nucleolus, where the functionality of newly produced tRNAs are tested by aminoacylation, and ends with the delivery of the exported aminoacyl tRNAs to the eukaryotic elongation factor eEF-1A for utilization in protein synthesis in the cytoplasm. Recent studies have identified a number of proteins that participate in nuclear tRNA export in both yeast and mammals. However, genetic and biochemical evidence suggest that additional components, which have yet to be identified, also participate in nuclear-cytoplasmic tRNA trafficking. Here we review key strategies that have led to the identification and characterization of proteins that are involved in the nuclear tRNA export process in yeasts and mammals. The approaches described will greatly facilitate the identification and delineation of the roles of new proteins involved in nuclear export of tRNAs to the cytoplasm. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Regulated capture by exosomes of mRNAs for cytoplasmic tRNA synthetases.

    PubMed

    Wang, Feng; Xu, Zhiwen; Zhou, Jie; Lo, Wing-Sze; Lau, Ching-Fun; Nangle, Leslie A; Yang, Xiang-Lei; Zhang, Mingjie; Schimmel, Paul

    2013-10-11

    Although tRNA synthetases are enzymes that catalyze the first step of translation in the cytoplasm, surprising functions unrelated to translation have been reported. These studies, and the demonstration of novel activities of splice variants, suggest a far broader reach of tRNA synthetases into cell biology than previously recognized. Here we show that mRNAs for most tRNA synthetases can be detected in exosomes. Also detected in exosomes was an mRNA encoding a unique splice variant that others had associated with prostate cancer. The exosomal mRNAs encoding the native synthetase and its cancer-associated splice variant could be translated in vitro and in mammalian cells into stable proteins. Other results showed that selection by exosomes of the splice variant mRNA could be regulated by an external stimulus. Thus, a broad and diverse regulated pool of tRNA synthetase-derived mRNAs is packaged for genetic exchange.

  12. A genetically encoded fluorescent tRNA is active in live-cell protein synthesis

    PubMed Central

    Masuda, Isao; Igarashi, Takao; Sakaguchi, Reiko; Nitharwal, Ram G.; Takase, Ryuichi; Han, Kyu Young; Leslie, Benjamin J.; Liu, Cuiping; Gamper, Howard; Ha, Taekjip; Sanyal, Suparna

    2017-01-01

    Abstract Transfer RNAs (tRNAs) perform essential tasks for all living cells. They are major components of the ribosomal machinery for protein synthesis and they also serve in non-ribosomal pathways for regulation and signaling metabolism. We describe the development of a genetically encoded fluorescent tRNA fusion with the potential for imaging in live Escherichia coli cells. This tRNA fusion carries a Spinach aptamer that becomes fluorescent upon binding of a cell-permeable and non-toxic fluorophore. We show that, despite having a structural framework significantly larger than any natural tRNA species, this fusion is a viable probe for monitoring tRNA stability in a cellular quality control mechanism that degrades structurally damaged tRNA. Importantly, this fusion is active in E. coli live-cell protein synthesis allowing peptidyl transfer at a rate sufficient to support cell growth, indicating that it is accommodated by translating ribosomes. Imaging analysis shows that this fusion and ribosomes are both excluded from the nucleoid, indicating that the fusion and ribosomes are in the cytosol together possibly engaged in protein synthesis. This fusion methodology has the potential for developing new tools for live-cell imaging of tRNA with the unique advantage of both stoichiometric labeling and broader application to all cells amenable to genetic engineering. PMID:27956502

  13. The origin and evolution of tRNA inferred from phylogenetic analysis of structure.

    PubMed

    Sun, Feng-Jie; Caetano-Anollés, Gustavo

    2008-01-01

    The evolutionary history of the two structural and functional domains of tRNA is controversial but harbors the secrets of early translation and the genetic code. To explore the origin and evolution of tRNA, we reconstructed phylogenetic trees directly from molecular structure. Forty-two structural characters describing the geometry of 571 tRNAs and three statistical parameters describing thermodynamic and mechanical features of molecules quantitatively were used to derive phylogenetic trees of molecules and molecular substructures. Trees of molecules failed to group tRNA according to amino acid specificity and did not reveal the tripartite nature of life, probably due to loss of phylogenetic signal or because tRNA diversification predated organismal diversification. Trees of substructures derived from both structural and statistical characters support the origin of tRNA in the acceptor arm and the hypothesis that the top half domain composed of acceptor and pseudouridine (TPsiC) arms is more ancient than the bottom half domain composed of dihydrouridine (DHU) and anticodon arms. This constitutes the cornerstone of the genomic tag hypothesis that postulates tRNAs were ancient telomeres in the RNA world. The trees of substructures suggest a model for the evolution of the major functional and structural components of tRNA. In this model, short RNA hairpins with stems homologous to the acceptor arm of present day tRNAs were extended with regions homologous to TPsiC and anticodon arms. The DHU arm was then incorporated into the resulting three-stemmed structure to form a proto-cloverleaf structure. The variable region was the last structural addition to the molecular repertoire of evolving tRNA substructures.

  14. New computational methods reveal tRNA identity element divergence between Proteobacteria and Cyanobacteria.

    PubMed

    Freyhult, Eva; Cui, Yuanyuan; Nilsson, Olle; Ardell, David H

    2007-10-01

    There are at least 21 subfunctional classes of tRNAs in most cells that, despite a very highly conserved and compact common structure, must interact specifically with different cliques of proteins or cause grave organismal consequences. Protein recognition of specific tRNA substrates is achieved in part through class-restricted tRNA features called tRNA identity determinants. In earlier work we used TFAM, a statistical classifier of tRNA function, to show evidence of unexpectedly large diversity among bacteria in tRNA identity determinants. We also created a data reduction technique called function logos to visualize identity determinants for a given taxon. Here we show evidence that determinants for lysylated isoleucine tRNAs are not the same in Proteobacteria as in other bacterial groups including the Cyanobacteria. Consistent with this, the lysylating biosynthetic enzyme TilS lacks a C-terminal domain in Cyanobacteria that is present in Proteobacteria. We present here, using function logos, a map estimating all potential identity determinants generally operational in Cyanobacteria and Proteobacteria. To further isolate the differences in potential tRNA identity determinants between Proteobacteria and Cyanobacteria, we created two new data reduction visualizations to contrast sequence and function logos between two taxa. One, called Information Difference logos (ID logos), shows the evolutionary gain or retention of functional information associated to features in one lineage. The other, Kullback-Leibler divergence Difference logos (KLD logos), shows recruitments or shifts in the functional associations of features, especially those informative in both lineages. We used these new logos to specifically isolate and visualize the differences in potential tRNA identity determinants between Proteobacteria and Cyanobacteria. Our graphical results point to numerous differences in potential tRNA identity determinants between these groups. Although more differences in

  15. Nanoarchaeota, Their Sulfolobales Host, and Nanoarchaeota Virus Distribution across Yellowstone National Park Hot Springs

    PubMed Central

    Munson-McGee, Jacob H.; Field, Erin K.; Bateson, Mary; Rooney, Colleen; Stepanauskas, Ramunas

    2015-01-01

    Nanoarchaeota are obligate symbionts with reduced genomes first described from marine thermal vent environments. Here, both community metagenomics and single-cell analysis revealed the presence of Nanoarchaeota in high-temperature (∼90°C), acidic (pH ≈ 2.5 to 3.0) hot springs in Yellowstone National Park (YNP) (United States). Single-cell genome analysis of two cells resulted in two nearly identical genomes, with an estimated full length of 650 kbp. Genome comparison showed that these two cells are more closely related to the recently proposed Nanobsidianus stetteri from a more neutral YNP hot spring than to the marine Nanoarchaeum equitans. Single-cell and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) analysis of environmental hot spring samples identified the host of the YNP Nanoarchaeota as a Sulfolobales species known to inhabit the hot springs. Furthermore, we demonstrate that Nanoarchaeota are widespread in acidic to near neutral hot springs in YNP. An integrated viral sequence was also found within one Nanoarchaeota single-cell genome and further analysis of the purified viral fraction from environmental samples indicates that this is likely a virus replicating within the YNP Nanoarchaeota. PMID:26341207

  16. New tRNA contacts facilitate ligand binding in a Mycobacterium smegmatis T box riboswitch.

    PubMed

    Sherwood, Anna V; Frandsen, Jane K; Grundy, Frank J; Henkin, Tina M

    2018-04-10

    T box riboswitches are RNA regulatory elements widely used by organisms in the phyla Firmicutes and Actinobacteria to regulate expression of amino acid-related genes. Expression of T box family genes is down-regulated by transcription attenuation or inhibition of translation initiation in response to increased charging of the cognate tRNA. Three direct contacts with tRNA have been described; however, one of these contacts is absent in a subclass of T box RNAs and the roles of several structural domains conserved in most T box RNAs are unknown. In this study, structural elements of a Mycobacterium smegmatis ileS T box riboswitch variant with an Ultrashort (US) Stem I were sequentially deleted, which resulted in a progressive decrease in binding affinity for the tRNA Ile ligand. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) revealed structural changes in conserved riboswitch domains upon interaction with the tRNA ligand. Cross-linking and mutational analyses identified two interaction sites, one between the S-turn element in Stem II and the T arm of tRNA Ile and the other between the Stem IIA/B pseudoknot and the D loop of tRNA Ile These newly identified RNA contacts add information about tRNA recognition by the T box riboswitch and demonstrate a role for the S-turn and pseudoknot elements, which resemble structural elements that are common in many cellular RNAs.

  17. Precursor-product discrimination by La protein during tRNA metabolism

    PubMed Central

    Bayfield, Mark A.; Maraia, Richard J.

    2009-01-01

    SUMMARY La proteins bind pre-tRNAs at their UUU-3'OH ends, facilitating their maturation. While the mechanism by which La binds pre-tRNA 3' trailers is known, the function of the RNA-binding β-sheet surface of RRM1 is unknown. How La dissociates from UUU-3'OH-containing trailers after 3' processing is also unknown. La preferentially binds pre-tRNAs over processed tRNAs or 3' trailer products through coupled use of two sites: one on the La motif and another on the RRM1 β surface that binds elsewhere on tRNA. Two sites provide stable pre-tRNA binding while processed tRNA and 3' trailer are released from their single sites relatively fast. RRM1 loop-3 mutations decrease affinity for pre-tRNA and tRNA but not UUU-3'OH trailer, and impair tRNA maturation in vivo. We propose that RRM1 functions in activities that are more complex than UUU-3'OH binding. Accordingly, the RRM1 mutations also impair a RNA chaperone activity of La. The results suggest how La distinguishes precursor from product RNAs, allowing it to recycle onto a new pre-tRNA. PMID:19287396

  18. Precursor-product discrimination by La protein during tRNA metabolism.

    PubMed

    Bayfield, Mark A; Maraia, Richard J

    2009-04-01

    La proteins bind pre-tRNAs at their UUU-3'OH ends, facilitating their maturation. Although the mechanism by which La binds pre-tRNA 3' trailers is known, the function of the RNA binding beta-sheet surface of the RNA-recognition motif (RRM1) is unknown. How La dissociates from UUU-3'OH-containing trailers after 3' processing is also unknown. Here we show that La preferentially binds pre-tRNAs over processed tRNAs or 3' trailer products through coupled use of two sites: one on the La motif and another on the RRM1 beta-surface that binds elsewhere on tRNA. Two sites provide stable pre-tRNA binding, whereas the processed tRNA and 3' trailer are released from their single sites relatively fast. RRM1 loop-3 mutations decrease affinity for pre-tRNA and tRNA, but not for the UUU-3'OH trailer, and impair tRNA maturation in vivo. We propose that RRM1 functions in activities that are more complex than UUU-3'OH binding. Accordingly, the RRM1 mutations also impair an RNA chaperone activity of La. The results suggest how La distinguishes precursor from product RNAs, allowing it to recycle onto a new pre-tRNA.

  19. Metazoan tRNA introns generate stable circular RNAs in vivo

    PubMed Central

    Lu, Zhipeng; Filonov, Grigory S.; Noto, John J.; Schmidt, Casey A.; Hatkevich, Talia L.; Wen, Ying; Jaffrey, Samie R.; Matera, A. Gregory

    2015-01-01

    We report the discovery of a class of abundant circular noncoding RNAs that are produced during metazoan tRNA splicing. These transcripts, termed tRNA intronic circular (tric)RNAs, are conserved features of animal transcriptomes. Biogenesis of tricRNAs requires anciently conserved tRNA sequence motifs and processing enzymes, and their expression is regulated in an age-dependent and tissue-specific manner. Furthermore, we exploited this biogenesis pathway to develop an in vivo expression system for generating “designer” circular RNAs in human cells. Reporter constructs expressing RNA aptamers such as Spinach and Broccoli can be used to follow the transcription and subcellular localization of tricRNAs in living cells. Owing to the superior stability of circular vs. linear RNA isoforms, this expression system has a wide range of potential applications, from basic research to pharmaceutical science. PMID:26194134

  20. Nucleotide composition analysis of tRNA from leukemia patient cell samples and human cell lines.

    PubMed Central

    Agris, P F

    1975-01-01

    A technique developed for analysis of less than microgram quantities of tRNA has been applied to the study of human leukemia. Leucocytes from peripheal blood and bone marrow samples of six, untreated leukemia patients and cells of five different established human cell lines were maintained for 18 hours in media containing (32P)-phosphate. Incorporation of radioactive phosphate into the cells from the patient samples was slightly less than that of the cell lines. Likewise, incorporation of (32P)-phosphate into the tRNA of the patient samples (approximately 5 x 106 DPM/mug tRNA) was also less then that incorporated into the tRNA of the cell lines. The major and minor nucleotide compositions of the unfractionated tRNA preparations from each patient sample and each cell line were determined and compared. Similarities and differences in the major and minor nucleotide compositions of the tRNA preparations are discussed with reference to types of leukemia and the importance of patient sample analysis versus analysis of cultured human cells. PMID:1057159

  1. Saturation of recognition elements blocks evolution of new tRNA identities

    PubMed Central

    Saint-Léger, Adélaïde; Bello, Carla; Dans, Pablo D.; Torres, Adrian Gabriel; Novoa, Eva Maria; Camacho, Noelia; Orozco, Modesto; Kondrashov, Fyodor A.; Ribas de Pouplana, Lluís

    2016-01-01

    Understanding the principles that led to the current complexity of the genetic code is a central question in evolution. Expansion of the genetic code required the selection of new transfer RNAs (tRNAs) with specific recognition signals that allowed them to be matured, modified, aminoacylated, and processed by the ribosome without compromising the fidelity or efficiency of protein synthesis. We show that saturation of recognition signals blocks the emergence of new tRNA identities and that the rate of nucleotide substitutions in tRNAs is higher in species with fewer tRNA genes. We propose that the growth of the genetic code stalled because a limit was reached in the number of identity elements that can be effectively used in the tRNA structure. PMID:27386510

  2. Rp-phosphorothioate modifications in RNase P RNA that interfere with tRNA binding.

    PubMed Central

    Hardt, W D; Warnecke, J M; Erdmann, V A; Hartmann, R K

    1995-01-01

    We have used Rp-phosphorothioate modifications and a binding interference assay to analyse the role of phosphate oxygens in tRNA recognition by Escherichia coli ribonuclease P (RNase P) RNA. Total (100%) Rp-phosphorothioate modification at A, C or G positions of RNase P RNA strongly impaired tRNA binding and pre-tRNA processing, while effects were less pronounced at U positions. Partially modified E. coli RNase P RNAs were separated into tRNA binding and non-binding fractions by gel retardation. Rp-phosphorothioate modifications that interfered with tRNA binding were found 5' of nucleotides A67, G68, U69, C70, C71, G72, A130, A132, A248, A249, G300, A317, A330, A352, C353 and C354. Manganese rescue at positions U69, C70, A130 and A132 identified, for the first time, sites of direct metal ion coordination in RNase P RNA. Most sites of interference are at strongly conserved nucleotides and nine reside within a long-range base-pairing interaction present in all known RNase P RNAs. In contrast to RNase P RNA, 100% Rp-phosphorothioate substitutions in tRNA showed only moderate effects on binding to RNase P RNAs from E. coli, Bacillus subtilis and Chromatium vinosum, suggesting that pro-Rp phosphate oxygens of mature tRNA contribute relatively little to the formation of the tRNA-RNase P RNA complex. Images PMID:7540978

  3. N7-Methylguanine at position 46 (m7G46) in tRNA from Thermus thermophilus is required for cell viability at high temperatures through a tRNA modification network.

    PubMed

    Tomikawa, Chie; Yokogawa, Takashi; Kanai, Tamotsu; Hori, Hiroyuki

    2010-01-01

    N(7)-methylguanine at position 46 (m(7)G46) in tRNA is produced by tRNA (m(7)G46) methyltransferase (TrmB). To clarify the role of this modification, we made a trmB gene disruptant (DeltatrmB) of Thermus thermophilus, an extreme thermophilic eubacterium. The absence of TrmB activity in cell extract from the DeltatrmB strain and the lack of the m(7)G46 modification in tRNA(Phe) were confirmed by enzyme assay, nucleoside analysis and RNA sequencing. When the DeltatrmB strain was cultured at high temperatures, several modified nucleotides in tRNA were hypo-modified in addition to the lack of the m(7)G46 modification. Assays with tRNA modification enzymes revealed hypo-modifications of Gm18 and m(1)G37, suggesting that the m(7)G46 positively affects their formations. Although the lack of the m(7)G46 modification and the hypo-modifications do not affect the Phe charging activity of tRNA(Phe), they cause a decrease in melting temperature of class I tRNA and degradation of tRNA(Phe) and tRNA(Ile). (35)S-Met incorporation into proteins revealed that protein synthesis in DeltatrmB cells is depressed above 70 degrees C. At 80 degrees C, the DeltatrmB strain exhibits a severe growth defect. Thus, the m(7)G46 modification is required for cell viability at high temperatures via a tRNA modification network, in which the m(7)G46 modification supports introduction of other modifications.

  4. Retrograde transfer RNA nuclear import provides a new level of tRNA quality control in Saccharomyces cerevisiae.

    PubMed

    Kramer, Emily B; Hopper, Anita K

    2013-12-24

    In eukaryotes, transfer RNAs (tRNAs) are transcribed in the nucleus yet function in the cytoplasm; thus, tRNA movement within the cell was believed to be unidirectional--from the nucleus to the cytoplasm. It is now known that mature tRNAs also move in a retrograde direction from the cytoplasm to the nucleus via retrograde tRNA nuclear import, a process that is conserved from yeast to vertebrates. The biological significance of this tRNA nuclear import is not entirely clear. We hypothesized that retrograde tRNA nuclear import might function in proofreading tRNAs to ensure that only proper tRNAs reside in the cytoplasm and interact with the translational machinery. Here we identify two major types of aberrant tRNAs in yeast: a 5', 3' end-extended, spliced tRNA and hypomodified tRNAs. We show that both types of aberrant tRNAs accumulate in mutant cells that are defective in tRNA nuclear traffic, suggesting that they are normally imported into the nucleus and are repaired or degraded. The retrograde pathway functions in parallel with the cytoplasmic rapid tRNA decay pathway previously demonstrated to monitor tRNA quality, and cells are not viable if they lack both pathways. Our data support the hypothesis that the retrograde process provides a newly discovered level of tRNA quality control as a pathway that monitors both end processing of pre-tRNAs and the modification state of mature tRNAs.

  5. Retrograde transfer RNA nuclear import provides a new level of tRNA quality control in Saccharomyces cerevisiae

    PubMed Central

    Kramer, Emily B.; Hopper, Anita K.

    2013-01-01

    In eukaryotes, transfer RNAs (tRNAs) are transcribed in the nucleus yet function in the cytoplasm; thus, tRNA movement within the cell was believed to be unidirectional—from the nucleus to the cytoplasm. It is now known that mature tRNAs also move in a retrograde direction from the cytoplasm to the nucleus via retrograde tRNA nuclear import, a process that is conserved from yeast to vertebrates. The biological significance of this tRNA nuclear import is not entirely clear. We hypothesized that retrograde tRNA nuclear import might function in proofreading tRNAs to ensure that only proper tRNAs reside in the cytoplasm and interact with the translational machinery. Here we identify two major types of aberrant tRNAs in yeast: a 5′, 3′ end-extended, spliced tRNA and hypomodified tRNAs. We show that both types of aberrant tRNAs accumulate in mutant cells that are defective in tRNA nuclear traffic, suggesting that they are normally imported into the nucleus and are repaired or degraded. The retrograde pathway functions in parallel with the cytoplasmic rapid tRNA decay pathway previously demonstrated to monitor tRNA quality, and cells are not viable if they lack both pathways. Our data support the hypothesis that the retrograde process provides a newly discovered level of tRNA quality control as a pathway that monitors both end processing of pre-tRNAs and the modification state of mature tRNAs. PMID:24297920

  6. Monitoring mis-acylated tRNA suppression efficiency in mammalian cells via EGFP fluorescence recovery

    PubMed Central

    Ilegems, Erwin; Pick, Horst M.; Vogel, Horst

    2002-01-01

    A reporter assay was developed to detect and quantify nonsense codon suppression by chemically aminoacylated tRNAs in mammalian cells. It is based on the cellular expression of the enhanced green fluorescent protein (EGFP) as a reporter for the site-specific amino acid incorporation in its sequence using an orthogonal suppressor tRNA derived from Escherichia coli. Suppression of an engineered amber codon at position 64 in the EGFP run-off transcript could be achieved by the incorporation of a leucine via an in vitro aminoacylated suppressor tRNA. Microinjection of defined amounts of mutagenized EGFP mRNA and suppressor tRNA into individual cells allowed us to accurately determine suppression efficiencies by measuring the EGFP fluorescence intensity in individual cells using laser-scanning confocal microscopy. Control experiments showed the absence of natural suppression or aminoacylation of the synthetic tRNA by endogenous aminoacyl-tRNA synthetases. This reporter assay opens the way for the optimization of essential experimental parameters for expanding the scope of the suppressor tRNA technology to different cell types. PMID:12466560

  7. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Tetsuhiro, E-mail: atetsu@mail.ecc.u-tokyo.ac.jp; Shimizu, Ayano; Takahashi, Kazutoshi

    2014-08-15

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrialmore » dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ{sup 0} cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.« less

  8. Maf1 Protein, Repressor of RNA Polymerase III, Indirectly Affects tRNA Processing*

    PubMed Central

    Karkusiewicz, Iwona; Turowski, Tomasz W.; Graczyk, Damian; Towpik, Joanna; Dhungel, Nripesh; Hopper, Anita K.; Boguta, Magdalena

    2011-01-01

    Maf1 is negative regulator of RNA polymerase III in yeast. We observed high levels of both primary transcript and end-matured, intron-containing pre-tRNAs in the maf1Δ strain. This pre-tRNA accumulation could be overcome by transcription inhibition, arguing against a direct role of Maf1 in tRNA maturation and suggesting saturation of processing machinery by the increased amounts of primary transcripts. Saturation of the tRNA exportin, Los1, is one reason why end-matured intron-containing pre-tRNAs accumulate in maf1Δ cells. However, it is likely possible that other components of the processing pathway are also limiting when tRNA transcription is increased. According to our model, Maf1-mediated transcription control and nuclear export by Los1 are two major stages of tRNA biosynthesis that are regulated by environmental conditions in a coordinated manner. PMID:21940626

  9. Maf1 protein, repressor of RNA polymerase III, indirectly affects tRNA processing.

    PubMed

    Karkusiewicz, Iwona; Turowski, Tomasz W; Graczyk, Damian; Towpik, Joanna; Dhungel, Nripesh; Hopper, Anita K; Boguta, Magdalena

    2011-11-11

    Maf1 is negative regulator of RNA polymerase III in yeast. We observed high levels of both primary transcript and end-matured, intron-containing pre-tRNAs in the maf1Δ strain. This pre-tRNA accumulation could be overcome by transcription inhibition, arguing against a direct role of Maf1 in tRNA maturation and suggesting saturation of processing machinery by the increased amounts of primary transcripts. Saturation of the tRNA exportin, Los1, is one reason why end-matured intron-containing pre-tRNAs accumulate in maf1Δ cells. However, it is likely possible that other components of the processing pathway are also limiting when tRNA transcription is increased. According to our model, Maf1-mediated transcription control and nuclear export by Los1 are two major stages of tRNA biosynthesis that are regulated by environmental conditions in a coordinated manner.

  10. tRNA anticodon loop modifications ensure protein homeostasis and cell morphogenesis in yeast.

    PubMed

    Klassen, Roland; Ciftci, Akif; Funk, Johanna; Bruch, Alexander; Butter, Falk; Schaffrath, Raffael

    2016-12-15

    Using budding yeast, we investigated a negative interaction network among genes for tRNA modifications previously implicated in anticodon-codon interaction: 5-methoxy-carbonyl-methyl-2-thio-uridine (mcm 5 s 2 U34: ELP3, URM1), pseudouridine (Ψ38/39: DEG1) and cyclic N6-threonyl-carbamoyl-adenosine (ct 6 A37: TCD1). In line with functional cross talk between these modifications, we find that combined removal of either ct 6 A37 or Ψ38/39 and mcm 5 U34 or s 2 U34 results in morphologically altered cells with synthetic growth defects. Phenotypic suppression by tRNA overexpression suggests that these defects are caused by malfunction of tRNA Lys UUU or tRNA Gln UUG , respectively. Indeed, mRNA translation and synthesis of the Gln-rich prion Rnq1 are severely impaired in the absence of Ψ38/39 and mcm 5 U34 or s 2 U34, and this defect can be rescued by overexpression of tRNA Gln UUG Surprisingly, we find that combined modification defects in the anticodon loops of different tRNAs induce similar cell polarity- and nuclear segregation defects that are accompanied by increased aggregation of cellular proteins. Since conditional expression of an artificial aggregation-prone protein triggered similar cytological aberrancies, protein aggregation is likely responsible for loss of morphogenesis and cytokinesis control in mutants with inappropriate tRNA anticodon loop modifications. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. The fractionation of t-RNA on N,N′-bis(3-aminopropyl)-piperazine substituted-Sepharose

    PubMed Central

    Leberman, Reuben; Giovanelli, Ruth; Acosta, Zenobio

    1974-01-01

    An anion exchange agarose has been prepared by modifying sepharose 6B with N,N′-bis (-3-aminopropyl) piperazine. This material (BAPP-Sepharose) has been used for the fractionation of t-RNA from E.coli by column chromatography. The results obtained with gram quantities of crude t-RNA at pH 4.6 and pH 8.0 as measured by the elution patterns of alanyl, arginyl, aspartyl, leucyl, lysyl, methionyl, phenylalanyl, prolyl, seryl, tyrosyl, and valyl t-RNA are described. PMID:10793731

  12. Unexpected expansion of tRNA substrate recognition by the yeast m1G9 methyltransferase Trm10.

    PubMed

    Swinehart, William E; Henderson, Jeremy C; Jackman, Jane E

    2013-08-01

    N-1 Methylation of the nearly invariant purine residue found at position 9 of tRNA is a nucleotide modification found in multiple tRNA species throughout Eukarya and Archaea. First discovered in Saccharomyces cerevisiae, the tRNA methyltransferase Trm10 is a highly conserved protein both necessary and sufficient to catalyze all known instances of m1G9 modification in yeast. Although there are 19 unique tRNA species that contain a G at position 9 in yeast, and whose fully modified sequence is known, only 9 of these tRNA species are modified with m1G9 in wild-type cells. The elements that allow Trm10 to distinguish between structurally similar tRNA species are not known, and sequences that are shared between all substrate or all nonsubstrate tRNAs have not been identified. Here, we demonstrate that the in vitro methylation activity of yeast Trm10 is not sufficient to explain the observed pattern of modification in vivo, as additional tRNA species are substrates for Trm10 m1G9 methyltransferase activity. Similarly, overexpression of Trm10 in yeast yields m1G9 containing tRNA species that are ordinarily unmodified in vivo. Thus, yeast Trm10 has a significantly broader tRNA substrate specificity than is suggested by the observed pattern of modification in wild-type yeast. These results may shed light onto the suggested involvement of Trm10 in other pathways in other organisms, particularly in higher eukaryotes that contain up to three different genes with sequence similarity to the single TRM10 gene in yeast, and where these other enzymes have been implicated in pathways beyond tRNA processing.

  13. Metazoan tRNA introns generate stable circular RNAs in vivo.

    PubMed

    Lu, Zhipeng; Filonov, Grigory S; Noto, John J; Schmidt, Casey A; Hatkevich, Talia L; Wen, Ying; Jaffrey, Samie R; Matera, A Gregory

    2015-09-01

    We report the discovery of a class of abundant circular noncoding RNAs that are produced during metazoan tRNA splicing. These transcripts, termed tRNA intronic circular (tric)RNAs, are conserved features of animal transcriptomes. Biogenesis of tricRNAs requires anciently conserved tRNA sequence motifs and processing enzymes, and their expression is regulated in an age-dependent and tissue-specific manner. Furthermore, we exploited this biogenesis pathway to develop an in vivo expression system for generating "designer" circular RNAs in human cells. Reporter constructs expressing RNA aptamers such as Spinach and Broccoli can be used to follow the transcription and subcellular localization of tricRNAs in living cells. Owing to the superior stability of circular vs. linear RNA isoforms, this expression system has a wide range of potential applications, from basic research to pharmaceutical science. © 2015 Lu et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  14. Cex1p is a novel cytoplasmic component of the Saccharomyces cerevisiae nuclear tRNA export machinery.

    PubMed

    McGuire, Andrew T; Mangroo, Dev

    2007-01-24

    The Saccharomyces cerevisiae Yor112wp, which we named Cex1p, was identified using a yeast tRNA three-hybrid interaction approach and an in vivo nuclear tRNA export assay as a cytoplasmic component of the nuclear tRNA export machinery. Cex1p binds tRNA saturably, and associates with the nuclear pore complex by interacting directly with Nup116p. Cex1p co-purifies with the nuclear tRNA export receptors Los1p and Msn5p, the eukaryotic elongation factor eEF-1A, which delivers aminoacylated tRNAs to the ribosome, and the RanGTPase Gsp1p, but not with Cca1p, a tRNA maturation enzyme that facilitates translocation of non-aminoacylated tRNAs across the nuclear pore complex. Depletion of Cex1p and eEF-1A or Los1p significantly reduced the efficiency of nuclear tRNA export. Cex1p interacts with Los1p but not with eEF-1A in vitro. These findings suggest that Cex1p is a component of the nuclear aminoacylation-dependent tRNA export pathway in S. cerevisiae. They also suggest that Cex1p collects aminoacyl-tRNAs from the nuclear export receptors at the cytoplasmic side of the nuclear pore complex, and transfers them to eEF-1A using a channelling mechanism.

  15. Cex1p is a novel cytoplasmic component of the Saccharomyces cerevisiae nuclear tRNA export machinery

    PubMed Central

    McGuire, Andrew T; Mangroo, Dev

    2007-01-01

    The Saccharomyces cerevisiae Yor112wp, which we named Cex1p, was identified using a yeast tRNA three-hybrid interaction approach and an in vivo nuclear tRNA export assay as a cytoplasmic component of the nuclear tRNA export machinery. Cex1p binds tRNA saturably, and associates with the nuclear pore complex by interacting directly with Nup116p. Cex1p co-purifies with the nuclear tRNA export receptors Los1p and Msn5p, the eukaryotic elongation factor eEF-1A, which delivers aminoacylated tRNAs to the ribosome, and the RanGTPase Gsp1p, but not with Cca1p, a tRNA maturation enzyme that facilitates translocation of non-aminoacylated tRNAs across the nuclear pore complex. Depletion of Cex1p and eEF-1A or Los1p significantly reduced the efficiency of nuclear tRNA export. Cex1p interacts with Los1p but not with eEF-1A in vitro. These findings suggest that Cex1p is a component of the nuclear aminoacylation-dependent tRNA export pathway in S. cerevisiae. They also suggest that Cex1p collects aminoacyl-tRNAs from the nuclear export receptors at the cytoplasmic side of the nuclear pore complex, and transfers them to eEF-1A using a channelling mechanism. PMID:17203074

  16. Selective Packaging of Host tRNA's by Murine Leukemia Virus Particles Does Not Require Genomic RNA

    PubMed Central

    Levin, Judith G.; Seidman, J. G.

    1979-01-01

    The 4S RNA contained in RNA tumor virus particles consists of a selected population of host tRNA's. However, the mechanism by which virions select host tRNA's has not been elucidated. We have considered a model which specifies that 35S genomic RNA determines which tRNA's are to be encapsidated as well as the relative amounts of these tRNA's within the virion. The model was tested by comparing the free 4S RNA composition of normal murine leukemia virus (MuLV) particles and noninfectious virions from actinomycin D (ActD)-treated cells, which are deficient in genomic RNA (ActD virions). Viral 4S RNA was analyzed by two-dimensional polyacrylamide gel electrophoresis. Surprisingly, the patterns obtained for control and ActD 4S RNA were identical to each other and were clearly distinct from the cell 4S RNA pattern. The viral patterns had three prominent areas of radioactivity. One of the spots was identified on the basis of its oligonucleotide fingerprint as tRNA Pro, the primer for MuLV RNA-directed DNA synthesis. These results were obtained with two different MuLV strains, AKR and Moloney, each grown in SC-1 cells. The demonstration that ActD virions contain primer tRNA and in general exhibit the characteristic MuLV tRNA pattern rather than the complete representation of cell 4S RNA leads to the conclusion that genomic RNA is not the major determinant in selective packaging of host tRNA's. A possible role for one or more viral proteins, including reverse transcriptase, is suggested. Images PMID:219227

  17. The effect of tRNA levels on decoding times of mRNA codons.

    PubMed

    Dana, Alexandra; Tuller, Tamir

    2014-08-01

    The possible effect of transfer ribonucleic acid (tRNA) concentrations on codons decoding time is a fundamental biomedical research question; however, due to a large number of variables affecting this process and the non-direct relation between them, a conclusive answer to this question has eluded so far researchers in the field. In this study, we perform a novel analysis of the ribosome profiling data of four organisms which enables ranking the decoding times of different codons while filtering translational phenomena such as experimental biases, extreme ribosomal pauses and ribosome traffic jams. Based on this filtering, we show for the first time that there is a significant correlation between tRNA concentrations and the codons estimated decoding time both in prokaryotes and in eukaryotes in natural conditions (-0.38 to -0.66, all P values <0.006); in addition, we show that when considering tRNA concentrations, codons decoding times are not correlated with aminoacyl-tRNA levels. The reported results support the conjecture that translation efficiency is directly influenced by the tRNA levels in the cell. Thus, they should help to understand the evolution of synonymous aspects of coding sequences via the adaptation of their codons to the tRNA pool. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. APOBEC3B cytidine deaminase targets the non-transcribed strand of tRNA genes in yeast.

    PubMed

    Saini, Natalie; Roberts, Steven A; Sterling, Joan F; Malc, Ewa P; Mieczkowski, Piotr A; Gordenin, Dmitry A

    2017-05-01

    Variations in mutation rates across the genome have been demonstrated both in model organisms and in cancers. This phenomenon is largely driven by the damage specificity of diverse mutagens and the differences in DNA repair efficiency in given genomic contexts. Here, we demonstrate that the single-strand DNA-specific cytidine deaminase APOBEC3B (A3B) damages tRNA genes at a 1000-fold higher efficiency than other non-tRNA genomic regions in budding yeast. We found that A3B-induced lesions in tRNA genes were predominantly located on the non-transcribed strand, while no transcriptional strand bias was observed in protein coding genes. Furthermore, tRNA gene mutations were exacerbated in cells where RNaseH expression was completely abolished (Δrnh1Δrnh35). These data suggest a transcription-dependent mechanism for A3B-induced tRNA gene hypermutation. Interestingly, in strains proficient in DNA repair, only 1% of the abasic sites formed upon excision of A3B-deaminated cytosines were not repaired leading to mutations in tRNA genes, while 18% of these lesions failed to be repaired in the remainder of the genome. A3B-induced mutagenesis in tRNA genes was found to be efficiently suppressed by the redundant activities of both base excision repair (BER) and the error-free DNA damage bypass pathway. On the other hand, deficiencies in BER did not have a profound effect on A3B-induced mutations in CAN1, the reporter for protein coding genes. We hypothesize that differences in the mechanisms underlying ssDNA formation at tRNA genes and other genomic loci are the key determinants of the choice of the repair pathways and consequently the efficiency of DNA damage repair in these regions. Overall, our results indicate that tRNA genes are highly susceptible to ssDNA-specific DNA damaging agents. However, increased DNA repair efficacy in tRNA genes can prevent their hypermutation and maintain both genome and proteome homeostasis. Published by Elsevier B.V.

  19. Binding of DNA-binding alkaloids berberine and palmatine to tRNA and comparison to ethidium: Spectroscopic and molecular modeling studies

    NASA Astrophysics Data System (ADS)

    Islam, Md. Maidul; Pandya, Prateek; Chowdhury, Sebanti Roy; Kumar, Surat; Kumar, Gopinatha Suresh

    2008-11-01

    The interaction of two natural protoberberine plant alkaloids berberine and palmatine with tRNA phe was studied using various biophysical techniques and molecular modeling and the data were compared with the binding of the classical DNA intercalator, ethidium. Circular dichroic studies revealed that the tRNA conformation was moderately perturbed on binding of the alkaloids. The cooperative binding of both the alkaloids and ethidium to tRNA was revealed from absorbance and fluorescence studies. Fluorescence quenching studies advanced a conclusion that while berberine and palmatine are partially intercalated, ethidium is fully intercalated on the tRNA molecule. The binding of the alkaloids as well as ethidium stabilized the tRNA melting, and the binding constant evaluated from the averaged optical melting temperature data was in agreement with fluorescence spectral-binding data. Differential scanning calorimetry revealed that the tRNA melting showed three close transitions that were affected on binding of these small molecules. Molecular docking calculations performed showed the preferred regions of binding of these small molecules on the tRNA. Taken together, the results suggest that the binding of the alkaloids berberine and palmatine on the tRNA structure appears to be mostly by partial intercalation while ethidium intercalates fully on the tRNA. These results further advance our knowledge on the molecular aspects on the interaction of these alkaloids to tRNA.

  20. Sharing the load: Mex67-Mtr2 cofunctions with Los1 in primary tRNA nuclear export.

    PubMed

    Chatterjee, Kunal; Majumder, Shubhra; Wan, Yao; Shah, Vijay; Wu, Jingyan; Huang, Hsiao-Yun; Hopper, Anita K

    2017-11-01

    Eukaryotic transfer RNAs (tRNAs) are exported from the nucleus, their site of synthesis, to the cytoplasm, their site of function for protein synthesis. The evolutionarily conserved β-importin family member Los1 (Exportin-t) has been the only exporter known to execute nuclear export of newly transcribed intron-containing pre-tRNAs. Interestingly, LOS1 is unessential in all tested organisms. As tRNA nuclear export is essential, we previously interrogated the budding yeast proteome to identify candidates that function in tRNA nuclear export. Here, we provide molecular, genetic, cytological, and biochemical evidence that the Mex67-Mtr2 (TAP-p15) heterodimer, best characterized for its essential role in mRNA nuclear export, cofunctions with Los1 in tRNA nuclear export. Inactivation of Mex67 or Mtr2 leads to rapid accumulation of end-matured unspliced tRNAs in the nucleus. Remarkably, merely fivefold overexpression of Mex67-Mtr2 can substitute for Los1 in los1 Δ cells. Moreover, in vivo coimmunoprecipitation assays with tagged Mex67 document that the Mex67 binds tRNAs. Our data also show that tRNA exporters surprisingly exhibit differential tRNA substrate preferences. The existence of multiple tRNA exporters, each with different tRNA preferences, may indicate that the proteome can be regulated by tRNA nuclear export. Thus, our data show that Mex67-Mtr2 functions in primary nuclear export for a subset of yeast tRNAs. © 2017 Chatterjee et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Structures of the tRNA export factor in the nuclear and cytosolic states.

    PubMed

    Cook, Atlanta G; Fukuhara, Noemi; Jinek, Martin; Conti, Elena

    2009-09-03

    Transfer RNAs are among the most ubiquitous molecules in cells, central to decoding information from messenger RNAs on translating ribosomes. In eukaryotic cells, tRNAs are actively transported from their site of synthesis in the nucleus to their site of function in the cytosol. This is mediated by a dedicated nucleo-cytoplasmic transport factor of the karyopherin-beta family (Xpot, also known as Los1 in Saccharomyces cerevisiae). Here we report the 3.2 A resolution structure of Schizosaccharomyces pombe Xpot in complex with tRNA and RanGTP, and the 3.1 A structure of unbound Xpot, revealing both nuclear and cytosolic snapshots of this transport factor. Xpot undergoes a large conformational change on binding cargo, wrapping around the tRNA and, in particular, binding to the tRNA 5' and 3' ends. The binding mode explains how Xpot can recognize all mature tRNAs in the cell and yet distinguish them from those that have not been properly processed, thus coupling tRNA export to quality control.

  2. Piecemeal Buildup of the Genetic Code, Ribosomes, and Genomes from Primordial tRNA Building Blocks.

    PubMed

    Caetano-Anollés, Derek; Caetano-Anollés, Gustavo

    2016-12-02

    The origin of biomolecular machinery likely centered around an ancient and central molecule capable of interacting with emergent macromolecular complexity. tRNA is the oldest and most central nucleic acid molecule of the cell. Its co-evolutionary interactions with aminoacyl-tRNA synthetase protein enzymes define the specificities of the genetic code and those with the ribosome their accurate biosynthetic interpretation. Phylogenetic approaches that focus on molecular structure allow reconstruction of evolutionary timelines that describe the history of RNA and protein structural domains. Here we review phylogenomic analyses that reconstruct the early history of the synthetase enzymes and the ribosome, their interactions with RNA, and the inception of amino acid charging and codon specificities in tRNA that are responsible for the genetic code. We also trace the age of domains and tRNA onto ancient tRNA homologies that were recently identified in rRNA. Our findings reveal a timeline of recruitment of tRNA building blocks for the formation of a functional ribosome, which holds both the biocatalytic functions of protein biosynthesis and the ability to store genetic memory in primordial RNA genomic templates.

  3. Piecemeal Buildup of the Genetic Code, Ribosomes, and Genomes from Primordial tRNA Building Blocks

    PubMed Central

    Caetano-Anollés, Derek; Caetano-Anollés, Gustavo

    2016-01-01

    The origin of biomolecular machinery likely centered around an ancient and central molecule capable of interacting with emergent macromolecular complexity. tRNA is the oldest and most central nucleic acid molecule of the cell. Its co-evolutionary interactions with aminoacyl-tRNA synthetase protein enzymes define the specificities of the genetic code and those with the ribosome their accurate biosynthetic interpretation. Phylogenetic approaches that focus on molecular structure allow reconstruction of evolutionary timelines that describe the history of RNA and protein structural domains. Here we review phylogenomic analyses that reconstruct the early history of the synthetase enzymes and the ribosome, their interactions with RNA, and the inception of amino acid charging and codon specificities in tRNA that are responsible for the genetic code. We also trace the age of domains and tRNA onto ancient tRNA homologies that were recently identified in rRNA. Our findings reveal a timeline of recruitment of tRNA building blocks for the formation of a functional ribosome, which holds both the biocatalytic functions of protein biosynthesis and the ability to store genetic memory in primordial RNA genomic templates. PMID:27918435

  4. Structural similarities and functional differences clarify evolutionary relationships between tRNA healing enzymes and the myelin enzyme CNPase.

    PubMed

    Muruganandam, Gopinath; Raasakka, Arne; Myllykoski, Matti; Kursula, Inari; Kursula, Petri

    2017-05-16

    Eukaryotic tRNA splicing is an essential process in the transformation of a primary tRNA transcript into a mature functional tRNA molecule. 5'-phosphate ligation involves two steps: a healing reaction catalyzed by polynucleotide kinase (PNK) in association with cyclic phosphodiesterase (CPDase), and a sealing reaction catalyzed by an RNA ligase. The enzymes that catalyze tRNA healing in yeast and higher eukaryotes are homologous to the members of the 2H phosphoesterase superfamily, in particular to the vertebrate myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase). We employed different biophysical and biochemical methods to elucidate the overall structural and functional features of the tRNA healing enzymes yeast Trl1 PNK/CPDase and lancelet PNK/CPDase and compared them with vertebrate CNPase. The yeast and the lancelet enzymes have cyclic phosphodiesterase and polynucleotide kinase activity, while vertebrate CNPase lacks PNK activity. In addition, we also show that the healing enzymes are structurally similar to the vertebrate CNPase by applying synchrotron radiation circular dichroism spectroscopy and small-angle X-ray scattering. We provide a structural analysis of the tRNA healing enzyme PNK and CPDase domains together. Our results support evolution of vertebrate CNPase from tRNA healing enzymes with a loss of function at its N-terminal PNK-like domain.

  5. Structural-conformational aspects of tRNA complexation with chloroethyl nitrosourea derivatives: A molecular modeling and spectroscopic investigation.

    PubMed

    Agarwal, Shweta; Tyagi, Gunjan; Chadha, Deepti; Mehrotra, Ranjana

    2017-01-01

    Chloroethyl nitrosourea derivatives (CENUs) represent an important family of anticancer chemotherapeutic agents, which are used in the treatment of different types of cancer such as brain tumors, resistant or relapsed Hodgkin's disease, small cell lung cancer and malignant melanoma. This work focuses towards understanding the interaction of chloroethyl nitrosourea derivatives; lomustine, nimustine and semustine with tRNA using spectroscopic approach in order to elucidate their auxiliary anticancer action mechanism inside the cell. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), Fourier transform infrared difference spectroscopy, circular dichroism spectroscopy and UV-visible spectroscopy were employed to investigate the binding parameters of tRNA-CENUs complexation. Results of present study demonstrate that all CENUs, studied here, interact with tRNA through guanine nitrogenous base residues and possibly further crosslink cytosine residues in paired region of tRNA. Moreover, spectral data collected for nimustine-tRNA and semustine-tRNA complex formation indicates towards the groove-directed-alkylation as their anti-malignant action, which involves the participation of uracil moiety located in major groove of tRNA. Besides this, tRNA-CENUs adduct formation did not alter the native conformation of biopolymer and tRNA remains in A-form after its interaction with all three nitrosourea derivatives studied. The binding constants (K a ) estimated for tRNA complexation with lomustine, nimustine and semustine are 2.55×10 2 M -1 , 4.923×10 2 M -1 and 4.223×10 2 M -1 respectively, which specify weak type of CENU's binding with tRNA. Moreover, molecular modeling simulations were also performed to predict preferential binding orientation of CENUs with tRNA that corroborates well with spectral outcomes. The findings, presented here, recognize tRNA binding properties of CENUs that can further help in rational designing of more specific and

  6. Highly Predictive Reprogramming of tRNA Modifications Is Linked to Selective Expression of Codon-Biased Genes

    PubMed Central

    2016-01-01

    Cells respond to stress by controlling gene expression at several levels, with little known about the role of translation. Here, we demonstrate a coordinated translational stress response system involving stress-specific reprogramming of tRNA wobble modifications that leads to selective translation of codon-biased mRNAs representing different classes of critical response proteins. In budding yeast exposed to four oxidants and five alkylating agents, tRNA modification patterns accurately distinguished among chemically similar stressors, with 14 modified ribonucleosides forming the basis for a data-driven model that predicts toxicant chemistry with >80% sensitivity and specificity. tRNA modification subpatterns also distinguish SN1 from SN2 alkylating agents, with SN2-induced increases in m3C in tRNA mechanistically linked to selective translation of threonine-rich membrane proteins from genes enriched with ACC and ACT degenerate codons for threonine. These results establish tRNA modifications as predictive biomarkers of exposure and illustrate a novel regulatory mechanism for translational control of cell stress response. PMID:25772370

  7. tRNADB-CE: tRNA gene database well-timed in the era of big sequence data.

    PubMed

    Abe, Takashi; Inokuchi, Hachiro; Yamada, Yuko; Muto, Akira; Iwasaki, Yuki; Ikemura, Toshimichi

    2014-01-01

    The tRNA gene data base curated by experts "tRNADB-CE" (http://trna.ie.niigata-u.ac.jp) was constructed by analyzing 1,966 complete and 5,272 draft genomes of prokaryotes, 171 viruses', 121 chloroplasts', and 12 eukaryotes' genomes plus fragment sequences obtained by metagenome studies of environmental samples. 595,115 tRNA genes in total, and thus two times of genes compiled previously, have been registered, for which sequence, clover-leaf structure, and results of sequence-similarity and oligonucleotide-pattern searches can be browsed. To provide collective knowledge with help from experts in tRNA researches, we added a column for enregistering comments to each tRNA. By grouping bacterial tRNAs with an identical sequence, we have found high phylogenetic preservation of tRNA sequences, especially at the phylum level. Since many species-unknown tRNAs from metagenomic sequences have sequences identical to those found in species-known prokaryotes, the identical sequence group (ISG) can provide phylogenetic markers to investigate the microbial community in an environmental ecosystem. This strategy can be applied to a huge amount of short sequences obtained from next-generation sequencers, as showing that tRNADB-CE is a well-timed database in the era of big sequence data. It is also discussed that batch-learning self-organizing-map with oligonucleotide composition is useful for efficient knowledge discovery from big sequence data.

  8. Sharing the load: Mex67–Mtr2 cofunctions with Los1 in primary tRNA nuclear export

    PubMed Central

    Chatterjee, Kunal; Majumder, Shubhra; Wan, Yao; Shah, Vijay; Wu, Jingyan; Huang, Hsiao-Yun

    2017-01-01

    Eukaryotic transfer RNAs (tRNAs) are exported from the nucleus, their site of synthesis, to the cytoplasm, their site of function for protein synthesis. The evolutionarily conserved β-importin family member Los1 (Exportin-t) has been the only exporter known to execute nuclear export of newly transcribed intron-containing pre-tRNAs. Interestingly, LOS1 is unessential in all tested organisms. As tRNA nuclear export is essential, we previously interrogated the budding yeast proteome to identify candidates that function in tRNA nuclear export. Here, we provide molecular, genetic, cytological, and biochemical evidence that the Mex67–Mtr2 (TAP–p15) heterodimer, best characterized for its essential role in mRNA nuclear export, cofunctions with Los1 in tRNA nuclear export. Inactivation of Mex67 or Mtr2 leads to rapid accumulation of end-matured unspliced tRNAs in the nucleus. Remarkably, merely fivefold overexpression of Mex67–Mtr2 can substitute for Los1 in los1Δ cells. Moreover, in vivo coimmunoprecipitation assays with tagged Mex67 document that the Mex67 binds tRNAs. Our data also show that tRNA exporters surprisingly exhibit differential tRNA substrate preferences. The existence of multiple tRNA exporters, each with different tRNA preferences, may indicate that the proteome can be regulated by tRNA nuclear export. Thus, our data show that Mex67–Mtr2 functions in primary nuclear export for a subset of yeast tRNAs. PMID:29212662

  9. Viral tRNA Mimicry from a Biocommunicative Perspective

    PubMed Central

    Ariza-Mateos, Ascensión; Gómez, Jordi

    2017-01-01

    RNA viruses have very small genomes which limits the functions they can encode. One of the strategies employed by these viruses is to mimic key factors of the host cell so they can take advantage of the interactions and activities these factors typically participate in. The viral RNA genome itself was first observed to mimic cellular tRNA over 40 years ago. Since then researchers have confirmed that distinct families of RNA viruses are accessible to a battery of cellular factors involved in tRNA-related activities. Recently, potential tRNA-like structures have been detected within the sequences of a 100 mRNAs taken from human cells, one of these being the host defense interferon-alpha mRNA; these are then additional to the examples found in bacterial and yeast mRNAs. The mimetic relationship between tRNA, cellular mRNA, and viral RNA is the central focus of two considerations described below. These are subsequently used as a preface for a final hypothesis drawing on concepts relating to mimicry from the social sciences and humanities, such as power relations and creativity. Firstly, the presence of tRNA-like structures in mRNAs indicates that the viral tRNA-like signal could be mimicking tRNA-like elements that are contextualized by the specific carrier mRNAs, rather than, or in addition to, the tRNA itself, which would significantly increase the number of potential semiotic relations mediated by the viral signals. Secondly, and in particular, mimicking a host defense mRNA could be considered a potential new viral strategy for survival. Finally, we propose that mRNA’s mimicry of tRNA could be indicative of an ancestral intracellular conflict in which species of mRNAs invaded the cell, but from within. As the meaning of the mimetic signal depends on the context, in this case, the conflict that arises when the viral signal enters the cell can change the meaning of the mRNAs’ internal tRNA-like signals, from their current significance to that they had in the

  10. Unique pathway of expression of an opal suppressor phosphoserine tRNA.

    PubMed Central

    Lee, B J; de la Peña, P; Tobian, J A; Zasloff, M; Hatfield, D

    1987-01-01

    An opal suppressor phosphoserine tRNA gene is present in single copy in the genomes of higher vertebrates. We have shown that the product of this gene functions as a suppressor in an in vitro assay, and we have proposed that it may donate a modified amino acid directly to protein in response to specific UGA codons. In this report, we show through in vitro and in vivo studies that the human and Xenopus opal suppressor phosphoserine tRNAs are synthesized by a pathway that is, to the best of our knowledge, unlike that of any known eukaryotic tRNA. The primary transcript of this gene does not contain a 5'-leader sequence; and, therefore, transcription of this suppressor is initiated at the first nucleotide within the coding sequence. The 5'-terminal triphosphate, present on the primary transcript, remains intact through 3'-terminal maturation and through subsequent transport of the tRNA to the cytoplasm. The unique biosynthetic pathway of this opal suppressor may underlie its distinctive role in eukaryotic cells. Images PMID:3114749

  11. How the CCA-Adding Enzyme Selects Adenine over Cytosine at Position 76 of tRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B Pan; Y Xiong; T Steitz

    2011-12-31

    CCA-adding enzymes [ATP(CTP):tRNA nucleotidyltransferases] add CCA onto the 3' end of transfer RNA (tRNA) precursors without using a nucleic acid template. Although the mechanism by which cytosine (C) is selected at position 75 of tRNA has been established, the mechanism by which adenine (A) is selected at position 76 remains elusive. Here, we report five cocrystal structures of the enzyme complexed with both a tRNA mimic and nucleoside triphosphates under catalytically active conditions. These structures suggest that adenosine 5'-monophosphate is incorporated onto the A76 position of the tRNA via a carboxylate-assisted, one-metal-ion mechanism with aspartate 110 functioning as a generalmore » base. The discrimination against incorporation of cytidine 5'-triphosphate (CTP) at position 76 arises from improper placement of the {alpha} phosphate of the incoming CTP, which results from the interaction of C with arginine 224 and prevents the nucleophilic attack by the 3' hydroxyl group of cytidine75.« less

  12. Spontaneous reverse movement of mRNA-bound tRNA through the ribosome.

    PubMed

    Konevega, Andrey L; Fischer, Niels; Semenkov, Yuri P; Stark, Holger; Wintermeyer, Wolfgang; Rodnina, Marina V

    2007-04-01

    During the translocation step of protein synthesis, a complex of two transfer RNAs bound to messenger RNA (tRNA-mRNA) moves through the ribosome. The reaction is promoted by an elongation factor, called EF-G in bacteria, which, powered by GTP hydrolysis, induces an open, unlocked conformation of the ribosome that allows for spontaneous tRNA-mRNA movement. Here we show that, in the absence of EF-G, there is spontaneous backward movement, or retrotranslocation, of two tRNAs bound to mRNA. Retrotranslocation is driven by the gain in affinity when a cognate E-site tRNA moves into the P site, which compensates the affinity loss accompanying the movement of peptidyl-tRNA from the P to the A site. These results lend support to the diffusion model of tRNA movement during translocation. In the cell, tRNA movement is biased in the forward direction by EF-G, which acts as a Brownian ratchet and prevents backward movement.

  13. tRNA acceptor-stem and anticodon bases embed separate features of amino acid chemistry

    PubMed Central

    Carter, Charles W.; Wolfenden, Richard

    2016-01-01

    abstract The universal genetic code is a translation table by which nucleic acid sequences can be interpreted as polypeptides with a wide range of biological functions. That information is used by aminoacyl-tRNA synthetases to translate the code. Moreover, amino acid properties dictate protein folding. We recently reported that digital correlation techniques could identify patterns in tRNA identity elements that govern recognition by synthetases. Our analysis, and the functionality of truncated synthetases that cannot recognize the tRNA anticodon, support the conclusion that the tRNA acceptor stem houses an independent code for the same 20 amino acids that likely functioned earlier in the emergence of genetics. The acceptor-stem code, related to amino acid size, is distinct from a code in the anticodon that is related to amino acid polarity. Details of the acceptor-stem code suggest that it was useful in preserving key properties of stereochemically-encoded peptides that had developed the capacity to interact catalytically with RNA. The quantitative embedding of the chemical properties of amino acids into tRNA bases has implications for the origins of molecular biology. PMID:26595350

  14. CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration.

    PubMed

    Schaffer, Ashleigh E; Eggens, Veerle R C; Caglayan, Ahmet Okay; Reuter, Miriam S; Scott, Eric; Coufal, Nicole G; Silhavy, Jennifer L; Xue, Yuanchao; Kayserili, Hulya; Yasuno, Katsuhito; Rosti, Rasim Ozgur; Abdellateef, Mostafa; Caglar, Caner; Kasher, Paul R; Cazemier, J Leonie; Weterman, Marian A; Cantagrel, Vincent; Cai, Na; Zweier, Christiane; Altunoglu, Umut; Satkin, N Bilge; Aktar, Fesih; Tuysuz, Beyhan; Yalcinkaya, Cengiz; Caksen, Huseyin; Bilguvar, Kaya; Fu, Xiang-Dong; Trotta, Christopher R; Gabriel, Stacey; Reis, André; Gunel, Murat; Baas, Frank; Gleeson, Joseph G

    2014-04-24

    Neurodegenerative diseases can occur so early as to affect neurodevelopment. From a cohort of more than 2,000 consanguineous families with childhood neurological disease, we identified a founder mutation in four independent pedigrees in cleavage and polyadenylation factor I subunit 1 (CLP1). CLP1 is a multifunctional kinase implicated in tRNA, mRNA, and siRNA maturation. Kinase activity of the CLP1 mutant protein was defective, and the tRNA endonuclease complex (TSEN) was destabilized, resulting in impaired pre-tRNA cleavage. Germline clp1 null zebrafish showed cerebellar neurodegeneration that was rescued by wild-type, but not mutant, human CLP1 expression. Patient-derived induced neurons displayed both depletion of mature tRNAs and accumulation of unspliced pre-tRNAs. Transfection of partially processed tRNA fragments into patient cells exacerbated an oxidative stress-induced reduction in cell survival. Our data link tRNA maturation to neuronal development and neurodegeneration through defective CLP1 function in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. How the CCA-Adding Enzyme Selects Adenine over Cytosine at Position 76 of tRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Baocheng; Xiong, Yong; Steitz, Thomas A.

    2010-11-22

    CCA-adding enzymes [ATP(CTP):tRNA nucleotidyltransferases] add CCA onto the 3{prime} end of transfer RNA (tRNA) precursors without using a nucleic acid template. Although the mechanism by which cytosine (C) is selected at position 75 of tRNA has been established, the mechanism by which adenine (A) is selected at position 76 remains elusive. Here, we report five cocrystal structures of the enzyme complexed with both a tRNA mimic and nucleoside triphosphates under catalytically active conditions. These structures suggest that adenosine 5{prime}-monophosphate is incorporated onto the A76 position of the tRNA via a carboxylate-assisted, one-metal-ion mechanism with aspartate 110 functioning as a generalmore » base. The discrimination against incorporation of cytidine 5{prime}-triphosphate (CTP) at position 76 arises from improper placement of the {alpha} phosphate of the incoming CTP, which results from the interaction of C with arginine 224 and prevents the nucleophilic attack by the 3{prime} hydroxyl group of cytidine75.« less

  16. Insights into the Structural Dynamics of Nucleocytoplasmic Transport of tRNA by Exportin-t

    PubMed Central

    Gupta, Asmita; Kailasam, Senthilkumar; Bansal, Manju

    2016-01-01

    Exportin-t (Xpot) transports mature 5′- and 3′-end processed tRNA from the nucleus to the cytoplasm by associating with a small G-protein Ran (RAs-related nuclear protein), in the nucleus. The release of tRNA in cytoplasm involves RanGTP hydrolysis. Despite the availability of crystal structures of nuclear and cytosolic forms of Xpot, the molecular details regarding the sequential events leading to tRNA release and subsequent conformational changes occurring in Xpot remain unknown. We have performed a combination of classical all-atom and accelerated molecular dynamics simulations on a set of complexes involving Xpot to study a range of features including conformational flexibility of free and cargo-bound Xpot and functionally critical contacts between Xpot and its cargo. The systems investigated include free Xpot and its different complexes, bound either to Ran (GTP/GDP) or tRNA or both. This approach provided a statistically reliable estimate of structural dynamics of Xpot after cargo release. The mechanistic basis for Xpot opening after cargo release has been explained in terms of dynamic structural hinges, about which neighboring region could be displaced to facilitate the nuclear to cytosolic state transition. Post-RanGTP hydrolysis, a cascade of events including local conformational change in RanGTP and loss of critical contacts at Xpot/tRNA interface suggest factors responsible for eventual release of tRNA. The level of flexibility in different Xpot complexes varied depending on the arrangement of individual HEAT repeats. Current study provides one of the most comprehensive and robust analysis carried out on this protein using molecular dynamics schemes. PMID:27028637

  17. Coordination of tRNA transcription with export at nuclear pore complexes in budding yeast.

    PubMed

    Chen, Miao; Gartenberg, Marc R

    2014-05-01

    tRNAs are encoded by RNA polymerase III-transcribed genes that reside at seemingly random intervals along the chromosomes of budding yeast. Existing evidence suggests that the genes congregate together at the nucleolus and/or centromeres. In this study, we re-examined spatial and temporal aspects of tRNA gene (tDNA) expression. We show that tDNA transcription fluctuates during cell cycle progression. In M phase, when tRNA synthesis peaks, tDNAs localize at nuclear pore complexes (NPCs). Docking of a tDNA requires the DNA sequence of the contacted gene, nucleoporins Nup60 and Nup2, and cohesin. Characterization of mutants that block NPC localization revealed that docking is a consequence of elevated tDNA transcription. NPC-tDNA contact falters in the absence of the principal exportin of nascent tRNA, Los1, and genetic assays indicate that gating of tDNAs at NPCs favors cytoplasmic accumulation of functional tRNA. Collectively, the data suggest that tDNAs associate with NPCs to coordinate RNA polymerase III transcription with the nuclear export of pre-tRNA. The M-phase specificity of NPC contact reflects a regulatory mechanism that may have evolved, in part, to avoid collisions between DNA replication forks and transcribing RNA polymerase III machinery at NPCs.

  18. Coordination of tRNA transcription with export at nuclear pore complexes in budding yeast

    PubMed Central

    Chen, Miao; Gartenberg, Marc R.

    2014-01-01

    tRNAs are encoded by RNA polymerase III-transcribed genes that reside at seemingly random intervals along the chromosomes of budding yeast. Existing evidence suggests that the genes congregate together at the nucleolus and/or centromeres. In this study, we re-examined spatial and temporal aspects of tRNA gene (tDNA) expression. We show that tDNA transcription fluctuates during cell cycle progression. In M phase, when tRNA synthesis peaks, tDNAs localize at nuclear pore complexes (NPCs). Docking of a tDNA requires the DNA sequence of the contacted gene, nucleoporins Nup60 and Nup2, and cohesin. Characterization of mutants that block NPC localization revealed that docking is a consequence of elevated tDNA transcription. NPC–tDNA contact falters in the absence of the principal exportin of nascent tRNA, Los1, and genetic assays indicate that gating of tDNAs at NPCs favors cytoplasmic accumulation of functional tRNA. Collectively, the data suggest that tDNAs associate with NPCs to coordinate RNA polymerase III transcription with the nuclear export of pre-tRNA. The M-phase specificity of NPC contact reflects a regulatory mechanism that may have evolved, in part, to avoid collisions between DNA replication forks and transcribing RNA polymerase III machinery at NPCs. PMID:24788517

  19. Enhanced Dynamics of Hydrated tRNA on Nanodiamond Surfaces: A Combined Neutron Scattering and MD Simulation Study.

    PubMed

    Dhindsa, Gurpreet K; Bhowmik, Debsindhu; Goswami, Monojoy; O'Neill, Hugh; Mamontov, Eugene; Sumpter, Bobby G; Hong, Liang; Ganesh, Panchapakesan; Chu, Xiang-Qiang

    2016-09-14

    Nontoxic, biocompatible nanodiamonds (ND) have recently been implemented in rational, systematic design of optimal therapeutic use in nanomedicines. However, hydrophilicity of the ND surface strongly influences structure and dynamics of biomolecules that restrict in situ applications of ND. Therefore, fundamental understanding of the impact of hydrophilic ND surface on biomolecules at the molecular level is essential. For tRNA, we observe an enhancement of dynamical behavior in the presence of ND contrary to generally observed slow motion at strongly interacting interfaces. We took advantage of neutron scattering experiments and computer simulations to demonstrate this atypical faster dynamics of tRNA on ND surface. The strong attractive interactions between ND, tRNA, and water give rise to unlike dynamical behavior and structural changes of tRNA in front of ND compared to without ND. Our new findings may provide new design principles for safer, improved drug delivery platforms.

  20. Examinations of tRNA Range of Motion Using Simulations of Cryo-EM Microscopy and X-Ray Data.

    PubMed

    Caulfield, Thomas R; Devkota, Batsal; Rollins, Geoffrey C

    2011-01-01

    We examined tRNA flexibility using a combination of steered and unbiased molecular dynamics simulations. Using Maxwell's demon algorithm, molecular dynamics was used to steer X-ray structure data toward that from an alternative state obtained from cryogenic-electron microscopy density maps. Thus, we were able to fit X-ray structures of tRNA onto cryogenic-electron microscopy density maps for hybrid states of tRNA. Additionally, we employed both Maxwell's demon molecular dynamics simulations and unbiased simulation methods to identify possible ribosome-tRNA contact areas where the ribosome may discriminate tRNAs during translation. Herein, we collected >500 ns of simulation data to assess the global range of motion for tRNAs. Biased simulations can be used to steer between known conformational stop points, while unbiased simulations allow for a general testing of conformational space previously unexplored. The unbiased molecular dynamics data describes the global conformational changes of tRNA on a sub-microsecond time scale for comparison with steered data. Additionally, the unbiased molecular dynamics data was used to identify putative contacts between tRNA and the ribosome during the accommodation step of translation. We found that the primary contact regions were H71 and H92 of the 50S subunit and ribosomal proteins L14 and L16.

  1. Enhanced dynamics of hydrated tRNA on nanodiamond surfaces: A combined neutron scattering and MD simulation study

    DOE PAGES

    Dhindsa, Gurpreet K.; Bhowmik, Debsindhu; Goswami, Monojoy; ...

    2016-09-01

    Nontoxic, biocompatible nanodiamonds (ND) have recently been implemented in rational, systematic design of optimal therapeutic use in nanomedicines. However, hydrophilicity of the ND surface strongly influences structure and dynamics of biomolecules that restrict in situ applications of ND. Therefore, fundamental understanding of the impact of hydrophilic ND surface on biomolecules at the molecular level is essential. For tRNA, we observe an enhancement of dynamical behavior in the presence of ND contrary to generally observed slow motion at strongly interacting interfaces. We took advantage of neutron scattering experiments and computer simulations to demonstrate this atypical faster dynamics of tRNA on NDmore » surface. The strong attractive interactions between ND, tRNA, and water give rise to unlike dynamical behavior and structural changes of tRNA in front of ND compared to without ND. As a result, our new findings may provide new design principles for safer, improved drug delivery platforms.« less

  2. Examinations of tRNA Range of Motion Using Simulations of Cryo-EM Microscopy and X-Ray Data

    PubMed Central

    Caulfield, Thomas R.; Devkota, Batsal; Rollins, Geoffrey C.

    2011-01-01

    We examined tRNA flexibility using a combination of steered and unbiased molecular dynamics simulations. Using Maxwell's demon algorithm, molecular dynamics was used to steer X-ray structure data toward that from an alternative state obtained from cryogenic-electron microscopy density maps. Thus, we were able to fit X-ray structures of tRNA onto cryogenic-electron microscopy density maps for hybrid states of tRNA. Additionally, we employed both Maxwell's demon molecular dynamics simulations and unbiased simulation methods to identify possible ribosome-tRNA contact areas where the ribosome may discriminate tRNAs during translation. Herein, we collected >500 ns of simulation data to assess the global range of motion for tRNAs. Biased simulations can be used to steer between known conformational stop points, while unbiased simulations allow for a general testing of conformational space previously unexplored. The unbiased molecular dynamics data describes the global conformational changes of tRNA on a sub-microsecond time scale for comparison with steered data. Additionally, the unbiased molecular dynamics data was used to identify putative contacts between tRNA and the ribosome during the accommodation step of translation. We found that the primary contact regions were H71 and H92 of the 50S subunit and ribosomal proteins L14 and L16. PMID:21716650

  3. Protein kinase A is part of a mechanism that regulates nuclear reimport of the nuclear tRNA export receptors Los1p and Msn5p.

    PubMed

    Pierce, Jacqueline B; van der Merwe, George; Mangroo, Dev

    2014-02-01

    The two main signal transduction mechanisms that allow eukaryotes to sense and respond to changes in glucose availability in the environment are the cyclic AMP (cAMP)/protein kinase A (PKA) and AMP-activated protein kinase (AMPK)/Snf1 kinase-dependent pathways. Previous studies have shown that the nuclear tRNA export process is inhibited in Saccharomyces cerevisiae deprived of glucose. However, the signal transduction pathway involved and the mechanism by which glucose availability regulates nuclear-cytoplasmic tRNA trafficking are not understood. Here, we show that inhibition of nuclear tRNA export is caused by a block in nuclear reimport of the tRNA export receptors during glucose deprivation. Cytoplasmic accumulation of the tRNA export receptors during glucose deprivation is not caused by activation of Snf1p. Evidence obtained suggests that PKA is part of the mechanism that regulates nuclear reimport of the tRNA export receptors in response to glucose availability. This mechanism does not appear to involve phosphorylation of the nuclear tRNA export receptors by PKA. The block in nuclear reimport of the tRNA export receptors appears to be caused by activation of an unidentified mechanism when PKA is turned off during glucose deprivation. Taken together, the data suggest that PKA facilitates return of the tRNA export receptors to the nucleus by inhibiting an unidentified activity that facilitates cytoplasmic accumulation of the tRNA export receptors when glucose in the environment is limiting. A PKA-independent mechanism was also found to regulate nuclear tRNA export in response to glucose availability. This mechanism, however, does not regulate nuclear reimport of the tRNA export receptors.

  4. Protein Kinase A Is Part of a Mechanism That Regulates Nuclear Reimport of the Nuclear tRNA Export Receptors Los1p and Msn5p

    PubMed Central

    Pierce, Jacqueline B.; van der Merwe, George

    2014-01-01

    The two main signal transduction mechanisms that allow eukaryotes to sense and respond to changes in glucose availability in the environment are the cyclic AMP (cAMP)/protein kinase A (PKA) and AMP-activated protein kinase (AMPK)/Snf1 kinase-dependent pathways. Previous studies have shown that the nuclear tRNA export process is inhibited in Saccharomyces cerevisiae deprived of glucose. However, the signal transduction pathway involved and the mechanism by which glucose availability regulates nuclear-cytoplasmic tRNA trafficking are not understood. Here, we show that inhibition of nuclear tRNA export is caused by a block in nuclear reimport of the tRNA export receptors during glucose deprivation. Cytoplasmic accumulation of the tRNA export receptors during glucose deprivation is not caused by activation of Snf1p. Evidence obtained suggests that PKA is part of the mechanism that regulates nuclear reimport of the tRNA export receptors in response to glucose availability. This mechanism does not appear to involve phosphorylation of the nuclear tRNA export receptors by PKA. The block in nuclear reimport of the tRNA export receptors appears to be caused by activation of an unidentified mechanism when PKA is turned off during glucose deprivation. Taken together, the data suggest that PKA facilitates return of the tRNA export receptors to the nucleus by inhibiting an unidentified activity that facilitates cytoplasmic accumulation of the tRNA export receptors when glucose in the environment is limiting. A PKA-independent mechanism was also found to regulate nuclear tRNA export in response to glucose availability. This mechanism, however, does not regulate nuclear reimport of the tRNA export receptors. PMID:24297441

  5. The m1A(58) modification in eubacterial tRNA: An overview of tRNA recognition and mechanism of catalysis by TrmI.

    PubMed

    Dégut, Clément; Ponchon, Luc; Folly-Klan, Marcia; Barraud, Pierre; Tisné, Carine

    2016-03-01

    The enzymes of the TrmI family catalyze the formation of the m(1)A58 modification in tRNA. We previously solved the crystal structure of the Thermus thermophilus enzyme and conducted a biophysical study to characterize the interaction between TrmI and tRNA. TrmI enzymes are active as a tetramer and up to two tRNAs can bind to TrmI simultaneously. In this paper, we present the structures of two TrmI mutants (D170A and Y78A). These residues are conserved in the active site of TrmIs and their mutations result in a dramatic alteration of TrmI activity. Both structures of TrmI mutants revealed the flexibility of the N-terminal domain that is probably important to bind tRNA. The structure of TrmI Y78A catalytic domain is unmodified regarding the binding of the SAM co-factor and the conformation of residues potentially interacting with the substrate adenine. This structure reinforces the previously proposed role of Y78, i.e. stabilize the conformation of the A58 ribose needed to hold the adenosine in the active site. The structure of the D170A mutant shows a flexible active site with one loop occupying in part the place of the co-factor and the second loop moving at the entrance to the active site. This structure and recent data confirms the central role of D170 residue binding the amino moiety of SAM and the exocyclic amino group of adenine. Possible mechanisms for methyl transfer are then discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Binding of the 3' terminus of tRNA to 23S rRNA in the ribosomal exit site actively promotes translocation.

