Sample records for nanocomposite based sensors

  1. Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites

    PubMed Central

    Alamusi; Hu, Ning; Fukunaga, Hisao; Atobe, Satoshi; Liu, Yaolu; Li, Jinhua

    2011-01-01

    In recent years, nanocomposites based on various nano-scale carbon fillers, such as carbon nanotubes (CNTs), are increasingly being thought of as a realistic alternative to conventional smart materials, largely due to their superior electrical properties. Great interest has been generated in building highly sensitive strain sensors with these new nanocomposites. This article reviews the recent significant developments in the field of highly sensitive strain sensors made from CNT/polymer nanocomposites. We focus on the following two topics: electrical conductivity and piezoresistivity of CNT/polymer nanocomposites, and the relationship between them by considering the internal conductive network formed by CNTs, tunneling effect, aspect ratio and piezoresistivity of CNTs themselves, etc. Many recent experimental, theoretical and numerical studies in this field are described in detail to uncover the working mechanisms of this new type of strain sensors and to demonstrate some possible key factors for improving the sensor sensitivity. PMID:22346667

  2. A quantum dot-spore nanocomposite pH sensor.

    PubMed

    Zhang, Xingya; Li, Zheng; Zhou, Tao; Zhou, Qian; Zeng, Zhiming; Xu, Xiangdong; Hu, Yonggang

    2016-04-01

    A new quantum dot (QD)-based pH sensor design is investigated. The sensor is synthesized based on the self-assembly of green QDs onto treated spores to form QD@spore nanocomposites. The nanocomposites are characterized using laser scanning confocal microscopy, transmission electron microscope, and fluorescence spectroscopy, among others. Fluorescence measurements showed that these nanocomposites are sensitive to pH in a broad pH range of 5.0-10.0. The developed pH sensors have been satisfactorily applied for pH estimation of real samples and are comparable with those of the commercial assay method, indicating the potential practical application of the pH sensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Use of Nanocomposites for Flexible Pressure Sensors =

    NASA Astrophysics Data System (ADS)

    Sepulveda, Alexandra Conceicao Teixeira

    Polymer nanocomposites (PNCs) are defined as polymers bonded with nanoparticles to create materiais with improved properties. The development of this type of material is rapidly emerging as a multidisciplinary research activity, since their final properties can benefit many different fields of application, namely in the development of electrical devices as studied herein. A fabrication technique to produce conductive PNCs was developed in this work and used to fabricate flexible capacitive pressure sensors. The process is based on vertically aligned-carbon nanotubes (A-CNTs) embedded in a flexible and biocompatible matrix of polydimethylsiloxane (PDMS). Thin A-CNTs/PDMS nanocomposite films ( 400 mum) were produced using wetting of as-grown A-CNTs with uncured PDMS and the resulting nanocomposites were used to fabricate flexible pressure sensors. The sensing capability of this A-CNTs/PDMS nanocomposite is attributed to the distinctive combination of mechanical flexibility and electrical properties. The fabricated nanocomposites were characterized and mechanical and electrical properties evaluated. The PDMS is significantly modified by the reinforcing A-CNT fibers, demonstrating non-isotropic (as opposed to the isotropic neat PDMS) elastic properties ali different than the PDMS (Young's modulus of 0.8 MPa), including an anisotropy ratio of 4.8 and increases in the modulus of A-CNTs/PDMS nanocomposites over PDMS by more than 900 % and 100 %, in the CNTs longitudinal and transverse directions, respectively. Regarding the electrical measurements, A-CNTs/PDMS nanocomposites presented an electrical conductivity of 0.35 Sim. The rather low conductivity does not compromise the developed capacitive sensor, but since passive telemetry is required to measure and power the sensor, solutions to overcome this problem were also studied. The configuration of the developed flexible sensor is similar to typical silicon-based capacitive pressure sensors. It is composed of three thin

  4. Recent progress in nanocomposites based on conducting polymer: application as electrochemical sensors

    NASA Astrophysics Data System (ADS)

    El Rhazi, Mama; Majid, Sanaa; Elbasri, Miloud; Salih, Fatima Ezzahra; Oularbi, Larbi; Lafdi, Khalid

    2018-06-01

    Over the years, intensive research works have been devoted to conducting polymers due to their potential application in many fields such as fuel cell, sensors, and capacitors. To improve the properties of these compounds, several new approaches have been developed which consist in combining conducting polymers and nanoparticles. Then, this review intends to give a clear overview on nanocomposites based on conducting polymers, synthesis, characterization, and their application as electrochemical sensors. For this, the paper is divided into two parts: the first part will highlight the nanocomposites synthesized by combination of carbon nanomaterials (CNMs) and conducting polymers. The preparation of polymer/CNMs such as graphene and carbon nanotube modified electrode is presented coupled with relevant applications. The second part consists of a review of nanocomposites synthesized by combination of metal nanoparticles and conducting polymers.

  5. Surface plasmon resonance-based fiber-optic hydrogen gas sensor utilizing palladium supported zinc oxide multilayers and their nanocomposite.

    PubMed

    Tabassum, Rana; Gupta, Banshi D

    2015-02-10

    We analyze surface plasmon resonance-based fiber-optic sensor for sensing of small concentrations of hydrogen gas in the visible region of the electromagnetic spectrum. One of the two probes considered has multilayers of zinc oxide (ZnO) and palladium (Pd) while the other has layer of their composite over a silver coated unclad core of the fiber. The analysis is carried out for different volume fractions of palladium nanoparticles dispersed in zinc oxide host material in the nanocomposite layer. For the analysis, a Maxwell-Garnett model is adopted for calculating the dielectric function of a ZnO:Pd nanocomposite having nanoparticles of dimensions smaller than the wavelength of radiation used. The effects of the volume fraction of the nanoparticles in the nanocomposite and the thickness of the nanocomposite layer on the figure of merit of the sensor have been studied. The film thickness of the layer and the volume fraction of nanoparticles in the ZnO:Pd nanocomposite layer have been optimized to achieve the maximum value of the figure of merit of the sensor. It has been found that the figure of merit of the sensing probe coated with ZnO:Pd nanocomposite is more than twofold of the sensing probe coated with multilayers of Pd and ZnO over a silver coated unclad core of the fiber; hence, the sensor with a nanocomposite layer works better than that with multilayers of zinc oxide and palladium. The sensor can be used for online monitoring and remote sensing of hydrogen gas.

  6. Polyaniline-ZnO nanocomposites as ethanol gas sensors

    NASA Astrophysics Data System (ADS)

    Talegaonkar, Janhavi; Patil, Y. B.; Patil, D. R.

    2018-05-01

    Polyaniline and it`s nanocomposites with ZnO were successfully synthesized by photo-induced polymerization method with various concentrations of ZnO, followed by characterizations viz. SEM, EDAX, XRD, FTIR and UV-Vis. Thick films of synthesized powders were fabricated by screen printing technique for monitoring various gases at different operating temperatures and at various gas concentrations. CuO activated polyaniline-ZnO nano-composite exhibits maximum response of ethanol gas at room temperature. The sensor exhibits high sensitivity, highest selectivity, quick response, fast recovery, long term stability, etc. An exceptional sensitivity was found to low concentrations of ethanol gas at room temperature and no cross sensitivity was observed even to high concentrations of other hazardous and polluting gases. The efforts have been made to develop the ethanol sensor based on PANI and its nanocomposites. The effects of microstructure and surfactant concentration on the ethanol response, selectivity, response and recovery of the sensor in the presence of ethanol gas were studied and discussed.

  7. Theoretical investigation on multilayer nanocomposite-based fiber optic SPR sensor

    NASA Astrophysics Data System (ADS)

    Shojaie, Ehsan; Madanipour, Khosro; Gharibzadeh, Azadeh; Abbasi, Shabnam

    2017-06-01

    In this work, a multilayer nanocomposite based fiber optic SPR sensor is considered and especially designed for CO2 gas detection. This proposed fiber sensor consists of fiber core, gold-silver alloy and the absorber layers. The investigation is based on the evaluation of the transmitted-power derived under the transfer matrix method and the multiple-reflection in the sensing area. In terms of sensitivity, the sensor performance is studied theoretically under various conditions related to the metal layer and its gold and silver nanoparticles to form a single alloy film. Effect of additional parameters such as the ratio of the alloy composition and the thickness of the alloy film on the performance of the SPR sensor is studied, as well. Finally, a four-layer structure is introduced to detect carbon dioxide gas. It contains core fiber, gold-silver alloy layer, an absorbent layer of carbon dioxide gas (KOH) and measurement environment. Lower price and size are the main advantages of using such a sensor in compare with commercial (NDIR) gas sensor. Theoretical results show by increasing the metal layer thickness the sensitivity of sensor is increased, and by increasing the ratio of the gold in alloy the sensitivity is decreased.

  8. A high performance nonenzymatic electrochemical glucose sensor based on polyvinylpyrrolidone-graphene nanosheets-nickel nanoparticles-chitosan nanocomposite.

    PubMed

    Liu, Zhiguang; Guo, Yujing; Dong, Chuan

    2015-05-01

    In this report, a new nanocomposite was successfully synthesized by chemical deposition of nickel nanoparticles (NiNPs) on polyvinylpyrrolidone (PVP) stabilized graphene nanosheets (GNs) with chitosan (CS) as the protective coating. The as obtained nanocomposite (PVP-GNs-NiNPs-CS) was characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Benefiting from the synergistic effect of GNs (large surface area and high conductivity), NiNPs (high electrocatalytic activity towards the glucose oxidation) and CS (good film-forming and antifouling ability), a nonenzymatic electrochemical glucose sensor was established. The nanocomposite displays greatly enhanced electrocatalytic activity towards the glucose oxidation in NaOH solution. The PVP-GNs-NiNPs-CS based electrochemical glucose sensor demonstrates good sensitivity, wide linear range (0.1 μM-0.5 mM), outstanding detection limit (30 nM), attractive selectivity, good reproducibility, high stability as well as prominent feasibility for the real sample analysis. The proposed experiment might open up a new possibility for widespread use of non-enzymatic sensors for monitoring blood glucose owing to its advantages of low cost, simple preparation and excellent properties for glucose detection. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Room temperature LPG resistive sensor based on the use of a few-layer graphene/SnO2 nanocomposite.

    PubMed

    Goutham, Solleti; Bykkam, Satish; Sadasivuni, Kishor Kumar; Kumar, Devarai Santhosh; Ahmadipour, Mohsen; Ahmad, Zainal Arifin; Rao, Kalagadda Venkateswara

    2017-12-20

    A nanocomposite consisting of a few layers of graphene (FLG) and tin dioxide (SnO 2 ) was prepared by ultrasound-assisted synthesis. The uniform SnO 2 nanoparticles (NPs) on the FLG were characterized by X-ray diffraction in terms of lattice and phase structure. The functional groups present in the composite were analyzed by FTIR. Electron microscopy (HR-TEM and FE-SEM) was used to study the morphology. The effect of the fraction of FLG present in the nanocomposite was investigated. Sensitivity, selectivity and reproducibility towards resistive sensing of liquid propane gas (LPG) was characterized by the I-V method. The sensor with 1% of FLG on SnO 2 operated at a typical voltage of 1 V performs best in giving a rapid and sensitive response even at 27 °C. This proves that the operating temperature of such sensors can be drastically decreased which is in contrast to conventional metal oxide LPG sensors. Graphical abstract Schematic of a room temperature gas sensor for liquefied petroleum gas (LPG). It is based on the use of a few-layered graphene (1 wt%)/SnO 2 nanocomposite that was deposited on an interdigitated electrode (IDEs). A sensing mechanism for LPG detection has been established.

  10. Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites.

    PubMed

    Koskun, Yağmur; Şavk, Aysun; Şen, Betül; Şen, Fatih

    2018-06-20

    Glucose enzyme biosensors have been used for a variety of applications such as medical diagnosis, bioprocess engineering, beverage industry and environmental scanning etc. and there is still a growing interest in glucose sensors. For this purpose, addressed herein, as a novel glucose sensor, highly sensitive activated carbon (AC) decorated monodisperse nickel and palladium alloy nanocomposites modified glassy carbon electrode (Ni-Pd@AC/GCE NCs) have been synthesized by in-situ reduction technique. Raman Spectroscopy (RS), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), cyclic voltammetry (CV) and chronoamperometry (CA) were used for the characterization of the prepared non-enzymatic glucose sensor. The characteristic sensor properties of the Ni-Pd@AC/GCE electrode were compared with Ni-Pd NCs/GCE, Ni@AC/GCE and Pd@AC/GCE and the results demonstrate that the AC is very effective in the enhancement of the electrocatalytic properties of sensor. In addition, the Ni-Pd@AC/GCE nanocomposites showed a very low detection limit of 0.014 μM, a wide linear range of 0.01 mM-1 mM and a very high sensitivity of 90 mA mM -1  cm -2 . Furthermore, the recommended sensor offer the various advantageous such as facile preparation, fast response time, high selectivity and sensitivity. Lastly, monodisperse Ni-Pd@AC/GCE was utilized to detect glucose in real sample species. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Carbon Nanotube/Polymer Nanocomposites Flexible Stress and Strain Sensors

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Scholl, Jonathan A.; Lowther, Sharon E.; Harrison, Joycelyn S.

    2008-01-01

    Conformable stress and strain sensors are required for monitoring the integrity of airframe structures as well as for sensing the mechanical stimuli in prosthetic arms. For this purpose, we have developed a series of piezoresistive single-wall carbon nanotube (SWCNT)/polymer nanocomposites. The electromechanical coupling of pressure with resistance changes in these nanocomposites is exceptionally greater than that of metallic piezoresistive materials. In fact, the piezoresistive stress coefficient (pi) of a SWCNT/polymer nanocomposite is approximately two orders of magnitude higher than that of a typical metallic piezoresistive. The piezoresistive stress coefficient is a function of the nanotube concentration wherein the maximum value occurs at a concentration just above the percolation threshold concentration (phi approx. 0.05 %). This response appears to originate from a change in intrinsic resistivity under compression/tension. A systematic study of the effect of the modulus of the polymer matrix on piezoresistivity allowed us to make flexible and conformable sensors for biomedical applications. The prototype haptic sensors using these nanocomposites are demonstrated. The piezocapacitive properties of SWCNT/polymer are also characterized by monitoring the capacitance change under pressure.

  12. Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites.

    PubMed

    Amjadi, Morteza; Yoon, Yong Jin; Park, Inkyu

    2015-09-18

    Super-stretchable, skin-mountable, and ultra-soft strain sensors are presented by using carbon nanotube percolation network-silicone rubber nanocomposite thin films. The applicability of the strain sensors as epidermal electronic systems, in which mechanical compliance like human skin and high stretchability (ϵ > 100%) are required, has been explored. The sensitivity of the strain sensors can be tuned by the number density of the carbon nanotube percolation network. The strain sensors show excellent hysteresis performance at different strain levels and rates with high linearity and small drift. We found that the carbon nanotube-silicone rubber based strain sensors possess super-stretchability and high reliability for strains as large as 500%. The nanocomposite thin films exhibit high robustness and excellent resistance-strain dependency for over ~1380% mechanical strain. Finally, we performed skin motion detection by mounting the strain sensors on different parts of the body. The maximum induced strain by the bending of the finger, wrist, and elbow was measured to be ~ 42%, 45% and 63%, respectively.

  13. Freely suspended nanocomposite membranes as highly sensitive sensors

    NASA Astrophysics Data System (ADS)

    Jiang, Chaoyang; Markutsya, Sergiy; Pikus, Yuri; Tsukruk, Vladimir V.

    2004-10-01

    Highly sensitive sensor arrays are in high demand for prospective applications in remote sensing and imaging. Measuring microscopic deflections of compliant micromembranes and cantilevers is developing into one of the most versatile approaches for thermal, acoustic and chemical sensing. Here, we report on an innovative fabrication of compliant nanocomposite membranes with nanoscale thickness showing extraordinary sensitivity and dynamic range, which makes them candidates for a new generation of membrane-based sensor arrays. These nanomembranes with a thickness of 25-70 nm, which can be freely suspended over large (hundred micrometres) openings are fabricated with molecular precision by time-efficient, spin-assisted layer-by-layer assembly. They are designed as multilayered molecular composites made of a combination of polymeric monolayers and a metal nanoparticle intralayer. We demonstrate that these nanocomposite membranes possess unparalleled sensitivity and a unique autorecovering ability. The membrane nanostructure that is responsible for these outstanding properties combines multilayered polymer/nanoparticle organization, high polymer-chain orientation, and a pre-stretched state.

  14. A non-enzymatic amperometric hydrogen peroxide sensor based on iron nanoparticles decorated reduced graphene oxide nanocomposite.

    PubMed

    Amanulla, Baishnisha; Palanisamy, Selvakumar; Chen, Shen-Ming; Velusamy, Vijayalakshmi; Chiu, Te-Wei; Chen, Tse-Wei; Ramaraj, Sayee Kannan

    2017-02-01

    A simple and facile green process was used for the synthesis of iron nanoparticles (FeNPs) decorated reduced graphene oxide (rGO) nanocomposite by using Ipomoea pes-tigridis leaf extract as a reducing and stabilizing agent. The as-prepared rGO/FeNPs nanocomposite was characterized by transmission electron microscopy, X-ray spectroscopy and Fourier transform infrared spectroscopy. The nanocomposite was further modified on the glassy carbon electrode and used for non-enzymatic sensing of hydrogen peroxide (H 2 O 2 ). Cyclic voltammetry results reveal that rGO/FeNPs nanocomposite has excellent electro-reduction behavior to H 2 O 2 when compared to the response of FeNPs and rGO modified electrodes. Furthermore, the nanocomposite modified electrode shows 9 and 6 folds enhanced reduction current response to H 2 O 2 than that of rGO and FeNPs modified electrodes. Amperometric method was further used to quantify the H 2 O 2 using rGO/FeNPs nanocomposite, and the response was linear over the concentration ranging from 0.1μM to 2.15mM. The detection limit and sensitivity of the sensor were estimated as 0.056μM and 0.2085μAμM -1 cm -2 , respectively. The fabricated sensor also utilized for detection of H 2 O 2 in the presence of potentially active interfering species, and found high selectivity towards H 2 O 2 . Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Matrices for Sensors from Inorganic, Organic, and Biological Nanocomposites

    PubMed Central

    Nicolini, Claudio; Sivozhelezov, Victor; Bavastrello, Valter; Bezzerra, Tercio; Scudieri, Dora; Spera, Rosanna; Pechkova, Eugenia

    2011-01-01

    Matrices and sensors resulting from inorganic, organic and biological nanocomposites are presented in this overview. The term nanocomposite designates a solid combination of a matrix and of nanodimensional phases differing in properties from the matrix due to dissimilarities in structure and chemistry. The nanoocomposites chosen for a wide variety of health and environment sensors consist of Anodic Porous Allumina and P450scc, Carbon nanotubes and Conductive Polymers, Langmuir Blodgett Films of Lipases, Laccases, Cytochromes and Rhodopsins, Three-dimensional Nanoporous Materials and Nucleic Acid Programmable Protein Arrays. PMID:28824154

  16. Organic-vapor detection using carbon-nanotubes nanocomposite microacoustic sensors

    NASA Astrophysics Data System (ADS)

    Penza, M.; Tagliente, M. A.; Aversa, P.; Cassano, G.

    2005-06-01

    We have developed highly sensitive microacoustic vapor sensors based on surface acoustic waves (SAWs) ST,X quartz 315 and 433 MHz two-port resonator oscillators. A nanocomposite film of single-walled carbon nanotubes (SWCNTs) embedded in a cadmium arachidate (CdA) amphiphilic matrix was prepared by Langmuir-Blodgett technique with a fixed SWCNTs weight filler-content as nanostructured and nanosensing interface, for vapor detection at room temperature. The structural properties and surface morphology of the nanocomposite have been examined by X-ray Specular Reflectivity and Field-Emission Gun Scanning Electron Microscopy, respectively. The measured acoustic sensing characteristics indicate that the SAW sensitivity to polar and nonpolar tested organic molecules (ethanol, ethylacetate, and toluene) of the SWCNTs/CdA nanocomposite is up to two times higher than that of unembedded CdA device; also the SWCNTs/CdA nanocomposite vapor sensitivity results significantly enhanced with respect to traditional organic molecular cavities materials and increases with SAW oscillating frequency with a linear dependence in the frequency change response up to a very low sub-ppm limit of detection.

  17. A nanocomposite-based electrochemical sensor for non-enzymatic detection of hydrogen peroxide

    PubMed Central

    Du, Xin; Chen, Yuan; Dong, Wenhao; Han, Bingkai; Liu, Min; Chen, Qiang; Zhou, Jun

    2017-01-01

    Hydrogen peroxide (H2O2) plays important signaling roles in normal physiology and disease. However, analyzing the actions of H2O2 is often impeded by the difficulty in detecting this molecule. Herein, we report a novel nanocomposite-based electrochemical sensor for non-enzymatic detection of H2O2. Graphene oxide (GO) was selected as the dopant for the synthesis of polyaniline (PANI), leading to the successful fabrication of a water-soluble and stable GO-PANI composite. GO-PANI was subsequently subject to cyclic voltammetry to generate reduced GO-PANI (rGO-PANI), enhancing the conductivity of the material. Platinum nanoparticles (PtNPs) were then electrodeposited on the surface of the rGO-PANI-modified glassy carbon electrode (GCE) to form an electrochemical H2O2 sensor. Compared to previously reported sensors, the rGO-PANI-PtNP/GCE exhibited an expanded linear range, higher sensitivity, and lower detection limit in the quantification of H2O2. In addition, the sensor displayed outstanding reproducibility and selectivity in real-sample examination. Our study suggests that the rGO-PANI-PtNP/GCE may have broad utility in H2O2 detection under physiological and pathological conditions. PMID:28035076

  18. Stretchable Electronic Sensors of Nanocomposite Network Films for Ultrasensitive Chemical Vapor Sensing.

    PubMed

    Yan, Hong; Zhong, Mengjuan; Lv, Ze; Wan, Pengbo

    2017-11-01

    A stretchable, transparent, and body-attachable chemical sensor is assembled from the stretchable nanocomposite network film for ultrasensitive chemical vapor sensing. The stretchable nanocomposite network film is fabricated by in situ preparation of polyaniline/MoS 2 (PANI/MoS 2 ) nanocomposite in MoS 2 suspension and simultaneously nanocomposite deposition onto prestrain elastomeric polydimethylsiloxane substrate. The assembled stretchable electronic sensor demonstrates ultrasensitive sensing performance as low as 50 ppb, robust sensing stability, and reliable stretchability for high-performance chemical vapor sensing. The ultrasensitive sensing performance of the stretchable electronic sensors could be ascribed to the synergistic sensing advantages of MoS 2 and PANI, higher specific surface area, the reliable sensing channels of interconnected network, and the effectively exposed sensing materials. It is expected to hold great promise for assembling various flexible stretchable chemical vapor sensors with ultrasensitive sensing performance, superior sensing stability, reliable stretchability, and robust portability to be potentially integrated into wearable electronics for real-time monitoring of environment safety and human healthcare. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Strain Sensors with Adjustable Sensitivity by Tailoring the Microstructure of Graphene Aerogel/PDMS Nanocomposites.

    PubMed

    Wu, Shuying; Ladani, Raj B; Zhang, Jin; Ghorbani, Kamran; Zhang, Xuehua; Mouritz, Adrian P; Kinloch, Anthony J; Wang, Chun H

    2016-09-21

    Strain sensors with high elastic limit and high sensitivity are required to meet the rising demand for wearable electronics. Here, we present the fabrication of highly sensitive strain sensors based on nanocomposites consisting of graphene aerogel (GA) and polydimethylsiloxane (PDMS), with the primary focus being to tune the sensitivity of the sensors by tailoring the cellular microstructure through controlling the manufacturing processes. The resultant nanocomposite sensors exhibit a high sensitivity with a gauge factor of up to approximately 61.3. Of significant importance is that the sensitivity of the strain sensors can be readily altered by changing the concentration of the precursor (i.e., an aqueous dispersion of graphene oxide) and the freezing temperature used to process the GA. The results reveal that these two parameters control the cell size and cell-wall thickness of the resultant GA, which may be correlated to the observed variations in the sensitivities of the strain sensors. The higher is the concentration of graphene oxide, then the lower is the sensitivity of the resultant nanocomposite strain sensor. Upon increasing the freezing temperature from -196 to -20 °C, the sensitivity increases and reaches a maximum value of 61.3 at -50 °C and then decreases with a further increase in freezing temperature to -20 °C. Furthermore, the strain sensors offer excellent durability and stability, with their piezoresistivities remaining virtually unchanged even after 10 000 cycles of high-strain loading-unloading. These novel findings pave the way to custom design strain sensors with a desirable piezoresistive behavior.

  20. A High Sensitivity Isopropanol Vapor Sensor Based on Cr₂O₃-SnO₂ Heterojunction Nanocomposites via Chemical Precipitation Route.

    PubMed

    Jawaher, K Rackesh; Indirajith, R; Krishnan, S; Robert, R; Pasha, S K Khadheer; Deshmukh, Kalim; Sastikumar, D; Das, S Jerome

    2018-08-01

    Cr2O3-SnO2 heterojunction nanocomposites were prepared via chemical precipitation method. The prepared samples were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectra and Field Emission Electron Microscopy (FESEM). The XRD spectrum confirms the presence of both tetragonal rutile SnO2 and rhombohedral corundum Cr2O3 structure. Further investigation into the gas sensing performances of the prepared Cr2O3-SnO2 nanocomposites exhibited an enhanced sensitivity towards VOPs such as isopropanol, acetone, ethanol and formaldehyde. Especially, isopropanol vapor sensor shows excellent sensitivity at an operating temperature of 100 °C. The highest sensitivity for Cr2O3-SnO2 heterojunction nanocomposites indicate that these materials can be a good candidate for the production of high-performance isopropanol sensors.

  1. The Enhancement Of UV Sensor Response By Zinc Oxide Nanorods / Reduced Graphene Oxide Bilayer Nanocomposites Film

    NASA Astrophysics Data System (ADS)

    Mohammed, Ali A. A.; Suriani, AB; Jabur, Akram R.

    2018-05-01

    Zinc oxide nanorods (ZnO NRs) / reduced graphene oxide (rGO) nanocomposites assisted by sodium dodecyl sulfate surfactant (ZnO NRs/rGO-SDS) showed a good response for UV sensor application that has sensitivity of around ∼32.54. Whereas, the UV sensor response on pristine ZnO NRs showed almost 15 times lower response than the ZnO NRs/rGO-SDS nanocomposites. The pristine ZnO NRs were prepared by sol-gel immersion method before rGO solution was sprayed on the ZnO films using spraying method. The GO solution was produced via electrochemical exfoliation method at 0.1 M SDS electrolyte then the solution was reduced using hydrazine hydrate under 24 hours magnetic stirring at a temperature of around ∼100 °C. The samples were characterized using energy dispersive X-ray, field emission scanning electron microscope, micro-Raman, ultraviolet visible, X-ray diffraction, UV lamp and four-point probe measurement. The aim of this study was to improve the UV sensor response based on ZnO/rGO-SDS nanocomposites. In conclusion, the fabricated ZnO NRs/rGO-SDS nanocomposites assisted with SDS is a good candidate for the use in UV sensor applications as compared to pristine ZnO NRs films.

  2. Freeze drying-assisted synthesis of Pt@reduced graphene oxide nanocomposites as excellent hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Lu, Xiaojing; Song, Xinjie; Gu, Cuiping; Ren, Haibo; Sun, Yufeng; Huang, Jiarui

    2018-05-01

    Quick and efficient detection of low concentrations of hydrogen remains a challenge because of the stability of hydrogen. A sensor based on reduced oxide graphene functionalized with Pt nanoparticles is successfully fabricated using a freeze-drying method followed by heat treatment. The structure and morphology of the Pt@rGO nanocomposites are well analyzed by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The as-prepared Pt@rGO nanocomposites show excellent hydrogen gas sensing properties at a low working temperature of 50 °C. The sensitivity toward 0.5% hydrogen is 8%. The response and recovery times of the sensor exposed to 0.5% hydrogen are 63 and 104 s, respectively. The gas-sensing mechanism of Pt@rGO sensor is also discussed.

  3. Synthesis and characterization of graphene quantum dots/CoNiAl-layered double-hydroxide nanocomposite: Application as a glucose sensor.

    PubMed

    Samuei, Sara; Fakkar, Jila; Rezvani, Zolfaghar; Shomali, Ashkan; Habibi, Biuck

    2017-03-15

    In the present work, a novel nanocomposite based on the graphene quantum dots and CoNiAl-layered double-hydroxide was successfully synthesized by co-precipitation method. To achieve the morphological, structural and compositional information, the resulted nanocomposite was characterized by scanning electron microscopy X-ray diffraction, thermal gravimetric analysis, Fourier transform infrared spectroscopy, and photoluminescence. Then, the nanocomposite was used as a modifier to fabricate a modified carbon paste electrode as a non-enzymatic sensor for glucose determination. Electrochemical behavior and determination of glucose at the nanocomposite modified carbon paste electrode were investigated by cyclic voltammetry and chronoamperometry methods, respectively. The prepared sensor offered good electrocatalytic properties, fast response time, high reproducibility and stability. At the optimum conditions, the constructed sensor exhibits wide linear range; 0.01-14.0 mM with a detection limit of 6 μM (S/N = 3) and high sensitivity of 48.717 μAmM -1 . Finally, the sensor was successfully applied to determine the glucose in real samples which demonstrated its applicability. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Nanocomposites Based on Thermoplastic Polymers and Functional Nanofiller for Sensor Applications

    PubMed Central

    Coiai, Serena; Passaglia, Elisa; Pucci, Andrea; Ruggeri, Giacomo

    2015-01-01

    Thermoplastic polymers like polyolefins, polyesters, polyamide, and styrene polymers are the most representative commodity plastics thanks to their cost-efficient manufacturing processes, excellent thermomechanical properties and their good environmental compatibility, including easy recycling. In the last few decades much effort has been devoted worldwide to extend the applications of such materials by conferring on them new properties through mixing and blending with different additives. In this latter context, nanocomposites have recently offered new exciting possibilities. This review discusses the successful use of nanostructured dispersed substrates in designing new stimuli-responsive nanocomposites; in particular, it provides an updated description of the synthetic routes to prepare nanostructured systems having the typical properties of thermoplastic polymers (continuous matrix), but showing enhanced optical, conductive, and thermal features dependent on the dispersion topology. The controlled nanodispersion of functional labeled clays, noble metal nanoparticles and carbon nanotubes is here evidenced to play a key role in producing hybrid thermoplastic materials that have been used in the design of devices, such as NLO devices, chemiresistors, temperature and deformation sensors.

  5. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites.

    PubMed

    Boland, Conor S; Khan, Umar; Ryan, Gavin; Barwich, Sebastian; Charifou, Romina; Harvey, Andrew; Backes, Claudia; Li, Zheling; Ferreira, Mauro S; Möbius, Matthias E; Young, Robert J; Coleman, Jonathan N

    2016-12-09

    Despite its widespread use in nanocomposites, the effect of embedding graphene in highly viscoelastic polymer matrices is not well understood. We added graphene to a lightly cross-linked polysilicone, often encountered as Silly Putty, changing its electromechanical properties substantially. The resulting nanocomposites display unusual electromechanical behavior, such as postdeformation temporal relaxation of electrical resistance and nonmonotonic changes in resistivity with strain. These phenomena are associated with the mobility of the nanosheets in the low-viscosity polymer matrix. By considering both the connectivity and mobility of the nanosheets, we developed a quantitative model that completely describes the electromechanical properties. These nanocomposites are sensitive electromechanical sensors with gauge factors >500 that can measure pulse, blood pressure, and even the impact associated with the footsteps of a small spider. Copyright © 2016, American Association for the Advancement of Science.

  6. Stretchable, Highly Durable Ternary Nanocomposite Strain Sensor for Structural Health Monitoring of Flexible Aircraft

    PubMed Central

    Yin, Feng; Ye, Dong; Zhu, Chen; Qiu, Lei; Huang, YongAn

    2017-01-01

    Harmonious developments of electrical and mechanical performances are crucial for stretchable sensors in structural health monitoring (SHM) of flexible aircraft such as aerostats and morphing aircrafts. In this study, we prepared a highly durable ternary conductive nanocomposite made of polydimethylsiloxane (PDMS), carbon black (CB) and multi-walled carbon nanotubes (MWCNTs) to fabricate stretchable strain sensors. The nanocomposite has excellent electrical and mechanical properties by intensively optimizing the weight percentage of conducting fillers as well as the ratio of PDMS pre-polymer and curing agent. It was found that the nanocomposite with homogeneous hybrid filler of 1.75 wt % CB and 3 wt % MWCNTs exhibits a highly strain sensitive characteristics of good linearity, high gauge factor (GF ~ 12.25) and excellent durability over 105 stretching-releasing cycles under a tensile strain up to 25% when the PDMS was prepared at the ratio of 12.5:1. A strain measurement of crack detection for the aerostats surface was also employed, demonstrating a great potential of such ternary nanocomposite used as stretchable strain sensor in SHM. PMID:29156620

  7. The synthesis of Fe3O4/MWCNT nanocomposites from local iron sands for electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Rahmawati, Retno; Taufiq, Ahmad; Sunaryono, Yuliarto, Brian; Suyatman, Nugraha, Noviandri, Indra; Setyorini, Dian Ayu; Kurniadi, Deddy

    2018-05-01

    The aim of this research is producing the electrochemical sensor, especially for working electrodes based on the nanocomposites of multi-walled carbon nanotube (MWCNT) and magnetite (Fe3O4) nanoparticles from iron sands. The sonochemical method by ultrasonic horn was successfully used for the synthesis of the nanocomposites. The characterizations of the sample were conducted via X-Ray Diffractometer (XRD), Fourier Transform Infra-Red (FTIR) Spectrometer, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Brunauer-Emmett-Teller (BET) method for surface area, Vibrating Sample Magnetometer (VSM) and Cyclic Voltammetry (CV). The analysis of X-Ray Diffraction (XRD) pattern showed two phases of crystalline, namely MWCNT and Fe3O4, peak of MWCNT comes from (002) plan while peaks of Fe3O4 come from (2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1), and (4 4 0) plans. From XRD data, MWCNT has a hexagonal structure and Fe3O4 has inverse spinel cubic structure, respectively. The FTIR spectra revealed that the functionalization process of MWCNT successfully generated carboxyl and carbonyl groups to bind Fe3O4 on MWCNT surfaces. Moreover, the functional groups of Fe-O bonding that showed the existence of Fe3O4 in the nanocomposites were also detected in those spectra. Meanwhile, the SEM and TEM images showed that the nanoparticles of Fe3O4 attached on the MWCNT surface and formed agglomeration between particles due to magnetic forces. Through Brunauer-Emmett-Teller (BET) method, it is identified that the nanocomposite has a large surface area 318 m2/g that makes this material very suitable for electrochemical sensor applications. Moreover, the characterization of magnetic properties via Vibrating Sample Magnetometer (VSM) showed that the nanocomposites have superparamagnetic behavior at room temperature and the presence of the MWCNT reduced the magnetic properties of Fe3O4. Lastly, the electrochemical characterization with Cyclic Voltammetry (CV) proved that

  8. A novel electrochemical sensor based on Cu3P@NH2-MIL-125(Ti) nanocomposite for efficient electrocatalytic oxidation and sensitive detection of hydrazine

    NASA Astrophysics Data System (ADS)

    Wang, Minghua; Yang, Longyu; Hu, Bin; Liu, Yongkang; Song, Yingpan; He, Linghao; Zhang, Zhihong; Fang, Shaoming

    2018-07-01

    A novel electrocatalyst based on amine-functionalized Ti-based metal-organic framework (NH2-MIL-125(Ti)) embedded with Cu3P nanocrystals (denoted by Cu3P@NH2-MIL-125(Ti)) was synthesized and used for electrocatalytic oxidation and detection of hydrazine in aqueous solution. A series of Cu3P@NH2-MIL-125(Ti) nanocomposites were obtained by adding Cu3P nanoparticles into the preparation system of NH2-MIL-125(Ti), with the Cu3P nanocrystals derived from the phospatization of Cu(OH)2 at high temperature. Based on the detailed characterizations and analysis of the chemical and physical performances of the series of Cu3P@NH2-MIL-125(Ti) nanocomposites at dosages of Cu3P nanocrystals at 5, 20, 50, and 100 mg, the good synergic effect between the Cu3P (50 mg) and the NH2-MIL-125(Ti) endows the as-prepared Cu3P50@NH2-MIL-125(Ti) nanocomposite with the excellent electrocatalytic activity toward the electrocatalytic oxidation of hydrazine. The Cu3P50@NH2-MIL-125(Ti)-based electrochemical sensor exhibited a detection limit of 79 nM (S/N = 3) within a wider linear range from 5 μM to 7.5 mM. Moreover, the developed sensor exhibited high selectivity toward the detection of hydrazine with the addition of certain common interferents and good applicability in real samples. All of these results imply that the Cu3P50@NH2-MIL-125(Ti) nanocomposite could be promising for detecting hydrazine and offer potential applications in the field of electroanalytical chemistry.

  9. Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring.

    PubMed

    Liu, Menglong; Zeng, Zhihui; Xu, Hao; Liao, Yaozhong; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2017-07-01

    A novel nanocomposite-inspired in-situ broadband ultrasonic sensor previously developed, with carbon black as the nanofiller and polyvinylidene fluoride as the matrix, was networked for acousto-ultrasonic wave-based passive and active structural health monitoring (SHM). Being lightweight and small, this kind of sensor was proven to be capable of perceiving strain perturbation in virtue of the tunneling effect in the formed nanofiller conductive network when acousto-ultrasonic waves traverse the sensor. Proof-of-concept validation was implemented, to examine the sensor performance in responding to acousto-ultrasonic waves in a broad frequency regime: from acoustic emission (AE) of lower frequencies to guided ultrasonic waves (GUWs) of higher frequencies. Results have demonstrated the high fidelity, ultrafast response and high sensitivity of the sensor to acousto-ultrasonic waves up to 400kHz yet with an ultra-low magnitude (of the order of micro-strain). The sensor is proven to possess sensitivity and accuracy comparable with commercial piezoelectric ultrasonic transducers, whereas with greater flexibility in accommodating curved structural surfaces. Application paradigms of using the sensor for damage evaluation have spotlighted the capability of the sensor in compromising "sensing cost" with "sensing effectiveness" for passive AE- or active GUW-based SHM. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Uniformly Porous Nanocrystalline CaMgFe1.33Ti3O12 Ceramic Derived Electro-Ceramic Nanocomposite for Impedance Type Humidity Sensor

    PubMed Central

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Shasmin, Hanie Nadia; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Since humidity sensors have been widely used in many sectors, a suitable humidity sensing material with improved sensitivity, faster response and recovery times, better stability and low hysteresis is necessary to be developed. Here, we fabricate a uniformly porous humidity sensor using Ca, Ti substituted Mg ferrites with chemical formula of CaMgFe1.33Ti3O12 as humidity sensing materials by solid-sate step-sintering technique. This synthesis technique is useful to control the grain size with increased porosity to enhance the hydrophilic characteristics of the CaMgFe1.33Ti3O12 nanoceramic based sintered electro-ceramic nanocomposites. The highest porosity, lowest density and excellent surface-hydrophilicity properties were obtained at 1050 °C sintered ceramic. The performance of this impedance type humidity sensor was evaluated by electrical characterizations using alternating current (AC) in the 33%–95% relative humidity (RH) range at 25 °C. Compared with existing conventional resistive humidity sensors, the present sintered electro-ceramic nanocomposite based humidity sensor showed faster response time (20 s) and recovery time (40 s). This newly developed sensor showed extremely high sensitivity (%S) and small hysteresis of <3.4%. Long-term stability of the sensor had been determined by testing for 30 consecutive days. Therefore, the high performance sensing behavior of the present electro-ceramic nanocomposites would be suitable for a potential use in advanced humidity sensors. PMID:27916913

  11. Electrical conductivity of nanocomposites based on carbon nanotubes: a 3D multiscale modeling approach

    NASA Astrophysics Data System (ADS)

    Grabowski, Krzysztof; Zbyrad, Paulina; Staszewski, Wieslaw J.; Uhl, Tadeusz; Wiatr, Kazimierz; Packo, Pawel

    2016-04-01

    Remarkable electrical properties of carbon nanotubes (CNT) have lead to increased interest in studying CNT- based devices. Many of current researches are devoted to using all kinds of carbon nanomaterials in the con- struction of sensory elements. One of the most common applications is the development of high performance, large scale sensors. Due to the remarkable conductivity of CNT's such devices represent very high sensitivity. However, there are no sufficient tools for studying and designing such sensors. The main objective of this paper is to develop and validate a multiscale numerical model for a carbon nanotubes based sensor. The device utilises the change of electrical conductivity of a nanocomposite material under applied deformation. The nanocomposite consists of a number of CNTs dispersed in polymer matrix. The paper is devoted to the analysis of the impact of spatial distribution of carbon nanotubes in polymer matrix on electrical conductivity of the sensor. One of key elements is also to examine the impact of strain on electric charge ow in such anisotropic composite structures. In the following work a multiscale electro-mechanical model for CNT - based nanocomposites is proposed. The model comprises of two length scales, namely the meso- and the macro-scale for mechanical and electrical domains. The approach allows for evaluation of macro-scale mechanical response of a strain sensor. Electrical properties of polymeric material with certain CNT fractions were derived considering electrical properties of CNTs, their contact and the tunnelling effect.