    PubMed Central

    Lill, R; Robertson, J M; Wintermeyer, W

    1989-01-01

    A key event in ribosomal protein synthesis is the translocation of deacylated tRNA, peptidyl tRNA and mRNA, which is catalyzed by elongation factor G (EF-G) and requires GTP. To address the molecular mechanism of the reaction we have studied the functional role of a tRNA exit site (E site) for tRNA release during translocation. We show that modifications of the 3' end of tRNAPhe, which considerably decrease the affinity of E-site binding, lower the translocation rate up to 40-fold. Furthermore, 3'-end modifications lower or abolish the stimulation by P site-bound tRNA of the GTPase activity of EF-G on the ribosome. The results suggest that a hydrogen-bonding interaction of the 3'-terminal adenine of the leaving tRNA in the E site, most likely base-pairing with 23S rRNA, is essential for the translocation reaction. Furthermore, this interaction stimulates the GTP hydrolyzing activity of EF-G on the ribosome. We propose the following molecular model of translocation: after the binding of EF-G.GTP, the P site-bound tRNA, by a movement of the 3'-terminal single-stranded ACCA tail, establishes an interaction with 23S rRNA in the adjacent E site, thereby initiating the tRNA transfer from the P site to the E site and promoting GTP hydrolysis. The co-operative interaction between the E site and the EF-G binding site, which are distantly located on the 50S ribosomal subunit, is probably mediated by a conformational change of 23S rRNA. PMID:2583120

  7. tRNAomics: tRNA gene copy number variation and codon use provide bioinformatic evidence of a new anticodon:codon wobble pair in a eukaryote

    PubMed Central

    Iben, James R.; Maraia, Richard J.

    2012-01-01

    tRNA genes are interspersed throughout eukaryotic DNA, contributing to genome architecture and evolution in addition to translation of the transcriptome. Codon use correlates with tRNA gene copy number in noncomplex organisms including yeasts. Synonymous codons impact translation with various outcomes, dependent on relative tRNA abundances. Availability of whole-genome sequences allowed us to examine tRNA gene copy number variation (tgCNV) and codon use in four Schizosaccharomyces species and Saccharomyces cerevisiae. tRNA gene numbers vary from 171 to 322 in the four Schizosaccharomyces despite very high similarity in other features of their genomes. In addition, we performed whole-genome sequencing of several related laboratory strains of Schizosaccharomyces pombe and found tgCNV at a cluster of tRNA genes. We examined for the first time effects of wobble rules on correlation of tRNA gene number and codon use and showed improvement for S. cerevisiae and three of the Schizosaccharomyces species. In contrast, correlation in Schizosaccharomyces japonicus is poor due to markedly divergent tRNA gene content, and much worsened by the wobble rules. In japonicus, some tRNA iso-acceptor genes are absent and others are greatly reduced relative to the other yeasts, while genes for synonymous wobble iso-acceptors are amplified, indicating wobble use not apparent in any other eukaryote. We identified a subset of japonicus-specific wobbles that improves correlation of codon use and tRNA gene content in japonicus. We conclude that tgCNV is high among Schizo species and occurs in related laboratory strains of S. pombe (and expectedly other species), and tRNAome-codon analyses can provide insight into species-specific wobble decoding. PMID:22586155

  8. Rearrangement of mitochondrial tRNA genes in flat bugs (Hemiptera: Aradidae).

    PubMed

    Song, Fan; Li, Hu; Shao, Renfu; Shi, Aimin; Bai, Xiaoshuan; Zheng, Xiaorong; Heiss, Ernst; Cai, Wanzhi

    2016-05-16

    The typical insect mitochondrial (mt) genome organization, which contains a single chromosome with 37 genes, was found in the infraorder Pentatomomorpha (suborder Heteroptera). The arrangement of mt genes in these true bugs is usually the same as the ancestral mt gene arrangement of insects. Rearrangement of transfer RNA (tRNA) genes, however, has been found in two subfamilies of flat bugs (Mezirinae and Calisiinae, family Aradidae). In this study, we sequenced the complete mt genomes of four species from three other subfamilies (Aradinae, Carventinae and Aneurinae). We found tRNA gene rearrangement in all of these four species. All of the rearranged tRNA genes are located between the mitochondrial control region and cox1, indicating this region as a hotspot for gene rearrangement in flat bugs; the rearrangement is likely caused by events of tandem duplication and random deletion of genes. Furthermore, our phylogenetic and dating analyses indicated that the swap of positions between trnQ and trnI occurred ~162 million years ago (MYA) in the most recent common ancestor of the five subfamilies of flat bugs investigated to date, whereas the swap of positions between trnC and trnW occurred later in the lineage leading to Calisiinae, and the translocation of trnC and trnY occurred later than 134 MYA in the lineage leading to Aradinae.

  9. Rearrangement of mitochondrial tRNA genes in flat bugs (Hemiptera: Aradidae)

    PubMed Central

    Song, Fan; Li, Hu; Shao, Renfu; Shi, Aimin; Bai, Xiaoshuan; Zheng, Xiaorong; Heiss, Ernst; Cai, Wanzhi

    2016-01-01

    The typical insect mitochondrial (mt) genome organization, which contains a single chromosome with 37 genes, was found in the infraorder Pentatomomorpha (suborder Heteroptera). The arrangement of mt genes in these true bugs is usually the same as the ancestral mt gene arrangement of insects. Rearrangement of transfer RNA (tRNA) genes, however, has been found in two subfamilies of flat bugs (Mezirinae and Calisiinae, family Aradidae). In this study, we sequenced the complete mt genomes of four species from three other subfamilies (Aradinae, Carventinae and Aneurinae). We found tRNA gene rearrangement in all of these four species. All of the rearranged tRNA genes are located between the mitochondrial control region and cox1, indicating this region as a hotspot for gene rearrangement in flat bugs; the rearrangement is likely caused by events of tandem duplication and random deletion of genes. Furthermore, our phylogenetic and dating analyses indicated that the swap of positions between trnQ and trnI occurred ~162 million years ago (MYA) in the most recent common ancestor of the five subfamilies of flat bugs investigated to date, whereas the swap of positions between trnC and trnW occurred later in the lineage leading to Calisiinae, and the translocation of trnC and trnY occurred later than 134 MYA in the lineage leading to Aradinae. PMID:27180804

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giannone, Richard J.; Wurch, Louie L.; Podar, Mircea

    The marine archaeon Nanoarchaeum equitans is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. It is thought that this interaction is membrane-associated, involving a myriad of membrane-anchored proteins; proteomic efforts to better characterize this difficult to analyze interface are paramount to uncovering the mechanism of their association. By extending multienzyme digestion strategies that use sample filtration to recover underdigested proteins for reprocessing/consecutive proteolytic digestion, we applied chymotrypsin to redigest the proteinaceous material left over after initial proteolysis with trypsin of sodium dodecyl sulfate (SDS)-extracted I. hospitalis-N. equitansproteins. We show that proteins with increased hydrophobic character, includingmore » membrane proteins with multiple transmembrane helices, are enriched and recovered in the underdigested fraction. Chymotryptic reprocessing provided significant sequence coverage gains in both soluble and hydrophobic proteins alike, with the latter benefiting more so in terms of membrane protein representation. Moreover, these gains were despite a large proportion of high-quality peptide spectra remaining unassigned in the underdigested fraction suggesting high levels of protein modification on these often surface-exposed proteins. Importantly, these gains were achieved without applying extensive fractionation strategies usually required for thorough characterization of membrane-associated proteins and were facilitated by the generation of a distinct, complementary set of peptides that aid in both the identification and quantitation of this important, under-represented class of proteins.« less

  11. Rescuing Those Left Behind: Recovering and Characterizing Underdigested Membrane and Hydrophobic Proteins To Enhance Proteome Measurement Depth

    DOE PAGES

    Giannone, Richard J.; Wurch, Louie L.; Podar, Mircea; ...

    2015-06-25

    The marine archaeon Nanoarchaeum equitans is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. It is thought that this interaction is membrane-associated, involving a myriad of membrane-anchored proteins; proteomic efforts to better characterize this difficult to analyze interface are paramount to uncovering the mechanism of their association. By extending multienzyme digestion strategies that use sample filtration to recover underdigested proteins for reprocessing/consecutive proteolytic digestion, we applied chymotrypsin to redigest the proteinaceous material left over after initial proteolysis with trypsin of sodium dodecyl sulfate (SDS)-extracted I. hospitalis-N. equitansproteins. We show that proteins with increased hydrophobic character, includingmore » membrane proteins with multiple transmembrane helices, are enriched and recovered in the underdigested fraction. Chymotryptic reprocessing provided significant sequence coverage gains in both soluble and hydrophobic proteins alike, with the latter benefiting more so in terms of membrane protein representation. Moreover, these gains were despite a large proportion of high-quality peptide spectra remaining unassigned in the underdigested fraction suggesting high levels of protein modification on these often surface-exposed proteins. Importantly, these gains were achieved without applying extensive fractionation strategies usually required for thorough characterization of membrane-associated proteins and were facilitated by the generation of a distinct, complementary set of peptides that aid in both the identification and quantitation of this important, under-represented class of proteins.« less

  12. In vivo biochemical analyses reveal distinct roles of β-importins and eEF1A in tRNA subcellular traffic

    PubMed Central

    Huang, Hsiao-Yun

    2015-01-01

    Bidirectional tRNA movement between the nucleus and the cytoplasm serves multiple biological functions. To gain a biochemical understanding of the mechanisms for tRNA subcellular dynamics, we developed in vivo β-importin complex coimmunoprecipitation (co-IP) assays using budding yeast. Our studies provide the first in vivo biochemical evidence that two β-importin family members, Los1 (exportin-t) and Msn5 (exportin-5), serve overlapping but distinct roles in tRNA nuclear export. Los1 assembles complexes with RanGTP and tRNA. Both intron-containing pre-tRNAs and spliced tRNAs, regardless of whether they are aminoacylated, assemble into Los1–RanGTP complexes, documenting that Los1 participates in both primary nuclear export and re-export of tRNAs to the cytoplasm. In contrast, β-importin Msn5 preferentially assembles with RanGTP and spliced, aminoacylated tRNAs, documenting its role in tRNA nuclear re-export. Tef1/2 (the yeast form of translation elongation factor 1α [eEF1A]) aids the specificity of Msn5 for aminoacylated tRNAs to form a quaternary complex consisting of Msn5, RanGTP, aminoacylated tRNA, and Tef1/2. Assembly and/or stability of this quaternary complex requires Tef1/2, thereby facilitating efficient re-export of aminoacylated tRNAs to the cytoplasm. PMID:25838545

  13. Cloning and characterization of LOS1, a Saccharomyces cerevisiae gene that affects tRNA splicing.

    PubMed

    Hurt, D J; Wang, S S; Lin, Y H; Hopper, A K

    1987-03-01

    Saccharomyces cerevisiae strains carrying los1-1 mutations are defective in tRNA processing; at 37 degrees C, such strains accumulate tRNA precursors which have mature 5' and 3' ends but contain intervening sequences. Strains bearing los1-1 and an intron-containing ochre-suppressing tRNA gene, SUP4(0), also fail to suppress the ochre mutations ade2-1(0) and can1-100(0) at 34 degrees C. To understand the role of the LOS1 product in tRNA splicing, we initiated a molecular study of the LOS1 gene. Two plasmids, YEpLOS1 and YCpLOS1, that complement the los1-1 phenotype were isolated from the YEp24 and YCp50 libraries, respectively. YEpLOS1 and YCpLOS1 had overlapping restriction maps, indicating that the DNA in the overlapping segment could complement los1-1 when present in multiple or single copy. Integration of plasmid DNA at the LOS1 locus confirmed that these clones contained authentic LOS1 sequences. Southern analyses showed that LOS1 is a single copy gene. The locations of the LOS1 gene within YEpLOS1 and YCpLOS1 were determined by deletion and gamma-delta mapping. Two genomic disruptions of the LOS1 gene were constructed, i.e., an insertion of a 1.2-kilobase fragment carrying the yeast URA3 gene, los1::URA3, and a 2.4-kilobase deletion from the LOS1 gene, los1-delta V. Disruption or deletion of most of the LOS1 gene was not lethal; cells carrying the disrupted los1 alleles were viable and had phenotypes similar to those of cells carrying the los1-1 allele. Thus, it appears that the los1 gene product expedites tRNA splicing at elevated temperatures but is not essential for this process.

  14. TRNA mutations that affect decoding fidelity deregulate development and the proteostasis network in zebrafish

    PubMed Central

    Reverendo, Marisa; Soares, Ana R; Pereira, Patrícia M; Carreto, Laura; Ferreira, Violeta; Gatti, Evelina; Pierre, Philippe; Moura, Gabriela R; Santos, Manuel A

    2014-01-01

    Mutations in genes that encode tRNAs, aminoacyl-tRNA syntheases, tRNA modifying enzymes and other tRNA interacting partners are associated with neuropathies, cancer, type-II diabetes and hearing loss, but how these mutations cause disease is unclear. We have hypothesized that levels of tRNA decoding error (mistranslation) that do not fully impair embryonic development can accelerate cell degeneration through proteome instability and saturation of the proteostasis network. To test this hypothesis we have induced mistranslation in zebrafish embryos using mutant tRNAs that misincorporate Serine (Ser) at various non-cognate codon sites. Embryo viability was affected and malformations were observed, but a significant proportion of embryos survived by activating the unfolded protein response (UPR), the ubiquitin proteasome pathway (UPP) and downregulating protein biosynthesis. Accumulation of reactive oxygen species (ROS), mitochondrial and nuclear DNA damage and disruption of the mitochondrial network, were also observed, suggesting that mistranslation had a strong negative impact on protein synthesis rate, ER and mitochondrial homeostasis. We postulate that mistranslation promotes gradual cellular degeneration and disease through protein aggregation, mitochondrial dysfunction and genome instability. PMID:25483040

  15. Yeast Los1p Has Properties of an Exportin-Like Nucleocytoplasmic Transport Factor for tRNA

    PubMed Central

    Hellmuth, Klaus; Lau, Denise M.; Bischoff, F. Ralf; Künzler, Markus; Hurt, Ed; Simos, George

    1998-01-01

    Saccharomyces cerevisiae Los1p, which is genetically linked to the nuclear pore protein Nsp1p and several tRNA biogenesis factors, was recently grouped into the family of importin/karyopherin-β-like proteins on the basis of its sequence similarity. In a two-hybrid screen, we identified Nup2p as a nucleoporin interacting with Los1p. Subsequent purification of Los1p from yeast demonstrates its physical association not only with Nup2p but also with Nsp1p. By the use of the Gsp1p-G21V mutant, Los1p was shown to preferentially bind to the GTP-bound form of yeast Ran. Furthermore, overexpression of full-length or N-terminally truncated Los1p was shown to have dominant-negative effects on cell growth and different nuclear export pathways. Finally, Los1p could interact with Gsp1p-GTP, but only in the presence of tRNA, as revealed in an indirect in vitro binding assay. These data confirm the homology between Los1p and the recently identified human exportin for tRNA and reinforce the possibility of a role for Los1p in nuclear export of tRNA in yeast. PMID:9774653

  16. Topological constraints are major determinants of tRNA tertiary structure and dynamics and provide basis for tertiary folding cooperativity

    PubMed Central

    Mustoe, Anthony M.; Brooks, Charles L.; Al-Hashimi, Hashim M.

    2014-01-01

    Recent studies have shown that basic steric and connectivity constraints encoded at the secondary structure level are key determinants of 3D structure and dynamics in simple two-way RNA junctions. However, the role of these topological constraints in higher order RNA junctions remains poorly understood. Here, we use a specialized coarse-grained molecular dynamics model to directly probe the thermodynamic contributions of topological constraints in defining the 3D architecture and dynamics of transfer RNA (tRNA). Topological constraints alone restrict tRNA's allowed conformational space by over an order of magnitude and strongly discriminate against formation of non-native tertiary contacts, providing a sequence independent source of folding specificity. Topological constraints also give rise to long-range correlations between the relative orientation of tRNA's helices, which in turn provides a mechanism for encoding thermodynamic cooperativity between distinct tertiary interactions. These aspects of topological constraints make it such that only several tertiary interactions are needed to confine tRNA to its native global structure and specify functionally important 3D dynamics. We further show that topological constraints are conserved across tRNA's different naturally occurring secondary structures. Taken together, our results emphasize the central role of secondary-structure-encoded topological constraints in defining RNA 3D structure, dynamics and folding. PMID:25217593

  17. T box transcription antitermination riboswitch: Influence of nucleotide sequence and orientation on tRNA binding by the antiterminator element

    PubMed Central

    Fauzi, Hamid; Agyeman, Akwasi; Hines, Jennifer V.

    2008-01-01

    Many bacteria utilize riboswitch transcription regulation to monitor and appropriately respond to cellular levels of important metabolites or effector molecules. The T box transcription antitermination riboswitch responds to cognate uncharged tRNA by specifically stabilizing an antiterminator element in the 5′-untranslated mRNA leader region and precluding formation of a thermodynamically more stable terminator element. Stabilization occurs when the tRNA acceptor end base pairs with the first four nucleotides in the seven nucleotide bulge of the highly conserved antiterminator element. The significance of the conservation of the antiterminator bulge nucleotides that do not base pair with the tRNA is unknown, but they are required for optimal function. In vitro selection was used to determine if the isolated antiterminator bulge context alone dictates the mode in which the tRNA acceptor end binds the bulge nucleotides. No sequence conservation beyond complementarity was observed and the location was not constrained to the first four bases of the bulge. The results indicate that formation of a structure that recognizes the tRNA acceptor end in isolation is not the determinant driving force for the high phylogenetic sequence conservation observed within the antiterminator bulge. Additional factors or T box leader features more likely influenced the phylogenetic sequence conservation. PMID:19152843

  18. Small tandemly repeated DNA sequences of higher plants likely originate from a tRNA gene ancestor.

    PubMed Central

    Benslimane, A A; Dron, M; Hartmann, C; Rode, A

    1986-01-01

    Several monomers (177 bp) of a tandemly arranged repetitive nuclear DNA sequence of Brassica oleracea have been cloned and sequenced. They share up to 95% homology between one another and up to 80% with other satellite DNA sequences of Cruciferae, suggesting a common ancestor. Both strands of these monomers show more than 50% homology with many tRNA genes; the best homologies have been obtained with Lys and His yeast mitochondrial tRNA genes (respectively 64% and 60%). These results suggest that small tandemly repeated DNA sequences of plants may have evolved from a tRNA gene ancestor. These tandem repeats have probably arisen via a process involving reverse transcription of polymerase III RNA intermediates, as is the case for interspersed DNA sequences of mammalians. A model is proposed to explain the formation of such small tandemly repeated DNA sequences. Images PMID:3774553

  19. tRNA Shifts the G-quadruplex-Hairpin Conformational Equilibrium in RNA towards the Hairpin Conformer.

    PubMed

    Rode, Ambadas B; Endoh, Tamaki; Sugimoto, Naoki

    2016-11-07

    Non-coding RNAs play important roles in cellular homeostasis and are involved in many human diseases including cancer. Intermolecular RNA-RNA interactions are the basis for the diverse functions of many non-coding RNAs. Herein, we show how the presence of tRNA influences the equilibrium between hairpin and G-quadruplex conformations in the 5' untranslated regions of oncogenes and model sequences. Kinetic and equilibrium analyses of the hairpin to G-quadruplex conformational transition of purified RNA as well as during co-transcriptional folding indicate that tRNA significantly shifts the equilibrium toward the hairpin conformer. The enhancement of relative translation efficiency in a reporter gene assay is shown to be due to the tRNA-mediated shift in hairpin-G-quadruplex equilibrium of oncogenic mRNAs. Our findings suggest that tRNA is a possible therapeutic target in diseases in which RNA conformational equilibria is dysregulated. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. In vivo biochemical analyses reveal distinct roles of β-importins and eEF1A in tRNA subcellular traffic.

    PubMed

    Huang, Hsiao-Yun; Hopper, Anita K

    2015-04-01

    Bidirectional tRNA movement between the nucleus and the cytoplasm serves multiple biological functions. To gain a biochemical understanding of the mechanisms for tRNA subcellular dynamics, we developed in vivo β-importin complex coimmunoprecipitation (co-IP) assays using budding yeast. Our studies provide the first in vivo biochemical evidence that two β-importin family members, Los1 (exportin-t) and Msn5 (exportin-5), serve overlapping but distinct roles in tRNA nuclear export. Los1 assembles complexes with RanGTP and tRNA. Both intron-containing pre-tRNAs and spliced tRNAs, regardless of whether they are aminoacylated, assemble into Los1-RanGTP complexes, documenting that Los1 participates in both primary nuclear export and re-export of tRNAs to the cytoplasm. In contrast, β-importin Msn5 preferentially assembles with RanGTP and spliced, aminoacylated tRNAs, documenting its role in tRNA nuclear re-export. Tef1/2 (the yeast form of translation elongation factor 1α [eEF1A]) aids the specificity of Msn5 for aminoacylated tRNAs to form a quaternary complex consisting of Msn5, RanGTP, aminoacylated tRNA, and Tef1/2. Assembly and/or stability of this quaternary complex requires Tef1/2, thereby facilitating efficient re-export of aminoacylated tRNAs to the cytoplasm. © 2015 Huang and Hopper; Published by Cold Spring Harbor Laboratory Press.

  1. The absence of A-to-I editing in the anticodon of plant cytoplasmic tRNA (Arg) ACG demands a relaxation of the wobble decoding rules.

    PubMed

    Aldinger, Carolin A; Leisinger, Anne-Katrin; Gaston, Kirk W; Limbach, Patrick A; Igloi, Gabor L

    2012-10-01

    It is a prevalent concept that, in line with the Wobble Hypothesis, those tRNAs having an adenosine in the first position of the anticodon become modified to an inosine at this position. Sequencing the cDNA derived from the gene coding for cytoplasmic tRNA (Arg) ACG from several higher plants as well as mass spectrometric analysis of the isoacceptor has revealed that for this kingdom an unmodified A in the wobble position of the anticodon is the rule rather than the exception. In vitro translation shows that in the plant system the absence of inosine in the wobble position of tRNA (Arg) does not prevent decoding. This isoacceptor belongs to the class of tRNA that is imported from the cytoplasm into the mitochondria of higher plants. Previous studies on the mitochondrial tRNA pool have demonstrated the existence of tRNA (Arg) ICG in this organelle. In moss the mitochondrial encoded distinct tRNA (Arg) ACG isoacceptor possesses the I34 modification. The implication is that for mitochondrial protein biosynthesis A-to-I editing is necessary and occurs by a mitochondrion-specific deaminase after import of the unmodified nuclear encoded tRNA (Arg) ACG.

  2. Independent suppression of ribosomal +1 frameshifts by different tRNA anticodon loop modifications.

    PubMed

    Klassen, Roland; Bruch, Alexander; Schaffrath, Raffael

    2017-09-02

    Recently, a role for the anticodon wobble uridine modification 5-methoxycarbonylmethyl-2-thiouridine (mcm 5 s 2 U) has been revealed in the suppression of translational +1 frameshifts in Saccharomyces cerevisiae. Loss of either the mcm 5 U or s 2 U parts of the modification elevated +1 frameshift rates and results obtained with reporters involving a tRNA Lys UUU dependent frameshift site suggested these effects are caused by reduced ribosomal A-site binding of the hypomodified tRNA. Combined loss of mcm 5 U and s 2 U leads to increased ribosome pausing at tRNA Lys UUU dependent codons and synergistic growth defects but effects on +1 frameshift rates remained undefined to this end. We show in here that simultaneous removal of mcm 5 U and s 2 U results in synergistically increased +1 frameshift rates that are suppressible by extra copies of tRNA Lys UUU . Thus, two distinct chemical modifications of the same wobble base independently contribute to reading frame maintenance, loss of which may cause or contribute to observed growth defects. Since the thiolation pathway is sensitive to moderately elevated temperatures in yeast, we observe a heat-induced increase of +1 frameshift rates in wild type cells that depends on the sulfur transfer protein Urm1. Furthermore, we find that temperature-induced frameshifting is kept in check by the dehydration of N6-threonylcarbamoyladenosine (t 6 A) to its cyclic derivative (ct 6 A) at the anticodon adjacent position 37. Since loss of ct 6 A in elp3 or urm1 mutant cells is detrimental for temperature stress resistance we assume that conversion of t 6 A to ct 6 A serves to limit deleterious effects on translational fidelity caused by hypomodified states of wobble uridine bases.

  3. Fluorescence probing of T box antiterminator RNA: Insights into riboswitch discernment of the tRNA discriminator base

    PubMed Central

    Means, John A.; Simson, Crystal M.; Zhou, Shu; Rachford, Aaron A.; Rack, Jeffrey J.; Hines, Jennifer V.

    2009-01-01

    The T box transcription antitermination riboswitch is one of the main regulatory mechanisms utilized by Gram-positive bacteria to regulate genes that are involved in amino acid metabolism. The details of the antitermination event, including the role that Mg2+ plays, in this riboswitch have not been completely elucidated. In these studies, details of the antitermination event were investigated utilizing 2-aminopurine to monitor structural changes of a model antiterminator RNA when it was bound to model tRNA. Based on the results of these fluorescence studies, the model tRNA binds the model antiterminator RNA via an induced fit. This binding is enhanced by the presence of Mg2+, facilitating the complete base pairing of the model tRNA acceptor end with the complementary bases in the model antiterminator bulge. PMID:19755116

  4. Biosynthesis of Sulfur-Containing tRNA Modifications: A Comparison of Bacterial, Archaeal, and Eukaryotic Pathways

    PubMed Central

    Čavužić, Mirela; Liu, Yuchen

    2017-01-01

    Post-translational tRNA modifications have very broad diversity and are present in all domains of life. They are important for proper tRNA functions. In this review, we emphasize the recent advances on the biosynthesis of sulfur-containing tRNA nucleosides including the 2-thiouridine (s2U) derivatives, 4-thiouridine (s4U), 2-thiocytidine (s2C), and 2-methylthioadenosine (ms2A). Their biosynthetic pathways have two major types depending on the requirement of iron–sulfur (Fe–S) clusters. In all cases, the first step in bacteria and eukaryotes is to activate the sulfur atom of free l-cysteine by cysteine desulfurases, generating a persulfide (R-S-SH) group. In some archaea, a cysteine desulfurase is missing. The following steps of the bacterial s2U and s4U formation are Fe–S cluster independent, and the activated sulfur is transferred by persulfide-carrier proteins. By contrast, the biosynthesis of bacterial s2C and ms2A require Fe–S cluster dependent enzymes. A recent study shows that the archaeal s4U synthetase (ThiI) and the eukaryotic cytosolic 2-thiouridine synthetase (Ncs6) are Fe–S enzymes; this expands the role of Fe–S enzymes in tRNA thiolation to the Archaea and Eukarya domains. The detailed reaction mechanisms of Fe–S cluster depend s2U and s4U formation await further investigations. PMID:28287455

  5. PLMItRNA, a database for mitochondrial tRNA genes and tRNAs in photosynthetic eukaryotes.

    PubMed

    Damiano, F; Gallerani, R; Liuni, S; Licciulli, F; Ceci, L R

    2001-01-01

    The PLMItRNA database for mitochondrial tRNA molecules and genes in VIRIDIPLANTAE: (green plants) [Volpetti,V., Gallerani,R., DeBenedetto,C., Liuni,S., Licciulli,F. and Ceci,L.R. (2000) Nucleic Acids Res., 28, 159-162] has been enlarged to include algae. The database now contains 436 genes and 16 tRNA entries relative to 25 higher plants, eight green algae, four red algae (RHODOPHYTAE:) and two STRAMENOPILES: The PLMItRNA database is accessible via the WWW at http://bio-www.ba.cnr.it:8000/PLMItRNA.

  6. RNase MRP cleaves pre-tRNASer-Met in the tRNA maturation pathway.

    PubMed

    Saito, Yuichiro; Takeda, Jun; Adachi, Kousuke; Nobe, Yuko; Kobayashi, Junya; Hirota, Kouji; Oliveira, Douglas V; Taoka, Masato; Isobe, Toshiaki

    2014-01-01

    Ribonuclease mitochondrial RNA processing (RNase MRP) is a multifunctional ribonucleoprotein (RNP) complex that is involved in the maturation of various types of RNA including ribosomal RNA. RNase MRP consists of a potential catalytic RNA and several protein components, all of which are required for cell viability. We show here that the temperature-sensitive mutant of rmp1, the gene for a unique protein component of RNase MRP, accumulates the dimeric tRNA precursor, pre-tRNA(Ser-Met). To examine whether RNase MRP mediates tRNA maturation, we purified the RNase MRP holoenzyme from the fission yeast Schizosaccharomyces pombe and found that the enzyme directly and selectively cleaves pre-tRNA(Ser-Met), suggesting that RNase MRP participates in the maturation of specific tRNA in vivo. In addition, mass spectrometry-based ribonucleoproteomic analysis demonstrated that this RNase MRP consists of one RNA molecule and 11 protein components, including a previously unknown component Rpl701. Notably, limited nucleolysis of RNase MRP generated an active catalytic core consisting of partial mrp1 RNA fragments, which constitute "Domain 1" in the secondary structure of RNase MRP, and 8 proteins. Thus, the present study provides new insight into the structure and function of RNase MRP.

  7. RNase MRP Cleaves Pre-tRNASer-Met in the tRNA Maturation Pathway

    PubMed Central

    Adachi, Kousuke; Nobe, Yuko; Kobayashi, Junya; Hirota, Kouji; Oliveira, Douglas V.; Taoka, Masato; Isobe, Toshiaki

    2014-01-01

    Ribonuclease mitochondrial RNA processing (RNase MRP) is a multifunctional ribonucleoprotein (RNP) complex that is involved in the maturation of various types of RNA including ribosomal RNA. RNase MRP consists of a potential catalytic RNA and several protein components, all of which are required for cell viability. We show here that the temperature-sensitive mutant of rmp1, the gene for a unique protein component of RNase MRP, accumulates the dimeric tRNA precursor, pre-tRNASer-Met. To examine whether RNase MRP mediates tRNA maturation, we purified the RNase MRP holoenzyme from the fission yeast Schizosaccharomyces pombe and found that the enzyme directly and selectively cleaves pre-tRNASer-Met, suggesting that RNase MRP participates in the maturation of specific tRNA in vivo. In addition, mass spectrometry–based ribonucleoproteomic analysis demonstrated that this RNase MRP consists of one RNA molecule and 11 protein components, including a previously unknown component Rpl701. Notably, limited nucleolysis of RNase MRP generated an active catalytic core consisting of partial mrp1 RNA fragments, which constitute “Domain 1” in the secondary structure of RNase MRP, and 8 proteins. Thus, the present study provides new insight into the structure and function of RNase MRP. PMID:25401760

  8. Cloning and characterization of LOS1, a Saccharomyces cerevisiae gene that affects tRNA splicing.

    PubMed Central

    Hurt, D J; Wang, S S; Lin, Y H; Hopper, A K

    1987-01-01

    Saccharomyces cerevisiae strains carrying los1-1 mutations are defective in tRNA processing; at 37 degrees C, such strains accumulate tRNA precursors which have mature 5' and 3' ends but contain intervening sequences. Strains bearing los1-1 and an intron-containing ochre-suppressing tRNA gene, SUP4(0), also fail to suppress the ochre mutations ade2-1(0) and can1-100(0) at 34 degrees C. To understand the role of the LOS1 product in tRNA splicing, we initiated a molecular study of the LOS1 gene. Two plasmids, YEpLOS1 and YCpLOS1, that complement the los1-1 phenotype were isolated from the YEp24 and YCp50 libraries, respectively. YEpLOS1 and YCpLOS1 had overlapping restriction maps, indicating that the DNA in the overlapping segment could complement los1-1 when present in multiple or single copy. Integration of plasmid DNA at the LOS1 locus confirmed that these clones contained authentic LOS1 sequences. Southern analyses showed that LOS1 is a single copy gene. The locations of the LOS1 gene within YEpLOS1 and YCpLOS1 were determined by deletion and gamma-delta mapping. Two genomic disruptions of the LOS1 gene were constructed, i.e., an insertion of a 1.2-kilobase fragment carrying the yeast URA3 gene, los1::URA3, and a 2.4-kilobase deletion from the LOS1 gene, los1-delta V. Disruption or deletion of most of the LOS1 gene was not lethal; cells carrying the disrupted los1 alleles were viable and had phenotypes similar to those of cells carrying the los1-1 allele. Thus, it appears that the los1 gene product expedites tRNA splicing at elevated temperatures but is not essential for this process. Images PMID:3031485

  9. Site-specific crosslinking of 4-thiouridine-modified human tRNA(3Lys) to reverse transcriptase from human immunodeficiency virus type I.

    PubMed Central

    Mishima, Y; Steitz, J A

    1995-01-01

    We have mapped specific RNA-protein contacts between human immunodeficiency virus (HIV) type I reverse transcriptase (RT) and its natural primer, human tRNA(3Lys), using a site-specific crosslinking strategy. Four different tRNA(3Lys) constructs with a single 32P-labeled 4-thiouridine (4-thioU) residue at positions -1, 16, 36 or 41 were synthesized. After incubation with RT followed by irradiation, crosslinks were localized to either the p66 or p51 subunit of RT by digestion with nuclease and SDS gel fractionation. 4-thioU at position -1 or 16 transferred label to the p66 subunit almost exclusively (> 90%), whereas position 36 labeled both p66 and p51 (3:1). Position 41 yielded no detectable crosslinks. The region of p66 contacted by position -1 of tRNA(3Lys) was localized to the 203 C-terminal amino acids of RT by CNBr cleavage, whereas a 127 amino acid-CNBr peptide (residues 230-357) from both p66 and p51 was labeled by position 36. Functionality of the 4-thioU-modified tRNA(3Lys)(-1) crosslinked to RT in the presence of an RNA but not a DNA template was demonstrated by the ability of the tRNA to be extended. These results localize the 5' half of the tRNA on the interface between the two RT subunits, closer to the RNase H domain than to the polymerase active site, in accord with previous suggestions. They argue further that a specific binding site for the 5' end of the primer tRNA(3Lys) may exist within the C-terminal portion of the p66 subunit, which could be important for the initiation of reverse transcription. Images PMID:7540137

  10. The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during haematopoiesis.

    PubMed

    Tuorto, Francesca; Herbst, Friederike; Alerasool, Nader; Bender, Sebastian; Popp, Oliver; Federico, Giuseppina; Reitter, Sonja; Liebers, Reinhard; Stoecklin, Georg; Gröne, Hermann-Josef; Dittmar, Gunnar; Glimm, Hanno; Lyko, Frank

    2015-09-14

    The Dnmt2 enzyme utilizes the catalytic mechanism of eukaryotic DNA methyltransferases to methylate several tRNAs at cytosine 38. Dnmt2 mutant mice, flies, and plants were reported to be viable and fertile, and the biological function of Dnmt2 has remained elusive. Here, we show that endochondral ossification is delayed in newborn Dnmt2-deficient mice, which is accompanied by a reduction of the haematopoietic stem and progenitor cell population and a cell-autonomous defect in their differentiation. RNA bisulfite sequencing revealed that Dnmt2 methylates C38 of tRNA Asp(GTC), Gly(GCC), and Val(AAC), thus preventing tRNA fragmentation. Proteomic analyses from primary bone marrow cells uncovered systematic differences in protein expression that are due to specific codon mistranslation by tRNAs lacking Dnmt2-dependent methylation. Our observations demonstrate that Dnmt2 plays an important role in haematopoiesis and define a novel function of C38 tRNA methylation in the discrimination of near-cognate codons, thereby ensuring accurate polypeptide synthesis. © 2015 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  11. Amino acid signature enables proteins to recognize modified tRNA.

    PubMed

    Spears, Jessica L; Xiao, Xingqing; Hall, Carol K; Agris, Paul F

    2014-02-25

    Human tRNA(Lys3)UUU is the primer for HIV replication. The HIV-1 nucleocapsid protein, NCp7, facilitates htRNA(Lys3)UUU recruitment from the host cell by binding to and remodeling the tRNA structure. Human tRNA(Lys3)UUU is post-transcriptionally modified, but until recently, the importance of those modifications in tRNA recognition by NCp7 was unknown. Modifications such as the 5-methoxycarbonylmethyl-2-thiouridine at anticodon wobble position-34 and 2-methylthio-N(6)-threonylcarbamoyladenosine, adjacent to the anticodon at position-37, are important to the recognition of htRNA(Lys3)UUU by NCp7. Several short peptides selected from phage display libraries were found to also preferentially recognize these modifications. Evolutionary algorithms (Monte Carlo and self-consistent mean field) and assisted model building with energy refinement were used to optimize the peptide sequence in silico, while fluorescence assays were developed and conducted to verify the in silico results and elucidate a 15-amino acid signature sequence (R-W-Q/N-H-X2-F-Pho-X-G/A-W-R-X2-G, where X can be most amino acids, and Pho is hydrophobic) that recognized the tRNA's fully modified anticodon stem and loop domain, hASL(Lys3)UUU. Peptides of this sequence specifically recognized and bound modified htRNA(Lys3)UUU with an affinity 10-fold higher than that of the starting sequence. Thus, this approach provides an effective means of predicting sequences of RNA binding peptides that have better binding properties. Such peptides can be used in cell and molecular biology as well as biochemistry to explore RNA binding proteins and to inhibit those protein functions.

  12. Life without tRNAIle-lysidine synthetase: translation of the isoleucine codon AUA in Bacillus subtilis lacking the canonical tRNA2Ile

    PubMed Central

    Köhrer, Caroline; Mandal, Debabrata; Gaston, Kirk W.; Grosjean, Henri; Limbach, Patrick A.; RajBhandary, Uttam L.

    2014-01-01

    Translation of the isoleucine codon AUA in most prokaryotes requires a modified C (lysidine or agmatidine) at the wobble position of tRNA2Ile to base pair specifically with the A of the AUA codon but not with the G of AUG. Recently, a Bacillus subtilis strain was isolated in which the essential gene encoding tRNAIle-lysidine synthetase was deleted for the first time. In such a strain, C34 at the wobble position of tRNA2Ile is expected to remain unmodified and cells depend on a mutant suppressor tRNA derived from tRNA1Ile, in which G34 has been changed to U34. An important question, therefore, is how U34 base pairs with A without also base pairing with G. Here, we show (i) that unlike U34 at the wobble position of all B. subtilis tRNAs of known sequence, U34 in the mutant tRNA is not modified, and (ii) that the mutant tRNA binds strongly to the AUA codon on B. subtilis ribosomes but only weakly to AUG. These in vitro data explain why the suppressor strain displays only a low level of misreading AUG codons in vivo and, as shown here, grows at a rate comparable to that of the wild-type strain. PMID:24194599

  13. MD Simulations of tRNA and Aminoacyl-tRNA Synthetases: Dynamics, Folding, Binding, and Allostery

    PubMed Central

    Li, Rongzhong; Macnamara, Lindsay M.; Leuchter, Jessica D.; Alexander, Rebecca W.; Cho, Samuel S.

    2015-01-01

    While tRNA and aminoacyl-tRNA synthetases are classes of biomolecules that have been extensively studied for decades, the finer details of how they carry out their fundamental biological functions in protein synthesis remain a challenge. Recent molecular dynamics (MD) simulations are verifying experimental observations and providing new insight that cannot be addressed from experiments alone. Throughout the review, we briefly discuss important historical events to provide a context for how far the field has progressed over the past few decades. We then review the background of tRNA molecules, aminoacyl-tRNA synthetases, and current state of the art MD simulation techniques for those who may be unfamiliar with any of those fields. Recent MD simulations of tRNA dynamics and folding and of aminoacyl-tRNA synthetase dynamics and mechanistic characterizations are discussed. We highlight the recent successes and discuss how important questions can be addressed using current MD simulations techniques. We also outline several natural next steps for computational studies of AARS:tRNA complexes. PMID:26184179

  14. Selective rescue of selenoprotein expression in mice lacking a highly specialized methyl group in selenocysteine tRNA.

    PubMed

    Carlson, Bradley A; Xu, Xue-Ming; Gladyshev, Vadim N; Hatfield, Dolph L

    2005-02-18

    Selenocysteine (Sec) is the 21st amino acid in the genetic code. Its tRNA is variably methylated on the 2'-O-hydroxyl site of the ribosyl moiety at position 34 (Um34). Herein, we identified a role of Um34 in regulating the expression of some, but not all, selenoproteins. A strain of knock-out transgenic mice was generated, wherein the Sec tRNA gene was replaced with either wild type or mutant Sec tRNA transgenes. The mutant transgene yielded a tRNA that lacked two base modifications, N(6)-isopentenyladenosine at position 37 (i(6)A37) and Um34. Several selenoproteins, including glutathione peroxidases 1 and 3, SelR, and SelT, were not detected in mice rescued with the mutant transgene, whereas other selenoproteins, including thioredoxin reductases 1 and 3 and glutathione peroxidase 4, were expressed in normal or reduced levels. Northern blot analysis suggested that other selenoproteins (e.g. SelW) were also poorly expressed. This novel regulation of protein expression occurred at the level of translation and manifested a tissue-specific pattern. The available data suggest that the Um34 modification has greater influence than the i(6)A37 modification in regulating the expression of various mammalian selenoproteins and Um34 is required for synthesis of several members of this protein class. Many proteins that were poorly rescued appear to be involved in responses to stress, and their expression is also highly dependent on selenium in the diet. Furthermore, their mRNA levels are regulated by selenium and are subject to nonsense-mediated decay. Overall, this study described a novel mechanism of regulation of protein expression by tRNA modification that is in turn regulated by levels of the trace element, selenium.

  15. Structural insights into the polyphyletic origins of glycyl tRNA synthetases

    DOE PAGES

    Valencia-Sánchez, Marco Igor; Rodríguez-Hernández, Annia; Ferreira, Ruben; ...

    2016-05-23

    Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α 2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α 2β 2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α 2β 2more » GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. Furthermore, a structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α 2β 2 GlyRS, convergent with α 2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor.« less

  16. Structure-Function Analysis of Rny1 in tRNA Cleavage and Growth Inhibition

    PubMed Central

    Luhtala, Natalie; Parker, Roy

    2012-01-01

    T2 ribonucleases are conserved nucleases that affect a variety of processes in eukaryotic cells including the regulation of self-incompatibility by S-RNases in plants, modulation of host immune cell responses by viral and schistosome T2 enzymes, and neurological development and tumor progression in humans. These roles for RNaseT2’s can be due to catalytic or catalytic-independent functions of the molecule. Despite this broad importance, the features of RNaseT2 proteins that modulate catalytic and catalytic-independent functions are poorly understood. Herein, we analyze the features of Rny1 in Saccharomyces cerevisiae to determine the requirements for cleaving tRNA in vivo and for inhibiting cellular growth in a catalytic-independent manner. We demonstrate that catalytic-independent inhibition of growth is a combinatorial property of the protein and is affected by a fungal-specific C-terminal extension, the conserved catalytic core, and the presence of a signal peptide. Catalytic functions of Rny1 are independent of the C-terminal extension, are affected by many mutations in the catalytic core, and also require a signal peptide. Biochemical flotation assays reveal that in rny1Δ cells, some tRNA molecules associate with membranes suggesting that cleavage of tRNAs by Rny1 can involve either tRNA association with, or uptake into, membrane compartments. PMID:22829915

  17. Alternative Mode of E-Site tRNA Binding in the Presence of a Downstream mRNA Stem Loop at the Entrance Channel.

    PubMed

    Zhang, Yan; Hong, Samuel; Ruangprasert, Ajchareeya; Skiniotis, Georgios; Dunham, Christine M

    2018-03-06

    Structured mRNAs positioned downstream of the ribosomal decoding center alter gene expression by slowing protein synthesis. Here, we solved the cryo-EM structure of the bacterial ribosome bound to an mRNA containing a 3' stem loop that regulates translation. Unexpectedly, the E-site tRNA adopts two distinct orientations. In the first structure, normal interactions with the 50S and 30S E site are observed. However, in the second structure, although the E-site tRNA makes normal interactions with the 50S E site, its anticodon stem loop moves ∼54 Å away from the 30S E site to interact with the 30S head domain and 50S uL5. This position of the E-site tRNA causes the uL1 stalk to adopt a more open conformation that likely represents an intermediate state during E-site tRNA dissociation. These results suggest that structured mRNAs at the entrance channel restrict 30S subunit movement required during translation to slow E-site tRNA dissociation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Biochemical and Structures Studies of tRNA Modificaton and Repair Enzymes

    ERIC Educational Resources Information Center

    Zhou, Chun

    2009-01-01

    RNA hypermodifications near the anticodon of tRNA are fundamental for the efficiency and fidelity of protein synthesis. Dimethylallyltransferase (DMATase) catalyzes transfer of a dimethylallyl moiety from dimethylallyl pyrophosphate to N6 of A37 in certain tRNAs. We first determined the crystal structures of "Pseudomonas aeruginosa" DMATase.…

  19. Factors beyond Enolase 2 and Mitochondrial Lysyl-tRNA Synthetase Precursor Are Required for tRNA Import into Yeast Mitochondria.

    PubMed

    Baleva, M V; Meyer, M; Entelis, N; Tarassov, I; Kamenski, P; Masquida, B

    2017-11-01

    In yeast, the import of tRNA Lys with CUU anticodon (tRK1) relies on a complex mechanism where interaction with enolase 2 (Eno2p) dictates a deep conformational change of the tRNA. This event is believed to mask the tRNA from the cytosolic translational machinery to re-direct it towards the mitochondria. Once near the mitochondrial outer membrane, the precursor of the mitochondrial lysyl-tRNA synthetase (preMsk1p) takes over enolase to carry the tRNA within the mitochondrial matrix, where it is supposed to participate in translation following correct refolding. Biochemical data presented in this report focus on the role of enolase. They show that despite the inability of Eno2p alone to form a complex with tRK1, mitochondrial import can be recapitulated in vitro using fractions of yeast extracts sharing either recombinant or endogenous yeast Eno2p as one of the main components. Taken together, our data suggest the existence of a protein complex containing Eno2p that is involved in RNA mitochondrial import.

  20. DNA methyltransferase homologue TRDMT1 in Plasmodium falciparum specifically methylates endogenous aspartic acid tRNA.

    PubMed

    Govindaraju, Gayathri; Jabeena, C A; Sethumadhavan, Devadathan Valiyamangalath; Rajaram, Nivethika; Rajavelu, Arumugam

    2017-10-01

    In eukaryotes, cytosine methylation regulates diverse biological processes such as gene expression, development and maintenance of genomic integrity. However, cytosine methylation and its functions in pathogenic apicomplexan protozoans remain enigmatic. To address this, here we investigated the presence of cytosine methylation in the nucleic acids of the protozoan Plasmodium falciparum. Interestingly, P. falciparum has TRDMT1, a conserved homologue of DNA methyltransferase DNMT2. However, we found that TRDMT1 did not methylate DNA, in vitro. We demonstrate that TRDMT1 methylates cytosine in the endogenous aspartic acid tRNA of P. falciparum. Through RNA bisulfite sequencing, we mapped the position of 5-methyl cytosine in aspartic acid tRNA and found methylation only at C38 position. P. falciparum proteome has significantly higher aspartic acid content and a higher proportion of proteins with poly aspartic acid repeats than other apicomplexan pathogenic protozoans. Proteins with such repeats are functionally important, with significant roles in host-pathogen interactions. Therefore, TRDMT1 mediated C38 methylation of aspartic acid tRNA might play a critical role by translational regulation of important proteins and modulate the pathogenicity of the malarial parasite. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Shared Sulfur Mobilization Routes for tRNA Thiolation and Molybdenum Cofactor Biosynthesis in Prokaryotes and Eukaryotes

    PubMed Central

    Leimkühler, Silke; Bühning, Martin; Beilschmidt, Lena

    2017-01-01

    Modifications of transfer RNA (tRNA) have been shown to play critical roles in the biogenesis, metabolism, structural stability and function of RNA molecules, and the specific modifications of nucleobases with sulfur atoms in tRNA are present in pro- and eukaryotes. Here, especially the thiomodifications xm5s2U at the wobble position 34 in tRNAs for Lys, Gln and Glu, were suggested to have an important role during the translation process by ensuring accurate deciphering of the genetic code and by stabilization of the tRNA structure. The trafficking and delivery of sulfur nucleosides is a complex process carried out by sulfur relay systems involving numerous proteins, which not only deliver sulfur to the specific tRNAs but also to other sulfur-containing molecules including iron–sulfur clusters, thiamin, biotin, lipoic acid and molybdopterin (MPT). Among the biosynthesis of these sulfur-containing molecules, the biosynthesis of the molybdenum cofactor (Moco) and the synthesis of thio-modified tRNAs in particular show a surprising link by sharing protein components for sulfur mobilization in pro- and eukaryotes. PMID:28098827

  2. RNA editing in the anticodon of tRNA Leu (CAA) occurs before group I intron splicing in plastids of a moss Takakia lepidozioides S. Hatt. & Inoue.

    PubMed

    Miyata, Y; Sugita, C; Maruyama, K; Sugita, M

    2008-03-01

    RNA editing of cytidine (C) to uridine (U) transitions occurs in plastids and mitochondria of most land plants. In this study, we amplified and sequenced the group I intron-containing tRNA Leu gene, trnL-CAA, from Takakia lepidozioides, a moss. DNA sequence analysis revealed that the T. lepidozioides tRNA Leu gene consisted of a 35-bp 5' exon, a 469-bp group I intron and a 50-bp 3' exon. The intron was inserted between the first and second position of the tRNA Leu anticodon. In general, plastid tRNA Leu genes with a group I intron code for a TAA anticodon in most land plants. This strongly suggests that the first nucleotide of the CAA anticodon could be edited in T. lepidozioides plastids. To investigate this possibility, we analysed cDNAs derived from the trnL-CAA transcripts. We demonstrated that the first nucleotide C of the anticodon was edited to create a canonical UAA anticodon in T. lepidozioides plastids. cDNA sequencing analyses of the spliced or unspliced tRNA Leu transcripts revealed that, while the spliced tRNA was completely edited, editing in the unspliced tRNAs were only partial. This is the first experimental evidence that the anticodon editing of tRNA occurs before RNA splicing in plastids. This suggests that this editing is a prerequisite to splicing of pre-tRNA Leu.

  3. Genome-wide investigation of the role of the tRNA nuclear-cytoplasmic trafficking pathway in regulation of the yeast Saccharomyces cerevisiae transcriptome and proteome.

    PubMed

    Chu, Hui-Yi; Hopper, Anita K

    2013-11-01

    In eukaryotic cells, tRNAs are transcribed and partially processed in the nucleus before they are exported to the cytoplasm, where they have an essential role in protein synthesis. Surprisingly, mature cytoplasmic tRNAs shuttle between nucleus and cytoplasm, and tRNA subcellular distribution is nutrient dependent. At least three members of the β-importin family, Los1, Mtr10, and Msn5, function in tRNA nuclear-cytoplasmic intracellular movement. To test the hypothesis that the tRNA retrograde pathway regulates the translation of particular transcripts, we compared the expression profiles from nontranslating mRNAs and polyribosome-associated translating mRNAs collected from msn5Δ, mtr10Δ, and wild-type cells under fed or acute amino acid depletion conditions. Our microarray data revealed that the methionine, arginine, and leucine biosynthesis pathways are targets of the tRNA retrograde process. We confirmed the microarray data by Northern and Western blot analyses. The levels of some of the particular target mRNAs were reduced, while others appeared not to be affected. However, the protein levels of all tested targets in these pathways were greatly decreased when tRNA nuclear import or reexport to the cytoplasm was disrupted. This study provides information that tRNA nuclear-cytoplasmic dynamics is connected to the biogenesis of proteins involved in amino acid biosynthesis.

  4. Genome-Wide Investigation of the Role of the tRNA Nuclear-Cytoplasmic Trafficking Pathway in Regulation of the Yeast Saccharomyces cerevisiae Transcriptome and Proteome

    PubMed Central

    Chu, Hui-Yi

    2013-01-01

    In eukaryotic cells, tRNAs are transcribed and partially processed in the nucleus before they are exported to the cytoplasm, where they have an essential role in protein synthesis. Surprisingly, mature cytoplasmic tRNAs shuttle between nucleus and cytoplasm, and tRNA subcellular distribution is nutrient dependent. At least three members of the β-importin family, Los1, Mtr10, and Msn5, function in tRNA nuclear-cytoplasmic intracellular movement. To test the hypothesis that the tRNA retrograde pathway regulates the translation of particular transcripts, we compared the expression profiles from nontranslating mRNAs and polyribosome-associated translating mRNAs collected from msn5Δ, mtr10Δ, and wild-type cells under fed or acute amino acid depletion conditions. Our microarray data revealed that the methionine, arginine, and leucine biosynthesis pathways are targets of the tRNA retrograde process. We confirmed the microarray data by Northern and Western blot analyses. The levels of some of the particular target mRNAs were reduced, while others appeared not to be affected. However, the protein levels of all tested targets in these pathways were greatly decreased when tRNA nuclear import or reexport to the cytoplasm was disrupted. This study provides information that tRNA nuclear-cytoplasmic dynamics is connected to the biogenesis of proteins involved in amino acid biosynthesis. PMID:23979602

  5. RNA-Seq analyses reveal the order of tRNA processing events and the maturation of C/D box and CRISPR RNAs in the hyperthermophile Methanopyrus kandleri

    PubMed Central

    Su, Andreas A. H.; Tripp, Vanessa; Randau, Lennart

    2013-01-01

    The methanogenic archaeon Methanopyrus kandleri grows near the upper temperature limit for life. Genome analyses revealed strategies to adapt to these harsh conditions and elucidated a unique transfer RNA (tRNA) C-to-U editing mechanism at base 8 for 30 different tRNA species. Here, RNA-Seq deep sequencing methodology was combined with computational analyses to characterize the small RNome of this hyperthermophilic organism and to obtain insights into the RNA metabolism at extreme temperatures. A large number of 132 small RNAs were identified that guide RNA modifications, which are expected to stabilize structured RNA molecules. The C/D box guide RNAs were shown to exist as circular RNA molecules. In addition, clustered regularly interspaced short palindromic repeats RNA processing and potential regulatory RNAs were identified. Finally, the identification of tRNA precursors before and after the unique C8-to-U8 editing activity enabled the determination of the order of tRNA processing events with termini truncation preceding intron removal. This order of tRNA maturation follows the compartmentalized tRNA processing order found in Eukaryotes and suggests its conservation during evolution. PMID:23620296

  6. Snapshots of Dynamics in Synthesizing N6-isopentenyladenosine at tRNA Anticodon†,‡

    PubMed Central

    Chimnaronk, Sarin; Forouhar, Farhad; Sakai, Junichi; Yao, Min; Tron, Cecile M.; Atta, Mohamed; Fontecave, Marc; Hunt, John F.; Tanaka, Isao

    2009-01-01

    Bacterial and eukaryotic transfer RNAs that decode codons starting with uridine have a hydrophobically-hypermodified adenosine at the position 37 (A37) adjacent to the 3′-end of the anticodon, which is essential for efficient and highly accurate protein translation by the ribosome. However, it remains unclear how the corresponding tRNAs are selected to be modified by alkylation at the correct position of the adenosine base. We have determined a series of the crystal structures of bacterial tRNA isopentenyltransferase (MiaA) in apo- and tRNA-bound forms, which completely render snapshots of substrate selections during modification of RNA. A compact evolutionary inserted domain (herein ‘swinging domain’) in MiaA that exhibits as a highly mobile entity moves around the catalytic domain as likely to reach and trap the tRNA substrate. Thereby, MiaA clamps the anticodon stem loop of tRNA substrate between the catalytic and swinging domains, where the two conserved elongated residues from the swinging domain pinch the two flanking A36 and A38 together to squeeze out A37 into the reaction tunnel. The site-specific isopentenylation of RNA is thus ensured by a characteristic pinch-and-flip mechanism and by a reaction tunnel to confine the substrate selection. Furthermore, combining information from soaking experiments with structural comparisons, we propose a mechanism for the ordered substrate-binding of MiaA. PMID:19435325

  7. tRNA tKUUU, tQUUG, and tEUUC wobble position modifications fine-tune protein translation by promoting ribosome A-site binding.

    PubMed

    Rezgui, Vanessa Anissa Nathalie; Tyagi, Kshitiz; Ranjan, Namit; Konevega, Andrey L; Mittelstaet, Joerg; Rodnina, Marina V; Peter, Matthias; Pedrioli, Patrick G A

    2013-07-23

    tRNA modifications are crucial to ensure translation efficiency and fidelity. In eukaryotes, the URM1 and ELP pathways increase cellular resistance to various stress conditions, such as nutrient starvation and oxidative agents, by promoting thiolation and methoxycarbonylmethylation, respectively, of the wobble uridine of cytoplasmic (tK(UUU)), (tQ(UUG)), and (tE(UUC)). Although in vitro experiments have implicated these tRNA modifications in modulating wobbling capacity and translation efficiency, their exact in vivo biological roles remain largely unexplored. Using a combination of quantitative proteomics and codon-specific translation reporters, we find that translation of a specific gene subset enriched for AAA, CAA, and GAA codons is impaired in the absence of URM1- and ELP-dependent tRNA modifications. Moreover, in vitro experiments using native tRNAs demonstrate that both modifications enhance binding of tK(UUU) to the ribosomal A-site. Taken together, our data suggest that tRNA thiolation and methoxycarbonylmethylation regulate translation of genes with specific codon content.

  8. “Ping-Pong” Interactions between Mitochondrial tRNA Import Receptors within a Multiprotein Complex

    PubMed Central

    Bhattacharyya, Subhendra Nath; Chatterjee, Saibal; Goswami, Srikanta; Tripathi, Gayatri; Dey, Sailendra Nath; Adhya, Samit

    2003-01-01

    The mitochondrial genomes of a wide variety of species contain an insufficient number of functional tRNA genes, and translation of mitochondrial mRNAs is sustained by import of nucleus-encoded tRNAs. In Leishmania, transfer of tRNAs across the inner membrane can be regulated by positive and negative interactions between them. To define the factors involved in such interactions, a large multisubunit complex (molecular mass, ∼640 kDa) from the inner mitochondrial membrane of the kinetoplastid protozoon Leishmania, consisting of ∼130-Å particles, was isolated. The complex, when incorporated into phospholipid vesicles, induced specific, ATP- and proton motive force-dependent transfer of Leishmania tRNATyr as well as of oligoribonucleotides containing the import signal YGGYAGAGC. Moreover, allosteric interactions between tRNATyr and tRNAIle were observed in the RNA import complex-reconstituted system, indicating the presence of primary and secondary tRNA binding sites within the complex. By a combination of antibody inhibition, photochemical cross-linking, and immunoprecipitation, it was shown that binding of tRNAIle to a 21-kDa component of the complex is dependent upon tRNATyr, while binding of tRNATyr to a 45-kDa component is inhibited by tRNAIle. This “ping-pong” mechanism may be an effective means to maintain a balanced tRNA pool for mitochondrial translation. PMID:12861008

  9. Guanosine 2-NH2 groups of Escherichia coli RNase P RNA involved in intramolecular tertiary contacts and direct interactions with tRNA.

    PubMed Central

    Heide, C; Pfeiffer, T; Nolan, J M; Hartmann, R K

    1999-01-01

    We have identified by nucleotide analog interference mapping (NAIM) exocyclic NH2 groups of guanosines in RNase P RNA from Escherichia coli that are important for tRNA binding. The majority of affected guanosines represent phylogenetically conserved nucleotides. Several sites of interference could be assigned to direct contacts with the tRNA moiety, whereas others were interpreted as reflecting indirect effects on tRNA binding due to the disruption of tertiary contacts within the catalytic RNA. Our results support the involvement of the 2-NH2 groups of G292/G293 in pairing with C74 and C75 of tRNA CCA-termini, as well as formation of two consecutive base triples involving C75 and A76 of CCA-ends interacting with G292/A258 and G291/G259, respectively. Moreover, we present first biochemical evidence for two tertiary contacts (L18/P8 and L8/P4) within the catalytic RNA, whose formation has been postulated previously on the basis of phylogenetic comparative analyses. The tRNA binding interference data obtained in this and our previous studies are consistent with the formation of a consecutive nucleotide triple and quadruple between the tetraloop L18 and helix P8. Formation of the nucleotide triple (G316 and A94:U104 in wild-type E. coli RNase P RNA) is also supported by mutational analysis. For the mutant RNase P RNA carrying a G94:C104 double mutation, an additional G316-to-A mutation resulted in a restoration of binding affinity for mature and precursor tRNA. PMID:9917070

  10. Structural Insights into the Polyphyletic Origins of Glycyl tRNA Synthetases*♦

    PubMed Central

    Valencia-Sánchez, Marco Igor; Rodríguez-Hernández, Annia; Ferreira, Ruben; Santamaría-Suárez, Hugo Aníbal; Arciniega, Marcelino; Dock-Bregeon, Anne-Catherine; Moras, Dino; Beinsteiner, Brice; Brieba, Luis G.; Grøtli, Morten

    2016-01-01

    Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2β2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2β2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. A structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α2β2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor. PMID:27226617

  11. RNA Polymerase III Output Is Functionally Linked to tRNA Dimethyl-G26 Modification

    PubMed Central

    Arimbasseri, Aneeshkumar G.; Blewett, Nathan H.; Iben, James R.; Lamichhane, Tek N.; Cherkasova, Vera; Hafner, Markus; Maraia, Richard J.

    2015-01-01

    Control of the differential abundance or activity of tRNAs can be important determinants of gene regulation. RNA polymerase (RNAP) III synthesizes all tRNAs in eukaryotes and it derepression is associated with cancer. Maf1 is a conserved general repressor of RNAP III under the control of the target of rapamycin (TOR) that acts to integrate transcriptional output and protein synthetic demand toward metabolic economy. Studies in budding yeast have indicated that the global tRNA gene activation that occurs with derepression of RNAP III via maf1-deletion is accompanied by a paradoxical loss of tRNA-mediated nonsense suppressor activity, manifested as an antisuppression phenotype, by an unknown mechanism. We show that maf1-antisuppression also occurs in the fission yeast S. pombe amidst general activation of RNAP III. We used tRNA-HydroSeq to document that little changes occurred in the relative levels of different tRNAs in maf1Δ cells. By contrast, the efficiency of N2,N2-dimethyl G26 (m2 2G26) modification on certain tRNAs was decreased in response to maf1-deletion and associated with antisuppression, and was validated by other methods. Over-expression of Trm1, which produces m2 2G26, reversed maf1-antisuppression. A model that emerges is that competition by increased tRNA levels in maf1Δ cells leads to m2 2G26 hypomodification due to limiting Trm1, reducing the activity of suppressor-tRNASerUCA and accounting for antisuppression. Consistent with this, we show that RNAP III mutations associated with hypomyelinating leukodystrophy decrease tRNA transcription, increase m2 2G26 efficiency and reverse antisuppression. Extending this more broadly, we show that a decrease in tRNA synthesis by treatment with rapamycin leads to increased m2 2G26 modification and that this response is conserved among highly divergent yeasts and human cells. PMID:26720005

  12. Mitochondrial genomes of praying mantises (Dictyoptera, Mantodea): rearrangement, duplication, and reassignment of tRNA genes.

    PubMed

    Ye, Fei; Lan, Xu-E; Zhu, Wen-Bo; You, Ping

    2016-05-09

    Insect mitochondrial genomes (mitogenomes) contain a conserved set of 37 genes for an extensive diversity of lineages. Previously reported dictyopteran mitogenomes share this conserved mitochondrial gene arrangement, although surprisingly little is known about the mitogenome of Mantodea. We sequenced eight mantodean mitogenomes including the first representatives of two families: Hymenopodidae and Liturgusidae. Only two of these genomes retain the typical insect gene arrangement. In three Liturgusidae species, the trnM genes have translocated. Four species of mantis (Creobroter gemmata, Mantis religiosa, Statilia sp., and Theopompa sp.-HN) have multiple identical tandem duplication of trnR, and Statilia sp. additionally includes five extra duplicate trnW. These extra trnR and trnW in Statilia sp. are erratically arranged and form another novel gene order. Interestingly, the extra trnW is converted from trnR by the process of point mutation at anticodon, which is the first case of tRNA reassignment for an insect. Furthermore, no significant differences were observed amongst mantodean mitogenomes with variable copies of tRNA according to comparative analysis of codon usage. Combined with phylogenetic analysis, the characteristics of tRNA only possess limited phylogenetic information in this research. Nevertheless, these features of gene rearrangement, duplication, and reassignment provide valuable information toward understanding mitogenome evolution in insects.

  13. Mitochondrial genomes of praying mantises (Dictyoptera, Mantodea): rearrangement, duplication, and reassignment of tRNA genes

    PubMed Central

    Ye, Fei; Lan, Xu-e; Zhu, Wen-bo; You, Ping

    2016-01-01

    Insect mitochondrial genomes (mitogenomes) contain a conserved set of 37 genes for an extensive diversity of lineages. Previously reported dictyopteran mitogenomes share this conserved mitochondrial gene arrangement, although surprisingly little is known about the mitogenome of Mantodea. We sequenced eight mantodean mitogenomes including the first representatives of two families: Hymenopodidae and Liturgusidae. Only two of these genomes retain the typical insect gene arrangement. In three Liturgusidae species, the trnM genes have translocated. Four species of mantis (Creobroter gemmata, Mantis religiosa, Statilia sp., and Theopompa sp.-HN) have multiple identical tandem duplication of trnR, and Statilia sp. additionally includes five extra duplicate trnW. These extra trnR and trnW in Statilia sp. are erratically arranged and form another novel gene order. Interestingly, the extra trnW is converted from trnR by the process of point mutation at anticodon, which is the first case of tRNA reassignment for an insect. Furthermore, no significant differences were observed amongst mantodean mitogenomes with variable copies of tRNA according to comparative analysis of codon usage. Combined with phylogenetic analysis, the characteristics of tRNA only possess limited phylogenetic information in this research. Nevertheless, these features of gene rearrangement, duplication, and reassignment provide valuable information toward understanding mitogenome evolution in insects. PMID:27157299

  14. tRNA Is the Source of Low-Level trans-Zeatin Production in Methylobacterium spp.†‡

    PubMed Central

    Koenig, Robbin L.; Morris, Roy O.; Polacco, Joe C.

    2002-01-01

    Pink-pigmented facultatively methylotrophic bacteria (PPFMs), classified as Methylobacterium spp., are persistent colonizers of plant leaf surfaces. Reports of PPFM-plant dialogue led us to examine cytokinin production by PPFMs. Using immunoaffinity and high-performance liquid chromatography (HPLC) purification, we obtained 22 to 111 ng of trans-zeatin per liter from culture filtrates of four PPFM leaf isolates (from Arabidopsis, barley, maize, and soybean) and of a Methylobacterium extorquens type culture originally recovered as a soil isolate. We identified the zeatin isolated as the trans isomer by HPLC and by a radioimmunoassay in which monoclonal antibodies specific for trans-hydroxylated cytokinins were used. Smaller and variable amounts of trans-zeatin riboside were also recovered. trans-Zeatin was recovered from tRNA hydrolysates in addition to the culture filtrates, suggesting that secreted trans-zeatin resulted from tRNA turnover rather than from de novo synthesis. The product of the miaA gene is responsible for isopentenylation of a specific adenine in some tRNAs. To confirm that the secreted zeatin originated from tRNA, we mutated the miaA gene of M. extorquens by single exchange of an internal miaA fragment into the chromosomal gene. Mutant exconjugants, confirmed by PCR, did not contain zeatin in their tRNAs and did not secrete zeatin into the medium, findings which are consistent with the hypothesis that all zeatin is tRNA derived rather than synthesized de novo. In germination studies performed with heat-treated soybean seeds, cytokinin-null (miaA) mutants stimulated germination as well as wild-type bacteria. While cytokinin production may play a role in the plant-PPFM interaction, it is not responsible for stimulation of germination by PPFMs. PMID:11889088

  15. Orthogonal use of a human tRNA synthetase active site to achieve multifunctionality.

    PubMed

    Zhou, Quansheng; Kapoor, Mili; Guo, Min; Belani, Rajesh; Xu, Xiaoling; Kiosses, William B; Hanan, Melanie; Park, Chulho; Armour, Eva; Do, Minh-Ha; Nangle, Leslie A; Schimmel, Paul; Yang, Xiang-Lei

    2010-01-01

    Protein multifunctionality is an emerging explanation for the complexity of higher organisms. In this regard, aminoacyl tRNA synthetases catalyze amino acid activation for protein synthesis, but some also act in pathways for inflammation, angiogenesis and apoptosis. It is unclear how these multiple functions evolved and how they relate to the active site. Here structural modeling analysis, mutagenesis and cell-based functional studies show that the potent angiostatic, natural fragment of human tryptophanyl-tRNA synthetase (TrpRS) associates via tryptophan side chains that protrude from its cognate cellular receptor vascular endothelial cadherin (VE-cadherin). VE-cadherin's tryptophan side chains fit into the tryptophan-specific active site of the synthetase. Thus, specific side chains of the receptor mimic amino acid substrates and expand the functionality of the active site of the synthetase. We propose that orthogonal use of the same active site may be a general way to develop multifunctionality of human tRNA synthetases and other proteins.

  16. 2'-O-methylation in mRNA disrupts tRNA decoding during translation elongation.

    PubMed

    Choi, Junhong; Indrisiunaite, Gabriele; DeMirci, Hasan; Ieong, Ka-Weng; Wang, Jinfan; Petrov, Alexey; Prabhakar, Arjun; Rechavi, Gideon; Dominissini, Dan; He, Chuan; Ehrenberg, Måns; Puglisi, Joseph D

    2018-03-01

    Chemical modifications of mRNA may regulate many aspects of mRNA processing and protein synthesis. Recently, 2'-O-methylation of nucleotides was identified as a frequent modification in translated regions of human mRNA, showing enrichment in codons for certain amino acids. Here, using single-molecule, bulk kinetics and structural methods, we show that 2'-O-methylation within coding regions of mRNA disrupts key steps in codon reading during cognate tRNA selection. Our results suggest that 2'-O-methylation sterically perturbs interactions of ribosomal-monitoring bases (G530, A1492 and A1493) with cognate codon-anticodon helices, thereby inhibiting downstream GTP hydrolysis by elongation factor Tu (EF-Tu) and A-site tRNA accommodation, leading to excessive rejection of cognate aminoacylated tRNAs in initial selection and proofreading. Our current and prior findings highlight how chemical modifications of mRNA tune the dynamics of protein synthesis at different steps of translation elongation.

  17. Insights into molecular plasticity in protein complexes from Trm9-Trm112 tRNA modifying enzyme crystal structure

    PubMed Central

    Létoquart, Juliette; van Tran, Nhan; Caroline, Vonny; Aleksandrov, Alexey; Lazar, Noureddine; van Tilbeurgh, Herman; Liger, Dominique; Graille, Marc

    2015-01-01

    Most of the factors involved in translation (tRNA, rRNA and proteins) are subject to post-transcriptional and post-translational modifications, which participate in the fine-tuning and tight control of ribosome and protein synthesis processes. In eukaryotes, Trm112 acts as an obligate activating platform for at least four methyltransferases (MTase) involved in the modification of 18S rRNA (Bud23), tRNA (Trm9 and Trm11) and translation termination factor eRF1 (Mtq2). Trm112 is then at a nexus between ribosome synthesis and function. Here, we present a structure-function analysis of the Trm9-Trm112 complex, which is involved in the 5-methoxycarbonylmethyluridine (mcm5U) modification of the tRNA anticodon wobble position and hence promotes translational fidelity. We also compare the known crystal structures of various Trm112-MTase complexes, highlighting the structural plasticity allowing Trm112 to interact through a very similar mode with its MTase partners, although those share less than 20% sequence identity. PMID:26438534

  18. Cytosolic Hsp70 and co-chaperones constitute a novel system for tRNA import into the nucleus

    PubMed Central

    Takano, Akira; Kajita, Takuya; Mochizuki, Makoto; Endo, Toshiya; Yoshihisa, Tohru

    2015-01-01

    tRNAs are unique among various RNAs in that they shuttle between the nucleus and the cytoplasm, and their localization is regulated by nutrient conditions. Although nuclear export of tRNAs has been well documented, the import machinery is poorly understood. Here, we identified Ssa2p, a major cytoplasmic Hsp70 in Saccharomyces cerevisiae, as a tRNA-binding protein whose deletion compromises nuclear accumulation of tRNAs upon nutrient starvation. Ssa2p recognizes several structural features of tRNAs through its nucleotide-binding domain, but prefers loosely-folded tRNAs, suggesting that Ssa2p has a chaperone-like activity for RNAs. Ssa2p also binds Nup116, one of the yeast nucleoporins. Sis1p and Ydj1p, cytoplasmic co-chaperones for Ssa proteins, were also found to contribute to the tRNA import. These results unveil a novel function of the Ssa2p system as a tRNA carrier for nuclear import by a novel mode of substrate recognition. Such Ssa2p-mediated tRNA import likely contributes to quality control of cytosolic tRNAs. DOI: http://dx.doi.org/10.7554/eLife.04659.001 PMID:25853343

  19. A mitochondrial locus is necessary for the synthesis of mitochondrial tRNA in the yeast Saccharomyces cerevisiae.

    PubMed Central

    Martin, N C; Underbrink-Lyon, K

    1981-01-01

    We have used a cloned yeast mitochondrial tRNAUCNSer gene as a probe to detect RNA species that are transcripts from this gene in wild-type Saccharomyces cerevisiae and in petite deletion mutants. In RNA from wild-type cells, the tRNA is the most prominent transcript of the gene. In RNA from deletion mutants that retain this gene but have lost other regions of mtDNA, high molecular weight transcripts containing the tRNAUCNSer sequences accumulate but tRNAUCNSer is not made. tRNAUCNSer synthesis can be restored in these mutants when they are mated to other deletion mutants that retain a different portion of the mitochondrial genome. Protein synthesis is not necessary for the restoration, and the restoration is not due to a nuclear effect or to an effect of mating alone, because strains without mtDNA are not able to restore tRNA synthesis. These results definitively demonstrate the existence of a yeast mitochondrial locus that is necessary for tRNA synthesis and, because the restoration of tRNAUCNSer synthesis appears to result from intergenic complementation, not recombination, indicate that this locus acts in trans. Images PMID:6795621

  20. Phosphorylation of Elp1 by Hrr25 Is Required for Elongator-Dependent tRNA Modification in Yeast

    PubMed Central

    Abdel-Fattah, Wael; Jablonowski, Daniel; Di Santo, Rachael; Thüring, Kathrin L.; Scheidt, Viktor; Hammermeister, Alexander; ten Have, Sara; Helm, Mark; Schaffrath, Raffael; Stark, Michael J. R.

    2015-01-01

    Elongator is a conserved protein complex comprising six different polypeptides that has been ascribed a wide range of functions, but which is now known to be required for modification of uridine residues in the wobble position of a subset of tRNAs in yeast, plants, worms and mammals. In previous work, we showed that Elongator's largest subunit (Elp1; also known as Iki3) was phosphorylated and implicated the yeast casein kinase I Hrr25 in Elongator function. Here we report identification of nine in vivo phosphorylation sites within Elp1 and show that four of these, clustered close to the Elp1 C-terminus and adjacent to a region that binds tRNA, are important for Elongator's tRNA modification function. Hrr25 protein kinase directly modifies Elp1 on two sites (Ser-1198 and Ser-1202) and through analyzing non-phosphorylatable (alanine) and acidic, phosphomimic substitutions at Ser-1198, Ser-1202 and Ser-1209, we provide evidence that phosphorylation plays a positive role in the tRNA modification function of Elongator and may regulate the interaction of Elongator both with its accessory protein Kti12 and with Hrr25 kinase. PMID:25569479

  1. The Cm56 tRNA modification in archaea is catalyzed either by a specific 2'-O-methylase, or a C/D sRNP.

    PubMed

    Renalier, Marie-Hélène; Joseph, Nicole; Gaspin, Christine; Thebault, Patricia; Mougin, Annie

    2005-07-01

    We identified the first archaeal tRNA ribose 2'-O-methylase, aTrm56, belonging to the Cluster of Orthologous Groups (COG) 1303 that contains archaeal genes only. The corresponding protein exhibits a SPOUT S-adenosylmethionine (AdoMet)-dependent methyltransferase domain found in bacterial and yeast G18 tRNA 2'-O-methylases (SpoU, Trm3). We cloned the Pyrococcus abyssi PAB1040 gene belonging to this COG, expressed and purified the corresponding protein, and showed that in vitro, it specifically catalyzes the AdoMet-dependent 2'-O-ribose methylation of C at position 56 in tRNA transcripts. This tRNA methylation is present only in archaea, and the gene for this enzyme is present in all the archaeal genomes sequenced up to now, except in the crenarchaeon Pyrobaculum aerophilum. In this archaea, the C56 2'-O-methylation is provided by a C/D sRNP. Our work is the first demonstration that, within the same kingdom, two different mechanisms are used to modify the same nucleoside in tRNAs.

  2. Plant tRNA ligases are multifunctional enzymes that have diverged in sequence and substrate specificity from RNA ligases of other phylogenetic origins

    PubMed Central

    Englert, Markus; Beier, Hildburg

    2005-01-01

    Pre-tRNA splicing is an essential process in all eukaryotes. It requires the concerted action of an endonuclease to remove the intron and a ligase for joining the resulting tRNA halves as studied best in the yeast Saccharomyces cerevisiae. Here, we report the first characterization of an RNA ligase protein and its gene from a higher eukaryotic organism that is an essential component of the pre-tRNA splicing process. Purification of tRNA ligase from wheat germ by successive column chromatographic steps has identified a protein of 125 kDa by its potentiality to covalently bind AMP, and by its ability to catalyse the ligation of tRNA halves and the circularization of linear introns. Peptide sequences obtained from the purified protein led to the elucidation of the corresponding proteins and their genes in Arabidopsis and Oryza databases. The plant tRNA ligases exhibit no overall sequence homologies to any known RNA ligases, however, they harbour a number of conserved motifs that indicate the presence of three intrinsic enzyme activities: an adenylyltransferase/ligase domain in the N-terminal region, a polynucleotide kinase in the centre and a cyclic phosphodiesterase domain at the C-terminal end. In vitro expression of the recombinant Arabidopsis tRNA ligase and functional analyses revealed all expected individual activities. Plant RNA ligases are active on a variety of substrates in vitro and are capable of inter- and intramolecular RNA joining. Hence, we conclude that their role in vivo might comprise yet unknown essential functions besides their involvement in pre-tRNA splicing. PMID:15653639

  3. On origin of genetic code and tRNA before translation

    PubMed Central

    2011-01-01

    Background Synthesis of proteins is based on the genetic code - a nearly universal assignment of codons to amino acids (aas). A major challenge to the understanding of the origins of this assignment is the archetypal "key-lock vs. frozen accident" dilemma. Here we re-examine this dilemma in light of 1) the fundamental veto on "foresight evolution", 2) modular structures of tRNAs and aminoacyl-tRNA synthetases, and 3) the updated library of aa-binding sites in RNA aptamers successfully selected in vitro for eight amino acids. Results The aa-binding sites of arginine, isoleucine and tyrosine contain both their cognate triplets, anticodons and codons. We have noticed that these cases might be associated with palindrome-dinucleotides. For example, one-base shift to the left brings arginine codons CGN, with CG at 1-2 positions, to the respective anticodons NCG, with CG at 2-3 positions. Formally, the concomitant presence of codons and anticodons is also expected in the reverse situation, with codons containing palindrome-dinucleotides at their 2-3 positions, and anticodons exhibiting them at 1-2 positions. A closer analysis reveals that, surprisingly, RNA binding sites for Arg, Ile and Tyr "prefer" (exactly as in the actual genetic code) the anticodon(2-3)/codon(1-2) tetramers to their anticodon(1-2)/codon(2-3) counterparts, despite the seemingly perfect symmetry of the latter. However, since in vitro selection of aa-specific RNA aptamers apparently had nothing to do with translation, this striking preference provides a new strong support to the notion of the genetic code emerging before translation, in response to catalytic (and possibly other) needs of ancient RNA life. Consistently with the pre-translation origin of the code, we propose here a new model of tRNA origin by the gradual, Fibonacci process-like, elongation of a tRNA molecule from a primordial coding triplet and 5'DCCA3' quadruplet (D is a base-determinator) to the eventual 76 base-long cloverleaf

  4. tRNA1Ser(G34) with the anticodon GGA can recognize not only UCC and UCU codons but also UCA and UCG codons.

    PubMed

    Yamada, Yuko; Matsugi, Jitsuhiro; Ishikura, Hisayuki

    2003-04-15

    The tRNA1Ser (anticodon VGA, V=uridin-5-oxyacetic acid) is essential for translation of the UCA codon in Escherichia coli. Here, we studied the translational abilities of serine tRNA derivatives, which have different bases from wild type at the first positions of their anticodons, using synthetic mRNAs containing the UCN (N=A, G, C, or U) codon. The tRNA1Ser(G34) having the anticodon GGA was able to read not only UCC and UCU codons but also UCA and UCG codons. This means that the formation of G-A or G-G pair allowed at the wobble position and these base pairs are noncanonical. The translational efficiency of the tRNA1Ser(G34) for UCA or UCG codon depends on the 2'-O-methylation of the C32 (Cm). The 2'-O-methylation of C32 may give rise to the space necessary for G-A or G-G base pair formation between the first position of anticodon and the third position of codon.

  5. Deletion of a Single-Copy Trna Affects Microtubule Function in Saccharomyces Cerevisiae

    PubMed Central

    Reijo, R. A.; Cho, D. S.; Huffaker, T. C.

    1993-01-01

    rts1-1 was identified as an extragenic suppressor of tub2-104, a cold-sensitive allele of the sole gene encoding β-tubulin in the yeast, Saccharomyces cerevisiae. In addition, rts1-1 cells are heat sensitive and resistant to the microtubule-destabilizing drug, benomyl. The rts1-1 mutation is a deletion of approximately 5 kb of genomic DNA on chromosome X that includes one open reading frame and three tRNA genes. Dissection of this region shows that heat sensitivity is due to deletion of the open reading frame (HIT1). Suppression and benomyl resistance are caused by deletion of the gene encoding a tRNA(AGG)(Arg) (HSX1). Northern analysis of rts1-1 cells indicates that HSX1 is the only gene encoding this tRNA. Deletion of HSX1 does not suppress the tub2-104 mutation by misreading at the AGG codons in TUB2. It also does not suppress by interfering with the protein arginylation that targets certain proteins for degradation. These results leave open the prospect that this tRNA(AGG)(Arg) plays a novel role in the cell. PMID:8307335

  6. T box riboswitches in Actinobacteria: Translational regulation via novel tRNA interactions

    PubMed Central

    Sherwood, Anna V.; Grundy, Frank J.; Henkin, Tina M.

    2015-01-01

    The T box riboswitch regulates many amino acid-related genes in Gram-positive bacteria. T box riboswitch-mediated gene regulation was shown previously to occur at the level of transcription attenuation via structural rearrangements in the 5′ untranslated (leader) region of the mRNA in response to binding of a specific uncharged tRNA. In this study, a novel group of isoleucyl-tRNA synthetase gene (ileS) T box leader sequences found in organisms of the phylum Actinobacteria was investigated. The Stem I domains of these RNAs lack several highly conserved elements that are essential for interaction with the tRNA ligand in other T box RNAs. Many of these RNAs were predicted to regulate gene expression at the level of translation initiation through tRNA-dependent stabilization of a helix that sequesters a sequence complementary to the Shine–Dalgarno (SD) sequence, thus freeing the SD sequence for ribosome binding and translation initiation. We demonstrated specific binding to the cognate tRNAIle and tRNAIle-dependent structural rearrangements consistent with regulation at the level of translation initiation, providing the first biochemical demonstration, to our knowledge, of translational regulation in a T box riboswitch. PMID:25583497

  7. Studying the evolutionary relationships and phylogenetic trees of 21 groups of tRNA sequences based on complex networks.

    PubMed

    Wei, Fangping; Chen, Bowen

    2012-03-01

    To find out the evolutionary relationships among different tRNA sequences of 21 amino acids, 22 networks are constructed. One is constructed from whole tRNAs, and the other 21 networks are constructed from the tRNAs which carry the same amino acids. A new method is proposed such that the alignment scores of any two amino acids groups are determined by the average degree and the average clustering coefficient of their networks. The anticodon feature of isolated tRNA and the phylogenetic trees of 21 group networks are discussed. We find that some isolated tRNA sequences in 21 networks still connect with other tRNAs outside their group, which reflects the fact that those tRNAs might evolve by intercrossing among these 21 groups. We also find that most anticodons among the same cluster are only one base different in the same sites when S ≥ 70, and they stay in the same rank in the ladder of evolutionary relationships. Those observations seem to agree on that some tRNAs might mutate from the same ancestor sequences based on point mutation mechanisms.

  8. Insights into molecular plasticity in protein complexes from Trm9-Trm112 tRNA modifying enzyme crystal structure.

    PubMed

    Létoquart, Juliette; van Tran, Nhan; Caroline, Vonny; Aleksandrov, Alexey; Lazar, Noureddine; van Tilbeurgh, Herman; Liger, Dominique; Graille, Marc

    2015-12-15

    Most of the factors involved in translation (tRNA, rRNA and proteins) are subject to post-transcriptional and post-translational modifications, which participate in the fine-tuning and tight control of ribosome and protein synthesis processes. In eukaryotes, Trm112 acts as an obligate activating platform for at least four methyltransferases (MTase) involved in the modification of 18S rRNA (Bud23), tRNA (Trm9 and Trm11) and translation termination factor eRF1 (Mtq2). Trm112 is then at a nexus between ribosome synthesis and function. Here, we present a structure-function analysis of the Trm9-Trm112 complex, which is involved in the 5-methoxycarbonylmethyluridine (mcm(5)U) modification of the tRNA anticodon wobble position and hence promotes translational fidelity. We also compare the known crystal structures of various Trm112-MTase complexes, highlighting the structural plasticity allowing Trm112 to interact through a very similar mode with its MTase partners, although those share less than 20% sequence identity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Division of Labor Among the Yeast Sol Proteins Implicated in tRNA Nuclear Export and Carbohydrate Metabolism

    PubMed Central

    Stanford, D. R.; Whitney, M. L.; Hurto, R. L.; Eisaman, D. M.; Shen, W.-C.; Hopper, A. K.

    2004-01-01

    SOL1, the founding member of the S. cerevisiae SOL family, was previously identified as a multi-copy suppressor of the los1 defect in tRNA-mediated nonsense suppression. Here we report that the four-member SOL family is not essential and that individual family members appear to have distinct functions. SOL1–SOL4 are homologous to genes encoding 6-phosphogluconolactonase (6Pgl) involved in the pentose phosphate pathway. Both Sol3p and Sol4p affect this activity. However, Sol4p does not act as a los1 multi-copy suppressor. In contrast, neither Sol1p nor Sol2p, both of which correct the los1 defect in nonsense suppression, possess detectable 6Pgl activity. Rather, Sol1p and Sol2p appear to function in tRNA nuclear export as sol1 and sol2 mutants possess elevated levels of nuclear tRNA. Members of the Sol protein family appear to have different subcellular distributions. Thus, Sol3p and Sol4p likely function in carbohydrate metabolism, while Sol1p and Sol2p appear to have roles in tRNA function and nuclear export, thereby defining an unusual protein family whose individual members are biochemically distinct and spatially dispersed. PMID:15454531

  10. Division of labor among the yeast Sol proteins implicated in tRNA nuclear export and carbohydrate metabolism.

    PubMed

    Stanford, D R; Whitney, M L; Hurto, R L; Eisaman, D M; Shen, W-C; Hopper, A K

    2004-09-01

    SOL1, the founding member of the S. cerevisiae SOL family, was previously identified as a multi-copy suppressor of the los1 defect in tRNA-mediated nonsense suppression. Here we report that the four-member SOL family is not essential and that individual family members appear to have distinct functions. SOL1-SOL4 are homologous to genes encoding 6-phosphogluconolactonase (6Pgl) involved in the pentose phosphate pathway. Both Sol3p and Sol4p affect this activity. However, Sol4p does not act as a los1 multi-copy suppressor. In contrast, neither Sol1p nor Sol2p, both of which correct the los1 defect in nonsense suppression, possess detectable 6Pgl activity. Rather, Sol1p and Sol2p appear to function in tRNA nuclear export as sol1 and sol2 mutants possess elevated levels of nuclear tRNA. Members of the Sol protein family appear to have different subcellular distributions. Thus, Sol3p and Sol4p likely function in carbohydrate metabolism, while Sol1p and Sol2p appear to have roles in tRNA function and nuclear export, thereby defining an unusual protein family whose individual members are biochemically distinct and spatially dispersed.

  11. MINTmap: fast and exhaustive profiling of nuclear and mitochondrial tRNA fragments from short RNA-seq data

    PubMed Central

    Loher, Phillipe; Telonis, Aristeidis G.; Rigoutsos, Isidore

    2017-01-01

    Transfer RNA fragments (tRFs) are an established class of constitutive regulatory molecules that arise from precursor and mature tRNAs. RNA deep sequencing (RNA-seq) has greatly facilitated the study of tRFs. However, the repeat nature of the tRNA templates and the idiosyncrasies of tRNA sequences necessitate the development and use of methodologies that differ markedly from those used to analyze RNA-seq data when studying microRNAs (miRNAs) or messenger RNAs (mRNAs). Here we present MINTmap (for MItochondrial and Nuclear TRF mapping), a method and a software package that was developed specifically for the quick, deterministic and exhaustive identification of tRFs in short RNA-seq datasets. In addition to identifying them, MINTmap is able to unambiguously calculate and report both raw and normalized abundances for the discovered tRFs. Furthermore, to ensure specificity, MINTmap identifies the subset of discovered tRFs that could be originating outside of tRNA space and flags them as candidate false positives. Our comparative analysis shows that MINTmap exhibits superior sensitivity and specificity to other available methods while also being exceptionally fast. The MINTmap codes are available through https://github.com/TJU-CMC-Org/MINTmap/ under an open source GNU GPL v3.0 license. PMID:28220888

  12. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals.

    PubMed

    Sharma, Upasna; Conine, Colin C; Shea, Jeremy M; Boskovic, Ana; Derr, Alan G; Bing, Xin Y; Belleannee, Clemence; Kucukural, Alper; Serra, Ryan W; Sun, Fengyun; Song, Lina; Carone, Benjamin R; Ricci, Emiliano P; Li, Xin Z; Fauquier, Lucas; Moore, Melissa J; Sullivan, Robert; Mello, Craig C; Garber, Manuel; Rando, Oliver J

    2016-01-22

    Several recent studies link parental environments to phenotypes in subsequent generations. In this work, we investigate the mechanism by which paternal diet affects offspring metabolism. Protein restriction in mice affects small RNA (sRNA) levels in mature sperm, with decreased let-7 levels and increased amounts of 5' fragments of glycine transfer RNAs (tRNAs). In testicular sperm, tRNA fragments are scarce but increase in abundance as sperm mature in the epididymis. Epididymosomes (vesicles that fuse with sperm during epididymal transit) carry RNA payloads matching those of mature sperm and can deliver RNAs to immature sperm in vitro. Functionally, tRNA-glycine-GCC fragments repress genes associated with the endogenous retroelement MERVL, in both embryonic stem cells and embryos. Our results shed light on sRNA biogenesis and its dietary regulation during posttesticular sperm maturation, and they also link tRNA fragments to regulation of endogenous retroelements active in the preimplantation embryo. Copyright © 2016, American Association for the Advancement of Science.

  13. Codon usage bias and tRNA over-expression in Buchnera aphidicola after aromatic amino acid nutritional stress on its host Acyrthosiphon pisum

    PubMed Central

    Charles, Hubert; Calevro, Federica; Vinuelas, José; Fayard, Jean-Michel; Rahbe, Yvan

    2006-01-01

    Codon usage bias and relative abundances of tRNA isoacceptors were analysed in the obligate intracellular symbiotic bacterium, Buchnera aphidicola from the aphid Acyrthosiphon pisum, using a dedicated 35mer oligonucleotide microarray. Buchnera is archetypal of organisms living with minimal metabolic requirements and presents a reduced genome with high-evolutionary rate. Codonusage in Buchnera has been overcome by the high mutational bias towards AT bases. However, several lines of evidence for codon usage selection are given here. A significant correlation was found between tRNA relative abundances and codon composition of Buchnera genes. A significant codon usage bias was found for the choice of rare codons in Buchnera: C-ending codons are preferred in highly expressed genes, whereas G-ending codons are avoided. This bias is not explained by GC skew in the bacteria and might correspond to a selection for perfect matching between codon–anticodon pairs for some essential amino acids in Buchnera proteins. Nutritional stress applied to the aphid host induced a significant overexpression of most of the tRNA isoacceptors in bacteria. Although, molecular regulation of the tRNA operons in Buchnera was not investigated, a correlation between relative expression levels and organization in transcription unit was found in the genome of Buchnera. PMID:16963497

  14. Codon usage bias and tRNA over-expression in Buchnera aphidicola after aromatic amino acid nutritional stress on its host Acyrthosiphon pisum.

    PubMed

    Charles, Hubert; Calevro, Federica; Vinuelas, José; Fayard, Jean-Michel; Rahbe, Yvan

    2006-01-01

    Codon usage bias and relative abundances of tRNA isoacceptors were analysed in the obligate intracellular symbiotic bacterium, Buchnera aphidicola from the aphid Acyrthosiphon pisum, using a dedicated 35mer oligonucleotide microarray. Buchnera is archetypal of organisms living with minimal metabolic requirements and presents a reduced genome with high-evolutionary rate. Codonusage in Buchnera has been overcome by the high mutational bias towards AT bases. However, several lines of evidence for codon usage selection are given here. A significant correlation was found between tRNA relative abundances and codon composition of Buchnera genes. A significant codon usage bias was found for the choice of rare codons in Buchnera: C-ending codons are preferred in highly expressed genes, whereas G-ending codons are avoided. This bias is not explained by GC skew in the bacteria and might correspond to a selection for perfect matching between codon-anticodon pairs for some essential amino acids in Buchnera proteins. Nutritional stress applied to the aphid host induced a significant overexpression of most of the tRNA isoacceptors in bacteria. Although, molecular regulation of the tRNA operons in Buchnera was not investigated, a correlation between relative expression levels and organization in transcription unit was found in the genome of Buchnera.

  15. PLMItRNA, a database on the heterogeneous genetic origin of mitochondrial tRNA genes and tRNAs in photosynthetic eukaryotes.

    PubMed

    Rainaldi, Guglielmo; Volpicella, Mariateresa; Licciulli, Flavio; Liuni, Sabino; Gallerani, Raffaele; Ceci, Luigi R

    2003-01-01

    The updated version of PLMItRNA reports information and multialignments on 609 genes and 34 tRNA molecules active in the mitochondria of Viridiplantae (27 Embryophyta and 10 Chlorophyta), and photosynthetic algae (one Cryptophyta, four Rhodophyta and two Stramenopiles). Colour-code based tables reporting the different genetic origin of identified genes allow hyper-textual link to single entries. Promoter sequences identified for tRNA genes in the mitochondrial genomes of Angiospermae are also reported. The PLMItRNA database is accessible at http://bighost.area.ba.cnr.it/PLMItRNA/.

  16. Suppression of Murine Retrovirus Polypeptide Termination: Effect of Amber Suppressor tRNA on the Cell-Free Translation of Rauscher Murine Leukemia Virus, Moloney Murine Leukemia Virus, and Moloney Murine Sarcoma Virus 124 RNA

    PubMed Central

    Murphy, Edwin C.; Wills, Norma; Arlinghaus, Ralph B.

    1980-01-01

    The effect of suppressor tRNA's on the cell-free translation of several leukemia and sarcoma virus RNAs was examined. Yeast amber suppressor tRNA (amber tRNA) enhanced the synthesis of the Rauscher murine leukemia virus and clone 1 Moloney murine leukemia virus Pr200gag-pol polypeptides by 10- to 45-fold, but at the same time depressed the synthesis of Rauscher murine leukemia virus Pr65gag and Moloney murine leukemia virus Pr63gag. Under suppressor-minus conditions, Moloney murine leukemia virus Pr70gag was present as a closely spaced doublet. Amber tRNA stimulated the synthesis of the “upper” Moloney murine leukemia virus Pr70gag polypeptide. Yeast ochre suppressor tRNA appeared to be ineffective. Quantitative analyses of the kinetics of viral precursor polypeptide accumulation in the presence of amber tRNA showed that during linear protein synthesis, the increase in accumulated Moloney murine leukemia virus Pr200gag-pol coincided closely with the molar loss of Pr63gag. Enhancement of Pr200gag-pol and Pr70gag by amber tRNA persisted in the presence of pactamycin, a drug which blocks the initiation of protein synthesis, thus arguing for the addition of amino acids to the C terminus of Pr63gag as the mechanism behind the amber tRNA effect. Moloney murine sarcoma virus 124 30S RNA was translated into four major polypeptides, Pr63gag, P42, P38, and P23. In the presence of amber tRNA, a new polypeptide, Pr67gag, appeared, whereas Pr63gag synthesis was decreased. Quantitative estimates indicated that for every 1 mol of Pr67gag which appeared, 1 mol of Pr63gag was lost. Images PMID:7373716

  17. Genetic Code Optimization for Cotranslational Protein Folding: Codon Directional Asymmetry Correlates with Antiparallel Betasheets, tRNA Synthetase Classes.

    PubMed

    Seligmann, Hervé; Warthi, Ganesh

    2017-01-01

    A new codon property, codon directional asymmetry in nucleotide content (CDA), reveals a biologically meaningful genetic code dimension: palindromic codons (first and last nucleotides identical, codon structure XZX) are symmetric (CDA = 0), codons with structures ZXX/XXZ are 5'/3' asymmetric (CDA = - 1/1; CDA = - 0.5/0.5 if Z and X are both purines or both pyrimidines, assigning negative/positive (-/+) signs is an arbitrary convention). Negative/positive CDAs associate with (a) Fujimoto's tetrahedral codon stereo-table; (b) tRNA synthetase class I/II (aminoacylate the 2'/3' hydroxyl group of the tRNA's last ribose, respectively); and (c) high/low antiparallel (not parallel) betasheet conformation parameters. Preliminary results suggest CDA-whole organism associations (body temperature, developmental stability, lifespan). Presumably, CDA impacts spatial kinetics of codon-anticodon interactions, affecting cotranslational protein folding. Some synonymous codons have opposite CDA sign (alanine, leucine, serine, and valine), putatively explaining how synonymous mutations sometimes affect protein function. Correlations between CDA and tRNA synthetase classes are weaker than between CDA and antiparallel betasheet conformation parameters. This effect is stronger for mitochondrial genetic codes, and potentially drives mitochondrial codon-amino acid reassignments. CDA reveals information ruling nucleotide-protein relations embedded in reversed (not reverse-complement) sequences (5'-ZXX-3'/5'-XXZ-3').

  18. Possibility of cytoplasmic pre-tRNA splicing: the yeast tRNA splicing endonuclease mainly localizes on the mitochondria.

    PubMed

    Yoshihisa, Tohru; Yunoki-Esaki, Kaori; Ohshima, Chie; Tanaka, Nobuyuki; Endo, Toshiya

    2003-08-01

    Pre-tRNA splicing has been believed to occur in the nucleus. In yeast, the tRNA splicing endonuclease that cleaves the exon-intron junctions of pre-tRNAs consists of Sen54p, Sen2p, Sen34p, and Sen15p and was thought to be an integral membrane protein of the inner nuclear envelope. Here we show that the majority of Sen2p, Sen54p, and the endonuclease activity are not localized in the nucleus, but on the mitochondrial surface. The endonuclease is peripherally associated with the cytosolic surface of the outer mitochondrial membrane. A Sen54p derivative artificially fixed on the mitochondria as an integral membrane protein can functionally replace the authentic Sen54p, whereas mutant proteins defective in mitochondrial localization are not fully active. sen2 mutant cells accumulate unspliced pre-tRNAs in the cytosol under the restrictive conditions, and this export of the pre-tRNAs partly depends on Los1p, yeast exportin-t. It is difficult to explain these results from the view of tRNA splicing in the nucleus. We rather propose a new possibility that tRNA splicing occurs on the mitochondrial surface in yeast.

  19. A methods review on use of nonsense suppression to study 3′ end formation and other aspects of tRNA biogenesis

    PubMed Central

    Rijal, Keshab; Maraia, Richard J.; Arimbasseri, Aneeshkumar G.

    2014-01-01

    Suppressor tRNAs bear anticodon mutations that allow them to decode premature stop codons in metabolic marker gene mRNAs, that can be used as in vivo reporters of functional tRNA biogenesis. Here, we review key components of a suppressor tRNA system specific to S. pombe and its adaptations for use to study specific steps in tRNA biogenesis. Eukaryotic tRNA biogenesis begins with transcription initiation by RNA polymerase (pol) III. The nascent pre-tRNAs must undergo folding, 5′ and 3′ processing to remove the leader and trailer, nuclear export, and splicing if applicable, while multiple complex chemical modifications occur throughout the process. We review evidence that precursor-tRNA processing begins with transcription termination at the oligo(T) terminator element, which forms a 3′ oligo(U) tract on the nascent RNA, a sequence-specific binding site for the RNA chaperone, La protein. The processing pathway bifurcates depending on a poorly understood property of pol III termination that determines the 3′ oligo(U) length and therefore the affinity for La. We thus review the pol III termination process and the factors involved including advances using gene-specific random mutagenesis by dNTP analogs that identify key residues important for transcription termination in certain pol III subunits. The review ends with a ‘technical approaches’ section that includes a parts lists of suppressor-tRNA alleles, strains and plasmids, and graphic examples of its diverse uses. PMID:25447915

  20. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome

    NASA Astrophysics Data System (ADS)

    Adio, Sarah; Senyushkina, Tamara; Peske, Frank; Fischer, Niels; Wintermeyer, Wolfgang; Rodnina, Marina V.

    2015-06-01

    The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement.

  1. YrdC exhibits properties expected of a subunit for a tRNA threonylcarbamoyl transferase.

    PubMed

    Harris, Kimberly A; Jones, Victoria; Bilbille, Yann; Swairjo, Manal A; Agris, Paul F

    2011-09-01

    The post-transcriptional nucleoside modifications of tRNA's anticodon domain form the loop structure and dynamics required for effective and accurate recognition of synonymous codons. The N(6)-threonylcarbamoyladenosine modification at position 37 (t(6)A(37)), 3'-adjacent to the anticodon, of many tRNA species in all organisms ensures the accurate recognition of ANN codons by increasing codon affinity, enhancing ribosome binding, and maintaining the reading frame. However, biosynthesis of this complex modification is only partially understood. The synthesis requires ATP, free threonine, a single carbon source for the carbamoyl, and an enzyme yet to be identified. Recently, the universal protein family Sua5/YciO/YrdC was associated with t(6)A(37) biosynthesis. To further investigate the role of YrdC in t(6)A(37) biosynthesis, the interaction of the Escherichia coli YrdC with a heptadecamer anticodon stem and loop of lysine tRNA (ASL(Lys)(UUU)) was examined. YrdC bound the unmodified ASL(Lys)(UUU) with high affinity compared with the t(6)A(37)-modified ASL(Lys)(UUU) (K(d) = 0.27 ± 0.20 μM and 1.36 ± 0.39 μM, respectively). YrdC also demonstrated specificity toward the unmodified versus modified anticodon pentamer UUUUA and toward threonine and ATP. The protein did not significantly alter the ASL architecture, nor was it able to base flip A(37), as determined by NMR, circular dichroism, and fluorescence of 2-aminopuine at position 37. Thus, current data support the hypothesis that YrdC, with many of the properties of a putative threonylcarbamoyl transferase, most likely functions as a component of a heteromultimeric protein complex for t(6)A(37) biosynthesis.

  2. Specific replacement of Q base in the anticodon of tRNA by guanine catalyzed by a cell-free extract of rabbit reticulocytes.

    PubMed Central

    Okada, N; Harada, F; Nishimura, S

    1976-01-01

    Guanylation of tRNA by a lysate of rabbit reticulocytes was reported previously by Farkas and Singh. This reaction was investigated further using 18 purified E. coli tRNAs as acceptors.Results showed that only tRNATyr, tRNAHis, tRNAAsn and tRNAAsp which contain the modified nucleoside Q in the anticodon acted as acceptors. Analysis of the nucleotide sequences in the guanylated tRNA showed that guanine specifically replaced Q base in these tRNAs. Images PMID:792816

  3. Diverse Mechanisms of Sulfur Decoration in Bacterial tRNA and Their Cellular Functions

    PubMed Central

    Zheng, Chenkang; Black, Katherine A.; Dos Santos, Patricia C.

    2017-01-01

    Sulfur-containing transfer ribonucleic acids (tRNAs) are ubiquitous biomolecules found in all organisms that possess a variety of functions. For decades, their roles in processes such as translation, structural stability, and cellular protection have been elucidated and appreciated. These thionucleosides are found in all types of bacteria; however, their biosynthetic pathways are distinct among different groups of bacteria. Considering that many of the thio-tRNA biosynthetic enzymes are absent in Gram-positive bacteria, recent studies have addressed how sulfur trafficking is regulated in these prokaryotic species. Interestingly, a novel proposal has been given for interplay among thionucleosides and the biosynthesis of other thiocofactors, through participation of shared-enzyme intermediates, the functions of which are impacted by the availability of substrate as well as metabolic demand of thiocofactors. This review describes the occurrence of thio-modifications in bacterial tRNA and current methods for detection of these modifications that have enabled studies on the biosynthesis and functions of S-containing tRNA across bacteria. It provides insight into potential modes of regulation and potential evolutionary events responsible for divergence in sulfur metabolism among prokaryotes. PMID:28327539

  4. Structural Basis for Specific Inhibition of tRNA Synthetase by an ATP Competitive Inhibitor.

    PubMed

    Fang, Pengfei; Han, Hongyan; Wang, Jing; Chen, Kaige; Chen, Xin; Guo, Min

    2015-06-18

    Pharmaceutical inhibitors of aminoacyl-tRNA synthetases demand high species and family specificity. The antimalarial ATP-mimetic cladosporin selectively inhibits Plasmodium falciparum LysRS (PfLysRS). How the binding to a universal ATP site achieves the specificity is unknown. Here we report three crystal structures of cladosporin with human LysRS, PfLysRS, and a Pf-like human LysRS mutant. In all three structures, cladosporin occupies the class defining ATP-binding pocket, replacing the adenosine portion of ATP. Three residues holding the methyltetrahydropyran moiety of cladosporin are critical for the specificity of cladosporin against LysRS over other class II tRNA synthetase families. The species-exclusive inhibition of PfLysRS is linked to a structural divergence beyond the active site that mounts a lysine-specific stabilizing response to binding cladosporin. These analyses reveal that inherent divergence of tRNA synthetase structural assembly may allow for highly specific inhibition even through the otherwise universal substrate binding pocket and highlight the potential for structure-driven drug development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Orthogonal use of a human tRNA synthetase active site to achieve multi-functionality

    PubMed Central

    Zhou, Quansheng; Kapoor, Mili; Guo, Min; Belani, Rajesh; Xu, Xiaoling; Kiosses, William B.; Hanan, Melanie; Park, Chulho; Armour, Eva; Do, Minh-Ha; Nangle, Leslie A.; Schimmel, Paul; Yang, Xiang-Lei

    2011-01-01

    Protein multi-functionality is an emerging explanation for the complexity of higher organisms. In this regard, while aminoacyl tRNA synthetases catalyze amino acid activation for protein synthesis, some also act in pathways for inflammation, angiogenesis, and apoptosis. How multiple functions evolved and their relationship to the active site is not clear. Here structural modeling analysis, mutagenesis, and cell-based functional studies show that the potent angiostatic, natural fragment of human TrpRS associates via Trp side chains that protrude from the cognate cellular receptor VE-cadherin. Modeling indicates that (I prefer the way it was because the conclusion was reached not only by modeling, but more so by experimental studies.)VE-cadherin Trp side chains fit into the Trp-specific active site of the synthetase. Thus, specific side chains of the receptor mimic (?) amino acid substrates and expand the functionality of the active site of the synthetase. We propose that orthogonal use of the same active site may be a general way to develop multi-functionality of human tRNA synthetases and other proteins. PMID:20010843

  6. Phage T4 SegB protein is a homing endonuclease required for the preferred inheritance of T4 tRNA gene region occurring in co-infection with a related phage.

    PubMed

    Brok-Volchanskaya, Vera S; Kadyrov, Farid A; Sivogrivov, Dmitry E; Kolosov, Peter M; Sokolov, Andrey S; Shlyapnikov, Michael G; Kryukov, Valentine M; Granovsky, Igor E

    2008-04-01

    Homing endonucleases initiate nonreciprocal transfer of DNA segments containing their own genes and the flanking sequences by cleaving the recipient DNA. Bacteriophage T4 segB gene, which is located in a cluster of tRNA genes, encodes a protein of unknown function, homologous to homing endonucleases of the GIY-YIG family. We demonstrate that SegB protein is a site-specific endonuclease, which produces mostly 3' 2-nt protruding ends at its DNA cleavage site. Analysis of SegB cleavage sites suggests that SegB recognizes a 27-bp sequence. It contains 11-bp conserved sequence, which corresponds to a conserved motif of tRNA TpsiC stem-loop, whereas the remainder of the recognition site is rather degenerate. T4-related phages T2L, RB1 and RB3 contain tRNA gene regions that are homologous to that of phage T4 but lack segB gene and several tRNA genes. In co-infections of phages T4 and T2L, segB gene is inherited with nearly 100% of efficiency. The preferred inheritance depends absolutely on the segB gene integrity and is accompanied by the loss of the T2L tRNA gene region markers. We suggest that SegB is a homing endonuclease that functions to ensure spreading of its own gene and the surrounding tRNA genes among T4-related phages.

  7. Phage T4 SegB protein is a homing endonuclease required for the preferred inheritance of T4 tRNA gene region occurring in co-infection with a related phage

    PubMed Central

    Brok-Volchanskaya, Vera S.; Kadyrov, Farid A.; Sivogrivov, Dmitry E.; Kolosov, Peter M.; Sokolov, Andrey S.; Shlyapnikov, Michael G.; Kryukov, Valentine M.; Granovsky, Igor E.

    2008-01-01

    Homing endonucleases initiate nonreciprocal transfer of DNA segments containing their own genes and the flanking sequences by cleaving the recipient DNA. Bacteriophage T4 segB gene, which is located in a cluster of tRNA genes, encodes a protein of unknown function, homologous to homing endonucleases of the GIY-YIG family. We demonstrate that SegB protein is a site-specific endonuclease, which produces mostly 3′ 2-nt protruding ends at its DNA cleavage site. Analysis of SegB cleavage sites suggests that SegB recognizes a 27-bp sequence. It contains 11-bp conserved sequence, which corresponds to a conserved motif of tRNA TψC stem-loop, whereas the remainder of the recognition site is rather degenerate. T4-related phages T2L, RB1 and RB3 contain tRNA gene regions that are homologous to that of phage T4 but lack segB gene and several tRNA genes. In co-infections of phages T4 and T2L, segB gene is inherited with nearly 100% of efficiency. The preferred inheritance depends absolutely on the segB gene integrity and is accompanied by the loss of the T2L tRNA gene region markers. We suggest that SegB is a homing endonuclease that functions to ensure spreading of its own gene and the surrounding tRNA genes among T4-related phages. PMID:18281701

  8. Genetic code translation displays a linear trade-off between efficiency and accuracy of tRNA selection.

    PubMed

    Johansson, Magnus; Zhang, Jingji; Ehrenberg, Måns

    2012-01-03

    Rapid and accurate translation of the genetic code into protein is fundamental to life. Yet due to lack of a suitable assay, little is known about the accuracy-determining parameters and their correlation with translational speed. Here, we develop such an assay, based on Mg(2+) concentration changes, to determine maximal accuracy limits for a complete set of single-mismatch codon-anticodon interactions. We found a simple, linear trade-off between efficiency of cognate codon reading and accuracy of tRNA selection. The maximal accuracy was highest for the second codon position and lowest for the third. The results rationalize the existence of proofreading in code reading and have implications for the understanding of tRNA modifications, as well as of translation error-modulating ribosomal mutations and antibiotics. Finally, the results bridge the gap between in vivo and in vitro translation and allow us to calibrate our test tube conditions to represent the environment inside the living cell.

  9. In vivo modification of tRNA with an artificial nucleobase leads to full disease remission in an animal model of multiple sclerosis.

    PubMed

    Varghese, Sreeja; Cotter, Michelle; Chevot, Franciane; Fergus, Claire; Cunningham, Colm; Mills, Kingston H; Connon, Stephen J; Southern, John M; Kelly, Vincent P

    2017-02-28

    Queuine is a modified pyrrolopyrimidine nucleobase derived exclusively from bacteria. It post-transcriptionally replaces guanine 34 in transfer RNA isoacceptors for Asp, Asn, His and Tyr, in almost all eukaryotic organisms, through the activity of the ancient tRNA guanine transglycosylase (TGT) enzyme. tRNA hypomodification with queuine is a characteristic of rapidly-proliferating, non-differentiated cells. Autoimmune diseases, including multiple sclerosis, are characterised by the rapid expansion of T cells directed to self-antigens. Here, we demonstrate the potential medicinal relevance of targeting the modification of tRNA in the treatment of a chronic multiple sclerosis model—murine experimental autoimmune encephalomyelitis. Administration of a de novo designed eukaryotic TGT substrate (NPPDAG) led to an unprecedented complete reversal of clinical symptoms and a dramatic reduction of markers associated with immune hyperactivation and neuronal damage after five daily doses. TGT is essential for the therapeutic effect, since animals deficient in TGT activity were refractory to therapy. The data suggest that exploitation of the eukaryotic TGT enzyme is a promising approach for the treatment of multiple sclerosis.

  10. tRNA acceptor stem and anticodon bases form independent codes related to protein folding

    PubMed Central

    Carter, Charles W.; Wolfenden, Richard

    2015-01-01

    Aminoacyl-tRNA synthetases recognize tRNA anticodon and 3′ acceptor stem bases. Synthetase Urzymes acylate cognate tRNAs even without anticodon-binding domains, in keeping with the possibility that acceptor stem recognition preceded anticodon recognition. Representing tRNA identity elements with two bits per base, we show that the anticodon encodes the hydrophobicity of each amino acid side-chain as represented by its water-to-cyclohexane distribution coefficient, and this relationship holds true over the entire temperature range of liquid water. The acceptor stem codes preferentially for the surface area or size of each side-chain, as represented by its vapor-to-cyclohexane distribution coefficient. These orthogonal experimental properties are both necessary to account satisfactorily for the exposed surface area of amino acids in folded proteins. Moreover, the acceptor stem codes correctly for β-branched and carboxylic acid side-chains, whereas the anticodon codes for a wider range of such properties, but not for size or β-branching. These and other results suggest that genetic coding of 3D protein structures evolved in distinct stages, based initially on the size of the amino acid and later on its compatibility with globular folding in water. PMID:26034281

  11. Mutation in WDR4 impairs tRNA m(7)G46 methylation and causes a distinct form of microcephalic primordial dwarfism.

    PubMed

    Shaheen, Ranad; Abdel-Salam, Ghada M H; Guy, Michael P; Alomar, Rana; Abdel-Hamid, Mohamed S; Afifi, Hanan H; Ismail, Samira I; Emam, Bayoumi A; Phizicky, Eric M; Alkuraya, Fowzan S

    2015-09-28

    Primordial dwarfism is a state of extreme prenatal and postnatal growth deficiency, and is characterized by marked clinical and genetic heterogeneity. Two presumably unrelated consanguineous families presented with an apparently novel form of primordial dwarfism in which severe growth deficiency is accompanied by distinct facial dysmorphism, brain malformation (microcephaly, agenesis of corpus callosum, and simplified gyration), and severe encephalopathy with seizures. Combined autozygome/exome analysis revealed a novel missense mutation in WDR4 as the likely causal variant. WDR4 is the human ortholog of the yeast Trm82, an essential component of the Trm8/Trm82 holoenzyme that effects a highly conserved and specific (m(7)G46) methylation of tRNA. The human mutation and the corresponding yeast mutation result in a significant reduction of m(7)G46 methylation of specific tRNA species, which provides a potential mechanism for primordial dwarfism associated with this lesion, since reduced m(7)G46 modification causes a growth deficiency phenotype in yeast. Our study expands the number of biological pathways underlying primordial dwarfism and adds to a growing list of human diseases linked to abnormal tRNA modification.

  12. Loss of the mitochondrial protein-only ribonuclease P complex causes aberrant tRNA processing and lethality in Drosophila.

    PubMed

    Sen, Aditya; Karasik, Agnes; Shanmuganathan, Aranganathan; Mirkovic, Elena; Koutmos, Markos; Cox, Rachel T

    2016-07-27

    Proteins encoded by mitochondrial DNA are translated using mitochondrially encoded tRNAs and rRNAs. As with nuclear encoded tRNAs, mitochondrial tRNAs must be processed to become fully functional. The mitochondrial form of ribonuclease P (mt:RNase P) is responsible for 5'-end maturation and is comprised of three proteins; mitochondrial RNase P protein (MRPP) 1 and 2 together with proteinaceous RNase P (PRORP). However, its mechanism and impact on development is not yet known. Using homology searches, we have identified the three proteins composing Drosophila mt:RNase P: Mulder (PRORP), Scully (MRPP2) and Roswell (MRPP1). Here, we show that each protein is essential and localizes with mitochondria. Furthermore, reducing levels of each causes mitochondrial deficits, which appear to be due at least in part to defective mitochondrial tRNA processing. Overexpressing two members of the complex, Mulder and Roswell, is also lethal, and in the case of Mulder, causes abnormal mitochondrial morphology. These data are the first evidence that defective mt:RNase P causes mitochondrial dysfunction, lethality and aberrant mitochondrial tRNA processing in vivo, underscoring its physiological importance. This in vivo mt:RNase P model will advance our understanding of how loss of mitochondrial tRNA processing causes tissue failure, an important aspect of human mitochondrial disease. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  13. Co-adaption of tRNA gene copy number and amino acid usage influences translation rates in three life domains.

    PubMed

    Du, Meng-Ze; Wei, Wen; Qin, Lei; Liu, Shuo; Zhang, An-Ying; Zhang, Yong; Zhou, Hong; Guo, Feng-Biao

    2017-12-01

    Although more and more entangled participants of translation process were realized, how they cooperate and co-determine the final translation efficiency still lacks details. Here, we reasoned that the basic translation components, tRNAs and amino acids should be consistent to maximize the efficiency and minimize the cost. We firstly revealed that 310 out of 410 investigated genomes of three domains had significant co-adaptions between the tRNA gene copy numbers and amino acid compositions, indicating that maximum efficiency constitutes ubiquitous selection pressure on protein translation. Furthermore, fast-growing and larger bacteria are found to have significantly better co-adaption and confirmed the effect of this pressure. Within organism, highly expressed proteins and those connected to acute responses have higher co-adaption intensity. Thus, the better co-adaption probably speeds up the growing of cells through accelerating the translation of special proteins. Experimentally, manipulating the tRNA gene copy number to optimize co-adaption between enhanced green fluorescent protein (EGFP) and tRNA gene set of Escherichia coli indeed lifted the translation rate (speed). Finally, as a newly confirmed translation rate regulating mechanism, the co-adaption reflecting translation rate not only deepens our understanding on translation process but also provides an easy and practicable method to improve protein translation rates and productivity. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  14. Co-adaption of tRNA gene copy number and amino acid usage influences translation rates in three life domains

    PubMed Central

    Du, Meng-Ze; Wei, Wen; Qin, Lei; Liu, Shuo; Zhang, An-Ying; Zhang, Yong; Zhou, Hong

    2017-01-01

    Abstract Although more and more entangled participants of translation process were realized, how they cooperate and co-determine the final translation efficiency still lacks details. Here, we reasoned that the basic translation components, tRNAs and amino acids should be consistent to maximize the efficiency and minimize the cost. We firstly revealed that 310 out of 410 investigated genomes of three domains had significant co-adaptions between the tRNA gene copy numbers and amino acid compositions, indicating that maximum efficiency constitutes ubiquitous selection pressure on protein translation. Furthermore, fast-growing and larger bacteria are found to have significantly better co-adaption and confirmed the effect of this pressure. Within organism, highly expressed proteins and those connected to acute responses have higher co-adaption intensity. Thus, the better co-adaption probably speeds up the growing of cells through accelerating the translation of special proteins. Experimentally, manipulating the tRNA gene copy number to optimize co-adaption between enhanced green fluorescent protein (EGFP) and tRNA gene set of Escherichia coli indeed lifted the translation rate (speed). Finally, as a newly confirmed translation rate regulating mechanism, the co-adaption reflecting translation rate not only deepens our understanding on translation process but also provides an easy and practicable method to improve protein translation rates and productivity. PMID:28992099

  15. In vitro selection of electrochemical peptide probes using bioorthogonal tRNA for influenza virus detection.

    PubMed

    K C, Tara Bahadur; Tada, Seiichi; Zhu, Liping; Uzawa, Takanori; Minagawa, Noriko; Luo, Shyh-Chyang; Zhao, Haichao; Yu, Hsiao-Hua; Aigaki, Toshiro; Ito, Yoshihiro

    2018-05-17

    An electrosensitive peptide probe has been developed from an in vitro selection technique using biorthogonal tRNA prepared with an electroreactive non-natural amino acid, 3,4-ethylenedioxythiophene-conjugated aminophenylalanine. The selected probe quantitatively detected the influenza virus based on a signal "turn-on" mechanism. The developed strategy could be used to develop electrochemical biosensors toward a variety of targets.

  16. Interaction of polyethyleneimine-anchored copper(II) complexes with tRNA studied by spectroscopy methods and biological activities.

    PubMed

    Lakshmipraba, Jagadeesan; Arunachalam, Sankaralingam; Gandi, Devadas A; Thirunalasundari, Thyagarajan; Vignesh, Sivanandham; James, Rathinam A

    2017-05-01

    Ultraviolet-visible, emission and circular dichroism spectroscopic methods were used in transfer RNA (tRNA) interaction studies performed for polyethyleneimine-copper(II) complexes [Cu(phen)(l-Tyr)BPEI]ClO 4 (where phen =1,10-phenanthroline, l-Tyr = l-tyrosine and BPEI = branched polyethyleneimine) with various degrees of coordination (x = 0.059, 0.149, 0.182) in the polymer chain. The results indicated that polyethyleneimine-copper(II) complexes bind with tRNA mostly through surface binding, although other binding modes, such as hydrogen bonding and van der Waals interactions, might also be present. Dye-exclusion, sulforhodamine B and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays of a polyethyleneimine-copper(II) complex with a higher degree of coordination against different cancer cell lines proved that the complex exhibited cytotoxic specificity and a significant cancer cell inhibition rate. Antimicrobial screening showed activity against some human pathogens. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Chloroplast DNA codon use: evidence for selection at the psb A locus based on tRNA availability.

    PubMed

    Morton, B R

    1993-09-01

    Codon use in the three sequenced chloroplast genomes (Marchantia, Oryza, and Nicotiana) is examined. The chloroplast has a bias in that codons NNA and NNT are favored over synonymous NNC and NNG codons. This appears to be a consequence of an overall high A + T content of the genome. This pattern of codon use is not followed by the psb A gene of all three genomes and other psb A sequences examined. In this gene, the codon use favors NNC over NNT for twofold degenerate amino acids. In each case the only tRNA coded by the genome is complementary to the NNC codon. This codon use is similar to the codon use by chloroplast genes examined from Chlamydomonas reinhardtii. Since psb A is the major translation product of the chloroplast, this suggests that selection is acting on the codon use of this gene to adapt codons to tRNA availability, as previously suggested for unicellular organisms.

  18. Utp22p acts in concert with Utp8p to channel aminoacyl-tRNA from the nucleolus to the nuclear tRNA export receptor Los1p but not Msn5p.

    PubMed

    Eswara, Manoja B K; Clayton, Ashley; Mangroo, Dev

    2012-12-01

    Utp8p is an essential nucleolar protein that channels aminoacyl-tRNAs from aminoacyl-tRNA synthetases in the nucleolus to the nuclear tRNA export receptors located in the nucleoplasm and nuclear pore complex in Saccharomyces cerevisiae. Utp8p is also part of the U3 snoRNA-associated protein complex involved in 18S rRNA biogenesis in the nucleolus. We report that Utp22p, which is another member of the U3 snoRNA-associated protein complex, is also an intranuclear component of the nuclear tRNA export machinery. Depletion of Utp22p results in nuclear retention of mature tRNAs derived from intron-containing and intronless precursors. Moreover, Utp22p copurifies with the nuclear tRNA export receptor Los1p, the aminoacyl-tRNA synthetase Tys1p and Utp8p, but not with the RanGTPase Gsp1p and the nuclear tRNA export receptor Msn5p. Utp22p interacts directly with Utp8p and Los1p in a tRNA-independent manner in vitro. Utp22p also interacts directly with Tys1p, but this binding is stimulated when Tys1p is bound to tRNA. However, Utp22p, unlike Utp8p, does not bind tRNA saturably. These data suggest that Utp22p recruits Utp8p to aminoacyl-tRNA synthetases in the nucleolus to collect aminoacyl-tRNA and then accompanies the Utp8p-tRNA complex to deliver the aminoacyl-tRNAs to Los1p but not Msn5p. It is possible that Nrap/Nol6, the mammalian orthologue of Utp22p, plays a role in channelling aminoacyl-tRNA to the nuclear tRNA export receptor exportin-t.

  19. Global translational impacts of the loss of the tRNA modification t6A in yeast.

    PubMed

    Thiaville, Patrick C; Legendre, Rachel; Rojas-Benítez, Diego; Baudin-Baillieu, Agnès; Hatin, Isabelle; Chalancon, Guilhem; Glavic, Alvaro; Namy, Olivier; de Crécy-Lagard, Valérie

    2016-01-01

    The universal tRNA modification t 6 A is found at position 37 of nearly all tRNAs decoding ANN codons. The absence of t 6 A 37 leads to severe growth defects in baker's yeast, phenotypes similar to those caused by defects in mcm 5 s 2 U 34 synthesis. Mutants in mcm 5 s 2 U 34 can be suppressed by overexpression of tRNA Lys UUU , but we show t 6 A phenotypes could not be suppressed by expressing any individual ANN decoding tRNA, and t 6 A and mcm 5 s 2 U are not determinants for each other's formation. Our results suggest that t 6 A deficiency, like mcm 5 s 2 U deficiency, leads to protein folding defects, and show that the absence of t 6 A led to stress sensitivities (heat, ethanol, salt) and sensitivity to TOR pathway inhibitors. Additionally, L-homoserine suppressed the slow growth phenotype seen in t 6 A-deficient strains, and proteins aggregates and Advanced Glycation End-products (AGEs) were increased in the mutants. The global consequences on translation caused by t 6 A absence were examined by ribosome profiling. Interestingly, the absence of t 6 A did not lead to global translation defects, but did increase translation initiation at upstream non-AUG codons and increased frame-shifting in specific genes. Analysis of codon occupancy rates suggests that one of the major roles of t 6 A is to homogenize the process of elongation by slowing the elongation rate at codons decoded by high abundance tRNAs and I 34 :C 3 pairs while increasing the elongation rate of rare tRNAs and G 34 :U 3 pairs. This work reveals that the consequences of t 6 A absence are complex and multilayered and has set the stage to elucidate the molecular basis of the observed phenotypes.

  20. Mitochondrial tRNA 5'-editing in Dictyostelium discoideum and Polysphondylium pallidum.

    PubMed

    Abad, Maria G; Long, Yicheng; Kinchen, R Dimitri; Schindel, Elinor T; Gray, Michael W; Jackman, Jane E

    2014-05-30

    Mitochondrial tRNA (mt-tRNA) 5'-editing was first described more than 20 years ago; however, the first candidates for 5'-editing enzymes were only recently identified in a eukaryotic microbe (protist), the slime mold Dictyostelium discoideum. In this organism, eight of 18 mt-tRNAs are predicted to be edited based on the presence of genomically encoded mismatched nucleotides in their aminoacyl-acceptor stem sequences. Here, we demonstrate that mt-tRNA 5'-editing occurs at all predicted sites in D. discoideum as evidenced by changes in the sequences of isolated mt-tRNAs compared with the expected sequences encoded by the mitochondrial genome. We also identify two previously unpredicted editing events in which G-U base pairs are edited in the absence of any other genomically encoded mismatches. A comparison of 5'-editing in D. discoideum with 5'-editing in another slime mold, Polysphondylium pallidum, suggests organism-specific idiosyncrasies in the treatment of U-G/G-U pairs. In vitro activities of putative D. discoideum editing enzymes are consistent with the observed editing reactions and suggest an overall lack of tRNA substrate specificity exhibited by the repair component of the editing enzyme. Although the presence of terminal mismatches in mt-tRNA sequences is highly predictive of the occurrence of mt-tRNA 5'-editing, the variability in treatment of U-G/G-U base pairs observed here indicates that direct experimental evidence of 5'-editing must be obtained to understand the complete spectrum of mt-tRNA editing events in any species. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Dynamics of the active site loops in catalyzing aminoacylation reaction in seryl and histidyl tRNA synthetases.

    PubMed

    Dutta, Saheb; Kundu, Soumya; Saha, Amrita; Nandi, Nilashis

    2018-03-01

    Aminoacylation reaction is the first step of protein biosynthesis. The catalytic reorganization at the active site of aminoacyl tRNA synthetases (aaRSs) is driven by the loop motions. There remain lacunae of understanding concerning the catalytic loop dynamics in aaRSs. We analyzed the functional loop dynamics in seryl tRNA synthetase from Methanopyrus kandleri ( mk SerRS) and histidyl tRNA synthetases from Thermus thermophilus ( tt HisRS), respectively, using molecular dynamics. Results confirm that the motif 2 loop and other active site loops are flexible spots within the catalytic domain. Catalytic residues of the loops form a network of interaction with the substrates to form a reactive state. The loops undergo transitions between closed state and open state and the relaxation of the constituent residues occurs in femtosecond to nanosecond time scale. Order parameters are higher for constituent catalytic residues which form a specific network of interaction with the substrates to form a reactive state compared to the Gly residues within the loop. The development of interaction is supported from mutation studies where the catalytic domain with mutated loop exhibits unfavorable binding energy with the substrates. During the open-close motion of the loops, the catalytic residues make relaxation by ultrafast librational motion as well as fast diffusive motion and subsequently relax rather slowly via slower diffusive motion. The Gly residues act as a hinge to facilitate the loop closing and opening by their faster relaxation behavior. The role of bound water is analyzed by comparing implicit solvent-based and explicit solvent-based simulations. Loops fail to form catalytically competent geometry in absence of water. The present result, for the first time reveals the nature of the active site loop dynamics in aaRS and their influence on catalysis.

  2. Escherichia coli tRNA 2-selenouridine synthase (SelU) converts S2U-RNA to Se2U-RNA via S-geranylated-intermediate.

    PubMed

    Sierant, Malgorzata; Leszczynska, Grazyna; Sadowska, Klaudia; Komar, Patrycja; Radzikowska-Cieciura, Ewa; Sochacka, Elzbieta; Nawrot, Barbara

    2018-06-04

    To date the only tRNAs containing nucleosides modified with a selenium (5-carboxymethylaminomethyl-2-selenouridine and 5-methylaminomethyl-2-selenouridine) have been found in bacteria. By using tRNA anticodon-stem-loop fragments containing S2U, Se2U, or geS2U, we found that in vitro tRNA 2-selenouridine synthase (SelU) converts S2U-RNA to Se2U-RNA in a two-step process involving S2U-RNA geranylation (with ppGe) and subsequent selenation of the resulting geS2U-RNA (with SePO 3 3- ). No 'direct' S2U-RNA→Se2U-RNA replacement is observed in the presence of SelU/SePO 3 3- only (without ppGe). These results suggest that the in vivo S2U→Se2U and S2U→geS2U transformations in tRNA, so far claimed to be the elementary reactions occurring independently in the same domain of the SelU enzyme, should be considered a combination of two consecutive events - geranylation (S2U→geS2U) and selenation (geS2U→Se2U). © 2018 Federation of European Biochemical Societies.

  3. Formation of tRNA granules in the nucleus of heat-induced human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyagawa, Ryu; Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654; Mizuno, Rie

    Highlights: Black-Right-Pointing-Pointer tRNAs are tranlocated into the nucleus in heat-induced HeLa cells. Black-Right-Pointing-Pointer tRNAs form the unique granules in the nucleus. Black-Right-Pointing-Pointer tRNA ganules overlap with nuclear stress granules. -- Abstract: The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules.more » Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA{sup Met} (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA{sup Met} was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.« less

  4. Was there a universal tRNA before specialized tRNAs came into existence?

    NASA Technical Reports Server (NTRS)

    Lacey, James C., Jr.; Staves, Mark P.

    1990-01-01

    It is generally true that evolving systems begin simply and become more complex in the evolutionary process. For those who try to understand the origin of a biochemical system, what is required is the development of an idea as to what simpler system preceded the present one. A hypothesis is presented that a universal tRNA molecule, capable of reading many codons, may have preceded the appearance of individual tRNAs. Evidence seems to suggest that this molecule may have been derived from a common ancestor of the contemporary 5S rRNAs and tRNAs.

  5. Control of rRNA and tRNA syntheses in Escherichia coli by guanosine tetraphosphate.

    PubMed Central

    Ryals, J; Little, R; Bremer, H

    1982-01-01

    The expression of stable RNA (rRNA and tRNA) genes and the concentration of guanosine tetraphosphate (ppGpp) were measured in an isogenic pair of relA+ and relA derivatives of Escherichia coli B/r. The cells were either growing exponentially at different rates or subject to amino acid starvation when they were measured. The specific stable RNA gene activity (rs/rt, the rate of rRNA and tRNA synthesis relative to the total instantaneous rate of RNA synthesis) was found to decrease from 1.0 at a ppGpp concentration of 0 (extrapolated value) to 0.24 at saturating concentrations of ppGpp (above 100 pmoles per optical density at 460 nm unit of cell mass). The same relationship between the rs/rt ratio and ppGpp concentration was obtained independent of the physiological state of the bacteria (i.e., independent of the growth rate or of amino acid starvation) and independent of the relA allele. It can be concluded that ppGpp is an effector for stable RNA gene control and that stable RNA genes are not controlled by factors other than the ppGpp-mediated system. The results were shown to be qualitatively and quantitatively consistent with data on in vitro rRNA gene control by ppGpp, and they were interpreted in the light of reported ideas derived from those in vitro experiments. PMID:6179924

  6. Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers.

    PubMed

    Honda, Shozo; Loher, Phillipe; Shigematsu, Megumi; Palazzo, Juan P; Suzuki, Ryusuke; Imoto, Issei; Rigoutsos, Isidore; Kirino, Yohei

    2015-07-21

    Sex hormones and their receptors play critical roles in the development and progression of the breast and prostate cancers. Here we report that a novel type of transfer RNA (tRNA)-derived small RNA, termed Sex HOrmone-dependent TRNA-derived RNAs (SHOT-RNAs), are specifically and abundantly expressed in estrogen receptor (ER)-positive breast cancer and androgen receptor (AR)-positive prostate cancer cell lines. SHOT-RNAs are not abundantly present in ER(-) breast cancer, AR(-) prostate cancer, or other examined cancer cell lines from other tissues. ER-dependent accumulation of SHOT-RNAs is not limited to a cell culture system, but it also occurs in luminal-type breast cancer patient tissues. SHOT-RNAs are produced from aminoacylated mature tRNAs by angiogenin-mediated anticodon cleavage, which is promoted by sex hormones and their receptors. Resultant 5'- and 3'-SHOT-RNAs, corresponding to 5'- and 3'-tRNA halves, bear a cyclic phosphate (cP) and an amino acid at the 3'-end, respectively. By devising a "cP-RNA-seq" method that is able to exclusively amplify and sequence cP-containing RNAs, we identified the complete repertoire of 5'-SHOT-RNAs. Furthermore, 5'-SHOT-RNA, but not 3'-SHOT-RNA, has significant functional involvement in cell proliferation. These results have unveiled a novel tRNA-engaged pathway in tumorigenesis of hormone-dependent cancers and implicate SHOT-RNAs as potential candidates for biomarkers and therapeutic targets.

  7. Three-Dimensional Algebraic Models of the tRNA Code and 12 Graphs for Representing the Amino Acids.

    PubMed

    José, Marco V; Morgado, Eberto R; Guimarães, Romeu Cardoso; Zamudio, Gabriel S; de Farías, Sávio Torres; Bobadilla, Juan R; Sosa, Daniela

    2014-08-11

    Three-dimensional algebraic models, also called Genetic Hotels, are developed to represent the Standard Genetic Code, the Standard tRNA Code (S-tRNA-C), and the Human tRNA code (H-tRNA-C). New algebraic concepts are introduced to be able to describe these models, to wit, the generalization of the 2n-Klein Group and the concept of a subgroup coset with a tail. We found that the H-tRNA-C displayed broken symmetries in regard to the S-tRNA-C, which is highly symmetric. We also show that there are only 12 ways to represent each of the corresponding phenotypic graphs of amino acids. The averages of statistical centrality measures of the 12 graphs for each of the three codes are carried out and they are statistically compared. The phenotypic graphs of the S-tRNA-C display a common triangular prism of amino acids in 10 out of the 12 graphs, whilst the corresponding graphs for the H-tRNA-C display only two triangular prisms. The graphs exhibit disjoint clusters of amino acids when their polar requirement values are used. We contend that the S-tRNA-C is in a frozen-like state, whereas the H-tRNA-C may be in an evolving state.

  8. Apple S-RNase triggers inhibition of tRNA aminoacylation by interacting with a soluble inorganic pyrophosphatase in growing self-pollen tubes in vitro.

    PubMed

    Li, Wei; Meng, Dong; Gu, Zhaoyu; Yang, Qing; Yuan, Hui; Li, Yang; Chen, Qiuju; Yu, Jie; Liu, Chunsheng; Li, Tianzhong

    2018-04-01

    Apple exhibits S-RNase-based self-incompatibility (SI), in which S-RNase plays a central role in rejecting self-pollen. It has been proposed that the arrest of pollen growth in SI of Solanaceae plants is a consequence of the degradation of pollen rRNA by S-RNase; however, the underlying mechanism in Rosaceae is still unclear. Here, we used S 2 -RNase as a bait to screen an apple pollen cDNA library and characterized an apple soluble inorganic pyrophosphatase (MdPPa) that physically interacted with S-RNases. When treated with self S-RNases, apple pollen tubes showed a marked growth inhibition, as well as a decrease in endogenous soluble pyrophosphatase activity and elevated levels of inorganic pyrophosphate (PPi). In addition, S-RNase was found to bind to two variable regions of MdPPa, resulting in a noncompetitive inhibition of its activity. Silencing of MdPPa expression led to a reduction in pollen tube growth. Interestingly, tRNA aminoacylation was inhibited in self S-RNase-treated or MdPPa-silenced pollen tubes, resulting in the accumulation of uncharged tRNA. Furthermore, we provide evidence showing that this disturbance of tRNA aminoacylation is independent of RNase activity. We propose an alternative mechanism differing from RNA degradation to explain the cytotoxicity of the S-RNase apple SI process. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  9. The yeast retrotransposon Ty5 uses the anticodon stem-loop of the initiator methionine tRNA as a primer for reverse transcription.

    PubMed Central

    Ke, N; Gao, X; Keeney, J B; Boeke, J D; Voytas, D F

    1999-01-01

    Retrotransposons and retroviruses replicate by reverse transcription of an mRNA intermediate. Most retroelements initiate reverse transcription from a host-encoded tRNA primer. DNA synthesis typically extends from the 3'-OH of the acceptor stem, which is complementary to sequences on the retroelement mRNA (the primer binding site, PBS). However, for some retrotransposons, including the yeast Ty5 elements, sequences in the anticodon stem-loop of the initiator methionine tRNA (IMT) are complementary to the PBS. We took advantage of the genetic tractability of the yeast system to investigate the mechanism of Ty5 priming. We found that transposition frequencies decreased at least 800-fold for mutations in the Ty5 PBS that disrupt complementarity with the IMT. Similarly, transposition was reduced at least 200-fold for IMT mutations in the anticodon stem-loop. Base pairing between the Ty5 PBS and IMT is essential for transposition, as compensatory changes that restored base pairing between the two mutant RNAs restored transposition significantly. An analysis of 12 imt mutants with base changes outside of the region of complementarity failed to identify other tRNA residues important for transposition. In addition, assays carried out with heterologous IMTs from Schizosaccharomyces pombe and Arabidopsis thaliana indicated that residues outside of the anticodon stem-loop have at most a fivefold effect on transposition. Our genetic system should make it possible to further define the components required for priming and to understand the mechanism by which Ty5's novel primer is generated. PMID:10411136

  10. A Deafness- and Diabetes-associated tRNA Mutation Causes Deficient Pseudouridinylation at Position 55 in tRNAGlu and Mitochondrial Dysfunction*

    PubMed Central

    Wang, Meng; Liu, Hao; Zheng, Jing; Chen, Bobei; Zhou, Mi; Fan, Wenlu; Wang, Hen; Liang, Xiaoyang; Zhou, Xiaolong; Eriani, Gilbert; Jiang, Pingping; Guan, Min-Xin

    2016-01-01

    Several mitochondrial tRNA mutations have been associated with maternally inherited diabetes and deafness. However, the pathophysiology of these tRNA mutations remains poorly understood. In this report, we identified the novel homoplasmic 14692A→G mutation in the mitochondrial tRNAGlu gene among three Han Chinese families with maternally inherited diabetes and deafness. The m.14692A→G mutation affected a highly conserved uridine at position 55 of the TΨC loop of tRNAGlu. The uridine is modified to pseudouridine (Ψ55), which plays an important role in the structure and function of this tRNA. Using lymphoblastoid cell lines derived from a Chinese family, we demonstrated that the m.14692A→G mutation caused loss of Ψ55 modification and increased angiogenin-mediated endonucleolytic cleavage in mutant tRNAGlu. The destabilization of base-pairing (18A-Ψ55) caused by the m.14692A→G mutation perturbed the conformation and stability of tRNAGlu. An approximately 65% decrease in the steady-state level of tRNAGlu was observed in mutant cells compared with control cells. A failure in tRNAGlu metabolism impaired mitochondrial translation, especially for polypeptides with a high proportion of glutamic acid codons such as ND1, ND6, and CO2 in mutant cells. An impairment of mitochondrial translation caused defective respiratory capacity, especially reducing the activities of complexes I and IV. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These mitochondrial dysfunctions caused an increasing production of reactive oxygen species in the mutant cells. Our findings may provide new insights into the pathophysiology of maternally inherited diabetes and deafness, which is primarily manifested by the deficient nucleotide modification of mitochondrial tRNAGlu. PMID:27519417

  11. A Generalized Michaelis-Menten Equation in Protein Synthesis: Effects of Mis-Charged Cognate tRNA and Mis-Reading of Codon.

    PubMed

    Dutta, Annwesha; Chowdhury, Debashish

    2017-05-01

    The sequence of amino acid monomers in the primary structure of a protein is decided by the corresponding sequence of codons (triplets of nucleic acid monomers) on the template messenger RNA (mRNA). The polymerization of a protein, by incorporation of the successive amino acid monomers, is carried out by a molecular machine called ribosome. We develop a stochastic kinetic model that captures the possibilities of mis-reading of mRNA codon and prior mis-charging of a tRNA. By a combination of analytical and numerical methods, we obtain the distribution of the times taken for incorporation of the successive amino acids in the growing protein in this mathematical model. The corresponding exact analytical expression for the average rate of elongation of a nascent protein is a 'biologically motivated' generalization of the Michaelis-Menten formula for the average rate of enzymatic reactions. This generalized Michaelis-Menten-like formula (and the exact analytical expressions for a few other quantities) that we report here display the interplay of four different branched pathways corresponding to selection of four different types of tRNA.

  12. MTO1 mediates tissue specificity of OXPHOS defects via tRNA modification and translation optimization, which can be bypassed by dietary intervention

    PubMed Central

    Tischner, Christin; Hofer, Annette; Wulff, Veronika; Stepek, Joanna; Dumitru, Iulia; Becker, Lore; Haack, Tobias; Kremer, Laura; Datta, Alexandre N.; Sperl, Wolfgang; Floss, Thomas; Wurst, Wolfgang; Chrzanowska-Lightowlers, Zofia; De Angelis, Martin Hrabe; Klopstock, Thomas; Prokisch, Holger; Wenz, Tina

    2015-01-01

    Mitochondrial diseases often exhibit tissue-specific pathologies, but this phenomenon is poorly understood. Here we present regulation of mitochondrial translation by the Mitochondrial Translation Optimization Factor 1, MTO1, as a novel player in this scenario. We demonstrate that MTO1 mediates tRNA modification and controls mitochondrial translation rate in a highly tissue-specific manner associated with tissue-specific OXPHOS defects. Activation of mitochondrial proteases, aberrant translation products, as well as defects in OXPHOS complex assembly observed in MTO1 deficient mice further imply that MTO1 impacts translation fidelity. In our mouse model, MTO1-related OXPHOS deficiency can be bypassed by feeding a ketogenic diet. This therapeutic intervention is independent of the MTO1-mediated tRNA modification and involves balancing of mitochondrial and cellular secondary stress responses. Our results thereby establish mammalian MTO1 as a novel factor in the tissue-specific regulation of OXPHOS and fine tuning of mitochondrial translation accuracy. PMID:25552653

  13. Defects in tRNA processing and nuclear export induce GCN4 translation independently of phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2.

    PubMed

    Qiu, H; Hu, C; Anderson, J; Björk, G R; Sarkar, S; Hopper, A K; Hinnebusch, A G

    2000-04-01

    Induction of GCN4 translation in amino acid-starved cells involves the inhibition of initiator tRNA(Met) binding to eukaryotic translation initiation factor 2 (eIF2) in response to eIF2 phosphorylation by protein kinase GCN2. It was shown previously that GCN4 translation could be induced independently of GCN2 by overexpressing a mutant tRNA(AAC)(Val) (tRNA(Val*)) or the RNA component of RNase MRP encoded by NME1. Here we show that overexpression of the tRNA pseudouridine 55 synthase encoded by PUS4 also leads to translational derepression of GCN4 (Gcd(-) phenotype) independently of eIF2 phosphorylation. Surprisingly, the Gcd(-) phenotype of high-copy-number PUS4 (hcPUS4) did not require PUS4 enzymatic activity, and several lines of evidence indicate that PUS4 overexpression did not diminish functional initiator tRNA(Met) levels. The presence of hcPUS4 or hcNME1 led to the accumulation of certain tRNA precursors, and their Gcd(-) phenotypes were reversed by overexpressing the RNA component of RNase P (RPR1), responsible for 5'-end processing of all tRNAs. Consistently, overexpression of a mutant pre-tRNA(Tyr) that cannot be processed by RNase P had a Gcd(-) phenotype. Interestingly, the Gcd(-) phenotype of hcPUS4 also was reversed by overexpressing LOS1, required for efficient nuclear export of tRNA, and los1Delta cells have a Gcd(-) phenotype. Overproduced PUS4 appears to impede 5'-end processing or export of certain tRNAs in the nucleus in a manner remedied by increased expression of RNase P or LOS1, respectively. The mutant tRNA(Val*) showed nuclear accumulation in otherwise wild-type cells, suggesting a defect in export to the cytoplasm. We propose that yeast contains a nuclear surveillance system that perceives defects in processing or export of tRNA and evokes a reduction in translation initiation at the step of initiator tRNA(Met) binding to the ribosome.

  14. Defects in tRNA Processing and Nuclear Export Induce GCN4 Translation Independently of Phosphorylation of the α Subunit of Eukaryotic Translation Initiation Factor 2

    PubMed Central

    Qiu, Hongfang; Hu, Cuihua; Anderson, James; Björk, Glenn R.; Sarkar, Srimonti; Hopper, Anita K.; Hinnebusch, Alan G.

    2000-01-01

    Induction of GCN4 translation in amino acid-starved cells involves the inhibition of initiator tRNAMet binding to eukaryotic translation initiation factor 2 (eIF2) in response to eIF2 phosphorylation by protein kinase GCN2. It was shown previously that GCN4 translation could be induced independently of GCN2 by overexpressing a mutant tRNAAACVal (tRNAVal*) or the RNA component of RNase MRP encoded by NME1. Here we show that overexpression of the tRNA pseudouridine 55 synthase encoded by PUS4 also leads to translational derepression of GCN4 (Gcd− phenotype) independently of eIF2 phosphorylation. Surprisingly, the Gcd− phenotype of high-copy-number PUS4 (hcPUS4) did not require PUS4 enzymatic activity, and several lines of evidence indicate that PUS4 overexpression did not diminish functional initiator tRNAMet levels. The presence of hcPUS4 or hcNME1 led to the accumulation of certain tRNA precursors, and their Gcd− phenotypes were reversed by overexpressing the RNA component of RNase P (RPR1), responsible for 5′-end processing of all tRNAs. Consistently, overexpression of a mutant pre-tRNATyr that cannot be processed by RNase P had a Gcd− phenotype. Interestingly, the Gcd− phenotype of hcPUS4 also was reversed by overexpressing LOS1, required for efficient nuclear export of tRNA, and los1Δ cells have a Gcd− phenotype. Overproduced PUS4 appears to impede 5′-end processing or export of certain tRNAs in the nucleus in a manner remedied by increased expression of RNase P or LOS1, respectively. The mutant tRNAVal* showed nuclear accumulation in otherwise wild-type cells, suggesting a defect in export to the cytoplasm. We propose that yeast contains a nuclear surveillance system that perceives defects in processing or export of tRNA and evokes a reduction in translation initiation at the step of initiator tRNAMet binding to the ribosome. PMID:10713174

  15. A single base change in the acceptor stem of tRNA(3Leu) confers resistance upon Escherichia coli to the calmodulin inhibitor, 48/80.