  12. Thin and Flexible Carbon Nanotube-Based Pressure Sensors with Ultra-wide Sensing Range.

    PubMed

    Doshi, Sagar M; Thostenson, Erik T

    2018-06-26

    A scalable electrophoretic deposition (EPD) approach is used to create novel thin, flexible and lightweight carbon nanotube-based textile pressure sensors. The pressure sensors can be produced using an extensive variety of natural and synthetic fibers. These piezoresistive sensors are sensitive to pressures ranging from the tactile range (< 10 kPa), in the body weight range (~ 500 kPa), and very high pressures (~40 MPa). The EPD technique enables the creation of a uniform carbon nanotube-based nanocomposite coating, in the range of 250-750 nm thick, of polyethyleneimine (PEI) functionalized carbon nanotubes on non-conductive fibers. In this work, non-woven aramid fibers are coated by EPD onto a backing electrode followed by film formation onto the fibers creating a conductive network. The electrically conductive nanocomposite coating is firmly bonded to the fiber surface and shows piezoresistive electrical/mechanical coupling. The pressure sensor displays a large in-plane change in electrical conductivity with applied out-of-plane pressure. In-plane conductivity change results from fiber/fiber contact as well as the formation of a sponge-like piezoresistive nanocomposite "interphase" between the fibers. The resilience of the nanocomposite interphase enables sensing of high pressures without permanent changes to the sensor response, showing high repeatability.

  13. Chemically designed Pt/PPy nano-composite for effective LPG gas sensor.

    PubMed

    Gaikwad, Namrata; Bhanoth, Sreenu; More, Priyesh V; Jain, G H; Khanna, P K

    2014-03-07

    Simultaneous in situ reduction of hexachloroplatinic acid by the amine group in the pyrrole monomer and oxidation of pyrrole to form polypyrrole (PPy) was examined. The reactions were performed at various temperatures to understand the degree of reduction of platinum precursor as well as doping of polypyrrole with Pt(II) chloro-complex. Spectroscopic images revealed different morphologies for the Pt/PPy nano-composite prepared at various temperatures. The as-prepared Pt/PPy nano-composite samples were tested for their ability to sense liquefied petroleum gas (LPG) which resulted in excellent sensing at relatively low temperature. The porous nature and ohmic contact between the PPy and platinum nanoparticles makes the as-prepared Pt/PPy nano-composite highly useful for sensors as well as electronic applications.

  14. Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application.

    PubMed

    Qin, Yuyang; Peng, Qingyu; Ding, Yujie; Lin, Zaishan; Wang, Chunhui; Li, Ying; Xu, Fan; Li, Jianjun; Yuan, Ye; He, Xiaodong; Li, Yibin

    2015-09-22

    The creation of superelastic, flexible three-dimensional (3D) graphene-based architectures is still a great challenge due to structure collapse or significant plastic deformation. Herein, we report a facile approach of transforming the mechanically fragile reduced graphene oxide (rGO) aerogel into superflexible 3D architectures by introducing water-soluble polyimide (PI). The rGO/PI nanocomposites are fabricated using strategies of freeze casting and thermal annealing. The resulting monoliths exhibit low density, excellent flexibility, superelasticity with high recovery rate, and extraordinary reversible compressibility. The synergistic effect between rGO and PI endows the elastomer with desirable electrical conductivity, remarkable compression sensitivity, and excellent durable stability. The rGO/PI nanocomposites show potential applications in multifunctional strain sensors under the deformations of compression, bending, stretching, and torsion.

  15. Preparation and characterization of polyaniline-cadmium sulfide nanocomposite for gas sensor application

    NASA Astrophysics Data System (ADS)

    Al-Jawad, Selma M. H.; Rafic, Sewench N.; Muhsen, Mustafa M.

    2017-09-01

    Polyaniline (PANI) was prepared by chemical oxidative polymerization of aniline monomers as emeraldine salt form. By the same method, polyaniline-cadmium sulfide nanocomposites were synthesized in the presence of different percentages (10-50 wt.%) of cadmium sulfide (CdS) which was prepared by using sol-gel method. The optical band gap was decrease with increasing of CdS concentration, that is obtained from UV-VIS measurements. From SEM and AFM, there is uniform distribution for cadmium sulfide nanoparticles in the PANI matrix. The electrical measurements of nanocomposites exhibit the effect of crystallite size and the high resistivity of CdS on the resistivity of nanocomposites. Emeraldine salt PANI, CdS and PANI-CdS nanocomposites were investigated as gas sensors. From this investigation, the sensitivity of PANI-CdS for NO2 gas increase with the increasing of operation temperature and the optimum sensitivity was obtained at 200∘C. The sensitivity of nanocomposites at best temperature (200∘C) was increased and faster response time with the increasing of CdS contents.

  16. MEMS sensor material based on polypyrrole carbon nanotube nanocomposite: film deposition and characterization

    NASA Astrophysics Data System (ADS)

    Teh, Kwok-Siong; Lin, Liwei

    2005-11-01

    Conductive polymer-based nanocomposite has been utilized as a MEMS sensing material via a one-step, selective on-chip deposition process at room temperature. A doped polypyrrole (PPy) variant synthesized by incorporating multi-walled carbon nanotube (MWCNT) into electropolymerized PPy has been shown to improve the sensing performance utilizing a two-terminal, micro-gap chemiresistor architecture. The dodecylbenzenesulfonate (DBS)-doped PPy-MWCNT nanocomposites are found to be responsive to oxidants, such as hydrogen peroxide (H2O2), and this effect can be extended to glucose detection using H2O2 as a proxy material. The oxidant sensing effect is demonstrated by subjecting a glucose oxidase (GOx)-laden PPy-MWCNT nanocomposite film to various concentrations of glucose solution. Such PPy-MWCNT nanocomposite, when applied in a chemiresistor configuration, obviates the need for reference electrode and electron mediators, by measuring the direct and reversible, oxidation-reduction induced conductivity change. Experimentally, GOx-laden, doped PPy-MWCNT is tested to be sensitive to glucose concentration up to 20 mM, which covers the physiologically important range for diabetics of 0-20 mM.

  17. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan-platinum nanoparticles/graphene-gold nanoparticles double nanocomposites modified electrode for detection of erythromycin.

    PubMed

    Lian, Wenjing; Liu, Su; Yu, Jinghua; Xing, Xianrong; Li, Jie; Cui, Min; Huang, Jiadong

    2012-01-01

    A molecularly imprinted electrochemical sensor was fabricated based on gold electrode decorated by chitosan-platinum nanoparticles (CS-PtNPs) and graphene-gold nanoparticles (GR-AuNPs) nanocomposites for convenient and sensitive determination of erythromycin. The synergistic effects of CS-PtNPs and GR-AuNPs nanocomposites improved the electrochemical response and the sensitivity of the sensor. The molecularly imprinted polymers (MIPs) were prepared by HAuCl(4), 2-mercaptonicotinic acid (MNA) and erythromycin. Erythromycin and MNA were used as template molecule and functional monomer, respectively. They were first assembled on the surface of GR-AuNPs/CS-PtNPs/gold electrode by the formation of Au-S bonds and hydrogen-bonding interactions. Then the MIPs were formed by electropolymerization of HAuCl(4), MNA and erythromycin. The sensor was characterized by cyclic voltammetry (CV), scanning electron microscope (SEM), UV-visible (UV-vis) absorption speactra and amperometry. The linear range of the sensor was from 7.0 × 10(-8)mol/L-9.0 × 10(-5)mol/L, with the limit of detection (LOD) of 2.3 × 10(-8)mol/L (S/N=3). The sensor showed high selectivity, excellent stability and good reproducibility for the determination of erythromycin, and it was successfully applied to the detection of erythromycin in real spiked samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Iron-Based Nanomaterials/Graphene Composites for Advanced Electrochemical Sensors

    PubMed Central

    Movlaee, Kaveh; Ganjali, Mohmmad Reza; Norouzi, Parviz

    2017-01-01

    Iron oxide nanostructures (IONs) in combination with graphene or its derivatives—e.g., graphene oxide and reduced graphene oxide—hold great promise toward engineering of efficient nanocomposites for enhancing the performance of advanced devices in many applicative fields. Due to the peculiar electrical and electrocatalytic properties displayed by composite structures in nanoscale dimensions, increasing efforts have been directed in recent years toward tailoring the properties of IONs-graphene based nanocomposites for developing more efficient electrochemical sensors. In the present feature paper, we first reviewed the various routes for synthesizing IONs-graphene nanostructures, highlighting advantages, disadvantages and the key synthesis parameters for each method. Then, a comprehensive discussion is presented in the case of application of IONs-graphene based composites in electrochemical sensors for the determination of various kinds of (bio)chemical substances. PMID:29168771

  19. A high-performance nonenzymatic glucose sensor made of CuO-SWCNT nanocomposites.

    PubMed

    Quoc Dung, Nguyen; Patil, Dewyani; Jung, Hyuck; Kim, Dojin

    2013-04-15

    Nanocomposites of CuO and single-wall carbon nanotubes (SWCNTs) were synthesized using an arc-discharging graphite rod that contained copper wires. Simultaneous arc discharges produced a CuO-SWCNT composite network. The crystalline structure and morphology of the CuO-SWCNT composite films were investigated using XRD, Raman spectroscopy, FE-SEM and TEM. The electrochemical properties were investigated by cyclic voltammogram and amperometric measurements in a 0.1 M NaOH solution. The CuO content in the CuO-SWCNT nanocomposites was optimized for nonenzymatic glucose detection. The glucose sensing properties of the optimized CuO-SWCNT electrode showed good stability, selectivity, and linear glucose detection that ranged from 0.05 to 1800 μM with a higher sensitivity of 1610 μA cm⁻² mM⁻¹, a quick response time of 1-2 s, and the lowest limit of detection at 50 nM. The sensing performance was better than the pure CuO and SWCNT sensors, and the synergetic effect of the composite sensor was attributed to the high conductivity network of highly porous nanowires. The sensor also showed a good response in a human serum sample, which proves its high potential towards a commercial nonenzymatic glucose sensor. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications

    PubMed Central

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan

    2016-01-01

    We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications. PMID:27472335

  1. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications.

    PubMed

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan

    2016-07-26

    We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications.

  2. Controllable synthesis of graphene-based titanium dioxide nanocomposites by atomic layer deposition.

    PubMed

    Meng, Xiangbo; Geng, Dongsheng; Liu, Jian; Li, Ruying; Sun, Xueliang

    2011-04-22

    Atomic layer deposition (ALD) was used to synthesize graphene-based metal oxide nanocomposites. This strategy was fulfilled on the preparation of TiO(2)-graphene nanosheet (TiO(2)-GNS) nanocomposites using titanium isopropoxide and water as precursors. The synthesized nanocomposites demonstrated that ALD exhibited many benefits in a controllable means. It was found that the as-deposited TiO(2) was tunable not only in its morphologies but also in its structural phases. As for the former, TiO(2) was transferable from nanoparticles to nanofilms with increased cycles. With regard to the latter, TiO(2) was changeable from amorphous to crystalline phase, and even a mixture of the two with increased growth temperatures (up to 250 °C). The underlying growth mechanisms were discussed and the resultant TiO(2)-GNS nanocomposites have great potentials for many applications, such as photocatalysis, lithium-ion batteries, fuel cells, and sensors.

  3. A novel rapid synthesis of Fe{sub 2}O{sub 3}/graphene nanocomposite using ferrate(VI) and its application as a new kind of nanocomposite modified electrode as electrochemical sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karimi, Mohammad Ali, E-mail: ma_karimi43@yahoo.com; Department of Chemistry & Nanoscience and Nanotechnology Research Laboratory; Banifatemeh, Fatemeh

    2015-10-15

    Highlights: • A novel rapid synthesis of rGO–Fe{sub 2}O{sub 3} nanocomposite was developed using Fe(VI). • Fe(VI) as an environmentally friendly oxidant was introduced for GO synthesis. • Synthesized rGO–Fe{sub 2}O{sub 3} nanocomposite was applied as electrochemical sensor. • A non-enzymatic sensor was developed for H{sub 2}O{sub 2}. - Abstract: In this study, a novel, simple and sensitive non-enzymatic hydrogen peroxide electrochemical sensor was developed using reduced graphene oxide/Fe{sub 2}O{sub 3} nanocomposite modified glassy carbon electrode. This nanocomposite was synthesized by reaction of sodium ferrate with graphene in alkaline media. This reaction completed in 5 min and the products weremore » stable and its deposition on the surface of electrode is investigated. It has been found the apparent charge transfer rate constant (ks) is 0.52 and transfer coefficient (α) is 0.61 for electron transfer between the modifier and glassy carbon electrode. Electrochemical behavior of this electrode and its ability to catalyze the electro-reduction of H{sub 2}O{sub 2} has been studied by cyclic voltammetry and chronoamperometry at different experimental conditions. The analytical parameters showed the good ability of electrode as a sensor for H{sub 2}O{sub 2} amperometric reduction.« less

  4. Ammonia vapor sensing properties of polyaniline-titanium(IV)phosphate cation exchange nanocomposite.

    PubMed

    Khan, Asif Ali; Baig, Umair; Khalid, Mohd

    2011-02-28

    In this study, the electrically conducting polyaniline-titanium(IV)phosphate (PANI-TiP) cation exchange nanocomposite was synthesized by sol-gel method. The cation exchange nanocomposite based sensor for detection of ammonia vapors was developed at room temperature. It was revealed that the sensor showed good reversible response towards ammonia vapors ranging from 3 to 6%. It was found that the sensor with p-toluene sulphonic acid (p-TSA) doped exhibited higher sensing response than hydrochloric acid doped. This sensor has detection limit ≤1% ammonia. The response of resistivity changes of the cation exchange nanocomposite on exposure to different concentrations of ammonia vapors shows its utility as a sensing material. These studies suggest that the cation exchange nanocomposite could be a good material for ammonia sensor at room temperature. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Polymer nanocomposite nanomechanical cantilever sensors: material characterization, device development and application in explosive vapour detection.

    PubMed

    Seena, V; Fernandes, Avil; Pant, Prita; Mukherji, Soumyo; Rao, V Ramgopal

    2011-07-22

    This paper reports an optimized and highly sensitive piezoresistive SU-8 nanocomposite microcantilever sensor and its application for detection of explosives in vapour phase. The optimization has been in improving its electrical, mechanical and transduction characteristics. We have achieved a better dispersion of carbon black (CB) in the SU-8/CB nanocomposite piezoresistor and arrived at an optimal range of 8-9 vol% CB concentration by performing a systematic mechanical and electrical characterization of polymer nanocomposites. Mechanical characterization of SU-8/CB nanocomposite thin films was performed using the nanoindentation technique with an appropriate substrate effect analysis. Piezoresistive microcantilevers having an optimum carbon black concentration were fabricated using a design aimed at surface stress measurements with reduced fabrication process complexity. The optimal range of 8-9 vol% CB concentration has resulted in an improved sensitivity, low device variability and low noise level. The resonant frequency and spring constant of the microcantilever were found to be 22 kHz and 0.4 N m(-1) respectively. The devices exhibited a surface stress sensitivity of 7.6 ppm (mN m(-1))(-1) and the noise characterization results support their suitability for biochemical sensing applications. This paper also reports the ability of the sensor in detecting TNT vapour concentration down to less than six parts per billion with a sensitivity of 1 mV/ppb.

  6. Rapid diagnosis of multidrug resistance in cancer by electrochemical sensor based on carbon nanotubes-drug supramolecular nanocomposites.

    PubMed

    Zhang, Haijun; Jiang, Hui; Sun, Feifei; Wang, Huangping; Zhao, Juan; Chen, Baoan; Wang, Xuemei

    2011-03-15

    The multidrug resistance (MDR) in cancer is a major chemotherapy obstacle, rendering many currently available chemotherapeutic drugs ineffective. The aim of this study was to explore the new strategy to early diagnose the MDR by electrochemical sensor based on carbon nanotubes-drug supramolecular interaction. The carbon nanotubes modified glassy carbon electrodes (CNTs/GCE) were directly immersed into the cells suspension of the sensitive leukemia cells K562 and/or its MDR cells K562/A02 to detect the response of the electrochemical probe of daunorubicin (DNR) residues after incubated with cells for 1h. The fresh evidence from the electrochemical studies based on CNTs/GCE demonstrated that the homogeneous, label-free strategy could directly measure the function of cell membrane transporters in MDR cancer cells, identify the cell phenotype (sensitive or MDR). When the different ratios of the sensitive leukemia cells K562 and its MDR ones K562/A02 were applied as a model of MDR levels to simulate the MDR occurrence in cancer, the cathodic peak current showed good linear response to the fraction of MDR with a correlation coefficient of 0.995. Therefore, the MDR fraction can be easily predicted based on the calibration curve of the cathodic peak current versus the fraction of MDR. These results indicated that the sensing strategy could provide a powerful tool for assessment of MDR in cancer. The new electrochemical sensor based on carbon nanotubes-drug supramolecular nanocomposites could represent promising approach in the rapid diagnosis of MDR in cancer. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Jiang, Jingjing; Du, Xuezhong

    2014-09-01

    Sensitive electrochemical sensors were fabricated with reduced graphene oxide-supported Au@Pd (Au@Pd-RGO) nanocomposites by one-step synthesis for individual and simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA) with low detection limits and wide concentration ranges. From the Au@Pd-RGO-modified electrodes, well-separated oxidation peaks and enhanced peak currents of AA, DA, and UA were observed owing to the superior conductivity of RGO and the excellent catalytic activity of Au@Pd nanoparticles. For individual detection, the linear responses of AA, DA, and UA were in the concentration ranges of 0.1-1000, 0.01-100, and 0.02-500 μM with detection limits of 0.02, 0.002, and 0.005 μM (S/N = 3), respectively. For simultaneous detection by synchronous change of the concentrations of AA, DA, and UA, the linear response ranges were 1-800, 0.1-100, and 0.1-350 μM with detection limits of 0.28, 0.024, and 0.02 μM (S/N = 3), respectively. The fabricated sensors were further applied to the detection of AA, DA, and UA in urine samples. The Au@Pd-RGO nanocomposites have promising applications in highly sensitive and selective electrochemical sensing.Sensitive electrochemical sensors were fabricated with reduced graphene oxide-supported Au@Pd (Au@Pd-RGO) nanocomposites by one-step synthesis for individual and simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA) with low detection limits and wide concentration ranges. From the Au@Pd-RGO-modified electrodes, well-separated oxidation peaks and enhanced peak currents of AA, DA, and UA were observed owing to the superior conductivity of RGO and the excellent catalytic activity of Au@Pd nanoparticles. For individual detection, the linear responses of AA, DA, and UA were in the concentration ranges of 0.1-1000, 0.01-100, and 0.02-500 μM with detection limits of 0.02, 0.002, and 0.005 μM (S/N = 3), respectively. For simultaneous detection by synchronous change of the

  8. Hybride ZnCdCrO embedded aminated polyethersulfone nanocomposites for the development of Hg2+ ionic sensor

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammed M.; Alenazi, Noof A.; Hussein, Mahmoud A.; Alam, M. M.; Alamry, Khalid A.; Asiri, Abdullah M.

    2018-06-01

    In this current study, ‑NH2 functions are introduced on Polyethersulfone (PES) by a nitration reaction then a reduction reaction to fabricate PES-NH2 materials with a better hydrophilicity property. The structure of PES-NH2 was first confirmed using proton nuclear magnetic resonance spectroscopy (1H-NMR) and Fourier transform infrared (FT-IR) spectroscopy. Then, the resultant polymer was doped with different concentrations of ZnCdCrO nanocomposites. The polymeric nanocomposites materials were characterized using FT-IR, x-ray powder diffraction (XRD), thermal analysis (TA), and energy dispersive x-ray (EDX) spectroscopy while the morphology was investigated using scanning electron microscopy (SEM). The performance PES-NH2-ZnCdCrO nanocomposites was investigated by sensor-probe towards the selective detection of Hg2+. The results showed the excellent thermal properties of PES-NH2-ZnCdCrO nanocomposites in comparison with non-doped polymer (PES-NH2). Here, Hg2+ ionic sensor was prepared using a flat glassy carbon electrode (GCE) coated with a thin-layer of PES-NH2-ZnCdCrO nanocomposites (20%) with nafion conducting nafion binder (5%). To evaluate the analytical performances of Hg2+ ion sensor, a calibration curve was drawn by plotting the current versus concentration. The sensitivity (0.6566 μAμM-1 cm‑2) and detection limit (14.46 ± 0.72 pM) are calculated using the slope of the calibration curve. It was determined the linearity (r2 = 0.9941) over the large linear dynamic range (LDR) (0.1 nM to 0.1 mM). Thus, this research approach might be an important route to the selective detection of environmental toxin (Hg2+ cation) from the aqueous system in broad scales for the safety of health care, environmental, and aquatic fields.

  9. Graphene oxide-silica nanohybrids as fillers for PA6 based nanocomposites

    NASA Astrophysics Data System (ADS)

    Maio, A.; Fucarino, R.; Khatibi, R.; Botta, L.; Rosselli, S.; Bruno, M.; Scaffaro, R.

    2014-05-01

    Graphene oxide (GO) was prepared by oxidation of graphite flakes by a mixture of H2SO4/H3PO4 and KMnO4 based on Marcano's method. Two different masterbatches containing GO (33.3%) and polyamide-6 (PA6) (66.7%) were prepared both via solvent casting in formic acid and by melt mixing in a mini-extruder (Haake). The two masterbatches were then used to prepare PA6-based nanocomposites with a content of 2% in GO. For comparison, a nanocomposite by direct mixing of PA6 and GO (2%) and PA6/graphite nanocomposites were prepared, too. The oxidation of graphite into GO was assessed by X-ray diffraction (XRD), Micro-Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) analyses. All these techniques demonstrated the effectiveness of the graphite modification, since the results put into evidence that, after the acid treatment, interlayer distance, oxygen content and defects increased. SEM micrographs carried out on the nanocomposites, showed GO layers totally surrounded by polyamide-6, this feature is likely due to the strong interaction between the hydrophilic moieties located both on GO and on PA6. On the contrary, no interactions were observed when graphite was used as filler. Mechanical characterization, carried out by tensile and dynamic-mechanical tests, marked an improvement of the mechanical properties observed. Photoluminescence and EPR measurements were carried out onto nanoparticles and nanocomposites to study the nature of the interactions and to assess the possibility to use this class of materials as semiconductors or optical sensors.

  10. Thermoreversibly Cross-Linked EPM Rubber Nanocomposites with Carbon Nanotubes

    PubMed Central

    Criscitiello, Francesco; van Essen, Machiel; Araya-Hermosilla, Rodrigo; Migliore, Nicola; Lenti, Mattia; Raffa, Patrizio

    2018-01-01

    Conductive rubber nanocomposites were prepared by dispersing conductive nanotubes (CNT) in thermoreversibly cross-linked ethylene propylene rubbers grafted with furan groups (EPM-g-furan) rubbers. Their features were studied with a strong focus on conductive and mechanical properties relevant for strain-sensor applications. The Diels-Alder chemistry used for thermoreversible cross-linking allows for the preparation of fully recyclable, homogeneous, and conductive nanocomposites. CNT modified with compatible furan groups provided nanocomposites with a relatively large tensile strength and small elongation at break. High and low sensitivity deformation experiments of nanocomposites with 5 wt % CNT (at the percolation threshold) displayed an initially linear sensitivity to deformation. Notably, only fresh samples displayed a linear response of their electrical resistivity to deformations as the resistance variation collapsed already after one cycle of elongation. Notwithstanding this mediocre performance as a strain sensor, the advantages of using thermoreversible chemistry in a conductive rubber nanocomposite were highlighted by demonstrating crack-healing by welding due to the joule effect on the surface and the bulk of the material. This will open up new technological opportunities for the design of novel strain-sensors based on recyclable rubbers. PMID:29360772

  11. Graphite nanocomposites sensor for multiplex detection of antioxidants in food.

    PubMed

    Ng, Khan Loon; Tan, Guan Huat; Khor, Sook Mei

    2017-12-15

    Butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and tert-butylhydroquinone (TBHQ) are synthetic antioxidants used in the food industry. Herein, we describe the development of a novel graphite nanocomposite-based electrochemical sensor for the multiplex detection and measurement of BHA, BHT, and TBHQ levels in complex food samples using a linear sweep voltammetry technique. Moreover, our newly established analytical method exhibited good sensitivity, limit of detection, limit of quantitation, and selectivity. The accuracy and reliability of analytical results were challenged by method validation and comparison with the results of the liquid chromatography method, where a linear correlation of more than 0.99 was achieved. The addition of sodium dodecyl sulfate as supporting additive further enhanced the LSV response (anodic peak current, I pa ) of BHA and BHT by 2- and 20-times, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A Room Temperature Nitric Oxide Gas Sensor Based on a Copper-Ion-Doped Polyaniline/Tungsten Oxide Nanocomposite

    PubMed Central

    Wang, Shih-Han; Shen, Chi-Yen; Su, Jian-Ming; Chang, Shiang-Wen

    2015-01-01

    The parts-per-billion-level nitric oxide (NO) gas sensing capability of a copper-ion-doped polyaniline/tungsten oxide nanocomposite (Cu2+/PANI/WO3) film coated on a Rayleigh surface acoustic wave device was investigated. The sensor developed in this study was sensitive to NO gas at room temperature in dry nitrogen. The surface morphology, dopant distribution, and electric properties were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy mapping, and Hall effect measurements, respectively. The Cu2+/PANI/WO3 film exhibited high NO gas sensitivity and selectivity as well as long-term stability. At 1 ppb of NO, a signal with a frequency shift of 4.3 ppm and a signal-to-noise ratio of 17 was observed. The sensor exhibited distinct selectivity toward NO gas with no substantial response to O2, NH3 and CO2 gases. PMID:25811223

  13. Semiconductor nanomembrane-based sensors for high frequency pressure measurements

    NASA Astrophysics Data System (ADS)

    Ruan, Hang; Kang, Yuhong; Homer, Michelle; Claus, Richard O.; Mayo, David; Sibold, Ridge; Jones, Tyler; Ng, Wing

    2017-04-01

    This paper demonstrates improvements on semiconductor nanomembrane based high frequency pressure sensors that utilize silicon on insulator techniques in combination with nanocomposite materials. The low-modulus, conformal nanomembrane sensor skins with integrated interconnect elements and electronic devices could be applied to vehicles or wind tunnel models for full spectrum pressure analysis. Experimental data demonstrates that: 1) silicon nanomembrane may be used as single pressure sensor transducers and elements in sensor arrays, 2) the arrays may be instrumented to map pressure over the surfaces of test articles over a range of Reynolds numbers, temperature and other environmental conditions, 3) in the high frequency range, the sensor is comparable to the commercial high frequency sensor, and 4) in the low frequency range, the sensor is much better than the commercial sensor. This supports the claim that nanomembrane pressure sensors may be used for wide bandwidth flow analysis.

  14. ZnO/TiO2 nanocomposite rods synthesized by microwave-assisted method for humidity sensor application

    NASA Astrophysics Data System (ADS)

    Ashok, CH.; Venkateswara Rao, K.

    2014-12-01

    The nanocomposite rods shows well known properties compared with nano structured materials for various applications like light-emitting diodes, electron field emitters, solar cells, optoelectronics, sensors, transparent conductors and fabrication of nano devices. Present paper investigates the properties of ZnO/TiO2 nanocomposite rods. The bi component of ZnO/TiO2 nanocomposite rods was synthesized by microwave-assisted method which is very simple, rapid and uniform in heating. The frequency of microwaves 2.45 GHz was used and temperature maintained 180 °C. Zinc acetate and titanium isopropoxide precursors were used in the preparation. The obtained ZnO/TiO2 nanocomposite rods were annealed at 500 °C and 600 °C. ZnO/TiO2 nanocomposite rods have been characterized by X-ray Diffraction (XRD) for average crystallite size and phase of the composite material, Particle Size Analyser (PSA) for average particle size, Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) for morphology study, Energy Dispersive X-ray Spectrometry (EDX) for elemental analysis, and Thermal Gravimetric and Differential Thermal Analysis (TG-DTA) for thermal property.

  15. Efficient 2-Nitrophenol Chemical Sensor Development Based on Ce2O3 Nanoparticles Decorated CNT Nanocomposites for Environmental Safety

    PubMed Central

    Hussain, Mohammad M.; Rahman, Mohammed M.; Asiri, Abdullah M.

    2016-01-01

    Ce2O3 nanoparticle decorated CNT nanocomposites (Ce2O3.CNT NCs) were prepared by a wet-chemical method in basic medium. The Ce2O3.CNT NCs were examined using FTIR, UV/Vis, Field-Emission Scanning Electron Microscopy (FESEM), X-ray electron dispersive spectroscopy (XEDS), X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD). A selective 2-nitrophenol (2-NP) sensor was developed by fabricating a thin-layer of NCs onto a flat glassy carbon electrode (GCE, surface area = 0.0316 cm2). Higher sensitivity including linear dynamic range (LDR), long-term stability, and enhanced electrochemical performances towards 2-NP were achieved by a reliable current-voltage (I-V) method. The calibration curve was found linear (R2 = 0.9030) over a wide range of 2-NP concentration (100 pM ~ 100.0 mM). Limit of detection (LOD) and sensor sensitivity were calculated based on noise to signal ratio (~3N/S) as 60 ± 0.02 pM and 1.6×10−3 μAμM-1cm-2 respectively. The Ce2O3.CNT NCs synthesized by a wet-chemical process is an excellent way of establishing nanomaterial decorated carbon materials for chemical sensor development in favor of detecting hazardous compounds in health-care and environmental fields at broad-scales. Finally, the efficiency of the proposed chemical sensors can be applied and utilized in effectively for the selective detection of toxic 2-NP component in environmental real samples with acceptable and reasonable results. PMID:27973600

  16. Efficient 2-Nitrophenol Chemical Sensor Development Based on Ce2O3 Nanoparticles Decorated CNT Nanocomposites for Environmental Safety.

    PubMed

    Hussain, Mohammad M; Rahman, Mohammed M; Asiri, Abdullah M

    2016-01-01

    Ce2O3 nanoparticle decorated CNT nanocomposites (Ce2O3.CNT NCs) were prepared by a wet-chemical method in basic medium. The Ce2O3.CNT NCs were examined using FTIR, UV/Vis, Field-Emission Scanning Electron Microscopy (FESEM), X-ray electron dispersive spectroscopy (XEDS), X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD). A selective 2-nitrophenol (2-NP) sensor was developed by fabricating a thin-layer of NCs onto a flat glassy carbon electrode (GCE, surface area = 0.0316 cm2). Higher sensitivity including linear dynamic range (LDR), long-term stability, and enhanced electrochemical performances towards 2-NP were achieved by a reliable current-voltage (I-V) method. The calibration curve was found linear (R2 = 0.9030) over a wide range of 2-NP concentration (100 pM ~ 100.0 mM). Limit of detection (LOD) and sensor sensitivity were calculated based on noise to signal ratio (~3N/S) as 60 ± 0.02 pM and 1.6×10-3 μAμM-1cm-2 respectively. The Ce2O3.CNT NCs synthesized by a wet-chemical process is an excellent way of establishing nanomaterial decorated carbon materials for chemical sensor development in favor of detecting hazardous compounds in health-care and environmental fields at broad-scales. Finally, the efficiency of the proposed chemical sensors can be applied and utilized in effectively for the selective detection of toxic 2-NP component in environmental real samples with acceptable and reasonable results.

  17. Graphene oxide-silica nanohybrids as fillers for PA6 based nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maio, A.; Fucarino, R.; Khatibi, R.

    Graphene oxide (GO) was prepared by oxidation of graphite flakes by a mixture of H{sub 2}SO{sub 4}/H{sub 3}PO{sub 4} and KMnO{sub 4} based on Marcano's method. Two different masterbatches containing GO (33.3%) and polyamide-6 (PA6) (66.7%) were prepared both via solvent casting in formic acid and by melt mixing in a mini-extruder (Haake). The two masterbatches were then used to prepare PA6-based nanocomposites with a content of 2% in GO. For comparison, a nanocomposite by direct mixing of PA6 and GO (2%) and PA6/graphite nanocomposites were prepared, too. The oxidation of graphite into GO was assessed by X-ray diffraction (XRD),more » Micro-Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) analyses. All these techniques demonstrated the effectiveness of the graphite modification, since the results put into evidence that, after the acid treatment, interlayer distance, oxygen content and defects increased. SEM micrographs carried out on the nanocomposites, showed GO layers totally surrounded by polyamide-6, this feature is likely due to the strong interaction between the hydrophilic moieties located both on GO and on PA6. On the contrary, no interactions were observed when graphite was used as filler. Mechanical characterization, carried out by tensile and dynamic-mechanical tests, marked an improvement of the mechanical properties observed. Photoluminescence and EPR measurements were carried out onto nanoparticles and nanocomposites to study the nature of the interactions and to assess the possibility to use this class of materials as semiconductors or optical sensors.« less

  18. A novel CuO-N-doped graphene nanocomposite-based hybrid electrode for the electrochemical detection of glucose

    NASA Astrophysics Data System (ADS)

    Felix, Sathiyanathan; Kollu, Pratap; Jeong, Soon Kwan; Grace, Andrews Nirmala

    2017-10-01

    We report a catalyst of N-doped graphene CuO nanocomposite, for the non-enzymatic electrocatalytic oxidation of glucose. The hybrid nanocomposite was synthesized by copper sulfate, cetyl ammonium bromide and graphite as starting materials. The synthesized composites were characterized with the techniques like X-ray diffraction, field emission scanning electron microscopy, transmission electron microscope to study the crystalline phase and morphological structure. Based on this composite, a non-enzymatic glucose sensor was constructed. Cyclic voltammetry and chronoamperometry methods were done to investigate the electrocatalytic properties of glucose in alkaline medium. For glucose detection, the fabricated sensor showed a linear response over a wide range of concentration from 3 to 1000 µM, with sensitivity of 2365.7 µA mM-1 cm-2 and a fast response time of 5 s. The designed sensor exhibited negligible current response to the normal concentration of common interferents in the presence of glucose. All these favorable advantages of the fabricated glucose sensor suggest that it may have good potential application in biological samples, food and other related areas.

  19. Concepts for smart nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Pammi, SriLaxmi; Brown, Courtney; Datta, Saurabh; Kirikera, Goutham R.; Schulz, Mark J.

    2003-10-01

    This paper explores concepts for new smart materials that have extraordinary properties based on nanotechnology. Carbon and boron nitride nanotubes in theory can be used to manufacture fibers that have piezoelectric, pyroelectric, piezoresistive, and electrochemical field properties. Smart nanocomposites designed using these fibers will sense and respond to elastic, thermal, and chemical fields in a positive human-like way to improve the performance of structures, devices, and possibly humans. Remarkable strength, morphing, cooling, energy harvesting, strain and temperature sensing, chemical sensing and filtering, and high natural frequencies and damping will be the properties of these new materials. Synthesis of these unique atomically precise nanotubes, fibers, and nanocomposites is at present challenging and expensive, however, there is the possibility that we can synthesize the strongest and lightest actuators and most efficient sensors man has ever made. A particular advantage of nanotube transducers is their very high load bearing capability. Carbon nanotube electrochemical actuators have a predicted energy density at low frequencies that is thirty times greater than typical piezoceramic materials while boron nitride nanotubes are insulators and can operate at high temperatures, but they have a predicted piezoelectric induced stress constant that is about twenty times smaller than piezoceramic materials. Carbon nanotube fibers and composites exhibit a change in electrical conductivity due to strain that can be used for sensing. Some concepts for nanocomposite material sensors are presented and initial efforts to fabricate carbon nanocomposite load sensors are discussed.

  20. A coatable, light-weight, fast-response nanocomposite sensor for the in situ acquisition of dynamic elastic disturbance: from structural vibration to ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Zeng, Zhihui; Liu, Menglong; Xu, Hao; Liu, Weijian; Liao, Yaozhong; Jin, Hao; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2016-06-01

    Inspired by an innovative sensing philosophy, a light-weight nanocomposite sensor made of a hybrid of carbon black (CB)/polyvinylidene fluoride (PVDF) has been developed. The nanoscalar architecture and percolation characteristics of the hybrid were optimized in order to fulfil the in situ acquisition of dynamic elastic disturbance from low-frequency vibration to high-frequency ultrasonic waves. Dynamic particulate motion induced by elastic disturbance modulates the infrastructure of the CB conductive network in the sensor, with the introduction of the tunneling effect, leading to dynamic alteration in the piezoresistivity measured by the sensor. Electrical analysis, morphological characterization, and static/dynamic electromechanical response interrogation were implemented to advance our insight into the sensing mechanism of the sensor, and meanwhile facilitate understanding of the optimal percolation threshold. At the optimal threshold (˜6.5 wt%), the sensor exhibits high fidelity, a fast response, and high sensitivity to ultrafast elastic disturbance (in an ultrasonic regime up to 400 kHz), yet with an ultralow magnitude (on the order of micrometers). The performance of the sensor was evaluated against a conventional strain gauge and piezoelectric transducer, showing excellent coincidence, yet a much greater gauge factor and frequency-independent piezoresistive behavior. Coatable on a structure and deployable in a large quantity to form a dense sensor network, this nanocomposite sensor has blazed a trail for implementing in situ sensing for vibration- or ultrasonic-wave-based structural health monitoring, by striking a compromise between ‘sensing cost’ and ‘sensing effectiveness’.

  1. Polyaniline-graphene oxide nanocomposite sensor for quantification of calcium channel blocker levamlodipine.

    PubMed

    Jain, Rajeev; Sinha, Ankita; Khan, Ab Lateef

    2016-08-01

    A novel polyaniline-graphene oxide nanocomposite (PANI/GO/GCE) sensor has been fabricated for quantification of a calcium channel blocker drug levamlodipine (LAMP). Fabricated sensor has been characterized by electrochemical impedance spectroscopy, square wave and cyclic voltammetry, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The developed PANI/GO/GCE sensor has excellent analytical performance towards electrocatalytic oxidation as compared to PANI/GCE, GO/GCE and bare GCE. Under optimized experimental conditions, the fabricated sensor exhibits a linear response for LAMP for its oxidation over a concentration range from 1.25μgmL(-1) to 13.25μgmL(-1) with correlation coefficient of 0.9950 (r(2)), detection limit of 1.07ngmL(-1) and quantification limit of 3.57ngmL(-1). The sensor shows an excellent performance for detecting LAMP with reproducibility of 2.78% relative standard deviation (RSD). The proposed method has been successfully applied for LAMP determination in pharmaceutical formulation with a recovery from 99.88% to 101.75%. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Urinary p-cresol diagnosis using nanocomposite of ZnO/MoS2 and molecular imprinted polymer on optical fiber based lossy mode resonance sensor.

    PubMed

    Usha, Sruthi P; Gupta, Banshi D

    2018-03-15

    A lossy mode resonance (LMR) based sensor for urinary p-cresol testing on optical fiber substrate is developed. The sensor probe fabrication includes dip coating of nanocomposite layer of zinc oxide and molybdenum sulphide (ZnO/MoS 2 ) over unclad core of optical fiber as the transducer layer followed by the layer of molecular imprinted polymer (MIP) as the recognition medium. The addition of molybdenum sulphide in the transducer layer increases the absorption of light in the medium which enhances the LMR properties of zinc oxide thereby increasing the conductivity and hence the sensitivity of the sensor. The sensor probe is characterized for p-cresol concentration range from 0µM (reference sample) to 1000µM in artificially prepared urine. Optimizations of various probe fabrication parameters are carried to bring out the sensor's optimal performance with a sensitivity of 11.86nm/µM and 28nM as the limit of detection (LOD). A two-order improvement in LOD is obtained as compared to the recently reported p-cresol sensor. The proposed sensor possesses a response time of 15s which is 8 times better than that reported in the literature utilizing electrochemical method. Its response time is also better than the p-cresol sensor currently available in the market for the medical field. Thus, with a fast response, significant stability and repeatability, the proposed sensor holds practical implementation possibilities in the medical field. Further, the realization of sensor probe over optical fiber substrate adds remote sensing and online monitoring feasibilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites.