    PubMed Central

    Chen, M X; Bouquin, N; Norris, V; Casarégola, S; Séror, S J; Holland, I B

    1991-01-01

    We have isolated several classes of spontaneous mutants resistant to the calmodulin inhibitor 48/80 which inhibits cell division in Escherichia coli K12. Several mutants were also temperature sensitive for growth and this property was exploited to clone a DNA fragment from an E. coli gene library restoring growth at 42 degrees C and drug sensitivity at 30 degrees C in one such mutant. Physical and genetic mapping confirmed that both the mutation and the cloned DNA were located at 15.5 min on the E. coli chromosome at a locus designated feeB. By subcloning, complementation analysis and sequencing, the feeB locus was identified as identical to the tRNA(CUALEU) gene. When the mutant locus was isolated and sequenced, the mutation was confirmed as a single base change, C to A, at position 77 in the acceptor stem of this rare Leu tRNA. In other studies we obtained evidence that this mutant tRNA, recognizing the rare Leu codon, CUA, was defective in translation at both permissive and non-permissive temperatures. The feeB1 mutant is defective in division and shows a reduced growth rate at non-permissive temperature. We discuss the possibility that the mutant tRNA(3Leu) is limiting for the synthesis of a polypeptide(s), requiring several CUA codons for translation which in turn regulates in some way the level or activity of the drug target, a putative cell cycle protein. Images PMID:1915285

  16. A Nutrient-Driven tRNA Modification Alters Translational Fidelity and Genome-wide Protein Coding across an Animal Genus

    PubMed Central

    Zaborske, John M.; Bauer DuMont, Vanessa L.; Wallace, Edward W. J.; Pan, Tao; Aquadro, Charles F.; Drummond, D. Allan

    2014-01-01

    Natural selection favors efficient expression of encoded proteins, but the causes, mechanisms, and fitness consequences of evolved coding changes remain an area of aggressive inquiry. We report a large-scale reversal in the relative translational accuracy of codons across 12 fly species in the Drosophila/Sophophora genus. Because the reversal involves pairs of codons that are read by the same genomically encoded tRNAs, we hypothesize, and show by direct measurement, that a tRNA anticodon modification from guanosine to queuosine has coevolved with these genomic changes. Queuosine modification is present in most organisms but its function remains unclear. Modification levels vary across developmental stages in D. melanogaster, and, consistent with a causal effect, genes maximally expressed at each stage display selection for codons that are most accurate given stage-specific queuosine modification levels. In a kinetic model, the known increased affinity of queuosine-modified tRNA for ribosomes increases the accuracy of cognate codons while reducing the accuracy of near-cognate codons. Levels of queuosine modification in D. melanogaster reflect bioavailability of the precursor queuine, which eukaryotes scavenge from the tRNAs of bacteria and absorb in the gut. These results reveal a strikingly direct mechanism by which recoding of entire genomes results from changes in utilization of a nutrient. PMID:25489848

  17. Three-Dimensional Algebraic Models of the tRNA Code and 12 Graphs for Representing the Amino Acids

    PubMed Central

    José, Marco V.; Morgado, Eberto R.; Guimarães, Romeu Cardoso; Zamudio, Gabriel S.; de Farías, Sávio Torres; Bobadilla, Juan R.; Sosa, Daniela

    2014-01-01

    Three-dimensional algebraic models, also called Genetic Hotels, are developed to represent the Standard Genetic Code, the Standard tRNA Code (S-tRNA-C), and the Human tRNA code (H-tRNA-C). New algebraic concepts are introduced to be able to describe these models, to wit, the generalization of the 2n-Klein Group and the concept of a subgroup coset with a tail. We found that the H-tRNA-C displayed broken symmetries in regard to the S-tRNA-C, which is highly symmetric. We also show that there are only 12 ways to represent each of the corresponding phenotypic graphs of amino acids. The averages of statistical centrality measures of the 12 graphs for each of the three codes are carried out and they are statistically compared. The phenotypic graphs of the S-tRNA-C display a common triangular prism of amino acids in 10 out of the 12 graphs, whilst the corresponding graphs for the H-tRNA-C display only two triangular prisms. The graphs exhibit disjoint clusters of amino acids when their polar requirement values are used. We contend that the S-tRNA-C is in a frozen-like state, whereas the H-tRNA-C may be in an evolving state. PMID:25370377

  18. Double mimicry evades tRNA synthetase editing by toxic vegetable-sourced non-proteinogenic amino acid.

    PubMed

    Song, Youngzee; Zhou, Huihao; Vo, My-Nuong; Shi, Yi; Nawaz, Mir Hussain; Vargas-Rodriguez, Oscar; Diedrich, Jolene K; Yates, John R; Kishi, Shuji; Musier-Forsyth, Karin; Schimmel, Paul

    2017-12-22

    Hundreds of non-proteinogenic (np) amino acids (AA) are found in plants and can in principle enter human protein synthesis through foods. While aminoacyl-tRNA synthetase (AARS) editing potentially provides a mechanism to reject np AAs, some have pathological associations. Co-crystal structures show that vegetable-sourced azetidine-2-carboxylic acid (Aze), a dual mimic of proline and alanine, is activated by both human prolyl- and alanyl-tRNA synthetases. However, it inserts into proteins as proline, with toxic consequences in vivo. Thus, dual mimicry increases odds for mistranslation through evasion of one but not both tRNA synthetase editing systems.

  19. Biosynthesis of Selenocysteine on Its tRNA in Eukaryotes

    PubMed Central

    Mix, Heiko; Zhang, Yan; Saira, Kazima; Glass, Richard S; Berry, Marla J; Gladyshev, Vadim N; Hatfield, Dolph L

    2007-01-01

    Selenocysteine (Sec) is cotranslationally inserted into protein in response to UGA codons and is the 21st amino acid in the genetic code. However, the means by which Sec is synthesized in eukaryotes is not known. Herein, comparative genomics and experimental analyses revealed that the mammalian Sec synthase (SecS) is the previously identified pyridoxal phosphate-containing protein known as the soluble liver antigen. SecS required selenophosphate and O-phosphoseryl-tRNA[Ser]Sec as substrates to generate selenocysteyl-tRNA[Ser]Sec. Moreover, it was found that Sec was synthesized on the tRNA scaffold from selenide, ATP, and serine using tRNA[Ser]Sec, seryl-tRNA synthetase, O-phosphoseryl-tRNA[Ser]Sec kinase, selenophosphate synthetase, and SecS. By identifying the pathway of Sec biosynthesis in mammals, this study not only functionally characterized SecS but also assigned the function of the O-phosphoseryl-tRNA[Ser]Sec kinase. In addition, we found that selenophosphate synthetase 2 could synthesize monoselenophosphate in vitro but selenophosphate synthetase 1 could not. Conservation of the overall pathway of Sec biosynthesis suggests that this pathway is also active in other eukaryotes and archaea that synthesize selenoproteins. PMID:17194211

  20. In human pseudouridine synthase 1 (hPus1), a C-terminal helical insert blocks tRNA from binding in the same orientation as in the Pus1 bacterial homologue TruA, consistent with their different target selectivities.

    PubMed

    Czudnochowski, Nadine; Wang, Amy Liya; Finer-Moore, Janet; Stroud, Robert M

    2013-10-23

    Human pseudouridine (Ψ) synthase Pus1 (hPus1) modifies specific uridine residues in several non-coding RNAs: tRNA, U2 spliceosomal RNA, and steroid receptor activator RNA. We report three structures of the catalytic core domain of hPus1 from two crystal forms, at 1.8Å resolution. The structures are the first of a mammalian Ψ synthase from the set of five Ψ synthase families common to all kingdoms of life. hPus1 adopts a fold similar to bacterial Ψ synthases, with a central antiparallel β-sheet flanked by helices and loops. A flexible hinge at the base of the sheet allows the enzyme to open and close around an electropositive active-site cleft. In one crystal form, a molecule of Mes [2-(N-morpholino)ethane sulfonic acid] mimics the target uridine of an RNA substrate. A positively charged electrostatic surface extends from the active site towards the N-terminus of the catalytic domain, suggesting an extensive binding site specific for target RNAs. Two α-helices C-terminal to the core domain, but unique to hPus1, extend along the back and top of the central β-sheet and form the walls of the RNA binding surface. Docking of tRNA to hPus1 in a productive orientation requires only minor conformational changes to enzyme and tRNA. The docked tRNA is bound by the electropositive surface of the protein employing a completely different binding mode than that seen for the tRNA complex of the Escherichia coli homologue TruA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications.

    PubMed

    Dewe, Joshua M; Whipple, Joseph M; Chernyakov, Irina; Jaramillo, Laura N; Phizicky, Eric M

    2012-10-01

    The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae, certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3' exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) if they are appropriately hypomodified or bear specific destabilizing mutations, leading to 5'-3' exonucleolytic degradation by Rat1 and Xrn1. Thus, trm8-Δ trm4-Δ strains are temperature sensitive due to lack of m(7)G(46) and m(5)C and the consequent RTD of tRNA(Val(AAC)), and tan1-Δ trm44-Δ strains are temperature sensitive due to lack of ac(4)C(12) and Um(44) and the consequent RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)). It is unknown how the RTD pathway interacts with translation and other cellular processes, and how generally this pathway acts on hypomodified tRNAs. We provide evidence here that elongation factor 1A (EF-1A) competes with the RTD pathway for substrate tRNAs, since its overexpression suppresses the tRNA degradation and the growth defect of strains subject to RTD, whereas reduced levels of EF-1A have the opposite effect. We also provide evidence that RTD acts on a variety of tRNAs lacking one or more different modifications, since trm1-Δ trm4-Δ mutants are subject to RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)) due to lack of m(2,2)G(26) and m(5)C, and since trm8-Δ, tan1-Δ, and trm1-Δ single mutants are each subject to RTD. These results demonstrate that RTD interacts with the translation machinery and acts widely on hypomodified tRNAs.

  2. Global shape mimicry of tRNA within a viral internal ribosome entry site mediates translational reading frame selection

    PubMed Central

    Au, Hilda H.; Cornilescu, Gabriel; Mouzakis, Kathryn D.; Ren, Qian; Burke, Jordan E.; Lee, Seonghoon; Butcher, Samuel E.; Jan, Eric

    2015-01-01

    The dicistrovirus intergenic region internal ribosome entry site (IRES) adopts a triple-pseudoknotted RNA structure and occupies the core ribosomal E, P, and A sites to directly recruit the ribosome and initiate translation at a non-AUG codon. A subset of dicistrovirus IRESs directs translation in the 0 and +1 frames to produce the viral structural proteins and a +1 overlapping open reading frame called ORFx, respectively. Here we show that specific mutations of two unpaired adenosines located at the core of the three-helical junction of the honey bee dicistrovirus Israeli acute paralysis virus (IAPV) IRES PKI domain can uncouple 0 and +1 frame translation, suggesting that the structure adopts distinct conformations that contribute to 0 or +1 frame translation. Using a reconstituted translation system, we show that ribosomes assembled on mutant IRESs that direct exclusive 0 or +1 frame translation lack reading frame fidelity. Finally, a nuclear magnetic resonance/small-angle X-ray scattering hybrid approach reveals that the PKI domain of the IAPV IRES adopts an RNA structure that resembles a complete tRNA. The tRNA shape-mimicry enables the viral IRES to gain access to the ribosome tRNA-binding sites and form intermolecular contacts with the ribosome that are necessary for initiating IRES translation in a specific reading frame. PMID:26554019

  3. Empower multiplex cell and tissue-specific CRISPR-mediated gene manipulation with self-cleaving ribozymes and tRNA.

    PubMed

    Xu, Li; Zhao, Lixia; Gao, Yandi; Xu, Jing; Han, Renzhi

    2017-03-17

    Clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) system has emerged in recent years as a highly efficient RNA-guided gene manipulation platform. Simultaneous editing or transcriptional activation/suppression of different genes becomes feasible with the co-delivery of multiple guide RNAs (gRNAs). Here, we report that multiple gRNAs linked with self-cleaving ribozymes and/or tRNA could be simultaneously expressed from a single U6 promoter to exert genome editing of dystrophin and myosin binding protein C3 in human and mouse cells. Moreover, this strategy allows the expression of multiple gRNAs for synergistic transcription activation of follistatin when used with catalytically inactive dCas9-VP64 or dCas9-p300core fusions. Finally, the gRNAs linked by the self-cleaving ribozymes and tRNA could be expressed from RNA polymerase type II (pol II) promoters such as generic CMV and muscle/heart-specific MHCK7. This is particularly useful for in vivo applications when the packaging capacity of recombinant adeno-associated virus is limited while tissue-specific delivery of gRNAs and Cas9 is desired. Taken together, this study provides a novel strategy to enable tissue-specific expression of more than one gRNAs for multiplex gene editing from a single pol II promoter. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Altered nuclear tRNA metabolism in La-deleted Schizosaccharomyces pombe is accompanied by a nutritional stress response involving Atf1p and Pcr1p that is suppressible by Xpo-t/Los1p.

    PubMed

    Cherkasova, Vera; Maury, Luis Lopez; Bacikova, Dagmar; Pridham, Kevin; Bähler, Jürg; Maraia, Richard J

    2012-02-01

    Deletion of the sla1(+) gene, which encodes a homologue of the human RNA-binding protein La in Schizosaccharomyces pombe, causes irregularities in tRNA processing, with altered distribution of pre-tRNA intermediates. We show, using mRNA profiling, that cells lacking sla1(+) have increased mRNAs from amino acid metabolism (AAM) genes and, furthermore, exhibit slow growth in Edinburgh minimal medium. A subset of these AAM genes is under control of the AP-1-like, stress-responsive transcription factors Atf1p and Pcr1p. Although S. pombe growth is resistant to rapamycin, sla1-Δ cells are sensitive, consistent with deficiency of leucine uptake, hypersensitivity to NH4, and genetic links to the target of rapamycin (TOR) pathway. Considering that perturbed intranuclear pre-tRNA metabolism and apparent deficiency in tRNA nuclear export in sla1-Δ cells may trigger the AAM response, we show that modest overexpression of S. pombe los1(+) (also known as Xpo-t), encoding the nuclear exportin for tRNA, suppresses the reduction in pre-tRNA levels, AAM gene up-regulation, and slow growth of sla1-Δ cells. The conclusion that emerges is that sla1(+) regulates AAM mRNA production in S. pombe through its effects on nuclear tRNA processing and probably nuclear export. Finally, the results are discussed in the context of stress response programs in Saccharomyces cerevisiae.

  5. Altered nuclear tRNA metabolism in La-deleted Schizosaccharomyces pombe is accompanied by a nutritional stress response involving Atf1p and Pcr1p that is suppressible by Xpo-t/Los1p

    PubMed Central

    Cherkasova, Vera; Lopez Maury, Luis; Bacikova, Dagmar; Pridham, Kevin; Bähler, Jürg; Maraia, Richard J.

    2012-01-01

    Deletion of the sla1+ gene, which encodes a homologue of the human RNA-binding protein La in Schizosaccharomyces pombe, causes irregularities in tRNA processing, with altered distribution of pre-tRNA intermediates. We show, using mRNA profiling, that cells lacking sla1+ have increased mRNAs from amino acid metabolism (AAM) genes and, furthermore, exhibit slow growth in Edinburgh minimal medium. A subset of these AAM genes is under control of the AP-1–like, stress-responsive transcription factors Atf1p and Pcr1p. Although S. pombe growth is resistant to rapamycin, sla1-Δ cells are sensitive, consistent with deficiency of leucine uptake, hypersensitivity to NH4, and genetic links to the target of rapamycin (TOR) pathway. Considering that perturbed intranuclear pre-tRNA metabolism and apparent deficiency in tRNA nuclear export in sla1-Δ cells may trigger the AAM response, we show that modest overexpression of S. pombe los1+ (also known as Xpo-t), encoding the nuclear exportin for tRNA, suppresses the reduction in pre-tRNA levels, AAM gene up-regulation, and slow growth of sla1-Δ cells. The conclusion that emerges is that sla1+ regulates AAM mRNA production in S. pombe through its effects on nuclear tRNA processing and probably nuclear export. Finally, the results are discussed in the context of stress response programs in Saccharomyces cerevisiae. PMID:22160596

  6. tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features.

    PubMed Central

    Marck, Christian; Grosjean, Henri

    2002-01-01

    From 50 genomes of the three domains of life (7 eukarya, 13 archaea, and 30 bacteria), we extracted, analyzed, and compared over 4,000 sequences corresponding to cytoplasmic, nonorganellar tRNAs. For each genome, the complete set of tRNAs required to read the 61 sense codons was identified, which permitted revelation of three major anticodon-sparing strategies. Other features and sequence peculiarities analyzed are the following: (1) fit to the standard cloverleaf structure, (2) characteristic consensus sequences for elongator and initiator tDNAs, (3) frequencies of bases at each sequence position, (4) type and frequencies of conserved 2D and 3D base pairs, (5) anticodon/tDNA usages and anticodon-sparing strategies, (6) identification of the tRNA-Ile with anticodon CAU reading AUA, (7) size of variable arm, (8) occurrence and location of introns, (9) occurrence of 3'-CCA and 5'-extra G encoded at the tDNA level, and (10) distribution of the tRNA genes in genomes and their mode of transcription. Among all tRNA isoacceptors, we found that initiator tDNA-iMet is the most conserved across the three domains, yet domain-specific signatures exist. Also, according to which tRNA feature is considered (5'-extra G encoded in tDNAs-His, AUA codon read by tRNA-Ile with anticodon CAU, presence of intron, absence of "two-out-of-three" reading mode and short V-arm in tDNA-Tyr) Archaea sequester either with Bacteria or Eukarya. No common features between Eukarya and Bacteria not shared with Archaea could be unveiled. Thus, from the tRNomic point of view, Archaea appears as an "intermediate domain" between Eukarya and Bacteria. PMID:12403461

  7. Molecular phylogeny for marine turtles based on sequences of the ND4-leucine tRNA and control regions of mitochondrial DNA.

    PubMed

    Dutton, P H; Davis, S K; Guerra, T; Owens, D

    1996-06-01

    Marine turtles are divided into two families, the Dermochelyidae and the Cheloniidae. The majority of species are currently placed within the two tribes of the Cheloniidae, the Chelonini and the Carettini, but debate continues over generic and tribal affinities as well as species boundaries. We used nucleotide sequences (907 bp) from the ND4-LEU tRNA region and the control region (526 bp) of mitochondrial DNA to resolve areas of uncertainty in marine turtle (Chelonioidae) systematics. The ND4-LEU tRNA fragment was more conserved than the fragment from the control region, with sequence divergences ranging from 0.026 to 0.148 and 0.067 to 0.267, respectively. Parsimony analysis based only on the ND4-LEU tRNA data suggests that the hawksbill, Eretmochelys imbricata, lies within the tribe Carettni and is closely related to the genus Caretta, but could not resolve the position of the flatback, Natator depressus. A similar analysis based only on the control region sequence data suggested that N. depressus is affiliated with the Chelonini, but failed to resolve the position of E. imbricata and the loggerhead, Caretta caretta. In contrast to these results, the combination of both data sets with published cytochrome b data produced a phylogeny based on 1924 bp of sequence data which resolves the position of E. imbricata relative to Caretta and Lepidochelys and joins N. depressus as sister to the Carettini. Based on the molecular data, the Chelonini contains the Chelonia species, while the Carettini contains the remaining species of Cheloniidae. The control region sequence divergence between Pacific and Atlantic populations of the leatherback, Dermochelys coriacea, was relatively low (0.0081) when compared with the green turtle, Chelonia mydas (0.071-0.074). Atlantic and Pacific populations of Ch. mydas were found to be paraphyletic with respect to the black turtle, Ch. agassizi, suggesting that the current taxonomic designations within the Pacific Chelonia are questionable

  8. Molecular mimicry of human tRNALys anti-codon domain by HIV-1 RNA genome facilitates tRNA primer annealing

    PubMed Central

    Jones, Christopher P.; Saadatmand, Jenan; Kleiman, Lawrence; Musier-Forsyth, Karin

    2013-01-01

    The primer for initiating reverse transcription in human immunodeficiency virus type 1 (HIV-1) is tRNALys3. Host cell tRNALys is selectively packaged into HIV-1 through a specific interaction between the major tRNALys-binding protein, human lysyl-tRNA synthetase (hLysRS), and the viral proteins Gag and GagPol. Annealing of the tRNA primer onto the complementary primer-binding site (PBS) in viral RNA is mediated by the nucleocapsid domain of Gag. The mechanism by which tRNALys3 is targeted to the PBS and released from hLysRS prior to annealing is unknown. Here, we show that hLysRS specifically binds to a tRNA anti-codon-like element (TLE) in the HIV-1 genome, which mimics the anti-codon loop of tRNALys and is located proximal to the PBS. Mutation of the U-rich sequence within the TLE attenuates binding of hLysRS in vitro and reduces the amount of annealed tRNALys3 in virions. Thus, LysRS binds specifically to the TLE, which is part of a larger LysRS binding domain in the viral RNA that includes elements of the Psi packaging signal. Our results suggest that HIV-1 uses molecular mimicry of the anti-codon of tRNALys to increase the efficiency of tRNALys3 annealing to viral RNA. PMID:23264568

  9. Multiple Click-Selective tRNA Synthetases Expand Mammalian Cell-Specific Proteomics.

    PubMed

    Yang, Andrew C; du Bois, Haley; Olsson, Niclas; Gate, David; Lehallier, Benoit; Berdnik, Daniela; Brewer, Kyle D; Bertozzi, Carolyn R; Elias, Joshua E; Wyss-Coray, Tony

    2018-06-13

    Bioorthogonal tools enable cell-type-specific proteomics, a prerequisite to understanding biological processes in multicellular organisms. Here we report two engineered aminoacyl-tRNA synthetases for mammalian bioorthogonal labeling: a tyrosyl ( ScTyr Y43G ) and a phenylalanyl ( MmPhe T413G ) tRNA synthetase that incorporate azide-bearing noncanonical amino acids specifically into the nascent proteomes of host cells. Azide-labeled proteins are chemoselectively tagged via azide-alkyne cycloadditions with fluorophores for imaging or affinity resins for mass spectrometric characterization. Both mutant synthetases label human, hamster, and mouse cell line proteins and selectively activate their azido-bearing amino acids over 10-fold above the canonical. ScTyr Y43G and MmPhe T413G label overlapping but distinct proteomes in human cell lines, with broader proteome coverage upon their coexpression. In mice, ScTyr Y43G and MmPhe T413G label the melanoma tumor proteome and plasma secretome. This work furnishes new tools for mammalian residue-specific bioorthogonal chemistry, and enables more robust and comprehensive cell-type-specific proteomics in live mammals.

  10. Annotation of Protein Domains Reveals Remarkable Conservation in the Functional Make up of Proteomes Across Superkingdoms

    PubMed Central

    Nasir, Arshan; Naeem, Aisha; Khan, Muhammad Jawad; Lopez-Nicora, Horacio D.; Caetano-Anollés, Gustavo

    2011-01-01

    The functional repertoire of a cell is largely embodied in its proteome, the collection of proteins encoded in the genome of an organism. The molecular functions of proteins are the direct consequence of their structure and structure can be inferred from sequence using hidden Markov models of structural recognition. Here we analyze the functional annotation of protein domain structures in almost a thousand sequenced genomes, exploring the functional and structural diversity of proteomes. We find there is a remarkable conservation in the distribution of domains with respect to the molecular functions they perform in the three superkingdoms of life. In general, most of the protein repertoire is spent in functions related to metabolic processes but there are significant differences in the usage of domains for regulatory and extra-cellular processes both within and between superkingdoms. Our results support the hypotheses that the proteomes of superkingdom Eukarya evolved via genome expansion mechanisms that were directed towards innovating new domain architectures for regulatory and extra/intracellular process functions needed for example to maintain the integrity of multicellular structure or to interact with environmental biotic and abiotic factors (e.g., cell signaling and adhesion, immune responses, and toxin production). Proteomes of microbial superkingdoms Archaea and Bacteria retained fewer numbers of domains and maintained simple and smaller protein repertoires. Viruses appear to play an important role in the evolution of superkingdoms. We finally identify few genomic outliers that deviate significantly from the conserved functional design. These include Nanoarchaeum equitans, proteobacterial symbionts of insects with extremely reduced genomes, Tenericutes and Guillardia theta. These organisms spend most of their domains on information functions, including translation and transcription, rather than on metabolism and harbor a domain repertoire characteristic of

  11. Molecular mimicry of human tRNALys anti-codon domain by HIV-1 RNA genome facilitates tRNA primer annealing.

    PubMed

    Jones, Christopher P; Saadatmand, Jenan; Kleiman, Lawrence; Musier-Forsyth, Karin

    2013-02-01

    The primer for initiating reverse transcription in human immunodeficiency virus type 1 (HIV-1) is tRNA(Lys3). Host cell tRNA(Lys) is selectively packaged into HIV-1 through a specific interaction between the major tRNA(Lys)-binding protein, human lysyl-tRNA synthetase (hLysRS), and the viral proteins Gag and GagPol. Annealing of the tRNA primer onto the complementary primer-binding site (PBS) in viral RNA is mediated by the nucleocapsid domain of Gag. The mechanism by which tRNA(Lys3) is targeted to the PBS and released from hLysRS prior to annealing is unknown. Here, we show that hLysRS specifically binds to a tRNA anti-codon-like element (TLE) in the HIV-1 genome, which mimics the anti-codon loop of tRNA(Lys) and is located proximal to the PBS. Mutation of the U-rich sequence within the TLE attenuates binding of hLysRS in vitro and reduces the amount of annealed tRNA(Lys3) in virions. Thus, LysRS binds specifically to the TLE, which is part of a larger LysRS binding domain in the viral RNA that includes elements of the Psi packaging signal. Our results suggest that HIV-1 uses molecular mimicry of the anti-codon of tRNA(Lys) to increase the efficiency of tRNA(Lys3) annealing to viral RNA.

  12. Mollusk genes encoding lysine tRNA (UUU) contain introns.

    PubMed

    Matsuo, M; Abe, Y; Saruta, Y; Okada, N

    1995-11-20

    New intron-containing genes encoding tRNAs were discovered when genomic DNA isolated from various animal species was amplified by the polymerase chain reaction (PCR) with primers based on sequences of rabbit tRNA(Lys). From sequencing analysis of the products of PCR, we found that introns are present in several genes encoding tRNA(Lys) in mollusks, such as Loligo bleekeri (squid) and Octopus vulgaris (octopus). These introns were specific to genes encoding tRNA(Lys)(CUU) and were not present in genes encoding tRNA(Lys)(CUU). In addition, the sequences of the introns were different from one another. To confirm the results of our initial experiments, we isolated and sequenced genes encoding tRNA(Lys)(CUU) and tRNA(Lys)(UUU). The gene for tRNA(Lys)(UUU) from squid contained an intron, whose sequence was the same as that identified by PCR, and the gene formed a cluster with a corresponding pseudogene. Several DNA regions of 2.1 kb containing this cluster appeared to be tandemly arrayed in the squid genome. By contrast, the gene encoding tRNA(Lys)(CUU) did not contain an intron, as shown also by PCR. The tRNA(Lys)(UUU) that corresponded to the analyzed gene was isolated and characterized. The present study provides the first example of an intron-containing gene encoding a tRNA in mollusks and suggests the universality of introns in such genes in higher eukaryotes.

  13. Inhibition of selenocysteine tRNA[Ser]Sec aminoacylation provides evidence that aminoacylation is required for regulatory methylation of this tRNA

    PubMed Central

    Kim, Jin Young; Carlson, Bradley A.; Xu, Xue-Ming; Zeng, Yu; Chen, Shawn; Gladyshev, Vadim N.; Lee, Byeong Jae; Hatfield, Dolph L.

    2011-01-01

    There are two isoforms of selenocysteine (Sec) tRNA[Ser]Sec that differ by a single methyl group, Um34. The non-Um34 isoform supports the synthesis of a subclass of selenoproteins, designated housekeeping, while the Um34 isoform supports the expression of another subclass, designated stress-related selenoproteins. Herein, we investigated the relationship between tRNA[Ser]Sec aminoacylation and Um34 synthesis which is the last step in the maturation of this tRNA. Mutation of the discriminator base at position 73 in tRNA[Ser]Sec dramatically reduced aminoacylation with serine, as did an inhibitor of seryl-tRNA synthetase, SB-217452. Although both the mutation and the inhibitor prevented Um34 synthesis, neither precluded the synthesis of any other of the known base modifications on tRNA[Ser]Sec following microinjection and incubation of the mutant tRNA[Ser]Sec transcript, or the wild type transcript along with inhibitor, in Xenopus oocytes. The data demonstrate that Sec tRNA[Ser]Sec must be aminoacylated for Um34 addition. The fact that selenium is required for Um34 methylation suggests that Sec must be attached to its tRNA for Um34 methylation. This would explain why selenium is essential for the function of Um34 methylase and provides further insights into the hierarchy of selenoprotein expression. PMID:21624347

  14. Leigh syndrome caused by a novel m.4296G>A mutation in mitochondrial tRNA isoleucine.

    PubMed

    Cox, Rachel; Platt, Julia; Chen, Li Chieh; Tang, Sha; Wong, Lee-Jun; Enns, Gregory M

    2012-03-01

    Leigh syndrome is a severe neurodegenerative disease with heterogeneous genetic etiology. We report a novel m.4296G>A variant in the mitochondrial tRNA isoleucine gene in a child with Leigh syndrome, mitochondrial proliferation, lactic acidosis, and abnormal respiratory chain enzymology. The variant is present at >75% heteroplasmy in blood and cultured fibroblasts from the proband, <5% in asymptomatic maternal relatives, and is absent in 3000 controls. It is located in the highly conserved anticodon region of tRNA(Ile) where three other pathogenic changes have been described. We conclude that there is strong evidence to classify m.4296G>A as a pathogenic mutation causing Leigh syndrome. Copyright © 2011 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  15. Genomic characteristics comparisons of 12 food-related filamentous fungi in tRNA gene set, codon usage and amino acid composition.

    PubMed

    Chen, Wanping; Xie, Ting; Shao, Yanchun; Chen, Fusheng

    2012-04-10

    Filamentous fungi are widely exploited in food industry due to their abilities to secrete large amounts of enzymes and metabolites. The recent availability of fungal genome sequences has provided an opportunity to explore the genomic characteristics of these food-related filamentous fungi. In this paper, we selected 12 representative filamentous fungi in the areas of food processing and safety, which were Aspergillus clavatus, A. flavus, A. fumigatus, A. nidulans, A. niger, A. oryzae, A. terreus, Monascus ruber, Neurospora crassa, Penicillium chrysogenum, Rhizopus oryzae and Trichoderma reesei, and did the comparative studies of their genomic characteristics of tRNA gene distribution, codon usage pattern and amino acid composition. The results showed that the copy numbers greatly differed among isoaccepting tRNA genes and the distribution seemed to be related with translation process. The results also revealed that genome compositional variation probably constrained the base choice at the third codon, and affected the overall amino acid composition but seemed to have little effect on the integrated physicochemical characteristics of overall amino acids. The further analysis suggested that the wobble pairing and base modification were the important mechanisms in codon-anticodon interaction. In the scope of authors' knowledge, it is the first report about the genomic characteristics analysis of food-related filamentous fungi, which would be informative for the analysis of filamentous fungal genome evolution and their practical application in food industry. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Active Center Control of Termination by RNA Polymerase III and tRNA Gene Transcription Levels In Vivo

    PubMed Central

    Rijal, Keshab; Maraia, Richard J.

    2016-01-01

    The ability of RNA polymerase (RNAP) III to efficiently recycle from termination to reinitiation is critical for abundant tRNA production during cellular proliferation, development and cancer. Yet understanding of the unique termination mechanisms used by RNAP III is incomplete, as is its link to high transcription output. We used two tRNA-mediated suppression systems to screen for Rpc1 mutants with gain- and loss- of termination phenotypes in S. pombe. 122 point mutation mutants were mapped to a recently solved 3.9 Å structure of yeast RNAP III elongation complex (EC); they cluster in the active center bridge helix and trigger loop, as well as the pore and funnel, the latter of which indicate involvement of the RNA cleavage domain of the C11 subunit in termination. Purified RNAP III from a readthrough (RT) mutant exhibits increased elongation rate. The data strongly support a kinetic coupling model in which elongation rate is inversely related to termination efficiency. The mutants exhibit good correlations of terminator RT in vitro and in vivo, and surprisingly, amounts of transcription in vivo. Because assessing in vivo transcription can be confounded by various parameters, we used a tRNA reporter with a processing defect and a strong terminator. By ruling out differences in RNA decay rates, the data indicate that mutants with the RT phenotype synthesize more RNA than wild type cells, and than can be accounted for by their increased elongation rate. Finally, increased activity by the mutants appears unrelated to the RNAP III repressor, Maf1. The results show that the mobile elements of the RNAP III active center, including C11, are key determinants of termination, and that some of the mutations activate RNAP III for overall transcription. Similar mutations in spontaneous cancer suggest this as an unforeseen mechanism of RNAP III activation in disease. PMID:27518095

  17. Use of terbium as a probe of tRNA tertiary structure and folding.

    PubMed Central

    Hargittai, M R; Musier-Forsyth, K

    2000-01-01

    Lanthanide metals such as terbium have previously been shown to be useful for mapping metal-binding sites in RNA. Terbium binds to the same sites on RNA as magnesium, however, with a much higher affinity. Thus, low concentrations of terbium ions can easily displace magnesium and promote phosphodiester backbone scission. At higher concentrations, terbium cleaves RNA in a sequence-independent manner, with a preference for single-stranded, non-Watson-Crick base-paired regions. Here, we show that terbium is a sensitive probe of human tRNALys,3 tertiary structure and folding. When 1 microM tRNA is used, the optimal terbium ion concentration for detecting Mg2+-induced tertiary structural changes is 50-60 microM. Using these concentrations of RNA and terbium, a magnesium-dependent folding transition with a midpoint (KMg) of 2.6 mM is observed for unmodified human tRNALys,3. At lower Tb3+ concentrations, cleavage is restricted to nucleotides that constitute specific metal-binding pockets. This small chemical probe should also be useful for detecting protein induced structural changes in RNA. PMID:11105765

  18. TRMT5 Mutations Cause a Defect in Post-transcriptional Modification of Mitochondrial tRNA Associated with Multiple Respiratory-Chain Deficiencies.

    PubMed

    Powell, Christopher A; Kopajtich, Robert; D'Souza, Aaron R; Rorbach, Joanna; Kremer, Laura S; Husain, Ralf A; Dallabona, Cristina; Donnini, Claudia; Alston, Charlotte L; Griffin, Helen; Pyle, Angela; Chinnery, Patrick F; Strom, Tim M; Meitinger, Thomas; Rodenburg, Richard J; Schottmann, Gudrun; Schuelke, Markus; Romain, Nadine; Haller, Ronald G; Ferrero, Ileana; Haack, Tobias B; Taylor, Robert W; Prokisch, Holger; Minczuk, Michal

    2015-08-06

    Deficiencies in respiratory-chain complexes lead to a variety of clinical phenotypes resulting from inadequate energy production by the mitochondrial oxidative phosphorylation system. Defective expression of mtDNA-encoded genes, caused by mutations in either the mitochondrial or nuclear genome, represents a rapidly growing group of human disorders. By whole-exome sequencing, we identified two unrelated individuals carrying compound heterozygous variants in TRMT5 (tRNA methyltransferase 5). TRMT5 encodes a mitochondrial protein with strong homology to members of the class I-like methyltransferase superfamily. Both affected individuals presented with lactic acidosis and evidence of multiple mitochondrial respiratory-chain-complex deficiencies in skeletal muscle, although the clinical presentation of the two affected subjects was remarkably different; one presented in childhood with failure to thrive and hypertrophic cardiomyopathy, and the other was an adult with a life-long history of exercise intolerance. Mutations in TRMT5 were associated with the hypomodification of a guanosine residue at position 37 (G37) of mitochondrial tRNA; this hypomodification was particularly prominent in skeletal muscle. Deficiency of the G37 modification was also detected in human cells subjected to TRMT5 RNAi. The pathogenicity of the detected variants was further confirmed in a heterologous yeast model and by the rescue of the molecular phenotype after re-expression of wild-type TRMT5 cDNA in cells derived from the affected individuals. Our study highlights the importance of post-transcriptional modification of mitochondrial tRNAs for faithful mitochondrial function. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Rational protein engineering in action: The first crystal structure of a phenylalanine tRNA synthetase from Staphylococcus haemolyticus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evdokimov, Artem G.; Mekel, Marlene; Hutchings, Kim

    2008-07-08

    In this article, we describe for the first time the high-resolution crystal structure of a phenylalanine tRNA synthetase from the pathogenic bacterium Staphylococcus haemolyticus. We demonstrate the subtle yet important structural differences between this enzyme and the previously described Thermus thermophilus ortholog. We also explain the structure-activity relationship of several recently reported inhibitors. The native enzyme crystals were of poor quality -- they only diffracted X-rays to 3--5 {angstrom} resolution. Therefore, we have executed a rational surface mutagenesis strategy that has yielded crystals of this 2300-amino acid multidomain protein, diffracting to 2 {angstrom} or better. This methodology is discussed andmore » contrasted with the more traditional domain truncation approach.« less

  20. Connecting the kinetics and energy landscape of tRNA translocation on the ribosome.

    PubMed

    Whitford, Paul C; Blanchard, Scott C; Cate, Jamie H D; Sanbonmatsu, Karissa Y

    2013-01-01

    Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds) to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states.

  1. Chemical and Conformational Diversity of Modified Nucleosides Affects tRNA Structure and Function.

    PubMed

    Väre, Ville Y P; Eruysal, Emily R; Narendran, Amithi; Sarachan, Kathryn L; Agris, Paul F

    2017-03-16

    RNAs are central to all gene expression through the control of protein synthesis. Four major nucleosides, adenosine, guanosine, cytidine and uridine, compose RNAs and provide sequence variation, but are limited in contributions to structural variation as well as distinct chemical properties. The ability of RNAs to play multiple roles in cellular metabolism is made possible by extensive variation in length, conformational dynamics, and the over 100 post-transcriptional modifications. There are several reviews of the biochemical pathways leading to RNA modification, but the physicochemical nature of modified nucleosides and how they facilitate RNA function is of keen interest, particularly with regard to the contributions of modified nucleosides. Transfer RNAs (tRNAs) are the most extensively modified RNAs. The diversity of modifications provide versatility to the chemical and structural environments. The added chemistry, conformation and dynamics of modified nucleosides occurring at the termini of stems in tRNA's cloverleaf secondary structure affect the global three-dimensional conformation, produce unique recognition determinants for macromolecules to recognize tRNAs, and affect the accurate and efficient decoding ability of tRNAs. This review will discuss the impact of specific chemical moieties on the structure, stability, electrochemical properties, and function of tRNAs.

  2. Free-Energy Landscape of Reverse tRNA Translocation through the Ribosome Analyzed by Electron Microscopy Density Maps and Molecular Dynamics Simulations

    PubMed Central

    Ishida, Hisashi; Matsumoto, Atsushi

    2014-01-01

    To understand the mechanism of reverse tRNA translocation in the ribosome, all-atom molecular dynamics simulations of the ribosome-tRNAs-mRNA-EFG complex were performed. The complex at the post-translocational state was directed towards the translocational and pre-translocational states by fitting the complex into cryo-EM density maps. Between a series of the fitting simulations, umbrella sampling simulations were performed to obtain the free-energy landscape. Multistep structural changes, such as a ratchet-like motion and rotation of the head of the small subunit were observed. The free-energy landscape showed that there were two main free-energy barriers: one between the post-translocational and intermediate states, and the other between the pre-translocational and intermediate states. The former corresponded to a clockwise rotation, which was coupled to the movement of P-tRNA over the P/E-gate made of G1338, A1339 and A790 in the small subunit. The latter corresponded to an anticlockwise rotation of the head, which was coupled to the location of the two tRNAs in the hybrid state. This indicates that the coupled motion of the head rotation and tRNA translocation plays an important role in opening and closing of the P/E-gate during the ratchet-like movement in the ribosome. Conformational change of EF-G was interpreted to be the result of the combination of the external motion by L12 around an axis passing near the sarcin-ricin loop, and internal hinge-bending motion. These motions contributed to the movement of domain IV of EF-G to maintain its interaction with A/P-tRNA. PMID:24999999

  3. Free-energy landscape of reverse tRNA translocation through the ribosome analyzed by electron microscopy density maps and molecular dynamics simulations.

    PubMed

    Ishida, Hisashi; Matsumoto, Atsushi

    2014-01-01

    To understand the mechanism of reverse tRNA translocation in the ribosome, all-atom molecular dynamics simulations of the ribosome-tRNAs-mRNA-EFG complex were performed. The complex at the post-translocational state was directed towards the translocational and pre-translocational states by fitting the complex into cryo-EM density maps. Between a series of the fitting simulations, umbrella sampling simulations were performed to obtain the free-energy landscape. Multistep structural changes, such as a ratchet-like motion and rotation of the head of the small subunit were observed. The free-energy landscape showed that there were two main free-energy barriers: one between the post-translocational and intermediate states, and the other between the pre-translocational and intermediate states. The former corresponded to a clockwise rotation, which was coupled to the movement of P-tRNA over the P/E-gate made of G1338, A1339 and A790 in the small subunit. The latter corresponded to an anticlockwise rotation of the head, which was coupled to the location of the two tRNAs in the hybrid state. This indicates that the coupled motion of the head rotation and tRNA translocation plays an important role in opening and closing of the P/E-gate during the ratchet-like movement in the ribosome. Conformational change of EF-G was interpreted to be the result of the combination of the external motion by L12 around an axis passing near the sarcin-ricin loop, and internal hinge-bending motion. These motions contributed to the movement of domain IV of EF-G to maintain its interaction with A/P-tRNA.

  4. Separate RNA-binding surfaces on the multifunctional La protein mediate distinguishable activities in tRNA maturation.

    PubMed

    Huang, Ying; Bayfield, Mark A; Intine, Robert V; Maraia, Richard J

    2006-07-01

    By sequence-specific binding to 3' UUU-OH, the La protein shields precursor (pre)-RNAs from 3' end digestion and is required to protect defective pre-transfer RNAs from decay. Although La is comprised of a La motif and an RNA-recognition motif (RRM), a recent structure indicates that the RRM beta-sheet surface is not involved in UUU-OH recognition, raising questions as to its function. Progressively defective suppressor tRNAs in Schizosaccharomyces pombe reveal differential sensitivities to La and Rrp6p, a 3' exonuclease component of pre-tRNA decay. 3' end protection is compromised by mutations to the La motif but not the RRM surface. The most defective pre-tRNAs require a second activity of La, in addition to 3' protection, that requires an intact RRM surface. The two activities of La in tRNA maturation map to its two conserved RNA-binding surfaces and suggest a modular model that has implications for its other ligands.

  5. Islander: A database of precisely mapped genomic islands in tRNA and tmRNA genes

    DOE PAGES

    Hudson, Corey M.; Lau, Britney Y.; Williams, Kelly P.

    2014-11-05

    Genomic islands are mobile DNAs that are major agents of bacterial and archaeal evolution. Integration into prokaryotic chromosomes usually occurs site-specifically at tRNA or tmRNA gene (together, tDNA) targets, catalyzed by tyrosine integrases. This splits the target gene, yet sequences within the island restore the disrupted gene; the regenerated target and its displaced fragment precisely mark the endpoints of the island. We applied this principle to search for islands in genomic DNA sequences. Our algorithm identifies tDNAs, finds fragments of those tDNAs in the same replicon and removes unlikely candidate islands through a series of filters. A search for islandsmore » in 2168 whole prokaryotic genomes produced 3919 candidates. The website Islander (recently moved to http://bioinformatics.sandia.gov/islander/) presents these precisely mapped candidate islands, the gene content and the island sequence. The algorithm further insists that each island encode an integrase, and attachment site sequence identity is carefully noted; therefore, the database also serves in the study of integrase site-specificity and its evolution.« less

  6. Evolutionary Limitation and Opportunities for Developing tRNA Synthetase Inhibitors with 5-Binding-Mode Classification

    PubMed Central

    Fang, Pengfei; Guo, Min

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) are enzymes that catalyze the transfer of amino acids to their cognate tRNAs as building blocks for translation. Each of the aaRS families plays a pivotal role in protein biosynthesis and is indispensable for cell growth and survival. In addition, aaRSs in higher species have evolved important non-translational functions. These translational and non-translational functions of aaRS are attractive for developing antibacterial, antifungal, and antiparasitic agents and for treating other human diseases. The interplay between amino acids, tRNA, ATP, EF-Tu and non-canonical binding partners, had shaped each family with distinct pattern of key sites for regulation, with characters varying among species across the path of evolution. These sporadic variations in the aaRSs offer great opportunity to target these essential enzymes for therapy. Up to this day, growing numbers of aaRS inhibitors have been discovered and developed. Here, we summarize the latest developments and structural studies of aaRS inhibitors, and classify them with distinct binding modes into five categories. PMID:26670257

  7. Connecting the Kinetics and Energy Landscape of tRNA Translocation on the Ribosome

    PubMed Central

    Whitford, Paul C.; Blanchard, Scott C.; Cate, Jamie H. D.; Sanbonmatsu, Karissa Y.

    2013-01-01

    Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds) to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states. PMID:23555233

  8. Gene conversion as a mechanism for divergence of a chloroplast tRNA gene inserted in the mitochondrial genome of Brassica oleracea.

    PubMed Central

    Dron, M; Hartmann, C; Rode, A; Sevignac, M

    1985-01-01

    We have characterized a 1.7 kb sequence, containing a tRNA Leu2 gene shared by the ct and mt genomes of Brassica oleracea. The two sequences are completely homologous except in two short regions where two distinct gene conversion events have occurred between two sets of direct repeats leading to the insertion of 5 bp in the T loop of the mt copy of the ct gene. This is the first evidence that gene conversion represents the initial evolutionary step in inactivation of transferred ct genes in the mt genome. We also indicate that organelle DNA transfer by organelle fusion is an ongoing process which could be useful in genetic engineering. PMID:4080548

  9. Essentiality of threonylcarbamoyladenosine (t6A), a universal tRNA modification, in bacteria

    PubMed Central

    Thiaville, Patrick C.; Yacoubi, Basma El; Köhrer, Caroline; Thiaville, Jennifer J.; Deutsch, Chris; Iwata-Reuyl, Dirk; Bacusmo, Jo Marie; Armengaud, Jean; Bessho, Yoshitaka; Wetzel, Collin; Cao, Xiaoyu; Limbach, Patrick A.; RajBhandary, Uttam L.; de Crécy-Lagard, Valérie

    2016-01-01

    Threonylcarbamoyladenosine (t6A) is a modified nucleoside universally conserved in tRNAs in all three kingdoms of life. The recently discovered genes for t6A synthesis, including tsaC and tsaD, are essential in model prokaryotes but not essential in yeast. These genes had been identified as antibacterial targets even before their functions were known. However, the molecular basis for this prokaryotic-specific essentiality has remained a mystery. Here, we show that t6A is a strong positive determinant for aminoacylation of tRNA by bacterial-type but not by eukaryotic-type isoleucyl-tRNA synthetases and might also be a determinant for the essential enzyme tRNAIle-lysidine synthetase. We confirm that t6A is essential in Escherichia coli and a survey of genome-wide essentiality studies shows that genes for t6A synthesis are essential in most prokaryotes. This essentiality phenotype is not universal in Bacteria as t6A is dispensable in Deinococcus radiodurans, Thermus thermophilus, Synechocystis PCC6803 and Streptococcus mutans. Proteomic analysis of t6A- D. radiodurans strains revealed an induction of the proteotoxic stress response and identified genes whose translation is most affected by the absence of t6A in tRNAs. Thus, although t6A is universally conserved in tRNAs, its role in translation might vary greatly between organisms. PMID:26337258

  10. Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code

    NASA Astrophysics Data System (ADS)

    Rozov, Alexey; Demeshkina, Natalia; Khusainov, Iskander; Westhof, Eric; Yusupov, Marat; Yusupova, Gulnara

    2016-01-01

    Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNALysUUU with hypermodified 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine-pyrimidine mismatches. We show that mnm5s2U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism.

  11. Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code.

    PubMed

    Rozov, Alexey; Demeshkina, Natalia; Khusainov, Iskander; Westhof, Eric; Yusupov, Marat; Yusupova, Gulnara

    2016-01-21

    Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNA(Lys)(UUU) with hypermodified 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine-pyrimidine mismatches. We show that mnm(5)s(2)U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism.

  12. Structure-function relations in the NTPase domain of the antiviral tRNA ribotoxin Escherichia coli PrrC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meineke, Birthe; Shuman, Stewart, E-mail: s-shuman@ski.mskcc.org

    2012-06-05

    Breakage of tRNA by Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies a host antiviral response to phage T4 infection. Expression of EcoPrrC is cytocidal in yeast, signifying that PrrC ribotoxicity crosses phylogenetic domain boundaries. EcoPrrC consists of an N-terminal NTPase module that resembles ABC transporters and a C-terminal nuclease module that is sui generis. PrrC homologs are prevalent in many other bacteria. Here we report that Haemophilus influenzae PrrC is toxic in E. coli and yeast. To illuminate structure-activity relations, we conducted a new round of mutational analysis of EcoPrrC guided by primary structure conservation among toxic PrrC homologs. Wemore » indentify 17 candidate active site residues in the NTPase module that are essential for toxicity in yeast when EcoPrrC is expressed at high gene dosage. Their functions could be educed by integrating mutational data with the atomic structure of the transition-state complex of a homologous ABC protein.« less

  13. The ability of an arginine to tryptophan substitution in Saccharomyces cerevisiae tRNA nucleotidyltransferase to alleviate a temperature-sensitive phenotype suggests a role for motif C in active site organization.

    PubMed

    Goring, Mark E; Leibovitch, Matthew; Gea-Mallorqui, Ester; Karls, Shawn; Richard, Francis; Hanic-Joyce, Pamela J; Joyce, Paul B M

    2013-10-01

    We report that the temperature-sensitive (ts) phenotype in Saccharomyces cerevisiae associated with a variant tRNA nucleotidyltransferase containing an amino acid substitution at position 189 results from a reduced ability to incorporate AMP and CMP into tRNAs. We show that this defect can be compensated for by a second-site suppressor converting residue arginine 64 to tryptophan. The R64W substitution does not alter the structure or thermal stability of the enzyme dramatically but restores catalytic activity in vitro and suppresses the ts phenotype in vivo. R64 is found in motif A known to be involved in catalysis and nucleotide triphosphate binding while E189 lies within motif C previously thought only to connect the head and neck domains of the protein. Although mutagenesis experiments indicate that residues R64 and E189 do not interact directly, our data suggest a critical role for residue E189 in enzyme structure and function. Both R64 and E189 may contribute to the organization of the catalytic domain of the enzyme. These results, along with overexpression and deletion analyses, show that the ts phenotype of cca1-E189F does not arise from thermal instability of the variant tRNA nucleotidyltransferase but instead from the inability of a partially active enzyme to support growth only at higher temperatures. © 2013.

  14. Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis

    PubMed Central

    Gao, Beile; Gupta, Radhey S

    2007-01-01

    Background The Archaea are highly diverse in terms of their physiology, metabolism and ecology. Presently, very few molecular characteristics are known that are uniquely shared by either all archaea or the different main groups within archaea. The evolutionary relationships among different groups within the Euryarchaeota branch are also not clearly understood. Results We have carried out comprehensive analyses on each open reading frame (ORFs) in the genomes of 11 archaea (3 Crenarchaeota – Aeropyrum pernix, Pyrobaculum aerophilum and Sulfolobus acidocaldarius; 8 Euryarchaeota – Pyrococcus abyssi, Methanococcus maripaludis, Methanopyrus kandleri, Methanococcoides burtonii, Halobacterium sp. NCR-1, Haloquadratum walsbyi, Thermoplasma acidophilum and Picrophilus torridus) to search for proteins that are unique to either all Archaea or for its main subgroups. These studies have identified 1448 proteins or ORFs that are distinctive characteristics of Archaea and its various subgroups and whose homologues are not found in other organisms. Six of these proteins are unique to all Archaea, 10 others are only missing in Nanoarchaeum equitans and a large number of other proteins are specific for various main groups within the Archaea (e.g. Crenarchaeota, Euryarchaeota, Sulfolobales and Desulfurococcales, Halobacteriales, Thermococci, Thermoplasmata, all methanogenic archaea or particular groups of methanogens). Of particular importance is the observation that 31 proteins are uniquely present in virtually all methanogens (including M. kandleri) and 10 additional proteins are only found in different methanogens as well as A. fulgidus. In contrast, no protein was exclusively shared by various methanogen and any of the Halobacteriales or Thermoplasmatales. These results strongly indicate that all methanogenic archaea form a monophyletic group exclusive of other archaea and that this lineage likely evolved from Archaeoglobus. In addition, 15 proteins that are uniquely shared

  15. Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code

    PubMed Central

    Rozov, Alexey; Demeshkina, Natalia; Khusainov, Iskander; Westhof, Eric; Yusupov, Marat; Yusupova, Gulnara

    2016-01-01

    Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNALysUUU with hypermodified 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine–pyrimidine mismatches. We show that mnm5s2U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism. PMID:26791911

  16. A Hypertension-Associated tRNAAla Mutation Alters tRNA Metabolism and Mitochondrial Function

    PubMed Central

    Jiang, Pingping; Wang, Meng; Xue, Ling; Xiao, Yun; Yu, Jialing; Wang, Hui; Yao, Juan; Liu, Hao; Peng, Yanyan; Liu, Hanqing; Li, Haiying; Chen, Ye

    2016-01-01

    In this report, we investigated the pathophysiology of a novel hypertension-associated mitochondrial tRNAAla 5655A → G (m.5655A → G) mutation. The destabilization of a highly conserved base pairing (A1-U72) at the aminoacyl acceptor stem by an m.5655A → G mutation altered the tRNAAla function. An in vitro processing analysis showed that the m.5655A → G mutation reduced the efficiency of tRNAAla precursor 5′ end cleavage catalyzed by RNase P. By using cybrids constructed by transferring mitochondria from lymphoblastoid cell lines derived from a Chinese family into mitochondrial DNA (mtDNA)-less (ρo) cells, we showed a 41% reduction in the steady-state level of tRNAAla in mutant cybrids. The mutation caused an improperly aminoacylated tRNAAla, as suggested by aberrantly aminoacylated tRNAAla and slower electrophoretic mobility of mutated tRNA. A failure in tRNAAla metabolism contributed to variable reductions in six mtDNA-encoded polypeptides in mutant cells, ranging from 21% to 37.5%, with an average of a 29.1% reduction, compared to levels of the controls. The impaired translation caused reduced activities of mitochondrial respiration chains. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These caused increases in the production of reactive oxygen species in the mutant cybrids. The data provide evidence for the association of the tRNAAla 5655A → G mutation with hypertension. PMID:27161322

  17. Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers

    PubMed Central

    Honda, Shozo; Loher, Phillipe; Shigematsu, Megumi; Palazzo, Juan P.; Suzuki, Ryusuke; Imoto, Issei; Rigoutsos, Isidore; Kirino, Yohei

    2015-01-01

    Sex hormones and their receptors play critical roles in the development and progression of the breast and prostate cancers. Here we report that a novel type of transfer RNA (tRNA)-derived small RNA, termed Sex HOrmone-dependent TRNA-derived RNAs (SHOT-RNAs), are specifically and abundantly expressed in estrogen receptor (ER)-positive breast cancer and androgen receptor (AR)-positive prostate cancer cell lines. SHOT-RNAs are not abundantly present in ER− breast cancer, AR− prostate cancer, or other examined cancer cell lines from other tissues. ER-dependent accumulation of SHOT-RNAs is not limited to a cell culture system, but it also occurs in luminal-type breast cancer patient tissues. SHOT-RNAs are produced from aminoacylated mature tRNAs by angiogenin-mediated anticodon cleavage, which is promoted by sex hormones and their receptors. Resultant 5′- and 3′-SHOT-RNAs, corresponding to 5′- and 3′-tRNA halves, bear a cyclic phosphate (cP) and an amino acid at the 3′-end, respectively. By devising a “cP-RNA-seq” method that is able to exclusively amplify and sequence cP-containing RNAs, we identified the complete repertoire of 5′-SHOT-RNAs. Furthermore, 5′-SHOT-RNA, but not 3′-SHOT-RNA, has significant functional involvement in cell proliferation. These results have unveiled a novel tRNA-engaged pathway in tumorigenesis of hormone-dependent cancers and implicate SHOT-RNAs as potential candidates for biomarkers and therapeutic targets. PMID:26124144

  18. Backbone Brackets and Arginine Tweezers delineate Class I and Class II aminoacyl tRNA synthetases

    PubMed Central

    Haupt, V. Joachim; Schroeder, Michael; Labudde, Dirk

    2018-01-01

    The origin of the machinery that realizes protein biosynthesis in all organisms is still unclear. One key component of this machinery are aminoacyl tRNA synthetases (aaRS), which ligate tRNAs to amino acids while consuming ATP. Sequence analyses revealed that these enzymes can be divided into two complementary classes. Both classes differ significantly on a sequence and structural level, feature different reaction mechanisms, and occur in diverse oligomerization states. The one unifying aspect of both classes is their function of binding ATP. We identified Backbone Brackets and Arginine Tweezers as most compact ATP binding motifs characteristic for each Class. Geometric analysis shows a structural rearrangement of the Backbone Brackets upon ATP binding, indicating a general mechanism of all Class I structures. Regarding the origin of aaRS, the Rodin-Ohno hypothesis states that the peculiar nature of the two aaRS classes is the result of their primordial forms, called Protozymes, being encoded on opposite strands of the same gene. Backbone Brackets and Arginine Tweezers were traced back to the proposed Protozymes and their more efficient successors, the Urzymes. Both structural motifs can be observed as pairs of residues in contemporary structures and it seems that the time of their addition, indicated by their placement in the ancient aaRS, coincides with the evolutionary trace of Proto- and Urzymes. PMID:29659563

  19. Polycistronic tRNA and CRISPR guide-RNA enables highly efficient multiplexed genome engineering in human cells

    PubMed Central

    Dong, Fengping; Xie, Kabin; Chen, Yueying; Yang, Yinong; Mao, Yingwei

    2016-01-01

    CRISPR/Cas9 has been widely used for genomic editing in many organisms. Many human diseases are caused by multiple mutations. The CRISPR/Cas9 system provides a potential tool to introduce multiple mutations in a genome. To mimic complicated genomic variants in human diseases, such as multiple gene deletions or mutations, two or more small guide RNAs (sgRNAs) need to be introduced all together. This can be achieved by separate Pol III promoters in a construct. However, limited enzyme sites and increased insertion size lower the efficiency to make a construct. Here, we report a strategy to quickly assembly multiple sgRNAs in one construct using a polycistronic-tRNA-gRNA (PTG) strategy. Taking advantage of the endogenous tRNA processing system in mammalian cells, we efficiently express multiple sgRNAs driven using only one Pol III promoter. Using an all-in-one construct carrying PTG, we disrupt the deacetylase domain in multiple histone deacetylases (HDACs) in human cells simultaneously. We demonstrate that multiple HDAC deletions significantly affect the activation of the Wnt-signaling pathway. Thus, this method enables to efficiently target multiple genes and provide a useful tool to establish mutated cells mimicking human diseases. PMID:27890617

  20. Polycistronic tRNA and CRISPR guide-RNA enables highly efficient multiplexed genome engineering in human cells.

    PubMed

    Dong, Fengping; Xie, Kabin; Chen, Yueying; Yang, Yinong; Mao, Yingwei

    2017-01-22

    CRISPR/Cas9 has been widely used for genomic editing in many organisms. Many human diseases are caused by multiple mutations. The CRISPR/Cas9 system provides a potential tool to introduce multiple mutations in a genome. To mimic complicated genomic variants in human diseases, such as multiple gene deletions or mutations, two or more small guide RNAs (sgRNAs) need to be introduced all together. This can be achieved by separate Pol III promoters in a construct. However, limited enzyme sites and increased insertion size lower the efficiency to make a construct. Here, we report a strategy to quickly assembly multiple sgRNAs in one construct using a polycistronic-tRNA-gRNA (PTG) strategy. Taking advantage of the endogenous tRNA processing system in mammalian cells, we efficiently express multiple sgRNAs driven using only one Pol III promoter. Using an all-in-one construct carrying PTG, we disrupt the deacetylase domain in multiple histone deacetylases (HDACs) in human cells simultaneously. We demonstrate that multiple HDAC deletions significantly affect the activation of the Wnt-signaling pathway. Thus, this method enables to efficiently target multiple genes and provide a useful tool to establish mutated cells mimicking human diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Synthetic Spectroscopic Models Related to Coenzymes and Base Pairs, VII. Stacking Interactions in tRNA; the „Bend” at Dimethylguanosine*†

    PubMed Central

    Iwamura, Hajime; Leonard, Nelson J.; Eisinger, Josef

    1970-01-01

    We have examined the stacking interactions of N2-dimethyl-guanosine with the nucleosides, e.g., adenosine and cytidine, found adjacent to it in certain tRNA's, by the use of model compounds in which the trimethylene bridge was substituted for the ribose-phosphate-ribose linkage. From the hypochromism exhibited by synthetic 9-[3-(aden-9-yl)propyl]-2-dimethylaminopurine-6-one (IV) and by 9-[3-(cytos-1-yl)propyl]2-dimethylaminopurin-6-one in aqueous solution (VI) it is appearent that the interaction is at least as great between the N2-dimethylguanine moiety and adenine or cytosine as between guanine and these two bases. The fluorescence and phosphorescence emission spectra were obtained in ethylene glycol-water glass at 80°K. The exciplex fluorescence observed for both bi-molecules (IV and VI) containing the N2-dimethylguanine unit provides further evidence for stacked chromophores. PMID:5266146

  2. Long-Range Structural Effects of a Charcot-Marie-Tooth Disease-Causing Mutation in Human Glycyl-TRNA Synthetase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, W.; Nangle, L.A.; Zhang, W.

    2009-06-04

    Functional expansion of specific tRNA synthetases in higher organisms is well documented. These additional functions may explain why dominant mutations in glycyl-tRNA synthetase (GlyRS) and tyrosyl-tRNA synthetase cause Charcot-Marie-Tooth (CMT) disease, the most common heritable disease of the peripheral nervous system. At least 10 disease-causing mutant alleles of GlyRS have been annotated. These mutations scatter broadly across the primary sequence and have no apparent unifying connection. Here we report the structure of wild type and a CMT-causing mutant (G526R) of homodimeric human GlyRS. The mutation is at the site for synthesis of glycyl-adenylate, but the rest of the two structuresmore » are closely similar. Significantly, the mutant form diffracts to a higher resolution and has a greater dimer interface. The extra dimer interactions are located {approx}30 {angstrom} away from the G526R mutation. Direct experiments confirm the tighter dimer interaction of the G526R protein. The results suggest the possible importance of subtle, long-range structural effects of CMT-causing mutations at the dimer interface. From analysis of a third crystal, an appended motif, found in higher eukaryote GlyRSs, seems not to have a role in these long-range effects.« less

  3. Identification and structural characterization of O-beta-ribosyl-(1"----2')-adenosine-5"-phosphate in yeast methionine initiator tRNA.

    PubMed Central

    Keith, G; Glasser, A L; Desgrès, J; Kuo, K C; Gehrke, C W

    1990-01-01

    We report in this paper on the complete structure determination of the modified nucleotide A*, now called Ar(p), that was previously identified in yeast methionine initiator tRNA as an isomeric form of O-ribosyl-adenosine bearing an additional phosphoryl-monoester group on its ribose2 moiety. By using the chemical procedure of periodate oxidation and subsequent beta-elimination with cyclohexylamine on mono- and dinucleotides containing Ar(p), we characterized the location of the phosphate group on the C-5" of the ribose2 moiety, and the linkage between the two riboses as a (1"----2')-glycosidic bond. Since the structural difference between phosphatase treated Ar(p) and authentic O-alpha-ribosyl-(1"----2')-adenosine from poly(ADP-Ribose) was previously assigned to an isomeric difference in the ribose2-ribose1 linkage, the (1"----2')-glycosidic bond of Ar(p) was deduced to have a beta-spatial configuration. Thus, final chemical structure for Ar(p) at the position 64 in yeast initiator tRNA(Met) has been established as O-beta-ribosyl-(1"----2')-adenosine-5"-phosphate. This nucleotide is linked by a 3',5'-phosphodiester bond to G at the position 65. PMID:2235481

  4. Identification and structural characterization of O-beta-ribosyl-(1"----2')-adenosine-5"-phosphate in yeast methionine initiator tRNA.

    PubMed

    Keith, G; Glasser, A L; Desgrès, J; Kuo, K C; Gehrke, C W

    1990-10-25

    We report in this paper on the complete structure determination of the modified nucleotide A*, now called Ar(p), that was previously identified in yeast methionine initiator tRNA as an isomeric form of O-ribosyl-adenosine bearing an additional phosphoryl-monoester group on its ribose2 moiety. By using the chemical procedure of periodate oxidation and subsequent beta-elimination with cyclohexylamine on mono- and dinucleotides containing Ar(p), we characterized the location of the phosphate group on the C-5" of the ribose2 moiety, and the linkage between the two riboses as a (1"----2')-glycosidic bond. Since the structural difference between phosphatase treated Ar(p) and authentic O-alpha-ribosyl-(1"----2')-adenosine from poly(ADP-Ribose) was previously assigned to an isomeric difference in the ribose2-ribose1 linkage, the (1"----2')-glycosidic bond of Ar(p) was deduced to have a beta-spatial configuration. Thus, final chemical structure for Ar(p) at the position 64 in yeast initiator tRNA(Met) has been established as O-beta-ribosyl-(1"----2')-adenosine-5"-phosphate. This nucleotide is linked by a 3',5'-phosphodiester bond to G at the position 65.

  5. The role of tRNA and ribosome competition in coupling the expression of different mRNAs in Saccharomyces cerevisiae

    PubMed Central

    Chu, Dominique; Barnes, David J.; von der Haar, Tobias

    2011-01-01

    Protein synthesis translates information from messenger RNAs into functional proteomes. Because of the finite nature of the resources required by the translational machinery, both the overall protein synthesis activity of a cell and activity on individual mRNAs are controlled by the allocation of limiting resources. Upon introduction of heterologous sequences into an organism—for example for the purposes of bioprocessing or synthetic biology—limiting resources may also become overstretched, thus negatively affecting both endogenous and heterologous gene expression. In this study, we present a mean-field model of translation in Saccharomyces cerevisiae for the investigation of two particular translational resources, namely ribosomes and aminoacylated tRNAs. We firstly use comparisons of experiments with heterologous sequences and simulations of the same conditions to calibrate our model, and then analyse the behaviour of the translational system in yeast upon introduction of different types of heterologous sequences. Our main findings are that: competition for ribosomes, rather than tRNAs, limits global translation in this organism; that tRNA aminoacylation levels exert, at most, weak control over translational activity; and that decoding speeds and codon adaptation exert strong control over local (mRNA specific) translation rates. PMID:21558172

  6. Functional loss of Cdkal1, a novel tRNA modification enzyme, causes the development of type 2 diabetes.

    PubMed

    Wei, Fan-Yan; Tomizawa, Kazuhito

    2011-01-01

    A number of whole-genome association studies show the cdk5 regulatory associated protein 1-like 1 (cdkal1) gene to be one of the most reproducible risk genes in type 2 diabetes (T2D). Variations in the gene are associated with impaired insulin secretion but not insulin resistance or obesity. Although the physiological functions of Cdkal1 had been unclear, recent studies show that it is a tRNA modification enzyme, a mammalian methylthiotransferase that biosynthesizes 2-methylthio-N(6)-threonylcarbamoyladenosine (ms(2)t(6)A) at position 37 of tRNA(Lys)(UUU). The ms(2)t(6)A modification in tRNA(Lys)(UUU) is important for preventing the misreading of its cognate codons, especially when the rate of translation is relatively high. In both general and pancreatic β-cell-specific cdkal1-deficient mice, impaired mitochondrial ATP generation and first-phase insulin secretion are observed. Moreover, the β-cell-specific knockout mice show pancreatic islet hypertrophy and impaired blood glucose control. The mice are also hypersensitive to high-fat diet-induced ER stress. In this review, we provide an overview of the physiological functions of Cdkal1 and the molecular pathogenesis of T2D in patients carrying cdkal1 risk alleles.

  7. Fragmentation of tRNA in Phytophthora infestans asexual life cycle stages and during host plant infection.

    PubMed

    Åsman, Anna K M; Vetukuri, Ramesh R; Jahan, Sultana N; Fogelqvist, Johan; Corcoran, Pádraic; Avrova, Anna O; Whisson, Stephen C; Dixelius, Christina

    2014-12-10

    The oomycete Phytophthora infestans possesses active RNA silencing pathways, which presumably enable this plant pathogen to control the large numbers of transposable elements present in its 240 Mb genome. Small RNAs (sRNAs), central molecules in RNA silencing, are known to also play key roles in this organism, notably in regulation of critical effector genes needed for infection of its potato host. To identify additional classes of sRNAs in oomycetes, we mapped deep sequencing reads to transfer RNAs (tRNAs) thereby revealing the presence of 19-40 nt tRNA-derived RNA fragments (tRFs). Northern blot analysis identified abundant tRFs corresponding to half tRNA molecules. Some tRFs accumulated differentially during infection, as seen by examining sRNAs sequenced from P. infestans-potato interaction libraries. The putative connection between tRF biogenesis and the canonical RNA silencing pathways was investigated by employing hairpin RNA-mediated RNAi to silence the genes encoding P. infestans Argonaute (PiAgo) and Dicer (PiDcl) endoribonucleases. By sRNA sequencing we show that tRF accumulation is PiDcl1-independent, while Northern hybridizations detected reduced levels of specific tRNA-derived species in the PiAgo1 knockdown line. Our findings extend the sRNA diversity in oomycetes to include fragments derived from non-protein-coding RNA transcripts and identify tRFs with elevated levels during infection of potato by P. infestans.

  8. An artificial intelligence approach fit for tRNA gene studies in the era of big sequence data.

    PubMed

    Iwasaki, Yuki; Abe, Takashi; Wada, Kennosuke; Wada, Yoshiko; Ikemura, Toshimichi

    2017-09-12

    Unsupervised data mining capable of extracting a wide range of knowledge from big data without prior knowledge or particular models is a timely application in the era of big sequence data accumulation in genome research. By handling oligonucleotide compositions as high-dimensional data, we have previously modified the conventional self-organizing map (SOM) for genome informatics and established BLSOM, which can analyze more than ten million sequences simultaneously. Here, we develop BLSOM specialized for tRNA genes (tDNAs) that can cluster (self-organize) more than one million microbial tDNAs according to their cognate amino acid solely depending on tetra- and pentanucleotide compositions. This unsupervised clustering can reveal combinatorial oligonucleotide motifs that are responsible for the amino acid-dependent clustering, as well as other functionally and structurally important consensus motifs, which have been evolutionarily conserved. BLSOM is also useful for identifying tDNAs as phylogenetic markers for special phylotypes. When we constructed BLSOM with 'species-unknown' tDNAs from metagenomic sequences plus 'species-known' microbial tDNAs, a large portion of metagenomic tDNAs self-organized with species-known tDNAs, yielding information on microbial communities in environmental samples. BLSOM can also enhance accuracy in the tDNA database obtained from big sequence data. This unsupervised data mining should become important for studying numerous functionally unclear RNAs obtained from a wide range of organisms.

  9. Small finger protein of avian and murine retroviruses has nucleic acid annealing activity and positions the replication primer tRNA onto genomic RNA.

    PubMed Central

    Prats, A C; Sarih, L; Gabus, C; Litvak, S; Keith, G; Darlix, J L

    1988-01-01

    Retrovirus virions carry a diploid genome associated with a large number of small viral finger protein molecules which are required for encapsidation. Our present results show that finger protein p12 of Rous sarcoma virus (RSV) and p10 of murine leukaemia virus (MuLV) positions replication primer tRNA on the replication initiation site (PBS) at the 5' end of the RNA genome. An RSV mutant with a Val-Pro insertion in the finger motif of p12 is able to partially encapsidate genomic RNA but is not infectious because mutated p12 is incapable of positioning the replication primer, tRNATrp. Since all known replication competent retroviruses, and the plant virus CaMV, code for finger proteins analogous to RSV p12 or MuLV p10, the initial stage of reverse transcription in avian, mammalian and human retroviruses and in CaMV is probably controlled in an analogous way. Images PMID:2458920

  10. Small finger protein of avian and murine retroviruses has nucleic acid annealing activity and positions the replication primer tRNA onto genomic RNA.

    PubMed

    Prats, A C; Sarih, L; Gabus, C; Litvak, S; Keith, G; Darlix, J L

    1988-06-01

    Retrovirus virions carry a diploid genome associated with a large number of small viral finger protein molecules which are required for encapsidation. Our present results show that finger protein p12 of Rous sarcoma virus (RSV) and p10 of murine leukaemia virus (MuLV) positions replication primer tRNA on the replication initiation site (PBS) at the 5' end of the RNA genome. An RSV mutant with a Val-Pro insertion in the finger motif of p12 is able to partially encapsidate genomic RNA but is not infectious because mutated p12 is incapable of positioning the replication primer, tRNATrp. Since all known replication competent retroviruses, and the plant virus CaMV, code for finger proteins analogous to RSV p12 or MuLV p10, the initial stage of reverse transcription in avian, mammalian and human retroviruses and in CaMV is probably controlled in an analogous way.

  11. Crystallization and preliminary X-ray analysis of a native human tRNA synthetase whose allelic variants are associated with Charcot–Marie–Tooth disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Wei; Schimmel, Paul; Yang, Xiang-Lei, E-mail: xlyang@scripps.edu

    2006-12-01

    Crystallization and preliminary X-ray analysis of a native human tRNA synthetase whose allelic variants are associated with Charcot–Marie–Tooth Disease. Glycyl-tRNA synthetase (GlyRS) is one of a group of enzymes that catalyze the synthesis of aminoacyl-tRNAs for translation. Mutations of human and mouse GlyRSs are causally associated with Charcot–Marie–Tooth disease, the most common genetic disorder of the peripheral nervous system. As the first step towards a structure–function analysis of this disease, native human GlyRS was expressed, purified and crystallized. The crystal belonged to space group P4{sub 3}2{sub 1}2 or its enantiomorphic space group P4{sub 1}2{sub 1}2, with unit-cell parameters a =more » b = 91.74, c = 247.18 Å, and diffracted X-rays to 3.0 Å resolution. The asymmetric unit contained one GlyRS molecule and had a solvent content of 69%.« less

  12. Evolutionarily conserved proteins MnmE and GidA catalyze the formation of two methyluridine derivatives at tRNA wobble positions

    PubMed Central

    Moukadiri, Ismaïl; Prado, Silvia; Piera, Julio; Velázquez-Campoy, Adrián; Björk, Glenn R.; Armengod, M.-Eugenia

    2009-01-01

    The wobble uridine of certain bacterial and mitochondrial tRNAs is modified, at position 5, through an unknown reaction pathway that utilizes the evolutionarily conserved MnmE and GidA proteins. The resulting modification (a methyluridine derivative) plays a critical role in decoding NNG/A codons and reading frame maintenance during mRNA translation. The lack of this tRNA modification produces a pleiotropic phenotype in bacteria and has been associated with mitochondrial encephalomyopathies in humans. In this work, we use in vitro and in vivo approaches to characterize the enzymatic pathway controlled by the Escherichia coli MnmE•GidA complex. Surprisingly, this complex catalyzes two different GTP- and FAD-dependent reactions, which produce 5-aminomethyluridine and 5-carboxymethylamino-methyluridine using ammonium and glycine, respectively, as substrates. In both reactions, methylene-tetrahydrofolate is the most probable source to form the C5-methylene moiety, whereas NADH is dispensable in vitro unless FAD levels are limiting. Our results allow us to reformulate the bacterial MnmE•GidA dependent pathway and propose a novel mechanism for the modification reactions performed by the MnmE and GidA family proteins. PMID:19767610

  13. Arc1p is required for cytoplasmic confinement of synthetases and tRNA.

    PubMed

    Golinelli-Cohen, Marie-Pierre; Mirande, Marc

    2007-06-01

    In yeast, Arc1p interacts with ScMetRS and ScGluRS and operates as a tRNA-Interacting Factor (tIF) in trans of these two synthetases. Its N-terminal domain (N-Arc1p) binds the two synthetases and its C-terminal domain is an EMAPII-like domain organized around an OB-fold-based tIF. ARC1 is not an essential gene but its deletion (arc1- cells) is accompanied by a growth retardation phenotype. Here, we show that expression of N-Arc1p or of C-Arc1p alone palliates the growth defect of arc1- cells, and that bacterial Trbp111 or human p43, two proteins containing EMAPII-like domains, also improve the growth of an arc1- strain. The synthetic lethality of an arc1-los1- strain can be complemented with either ARC1 or LOS1. Expression of N-Arc1p or C-Arc1p alone does not complement an arc1-los1- phenotype, but coexpression of the two domains does. Our data demonstrate that Trbp111 or p43 may replace C-Arc1p to complement an arc1-los1- strain. The two functional domains of Arc1p (N-Arc1p and C-Arc1p) are required to get rid of the synthetic lethal phenotype but do not need to be physically linked. To get some clues to the discrete functions of N-Arc1p and C-Arc1p, we targeted ScMetRS or tIF domains to the nuclear compartment and analyzed their cellular localization by using GFP fusions, and their ability to sustain growth. Our results are consistent with a model according to which Arc1p is a bifunctional protein involved in the subcellular localization of ScMetRS and ScGluRS via its N-terminal domain and of tRNA via its C-terminal domain.

  14. Crystal structure of Cex1p reveals the mechanism of tRNA trafficking between nucleus and cytoplasm.

    PubMed

    Nozawa, Kayo; Ishitani, Ryuichiro; Yoshihisa, Tohru; Sato, Mamoru; Arisaka, Fumio; Kanamaru, Shuji; Dohmae, Naoshi; Mangroo, Dev; Senger, Bruno; Becker, Hubert D; Nureki, Osamu

    2013-04-01

    In all eukaryotes, transcribed precursor tRNAs are maturated by processing and modification processes in nucleus and are transported to the cytoplasm. The cytoplasmic export protein (Cex1p) captures mature tRNAs from the nuclear export receptor (Los1p) on the cytoplasmic side of the nuclear pore complex, and it delivers them to eukaryotic elongation factor 1α. This conserved Cex1p function is essential for the quality control of mature tRNAs to ensure accurate translation. However, the structural basis of how Cex1p recognizes tRNAs and shuttles them to the translational apparatus remains unclear. Here, we solved the 2.2 Å resolution crystal structure of Saccharomyces cerevisiae Cex1p with C-terminal 197 disordered residues truncated. Cex1p adopts an elongated architecture, consisting of N-terminal kinase-like and a C-terminal α-helical HEAT repeat domains. Structure-based biochemical analyses suggested that Cex1p binds tRNAs on its inner side, using the positively charged HEAT repeat surface and the C-terminal disordered region. The N-terminal kinase-like domain acts as a scaffold to interact with the Ran-exportin (Los1p·Gsp1p) machinery. These results provide the structural basis of Los1p·Gsp1p·Cex1p·tRNA complex formation, thus clarifying the dynamic mechanism of tRNA shuttling from exportin to the translational apparatus.

  15. Quantitative PCR measurement of tRNA 2-methylthio modification for assessing type 2 diabetes risk.

    PubMed

    Xie, Peiyu; Wei, Fan-Yan; Hirata, Shoji; Kaitsuka, Taku; Suzuki, Tsutomu; Suzuki, Takeo; Tomizawa, Kazuhito

    2013-11-01

    Genetic variants in the human CDKAL1 (CDK5 regulatory subunit associated protein 1-like 1) gene have been associated with reduced insulin secretion and type 2 diabetes (T2D). CDKAL1 is a methylthiotransferase that catalyzes 2-methylthio (ms(2)) modification of the adenine at position 37 (A37) of cytoplasmic tRNA(Lys)(UUU). We investigated the ms(2)-modification level of tRNA(Lys)(UUU) as a direct readout of CDKAL1 enzyme activity in human samples. We developed a quantitative PCR (qPCR)-based method to measure ms(2) modification. tRNA(Lys)(UUU) was reverse-transcribed with 2 unique primers: Reverse primer r1 was designed to anneal to the middle of this tRNA, including the nucleotide at A37, and reverse primer r2 was designed to anneal to the region downstream (3') of A37. Subsequent qPCR was performed to detect the corresponding transcribed cDNAs. The efficiency of reverse transcription of tRNA(Lys)(UUU) was ms(2)-modification dependent. The relative difference in threshold cycle number obtained with the r1 or r2 primer yielded the ms(2)-modification level in tRNA(Lys)(UUU) precisely as predicted by an original mathematical model. The method was capable of measuring ms(2)-modification levels in tRNA(Lys)(UUU) in total RNA isolated from human peripheral blood samples, revealing that the ms(2)-modification rate in tRNA(Lys)(UUU) was decreased in individuals carrying the CDKAL1 genotype associated with T2D. In addition, the ms(2)-modification level was correlated with insulin secretion. The results point to the critical role of ms(2) modification in T2D and to a potential clinical use of a simple and high-throughput method for assessing T2D risk.

  16. Determinants of the cytotoxicity of PrrC anticodon nuclease and its amelioration by tRNA repair

    PubMed Central

    Meineke, Birthe; Shuman, Stewart

    2012-01-01

    Breakage of tRNALys(UUU) by the Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies a host antiviral response to phage T4 infection that is ultimately thwarted by a virus-encoded RNA repair system. PrrC homologs are prevalent in other bacteria, but their activities and substrates are not defined. We find that induced expression of EcoPrrC is toxic in Saccharomyces cerevisiae and E. coli, whereas the Neisseria meningitidis PrrC (NmePrrC) is not. PrrCs consist of an N-terminal NTPase module and a C-terminal nuclease module. Domain swaps identified the EcoPrrC nuclease domain as decisive for toxicity when linked to either the Eco or Nme NTPase. Indeed, a single arginine-to-tryptophan change in the NmePrrC nuclease domain (R316W) educed a gain-of-function and rendered NmePrrC toxic to yeast, with genetic evidence for tRNALys(UUU) being the relevant target. The reciprocal Trp-to-Arg change in EcoPrrC (W335R) abolished its toxicity. Further mutagenesis of the EcoPrrC nuclease domain highlighted an ensemble of 15 essential residues and distinguished between hypomorphic alleles and potential nuclease-nulls. We report that the RNA repair phase of the bacterial virus-host dynamic is also portable to yeast, where coexpression of the T4 enzymes Pnkp and Rnl1 ameliorated the toxicity of NmePrrC-R316W. Plant tRNA ligase AtRNL also countered NmePrrC-R316W toxicity, in a manner that depended on AtRNL's 5′-kinase and ligase functions. PMID:22101242

  17. Determinants of the cytotoxicity of PrrC anticodon nuclease and its amelioration by tRNA repair.

    PubMed

    Meineke, Birthe; Shuman, Stewart

    2012-01-01

    Breakage of tRNA(Lys(UUU)) by the Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies a host antiviral response to phage T4 infection that is ultimately thwarted by a virus-encoded RNA repair system. PrrC homologs are prevalent in other bacteria, but their activities and substrates are not defined. We find that induced expression of EcoPrrC is toxic in Saccharomyces cerevisiae and E. coli, whereas the Neisseria meningitidis PrrC (NmePrrC) is not. PrrCs consist of an N-terminal NTPase module and a C-terminal nuclease module. Domain swaps identified the EcoPrrC nuclease domain as decisive for toxicity when linked to either the Eco or Nme NTPase. Indeed, a single arginine-to-tryptophan change in the NmePrrC nuclease domain (R316W) educed a gain-of-function and rendered NmePrrC toxic to yeast, with genetic evidence for tRNA(Lys(UUU)) being the relevant target. The reciprocal Trp-to-Arg change in EcoPrrC (W335R) abolished its toxicity. Further mutagenesis of the EcoPrrC nuclease domain highlighted an ensemble of 15 essential residues and distinguished between hypomorphic alleles and potential nuclease-nulls. We report that the RNA repair phase of the bacterial virus-host dynamic is also portable to yeast, where coexpression of the T4 enzymes Pnkp and Rnl1 ameliorated the toxicity of NmePrrC-R316W. Plant tRNA ligase AtRNL also countered NmePrrC-R316W toxicity, in a manner that depended on AtRNL's 5'-kinase and ligase functions.

  18. Molecular dynamics simulations of human tRNA Lys,3 UUU: the role of modified bases in mRNA recognition.

    PubMed

    McCrate, Nina E; Varner, Mychel E; Kim, Kenneth I; Nagan, Maria C

    2006-01-01

    Accuracy in translation of the genetic code into proteins depends upon correct tRNA-mRNA recognition in the context of the ribosome. In human tRNA(Lys,3)UUU three modified bases are present in the anticodon stem-loop--2-methylthio-N6-threonylcarbamoyladenosine at position 37 (ms2t6A37), 5-methoxycarbonylmethyl-2-thiouridine at position 34 (mcm5s2U34) and pseudouridine (psi) at position 39--two of which, ms2t6A37 and mcm5s2U34, are required to achieve wild-type binding activity of wild-type human tRNA(Lys,3)UUU [C. Yarian, M. Marszalek, E. Sochacka, A. Malkiewicz, R. Guenther, A. Miskiewicz and P. F. Agris (2000) Biochemistry, 39, 13390-13395]. Molecular dynamics simulations of nine tRNA anticodon stem-loops with different combinations of nonstandard bases were performed. The wild-type simulation exhibited a canonical anticodon stair-stepped conformation. The ms2t6 modification at position 37 is required for maintenance of this structure and reduces solvent accessibility of U36. Ms2t6A37 generally hydrogen bonds across the loop and may prevent U36 from rotating into solution. A water molecule does coordinate to psi39 most of the simulation time but weakly, as most of the residence lifetimes are <40 ps.

  19. Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation.

    PubMed

    Fabrizio, Paola; Hoon, Shawn; Shamalnasab, Mehrnaz; Galbani, Abdulaye; Wei, Min; Giaever, Guri; Nislow, Corey; Longo, Valter D

    2010-07-15

    The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved.

  20. A case of anti-aminoacyl tRNA synthetase (ARS) antibody-positive polymyositis (PM)/dermatomyositis (DM)-associated interstitial pneumonia (IP) successfully controlled with bosentan therapy.

    PubMed

    Naito, Tomoyuki; Tanaka, Yosuke; Hino, Mitsunori; Gemma, Akihiko

    2017-01-01

    A 72-year-old woman was admitted to our hospital and was diagnosed with interstitial pneumonia (IP) associated with amyopathic dermatomyositis (ADM). The patient experienced three acute IP exacerbations in the 7 years that followed, which were each treated and resolved with steroid pulse therapy. The patient was closely examined for respiratory failure with right heart catheterization (RHC), which demonstrated that she had a mean pulmonary artery pressure (mPAP) of 34 mmHg. The patient was thus diagnosed as having pulmonary hypertension (PH) associated with anti-synthetase syndrome (ASS) and was started on bosentan therapy, which led to improvements in mPAP as well as in subjective symptoms over time. Indeed, she had had no acute exacerbations with serum markers of IP remaining low over 6 years following initiation of bosentan therapy, suggesting that bosentan may have a role in controlling IP. In addition, she was confirmed to be anti-ARS antibody-positive after 5 years of bosentan therapy, when anti-aminoacyl tRNA synthetase (anti-ARS) antibody testing became available.

  1. Electrophoretic Deformation of Individual Transfer RNA Molecules Reveals Their Identity.

    PubMed

    Henley, Robert Y; Ashcroft, Brian Alan; Farrell, Ian; Cooperman, Barry S; Lindsay, Stuart M; Wanunu, Meni

    2016-01-13

    It has been hypothesized that the ribosome gains additional fidelity during protein translation by probing structural differences in tRNA species. We measure the translocation kinetics of different tRNA species through ∼3 nm diameter synthetic nanopores. Each tRNA species varies in the time scale with which it is deformed from equilibrium, as in the translocation step of protein translation. Using machine-learning algorithms, we can differentiate among five tRNA species, analyze the ratios of tRNA binary mixtures, and distinguish tRNA isoacceptors.

  2. Evidence for the absence of the terminal adenine nucleotide at the amino acid-acceptor end of transfer ribonucleic acid in non-lactating bovine mammary gland and its inhibitory effect on the aminoacylation of rat liver transfer ribonucleic acid

    PubMed Central

    Herrington, M. D.; Hawtrey, A. O.

    1970-01-01

    1. tRNA isolated from non-lactating bovine mammary gland competitively inhibits the formation of aminoacyl-tRNA in the rat liver system. 2. Non-lactating bovine mammary gland tRNA and twice-pyrophosphorolysed rat liver tRNA are unable to accept amino acids in a reaction catalysed by aminoacyl-tRNA synthetases from either rat liver or bovine mammary gland. Deacylated rat liver tRNA can however be aminoacylated in the presence of either enzyme. 3. Bovine mammary gland tRNA lacks the terminal adenine nucleotide at the 3′-terminus amino acid acceptor end, which can be replaced by incubation in the presence of rat liver nucleotide-incorporating enzyme, ATP and CTP. 4. The enzymically modified bovine tRNA (tRNApCpCpA) can bind labelled amino acids to form aminoacyl-tRNA, which can then transfer its labelled amino acids to growing polypeptide chains on ribosomes. 5. Molecules of rat liver tRNA or bovine mammary gland tRNA that lack the terminal adenine nucleotide or the terminal cytosine and adenine nucleotides inhibit the aminoacylation of normal rat liver tRNA to varying degrees. tRNA molecules lacking the terminal −pCpCpA nucleotide sequence exhibit the major inhibitory effect. 6. The enzyme fraction from bovine mammary gland corresponding to that containing the nucleotide-incorporating enzyme in rat liver is unable to catalyse the incorporation of cytosine and adenine nucleotides in pyrophosphorolysed rat liver tRNA and deacylated bovine tRNA. This fraction also markedly inhibits the action of the rat liver nucleotide-incorporating enzyme. PMID:5435687

  3. Yeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Jiqiang; Peterson, Kaitlyn M.; Simonovic, Ivana

    2014-03-12

    Aminoacyl-tRNA synthetases (aaRSs) ensure faithful translation of mRNA into protein by coupling an amino acid to a set of tRNAs with conserved anticodon sequences. Here, we show that in mitochondria of Saccharomyces cerevisiae, a single aaRS (MST1) recognizes and aminoacylates two natural tRNAs that contain anticodon loops of different size and sequence. Besides a regular ?? with a threonine (Thr) anticodon, MST1 also recognizes an unusual ??, which contains an enlarged anticodon loop and an anticodon triplet that reassigns the CUN codons from leucine to threonine. Our data show that MST1 recognizes the anticodon loop in both tRNAs, but employsmore » distinct recognition mechanisms. The size but not the sequence of the anticodon loop is critical for ?? recognition, whereas the anticodon sequence is essential for aminoacylation of ??. The crystal structure of MST1 reveals that, while lacking the N-terminal editing domain, the enzyme closely resembles the bacterial threonyl-tRNA synthetase (ThrRS). A detailed structural comparison with Escherichia coli ThrRS, which is unable to aminoacylate ??, reveals differences in the anticodon-binding domain that probably allow recognition of the distinct anticodon loops. Finally, our mutational and modeling analyses identify the structural elements in MST1 (e.g., helix {alpha}11) that define tRNA selectivity. Thus, MTS1 exemplifies that a single aaRS can recognize completely divergent anticodon loops of natural isoacceptor tRNAs and that in doing so it facilitates the reassignment of the genetic code in yeast mitochondria.« less

  4. Characterization of Two Cysteine Transfer RNA Genes from Xenopus Laevis

    DTIC Science & Technology

    1984-07-12

    containing amino acids glycine, alanine and serine, are produced by the posterior silk gland of Bombyx mori and therefore high level of tRNAgly, tRNA^Ia...1979) Studies on tRNA adaptation, tRNA turnover, precursor tRNA and tRNA gene distribution in Bombyx mori by using two-dimensional polyacrylamlde gel...Nucleic Acids Research, 1^, 8537-8546. 26. Garber, R.L. and Gage, L.P. (1979) Transcription of a cloned Bombyx mori tRNA^2 gene: Nucleotide sequence of

  5. Decreased ATP synthesis is phenotypically expressed during increased energy demand in fibroblasts containing mitochondrial tRNA mutations.

    PubMed

    James, A M; Sheard, P W; Wei, Y H; Murphy, M P

    1999-01-01

    Mutations in the tRNA genes of mitochondrial DNA (mtDNA) cause the debilitating MELAS (mitochondrial, myopathy, encephalopathy, lactic acidosis and stroke-like episodes) and MERRF (myoclonic epilepsy and ragged-red fibres) syndromes. These mtDNA mutations affect respiratory chain function, apparently without decreasing cellular ATP concentration [Moudy et al. (1995) PNAS, 92, 729-733]. To address this issue, we investigated the role of mitochondrial ATP synthesis in fibroblasts from MELAS and MERRF patients. The maximum rate of mitochondrial ATP synthesis was decreased by 60-88%, as a consequence of the decrease in the proton electrochemical potential gradient of MELAS and MERRF mitochondria. However, in quiescent fibroblasts neither ATP concentration or the ATP/ADP ratio was affected by the lowered rate of ATP synthesis. We hypothesized that the low ATP demand of quiescent fibroblasts masked the mitochondrial ATP synthesis defect and that this defect might become apparent during higher ATP use. To test this we simulated high energy demand by titrating cells with gramicidin, an ionophore that stimulates ATP hydrolysis by the plasma membrane Na+/K+-ATPase. We found a threshold gramicidin concentration in control cells at which both the ATP/ADP ratio and the plasma membrane potential decreased dramatically, due to ATP demand by the Na+/K+-ATPase outstripping mitochondrial ATP synthesis. In MELAS and MERRF fibroblasts the corresponding threshold concentrations of gramicidin were 2-20-fold lower than those for control cells. This is the first demonstration that cells containing mtDNA mutations are particularly sensitive to increased ATP demand and this has several implications for how mitochondrial dysfunction contributes to disease pathophysiology. In particular, the increased susceptibility to plasma membrane depolarization will render neurons with dysfunctional mitochondria susceptible to excitotoxic cell death.

  6. Identification and codon reading properties of 5-cyanomethyl uridine, a new modified nucleoside found in the anticodon wobble position of mutant haloarchaeal isoleucine tRNAs

    PubMed Central

    Mandal, Debabrata; Köhrer, Caroline; Su, Dan; Babu, I. Ramesh; Chan, Clement T.Y.; Liu, Yuchen; Söll, Dieter; Blum, Paul; Kuwahara, Masayasu; Dedon, Peter C.; RajBhandary, Uttam L.

    2014-01-01

    Most archaea and bacteria use a modified C in the anticodon wobble position of isoleucine tRNA to base pair with A but not with G of the mRNA. This allows the tRNA to read the isoleucine codon AUA without also reading the methionine codon AUG. To understand why a modified C, and not U or modified U, is used to base pair with A, we mutated the C34 in the anticodon of Haloarcula marismortui isoleucine tRNA (tRNA2Ile) to U, expressed the mutant tRNA in Haloferax volcanii, and purified and analyzed the tRNA. Ribosome binding experiments show that although the wild-type tRNA2Ile binds exclusively to the isoleucine codon AUA, the mutant tRNA binds not only to AUA but also to AUU, another isoleucine codon, and to AUG, a methionine codon. The G34 to U mutant in the anticodon of another H. marismortui isoleucine tRNA species showed similar codon binding properties. Binding of the mutant tRNA to AUG could lead to misreading of the AUG codon and insertion of isoleucine in place of methionine. This result would explain why most archaea and bacteria do not normally use U or a modified U in the anticodon wobble position of isoleucine tRNA for reading the codon AUA. Biochemical and mass spectrometric analyses of the mutant tRNAs have led to the discovery of a new modified nucleoside, 5-cyanomethyl U in the anticodon wobble position of the mutant tRNAs. 5-Cyanomethyl U is present in total tRNAs from euryarchaea but not in crenarchaea, eubacteria, or eukaryotes. PMID:24344322

  7. Celebrating wobble decoding: Half a century and still much is new.

    PubMed

    Agris, Paul F; Eruysal, Emily R; Narendran, Amithi; Väre, Ville Y P; Vangaveti, Sweta; Ranganathan, Srivathsan V

    2017-08-16

    A simple post-transcriptional modification of tRNA, deamination of adenosine to inosine at the first, or wobble, position of the anticodon, inspired Francis Crick's Wobble Hypothesis 50 years ago. Many more naturally-occurring modifications have been elucidated and continue to be discovered. The post-transcriptional modifications of tRNA's anticodon domain are the most diverse and chemically complex of any RNA modifications. Their contribution with regards to chemistry, structure and dynamics reveal individual and combined effects on tRNA function in recognition of cognate and wobble codons. As forecast by the Modified Wobble Hypothesis 25 years ago, some individual modifications at tRNA's wobble position have evolved to restrict codon recognition whereas others expand the tRNA's ability to read as many as four synonymous codons. Here, we review tRNA wobble codon recognition using specific examples of simple and complex modification chemistries that alter tRNA function. Understanding natural modifications has inspired evolutionary insights and possible innovation in protein synthesis.

  8. Retrograde movement of tRNAs from the cytoplasm to the nucleus in Saccharomyces cerevisiae

    PubMed Central

    Shaheen, Hussam H.; Hopper, Anita K.

    2005-01-01

    In eukaryotes, tRNAs transcribed in the nucleus function in cytoplasmic protein synthesis. The Ran-GTP-binding exportin, Los1p/Xpo-t, and additional pathway(s) mediate tRNA transport to the cytoplasm. Although tRNA movement was thought to be unidirectional, recent reports that yeast precursor tRNA splicing occurs in the cytoplasm, whereas fully spliced tRNAs can reside in the nucleus, require that either the precursor tRNA splicing machinery or mature tRNAs move from the cytoplasm to the nucleus. Our data argue against the first possibility and strongly support the second. Combining heterokaryon analysis with fluorescence in situ hybridization, we show that a foreign tRNA encoded by one nucleus can move from the cytoplasm to a second nucleus that does not encode the tRNA. We also discovered nuclear accumulation of endogenous cytoplasmic tRNAs in haploid yeast cells in response to nutritional deprivation. Nuclear accumulation of cytoplasmic tRNA requires Ran and the Mtr10/Kap111 member of the importin-β family. Retrograde tRNA nuclear import may provide a novel mechanism to regulate gene expression in eukaryotes. PMID:16040803

  9. Retrograde movement of tRNAs from the cytoplasm to the nucleus in Saccharomyces cerevisiae.

    PubMed

    Shaheen, Hussam H; Hopper, Anita K

    2005-08-09

    In eukaryotes, tRNAs transcribed in the nucleus function in cytoplasmic protein synthesis. The Ran-GTP-binding exportin, Los1p/Xpo-t, and additional pathway(s) mediate tRNA transport to the cytoplasm. Although tRNA movement was thought to be unidirectional, recent reports that yeast precursor tRNA splicing occurs in the cytoplasm, whereas fully spliced tRNAs can reside in the nucleus, require that either the precursor tRNA splicing machinery or mature tRNAs move from the cytoplasm to the nucleus. Our data argue against the first possibility and strongly support the second. Combining heterokaryon analysis with fluorescence in situ hybridization, we show that a foreign tRNA encoded by one nucleus can move from the cytoplasm to a second nucleus that does not encode the tRNA. We also discovered nuclear accumulation of endogenous cytoplasmic tRNAs in haploid yeast cells in response to nutritional deprivation. Nuclear accumulation of cytoplasmic tRNA requires Ran and the Mtr10/Kap111 member of the importin-beta family. Retrograde tRNA nuclear import may provide a novel mechanism to regulate gene expression in eukaryotes.

  10. Transfer RNA and human disease.

    PubMed

    Abbott, Jamie A; Francklyn, Christopher S; Robey-Bond, Susan M

    2014-01-01

    Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA) genes are "hotspots" for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase), mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers), and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes). Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing). Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.

  11. Asn-tRNA in Lactobacillus bulgaricus is formed by asparaginylation of tRNA and not by transamidation of Asp-tRNA.

    PubMed Central

    Kim, S I; Nalaskowska, M; Germond, J E; Pridmore, D; Söll, D

    1996-01-01

    In many organisms (e.g., gram-positive eubacteria) Gin-tRNA is not formed by direct glutaminylation of tRNAGln but by a specific transamidation of Glu-tRNAGln. We wondered whether a similar transamidation pathway also operates in the formation of Asn-tRNA in these organisms. Therefore we tested in S-100 preparations of Lactobacillus bulgaricus, a gram-positive eubacterium, for the conversion by an amidotransferase of [14C]Asp-tRNA to [14C]Asn-tRNA. As no transamidation was observed, we searched for genes for asparaginyl-tRNA synthetase (AsnRS). Two DNA fragments (from different locations of the L.bulgaricus chromosome) were found each containing an ORF whose sequence resembled that of the Escherichia coli asnS gene. The derived amino acid sequences of the two ORFs (432 amino acids) were the same and 41% identical with E.coli AsnRS. When one of the ORFs was expressed in E.coli, it complemented the temperature sensitivity of an E.coli asnS mutant. S-100 preparations of this transformant showed increased charging of unfractionated L.bulgaricus tRNA with asparagine. Deletion of the 3'-terminal region of the L.bulgaricus AsnRS gene led to loss of its complementation and aminoacylation properties. This indicates that L.bulgaricus contains a functional AsnRS. Thus, the transamidation pathway operates only for Gin-tRNAGln formation in this organism, and possibly in all gram-positive eubacteria. PMID:8758990

  12. Further investigation of the increased transfer ribonucleic acid methylase activity in tumours of the mouse colon

    PubMed Central

    Pegg, Anthony E.; Hawks, Andrew M.

    1974-01-01

    1. Extracts prepared from tumours of the mouse colon induced by 1,2-dimethylhydrazine were considerably more active in catalysing the methylation of tRNA than were extracts from normal colon. The enhanced activity was observed when both unfractionated `methyl-deficient' tRNA and purified tRNA preparations from yeast and bacteria were used as substrates for methylation. 2. The methylated bases produced in these reactions were identified. There were no differences between the products of the reaction catalysed by extracts of tumour and normal colon. 3. The increased activity of tRNA methylases was not due to the presence in the extracts of stimulatory or inhibitory molecules of low molecular weight such as polyamines or S-adenosylhomocysteine. 4. Other enzymes concerned with tRNA metabolism (RNA polymerase, ATP–tRNA adenylyltransferase, aminoacyl-tRNA ligases) were also increased in activity in the tumour tissue. 5. The extent of methylation of a limiting amount of tRNA was greater when tumour extracts were compared with controls, but in no case was it possible to achieve a stoicheiometric methylation of the purified tRNA preparations used as substrates, and the tumour extracts were not able to methylate tRNA obtained from normal mouse colon. We conclude that the tumours contained greater activities of tRNA methylases but that there was no evidence for changes in the specificity of these enzymes during neoplastic growth. PMID:4596140

  13. Transfer ribonucleic acid methylases of bone. Studies on vitamin A and D deficiency

    PubMed Central

    Bradford, David S.; Hacker, Bruce; Clark, Irwin

    1972-01-01

    Methods were devised for the assay of tRNA methylases of rat bone. The activities of bone tRNA methylases are similar to those from other mammalian tissues. However, unlike reports on liver methylases, no inhibitors were found in the supernatant fraction from pH5 precipitate of bone extracts. The effects of vitamins A and D on the methylation of tRNA by cell-free extracts of rat bone were studied. Deficiency of either vitamin resulted in a decrease in the rate and extent of tRNA methylation, whereas the administration of vitamin A to hypovitaminotic-A rats and vitamin D to hypovitaminotic-D rats increased the rate and extent of tRNA methylation. These effects appear to be apart from changes in ribonuclease activity or in concentrations of calcium or magnesium. No evidence of inhibitors of tRNA methylases was found in bone extracts from vitamin-deficient rats nor of activators in bone extracts from deficient rats given vitamin A or D. The pattern of tRNA methylation under conditions of vitamin A or D deficiency was not changed, suggesting a generalized cellular deficiency. It was of significance to find that the specificity for methylation of specific bases in tRNA was different after the administration of vitamin A as contrasted with the effects of vitamin D. The possible significance of tRNA methylation to the biochemical action of the vitamins on bone is discussed. PMID:5073719

  14. Modification of orthogonal tRNAs: unexpected consequences for sense codon reassignment.

    PubMed

    Biddle, Wil; Schmitt, Margaret A; Fisk, John D

    2016-12-01

    Breaking the degeneracy of the genetic code via sense codon reassignment has emerged as a way to incorporate multiple copies of multiple non-canonical amino acids into a protein of interest. Here, we report the modification of a normally orthogonal tRNA by a host enzyme and show that this adventitious modification has a direct impact on the activity of the orthogonal tRNA in translation. We observed nearly equal decoding of both histidine codons, CAU and CAC, by an engineered orthogonal M. jannaschii tRNA with an AUG anticodon: tRNA Opt We suspected a modification of the tRNA Opt AUG anticodon was responsible for the anomalous lack of codon discrimination and demonstrate that adenosine 34 of tRNA Opt AUG is converted to inosine. We identified tRNA Opt AUG anticodon loop variants that increase reassignment of the histidine CAU codon, decrease incorporation in response to the histidine CAC codon, and improve cell health and growth profiles. Recognizing tRNA modification as both a potential pitfall and avenue of directed alteration will be important as the field of genetic code engineering continues to infiltrate the genetic codes of diverse organisms. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. RNA repair: an antidote to cytotoxic eukaryal RNA damage.

    PubMed

    Nandakumar, Jayakrishnan; Schwer, Beate; Schaffrath, Raffael; Shuman, Stewart

    2008-07-25

    RNA healing and sealing enzymes drive informational and stress response pathways entailing repair of programmed 2',3' cyclic PO(4)/5'-OH breaks. Fungal, plant, and phage tRNA ligases use different strategies to discriminate the purposefully broken ends of the anticodon loop. Whereas phage ligase recognizes the tRNA fold, yeast and plant ligases do not and are instead hardwired to seal only the tRNA 3'-OH, 2'-PO(4) ends formed by healing of a cyclic phosphate. tRNA anticodon damage inflicted by secreted ribotoxins such as fungal gamma-toxin underlies a rudimentary innate immune system. Yeast cells are susceptible to gamma-toxin because the sealing domain of yeast tRNA ligase is unable to rectify a break at the modified wobble base of tRNA(Glu(UUC)). Plant andphage tRNA repair enzymes protect yeast from gamma-toxin because they are able to reverse the damage. Our studies underscore how a ribotoxin exploits an Achilles' heel in the target cell's tRNA repair system.

  16. Optimization of the hybridization-based method for purification of thermostable tRNAs in the presence of tetraalkylammonium salts

    PubMed Central

    Yokogawa, Takashi; Kitamura, Yusuke; Nakamura, Daigo; Ohno, Satoshi; Nishikawa, Kazuya

    2010-01-01

    We found that both tetramethylammonium chloride (TMA-Cl) and tetra-ethylammonium chloride (TEA-Cl), which are used as monovalent cations for northern hybridization, drastically destabilized the tertiary structures of tRNAs and enhanced the formation of tRNA•oligoDNA hybrids. These effects are of great advantage for the hybridization-based method for purification of specific tRNAs from unfractionated tRNA mixtures through the use of an immobilized oligoDNA complementary to the target tRNA. Replacement of NaCl by TMA-Cl or TEA-Cl in the hybridization buffer greatly improved the recovery of a specific tRNA, even from unfractionated tRNAs derived from a thermophile. Since TEA-Cl destabilized tRNAs more strongly than TMA-Cl, it was necessary to lower the hybridization temperature at the sacrifice of the purity of the recovered tRNA when using TEA-Cl. Therefore, we propose two alternative protocols, depending on the desired properties of the tRNA to be purified. When the total recovery of the tRNA is important, hybridization should be carried out in the presence of TEA-Cl. However, if the purity of the recovered tRNA is important, TMA-Cl should be used for the hybridization. In principle, this procedure for tRNA purification should be applicable to any small-size RNA whose gene sequence is already known. PMID:20040572

  17. A Los1p-independent pathway for nuclear export of intronless tRNAs in Saccharomycescerevisiae.

    PubMed

    Feng, Wenqin; Hopper, Anita K

    2002-04-16

    Los1p, the Saccharomyces cerevisiae exportin-t homologue, binds tRNA and functions in pre-tRNA splicing and export of mature tRNA from the nucleus to the cytosol. Because LOS1 is unessential in yeast, other pathways for tRNA nuclear export must exist. We report that Cca1p, which adds nucleotides C, C, and A to the 3' end of tRNAs, is a multicopy suppressor of the defect in tRNA nuclear export caused by los1 null mutations. Mes1p, methionyl-tRNA synthetase, also suppresses the defect in nuclear export of tRNA(Met) in los1 cells. Thus, Cca1p and Mes1p seem to function in a Los1p-independent tRNA nuclear export pathway. Heterokaryon analysis indicates that Cca1p is a nucleus/cytosol-shuttling protein, providing the potential for Cca1p to function as an exporter or an adapter in this tRNA nuclear export pathway. In yeast, most mutations that affect tRNA nuclear export also cause defects in pre-tRNA splicing leading to tight coupling of the splicing and export processes. In contrast, we show that overexpressed Cca1p corrects the nuclear export, but not the pre-tRNA-splicing defects of los1Kan(r) cells, thereby uncoupling pre-tRNA splicing and tRNA nuclear export.

  18. The RNA methyltransferase Dnmt2 is required for efficient Dicer-2-dependent siRNA pathway activity in Drosophila.

    PubMed

    Durdevic, Zeljko; Mobin, Mehrpouya Balaghy; Hanna, Katharina; Lyko, Frank; Schaefer, Matthias

    2013-09-12

    Transfer RNA (tRNA) fragmentation in response to stress conditions has been described in many organisms. tRNA fragments have been found in association with small interfering RNA (siRNA) components, but the biological role of these interactions remains unclear. We report here that the tRNA methyltransferase Dnmt2 is essential for efficient Dicer-2 (Dcr-2) function in Drosophila. Using small RNA (sRNA) sequencing, we confirmed that Dnmt2 limits the extent of tRNA fragmentation during the heat-shock response. tRNAs as well as tRNA fragments serve as Dcr-2 substrates, and Dcr-2 degrades tRNA-derived sequences, especially under heat-shock conditions. tRNA-derived RNAs are able to inhibit Dcr-2 activity on long double-stranded RNAs (dsRNAs). Consequently, heat-shocked Dnmt2 mutant animals accumulate dsRNAs, produce fewer siRNAs, and show misregulation of siRNA pathway-dependent genes. These results reveal the impact of tRNA fragmentation on siRNA pathways and implicate tRNA modifications in the regulation of sRNA homeostasis during the heat-shock response. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon.

    PubMed Central

    Yokoyama, S; Watanabe, T; Murao, K; Ishikura, H; Yamaizumi, Z; Nishimura, S; Miyazawa, T

    1985-01-01

    Proton NMR analyses have been made to elucidate the conformational characteristics of modified nucleotides as found in the first position of the anticodon of tRNA [derivatives of 5-methyl-2-thiouridine 5'-monophosphate (pxm5s2U) and derivatives of 5-hydroxyuridine 5'-monophosphate (pxo5U)]. In pxm5s2U, the C3'-endo form is extraordinarily more stable than the C2'-endo form for the ribose ring, because of the combined effects of the 2-thiocarbonyl group and the 5-substituent. By contrast, in pxo5U, the C2'-endo form is much more stable than the C3'-endo form, because of the interaction between the 5-substituent and the 5'-phosphate group. The enthalpy differences between the C2'-endo form and the C3'-endo form have been obtained as 1.1, -0.7, and 0.1 kcal/mol (1 cal = 4.184 J) for pxm5s2U, pxo5U, and unmodified uridine 5'-monophosphate, respectively. These findings lead to the conclusion that xm5s2U in the first position of the anticodon exclusively takes the C3'-endo form to recognize adenosine (but not uridine) as the third letter of the codon, whereas xo5U takes the C2'-endo form as well as the C3'-endo form to recognize adenosine, guanosine, and uridine as the third letter of the codon on ribosome. Accordingly, the biological significance of such modifications of uridine to xm5s2U/xo5U is in the regulation of the conformational rigidity/flexibility in the first position of the anticodon so as to guarantee the correct and efficient translation of codons in protein biosynthesis. PMID:3860833

  20. Elongator Complex Influences Telomeric Gene Silencing and DNA Damage Response by Its Role in Wobble Uridine tRNA Modification

    PubMed Central

    Chen, Changchun; Huang, Bo; Eliasson, Mattias; Rydén, Patrik; Byström, Anders S.

    2011-01-01

    Elongator complex is required for formation of the side chains at position 5 of modified nucleosides 5-carbamoylmethyluridine (ncm5U34), 5-methoxycarbonylmethyluridine (mcm5U34), and 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U34) at wobble position in tRNA. These modified nucleosides are important for efficient decoding during translation. In a recent publication, Elongator complex was implicated to participate in telomeric gene silencing and DNA damage response by interacting with proliferating cell nuclear antigen (PCNA). Here we show that elevated levels of tRNALys s2 UUU, tRNAGln s2 UUG, and tRNAGlu s2 UUC, which in a wild-type background contain the mcm5s2U nucleoside at position 34, suppress the defects in telomeric gene silencing and DNA damage response observed in the Elongator mutants. We also found that the reported differences in telomeric gene silencing and DNA damage response of various elp3 alleles correlated with the levels of modified nucleosides at U34. Defects in telomeric gene silencing and DNA damage response are also observed in strains with the tuc2Δ mutation, which abolish the formation of the 2-thio group of the mcm5s2U nucleoside in tRNALys mcm5s2UUU, tRNAGln mcm5s2UUG, and tRNAGlu mcm5s2UUC. These observations show that Elongator complex does not directly participate in telomeric gene silencing and DNA damage response, but rather that modified nucleosides at U34 are important for efficient expression of gene products involved in these processes. Consistent with this notion, we found that expression of Sir4, a silent information regulator required for assembly of silent chromatin at telomeres, was decreased in the elp3Δ mutants. PMID:21912530

  1. Elongator complex influences telomeric gene silencing and DNA damage response by its role in wobble uridine tRNA modification.

    PubMed

    Chen, Changchun; Huang, Bo; Eliasson, Mattias; Rydén, Patrik; Byström, Anders S

    2011-09-01

    Elongator complex is required for formation of the side chains at position 5 of modified nucleosides 5-carbamoylmethyluridine (ncm⁵U₃₄), 5-methoxycarbonylmethyluridine (mcm⁵U₃₄), and 5-methoxycarbonylmethyl-2-thiouridine (mcm⁵s²U₃₄) at wobble position in tRNA. These modified nucleosides are important for efficient decoding during translation. In a recent publication, Elongator complex was implicated to participate in telomeric gene silencing and DNA damage response by interacting with proliferating cell nuclear antigen (PCNA). Here we show that elevated levels of tRNA(Lys)(s²UUU), tRNA(Gln)(s²UUG), and tRNA(Glu)(s²UUC), which in a wild-type background contain the mcm⁵s²U nucleoside at position 34, suppress the defects in telomeric gene silencing and DNA damage response observed in the Elongator mutants. We also found that the reported differences in telomeric gene silencing and DNA damage response of various elp3 alleles correlated with the levels of modified nucleosides at U₃₄. Defects in telomeric gene silencing and DNA damage response are also observed in strains with the tuc2Δ mutation, which abolish the formation of the 2-thio group of the mcm⁵s²U nucleoside in tRNA(Lys)(mcm⁵s²UUU), tRNA(Gln)(mcm⁵s²UUG), and tRNA(Glu)(mcm⁵s²UUC). These observations show that Elongator complex does not directly participate in telomeric gene silencing and DNA damage response, but rather that modified nucleosides at U₃₄ are important for efficient expression of gene products involved in these processes. Consistent with this notion, we found that expression of Sir4, a silent information regulator required for assembly of silent chromatin at telomeres, was decreased in the elp3Δ mutants.

  2. The context of transcription start site regions is crucial for transcription of a plant tRNA(Lys)(UUU) gene group both in vitro and in vivo.

    PubMed

    Yukawa, Yasushi; Akama, Kazuhito; Noguchi, Kanta; Komiya, Masaaki; Sugiura, Masahiro

    2013-01-10

    Nuclear tRNA genes are transcribed by RNA polymerase III. The A- and B-boxes located within the transcribed regions are essential promoter elements for nuclear tRNA gene transcription. The Arabidopsis genome contains ten annotated genes encoding identical tRNA(Lys)(UUU) molecules, which are scattered on the five chromosomes. In this study, we prepared ten tDNA constructs including each of the tRNA(Lys)(UUU) coding sequences with their individual 5' and 3' flanking sequences, and assayed tRNA expression using an in vitro RNA polymerase III-dependent transcription system. Transcription levels differed significantly among the ten genes and two of the tRNA genes were transcribed at a very low level, despite possessing A- and B-boxes identical to those of the other tRNA genes. To examine whether the in vitro results were reproducible in vivo, the 5' flanking sequence of an amber suppressor tRNA gene was then replaced with those of the ten tRNA(Lys) genes. An in vivo experiment based on an amber suppressor tRNA that mediates suppression of a premature amber codon in a β-glucuronidase (GUS) reporter gene in plant tissues generated nearly identical results to those obtained in vitro. Analysis of mutated versions of the amber suppressor tRNA gene, which contained base substitutions around the transcription start site (TSS), showed that the context around the transcription start sites is a crucial determinant for transcription of plant tRNA(Lys)(UUU) both in vitro and in vivo. The above transcription regulation by context around TSS differed between tRNA genes and other Pol III-dependent genes. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Archaeal Tuc1/Ncs6 Homolog Required for Wobble Uridine tRNA Thiolation Is Associated with Ubiquitin-Proteasome, Translation, and RNA Processing System Homologs

    PubMed Central

    Chavarria, Nikita E.; Hwang, Sungmin; Cao, Shiyun; Fu, Xian; Holman, Mary; Elbanna, Dina; Rodriguez, Suzanne; Arrington, Deanna; Englert, Markus; Uthandi, Sivakumar; Söll, Dieter; Maupin-Furlow, Julie A.

    2014-01-01

    While cytoplasmic tRNA 2-thiolation protein 1 (Tuc1/Ncs6) and ubiquitin-related modifier-1 (Urm1) are important in the 2-thiolation of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) at wobble uridines of tRNAs in eukaryotes, the biocatalytic roles and properties of Ncs6/Tuc1 and its homologs are poorly understood. Here we present the first report of an Ncs6 homolog of archaea (NcsA of Haloferax volcanii) that is essential for maintaining cellular pools of thiolated tRNALys UUU and for growth at high temperature. When purified from Hfx. volcanii, NcsA was found to be modified at Lys204 by isopeptide linkage to polymeric chains of the ubiquitin-fold protein SAMP2. The ubiquitin-activating E1 enzyme homolog of archaea (UbaA) was required for this covalent modification. Non-covalent protein partners that specifically associated with NcsA were also identified including UbaA, SAMP2, proteasome activating nucleotidase (PAN)-A/1, translation elongation factor aEF-1α and a β-CASP ribonuclease homolog of the archaeal cleavage and polyadenylation specificity factor 1 family (aCPSF1). Together, our study reveals that NcsA is essential for growth at high temperature, required for formation of thiolated tRNALys UUU and intimately linked to homologs of ubiquitin-proteasome, translation and RNA processing systems. PMID:24906001

  4. Archaeal Tuc1/Ncs6 homolog required for wobble uridine tRNA thiolation is associated with ubiquitin-proteasome, translation, and RNA processing system homologs.

    PubMed

    Chavarria, Nikita E; Hwang, Sungmin; Cao, Shiyun; Fu, Xian; Holman, Mary; Elbanna, Dina; Rodriguez, Suzanne; Arrington, Deanna; Englert, Markus; Uthandi, Sivakumar; Söll, Dieter; Maupin-Furlow, Julie A

    2014-01-01

    While cytoplasmic tRNA 2-thiolation protein 1 (Tuc1/Ncs6) and ubiquitin-related modifier-1 (Urm1) are important in the 2-thiolation of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) at wobble uridines of tRNAs in eukaryotes, the biocatalytic roles and properties of Ncs6/Tuc1 and its homologs are poorly understood. Here we present the first report of an Ncs6 homolog of archaea (NcsA of Haloferax volcanii) that is essential for maintaining cellular pools of thiolated tRNA(Lys)UUU and for growth at high temperature. When purified from Hfx. volcanii, NcsA was found to be modified at Lys204 by isopeptide linkage to polymeric chains of the ubiquitin-fold protein SAMP2. The ubiquitin-activating E1 enzyme homolog of archaea (UbaA) was required for this covalent modification. Non-covalent protein partners that specifically associated with NcsA were also identified including UbaA, SAMP2, proteasome activating nucleotidase (PAN)-A/1, translation elongation factor aEF-1α and a β-CASP ribonuclease homolog of the archaeal cleavage and polyadenylation specificity factor 1 family (aCPSF1). Together, our study reveals that NcsA is essential for growth at high temperature, required for formation of thiolated tRNA(Lys)UUU and intimately linked to homologs of ubiquitin-proteasome, translation and RNA processing systems.

  5. Cryptic tRNAs in chaetognath mitochondrial genomes.

    PubMed

    Barthélémy, Roxane-Marie; Seligmann, Hervé

    2016-06-01

    The chaetognaths constitute a small and enigmatic phylum of little marine invertebrates. Both nuclear and mitochondrial genomes have numerous originalities, some phylum-specific. Until recently, their mitogenomes seemed containing only one tRNA gene (trnMet), but a recent study found in two chaetognath mitogenomes two and four tRNA genes. Moreover, apparently two conspecific mitogenomes have different tRNA gene numbers (one and two). Reanalyses by tRNAscan-SE and ARWEN softwares of the five available complete chaetognath mitogenomes suggest numerous additional tRNA genes from different types. Their total number never reaches the 22 found in most other invertebrates using that genetic code. Predicted error compensation between codon-anticodon mismatch and tRNA misacylation suggests translational activity by tRNAs predicted solely according to secondary structure for tRNAs predicted by tRNAscan-SE, not ARWEN. Numbers of predicted stop-suppressor (antitermination) tRNAs coevolve with predicted overlapping, frameshifted protein coding genes including stop codons. Sequence alignments in secondary structure prediction with non-chaetognath tRNAs suggest that the most likely functional tRNAs are in intergenic regions, as regular mt-tRNAs. Due to usually short intergenic regions, generally tRNA sequences partially overlap with flanking genes. Some tRNA pairs seem templated by sense-antisense strands. Moreover, 16S rRNA genes, but not 12S rRNAs, appear as tRNA nurseries, as previously suggested for multifunctional ribosomal-like protogenomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A Los1p-independent pathway for nuclear export of intronless tRNAs in Saccharomyces cerevisiae

    PubMed Central

    Feng, Wenqin; Hopper, Anita K.

    2002-01-01

    Los1p, the Saccharomyces cerevisiae exportin-t homologue, binds tRNA and functions in pre-tRNA splicing and export of mature tRNA from the nucleus to the cytosol. Because LOS1 is unessential in yeast, other pathways for tRNA nuclear export must exist. We report that Cca1p, which adds nucleotides C, C, and A to the 3′ end of tRNAs, is a multicopy suppressor of the defect in tRNA nuclear export caused by los1 null mutations. Mes1p, methionyl-tRNA synthetase, also suppresses the defect in nuclear export of tRNAMet in los1 cells. Thus, Cca1p and Mes1p seem to function in a Los1p-independent tRNA nuclear export pathway. Heterokaryon analysis indicates that Cca1p is a nucleus/cytosol-shuttling protein, providing the potential for Cca1p to function as an exporter or an adapter in this tRNA nuclear export pathway. In yeast, most mutations that affect tRNA nuclear export also cause defects in pre-tRNA splicing leading to tight coupling of the splicing and export processes. In contrast, we show that overexpressed Cca1p corrects the nuclear export, but not the pre-tRNA-splicing defects of los1∷Kanr cells, thereby uncoupling pre-tRNA splicing and tRNA nuclear export. PMID:11959996

  7. Protein synthesis editing by a DNA aptamer.

    PubMed Central

    Hale, S P; Schimmel, P

    1996-01-01

    Potential errors in decoding genetic information are corrected by tRNA-dependent amino acid recognition processes manifested through editing reactions. One example is the rejection of difficult-to-discriminate misactivated amino acids by tRNA synthetases through hydrolytic reactions. Although several crystal structures of tRNA synthetases and synthetase-tRNA complexes exist, none of them have provided insight into the editing reactions. Other work suggested that editing required active amino acid acceptor hydroxyl groups at the 3' end of a tRNA effector. We describe here the isolation of a DNA aptamer that specifically induced hydrolysis of a misactivated amino acid bound to a tRNA synthetase. The aptamer had no effect on the stability of the correctly activated amino acid and was almost as efficient as the tRNA for inducing editing activity. The aptamer has no sequence similarity to that of the tRNA effector and cannot be folded into a tRNA-like structure. These and additional data show that active acceptor hydroxyl groups in a tRNA effector and a tRNA-like structure are not essential for editing. Thus, specific bases in a nucleic acid effector trigger the editing response. Images Fig. 3 Fig. 4 PMID:8610114

  8. A comprehensive collection of annotations to interpret sequence variation in human mitochondrial transfer RNAs.

    PubMed

    Diroma, Maria Angela; Lubisco, Paolo; Attimonelli, Marcella

    2016-11-08

    The abundance of biological data characterizing the genomics era is contributing to a comprehensive understanding of human mitochondrial genetics. Nevertheless, many aspects are still unclear, specifically about the variability of the 22 human mitochondrial transfer RNA (tRNA) genes and their involvement in diseases. The complex enrichment and isolation of tRNAs in vitro leads to an incomplete knowledge of their post-transcriptional modifications and three-dimensional folding, essential for correct tRNA functioning. An accurate annotation of mitochondrial tRNA variants would be definitely useful and appreciated by mitochondrial researchers and clinicians since the most of bioinformatics tools for variant annotation and prioritization available so far cannot shed light on the functional role of tRNA variations. To this aim, we updated our MToolBox pipeline for mitochondrial DNA analysis of high throughput and Sanger sequencing data by integrating tRNA variant annotations in order to identify and characterize relevant variants not only in protein coding regions, but also in tRNA genes. The annotation step in the pipeline now provides detailed information for variants mapping onto the 22 mitochondrial tRNAs. For each mt-tRNA position along the entire genome, the relative tRNA numbering, tRNA type, cloverleaf secondary domains (loops and stems), mature nucleotide and interactions in the three-dimensional folding were reported. Moreover, pathogenicity predictions for tRNA and rRNA variants were retrieved from the literature and integrated within the annotations provided by MToolBox, both in the stand-alone version and web-based tool at the Mitochondrial Disease Sequence Data Resource (MSeqDR) website. All the information available in the annotation step of MToolBox were exploited to generate custom tracks which can be displayed in the GBrowse instance at MSeqDR website. To the best of our knowledge, specific data regarding mitochondrial variants in tRNA genes were

  9. Correction of the consequences of mitochondrial 3243A>G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria

    PubMed Central

    Karicheva, Olga Z.; Kolesnikova, Olga A.; Schirtz, Tom; Vysokikh, Mikhail Y.; Mager-Heckel, Anne-Marie; Lombès, Anne; Boucheham, Abdeldjalil; Krasheninnikov, Igor A.; Martin, Robert P.; Entelis, Nina; Tarassov, Ivan

    2011-01-01

    Mutations in human mitochondrial DNA are often associated with incurable human neuromuscular diseases. Among these mutations, an important number have been identified in tRNA genes, including 29 in the gene MT-TL1 coding for the tRNALeu(UUR). The m.3243A>G mutation was described as the major cause of the MELAS syndrome (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes). This mutation was reported to reduce tRNALeu(UUR) aminoacylation and modification of its anti-codon wobble position, which results in a defective mitochondrial protein synthesis and reduced activities of respiratory chain complexes. In the present study, we have tested whether the mitochondrial targeting of recombinant tRNAs bearing the identity elements for human mitochondrial leucyl-tRNA synthetase can rescue the phenotype caused by MELAS mutation in human transmitochondrial cybrid cells. We demonstrate that nuclear expression and mitochondrial targeting of specifically designed transgenic tRNAs results in an improvement of mitochondrial translation, increased levels of mitochondrial DNA-encoded respiratory complexes subunits, and significant rescue of respiration. These findings prove the possibility to direct tRNAs with changed aminoacylation specificities into mitochondria, thus extending the potential therapeutic strategy of allotopic expression to address mitochondrial disorders. PMID:21724600

  10. Correction of the consequences of mitochondrial 3243A>G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria.

    PubMed

    Karicheva, Olga Z; Kolesnikova, Olga A; Schirtz, Tom; Vysokikh, Mikhail Y; Mager-Heckel, Anne-Marie; Lombès, Anne; Boucheham, Abdeldjalil; Krasheninnikov, Igor A; Martin, Robert P; Entelis, Nina; Tarassov, Ivan

    2011-10-01

    Mutations in human mitochondrial DNA are often associated with incurable human neuromuscular diseases. Among these mutations, an important number have been identified in tRNA genes, including 29 in the gene MT-TL1 coding for the tRNA(Leu(UUR)). The m.3243A>G mutation was described as the major cause of the MELAS syndrome (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes). This mutation was reported to reduce tRNA(Leu(UUR)) aminoacylation and modification of its anti-codon wobble position, which results in a defective mitochondrial protein synthesis and reduced activities of respiratory chain complexes. In the present study, we have tested whether the mitochondrial targeting of recombinant tRNAs bearing the identity elements for human mitochondrial leucyl-tRNA synthetase can rescue the phenotype caused by MELAS mutation in human transmitochondrial cybrid cells. We demonstrate that nuclear expression and mitochondrial targeting of specifically designed transgenic tRNAs results in an improvement of mitochondrial translation, increased levels of mitochondrial DNA-encoded respiratory complexes subunits, and significant rescue of respiration. These findings prove the possibility to direct tRNAs with changed aminoacylation specificities into mitochondria, thus extending the potential therapeutic strategy of allotopic expression to address mitochondrial disorders.

  11. Structure of Escherichia coli Arginyl-tRNA Synthetase in Complex with tRNAArg: Pivotal Role of the D-loop.

    PubMed

    Stephen, Preyesh; Ye, Sheng; Zhou, Ming; Song, Jian; Zhang, Rongguang; Wang, En-Duo; Giegé, Richard; Lin, Sheng-Xiang

    2018-05-25

    Aminoacyl-tRNA synthetases are essential components in protein biosynthesis. Arginyl-tRNA synthetase (ArgRS) belongs to the small group of aminoacyl-tRNA synthetases requiring cognate tRNA for amino acid activation. The crystal structure of Escherichia coli (Eco) ArgRS has been solved in complex with tRNA Arg at 3.0-Å resolution. With this first bacterial tRNA complex, we are attempting to bridge the gap existing in structure-function understanding in prokaryotic tRNA Arg recognition. The structure shows a tight binding of tRNA on the synthetase through the identity determinant A20 from the D-loop, a tRNA recognition snapshot never elucidated structurally. This interaction of A20 involves 5 amino acids from the synthetase. Additional contacts via U20a and U16 from the D-loop reinforce the interaction. The importance of D-loop recognition in EcoArgRS functioning is supported by a mutagenesis analysis of critical amino acids that anchor tRNA Arg on the synthetase; in particular, mutations at amino acids interacting with A20 affect binding affinity to the tRNA and specificity of arginylation. Altogether the structural and functional data indicate that the unprecedented ArgRS crystal structure represents a snapshot during functioning and suggest that the recognition of the D-loop by ArgRS is an important trigger that anchors tRNA Arg on the synthetase. In this process, A20 plays a major role, together with prominent conformational changes in several ArgRS domains that may eventually lead to the mature ArgRS:tRNA complex and the arginine activation. Functional implications that could be idiosyncratic to the arginine identity of bacterial ArgRSs are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Transfer RNA Post-Transcriptional Processing, Turnover, and Subcellular Dynamics in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Hopper, Anita K.

    2013-01-01

    Transfer RNAs (tRNAs) are essential for protein synthesis. In eukaryotes, tRNA biosynthesis employs a specialized RNA polymerase that generates initial transcripts that must be subsequently altered via a multitude of post-transcriptional steps before the tRNAs beome mature molecules that function in protein synthesis. Genetic, genomic, biochemical, and cell biological approaches possible in the powerful Saccharomyces cerevisiae system have led to exciting advances in our understandings of tRNA post-transcriptional processing as well as to novel insights into tRNA turnover and tRNA subcellular dynamics. tRNA processing steps include removal of transcribed leader and trailer sequences, addition of CCA to the 3′ mature sequence and, for tRNAHis, addition of a 5′ G. About 20% of yeast tRNAs are encoded by intron-containing genes. The three-step splicing process to remove the introns surprisingly occurs in the cytoplasm in yeast and each of the splicing enzymes appears to moonlight in functions in addition to tRNA splicing. There are 25 different nucleoside modifications that are added post-transcriptionally, creating tRNAs in which ∼15% of the residues are nucleosides other than A, G, U, or C. These modified nucleosides serve numerous important functions including tRNA discrimination, translation fidelity, and tRNA quality control. Mature tRNAs are very stable, but nevertheless yeast cells possess multiple pathways to degrade inappropriately processed or folded tRNAs. Mature tRNAs are also dynamic in cells, moving from the cytoplasm to the nucleus and back again to the cytoplasm; the mechanism and function of this retrograde process is poorly understood. Here, the state of knowledge for tRNA post-transcriptional processing, turnover, and subcellular dynamics is addressed, highlighting the questions that remain. PMID:23633143

  13. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes.

    PubMed

    Lowe, Todd M; Chan, Patricia P

    2016-07-08

    High-throughput genome sequencing continues to grow the need for rapid, accurate genome annotation and tRNA genes constitute the largest family of essential, ever-present non-coding RNA genes. Newly developed tRNAscan-SE 2.0 has advanced the state-of-the-art methodology in tRNA gene detection and functional prediction, captured by rich new content of the companion Genomic tRNA Database. Previously, web-server tRNA detection was isolated from knowledge of existing tRNAs and their annotation. In this update of the tRNAscan-SE On-line resource, we tie together improvements in tRNA classification with greatly enhanced biological context via dynamically generated links between web server search results, the most relevant genes in the GtRNAdb and interactive, rich genome context provided by UCSC genome browsers. The tRNAscan-SE On-line web server can be accessed at http://trna.ucsc.edu/tRNAscan-SE/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Processing of the Escherichia coli leuX tRNA transcript, encoding tRNA(Leu5), requires either the 3'-->5' exoribonuclease polynucleotide phosphorylase or RNase P to remove the Rho-independent transcription terminator.

    PubMed

    Mohanty, Bijoy K; Kushner, Sidney R

    2010-01-01

    Here we report a unique processing pathway in Escherichia coli for tRNA(Leu5) in which the exoribonuclease polynucleotide phosphorylase (PNPase) removes the Rho-independent transcription terminator from the leuX transcript without requiring the RhlB RNA helicase. Our data demonstrate for the first time that PNPase can efficiently degrade an RNA substrate containing secondary structures in vivo. Furthermore, RNase P, an endoribonuclease that normally generates the mature 5'-ends of tRNAs, removes the leuX terminator inefficiently independent of PNPase activity. RNase P cleaves 4-7 nt downstream of the CCA determinant generating a substrate for RNase II, which removes an additional 3-4 nt. Subsequently, RNase T completes the 3' maturation process by removing the remaining 1-3 nt downstream of the CCA determinant. RNase E, G and Z are not involved in terminator removal. These results provide further evidence that the E. coli tRNA processing machinery is far more diverse than previously envisioned.

  15. The Initiator Methionine tRNA Drives Secretion of Type II Collagen from Stromal Fibroblasts to Promote Tumor Growth and Angiogenesis

    PubMed Central

    Clarke, Cassie J.; Berg, Tracy J.; Birch, Joanna; Ennis, Darren; Mitchell, Louise; Cloix, Catherine; Campbell, Andrew; Sumpton, David; Nixon, Colin; Campbell, Kirsteen; Bridgeman, Victoria L.; Vermeulen, Peter B.; Foo, Shane; Kostaras, Eleftherios; Jones, J. Louise; Haywood, Linda; Pulleine, Ellie; Yin, Huabing; Strathdee, Douglas; Sansom, Owen; Blyth, Karen; McNeish, Iain; Zanivan, Sara; Reynolds, Andrew R.; Norman, Jim C.

    2016-01-01

    Summary Expression of the initiator methionine tRNA (tRNAiMet) is deregulated in cancer. Despite this fact, it is not currently known how tRNAiMet expression levels influence tumor progression. We have found that tRNAiMet expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAiMet in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAiMet contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAiMet gene (2+tRNAiMet mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAiMet mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAiMet mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAiMet significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAiMet-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAiMet-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAiMet mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAiMet levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis. PMID:26948875

  16. The Initiator Methionine tRNA Drives Secretion of Type II Collagen from Stromal Fibroblasts to Promote Tumor Growth and Angiogenesis.

    PubMed

    Clarke, Cassie J; Berg, Tracy J; Birch, Joanna; Ennis, Darren; Mitchell, Louise; Cloix, Catherine; Campbell, Andrew; Sumpton, David; Nixon, Colin; Campbell, Kirsteen; Bridgeman, Victoria L; Vermeulen, Peter B; Foo, Shane; Kostaras, Eleftherios; Jones, J Louise; Haywood, Linda; Pulleine, Ellie; Yin, Huabing; Strathdee, Douglas; Sansom, Owen; Blyth, Karen; McNeish, Iain; Zanivan, Sara; Reynolds, Andrew R; Norman, Jim C

    2016-03-21

    Expression of the initiator methionine tRNA (tRNAi(Met)) is deregulated in cancer. Despite this fact, it is not currently known how tRNAi(Met) expression levels influence tumor progression. We have found that tRNAi(Met) expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAi(Met) in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAi(Met) contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAi(Met) gene (2+tRNAi(Met) mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAi(Met) mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAi(Met) mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAi(Met) significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAi(Met)-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAi(Met)-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAi(Met) mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAi(Met) levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. One ancestor for two codes viewed from the perspective of two complementary modes of tRNA aminoacylation

    PubMed Central

    Rodin, Andrei S; Szathmáry, Eörs; Rodin, Sergei N

    2009-01-01

    Background The genetic code is brought into action by 20 aminoacyl-tRNA synthetases. These enzymes are evenly divided into two classes (I and II) that recognize tRNAs from the minor and major groove sides of the acceptor stem, respectively. We have reported recently that: (1) ribozymic precursors of the synthetases seem to have used the same two sterically mirror modes of tRNA recognition, (2) having these two modes might have helped in preventing erroneous aminoacylation of ancestral tRNAs with complementary anticodons, yet (3) the risk of confusion for the presumably earliest pairs of complementarily encoded amino acids had little to do with anticodons. Accordingly, in this communication we focus on the acceptor stem. Results Our main result is the emergence of a palindrome structure for the acceptor stem's common ancestor, reconstructed from the phylogenetic trees of Bacteria, Archaea and Eukarya. In parallel, for pairs of ancestral tRNAs with complementary anticodons, we present updated evidence of concerted complementarity of the second bases in the acceptor stems. These two results suggest that the first pairs of "complementary" amino acids that were engaged in primordial coding, such as Gly and Ala, could have avoided erroneous aminoacylation if and only if the acceptor stems of their adaptors were recognized from the same, major groove, side. The class II protein synthetases then inherited this "primary preference" from isofunctional ribozymes. Conclusion Taken together, our results support the hypothesis that the genetic code per se (the one associated with the anticodons) and the operational code of aminoacylation (associated with the acceptor) diverged from a common ancestor that probably began developing before translation. The primordial advantage of linking some amino acids (most likely glycine and alanine) to the ancestral acceptor stem may have been selective retention in a protocell surrounded by a leaky membrane for use in nucleotide and coenzyme

  18. Transfer RNAs with novel cloverleaf structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukai, Takahito; Vargas-Rodriguez, Oscar; Englert, Markus

    We report the identification of novel tRNA species with 12-base pair amino-acid acceptor branches composed of longer acceptor stem and shorter Tstem. While canonical tRNAs have a 7/5 configuration of the branch, the novel tRNAs have either 8/4 or 9/3 structure. They were found during the search for selenocysteine tRNAs in terabytes of genome, metagenome and metatranscriptome sequences. Certain bacteria and their phages employ the 8/4 structure for serine and histidine tRNAs, while minor cysteine and selenocysteine tRNA species may have a modified 8/4 structure with one bulge nucleotide. In Acidobacteria, tRNAs with 8/4 and 9/3 structures may function asmore » missense and nonsense suppressor tRNAs and/or regulatory noncod ing RNAs. In δ-proteobacteria, an additional cysteine tRNA with an 8/4 structure mimics selenocysteine tRNA and may function as opal suppressor. We examined the potential translation function of suppressor tRNA species inEscherichia coli; tRNAs with 8/4 or 9/3 structures efficiently inserted serine, alanine and cysteine in response to stop and sense codons, depending on the identity element and anticodon sequence of the tRNA. These findings expand our view of how tRNA, and possibly the genetic code, is diversified in nature.« less

  19. Transfer RNAs with novel cloverleaf structures

    DOE PAGES

    Mukai, Takahito; Vargas-Rodriguez, Oscar; Englert, Markus; ...

    2016-10-05

    We report the identification of novel tRNA species with 12-base pair amino-acid acceptor branches composed of longer acceptor stem and shorter Tstem. While canonical tRNAs have a 7/5 configuration of the branch, the novel tRNAs have either 8/4 or 9/3 structure. They were found during the search for selenocysteine tRNAs in terabytes of genome, metagenome and metatranscriptome sequences. Certain bacteria and their phages employ the 8/4 structure for serine and histidine tRNAs, while minor cysteine and selenocysteine tRNA species may have a modified 8/4 structure with one bulge nucleotide. In Acidobacteria, tRNAs with 8/4 and 9/3 structures may function asmore » missense and nonsense suppressor tRNAs and/or regulatory noncod ing RNAs. In δ-proteobacteria, an additional cysteine tRNA with an 8/4 structure mimics selenocysteine tRNA and may function as opal suppressor. We examined the potential translation function of suppressor tRNA species inEscherichia coli; tRNAs with 8/4 or 9/3 structures efficiently inserted serine, alanine and cysteine in response to stop and sense codons, depending on the identity element and anticodon sequence of the tRNA. These findings expand our view of how tRNA, and possibly the genetic code, is diversified in nature.« less

  20. tRNAmodpred: a computational method for predicting posttranscriptional modifications in tRNAs

    PubMed Central

    Machnicka, Magdalena A.; Dunin-Horkawicz, Stanislaw; de Crécy-Lagard, Valerie; Bujnicki, Janusz M.

    2016-01-01

    tRNA molecules contain numerous chemically altered nucleosides, which are formed by enzymatic modification of the primary transcripts during the complex tRNA maturation process. Some of the modifications are introduced by single reactions, while other require complex series of reactions carried out by several different enzymes. The location and distribution of various types of modifications vary greatly between different tRNA molecules, organisms and organelles. We have developed a computational method tRNAmodpred, for predicting modifications in tRNA sequences. Briefly, our method takes as an input one or more unmodified tRNA sequences and a set of protein sequences corresponding to a proteome of a cell. Subsequently it identifies homologs of known tRNA modification enzymes in the proteome, predicts tRNA modification activities and maps them onto known pathways of RNA modification from the MODOMICS database. Thereby, theoretically possible modification pathways are identified, and products of these modification reactions are proposed for query tRNAs. This method allows for predicting modification patterns for newly sequenced genomes as well as for checking tentative modification status of tRNAs from one species treated with enzymes from another source, e.g. to predict the possible modifications of eukaryotic tRNAs expressed in bacteria. tRNAmodpred is freely available as web server at http://genesilico.pl/trnamodpred/. PMID:27016142

  1. tRNAs and proteins use the same import channel for translocation across the mitochondrial outer membrane of trypanosomes.

    PubMed

    Niemann, Moritz; Harsman, Anke; Mani, Jan; Peikert, Christian D; Oeljeklaus, Silke; Warscheid, Bettina; Wagner, Richard; Schneider, André

    2017-09-12

    Mitochondrial tRNA import is widespread, but the mechanism by which tRNAs are imported remains largely unknown. The mitochondrion of the parasitic protozoan Trypanosoma brucei lacks tRNA genes, and thus imports all tRNAs from the cytosol. Here we show that in T. brucei in vivo import of tRNAs requires four subunits of the mitochondrial outer membrane protein translocase but not the two receptor subunits, one of which is essential for protein import. The latter shows that it is possible to uncouple mitochondrial tRNA import from protein import. Ablation of the intermembrane space domain of the translocase subunit, archaic translocase of the outer membrane (ATOM)14, on the other hand, while not affecting the architecture of the translocase, impedes both protein and tRNA import. A protein import intermediate arrested in the translocation channel prevents both protein and tRNA import. In the presence of tRNA, blocking events of single-channel currents through the pore formed by recombinant ATOM40 were detected in electrophysiological recordings. These results indicate that both types of macromolecules use the same import channel across the outer membrane. However, while tRNA import depends on the core subunits of the protein import translocase, it does not require the protein import receptors, indicating that the two processes are not mechanistically linked.

  2. [Investigation into the relationship between mitochondrial 12 S rRNA gene, tRNA gene and cytochrome oxidase Ⅱ gene variations and the risk of noise-induced hearing loss].

    PubMed

    Jiao, J; Gu, G Z; Chen, G S; Li, Y H; Zhang, H L; Yang, Q Y; Xu, X R; Zhou, W H; Wu, H; He, L H; Zheng, Y X; Yu, S F

    2017-01-06

    Objective: To explore the relationship between mitochondrial 12 S rRNA gene variation, tRNA gene variation and cytochrome oxidase Ⅱ gene point mutations and the risk of noise-induced hearing loss (NIHL). Methods: A nested case-control study was performed that followed a cohort of 7 445 noise-exposed workers in a steel factory in Henan province, China, from January 1, 2006 to December 31, 2015. Subjects whose average hearing threshold was more than 40 dB(A) in high frequency were defined as the case group, and subjects whose average hearing threshold was less than 35 dB(A) in high frequency and less than 25 dB (A) in speech frequency were defined as the control group. Subjects was recruited into the case group ( n =286) and the control group ( n= 286) according to gender, age, job category and time of exposure to noise, and a 1∶1 case-control study was carried out. We genotyped eight single nucleotide polymorphisms in the mitochondrial 12 S rRNA gene, the mitochondrial tRNA gene and the mitochondrial cytochrome oxidase Ⅱ gene using SNPscan high-throughput genotyping technology from the recruited subjects. The relationship between polymorphic sites and NIHL, adjusted for covariates, was analyzed using conditional logistic regression analysis, as were the subgroup data. Results: The average age of the recruited subjects was (40.3±8.1) years and the length of service exposure to noise was (18.6±8.9) years. The range of noise exposed levels and cumulative noise exposure (CNE) was 80.1- 93.4 dB (A) and 86.8- 107.9 dB (A) · year, respectively. For workers exposed to noise at a CNE level<98 dB (A) · year, smokers showed an increased risk of NIHL of 1.88 (1.16-3.05) compared with non-smokers; for workers exposed to noise at a CNE level ≥98 dB(A) · year, smokers showed an increased risk of NIHL of 2.53 (1.49- 4.30) compared with non-smokers. For workers exposed to noise at a CNE level<98 dB (A) · year, the results of univariate analysis and multifactor analysis

  3. Photochemistry of 1,4-dihydronaphtho(1,8-de)(1,2)diazepine. Preparation and electron spin resonance observation of the unsubstituted 1,8-naphthoquinodimethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagni, R.M.; Burnett, M.N.; Dodd, J.R.

    1977-03-16

    In an attempt to prepare selenated tRNA, transformation of 4-thiouridine to selenouridine in tRNA was attempted. Feasibility studies were performed by spectrophotometrically monitored conversion of 1 methyl-4- thiocyanatouracil to 1-methyl-4-selenouracil by NaHSe. E.coli mixed tRNA were exposed to the same sequence of reactions and the identity of the products was confirmed. (DDA)

  4. Structure-function analysis of Sua5 protein reveals novel functional motifs required for the biosynthesis of the universal t6A tRNA modification.