    PubMed

    Jiang, Jingjing; Du, Xuezhong

    2014-10-07

    Sensitive electrochemical sensors were fabricated with reduced graphene oxide-supported Au@Pd (Au@Pd-RGO) nanocomposites by one-step synthesis for individual and simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA) with low detection limits and wide concentration ranges. From the Au@Pd-RGO-modified electrodes, well-separated oxidation peaks and enhanced peak currents of AA, DA, and UA were observed owing to the superior conductivity of RGO and the excellent catalytic activity of Au@Pd nanoparticles. For individual detection, the linear responses of AA, DA, and UA were in the concentration ranges of 0.1-1000, 0.01-100, and 0.02-500 μM with detection limits of 0.02, 0.002, and 0.005 μM (S/N = 3), respectively. For simultaneous detection by synchronous change of the concentrations of AA, DA, and UA, the linear response ranges were 1-800, 0.1-100, and 0.1-350 μM with detection limits of 0.28, 0.024, and 0.02 μM (S/N = 3), respectively. The fabricated sensors were further applied to the detection of AA, DA, and UA in urine samples. The Au@Pd-RGO nanocomposites have promising applications in highly sensitive and selective electrochemical sensing.

  4. Design of a new nanocomposite between bismuth nanoparticles and graphene oxide for development of electrochemical sensors.

    PubMed

    Bindewald, Eduardo H; Schibelbain, Arthur F; Papi, Maurício A P; Neiva, Eduardo G C; Zarbin, Aldo J G; Bergamini, Márcio F; Marcolino-Júnior, Luiz H

    2017-10-01

    This study describes a new route for preparation of a nanocomposite between graphene oxide (GO) and bismuth nanoparticles (BiNPs) and its evaluation as modifier electrode for development of electrochemical sensors. BiNPs were synthesized under ultrasound conditions using Bi(NO 3 ) 3 as metal precursor and ascorbic acid (AA) as reducing agent/passivating. Some experimental parameters of BiNPs synthesis such as Bi 3+ :AA molar ratio and reaction time were conducted aiming the best voltammetric performance of the sensor. Glassy carbon electrodes (GCE) were modified by drop-casting with the BiNPs dispersions and anodic stripping voltammetry measurements were performed and revealed an improvement in the sensitivityfor determination of Cd(II) and Pb(II) compared to an unmodified electrode. The best electrochemical response was obtained for a BiNPs synthesis with Bi 3+ :AA molar ratio of 1:6 and reaction time of 10min, which yielded Bi metallic nanoparticles with average size of 5.4nm confirmed by XRD and TEM images, respectively. GO was produced by graphite oxidation using potassium permanganate and exfoliated with an ultrasound tip. GO-BiNPs nanocomposite was obtained by a simple mixture of GO and BiNPs dispersions in water and kept under ultrasonic bath for 1h. GCE were modified with a nanocomposite suspension containing 0.3 and 1.5mgmL -1 of GO and BiNPs in water, respectively. Under optimized conditions, the proposed nanocomposite was evaluated on the voltammetric determination of Pb (II) and Cd (II), leading to a linear response range between 0.1 and 1.4μmolL -1 for both cations, with limit of detection of 30 and 27nmolL -1 , respectively. These results indicate the great potential of the GO-BiNPs nanocomposite for improving the sensitivity of voltammetric procedures. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

    PubMed Central

    2009-01-01

    The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications.Mesua ferreaL. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance. PMID:20596546

  6. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites.

    PubMed

    Deka, Harekrishna; Karak, Niranjan

    2009-04-25

    The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications. Mesua ferrea L. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 degrees C of melting point, and 111 degrees C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96-99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.

  7. Honeycomb-like Porous Carbon-Cobalt Oxide Nanocomposite for High-Performance Enzymeless Glucose Sensor and Supercapacitor Applications.

    PubMed

    Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming; Manikandan, Arumugam; Lo, An-Ya; Chueh, Yu-Lun

    2015-07-29

    Herein, we report the preparation of Pongam seed shells-derived activated carbon and cobalt oxide (∼2-10 nm) nanocomposite (PSAC/Co3O4) by using a general and facile synthesis strategy. The as-synthesized PSAC/Co3O4 samples were characterized by a variety of physicochemical techniques. The PSAC/Co3O4-modified electrode is employed in two different applications such as high performance nonenzymatic glucose sensor and supercapacitor. Remarkably, the fabricated glucose sensor is exhibited an ultrahigh sensitivity of 34.2 mA mM(-1) cm(-2) with a very low detection limit (21 nM) and long-term durability. The PSAC/Co3O4 modified stainless steel electrode possesses an appreciable specific capacitance and remarkable long-term cycling stability. The obtained results suggest the as-synthesized PSAC/Co3O4 is more suitable for the nonenzymatic glucose sensor and supercapacitor applications outperforming the related carbon based modified electrodes, rendering practical industrial applications.

  8. Unified equivalent circuit model for carbon nanotube-based nanocomposites.

    PubMed

    Zhao, Chaoyang; Yuan, Weifeng; Zhao, Yangzhou; Hu, Ning; Gu, Bin; Liu, Haidong; Alamusi

    2018-07-27

    Carbon nanotubes form a complex network in nanocomposites. In the network, the configuration of the nanotubes is various. A carbon nanotube may be curled or straight, and it may be parallel or crossed to another. As a result, carbon nanotube-based composites exhibit integrated characteristics of inductor, capacitor and resistor. In this work, it is hypothesised that carbon nanotube-based composites all adhere to a RLC interior circuit. To verify the hypothesis, three different composites, viz multi-walled carbon nanotube/polyvinylidene fluoride (MWCNT/PVDF), multi-walled carbon nanotube/epoxy (MWCNT/EP), multi-walled carbon nanotube/polydimethylsiloxane (MWCNT/PDMS) were fabricated and tested. The resistances and the dielectric loss tangent (tanδ) of the materials were measured in direct and alternating currents. The measurement shows that the value of tanδ is highly affected by the volume fraction of MWCNT in the composites. The experimental results prove that the proposed RLC equivalent circuit model can fully describe the electrical properties of the MWCNT network in nanocomposites. The RLC model provides a new route to detect the inductance and capacitance of carbon nanotubes. Moreover, the model also indicates that the carbon nanotube-based composite films may be used to develop wireless strain sensors.

  9. Investigation of the adsorption of ozone molecules on TiO2/WSe2 nanocomposites by DFT computations: Applications to gas sensor devices

    NASA Astrophysics Data System (ADS)

    Abbasi, Amirali; Sardroodi, Jaber Jahanbin

    2018-04-01

    The adsorption of O3 molecule on the undoped and N-doped TiO2/WSe2 nanocomposites was studied using first principles density functional theory calculations. O3 interaction with TiO2/WSe2 nanocomposites is considered so as to investigate WSe2 effects on the adsorption process. WSe2 favors the adsorption of O3 on TiO2 particles. In other words, WSe2 is conducive to the interaction of O3 molecule with fivefold coordinated titanium sites of TiO2. The effects of vdW interactions were taken into account in order to obtain equilibrium geometries of O3 molecules at TiO2/WSe2 interfaces. For all adsorption configurations, the binding site was positioned on the fivefold coordinated titanium atoms. The results show that the interactions between O3 and TiO2 in TiO2/WSe2 nanocomposites are stronger than those between O3 and bare TiO2, suggesting that WSe2 helps to strengthen the interaction of ozone molecule with TiO2 particles. The results also indicate that the adsorption of the O3 molecule on the N-doped TiO2/WSe2 nanocomposite is more energetically favorable than the adsorption of O3 on the pristine one, representing that the N-doped nanocomposites are more sensitive than the undoped ones. Our DFT results clearly show that the N-doped TiO2/WSe2 nanocomposite would be a promising O3 gas sensor. The electronic structure of the adsorption system was also investigated, including analysis of the total and projected density of states, and charge density differences of the TiO2/WSe2 with adsorbed O3 molecules. The charge density difference calculations indicate that the charges were accumulated over the adsorbed O3 molecule. Besides, the N-doped nanocomposites have better sensing response than the pristine ones. This work was devoted to provide the theory basis for the design and development of novel and advanced O3 sensors based on modified TiO2/WSe2 nanocomposites.

  10. Nanocomposites Based on Biodegradable Polymers

    PubMed Central

    Armentano, Ilaria; Luzi, Francesca; Morena, Francesco; Martino, Sabata; Torre, Luigi

    2018-01-01

    In the present review paper, our main results on nanocomposites based on biodegradable polymers (on a time scale from 2010 to 2018) are reported. We mainly focused our attention on commercial biodegradable polymers, which we mixed with different nanofillers and/or additives with the final aim of developing new materials with tunable specific properties. A wide list of nanofillers have been considered according to their shape, properties, and functionalization routes, and the results have been discussed looking at their roles on the basis of different adopted processing routes (solvent-based or melt-mixing processes). Two main application fields of nanocomposite based on biodegradable polymers have been considered: the specific interaction with stem cells in the regenerative medicine applications or as antimicrobial materials and the active role of selected nanofillers in food packaging applications have been critically revised, with the main aim of providing an overview of the authors’ contribution to the state of the art in the field of biodegradable polymeric nanocomposites. PMID:29762482

  11. Nanocomposites Based on Biodegradable Polymers.

    PubMed

    Armentano, Ilaria; Puglia, Debora; Luzi, Francesca; Arciola, Carla Renata; Morena, Francesco; Martino, Sabata; Torre, Luigi

    2018-05-15

    In the present review paper, our main results on nanocomposites based on biodegradable polymers (on a time scale from 2010 to 2018) are reported. We mainly focused our attention on commercial biodegradable polymers, which we mixed with different nanofillers and/or additives with the final aim of developing new materials with tunable specific properties. A wide list of nanofillers have been considered according to their shape, properties, and functionalization routes, and the results have been discussed looking at their roles on the basis of different adopted processing routes (solvent-based or melt-mixing processes). Two main application fields of nanocomposite based on biodegradable polymers have been considered: the specific interaction with stem cells in the regenerative medicine applications or as antimicrobial materials and the active role of selected nanofillers in food packaging applications have been critically revised, with the main aim of providing an overview of the authors' contribution to the state of the art in the field of biodegradable polymeric nanocomposites.

  12. Flexible gas sensor based on graphene/ethyl cellulose nanocomposite with ultra-low strain response for volatile organic compounds rapid detection

    NASA Astrophysics Data System (ADS)

    Zhang, Qiankun; An, Chunhua; Fan, Shuangqing; Shi, Sigang; Zhang, Rongjie; Zhang, Jing; Li, Quanning; Zhang, Daihua; Hu, Xiaodong; Liu, Jing

    2018-07-01

    Minimizing the strain-induced undesirable effects is one of the major efforts to be made for flexible electronics. This work demonstrates a highly sensitive flexible gas sensor with ultra-low strain response, which is potentially suitable for wearable electronics applications. The gas sensing material is a free-standing and flexible thin film made of graphene/ethyl cellulose (EC) nanocomposite, which is then integrated with flexible substrate of polyethylene terephthalate. The sensor exhibits relative resistance change within 0.3% at a minimum bending radius of 3.18 mm and 0.2% at the bending radius of 5 mm after 400 bending cycles. The limited strain response attributes to several applied strategies, including using EC with high Young’s modulus as the matrix material, maintaining high graphene concentration and adopting suspended device structure. In contrast to the almost negligible strain sensitivity, the sensor presents large and rapid responses toward volatile organic compounds (VOCs) at room temperature. Specifically, the sensor resistance rapidly increases upon the exposure to VOCs with detection limits ranging from 37 to 167 ppm. A preliminary demo of wearable gas sensing capability is also implemented by wearing the sensor on human hand, which successfully detects several VOCs, instead of normal hand gestures.

  13. Flexible gas sensor based on graphene/ethyl cellulose nanocomposite with ultra-low strain response for volatile organic compounds rapid detection.

    PubMed

    Zhang, Qiankun; An, Chunhua; Fan, Shuangqing; Shi, Sigang; Zhang, Rongjie; Zhang, Jing; Li, Quanning; Zhang, Daihua; Hu, Xiaodong; Liu, Jing

    2018-04-18

    Minimizing the strain-induced undesirable effects is one of the major efforts to be made for flexible electronics. This work demonstrates a highly sensitive flexible gas sensor with ultra-low strain response, which is potentially suitable for wearable electronics applications. The gas sensing material is a free-standing and flexible thin film made of graphene/ethyl cellulose (EC) nanocomposite, which is then integrated with flexible substrate of polyethylene terephthalate. The sensor exhibits relative resistance change within 0.3% at a minimum bending radius of 3.18 mm and 0.2% at the bending radius of 5 mm after 400 bending cycles. The limited strain response attributes to several applied strategies, including using EC with high Young's modulus as the matrix material, maintaining high graphene concentration and adopting suspended device structure. In contrast to the almost negligible strain sensitivity, the sensor presents large and rapid responses toward volatile organic compounds (VOCs) at room temperature. Specifically, the sensor resistance rapidly increases upon the exposure to VOCs with detection limits ranging from 37 to 167 ppm. A preliminary demo of wearable gas sensing capability is also implemented by wearing the sensor on human hand, which successfully detects several VOCs, instead of normal hand gestures.

  14. Conjugated polymer/graphene oxide nanocomposite as thermistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Girish M., E-mail: varadgm@gmail.com; Deshmukh, Kalim

    2015-06-24

    We demonstrated the synthesis and measurement of temperature dependent electrical resistivity of graphene oxide (GO) reinforced poly (3, 4 - ethylenedioxythiophene) - tetramethacrylate (PEDOTTMA)/Polymethylmethacrylate (PMMA) based nanocomposites. Negative temperature coefficient (NTC) was observed for 0.5, 1 % GO loading and the positive temperature coefficient (PTC) was observed for 1.5 and 2 % Go loading in the temperature (40 to 120 °C). The GO inducted nanocomposite perform as an excellent thermistor and suitable for electronic and sensor domain.

  15. MOF-Based Membrane Encapsulated ZnO Nanowires for Enhanced Gas Sensor Selectivity.

    PubMed

    Drobek, Martin; Kim, Jae-Hun; Bechelany, Mikhael; Vallicari, Cyril; Julbe, Anne; Kim, Sang Sub

    2016-04-06

    Gas sensors are of a great interest for applications including toxic or explosive gases detection in both in-house and industrial environments, air quality monitoring, medical diagnostics, or control of food/cosmetic properties. In the area of semiconductor metal oxides (SMOs)-based sensors, a lot of effort has been devoted to improve the sensing characteristics. In this work, we report on a general methodology for improving the selectivity of SMOx nanowires sensors, based on the coverage of ZnO nanowires with a thin ZIF-8 molecular sieve membrane. The optimized ZnO@ZIF-8-based nanocomposite sensor shows markedly selective response to H2 in comparison with the pristine ZnO nanowires sensor, while showing the negligible sensing response to C7H8 and C6H6. This original MOF-membrane encapsulation strategy applied to nanowires sensor architecture pave the way for other complex 3D architectures and various types of applications requiring either gas or ion selectivity, such as biosensors, photo(catalysts), and electrodes.

  16. Processing and Characterization of a Novel Distributed Strain Sensor Using Carbon Nanotube-Based Nonwoven Composites

    PubMed Central

    Dai, Hongbo; Thostenson, Erik T.; Schumacher, Thomas

    2015-01-01

    This paper describes the development of an innovative carbon nanotube-based non-woven composite sensor that can be tailored for strain sensing properties and potentially offers a reliable and cost-effective sensing option for structural health monitoring (SHM). This novel strain sensor is fabricated using a readily scalable process of coating Carbon nanotubes (CNT) onto a nonwoven carrier fabric to form an electrically-isotropic conductive network. Epoxy is then infused into the CNT-modified fabric to form a free-standing nanocomposite strain sensor. By measuring the changes in the electrical properties of the sensing composite the deformation can be measured in real-time. The sensors are repeatable and linear up to 0.4% strain. Highest elastic strain gage factors of 1.9 and 4.0 have been achieved in the longitudinal and transverse direction, respectively. Although the longitudinal gage factor of the newly formed nanocomposite sensor is close to some metallic foil strain gages, the proposed sensing methodology offers spatial coverage, manufacturing customizability, distributed sensing capability as well as transverse sensitivity. PMID:26197323

  17. Smart Nacre-inspired Nanocomposites.

    PubMed

    Peng, Jingsong; Cheng, Qunfeng

    2018-03-15

    Nacre-inspired nanocomposites with excellent mechanical properties have achieved remarkable attention in the past decades. The high performance of nacre-inspired nanocomposites is a good basis for the further application of smart devices. Recently, some smart nanocomposites inspired by nacre have demonstrated good mechanical properties as well as effective and stable stimuli-responsive functions. In this Concept, we summarize the recent development of smart nacre-inspired nanocomposites, including 1D fibers, 2D films and 3D bulk nanocomposites, in response to temperature, moisture, light, strain, and so on. We show that diverse smart nanocomposites could be designed by combining various conventional fabrication methods of nacre-inspired nanocomposites with responsive building blocks and interface interactions. The nacre-inspired strategy is versatile for different kinds of smart nanocomposites in extensive applications, such as strain sensors, displays, artificial muscles, robotics, and so on, and may act as an effective roadmap for designing smart nanocomposites in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Natural biopolymer-based nanocomposite films for packaging applications.

    PubMed

    Rhim, Jong-Whan; Ng, Perry K W

    2007-01-01

    Concerns on environmental waste problems caused by non-biodegradable petrochemical-based plastic packaging materials as well as the consumer's demand for high quality food products has caused an increasing interest in developing biodegradable packaging materials using annually renewable natural biopolymers such as polysaccharides and proteins. Inherent shortcomings of natural polymer-based packaging materials such as low mechanical properties and low water resistance can be recovered by applying a nanocomposite technology. Polymer nanocomposites, especially natural biopolymer-layered silicate nanocomposites, exhibit markedly improved packaging properties due to their nanometer size dispersion. These improvements include increased modulus and strength, decreased gas permeability, and increased water resistance. Additionally, biologically active ingredients can be added to impart the desired functional properties to the resulting packaging materials. Consequently, natural biopolymer-based nanocomposite packaging materials with bio-functional properties have a huge potential for application in the active food packaging industry. In this review, recent advances in the preparation of natural biopolymer-based films and their nanocomposites, and their potential use in packaging applications are addressed.

  19. Nanocomposite copolymer thin-film sensor for detection of escherichia coli

    NASA Astrophysics Data System (ADS)

    Mathur, Prafull; Misra, S. C. K.; Yadav, Maneesha; Bawa, S. S.; Gupta, A. K.

    2006-01-01

    The majority of human diseases associated with microbial contaminated water are infectious in nature and the associated pathogen includes bacteria, fungi, viruses and protozoa. Water contaminated with bacteria can cause a number of food-borne and water-borne diseases. The waterborne transmission is highly effective means of spreading infectious agents to a large portion of population; this includes water and milk too. Waterborne infections are recognized as resulting either from ingestion of contaminated water or ice, food items, which have, came into contact with microbial contaminated water (occurring through bathing and recreational activities) etc. The detection of E. coli in food and water is normally carried out by culturing methods, which normally take 3-6 days, These methods are complicated and time-consuming in spite of their correctness, and cannot easily meet inspection demands on E. coli. Hence, an establishment of rapid detection methods for E. coli is strongly required. We have developed highly sensitive and cost effective solid sate sensors prepared from vacuum evaporated thin films of nanocomposite copolymer detection of presence of E. coli vapors in the air within 20 seconds. These sensors operate at room temperature. The preparation, optical, electrical, and structural characterization and behavioral acceptance test on the microorganism sensing properties of these sensors are reported here.

  20. Synthesis of a novel Au nanoparticles decorated Ni-MOF/Ni/NiO nanocomposite and electrocatalytic performance for the detection of glucose in human serum.

    PubMed

    Chen, Jingyuan; Xu, Qin; Shu, Yun; Hu, Xiaoya

    2018-07-01

    A nonenzymatic glucose electrochemical sensor was constructed based on Au nanoparticles (AuNPs) decorated Ni metal-organic-framework (MOF)/Ni/NiO nanocomposite. Ni-MOF/Ni/NiO nanocomposite was synthesized by one-step calcination of Ni-MOF. Then AuNPs were loaded onto the Ni-based nanocomposites' surface through electrostatic adsorption. Through characterization by transmission electron microscopy (TEM), high resolution TEM (HRTEM) and energy disperse spectroscopy (EDS) mapping, it is found that the AuNPs were well distributed on the surface of Ni-based nanocomposite. Cyclic voltammetric (CV) study showed the electrocatalytic activity of Au-Ni nanocomposite was highly improved after loading AuNPs onto it. Amperometric study demonstrated that the Au-Ni nanocomposites modified glassy carbon electrode (GCE) exhibited a high sensitivity of 2133.5 mA M -1 cm -2 and a wide linear range (0.4-900 μM) toward the oxidation of glucose with a detection limit as low as 0.1 μM. Moreover, the reproducibility, selectivity and stability of the sensor all exhibited outstanding performance. We applied the as-fabricated high performance sensor to measure the glucose levels in human serum and obtained satisfactory results. It is believed that AuNPs decorated Ni MOF/Ni/NiO nanocomposite provides a new platform for developing highly performance electrochemical sensors in practical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Carbon nanotube-polymer nanocomposite infrared sensor.

    PubMed

    Pradhan, Basudev; Setyowati, Kristina; Liu, Haiying; Waldeck, David H; Chen, Jian

    2008-04-01

    The infrared photoresponse in the electrical conductivity of single-walled carbon nanotubes (SWNTs) is dramatically enhanced by embedding SWNTs in an electrically and thermally insulating polymer matrix. The conductivity change in a 5 wt % SWNT-polycarbonate nanocomposite is significant (4.26%) and sharp upon infrared illumination in the air at room temperature. While the thermal effect predominates in the infrared photoresponse of a pure SWNT film, the photoeffect predominates in the infrared photoresponse of SWNT-polycarbonate nanocomposites.

  2. Ultrasensitive and selective 4-aminophenol chemical sensor development based on nickel oxide nanoparticles decorated carbon nanotube nanocomposites for green environment.

    PubMed

    Hussain, Mohammad Musarraf; Rahman, Mohammed M; Asiri, Abdullah M

    2017-03-01

    Nickel oxide nanoparticles decorated carbon nanotube nanocomposites (NiO·CNT NCs) were prepared in a basic medium by using facile wet-chemical routes. The optical, morphological, and structural properties of NiO·CNT NCs were characterized using Fourier transformed infra-red (FT-IR), Ultra-violet visible (UV/Vis) spectroscopy, field-emission scanning electron microscopy (FESEM), X-ray energy dispersed spectroscopy (XEDS), X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD) methods. Selective 4-aminophenol (4-AP) chemical sensor was developed by a flat glassy carbon electrode (GCE, surface area: 0.0316cm 2 ) fabricated with a thin-layer of NCs. Electrochemical responses including higher sensitivity, large dynamic range (LDR), limit of detection (LOD), and long-term stability towards 4-AP were obtained using the fabricated chemical sensors. The calibration curve was found linear (R 2 =0.914) over a wide range of 4-AP concentration (0.1nmol/L-0.1mol/L). In perspective of slope (2×10 -5 μA/μM), LOD and sensitivity were calculated as 15.0±0.1pM and ~6.33×10 -4 μA/(μM·cm) respectively. The synthesized NiO·CNT NCs using a wet-chemical method is a significant route for the development of ultrasensitive and selective phenolic sensor based on nano-materials for environmental toxic substances. It is suggested that a pioneer and selective development of 4-AP sensitive sensor using NiO·CNT NCs by a facile and reliable current vs voltage (I-V) method for the major application of toxic agents in biological, green environmental, and health-care fields in near future. Copyright © 2016. Published by Elsevier B.V.

  3. Green synthesis of biopolymer-silver nanoparticle nanocomposite: an optical sensor for ammonia detection.

    PubMed

    Pandey, Sadanand; Goswami, Gopal K; Nanda, Karuna K

    2012-11-01

    Biopolymer used for the production of nanoparticles (NPs) has attracted increasing attention. In the presence article we use aqueous solution of polysaccharide Cyamopsis tetragonaloba commonly known as guar gum (GG), from plants. GG acts as reductive preparation of silver nanoparticles which are found to be <10 nm in size. The uniformity of the NPs size was measured by the SEM and TEM, while a face centered cubic structure of crystalline silver nanoparticles was characterized using powder X-ray diffraction technique. Aqueous ammonia sensing study of polymer/silver nanoparticles nanocomposite (GG/AgNPs NC) was performed by optical method based on surface plasmon resonance (SPR). The performances of optical sensor were investigated which provide the excellent result. The response time of 2-3 s and the detection limit of ammonia solution, 1 ppm were found at room temperature. Thus, in future this room temperature optical ammonia sensor can be used for clinical and medical diagnosis for detecting low ammonia level in biological fluids, such as plasma, sweat, saliva, cerebrospinal liquid or biological samples in general for various biomedical applications in human. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Carbon dots-decorated multiwalled carbon nanotubes nanocomposites as a high-performance electrochemical sensor for detection of H2O2 in living cells.

    PubMed

    Bai, Jing; Sun, Chunhe; Jiang, Xiue

    2016-07-01

    A novel enzyme-free hydrogen peroxide sensor composed of carbon dots (CDs) and multi-walled carbon nanotubes (MWCNTs) was prepared. It was found that the carbon dots-decorated multi-walled carbon nanotubes nanocomposites (CDs/MWCNTs) modified glassy carbon (GC) electrode (CDs/MWCNTs/GCE) exhibited a significant synergistic electrocatalytic activity towards hydrogen peroxide reduction as compared to carbon dots or multi-walled carbon nanotubes alone, and the CDs/MWCNTs/GCE has shown a low detection limit as well as excellent stability, selectivity, and reproducibility. These remarkable analytical advantages enable the practical application of CDs/MWCNTs/GCE for the real-time tracking of hydrogen peroxide (H2O2) released from human cervical cancer cells with satisfactory results. The enhanced electrochemical activity can be assigned to the edge plane-like defective sites and lattice oxygen in the CDs/MWCNTs nanocomposites due to the small amount of decoration of carbon dots on the multi-walled carbon nanotubes. Based on a facile preparation method and with good electrochemical properties, the CDs/MWCNTs nanocomposites represent a new class of carbon electrode for electrochemical sensor applications. Graphical Abstract CDs/MWCNTs exhibited good electrocatalytic activity and stability to H2O2 reduction and can be used for real-time detection of H2O2 released from living cells.

  5. Solvent sensitivity of smart 3D-printed nanocomposite liquid sensor

    NASA Astrophysics Data System (ADS)

    Aliheidari, Nahal; Ameli, Amir; Pötschke, Petra

    2018-03-01

    Fused deposition modeling (FDM) is one of the 3D printing methods that has attracted significant attention. In this method, small and complex samples with nearly no limitation in geometry can be fabricated layer by layer to form end-use parts. This work investigates the liquid sensing behavior of FDM printed flexible thermoplastic polyurethane, TPU filled with multiwalled carbon nanotubes, MWCNTs. The sensing capability of printed TPU-MWCNT was studied as a function of MWCNT content and infill density in response to different solvents, i.e., ethanol, acetone and toluene. The solvents were selected based on their widespread use and importance in medical and industrial applications. U-shaped liquid sensors with 2, 3 and 4wt.% MWCNT content were printed at three different infill densities of 50, 75 and 100%. Solvent sensitivity was then characterized by immersing the sensors in the solvents and measuring the resistance evolution over 25s. The results indicated a sensitivity order of acetone > toluene > ethanol, which was in agreement with the predictions of FloryHiggins solubility equation. For all the solvents, the sensitivity was enhanced as the infill density of the printed samples was decreased. This was attributed to the increased surface area to volume ratio and shortened diffusion paths. The MWCNT content was also observed to have a profound effect on the sensitivity; in samples with partial infill, the sensitivity was found to be inversely proportional to the MWCNT content, such that the highest resistance change was obtained for nanocomposites with the lowest MWCNT content of 2wt.%. For instance, a resistance increase of more than 10 times was obtained in 25 s once TPU-2wt.%MWCNT with 50% infill was tested against acetone. The results of this work reveals that highly sensitive liquid sensors can be fabricated with the aid of 3D printing without the need for complex processing methods.

  6. A highly sensitive hydrogen peroxide amperometric sensor based on MnO2-modified vertically aligned multiwalled carbon nanotubes.

    PubMed

    Xu, Bin; Ye, Min-Ling; Yu, Yu-Xiang; Zhang, Wei-De

    2010-07-26

    In this report, a highly sensitive amperometric sensor based on MnO(2)-modified vertically aligned multiwalled carbon nanotubes (MnO(2)/VACNTs) for determination of hydrogen peroxide (H(2)O(2)) was fabricated by electrodeposition. The morphology of the nanocomposite was characterized by scanning electron microscopy, energy-dispersive X-ray spectrometer and X-ray diffraction. Cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy were applied to investigate the electrochemical properties of the MnO(2)/VACNTs nanocomposite electrode. The mechanism for the electrochemical reaction of H(2)O(2) at the MnO(2)/VACNTs nanocomposite electrode was also discussed. In borate buffer (pH 7.8, 0.20 M), the MnO(2)/VACNTs nanocomposite electrode exhibits a linear dependence (R=0.998) on the concentration of H(2)O(2) from 1.2 x 10(-6)M to 1.8 x 10(-3)M, a high sensitivity of 1.08 x 10(6) microA M(-1) cm(-2) and a detection limit of 8.0 x 10(-7) M (signal/noise=3). Meanwhile, the MnO(2)/VACNTs nanocomposite electrode is also highly resistant towards typical inorganic salts and some biomolecules such as acetic acid, citric acid, uric acid and D-(+)-glucose, etc. In addition, the sensor based on the MnO(2)/VACNTs nanocomposite electrode was applied for the determination of trace of H(2)O(2) in milk with high accuracy, demonstrating its potential for practical application. Copyright 2010 Elsevier B.V. All rights reserved.

  7. PVDF-PZT nanocomposite film based self-charging power cell.

    PubMed

    Zhang, Yan; Zhang, Yujing; Xue, Xinyu; Cui, Chunxiao; He, Bin; Nie, Yuxin; Deng, Ping; Lin Wang, Zhong

    2014-03-14

    A novel PVDF-PZT nanocomposite film has been proposed and used as a piezoseparator in self-charging power cells (SCPCs). The structure, composed of poly(vinylidene fluoride) (PVDF) and lead zirconate titanate (PZT), provides a high piezoelectric output, because PZT in this nanocomposite film can improve the piezopotential compared to the pure PVDF film. The SCPC based on this nanocomposite film can be efficiently charged up by the mechanical deformation in the absence of an external power source. The charge capacity of the PVDF-PZT nanocomposite film based SCPC in 240 s is ∼0.010 μA h, higher than that of a pure PVDF film based SCPC (∼0.004 μA h). This is the first demonstration of using PVDF-PZT nanocomposite film as a piezoseparator for SCPC, and is an important step for the practical applications of SCPC for harvesting and storing mechanical energy.

  8. Synthesis and characterization of hybrid nanocomposites as highly-efficient conducting CH4 gas sensor.

    PubMed

    Aldalbahi, Ali; Feng, Peter; Alhokbany, Norah; Al-Farraj, Eida; Alshehri, Saad M; Ahamad, Tansir

    2017-02-15

    Functionalized (MWCNTs-COOH), non-functionalized multiwalled carbon nanotubes (MWCNTs) and polyaniline (PANI) based conducting nanocomposites (PANI/polymer/MWCNTs and PANI/polymer/MWCNTs-COOH) have been prepared in polymer matrix. The prepared nanocomposites were characterized via FTIR, TGA, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). It was observed that the prepared conducting nanocomposites show excellent sensing performances toward CH 4 at room temperature and both the response and recovery time were recorded at around 5s, respectively, at the room. The PANI/polymer/MWCNTs based detector had quicker/shorter response time (<1s), as well as higher sensitivity (3.1%) than that of the PANI/polymer/MWCNTs-COOH based detector. This was attributed to nonconductive -COOH that results in a poor sensitivity of PANI/polymer/MWCNTs-COOH-based prototype. The PANI/polymer/MWCNTs-COOH nanocomposites show almost 10 time higher sensitivity at higher temperature (60°C) than that at room temperature. Copyright © 2016. Published by Elsevier B.V.

  9. Recent advances of conductive nanocomposites in printed and flexible electronics

    NASA Astrophysics Data System (ADS)

    Khan, Saleem; Lorenzelli, Leandro

    2017-08-01

    Conductive nanocomposites have emerged as significant smart engineered materials for realizing flexible electronics on diverse substrates in recent years. Conductive nanocomposites are comprised of conductive fillers mixed with polymeric elastomer (e.g. polydimethylsiloxane). The possibility to tune electrical as well as mechanical properties of nanocomposites makes them suitable for a wide spectrum of applications including sensors and electronics on non-planar and stretchable surfaces. A number of conductive nanofillers and manufacturing technologies have been developed to meet the diverse requirements of various applications. Considering the substantial contribution of conductive nanocomposites, it is opportune time to review the potentials of various nanofillers, their synthesis, processing methodologies and challenges associated to them. This paper reviews conductive nanocomposites, especially in context with their use in the development of electronic components and the sensors exploiting the piezoresistive behavior. The paper is structured around the nanocomposites related studies aiming to develop various building blocks of flexible electronic skin systems such as pressure, touch, strain and temperature sensors as well as stretchable interconnects. Besides this, the use of nanocomposites in other stimulating industrial and biomedical applications has also been explored briefly.

  10. Development of Fabric-Based Chemical Gas Sensors for Use as Wearable Electronic Noses

    PubMed Central

    Seesaard, Thara; Lorwongtragool, Panida; Kerdcharoen, Teerakiat

    2015-01-01

    Novel gas sensors embroidered into fabric substrates based on polymers/ SWNT-COOH nanocomposites were proposed in this paper, aiming for their use as a wearable electronic nose (e-nose). The fabric-based chemical gas sensors were fabricated by two main processes: drop coating and embroidery. Four potential polymers (PVC, cumene-PSMA, PSE and PVP)/functionalized-SWCNT sensing materials were deposited onto interdigitated electrodes previously prepared by embroidering conductive thread on a fabric substrate to make an optimal set of sensors. After preliminary trials of the obtained sensors, it was found that the sensors yielded a electrical resistance in the region of a few kilo-Ohms. The sensors were tested with various volatile compounds such as ammonium hydroxide, ethanol, pyridine, triethylamine, methanol and acetone, which are commonly found in the wastes released from the human body. These sensors were used to detect and discriminate between the body odors of different regions and exist in various forms such as the urine, armpit and exhaled breath odor. Based on a simple pattern recognition technique, we have shown that the proposed fabric-based chemical gas sensors can discriminate the human body odor from two persons. PMID:25602265

  11. Development of fabric-based chemical gas sensors for use as wearable electronic noses.

    PubMed

    Seesaard, Thara; Lorwongtragool, Panida; Kerdcharoen, Teerakiat

    2015-01-16

    Novel gas sensors embroidered into fabric substrates based on polymers/ SWNT-COOH nanocomposites were proposed in this paper, aiming for their use as a wearable electronic nose (e-nose). The fabric-based chemical gas sensors were fabricated by two main processes: drop coating and embroidery. Four potential polymers (PVC, cumene-PSMA, PSE and PVP)/functionalized-SWCNT sensing materials were deposited onto interdigitated electrodes previously prepared by embroidering conductive thread on a fabric substrate to make an optimal set of sensors. After preliminary trials of the obtained sensors, it was found that the sensors yielded a electrical resistance in the region of a few kilo-Ohms. The sensors were tested with various volatile compounds such as ammonium hydroxide, ethanol, pyridine, triethylamine, methanol and acetone, which are commonly found in the wastes released from the human body. These sensors were used to detect and discriminate between the body odors of different regions and exist in various forms such as the urine, armpit and exhaled breath odor. Based on a simple pattern recognition technique, we have shown that the proposed fabric-based chemical gas sensors can discriminate the human body odor from two persons.

  12. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds

    PubMed Central

    Adhikari, Bal-Ram; Govindhan, Maduraiveeran; Chen, Aicheng

    2015-01-01

    Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs), reduced graphene oxide (rGO), SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH), and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics. PMID:26404304

  13. Polysaccharide-based nanocomposites and their applications

    PubMed Central

    Zheng, Yingying; Monty, Jonathan; Linhardt, Robert J.

    2014-01-01

    Polysaccharide nanocomposites have become increasingly important materials over the past decade. Polysaccharides offer a green alternative to synthetic polymers in the preparation of soft nanomaterials. They have also been used in composites with hard nanomaterials, such as metal nanoparticles and carbon-based nanomaterials. This mini review describes methods for polysaccharide nanocomposite preparation and reviews the various types and diverse applications for these novel materials. PMID:25498200

  14. Muti-component nanocomposite of nickel and manganese oxides with enhanced stability and catalytic performance for non-enzymatic glucose sensors

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Cai, Daoping; Wang, Chenxia; Liu, Bin; Wang, Lingling; Liu, Yuan; Li, Han; Wang, Yanrong; Li, Qiuhong; Wang, Taihong

    2016-06-01

    A muti-component nanocomposite of nickel and manganese oxides with a uniformly dispersed microspherical structure has been fabricated by a hydrothermal synthesis method. The as-prepared nanocomposite has been employed as a sensing material for non-enzymatic glucose detection and shown excellent electrocatalytic activity, such as high sensitivities of 82.44 μA mM-1 cm-2 and 27.92 μA mM-1 cm-2 over the linear range of 0.1-1 mM and 1-4.5 mM, respectively, a low detection limit of 0.2 μM and a fast response time of <3 s. Moreover, satisfactory specificity and excellent stability have also been achieved. The results demonstrate that a muti-component nanocomposite of nickel and manganese oxides has great potential applications as glucose sensors.

  15. Simultaneous measurements of ascorbate and glutamate in vivo in the rat brain using carbon fiber nanocomposite sensors and microbiosensor arrays.

    PubMed

    Ferreira, Nuno R; Ledo, Ana; Laranjinha, João; Gerhardt, Greg A; Barbosa, Rui M

    2018-06-01

    Nanocomposite sensors consisting of carbon fiber microelectrodes modified with Nafion® and carbon nanotubes, and ceramic-based microelectrode biosensor arrays were used to measure ascorbate and glutamate in the brain with high spatial, temporal and chemical resolution. Nanocomposite sensors displayed electrocatalytic properties towards ascorbate oxidation, translated into a negative shift from +0.20V to -0.05V vs. Ag/AgCl, as well as a significant increase (10-fold) of electroactive surface area. The estimated average basal concentration of ascorbate in vivo in the CA1, CA3 and dentate gyrus (DG) sub regions of the hippocampus were 276±60μM (n=10), 183±30μM (n=10) and 133±42μM (n=10), respectively. The glutamate microbiosensor arrays showed a high sensitivity of 5.3±0.8pAμM -1 (n=18), and LOD of 204±32nM (n=10), and t 50% response time of 0.9±0.02s (n=6) and high selectivity against major interferents. The simultaneous and real-time measurements of glutamate and ascorbate in the hippocampus of anesthetized rats following local stimulus with KCl or glutamate revealed a dynamic interaction between the two neurochemicals. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Acetylene Gas-Sensing Properties of Layer-by-Layer Self-Assembled Ag-Decorated Tin Dioxide/Graphene Nanocomposite Film

    PubMed Central

    Jiang, Chuanxing; Yin, Nailiang; Yao, Yao; Shaymurat, Talgar; Zhou, Xiaoyan

    2017-01-01

    This paper demonstrates an acetylene gas sensor based on an Ag-decorated tin dioxide/reduced graphene oxide (Ag–SnO2/rGO) nanocomposite film, prepared by layer-by-layer (LbL) self-assembly technology. The as-prepared Ag–SnO2/rGO nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectrum. The acetylene sensing properties were investigated using different working temperatures and gas concentrations. An optimal temperature of 90 °C was determined, and the Ag–SnO2/rGO nanocomposite sensor exhibited excellent sensing behaviors towards acetylene, in terms of response, repeatability, stability and response/recovery characteristics, which were superior to the pure SnO2 and SnO2/rGO film sensors. The sensing mechanism of the Ag–SnO2/rGO sensor was attributed to the synergistic effect of the ternary nanomaterials, and the heterojunctions created at the interfaces between SnO2 and rGO. This work indicates that the Ag–SnO2/rGO nanocomposite is a good candidate for constructing a low-temperature acetylene sensor. PMID:28927021

  17. Nanotechnology : emerging applications of cellulose-based green magnetic nanocomposites

    Treesearch

    Tao Wang; Zhiyong Cai; Lei Liu; Ilker S. Bayer; Abhijit Biswas

    2010-01-01

    In recent years, a new type of nanocomposite – cellulose based hybrid nanocomposites, which adopts cellulose nanofibers as matrices, has been intensively developed. Among these materials, hybrid nanocomposites consisting of cellulosic fibers and magnetic nanoparticles have recently attracted much attention due to their potential novel applications in biomedicine,...

  18. Paper-based electrochemical sensor for on-site detection of the sulphur mustard.

    PubMed

    Colozza, Noemi; Kehe, Kai; Popp, Tanja; Steinritz, Dirk; Moscone, Danila; Arduini, Fabiana

    2018-06-22

    Herein, we report a novel paper-based electrochemical sensor for on-site detection of sulphur mustards. This sensor was conceived combining office paper-based electrochemical sensor with choline oxidase enzyme to deliver a sustainable sensing tool. The mustard agent detection relies on the evaluation of inhibition degree of choline oxidase, which is reversibly inhibited by sulphur mustards, by measuring the enzymatic by-product H 2 O 2 in chronoamperometric mode. A nanocomposite constituted of Prussian Blue nanoparticles and Carbon Black was used as working electrode modifier to improve the electroanalytical performances. This bioassay was successfully applied for the measurement of a sulphur mustard, Yprite, obtaining a detection limit in the millimolar range (LOD = 0.9 mM). The developed sensor, combined with a portable and easy-to-use instrumentation, can be applied for a fast and cost-effective detection of sulphur mustards.

  19. A facile synthesis of mesoporous Pdsbnd ZnO nanocomposites as efficient chemical sensor

    NASA Astrophysics Data System (ADS)

    Ismail, Adel A.; Harraz, Farid A.; Faisal, M.; El-Toni, Ahmed Mohamed; Al-Hajry, A.; Al-Assiri, M. S.

    2016-07-01

    Mesoporous ZnO was synthesized through the sol-gel method in the presence of triblock co-polymer Pluronic (F-127) template as the structure directing agent. Palladium nanoparticles were photochemically reduced and deposited onto mesoporous ZnO to obtain 1 wt.% Pd/ZnO nanocomposite. Structural and morphological analysis revealed high homogeneity and monodispersity of Pd nanoclusters with small particle sizes ∼ 2-5 nm onto mesoporous ZnO. The electrochemical detection of ethanol in aqueous solutions was conducted at the newly developed Pd/ZnO modified glassy carbon electrode (GCE) by the current-potential (IV) and cyclic voltammetry (CV) techniques and compared with bare GCE or pure ZnO. The presence of Pd dopant greatly enhances the sensitivity of ZnO, and the obtained mesoporous Pd/ZnO sensor has an excellent performance for precision detection of ethanol in aqueous solution with low concentration. The sensitivity was found to be 33.08 μAcm-2 mM-1 at lower concentration zone (0.05-0.8 mM) and 2.13 μAcm-2 mM-1 at higher concentration zone (0.8-12 mM), with a limit of detection (LOD) 19.2 μM. The kinetics study of ethanol oxidation revealed a characteristic feature for a mixed surface and diffusion-controlled process. These excellent sensing characteristics make the mesoporous Pd/ZnO nanocomposite a good candidate for the production of high-performance electrochemical sensors at low ethanol concentration in aqueous solution.

  20. Water-assisted extrusion of bio-based PETG/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, Naeun; Lee, Sangmook

    2018-02-01

    Bio-based polyethylene terephthalate glycol-modified (PETG)/clay nanocomposites were prepared using the water-assisted extrusion process. The effects of different types of clay and clay mixing methods (with or without the use of water) and the resulting nanocomposites properties were investigated by measuring the rheological and tensile properties and morphologies. The valuable properties were achieved when Cloisite 30B was mixed in a slurry state. The results of the X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the nano-clay was well dispersed within the PETG matrix. This shows that the slurry process could be an effective exfoliation method for many nanocomposites systems as well as for bio-based PETG/clay nanocomposites.

  1. Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode.

    PubMed

    Liu, Yang; Teng, Hong; Hou, Haoqing; You, Tianyan

    2009-07-15

    A novel nonenzymatic glucose sensor was developed based on the renewable Ni nanoparticle-loaded carbon nanofiber paste (NiCFP) electrode. The NiCF nanocomposite was prepared by combination of electrospinning technique with thermal treatment method. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that large amounts of spherical nanoparticles were well dispersed on the surface or embedded in the carbon nanofibers. And the nanoparticles were composed of Ni and NiO, as revealed by energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD). In application to nonenzymatic glucose determination, the renewable NiCFP electrodes, which were constructed by simply mixing the electrospun nanocomposite with mineral oil, exhibited strong and fast amperometric response without being poisoned by chloride ions. Low detection limit of 1 microM with wide linear range from 2 microM to 2.5 mM (R=0.9997) could be obtained. The current response of the proposed glucose sensor was highly sensitive and stable, attributing to the electrocatalytic performance of the firmly embedded Ni nanoparticles as well as the chemical inertness of the carbon-based electrode. The good analytical performance, low cost and straightforward preparation method made this novel electrode material promising for the development of effective glucose sensor.

  2. Graphene oxide - Polyvinyl alcohol nanocomposite based electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Pawar, Pranav Bhagwan; Shukla, Shobha; Saxena, Sumit

    2016-07-01

    Supercapacitors are high capacitive energy storage devices and find applications where rapid bursts of power are required. Thus materials offering high specific capacitance are of fundamental interest in development of these electrochemical devices. Graphene oxide based nanocomposites are mechanically robust and have interesting electronic properties. These form potential electrode materials efficient for charge storage in supercapacitors. In this perspective, we investigate low cost graphene oxide based nanocomposites as electrode material for supercapacitor. Nanocomposites of graphene oxide and polyvinyl alcohol were synthesized in solution phase by integrating graphene oxide as filler in polyvinyl alcohol matrix. Structural and optical characterizations suggest the formation of graphene oxide and polyvinyl alcohol nanocomposites. These nanocomposites were found to have high specific capacitance, were cyclable, ecofriendly and economical. Our studies suggest that nanocomposites prepared by adding 0.5% wt/wt of graphene oxide in polyvinyl alcohol can be used an efficient electrode material for supercapacitors.

  3. A novel nonenzymatic hydrogen peroxide amperometric sensor based on Pd@CeO2-NH2 nanocomposites modified glassy carbon electrode.

    PubMed

    Guler, Muhammet; Turkoglu, Vedat; Kivrak, Arif; Karahan, Fatih

    2018-09-01

    Herein, (3-aminopropyl)triethoxysilane functionalized cerium (IV) oxide (CeO 2 -NH 2 ) supported Pd nanoparticles were synthesized. The nanocomposites were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and High-resolution transmission electron microscopy (HRTEM). The Pd@CeO 2 -NH 2 showed better electrocatalytic response to the reduction of H 2 O 2 than CeO 2 -NH 2 . The fabricated sensor exhibited two linear responses to the reduction of H 2 O 2 . The first one was from 0.001 to 3.276 mM with 0.47 μM of a limit of detection (LOD) (S/N = 3) and excellent sensitivity of 440.72 μA mM -1  cm -2 and the second one was from 3.276 to 17.500 mM with the sensitivity of 852.65 μA mM -1  cm -2 in the optimum conductions. Also, the sensor exhibited 91% of electrocatalytic activity toward H 2 O 2 after having been used for 30 days and the reproducibility was also satisfactory. The sensor response to H 2 O 2 was not affected by ascorbic acid, fructose, glycine, dopamine, arginine, mannose, glucose, uric acid, Mg +2 , Ca +2 , and phenylalanine at the studied potential. Also, the fabricated sensor was used to determine H 2 O 2 in milk samples. The results show that the constructed sensor can be a promising devise for the determination of H 2 O 2 in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Facile synthesis of a silver nanoparticles/polypyrrole nanocomposite for non-enzymatic glucose determination.

    PubMed

    Poletti Papi, Maurício A; Caetano, Fabio R; Bergamini, Márcio F; Marcolino-Junior, Luiz H

    2017-06-01

    The present work describes the synthesis of a new conductive nanocomposite based on polypyrrole (PPy) and silver nanoparticles (PPy-AgNP) based on a facile reverse microemulsion method and its application as a non-enzymatic electrochemical sensor for glucose detection. Focusing on the best sensor performance, all experimental parameters used in the synthesis of nanocomposite were optimized based on its electrochemical response for glucose. Characterization of the optimized material by FT-IR, cyclic voltammetry, and DRX measurements and TEM images showed good monodispersion of semispherical Ag nanoparticles capped by PPy structure, with size average of 12±5nm. Under the best analytical conditions, the proposed sensor exhibited glucose response in linear dynamic range of 25 to 2500μmolL -1 , with limit of detection of 3.6μmolL -1 . Recovery studies with human saliva samples varying from 99 to 105% revealed the accuracy and feasibility of a non-enzymatic electrochemical sensor for glucose determination by easy construction and low-cost. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Poly (N-ethyl aniline)/Ag Nanocomposite as Humidity Sensor

    NASA Astrophysics Data System (ADS)

    Pande, Nishigandh S.; Jaspal, Dipika; Ambekar, Jalindar

    Poly (N-ethyl aniline)/Ag organic-inorganic composite has been synthesized by a single step in situ chemical oxidative polymerization method. The synthesis of Poly (N-ethyl aniline)/Ag nanocomposite has been confirmed by X-ray diffraction (XRD), Ultraviolet-Vis Spectroscopy (UV-visible), Fourier transform infrared analysis (FTIR) and FE-SEM investigations. XRD spectral study exhibited major diffraction in the range 20-80∘ (2θ) and indicated the semicrystalline nature of poly (N-ethyl aniline)/Ag nanocomposite. Characteristic peaks in UV-visible and FTIR spectra of poly (N-ethyl aniline) switched to higher wave numbers in poly (N-ethyl aniline)/Ag nanocomposite. Peaks at 1789cm-1, 1595cm-1, 667cm-1 and 501cm-1 in FTIR spectrum confirmed the formation of poly (N-ethyl aniline)/Ag nanocomposite. FE-SEM photographs reported agglomerated granular particulate nature of poly (N-ethyl aniline)/Ag nanocomposite. Synthesized poly (N-ethyl aniline)/Ag nanocomposite exhibited a high response to humidity, good reproducibility and stability at room temperature. An appreciable response was shown in the presence of 40% humid atmosphere for up to successive four cycles. Composite sensitivity has been found to increase with the increasing concentration of humidity, at room temperature.

  6. Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film.

    PubMed

    Huq, Tanzina; Salmieri, Stephane; Khan, Avik; Khan, Ruhul A; Le Tien, Canh; Riedl, Bernard; Fraschini, Carole; Bouchard, Jean; Uribe-Calderon, Jorge; Kamal, Musa R; Lacroix, Monique

    2012-11-06

    Nanocrystalline cellulose (NCC) reinforced alginate-based nanocomposite film was prepared by solution casting. The NCC content in the matrix was varied from 1 to 8% ((w/w) % dry matrix). It was found that the nanocomposite reinforced with 5 wt% NCC content exhibits the highest tensile strength which was increased by 37% compared to the control. Incorporation of NCC also significantly improved water vapor permeability (WVP) of the nanocomposite showing a 31% decrease due to 5 wt% NCC loading. Molecular interactions between alginate and NCC were supported by Fourier Transform Infrared Spectroscopy. The X-ray diffraction studies also confirmed the appearance of crystalline peaks due to the presence of NCC inside the films. Thermal stability of alginate-based nanocomposite films was improved after incorporation of NCC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Fabrication of Highly Sensitive Nonenzymatic Electrochemical H₂O₂ Sensor Based on Pt Nanoparticles Anchored Reduced Graphene Oxide.

    PubMed

    Dhara, Keerthy; Ramachandran, T; Nair, Bipin G; Babu, T G Satheesh

    2018-06-01

    A highly sensitive nonenzymatic hydrogen peroxide (H2O2) sensor was fabricated using platinum nanoparticles decorated reduced graphene oxide (Pt/rGO) nanocomposite. The Pt/rGO nanocomposite was prepared by single-step chemical reduction method. Nanocomposite was characterized by various analytical techniques including Raman spectroscopy, X-ray diffraction, field emission scanning electron microscope and high-resolution transmission electron microscopy. Screen printed electrodes (SPEs) were fabricated and the nanocomposite was cast on the working area of the SPE. Cyclic voltammetry and amperometry demonstrated that the Pt/rGO/SPE displayed much higher electrocatalytic activity towards the reduction of H2O2 than the other modified electrodes. The sensor exhibited wide linear detection range (from 10 μM to 8 mM), very high sensitivity of 1848 μA mM-1 cm-2 and a lower limit of detection of 0.06 μM. The excellent performance of Pt/rGO/SPE sensor were attributed to the reduced graphene oxide being used as an effective matrix to load a number of Pt nanoparticles and the synergistic amplification effect of the two kinds of nanomaterials. Moreover, the sensor showed remarkable features such as good reproducibility, repeatability, long-term stability, and selectivity.

  8. Bioinspired Graphene-Based Nanocomposites and Their Application in Flexible Energy Devices.

    PubMed

    Wan, Sijie; Peng, Jingsong; Jiang, Lei; Cheng, Qunfeng

    2016-09-01

    Graphene is the strongest and stiffest material ever identified and the best electrical conductor known to date, making it an ideal candidate for constructing nanocomposites used in flexible energy devices. However, it remains a great challenge to assemble graphene nanosheets into macro-sized high-performance nanocomposites in practical applications of flexible energy devices using traditional approaches. Nacre, the gold standard for biomimicry, provides an excellent example and guideline for assembling two-dimensional nanosheets into high-performance nanocomposites. This review summarizes recent research on the bioinspired graphene-based nanocomposites (BGBNs), and discusses different bioinspired assembly strategies for constructing integrated high-strength and -toughness graphene-based nanocomposites through various synergistic effects. Fundamental properties of graphene-based nanocomposites, such as strength, toughness, and electrical conductivities, are highlighted. Applications of the BGBNs in flexible energy devices, as well as potential challenges, are addressed. Inspired from the past work done by the community a roadmap for the future of the BGBNs in flexible energy device applications is depicted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Biochar-based nano-composites for the decontamination of wastewater: A review.

    PubMed

    Tan, Xiao-Fei; Liu, Yun-Guo; Gu, Yan-Ling; Xu, Yan; Zeng, Guang-Ming; Hu, Xin-Jiang; Liu, Shao-Bo; Wang, Xin; Liu, Si-Mian; Li, Jiang

    2016-07-01

    Synthesizing biochar-based nano-composites can obtain new composites and combine the advantages of biochar with nano-materials. The resulting composites usually exhibit great improvement in functional groups, pore properties, surface active sites, catalytic degradation ability and easy to separation. These composites have excellent abilities to adsorb a range of contaminants from aqueous solutions. Particularly, catalytic material-coated biochar can exert simultaneous adsorption and catalytic degradation function for organic contaminants removal. Synthesizing biochar-based nano-composites has become an important practice for expanding the environmental applications of biochar and nanotechnology. This paper aims to review and summarize the various synthesis techniques for biochar-based nano-composites and their effects on the decontamination of wastewater. The characteristic and advantages of existing synthesis methods are summarized and discussed. Application of biochar-based nano-composites for different contaminants removal and the underlying mechanisms are reviewed. Furthermore, knowledge gaps that exist in the fabrication and application of biochar-based nano-composites are also identified. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Clay-based polymer nanocomposites: research and commercial development.

    PubMed

    Zeng, Q H; Yu, A B; Lu, G Q; Paul, D R

    2005-10-01

    This paper reviews the recent research and development of clay-based polymer nanocomposites. Clay minerals, due to their unique layered structure, rich intercalation chemistry and availability at low cost, are promising nanoparticle reinforcements for polymers to manufacture low-cost, lightweight and high performance nanocomposites. We introduce briefly the structure, properties and surface modification of clay minerals, followed by the processing and characterization techniques of polymer nanocomposites. The enhanced and novel properties of such nanocomposites are then discussed, including mechanical, thermal, barrier, electrical conductivity, biodegradability among others. In addition, their available commercial and potential applications in automotive, packaging, coating and pigment, electrical materials, and in particular biomedical fields are highlighted. Finally, the challenges for the future are discussed in terms of processing, characterization and the mechanisms governing the behaviour of these advanced materials.

  11. Graphitic carbon nitride based nanocomposites: a review

    NASA Astrophysics Data System (ADS)

    Zhao, Zaiwang; Sun, Yanjuan; Dong, Fan

    2014-11-01

    Graphitic carbon nitride (g-C3N4), as an intriguing earth-abundant visible light photocatalyst, possesses a unique two-dimensional structure, excellent chemical stability and tunable electronic structure. Pure g-C3N4 suffers from rapid recombination of photo-generated electron-hole pairs resulting in low photocatalytic activity. Because of the unique electronic structure, the g-C3N4 could act as an eminent candidate for coupling with various functional materials to enhance the performance. According to the discrepancies in the photocatalytic mechanism and process, six primary systems of g-C3N4-based nanocomposites can be classified and summarized: namely, the g-C3N4 based metal-free heterojunction, the g-C3N4/single metal oxide (metal sulfide) heterojunction, g-C3N4/composite oxide, the g-C3N4/halide heterojunction, g-C3N4/noble metal heterostructures, and the g-C3N4 based complex system. Apart from the depiction of the fabrication methods, heterojunction structure and multifunctional application of the g-C3N4-based nanocomposites, we emphasize and elaborate on the underlying mechanisms in the photocatalytic activity enhancement of g-C3N4-based nanocomposites. The unique functions of the p-n junction (semiconductor/semiconductor heterostructures), the Schottky junction (metal/semiconductor heterostructures), the surface plasmon resonance (SPR) effect, photosensitization, superconductivity, etc. are utilized in the photocatalytic processes. Furthermore, the enhanced performance of g-C3N4-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, and supercapacitors. This critical review ends with a summary and some perspectives on the challenges and new directions in exploring g-C3N4-based advanced nanomaterials.

  12. Interdigitated electrodes (IDE) using elastomer functionalized multi-walled carbon nanotube (MWNT) nanocomposites for the detection of oil spills

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Yong; Lee, Hyunseung; Park, Boyeong; Kim, Yangsoo

    2018-03-01

    IDE using elastomer functionalized MWNT nanocomposites was fabricated and applied for the oil sensor. Two types of nanocomposites (i.e., MWNT-grafting-polyisoprene and Si-MWNT/natural rubber) having elastomer content of ~70 wt% were used as a sensing material of oil sensor and the relative electrical resistance response of the sensor to three different kinds of oils (i.e., gasoline, engine oil and pump oil) was investigated. Among three kinds of oils, the response of MWNT-grafting-polyisoprene nanocomposites IDE sensor to gasoline was the most significant. It showed the maximum relative electrical resistance of 18 within 20 min of dropping of 200 μL gasoline at room temperature for the MWNT-grafting-polyisoprene nanocomposites, which is far superior in sensitivity to the experimental results reported by Ponnamma et al in 2016 [1]. On the other hand, the response of Si-MWNT/natural rubber nanocomposites IDE sensor to gasoline was not appreciable. The elastomer functionalized MWNT nanocomposites prepared by “grafting-from” method, which is MWNT-grafting-polyisoprene in this study, is an excellent candidate material for the detection of oil spills.

  13. Amperometric sensor for ethanol based on one-step electropolymerization of thionine-carbon nanofiber nanocomposite containing alcohol oxidase.

    PubMed

    Wu, Lina; McIntosh, Mike; Zhang, Xueji; Ju, Huangxian

    2007-12-15

    Thionine had strong interaction with carbon nanofiber (CNF) and was used in the non-covalent functionalization of carbon nanofiber for the preparation of stable thionine-CNF nanocomposite with good dispersion. With a simple one-step electrochemical polymerization of thionine-CNF nanocomposite and alcohol oxidase (AOD), a stable poly(thionine)-CNF/AOD biocomposite film was formed on electrode surface. Based on the excellent catalytic activity of the biocomposite film toward reduction of dissolved oxygen, a sensitive ethanol biosensor was proposed. The ethanol biosensor could monitor ethanol ranging from 2.0 to 252 microM with a detection limit of 1.7 microM. It displayed a rapid response, an expanded linear response range as well as excellent reproducibility and stability. The combination of catalytic activity of CNF and the promising feature of the biocomposite with one-step non-manual technique favored the sensitive determination of ethanol with improved analytical capabilities.

  14. Electrochemical sensor for rutin detection based on Au nanoparticle-loaded helical carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yang, Haitang; Li, Bingyue; Cui, Rongjing; Xing, Ruimin; Liu, Shanhu

    2017-10-01

    The key step in the fabrication of highly active electrochemical sensors is seeking multifunctional nanocomposites as electrode modified materials. In this study, the gold nanoparticle-decorated helical carbon nanotube nanocomposites (AuNPs-HCNTs) were fabricated for rutin detection because of its superior sensitivity, the chemical stability of AuNPs, and the superior conductivity and unique 3D-helical structure of helical carbon nanotubes. Results showed the prepared nanocomposites exhibited superior electrocatalytic activity towards rutin due to the synergetic effects of AuNPs and HCNTs. Under the optimized conditions, the developed sensor exhibited a linear response range from 0.1 to 31 μmol/L for rutin with a low detectable limit of 81 nmol/L. The proposed method might offer a possibility for electrochemical analysis of rutin in Chinese medical analysis or serum monitoring owing to its low cost, simplicity, high sensitivity, good stability, and few interferences against common coexisting ions in real samples.

  15. Biocompatible epoxy modified bio-based polyurethane nanocomposites: mechanical property, cytotoxicity and biodegradation.

    PubMed

    Dutta, Suvangshu; Karak, Niranjan; Saikia, Jyoti Prasad; Konwar, Bolin Kumar

    2009-12-01

    Epoxy modified Mesua ferrea L. seed oil (MFLSO) based polyurethane nanocomposites with different weight % of clay loadings (1%, 2.5% and 5%) have been evaluated as biocompatible materials. The nanocomposites were prepared by ex situ solution technique under high mechanical shearing and ultrasonication at room temperature. The partially exfoliated nanocomposites were characterized by Fourier transform infra-red (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The mechanical properties such as tensile strength and scratch hardness were improved 2 and 5 times, respectively by nanocomposites formation. Even the impact resistance improved a little. The thermostability of the nanocomposites was enhanced by about 40 degrees C. Biodegradation study confirmed 5-10 fold increase in biodegradation rate for the nanocomposites compared to the pristine polymers. All the nanocomposites showed non-cytotoxicity as evident from RBC hemolysis inhibition observed in anti-hemolytic assay carried over the sterilized films. The study reveals that the epoxy modified MFLSO based polyurethane nanocomposites deserve the potential to be applicable as biomaterials.

  16. Nanocomposite polymer structures for optical sensors of hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Sergeev, A. A.; Mironenko, A. Yu.; Nazirov, A. E.; Leonov, A. A.; Voznesenskii, S. S.

    2017-08-01

    Composite coatings based on gold and silver nanoparticles reduced in situ in the film of chitosan polysaccharide are studied. In the presence of hydrogen sulfide, the maximum of plasmon resonance of the nanoparticles that is proportional to the analyte concentration decreases. The detection limits for hydrogen sulfide are 0.1 and 5 ppm for the chitosan/silver and chitosan/gold nanocomposites, respectively.

  17. Polypyrrole based nanocomposites for supercapacitor applications: A review

    NASA Astrophysics Data System (ADS)

    Sardar, A.; Gupta, P. S.

    2018-05-01

    Recently conducting polymers have attracted great interest for supercapacitor applications. Among conducting polymers polypyrrole is most popular due to its unique electrical conductivity, optoelectrical properties, redox property and excellent environmental stability. In this article, we present a comprehensive review of polypyrrole and polypyrrole based nanocomposites for supercapacitor applications. We have included study of various parameters like power density, energy density, specific-capacitance by various authors for different kinds of nanocomposites where fillers are metal oxides, metal sulphides, graphene etc. Some polypyrrole nanocomposits show good electrochemical performances. The extremely stable supercapacitors with excellent flexibility and scalability hold considerable promise for the commerical application of flexible and wearable electronics.

  18. Induced anisotropy in FeCo-based nanocomposites: Early transition metal content dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, S; DeGeorge, V; Ohodnicki, PR

    2014-05-07

    Soft magnetic nanocomposites variants of FeCo-based (HTX002) alloys (Fe65Co35)(81+x)B12Nb4-xSi2Cu1, exhibiting high inductions (up to 1.9 T), low losses, and high temperature stability are studied for high frequency inductors and current sensors. For alloys with x 0, 1, 1.5, 2, and 3, we report field induced anisotropy, K-U, after annealing at temperatures of 340-450 degrees C for 1 h in a 2 T transverse magnetic field. The anisotropy field, H-K, measured by AC permeametry on toroidal cores, and by first order reversal curves on square sections of ribbon, decreases with annealing temperature and saturates at high annealing temperatures suggesting a nanostructuremore » related anisotropy mechanism in which the amorphous phase exhibits a higher H-K than the crystalline phase. A high saturation induction nanocrystalline phase and high H-K amorphous phase were achieved by low temperature annealing resulting in a value of K-U exceeding 14 X 10(3) erg/cm(3), more than twice that reported previously for Fe-rich amorphous and nanocomposite alloys. (C) 2014 AIP Publishing LLC.« less

  19. MoS2‐Based Nanocomposites for Electrochemical Energy Storage

    PubMed Central

    Wang, Tianyi; Chen, Shuangqiang; Xue, Huaiguo

    2016-01-01

    Typical layered transition‐metal chalcogenide materials, in particular layered molybdenum disulfide (MoS2) nanocomposites, have attracted increasing attention in recent years due to their excellent chemical and physical properties in various research fieldsHere, a general overview of synthetic MoS2 based nanocomposites via different preparation approaches and their applications in energy storage devices (Li‐ion battery, Na‐ion battery, and supercapacitor) is presented. The relationship between morphologies and the electrochemical performances of MoS2‐based nanocomposites in the three typical and promising rechargeable systems is also discussed. Finally, perspectives on major challenges and opportunities faced by MoS2‐based materials to address the practical problems of MoS2‐based materials are presented. PMID:28251051

  20. Flexible pressure sensor based on graphene aerogel microstructures functionalized with CdS nanocrystalline thin film

    NASA Astrophysics Data System (ADS)

    Plesco, Irina; Dragoman, Mircea; Strobel, Julian; Ghimpu, Lidia; Schütt, Fabian; Dinescu, Adrian; Ursaki, Veaceslav; Kienle, Lorenz; Adelung, Rainer; Tiginyanu, Ion

    2018-05-01

    In this paper, we report on functionalization of graphene aerogel with a CdS thin film deposited by magnetron sputtering and on the development of flexible pressure sensors based on ultra-lightweight CdS-aerogel nanocomposite. Analysis by scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analysis disclose the uniform deposition of nanocrystalline CdS films with quasi-stoichiometric composition. The piezoresistive response of the aforementioned nanocomposite in the pressure range from 1 to 5 atm is found to be more than one order of magnitude higher than that inherent to suspended graphene membranes, leading to an average sensitivity as high as 3.2 × 10-4 kPa-1.

  1. 3D printable highly conductive and mechanically strong thermoplastic-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Tabiai, Ilyass; Therriault, Daniel

    Highly conductive 3D printable inks can be used to design electrical devices with various functionalities and geometries. We use the solvent evaporation assisted 3D-printing method to create high resolution structures made of poly(lactid) acid (PLA) reinforced with multi-walled carbon nanotube (MWCNTs). We characterize fibers with diameters ranging between 100 μm to 330 μm and reinforced with MWCNTs from 0.5 up to 40wt% here. Tensile test, shrinkage ratio, density and electrical conductivity measurements of the printed nanocomposite are presented. The material's electrical conductivity is strongly improved by adding MWCNTs (up to 3000S/m), this value was found to be higher than any 3D-printable carbon based material available in the literature. It is observed that MWCNTs significantly increase the material's strength and stiffness while reducing its ductility. The ink's density was also higher while still being in the range of polymers' densities. The presented nanocomposite is light weight, highly conductive, has good mechanical properties and can be printed in a freeform fashion at the micro scale. A myriad of low power consumption with less resistive heating sensors and devices can potentially be designed using it and integrated into other 3D printable products.

  2. Preparation of polymer-blended quinine nanocomposite particles by spray drying and assessment of their instrumental bitterness-masking effect using a taste sensor.

    PubMed

    Taki, Moeko; Tagami, Tatsuaki; Ozeki, Tetsuya

    2017-05-01

    The development of taste-masking technologies for foods and drugs is essential because it would enable people to consume and receive healthy and therapeutic effect without distress. In the current study, in order to develop a novel method to prepare nanocomposite particles (microparticles containing bitter nanoparticles) in only one step, by using spray drying, a two-solution mixing nozzle-equipped spray dryer that we previously reported was used. The nanocomposite particles with or without poorly water-soluble polymers prepared using our spray-drying technique were characterized. (1) The organic solution containing quinine, a model of bitter compound and poorly water-soluble polymers and (2) sugar alcohol (mannitol) aqueous solution were separately flown in tubes and two solutions were spray dried through two-solution type spray nozzle to prepare polymer-blended quinine nanocomposite particles. Mean diameters of nanoparticles, taste-masking effect and dissolution rate of quinine were evaluated. The results of taste masking by taste sensor suggested that the polymer (Eudragit EPO, Eudragit S100 or Ethyl cellulose)-blended quinine nanocomposite particles exhibited marked masking of instrumental quinine bitterness compared with the quinine nanocomposite particles alone. Quinine nanocomposite formulations altered the quinine dissolution rate, indicating that they can control intestinal absorption of quinine. These results suggest that polymer-blended quinine composite particles prepared using our spray-drying technique are useful for masking bitter tastes in the field of food and pharmaceutical industry.

  3. Review on the progress in synthesis and application of magnetic carbon nanocomposites.

    PubMed

    Zhu, Maiyong; Diao, Guowang

    2011-07-01

    This review focuses on the synthesis and application of nanostructured composites containing magnetic nanostructures and carbon-based materials. Great progress in fabrication of magnetic carbon nanocomposites has been made by developing methods including filling process, template-based synthesis, chemical vapor deposition, hydrothermal/solvothermal method, pyrolysis procedure, sol-gel process, detonation induced reaction, self-assembly method, etc. The applications of magnetic carbon nanocomposites expanded to a wide range of fields such as environmental treatment, microwave absorption, magnetic recording media, electrochemical sensor, catalysis, separation/recognization of biomolecules and drug delivery are discussed. Finally, some future trends and perspectives in this research area are outlined.

  4. Review on the progress in synthesis and application of magnetic carbon nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhu, Maiyong; Diao, Guowang

    2011-07-01

    This review focuses on the synthesis and application of nanostructured composites containing magnetic nanostructures and carbon-based materials. Great progress in fabrication of magnetic carbon nanocomposites has been made by developing methods including filling process, template-based synthesis, chemical vapor deposition, hydrothermal/solvothermal method, pyrolysis procedure, sol-gel process, detonation induced reaction, self-assembly method, etc. The applications of magnetic carbon nanocomposites expanded to a wide range of fields such as environmental treatment, microwave absorption, magnetic recording media, electrochemical sensor, catalysis, separation/recognization of biomolecules and drug delivery are discussed. Finally, some future trends and perspectives in this research area are outlined.

  5. Facile hydrothermal growth graphene/ZnO nanocomposite for development of enhanced biosensor.

    PubMed

    Low, Sze Shin; Tan, Michelle T T; Loh, Hwei-San; Khiew, Poi Sim; Chiu, Wee Siong

    2016-01-15

    Graphene/zinc oxide nanocomposite was synthesised via a facile, green and efficient approach consisted of novel liquid phase exfoliation and solvothermal growth for sensing application. Highly pristine graphene was synthesised through mild sonication treatment of graphite in a mixture of ethanol and water at an optimum ratio. The X-ray diffractometry (XRD) affirmed the hydrothermal growth of pure zinc oxide nanoparticles from zinc nitrate hexahydrate precursor. The as-prepared graphene/zinc oxide (G/ZnO) nanocomposite was characterised comprehensively to evaluate its morphology, crystallinity, composition and purity. All results clearly indicate that zinc oxide particles were homogenously distributed on graphene sheets, without any severe aggregation. The electrochemical performance of graphene/zinc oxide nanocomposite-modified screen-printed carbon electrode (SPCE) was evaluated using cyclic voltammetry (CV) and amperometry analysis. The resulting electrode exhibited excellent electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) in a linear range of 1-15 mM with a correlation coefficient of 0.9977. The sensitivity of the graphene/zinc oxide nanocomposite-modified hydrogen peroxide sensor was 3.2580 μAmM(-1) with a limit of detection of 7.4357 μM. An electrochemical DNA sensor platform was then fabricated for the detection of Avian Influenza H5 gene based on graphene/zinc oxide nanocomposite. The results obtained from amperometry study indicate that the graphene/zinc oxide nanocomposite-enhanced electrochemical DNA biosensor is significantly more sensitive (P < 0.05) and efficient than the conventional agarose gel electrophoresis. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications.

    PubMed

    Kumar, Suneel; Kumar, Ashish; Bahuguna, Ashish; Sharma, Vipul; Krishnan, Venkata

    2017-01-01

    In the pursuit towards the use of sunlight as a sustainable source for energy generation and environmental remediation, photocatalytic water splitting and photocatalytic pollutant degradation have recently gained significant importance. Research in this field is aimed at solving the global energy crisis and environmental issues in an ecologically-friendly way by using two of the most abundant natural resources, namely sunlight and water. Over the past few years, carbon-based nanocomposites, particularly graphene and graphitic carbon nitride, have attracted much attention as interesting materials in this field. Due to their unique chemical and physical properties, carbon-based nanocomposites have made a substantial contribution towards the generation of clean, renewable and viable forms of energy from light-based water splitting and pollutant removal. This review article provides a comprehensive overview of the recent research progress in the field of energy generation and environmental remediation using two-dimensional carbon-based nanocomposites. It begins with a brief introduction to the field, basic principles of photocatalytic water splitting for energy generation and environmental remediation, followed by the properties of carbon-based nanocomposites. Then, the development of various graphene-based nanocomposites for the above-mentioned applications is presented, wherein graphene plays different roles, including electron acceptor/transporter, cocatalyst, photocatalyst and photosensitizer. Subsequently, the development of different graphitic carbon nitride-based nanocomposites as photocatalysts for energy and environmental applications is discussed in detail. This review concludes by highlighting the advantages and challenges involved in the use of two-dimensional carbon-based nanocomposites for photocatalysis. Finally, the future perspectives of research in this field are also briefly mentioned.

  7. Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

    PubMed Central

    Kumar, Suneel; Kumar, Ashish; Bahuguna, Ashish; Sharma, Vipul

    2017-01-01

    In the pursuit towards the use of sunlight as a sustainable source for energy generation and environmental remediation, photocatalytic water splitting and photocatalytic pollutant degradation have recently gained significant importance. Research in this field is aimed at solving the global energy crisis and environmental issues in an ecologically-friendly way by using two of the most abundant natural resources, namely sunlight and water. Over the past few years, carbon-based nanocomposites, particularly graphene and graphitic carbon nitride, have attracted much attention as interesting materials in this field. Due to their unique chemical and physical properties, carbon-based nanocomposites have made a substantial contribution towards the generation of clean, renewable and viable forms of energy from light-based water splitting and pollutant removal. This review article provides a comprehensive overview of the recent research progress in the field of energy generation and environmental remediation using two-dimensional carbon-based nanocomposites. It begins with a brief introduction to the field, basic principles of photocatalytic water splitting for energy generation and environmental remediation, followed by the properties of carbon-based nanocomposites. Then, the development of various graphene-based nanocomposites for the above-mentioned applications is presented, wherein graphene plays different roles, including electron acceptor/transporter, cocatalyst, photocatalyst and photosensitizer. Subsequently, the development of different graphitic carbon nitride-based nanocomposites as photocatalysts for energy and environmental applications is discussed in detail. This review concludes by highlighting the advantages and challenges involved in the use of two-dimensional carbon-based nanocomposites for photocatalysis. Finally, the future perspectives of research in this field are also briefly mentioned. PMID:28884063

  8. Epoxy based nanocomposites with fully exfoliated unmodified clay: mechanical and thermal properties.

    PubMed

    Li, Binghai; Zhang, Xiaohong; Gao, Jianming; Song, Zhihai; Qi, Guicun; Liu, Yiqun; Qiao, Jinliang

    2010-09-01

    The unmodified clay has been fully exfoliated in epoxy resin with the aid of a novel ultrafine full-vulcanized powdered rubber. Epoxy/rubber/clay nanocomposites with exfoliated morphology have been successfully prepared. The microstructures of the nanocomposites were characterized by means of X-ray diffraction and transmission electron microscopy. It was found that the unmodified clay was fully exfoliated and uniformly dispersed in the resulting nanocomposite. Characterizations of mechanical properties revealed that the impact strength of this special epoxy/rubber/clay nanocomposite increased up 107% over the neat epoxy resin. Thermal analyses showed that thermal stability of the nanocomposite was much better than that of epoxy nanocomposite based on organically modified clay.

  9. SWCNTs-based nanocomposites as sensitive coatings for advanced fiber optic chemical nanosensors

    NASA Astrophysics Data System (ADS)

    Consales, M.; Crescitelli, A.; Penza, M.; Aversa, P.; Giordano, M.; Cutolo, A.; Cusano, A.

    2008-04-01

    In this work, the feasibility of exploiting novel Cadmium Arachidate (CdA)/single-walled carbon nanotubes (SWCNTs) based composites as sensitive coatings for the development of robust and high performances optoelectronic chemosensors able to work in liquid environments has been investigated and proved. Here, nano-composite sensing layers have been transferred upon the distal end of standard optical fibers by the Langmuir-Blodgett (LB) technique. Reflectance measurements have been carried out to monitor ppm concentration of chemicals in water through the changes in the optical and geometrical features of the sensing overlay induced by the interaction with the analyte molecules. Preliminary experimental results evidence that such nanoscale coatings integrated with the optical fiber technology offers great potentialities for the room temperature detection of chemical traces in water and lead to significant improvements of the traditional fiber optic sensors based on SWCNTs layers.

  10. Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO 2 emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yizhong; Chyu, Minking; Wang, Qing-Ming

    2013-02-14

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO 2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO 2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5more » times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO 2 . The sensor frequency change was around 300ppm for pure CO 2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.« less

  11. Development of a reduced-graphene-oxide based superparamagnetic nanocomposite for the removal of nickel (II) from an aqueous medium via a fluorescence sensor platform.

    PubMed

    Nandi, Debabrata; Saha, Indranil; Ray, Suprakas Sinha; Maity, Arjun

    2015-09-15

    Reduced-graphene-oxide based superparamagnetic nanocomposite (GC) was fabricated and applied for the remediation of Ni(II) from an aqueous medium. The as-prepared GC was extensively characterized by Raman, TEM, AFM, SEM-EDX, SQUID, and BET analyses. Quantitative immobilization of Ni(II) in an aqueous solution by the fluorescent sensor platform of GC was explored at varying pH, doses, contact times, and temperatures. The pseudo-second-order kinetics equation governed the overall sorption process at optimized pH of 5 (±0.2). The superior monolayer sorption capacity was 228mgg(-1) at 300K. Negative ΔG(0) indicated the spontaneous sorption nature, whereas the positive ΔH(0) resulted from an increase in entropy (positive ΔS(0)) at the solid-liquid interface during the endothermic reaction. The lower enthalpy agreed with the relatively high regeneration (approximately 91%) of the GC by 0.1M HCl, because of the formation of stable tetrahedral complex. The physisorption was well corroborated by calculated sorption energy (EDR ∼7kJmol(-1)) and the nature of the Stern-Volmer plot of the fluorescence-quenching data with reaction time. The GC played a pivotal role as a static fluorescent sensor platform (fluorophore) for Ni(II) adsorption. Magnetic property also indicated that GC could be easily separated from fluids by exploiting its superparamagnetic property. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions

    NASA Astrophysics Data System (ADS)

    Milani Moghaddam, Hossain; Nasirian, Shahruz

    2014-10-01

    The resistance-based sensors of polyaniline/titania (rutile) nanocomposite (TPNC) were prepared by spin coating technique onto an epoxy glass substrate with Cu-interdigited electrodes to study their hydrogen (H2) gas sensing features. Our findings are that the change of the surface morphology, porosity and wt% of titania in TPNCs have a significant effect on H2 gas sensing of sensors. All of the sensors had a reproducibility response toward 0.8 vol% H2 gas at room temperature, air pressure and 50% relative humidity. A sensor with 40 wt% of titania nanoparticles had better response/recovery time and the response than other sensors. Moreover, H2 gas sensing mechanism of TPNC sensors based contact areas and the correlation of energy levels between PANI chains and the titania grains were studied.