    PubMed

    Pichard-Kostuch, Adeline; Zhang, Wenhua; Liger, Dominique; Daugeron, Marie-Claire; Letoquart, Juliette; Li de la Sierra-Gallay, Ines; Forterre, Patrick; Collinet, Bruno; van Tilbeurgh, Herman; Basta, Tamara

    2018-04-12

    N6-threonyl-carbamoyl adenosine (t6A) is a universal tRNA modification found at position 37, next to the anticodon, in almost all tRNAs decoding ANN codons (where N = A, U, G or C). t6A stabilizes the codon-anticodon interaction and hence promotes translation fidelity. The first step of the biosynthesis of t6A, the production of threonyl-carbamoyl adenylate (TC-AMP), is catalyzed by the Sua5/TsaC family of enzymes. While TsaC is a single domain protein, Sua5 enzymes are composed of the TsaC-like domain, a linker and an extra domain called SUA5 of unknown function. In the present study, we report structure-function analysis of Pyrococcus abyssi Sua5 (Pa-Sua5). Crystallographic data revealed binding sites for bicarbonate substrate and pyrophosphate product. The linker of Pa-Sua5 forms a loop structure that folds into the active site gorge and closes it. Using structure-guided mutational analysis we established that the conserved sequence motifs in the linker and the domain-domain interface are essential for the function of Pa-Sua5. We propose that the linker participates actively in the biosynthesis of TC-AMP by binding to ATP/PPi and by stabilizing the N-carboxy-L-threonine intermediate. Hence, TsaC orthologs which lack such a linker and SUA5 domain use different mechanism for TC-AMP synthesis. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  5. An evolutionary ‘intermediate state’ of mitochondrial translation systems found in Trichinella species of parasitic nematodes: co-evolution of tRNA and EF-Tu

    PubMed Central

    Arita, Masashi; Suematsu, Takuma; Osanai, Arihiro; Inaba, Takashi; Kamiya, Haruo; Kita, Kiyoshi; Sisido, Masahiko; Watanabe, Yoh-ichi; Ohtsuki, Takashi

    2006-01-01

    EF-Tu delivers aminoacyl-tRNAs to ribosomes in the translation system. However, unusual truncations found in some animal mitochondrial tRNAs seem to prevent recognition by a canonical EF-Tu. We showed previously that the chromadorean nematode has two distinct EF-Tus, one of which (EF-Tu1) binds only to T-armless aminoacyl-tRNAs and the other (EF-Tu2) binds to D-armless Ser-tRNAs. Neither of the EF-Tus can bind to canonical cloverleaf tRNAs. In this study, by analyzing the translation system of enoplean nematode Trichinella species, we address how EF-Tus and tRNAs have evolved from the canonical structures toward those of the chromadorean translation system. Trichinella mitochondria possess three types of tRNAs: cloverleaf tRNAs, which do not exist in chromadorean nematode mitochondria; T-armless tRNAs; and D-armless tRNAs. We found two mitochondrial EF-Tu species, EF-Tu1 and EF-Tu2, in Trichinella britovi. T.britovi EF-Tu2 could bind to only D-armless Ser-tRNA, as Caenorhabditis elegans EF-Tu2 does. In contrast to the case of C.elegans EF-Tu1, however, T.britovi EF-Tu1 bound to all three types of tRNA present in Trichinella mitochondria. These results suggest that Trichinella mitochondrial translation system, and particularly the tRNA-binding specificity of EF-Tu1, could be an intermediate state between the canonical system and the chromadorean nematode mitochondrial system. PMID:17012285

  6. Increasing the fidelity of noncanonical amino acid incorporation in cell-free protein synthesis.

    PubMed

    Gan, Qinglei; Fan, Chenguang

    2017-11-01

    Cell-free protein synthesis provides a robust platform for co-translational incorporation of noncanonical amino acid (ncAA) into proteins to facilitate biological studies and biotechnological applications. Recently, eliminating the activity of release factor 1 has been shown to increase ncAA incorporation in response to amber codons. However, this approach could promote mis-incorporation of canonical amino acids by near cognate suppression. We performed a facile protocol to remove near cognate tRNA isoacceptors of the amber codon from total tRNAs, and used the phosphoserine (Sep) incorporation system as validation. By manipulating codon usage of target genes and tRNA species introduced into the cell-free protein synthesis system, we increased the fidelity of Sep incorporation at a specific position. By removing three near cognate tRNA isoacceptors of the amber stop codon [tRNA Lys , tRNA Tyr , and tRNA Gln (CUG)] from the total tRNA, the near cognate suppression decreased by 5-fold without impairing normal protein synthesis in the cell-free protein synthesis system. Mass spectrometry analyses indicated that the fidelity of ncAA incorporation was improved. Removal of near cognate tRNA isoacceptors of the amber codon could increase ncAA incorporation fidelity towards the amber stop codon in release factor deficiency systems. We provide a general strategy to improve fidelity of ncAA incorporation towards stop, quadruplet and sense codons in cell-free protein synthesis systems. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. m1A Post-Transcriptional Modification in tRNAs.

    PubMed

    Oerum, Stephanie; Dégut, Clément; Barraud, Pierre; Tisné, Carine

    2017-02-21

    To date, about 90 post-transcriptional modifications have been reported in tRNA expanding their chemical and functional diversity. Methylation is the most frequent post-transcriptional tRNA modification that can occur on almost all nitrogen sites of the nucleobases, on the C5 atom of pyrimidines, on the C2 and C8 atoms of adenosine and, additionally, on the oxygen of the ribose 2'-OH. The methylation on the N1 atom of adenosine to form 1-methyladenosine (m1A) has been identified at nucleotide position 9, 14, 22, 57, and 58 in different tRNAs. In some cases, these modifications have been shown to increase tRNA structural stability and induce correct tRNA folding. This review provides an overview of the currently known m1A modifications, the different m1A modification sites, the biological role of each modification, and the enzyme responsible for each methylation in different species. The review further describes, in detail, two enzyme families responsible for formation of m1A at nucleotide position 9 and 58 in tRNA with a focus on the tRNA binding, m1A mechanism, protein domain organisation and overall structures.

  8. Testing Delivery Platforms for New Anticancer tRNA-Based Drugs

    DTIC Science & Technology

    2011-03-01

    measurement of aminoacylated killer tRNA. Killer tRNA aminoacylated with lysine via a ribozyme is sufficiently stable in the culture media to enable...translational efficiency which helps the design of optimal killer tRNAs. - Determined that the flexi- ribozyme can be used to attach non-serine amino acids to...tRNAs using the flexi- ribozyme strategy. REPORTABLE OUTCOME - A dual GFP-mCherry reporter plasmid DNA useful to monitor delivery of tRNA in

  9. tRNAs as Therapeutic Agents of Breast Cancer

    DTIC Science & Technology

    2013-07-01

    their anticodon sequence. Wild-type tRNA reads codon for serine, Suppressor (Sup) tRNA for amber stop, and killer tRNA for isoleucine . Figure 6...endoplasmic reticulum (ER) is a eukaryotic organelle that performs the major functions of synthesizing and packaging pro- teins. Overloading of...anticodons tested in HeLa, tRNASer with the AAU anticodon (tRNASer(AAU)) leads to the substitution of isoleucine with serine within the proteome and

  10. Pseudoscorpion mitochondria show rearranged genes and genome-wide reductions of RNA gene sizes and inferred structures, yet typical nucleotide composition bias

    PubMed Central

    2012-01-01

    Background Pseudoscorpions are chelicerates and have historically been viewed as being most closely related to solifuges, harvestmen, and scorpions. No mitochondrial genomes of pseudoscorpions have been published, but the mitochondrial genomes of some lineages of Chelicerata possess unusual features, including short rRNA genes and tRNA genes that lack sequence to encode arms of the canonical cloverleaf-shaped tRNA. Additionally, some chelicerates possess an atypical guanine-thymine nucleotide bias on the major coding strand of their mitochondrial genomes. Results We sequenced the mitochondrial genomes of two divergent taxa from the chelicerate order Pseudoscorpiones. We find that these genomes possess unusually short tRNA genes that do not encode cloverleaf-shaped tRNA structures. Indeed, in one genome, all 22 tRNA genes lack sequence to encode canonical cloverleaf structures. We also find that the large ribosomal RNA genes are substantially shorter than those of most arthropods. We inferred secondary structures of the LSU rRNAs from both pseudoscorpions, and find that they have lost multiple helices. Based on comparisons with the crystal structure of the bacterial ribosome, two of these helices were likely contact points with tRNA T-arms or D-arms as they pass through the ribosome during protein synthesis. The mitochondrial gene arrangements of both pseudoscorpions differ from the ancestral chelicerate gene arrangement. One genome is rearranged with respect to the location of protein-coding genes, the small rRNA gene, and at least 8 tRNA genes. The other genome contains 6 tRNA genes in novel locations. Most chelicerates with rearranged mitochondrial genes show a genome-wide reversal of the CA nucleotide bias typical for arthropods on their major coding strand, and instead possess a GT bias. Yet despite their extensive rearrangement, these pseudoscorpion mitochondrial genomes possess a CA bias on the major coding strand. Phylogenetic analyses of all 13

  11. RNA and DNA interactions with zwitterionic and charged lipid membranes - a DSC and QCM-D study.

    PubMed

    Michanek, Agnes; Kristen, Nora; Höök, Fredrik; Nylander, Tommy; Sparr, Emma

    2010-04-01

    The aim of the present study is to establish under which conditions tRNA associates with phospholipid bilayers, and to explore how this interaction influences the lipid bilayer. For this purpose we have studied the association of tRNA or DNA of different sizes and degrees of base pairing with a set of model membrane systems with varying charge densities, composed of zwitterionic phosphatidylcholines (PC) in mixtures with anionic phosphatidylserine (PS) or cationic dioctadecyl-dimethyl-ammoniumbromide (DODAB), and with fluid or solid acyl-chains (oleoyl, myristoyl and palmitoyl). To prove and quantify the attractive interaction between tRNA and model-lipid membrane we used quartz crystal microbalance with dissipation (QCM-D) monitoring to study the tRNA adsorption to deposit phospholipid bilayers from solutions containing monovalent (Na(+)) or divalent (Ca(2+)) cations. The influence of the adsorbed polynucleic acids on the lipid phase transitions and lipid segregation was studied by means of differential scanning calorimetry (DSC). The basic findings are: i) tRNA adsorbs to zwitterionic liquid-crystalline and gel-phase phospholipid bilayers. The interaction is weak and reversible, and cannot be explained only on the basis of electrostatic attraction. ii) The adsorbed amount of tRNA is higher for liquid-crystalline bilayers compared to gel-phase bilayers, while the presence of divalent cations show no significant effect on the tRNA adsorption. iii) The adsorption of tRNA can lead to segregation in the mixed 1,2-dimyristoyl-sn-glycerol-3-phosphatidylcholine (DMPC)-1,2-dimyristoyl-sn-glycero-3-phosphatidylserine (DMPS) and DMPC-DODAB bilayers, where tRNA is likely excluded from the anionic DMPS-rich domains in the first system, and associated with the cationic DODAB-rich domains in the second system. iv) The addition of shorter polynucleic acids influence the chain melting transition and induce segregation in a mixed DMPC-DMPS system, while larger polynucleic acids do

  12. Role of a Novel Family of Short RNAs, tRFs, in Prostate Cancer

    DTIC Science & Technology

    2017-08-01

    SUPPLEMENTARY NOTES 14. ABSTRACT tRFs are precisely generated fragments of tRNA which are shown to function by associating to Argonaute proteins . Unlike...In 2009, Prof. Dutta and colleagues discovered a tRNA related fragment generated from tRNA trailer sequence involved in cell proliferation in...different organisms by mining a number of small RNA-Seq data (Kumar et al. 2014). He also showed that tRFs bind to Argonaute proteins and interacts with its

  13. YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs

    PubMed Central

    Shigematsu, Megumi; Honda, Shozo; Loher, Phillipe; Telonis, Aristeidis G.; Rigoutsos, Isidore

    2017-01-01

    Abstract Besides translation, transfer RNAs (tRNAs) play many non-canonical roles in various biological pathways and exhibit highly variable expression profiles. To unravel the emerging complexities of tRNA biology and molecular mechanisms underlying them, an efficient tRNA sequencing method is required. However, the rigid structure of tRNA has been presenting a challenge to the development of such methods. We report the development of Y-shaped Adapter-ligated MAture TRNA sequencing (YAMAT-seq), an efficient and convenient method for high-throughput sequencing of mature tRNAs. YAMAT-seq circumvents the issue of inefficient adapter ligation, a characteristic of conventional RNA sequencing methods for mature tRNAs, by employing the efficient and specific ligation of Y-shaped adapter to mature tRNAs using T4 RNA Ligase 2. Subsequent cDNA amplification and next-generation sequencing successfully yield numerous mature tRNA sequences. YAMAT-seq has high specificity for mature tRNAs and high sensitivity to detect most isoacceptors from minute amount of total RNA. Moreover, YAMAT-seq shows quantitative capability to estimate expression levels of mature tRNAs, and has high reproducibility and broad applicability for various cell lines. YAMAT-seq thus provides high-throughput technique for identifying tRNA profiles and their regulations in various transcriptomes, which could play important regulatory roles in translation and other biological processes. PMID:28108659

  14. Separate responses of karyopherins to glucose and amino acid availability regulate nucleocytoplasmic transport

    PubMed Central

    Huang, Hsiao-Yun; Hopper, Anita K.

    2014-01-01

    The importin-β family members (karyopherins) mediate the majority of nucleocytoplasmic transport. Msn5 and Los1, members of the importin-β family, function in tRNA nuclear export. tRNAs move bidirectionally between the nucleus and the cytoplasm. Nuclear tRNA accumulation occurs upon amino acid (aa) or glucose deprivation. To understand the mechanisms regulating tRNA subcellular trafficking, we investigated whether Msn5 and Los1 are regulated in response to nutrient availability. We provide evidence that tRNA subcellular trafficking is regulated by distinct aa-sensitive and glucose-sensitive mechanisms. Subcellular distributions of Msn5 and Los1 are altered upon glucose deprivation but not aa deprivation. Redistribution of tRNA exportins from the nucleus to the cytoplasm likely provides one mechanism for tRNA nuclear distribution upon glucose deprivation. We extended our studies to other members of the importin-β family and found that all tested karyopherins invert their subcellular distributions upon glucose deprivation but not aa deprivation. Glucose availability regulates the subcellular distributions of karyopherins likely due to alteration of the RanGTP gradient since glucose deprivation causes redistribution of Ran. Thus nuclear–cytoplasmic distribution of macromolecules is likely generally altered upon glucose deprivation due to collapse of the RanGTP gradient and redistribution of karyopherins between the nucleus and the cytoplasm. PMID:25057022

  15. The transition state for formation of the peptide bond in the ribosome

    PubMed Central

    Gindulyte, Asta; Bashan, Anat; Agmon, Ilana; Massa, Lou; Yonath, Ada; Karle, Jerome

    2006-01-01

    Using quantum mechanics and exploiting known crystallographic coordinates of tRNA substrate located in the ribosome peptidyl transferase center around the 2-fold axis, we have investigated the mechanism for peptide-bond formation. The calculation is based on a choice of 50 atoms assumed to be important in the mechanism. We used density functional theory to optimize the geometry and energy of the transition state (TS) for peptide-bond formation. The TS is formed simultaneously with the rotatory motion enabling the translocation of the A-site tRNA 3′ end into the P site, and we estimated the magnitude of rotation angle between the A-site starting position and the place at which the TS occurs. The calculated TS activation energy, Ea, is 35.5 kcal (1 kcal = 4.18 kJ)/mol, and the increase in hydrogen bonding between the rotating A-site tRNA and ribosome nucleotides as the TS forms appears to stabilize it to a value qualitatively estimated to be ≈18 kcal/mol. The optimized geometry corresponds to a structure in which the peptide bond is being formed as other bonds are being broken, in such a manner as to release the P-site tRNA so that it may exit as a free molecule and be replaced by the translocating A-site tRNA. At TS formation the 2′ OH group of the P-site tRNA A76 forms a hydrogen bond with the oxygen atom of the carboxyl group of the amino acid attached to the A-site tRNA, which may be indicative of its catalytic role, consistent with recent biochemical experiments. PMID:16938893

  16. Isolation of the gene (miaE) encoding the hydroxylase involved in the synthesis of 2-methylthio-cis-ribozeatin in tRNA of Salmonella typhimurium and characterization of mutants.

    PubMed Central

    Persson, B C; Björk, G R

    1993-01-01

    The modified nucleoside 2-methylthio-N-6-isopentenyl adenosine (ms2i6A) is present at position 37 (3' of the anticodon) of tRNAs that read codons beginning with U except tRNA(I,V Ser) in Escherichia coli. Salmonella typhimurium 2-methylthio-cis-ribozeatin (ms2io6A) is found in tRNA, probably in the corresponding species that have ms2i6A in E. coli. The gene (miaE) for the tRNA(ms2io6A)hydroxylase of S. typhimurium was isolated by complementation in E. coli. The miaE gene was localized close to the argI gene at min 99 of the S. typhimurium chromosomal map. Its DNA sequence and transcription pattern together with complementation studies revealed that the miaE gene is the second gene of a dicistronic operon. Southern blot analysis showed that the miaE gene is absent in E. coli, a finding consistent with the absence of the hydroxylated derivative of ms2i6A in this species. Mutants of S. typhimurium which have MudJ inserted in the miaE gene and which, consequently, are blocked in the ms2i6A hydroxylation reaction were isolated. Unexpectedly, such mutants cannot utilize the citric acid cycle intermediates malate, fumarate, and succinate as carbon sources. Images PMID:8253666

  17. Characterization of mitochondrial genome of sea cucumber Stichopus horrens: a novel gene arrangement in Holothuroidea.

    PubMed

    Fan, SiGang; Hu, ChaoQun; Wen, Jing; Zhang, LvPing

    2011-05-01

    The complete mitochondrial DNA sequence contains useful information for phylogenetic analyses of metazoa. In this study, the complete mitochondrial DNA sequence of sea cucumber Stichopus horrens (Holothuroidea: Stichopodidae: Stichopus) is presented. The complete sequence was determined using normal and long PCRs. The mitochondrial genome of Stichopus horrens is a circular molecule 16257 bps long, composed of 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes. Most of these genes are coded on the heavy strand except for one protein-coding gene (nad6) and five tRNA genes (tRNA ( Ser(UCN) ), tRNA ( Gln ), tRNA ( Ala ), tRNA ( Val ), tRNA ( Asp )) which are coded on the light strand. The composition of the heavy strand is 30.8% A, 23.7% C, 16.2% G, and 29.3% T bases (AT skew=0.025; GC skew=-0.188). A non-coding region of 675 bp was identified as a putative control region because of its location and AT richness. The intergenic spacers range from 1 to 50 bp in size, totaling 227 bp. A total of 25 overlapping nucleotides, ranging from 1 to 10 bp in size, exist among 11 genes. All 13 protein-coding genes are initiated with an ATG. The TAA codon is used as the stop codon in all the protein coding genes except nad3 and nad4 that use TAG as their termination codon. The most frequently used amino acids are Leu (16.29%), Ser (10.34%) and Phe (8.37%). All of the tRNA genes have the potential to fold into typical cloverleaf secondary structures. We also compared the order of the genes in the mitochondrial DNA from the five holothurians that are now available and found a novel gene arrangement in the mitochondrial DNA of Stichopus horrens.

  18. YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs.

    PubMed

    Shigematsu, Megumi; Honda, Shozo; Loher, Phillipe; Telonis, Aristeidis G; Rigoutsos, Isidore; Kirino, Yohei

    2017-05-19

    Besides translation, transfer RNAs (tRNAs) play many non-canonical roles in various biological pathways and exhibit highly variable expression profiles. To unravel the emerging complexities of tRNA biology and molecular mechanisms underlying them, an efficient tRNA sequencing method is required. However, the rigid structure of tRNA has been presenting a challenge to the development of such methods. We report the development of Y-shaped Adapter-ligated MAture TRNA sequencing (YAMAT-seq), an efficient and convenient method for high-throughput sequencing of mature tRNAs. YAMAT-seq circumvents the issue of inefficient adapter ligation, a characteristic of conventional RNA sequencing methods for mature tRNAs, by employing the efficient and specific ligation of Y-shaped adapter to mature tRNAs using T4 RNA Ligase 2. Subsequent cDNA amplification and next-generation sequencing successfully yield numerous mature tRNA sequences. YAMAT-seq has high specificity for mature tRNAs and high sensitivity to detect most isoacceptors from minute amount of total RNA. Moreover, YAMAT-seq shows quantitative capability to estimate expression levels of mature tRNAs, and has high reproducibility and broad applicability for various cell lines. YAMAT-seq thus provides high-throughput technique for identifying tRNA profiles and their regulations in various transcriptomes, which could play important regulatory roles in translation and other biological processes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Structural insights into translational fidelity.

    PubMed

    Ogle, James M; Ramakrishnan, V

    2005-01-01

    The underlying basis for the accuracy of protein synthesis has been the subject of over four decades of investigation. Recent biochemical and structural data make it possible to understand at least in outline the structural basis for tRNA selection, in which codon recognition by cognate tRNA results in the hydrolysis of GTP by EF-Tu over 75 A away. The ribosome recognizes the geometry of codon-anticodon base pairing at the first two positions but monitors the third, or wobble position, less stringently. Part of the additional binding energy of cognate tRNA is used to induce conformational changes in the ribosome that stabilize a transition state for GTP hydrolysis by EF-Tu and subsequently result in accelerated accommodation of tRNA into the peptidyl transferase center. The transition state for GTP hydrolysis is characterized, among other things, by a distorted tRNA. This picture explains a large body of data on the effect of antibiotics and mutations on translational fidelity. However, many fundamental questions remain, such as the mechanism of activation of GTP hydrolysis by EF-Tu, and the relationship between decoding and frameshifting.

  20. The i6A37 tRNA modification is essential for proper decoding of UUX-Leucine codons during rpoS and iraP translation

    PubMed Central

    Aubee, Joseph I.; Olu, Morenike

    2016-01-01

    The translation of rpoS (σS), the general stress/stationary phase sigma factor, is tightly regulated at the post-transcriptional level by several factors via mechanisms that are not clearly defined. One of these factors is MiaA, the enzyme necessary for the first step in the N6-isopentyl-2-thiomethyladenosinemethyladenosine 37 (ms2i6A37) tRNA modification. We tested the hypothesis that an elevated UUX-Leucine/total leucine codon ratio can be used to identify transcripts whose translation would be sensitive to loss of the MiaA-dependent modification. We identified iraP as another candidate MiaA-sensitive gene, based on the UUX-Leucine/total leucine codon ratio. An iraP-lacZ fusion was significantly decreased in the absence of MiaA, consistent with our predictive model. To determine the role of MiaA in UUX-Leucine decoding in rpoS and iraP, we measured β-galactosidase-specific activity of miaA− rpoS and iraP translational fusions upon overexpression of leucine tRNAs. We observed suppression of the MiaA effect on rpoS, and not iraP, via overexpression of tRNALeuX but not tRNALeuZ. We also tested the hypothesis that the MiaA requirement for rpoS and iraP translation is due to decoding of UUX-Leucine codons within the rpoS and iraP transcripts, respectively. We observed a partial suppression of the MiaA requirement for rpoS and iraP translational fusions containing one or both UUX-Leucine codons removed. Taken together, this suggests that MiaA is necessary for rpoS and iraP translation through proper decoding of UUX-Leucine codons and that rpoS and iraP mRNAs are both modification tunable transcripts (MoTTs) via the presence of the modification. PMID:26979278

  1. A Specific Hepatic Transfer RNA for Phosphoserine*

    PubMed Central

    Mäenpää, Pekka H.; Bernfield, Merton R.

    1970-01-01

    Radioactive O-phosphoryl-L-serine was detected after alkaline deacylation of rat and rooster liver [3H]seryl-tRNA acylated in vitro with homologous synthetases. Ribonuclease treatment of this tRNA yielded a compound with the properties of phosphoseryl-adenosine. Benzoylated DEAE-cellulose chromatography of seryl-tRNA yielded four distinct peaks, only one of which contained phosphoserine. A unique fraction for phosphoserine was also found on chromatography of nonacylated tRNA. In ribosome binding studies, this fraction responded very slightly with poly(U,C), but not with any of the known serine trinucleotide codons. Substantial incorporation of [3H]-serine into protein from this tRNA species was observed in an aminoacyl-tRNA dependent polysomal system derived from chick oviducts. No phosphoserine was found in Escherichia coli or yeast seryl-tRNA acylated with homologous enzymes, nor in E. coli seryl-tRNA acylated with liver synthetase. In the absence of tRNA, free phosphoserine was not formed in reaction mixtures, which suggests that phosphoseryl-tRNA arises by phosphorylation of the unique seryl-tRNA species. These results demonstrate a discrete tRNASer species in rat and rooster liver containing phosphoserine and suggest that this tRNA is involved in ribosomal polypeptide synthesis. PMID:4943179

  2. Eukaryotic tRNAs fingerprint invertebrates vis-à-vis vertebrates.

    PubMed

    Mitra, Sanga; Das, Pijush; Samadder, Arpa; Das, Smarajit; Betai, Rupal; Chakrabarti, Jayprokas

    2015-01-01

    During translation, aminoacyl-tRNA synthetases recognize the identities of the tRNAs to charge them with their respective amino acids. The conserved identities of 58,244 eukaryotic tRNAs of 24 invertebrates and 45 vertebrates in genomic tRNA database were analyzed and their novel features extracted. The internal promoter sequences, namely, A-Box and B-Box, were investigated and evidence gathered that the intervention of optional nucleotides at 17a and 17b correlated with the optimal length of the A-Box. The presence of canonical transcription terminator sequences at the immediate vicinity of tRNA genes was ventured. Even though non-canonical introns had been reported in red alga, green alga, and nucleomorph so far, fairly motivating evidence of their existence emerged in tRNA genes of other eukaryotes. Non-canonical introns were seen to interfere with the internal promoters in two cases, questioning their transcription fidelity. In a first of its kind, phylogenetic constructs based on tRNA molecules delineated and built the trees of the vast and diverse invertebrates and vertebrates. Finally, two tRNA models representing the invertebrates and the vertebrates were drawn, by isolating the dominant consensus in the positional fluctuations of nucleotide compositions.

  3. PlantRNA, a database for tRNAs of photosynthetic eukaryotes.

    PubMed

    Cognat, Valérie; Pawlak, Gaël; Duchêne, Anne-Marie; Daujat, Magali; Gigant, Anaïs; Salinas, Thalia; Michaud, Morgane; Gutmann, Bernard; Giegé, Philippe; Gobert, Anthony; Maréchal-Drouard, Laurence

    2013-01-01

    PlantRNA database (http://plantrna.ibmp.cnrs.fr/) compiles transfer RNA (tRNA) gene sequences retrieved from fully annotated plant nuclear, plastidial and mitochondrial genomes. The set of annotated tRNA gene sequences has been manually curated for maximum quality and confidence. The novelty of this database resides in the inclusion of biological information relevant to the function of all the tRNAs entered in the library. This includes 5'- and 3'-flanking sequences, A and B box sequences, region of transcription initiation and poly(T) transcription termination stretches, tRNA intron sequences, aminoacyl-tRNA synthetases and enzymes responsible for tRNA maturation and modification. Finally, data on mitochondrial import of nuclear-encoded tRNAs as well as the bibliome for the respective tRNAs and tRNA-binding proteins are also included. The current annotation concerns complete genomes from 11 organisms: five flowering plants (Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Medicago truncatula and Brachypodium distachyon), a moss (Physcomitrella patens), two green algae (Chlamydomonas reinhardtii and Ostreococcus tauri), one glaucophyte (Cyanophora paradoxa), one brown alga (Ectocarpus siliculosus) and a pennate diatom (Phaeodactylum tricornutum). The database will be regularly updated and implemented with new plant genome annotations so as to provide extensive information on tRNA biology to the research community.

  4. Large Conformational Changes of Insertion 3 in Human Glycyl-tRNA Synthetase (hGlyRS) during Catalysis

    DOE PAGES

    Deng, Xiangyu; Qin, Xiangjing; Chen, Lei; ...

    2016-01-21

    Glycyl-tRNA synthetase (GlyRS) is the enzyme that covalently links glycine to cognate tRNA for translation. It is of great interest because of its nonconserved quaternary structures, unique species-specific aminoacylation properties, and noncanonical functions in neurological diseases, but none of these is fully understood. We report two crystal structures of human GlyRS variants, in the free form and in complex with tRNA Gly respectively, and reveal new aspects of the glycylation mechanism. We discover that insertion 3 differs considerably in conformation in catalysis and that it acts like a "switch" and fully opens to allow tRNA to bind in a cross-subunitmore » fashion. The flexibility of the protein is supported by molecular dynamics simulation, as well as enzymatic activity assays. The biophysical and biochemical studies suggest that human GlyRS may utilize its flexibility for both the traditional function (regulate tRNA binding) and alternative functions (roles in diseases).« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Xiangyu; Qin, Xiangjing; Chen, Lei

    Glycyl-tRNA synthetase (GlyRS) is the enzyme that covalently links glycine to cognate tRNA for translation. It is of great interest because of its nonconserved quaternary structures, unique species-specific aminoacylation properties, and noncanonical functions in neurological diseases, but none of these is fully understood. We report two crystal structures of human GlyRS variants, in the free form and in complex with tRNA Gly respectively, and reveal new aspects of the glycylation mechanism. We discover that insertion 3 differs considerably in conformation in catalysis and that it acts like a "switch" and fully opens to allow tRNA to bind in a cross-subunitmore » fashion. The flexibility of the protein is supported by molecular dynamics simulation, as well as enzymatic activity assays. The biophysical and biochemical studies suggest that human GlyRS may utilize its flexibility for both the traditional function (regulate tRNA binding) and alternative functions (roles in diseases).« less

  6. Separate responses of karyopherins to glucose and amino acid availability regulate nucleocytoplasmic transport.

    PubMed

    Huang, Hsiao-Yun; Hopper, Anita K

    2014-09-15

    The importin-β family members (karyopherins) mediate the majority of nucleocytoplasmic transport. Msn5 and Los1, members of the importin-β family, function in tRNA nuclear export. tRNAs move bidirectionally between the nucleus and the cytoplasm. Nuclear tRNA accumulation occurs upon amino acid (aa) or glucose deprivation. To understand the mechanisms regulating tRNA subcellular trafficking, we investigated whether Msn5 and Los1 are regulated in response to nutrient availability. We provide evidence that tRNA subcellular trafficking is regulated by distinct aa-sensitive and glucose-sensitive mechanisms. Subcellular distributions of Msn5 and Los1 are altered upon glucose deprivation but not aa deprivation. Redistribution of tRNA exportins from the nucleus to the cytoplasm likely provides one mechanism for tRNA nuclear distribution upon glucose deprivation. We extended our studies to other members of the importin-β family and found that all tested karyopherins invert their subcellular distributions upon glucose deprivation but not aa deprivation. Glucose availability regulates the subcellular distributions of karyopherins likely due to alteration of the RanGTP gradient since glucose deprivation causes redistribution of Ran. Thus nuclear-cytoplasmic distribution of macromolecules is likely generally altered upon glucose deprivation due to collapse of the RanGTP gradient and redistribution of karyopherins between the nucleus and the cytoplasm. © 2014 Huang and Hopper. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Distinctive acceptor-end structure and other determinants of Escherichia coli tRNAPro identity.

    PubMed Central

    McClain, W H; Schneider, J; Gabriel, K

    1994-01-01

    The previously uncharacterized determinants of the specificity of tRNAPro for aminoacylation (tRNAPro identity) were defined by a computer comparison of all Escherichia coli tRNA sequences and tested by a functional analysis of amber suppressor tRNAs in vivo. We determined the amino acid specificity of tRNA by sequencing a suppressed protein and the aminoacylation efficiency of tRNA by examining the steady-state level of aminoacyl-tRNA. On substituting nucleotides derived from the acceptor end and variable pocket of tRNAPro for the corresponding nucleotides in a tRNAPhe gene, the identity of the resulting tRNA changed substantially but incompletely to that of tRNAPro. The redesigned tRNAPhe was weakly active and aminoacyl-tRNA was not detected. Ethyl methanesulfonate mutagenesis of the redesigned tRNAPhe gene produced a mutant with a wobble pair in place of a base pair in the end of the acceptor-stem helix of the transcribed tRNA. This mutant exhibited both a tRNAPro identity and substantial aminoacyl-tRNA. The results speak for the importance of a distinctive conformation in the acceptor-stem helix of tRNAPro for aminoacylation by the prolyl-tRNA synthetase. The anticodon also contributes to tRNAPro identity but is not necessary in vivo. Images PMID:8127693

  8. Preferences of AAA/AAG codon recognition by modified nucleosides, τm5s2U34 and t6A37 present in tRNALys.

    PubMed

    Sonawane, Kailas D; Kamble, Asmita S; Fandilolu, Prayagraj M

    2017-12-27

    Deficiency of 5-taurinomethyl-2-thiouridine, τm 5 s 2 U at the 34th 'wobble' position in tRNA Lys causes MERRF (Myoclonic Epilepsy with Ragged Red Fibers), a neuromuscular disease. This modified nucleoside of mt tRNA Lys , recognizes AAA/AAG codons during protein biosynthesis process. Its preference to identify cognate codons has not been studied at the atomic level. Hence, multiple MD simulations of various molecular models of anticodon stem loop (ASL) of mt tRNA Lys in presence and absence of τm 5 s 2 U 34 and N 6 -threonylcarbamoyl adenosine (t 6 A 37 ) along with AAA and AAG codons have been accomplished. Additional four MD simulations of multiple ASL mt tRNA Lys models in the context of ribosomal A-site residues have also been performed to investigate the role of A-site in recognition of AAA/AAG codons. MD simulation results show that, ASL models in presence of τm 5 s 2 U 34 and t 6 A 37 with codons AAA/AAG are more stable than the ASL lacking these modified bases. MD trajectories suggest that τm 5 s 2 U recognizes the codons initially by 'wobble' hydrogen bonding interactions, and then tRNA Lys might leave the explicit codon by a novel 'single' hydrogen bonding interaction in order to run the protein biosynthesis process smoothly. We propose this model as the 'Foot-Step Model' for codon recognition, in which the single hydrogen bond plays a crucial role. MD simulation results suggest that, tRNA Lys with τm 5 s 2 U and t 6 A recognizes AAA codon more preferably than AAG. Thus, these results reveal the consequences of τm 5 s 2 U and t 6 A in recognition of AAA/AAG codons in mitochondrial disease, MERRF.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koley, Sandip; Adhya, Samit, E-mail: nilugrandson@gmail.com

    Highlights: •A tRNA translocating complex was assembled from purified proteins. •The complex translocates tRNA at a membrane potential of ∼60 mV. •Translocation requires Cys and His residues in the Fe–S center of RIC6 subunit. -- Abstract: Very little is known about how nucleic acids are translocated across membranes. The multi-subunit RNA Import Complex (RIC) from mitochondria of the kinetoplastid protozoon Leishmania tropica induces translocation of tRNAs across artificial or natural membranes, but the nature of the translocation pore remains unknown. We show that subunits RIC6 and RIC9 assemble on the membrane in presence of subunit RIC4A to form complex R3.more » Atomic Force Microscopy of R3 revealed particles with an asymmetric surface groove of ∼20 nm rim diameter and ∼1 nm depth. R3 induced translocation of tRNA into liposomes when the pH of the medium was lowered to ∼6 in the absence of ATP. R3-mediated tRNA translocation could also be induced at neutral pH by a K{sup +} diffusion potential with an optimum of 60–70 mV. Point mutations in the Cys{sub 2}–His{sub 2} Fe-binding motif of RIC6, which is homologous to the respiratory Complex III Fe–S protein, abrogated import induced by low pH but not by K{sup +} diffusion potential. These results indicate that the R3 complex forms a pore that is gated by a proton-generated membrane potential and that the Fe–S binding region of RIC6 has a role in proton translocation. The tRNA import complex of L. tropica thus contains a novel macromolecular channel distinct from the mitochondrial protein import pore that is apparently involved in tRNA import in some species.« less

  10. 3-(3-amino-3-carboxypropyl)-5,6-dihydrouridine is one of two novel post-transcriptional modifications in tRNALys(UUU) from Trypanosoma brucei.

    PubMed

    Krog, Jesper S; Español, Yaiza; Giessing, Anders M B; Dziergowska, Agnieszka; Malkiewicz, Andrzej; Ribas de Pouplana, Lluís; Kirpekar, Finn

    2011-12-01

    tRNA is the most heavily modified of all RNA types, with typically 10-20% of the residues being post-transcriptionally altered. Unravelling the modification pattern of a tRNA is a challenging task; there are 92 currently known tRNA modifications, many of which are chemically similar. Furthermore, the tRNA has to be investigated with single-nucleotide resolution in order to ensure complete mapping of all modifications. In the present work, we characterized tRNA(Lys)(UUU) from Trypanosoma brucei, and provide a complete overview of its post-transcriptional modifications. The first step was MALDI-TOF MS of two independent digests of the tRNA, with RNase A and RNase T1, respectively. This revealed digestion products harbouring mass-changing modifications. Next, the modifications were mapped at the nucleotide level in the RNase products by tandem MS. Comparison with the sequence of the unmodified tRNA revealed the modified residues. The modifications were further characterized at the nucleoside level by chromatographic retention time and fragmentation pattern upon higher-order tandem MS. Phylogenetic comparison with modifications in tRNA(Lys) from other organisms was used through the entire analysis. We identified modifications on 12 nucleosides in tRNA(Lys)(UUU), where U47 exhibited a novel modification, 3-(3-amino-3-carboxypropyl)-5,6-dihydrouridine, based on identical chromatographic retention and MS fragmentation as the synthetic nucleoside. A37 was observed in two versions: a minor fraction with the previously described 2-methylthio-N(6)-threonylcarbamoyl-modification, and a major fraction with A37 being modified by a 294.0-Da moiety. The latter product is the largest adenosine modification reported so far, and we discuss its nature and origin. © 2011 The Authors Journal compilation © 2011 FEBS.

  11. Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites☆

    PubMed Central

    Pham, James S.; Dawson, Karen L.; Jackson, Katherine E.; Lim, Erin E.; Pasaje, Charisse Flerida A.; Turner, Kelsey E.C.; Ralph, Stuart A.

    2013-01-01

    Aminoacyl-tRNA synthetases are central enzymes in protein translation, providing the charged tRNAs needed for appropriate construction of peptide chains. These enzymes have long been pursued as drug targets in bacteria and fungi, but the past decade has seen considerable research on aminoacyl-tRNA synthetases in eukaryotic parasites. Existing inhibitors of bacterial tRNA synthetases have been adapted for parasite use, novel inhibitors have been developed against parasite enzymes, and tRNA synthetases have been identified as the targets for compounds in use or development as antiparasitic drugs. Crystal structures have now been solved for many parasite tRNA synthetases, and opportunities for selective inhibition are becoming apparent. For different biological reasons, tRNA synthetases appear to be promising drug targets against parasites as diverse as Plasmodium (causative agent of malaria), Brugia (causative agent of lymphatic filariasis), and Trypanosoma (causative agents of Chagas disease and human African trypanosomiasis). Here we review recent developments in drug discovery and target characterisation for parasite aminoacyl-tRNA synthetases. PMID:24596663

  12. Chemical and structural characterization of a model Post-Termination Complex (PoTC) for the ribosome recycling reaction: Evidence for the release of the mRNA by RRF and EF-G

    PubMed Central

    Iwakura, Nobuhiro; Yokoyama, Takeshi; Quaglia, Fabio; Mitsuoka, Kaoru; Mio, Kazuhiro; Shigematsu, Hideki; Shirouzu, Mikako; Kaji, Akira; Kaji, Hideko

    2017-01-01

    A model Post-Termination Complex (PoTC) used for the discovery of Ribosome Recycling Factor (RRF) was purified and characterized by cryo-electron microscopic analysis and biochemical methods. We established that the model PoTC has mostly one tRNA, at the P/E or P/P position, together with one mRNA. The structural studies were supported by the biochemical measurement of bound tRNA and mRNA. Using this substrate, we establish that the release of tRNA, release of mRNA and splitting of ribosomal subunits occur during the recycling reaction. Order of these events is tRNA release first followed by mRNA release and splitting almost simultaneously. Moreover, we demonstrate that IF3 is not involved in any of the recycling reactions but simply prevents the re-association of split ribosomal subunits. Our finding demonstrates that the important function of RRF includes the release of mRNA, which is often missed by the use of a short ORF with the Shine-Dalgarno sequence near the termination site. PMID:28542628

  13. The complete sequence of the mitochondrial genome of Arctic fox (Alopex lagopus).

    PubMed

    Yan, Shou-Qing; Guo, Peng-Cheng; Yue, Yuan; Li, Wan-Hong; Bai, Chun-Yan; Li, Yu-Mei; Sun, Jin-Hai; Zhao, Zhi-Hui

    2016-11-01

    In the present study, the complete mitochondrial genome sequence of Arctic fox (Alopex lagopus) was determined for the first time. It has a total length of 16,656 bp, and contains 13 protein-coding genes, 22 tRNA genes, 2 ribosome RNA genes and 1 control region. The nucleotide composition is 31.3% for A, 26.2% for C, 14.8% for G and 27.7% for T, respectively. The D-loop region located between tRNA Pro and tRNA Phe contains a (ACACGTACACGCAT) 18 tandem repeat array. The data will be useful for the investigation of the genetic structure and diversity in the natural and farmed population of Arctic foxes.

  14. The infectivities of turnip yellow mosaic virus genomes with altered tRNA mimicry are not dependent on compensating mutations in the viral replication protein.

    PubMed

    Filichkin, S A; Bransom, K L; Goodwin, J B; Dreher, T W

    2000-09-01

    Five highly infectious turnip yellow mosaic virus (TYMV) genomes with sequence changes in their 3'-terminal regions that result in altered aminoacylation and eEF1A binding have been studied. These genomes were derived from cloned parental RNAs of low infectivity by sequential passaging in plants. Three of these genomes that are incapable of aminoacylation have been reported previously (J. B. Goodwin, J. M. Skuzeski, and T. W. Dreher, Virology 230:113-124, 1997). We now demonstrate by subcloning the 3' untranslated regions into wild-type TYMV RNA that the high infectivities and replication rates of these genomes compared to their progenitors are mostly due to a small number of mutations acquired in the 3' tRNA-like structure during passaging. Mutations in other parts of the genome, including the replication protein coding region, are not required for high infectivity but probably do play a role in optimizing viral amplification and spread in plants. Two other TYMV RNA variants of suboptimal infectivities, one that accepts methionine instead of the usual valine and one that interacts less tightly with eEF1A, were sequentially passaged to produce highly infectious genomes. The improved infectivities of these RNAs were not associated with increased replication in protoplasts, and no mutations were acquired in their 3' tRNA-like structures. Complete sequencing of one genome identified two mutations that result in amino acid changes in the movement protein gene, suggesting that improved infectivity may be a function of improved viral dissemination in plants. Our results show that the wild-type TYMV replication proteins are able to amplify genomes with 3' termini of variable sequence and tRNA mimicry. These and previous results have led to a model in which the binding of eEF1A to the 3' end to antagonize minus-strand initiation is a major role of the tRNA-like structure.

  15. The Infectivities of Turnip Yellow Mosaic Virus Genomes with Altered tRNA Mimicry Are Not Dependent on Compensating Mutations in the Viral Replication Protein†

    PubMed Central

    Filichkin, Sergei A.; Bransom, Kay L.; Goodwin, Joel B.; Dreher, Theo W.

    2000-01-01

    Five highly infectious turnip yellow mosaic virus (TYMV) genomes with sequence changes in their 3′-terminal regions that result in altered aminoacylation and eEF1A binding have been studied. These genomes were derived from cloned parental RNAs of low infectivity by sequential passaging in plants. Three of these genomes that are incapable of aminoacylation have been reported previously (J. B. Goodwin, J. M. Skuzeski, and T. W. Dreher, Virology 230:113–124, 1997). We now demonstrate by subcloning the 3′ untranslated regions into wild-type TYMV RNA that the high infectivities and replication rates of these genomes compared to their progenitors are mostly due to a small number of mutations acquired in the 3′ tRNA-like structure during passaging. Mutations in other parts of the genome, including the replication protein coding region, are not required for high infectivity but probably do play a role in optimizing viral amplification and spread in plants. Two other TYMV RNA variants of suboptimal infectivities, one that accepts methionine instead of the usual valine and one that interacts less tightly with eEF1A, were sequentially passaged to produce highly infectious genomes. The improved infectivities of these RNAs were not associated with increased replication in protoplasts, and no mutations were acquired in their 3′ tRNA-like structures. Complete sequencing of one genome identified two mutations that result in amino acid changes in the movement protein gene, suggesting that improved infectivity may be a function of improved viral dissemination in plants. Our results show that the wild-type TYMV replication proteins are able to amplify genomes with 3′ termini of variable sequence and tRNA mimicry. These and previous results have led to a model in which the binding of eEF1A to the 3′ end to antagonize minus-strand initiation is a major role of the tRNA-like structure. PMID:10954536

  16. The CCA-end of P-tRNA Contacts Both the Human RPL36AL and the A-site Bound Translation Termination Factor eRF1 at the Peptidyl Transferase Center of the Human 80S Ribosome

    PubMed Central

    Hountondji, Codjo; Bulygin, Konstantin; Créchet, Jean-Bernard; Woisard, Anne; Tuffery, Pierre; Nakayama, Jun-ichi; Frolova, Ludmila; Nierhaus, Knud H; Karpova, Galina; Baouz, Soria

    2014-01-01

    We have demonstrated previously that the E-site specific protein RPL36AL present in human ribosomes can be crosslinked with the CCA-end of a P-tRNA in situ. Here we report the following: (i) We modeled RPL36AL into the structure of the archaeal ortholog RPL44E extracted from the known X-ray structure of the 50S subunit of Haloarcula marismortui. Superimposing the obtained RPL36AL structure with that of P/E tRNA observed in eukaryotic 80S ribosomes suggested that RPL36AL might in addition to its CCA neighbourhood interact with the inner site of the tRNA elbow similar to an interaction pattern known from tRNA•synthetase pairs. (ii) Accordingly, we detected that the isolated recombinant protein RPL36AL can form a tight binary complex with deacylated tRNA, and even tRNA fragments truncated at their CCA end showed a high affinity in the nanomolar range supporting a strong interaction outside the CCA end. (iii) We constructed programmed 80S complexes containing the termination factor eRF1 (stop codon UAA at the A-site) and a 2’,3’-dialdehyde tRNA (tRNAox) analog at the P-site. Surprisingly, we observed a crosslinked ternary complex containing the tRNA, eRF1 and RPL36AL crosslinked both to the aldehyde groups of tRNAox at the 2’- and 3’-positions of the ultimate A. We also demonstrated that, upon binding to the ribosomal A-site, eRF1 induces an alternative conformation of the ribosome and/or the tRNA, leading to a novel crosslink of tRNAox to another large-subunit ribosomal protein (namely L37) rather than to RPL36AL, both ribosomal proteins being labeled in a mutually exclusive fashion. Since the human 80S ribosome in complex with P-site bound tRNAox and A-site bound eRF1 corresponds to the post-termination state of the ribosome, the results represent the first biochemical evidence for the positioning of the CCA-arm of the P-tRNA in close proximity to both RPL36AL and eRF1 at the end of the translation process. PMID:25191528

  17. The CCA-end of P-tRNA Contacts Both the Human RPL36AL and the A-site Bound Translation Termination Factor eRF1 at the Peptidyl Transferase Center of the Human 80S Ribosome.

    PubMed

    Hountondji, Codjo; Bulygin, Konstantin; Créchet, Jean-Bernard; Woisard, Anne; Tuffery, Pierre; Nakayama, Jun-Ichi; Frolova, Ludmila; Nierhaus, Knud H; Karpova, Galina; Baouz, Soria

    2014-01-01

    We have demonstrated previously that the E-site specific protein RPL36AL present in human ribosomes can be crosslinked with the CCA-end of a P-tRNA in situ. Here we report the following: (i) We modeled RPL36AL into the structure of the archaeal ortholog RPL44E extracted from the known X-ray structure of the 50S subunit of Haloarcula marismortui. Superimposing the obtained RPL36AL structure with that of P/E tRNA observed in eukaryotic 80S ribosomes suggested that RPL36AL might in addition to its CCA neighbourhood interact with the inner site of the tRNA elbow similar to an interaction pattern known from tRNA•synthetase pairs. (ii) Accordingly, we detected that the isolated recombinant protein RPL36AL can form a tight binary complex with deacylated tRNA, and even tRNA fragments truncated at their CCA end showed a high affinity in the nanomolar range supporting a strong interaction outside the CCA end. (iii) We constructed programmed 80S complexes containing the termination factor eRF1 (stop codon UAA at the A-site) and a 2',3'-dialdehyde tRNA (tRNAox) analog at the P-site. Surprisingly, we observed a crosslinked ternary complex containing the tRNA, eRF1 and RPL36AL crosslinked both to the aldehyde groups of tRNAox at the 2'- and 3'-positions of the ultimate A. We also demonstrated that, upon binding to the ribosomal A-site, eRF1 induces an alternative conformation of the ribosome and/or the tRNA, leading to a novel crosslink of tRNAox to another large-subunit ribosomal protein (namely L37) rather than to RPL36AL, both ribosomal proteins being labeled in a mutually exclusive fashion. Since the human 80S ribosome in complex with P-site bound tRNAox and A-site bound eRF1 corresponds to the post-termination state of the ribosome, the results represent the first biochemical evidence for the positioning of the CCA-arm of the P-tRNA in close proximity to both RPL36AL and eRF1 at the end of the translation process.

  18. Nup100 regulates Saccharomyces cerevisiae replicative life span by mediating the nuclear export of specific tRNAs

    PubMed Central

    Lord, Christopher L.; Ospovat, Ophir; Wente, Susan R.

    2017-01-01

    Nuclear pore complexes (NPCs), which are composed of nucleoporins (Nups) and regulate transport between the nucleus and cytoplasm, significantly impact the replicative life span (RLS) of Saccharomyces cerevisiae. We previously reported that deletion of the nonessential gene NUP100 increases RLS, although the molecular basis for this effect was unknown. In this study, we find that nuclear tRNA accumulation contributes to increased longevity in nup100Δ cells. Fluorescence in situ hybridization (FISH) experiments demonstrate that several specific tRNAs accumulate in the nuclei of nup100Δ mutants. Protein levels of the transcription factor Gcn4 are increased when NUP100 is deleted, and GCN4 is required for the elevated life spans of nup100Δ mutants, similar to other previously described tRNA export and ribosomal mutants. Northern blots indicate that tRNA splicing and aminoacylation are not significantly affected in nup100Δ cells, suggesting that Nup100 is largely required for nuclear export of mature, processed tRNAs. Distinct tRNAs accumulate in the nuclei of nup100Δ and msn5Δ mutants, while Los1-GFP nucleocytoplasmic shuttling is unaffected by Nup100. Thus, we conclude that Nup100 regulates tRNA export in a manner distinct from Los1 or Msn5. Together, these experiments reveal a novel Nup100 role in the tRNA life cycle that impacts the S. cerevisiae life span. PMID:27932586

  19. Codon-Anticodon Recognition in the Bacillus subtilis glyQS T Box Riboswitch

    PubMed Central

    Caserta, Enrico; Liu, Liang-Chun; Grundy, Frank J.; Henkin, Tina M.

    2015-01-01

    Many amino acid-related genes in Gram-positive bacteria are regulated by the T box riboswitch. The leader RNA of genes in the T box family controls the expression of downstream genes by monitoring the aminoacylation status of the cognate tRNA. Previous studies identified a three-nucleotide codon, termed the “Specifier Sequence,” in the riboswitch that corresponds to the amino acid identity of the downstream genes. Pairing of the Specifier Sequence with the anticodon of the cognate tRNA is the primary determinant of specific tRNA recognition. This interaction mimics codon-anticodon pairing in translation but occurs in the absence of the ribosome. The goal of the current study was to determine the effect of a full range of mismatches for comparison with codon recognition in translation. Mutations were individually introduced into the Specifier Sequence of the glyQS leader RNA and tRNAGly anticodon to test the effect of all possible pairing combinations on tRNA binding affinity and antitermination efficiency. The functional role of the conserved purine 3′ of the Specifier Sequence was also verifiedin this study. We found that substitutions at the Specifier Sequence resulted in reduced binding, the magnitude of which correlates well with the predicted stability of the RNA-RNA pairing. However, the tolerance for specific mismatches in antitermination was generally different from that during decoding, which reveals a unique tRNA recognition pattern in the T box antitermination system. PMID:26229106

  20. Metabolic De-Isotoping for Improved LC-MS Characterization of Modified RNAs

    NASA Astrophysics Data System (ADS)

    Wetzel, Collin; Li, Siwei; Limbach, Patrick A.

    2014-07-01

    Mapping, sequencing, and quantifying individual noncoding ribonucleic acids (ncRNAs), including post-transcriptionally modified nucleosides, by mass spectrometry is a challenge that often requires rigorous sample preparation prior to analysis. Previously, we have described a simplified method for the comparative analysis of RNA digests (CARD) that is applicable to relatively complex mixtures of ncRNAs. In the CARD approach for transfer RNA (tRNA) analysis, two complete sets of digestion products from total tRNA are compared using the enzymatic incorporation of 16O/18O isotopic labels. This approach allows one to rapidly screen total tRNAs from gene deletion mutants or comparatively sequence total tRNA from two related bacterial organisms. However, data analysis can be challenging because of convoluted mass spectra arising from the natural 13C and 15 N isotopes present in the ribonuclease-digested tRNA samples. Here, we demonstrate that culturing in 12C-enriched/13C-depleted media significantly reduces the isotope patterns that must be interpreted during the CARD experiment. Improvements in data quality yield a 35 % improvement in detection of tRNA digestion products that can be uniquely assigned to particular tRNAs. These mass spectral improvements lead to a significant reduction in data processing attributable to the ease of spectral identification of labeled digestion products and will enable improvements in the relative quantification of modified RNAs by the 16O/18O differential labeling approach.

  1. Depletion of Saccharomyces cerevisiae tRNAHis Guanylyltransferase Thg1p Leads to Uncharged tRNAHis with Additional m5C

    PubMed Central

    Gu, Weifeng; Hurto, Rebecca L.; Hopper, Anita K.; Grayhack, Elizabeth J.; Phizicky, Eric M.

    2005-01-01

    The essential Saccharomyces cerevisiae tRNAHis guanylyltransferase (Thg1p) is responsible for the unusual G−1 addition to the 5′ end of cytoplasmic tRNAHis. We report here that tRNAHis from Thg1p-depleted cells is uncharged, although histidyl tRNA synthetase is active and the 3′ end of the tRNA is intact, suggesting that G−1 is a critical determinant for aminoacylation of tRNAHis in vivo. Thg1p depletion leads to activation of the GCN4 pathway, most, but not all, of which is Gcn2p dependent, and to the accumulation of tRNAHis in the nucleus. Surprisingly, tRNAHis in Thg1p-depleted cells accumulates additional m5C modifications, which are delayed relative to the loss of G−1 and aminoacylation. The additional modification is likely due to tRNA m5C methyltransferase Trm4p. We developed a new method to map m5C residues in RNA and localized the additional m5C to positions 48 and 50. This is the first documented example of the accumulation of additional modifications in a eukaryotic tRNA species. PMID:16135808

  2. Nup100 regulates Saccharomyces cerevisiae replicative life span by mediating the nuclear export of specific tRNAs.

    PubMed

    Lord, Christopher L; Ospovat, Ophir; Wente, Susan R

    2017-03-01

    Nuclear pore complexes (NPCs), which are composed of nucleoporins (Nups) and regulate transport between the nucleus and cytoplasm, significantly impact the replicative life span (RLS) of Saccharomyces cerevisiae We previously reported that deletion of the nonessential gene NUP100 increases RLS, although the molecular basis for this effect was unknown. In this study, we find that nuclear tRNA accumulation contributes to increased longevity in nup100 Δ cells. Fluorescence in situ hybridization (FISH) experiments demonstrate that several specific tRNAs accumulate in the nuclei of nup100 Δ mutants. Protein levels of the transcription factor Gcn4 are increased when NUP100 is deleted, and GCN4 is required for the elevated life spans of nup100 Δ mutants, similar to other previously described tRNA export and ribosomal mutants. Northern blots indicate that tRNA splicing and aminoacylation are not significantly affected in nup100 Δ cells, suggesting that Nup100 is largely required for nuclear export of mature, processed tRNAs. Distinct tRNAs accumulate in the nuclei of nup100 Δ and msn5 Δ mutants, while Los1-GFP nucleocytoplasmic shuttling is unaffected by Nup100. Thus, we conclude that Nup100 regulates tRNA export in a manner distinct from Los1 or Msn5. Together, these experiments reveal a novel Nup100 role in the tRNA life cycle that impacts the S. cerevisiae life span. © 2017 Lord et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  3. The Crystal Structure and Small-Angle X-Ray Analysis of CsdL/TcdA Reveal a New tRNA Binding Motif in the MoeB/E1 Superfamily

    PubMed Central

    López-Estepa, Miguel; Ardá, Ana; Savko, Martin; Round, Adam; Shepard, William E.; Bruix, Marta; Coll, Miquel; Fernández, Francisco J.; Jiménez-Barbero, Jesús; Vega, M. Cristina

    2015-01-01

    Cyclic N 6-threonylcarbamoyladenosine (‘cyclic t6A’, ct6A) is a non-thiolated hypermodification found in transfer RNAs (tRNAs) in bacteria, protists, fungi and plants. In bacteria and yeast cells ct6A has been shown to enhance translation fidelity and efficiency of ANN codons by improving the faithful discrimination of aminoacylated tRNAs by the ribosome. To further the understanding of ct6A biology we have determined the high-resolution crystal structures of CsdL/TcdA in complex with AMP and ATP, an E1-like activating enzyme from Escherichia coli, which catalyzes the ATP-dependent dehydration of t6A to form ct6A. CsdL/TcdA is a dimer whose structural integrity and dimer interface depend critically on strongly bound K+ and Na+ cations. By using biochemical assays and small-angle X-ray scattering we show that CsdL/TcdA can associate with tRNA with a 1:1 stoichiometry and with the proper position and orientation for the cyclization of t6A. Furthermore, we show by nuclear magnetic resonance that CsdL/TcdA engages in transient interactions with CsdA and CsdE, which, in the latter case, involve catalytically important residues. These short-lived interactions may underpin the precise channeling of sulfur atoms from cysteine to CsdL/TcdA as previously characterized. In summary, the combination of structural, biophysical and biochemical methods applied to CsdL/TcdA has afforded a more thorough understanding of how the structure of this E1-like enzyme has been fine tuned to accomplish ct6A synthesis on tRNAs while providing support for the notion that CsdA and CsdE are able to functionally interact with CsdL/TcdA. PMID:25897750

  4. Aminoacyl transfer from an adenylate anhydride to polyribonucleotides

    NASA Technical Reports Server (NTRS)

    Weber, A. L.; Lacey, J. C., Jr.

    1975-01-01

    Imidazole catalysis of phenylalanyl transfer from phenylalanine adenylate to hydroxyl groups of homopolyribonucleotides is studied as a possible chemical model of biochemical aminoacylation of transfer RNA (tRNA). The effect of pH on imidazole-catalyzed transfer of phenylalanyl residues to poly(U) and poly(A) double helix strands, the number of peptide linkages and their lability to base and neutral hydroxylamine, and the nature of adenylate condensation products are investigated. The chemical model entertained exhibits a constraint by not acylating the hydroxyl groups of polyribonucleotides in a double helix. The constraint is consistent with selective biochemical aminoacylation at the tRNA terminus. Interest in imidazole as a model of histidine residue in protoenzymes participating in prebiotic aminoacyl transfer to polyribonucleotides, and in rendering the tRNA a more efficient adaptor, is indicated.

  5. Characterization of a novel chaperone/usher fimbrial operon present on KpGI-5, a methionine tRNA gene-associated genomic island in Klebsiella pneumoniae

    PubMed Central

    2012-01-01

    Background Several strain-specific Klebsiella pneumoniae virulence determinants have been described, though these have almost exclusively been linked with hypervirulent liver abscess-associated strains. Through PCR interrogation of integration hotspots, chromosome walking, island-tagging and fosmid-based marker rescue we captured and sequenced KpGI-5, a novel genomic island integrated into the met56 tRNA gene of K. pneumoniae KR116, a bloodstream isolate from a patient with pneumonia and neutropenic sepsis. Results The 14.0 kb KpGI-5 island exhibited a genome-anomalous G + C content, possessed near-perfect 46 bp direct repeats, encoded a γ1-chaperone/usher fimbrial cluster (fim2) and harboured seven other predicted genes of unknown function. Transcriptional analysis demonstrated expression of three fim2 genes, and suggested that the fim2A-fim2K cluster comprised an operon. As fimbrial systems are frequently implicated in pathogenesis, we examined the role of fim2 by analysing KR2107, a streptomycin-resistant derivative of KR116, and three isogenic mutants (Δfim, Δfim2 and ΔfimΔfim2) using biofilm assays, human cell adhesion assays and pair-wise competition-based murine models of intestinal colonization, lung infection and ascending urinary tract infection. Although no statistically significant role for fim2 was demonstrable, liver and kidney CFU counts for lung and urinary tract infection models, respectively, hinted at an ordered gradation of virulence: KR2107 (most virulent), KR2107∆fim2, KR2107∆fim and KR2107∆fim∆fim2 (least virulent). Thus, despite lack of statistical evidence there was a suggestion that fim and fim2 contribute additively to virulence in these murine infection models. However, further studies would be necessary to substantiate this hypothesis. Conclusion Although fim2 was present in 13% of Klebsiella spp. strains investigated, no obvious in vitro or in vivo role for the locus was identified, although there were subtle hints of

  6. Organization of genes for transcription and translation in the rif region of the Escherichia coli chromosome. [uv radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, M.; Nomura, M.

    1979-01-01

    The lambda rif/sup d/18 transducing phage is known to carry several genes for components of transcriptional and translational machineries; these genes are clustered in the rif region at 88 min on the Escherichia coli genetic map. They include a set of genes for rRNA's (rrnB), a gene for spacer tRNA, tRNA/sub 2//sup Glu/(tgtB), one of the two genes for EF-TU (tufB), genes for four ribosomal proteins (rplK, A, J, and L), genes for the ..beta.. and ..beta..' subunits of RNA polymerase (rpoB and rpoC), and genes for three tRNA's (tyrU, gluT, and thrT). An additional tRNA gene (subsequently identified asmore » thrU by Landy and his co-workers) and a gene for a protein (protein U) with unknown functions were found to be carried by lambda rif/sup d/18. We analyzed the organization of these genes by using various deletion and hybrid phages derived from lambda rif/sup d/18 and lambda rif/sup d/12, a phage related to lambda rif/sup d/18. The expression of various genes was examined in uv-irradiated cells infected with these transducing phages. Two main conclusions were obtained. First, the four tRNA genes are not cotranscribed with the genes in rrnB, even though these tRNA genes are located close to the distal end of rrnB. Second, the four ribosomal protein genes are organized into two separate transcriptional units; rplK and A are in one unit and rplJ and L are in the second unit.« less

  7. Cex1p facilitates Rna1p-mediated dissociation of the Los1p-tRNA-Gsp1p-GTP export complex.

    PubMed

    McGuire, Andrew T; Mangroo, Dev

    2012-02-01

    Nuclear tRNA export plays an essential role in key cellular processes such as regulation of protein synthesis, cell cycle progression, response to nutrient availability and DNA damage and development. Like other nuclear export processes, assembly of the nuclear tRNA export complex in the nucleus is dependent on Ran-GTP/Gsp1p-GTP, and dissociation of the export receptor-tRNA-Ran-GTP/Gsp1p-GTP complex in the cytoplasm requires RanBP1/Yrb1p and RanGAP/Rna1p to activate the GTPase activity of Ran-GTP/Gsp1p-GTP. The Saccharomyces cerevisiae Cex1p and Human Scyl1 have also been proposed to participate in unloading of the tRNA export receptors at the cytoplasmic face of the nuclear pore complex (NPC). Here, we provide evidence suggesting that Cex1p is required for activation of the GTPase activity of Gsp1p and dissociation of the receptor-tRNA-Gsp1p export complex in S. cerevisiae. The data suggest that Cex1p recruits Rna1p from the cytoplasm to the NPC and facilitates Rna1p activation of the GTPase activity of Gsp1p by enabling Rna1p to gain access to Gsp1p-GTP bound to the export receptor tRNA complex. It is possible that this tRNA unloading mechanism is conserved in evolutionarily diverse organisms and that other Gsp1p-GTP-dependent export processes use a pathway-specific component to recruit Rna1p to the NPC. © 2011 John Wiley & Sons A/S.

  8. Dictyostelium mobile elements: strategies to amplify in a compact genome.

    PubMed

    Winckler, T; Dingermann, T; Glöckner, G

    2002-12-01

    Dictyostelium discoideum is a eukaryotic microorganism that is attractive for the study of fundamental biological phenomena such as cell-cell communication, formation of multicellularity, cell differentiation and morphogenesis. Large-scale sequencing of the D. discoideum genome has provided new insights into evolutionary strategies evolved by transposable elements (TEs) to settle in compact microbial genomes and to maintain active populations over evolutionary time. The high gene density (about 1 gene/2.6 kb) of the D. discoideum genome leaves limited space for selfish molecular invaders to move and amplify without causing deleterious mutations that eradicate their host. Targeting of transfer RNA (tRNA) gene loci appears to be a generally successful strategy for TEs residing in compact genomes to insert away from coding regions. In D. discoideum, tRNA gene-targeted retrotransposition has evolved independently at least three times by both non-long terminal repeat (LTR) retrotransposons and retrovirus-like LTR retrotransposons. Unlike the nonspecifically inserting D. discoideum TEs, which have a strong tendency to insert into preexisting TE copies and form large and complex clusters near the ends of chromosomes, the tRNA gene-targeted retrotransposons have managed to occupy 75% of the tRNA gene loci spread on chromosome 2 and represent 80% of the TEs recognized on the assembled central 6.5-Mb part of chromosome 2. In this review we update the available information about D. discoideum TEs which emerges both from previous work and current large-scale genome sequencing, with special emphasis on the fact that tRNA genes are principal determinants of retrotransposon insertions into the D. discoideum genome.

  9. Molecular crowders and cosolutes promote folding cooperativity of RNA under physiological ionic conditions

    PubMed Central

    Strulson, Christopher A.; Boyer, Joshua A.; Whitman, Elisabeth E.; Bevilacqua, Philip C.

    2014-01-01

    Folding mechanisms of functional RNAs under idealized in vitro conditions of dilute solution and high ionic strength have been well studied. Comparatively little is known, however, about mechanisms for folding of RNA in vivo where Mg2+ ion concentrations are low, K+ concentrations are modest, and concentrations of macromolecular crowders and low-molecular-weight cosolutes are high. Herein, we apply a combination of biophysical and structure mapping techniques to tRNA to elucidate thermodynamic and functional principles that govern RNA folding under in vivo–like conditions. We show by thermal denaturation and SHAPE studies that tRNA folding cooperativity increases in physiologically low concentrations of Mg2+ (0.5–2 mM) and K+ (140 mM) if the solution is supplemented with physiological amounts (∼20%) of a water-soluble neutral macromolecular crowding agent such as PEG or dextran. Low-molecular-weight cosolutes show varying effects on tRNA folding cooperativity, increasing or decreasing it based on the identity of the cosolute. For those additives that increase folding cooperativity, the gain is manifested in sharpened two-state-like folding transitions for full-length tRNA over its secondary structural elements. Temperature-dependent SHAPE experiments in the absence and presence of crowders and cosolutes reveal extent of cooperative folding of tRNA on a nucleotide basis and are consistent with the melting studies. Mechanistically, crowding agents appear to promote cooperativity by stabilizing tertiary structure, while those low molecular cosolutes that promote cooperativity stabilize tertiary structure and/or destabilize secondary structure. Cooperative folding of functional RNA under physiological-like conditions parallels the behavior of many proteins and has implications for cellular RNA folding kinetics and evolution. PMID:24442612

  10. RNA processing in Neurospora crassa mitochondria: use of transfer RNA sequences as signals.

    PubMed Central

    Breitenberger, C A; Browning, K S; Alzner-DeWeerd, B; RajBhandary, U L

    1985-01-01

    We have used RNA gel transfer hybridization, S1 nuclease mapping and primer extension to analyze transcripts derived from several genes in Neurospora crassa mitochondria. The transcripts studied include those for cytochrome oxidase subunit III, 17S rRNA and an unidentified open reading frame. In all three cases, initial transcripts are long, include tRNA sequences, and are subsequently processed to generate the mature RNAs. We find that endpoints of the most abundant transcripts generally coincide with those of tRNA sequences. We therefore conclude that tRNA sequences in long transcripts act as primary signals for RNA processing in N. crassa mitochondria. The situation is somewhat analogous to that observed in mammalian mitochondrial systems. The difference, however, is that in mammalian mitochondria, noncoding spacers between tRNA, rRNA and protein genes are very short and in many cases non-existent, allowing no room for intergenic RNA processing signals whereas, in N. crassa mtDNA, intergenic non-coding sequences are usually several hundred nucleotides long and contain highly conserved GC-rich palindromic sequences. Since these GC-rich palindromic sequences are retained in the processed mature RNAs, we conclude that they do not serve as signals for RNA processing. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:2990893

  11. Transfer RNA mimicry among tymoviral genomic RNAs ranges from highly efficient to vestigial.

    PubMed

    Dreher, T W; Goodwin, J B

    1998-10-01

    Three tRNA-associated properties of a representative set of tymoviral RNAs have been quantitatively assessed using higher plant (wheat germ) proteins: aminoacylation, EF-1alpha*GTP binding, and 3'-adenylation of 3'-CC forms of the RNAs by CTP, ATP:tRNA nucleotidyltransferase. The RNAs fall into three classes differing in the extent of tRNA mimicry. Turnip yellow mosaic (TYMV) and kennedya yellow mosaic virus RNAs had activities in all three properties similar to those of a higher plant tRNAValtranscript, and thus are remarkable tRNA mimics. Although the isolated approximately 83 nt long tRNA-like structures showed high activity in these assays, in the case of TYMV, the 6318 nt long TYMV RNA was an even better substrate for valylation. Eggplant mosaic virus RNA, which has a differently constructed acceptor stem pseudoknot, differed from the above tymoviral RNAs in binding more weakly to EF-1alpha*GTP. Erysimum latent virus RNA, which lacks an identifiable anticodon domain, could not be valylated and had very low 3'-adenylation activity. The range of tRNA mimicry within the tymovirus genus thus ranges from extremely highly developed to minimal. The implications on the role of the tRNA mimicry in viral biology are discussed.

  12. Ribosomal targets for antibiotic drug discovery

    DOEpatents

    Blanchard, Scott C.; Feldman, Michael Brian; Wang, Leyi; Doudna Cate, James H.; Pulk, Arto; Altman, Roger B.; Wasserman, Michael R

    2016-09-13

    The present invention relates to methods to identify molecules that binds in the neomycin binding pocket of a bacterial ribosome using structures of an intact bacterial ribosome that reveal how the ribosome binds tRNA in two functionally distinct states, determined by x-ray crystallography. One state positions tRNA in the peptidyl-tRNA binding site. The second, a fully rotated state, is stabilized by ribosome recycling factor (RRF) and binds tRNA in a highly bent conformation in a hybrid peptidyl/exit (P/E) site. Additionally, the invention relates to various assays, including single-molecule assay for ribosome recycling, and methods to identify compounds that interfere with ribosomal function by detecting newly identified intermediate FRET states using known and novel FRET pairs on the ribosome. The invention also provides vectors and compositions with an N-terminally tagged S13 protein.

  13. The clinical characteristics of patients with mitochondrial tRNA Leu(UUR)m.3243A > G mutation: Compared with type 1 diabetes and early onset type 2 diabetes.

    PubMed

    Zhu, Jie; Yang, Peng; Liu, Xiang; Yan, Li; Rampersad, Sharvan; Li, Feng; Li, Hong; Sheng, Chunjun; Cheng, Xiaoyun; Zhang, Manna; Qu, Shen

    2017-08-01

    This study presents nine patients with mitochondrial tRNA Leu (UUR) m.3243A>G mutation and compares the clinical characteristics and diabetes complications with type 1 diabetes (T1DM) or early onset type 2 diabetes (T2DM). The study covers 9 patients with MIDD, 33 patients with T1DM and 86 patients (age of onset ≤35years) with early onset T2DM, matched for sex, age at onset of diabetes, duration of diabetes. All patients with MIDD were confirmed as carrying the m.3243A>G mitochondrial DNA mutation. Serum HbA1c, beta-cell function, retinal and renal complications of diabetes, bone metabolic markers, lumbar spine and femoral neck BMD bone mineral density were compared to characterize the clinical features of all patients. Nine patients were from five unrelated families, and the mean (SD) onset age of those patients was 31.2±7.2year. Two patients required insulin at presentation, and six patients progressed to insulin requirement after a mean of 7.2years. β-Cell function in the MIDD group was intermediate between T1DM and early-onset T2DM. In MIDD, four patients were diagnosed as diabetic retinopathy (4/9) and five patients (5/9) had macroalbuminuria. The number of patients with diabetic retinopathy and macroalbuminuria in the MIDD group was comparable to T1DM or early-onset T2DM. The rate of osteoporosis (BMD T-score<-2.5 SD) in the patient with MIDD was higher than the T1DM or early-onset T2DM group. Our study indicates that of the nine subjects with MIDD, three patients (1-II-1, 1-II-3, 1-II-4) who came from the same family had a history of acute pancreatitis. Compared with T1DM or early-onset T2DM matched for sex, age, duration of diabetes, MIDD patients had the highest rate of osteoporosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The C-terminal domain of glyceraldehyde 3-phosphate dehydrogenase plays an important role in suppression of tRNALys3 packaging into human immunodeficiency virus type-1 particles.