  13. Chromatic Mechanical Response in 2-D Layered Transition Metal Dichalcogenide (TMDs) based Nanocomposites

    PubMed Central

    Rahneshin, Vahid; Khosravi, Farhad; Ziolkowska, Dominika A.; Jasinski, Jacek B.; Panchapakesan, Balaji

    2016-01-01

    The ability to convert photons of different wavelengths directly into mechanical motion is of significant interest in many energy conversion and reconfigurable technologies. Here, using few layer 2H-MoS2 nanosheets, layer by layer process of nanocomposite fabrication, and strain engineering, we demonstrate a reversible and chromatic mechanical response in MoS2-nanocomposites between 405 nm to 808 nm with large stress release. The chromatic mechanical response originates from the d orbitals and is related to the strength of the direct exciton resonance A and B of the few layer 2H-MoS2 affecting optical absorption and subsequent mechanical response of the nanocomposite. Applying uniaxial tensile strains to the semiconducting few-layer 2H-MoS2 crystals in the nanocomposite resulted in spatially varying energy levels inside the nanocomposite that enhanced the broadband optical absorption up to 2.3 eV and subsequent mechanical response. The unique photomechanical response in 2H-MoS2 based nanocomposites is a result of the rich d electron physics not available to nanocomposites based on sp bonded graphene and carbon nanotubes, as well as nanocomposite based on metallic nanoparticles. The reversible strain dependent optical absorption suggest applications in broad range of energy conversion technologies that is not achievable using conventional thin film semiconductors. PMID:27713550

  14. Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide.

    PubMed

    Wang, Wenting; Xu, Guiyun; Cui, Xinyan Tracy; Sheng, Ge; Luo, Xiliang

    2014-08-15

    Significantly enhanced catalytic activity of a nanocomposite composed of conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) doped with graphene oxide (GO) was achieved through a simple electrochemical reduction process. The nanocomposite (PEDOT/GO) was electrodeposited on an electrode and followed by electrochemical reduction, and the obtained reduced nanocomposite (PEDOT/RGO) modified electrode exhibited lowered electrochemical impedance and excellent electrocatalytic activity towards the oxidation of dopamine. Based on the excellent catalytic property of PEDOT/RGO, an electrochemical sensor capable of sensitive and selective detection of DA was developed. The fabricated sensor can detect DA in a wide linear range from 0.1 to 175μM, with a detection limit of 39nM, and it is free from common interferences such as uric acid and ascorbic acid. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities.

    PubMed

    Hwang, Byeong-Ung; Lee, Ju-Hyuck; Trung, Tran Quang; Roh, Eun; Kim, Do-Il; Kim, Sang-Woo; Lee, Nae-Eung

    2015-09-22

    Monitoring of human activities can provide clinically relevant information pertaining to disease diagnostics, preventive medicine, care for patients with chronic diseases, rehabilitation, and prosthetics. The recognition of strains on human skin, induced by subtle movements of muscles in the internal organs, such as the esophagus and trachea, and the motion of joints, was demonstrated using a self-powered patchable strain sensor platform, composed on multifunctional nanocomposites of low-density silver nanowires with a conductive elastomer of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/polyurethane, with high sensitivity, stretchability, and optical transparency. The ultra-low-power consumption of the sensor, integrated with both a supercapacitor and a triboelectric nanogenerator into a single transparent stretchable platform based on the same nanocomposites, results in a self-powered monitoring system for skin strain. The capability of the sensor to recognize a wide range of strain on skin has the potential for use in new areas of invisible stretchable electronics for human monitoring. A new type of transparent, stretchable, and ultrasensitive strain sensor based on a AgNW/PEDOT:PSS/PU nanocomposite was developed. The concept of a self-powered patchable sensor system integrated with a supercapacitor and a triboelectric nanogenerator that can be used universally as an autonomous invisible sensor system was used to detect the wide range of strain on human skin.

  16. Injection Molding and Mechanical Properties of Bio-Based Polymer Nanocomposites.

    PubMed

    Mistretta, Maria Chiara; Botta, Luigi; Morreale, Marco; Rifici, Sebastiano; Ceraulo, Manuela; La Mantia, Francesco Paolo

    2018-04-17

    The use of biodegradable/bio-based polymers is of great importance in addressing several issues related to environmental protection, public health, and new, stricter legislation. Yet some applications require improved properties (such as barrier or mechanical properties), suggesting the use of nanosized fillers in order to obtain bio-based polymer nanocomposites. In this work, bionanocomposites based on two different biodegradable polymers (coming from the Bioflex and MaterBi families) and two different nanosized fillers (organo-modified clay and hydrophobic-coated precipitated calcium carbonate) were prepared and compared with traditional nanocomposites with high-density polyethylene (HDPE) as matrix. In particular, the injection molding processability, as well as the mechanical and rheological properties of the so-obtained bionanocomposites were investigated. It was found that the processability of the two biodegradable polymers and the related nanocomposites can be compared to that of the HDPE-based systems and that, in general, the bio-based systems can be taken into account as suitable alternatives.

  17. Injection Molding and Mechanical Properties of Bio-Based Polymer Nanocomposites

    PubMed Central

    Mistretta, Maria Chiara; Rifici, Sebastiano; Ceraulo, Manuela

    2018-01-01

    The use of biodegradable/bio-based polymers is of great importance in addressing several issues related to environmental protection, public health, and new, stricter legislation. Yet some applications require improved properties (such as barrier or mechanical properties), suggesting the use of nanosized fillers in order to obtain bio-based polymer nanocomposites. In this work, bionanocomposites based on two different biodegradable polymers (coming from the Bioflex and MaterBi families) and two different nanosized fillers (organo-modified clay and hydrophobic-coated precipitated calcium carbonate) were prepared and compared with traditional nanocomposites with high-density polyethylene (HDPE) as matrix. In particular, the injection molding processability, as well as the mechanical and rheological properties of the so-obtained bionanocomposites were investigated. It was found that the processability of the two biodegradable polymers and the related nanocomposites can be compared to that of the HDPE-based systems and that, in general, the bio-based systems can be taken into account as suitable alternatives. PMID:29673143

  18. Flexible Carbon Nanotube Films for High Performance Strain Sensors

    PubMed Central

    Kanoun, Olfa; Müller, Christian; Benchirouf, Abderahmane; Sanli, Abdulkadir; Dinh, Trong Nghia; Al-Hamry, Ammar; Bu, Lei; Gerlach, Carina; Bouhamed, Ayda

    2014-01-01

    Compared with traditional conductive fillers, carbon nanotubes (CNTs) have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors. PMID:24915183

  19. Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications

    PubMed Central

    Moura, Duarte; Mano, João F.; Paiva, Maria C.; Alves, Natália M.

    2016-01-01

    Abstract Chitosan (CHI), a biocompatible and biodegradable polysaccharide with the ability to provide a non-protein matrix for tissue growth, is considered to be an ideal material in the biomedical field. However, the lack of good mechanical properties limits its applications. In order to overcome this drawback, CHI has been combined with different polymers and fillers, leading to a variety of chitosan-based nanocomposites. The extensive research on CHI nanocomposites as well as their main biomedical applications are reviewed in this paper. An overview of the different fillers and assembly techniques available to produce CHI nanocomposites is presented. Finally, the properties of such nanocomposites are discussed with particular focus on bone regeneration, drug delivery, wound healing and biosensing applications. PMID:27877909

  20. Characterization of SWNT based Polystyrene Nanocomposites

    NASA Astrophysics Data System (ADS)

    Mitchell, Cynthia; Bahr, Jeffrey; Tour, James; Arepalli, Sivaram; Krishnamoorti, Ramanan

    2003-03-01

    Polystyrene nanocomposites with functionalized single walled carbon nanotubes (SWNTs), prepared by the in-situ generation and addition of organic diazonium compounds, were characterized using a range of structural and dynamic methods. These were contrasted to the properties of polystyrene composites prepared with unfunctionalized SWNTs at the same loadings. The functionalized nanocomposites demonstrated a percolated SWNT network structure at concentrations of 1 vol SWNT based composites at similar loadings of SWNT exhibited behavior comparable to that of the unfilled polymer. This formation of the SWNT network structure is because of the improved compatibility between the SWNTs and the polymer matrix due to the functionalization. Further structural evidence for the compatibility of the modified SWNTs and the polymer matrix will be discussed in the presentation.

  1. Fabrication of por-Si/SnO{sub x} nanocomposite layers for gas microsensors and nanosensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotov, V. V., E-mail: bolotov@obisp.oscsbras.ru; Korusenko, P. M.; Nesov, S. N.

    2011-05-15

    Two-phase nanocomposite layers based on porous silicon and nonstoichiometric tin oxide were fabricated by various methods. The structure, as well as elemental and phase composition, of the obtained nanocomposites were studied using transmission and scanning electron microscopy, Raman spectroscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy. The results obtained confirm the formation of nanocomposite layers with a thickness as large as 2 {mu}m thick and SnO{sub x} stoichiometry coefficients x = 1.0-2.0. Significant tin diffusion into the porous silicon matrix with D{sub eff} Almost-Equal-To 10{sup -14} cm{sup 2} s{sup -1} was observed upon annealing at 770 K. Test sensor structuresmore » based on por-Si/SnO{sub x} nanocomposite layers grown by magnetron deposition showed fairly high stability of properties and sensitivity to NO{sub 2}.« less

  2. Carbon nanotube network evolution during deformation of PVDF-MWNT nanocomposites

    NASA Astrophysics Data System (ADS)

    Rizvi, Reza; Naguib, Hani E.

    2013-04-01

    The emergence of novel electronic systems and their requirements have necessitated the evolution of new material classes. The traditional electronic semiconductors and components are shifting from silicon based substrates to polymers and other organic compounds. Sensor components are no exceptions, where compliant polymeric materials offer the possibility of flexible electronics. This paper examines the fabrication and characterization of piezoresistive nanocomposites for pressure sensing applications. The matrix material employed was Polyvinylidene Fluoride (PVDF). The PVDF phase was reinforced with conductive particles, in order to form a conductive filler network throughout the nanocomposite. Multiwall carbon nanotubes (MWNT) were selected as conductive particles to form the networks. The composites were prepared by melt mixing the PVDF and conductive particles in compositions ranging from 0.25 to 10 wt% conductive particle in PVDF. The dielectric permittivity and electrical conductivity of the composites was characterized and the electrical percolation behavior of PVDF nanocomposites fitted to the statistical percolation model. Scanning electron was employed to understand the morphology of the filler networks in the PVDF nanocomposites. Quasi-static piezoresistance of the nanocomposites was characterized using a custom-built force-resistance measurement setup under compressive loading conditions.

  3. Humidity Sensor Based on PEDOT:PSS and Zinc Stannate Nano-composite

    NASA Astrophysics Data System (ADS)

    Aziz, Shahid; Chang, Dong Eui; Doh, Yang Hoi; Kang, Chul Ung; Choi, Kyung Hyun

    2015-10-01

    A composite of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and zinc stannate (ZnSnO3) has been introduced for impedance-based humidity sensing, owing to its high sensitivity, good stability, very fast response (˜0.2 s) and recovery time (˜0.2 s), small hysteresis, repeatability, low-cost fabrication and wide range of sensitivity. Both materials were mixed in three different weight percentage ratios, to optimize the performance of the sensors. Best response was observed for 5 wt.% PEDOT:PSS and 5 wt.% ZnSnO3. The impedance of the sensor was dropped immensely from 1.5 MΩ to 50 kΩ by changing relative humidity from 0% to 90%. The reason for this improvement in sensitivity was analyzed by virtue of sensing mechanisms and different characterizations (three dimensional (3D) nano-profiler, optical microscope, and fourier transform infra-red (FTIR) spectroscopy) revealing the surface morphology and chemical structure of the film. Due to its response and ability to sense human breath and skin humidity, it is suitable for environmental, artificial skin and food industry applications.

  4. Nonenzymatic amperometric determination of glucose by CuO nanocubes-graphene nanocomposite modified electrode.

    PubMed

    Luo, Liqiang; Zhu, Limei; Wang, Zhenxin

    2012-12-01

    Here, we report a nonenzymatic amperometric glucose sensor based on copper oxide (CuO) nanocubes-graphene nanocomposite modified glassy carbon electrode (CuO-G-GCE). In this case, the graphene sheets were cast on the GCE directly. CuO nanocubes were obtained by oxidizing electrochemically deposited Cu on the graphene. The morphology of CuO-G nanocomposite was characterized by scanning electron microscopy. The CuO-G-GCE-based sensor exhibited excellent electrocatalytic activity and high stability for glucose oxidation. Under optimized conditions, the linearity between the current response and the glucose concentration was obtained in the range of 2μM to 4mM with a detection limit of 0.7μM (S/N=3), and a high sensitivity of 1360μAmM(-1)cm(-2). The proposed electrode showed a fast response time (less than 5s) and a good reproducibility. The as-made sensor was applied to determine the glucose levels in clinic human serum samples with satisfactory results. In addition, the effects of common interfering species, including ascorbic acid, uric acid, dopamine and other carbohydrates, on the amperometric response of the sensor were investigated and discussed in detail. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Flexible Transparent Electronic Gas Sensors.

    PubMed

    Wang, Ting; Guo, Yunlong; Wan, Pengbo; Zhang, Han; Chen, Xiaodong; Sun, Xiaoming

    2016-07-01

    Flexible and transparent electronic gas sensors capable of real-time, sensitive, and selective analysis at room-temperature, have gained immense popularity in recent years for their potential to be integrated into various smart wearable electronics and display devices. Here, recent advances in flexible transparent sensors constructed from semiconducting oxides, carbon materials, conducting polymers, and their nanocomposites are presented. The sensing material selection, sensor device construction, and sensing mechanism of flexible transparent sensors are discussed in detail. The critical challenges and future development associated with flexible and transparent electronic gas sensors are presented. Smart wearable gas sensors are believed to have great potential in environmental monitoring and noninvasive health monitoring based on disease biomarkers in exhaled gas. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dispersion of cellulose nanofibers in biopolymer based nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Bei

    The focus of this work was to understand the fundamental dispersion mechanism of cellulose based nanofibers in bionanocomposites. The cellulose nanofibers were extracted from soybean pod and hemp fibers by chemo-mechanical treatments. These are bundles of cellulose nanofibers with a diameter ranging between 50 to 100 nm and lengths of thousands of nanometers which results in very high aspect ratio. In combination with a suitable matrix polymer, cellulose nanofiber networks show considerable potential as an effective reinforcement for high quality specialty applications of bio-based nanocomposites. Cellulose fibrils have a high density of --OH groups on the surface, which have a tendency to form hydrogen bonds with adjacent fibrils, reducing interaction with the surrounding matrix. The use of nanofibers has been mostly restricted to water soluble polymers. This thesis is focused on synthesizing the nanocomposite using a solid phase matrix polypropylene (PP) or polyethylene (PE) by hot compression and poly (vinyl alcohol) (PVA) in an aqueous phase by film casting. The mechanical properties of nanofiber reinforced PVA film demonstrated a 4-5 fold increase in tensile strength, as compared to the untreated fiber-blend-PVA film. It is necessary to reduce the entanglement of the fibrils and improve their dispersion in the matrix by surface modification of fibers without deteriorating their reinforcing capability. Inverse gas chromatography (IGC) was used to explore how various surface treatments would change the dispersion component of surface energy and acid-base character of cellulose nanofibers and the effect of the incorporation of these modified nanofibers into a biopolymer matrix on the properties of their nano-composites. Poly (lactic acid) (PLA) and polyhydroxybutyrate (PHB) based nanocomposites using cellulose nanofibers were prepared by extrusion, injection molding and hot compression. The IGC results indicated that styrene maleic anhydride coated and ethylene

  7. Raman Spectroscopy of Novel UHMW Polyethylene-Based Nanocomposites with Nanographite and Nanoclay

    NASA Astrophysics Data System (ADS)

    Prokhorov, K. A.; Sagitova, E. A.; Averin, A. A.; Nikolaeva, G. Yu; Baimova, A. V.; Novokshonova, L. A.; Brevnov, P. N.; Pashinin, P. P.

    2018-04-01

    We analyze the Raman spectra of nanocomposites based on ultrahigh-molecular-weight polyethylene with nanoclay, thermoexpanded graphite, and reduced graphite oxide fillers. We discuss the potential of Raman spectroscopy for quantitative analysis of the nanocomposite structure, the influence of the fillers on the phase and conformation compositions of the polymer matrix, as well as for the monitoring of dispersion of the nanographite fillers in the nanocomposites.

  8. Aerosol Processing of Crumpled Graphene Oxide-based Nanocomposites for Drug Delivery.

    PubMed

    Wang, Wei-Ning; He, Xiang

    2016-01-01

    The flexibility of graphene oxide (GO) nanosheets and their unique properties enable them to be excellent two dimensional (2D) building blocks for designing functional materials. Aerosol routes are proved to be a rational approach to fold the 2D flat GO nanosheets into 3D crumpled spheres to mitigate the restacking issue for large-scale applications, such as for drug delivery. The fundamentals of graphene, GO, and the crumpling process of GO nanosheets are summarized. Various crumpled graphene oxide (CGO)-based nanocomposites have been synthesized by aerosol routes. This mini review focuses on the state-of-the-art in the design and fabrication of these nanocomposites for a specific application in drug delivery. Various techniques are demonstrated and discussed to control the release rates, tailor the morphology, and adjust the components inside the nanocomposites. Potential risks and possible trends are also pointed out. Aerosol processing of CGO-based nanocomposites provides a promising approach to design functional nanomaterials for drug delivery and other related applications.

  9. Long-Term, Autonomous Measurement of Atmospheric Carbon Dioxide Using an Ormosil Nanocomposite-Based Optical Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisholoy Goswami

    2005-10-11

    The goal of this project is to construct a prototype carbon dioxide sensor that can be commercialized to offer a low-cost, autonomous instrument for long-term, unattended measurements. Currently, a cost-effective CO2 sensor system is not available that can perform cross-platform measurements (ground-based or airborne platforms such as balloon and unmanned aerial vehicle (UAV)) for understanding the carbon sequestration phenomenon. The CO2 sensor would support the research objectives of DOE-sponsored programs such as AmeriFlux and the North American Carbon Program (NACP). Global energy consumption is projected to rise 60% over the next 20 years and use of oil is projected tomore » increase by approximately 40%. The combustion of coal, oil, and natural gas has increased carbon emissions globally from 1.6 billion tons in 1950 to 6.3 billion tons in 2000. This figure is expected to reach 10 billon tons by 2020. It is important to understand the fate of this excess CO2 in the global carbon cycle. The overall goal of the project is to develop an accurate and reliable optical sensor for monitoring carbon dioxide autonomously at least for one year at a point remote from the actual CO2 release site. In Phase I of this project, InnoSense LLC (ISL) demonstrated the feasibility of an ormosil-monolith based Autonomous Sensor for Atmospheric CO2 (ASAC) device. All of the Phase I objectives were successfully met.« less

  10. Novel amperometric glucose biosensor based on MXene nanocomposite.

    PubMed

    Rakhi, R B; Nayak, Pranati; Xia, Chuan; Alshareef, Husam N

    2016-11-10

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM -1 cm -2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.

  11. Novel amperometric glucose biosensor based on MXene nanocomposite

    PubMed Central

    Rakhi, R. B.; Nayuk, Pranati; Xia, Chuan; Alshareef, Husam N.

    2016-01-01

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM−1 cm−2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors. PMID:27830757

  12. Electrochromic nanocomposite films

    DOEpatents

    Milliron, Delia; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2018-04-10

    The present invention provides an electrochromic nanocomposite film. In an exemplary embodiment, the electrochromic nanocomposite film, includes (1) a solid matrix of oxide based material and (2) transparent conducting oxide (TCO) nanostructures embedded in the matrix. In a further embodiment, the electrochromic nanocomposite film farther includes a substrate upon which the matrix is deposited. The present invention also provides a method of preparing an electrochromic nanocomposite film.

  13. Construction of an Electrochemical Sensor Based on Carbon Nanotubes/Gold Nanoparticles for Trace Determination of Amoxicillin in Bovine Milk

    PubMed Central

    Muhammad, Aliyu; Yusof, Nor Azah; Hajian, Reza; Abdullah, Jaafar

    2016-01-01

    In this work, a novel electrochemical sensor was fabricated for determination of amoxicillin in bovine milk samples by decoration of carboxylated multi-walled carbon nanotubes (MWCNTs) with gold nanoparticles (AuNPs) using ethylenediamine (en) as a cross linker (AuNPs/en-MWCNTs). The constructed nanocomposite was homogenized in dimethylformamide and drop casted on screen printed electrode. Field emission scanning electron microscopy (FESEM), energy dispersive X-Ray (EDX), X-Ray diffraction (XRD) and cyclic voltammetry were used to characterize the synthesized nanocomposites. The results show that the synthesized nanocomposites induced a remarkable synergetic effect for the oxidation of amoxicillin. Effect of some parameters, including pH, buffer, scan rate, accumulation potential, accumulation time and amount of casted nanocomposites, on the sensitivity of fabricated sensor were optimized. Under the optimum conditions, there was two linear calibration ranges from 0.2–10 µM and 10–30 µM with equations of Ipa (µA) = 2.88C (µM) + 1.2017; r = 0.9939 and Ipa (µA) = 0.88C (µM) + 22.97; r = 0.9973, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) were calculated as 0.015 µM and 0.149 µM, respectively. The fabricated electrochemical sensor was successfully applied for determination of Amoxicillin in bovine milk samples and all results compared with high performance liquid chromatography (HPLC) standard method. PMID:26805829

  14. Construction of an Electrochemical Sensor Based on Carbon Nanotubes/Gold Nanoparticles for Trace Determination of Amoxicillin in Bovine Milk.

    PubMed

    Muhammad, Aliyu; Yusof, Nor Azah; Hajian, Reza; Abdullah, Jaafar

    2016-01-20

    In this work, a novel electrochemical sensor was fabricated for determination of amoxicillin in bovine milk samples by decoration of carboxylated multi-walled carbon nanotubes (MWCNTs) with gold nanoparticles (AuNPs) using ethylenediamine (en) as a cross linker (AuNPs/en-MWCNTs). The constructed nanocomposite was homogenized in dimethylformamide and drop casted on screen printed electrode. Field emission scanning electron microscopy (FESEM), energy dispersive X-Ray (EDX), X-Ray diffraction (XRD) and cyclic voltammetry were used to characterize the synthesized nanocomposites. The results show that the synthesized nanocomposites induced a remarkable synergetic effect for the oxidation of amoxicillin. Effect of some parameters, including pH, buffer, scan rate, accumulation potential, accumulation time and amount of casted nanocomposites, on the sensitivity of fabricated sensor were optimized. Under the optimum conditions, there was two linear calibration ranges from 0.2-10 µM and 10-30 µM with equations of Ipa (µA) = 2.88C (µM) + 1.2017; r = 0.9939 and Ipa (µA) = 0.88C (µM) + 22.97; r = 0.9973, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) were calculated as 0.015 µM and 0.149 µM, respectively. The fabricated electrochemical sensor was successfully applied for determination of Amoxicillin in bovine milk samples and all results compared with high performance liquid chromatography (HPLC) standard method.

  15. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    PubMed Central

    Das, Gautam; Yoon, Hyon Hee

    2015-01-01

    An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 (μA · cm−2·mM−1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM) with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity) after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. PMID:26346240

  16. Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles.

    PubMed

    Sahraee, Samar; Milani, Jafar M; Ghanbarzadeh, Babak; Hamishehkar, Hamed

    2017-04-01

    The gelatin-based nanocomposite films containing chitin nanoparticles (N-chitin) with concentrations of 0, 3, 5 and 10% were prepared and their physical, thermal and anti-microbial properties were investigated. Scanning electron microscopy (SEM) micrographs showed that N-chitin size distribution was around 60-70nm which dispersed appropriately at low concentration in gelatin matrix. The results showed that incorporation of N-chitin significantly influenced apparent color and transparency of the gelatin films. The reduced water vapor permeability (WVP) and solubility and higher surface hydrophobicity of the nanocomposite films were obtained by enhancing N-chitin concentration in film formulation. The use of N-chitin up to 5% concentration in the gelatin based nanocomposite film led to improved mechanical properties. Also, the results of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) confirmed improved stability of nanocomposite films against melting and degradation at high temperatures in comparison to neat gelatin film. The well compatibility of chitin nanoparticles with gelatin polymer was concluded from Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) plots. Finally, the gelatin based nanocomposite films had anti-fungal properties against Aspergillus niger in the contact surface zone. Increasing the concentration of N-chitin up to 5% enlarged inhibition zone diameter, but the nanocomposite film containing 10% N-chitin showed smaller inhibition zone. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Li, Ying; Liu, Zeliang; Jia, Zheng; Liu, Wing Kam; Aldousari, Saad M.; Hedia, Hassan S.; Asiri, Saeed A.

    2017-02-01

    Polymer nanocomposites have been envisioned as advanced materials for improving the mechanical performance of neat polymers used in aerospace, petrochemical, environment and energy industries. With the filler size approaching the nanoscale, composite materials tend to demonstrate remarkable thermomechanical properties, even with addition of a small amount of fillers. These observations confront the classical composite theories and are usually attributed to the high surface-area-to-volume-ratio of the fillers, which can introduce strong nanoscale interfacial effect and relevant long-range perturbation on polymer chain dynamics. Despite decades of research aimed at understanding interfacial effect and improving the mechanical performance of composite materials, it is not currently possible to accurately predict the mechanical properties of polymer nanocomposites directly from their molecular constituents. To overcome this challenge, different theoretical, experimental and computational schemes will be used to uncover the key physical mechanisms at the relevant spatial and temporal scales for predicting and tuning constitutive behaviors in silico, thereby establishing a bottom-up virtual design principle to achieve unprecedented mechanical performance of nanocomposites. A modular-based multiscale modeling approach for viscoelasticity of polymer nanocomposites has been proposed and discussed in this study, including four modules: (A) neat polymer toolbox; (B) interphase toolbox; (C) microstructural toolbox and (D) homogenization toolbox. Integrating these modules together, macroscopic viscoelasticity of polymer nanocomposites could be directly predicted from their molecular constituents. This will maximize the computational ability to design novel polymer composites with advanced performance. More importantly, elucidating the viscoelasticity of polymer nanocomposites through fundamental studies is a critical step to generate an integrated computational material

  18. Advanced clay nanocomposites based on in situ photopolymerization utilizing novel polymerizable organoclays

    NASA Astrophysics Data System (ADS)

    Kim, Soon Ki

    Polymer nanocomposite technology has had significant impact on material design. With the environmental advantages of photopolymerization, a research has recently focused on producing nanocomposites utilizing inexpensive clay particles based on in situ photopolymerization. In this research, novel polymerizable organoclays and thiol-ene photopolymerization have been utilized to develop advanced photopolymer clay nanocomposites and to overcome several limitations in conventional free radical photopolymers. To this end, factors important in nanocomposite processes such as monomer composition, clay dispersion, and photopolymerization behavior in combination with the evolution of ultimate nanocomposite properties have been investigated. For monomer-organoclay compositions, higher chemical compatibility of components induces enhanced clay exfoliation, resulting in photopolymerization rate increases due to an amplified clay template effect. Additionally, by affecting the stoichiometric ratio between thiol and acrylate double bond in the clay gallery, thiolated organoclays enhance thiol-ene copolymerization with increased final thiol conversion while acrylated organoclays encourage acrylate homopolymerization. In accordance with the reaction behavior, incorporation of thiolated organoclays makes polymer chains more flexible with decreased glass transition temperature due to higher formation of thio-ether linkages while adding acrylated organoclays significantly increases the modulus. Photopolymer nanocomposites also help overcome two major drawbacks in conventional free radical photopolymerization, namely severe polymerization shrinkage and oxygen inhibition during polymerization. With addition of a low level of thiol monomers, the oxygen inhibition in various acrylate systems can be overcome by addition of only 5wt% thiolated organoclay. The same amount of polymerizable organoclay also induces up to 90% decreases in the shrinkage stress for acrylate or thiol

  19. Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite.

    PubMed

    Hsu, Sheng-Hao; Chen, Rung-Shu; Chang, Yuan-Ling; Chen, Min-Huey; Cheng, Kuo-Chung; Su, Wei-Fang

    2012-11-01

    Low-shrinkage resin-based photocurable liquid crystalline epoxy nanocomposite has been investigated with regard to its application as a dental restoration material. The nanocomposite consists of an organic matrix and an inorganic reinforcing filler. The organic matrix is made of liquid crystalline biphenyl epoxy resin (BP), an epoxy resin consisting of cyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (ECH), the photoinitiator 4-octylphenyl phenyliodonium hexafluoroantimonate and the photosensitizer champhorquinone. The inorganic filler is silica nanoparticles (∼70-100 nm). The nanoparticles were modified by an epoxy silane of γ-glycidoxypropyltrimethoxysilane to be compatible with the organic matrix and to chemically bond with the organic matrix after photo curing. By incorporating the BP liquid crystalline (LC) epoxy resin into conventional ECH epoxy resin, the nanocomposite has improved hardness, flexural modulus, water absorption and coefficient of thermal expansion. Although the incorporation of silica filler may dilute the reinforcing effect of crystalline BP, a high silica filler content (∼42 vol.%) was found to increase the physical and chemical properties of the nanocomposite due to the formation of unique microstructures. The microstructure of nanoparticle embedded layers was observed in the nanocomposite using scanning and transmission electron microscopy. This unique microstructure indicates that the crystalline BP and nanoparticles support each other and result in outstanding mechanical properties. The crystalline BP in the LC epoxy resin-based nanocomposite was partially melted during exothermic photopolymerization, and the resin expanded via an order-to-disorder transition. Thus, the post-gelation shrinkage of the LC epoxy resin-based nanocomposite is greatly reduced, ∼50.6% less than in commercialized methacrylate resin-based composites. This LC epoxy nanocomposite demonstrates good physical and chemical properties and good biocompatibility

  20. Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings.

    PubMed

    Mohandas, Annapoorna; Deepthi, S; Biswas, Raja; Jayakumar, R

    2018-09-01

    Chitosan based nanocomposite scaffolds have attracted wider applications in medicine, in the area of drug delivery, tissue engineering and wound healing. Chitosan matrix incorporated with nanometallic components has immense potential in the area of wound dressings due to its antimicrobial properties. This review focuses on the different combinations of Chitosan metal nanocomposites such as Chitosan/nAg, Chitosan/nAu, Chitosan/nCu, Chitosan/nZnO and Chitosan/nTiO 2 towards enhancement of healing or infection control with special reference to the antimicrobial mechanism of action and toxicity.

  1. Investigation on strain sensing properties of carbon-based nanocomposites for structural aircraft applications

    NASA Astrophysics Data System (ADS)

    Lamberti, Patrizia; Spinelli, Giovanni; Tucci, Vincenzo; Guadagno, Liberata; Vertuccio, Luigi; Russo, Salvatore

    2016-05-01

    The mechanical and electrical properties of a thermosetting epoxy resin particularly indicated for the realization of structural aeronautic components and reinforced with multiwalled carbon nanotubes (MWCNTs, at 0.3 wt%) are investigated for specimens subjected to cycles and different levels of applied strain (i.e. ɛ) loaded both in axial tension and flexural mode. It is found that the piezoresistive behavior of the resulting nanocomposite evaluated in terms of variation of the electrical resistance is strongly affected by the applied mechanical stress mainly due to the high sensibility and consequent rearrangement of the electrical percolating network formed by MWCNTs in the composite at rest or even under a small strain. In fact, the variations in electrical resistance that occur during the mechanical stress are correlated to the deformation exhibited by the nanocomposites. In particular, the overall response of electrical resistance of the composite is characterized by a linear increase with the strain at least in the region of elastic deformation of the material in which the gauge factor (i.e. G.F.) of the sensor is usually evaluated. Therefore, the present study aims at investigating the possible use of the nanotechnology for application of embedded sensor systems in composite structures thus having capability of self-sensing and of responding to the surrounding environmental changes, which are some fundamental requirements especially for structural aircraft monitoring applications.

  2. Low TCR nanocomposite strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); Chen, Ximing (Inventor)

    2012-01-01

    A high temperature thin film strain gage sensor capable of functioning at temperatures above 1400.degree. C. The sensor contains a substrate, a nanocomposite film comprised of an indium tin oxide alloy, zinc oxide doped with alumina or other oxide semiconductor and a refractory metal selected from the group consisting of Pt, Pd, Rh, Ni, W, Ir, NiCrAlY and NiCoCrAlY deposited onto the substrate to form an active strain element. The strain element being responsive to an applied force.

  3. Yeast Based Sensors

    NASA Astrophysics Data System (ADS)

    Shimomura-Shimizu, Mifumi; Karube, Isao

    Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of yeast based sensors have been developed as analytical tools. Yeasts are known as facultative anaerobes. Facultative anaerobes can survive in both aerobic and anaerobic conditions. The yeast based sensor consisted of a DO electrode and an immobilized omnivorous yeast. In yeast based sensor development, many kinds of yeast have been employed by applying their characteristics to adapt to the analyte. For example, Trichosporon cutaneum was used to estimate organic pollution in industrial wastewater. Yeast based sensors are suitable for online control of biochemical processes and for environmental monitoring. In this review, principles and applications of yeast based sensors are summarized.

  4. Hyperspectral imaging with deformable gratings fabricated with metal-elastomer nanocomposites

    NASA Astrophysics Data System (ADS)

    Potenza, Marco A. C.; Nazzari, Daniele; Cremonesi, Llorenç; Denti, Ilaria; Milani, Paolo

    2017-11-01

    We report the fabrication and characterization of a simple and compact hyperspectral imaging setup based on a stretchable diffraction grating made with a metal-polymer nanocomposite. The nanocomposite is produced by implanting Ag clusters in a poly(dimethylsiloxane) film by supersonic cluster beam implantation. The deformable grating has curved grooves and is imposed on a concave cylindrical surface, thus obtaining optical power in two orthogonal directions. Both diffractive and optical powers are obtained by reflection, thus realizing a diffractive-catoptric optical device. This makes it easier to minimize aberrations. We prove that, despite the extended spectral range and the simplified optical scheme, it is actually possible to work with a traditional CCD sensor and achieve a good spectral and spatial resolution.

  5. Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties.

    PubMed

    Malagurski, Ivana; Levic, Steva; Nesic, Aleksandra; Mitric, Miodrag; Pavlovic, Vladimir; Dimitrijevic-Brankovic, Suzana

    2017-11-01

    New mineralized, agar-based nanocomposite films (Zn-carbonate and Zn-phosphate/agar) were produced by a combination of in situ precipitation and a casting method. The presence of minerals significantly influenced the morphology, properties and functionality of the obtained nanocomposites. Reinforcement with the Zn-mineral phase improved the mechanical properties of the carbonate-mineralized films, but had a negligible effect on the phosphate-mineralized samples. Both nanocomposites showed improved optical and thermal properties, better Zn(II) release potential in a slightly acidic environment and exhibited antimicrobial activity against S. aureus. These results suggest that Zn-mineralized agar nanocomposite films could be potentially used as affordable, eco-friendly and active food packaging materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Thermal Behaviour of Nanocomposites based on Glycerol Plasticized Thermoplastic Starch and Cellulose Nanocrystallites

    NASA Astrophysics Data System (ADS)

    Kaushik, Anupama; Kaur, Ramanpreet

    2011-12-01

    The objective of this study was to study the thermal behaviour of cellulose nanocrystals/TPS based nanocomposites. Nanocrystalline cellulose was isolated from cotton linters using sonochemical method and characterized through WAXRD & TEM. These nanocrystals were then dispersed in glycerol plasticized starch in varying proportions and films were cast. The thermal degradation of thermoplastic starch/cellulose nanocrystallite nanocomposites was studied using TGA under nitrogen atmosphere. Thermal degradation was carried out for nanocomposites at a rate of 10 °C/min and at different rates under nitrogen atmosphere namely 2, 5, 10, 20 and 40 °C/min for nanocomposites containing 10% cellulose nanocrystals. Ozawa and Flynn and Kissinger methods were used to determine the apparent activation energy of these nanocomposites. The addition of cellulose nanocrystallites produced a significant effect on the activation energy for thermal degradation of the composites materials in comparison with the matrix alone. These nanocomposites are potential applicant for food packaging applications.

  7. Intercalated Nanocomposites Based on High-Temperature Superconducting Ceramics and Their Properties

    PubMed Central

    Tonoyan, Anahit; Schiсk, Christoph; Davtyan, Sevan

    2009-01-01

    High temperature superconducting (SC) nanocomposites based on SC ceramics and various polymeric binders were prepared. Regardless of the size of the ceramics’ grains, the increase of their amount leads to an increase of resistance to rupture and modulus and a decrease in limiting deformation, whereas an increase in the average ceramic grain size worsens resistance properties. The SC, thermo-chemical, mechanical and dynamic-mechanical properties of the samples were investigated. Superconducting properties of the polymer ceramic nanocomposites are explained by intercalation of macromolecule fragments into the interstitial layer of the ceramics’ grains. This phenomenon leads to a change in the morphological structure of the superconducting nanocomposites.

  8. Glucose Biosensor Based on Immobilization of Glucose Oxidase in Platinum Nanoparticles/Graphene/Chitosan Nanocomposite Film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hong; Wang, Jun; Kang, Xinhuang

    2009-09-01

    The bionanocomposite film consisting of glucose oxidase/Pt/functional graphene sheets/chitosan (GOD/Pt/FGS/chitosan) for glucose sensing was described. With the electrocatalytic synergy of FGS and Pt nanoparticles to hydrogen peroxide, a sensitive biosensor with detection limit of 0.6 µM glucose was achieved. The biosensor also had good reproducibility, long term stability and negligible interfering signals from ascorbic acid and uric acid comparing to the response to glucose. The large surface area and good conductivity of graphene suggests that graphene is a potential candidate for sensor material. The hybrid nanocomposite glucose sensor provides new opportunity for clinical diagnosis and point-of-care applications.

  9. Colorimetric polymer-metal nanocomposite sensor of ammonia for the agricultural industry of confined animal feeding operations

    NASA Astrophysics Data System (ADS)

    Sarkisov, Sergey S.; Czarick, Michael; Fairchild, Brian D.; Liang, Yi; Kukhtareva, Tatiana; Curley, Michael J.

    2014-02-01

    The proposed colorimetric sensor of ammonia for the confined animal feeding industry uses the method of optoelectronic spectroscopic measurement of the reversible change of the color of a nanocomposite reagent film in response to ammonia. The film is made of a gold nanocolloid in a polymer matrix with an ammonia-sensitive indicator dye additive. The response of the indicator dye (increase of the optical absorption between 550 and 650 nm) is enhanced by the nanoparticles (˜8 nm in size) in two ways: (a) concentration of the optical field near the nanoparticle due to the plasmon resonance and (b) catalytic acceleration of the chemical reaction of deprotonization of the indicator dye in the presence of ammonia and water vapor. This enhancement helps to miniaturize the sensing element without compromising its sensitivity of <1 parts per million (ppm) for the range 0 to 100 ppm. The sensor underwent field tests in commercial poultry farms in Georgia and Arkansas and was compared against a scientific-grade photoacoustic gas analyzer. The coefficient of correlation between the sensor and the photoacoustic data for several weeks of continuous side-by-side operation in a commercial poultry house was ˜0.9 and the linear regression slope was 1.0. The conclusions on the necessary improvements were made.

  10. Preparation and characterization of PANI@G/CWO nanocomposite for enhanced 2-nitrophenol sensing

    NASA Astrophysics Data System (ADS)

    Khan, Anish; Khan, Aftab Aslam Parwaz; Rahman, Mohammed M.; Asiri, Abdullah M.; Inamuddin; Alamry, Khalid A.; Hameed, Salem A.

    2018-03-01

    A new material by polymer insertion via graphene oxide into cerium tungstate was prepared by very simple oxidation-reduction method. Aniline polymerization was done on the surface of graphene oxide (GO) which was reduced to graphene (G) simultaneously mixed with separately prepared inorganic matrices of cerium tungstate (Ce2(WO4)3 (CWO)). PANI@G/CWO was characterized by various spectroscopic methods as SEM, FTIR, TGA, XRD and XPS to confirm its possibilities. Selective 2-nitrophenol sensor was fabricated on flat glassy carbon electrode (GCE) and PANI@G/CWO nanocomposites in the form of thin layer. It was found excellent sensitivity as well as long life spam with broad dynamic concentration range (LDR) that showed efficient electrochemical performance towards 2-nitrophenol on fabricated chemical sensor by PANI@G/CWO. The linear calibration curve (r2 = 0.9914) with wide range of 2-nitrophenol concentration (1.0 nM-1.0 mM) was found having the detection limit of 0.87 nM while the sensitivity of the sensor was around 1.229 μ A μM-1 cm-2. It was introduced a new route for the development of a versatile phenolic sensor based on PANI@G/CWO nanocomposites by I-V method that is proved more selective and sensitive for environmental toxic materials.

  11. Tailoring the mechanical properties of SU-8/clay nanocomposites: polymer microcantilever fabrication perspective

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Ojijo, Vincent; Cele, Hastings; Joubert, Trudi; Suprakas, Sinha Ray; Land, Kevin

    2014-06-01

    SU-8/Clay nanocomposite is considered as a candidate material for microcantilever sensor fabrication. Organically modified montmorillonite clay nanoparticles are dispersed in the universally used negative photoresist polymer SU-8, for a low cost material, which is also biocompatible. If varying the clay loading of the composite material yields a variation of the Young's modulus, the tailored material stiffness presents an opportunity for fabrication of microcantilevers with tunable sensor sensitivity. With this microcantilever application perspective, mechanical and thermal properties of the material were investigated. SU-8/Clay nanocomposite samples were prepared with clay loadings from 1wt% - 10wt%. Tensile test results show a general trend of increase in composite modulus with an increase in the clay loading up to 7wt%, followed by a small drop at 10wt%. The composite material indeed yields moderate variation of the Young's modulus. It was also found that the thermal degradation peak of the material occurred at 300°C, which is beyond the operating temperature of typical microcantilever sensor applications. The fabrication of a custom designed microcantilever array chip with the SU-8/Clay nanocomposite material was achieved in a class 100 cleanroom, using spin-coating and photolithography microfabrication techniques. The optimization of the process for fabricating microcantilever with the SU-8/Clay nanocomposite material is discussed in this paper. The results of this research are promising for cheaper mass production of low cost disposable, yet sensitive, microcantilever sensor elements, including biosensor applications.

  12. Nonlinear absorption enhancement of AuNPs based polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Zulina, Natalia A.; Baranov, Mikhail A.; Kniazev, Kirill I.; Kaliabin, Viacheslav O.; Denisyuk, Igor Yu.; Achor, Susan U.; Sitnikova, Vera E.

    2018-07-01

    Au nanoparticles (AuNPs) based polymer nanocomposites with high nonlinear absorption coefficient were synthesized by UV-photocuring. AuNPs were synthesized by laser ablation method in liquid monomer isodecyl acrylate (IDA). In this research, two colloids with 70 nm and 20 nm nanoparticles average sizes were studied. Size control was performed with SEM and STEM. Prepared nanomaterials exhibit strong third-order nonlinear optical responses under CW laser irradiation at 532 nm, which was estimated by using z-scan technique performed with open aperture. It was found experimentally that nonlinear absorption β is almost twice higher for nanocomposites with smaller AuNPs.

  13. Carbon nanotube thin film strain sensors: comparison between experimental tests and numerical simulations

    NASA Astrophysics Data System (ADS)

    Lee, Bo Mi; Loh, Kenneth J.

    2017-04-01

    Carbon nanotubes can be randomly deposited in polymer thin film matrices to form nanocomposite strain sensors. However, a computational framework that enables the direct design of these nanocomposite thin films is still lacking. The objective of this study is to derive an experimentally validated and two-dimensional numerical model of carbon nanotube-based thin film strain sensors. This study consisted of two parts. First, multi-walled carbon nanotube (MWCNT)-Pluronic strain sensors were fabricated using vacuum filtration, and their physical, electrical, and electromechanical properties were evaluated. Second, scanning electron microscope images of the films were used for identifying topological features of the percolated MWCNT network, where the information obtained was then utilized for developing the numerical model. Validation of the numerical model was achieved by ensuring that the area ratios (of MWCNTs relative to the polymer matrix) were equivalent for both the experimental and modeled cases. Strain sensing behavior of the percolation-based model was simulated and then compared to experimental test results.

  14. Analysis of polariton dispersion in metal nanocomposite based novel superlattice system

    NASA Astrophysics Data System (ADS)

    DoniPon, V.; Joseph Wilson, K. S.; Malarkodi, A.

    2018-06-01

    The influence of metal nanoparticles in tuning the polaritonic gap in a novel piezoelectric superlattice is studied. Dielectric function of the metal nanoparticles is analyzed using Kawabata-Kubo effect and Drude's theory. The effective dielectric function of the nanocomposite system is studied using Maxwell Garnett approximation. Nanocomposite based LiTaO3 novel superlattice is formed by arranging the nanocomposite systems in such a way that their orientations are in the opposite direction. Hence there are two additional modes of propagation. The top most modes reflect the metal behavior of the nanoparticles. It is found that these modes of propagation vary with the filling factor. These additional modes of propagations can be exploited in the field of communication.

  15. Update on dental nanocomposites.

    PubMed

    Chen, M-H

    2010-06-01

    Dental resin-composites are comprised of a photo-polymerizable organic resin matrix and mixed with silane-treated reinforcing inorganic fillers. In the development of the composites, the three main components can be modified: the inorganic fillers, the organic resin matrix, and the silane coupling agents. The aim of this article is to review recent studies of the development of dental nanocomposites and their clinical applications. In nanocomposites, nanofillers are added and distributed in a dispersed form or as clusters. For increasing the mineral content of the tooth, calcium and phosphate ion-releasing composites and fluoride-releasing nanocomposites were developed by the addition of DCPA-whiskers or TTCP-whiskers or by the use of calcium fluoride or kaolinite. For enhancing mechanical properties, nanocomposites reinforced with nanofibers or nanoparticles were investigated. For reducing polymerization shrinkage, investigators modified the resin matrix by using methacrylate and epoxy functionalized nanocomposites based on silsesquioxane cores or epoxy-resin-based nanocomposites. The effects of silanization were also studied. Clinical consideration of light-curing modes and mechanical properties of nanocomposites, especially strength durability after immersion, was also addressed.

  16. Structure and properties of nanostructured ZnO arrays and ZnO/Ag nanocomposites fabricated by pulsed electrodeposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopach, V. R.; Klepikova, K. S.; Klochko, N. P., E-mail: klochko-np@mail.ru

    We investigate the structure, surface morphology, and optical properties of nanostructured ZnO arrays fabricated by pulsed electrodeposition, Ag nanoparticles precipitated from colloidal solutions, and a ZnO/Ag nanocomposite based on them. The electronic and electrical parameters of the ZnO arrays and ZnO/Ag nanocomposites are analyzed by studying the I–V and C–V characteristics. Optimal modes for fabricating the ZnO/Ag heterostructures with the high stability and sensitivity to ultraviolet radiation as promising materials for use in photodetectors, gas sensors, and photocatalysts are determined.

  17. Structural analysis of nanocomposites based on HDPE/EPDM blends.

    PubMed

    Zitzumbo, Roberto; Alonso, Sergio; Avalos, Felipe; Ortiz, José C; López-Manchado, Miguel A; Arroyo, Miguel

    2006-02-01

    Intercalated and exfoliated nanocomposites based on HDPE and EPDM blends with an organoclay have been obtained through the addition of EPDM-g-MA as a compatibilizer. The combined effect of clay and EPDM-g-MA on the rheological behaviour is very noticeable with a sensible increase in viscosity which suggests the formation of a structural net of percolation induced by the presence of intercalated and exfoliated silicate layer. As deduced from rheological studies, a morphology based on nanostructured micro-domains dispersed in HDPE continuous phase is proposed for EPDM/HDPE blend nanocomposites. XRD and SEM analysis suggest that two different transport phenomena take simultaneously place during the intercalation process in the melt. One due to diffusion of HDPE chains into the tactoid and the other to diffusion of EPDM-g-MA into the silicate galleries.

  18. Bio-based hyperbranched thermosetting polyurethane/triethanolamine functionalized multi-walled carbon nanotube nanocomposites as shape memory materials.

    PubMed

    Kalita, Hemjyoti; Karak, Niranjan

    2014-07-01

    Here, bio-based shape memory polymers have generated immense interest in recent times. Here, Bio-based hyperbranched polyurethane/triethanolamine functionalized multi-walled carbon nanotube (TEA-f-MWCNT) nanocomposites were prepared by in-situ pre-polymerization technique. The Fourier transform infrared spectroscopy and the transmission electron microscopic studies showed the strong interfacial adhesion and the homogeneous distribution of TEA-f-MWCNT in the polyurethane matrix. The prepared epoxy cured thermosetting nanocomposites exhibited enhanced tensile strength (6.5-34.5 MPa), scratch hardness (3.0-7.5 kg) and thermal stability (241-288 degrees C). The nanocomposites showed excellent shape fixity and shape recovery. The shape recovery time decreases (24-10 s) with the increase of TEA-f-MWCNT content in the nanocomposites. Thus the studied nanocomposites have potential to be used as advanced shape memory materials.

  19. New nanocomposites of polystyrene with polyaniline doped with lauryl sulfuric acid

    NASA Astrophysics Data System (ADS)

    Pud, A. A.; Nikolayeva, O. A.; Vretik, L. O.; Noskov, Yu. V.; Ogurtsov, N. A.; Kruglyak, O. S.; Fedorenko, E. A.

    2017-08-01

    This work is concentrated on synthesis and investigation of new core-shell nanocomposites of polystyrene (PS) with doped polyaniline (PANI). The latex containing PS nanoparticles with sizes of 15-30 nm was prepared by microemulsion polymerization of styrene in water media. The PS/PANI nanocomposites were synthesized by chemical oxidative polymerization of aniline in the PS latex media in a presence of lauryl sulfuric acid (LSA), which served as both dopant and plasticizer. The real content of PANI in the synthesized nanocomposites was determined by UV-Vis spectroscopy method. The composition of the nanocomposites and oxidation state of the doped polyaniline were characterized by FTIR spectroscopy. The core-shell morphology of the nanocomposite nanoparticles was proved by transmission and scanning electron microscopy. It was found that conductivity and thermal behavior in air of these nanocomposites not only nonlinearly depended on the doped polyaniline content but also were strongly effected both by plasticizing properties of the acid-dopant and presence of the polyaniline shell. A possibility of application of these nanocomposites as sensor materials has been demonstrated.

  20. A novel electrochemical sensor for detecting hyperin with a nanocomposite of ZrO2-SDS-SWCNTs as decoration.

    PubMed

    Li, Shuo; Lei, Sheng; Yu, Qian; Zou, Lina; Ye, Baoxian

    2018-08-01

    A novel high-sensitive electrochemical sensor with glassy carbon electrode (GCE) as support for hyperin determination is successfully designed and constructed, and the well-shaped nano-meter modified material is synthesized via a one-step and facile route. Functionalized with surfactant sodium dodecyl sulfate (SDS), Single-Walled Carbon Nanotubes (SWCNTs) are synchronously grafted with ZrO 2 nanoparticles to develop into the as-prepared nano-composite (ZrO 2 -SDS-SWCNTs). Compared to the previous reports related with hyperin detection, the linear range gets wider and detection limit (LOD) becomes lower with the aid of this novel nano-composite modified glassy carbon electrode (ZrO 2 -SDS-SWCNTs/GCE). The crystalline phases and functionalization of the preparation process has been investigated by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) instrument analysis, respectively, and the micro-morphology of related modified materials is also visibly characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). In addition, electrochemical properties of the modified materials are comparably explored by means of impedance spectroscopy (EIS) and cyclic voltammograms (CV). According to the established calibration curve under optimized condition, the peak current (Differential pulse voltammetry (DPV) signal) keeps a linear relationship with hyperin concentration in the ranges of 1.0 × 10 -9 - 3.0 × 10 -7 mol L -1 , meanwhile detection limit reaches as low as 5 × 10 -10 mol L -1 (S/N = 3). As for practical applications, the proposed sensor has also worked well on sensitive hyperin determination in real species Abelmoschus manihot. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Recent Advances in Research on the Synthetic Fiber Based Silica Aerogel Nanocomposites

    PubMed Central

    Ślosarczyk, Agnieszka

    2017-01-01

    The presented paper contains a brief review on the synthesis and characterization of silica aerogels and its nanocomposites with nanofibers and fibers based on a literature study over the past twenty years and my own research. Particular attention is focused on carbon fiber-based silica aerogel nanocomposites. Silica aerogel is brittle in nature, therefore, it is necessary to improve this drawback, e.g., by polymer modification or fiber additives. Nevertheless, there are very few articles in the literature devoted to the synthesis of silica aerogel/fiber nanocomposites, especially those focusing on carbon fibers and nanofibers. Carbon fibers are very interesting materials, namely due to their special properties: high conductivity, high mechanical properties in relation to very low bulk densities, high thermal stability, and chemical resistance in the silica aerogel matrix, which can help enhance silica aerogel applications in the future. PMID:28336876

  2. Recent Advances in Research on the Synthetic Fiber Based Silica Aerogel Nanocomposites.

    PubMed

    Ślosarczyk, Agnieszka

    2017-02-16

    The presented paper contains a brief review on the synthesis and characterization of silica aerogels and its nanocomposites with nanofibers and fibers based on a literature study over the past twenty years and my own research. Particular attention is focused on carbon fiber-based silica aerogel nanocomposites. Silica aerogel is brittle in nature, therefore, it is necessary to improve this drawback, e.g., by polymer modification or fiber additives. Nevertheless, there are very few articles in the literature devoted to the synthesis of silica aerogel/fiber nanocomposites, especially those focusing on carbon fibers and nanofibers. Carbon fibers are very interesting materials, namely due to their special properties: high conductivity, high mechanical properties in relation to very low bulk densities, high thermal stability, and chemical resistance in the silica aerogel matrix, which can help enhance silica aerogel applications in the future.

  3. Low potential detection of indole-3-acetic acid based on the peroxidase-like activity of hemin/reduced graphene oxide nanocomposite.

    PubMed

    Liu, Fengping; Tang, Jiaqian; Xu, Jun; Shu, Yun; Xu, Qin; Wang, Hongmei; Hu, Xiaoya

    2016-12-15

    An amperometric sensor was firstly established for the detection of indole-3-acetic acid (IAA) at low potential based on the hemin/reduced graphene oxide (hemin/rGO) composite. The hemin/rGO nanocomposite was prepared by a simple and facile hydrothermal method without using any reducing agent. It exhibited peroxidase-like activity for the catalytic oxidation of IAA in the presence of oxygen. The consumption of oxygen has a linear relationship with the concentration of IAA in the range from 0.1 to 43μM and from 43 to 183μM. The detection limit was down to 0.074μM. This sensor was unaffected by many interfering substances and stable over time. Such work broadened the application of hemin/rGO and provided a new method for IAA detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Enhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking.

    PubMed

    Yang, Haoran; Bahk, Je-Hyeong; Day, Tristan; Mohammed, Amr M S; Snyder, G Jeffrey; Shakouri, Ali; Wu, Yue

    2015-02-11

    To design superior thermoelectric materials the minority carrier blocking effect in which the unwanted bipolar transport is prevented by the interfacial energy barriers in the heterogeneous nanostructures has been theoretically proposed recently. The theory predicts an enhanced power factor and a reduced bipolar thermal conductivity for materials with a relatively low doping level, which could lead to an improvement in the thermoelectric figure of merit (ZT). Here we show the first experimental demonstration of the minority carrier blocking in lead telluride-silver telluride (PbTe-Ag2Te) nanowire heterostructure-based nanocomposites. The nanocomposites are made by sintering PbTe-Ag2Te nanowire heterostructures produced in a highly scalable solution-phase synthesis. Compared with Ag2Te nanowire-based nanocomposite produced in similar method, the PbTe-Ag2Te nanocomposite containing ∼5 atomic % PbTe exhibits enhanced Seebeck coefficient, reduced thermal conductivity, and ∼40% improved ZT, which can be well explained by the theoretical modeling based on the Boltzmann transport equations when energy barriers for both electrons and holes at the heterostructure interfaces are considered in the calculations. For this p-type PbTe-Ag2Te nanocomposite, the barriers for electrons, that is, minority carriers, are primarily responsible for the ZT enhancement. By extending this approach to other nanostructured systems, it represents a key step toward low-cost solution-processable nanomaterials without heavy doping level for high-performance thermoelectric energy harvesting.

  5. Carbon nanotube reinforced aluminum based nanocomposite fabricated by thermal spray forming

    NASA Astrophysics Data System (ADS)

    Laha, Tapas

    The present research concentrates on the fabrication of bulk aluminum matrix nanocomposite structures with carbon nanotube reinforcement. The objective of the work was to fabricate and characterize multi-walled carbon nanotube (MWCNT) reinforced hypereutectic Al-Si (23 wt% Si, 2 wt% Ni, 1 wt% Cu, rest Al) nanocomposite bulk structure with nanocrystalline matrix through thermal spray forming techniques viz. plasma spray forming (PSF) and high velocity oxy-fuel (HVOF) spray forming. This is the first research study, which has shown that thermal spray forming can be successfully used to synthesize carbon nanotube reinforced nanocomposites. Microstructural characterization based on quantitative microscopy, scanning and transmission electron microscopy (SEM and TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy and X ray photoelectron spectroscopy (XPS) confirms (i) retention and macro/sub-macro level homogenous distribution of multiwalled carbon nanotubes in the Al-Si matrix and (ii) evolution of nanostructured grains in the matrix. Formation of ultrathin beta-SiC layer on MWCNT surface, due to chemical reaction of Si atoms diffusing from Al-Si alloy and C atoms from the outer walls of MWCNTs has been confirmed theoretically and experimentally. The presence of SiC layer at the interface improves the wettability and the interfacial adhesion between the MWCNT reinforcement and the Al-Si matrix. Sintering of the as-sprayed nanocomposites was carried out in an inert environment for further densification. As-sprayed PSF nanocomposite showed lower microhardness compared to HVOF, due to the higher porosity content and lower residual stress. The hardness of the nanocomposites increased with sintering time due to effective pore removal. Uniaxial tensile test on CNT-bulk nanocomposite was carried out, which is the first ever study of such nature. The tensile test results showed inconsistency in the data attributed to inhomogeneous

  6. A review of experimental and modeling techniques to determine properties of biopolymer-based nanocomposites

    USDA-ARS?s Scientific Manuscript database

    The nonbiodegradable and nonrenewable nature of plastic packaging has led to a renewed interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanoparticles such as layered silicates). One of the reasons for unique properties of bio-nanocomposites is the differ...

  7. Scalable fabrication of nanomaterials based piezoresistivity sensors with enhanced performance

    NASA Astrophysics Data System (ADS)

    Hoang, Phong Tran

    Nanomaterials are small structures that have at least one dimension less than 100 nanometers. Depending on the number of dimensions that are not confined to the nanoscale range, nanomaterials can be classified into 0D, 1D and 2D types. Due to their small sizes, nanoparticles possess exceptional physical and chemical properties which opens a unique possibility for the next generation of strain sensors that are cheap, multifunctional, high sensitivity and reliability. Over the years, thanks to the development of new nanomaterials and the printing technologies, a number of printing techniques have been developed to fabricate a wide range of electronic devices on diverse substrates. Nanomaterials based thin film devices can be readily patterned and fabricated in a variety of ways, including printing, spraying and laser direct writing. In this work, we review the piezoresistivity of nanomaterials of different categories and study various printing approaches to utilize their excellent properties in the fabrication of scalable and printable thin film strain gauges. CNT-AgNP composite thin films were fabricated using a solution based screen printing process. By controlling the concentration ratio of CNTs to AgNPs in the nanocomposites and the supporting substrates, we were able to engineer the crack formation to achieve stable and high sensitivity sensors. The crack formation in the composite films lead to piezoresistive sensors with high GFs up to 221.2. Also, with a simple, low cost, and easy to scale up fabrication process they may find use as an alternative to traditional strain sensors. By using computer controlled spray coating system, we can achieve uniform and high quality CNTs thin films for the fabrication of strain sensors and transparent / flexible electrodes. A simple diazonium salt treatment of the pristine SWCNT thin film has been identified to be efficient in greatly enhancing the piezoresistive sensitivity of SWCNT thin film based piezoresistive sensors

  8. Carbon nanotube macrofilm-based nanocomposite electrodes for energy applications

    NASA Astrophysics Data System (ADS)

    Cao, Zeyuan

    Finding new electrode materials for energy conversion and storage devices have been the focus of recent research in the fields of science and engineering. Suffering from poor electronic conductivity, chemical and mechanical stability, active electrode materials are usually coupled with different carbon nanostructured materials to form nanocomposite electrodes, showing promising electrochemical performance. Among the carbon nanostructured materials, carbon nanotube (CNT) macrofilms draw great attention owing to their extraordinary properties, such as a large specific surface area, exceptionally high conductivity, porous structure, flexibility, mechanical robustness, and adhesion. They could effectively enhance the electrochemical performance of the incorporated active materials in the nanocomposites. In this dissertation, CNT macrofilm-based nanocomposites are investigated for rechargeable lithium-ion batteries, supercapacitors, and electrocatalysts of fuel cells. The progressive research developed various nanocomposites from cathode materials to anode materials followed by a general nanocomposite solution due to the unique adhesive property of the fragmented CNT macrofilms. The in-situ synthesis strategy are explored to in-situ deposit unlithiated cathode materials V2O5 and lithiated cathode materials LiMn2O4 nanocrystals in the matrix of the CNT macrofilms as nanocomposites to be paired with metallic lithium in half cells. The presence of oxygen-containing functional groups on the surface of the CNT macrofilms after purification can enhance the association with the active materials to enable the facilitated transport of solvated ions to the electrolyte/electrode interfaces and increase the diffusion kinetics, consequently enhancing the battery performance in terms of high specific capacity, rate capability, and cycling stability. It is also significant to demonstrate a reliable, low-cost, and effective route to synthesize the family of metal oxides (MxOy (M=Fe, Co

  9. Green synthesis of colloid silver nanoparticles and resulting biodegradable starch/silver nanocomposites.

    PubMed

    Cheviron, Perrine; Gouanvé, Fabrice; Espuche, Eliane

    2014-08-08

    Environmentally friendly silver nanocomposite films were prepared by an ex situ method consisting firstly in the preparation of colloidal silver dispersions and secondly in the dispersion of the as-prepared nanoparticles in a potato starch/glycerol matrix, keeping a green chemistry process all along the synthesis steps. In the first step concerned with the preparation of the colloidal silver dispersions, water, glucose and soluble starch were used as solvent, reducing agent and stabilizing agent, respectively. The influences of the glucose amount and reaction time were investigated on the size and size distribution of the silver nanoparticles. Two distinct silver nanoparticle populations in size (diameter around 5 nm size for the first one and from 20 to 50 nm for the second one) were distinguished and still highlighted in the potato starch/glycerol based nanocomposite films. It was remarkable that lower nanoparticle mean sizes were evidenced by both TEM and UV-vis analyses in the nanocomposites in comparison to the respective colloidal silver dispersions. A dispersion mechanism based on the potential interactions developed between the nanoparticles and the polymer matrix and on the polymer chain lengths was proposed to explain this morphology. These nanocomposite film series can be viewed as a promising candidate for many applications in antimicrobial packaging, biomedicines and sensors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Photonic structures based on hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Husaini, Saima

    In this thesis, photonic structures embedded with two types of nanomaterials, (i) quantum dots and (ii) metal nanoparticles are studied. Both of these exhibit optical and electronic properties different from their bulk counterpart due to their nanoscale physical structure. By integrating these nanomaterials into photonic structures, in which the electromagnetic field can be confined and controlled via modification of geometry and composition, we can enhance their linear and nonlinear optical properties to realize functional photonic structures. Before embedding quantum dots into photonic structures, we study the effect of various host matrices and fabrication techniques on the optical properties of the colloidal quantum dots. The two host matrices of interest are SU8 and PMMA. It is shown that the emission properties of the quantum dots are significantly altered in these host matrices (especially SU8) and this is attributed to a high rate of nonradiative quenching of the dots. Furthermore, the effects of fabrication techniques on the optical properties of quantum dots are also investigated. Finally a microdisk resonator embedded with quantum dots is fabricated using soft lithography and luminescence from the quantum dots in the disk is observed. We investigate the absorption and effective index properties of silver nanocomposite films. It is shown that by varying the fill factor of the metal nanoparticles and fabrication parameters such as heating time, we can manipulate the optical properties of the metal nanocomposite. Optimizing these parameters, a silver nanocomposite film with a 7% fill factor is prepared. A one-dimensional photonic crystal consisting of alternating layers of the silver nanocomposite and a polymer (Polymethyl methacrylate) is fabricated using spin coating and its linear and nonlinear optical properties are investigated. Using reflectivity measurements we demonstrate that the one-dimensional silver-nanocomposite-dielectric photonic crystal

  11. Carboxymethyl chitosan based nanocomposites containing chemically bonded quantum dots and magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ding, Yongling; Yin, Hong; Chen, Rui; Bai, Ru; Chen, Chunying; Hao, Xiaojuan; Shen, Shirley; Sun, Kangning; Liu, Futian

    2018-03-01

    A biocompatible nanocomposite consisting of fluorescent quantum dots (QDs) and magnetic nanoparticles (MNPs) has been constructed via carboxymethyl chitosan (CMCS), resulting in magnetic-fluorescent nanoparticles (MFNPs). In these MFNPs, QDs and MNPs are successfully conjugated via covalent bonds onto the surface of CMCS. The composite retains favorable magnetic and fluorescent properties and shows a good colloidal stability in physiological environments. Folate (FA) as a specific targeting ligand was further incorporated into the nanocomposites to form a delivery vehicle with a targeting function. The therapeutic activity was achieved by loading chemotherapeutic drug doxorubicin (DOX) through electrostatic and hydrophobic interactions. The cumulative DOX release profile shows pH-sensitive. Both flow cytometry analysis and confocal laser scanning microscopic observation suggested that these nanocomposites were uptaken by cancer cells via FA receptor-mediated endocytosis pathway. In summary, the CMCS based nanocomposites developed in this work have a great potential for effective cancer-targeting and drug delivery, as well as in situ cellular imaging.

  12. Determination of nicotine in tobacco products based on mussel-inspired reduced graphene oxide-supported gold nanoparticles

    PubMed Central

    Jing, Yanqiu; Yuan, Xiuxiu; Yuan, Qiu; He, Kuanxin; Liu, Yingjie; Lu, Ping; Li, Huaiqi; Li, Bin; Zhan, Hui; Li, Guangliang

    2016-01-01

    Polydopamine functionalized reduced graphene oxide-gold nanoparticle (PDA-RGO/Au) nanocomposites were successfully prepared by a simple and mild procedure. The PDA-RGO/Au nanocomposite is successfully formed in an aqueous buffer solution (pH 8.5) without using any reducing agent. FTIR confirmed the successful coating of PDA and informed the reduction of the surface functional groups of GO. The formation of reduced GO and Au NPs was further evidenced by UV-Vis and X-ray diffraction spectroscopy. This method is environmentally friendly and highly beneficial for the mass production of graphene-noble metal based nanocomposite. The as prepared PDA-RGO/Au nanocomposite could greatly enhance the electrochemical oxidation of nicotine. We fabricated an electrochemical nicotine sensor based on the prepared PDA-RGO/Au nanocomposite. The proposed nicotine sensor showed a wide detection range from 0.05 to 500 μM with a low detection limit of 0.015 μM. Moreover, the proposed nicotine sensor was also successfully applied for determination nicotine content in tobacco products. PMID:27374974

  13. Determination of nicotine in tobacco products based on mussel-inspired reduced graphene oxide-supported gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Jing, Yanqiu; Yuan, Xiuxiu; Yuan, Qiu; He, Kuanxin; Liu, Yingjie; Lu, Ping; Li, Huaiqi; Li, Bin; Zhan, Hui; Li, Guangliang

    2016-07-01

    Polydopamine functionalized reduced graphene oxide-gold nanoparticle (PDA-RGO/Au) nanocomposites were successfully prepared by a simple and mild procedure. The PDA-RGO/Au nanocomposite is successfully formed in an aqueous buffer solution (pH 8.5) without using any reducing agent. FTIR confirmed the successful coating of PDA and informed the reduction of the surface functional groups of GO. The formation of reduced GO and Au NPs was further evidenced by UV-Vis and X-ray diffraction spectroscopy. This method is environmentally friendly and highly beneficial for the mass production of graphene-noble metal based nanocomposite. The as prepared PDA-RGO/Au nanocomposite could greatly enhance the electrochemical oxidation of nicotine. We fabricated an electrochemical nicotine sensor based on the prepared PDA-RGO/Au nanocomposite. The proposed nicotine sensor showed a wide detection range from 0.05 to 500 μM with a low detection limit of 0.015 μM. Moreover, the proposed nicotine sensor was also successfully applied for determination nicotine content in tobacco products.

  14. Biodegradable Nanocomposite Films Based on Sodium Alginate and Cellulose Nanofibrils

    PubMed Central

    Deepa, B.; Abraham, Eldho; Pothan, Laly A.; Cordeiro, Nereida; Faria, Marisa; Thomas, Sabu

    2016-01-01

    Biodegradable nanocomposite films were prepared by incorporation of cellulose nanofibrils (CNF) into alginate biopolymer using the solution casting method. The effects of CNF content (2.5, 5, 7.5, 10 and 15 wt %) on mechanical, biodegradability and swelling behavior of the nanocomposite films were determined. The results showed that the tensile modulus value of the nanocomposite films increased from 308 to 1403 MPa with increasing CNF content from 0% to 10%; however, it decreased with further increase of the filler content. Incorporation of CNF also significantly reduced the swelling percentage and water solubility of alginate-based films, with the lower values found for 10 wt % in CNF. Biodegradation studies of the films in soil confirmed that the biodegradation time of alginate/CNF films greatly depends on the CNF content. The results evidence that the stronger intermolecular interaction and molecular compatibility between alginate and CNF components was at 10 wt % in CNF alginate films. PMID:28787850

  15. Graphene based nanocomposite hybrid electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Aphale, Ashish N.

    There is an unmet need to develop high performance energy storage systems (ESS), capable of storing energy from both renewable and non-renewable sources to meet the current energy crisis and depletion of non-renewable sources. Amongst many available ESS, supercapacitors (ECs) are the most promising because they exhibit a high charge/discharge rate and power density, along with a long cycle life. The possibility of exploring the use of atomically thin carbon allotropes like graphene, carbon nanotubes (CNTs) and electrically conducting polymers (ECPs) such as polypyrrole (PPy) has been studied as a high performance conducting electrodes in supercapacitor application. A novel templated sustainable nanocomposite electrode has been fabricated using cellulose extracted from Cladophora c. aegagropila algae as component of the assembled supercapacitor device which later has been transitioned to a unique template-less freestanding nanocomposite supercapacitor electrode. The specific capacitance of polypyrrole-graphene-cellulose nanocomposite as calculated from cyclic voltammetry curve is 91.5 F g -1 at the scan rate 50 m Vs-1 in the presence of 1M NaCl electrolyte. The open circuit voltage of the device with polypyrrole -graphene-cellulose electrode was found to be around 225 m V and that of the polypyrrole -cellulose device is only 53 m V without the presence of graphene in the nanocomposite electrode. Understanding the fundamentals by fabricating template nanocomposite electrode, it led to fabricate a unique nanocomposite template-less freestanding film which comprises of polypyrrole-graphene-CNT hybrid. Various experiments have been performed using different electrolytes such ascorbic acid, sodium sulfate and sulfuric acid in different scan rates. The specific capacitance of polypyrrole-graphene-CNT nanocomposite with 0.1 wt% of graphene-CNT, as calculated from cyclic voltammetry curve is 450 F g-1 at the scan rate 5 m V s-1. For the first time a nanofibrous membrane has

  16. Superlight, Mechanically Flexible, Thermally Superinsulating, and Antifrosting Anisotropic Nanocomposite Foam Based on Hierarchical Graphene Oxide Assembly.

    PubMed

    Peng, Qingyu; Qin, Yuyang; Zhao, Xu; Sun, Xianxian; Chen, Qiang; Xu, Fan; Lin, Zaishan; Yuan, Ye; Li, Ying; Li, Jianjun; Yin, Weilong; Gao, Chao; Zhang, Fan; He, Xiaodong; Li, Yibin

    2017-12-20

    Lightweight, high-performance, thermally insulating, and antifrosting porous materials are in increasing demand to improve energy efficiency in many fields, such as aerospace and wearable devices. However, traditional thermally insulating materials (porous ceramics, polymer-based sponges) could not simultaneously meet these demands. Here, we propose a hierarchical assembly strategy for producing nanocomposite foams with lightweight, mechanically flexible, superinsulating, and antifrosting properties. The nanocomposite foams consist of a highly anisotropic reduced graphene oxide/polyimide (abbreviated as rGO/PI) network and hollow graphene oxide microspheres. The hierarchical nanocomposite foams are ultralight (density of 9.2 mg·cm -3 ) and exhibit ultralow thermal conductivity of 9 mW·m -1 ·K -1 , which is about a third that of traditional polymer-based insulating materials. Meanwhile, the nanocomposite foams show excellent icephobic performance. Our results show that hierarchical nanocomposite foams have promising applications in aerospace, wearable devices, refrigerators, and liquid nitrogen/oxygen transportation.

  17. Photocatalytic properties of amine functionalized Bi2Sn2O7/rGO nanocomposites

    NASA Astrophysics Data System (ADS)

    Gnanamoorthy, G.; Muthamizh, S.; Sureshbabu, K.; Munusamy, S.; Padmanaban, A.; Kaaviya, A.; Nagarajan, R.; Stephen, A.; Narayanan, V.

    2018-07-01

    The binary metal oxide nanomaterials are having applications in various fields like sensors, optics, electrocatalyst and photocatalyst so on. Bi2Sn2O7 with pyrochlore structure is having low band gap energy; hence it is utilized in battery storage and gas sensor applications. In the present work, we have made an attempt to synthesis amine-functionalized Bi2Sn2O7/rGO nanocomposites by a thermal decomposition method and in-situ method; the synthesized nanocomposites were confirmed by XRD, FT-IR and Raman analysis. The AF-Bi2Sn2O7/rGO nanocomposites morphology was confirmed by FE-SEM along with EDX spectroscopy, we obtained different flowers and nest-like morphology. The pure and composite material band gap energy is decreases from 2.6 eV to 1.6 eV. All three nanomaterials Bi2Sn2O7, AF-Bi2Sn2O7, AF-Bi2Sn2O7/rGO nanocomposites (AF-amine functionalized) were utilized for the photocatalytic degradation of methylene blue dye under visible light irradiation. AF-Bi2Sn2O7/rGO nanocomposite showed an excellent photocatalytic activity than pure Bi2Sn2O7 and AF- Bi2Sn2O7.

  18. The study of structural properties of carbon nanotubes decorated with NiFe₂O₄ nanoparticles and application of nano-composite thin film as H₂S gas sensor.

    PubMed

    Hajihashemi, R; Rashidi, Ali M; Alaie, M; Mohammadzadeh, R; Izadi, N

    2014-11-01

    Nano-composite of multiwall carbon nanotube, decorated with NiFe2O4 nanoparticles (NiFe2O4-MWCNT), was synthesized using the sol-gel method. NiFe2O4-MWCNTs were characterized using different methods such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and vibrating sample magnetometer (VSM). The average size of the crystallites is 23.93 nm. The values of the saturation magnetization (MS), coercivity (HC) and retentivity (MR) of NiFe2O4-MWCNTs are obtained as 15 emu g(-1), 21Oe and 5 emu g(-1), respectively. In this research, NiFe2O4-MWCNT thin films were prepared with the spin-coating method. These thin films were used as the H2S gas sensor. The results suggest the possibility of the utilization of NiFe2O4-MWCNT nano-composite, as the H2S detector. The sensor shows appropriate response towards 100 ppm of H2S at 300°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Manufacturing of three-dimensionally microstructured nanocomposites through microfluidic infiltration.

    PubMed

    Dermanaki-Farahani, Rouhollah; Lebel, Louis Laberge; Therriault, Daniel

    2014-03-12

    Microstructured composite beams reinforced with complex three-dimensionally (3D) patterned nanocomposite microfilaments are fabricated via nanocomposite infiltration of 3D interconnected microfluidic networks. The manufacturing of the reinforced beams begins with the fabrication of microfluidic networks, which involves layer-by-layer deposition of fugitive ink filaments using a dispensing robot, filling the empty space between filaments using a low viscosity resin, curing the resin and finally removing the ink. Self-supported 3D structures with other geometries and many layers (e.g. a few hundreds layers) could be built using this method. The resulting tubular microfluidic networks are then infiltrated with thermosetting nanocomposite suspensions containing nanofillers (e.g. single-walled carbon nanotubes), and subsequently cured. The infiltration is done by applying a pressure gradient between two ends of the empty network (either by applying a vacuum or vacuum-assisted microinjection). Prior to the infiltration, the nanocomposite suspensions are prepared by dispersing nanofillers into polymer matrices using ultrasonication and three-roll mixing methods. The nanocomposites (i.e. materials infiltrated) are then solidified under UV exposure/heat cure, resulting in a 3D-reinforced composite structure. The technique presented here enables the design of functional nanocomposite macroscopic products for microengineering applications such as actuators and sensors.

  20. Manufacturing of Three-dimensionally Microstructured Nanocomposites through Microfluidic Infiltration

    PubMed Central

    Dermanaki-Farahani, Rouhollah; Lebel, Louis Laberge; Therriault, Daniel

    2014-01-01

    Microstructured composite beams reinforced with complex three-dimensionally (3D) patterned nanocomposite microfilaments are fabricated via nanocomposite infiltration of 3D interconnected microfluidic networks. The manufacturing of the reinforced beams begins with the fabrication of microfluidic networks, which involves layer-by-layer deposition of fugitive ink filaments using a dispensing robot, filling the empty space between filaments using a low viscosity resin, curing the resin and finally removing the ink. Self-supported 3D structures with other geometries and many layers (e.g. a few hundreds layers) could be built using this method. The resulting tubular microfluidic networks are then infiltrated with thermosetting nanocomposite suspensions containing nanofillers (e.g. single-walled carbon nanotubes), and subsequently cured. The infiltration is done by applying a pressure gradient between two ends of the empty network (either by applying a vacuum or vacuum-assisted microinjection). Prior to the infiltration, the nanocomposite suspensions are prepared by dispersing nanofillers into polymer matrices using ultrasonication and three-roll mixing methods. The nanocomposites (i.e. materials infiltrated) are then solidified under UV exposure/heat cure, resulting in a 3D-reinforced composite structure. The technique presented here enables the design of functional nanocomposite macroscopic products for microengineering applications such as actuators and sensors. PMID:24686754

  1. Nano-Composite Foam Sensor System in Football Helmets.

    PubMed

    Merrell, A Jake; Christensen, William F; Seeley, Matthew K; Bowden, Anton E; Fullwood, David T

    2017-12-01

    American football has both the highest rate of concussion incidences as well as the highest number of concussions of all contact sports due to both the number of athletes and nature of the sport. Recent research has linked concussions with long term health complications such as chronic traumatic encephalopathy and early onset Alzheimer's. Understanding the mechanical characteristics of concussive impacts is critical to help protect athletes from these debilitating diseases and is now possible using helmet-based sensor systems. To date, real time on-field measurement of head impacts has been almost exclusively measured by devices that rely on accelerometers or gyroscopes attached to the player's helmet, or embedded in a mouth guard. These systems monitor motion of the head or helmet, but do not directly measure impact energy. This paper evaluates the accuracy of a novel, multifunctional foam-based sensor that replaces a portion of the helmet foam to measure impact. All modified helmets were tested using a National Operating Committee Standards for Athletic Equipment-style drop tower with a total of 24 drop tests (4 locations with 6 impact energies). The impacts were evaluated using a headform, instrumented with a tri-axial accelerometer, mounted to a Hybrid III neck assembly. The resultant accelerations were evaluated for both the peak acceleration and the severity indices. These data were then compared to the voltage response from multiple Nano Composite Foam sensors located throughout the helmet. The foam sensor system proved to be accurate in measuring both the HIC and Gadd severity index, as well as peak acceleration while also providing additional details that were previously difficult to obtain, such as impact energy.