    PubMed

    Kishimoto, Naoki; Onitsuka-Kishimoto, Ayano; Iga, Nozomi; Takamune, Nobutoki; Shoji, Shozo; Misumi, Shogo

    2016-12-01

    Human immunodeficiency virus type-1 (HIV-1) requires the packaging of human tRNA Lys3 as a primer for effective viral reverse transcription. Previously, we reported that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) suppresses the packaging efficiency of tRNA Lys3 . Although the binding of GAPDH to Pr55 gag is important for the suppression mechanism, it remains unclear which domain of GAPDH is responsible for the interaction with Pr55 gag . In this study, we show that Asp 256 , Lys 260 , Lys 263 and Glu 267 of GAPDH are important for the suppression of tRNA Lys3 packaging. Yeast two-hybrid analysis demonstrated that the C -terminal domain of GAPDH (151-335) interacts with both the matrix region (MA; 1-132) and capsid N -terminal domain (CA-NTD; 133-282). The D256R, K263E or E267R mutation of GAPDH led to the loss of the ability to bind to wild-type (WT) MA, and the D256R/K260E double mutation of GAPDH resulted in the loss of detectable binding activity to WT CA-NTD. In contrast, R58E, Q59A or Q63A of MA, and E76R or R82E of CA-NTD abrogated the interaction with the C -terminal domain of GAPDH. Multiple-substituted GAPDH mutant (D256R/K260E/K263E/E267R) retained the oligomeric formation with WT GAPDH in HIV-1 producing cells, but the incorporation level of the hetero-oligomer was decreased in viral particles. Furthermore, the viruses produced from cells expressing the D256R/K260E/K263E/E267R mutant restored tRNA Lys3 packaging efficiency because the mutant exerted a dominant negative effect by preventing WT GAPDH from binding to MA and CA-NTD and improved the reverse transcription. These findings indicate that the amino acids Asp 256 , Lys 260 , Lys 263 and Glu 267 of GAPDH is essential for the mechanism of tRNA Lys3 -packaging suppression and the D256R/K260E/K263E/E267R mutant of GAPDH acts in a dominant negative manner to suppress tRNA Lys3 packaging.

  15. Tum1 is involved in the metabolism of sterol esters in Saccharomyces cerevisiae.

    PubMed

    Uršič, Katja; Ogrizović, Mojca; Kordiš, Dušan; Natter, Klaus; Petrovič, Uroš

    2017-08-22

    The only hitherto known biological role of yeast Saccharomyces cerevisiae Tum1 protein is in the tRNA thiolation pathway. The mammalian homologue of the yeast TUM1 gene, the thiosulfate sulfurtransferase (a.k.a. rhodanese) Tst, has been proposed as an obesity-resistance and antidiabetic gene. To assess the role of Tum1 in cell metabolism and the putative functional connection between lipid metabolism and tRNA modification, we analysed evolutionary conservation of the rhodanese protein superfamily, investigated the role of Tum1 in lipid metabolism, and examined the phenotype of yeast strains expressing the mouse homologue of Tum1, TST. We analysed evolutionary relationships in the rhodanese superfamily and established that its members are widespread in bacteria, archaea and in all major eukaryotic groups. We found that the amount of sterol esters was significantly higher in the deletion strain tum1Δ than in the wild-type strain. Expression of the mouse TST protein in the deletion strain did not rescue this phenotype. Moreover, although Tum1 deficiency in the thiolation pathway was complemented by re-introducing TUM1, it was not complemented by the introduction of the mouse homologue Tst. We further showed that the tRNA thiolation pathway is not involved in the regulation of sterol ester content in S. cerevisiae, as overexpression of the tE UUC , tK UUU and tQ UUG tRNAs did not rescue the lipid phenotype in the tum1Δ deletion strain, and, additionally, deletion of the key gene for the tRNA thiolation pathway, UBA4, did not affect sterol ester content. The rhodanese superfamily of proteins is widespread in all organisms, and yeast TUM1 is a bona fide orthologue of mammalian Tst thiosulfate sulfurtransferase gene. However, the mouse TST protein cannot functionally replace yeast Tum1 protein, neither in its lipid metabolism-related function, nor in the tRNA thiolation pathway. We show here that Tum1 protein is involved in lipid metabolism by decreasing the sterol

  16. The nucleotide sequence of a major glycine transfer RNA from the posterior silk gland of Bombyx mori L.

    PubMed Central

    Zúñiga, M C; Steitz, J A

    1977-01-01

    The nucleotide sequence of tRNA1Gly isolated from the posterior silk gland of Bombyx mori has been determined. This transfer RNA is present in high amounts in the posterior silk gland during the fifth larval instar. It has a GCC anticodon, capable of decoding a major glycine codon in the fibroin messenger RNA, GGU. Structural features of Bombyx tRNA1Gly and its homology to other eukaryotic glycine tRNAs are discussed. Images PMID:414206

  17. Adrenal insufficiency in a child with MELAS syndrome.

    PubMed

    Afroze, Bushra; Amjad, Nida; Ibrahim, Shahnaz H; Humayun, Khadija Nuzhat; Yakob, Yusnita

    2014-11-01

    Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) are established subgroups of mitochondrial encephalomyopathy. m.3243A>G a common point mutation is detected in tRNA in majority of patients with MELAS phenotype whereas m.8344A>G point mutation in tRNA is observed, in MERRF phenotype. Adrenal insufficiency has not been reported in mitochondrial disease, except in Kearns-Sayre Syndrome (KSS), which is a mitochondrial deletion syndrome. We report an unusual presentation in a five year old boy who presented with clinical phenotype of MELAS and was found to have m.8344A>G mutation in tRNA. Addison disease was identified due to hyperpigmentation of lips and gums present from early childhood. This is the first report describing adrenal insufficiency in a child with MELAS phenotype. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  18. Complete mitochondrial genome of Skylark, Alauda arvensis (Aves: Passeriformes): the first representative of the family Alaudidae with two extensive heteroplasmic control regions.

    PubMed

    Qian, Chaoju; Wang, Yuanxiu; Guo, Zhichun; Yang, Jianke; Kan, Xianzhao

    2013-06-01

    The circular mitochondrial genome of Alauda arvensis is 17,018 bp in length, containing 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, 22 transfer RNA (tRNA) genes, and 2 extensive heteroplasmic control regions. All of the genes encoded on the H-strand, with the exceptions of one PCG (nad6) and eight tRNA genes (tRNA(Gln), tRNA(Ala), tRNA(Asn), tRNA(Cys), tRNA(Tyr), tRNA(Ser(UCN)), tRNA(Pro), and tRNA(Glu)), as found in other birds' mitochondrial genomes. All of these PCGs are initiated with ATG, while stopped by six types of stop codons. All tRNA genes have the potential to fold into typical clover-leaf structure. Two extensive heteroplasmic control regions were found, and more interestingly, a minisatellite of 37 nucleotides (5'-TCAATCCCATTGATTTCATTATATTAGTATAAAGAAA-3') with 6 tandem repeats was detected at the end of CR2.

  19. The genetic incorporation of p-azidomethyl-l-phenylalanine into proteins in yeast.

    PubMed

    Supekova, Lubica; Zambaldo, Claudio; Choi, Seihyun; Lim, Reyna; Luo, Xiaozhou; Kazane, Stephanie A; Young, Travis S; Schultz, Peter G

    2018-05-15

    The noncanonical amino acid p-azidomethyl-l-phenylalanine can be genetically incorporated into proteins in bacteria, and has been used both as a spectroscopic probe and for the selective modification of proteins by alkynes using click chemistry. Here we report identification of Escherichia coli tyrosyl tRNA synthetase mutants that allow incorporation of p-azidomethyl-l-phenylalanine into proteins in yeast. When expressed together with the cognate E. coli tRNA CUA Tyr , the new mutant tyrosyl tRNA synthetases directed robust incorporation of p-azidomethyl-l-phenylalanine into a model protein, human superoxide dismutase, in response to the UAG amber nonsense codon. Mass spectrometry analysis of purified superoxide dismutase proteins confirmed the efficient site-specific incorporation of p-azidomethyl-l-phenylalanine. This work provides an additional tool for the selective modification of proteins in eukaryotic cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. tRNA-Derived Small RNA: A Novel Regulatory Small Non-Coding RNA.

    PubMed

    Li, Siqi; Xu, Zhengping; Sheng, Jinghao

    2018-05-10

    Deep analysis of next-generation sequencing data unveils numerous small non-coding RNAs with distinct functions. Recently, fragments derived from tRNA, named as tRNA-derived small RNA (tsRNA), have attracted broad attention. There are mainly two types of tsRNAs, including tRNA-derived stress-induced RNA (tiRNA) and tRNA-derived fragment (tRF), which differ in the cleavage position of the precursor or mature tRNA transcript. Emerging evidence has shown that tsRNAs are not merely tRNA degradation debris but have been recognized to play regulatory roles in many specific physiological and pathological processes. In this review, we summarize the biogeneses of various tsRNAs, present the emerging concepts regarding functions and mechanisms of action of tsRNAs, highlight the potential application of tsRNAs in human diseases, and put forward the current problems and future research directions.

  1. A Network of Hydrophobic Residues Impeding Helix αC Rotation Maintains Latency of Kinase Gcn2, Which Phosphorylates the α Subunit of Translation Initiation Factor 2▿

    PubMed Central

    Gárriz, Andrés; Qiu, Hongfang; Dey, Madhusudan; Seo, Eun-Joo; Dever, Thomas E.; Hinnebusch, Alan G.

    2009-01-01

    Kinase Gcn2 is activated by amino acid starvation and downregulates translation initiation by phosphorylating the α subunit of translation initiation factor 2 (eIF2α). The Gcn2 kinase domain (KD) is inert and must be activated by tRNA binding to the adjacent regulatory domain. Previous work indicated that Saccharomyces cerevisiae Gcn2 latency results from inflexibility of the hinge connecting the N and C lobes and a partially obstructed ATP-binding site in the KD. Here, we provide strong evidence that a network of hydrophobic interactions centered on Leu-856 also promotes latency by constraining helix αC rotation in the KD in a manner relieved during amino acid starvation by tRNA binding and autophosphorylation of Thr-882 in the activation loop. Thus, we show that mutationally disrupting the hydrophobic network in various ways constitutively activates eIF2α phosphorylation in vivo and bypasses the requirement for a key tRNA binding motif (m2) and Thr-882 in Gcn2. In particular, replacing Leu-856 with any nonhydrophobic residue activates Gcn2, while substitutions with various hydrophobic residues maintain kinase latency. We further provide strong evidence that parallel, back-to-back dimerization of the KD is a step on the Gcn2 activation pathway promoted by tRNA binding and autophosphorylation. Remarkably, mutations that disrupt the L856 hydrophobic network or enhance hinge flexibility eliminate the need for the conserved salt bridge at the parallel dimer interface, implying that KD dimerization facilitates the reorientation of αC and remodeling of the active site for enhanced ATP binding and catalysis. We propose that hinge remodeling, parallel dimerization, and reorientation of αC are mutually reinforcing conformational transitions stimulated by tRNA binding and secured by the ensuing autophosphorylation of T882 for stable kinase activation. PMID:19114556

  2. A network of hydrophobic residues impeding helix alphaC rotation maintains latency of kinase Gcn2, which phosphorylates the alpha subunit of translation initiation factor 2.

    PubMed

    Gárriz, Andrés; Qiu, Hongfang; Dey, Madhusudan; Seo, Eun-Joo; Dever, Thomas E; Hinnebusch, Alan G

    2009-03-01

    Kinase Gcn2 is activated by amino acid starvation and downregulates translation initiation by phosphorylating the alpha subunit of translation initiation factor 2 (eIF2alpha). The Gcn2 kinase domain (KD) is inert and must be activated by tRNA binding to the adjacent regulatory domain. Previous work indicated that Saccharomyces cerevisiae Gcn2 latency results from inflexibility of the hinge connecting the N and C lobes and a partially obstructed ATP-binding site in the KD. Here, we provide strong evidence that a network of hydrophobic interactions centered on Leu-856 also promotes latency by constraining helix alphaC rotation in the KD in a manner relieved during amino acid starvation by tRNA binding and autophosphorylation of Thr-882 in the activation loop. Thus, we show that mutationally disrupting the hydrophobic network in various ways constitutively activates eIF2alpha phosphorylation in vivo and bypasses the requirement for a key tRNA binding motif (m2) and Thr-882 in Gcn2. In particular, replacing Leu-856 with any nonhydrophobic residue activates Gcn2, while substitutions with various hydrophobic residues maintain kinase latency. We further provide strong evidence that parallel, back-to-back dimerization of the KD is a step on the Gcn2 activation pathway promoted by tRNA binding and autophosphorylation. Remarkably, mutations that disrupt the L856 hydrophobic network or enhance hinge flexibility eliminate the need for the conserved salt bridge at the parallel dimer interface, implying that KD dimerization facilitates the reorientation of alphaC and remodeling of the active site for enhanced ATP binding and catalysis. We propose that hinge remodeling, parallel dimerization, and reorientation of alphaC are mutually reinforcing conformational transitions stimulated by tRNA binding and secured by the ensuing autophosphorylation of T882 for stable kinase activation.

  3. The Conformational Change in Elongation Factor Tu Involves Separation of Its Domains

    DOE PAGES

    Lai, Jonathan; Ghaemi, Zhaleh; Luthey-Schulten, Zaida

    2017-10-18

    Elongation factor Tu (EF-Tu) is a highly conserved GTPase that is responsible for supplying the aminoacylated tRNA to the ribosome. Upon binding to the ribosome, EF-Tu undergoes GTP hydrolysis, which drives a major conformational change, triggering the release of aminoacylated tRNA to the ribosome. Using a combination of molecular simulation techniques, we studied the transition between the pre- and post-hydrolysis structures through two distinct pathways. Here, we show that the transition free energy is minimal along a non-intuitive pathway that involves “separation” of the GTP binding domain (domain 1) from the OB folds (domains 2 and 3), followed by domainmore » 1 rotation, and, eventually, locking the EF-Tu conformation in the post-hydrolysis state. The domain separation also leads to a slight extension of the linker connecting domain 1 to domain 2. Using docking tools and correlation-based analysis, we identified and characterized the EF-Tu conformations that release the tRNA. These calculations suggest that EF-Tu can release the tRNA before the domains separate and after domain 1 rotates by 25°. Lastly, we also examined the EF-Tu conformations in the context of the ribosome. Given the high degrees of sequence similarity with other translational GTPases, we predict a similar separation mechanism is followed.« less

  4. Exploiting tRNAs to Boost Virulence

    PubMed Central

    Albers, Suki; Czech, Andreas

    2016-01-01

    Transfer RNAs (tRNAs) are powerful small RNA entities that are used to translate nucleotide language of genes into the amino acid language of proteins. Their near-uniform length and tertiary structure as well as their high nucleotide similarity and post-transcriptional modifications have made it difficult to characterize individual species quantitatively. However, due to the central role of the tRNA pool in protein biosynthesis as well as newly emerging roles played by tRNAs, their quantitative assessment yields important information, particularly relevant for virus research. Viruses which depend on the host protein expression machinery have evolved various strategies to optimize tRNA usage—either by adapting to the host codon usage or encoding their own tRNAs. Additionally, several viruses bear tRNA-like elements (TLE) in the 5′- and 3′-UTR of their mRNAs. There are different hypotheses concerning the manner in which such structures boost viral protein expression. Furthermore, retroviruses use special tRNAs for packaging and initiating reverse transcription of their genetic material. Since there is a strong specificity of different viruses towards certain tRNAs, different strategies for recruitment are employed. Interestingly, modifications on tRNAs strongly impact their functionality in viruses. Here, we review those intersection points between virus and tRNA research and describe methods for assessing the tRNA pool in terms of concentration, aminoacylation and modification. PMID:26797637

  5. Visualization of two transfer RNAs trapped in transit during elongation factor G-mediated translocation

    PubMed Central

    Ramrath, David J. F.; Lancaster, Laura; Sprink, Thiemo; Mielke, Thorsten; Loerke, Justus; Noller, Harry F.; Spahn, Christian M. T.

    2013-01-01

    During protein synthesis, coupled translocation of messenger RNAs (mRNA) and transfer RNAs (tRNA) through the ribosome takes place following formation of each peptide bond. The reaction is facilitated by large-scale conformational changes within the ribosomal complex and catalyzed by elongtion factor G (EF-G). Previous structural analysis of the interaction of EF-G with the ribosome used either model complexes containing no tRNA or only a single tRNA, or complexes where EF-G was directly bound to ribosomes in the posttranslocational state. Here, we present a multiparticle cryo-EM reconstruction of a translocation intermediate containing two tRNAs trapped in transit, bound in chimeric intrasubunit ap/P and pe/E hybrid states. The downstream ap/P-tRNA is contacted by domain IV of EF-G and P-site elements within the 30S subunit body, whereas the upstream pe/E-tRNA maintains tight interactions with P-site elements of the swiveled 30S head. Remarkably, a tight compaction of the tRNA pair can be seen in this state. The translocational intermediate presented here represents a previously missing link in understanding the mechanism of translocation, revealing that the ribosome uses two distinct molecular ratchets, involving both intra- and intersubunit rotational movements, to drive the synchronous movement of tRNAs and mRNA. PMID:24324168

  6. The Conformational Change in Elongation Factor Tu Involves Separation of Its Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Jonathan; Ghaemi, Zhaleh; Luthey-Schulten, Zaida

    Elongation factor Tu (EF-Tu) is a highly conserved GTPase that is responsible for supplying the aminoacylated tRNA to the ribosome. Upon binding to the ribosome, EF-Tu undergoes GTP hydrolysis, which drives a major conformational change, triggering the release of aminoacylated tRNA to the ribosome. Using a combination of molecular simulation techniques, we studied the transition between the pre- and post-hydrolysis structures through two distinct pathways. Here, we show that the transition free energy is minimal along a non-intuitive pathway that involves “separation” of the GTP binding domain (domain 1) from the OB folds (domains 2 and 3), followed by domainmore » 1 rotation, and, eventually, locking the EF-Tu conformation in the post-hydrolysis state. The domain separation also leads to a slight extension of the linker connecting domain 1 to domain 2. Using docking tools and correlation-based analysis, we identified and characterized the EF-Tu conformations that release the tRNA. These calculations suggest that EF-Tu can release the tRNA before the domains separate and after domain 1 rotates by 25°. Lastly, we also examined the EF-Tu conformations in the context of the ribosome. Given the high degrees of sequence similarity with other translational GTPases, we predict a similar separation mechanism is followed.« less

  7. Active site nanospace of aminoacyl tRNA synthetase: difference between the class I and class II synthetases.

    PubMed

    Dutta, Saheb; Choudhury, Kaberi; Banik, Sindrila Dutta; Nandi, Nilashis

    2014-03-01

    The present work is aimed at understanding the origin of the difference in the molecular organization of the active site nanospaces of the class I and class II aminoacyl tRNA synthetases (aaRSs) which are tunnel-like structures. The active site encloses the cognate amino acid (AA) and the adenosine triphosphate (ATP) to carry out aminoacylation reaction. Comparison of the structures of the active site of the class I and class II (aaRSs) shows that the nanodimensional tunnels are curved in opposite directions in the two classes. We investigated the origin of this difference using quantum mechanical computation of electrostatic potential (ESP) of substrates, surrounding residues and ions, using Atoms in Molecule (AIM) Theory and charge population analysis. We show that the difference is principally due to the variation in the spatial charge distribution of ATP in the two classes which correspond to extended and bent conformations of ATP. The present computation shows that the most feasible pathway for nucleophilic attack to alphaP is oppositely directed for class I and class II aaRSs. The available crystal structures show that the cognate AA is indeed located along the channel favorable for nucleophilic attack as predicted by the ESP analysis. It is also shown that the direction of the channel changes its orientation when the orientation of ATP is changed from extended to a bent like structure. We further used the AIM theory to confirm the direction of the approach of AA in each case and the results corroborate the results from the ESP analysis. The opposite curvatures of the active site nanospaces in class I and class II aaRSs are related with the influence of the charge distributions of the extended and bent conformations of ATP, respectively. The results of the computation of electrostatic potential by successive addition of active site residues show that their roles on the reaction are similar in both classes despite the difference in the organization of the

  8. Hydrolysis of Dihydrouridine and Related Compounds

    NASA Technical Reports Server (NTRS)

    House, Christopher H.; Miller, Stanley L.

    1996-01-01

    Dihydrouridine is absent from the tRNA of almost all hyperthermophiles and most Archaea but is ubiquitous in the tRNA of Eubacteria and Eukaryotes. In order to investigate whether this could be due to instability, the rate of ring opening of dihydrouridine was measured between 25 and 120 C. The dihydrouridine ring is stable at 25 C, but the half-life at 100 C and pH 7 is 9.1 h, which is comparable to the doubling time of hyperthermophiles. This suggests an explanation for the absence of dihydrouridine from the tRNA of hyperthermophiles. The rates of ring opening of dihydrouracil, dihydrothymine, and 1-N-methyldihydrouracil were measured at 100 C and pH 6-9, as were the equilibrium constants for ring closure of the ureido acids to the dihydrouracils. The pH rate profiles for ring opening and ring closing were calculated from the data. Possible roles for dihydrouracils in the pre-RNA world are discussed.

  9. Cloning and characterization of the Schizosaccharomyces pombe tRNA:pseudouridine synthase Pus1p

    PubMed Central

    Hellmuth, Klaus; Grosjean, Henri; Motorin, Yuri; Deinert, Karina; Hurt, Ed; Simos, George

    2000-01-01

    Saccharomyces cerevisiae cells that carry deletions in both the LOS1 (a tRNA export receptor) and the PUS1 (a tRNA:pseudouridine synthase) genes exhibit a thermosensitive growth defect. A Schizosaccharomyces pombe gene, named spPUS1, was cloned from a cDNA library by complementation of this conditional lethal phenotype. The corresponding protein, spPus1p, shows sequence similarity to S.cerevisiae and murine Pus1p as well as other known members of the pseudouridine synthase family. Accordingly, recombinant spPus1p can catalyze in vitro the formation of pseudouridines at positions 27, 28, 34, 35 and 36 of yeast tRNA transcripts. The sequence and functional conservation of the Pus1p proteins in fungi and mammalian species and their notable absence from prokaryotes suggest that this family of pseudouridine synthases is required for a eukaryote-specific step of tRNA biogenesis, such as nuclear export. PMID:11095668

  10. Cloning and characterization of the Schizosaccharomyces pombe tRNA:pseudouridine synthase Pus1p.

    PubMed

    Hellmuth, K; Grosjean, H; Motorin, Y; Deinert, K; Hurt, E; Simos, G

    2000-12-01

    Saccharomyces cerevisiae cells that carry deletions in both the LOS1 (a tRNA export receptor) and the PUS1 (a tRNA:pseudouridine synthase) genes exhibit a thermosensitive growth defect. A Schizosaccharomyces pombe gene, named spPUS1, was cloned from a cDNA library by complementation of this conditional lethal phenotype. The corresponding protein, spPus1p, shows sequence similarity to S. cerevisiae and murine Pus1p as well as other known members of the pseudouridine synthase family. Accordingly, recombinant spPus1p can catalyze in vitro the formation of pseudouridines at positions 27, 28, 34, 35 and 36 of yeast tRNA transcripts. The sequence and functional conservation of the Pus1p proteins in fungi and mammalian species and their notable absence from prokaryotes suggest that this family of pseudouridine synthases is required for a eukaryote-specific step of tRNA biogenesis, such as nuclear export.

  11. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains

    PubMed Central

    Shen, Peter S.; Park, Joseph; Qin, Yidan; Li, Xueming; Parsawar, Krishna; Larson, Matthew H.; Cox, James; Cheng, Yifan; Lambowitz, Alan M.; Weissman, Jonathan S.; Brandman, Onn; Frost, Adam

    2015-01-01

    In Eukarya, stalled translation induces 40S dissociation and recruitment of the Ribosome Quality control Complex (RQC) to the 60S subunit, which mediates nascent chain degradation. Here, we report cryoEM structures revealing that the RQC components Rqc2p (YPL009C/Tae2) and Ltn1p (YMR247C/Rkr1) bind to the 60S at sites exposed after 40S dissociation, placing the Ltn1p RING domain near the exit channel and Rqc2p over the P-site tRNA. We further demonstrate that Rqc2p recruits alanine and threonine charged tRNA to the A-site and directs elongation of nascent chains independently of mRNA or 40S subunits. Our work uncovers an unexpected mechanism of protein synthesis in which a protein—not an mRNA—determines tRNA recruitment and the tagging of nascent chains with Carboxy-terminal Ala and Thr extensions (“CAT tails”). PMID:25554787

  12. The ribosome as a molecular machine: the mechanism of tRNA-mRNA movement in translocation.

    PubMed

    Rodnina, Marina V; Wintermeyer, Wolfgang

    2011-04-01

    Translocation of tRNA and mRNA through the ribosome is one of the most dynamic events during protein synthesis. In the cell, translocation is catalysed by EF-G (elongation factor G) and driven by GTP hydrolysis. Major unresolved questions are: how the movement is induced and what the moving parts of the ribosome are. Recent progress in time-resolved cryoelectron microscopy revealed trajectories of tRNA movement through the ribosome. Driven by thermal fluctuations, the ribosome spontaneously samples a large number of conformational states. The spontaneous movement of tRNAs through the ribosome is loosely coupled to the motions within the ribosome. EF-G stabilizes conformational states prone to translocation and promotes a conformational rearrangement of the ribosome (unlocking) that accelerates the rate-limiting step of translocation: the movement of the tRNA anticodons on the small ribosomal subunit. EF-G acts as a Brownian ratchet providing directional bias for movement at the cost of GTP hydrolysis.

  13. Transfer RNAs Mediate the Rapid Adaptation of Escherichia coli to Oxidative Stress

    PubMed Central

    Du, Gaofei; Sun, Xuesong; He, Qing-Yu; Zhang, Gong

    2015-01-01

    Translational systems can respond promptly to sudden environmental changes to provide rapid adaptations to environmental stress. Unlike the well-studied translational responses to oxidative stress in eukaryotic systems, little is known regarding how prokaryotes respond rapidly to oxidative stress in terms of translation. In this study, we measured protein synthesis from the entire Escherichia coli proteome and found that protein synthesis was severely slowed down under oxidative stress. With unchanged translation initiation, this slowdown was caused by decreased translation elongation speed. We further confirmed by tRNA sequencing and qRT-PCR that this deceleration was caused by a global, enzymatic downregulation of almost all tRNA species shortly after exposure to oxidative agents. Elevation in tRNA levels accelerated translation and protected E. coli against oxidative stress caused by hydrogen peroxide and the antibiotic ciprofloxacin. Our results showed that the global regulation of tRNAs mediates the rapid adjustment of the E. coli translation system for prompt adaptation to oxidative stress. PMID:26090660

  14. Analysis of Isoaccepting Transfer Ribonucleic Acid Species of Bacillus subtilis: Chromatographic Differences Between Transfer Ribonucleic Acids from Spores and Cells in Exponential Growth

    PubMed Central

    Vold, Barbara S.

    1973-01-01

    Differences between the transfer ribonucleic acid (tRNA) of spores and exponentially growing cells of Bacillus subtilis 168 were compared by co-chromatography on reversed-phase column RPC-5. This system gave excellent resolution of isoaccepting species in 1 to 2 hr using a 200-ml gradient. Two methods were used to extract spore tRNAs, a procedure using a Braun homogenizer and a pretreatment with dithiothreitol followed by lysis with lysozyme. Where changes were observed, column elution profiles of spore tRNAs were independent of the extraction method used. Three kinds of changes between the profiles of vegetative cell tRNA and spore tRNA were observed: (i) no change; phe-, val-, ala-, asp-, ileu-, pro-, met-, fmet-, and his-tRNAs, (ii) a change in the ratio of existing peaks; gly-, tyr-, leu-, ser-, thr-, aspn-, and arg-tRNAs, and (iii) the appearance or disappearance of unique peaks; lys-, glu-, and trp-tRNAs. PMID:4632322

  15. Improving tRNAscan-SE Annotation Results via Ensemble Classifiers.

    PubMed

    Zou, Quan; Guo, Jiasheng; Ju, Ying; Wu, Meihong; Zeng, Xiangxiang; Hong, Zhiling

    2015-11-01

    tRNAScan-SE is a tRNA detection program that is widely used for tRNA annotation; however, the false positive rate of tRNAScan-SE is unacceptable for large sequences. Here, we used a machine learning method to try to improve the tRNAScan-SE results. A new predictor, tRNA-Predict, was designed. We obtained real and pseudo-tRNA sequences as training data sets using tRNAScan-SE and constructed three different tRNA feature sets. We then set up an ensemble classifier, LibMutil, to predict tRNAs from the training data. The positive data set of 623 tRNA sequences was obtained from tRNAdb 2009 and the negative data set was the false positive tRNAs predicted by tRNAscan-SE. Our in silico experiments revealed a prediction accuracy rate of 95.1 % for tRNA-Predict using 10-fold cross-validation. tRNA-Predict was developed to distinguish functional tRNAs from pseudo-tRNAs rather than to predict tRNAs from a genome-wide scan. However, tRNA-Predict can work with the output of tRNAscan-SE, which is a genome-wide scanning method, to improve the tRNAscan-SE annotation results. The tRNA-Predict web server is accessible at http://datamining.xmu.edu.cn/∼gjs/tRNA-Predict. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. PAUSED encodes the Arabidopsis exportin-t ortholog.

    PubMed

    Hunter, Christine A; Aukerman, Milo J; Sun, Hui; Fokina, Maria; Poethig, R Scott

    2003-08-01

    Los1p/exportin-t (XPOT) mediates the nuclear export of tRNAs in yeast and mammals. The requirements for this transport pathway are unclear, however, because los1 mutations do not affect yeast growth, and the phenotype of XPOT mutations in mammals is unknown. Here, we show that PAUSED (PSD) is the Arabidopsis ortholog of LOS1/XPOT and is capable of rescuing the tRNA export defect of los1 in Brewer's yeast (Saccharomyces cerevisiae), suggesting that its function has been conserved. Putative null alleles of PSD disrupt the initiation of the shoot apical meristem and delay leaf initiation after germination, the emergence of the radicle and lateral roots, and the transition to flowering. Plants doubly mutant for psd and hasty, the Arabidopsis ortholog of exportin 5, are viable but have a more severe phenotype than either single mutant. These results suggest that PSD plays a role in tRNA export in Arabidopsis, but that at least one-and perhaps several-additional tRNA export pathways also exist. The PSD transcript is broadly expressed during development and is alternatively spliced in the 3'-untranslated region. No temporal or spatial difference in the abundance of different splice forms was observed. We propose that the mutant phenotype of psd reflects defects in developmental events and cell/tissue types that require elevated levels of protein synthesis and are therefore acutely sensitive to a reduction in tRNA export.

  17. PAUSED Encodes the Arabidopsis Exportin-t Ortholog1

    PubMed Central

    Hunter, Christine A.; Aukerman, Milo J.; Sun, Hui; Fokina, Maria; Poethig, R. Scott

    2003-01-01

    Los1p/exportin-t (XPOT) mediates the nuclear export of tRNAs in yeast and mammals. The requirements for this transport pathway are unclear, however, because los1 mutations do not affect yeast growth, and the phenotype of XPOT mutations in mammals is unknown. Here, we show that PAUSED (PSD) is the Arabidopsis ortholog of LOS1/XPOT and is capable of rescuing the tRNA export defect of los1 in Brewer's yeast (Saccharomyces cerevisiae), suggesting that its function has been conserved. Putative null alleles of PSD disrupt the initiation of the shoot apical meristem and delay leaf initiation after germination, the emergence of the radicle and lateral roots, and the transition to flowering. Plants doubly mutant for psd and hasty, the Arabidopsis ortholog of exportin 5, are viable but have a more severe phenotype than either single mutant. These results suggest that PSD plays a role in tRNA export in Arabidopsis, but that at least one—and perhaps several—additional tRNA export pathways also exist. The PSD transcript is broadly expressed during development and is alternatively spliced in the 3′-untranslated region. No temporal or spatial difference in the abundance of different splice forms was observed. We propose that the mutant phenotype of psd reflects defects in developmental events and cell/tissue types that require elevated levels of protein synthesis and are therefore acutely sensitive to a reduction in tRNA export. PMID:12913168

  18. Transfer RNA methyltransferases from Thermoplasma acidophilum, a thermoacidophilic archaeon.

    PubMed

    Kawamura, Takuya; Anraku, Ryou; Hasegawa, Takahiro; Tomikawa, Chie; Hori, Hiroyuki

    2014-12-23

    We investigated tRNA methyltransferase activities in crude cell extracts from the thermoacidophilic archaeon Thermoplasma acidophilum. We analyzed the modified nucleosides in native initiator and elongator tRNAMet, predicted the candidate genes for the tRNA methyltransferases on the basis of the tRNAMet and tRNALeu sequences, and characterized Trm5, Trm1 and Trm56 by purifying recombinant proteins. We found that the Ta0997, Ta0931, and Ta0836 genes of T. acidophilum encode Trm1, Trm56 and Trm5, respectively. Initiator tRNAMet from T. acidophilum strain HO-62 contained G+, m1I, and m22G, which were not reported previously in this tRNA, and the m2G26 and m22G26 were formed by Trm1. In the case of elongator tRNAMet, our analysis showed that the previously unidentified G modification at position 26 was a mixture of m2G and m22G, and that they were also generated by Trm1. Furthermore, purified Trm1 and Trm56 could methylate the precursor of elongator tRNAMet, which has an intron at the canonical position. However, the speed of methyl-transfer by Trm56 to the precursor RNA was considerably slower than that to the mature transcript, which suggests that Trm56 acts mainly on the transcript after the intron has been removed. Moreover, cellular arrangements of the tRNA methyltransferases in T. acidophilum are discussed.

  19. Roles of yeast eIF2α and eIF2β subunits in the binding of the initiator methionyl-tRNA

    PubMed Central

    Naveau, Marie; Lazennec-Schurdevin, Christine; Panvert, Michel; Dubiez, Etienne; Mechulam, Yves; Schmitt, Emmanuelle

    2013-01-01

    Heterotrimeric eukaryotic/archaeal translation initiation factor 2 (e/aIF2) binds initiator methionyl-tRNA and plays a key role in the selection of the start codon on messenger RNA. tRNA binding was extensively studied in the archaeal system. The γ subunit is able to bind tRNA, but the α subunit is required to reach high affinity whereas the β subunit has only a minor role. In Saccharomyces cerevisiae however, the available data suggest an opposite scenario with β having the most important contribution to tRNA-binding affinity. In order to overcome difficulties with purification of the yeast eIF2γ subunit, we designed chimeric eIF2 by assembling yeast α and β subunits to archaeal γ subunit. We show that the β subunit of yeast has indeed an important role, with the eukaryote-specific N- and C-terminal domains being necessary to obtain full tRNA-binding affinity. The α subunit apparently has a modest contribution. However, the positive effect of α on tRNA binding can be progressively increased upon shortening the acidic C-terminal extension. These results, together with small angle X-ray scattering experiments, support the idea that in yeast eIF2, the tRNA molecule is bound by the α subunit in a manner similar to that observed in the archaeal aIF2–GDPNP–tRNA complex. PMID:23193270

  20. Agmatidine, a modified cytidine in the anticodon of archaeal tRNAIle, base pairs with adenosine but not with guanosine

    PubMed Central

    Mandal, Debabrata; Köhrer, Caroline; Su, Dan; Russell, Susan P.; Krivos, Kady; Castleberry, Colette M.; Blum, Paul; Limbach, Patrick A.; Söll, Dieter; RajBhandary, Uttam L.

    2010-01-01

    Modification of the cytidine in the first anticodon position of the AUA decoding tRNAIle () of bacteria and archaea is essential for this tRNA to read the isoleucine codon AUA and to differentiate between AUA and the methionine codon AUG. To identify the modified cytidine in archaea, we have purified this tRNA species from Haloarcula marismortui, established its codon reading properties, used liquid chromatography–mass spectrometry (LC-MS) to map RNase A and T1 digestion products onto the tRNA, and used LC-MS/MS to sequence the oligonucleotides in RNase A digests. These analyses revealed that the modification of cytidine in the anticodon of adds 112 mass units to its molecular mass and makes the glycosidic bond unusually labile during mass spectral analyses. Accurate mass LC-MS and LC-MS/MS analysis of total nucleoside digests of the demonstrated the absence in the modified cytidine of the C2-oxo group and its replacement by agmatine (decarboxy-arginine) through a secondary amine linkage. We propose the name agmatidine, abbreviation C+, for this modified cytidine. Agmatidine is also present in Methanococcus maripaludis and in Sulfolobus solfataricus total tRNA, indicating its probable occurrence in the AUA decoding tRNAIle of euryarchaea and crenarchaea. The identification of agmatidine shows that bacteria and archaea have developed very similar strategies for reading the isoleucine codon AUA while discriminating against the methionine codon AUG. PMID:20133752

  1. Elp3 and Dph3 of Schizosaccharomyces pombe mediate cellular stress responses through tRNALysUUU modifications.

    PubMed

    Villahermosa, Desirée; Fleck, Oliver

    2017-08-03

    Efficient protein synthesis in eukaryotes requires diphthamide modification of translation elongation factor eEF2 and wobble uridine modifications of tRNAs. In higher eukaryotes, these processes are important for preventing neurological and developmental defects and cancer. In this study, we used Schizosaccharomyces pombe as a model to analyse mutants defective in eEF2 modification (dph1Δ), in tRNA modifications (elp3Δ), or both (dph3Δ) for sensitivity to cytotoxic agents and thermal stress. The dph3Δ and elp3Δ mutants were sensitive to a range of drugs and had growth defects at low temperature. dph3Δ was epistatic with dph1Δ for sensitivity to hydroxyurea and methyl methanesulfonate, and with elp3Δ for methyl methanesulfonate and growth at 16 °C. The dph1Δ and dph3Δ deletions rescued growth defects of elp3Δ in response to thiabendazole and at 37 °C. Elevated tRNA Lys UUU levels suppressed the elp3Δ phenotypes and some of the dph3Δ phenotypes, indicating that lack of tRNA Lys UUU modifications were responsible. Furthermore, we found positive genetic interactions of elp3Δ and dph3Δ with sty1Δ and atf1Δ, indicating that Elp3/Dph3-dependent tRNA modifications are important for efficient biosynthesis of key factors required for accurate responses to cytotoxic stress conditions.

  2. Catalytic roles of the AMP at the 3' end of tRNAs

    NASA Technical Reports Server (NTRS)

    Wickramasinghe, N. S.; Lacey, J. C. Jr; Lacey JC, J. r. (Principal Investigator)

    1994-01-01

    Recent reports suggest that the ribosome retains considerable peptidyl transferase activity even when much of the protein of the ribosome is removed and further suggests that rRNA may be the peptidyl transferase. The work here suggests that the AMP residue at the 3' terminus of each tRNA has some catalytic activity both in the esterification reaction and in forming a pseudopeptide, AcGly, and further suggests that whatever peptidyl transferase is, it finds a cooperative substrate in the aminoacyl-AMP at the 3' terminus of tRNA.

  3. Atypical archaeal tRNA pyrrolysine transcript behaves towards EF-Tu as a typical elongator tRNA

    PubMed Central

    Théobald-Dietrich, Anne; Frugier, Magali; Giegé, Richard; Rudinger-Thirion, Joëlle

    2004-01-01

    The newly discovered tRNAPyl is involved in specific incorporation of pyrrolysine in the active site of methylamine methyltransferases in the archaeon Methanosarcina barkeri. In solution probing experiments, a transcript derived from tRNAPyl displays a secondary fold slightly different from the canonical cloverleaf and interestingly similar to that of bovine mitochondrial tRNASer(uga). Aminoacylation of tRNAPyl transcript by a typical class II synthetase, LysRS from yeast, was possible when its amber anticodon CUA was mutated into a lysine UUU anticodon. Hydrolysis protection assays show that lysylated tRNAPyl can be recognized by bacterial elongation factor. This indicates that no antideterminant sequence is present in the body of the tRNAPyl transcript to prevent it from interacting with EF-Tu, in contrast with the otherwise functionally similar tRNASec that mediates selenocysteine incorporation. PMID:14872064

  4. Hili Inhibits HIV Replication in Activated T Cells.

    PubMed

    Peterlin, B Matija; Liu, Pingyang; Wang, Xiaoyun; Cary, Daniele; Shao, Wei; Leoz, Marie; Hong, Tian; Pan, Tao; Fujinaga, Koh

    2017-06-01

    P-element-induced wimpy-like (Piwil) proteins restrict the replication of mobile genetic elements in the germ line. They are also expressed in many transformed cell lines. In this study, we discovered that the human Piwil 2 (Hili) protein can also inhibit HIV replication, especially in activated CD4 + T cells that are the preferred target cells for this virus in the infected host. Although resting cells did not express Hili, its expression was rapidly induced following T cell activation. In these cells and transformed cell lines, depletion of Hili increased levels of viral proteins and new viral particles. Further studies revealed that Hili binds to tRNA. Some of the tRNAs represent rare tRNA species, whose codons are overrepresented in the viral genome. Targeting tRNA Arg (UCU) with an antisense oligonucleotide replicated effects of Hili and also inhibited HIV replication. Finally, Hili also inhibited the retrotransposition of the endogenous intracysternal A particle (IAP) by a similar mechanism. Thus, Hili joins a list of host proteins that inhibit the replication of HIV and other mobile genetic elements. IMPORTANCE Piwil proteins inhibit the movement of mobile genetic elements in the germ line. In their absence, sperm does not form and male mice are sterile. This inhibition is thought to occur via small Piwi-interacting RNAs (piRNAs). However, in some species and in human somatic cells, Piwil proteins bind primarily to tRNA. In this report, we demonstrate that human Piwil proteins, especially Hili, not only bind to select tRNA species, including rare tRNAs, but also inhibit HIV replication. Importantly, T cell activation induces the expression of Hili in CD4 + T cells. Since Hili also inhibited the movement of an endogenous retrovirus (IAP), our finding shed new light on this intracellular resistance to exogenous and endogenous retroviruses as well as other mobile genetic elements. Copyright © 2017 American Society for Microbiology.

  5. Solution NMR analyses of the anticodon arms of proteinogenic and non-proteinogenic tRNAGly

    PubMed Central

    Chang, Andrew T.; Nikonowicz, Edward P.

    2012-01-01

    Although the fate of most tRNA molecules in the cell is aminoacylation and delivery to the ribosome, some tRNAs are destined to fulfill other functional roles. In addition to their central role in translation, tRNA molecules participate in processes such as regulation of gene expression, bacterial cell wall biosynthesis, viral replication, antibiotic biosynthesis, and suppression of alternative splicing. In bacteria, glycyl-tRNA molecules with anticodon sequences GCC and UCC exhibit multiple extra-translational functions including transcriptional regulation and cell wall biosynthesis. We have determined the high-resolution structures of three glycyl-tRNA anticodon arms with anticodon sequences GCC and UCC. Two of the tRNA molecules are proteinogenic (tRNAGly,GCC and tRNAGly,UCC) and the third is non-proteinogenic (np-tRNAGly,UCC) and participates in cell wall biosynthesis. The UV-monitored thermal melting curves show that the anticodon arm of tRNAGly,UCC with a loop-closing C-A+ base pair melts at a 10 °C lower temperature than those of tRNAGly,GCC or np-tRNAGly,UCC. U-A and C-G pairs close the loops of the later two molecules and enhance stem stability. Mg2+ stabilizes the tRNAGly,UCC anticodon arm and lessens the Tm differential. The structures of the three tRNAGly anticodon arms exhibit small differences between one another, but none of them form the classical U-turn motif. The anticodon loop of tRNAGly,GCC becomes more dynamic and disordered in the presence of multivalent cations, whereas metal ion coordination in the anticodon loops of tRNAGly,UCC and np-tRNAGly,UCC establishes conformational homogeneity. The conformational similarity of the molecules is greater than their functional differences might suggest. Because aminoacylation of the full-length tRNA molecules is accomplished by one tRNA synthetase, the similar structural context of the loop may facilitate efficient recognition of each of the anticodon sequences. PMID:22468768

  6. Solution nuclear magnetic resonance analyses of the anticodon arms of proteinogenic and nonproteinogenic tRNA(Gly).

    PubMed

    Chang, Andrew T; Nikonowicz, Edward P

    2012-05-01

    Although the fate of most tRNA molecules in the cell is aminoacylation and delivery to the ribosome, some tRNAs are destined to fulfill other functional roles. In addition to their central role in translation, tRNA molecules participate in processes such as regulation of gene expression, bacterial cell wall biosynthesis, viral replication, antibiotic biosynthesis, and suppression of alternative splicing. In bacteria, glycyl-tRNA molecules with anticodon sequences GCC and UCC exhibit multiple extratranslational functions, including transcriptional regulation and cell wall biosynthesis. We have determined the high-resolution structures of three glycyl-tRNA anticodon arms with anticodon sequences GCC and UCC. Two of the tRNA molecules are proteinogenic (tRNA(Gly,GCC) and tRNA(Gly,UCC)), and the third is nonproteinogenic (np-tRNA(Gly,UCC)) and participates in cell wall biosynthesis. The UV-monitored thermal melting curves show that the anticodon arm of tRNA(Gly,UCC) with a loop-closing C-A(+) base pair melts at a temperature 10 °C lower than those of tRNA(Gly,GCC) and np-tRNA(Gly,UCC). U-A and C-G pairs close the loops of the latter two molecules and enhance stem stability. Mg(2+) stabilizes the tRNA(Gly,UCC) anticodon arm and reduces the T(m) differential. The structures of the three tRNA(Gly) anticodon arms exhibit small differences among one another, but none of them form the classical U-turn motif. The anticodon loop of tRNA(Gly,GCC) becomes more dynamic and disordered in the presence of multivalent cations, whereas metal ion coordination in the anticodon loops of tRNA(Gly,UCC) and np-tRNA(Gly,UCC) establishes conformational homogeneity. The conformational similarity of the molecules is greater than their functional differences might suggest. Because aminoacylation of full-length tRNA molecules is accomplished by one tRNA synthetase, the similar structural context of the loop may facilitate efficient recognition of each of the anticodon sequences.

  7. Transfer RNA: a dancer between charging and mis-charging for protein biosynthesis.

    PubMed

    Zhou, Xiaolong; Wang, Enduo

    2013-10-01

    Transfer RNA plays a fundamental role in the protein biosynthesis as an adaptor molecule by functioning as a biological link between the genetic nucleotide sequence in the mRNA and the amino acid sequence in the protein. To perform its role in protein biosynthesis, it has to be accurately recognized by aminoacyl-tRNA synthetases (aaRSs) to generate aminoacyl-tRNAs (aa-tRNAs). The correct pairing between an amino acid with its cognate tRNA is crucial for translational quality control. Production and utilization of mis-charged tRNAs are usually detrimental for all the species, resulting in cellular dysfunctions. Correct aa-tRNAs formation is collectively controlled by aaRSs with distinct mechanisms and/or other trans-factors. However, in very limited instances, mis-charged tRNAs are intermediate for specific pathways or essential components for the translational machinery. Here, from the point of accuracy in tRNA charging, we review our understanding about the mechanism ensuring correct aa-tRNA generation. In addition, some unique mis-charged tRNA species necessary for the organism are also briefly described.

  8. tRNA-mediated codon-biased translation in mycobacterial hypoxic persistence

    NASA Astrophysics Data System (ADS)

    Chionh, Yok Hian; McBee, Megan; Babu, I. Ramesh; Hia, Fabian; Lin, Wenwei; Zhao, Wei; Cao, Jianshu; Dziergowska, Agnieszka; Malkiewicz, Andrzej; Begley, Thomas J.; Alonso, Sylvie; Dedon, Peter C.

    2016-11-01

    Microbial pathogens adapt to the stress of infection by regulating transcription, translation and protein modification. We report that changes in gene expression in hypoxia-induced non-replicating persistence in mycobacteria--which models tuberculous granulomas--are partly determined by a mechanism of tRNA reprogramming and codon-biased translation. Mycobacterium bovis BCG responded to each stage of hypoxia and aerobic resuscitation by uniquely reprogramming 40 modified ribonucleosides in tRNA, which correlate with selective translation of mRNAs from families of codon-biased persistence genes. For example, early hypoxia increases wobble cmo5U in tRNAThr(UGU), which parallels translation of transcripts enriched in its cognate codon, ACG, including the DosR master regulator of hypoxic bacteriostasis. Codon re-engineering of dosR exaggerates hypoxia-induced changes in codon-biased DosR translation, with altered dosR expression revealing unanticipated effects on bacterial survival during hypoxia. These results reveal a coordinated system of tRNA modifications and translation of codon-biased transcripts that enhance expression of stress response proteins in mycobacteria.

  9. tRNA-mediated codon-biased translation in mycobacterial hypoxic persistence

    PubMed Central

    Chionh, Yok Hian; McBee, Megan; Babu, I. Ramesh; Hia, Fabian; Lin, Wenwei; Zhao, Wei; Cao, Jianshu; Dziergowska, Agnieszka; Malkiewicz, Andrzej; Begley, Thomas J.; Alonso, Sylvie; Dedon, Peter C.

    2016-01-01

    Microbial pathogens adapt to the stress of infection by regulating transcription, translation and protein modification. We report that changes in gene expression in hypoxia-induced non-replicating persistence in mycobacteria—which models tuberculous granulomas—are partly determined by a mechanism of tRNA reprogramming and codon-biased translation. Mycobacterium bovis BCG responded to each stage of hypoxia and aerobic resuscitation by uniquely reprogramming 40 modified ribonucleosides in tRNA, which correlate with selective translation of mRNAs from families of codon-biased persistence genes. For example, early hypoxia increases wobble cmo5U in tRNAThr(UGU), which parallels translation of transcripts enriched in its cognate codon, ACG, including the DosR master regulator of hypoxic bacteriostasis. Codon re-engineering of dosR exaggerates hypoxia-induced changes in codon-biased DosR translation, with altered dosR expression revealing unanticipated effects on bacterial survival during hypoxia. These results reveal a coordinated system of tRNA modifications and translation of codon-biased transcripts that enhance expression of stress response proteins in mycobacteria. PMID:27834374

  10. Methyl Transfer by Substrate Signaling from a Knotted Protein Fold

    PubMed Central

    Christian, Thomas; Sakaguchi, Reiko; Perlinska, Agata P.; Lahoud, Georges; Ito, Takuhiro; Taylor, Erika A.; Yokoyama, Shigeyuki; Sulkowska, Joanna I.; Hou, Ya-Ming

    2017-01-01

    Proteins with knotted configurations are restricted in conformational space relative to unknotted proteins. Little is known if knotted proteins have sufficient dynamics to communicate between spatially separated substrate-binding sites. In bacteria, TrmD is a methyl transferase that uses a knotted protein fold to catalyze methyl transfer from S-adenosyl methionine (AdoMet) to G37-tRNA. The product m1G37-tRNA is essential for life as a determinant to maintain protein synthesis reading-frame. Using an integrated approach of structure, kinetic, and computational analysis, we show here that the structurally constrained TrmD knot is required for its catalytic activity. Unexpectedly, the TrmD knot has complex internal movements that respond to AdoMet binding and signaling. Most of the signaling propagates the free energy of AdoMet binding to stabilize tRNA binding and to assemble the active site. This work demonstrates new principles of knots as an organized structure that captures the free energies of substrate binding to facilitate catalysis. PMID:27571175

  11. Crystal structures and biochemical analyses suggest a unique mechanism and role for human glycyl-tRNA synthetase in Ap4A homeostasis.

    PubMed

    Guo, Rey-Ting; Chong, Yeeting E; Guo, Min; Yang, Xiang-Lei

    2009-10-16

    Aminoacyl-tRNA synthetases catalyze the attachment of amino acids to their cognate tRNAs for protein synthesis. However, the aminoacylation reaction can be diverted to produce diadenosine tetraphosphate (Ap4A), a universal pleiotropic signaling molecule needed for cell regulation pathways. The only known mechanism for Ap4A production by a tRNA synthetase is through the aminoacylation reaction intermediate aminoacyl-AMP, thus making Ap4A synthesis amino acid-dependent. Here, we demonstrate a new mechanism for Ap4A synthesis. Crystal structures and biochemical analyses show that human glycyl-tRNA synthetase (GlyRS) produces Ap4A by direct condensation of two ATPs, independent of glycine concentration. Interestingly, whereas the first ATP-binding pocket is conserved for all class II tRNA synthetases, the second ATP pocket is formed by an insertion domain that is unique to GlyRS, suggesting that GlyRS is the only tRNA synthetase catalyzing direct Ap4A synthesis. A special role for GlyRS in Ap4A homeostasis is proposed.

  12. Crystal Structures and Biochemical Analyses Suggest a Unique Mechanism and Role for Human Glycyl-tRNA Synthetase in Ap4A Homeostasis*

    PubMed Central

    Guo, Rey-Ting; Chong, Yeeting E.; Guo, Min; Yang, Xiang-Lei

    2009-01-01

    Aminoacyl-tRNA synthetases catalyze the attachment of amino acids to their cognate tRNAs for protein synthesis. However, the aminoacylation reaction can be diverted to produce diadenosine tetraphosphate (Ap4A), a universal pleiotropic signaling molecule needed for cell regulation pathways. The only known mechanism for Ap4A production by a tRNA synthetase is through the aminoacylation reaction intermediate aminoacyl-AMP, thus making Ap4A synthesis amino acid-dependent. Here, we demonstrate a new mechanism for Ap4A synthesis. Crystal structures and biochemical analyses show that human glycyl-tRNA synthetase (GlyRS) produces Ap4A by direct condensation of two ATPs, independent of glycine concentration. Interestingly, whereas the first ATP-binding pocket is conserved for all class II tRNA synthetases, the second ATP pocket is formed by an insertion domain that is unique to GlyRS, suggesting that GlyRS is the only tRNA synthetase catalyzing direct Ap4A synthesis. A special role for GlyRS in Ap4A homeostasis is proposed. PMID:19710017

  13. Structures and functions of proteins and nucleic acids in protein biosynthesis

    NASA Astrophysics Data System (ADS)

    Miyazawa, Tatsuo; Yokoyama, Shigeyuki

    Infrared and Raman spectroscopy is useful for studying helical conformations of polypeptides, which are determined by molecular structure parameters. Nuclear magnetic resonance spectroscopy, as well as X-ray analysis, is now established to be important for conformation studies of proteins and nucleic acids in solution. This article is mainly concerned with the conformational aspect and function regulation in protein biosynthesis. The strict recognition of transfer ribonucleic acid (tRNA) by aminoacyl-tRNA synthetase (ARS) is achieved by multi-step mutual adaptation. The conformations of ARS-bound amino acids have been elucidated by transferred nuclear Overhauser effect analysis. Aminoacyl-tRNA takes the 3‧-isomeric form in the polypeptide chain elongation cycle. The regulation of codon recognition by post-transcriptional modification is achieved by conversion of the conformational characteristic of the anticodon of tRNA. The cytidine → lysidine modification of the anticodon of minor isoleucine tRNA concurrently converts the amino acid specificity and the codon specificity. As novel protein engineering, a basic strategy has been established for in vivo biosynthesis of proteins that are substituted with unnatural amino acids (alloproteins).

  14. Complete mitochondrial genome of the Kwangtung skate: Dipturus kwangtungensis (Rajiformes, Rajidae).

    PubMed

    Jeong, Dageum; Kim, Sung; Kim, Choong-Gon; Lee, Youn-Ho

    2015-01-01

    The complete sequence of mitochondrial DNA of a Kwangtung skate, Dipturus kwangtungensis, was determined as being circular molecules of 16,912 bp including 2 rRNA, 22 tRNA, 13 protein coding genes (PCGs) and a control region. The arrangement of the PCGs is the same as that found in other Rajidae species. The nucleotide of L-strand which encodes most of the proteins is composed of 30.2% A, 27.4% C, 28.2% T and 14.2% G with a bias toward A+T slightly. Twelve of 13 PCGs are initiated by the ATG codon while COX1 starts with GTG. Only ND4 harbors the incomplete termination codon, TA. All tRNA genes have a typical clover-leaf structure of mitochondrial tRNA with the exception of tRNA(Ser)AGY, which has a reduced DHU arm. This mitogenome is the first report for a species of the genus Dipturus, which will become an important source of information on the phylogenetic relationship and the evolution of the genus Dipturus within the family Rajidae.

  15. Complete mitochondrial genome of the mottled skate: Raja pulchra (Rajiformes, Rajidae).

    PubMed

    Jeong, Dageum; Kim, Sung; Kim, Choong-Gon; Myoung, Jung-Goo; Lee, Youn-Ho

    2016-05-01

    The complete sequence of mitochondrial DNA of a mottled skate, Raja pulchra was sequenced as being circular molecules of 16,907 bp including 2 rRNA, 22 tRNA, 13 protein-coding genes (PCGs), and an AT-rich control region. The organization of the PCGs is the same as those found in other Rajidae species. The nucleotide of L-strand is composed of 29.8% A, 28.0% C, 27.9% T, and 14.3% G with a bias toward A + T slightly. Twelve of 13 PCGs are initiated by the ATG codon while COX1 starts with GTG. Only ND4 harbors the incomplete termination codon, TA. All tRNA genes have a typical clover-leaf structure of mitochondrial tRNA with the exception of [Formula: see text] which has a reduced DHU arm. This mitogenome will provide essential information for better phylogenetic resolution and precision of the family Rajidae and the genus Raja as well as for establishment of a fish stock recovery plan of the species.

  16. Distribution of Classical and Nonclassical Virulence Genes in Enterotoxigenic Escherichia coli Isolates from Chilean Children and tRNA Gene Screening for Putative Insertion Sites for Genomic Islands▿†

    PubMed Central

    Del Canto, Felipe; Valenzuela, Patricio; Cantero, Lidia; Bronstein, Jonathan; Blanco, Jesús E.; Blanco, Jorge; Prado, Valeria; Levine, Myron; Nataro, James; Sommerfelt, Halvor; Vidal, Roberto

    2011-01-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea. Three adhesins (Tia, TibA, EtpA), an iron acquisition system (Irp1, Irp2, and FyuA), a GTPase (LeoA), and an autotransporter (EatA) are ETEC virulence-related proteins that, in contrast to the classical virulence factors (enterotoxins and fimbrial colonization factors) have not heretofore been targets in characterizing isolates from epidemiological studies. Here, we determined the occurrence of these nonclassical virulence genes in 103 ETEC isolates from Chilean children with diarrhea and described their association with O serogroups and classical virulence determinants. Because tia, leoA, irp2, and fyuA are harbored by pathogenicity islands inserted into the selC and asnT tRNA genes (tDNAs), we analyzed the regions flanking these loci. Ten additional tDNAs were also screened to identify hot spots for genetic insertions. Associations between the most frequent serogroups and classical colonization factor (CF)-toxin profiles included O6/LT-STh/CS1-CS3-CS21 (i.e., O6 serogroup, heat-labile [LT] and human heat-stable [STh] enterotoxins, and CFs CS1, -3 and -21), O6/LT-STh/CS2-CS3-CS21, and O104-O127/STh/CFAI-CS21. The eatA and etpA genes were detected in more than 70% of the collection, including diverse serogroups and virulence profiles. Sixteen percent of the ETEC strains were negative for classical and nonclassical adhesins, suggesting the presence of unknown determinants of adhesion. The leuX, thrW, and asnT tDNAs were disrupted in more than 65% of strains, suggesting they are hot spots for the insertion of mobile elements. Sequences similar to integrase genes were identified next to the thrW, asnT, pheV, and selC tDNAs. We propose that the eatA and etpA genes should be included in characterizations of ETEC isolates in future epidemiological studies to determine their prevalence in other geographical regions. Sequencing of tDNA-associated genetic insertions might identify new ETEC virulence

  17. Structural insights into translational recoding by frameshift suppressor tRNASufJ

    PubMed Central

    Fagan, Crystal E.; Maehigashi, Tatsuya; Dunkle, Jack A.; Miles, Stacey J.

    2014-01-01

    The three-nucleotide mRNA reading frame is tightly regulated during translation to ensure accurate protein expression. Translation errors that lead to aberrant protein production can result from the uncoupled movement of the tRNA in either the 5′ or 3′ direction on mRNA. Here, we report the biochemical and structural characterization of +1 frameshift suppressor tRNASufJ, a tRNA known to decode four, instead of three, nucleotides. Frameshift suppressor tRNASufJ contains an insertion 5′ to its anticodon, expanding the anticodon loop from seven to eight nucleotides. Our results indicate that the expansion of the anticodon loop of either ASLSufJ or tRNASufJ does not affect its affinity for the A site of the ribosome. Structural analyses of both ASLSufJ and ASLThr bound to the Thermus thermophilus 70S ribosome demonstrate both ASLs decode in the zero frame. Although the anticodon loop residues 34–37 are superimposable with canonical seven-nucleotide ASLs, the single C31.5 insertion between nucleotides 31 and 32 in ASLSufJ imposes a conformational change of the anticodon stem, that repositions and tilts the ASL toward the back of the A site. Further modeling analyses reveal that this tilting would cause a distortion in full-length A-site tRNASufJ during tRNA selection and possibly impede gripping of the anticodon stem by 16S rRNA nucleotides in the P site. Together, these data implicate tRNA distortion as a major driver of noncanonical translation events such as frameshifting. PMID:25352689

  18. [Analysis of the primary and secondary structure of the mitochondrial serine transfer RNA in seven species of Lutzomyia].

    PubMed

    Vivero, Rafael José; Contreras-Gutiérrez, Maria Angélica; Bejarano, Eduar Elías

    2007-09-01

    Lutzomyia sand flies are involved in the transmission of the parasite Leishmania spp. in America. The taxonomy of these vectors is traditionally based on morphological features of the adult stage, particularly the paired structures of the head and genitalia. Although these characters are useful to distinguish most species of Lutzomyia, morphological identification may be complicated by the similarities within subgenera and species group. To evaluate the utility of mitochondrial serine transfer RNA tRNA Ser for taxonomic identification of Lutzomyia. Seven sand fly species, each representing one of the 27 taxonomic subdivisions in genus Lutzomyia, were analyzed including L. trinidadensis (Oswaldoi group), L. (Psychodopygus) panamensis, L.(Micropygomyia) cayennensis cayennensis, L. dubitans (Migonei group), L. (Lutzomyia) gomezi, L. rangeliana (ungrouped) and L. evansi (Verrucarum group). The mitochondrial tRNA Ser gene, flanked by the cytochrome b and NAD dehydrogenase subunit one genes, was extracted, amplified and sequenced from each specimen. Secondary structure of the tRNA Ser was predicted by comparisons with previously described homologous structures from other dipteran species. The tRNA Ser gene ranged in size from 66 base pairs in L. gomezi to 69 base pairs in L. trinidadensis. Fourteen polymorphic sites, including four insertion-deletion events, were observed in the aligned 70 nucleotide positions. The majority of the substitutions were located in the dihydrouridine, ribothymidine-pseudouridine-cytosine and variable loops, as well as in the basal extreme of the anticodon arm. Changes of primary sequence of the tRNASer provided useful molecular characters for taxonomic identification of the sand fly species under consideration.

  19. Utp9p facilitates Msn5p-mediated nuclear reexport of retrograded tRNAs in Saccharomyces cerevisiae.

    PubMed

    Eswara, Manoja B K; McGuire, Andrew T; Pierce, Jacqueline B; Mangroo, Dev

    2009-12-01

    Utp9p is a nucleolar protein that is part of a subcomplex containing several U3 snoRNA-associated proteins including Utp8p, which is a protein that shuttles aminoacyl-tRNAs from the nucleolus to the nuclear tRNA export receptors Los1p and Msn5p in Saccharomyces cerevisiae. Here we show that Utp9p is also an intranuclear component of the Msn5p-mediated nuclear tRNA export pathway. Depletion of Utp9p caused nuclear accumulation of mature tRNAs derived from intron-containing precursors, but not tRNAs made from intronless pre-tRNAs. Utp9p binds tRNA directly and saturably, and copurifies with Utp8p, Gsp1p, and Msn5p, but not with Los1p or aminoacyl-tRNA synthetases. Utp9p interacts directly with Utp8p, Gsp1p, and Msn5p in vitro. Furthermore, Gsp1p forms a complex with Msn5p and Utp9p in a tRNA-dependent manner. However, Utp9p does not shuttle between the nucleus and the cytoplasm. Because tRNA splicing occurs in the cytoplasm and the spliced tRNAs are retrograded back to the nucleus, we propose that Utp9p facilitates nuclear reexport of retrograded tRNAs. Moreover, the data suggest that Utp9p together with Utp8p translocate aminoacyl-tRNAs from the nucleolus to Msn5p and assist with formation of the Msn5p-tRNA-Gsp1p-GTP export complex.

  20. The Promiscuous sumA Missense Suppressor from Salmonella enterica Has an Intriguing Mechanism of Action

    PubMed Central

    Cole, Ashley E.; Hani, Fatmah M.; Altman, Ronni; Meservy, Megan; Roth, John R.; Altman, Elliot

    2017-01-01

    While most missense suppressors have very narrow specificities and only suppress the allele against which they were isolated, the sumA missense suppressor from Salmonella enterica serovar Typhimurium is a promiscuous or broad-acting missense suppressor that suppresses numerous missense mutants. The sumA missense suppressor was identified as a glyV tRNA Gly3(GAU/C) missense suppressor that can recognize GAU or GAC aspartic acid codons and insert a glycine amino acid instead of aspartic acid. In addition to rescuing missense mutants caused by glycine to aspartic acid changes as expected, sumA could also rescue a number of other missense mutants as well by changing a neighboring (contacting) aspartic acid to glycine, which compensated for the other amino acid change. Thus the ability of sumA to rescue numerous missense mutants was due in part to the large number of glycine codons in genes that can be mutated to an aspartic acid codon and in part to the general tolerability and/or preference for glycine amino acids in proteins. Because the glyV tRNA Gly3(GAU/C) missense suppressor has also been extensively characterized in Escherichia coli as the mutA mutator, we demonstrated that all gain-of-function mutants isolated in a glyV tRNA Gly3(GAU/C) missense suppressor are transferable to a wild-type background and thus the increased mutation rates, which occur in glyV tRNA Gly3(GAU/C) missense suppressors, are not due to the suppression of these mutants. PMID:27974497

  1. Rooted tRNAomes and evolution of the genetic code

    PubMed Central

    Pak, Daewoo; Du, Nan; Kim, Yunsoo; Sun, Yanni

    2018-01-01

    ABSTRACT We advocate for a tRNA- rather than an mRNA-centric model for evolution of the genetic code. The mechanism for evolution of cloverleaf tRNA provides a root sequence for radiation of tRNAs and suggests a simplified understanding of code evolution. To analyze code sectoring, rooted tRNAomes were compared for several archaeal and one bacterial species. Rooting of tRNAome trees reveals conserved structures, indicating how the code was shaped during evolution and suggesting a model for evolution of a LUCA tRNAome tree. We propose the polyglycine hypothesis that the initial product of the genetic code may have been short chain polyglycine to stabilize protocells. In order to describe how anticodons were allotted in evolution, the sectoring-degeneracy hypothesis is proposed. Based on sectoring, a simple stepwise model is developed, in which the code sectors from a 1→4→8→∼16 letter code. At initial stages of code evolution, we posit strong positive selection for wobble base ambiguity, supporting convergence to 4-codon sectors and ∼16 letters. In a later stage, ∼5–6 letters, including stops, were added through innovating at the anticodon wobble position. In archaea and bacteria, tRNA wobble adenine is negatively selected, shrinking the maximum size of the primordial genetic code to 48 anticodons. Because 64 codons are recognized in mRNA, tRNA-mRNA coevolution requires tRNA wobble position ambiguity leading to degeneracy of the code. PMID:29372672

  2. Enhancement of Single Molecule Fluorescence Signals by Colloidal Silver Nanoparticles in Studies of Protein Translation

    PubMed Central

    Bharill, Shashank; Chen, Chunlai; Stevens, Benjamin; Kaur, Jaskiran; Smilansky, Zeev; Mandecki, Wlodek; Gryczynski, Ignacy; Gryczynski, Zygmunt; Cooperman, Barry S.; Goldman, Yale E.

    2011-01-01

    Metal enhanced fluorescence (MEF) increased total photon emission of Cy3- and Cy5-labeled ribosomal initiation complexes near 50 nm silver particles 4- and 5.5-fold respectively. Fluorescence intensity fluctuations above shot noise, at 0.1 – 5 Hz, were greater on silver particles. Overall signal to noise ratio was similar or slightly improved near the particles. Proximity to silver particles did not compromise ribosome function, as measured by codon-dependent binding of fluorescent tRNA, dynamics of fluorescence resonance energy transfer between adjacent tRNAs in the ribosome, and tRNA translocation induced by elongation factor G. PMID:21158483

  3. Enhancement of single-molecule fluorescence signals by colloidal silver nanoparticles in studies of protein translation.

    PubMed

    Bharill, Shashank; Chen, Chunlai; Stevens, Benjamin; Kaur, Jaskiran; Smilansky, Zeev; Mandecki, Wlodek; Gryczynski, Ignacy; Gryczynski, Zygmunt; Cooperman, Barry S; Goldman, Yale E

    2011-01-25

    Metal-enhanced fluorescence (MEF) increased total photon emission of Cy3- and Cy5-labeled ribosomal initiation complexes near 50 nm silver particles 4- and 5.5-fold, respectively. Fluorescence intensity fluctuations above shot noise, at 0.1-5 Hz, were greater on silver particles. Overall signal-to-noise ratio was similar or slightly improved near the particles. Proximity to silver particles did not compromise ribosome function, as measured by codon-dependent binding of fluorescent tRNA, dynamics of fluorescence resonance energy transfer between adjacent tRNAs in the ribosome, and tRNA translocation induced by elongation factor G.

  4. DNA adenine methyltransferase (Dam) controls the expression of the cytotoxic enterotoxin (act) gene of Aeromonas hydrophila via tRNA modifying enzyme-glucose-inhibited division protein (GidA).

    PubMed

    Erova, Tatiana E; Kosykh, Valeri G; Sha, Jian; Chopra, Ashok K

    2012-05-01

    Aeromonas hydrophila is both a human and animal pathogen, and the cytotoxic enterotoxin (Act) is a crucial virulence factor of this bacterium because of its associated hemolytic, cytotoxic, and enterotoxic activities. Previously, to define the role of some regulatory genes in modulating Act production, we showed that deletion of a glucose-inhibited division gene (gidA) encoding tRNA methylase reduced Act levels, while overproduction of DNA adenine methyltransferase (Dam) led to a concomitant increase in Act-associated biological activities of a diarrheal isolate SSU of A. hydrophila. Importantly, there are multiple GATC binding sites for Dam within an upstream sequence of the gidA gene and one such target site in the act gene upstream region. We showed the dam gene to be essential for the viability of A. hydrophila SSU, and, therefore, to better understand the interaction of the encoding genes, Dam and GidA, in act gene regulation, we constructed a gidA in-frame deletion mutant of Escherichia coli GM28 (dam(+)) and GM33 (∆dam) strains. We then tested the expressional activity of the act and gidA genes by using a promoterless pGlow-TOPO vector containing a reporter green fluorescent protein (GFP). Our data indicated that in GidA(+) strains of E. coli, constitutive methylation of the GATC site(s) by Dam negatively regulated act and gidA gene expression as measured by GFP production. However, in the ∆gidA strains, irrespective of the presence or absence of constitutively active Dam, we did not observe any alteration in the expression of the act gene signifying the role of GidA in positively regulating Act production. To determine the exact mechanism of how Dam and GidA influence Act, a real-time quantitative PCR (RT-qPCR) assay was performed. The analysis indicated an increase in gidA and act gene expression in the A. hydrophila Dam-overproducing strain, and these data matched with Act production in the E. coli GM28 strain. Thus, the extent of DNA methylation

  5. Structural landscape of base pairs containing post-transcriptional modifications in RNA

    PubMed Central

    Seelam, Preethi P.; Sharma, Purshotam

    2017-01-01

    Base pairs involving post-transcriptionally modified nucleobases are believed to play important roles in a wide variety of functional RNAs. Here we present our attempts toward understanding the structural and functional role of naturally occurring modified base pairs using a combination of X-ray crystal structure database analysis, sequence analysis, and advanced quantum chemical methods. Our bioinformatics analysis reveals that despite their presence in all major secondary structural elements, modified base pairs are most prevalent in tRNA crystal structures and most commonly involve guanine or uridine modifications. Further, analysis of tRNA sequences reveals additional examples of modified base pairs at structurally conserved tRNA regions and highlights the conservation patterns of these base pairs in three domains of life. Comparison of structures and binding energies of modified base pairs with their unmodified counterparts, using quantum chemical methods, allowed us to classify the base modifications in terms of the nature of their electronic structure effects on base-pairing. Analysis of specific structural contexts of modified base pairs in RNA crystal structures revealed several interesting scenarios, including those at the tRNA:rRNA interface, antibiotic-binding sites on the ribosome, and the three-way junctions within tRNA. These scenarios, when analyzed in the context of available experimental data, allowed us to correlate the occurrence and strength of modified base pairs with their specific functional roles. Overall, our study highlights the structural importance of modified base pairs in RNA and points toward the need for greater appreciation of the role of modified bases and their interactions, in the context of many biological processes involving RNA. PMID:28341704

  6. Characterization of circulating transfer RNA-derived RNA fragments in cattle

    PubMed Central

    Casas, Eduardo; Cai, Guohong; Neill, John D.

    2015-01-01

    The objective was to characterize naturally occurring circulating transfer RNA-derived RNA fragments (tRFs) in cattle1. Serum from eight clinically normal adult dairy cows was collected, and small non-coding RNAs were extracted immediately after collection and sequenced by Illumina MiSeq. Sequences aligned to transfer RNA (tRNA) genes or their flanking sequences were characterized. Sequences aligned to the beginning of 5′ end of the mature tRNA were classified as tRF5; those aligned to the 3′ end of mature tRNA were classified as tRF3; and those aligned to the beginning of the 3′ end flanking sequences were classified as tRF1. There were 3,190,962 sequences that mapped to transfer RNA and small non-coding RNAs in the bovine genome. Of these, 2,323,520 were identified as tRF5s, 562 were tRF3s, and 81 were tRF1s. There were 866,799 sequences identified as other small non-coding RNAs (microRNA, rRNA, snoRNA, etc.) and were excluded from the study. The tRF5s ranged from 28 to 40 nucleotides; and 98.7% ranged from 30 to 34 nucleotides in length. The tRFs with the greatest number of sequences were derived from tRNA of histidine, glutamic acid, lysine, glycine, and valine. There was no association between number of codons for each amino acid and number of tRFs in the samples. The reason for tRF5s being the most abundant can only be explained if these sequences are associated with function within the animal. PMID:26379699

  7. Overcoming codon-usage bias in heterologous protein expression in Streptococcus gordonii.

    PubMed

    Lee, Song F; Li, Yi-Jing; Halperin, Scott A

    2009-11-01

    One of the limitations facing the development of Streptococcus gordonii into a successful vaccine vector is the inability of this bacterium to express high levels of heterologous proteins. In the present study, we have identified 12 codons deemed as rare codons in S. gordonii and seven other streptococcal species. tRNA genes encoding 10 of the 12 rare codons were cloned into a plasmid. The plasmid was transformed into strains of S. gordonii expressing the fusion protein SpaP/S1, the anti-complement receptor 1 (CR1) single-chain variable fragment (scFv) antibody, or the Toxoplasma gondii cyclophilin C18 protein. These three heterologous proteins contained high percentages of amino acids encoded by rare codons. The results showed that the production of SpaP/S1, anti-CR1 scFv and C18 increased by 2.7-, 120- and 10-fold, respectively, over the control strains. In contrast, the production of the streptococcal SpaP protein without the pertussis toxin S1 fragment was not affected by tRNA gene supplementation, indicating that the increased production of SpaP/S1 protein was due to the ability to overcome the limitation caused by rare codons required for the S1 fragment. The increase in anti-CR1 scFv production was also observed in Streptococcus mutans following tRNA gene supplementation. Collectively, the findings in the present study demonstrate for the first time, to the best of our knowledge, that codon-usage bias exists in Streptococcus spp. and the limitation of heterologous protein expression caused by codon-usage bias can be overcome by tRNA supplementation.