  2. Laser nanocomposites based on proteins and carbon nanotubes for restoration of biological tissues

    NASA Astrophysics Data System (ADS)

    Gerasimenko, A.; Kurilova, U.; Zhurbina, N.; Ignatov, D.; Fedorova, J.; Privalova, P.; Polokhin, A.; Ryabkin, D.; Savelyev, M.; Ichkitidze, L.; Podgaetskiy, V.

    2018-04-01

    The study of structural properties of nanocomposites, based on different types of single walled carbon nanotubes (SWCNTs) and proteins (albumin, collagen), was carried out. The binding of protein molecules to the carbon component was described by Raman spectroscopy. Complex analysis of the structure and microporosity of nanocomposites was performed by the X-ray microtomography. The nanoporosity study was carried out using the low-temperature nitrogen porosimetry method. Samples based on SWCNTs with smaller size had the most homogeneity. With an increase in the concentration from 0.01 to 0.1 %, the mean micropore size increased from 45 to 93 μm, porosity in general increased from 16 to 28 %. The percentage of open pores was the same for all samples and was 0.02. As it was shown by Raman spectroscopy the protein component in nanocomposites has undergone irreversible denaturation and can act as a biocompatible binder and serve as a source of amino acids for biological tissues. These nanocomposites are bioresorbable and can be used to repair cartilage and bone tissue. This is especially important in the treatment of diseases of hyaline cartilage and subchondral bone.

  3. Infrared light-assisted preparation of Ag nanoparticles-reduced graphene oxide nanocomposites for non-enzymatic H{sub 2}O{sub 2} sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Ye; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences; Zhang, Yong

    2015-12-15

    Graphical abstract: An infrared light irradiation method has been developed for preparation of AgNPs/rGO nanocomposites for electrochemical detection of H{sub 2}O{sub 2}. - Highlights: • AgNPs/rGO nanocomposites have been prepared by photochemical method. • AgNPs/rGO nanocomposites exhibit good sensing performances for detection of H{sub 2}O{sub 2}. • The present work provides a simple and green method for preparation of rGO-based materials. - Abstract: A green method has been developed for preparation of Ag nanoparticles/reduced graphene oxide (AgNPs/rGO) nanocomposites by infrared light irradiation. The characterizations indicate the successful preparation of AgNPs/rGO nanocomposites. Most importantly, AgNPs/rGO nanocomposites exhibit excellent electrocatalytic activity formore » reduction of H{sub 2}O{sub 2}, leading to a high-performance non-enzymatic H{sub 2}O{sub 2} sensor with linear detection range and detection limit about 0.1 mM to 140 mM (r = 0.9896) and 3.0 μM, respectively.« less

  4. Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion

    USDA-ARS?s Scientific Manuscript database

    The non-biodegradable and non-renewable nature of plastic packaging has led to a renewed interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanoparticles such as layered silicates). Bio-nanocomposite films based on soy protein isolate (SPI) and montmorillo...

  5. Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana

    2014-05-15

    Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC.more » Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix.« less

  6. Bio-functionalized graphene–graphene oxide nanocomposite based electrochemical immunosensing

    PubMed Central

    Sharma, Priyanka; Tuteja, Satish K.; Bhalla, Vijayender; Shekhawat, G.; Dravid, Vinayak P.; Suri, C.Raman

    2014-01-01

    We report a novel in-situ electrochemical synthesis approach for the formation of functionalized graphene–graphene oxide (fG–GO) nanocomposite on screen-printed electrodes (SPE). Electrochemically controlled nanocomposite film formation was studied by transmission electron microscopy (TEM) and Raman spectroscopy. Further insight into the nanocomposite has been accomplished by the Fourier transformed infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) spectroscopy. Configured as a highly responsive screen-printed immunosensor, the fG–GO nanocomposite on SPE exhibits electrical and chemical synergies of the nano-hybrid functional construct by combining good electronic properties of functionalized graphene (fG) and the facile chemical functionality of graphene oxide (GO) for compatible bio-interface development using specific anti-diuron antibody. The enhanced electrical properties of nanocomposite biofilm demonstrated a significant increase in electrochemical signal response in a competitive inhibition immunoassay format for diuron detection, promising its potential applicability for ultra-sensitive detection of range of target analytes. PMID:22884654

  7. Synergistic properties of graphitic carbon nitride/cerium molybdate nanocomposites for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Bhargava, V. S.; Singh, Gajendar; Sharma, Manu

    2018-05-01

    A polymeric semiconductor (g-C3N4), based nanocomposites have been achieved much attention due to its excellent thermal, chemical stability and suitable band positions for water splitting. g-C3N4 based nanocomposites show good performance in the field of photocatalysis, sensors, Li-ion batteries, supercapacitors and water purification technology. In this work, a series of novel g-C3N4/CeM nano composites were synthesized using a facile one-step ultra-sonication method. X-ray diffraction (XRD) pattern confirms the formation of g-C3N4 and cerium molybdate. The photocatalytic activity of nanocomposites indicated the substantial degradation of Methylene Blue (MB) dye up to 97% over the surface of g-C3N4/CeM under visible light illumination. All the g-C3N4/CeM composites possess higher photocatalytic activity than pure cerium molybdate. The proposed mechanism demonstrated that the different weight ratios of photocatalyst were most likely attributed to a synergistic effect between g-C3N4 and CeM. This approach is very simple, cost effective, and free from any surfactant that makes it valuable catalyst for various future applications.

  8. Preparation, characterization and X-ray attenuation property of Gd2O3-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Jayakumar, Sangeetha; Saravanan, T.; Philip, John

    2017-11-01

    In an attempt to develop an alternate to lead-based X-ray shielding material, we describe the X-ray attenuation property of nanocomposites containing Gd2O3 as nanofiller and silicone resin as matrix, prepared by a simple solution-casting technique. Gd2O3 nanoparticles of size 30 and 56 nm are used at concentrations of 25 and 2.5 wt%. The nanoparticles and the nanocomposites are characterized using X-ray diffraction (XRD) studies, small angle X-ray spectroscopy (SAXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The X-ray attenuation property of nanocomposites, studied using an industrial X-ray unit, shows that nanocomposites containing nanoparticles of size 56 nm (G2) exhibit better attenuation than nanocomposites containing nanoparticles of size 30 nm (G1), which is attributed to the greater interfacial interaction between the G2 nanofillers and silicone matrix. In the case of nanocomposites containing G1 nanoparticles, the interfacial interaction between the nanofiller and the matrix is so weak that it results in pulling out of nanofillers, causing voids in the matrix, which act as X-ray transparent region, thereby reducing the overall X-ray attenuation property of G1 nanocomposites. This is further corroborated from the AFM images of the nanocomposites. The weight loss and heat flow curves of pure silicone matrix and the nanocomposites containing Gd2O3 nanoparticles of size 30 and 56 nm show the degradation of silicone resin, due to chain scission, between 403 and 622 °C. The same onset temperature (403 °C) of degradation of matrix with and without nanoparticles shows that the addition of nanofillers to the matrix does not deteriorate the thermal stability of the matrix. This confirms the thermal stability of nanocomposites. Therefore, our study shows that nanocomposites containing G2 nanoparticles are potential candidates for the development of X-ray opaque fabric material.

  9. Mechanical and Physicochemical Properties of Newly Formed ZnO-PMMA Nanocomposites for Denture Bases.

    PubMed

    Cierech, Mariusz; Osica, Izabela; Kolenda, Adam; Wojnarowicz, Jacek; Szmigiel, Dariusz; Łojkowski, Witold; Kurzydłowski, Krzysztof; Ariga, Katsuhiko; Mierzwińska-Nastalska, Elżbieta

    2018-05-06

    The aim of this study was to investigate the selected properties of zinc oxide- polymethyl methacrylate (ZnO-PMMA) nanocomposites that can influence the microorganism deposition on their surface. Non-commercial ZnO-NPs were prepared, characterized and used for the preparation of PMMA nanocomposite. Roughness, absorbability, contact angle and hardness of this new nanomaterial were evaluated. PMMA without ZnO-NPs served as control. Compared to unenriched PMMA, incorporation of ZnO-NPs to 7.5% for PMMA nanocomposite increases the hardness (by 5.92%) and the hydrophilicity. After modification of the material with zinc oxide nanoparticles the roughness parameter did not change. All tested materials showed absorption within the range of 1.82 to 2.03%, which meets the requirements of International Organization for Standardization (ISO) standards for denture base polymers. The results showed no significant deterioration in the properties of acrylic resin that could disqualify the nanocomposite for clinical use. Increased hydrophilicity and hardness with absorbability within the normal range can explain the reduced microorganism growth on the denture base, as has been proven in a previous study.

  10. Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels.

    PubMed

    Pelissari, Franciele Maria; Andrade-Mahecha, Margarita María; Sobral, Paulo José do Amaral; Menegalli, Florencia Cecilia

    2017-11-01

    Cellulose nanofibers were isolated from banana peel using a combination of chemical and mechanical treatments with different number of passages through the high-pressure homogenizer (0, 3, 5, and 7 passages). New nanocomposites were then prepared from a mixed suspension of banana starch and cellulose nanofibers using the casting method and the effect of the addition of these nanofibers on the properties of the resulting nanocomposites was investigated. The cellulose nanofibers homogeneously dispersed in the starch matrix increased the glass transition temperature, due to the strong intermolecular interactions occurring between the starch and cellulose. The nanocomposites exhibited significantly increased the tensile strength, Young's modulus, water-resistance, opacity, and crystallinity as the number of passages through the homogenizer augmented. However, a more drastic mechanical treatment (seven passages) caused defects in nanofibers, deteriorating the nanocomposite properties. The most suitable mechanical treatment condition for the preparation of cellulose nanofibers and the corresponding nanocomposite was five passages through the high-pressure homogenizer. In general, the cellulose nanofibers improved the features of the starch-based material and are potentially applicable as reinforcing elements in a variety of polymer composites. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Functional energy nanocomposites surfaces based on mesoscopic microspheres, polymers and graphene flakes

    NASA Astrophysics Data System (ADS)

    Alekseev, S. A.; Dmitriev, A. S.; Dmitriev, A. A.; Makarov, P. G.; Mikhailova, I. A.

    2017-11-01

    In recent years, there has been a great interest in the development and creation of new functional energy materials, including for improving the energy efficiency of power equipment and for effectively removing heat from energy devices, microelectronics and optoelectronics (power micro electronics, supercapacitors, cooling of processors, servers and Data centers). In this paper, the technology of obtaining a new nanocomposite based on mesoscopic microspheres, polymers and graphene flakes is considered. The methods of sequential production of functional materials from graphite flakes of different volumetric concentration using polymers based on epoxy resins and polyimide, as well as the addition of a mesoscopic medium in the form of monodisperse microspheres are described. The data of optical and electron microscopy of such nanocomposites are presented, the main problems in the appearance of defects in such materials are described, the possibilities of their elimination by the selection of different concentrations and sizes of the components. Data are given on the measurement of the hysteresis of the contact angle and the evaporation of droplets on similar substrates. The results of studying the mechanical, electrophysical and thermal properties of such nanocomposites are presented. Particular attention is paid to the investigation of the thermal conductivity of these nanocomposites with respect to the creation of thermal interface materials for cooling devices of electronics, optoelectronics and power engineering.

  12. Real time polymer nanocomposites-based physical nanosensors: theory and modeling.

    PubMed

    Bellucci, Stefano; Shunin, Yuri; Gopeyenko, Victor; Lobanova-Shunina, Tamara; Burlutskaya, Nataly; Zhukovskii, Yuri

    2017-09-01

    Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtained the calibration dependences. Providing a proper description of electric responses in nanosensoring systems, we demonstrate the implementation of advanced simulation models suitable for real time control nanosystems. We also consider the prospects and prototypes of the proposed physical nanosensor models providing the comparisons with experimental calibration dependences.

  13. Real time polymer nanocomposites-based physical nanosensors: theory and modeling

    NASA Astrophysics Data System (ADS)

    Bellucci, Stefano; Shunin, Yuri; Gopeyenko, Victor; Lobanova-Shunina, Tamara; Burlutskaya, Nataly; Zhukovskii, Yuri

    2017-09-01

    Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtained the calibration dependences. Providing a proper description of electric responses in nanosensoring systems, we demonstrate the implementation of advanced simulation models suitable for real time control nanosystems. We also consider the prospects and prototypes of the proposed physical nanosensor models providing the comparisons with experimental calibration dependences.

  14. Immobilization Effect of Morphological, Thermal and Optical Properties in Biotemplate on Zinc Oxide Nanocomposite from Chitosan

    NASA Astrophysics Data System (ADS)

    Karpuraranjith, M.; Thambidurai, S.

    Biotemplate-based zinc oxide nanocomposite was effectively prepared via simple chemical precipitation route. The functional groups of amino (-NH2), hydroxyl (-OH) and O-Zn-O were confirmed and characterized by FTIR spectroscopy. The structural and morphological properties were confirmed by XRD, UV-Vis DRS, HR-SEM and TEM analyses. The elemental composition of carbon, nitrogen, zinc and oxygen was confirmed by energy-dispersive X-ray analysis (EDAX) and Brunauer-Emmett-Teller high surface area of materials was estimated to be 52.49m2/g, respectively. Thermogravimetric analysis (TGA) shows that biotemplate on zinc oxide nanocomposite has higher thermal stability than chitosan matrix. The results demonstrate that biotemplate on zinc oxide matrix causes immobilization effect among the two components. Therefore, chitosan-ZnO nanocomposite has a microcrystalline morphological structure and also good thermal stability, so it can be a promising material for sensors, medical, tissue engineering and wastewater treatment applications.

  15. Information-based self-organization of sensor nodes of a sensor network

    DOEpatents

    Ko, Teresa H [Castro Valley, CA; Berry, Nina M [Tracy, CA

    2011-09-20

    A sensor node detects a plurality of information-based events. The sensor node determines whether at least one other sensor node is an information neighbor of the sensor node based on at least a portion of the plurality of information-based events. The information neighbor has an overlapping field of view with the sensor node. The sensor node sends at least one communication to the at least one other sensor node that is an information neighbor of the sensor node in response to at least one information-based event of the plurality of information-based events.

  16. Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness

    NASA Astrophysics Data System (ADS)

    Gu, Shu-Ying; Jin, Sheng-Peng; Gao, Xie-Feng; Mu, Jian

    2016-05-01

    Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness are presented. For the purpose of fast response and homogeneous dispersion of magnetic nanoparticles, oleic acid was used to improve the dispersibility of Fe3O4 nanoparticles in a polymer matrix. A homogeneous distribution of Fe3O4 nanoparticles in the polymer matrix was obtained for nanocomposites with low Fe3O4 loading content. A small agglomeration was observed for nanocomposites with 6 wt% and 9 wt% loading content, leading to a small decline in the mechanical properties. PLAU and its nanocomposites have glass transition around 52 °C, which can be used as the triggering temperature. PLAU and its nanocomposites have shape fixity ratios above 99%, shape recovery ratios above 82% for the first cycle and shape recovery ratios above 91% for the second cycle. PLAU and its nanocomposites also exhibit a fast water bath or magnetic responsiveness. The magnetic recovery time decreases with an increase in the loading content of Fe3O4 nanoparticles due to an improvement in heating performance for increased weight percentage of fillers. The nanocomposites have fast responses in an alternating magnetic field and have potential application in biomedical areas such as intravascular stent.

  17. Spring-like electroactive actuators based on paper/ionogel/metal nanocomposites

    NASA Astrophysics Data System (ADS)

    Santaniello, Tommaso; Migliorini, Lorenzo; Borghi, Francesca; Yan, Yunsong; Rondinini, Sandra; Lenardi, Cristina; Milani, Paolo

    2018-06-01

    We report about a novel class of electroactive nanocomposites designed to perform spring-like actuation at low applied voltages. These systems are based on the impregnation of plain paper with a highly conductive ionogel, interpenetrating nanostructured conducting electrodes are printed on the paper/ionogel substrate by supersonic cluster beam deposition. Due to the structure and mechanical properties of the paper substrates, helix-shaped actuators can be obtained by coiling strips of the nanocomposites, thus enabling the production of electroactive components exhibiting motion up to two millimeters with a polarization of 5 V. Our approach constitutes a promising solution for the development of adaptive soft robotic architectures and smart flexible systems with bio-inspired motility.

  18. Enhanced visible-light photocatalysis and gas sensor properties of polythiophene supported tin doped titanium nanocomposite

    NASA Astrophysics Data System (ADS)

    Chandra, M. Ravi; Siva Prasada Reddy, P.; Rao, T. Siva; Pammi, S. V. N.; Siva Kumar, K.; Vijay Babu, K.; Kiran Kumar, Ch.; Hemalatha, K. P. J.

    2017-06-01

    The polythiophene supported tin doped titanium nanocomposites (PTh/Sn-TiO2) were synthesized by modified sol-gel process through oxidative polymerization of thiophene. The fourier transform infrared spectroscopy (FT-IR) and UV-Vis diffuse reflectance spectroscopy (UV-DRS) analysis confirms the existence of synergetic interaction between metal oxide and polymer along with extension of absorption edge to visible region. The composites are found to be in spherical form with core-shell structure, which is confirmed by scanning electron spectroscopy (SEM) and transmission electron microscopy (TEM) images, the presence of all respective elements of composite are proven by energy-dispersive X-ray spectroscopy (EDX) analysis. The importance of polythiophene on surface of metal oxide has been were studied as a function of photocatalytic activity for degradation of organic pollutant congo red and gas sensor behavior towards liquid petroleum gas (LPG). All the composites are photocatalytically active and the composite with 1.5 wt% thiophene degrades the pollutant congo red within 120 min when compared to remaining catalysts under visible light irradiation. On the other hand, same composite have shown potential gas sensor properties towards LPG at 300 °C. Considering all the results, it can be noted that polythiophene acts as good sensitizer towards LPG and supporter for the tin doped titania that improve the photocatalytic activity under visible light.

  19. Phytic acid/graphene oxide nanocomposites modified electrode for electrochemical sensing of dopamine.

    PubMed

    Wang, Donglei; Xu, Fei; Hu, Jiajie; Lin, Meng

    2017-02-01

    An electrochemical sensor for determining dopamine was developed by modifying phytic acid/graphene oxide (PA/GO) nanocomposites onto a glassy carbon electrode (GCE). PA functionalized GO was prepared by an ultra-sonication method. Subsequently, the PA/GO nanocomposites were drop-casted on a glassy carbon substrate. The structural feature of the PA/GO modified GCE was confirmed by attenuated total reflection infrared (ATR-IR) spectroscopy. The proposed electrochemical sensor was applied to detect various concentrations of DA by differential pulse voltammetry (DPV). The PA/GO/GCE was considered to be highly sensitive to DA in the range of 0.05-10μM. In addition, the PA/GO/GCE demonstrated high electrochemical selectivity toward DA in the presence of ascorbic acid (AA) and uric acid (UA). The prepared electrochemical DA sensor was applied for detection of DA in dopamine hydrochloride injection and spiked samples of human urine with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Synthesis and characterization of smart N-isopropylacrylamide-based magnetic nanocomposites containing doxorubicin anti-cancer drug.

    PubMed

    Motaali, Soheila; Pashaeiasl, Maryam; Akbarzadeh, Abolfazl; Davaran, Soodabeh

    2017-05-01

    In the present study, magnetic and thermo/pH-sensitive (multiresponsive) nanocomposites based on N-isopropylacrylamide (NIPAAM) were synthesized and characterized. Nanocomposites were synthesized by free radical emulsion polymerization of NIPAAM as thermosensitive monomer and N,N-dimethyl-aminoethyl methacrylate (DMAEMA) as pH-sensitive monomer in the presence of methylene-bis-acrylamide as cross-linking agent. Doxorubicin, an anti-cancer drug, was loaded into these nanocomposites via equilibrium swelling method. Thermo/pH-sensitive cross-linked poly (NIPAAM-DMAEMA)-Fe 3 O 4 nanocomposites were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The volume of the loaded drug and drug release amount was determined by UV measurements. The results showed that this thermo/pH-sensitive magnetic nanocomposite has a high drug-loading efficiency. Doxorubicin was released at 40 °C and pH 5.8 more than the 37 °C and pH 7.4.

  1. A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals.

    PubMed

    Chen, Peng; Wang, Zhuyuan; Zong, Shenfei; Chen, Hui; Zhu, Dan; Zhong, Yuan; Cui, Yiping

    2014-10-01

    p-Aminothiophenol (pATP) functionalized multi-walled carbon nanotubes (MWCNTs) have been demonstrated as an efficient pH sensor for living cells. The proposed sensor employs gold/silver core-shell nanoparticles (Au@Ag NPs) functionalized MWCNTs hybrid structure as the surface-enhanced Raman scattering (SERS) substrate and pATP molecules as the SERS reporters, which possess a pH-dependent SERS performance. By using MWCNTs as the substrate to be in a state of aggregation, the pH sensing range could be extended to pH 3.0∼14.0, which is much wider than that using unaggregated Au@Ag NPs without MWCNTs. Furthermore, the pH-sensitive performance was well retained in living cells with a low cytotoxicity. The developed SERS-active MWCNTs-based nanocomposite is expected to be an efficient intracellular pH sensor for bio-applications.

  2. Polyvinyl alcohol-based nanocomposite hydrogels containing magnetic laponite RD to remove cadmium.

    PubMed

    Mola Ali Abasiyan, Sara; Mahdavinia, Gholam Reza

    2018-05-01

    In this study, magnetic nanocomposite hydrogels based on polyvinyl alcohol were synthesized. Magnetic polyvinyl alcohol/laponite RD (PVA-mLap) nanocomposites were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The results indicated that PVA-mLap had desirable magnetic-sorption properties and magnetic-laponite nanoparticles were successfully synthesized and added to polyvinyl alcohol. The present nanocomposites were applied to remove Cd 2+ from aqueous solution. The influence of initial Cd 2+ concentration, magnetic-laponite concentration, pH, and ionic strength on adsorption isotherm was investigated. Heterogeneity of adsorption sites was intensified by increasing magnetic concentration of adsorbents and by rising pH value. Results of ionic strength studies indicated that by increasing ionic strength more than four times, the adsorption of Cd 2+ has only decreased around 15%. According to the results, the dominant mechanism of Cd 2+ sorption by the present adsorbents was determined chemical and specific sorption. Therefore, the use of the present nanocomposites as a powerful adsorbent of Cd 2+ in the wastewater treatment is suggested. Isotherm data were described by using Freundlich and Langmuir models, and better fitting was introduced Langmuir model.

  3. One-step electrochemical deposition of a graphene-ZrO 2 nanocomposite: Preparation, characterization and application for detection of organophosphorus agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Dan; Liu, Juan; Zhang, Xiao-Yan

    2011-04-27

    This paper described the preparation, characterization, and electrochemical properties of a graphene-ZrO 2 nanocomposite (GZN) and its application for both the enrichment and detection of methyl parathion (MP). GZN was fabricated using electrochemical deposition and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), which showed the successful formation of nanocomposites. Due to the strong affinity to the phosphoric group and the fast electron-transfer kinetics of GZN, both the extraction and electrochemical detection of organophosphorus (OP) agents at the same GZN modified electrochemical sensor was possible. The combination of solid-phase extractionmore » and stripping voltammetric analysis allowed fast, sensitive, and selective determination of MP in garlic samples. The stripping response was highly linear over the MP concentrations ranging from 0.5 ng mL -1 to 100 ng mL -1, with a detection limit of 0.1 ng mL -1. This new nanocomposite-based electrochemical sensor provides an opportunity to develop a field-deployable, sensitive, and quantitative method for monitoring exposure to OPs.« less

  4. An Insilico Design of Nanoclay Based Nanocomposites and Scaffolds in Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Sharma, Anurag

    A multiscale in silico approach to design polymer nanocomposites and scaffolds for bone tissue engineering applications is described in this study. This study focuses on the role of biomaterials design and selection, structural integrity and mechanical properties evolution during degradation and tissue regeneration in the successful design of polymer nanocomposite scaffolds. Polymer nanocomposite scaffolds are synthesized using aminoacid modified montmorillonite nanoclay with biomineralized hydroxyapatite and polycaprolactone (PCL/in situ HAPclay). Representative molecular models of polymer nanocomposite system are systematically developed using molecular dynamics (MD) technique and successfully validated using material characterization techniques. The constant force steered molecular dynamics (fSMD) simulation results indicate a two-phase nanomechanical behavior of the polymer nanocomposite. The MD and fSMD simulations results provide quantitative contributions of molecular interactions between different constituents of representative models and their effect on nanomechanical responses of nanoclay based polymer nanocomposite system. A finite element (FE) model of PCL/in situ HAPclay scaffold is built using micro-computed tomography images and bridging the nanomechanical properties obtained from fSMD simulations into the FE model. A new reduction factor, K is introduced into modeling results to consider the effect of wall porosity of the polymer scaffold. The effect of accelerated degradation under alkaline conditions and human osteoblast cells culture on the evolution of mechanical properties of scaffolds are studied and the damage mechanics based analytical models are developed. Finally, the novel multiscale models are developed that incorporate the complex molecular and microstructural properties, mechanical properties at nanoscale and structural levels and mechanical properties evolution during degradation and tissue formation in the polymer nanocomposite

  5. Recent Progress in the Development of Conducting Polymer-Based Nanocomposites for Electrochemical Biosensors Applications: A Mini-Review.

    PubMed

    Naseri, Maryam; Fotouhi, Lida; Ehsani, Ali

    2018-06-01

    Among various immobilizing materials, conductive polymer-based nanocomposites have been widely applied to fabricate the biosensors, because of their outstanding properties such as excellent electrocatalytic activity, high conductivity, and strong adsorptive ability compared to conventional conductive polymers. Electrochemical biosensors have played a significant role in delivering the diagnostic information and therapy monitoring in a rapid, simple, and low cost portable device. This paper reviews the recent developments in conductive polymer-based nanocomposites and their applications in electrochemical biosensors. The article starts with a general and concise comparison between the properties of conducting polymers and conducting polymer nanocomposites. Next, the current applications of conductive polymer-based nanocomposites of some important conducting polymers such as PANI, PPy, and PEDOT in enzymatic and nonenzymatic electrochemical biosensors are overviewed. This review article covers an 8-year period beginning in 2010. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Development of an antimicrobial material based on a nanocomposite cellulose acetate film for active food packaging.

    PubMed

    Rodríguez, Francisco J; Torres, Alejandra; Peñaloza, Ángela; Sepúlveda, Hugo; Galotto, María J; Guarda, Abel; Bruna, Julio

    2014-01-01

    Nanocomposites based on biopolymers have been recognised as potential materials for the development of new ecofriendly food packaging. In addition, if these materials incorporate active substances in their structure, the potential applications are much higher. Therefore, this work was oriented to develop nanocomposites with antimicrobial activity based on cellulose acetate (CA), a commercial organoclay Cloisite30B (C30B), thymol (T) as natural antimicrobial component and tri-ethyl citrate (TEC) as plasticiser. Nanocomposites were prepared by a solvent casting method and consisted of 5% (w/w) of C30B, 5% (w/w) of TEC and variable content of T (0%, 0.5% and 2% w/w). To evaluate the effect of C30B into the CA matrix, CA films without this organoclay but with T were also prepared. All nanocomposites showed the intercalation of CA into the organoclay structure; furthermore this intercalation was favoured when 2% (w/w) of T was added to the nanocomposite. In spite of the observed intercalation, the presence of C30B inside the CA matrices increased the opacity of the films significantly. On the other hand, T showed a plasticiser effect on the thermal properties of CA nanocomposites decreasing glass transition, melting temperature and melting enthalpy. The presence of T in CA nanocomposites also allowed the control de Listeria innocua growth when these materials were placed in contact with this Gram-positive bacterium. Interestingly, antimicrobial activity was increased with the presence of C30B. Finally, studies on T release showed that the clay structure inside the CA matrix did not affect its release rate; however, this nanofiller affected the partition coefficient KP/FS which was higher to CA nanocomposites films than in CA films without organoclay. The results obtained in the present study are really promising to be applied in the manufacture of food packaging materials.

  7. Flexible Strain Sensor Based on Layer-by-Layer Self-Assembled Graphene/Polymer Nanocomposite Membrane and Its Sensing Properties

    NASA Astrophysics Data System (ADS)

    Zhang, Dongzhi; Jiang, Chuanxing; Tong, Jun; Zong, Xiaoqi; Hu, Wei

    2018-04-01

    Graphene is a potential building block for next generation electronic devices including field-effect transistors, chemical sensors, and radio frequency switches. Investigations of strain application of graphene-based films have emerged in recent years, but the challenges in synthesis and processing achieving control over its fabrication constitute the main obstacles towards device applications. This work presents an alternative approach, layer-by-layer self-assembly, allowing a controllable fabrication of graphene/polymer film strain sensor on flexible substrates of polyimide with interdigital electrodes. Carboxylated graphene and poly (diallyldimethylammonium chloride) (PDDA) were exploited to form hierarchical nanostructure due to electrostatic action. The morphology and structure of the film were inspected by using scanning electron microscopy, x-ray diffraction and Fourier transform infrared spectroscopy. The strain-sensing properties of the graphene/PDDA film sensor were investigated through tuning micrometer caliper exertion and a PC-assisted piezoresistive measurement system. Experimental result shows that the sensor exhibited not only excellent response and reversibility behavior as a function of deflection, but also good repeatability and acceptable linearity. The strain-sensing mechanism of the proposed sensor was attributed to the electrical resistance change resulted from piezoresistive effect.

  8. Preparation and characterization of reduced graphene oxide supported nickel oxide nanoparticle-based platform for sensor applications

    NASA Astrophysics Data System (ADS)

    Roychoudhury, Appan; Prateek, Arneish; Basu, Suddhasatwa; Jha, Sandeep Kumar

    2018-03-01

    A nanostructured composite film comprising reduced graphene oxide (rGO) and nickel oxide (NiO) nanoparticles (NPs) has been prepared and utilized for development of a simple yet efficient sensor for detection of dopamine and epinephrine in a single run. The hybrid material rGO-NiO nanocomposite was synthesized chemically, and the formation of nanocomposite was confirmed via X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman, UV-Vis, and Fourier transform infrared (FTIR) spectroscopic techniques. The incorporation of NiO NPs on rGO support was found to provide improved sensing characteristics at electrode interface due to enhanced electron mobility on rGO sheet and high catalytic activity of NiO NPs. Subsequently, the synthesized rGO-NiO nanocomposite was deposited onto indium tin oxide (ITO)-coated glass substrate by simple drop-casting method, and the electrode was characterized through atomic force microscopy (AFM) and scanning electron microscopic (SEM) studies. After optimization of experimental conditions electrochemically for its high sensitivity, the fabricated rGO-NiO/ITO electrode was used for simultaneous detection of dopamine and epinephrine by square wave voltammetry (SWV) method. The results showed high sensitivity of 0.545 and 0.638 μA/μM for dopamine and epinephrine respectively in a broad linear range of 0.5-50 μM. Moreover, remarkable detection limits of 0.495 and 0.423 μM were found for dopamine and epinephrine, and the developed sensor exhibited a wide separation of 380 mV between the respective detection peaks of dopamine and epinephrine. Beside this, the proposed sensor was successfully applied in presence of high concentration of interfering agents, ascorbic acid and uric acid, and validated with real serum samples.

  9. Reputation-Based Secure Sensor Localization in Wireless Sensor Networks

    PubMed Central

    He, Jingsha; Xu, Jing; Zhu, Xingye; Zhang, Yuqiang; Zhang, Ting; Fu, Wanqing

    2014-01-01

    Location information of sensor nodes in wireless sensor networks (WSNs) is very important, for it makes information that is collected and reported by the sensor nodes spatially meaningful for applications. Since most current sensor localization schemes rely on location information that is provided by beacon nodes for the regular sensor nodes to locate themselves, the accuracy of localization depends on the accuracy of location information from the beacon nodes. Therefore, the security and reliability of the beacon nodes become critical in the localization of regular sensor nodes. In this paper, we propose a reputation-based security scheme for sensor localization to improve the security and the accuracy of sensor localization in hostile or untrusted environments. In our proposed scheme, the reputation of each beacon node is evaluated based on a reputation evaluation model so that regular sensor nodes can get credible location information from highly reputable beacon nodes to accomplish localization. We also perform a set of simulation experiments to demonstrate the effectiveness of the proposed reputation-based security scheme. And our simulation results show that the proposed security scheme can enhance the security and, hence, improve the accuracy of sensor localization in hostile or untrusted environments. PMID:24982940

  10. Nanocomposites Based on Luminescent Colloidal Nanocrystals and Polymeric Ionic Liquids towards Optoelectronic Applications

    PubMed Central

    Panniello, Annamaria; Ingrosso, Chiara; Coupillaud, Paul; Tamborra, Michela; Binetti, Enrico; Curri, Maria Lucia; Agostiano, Angela; Taton, Daniel; Striccoli, Marinella

    2014-01-01

    Polymeric ionic liquids (PILs) are an interesting class of polyelectrolytes, merging peculiar physical-chemical features of ionic liquids with the flexibility, mechanical stability and processability typical of polymers. The combination of PILs with colloidal semiconducting nanocrystals leads to novel nanocomposite materials with high potential for batteries and solar cells. We report the synthesis and properties of a hybrid nanocomposite made of colloidal luminescent CdSe nanocrystals incorporated in a novel ex situ synthesized imidazolium-based PIL, namely, either a poly(N-vinyl-3-butylimidazolium hexafluorophosphate) or a homologous PIL functionalized with a thiol end-group exhibiting a chemical affinity with the nanocrystal surface. A capping exchange procedure has been implemented for replacing the pristine organic capping molecules of the colloidal CdSe nanocrystals with inorganic chalcogenide ions, aiming to disperse the nano-objects in the PILs, by using a common polar solvent. The as-prepared nanocomposites have been studied by TEM investigation, UV-Vis, steady-state and time resolved photoluminescence spectroscopy for elucidating the effects of the PIL functionalization on the morphological and optical properties of the nanocomposites. PMID:28788477

  11. Pectin-based nanocomposite aerogels for potential insulated food packaging application.

    PubMed

    Nešić, Aleksandra; Gordić, Milan; Davidović, Sladjana; Radovanović, Željko; Nedeljković, Jovan; Smirnova, Irina; Gurikov, Pavel

    2018-09-01

    Environmental-friendly pectin-TiO 2 nanocomposite aerogels were prepared via sol-gel process and subsequent drying under supercritical conditions. The first step includes dissolution of pectin in water, addition of proper amount of TiO 2 colloid and crosslinking reaction induced in the presence of tert-butanol and zinc ions. Then, the gels are subjected to the solvent exchange and supercritical CO 2 drying. The influence of TiO 2 nanoparticles on the textural, mechanical, thermal and antibacterial properties of aerogels was investigated. Results indicate that in the presence of TiO 2 nanoparticles (NPs) mechanical, thermal and antimicrobial properties of pectin-based aerogels are improved in comparison to the control pectin aerogels. It should be emphasized that the thermal conductivity of pectin-based aerogels (0.022-0.025 W m -1  K -1 ) is lower than the thermal conductivity of air. Generally, the results propose that the pectin-TiO 2 nanocomposite aerogels, as bio-based material, might have potential application for the storage of temperature-sensitive food. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Preparation of highly stable fullerene C60 decorated graphene oxide nanocomposite and its sensitive electrochemical detection of dopamine in rat brain and pharmaceutical samples.

    PubMed

    Thirumalraj, Balamurugan; Palanisamy, Selvakumar; Chen, Shen-Ming; Lou, Bih-Show

    2016-01-15

    The research community has continuously paid much attention on the preparation of hybrid of carbon nanomaterials owing to combine their unique properties. Herein, we report the preparation of highly stable fullerene C60 (C60) wrapped graphene oxide (GO) nanocomposite by using a simple sonication method. The fabricated GO-C60 nanocomposite modified glassy carbon electrode shows a good sensitivity and lower oxidation overpotential towards dopamine (DA) than that of pristine GO and C60. The fabricated sensor detects the DA in the linear response range of 0.02-73.5μM. The limit of detection is estimated to be 0.008μM based on 3σ with a sensitivity of 4.23μAμM(-1)cm(-2). The fabricated sensor also exhibits other features such as good selectivity, stability, reproducibility and repeatability. The proposed sensor exhibits good practicality towards the detection of DA in rat brain and commercial DA injection samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Fracture behavior of polypropylene/clay nanocomposites.

    PubMed

    Chen, Ling; Wang, Ke; Kotaki, Masaya; Hu, Charmaine; He, Chaobin

    2006-12-01

    Polypropylene (PP)/clay nanocomposites have been prepared via a reactive compounding approach with an epoxy based masterbatch. Compared with PP and common PP/organoclay nanocomposites, the PP/clay nanocomposites based on epoxy/clay masterbatch have higher impact strength. The phenomenon can be attributed to the epoxy phase dispersed uniformly in the PP matrix, which may act as impact energy absorber and helps to form a large damage zone, thus a higher impact strength value is achieved.

  14. Contact resonance atomic force microscopy for viscoelastic characterization of polymer-based nanocomposites at variable temperature

    NASA Astrophysics Data System (ADS)

    Natali, Marco; Passeri, Daniele; Reggente, Melania; Tamburri, Emanuela; Terranova, Maria Letizia; Rossi, Marco

    2016-06-01

    Characterization of mechanical properties at the nanometer scale at variable temperature is one of the main challenges in the development of polymer-based nanocomposites for application in high temperature environments. Contact resonance atomic force microscopy (CR-AFM) is a powerful technique to characterize viscoelastic properties of materials at the nanoscale. In this work, we demonstrate the capability of CR-AFM of characterizing viscoelastic properties (i.e., storage and loss moduli, as well as loss tangent) of polymer-based nanocomposites at variable temperature. CR-AFM is first illustrated on two polymeric reference samples, i.e., low-density polyethylene (LDPE) and polycarbonate (PC). Then, temperature-dependent viscoelastic properties (in terms of loss tangent) of a nanocomposite sample constituted by a epoxy resin reinforced with single-wall carbon nanotubes (SWCNTs) are investigated.

  15. Highly Sensitive and Very Stretchable Strain Sensor Based on a Rubbery Semiconductor.

    PubMed

    Kim, Hae-Jin; Thukral, Anish; Yu, Cunjiang

    2018-02-07

    There is a growing interest in developing stretchable strain sensors to quantify the large mechanical deformation and strain associated with the activities for a wide range of species, such as humans, machines, and robots. Here, we report a novel stretchable strain sensor entirely in a rubber format by using a solution-processed rubbery semiconductor as the sensing material to achieve high sensitivity, large mechanical strain tolerance, and hysteresis-less and highly linear responses. Specifically, the rubbery semiconductor exploits π-π stacked poly(3-hexylthiophene-2,5-diyl) nanofibrils (P3HT-NFs) percolated in silicone elastomer of poly(dimethylsiloxane) to yield semiconducting nanocomposite with a large mechanical stretchability, although P3HT is a well-known nonstretchable semiconductor. The fabricated strain sensors exhibit reliable and reversible sensing capability, high gauge factor (gauge factor = 32), high linearity (R 2 > 0.996), and low hysteresis (degree of hysteresis <12%) responses at the mechanical strain of up to 100%. A strain sensor in this format can be scalably manufactured and implemented as wearable smart gloves. Systematic investigations in the materials design and synthesis, sensor fabrication and characterization, and mechanical analysis reveal the key fundamental and application aspects of the highly sensitive and very stretchable strain sensors entirely from rubbers.