  8. Synthesis of thiol-containing analogues of puromycin and a study of their interaction with N-acetylphenylalanyl-transfer ribonucleic acid on ribosomes to form thioesters

    PubMed Central

    Gooch, John; Hawtrey, Arthur O.

    1975-01-01

    1. The thiol-containing analogue of puromycin, 6-dimethylamino-9-{1′-[3′-(2″-mercapto-3″-phenylpropionamido)-3′-deoxy-β-d-ribofuranosyl]}purine (XVII) in which the primary amino group of the antibiotic is replaced with a thiol grouping, was synthesized chemically (compound XVII is abbreviated to thiopuromycin). 2. Thiopuromycin (XVII) was found to be active in releasing N-[3H]acetylphenylalanine from its tRNA carrier as the thioester, N-acetylphenylalanylthiopuromycin (XIX) in the Escherichia coli ribosomal system. The reaction product (XIX) was synthesized chemically from thiopuromycin and N-acetylphenylalanine and found to be stable to hydrolysis in the standard incubation medium at pH7.6. dl-Phenyl-lactylpuromycin (XXI), the hydroxy analogue of puromycin, was also synthesized chemically and shown to release N-acetylphenylalanine from its tRNA carrier in the E. coli ribosomal system, thus confirming the previous results of Fahnestock et al. [Biochemistry (1970) 9, 2477–2483]. 3. In marked contrast with the results obtained in the E. coli system, both thiopuromycin (XVII) and hydroxypuromycin (XXI) were found to be inactive in releasing N-acetylphenylalanine from its tRNA carrier in the rat liver ribosomal system. PMID:1103886

  9. Reversible infantile mitochondrial diseases.

    PubMed

    Boczonadi, Veronika; Bansagi, Boglarka; Horvath, Rita

    2015-05-01

    Mitochondrial diseases are usually severe and progressive conditions; however, there are rare forms that show remarkable spontaneous recoveries. Two homoplasmic mitochondrial tRNA mutations (m.14674T>C/G in mt-tRNA(Glu)) have been reported to cause severe infantile mitochondrial myopathy in the first months of life. If these patients survive the first year of life by extensive life-sustaining measures they usually recover and develop normally. Another mitochondrial disease due to deficiency of the 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) causes severe liver failure in infancy, but similar to the reversible mitochondrial myopathy, within the first year of life these infants may also recover completely. Partial recovery has been noted in some other rare forms of mitochondrial disease due to deficiency of mitochondrial tRNA synthetases and mitochondrial tRNA modifying enzymes. Here we summarize the clinical presentation of these unique reversible mitochondrial diseases and discuss potential molecular mechanisms behind the reversibility. Understanding these mechanisms may provide the key to treatments of potential broader relevance in mitochondrial disease, where for the majority of the patients no effective treatment is currently available.

  10. The extraction and purification of a cysteine transfer ribonucleic acid from baker's yeast.

    PubMed Central

    Holness, N J; Atfield, G

    1976-01-01

    1. A modification of the RPC 1 system of A.D. Kelmers, G.D. Novelli & M.P. Stulberg (1965) (J. Biol. Chem. 240, 3979-3983) is described in which the support medium is a Celite of narrow range particle size treated with dichlorodimethylsilane. 2. By using this system an apparently pure preparation of tRNA Cys was isolated from baker's yeast tRNA. 3. This preparation accepted at least 60% of the theoretical quantity of [3-14C]cysteine in a conventional assay and failed to accept isoleucine, phenylalanine, proline, serine or tyrosine. 4. A theoretical countercurrent-distribution curve calculated by assuming a distribution coefficient K of 2.03 was in excellent agreement with the profiles of E260 and cysteine-acceptor ability after 537 transfers in the 1.85 M-phosphate/formamide/propan-2-ol system of C.M. Connelly & B.P. Doctor (1965) (J. Biol. Chem. 241, 715-719). 5. Chromatography of tRNA Cys on Bio-Gel P100 polyacrylamide beads afforded two components one of which was far less efficient than the other in accepting cysteine. The base compositions of the two were similar. PMID:776175

  11. The bipartite mitochondrial genome of Ruizia karukerae (Rhigonematomorpha, Nematoda).

    PubMed

    Kim, Taeho; Kern, Elizabeth; Park, Chungoo; Nadler, Steven A; Bae, Yeon Jae; Park, Joong-Ki

    2018-05-10

    Mitochondrial genes and whole mitochondrial genome sequences are widely used as molecular markers in studying population genetics and resolving both deep and shallow nodes in phylogenetics. In animals the mitochondrial genome is generally composed of a single chromosome, but mystifying exceptions sometimes occur. We determined the complete mitochondrial genome of the millipede-parasitic nematode Ruizia karukerae and found its mitochondrial genome consists of two circular chromosomes, which is highly unusual in bilateral animals. Chromosome I is 7,659 bp and includes six protein-coding genes, two rRNA genes and nine tRNA genes. Chromosome II comprises 7,647 bp, with seven protein-coding genes and 16 tRNA genes. Interestingly, both chromosomes share a 1,010 bp sequence containing duplicate copies of cox2 and three tRNA genes (trnD, trnG and trnH), and the nucleotide sequences between the duplicated homologous gene copies are nearly identical, suggesting a possible recent genesis for this bipartite mitochondrial genome. Given that little is known about the formation, maintenance or evolution of abnormal mitochondrial genome structures, R. karukerae mtDNA may provide an important early glimpse into this process.

  12. Sulfur Modifications of the Wobble U34 in tRNAs and their Intracellular Localization in Eukaryotic Cells.

    PubMed

    Nakai, Yumi; Nakai, Masato; Yano, Takato

    2017-02-18

    The wobble uridine (U 34 ) of transfer RNAs (tRNAs) for two-box codon recognition, i.e., tRNA Lys UUU , tRNA Glu UUC , and tRNA Gln UUG , harbor a sulfur- (thio-) and a methyl-derivative structure at the second and fifth positions of U 34 , respectively. Both modifications are necessary to construct the proper anticodon loop structure and to enable them to exert their functions in translation. Thio-modification of U 34 (s²U 34 ) is found in both cytosolic tRNAs (cy-tRNAs) and mitochondrial tRNAs (mt-tRNAs). Although l-cysteine desulfurase is required in both cases, subsequent sulfur transfer pathways to cy-tRNAs and mt-tRNAs are different due to their distinct intracellular locations. The s²U 34 formation in cy-tRNAs involves a sulfur delivery system required for the biosynthesis of iron-sulfur (Fe/S) clusters and certain resultant Fe/S proteins. This review addresses presumed sulfur delivery pathways for the s²U 34 formation in distinct intracellular locations, especially that for cy-tRNAs in comparison with that for mt-tRNAs.

  13. Complete mitochondrial genome of the giant African snail, Achatina fulica (Mollusca: Achatinidae): a novel location of putative control regions (CR) in the mitogenome within Pulmonate species.

    PubMed

    He, Zhang-Ping; Dai, Xia-Bin; Zhang, Shuai; Zhi, Ting-Ting; Lun, Zhao-Rong; Wu, Zhong-Dao; Yang, Ting-Bao

    2016-01-01

    The whole sequence (15,057 bp) of the mitochondrial DNA (mtDNA) of the terrestrial snail Achatina fulica (order Stylommatophora) was determined. The mitogenome, as the typical metazoan mtDNA, contains 13 protein-coding genes (PCG), 2 ribosomal RNA genes (rRNA) and 22 transfer RNA genes (tRNA). The tRNA genes include two trnS without standard secondary structure. Interestingly, among the known mitogenomes of Pulmonata species, we firstly characterized an unassigned lengthy sequence (551 bp) between the cox1 and the trnV which may be the CR for the sake of its AT bases usage bias (65.70%) and potential hairpin structure.

  14. A multiplicity of factors contributes to selective RNA polymerase III occupancy of a subset of RNA polymerase III genes in mouse liver

    PubMed Central

    Canella, Donatella; Bernasconi, David; Gilardi, Federica; LeMartelot, Gwendal; Migliavacca, Eugenia; Praz, Viviane; Cousin, Pascal; Delorenzi, Mauro; Hernandez, Nouria; Hernandez, Nouria; Delorenzi, Mauro; Deplancke, Bart; Desvergne, Béatrice; Guex, Nicolas; Herr, Winship; Naef, Felix; Rougemont, Jacques; Schibler, Ueli; Deplancke, Bart; Guex, Nicolas; Herr, Winship; Guex, Nicolas; Andersin, Teemu; Cousin, Pascal; Gilardi, Federica; Gos, Pascal; Le Martelot, Gwendal; Lammers, Fabienne; Canella, Donatella; Gilardi, Federica; Raghav, Sunil; Fabbretti, Roberto; Fortier, Arnaud; Long, Li; Vlegel, Volker; Xenarios, Ioannis; Migliavacca, Eugenia; Praz, Viviane; Guex, Nicolas; Naef, Felix; Rougemont, Jacques; David, Fabrice; Jarosz, Yohan; Kuznetsov, Dmitry; Liechti, Robin; Martin, Olivier; Ross, Frederick; Sinclair, Lucas; Cajan, Julia; Krier, Irina; Leleu, Marion; Migliavacca, Eugenia; Molina, Nacho; Naldi, Aurélien; Rey, Guillaume; Symul, Laura; Guex, Nicolas; Naef, Felix; Rougemont, Jacques; Bernasconi, David; Delorenzi, Mauro; Andersin, Teemu; Canella, Donatella; Gilardi, Federica; Le Martelot, Gwendal; Lammers, Fabienne; Raghav, Sunil

    2012-01-01

    The genomic loci occupied by RNA polymerase (RNAP) III have been characterized in human culture cells by genome-wide chromatin immunoprecipitations, followed by deep sequencing (ChIP-seq). These studies have shown that only ∼40% of the annotated 622 human tRNA genes and pseudogenes are occupied by RNAP-III, and that these genes are often in open chromatin regions rich in active RNAP-II transcription units. We have used ChIP-seq to characterize RNAP-III-occupied loci in a differentiated tissue, the mouse liver. Our studies define the mouse liver RNAP-III-occupied loci including a conserved mammalian interspersed repeat (MIR) as a potential regulator of an RNAP-III subunit-encoding gene. They reveal that synteny relationships can be established between a number of human and mouse RNAP-III genes, and that the expression levels of these genes are significantly linked. They establish that variations within the A and B promoter boxes, as well as the strength of the terminator sequence, can strongly affect RNAP-III occupancy of tRNA genes. They reveal correlations with various genomic features that explain the observed variation of 81% of tRNA scores. In mouse liver, loci represented in the NCBI37/mm9 genome assembly that are clearly occupied by RNAP-III comprise 50 Rn5s (5S RNA) genes, 14 known non-tRNA RNAP-III genes, nine Rn4.5s (4.5S RNA) genes, and 29 SINEs. Moreover, out of the 433 annotated tRNA genes, half are occupied by RNAP-III. Transfer RNA gene expression levels reflect both an underlying genomic organization conserved in dividing human culture cells and resting mouse liver cells, and the particular promoter and terminator strengths of individual genes. PMID:22287103

  15. tRNAGlu increases the affinity of glutamyl-tRNA synthetase for its inhibitor glutamyl-sulfamoyl-adenosine, an analogue of the aminoacylation reaction intermediate glutamyl-AMP: mechanistic and evolutionary implications.

    PubMed

    Blais, Sébastien P; Kornblatt, Jack A; Barbeau, Xavier; Bonnaure, Guillaume; Lagüe, Patrick; Chênevert, Robert; Lapointe, Jacques

    2015-01-01

    For tRNA-dependent protein biosynthesis, amino acids are first activated by aminoacyl-tRNA synthetases (aaRSs) yielding the reaction intermediates aminoacyl-AMP (aa-AMP). Stable analogues of aa-AMP, such as aminoacyl-sulfamoyl-adenosines, inhibit their cognate aaRSs. Glutamyl-sulfamoyl-adenosine (Glu-AMS) is the best known inhibitor of Escherichia coli glutamyl-tRNA synthetase (GluRS). Thermodynamic parameters of the interactions between Glu-AMS and E. coli GluRS were measured in the presence and in the absence of tRNA by isothermal titration microcalorimetry. A significant entropic contribution for the interactions between Glu-AMS and GluRS in the absence of tRNA or in the presence of the cognate tRNAGlu or of the non-cognate tRNAPhe is indicated by the negative values of -TΔSb, and by the negative value of ΔCp. On the other hand, the large negative enthalpy is the dominant contribution to ΔGb in the absence of tRNA. The affinity of GluRS for Glu-AMS is not altered in the presence of the non-cognate tRNAPhe, but the dissociation constant Kd is decreased 50-fold in the presence of tRNAGlu; this result is consistent with molecular dynamics results indicating the presence of an H-bond between Glu-AMS and the 3'-OH oxygen of the 3'-terminal ribose of tRNAGlu in the Glu-AMS•GluRS•tRNAGlu complex. Glu-AMS being a very close structural analogue of Glu-AMP, its weak binding to free GluRS suggests that the unstable Glu-AMP reaction intermediate binds weakly to GluRS; these results could explain why all the known GluRSs evolved to activate glutamate only in the presence of tRNAGlu, the coupling of glutamate activation to its transfer to tRNA preventing unproductive cleavage of ATP.

  16. tRNAGlu Increases the Affinity of Glutamyl-tRNA Synthetase for Its Inhibitor Glutamyl-Sulfamoyl-Adenosine, an Analogue of the Aminoacylation Reaction Intermediate Glutamyl-AMP: Mechanistic and Evolutionary Implications

    PubMed Central

    Blais, Sébastien P.; Kornblatt, Jack A.; Barbeau, Xavier; Bonnaure, Guillaume; Lagüe, Patrick; Chênevert, Robert; Lapointe, Jacques

    2015-01-01

    For tRNA-dependent protein biosynthesis, amino acids are first activated by aminoacyl-tRNA synthetases (aaRSs) yielding the reaction intermediates aminoacyl-AMP (aa-AMP). Stable analogues of aa-AMP, such as aminoacyl-sulfamoyl-adenosines, inhibit their cognate aaRSs. Glutamyl-sulfamoyl-adenosine (Glu-AMS) is the best known inhibitor of Escherichia coli glutamyl-tRNA synthetase (GluRS). Thermodynamic parameters of the interactions between Glu-AMS and E. coli GluRS were measured in the presence and in the absence of tRNA by isothermal titration microcalorimetry. A significant entropic contribution for the interactions between Glu-AMS and GluRS in the absence of tRNA or in the presence of the cognate tRNAGlu or of the non-cognate tRNAPhe is indicated by the negative values of –TΔSb, and by the negative value of ΔCp. On the other hand, the large negative enthalpy is the dominant contribution to ΔGb in the absence of tRNA. The affinity of GluRS for Glu-AMS is not altered in the presence of the non-cognate tRNAPhe, but the dissociation constant K d is decreased 50-fold in the presence of tRNAGlu; this result is consistent with molecular dynamics results indicating the presence of an H-bond between Glu-AMS and the 3’-OH oxygen of the 3’-terminal ribose of tRNAGlu in the Glu-AMS•GluRS•tRNAGlu complex. Glu-AMS being a very close structural analogue of Glu-AMP, its weak binding to free GluRS suggests that the unstable Glu-AMP reaction intermediate binds weakly to GluRS; these results could explain why all the known GluRSs evolved to activate glutamate only in the presence of tRNAGlu, the coupling of glutamate activation to its transfer to tRNA preventing unproductive cleavage of ATP. PMID:25860020

  17. Taurine supplementation for prevention of stroke-like episodes in MELAS: a multicentre, open-label, 52-week phase III trial.

    PubMed

    Ohsawa, Yutaka; Hagiwara, Hiroki; Nishimatsu, Shin-Ichiro; Hirakawa, Akihiro; Kamimura, Naomi; Ohtsubo, Hideaki; Fukai, Yuta; Murakami, Tatsufumi; Koga, Yasutoshi; Goto, Yu-Ichi; Ohta, Shigeo; Sunada, Yoshihide

    2018-04-17

    The aim of this study was to evaluate the efficacy and safety of high-dose taurine supplementation for prevention of stroke-like episodes of MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes), a rare genetic disorder caused by point mutations in the mitochondrial DNA that lead to a taurine modification defect at the first anticodon nucleotide of mitochondrial tRNA Leu(UUR) , resulting in failure to decode codons accurately. After the nationwide survey of MELAS, we conducted a multicentre, open-label, phase III trial in which 10 patients with recurrent stroke-like episodes received high-dose taurine (9 g or 12 g per day) for 52 weeks. The primary endpoint was the complete prevention of stroke-like episodes during the evaluation period. The taurine modification rate of mitochondrial tRNA Leu(UUR) was measured before and after the trial. The proportion of patients who reached the primary endpoint (100% responder rate) was 60% (95% CI 26.2% to 87.8%). The 50% responder rate, that is, the number of patients achieving a 50% or greater reduction in frequency of stroke-like episodes, was 80% (95% CI 44.4% to 97.5%). Taurine reduced the annual relapse rate of stroke-like episodes from 2.22 to 0.72 (P=0.001). Five patients showed a significant increase in the taurine modification of mitochondrial tRNA Leu(UUR) from peripheral blood leukocytes (P<0.05). No severe adverse events were associated with taurine. The current study demonstrates that oral taurine supplementation can effectively reduce the recurrence of stroke-like episodes and increase taurine modification in mitochondrial tRNA Leu(UUR) in MELAS. UMIN000011908. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Elp3 and RlmN: A tale of two mitochondrial tail-anchored radical SAM enzymes in Toxoplasma gondii.

    PubMed

    Padgett, Leah R; Lentini, Jenna M; Holmes, Michael J; Stilger, Krista L; Fu, Dragony; Sullivan, William J

    2018-01-01

    Radical S-adenosylmethionine (rSAM) enzymes use a 5'-deoxyadensyl 5'-radical to methylate a wide array of diverse substrates including proteins, lipids and nucleic acids. One such enzyme, Elongator protein-3 (TgElp3), is an essential protein in Toxoplasma gondii, a protozoan parasite that can cause life-threatening opportunistic disease. Unlike Elp3 homologues which are present in all domains of life, TgElp3 localizes to the outer mitochondrial membrane (OMM) via a tail-anchored trafficking mechanism in Toxoplasma. Intriguingly, we identified a second tail-anchored rSAM domain containing protein (TgRlmN) that also localizes to the OMM. The transmembrane domain (TMD) on Toxoplasma Elp3 and RlmN homologues is required for OMM localization and has not been seen beyond the chromalveolates. Both TgElp3 and TgRlmN contain the canonical rSAM amino acid sequence motif (CxxxCxxC) necessary to form the 4Fe-4S cluster required for tRNA modifications. In E. coli, RlmN is responsible for the 2-methlyadenosine (m2A) synthesis at purine 37 in tRNA while in S. cerevisiae, Elp3 is necessary for the formation of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) at the wobble tRNA position. To investigate why these two rSAM enzymes localize to the mitochondrion in Toxoplasma, and whether or not TgRlmN and TgElp3 possess tRNA methyltransferase activity, a series of mutational and biochemical studies were performed. Overexpression of either TgElp3 or TgRlmN resulted in a significant parasite replication defect, but overexpression was tolerated if either the TMD or rSAM domain was mutated. Furthermore, we show the first evidence that Toxoplasma tRNAGlu contains the mcm5s2U modification, which is the putative downstream product generated by TgElp3 activity.

  19. Next-Generation Sequencing of Two Mitochondrial Genomes from Family Pompilidae (Hymenoptera: Vespoidea) Reveal Novel Patterns of Gene Arrangement

    PubMed Central

    Chen, Peng-Yan; Zheng, Bo-Ying; Liu, Jing-Xian; Wei, Shu-Jun

    2016-01-01

    Animal mitochondrial genomes have provided large and diverse datasets for evolutionary studies. Here, the first two representative mitochondrial genomes from the family Pompilidae (Hymenoptera: Vespoidea) were determined using next-generation sequencing. The sequenced region of these two mitochondrial genomes from the species Auplopus sp. and Agenioideus sp. was 16,746 bp long with an A + T content of 83.12% and 16,596 bp long with an A + T content of 78.64%, respectively. In both species, all of the 37 typical mitochondrial genes were determined. The secondary structure of tRNA genes and rRNA genes were predicted and compared with those of other insects. Atypical trnS1 using abnormal anticodons TCT and lacking D-stem pairings was identified. There were 49 helices belonging to six domains in rrnL and 30 helices belonging to three domains in rrns present. Compared with the ancestral organization, four and two tRNA genes were rearranged in mitochondrial genomes of Auplopus and Agenioideus, respectively. In both species, trnM was shuffled upstream of the trnI-trnQ-trnM cluster, and trnA was translocated from the cluster trnA-trnR-trnN-trnS1-trnE-trnF to the region between nad1 and trnL1, which is novel to the Vespoidea. In Auplopus, the tRNA cluster trnW-trnC-trnY was shuffled to trnW-trnY-trnC. Phylogenetic analysis within Vespoidea revealed that Pompilidae and Mutillidae formed a sister lineage, and then sistered Formicidae. The genomes presented in this study have enriched the knowledge base of molecular markers, which is valuable in respect to studies about the gene rearrangement mechanism, genomic evolutionary processes and phylogeny of Hymenoptera. PMID:27727175

  20. The mitochondrial genome of the deep-sea glass sponge Lophophysema eversa (Porifera, Hexacinellida, Hyalonematidae).

    PubMed

    Zhang, Yanjie; Sun, Jin; Li, Xinzheng; Qiu, Jian-Wen

    2016-01-01

    We reported a nearly complete mitochondrial genome (mitogenome) from the glass sponge Lophophysema eversa, the second mitogenome in the order Amphidiscosida and the ninth in the class Hexactinellida. It is 20,651 base pairs in length and contains 39 genes including 13 protein-coding genes, 2 ribosomal RNA subunit genes and 24 tRNA genes. The gene content and order of L. eversa are identical to those of Tabachnickia sp., the other species with a sequenced mitogenome in Amphidiscosida, except with two additional tRNAs and three tRNA translocations. The cob gene has a +1 translational frameshift. These results will contribute to a better understanding of the phylogeny of glass sponges.

  1. Complete mitochondrial genome of Chuanzhong black goat in southwest of China (Capra hircus).

    PubMed

    Huang, Yong-Fu; Chen, Li-Peng; Zhao, Yong-Ju; Zhang, Hao; Na, Ri-Su; Zhao, Zhong-Quan; Zhang, Jia-Hua; Jiang, Cao-De; Ma, Yue-Hui; Sun, Ya-Wang; E, Guang-Xin

    2016-09-01

    The Chuanzhong black goat (Capra hircus) is a breed native to southwest of China. Its complete mitochondrial genome is 16,641 nt in length, consisting of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and a non-coding control region. As in other mammals, most mitochondrial genes are encoded on the heavy strand, except for ND6 and eight tRNA genes, which are encoded on the light strand. Its overall base composition is A: 33.5%, T: 27.3%, C: 26.1%, and G: 13.1%. The complete mitogenome of the Chinese indigenous breed of goat could provide a basic data for further phylogenetics analysis.

  2. The self primer of the long terminal repeat retrotransposon Tf1 is not removed during reverse transcription.

    PubMed

    Atwood-Moore, Angela; Yan, Kenneth; Judson, Robert L; Levin, Henry L

    2006-08-01

    The long terminal repeat retrotransposon Tf1 of Schizosaccharomyces pombe uses a unique mechanism of self priming to initiate reverse transcription. Instead of using a tRNA, Tf1 primes minus-strand synthesis with an 11-nucleotide RNA removed from the 5' end of its own transcript. We tested whether the self primer of Tf1 was similar to tRNA primers in being removed from the cDNA by RNase H. Our analysis of Tf1 cDNA extracted from virus-like particles revealed the surprising observation that the dominant species of cDNA retained the self primer. This suggests that integration of the cDNA relies on mechanisms other than reverse transcription to remove the primer.

  3. Complete sequence and gene organization of the mitochondrial genome of Asio flammeus (Strigiformes, strigidae).

    PubMed

    Zhang, Yanan; Song, Tao; Pan, Tao; Sun, Xiaonan; Sun, Zhonglou; Qian, Lifu; Zhang, Baowei

    2016-07-01

    The complete sequence of the mitochondrial genome was determined for Asio flammeus, which is distributed widely in geography. The length of the complete mitochondrial genome was 18,966 bp, containing 2 rRNA genes, 22 tRNA genes, 13 protein-coding genes (PCGs), and 1 non-coding region (D-loop). All the genes were distributed on the H-strand, except for the ND6 subunit gene and eight tRNA genes which were encoded on the L-strand. The D-loop of A. flammeus contained many tandem repeats of varying lengths and repeat numbers. The molecular-based phylogeny showed that our species acted as the sister group to A. capensis and the supported Asio was the monophyletic group.

  4. Structure of ratcheted ribosomes with tRNAs in hybrid states

    PubMed Central

    Julián, Patricia; Konevega, Andrey L.; Scheres, Sjors H. W.; Lázaro, Melisa; Gil, David; Wintermeyer, Wolfgang; Rodnina, Marina V.; Valle, Mikel

    2008-01-01

    During protein synthesis, tRNAs and mRNA move through the ribosome between aminoacyl (A), peptidyl (P), and exit (E) sites of the ribosome in a process called translocation. Translocation is accompanied by the displacement of the tRNAs on the large ribosomal subunit toward the hybrid A/P and P/E states and by a rotational movement (ratchet) of the ribosomal subunits relative to one another. So far, the structure of the ratcheted state has been observed only when translation factors were bound to the ribosome. Using cryo-electron microscopy and classification, we show here that ribosomes can spontaneously adopt a ratcheted conformation with tRNAs in their hybrid states. The peptidyl-tRNA molecule in the A/P state, which is visualized here, is not distorted compared with the A/A state except for slight adjustments of its acceptor end, suggesting that the displacement of the A-site tRNA on the 50S subunit is passive and is induced by the 30S subunit rotation. Simultaneous subunit ratchet and formation of the tRNA hybrid states precede and may promote the subsequent rapid and coordinated tRNA translocation on the 30S subunit catalyzed by elongation factor G. PMID:18971332

  5. Another heritage from the RNA world: self-excision of intron sequence from nuclear pre-tRNAs.

    PubMed

    Weber, U; Beier, H; Gross, H J

    1996-06-15

    The intervening sequences of nuclear tRNA precursors are known to be excised by tRNA splicing endonuclease. We show here that a T7 transcript corresponding to a pre-tRNA(Tyr) from Arabidopsis thaliana has a highly specific activity for autolytic intron excision. Self-cleavage occurs precisely at the authentic 3'-splice site and at the phosphodiester bond one nucleotide downstream of the authentic 5'-splice site. The reaction results in fragments with 2',3'-cyclic phosphate and 5'-OH termini. It is resistant to proteinase K and/or SDS treatment and is not inhibited by added tRNA. The self-cleavage depends on Mg2+ and is stimulated by spermine and Triton X-100. A set of sequence variants at the cleavage sites has been analysed for autolytic intron excision and, in parallel, for enzymatic in vitro splicing in wheat germ S23 extract. Single-stranded loops are a prerequisite for both reactions. Self-cleavage not only occurs at pyrimidine-A but also at U-U bonds. Since intron self-excision is only about five times slower than the enzymatic intron excision in a wheat germ S23 extract, we propose that the splicing endonuclease may function by improving the preciseness and efficiency of an inherent pre-tRNA self-cleavage activity.

  6. New Insights into the RNA-Based Mechanism of Action of the Anticancer Drug 5′-Fluorouracil in Eukaryotic Cells

    PubMed Central

    Mojardín, Laura; Botet, Javier; Quintales, Luis; Moreno, Sergio; Salas, Margarita

    2013-01-01

    5-Fluorouracil (5FU) is a chemotherapeutic drug widely used in treating a range of advanced, solid tumours and, in particular, colorectal cancer. Here, we used high-density tiling DNA microarray technology to obtain the specific transcriptome-wide response induced by 5FU in the eukaryotic model Schizosaccharomyces pombe. This approach combined with real-time quantitative PCR analysis allowed us to detect splicing defects of a significant number of intron-containing mRNA, in addition to identify some rRNA and tRNA processing defects after 5FU treatment. Interestingly, our studies also revealed that 5FU specifically induced the expression of certain genes implicated in the processing of mRNA, tRNA and rRNA precursors, and in the post-transcriptional modification of uracil residues in RNA. The transcription of several tRNA genes was also significantly induced after drug exposure. These transcriptional changes might represent a cellular response mechanism to counteract 5FU damage since deletion strains for some of these up-regulated genes were hypersensitive to 5FU. Moreover, most of these RNA processing genes have human orthologs that participate in conserved pathways, suggesting that they could be novel targets to improve the efficacy of 5FU-based treatments. PMID:24223771

  7. Characterization of the complete mitochondrial genome of the giant silkworm moth, Eriogyna pyretorum (Lepidoptera: Saturniidae).

    PubMed

    Jiang, Shao-Tong; Hong, Gui-Yun; Yu, Miao; Li, Na; Yang, Ying; Liu, Yan-Qun; Wei, Zhao-Jun

    2009-05-22

    The complete mitochondrial genome (mitogenome) of Eriogyna pyretorum (Lepidoptera: Saturniidae) was determined as being composed of 15,327 base pairs (bp), including 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region. The arrangement of the PCGs is the same as that found in the other sequenced lepidopteran. The AT skewness for the E. pyretorum mitogenome is slightly negative (-0.031), indicating the occurrence of more Ts than As. The nucleotide composition of the E. pyretorum mitogenome is also biased toward A + T nucleotides (80.82%). All PCGs are initiated by ATN codons, except for cytochrome c oxidase subunit 1 and 2 (cox1 and cox2). Two of the 13 PCGs harbor the incomplete termination codon by T. All tRNA genes have a typical clover-leaf structure of mitochondrial tRNA, with the exception of trnS1(AGN) and trnS2(UCN). Phylogenetic analysis among the available lepidopteran species supports the current morphology-based hypothesis that Bombycoidea, Geometroidea, Notodontidea, Papilionoidea and Pyraloidea are monophyletic. As has been previously suggested, Bombycidae (Bombyx mori and Bombyx mandarina), Sphingoidae (Manduca sexta) and Saturniidae (Antheraea pernyi, Antheraea yamamai, E. pyretorum and Caligula boisduvalii) formed a group.

  8. Characterization of the complete mitochondrial genome of the giant silkworm moth, Eriogyna pyretorum (Lepidoptera: Saturniidae)

    PubMed Central

    Jiang, Shao-Tong; Hong, Gui-Yun; Yu, Miao; Li, Na; Yang, Ying; Liu, Yan-Qun; Wei, Zhao-Jun

    2009-01-01

    The complete mitochondrial genome (mitogenome) of Eriogyna pyretorum (Lepidoptera: Saturniidae) was determined as being composed of 15,327 base pairs (bp), including 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region. The arrangement of the PCGs is the same as that found in the other sequenced lepidopteran. The AT skewness for the E. pyretorum mitogenome is slightly negative (-0.031), indicating the occurrence of more Ts than As. The nucleotide composition of the E. pyretorum mitogenome is also biased toward A + T nucleotides (80.82%). All PCGs are initiated by ATN codons, except for cytochrome c oxidase subunit 1 and 2 (cox1 and cox2). Two of the 13 PCGs harbor the incomplete termination codon by T. All tRNA genes have a typical clover-leaf structure of mitochondrial tRNA, with the exception of trnS1(AGN) and trnS2(UCN). Phylogenetic analysis among the available lepidopteran species supports the current morphology-based hypothesis that Bombycoidea, Geometroidea, Notodontidea, Papilionoidea and Pyraloidea are monophyletic. As has been previously suggested, Bombycidae (Bombyx mori and Bombyx mandarina), Sphingoidae (Manduca sexta) and Saturniidae (Antheraea pernyi, Antheraea yamamai, E. pyretorum and Caligula boisduvalii) formed a group. PMID:19471586

  9. Proteomic analysis of tylosin-resistant Mycoplasma gallisepticum reveals enzymatic activities associated with resistance.

    PubMed

    Xia, Xi; Wu, Congming; Cui, Yaowen; Kang, Mengjiao; Li, Xiaowei; Ding, Shuangyang; Shen, Jianzhong

    2015-11-20

    Mycoplasma gallisepticum is a significant pathogenic bacterium that infects poultry, causing chronic respiratory disease and sinusitis in chickens and turkeys, respectively. M. gallisepticum infection poses a substantial economic threat to the poultry industry, and this threat is made worse by the emergence of antibiotic-resistant strains. The mechanisms of resistance are often difficult to determine; for example, little is known about antibiotic resistance of M. gallisepticum at the proteome level. In this study, we performed comparative proteomic analyses of an antibiotic (tylosin)-resistant M. gallisepticum mutant and a susceptible parent strain using a combination of two-dimensional differential gel electrophoresis and nano-liquid chromatography-quadrupole-time of flight mass spectrometry. Thirteen proteins were identified as differentially expressed in the resistant strain compared to the susceptible strain. Most of these proteins were related to catalytic activity, including catalysis that promotes the formylation of initiator tRNA and energy production. Elongation factors Tu and G were over-expressed in the resistant strains, and this could promote the binding of tRNA to ribosomes and catalyze ribosomal translocation, the coordinated movement of tRNA, and conformational changes in the ribosome. Taken together, our results indicate that M. gallisepticum develops resistance to tylosin by regulating associated enzymatic activities.

  10. Replacement of RNA hairpins by in vitro selected tetranucleotides.

    PubMed Central

    Dichtl, B; Pan, T; DiRenzo, A B; Uhlenbeck, O C

    1993-01-01

    An in vitro selection method based on the autolytic cleavage of yeast tRNA(Phe) by Pb2+ was applied to obtain tRNA derivatives with the anticodon hairpin replaced by four single-stranded nucleotides. Based on the rates of the site-specific cleavage by Pb2+ and the presence of a specific UV-induced crosslink, certain tetranucleotide sequences allow proper folding of the rest of the tRNA molecule, whereas others do not. One such successful tetramer sequence was also used to replace the acceptor stem of yeast tRNA(Phe) and the anticodon hairpin of E.coli tRNA(Phe) without disrupting folding. These experiments suggest that certain tetramers may be able to replace structurally nonessential hairpins in any RNA. Images PMID:7680121

  11. The complete mitochondrial genome of the redeye mullet Liza haematocheila (Teleostei, Mugilidae).

    PubMed

    Chen, Jianhua; Li, Yinglei; Chen, Haigang; Yan, Binlun; Meng, Xueping

    2015-01-01

    The complete mitochondrial sequence of the redeye mullet Liza haematocheila has been determined. The circle genome is 16,822 bp in size, and consists of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a control region. The gene order and composition of L. haematocheila was similar to that of most other teleosts. The base composition of H-strand is 26.42% (A), 26.38% (T), 16.72% (G) and 30.47% (C), with an AT content of 52.8%. All genes are encoded on the heavy strand with the exception of ND6 and eight tRNA genes. The mitochondrial genome of L. haematocheila presented will be in favor of resolving phylogenetic relationships within the family Scatophagidae and the Mugiliformes.

  12. The Self Primer of the Long Terminal Repeat Retrotransposon Tf1 Is Not Removed during Reverse Transcription

    PubMed Central

    Atwood-Moore, Angela; Yan, Kenneth; Judson, Robert L.; Levin, Henry L.

    2006-01-01

    The long terminal repeat retrotransposon Tf1 of Schizosaccharomyces pombe uses a unique mechanism of self priming to initiate reverse transcription. Instead of using a tRNA, Tf1 primes minus-strand synthesis with an 11-nucleotide RNA removed from the 5′ end of its own transcript. We tested whether the self primer of Tf1 was similar to tRNA primers in being removed from the cDNA by RNase H. Our analysis of Tf1 cDNA extracted from virus-like particles revealed the surprising observation that the dominant species of cDNA retained the self primer. This suggests that integration of the cDNA relies on mechanisms other than reverse transcription to remove the primer. PMID:16873283

  13. Single TRAM domain RNA-binding proteins in Archaea: functional insight from Ctr3 from the Antarctic methanogen Methanococcoides burtonii.

    PubMed

    Taha; Siddiqui, K S; Campanaro, S; Najnin, T; Deshpande, N; Williams, T J; Aldrich-Wright, J; Wilkins, M; Curmi, P M G; Cavicchioli, R

    2016-09-01

    TRAM domain proteins present in Archaea and Bacteria have a β-barrel shape with anti-parallel β-sheets that form a nucleic acid binding surface; a structure also present in cold shock proteins (Csps). Aside from protein structures, experimental data defining the function of TRAM domains is lacking. Here, we explore the possible functional properties of a single TRAM domain protein, Ctr3 (cold-responsive TRAM domain protein 3) from the Antarctic archaeon Methanococcoides burtonii that has increased abundance during low temperature growth. Ribonucleic acid (RNA) bound by Ctr3 in vitro was determined using RNA-seq. Ctr3-bound M. burtonii RNA with a preference for transfer (t)RNA and 5S ribosomal RNA, and a potential binding motif was identified. In tRNA, the motif represented the C loop; a region that is conserved in tRNA from all domains of life and appears to be solvent exposed, potentially providing access for Ctr3 to bind. Ctr3 and Csps are structurally similar and are both inferred to function in low temperature translation. The broad representation of single TRAM domain proteins within Archaea compared with their apparent absence in Bacteria, and scarcity of Csps in Archaea but prevalence in Bacteria, suggests they represent distinct evolutionary lineages of functionally equivalent RNA-binding proteins. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Molecular envelope and atomic model of an anti-terminated glyQS T-box regulator in complex with tRNAGly

    PubMed Central

    Chetnani, Bhaskar

    2017-01-01

    Abstract A T-box regulator or riboswitch actively monitors the levels of charged/uncharged tRNA and participates in amino acid homeostasis by regulating genes involved in their utilization or biosynthesis. It has an aptamer domain for cognate tRNA recognition and an expression platform to sense the charge state and modulate gene expression. These two conserved domains are connected by a variable linker that harbors additional secondary structural elements, such as Stem III. The structural basis for specific tRNA binding is known, but the structural basis for charge sensing and the role of other elements remains elusive. To gain new structural insights on the T-box mechanism, a molecular envelope was calculated from small angle X-ray scattering data for the Bacillus subtilis glyQS T-box riboswitch in complex with an uncharged tRNAGly. A structural model of an anti-terminated glyQS T-box in complex with its cognate tRNAGly was derived based on the molecular envelope. It shows the location and relative orientation of various secondary structural elements. The model was validated by comparing the envelopes of the wild-type complex and two variants. The structural model suggests that in addition to a possible regulatory role, Stem III could aid in preferential stabilization of the T-box anti-terminated state allowing read-through of regulated genes. PMID:28531275

  15. The relationship between RNA catalytic processes

    NASA Astrophysics Data System (ADS)

    Cedergren, Robert; Lang, B. Franz; Gravel, Denis

    1988-09-01

    Proposals that an RNA-based genetic system preceeded DNA, stem from the ability of RNA to store genetic information and to promote simple catalysis. However, to be a valid basis for the RNA world, RNA catalysis must demonstrate or be related to intrinsic chemical properties which could have existed in primordial times. We analyze this question by first classifying RNA catalysis and related processes according to their mechanism. We define: (A) thedisjunct nucleophile class which leads to 5'-phosphates. These include Group I and II intron splicing, nuclear mRNA splicing and RNase P reactions. Although Group I introns and its excision mechanism is likely to have existed in primordial times, present-day examples have arisen independently in different phyla much more recently. Comparative methodology indicates that RNase P catalysis originated before the divergence of the major kingdoms. In addition, alldisjunct nucleophile reactions can be interrelated by a proposed mechanism involving a distant 2-OH nucleophile. (B) theconjunct nucleophile class leading to 3'-phosphates. This class is composed of self-cleaving RNAs found in plant viruses and the newt. We propose that tRNA splicing is related to this mechanism rather than the previous one. The presence of introns in tRNA genes of eukaryotes and archaebacteria supports the idea that tRNA splicing predates the divergence of these cell types.

  16. Nuclease footprint analyses of the interactions between RNase P ribozyme and a model mRNA substrate.

    PubMed Central

    Trang, P; Hsu, A W; Liu, F

    1999-01-01

    RNase P ribozyme cleaves an RNA helix substrate which resembles the acceptor stem and T-stem structures of its natural tRNA substrate. By linking the ribozyme covalently to a sequence (guide sequence) complementary to a target RNA, the catalytic RNA can be converted into a sequence-specific ribozyme, M1GS RNA. We have previously shown that M1GS RNA can efficiently cleave the mRNA sequence encoding thymidine kinase (TK) of herpes simplex virus 1. In this study, a footprint procedure using different nucleases was carried out to map the regions of a M1GS ribozyme that potentially interact with the TK mRNA substrate. The ribozyme regions that are protected from nuclease degradation in the presence of the TK mRNA substrate include those that interact with the acceptor stem and T-stem, the 3' terminal CCA sequence and the cleavage site of a tRNA substrate. However, some of the protected regions (e.g. P13 and P14) are unique and not among those protected in the presence of a tRNA substrate. Identification of the regions that interact with a mRNA substrate will allow us to study how M1GS RNA recognizes a mRNA substrate and facilitate the development of mRNA-cleaving ribozymes for gene-targeting applications. PMID:10556315

  17. Loss of the RNA polymerase III repressor MAF1 confers obesity resistance.

    PubMed

    Bonhoure, Nicolas; Byrnes, Ashlee; Moir, Robyn D; Hodroj, Wassim; Preitner, Frédéric; Praz, Viviane; Marcelin, Genevieve; Chua, Streamson C; Martinez-Lopez, Nuria; Singh, Rajat; Moullan, Norman; Auwerx, Johan; Willemin, Gilles; Shah, Hardik; Hartil, Kirsten; Vaitheesvaran, Bhavapriya; Kurland, Irwin; Hernandez, Nouria; Willis, Ian M

    2015-05-01

    MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences. © 2015 Bonhoure et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Loss of the RNA polymerase III repressor MAF1 confers obesity resistance

    PubMed Central

    Bonhoure, Nicolas; Byrnes, Ashlee; Moir, Robyn D.; Hodroj, Wassim; Preitner, Frédéric; Praz, Viviane; Marcelin, Genevieve; Chua, Streamson C.; Martinez-Lopez, Nuria; Singh, Rajat; Moullan, Norman; Auwerx, Johan; Willemin, Gilles; Shah, Hardik; Hartil, Kirsten; Vaitheesvaran, Bhavapriya; Kurland, Irwin

    2015-01-01

    MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1−/− mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1−/− mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD+, and is associated with obesity resistance. Consistent with this, NAD+ levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences. PMID:25934505

  19. A homogeneous method to measure aminoacyl-tRNA synthetase aminoacylation activity using scintillation proximity assay technology.

    PubMed

    Macarrón, R; Mensah, L; Cid, C; Carranza, C; Benson, N; Pope, A J; Díez, E

    2000-09-10

    A new method to measure the aminoacylation of tRNA based upon the use of the scintillation proximity assay (SPA) technology has been developed. The assay detects incorporation of radiolabeled amino acids into cognate tRNA, catalyzed by a specific aminoacyl-tRNA synthetase (aaRS). Under acidic conditions, uncoated yttrium silicate SPA beads were found to bind tRNA aggregates, while the radiolabeled amino acid substrate remains in solution, resulting in good signal discrimination of these two species in the absence of any separation steps. The usefulness of this approach was demonstrated by measurement of steady-state kinetic constants and inhibitor binding constants for a range of aaRS enzymes in comparison with data from standard, trichloroacetic acid-precipitation-based assays. In all cases, the data were quantitatively comparable. Although the radioisotopic counting efficiency of the SPA method was less than that of standard liquid scintillation counting, the statistical performance (i.e., signal to background, variability, stability) of the SPA assays was at least equivalent to the separation-based methods. The assay was also shown to work well in miniaturized 384-well microtiter plate formats, resulting in considerable reagent savings. In summary, a new method to characterize aaRS activity is described that is faster and more amenable to high-throughput screening than traditional methods. Copyright 2000 Academic Press.

  20. The complete mitochondrial genome of Plodia interpunctella (Lepidoptera: Pyralidae) and comparison with other Pyraloidea insects.

    PubMed

    Liu, Qiu-Ning; Chai, Xin-Yue; Bian, Dan-Dan; Zhou, Chun-Lin; Tang, Bo-Ping

    2016-01-01

    The mitochondrial (mt) genome can provide important information for the understanding of phylogenetic relationships. The complete mt genome of Plodia interpunctella (Lepidoptera: Pyralidae) has been sequenced. The circular genome is 15 287 bp in size, encoding 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region. The AT skew of this mt genome is slightly negative, and the nucleotide composition is biased toward A+T nucleotides (80.15%). All PCGs start with the typical ATN (ATA, ATC, ATG, and ATT) codons, except for the cox1 gene which may start with the CGA codon. Four of the 13 PCGs harbor the incomplete termination codon T or TA. All the tRNA genes are folded into the typical clover-leaf structure of mitochondrial tRNA, except for trnS1 (AGN) in which the DHU arm fails to form a stable stem-loop structure. The overlapping sequences are 35 bp in total and are found in seven different locations. A total of 240 bp of intergenic spacers are scattered in 16 regions. The control region of the mt genome is 327 bp in length and consisted of several features common to the sequenced lepidopteran insects. Phylogenetic analysis based on 13 PCGs using the Maximum Likelihood method shows that the placement of P. interpunctella was within the Pyralidae.

  1. tRNAs promote nuclear import of HIV-1 intracellular reverse transcription complexes.

    PubMed

    Zaitseva, Lyubov; Myers, Richard; Fassati, Ariberto

    2006-10-01

    Infection of non-dividing cells is a biological property of HIV-1 crucial for virus transmission and AIDS pathogenesis. This property depends on nuclear import of the intracellular reverse transcription and pre-integration complexes (RTCs/PICs). To identify cellular factors involved in nuclear import of HIV-1 RTCs, cytosolic extracts were fractionated by chromatography and import activity examined by the nuclear import assay. A near-homogeneous fraction was obtained, which was active in inducing nuclear import of purified and labeled RTCs. The active fraction contained tRNAs, mostly with defective 3' CCA ends. Such tRNAs promoted HIV-1 RTC nuclear import when synthesized in vitro. Active tRNAs were incorporated into and recovered from virus particles. Mutational analyses indicated that the anticodon loop mediated binding to the viral complex whereas the T-arm may interact with cellular factors involved in nuclear import. These tRNA species efficiently accumulated into the nucleus on their own in a energy- and temperature-dependent way. An HIV-1 mutant containing MLV gag did not incorporate tRNA species capable of inducing HIV-1 RTC nuclear import and failed to infect cell cycle-arrested cells. Here we provide evidence that at least some tRNA species can be imported into the nucleus of human cells and promote HIV-1 nuclear import.

  2. Los1p, involved in yeast pre-tRNA splicing, positively regulates members of the SOL gene family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, W.C.; Stanford, D.R.; Hopper, A.K.

    1996-06-01

    To understand the role of Los1p in pre-tRNA splicing, we sought los1 multicopy suppressors. We found SOL1 that suppresses both point and null LOS1 mutations. Since, when fused to the Gal4p DNA-binding domain, Los1p activates transcription, we tested whether Los1p regulates SOL1. We found that los1 mutants have depleted levels of SOL1 mRNA and Sol1p. Thus, LOS1 appears to positively regulate SOL1. SOL1 belongs to a multigene family with at least two additional members, SOL2 and SOL3. Sol proteins have extensive similarity to an unusual group of glucose-6-phosphate dehydrogenases (G6PDs). As the similarities are restricted to areas separate from themore » catalytic domain, these G6PDs may have more than one function. The SOL gene disruptions negatively affect tRNA-mediated nonsense suppression and the severity increases with the number of mutant SOL genes. However, tRNA levels do not vary with either multicopy SOL genes or with SOL disruptions. Therefore, the Sol proteins affect tRNA expression/function at steps other than transcription or splicing. We propose that LOS1 regulates gene products involved in tRNA expression/function as well as pre-tRNA splicing. 64 refs., 6 figs., 6 tabs.« less

  3. The tRNA-modifying function of MnmE is controlled by post-hydrolysis steps of its GTPase cycle

    PubMed Central

    Prado, Silvia; Villarroya, Magda; Medina, Milagros; Armengod, M.-Eugenia

    2013-01-01

    MnmE is a homodimeric multi-domain GTPase involved in tRNA modification. This protein differs from Ras-like GTPases in its low affinity for guanine nucleotides and mechanism of activation, which occurs by a cis, nucleotide- and potassium-dependent dimerization of its G-domains. Moreover, MnmE requires GTP hydrolysis to be functionally active. However, how GTP hydrolysis drives tRNA modification and how the MnmE GTPase cycle is regulated remains unresolved. Here, the kinetics of the MnmE GTPase cycle was studied under single-turnover conditions using stopped- and quench-flow techniques. We found that the G-domain dissociation is the rate-limiting step of the overall reaction. Mutational analysis and fast kinetics assays revealed that GTP hydrolysis, G-domain dissociation and Pi release can be uncoupled and that G-domain dissociation is directly responsible for the ‘ON’ state of MnmE. Thus, MnmE provides a new paradigm of how the ON/OFF cycling of GTPases may regulate a cellular process. We also demonstrate that the MnmE GTPase cycle is negatively controlled by the reaction products GDP and Pi. This feedback mechanism may prevent inefficacious GTP hydrolysis in vivo. We propose a biological model whereby a conformational change triggered by tRNA binding is required to remove product inhibition and initiate a new GTPase/tRNA-modification cycle. PMID:23630314

  4. Improved amber and opal suppressor tRNAs for incorporation of unnatural amino acids in vivo. Part 2: Evaluating suppression efficiency

    PubMed Central

    Rodriguez, Erik A.; Lester, Henry A.; Dougherty, Dennis A.

    2007-01-01

    The incorporation of unnatural amino acids into proteins is a valuable tool for addition of biophysical probes, bio-orthogonal functionalities, and photoreactive cross-linking agents, although these approaches often require quantities of protein that are difficult to access with chemically aminoacylated tRNAs. THG73 is an amber suppressor tRNA that has been used extensively, incorporating over 100 residues in 20 proteins. In vitro studies have shown that the Escherichia coli Asn amber suppressor (ENAS) suppresses better than THG73. However, we report here that ENAS suppresses with <26% of the efficiency of THG73 in Xenopus oocytes. We then tested the newly developed Tetrahymena thermophila Gln amber suppressor (TQAS) tRNA library, which contains mutations in the second to fourth positions of the acceptor stem. The acceptor stem mutations have no adverse effect on suppression efficiency and, in fact, can increase the suppression efficiency. Combining mutations causes an averaging of suppression efficiency, and increased suppression efficiency does not correlate with increased ΔG of the acceptor stem. We created a T. thermophila opal suppressor, TQOpS′, which shows ∼50% suppression efficiency relative to THG73. The TQAS tRNA library, composed of functional suppressor tRNAs, has been created and will allow for screening in eukaryotic cells, where rapid analysis of large libraries is not feasible. PMID:17698637

  5. Genetic Characterization of the SufJ Frameshift Suppressor in SALMONELLA TYPHIMURIUM

    PubMed Central

    Bossi, Lionello; Kohno, Tadahiko; Roth, John R.

    1983-01-01

    A new suppressor of +1 frameshift mutations has been isolated in Salmonella typhimurium. This suppressor, sufJ, maps at minute 89 on the Salmonella genetic map between the argH and rpo(rif) loci, closely linked to the gene for the ochre suppressor tyrU(supM). The suppressor mutation is dominant to its wild-type allele, consistent with the suppressor phenotype being caused by an altered tRNA species. The sufJ map position coincides with that of a threonine tRNA(ACC/U) gene; the suppressor has been shown to read the related fourbase codons ACCU, ACCC, ACCA.—The ability of sufJ to correct one particular mutation depends on the presence of a hisT mutation which causes a defect in tRNA modification. This requirement is allele specific, since other frameshift mutations can be corrected by sufJ regardless of the state of the hisT locus.—Strains carrying both a sufJ and a hisT mutation are acutely sensitive to growth inhibition by uracil; the inhibition is reversed by arginine. This behavior is characteristic of strains with mutations affecting the arginine-uracil biosynthetic enzyme carbamyl phosphate synthetase. The combination of two mutations affecting tRNA structure may reduce expression of the structural gene for this enzyme (pyrA). PMID:6188650

  6. Protein-tRNA Agarose Gel Retardation Assays for the Analysis of the N 6-threonylcarbamoyladenosine TcdA Function.

    PubMed

    Fernández, Francisco J; Gómez, Sara; Navas-Yuste, Sergio; López-Estepa, Miguel; Vega, M Cristina

    2017-06-21

    We demonstrate methods for the expression and purification of tRNA(UUU) in Escherichia coli and the analysis by gel retardation assays of the binding of tRNA(UUU) to TcdA, an N 6 -threonylcarbamoyladenosine (t 6 A) dehydratase, which cyclizes the threonylcarbamoyl side chain attached to A37 in the anticodon stem loop (ASL) of tRNAs to cyclic t 6 A (ct 6 A). Transcription of the synthetic gene encoding tRNA(UUU) is induced in E. coli with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and the cells containing tRNA are harvested 24 h post-induction. The RNA fraction is purified using the acid phenol extraction method. Pure tRNA is obtained by a gel filtration chromatography that efficiently separates the small-sized tRNA molecules from larger intact or fragmented nucleic acids. To analyze TcdA binding to tRNA(UUU), TcdA is mixed with tRNA(UUU) and separated on a native agarose gel at 4 °C. The free tRNA(UUU) migrates faster, while the TcdA-tRNA(UUU) complexes undergo a mobility retardation that can be observed upon staining of the gel. We demonstrate that TcdA is a tRNA(UUU)-binding enzyme. This gel retardation assay can be used to study TcdA mutants and the effects of additives and other proteins on binding.

  7. The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications

    PubMed Central

    Marck, Christian; Kachouri-Lafond, Rym; Lafontaine, Ingrid; Westhof, Eric; Dujon, Bernard; Grosjean, Henri

    2006-01-01

    We present the first comprehensive analysis of RNA polymerase III (Pol III) transcribed genes in ten yeast genomes. This set includes all tRNA genes (tDNA) and genes coding for SNR6 (U6), SNR52, SCR1 and RPR1 RNA in the nine hemiascomycetes Saccharomyces cerevisiae, Saccharomyces castellii, Candida glabrata, Kluyveromyces waltii, Kluyveromyces lactis, Eremothecium gossypii, Debaryomyces hansenii, Candida albicans, Yarrowia lipolytica and the archiascomycete Schizosaccharomyces pombe. We systematically analysed sequence specificities of tRNA genes, polymorphism, variability of introns, gene redundancy and gene clustering. Analysis of decoding strategies showed that yeasts close to S.cerevisiae use bacterial decoding rules to read the Leu CUN and Arg CGN codons, in contrast to all other known Eukaryotes. In D.hansenii and C.albicans, we identified a novel tDNA-Leu (AAG), reading the Leu CUU/CUC/CUA codons with an unusual G at position 32. A systematic ‘p-distance tree’ using the 60 variable positions of the tRNA molecule revealed that most tDNAs cluster into amino acid-specific sub-trees, suggesting that, within hemiascomycetes, orthologous tDNAs are more closely related than paralogs. We finally determined the bipartite A- and B-box sequences recognized by TFIIIC. These minimal sequences are nearly conserved throughout hemiascomycetes and were satisfactorily retrieved at appropriate locations in other Pol III genes. PMID:16600899

  8. Speed Controls in Translating Secretory Proteins in Eukaryotes - an Evolutionary Perspective

    PubMed Central

    Mahlab, Shelly; Linial, Michal

    2014-01-01

    Protein translation is the most expensive operation in dividing cells from bacteria to humans. Therefore, managing the speed and allocation of resources is subject to tight control. From bacteria to humans, clusters of relatively rare tRNA codons at the N′-terminal of mRNAs have been implicated in attenuating the process of ribosome allocation, and consequently the translation rate in a broad range of organisms. The current interpretation of “slow” tRNA codons does not distinguish between protein translations mediated by free- or endoplasmic reticulum (ER)-bound ribosomes. We demonstrate that proteins translated by free- or ER-bound ribosomes exhibit different overall properties in terms of their translation efficiency and speed in yeast, fly, plant, worm, bovine and human. We note that only secreted or membranous proteins with a Signal peptide (SP) are specified by segments of “slow” tRNA at the N′-terminal, followed by abundant codons that are considered “fast.” Such profiles apply to 3100 proteins of the human proteome that are composed of secreted and signal peptide (SP)-assisted membranous proteins. Remarkably, the bulks of the proteins (12,000), or membranous proteins lacking SP (3400), do not have such a pattern. Alternation of “fast” and “slow” codons was found also in proteins that translocate to mitochondria through transit peptides (TP). The differential clusters of tRNA adapted codons is not restricted to the N′-terminal of transcripts. Specifically, Glycosylphosphatidylinositol (GPI)-anchored proteins are unified by clusters of low adapted tRNAs codons at the C′-termini. Furthermore, selection of amino acids types and specific codons was shown as the driving force which establishes the translation demands for the secretory proteome. We postulate that “hard-coded” signals within the secretory proteome assist the steps of protein maturation and folding. Specifically, “speed control” signals for delaying the translation

  9. Multisite-specific tRNA:m5C-methyltransferase (Trm4) in yeast Saccharomyces cerevisiae: identification of the gene and substrate specificity of the enzyme.

    PubMed Central

    Motorin, Y; Grosjean, H

    1999-01-01

    Several genes encoding putative RNA:5-methylcytidine-transferases (m5C-transferases) from different organisms, including yeast, have been identified by sequence homology with the recently identified 16S rRNA:m5C967-methyltransferase (gene SUN) from Escherichia coli. One of the yeast ORFs (YBL024w) was amplified by PCR, inserted in the expression vector pET28b, and the corresponding protein was hyperexpressed in E. coli BL21 (DE3). The resulting N-terminally His6-tagged recombinant Ybl024p was purified to apparent homogeneity by one-step affinity chromatography on Ni2+-NTA-agarose column. The activity and substrate specificity of the purified Ybl024p were tested in vitro using T7 transcripts of different yeast tRNAs as substrates and S-adenosyl-L-methionine as a donor of the methyl groups. The results indicate that yeast ORF YBL024w encodes S-adenosyl-L-methionine-dependent tRNA: m5C-methyltransferase that is capable of methylating cytosine to m5C at several positions in different yeast tRNAs and pre-tRNAs containing intron. Modification of tRNA occurs at all four positions (34, 40, 48, and 49) at which m5C has been found in yeast tRNAs sequenced so far. Disruption of the ORF YBL024w leads to the complete absence of m5C in total yeast tRNA. Moreover no tRNA:m5C-methyltransferase activity towards all potential m5C methylation sites was detected in the extract of the disrupted yeast strain. These results demonstrate that the protein product of a single gene is responsible for complete m5C methylation of yeast tRNA. Because this newly characterized multisite-specific modification enzyme Ybl024p is the fourth tRNA-specific methyltransferase identified in yeast, we suggest designating it as TRM4, the gene corresponding to ORF YBL024w. PMID:10445884

  10. Evaluating Sense Codon Reassignment with a Simple Fluorescence Screen.

    PubMed

    Biddle, Wil; Schmitt, Margaret A; Fisk, John D

    2015-12-22

    Understanding the interactions that drive the fidelity of the genetic code and the limits to which modifications can be made without breaking the translational system has practical implications for understanding the molecular mechanisms of evolution as well as expanding the set of encodable amino acids, particularly those with chemistries not provided by Nature. Because 61 sense codons encode 20 amino acids, reassigning the meaning of sense codons provides an avenue for biosynthetic modification of proteins, furthering both fundamental and applied biochemical research. We developed a simple screen that exploits the absolute requirement for fluorescence of an active site tyrosine in green fluorescent protein (GFP) to probe the pliability of the degeneracy of the genetic code. Our screen monitors the restoration of the fluorophore of GFP by incorporation of a tyrosine in response to a sense codon typically assigned another meaning in the genetic code. We evaluated sense codon reassignment at four of the 21 sense codons read through wobble interactions in Escherichia coli using the Methanocaldococcus jannaschii orthogonal tRNA/aminoacyl tRNA synthetase pair originally developed and commonly used for amber stop codon suppression. By changing only the anticodon of the orthogonal tRNA, we achieved sense codon reassignment efficiencies between 1% (Phe UUU) and 6% (Lys AAG). Each of the orthogonal tRNAs preferentially decoded the codon traditionally read via a wobble interaction in E. coli with the exception of the orthogonal tRNA with an AUG anticodon, which incorporated tyrosine in response to both the His CAU and His CAC codons with approximately equal frequencies. We applied our screen in a high-throughput manner to evaluate a 10(9)-member combined tRNA/aminoacyl tRNA synthetase library to identify improved sense codon reassigning variants for the Lys AAG codon. A single rapid screen with the ability to broadly evaluate reassignable codons will facilitate

  11. Complete Genomic Structure of the Cultivated Rice Endophyte Azospirillum sp. B510

    PubMed Central

    Kaneko, Takakazu; Minamisawa, Kiwamu; Isawa, Tsuyoshi; Nakatsukasa, Hiroki; Mitsui, Hisayuki; Kawaharada, Yasuyuki; Nakamura, Yasukazu; Watanabe, Akiko; Kawashima, Kumiko; Ono, Akiko; Shimizu, Yoshimi; Takahashi, Chika; Minami, Chiharu; Fujishiro, Tsunakazu; Kohara, Mitsuyo; Katoh, Midori; Nakazaki, Naomi; Nakayama, Shinobu; Yamada, Manabu; Tabata, Satoshi; Sato, Shusei

    2010-01-01

    We determined the nucleotide sequence of the entire genome of a diazotrophic endophyte, Azospirillum sp. B510. Strain B510 is an endophytic bacterium isolated from stems of rice plants (Oryza sativa cv. Nipponbare). The genome of B510 consisted of a single chromosome (3 311 395 bp) and six plasmids, designated as pAB510a (1 455 109 bp), pAB510b (723 779 bp), pAB510c (681 723 bp), pAB510d (628 837 bp), pAB510e (537 299 bp), and pAB510f (261 596 bp). The chromosome bears 2893 potential protein-encoding genes, two sets of rRNA gene clusters (rrns), and 45 tRNA genes representing 37 tRNA species. The genomes of the six plasmids contained a total of 3416 protein-encoding genes, seven sets of rrns, and 34 tRNAs representing 19 tRNA species. Eight genes for plasmid-specific tRNA species are located on either pAB510a or pAB510d. Two out of eight genomic islands are inserted in the plasmids, pAB510b and pAB510e, and one of the islands is inserted into trnfM-CAU in the rrn located on pAB510e. Genes other than the nif gene cluster that are involved in N2 fixation and are homologues of Bradyrhizobium japonicum USDA110 include fixABCX, fixNOQP, fixHIS, fixG, and fixLJK. Three putative plant hormone-related genes encoding tryptophan 2-monooxytenase (iaaM) and indole-3-acetaldehyde hydrolase (iaaH), which are involved in IAA biosynthesis, and ACC deaminase (acdS), which reduces ethylene levels, were identified. Multiple gene-clusters for tripartite ATP-independent periplasmic-transport systems and a diverse set of malic enzymes were identified, suggesting that B510 utilizes C4-dicarboxylate during its symbiotic relationship with the host plant. PMID:20047946

  12. mRNA Translation Gone Awry: Translation Fidelity and Neurological Disease.

    PubMed

    Kapur, Mridu; Ackerman, Susan L

    2018-03-01

    Errors during mRNA translation can lead to a reduction in the levels of functional proteins and an increase in deleterious molecules. Advances in next-generation sequencing have led to the discovery of rare genetic disorders, many caused by mutations in genes encoding the mRNA translation machinery, as well as to a better understanding of translational dynamics through ribosome profiling. We discuss here multiple neurological disorders that are linked to errors in tRNA aminoacylation and ribosome decoding. We draw on studies from genetic models, including yeast and mice, to enhance our understanding of the translational defects observed in these diseases. Finally, we emphasize the importance of tRNA, their associated enzymes, and the inextricable link between accuracy and efficiency in the maintenance of translational fidelity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Myoclonus epilepsy, retinitis pigmentosa, leukoencephalopathy and cerebral calcifications associated with a novel m.5513G>A mutation in the MT-TW gene.

    PubMed

    Cardaioli, Elena; Mignarri, Andrea; Cantisani, Teresa Anna; Malandrini, Alessandro; Nesti, Claudia; Rubegni, Anna; Funel, Niccola; Federico, Antonio; Santorelli, Filippo Maria; Dotti, Maria Teresa

    2018-06-02

    We sequenced the mitochondrial genome from a 40-year-old woman with myoclonus epilepsy, retinitis pigmentosa, leukoencephalopathy and cerebral calcifications. Histological and biochemical features of mitochondrial respiratory chain dysfunction were present. Direct sequencing showed a novel heteroplasmic mutation at nucleotide 5513 in the MT-TW gene that encodes tRNA Trp . Restriction Fragment Length Polymorphism analysis confirmed that about 80% of muscle mtDNA harboured the mutation while it was present in minor percentages in mtDNA from other tissues. The mutation is predicted to disrupt a highly conserved base pair within the aminoacyl acceptor stem of the tRNA. This is the 17° mutation in MT-TW gene and expands the known causes of late-onset mitochondrial diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Complete mitochondrial genome of the a rare subspecies of genus Bos, Tianzhu white yak from Tibetan area in China.

    PubMed

    E, Guangxin; Na, Ri-Su; Zhao, Yong-Ju; Gao, Hui-Jiang; An, Tian-Wu; Huang, Yong-Fu

    2016-01-01

    The population of domestic yak, Tianzhu white yak, from Tibetan area in China is considered as a rare Bos grunniens species. We first determined and annotated its complete mitochondrial genome. The mitogenome is 16,319 bp in length, consisting of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes and a control region. As in other mammals, most mitochondrial genes are encoded on the heavy strand, except for ND6 and eight tRNA genes, which are encoded on the light strand. Its overall base composition is A: 33.7%, T: 27.2%, C: 25.8% and G: 13.2%. The complete mitogenome of the new subspecies of Bos grunniens could provide an important data to further explore the taxonomic status of the subspecies.

  15. Complete Genome Sequence of Cluster J Mycobacteriophage Superphikiman

    PubMed Central

    Pradhan, Pratik; Nako, Sprikena; Tran, Trinh; Aluri, Lavanya S.; Anandarajan, Dharman; Betini, Niteesha; Bhatt, Shivangi D.; Chengalvala, Swetha; Cox, Nicole E.; Delvadia, Bela P.; Desai, Aishwary S.; Devaney, Andrew M.; Doyle, Brenna K.; Edgerton, Arden O.; Erlich, Matthew C.; Fitzpatrick, Kevin C.; Gajjar, Esha A.; Ganguly, Anjali; Gill, Ramnik S.; Good, Pauline M.; Gupta, Nishtha; Haddad, Leila M.; Han, Esther J.; Jain, Shelby; Jiang, Andrew; Jurgielewicz, Andrew D.; Kainth, Devneet K.; Karam, Jawhara M.; Kodavatiganti, Mallika; Kriete, Sinja J.; MacDonald, Catherine E.; Maret, Josh P.; Mathew, Ashley E.; Natrajan, Maanasa; Nishu, Nusrat M.; Patel, Nirali; Patel, Pooja D.; Patel, Shivani; Patra, Kaustav; Rai, Karima K.; Sarkar, Arghyadeep; Shah, Priyanka; Tata, Ravi K.; Tawfik, Andrew H.; Thuremella, Bhavya T.; Toma, Justina; Veera, Shika; Vemulapalli, Vamsee K.; Vidas, Trevor V.; Vieira, Katy S.; Vijayakumar, Gayathri; Walor, Tru A.; White, Clara R.; Wong, Brianna M.; Zhao, Shu L.; Bollivar, David W.; McDonald, Matthew T.; Dalia, Ritu R.; Smith, Kevin P. W.; Little, Joy L.

    2018-01-01

    ABSTRACT Mycobacteriophage Superphikiman is a cluster J bacteriophage which was isolated from soil collected in Philadelphia, PA. Superphikiman has a 109,799-bp genome with 239 predicted genes, including 2 tRNA genes. PMID:29437101

  16. Computer Simulation of the Virulome of Bacillus anthracis Using Proteomics

    DTIC Science & Technology

    2006-07-31

    hypothetical protein gi|47526566 spermidine /putrescine ABC transporter, spermidine /putrescine-binding protein gi|47526625 oligoendopeptidase F, putative gi...glutamyl-trna(gln) amidotransferase, a subunit x gi|50196927 aspartate aminotransferase x gi|50196970 spermidine synthase x

  17. Genetics Home Reference: TRNT1 deficiency

    MedlinePlus

    ... in the production (synthesis) of other proteins. During protein synthesis, a molecule called transfer RNA (tRNA) helps assemble ... thought to be less able to participate in protein synthesis. Researchers suspect that protein synthesis in cellular structures ...

  18. A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes

    PubMed Central

    Mühlhausen, Stefanie; Findeisen, Peggy; Plessmann, Uwe; Urlaub, Henning; Kollmar, Martin

    2016-01-01

    The genetic code is the cellular translation table for the conversion of nucleotide sequences into amino acid sequences. Changes to the meaning of sense codons would introduce errors into almost every translated message and are expected to be highly detrimental. However, reassignment of single or multiple codons in mitochondria and nuclear genomes, although extremely rare, demonstrates that the code can evolve. Several models for the mechanism of alteration of nuclear genetic codes have been proposed (including “codon capture,” “genome streamlining,” and “ambiguous intermediate” theories), but with little resolution. Here, we report a novel sense codon reassignment in Pachysolen tannophilus, a yeast related to the Pichiaceae. By generating proteomics data and using tRNA sequence comparisons, we show that Pachysolen translates CUG codons as alanine and not as the more usual leucine. The Pachysolen tRNACAG is an anticodon-mutated tRNAAla containing all major alanine tRNA recognition sites. The polyphyly of the CUG-decoding tRNAs in yeasts is best explained by a tRNA loss driven codon reassignment mechanism. Loss of the CUG-tRNA in the ancient yeast is followed by gradual decrease of respective codons and subsequent codon capture by tRNAs whose anticodon is not part of the aminoacyl-tRNA synthetase recognition region. Our hypothesis applies to all nuclear genetic code alterations and provides several testable predictions. We anticipate more codon reassignments to be uncovered in existing and upcoming genome projects. PMID:27197221

  19. How Amino Acids and Peptides Shaped the RNA World

    PubMed Central

    van der Gulik, Peter T.S.; Speijer, Dave

    2015-01-01

    The “RNA world” hypothesis is seen as one of the main contenders for a viable theory on the origin of life. Relatively small RNAs have catalytic power, RNA is everywhere in present-day life, the ribosome is seen as a ribozyme, and rRNA and tRNA are crucial for modern protein synthesis. However, this view is incomplete at best. The modern protein-RNA ribosome most probably is not a distorted form of a “pure RNA ribosome” evolution started out with. Though the oldest center of the ribosome seems “RNA only”, we cannot conclude from this that it ever functioned in an environment without amino acids and/or peptides. Very small RNAs (versatile and stable due to basepairing) and amino acids, as well as dipeptides, coevolved. Remember, it is the amino group of aminoacylated tRNA that attacks peptidyl-tRNA, destroying the bond between peptide and tRNA. This activity of the amino acid part of aminoacyl-tRNA illustrates the centrality of amino acids in life. With the rise of the “RNA world” view of early life, the pendulum seems to have swung too much towards the ribozymatic part of early biochemistry. The necessary presence and activity of amino acids and peptides is in need of highlighting. In this article, we try to bring the role of the peptide component of early life back into focus. We argue that an RNA world completely independent of amino acids never existed. PMID:25607813

  20. Playing RNase P evolution: swapping the RNA catalyst for a protein reveals functional uniformity of highly divergent enzyme forms.

    PubMed

    Weber, Christoph; Hartig, Andreas; Hartmann, Roland K; Rossmanith, Walter

    2014-08-01

    The RNase P family is a diverse group of endonucleases responsible for the removal of 5' extensions from tRNA precursors. The diversity of enzyme forms finds its extremes in the eukaryal nucleus where RNA-based catalysis by complex ribonucleoproteins in some organisms contrasts with single-polypeptide enzymes in others. Such structural contrast suggests associated functional differences, and the complexity of the ribonucleoprotein was indeed proposed to broaden the enzyme's functionality beyond tRNA processing. To explore functional overlap and differences between most divergent forms of RNase P, we replaced the nuclear RNase P of Saccharomyces cerevisiae, a 10-subunit ribonucleoprotein, with Arabidopsis thaliana PRORP3, a single monomeric protein. Surprisingly, the RNase P-swapped yeast strains were viable, displayed essentially unimpaired growth under a wide variety of conditions, and, in a certain genetic background, their fitness even slightly exceeded that of the wild type. The molecular analysis of the RNase P-swapped strains showed a minor disturbance in tRNA metabolism, but did not point to any RNase P substrates or functions beyond that. Altogether, these results indicate the full functional exchangeability of the highly dissimilar enzymes. Our study thereby establishes the RNase P family, with its combination of structural diversity and functional uniformity, as an extreme case of convergent evolution. It moreover suggests that the apparently gratuitous complexity of some RNase P forms is the result of constructive neutral evolution rather than reflecting increased functional versatility.