  16. Fabrication and calibration of a piezoelectric nanocomposite paint

    NASA Astrophysics Data System (ADS)

    Osho, Samuel; Wu, Nan; Aramfard, Mohammad; Deng, Chuang; Ojo, Olanrewaju

    2018-03-01

    A new liquid form piezoelectric nanocomposite paint material is fabricated with possible applications as dynamic strain sensors and/or piezoelectric transducers. The applied coating is in the form of low-cost paint, which is flexible and bonds strongly on a metallic surface after drying out via the solvent-casting method. The nanocomposite is produced by an ultrasonic mixture of varying percentages of zinc oxide (ZnO) nanoparticle water dispersion, poly vinyl acetate glue (PVA) and carbon nanotubes (CNTs). ZnO nanoparticles are used as the piezoelectric sensing elements in a PVA matrix of the paint, while CNTs are introduced as robust bridge of ZnO particles enhancing the piezoelectricity and material properties. Transmission electron microscopy (TEM) images confirmed the linkages of ZnO nanoparticles in the composite by CNTs. Through piezoelectricity calibration, the optimum mixing ratio with the highest piezoelectricity is 78.1 wt% ZnO, 19.5 wt% PVA glue and 2.4 wt% multi-wall carbon nanotubes (MWCNTs). Through nanoindentation tests for the characterization of the mechanical properties of the nano-composite paint, it is found that Young’s modulus and hardness reached a threshold point in the increment in the addition of CNTs to the paint before showing signs of decline. Detailed analysis and explanation of the calibration results and physical phenomenon are provided. The stable paint material is ready to be applied on rough area of engineering structures as sensor and transducer.

  17. A Magnetoresistive Tactile Sensor for Harsh Environment Applications

    PubMed Central

    Alfadhel, Ahmed; Khan, Mohammed Asadullah; Cardoso, Susana; Leitao, Diana; Kosel, Jürgen

    2016-01-01

    A magnetoresistive tactile sensor is reported, which is capable of working in high temperatures up to 140 °C. Hair-like bioinspired structures, known as cilia, made out of permanent magnetic nanocomposite material on top of spin-valve giant magnetoresistive (GMR) sensors are used for tactile sensing at high temperatures. The magnetic nanocomposite, consisting of iron nanowires incorporated into the polymer polydimethylsiloxane (PDMS), is very flexible, biocompatible, has high remanence, and is also resilient to antagonistic sensing ambient. When the cilia come in contact with a surface, they deflect in compliance with the surface topology. This yields a change of the GMR sensor signal, enabling the detection of extremely fine features. The spin-valve is covered with a passivation layer, which enables adequate performance in spite of harsh environmental conditions, as demonstrated in this paper for high temperature. PMID:27164113

  18. Cytotoxicity and mechanical behavior of chitin-bentonite clay based polyurethane bio-nanocomposites.

    PubMed

    Zia, Khalid Mahmood; Zuber, Mohammad; Barikani, Mehdi; Hussain, Rizwan; Jamil, Tahir; Anjum, Sohail

    2011-12-01

    Chitin based polyurethane bio-nanocomposites (PUBNC) were prepared using chitin, Delite HPS bentonite nanoclay enriched in montmorillonite (MMT), 4,4'-diphenylmethane diisocyanate (MDI) and polycaprolactone polyol CAPA 231 (3000 g/mol(-1)). The prepolymers having different concentration of Delite HPS bentonite nanoclay were extended with 2 moles of chitin. The structures of the resulted polymers were determined by FT-IR technique. The effect of nanoclay contents on mechanical properties and in vitro biocompatibility was investigated. The mechanical properties of the synthesized materials were improved with increase in the Delite HPS bentonite nanoclay contents. Optimum mechanical properties were obtained from the PU bio-nanocomposite samples having 4% Delite HPS bentonite nanoclay. The results revealed that the final PU bio-nanocomposite having 2% Delite HPS bentonite nanoclay contents is ideal contenders for surgical threads with on going investigations into their in vitro biocompatibility, non-toxicity, and mechanical properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Thermoset nanocomposites from waterborne bio-based epoxy resin and cellulose nanowhiskers.

    PubMed

    Wu, Guo-min; Liu, Di; Liu, Gui-feng; Chen, Jian; Huo, Shu-ping; Kong, Zhen-wu

    2015-01-01

    Thermoset nanocomposites were prepared from a waterborne terpene-maleic ester type epoxy resin (WTME) and cellulose nanowhiskers (CNWs). The curing behaviors of WTME/CNWs nanocomposites were measured with rotational rheometer. The results show that the storage modulus (G') of WTME/CNWs nanocomposites increased with the increase of CNWs content. Observations by scanning electron microscopy (SEM) demonstrate that the incorporation of CNWs in WTME matrix caused microphase separation and destroyed the compactness of the matrix. This effect leads to the glass transition temperatures (Tg) of WTME/CNWs nanocomposites slightly decrease with the increase of CNWs content, which were confirmed by both DSC and DMA tests. The mechanical properties of WTME/CNWs nanocomposites were investigated by tensile testing. The Yong's modulus (E) and tensile strength (σb) of the nanocomposites were significantly reinforced by the addition of CNWs. These results indicate that CNWs exhibit excellent reinforcement effect on WTME matrix, due to the formation and increase of interfacial interaction by hydrogen bonds between CNWs nano-filler and the WTME matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Response of Al-Based Micro- and Nanocomposites to Rapid Fluctuations in Thermal Environments

    NASA Astrophysics Data System (ADS)

    Dash, K.; Ray, B. C.

    2018-05-01

    The focus of this work is to highlight the relative response of Al-based micro- and nanocomposites in the form of enhancement in flexural strength via induced thermal stresses at high and cryogenic temperatures in ex situ and in situ atmospheres. In this investigation, we have tried to explore the reliability, matrix-reinforcement interaction and microstructural integrity of these materials in their service period by designing appropriate heat treatment regimes. Al-Al2O3 micro- and nanocomposites had been fabricated by powder processing method. The micro- and nanocomposites were subjected to down-thermal shock (from positive to negative temperature) and up-thermal shock (from negative to positive temperature) with varying thermal gradients. For isothermal conditioning, the composites were exposed to + 80 and - 80 °C for 1 h separately. High-temperature three-point flexural tests were performed at 100 and 250 °C on the composites. All the composites subjected to thermal shock and isothermal conditioning was tested in three-point flexural mode post-treatments. Al-1 vol.% Al2O3 nanocomposite's flexural strength improved to 118 MPa post-thermal shock treatment of gradient of 160 °C. The Al-5 and 10 vol.% Al2O3 microcomposites possessed flexural strength of 200 and 99.8 MPa after thermal shock treatment of gradient of 160 and 80 °C, respectively. The observed improvement in flexural strength of micro- and nanocomposites post-thermal excursions were compared and have been discussed with the support of fractography. The microcomposites showed a higher positive scale of response to the thermal excursions as compared to that of the nanocomposites.

  1. Bluetooth-based wireless sensor networks

    NASA Astrophysics Data System (ADS)

    You, Ke; Liu, Rui Qiang

    2007-11-01

    In this work a Bluetooth-based wireless sensor network is proposed. In this bluetooth-based wireless sensor networks, information-driven star topology and energy-saved mode are used, through which a blue master node can control more than seven slave node, the energy of each sensor node is reduced and secure management of each sensor node is improved.

  2. Chitosan-Based Nanocomposite Beads for Drinking Water Production

    NASA Astrophysics Data System (ADS)

    Masheane, ML; Nthunya, LN; Sambaza, SS; Malinga, SP; Nxumalo, EN; Mamba, BB; Mhlanga, SD

    2017-05-01

    Potable drinking water is essential for the good health of humans and it is a critical feedstock in a variety of industries such as food and pharmaceutical industries. For the first time, chitosan-alumina/functionalised multiwalled carbon nanotube (f-MWCNT) nanocomposite beads were developed and investigated for the reduction of various physico-chemical parameters from water samples collected from open wells used for drinking purposes by a rural community in South Africa. The water samples were analysed before and after the reduction of the identified contaminants by the nanocomposite beads. The nanocomposite beads were effective in the removal of nitrate, chromium and other physico-chemical parameters. Although, the water samples contained these contaminants within the WHO and SANS241 limits for no risk, the long-term exposure and accumulation is an environmental and health concern. The reduction of these contaminants was dependent on pH levels. At lower pH, the reduction was significantly higher, up to 99.2% (SPC), 91.0% (DOC), 92.2% (DO), 92.2% (turbidity), 96.5% (nitrate) and 97.7% (chromium). Generally, the chitosan-alumina/f-MWCNT nanocomposite beads offer a promising alternative material for reduction and removal of various physico-chemical parameters for production portable water.

  3. Chemical Functionalization, Self-Assembly, and Applications of Nanomaterials and Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Tifeng; Yan, Xingbin; Balan, Lavinia

    2014-01-01

    This special issue addresses the research studies on chemical functionalization, self-assembly, and applications of nanomaterials and nanocomposites. It contains twentyfour articles including two reviews and twenty-two research articles. It is used to create new functional nanomaterials and nanocomposites with a variety of sizes and morphologies such as Zn/Al layered double hydroxide, tin oxide nanowires, FeOOH-modified anion resin, Au nanoclusters silica composite nanospheres, Ti-doped ZnO sol-composite films, TiO2/ZnO composite, graphene oxide nanocomposites, LiFePO4/C nanocomposites, and chitosan nanoparticles. These nanomaterials and nanocomposites have widespread applications in tissue engineering, antitumor, sensors, photoluminescence, electrochemical, and catalytic properties. In addition, this themed issue includes somemore » research articles about self-assembly systems covering organogels and Langmuir films. Furthermore, B. Blasiak et al. performed a literature survey on the recent advances in production, functionalization, toxicity reduction, and application of nanoparticles in cancer diagnosis, treatment, and treatment monitoring. P. Colson et al. performed a literature survey on the recent advances in nanosphere lithography due to its compatibility with wafer-scale processes as well as its potential to manufacture a wide variety of homogeneous one-, two-, or three-dimensional nanostructures.« less

  4. Antimicrobial nanocomposites based on natural modified materials: a review of carbons and clays.

    PubMed

    Martynková, Grazyna Simha; Valásková, Marta

    2014-01-01

    The review is focused on the recent research and development of antimicrobial nanocomposites based on selected carbon nanomaterials and natural nanoclay minerals. The nanocomposites comprised of two or several components, where at least one presents antimicrobial properties, are discussed. Yet the most popular agent remains silver as nanoparticle or in ionic form. Second, broadly studied group, are organics as additives or polymeric matrices. Both carbons and clays in certain forms possess antimicrobial properties. A lot of interest is put on to research graphene oxide. The low-environmental impact technologies-based on sustainable biopolymers have been studied. Testing of antimicrobial properties of nanomaterials is performed most frequently on E. coli and S. aureus bacterias.

  5. Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection.

    PubMed

    Ma, Yingxin; Li, Hao; Peng, Shan; Wang, Leyu

    2012-10-02

    Rapid, sensitive, and selective detection of explosives such as 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenol (TNP), especially using a facile paper sensor, is in high demand for homeland security and public safety. Although many strategies have been successfully developed for the detection of TNT, it is not easy to differentiate the influence from TNP. Also, few methods were demonstrated for the selective detection of TNP. In this work, via a facile and versatile method, 8-hydroxyquinoline aluminum (Alq(3))-based bluish green fluorescent composite nanospheres were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These polymer-coated nanocomposites are not only water-stable but also highly luminescent. Based on the dramatic and selective fluorescence quenching of the nanocomposites via adding TNP into the aqueous solution, a sensitive and robust platform was developed for visual detection of TNP in the mixture of nitroaromatics including TNT, 2,4-dinitrotoluene (DNT), and nitrobenzene (NB). Meanwhile, the fluorescence intensity is proportional to the concentration of TNP in the range of 0.05-7.0 μg/mL with the 3σ limit of detection of 32.3 ng/mL. By handwriting or finger printing with TNP solution as ink on the filter paper soaked with the fluorescent nanocomposites, the bluish green fluorescence was instantly and dramatically quenched and the dark patterns were left on the paper. Therefore, a convenient and rapid paper sensor for TNP-selective detection was fabricated.

  6. One-Step Solvent Evaporation-Assisted 3D Printing of Piezoelectric PVDF Nanocomposite Structures.

    PubMed

    Bodkhe, Sampada; Turcot, Gabrielle; Gosselin, Frederick P; Therriault, Daniel

    2017-06-21

    Development of a 3D printable material system possessing inherent piezoelectric properties to fabricate integrable sensors in a single-step printing process without poling is of importance to the creation of a wide variety of smart structures. Here, we study the effect of addition of barium titanate nanoparticles in nucleating piezoelectric β-polymorph in 3D printable polyvinylidene fluoride (PVDF) and fabrication of the layer-by-layer and self-supporting piezoelectric structures on a micro- to millimeter scale by solvent evaporation-assisted 3D printing at room temperature. The nanocomposite formulation obtained after a comprehensive investigation of composition and processing techniques possesses a piezoelectric coefficient, d 31 , of 18 pC N -1 , which is comparable to that of typical poled and stretched commercial PVDF film sensors. A 3D contact sensor that generates up to 4 V upon gentle finger taps demonstrates the efficacy of the fabrication technique. Our one-step 3D printing of piezoelectric nanocomposites can form ready-to-use, complex-shaped, flexible, and lightweight piezoelectric devices. When combined with other 3D printable materials, they could serve as stand-alone or embedded sensors in aerospace, biomedicine, and robotic applications.

  7. Graphene oxide-DNA based sensors.

    PubMed

    Gao, Li; Lian, Chaoqun; Zhou, Yang; Yan, Lirong; Li, Qin; Zhang, Chunxia; Chen, Liang; Chen, Keping

    2014-10-15

    Since graphene oxide (GO) is readily available and exhibits exceptional optical, electrical, mechanical and chemical properties, it has attracted increasing interests for use in GO-DNA based sensors. This paper reviews the advances in GO-DNA based sensors using DNA as recognition elements. In solution, GO is as an excellent acceptor of fluorescence resonance energy transfer (FRET) to quench the fluorescence in dye labeled DNA sequences. This review discusses the emerging GO-DNA based sensors related to FRET for use in the detection of DNA, proteins, metal ions, cysteine (Cys), and others. The application of the electrochemical GO-DNA based sensors is also summarized because GO possesses exceptional electrochemical properties. The detection mechanisms and the advantages of GO are also revealed and discussed. GO-DNA based sensors perform well at low cost, and high sensitivity, and provide low detection limits. Additionally, GO-DNA based sensors should appear in the near future as scientists explore their usefulness and properties. Finally, future perspectives and possible challenges in this area are outlined. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Fully-reversible optical sensor for hydrogen peroxide with fast response.

    PubMed

    Ding, Longjiang; Chen, Siyu; Zhang, Wei; Zhang, Yinglu; Wang, Xu-Dong

    2018-05-09

    A fully reversible optical sensor for hydrogen peroxide with fast response is presented. The sensor was fabricated by in-situ growing ultra-small platinum nanoparticles (PtNPs) inside the pores of fibrous silica particles (KCC-1). The nanocomposite was then embedded into a hydrogel matrix and form a sensor layer, the immobilized PtNPs can catalytically convert hydrogen peroxide into molecular oxygen, which is measured via luminescent quenching based oxygen sensor underneath. Owing to the high porosity and permeability of KCC-1 and high local concentration of PtNPs, the sensor exhibits fast response (less than 1 min) and full reversibility. The measurement range of the sensor covers 1.0 μM to 10.0 mM, and very small amount of sample is required during measurement (200 μL). Because of its high stability, excellent reversibility and selectivity, and extremely fast response, the sensor could fulfill all industry requirements for real-time measurement, and fill market vacancy.

  9. Carbon nanoparticle doped micro-patternable nano-composites for wearable sensing applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Khosla, Ajit

    2017-04-01

    This talk focuses on preparation, characterization and micropatterning of electrically conducting KETJENBLACK carbon black nanoparticle (80 nm-diameter) doped Polydimethylsiloxane (PDMS) by employing extrusion mixing. Previously, we had reported fabrication of various micropatternable nanocomposites for wearable sensing applications vis solvent assisted ultrasonic mixing technique[1-16] . Extrusion mixing has an advantage as no organic solvents are used and homogenous dispersion of carbon nanoparticles is observed, which is confirmed by SEM analysis. The developed nanocomposite can be micropatterened using standard microfabrication techniques. It is also observed that percolation threshold occurs at 0.51 wt% of carbon nanoparticles in polymer matrix. Examples of developed nano-composites for wearable sensing applications for precision medicine will also be discussed. References: 1.http://summit.sfu.ca/item/12017 A. Khosla. Micropatternable multifunctional nanocomposite polymers for flexible soft MEMS applications. Diss. Applied Science: School of Engineering Science, 2011. 2. A. Khosla ; B. L. Gray; Fabrication of multiwalled carbon nanotube polydimethylsiloxne nanocomposite polymer flexible microelectrodes for microfluidics and MEMS. Proc. SPIE 7642, Electroactive Polymer Actuators and Devices (EAPAD) 2010, 76421V (April 09, 2010); doi:10.1117/12.847292. 3. Ang Li ; Ajit Khosla ; Connie Drewbrook ; Bonnie L. Gray; Fabrication and testing of thermally responsive hydrogel-based actuators using polymer heater elements for flexible microvalves. Proc. SPIE 7929, Microfluidics, BioMEMS, and Medical Microsystems IX, 79290G (February 14, 2011); doi:10.1117/12.873197. 4. Khosla, A. and Gray, B. L. (2010), Preparation, Micro-Patterning and Electrical Characterization of Functionalized Carbon-Nanotube Polydimethylsiloxane Nanocomposite Polymer. Macromol. Symp., 297: 210-218. doi:10.1002/masy.200900165 5. A. Khosla ; D. Hilbich ; C. Drewbrook ; D. Chung ; B. L. Gray; Large

  10. Experimental analysis of graphene nanocomposite on Kevlar

    NASA Astrophysics Data System (ADS)

    Manigandan, S.; Gunasekar, P.; Nithya, S.; Durga Revanth, G.; Anudeep, A. V. S. C.

    2017-08-01

    Graphene nanocomposite is a two dimensional structure which has intense role in material science. This paper investigates the topological property of the graphene nanocomposite doped in Kevlar fiber by direct mixing process. The Kevlar fiber by direct mixing process. The Kevlar fiber taken as the specimen which is fabricated by vacuum bag moulding process. Epoxy used as resin and HY951 as hardener. Three different specimens are fabricated based on the percentage of graphene nanocomposite 2%, 5%, 10% and 20% respectively. We witnessed the strength of the Kevlar fiber is increased when it is treated with nanocomposite. The percentage of the nanocomposite increase the strength of the fiber is increased. However as the nanocomposite beyond 5% the strength of fiber is dropped. In addition, we also seen the interfacial property of the fiber is dropped when the nanocomposite is added beyond threshold limit.

  11. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects.

    PubMed

    Prateek; Thakur, Vijay Kumar; Gupta, Raju Kumar

    2016-04-13

    Dielectric polymer nanocomposites are rapidly emerging as novel materials for a number of advanced engineering applications. In this Review, we present a comprehensive review of the use of ferroelectric polymers, especially PVDF and PVDF-based copolymers/blends as potential components in dielectric nanocomposite materials for high energy density capacitor applications. Various parameters like dielectric constant, dielectric loss, breakdown strength, energy density, and flexibility of the polymer nanocomposites have been thoroughly investigated. Fillers with different shapes have been found to cause significant variation in the physical and electrical properties. Generally, one-dimensional and two-dimensional nanofillers with large aspect ratios provide enhanced flexibility versus zero-dimensional fillers. Surface modification of nanomaterials as well as polymers adds flavor to the dielectric properties of the resulting nanocomposites. Nowadays, three-phase nanocomposites with either combination of fillers or polymer matrix help in further improving the dielectric properties as compared to two-phase nanocomposites. Recent research has been focused on altering the dielectric properties of different materials while also maintaining their superior flexibility. Flexible polymer nanocomposites are the best candidates for application in various fields. However, certain challenges still present, which can be solved only by extensive research in this field.

  12. New polyurethane nanocomposites based on soya oil.

    PubMed

    Mohammed, Issam Ahmed; Abd Khadir, Nurul Khizrien; Jaffar Al-Mulla, Emad Abbas

    2014-01-01

    New polyurethane (PU) nanocomposites were prepared from a dispersion of 0 - 5% montmorillonite (MMT) clay with isocyanate and soya oil polyol that was synthesized via transesterification of triglycerides to reduce petroleum dependence. FT-IR spectra indicate the presence of hydrogen bonding between nanoclay and the polymer matrix, whereas the exfoliated structure of clay layers was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Optical microscopy, mechanical and thermal analyses were done to investigate significant improvement of the nanocomposites. The results showed PU-3% nanoclay (NC) showed optimum results in mechanical properties such as tensile and flexural strength but the lowest in impact strength.

  13. Rapid Prototyping of a High Sensitivity Graphene Based Glucose Sensor Strip.

    PubMed

    Tehrani, Farshad; Reiner, Lisa; Bavarian, Behzad

    2015-01-01

    A rapid prototyping of an inexpensive, disposable graphene and copper nanocomposite sensor strip using polymeric flexible substrate for highly sensitive and selective nonenzymatic glucose detection has been developed and tested for direct oxidization of glucose. The CuNPs were electrochemically deposited on to the graphene sheets to improve electron transfer rates and to enhance electrocatalytic activity toward glucose. The graphene based electrode with CuNPs demonstrated a high degree of sensitivity (1101.3 ± 56 μA/mM.cm2), excellent selectivity (without an interference with Ascorbic Acid, Uric Acid, Dopamine, and Acetaminophen), good stability with a linear response to glucose ranging from 0.1 mM to 0.6 mM concentration, and detection limits of 0.025 mM to 0.9 mM. Characterization of the electrodes was performed by scanning electron microscopy (FESEM and SEM). The electrochemical properties of the modified graphene electrodes were inspected by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry.

  14. Rapid Prototyping of a High Sensitivity Graphene Based Glucose Sensor Strip

    PubMed Central

    Tehrani, Farshad; Reiner, Lisa; Bavarian, Behzad

    2015-01-01

    A rapid prototyping of an inexpensive, disposable graphene and copper nanocomposite sensor strip using polymeric flexible substrate for highly sensitive and selective nonenzymatic glucose detection has been developed and tested for direct oxidization of glucose. The CuNPs were electrochemically deposited on to the graphene sheets to improve electron transfer rates and to enhance electrocatalytic activity toward glucose. The graphene based electrode with CuNPs demonstrated a high degree of sensitivity (1101.3±56 μA/mM.cm2), excellent selectivity (without an interference with Ascorbic Acid, Uric Acid, Dopamine, and Acetaminophen), good stability with a linear response to glucose ranging from 0.1 mM to 0.6 mM concentration, and detection limits of 0.025 mM to 0.9 mM. Characterization of the electrodes was performed by scanning electron microscopy (FESEM and SEM). The electrochemical properties of the modified graphene electrodes were inspected by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry. PMID:26678700

  15. Polymer-Layered Silicate Nanocomposites for Cryotank Applications

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Meador, Michael A.

    2007-01-01

    Previous composite cryotank designs have relied on the use of conventional composite materials to reduce microcracking and permeability. However, revolutionary advances in nanotechnology derived materials may enable the production of ultra-lightweight cryotanks with significantly enhanced durability and damage tolerance, as well as reduced propellant permeability. Layered silicate nanocomposites are especially attractive in cryogenic storage tanks based on results that have been reported for epoxy nanocomposite systems. These materials often exhibit an order of magnitude reduction in gas permeability when compared to the base resin. In addition, polymer-silicate nanocomposites have been shown to yield improved dimensional stability, strength, and toughness. The enhancement in material performance of these systems occurs without property trade-offs which are often observed in conventionally filled polymer composites. Research efforts at NASA Glenn Research Center have led to the development of epoxy-clay nanocomposites with 70% lower hydrogen permeability than the base epoxy resin. Filament wound carbon fiber reinforced tanks made with this nanocomposite had a five-fold lower helium leak rate than the corresponding tanks made without clay. The pronounced reduction observed with the tank may be due to flow induced alignment of the clay layers during processing. Additionally, the nanocomposites showed CTE reductions of up to 30%, as well as a 100% increase in toughness.

  16. Diamond like carbon nanocomposites with embedded metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Tamulevičius, Sigitas; Meškinis, Šarūnas; Tamulevičius, Tomas; Rubahn, Horst-Günter

    2018-02-01

    In this work we present an overview on structure formation, optical and electrical properties of diamond like carbon (DLC) based metal nanocomposites deposited by reactive magnetron sputtering and treated by plasma and laser ablation methods. The influence of deposition mode and other technological conditions on the properties of the nanosized filler, matrix components and composition were studied systematically in relation to the final properties of the nanocomposites. Applications of the nanocomposites in the development of novel biosensors combining resonance response of wave guiding structures in DLC based nanocomposites as well as plasmonic effects are also presented.

  17. Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment.

    PubMed

    Shen, Ai-Jun; Li, Dong-Liang; Cai, Xiao-Jun; Dong, Chun-Yan; Dong, Hai-Qing; Wen, Hui-Yun; Dai, Gong-Hua; Wang, Pei-Jun; Li, Yong-Yong

    2012-09-01

    Because of its unique chemical and physical properties, graphene oxide (GO) has attracted a large number of researchers to explore its biomedical applications in the past few years. Here, we synthesized a novel multifunctional nanocomposite based on GO and systemically investigated its applications for in vitro hepatocarcinoma diagnosis and treatment. This multifunctional nanocomposite named GO-PEG-FA/Gd/DOX was obtained as the following procedures: gadolinium-diethylenetriamine-pentaacetic acid-poly(diallyl dimethylammonium) chloride (Gd-DTPA-PDDA) as magnetic resonance imaging (MRI) probe was applied to modify GO by simple physical sorption with a loading efficiency of Gd(3+) up to 0.314 mg mg(-1). In order to improve its tumor targeting imaging and treatment efficiency, the obtained intermediate product was further modified with folic acid (FA). Finally, the nanocomposite was allowed to load anticancer drug doxorubicin hydrochloride via π-π stacking and hydrophobic interaction with the loading capacity reaching 1.38 mg mg(-1). MRI test revealed that GO-PEG-FA/Gd/DOX exhibit superior tumor targeting imaging efficiency over free Gd(3+). The in vitro release of DOX from the nanocomposite under tumor relevant condition (pH 5.5) was fast at the initial 10 h and then become relatively slow afterward. Moreover, we experimentally demonstrated that the multifunctional nanocomposite exhibited obviously cytotoxic effect upon cancer cells. Above results are promising for the next in vivo experiment and make it possible to be a potential candidate for malignancy early detection and specific treatment. Copyright © 2012 Wiley Periodicals, Inc.

  18. Highly Sensitive Electrochemical Biosensor for Evaluation of Oxidative Stress Based on the Nanointerface of Graphene Nanocomposites Blended with Gold, Fe3O4, and Platinum Nanoparticles.

    PubMed

    Wang, Le; Zhang, Yuanyuan; Cheng, Chuansheng; Liu, Xiaoli; Jiang, Hui; Wang, Xuemei

    2015-08-26

    High levels of H2O2 pertain to high oxidative stress and are associated with cancer, autoimmune, and neurodegenerative disease, and other related diseases. In this study, a sensitive H2O2 biosensor for evaluation of oxidative stress was fabricated on the basis of the reduced graphene oxide (RGO) nanocomposites decorated with Au, Fe3O4, and Pt nanoparticles (RGO/AuFe3O4/Pt) modified glassy carbon electrode (GCE) and used to detect the released H2O2 from cancer cells and assess the oxidative stress elicited from H2O2 in living cells. Electrochemical behavior of RGO/AuFe3O4/Pt nanocomposites exhibits excellent catalytic activity toward the relevant reduction with high selection and sensitivity, low overpotential of 0 V, low detection limit of ∼0.1 μM, large linear range from 0.5 μM to 11.5 mM, and outstanding reproducibility. The as-prepared biosensor was applied in the measurement of efflux of H2O2 from living cells including healthy normal cells and tumor cells under the external stimulation. The results display that this new nanocomposites-based biosensor is a promising candidate of nonenzymatic H2O2 sensor which has the possibility of application in clinical diagnostics to assess oxidative stress of different kinds of living cells.

  19. Novel Nanocomposite Materials for Advanced Li-Ion Rechargeable Batteries

    PubMed Central

    Cai, Chuan; Wang, Ying

    2009-01-01

    Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. Nanocomposite materials will have a further enhancement in properties compared to their constituent phases. This Review describes some recent developments of nanocomposite materials for high-performance Li-ion rechargeable batteries, including carbon-oxide nanocomposites, polymer-oxide nanocomposites, metal-oxide nanocomposites, and silicon-based nanocomposites, etc. The major goal of this Review is to highlight some new progress in using these nanocomposite materials as electrodes to develop Li-ion rechargeable batteries with high energy density, high rate capability, and excellent cycling stability.

  20. Secured network sensor-based defense system

    NASA Astrophysics Data System (ADS)

    Wei, Sixiao; Shen, Dan; Ge, Linqiang; Yu, Wei; Blasch, Erik P.; Pham, Khanh D.; Chen, Genshe

    2015-05-01

    Network sensor-based defense (NSD) systems have been widely used to defend against cyber threats. Nonetheless, if the adversary finds ways to identify the location of monitor sensors, the effectiveness of NSD systems can be reduced. In this paper, we propose both temporal and spatial perturbation based defense mechanisms to secure NSD systems and make the monitor sensor invisible to the adversary. The temporal-perturbation based defense manipulates the timing information of published data so that the probability of successfully recognizing monitor sensors can be reduced. The spatial-perturbation based defense dynamically redeploys monitor sensors in the network so that the adversary cannot obtain the complete information to recognize all of the monitor sensors. We carried out experiments using real-world traffic traces to evaluate the effectiveness of our proposed defense mechanisms. Our data shows that our proposed defense mechanisms can reduce the attack accuracy of recognizing detection sensors.

  1. Functionality of bismuth sulfide quantum dots/wires-glass nanocomposite as an optical current sensor with enhanced Verdet constant

    NASA Astrophysics Data System (ADS)

    Panmand, Rajendra P.; Kumar, Ganapathy; Mahajan, Satish M.; Kulkarni, Milind V.; Amalnerkar, D. P.; Kale, Bharat B.; Gosavi, Suresh. W.

    2011-02-01

    We report optical studies with magneto-optic properties of Bi2S3 quantum dot/wires-glass nanocomposite. The size of the Q-dot was observed to be in the range 3-15 nm along with 11 nm Q-wires. Optical study clearly demonstrated the size quantization effect with drastic band gap variation with size. Faraday rotation tests on the glass nanocomposites show variation in Verdet constant with Q-dot size. Bi2S3 Q-dot/wires glass nanocomposite demonstrated 190 times enhanced Verdet constant compared to the host glass. Prima facie observations exemplify the significant enhancement in Verdet constant of Q-dot glass nanocomposites and will have potential application in magneto-optical devices.

  2. Asphaltenes-based polymer nano-composites

    DOEpatents

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  3. Γ-Al₂O₃-based nanocomposite adsorbents for arsenic(V) removal: assessing performance, toxicity and particle leakage.

    PubMed

    Onnby, Linda; Svensson, Christian; Mbundi, Lubinda; Busquets, Rosa; Cundy, Andrew; Kirsebom, Harald

    2014-03-01

    The generation and development of effective adsorption materials for arsenic removal are urgently needed due to acute arsenic contamination of water sources in many regions around the world. In the search for these new adsorbents, the application of nanomaterials or nanocomposites, and especially the use of nanoparticles (NPs), has proven increasingly attractive. While the adsorptive performance of a range of nanocomposite and nanomaterial-based systems has been extensively reviewed in previously-published literature, the stability of these systems in terms of NP release, i.e. the ability of the nanomaterial or nanocomposite to retain incorporated NPs, is less well understood. Here we examine the performance of nanocomposites comprised of aluminium oxide nanoparticles (AluNPs) incorporated in macroporous polyacrylamide-based cryogels (n-Alu-cryo, where n indicates the percentage of AluNPs in the polymer material (n=0-6%, w/v)) for As(V) adsorption, and evaluate AluNP leakage before and after the use of these materials. A range of techniques is utilised and assessed (SEM, TEM, mass weight change, PIXE and in vitro toxicity studies). The 4-Alu-cryo nanocomposite was shown to be optimal for minimising AluNP losses while maximising As(V) removal. From the same nanocomposite we were further able to show that NP losses were not detectable at the AluNP concentrations used in the study. Toxicity tests revealed that no cytotoxic effects could be observed. The cryogel-AluNPs composites were not only effective in As(V) removal but also in immobilising the AluNPs. More challenging flow-through conditions for the evaluation of NP leakage could be included as a next step in a continued study assessing particle loss and subsequent toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Polymer-phyllosilicate nanocomposites and their preparation

    DOEpatents

    Chaiko, David J.

    2007-01-09

    Polymer-phyllosilicate nanocomposites that exhibit superior properties compared to the polymer alone, and methods-for producing these polymer-phyllosilicate nanocomposites, are provided. Polymeric surfactant compatabilizers are adsorbed onto the surface of hydrophilic or natural phyllosilicates to facilitate the dispersal and exfoliation of the phyllosilicate in a polymer matrix. Utilizing polymeric glycol based surfactants, polymeric dicarboxylic acids, polymeric diammonium surfactants, and polymeric diamine surfactants as compatabilizers facilitates natural phyllosilicate and hydrophilic organoclay dispersal in a polymer matrix to produce nanocomposites.

  5. Mechanical Properties of Graphene-Rubber Nanocomposites

    NASA Astrophysics Data System (ADS)

    Anhar, N. A. M.; Ramli, M. M.; Hambali, N. A. M. A.; Aziz, A. A.; Mat Isa, S. S.; Danial, N. S.; Abdullah, M. M. A. B.

    2017-11-01

    This research focused on development of wearable sensor device by using Prevulcanized Natural Rubber (PV) and Epoxidized Natural Rubber (ENR 50) latex incorporated with graphene oxide (GO), graphene paste, graphene powder and reduced graphene oxide (rGO) powder. The compounding formulation and calculation were based on phr (parts per hundred rubber) and all the samples were then tested for mechanical properties using Instron 5565 machine. It was found that the sonication effects on tensile strength may have better quality of tensile strength compared to non-sonicated GO. For PV incorporate GO, the optimum loading was best determined at loading 1.5 phr with or without sonication and similar result was recorded for PV/G. For ENR 50 incorporate graphene paste and rGO powder nanocomposite shows the best optimum was at 3.0 phr with 24 hours’ sonication.

  6. Thin film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials

    DOEpatents

    Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland

    2014-02-04

    Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.

  7. Nanocomposite electrodes for smartphone enabled healthcare garments: e-bra and smart vest

    NASA Astrophysics Data System (ADS)

    Kumar, Prashanth S.; Rai, Pratyush; Oh, Sechang; Kwon, Hyeokjun; Varadan, Vijay K.

    2012-10-01

    The financial burden of hospital readmissions and treatment of chronic cardiac diseases are global concerns. Point of Care (POC) has been presented as an elegant solution for healthcare cost reduction. However, large scale adoption of POC systems requires an intuitive, unobtrusive and easy to use health monitoring system from patient's perspective. Healthcare textiles are sensor systems mounted on textile platform that function as wearable unobtrusive health monitoring systems. Although much work has been done in the development and demonstration of textile mounted monitoring systems, material and production costs are still high. Nanomaterials based devices and technology can be employed in these healthcare textiles for improved electrical characteristics of the sensors, lowered cost due to less material consumption and compatibility to varied manufacturing techniques. Carbon nanotube composite ink based printable conductive electrodes is such a textile adaptable nanomaterial technology. Screen printed Nanocomposite electrodes made of carbon nanotubes and an acrylic polymer can be used in undergarments like vests and brassieres, for cardiac biopotential (Electrocardiography, ECG) sensing. A Bluetooth module and a smartphone can then be used to provide cyber-infrastructure connectivity for the healthcare data from these healthcare garments. They can be used to monitor young or elderly recuperating /convalescent patients either in hospital or at home, or they can be used by young athletes to monitor important physiological parameters to better design their training or fitness program. In this study, we evaluate screen printed CNT-acrylic Nanocomposite electrodes for ECG signal quality and any CNT leaching hazard that might lead to skin toxicity.

  8. Metamaterial Absorber Based Multifunctional Sensor Application

    NASA Astrophysics Data System (ADS)

    Ozer, Z.; Mamedov, A. M.; Ozbay, E.

    2017-02-01

    In this study metamaterial based (MA) absorber sensor, integrated with an X-band waveguide, is numerically and experimentally suggested for important application including pressure, density sensing and marble type detecting applications based on rectangular split ring resonator, sensor layer and absorber layer that measures of changing in the dielectric constant and/or the thickness of a sensor layer. Changing of physical, chemical or biological parameters in the sensor layer can be detected by measuring the resonant frequency shifting of metamaterial absorber based sensor. Suggested MA based absorber sensor can be used for medical, biological, agricultural and chemical detecting applications in microwave frequency band. We compare the simulation and experimentally obtained results from the fabricated sample which are good agreement. Simulation results show that the proposed structure can detect the changing of the refractive indexes of different materials via special resonance frequencies, thus it could be said that the MA-based sensors have high sensitivity. Additionally due to the simple and tiny structures it could be adapted to other electronic devices in different sizes.

  9. High-performance polymer/layered silicate nanocomposites

    NASA Astrophysics Data System (ADS)

    Heidecker, Matthew J.

    High-performance layered-silicate nanocomposites of Polycarbonate (PC), poly(ethylene terephthalate) (PET), and their blends were produced via conventional melt-blending techniques. The focus of this thesis was on the fundamentals of dispersion, control of thermal stability, maintenance of melt-blending processing conditions, and on optimization of the composites' mechanical properties via the design of controlled and thermodynamically favorable nano-filler dispersions within the polymer matrices. PET and PC require high temperatures for melt-processing, rendering impractical the use of conventional/commercial organically-modified layered-silicates, since the thermal degradation temperatures of their ammonium surfactants lies below the typical processing temperatures. Thus, different surfactant chemistries must be employed in order to develop melt-processable nanocomposites, also accounting for polymer matrix degradation due to water (PET) or amine compounds (PC). Novel high thermal-stability surfactants were developed and employed in montmorillonite nanocomposites of PET, PC, and PC/PET blends, and were compared to the respective nanocomposites based on conventional quaternary-ammonium modified montmorillonites. Favorable dispersion was achieved in all cases, however, the overall material behavior -- i.e., the combination of crystallization, mechanical properties, and thermal degradation -- was better for the nanocomposites based on the thermally-stable surfactant fillers. Studies were also done to trace, and ultimately limit, the matrix degradation of Polycarbonate/montmorillonite nanocomposites, through varying the montmorillonite surfactant chemistry, processing conditions, and processing additives. Molecular weight degradation was, maybe surprisingly, better controlled in the conventional quaternary ammonium based nanocomposites -- even though the thermal stability of the organically modified montmorillonites was in most cases the lowest. Dependence of the

  10. Advances in rubber/halloysite nanotubes nanocomposites.

    PubMed

    Jia, Zhixin; Guo, Baochun; Jia, Demin

    2014-02-01

    The research advances in rubber/halloysite nanotubes (rubber/HNTs) nanocomposites are reviewed. HNTs are environmentally-friendly natural nanomaterials, which could be used to prepare the rubber-based nanocomposites with high performance and low cost. Unmodified HNTs could be adopted to prepare the rubber/HNTs composites with improved mechanical properties, however, the rubber/HNTs nanocomposites with fine morphology and excellent properties were chiefly prepared with various modifiers by in situ mixing method. A series of rubber/HNTs nanocomposites containing several rubbers (SBR, NR, xSBR, NBR, PU) and different modifiers (ENR, RH, Si69, SA, MAA, ILs) have been investigated. The results showed that all the rubber/HNTs nanocomposites achieved strong interfacial interaction via interfacial covalent bonds, hydrogen bonds or multiple interactions, realized significantly improved dispersion of HNTs at nanoscale and exhibited excellent mechanical performances and other properties.

  11. Effect of environmental and material factors on the response of nanocomposite foam impact sensors

    NASA Astrophysics Data System (ADS)

    Bird, Evan; Merrell, Jake; Rosquist, Parker; Martineau, Adin; Bowden, Anton; Seeley, Matthew; Fullwood, David

    2018-05-01

    Nanocomposite foam (NCF) is a multifunctional material that can be used to measure impact. Interactions between the flexible polymer matrix and conductive particles dispersed throughout it produce a voltage signal under dynamic strain, which correlates to the magnitude of impact. Though promising in applications requiring both impact sensing and energy absorption, NCF’s voltage response has been observed to suffer from significant signal drift. This paper investigates several causes of variance in the response of NCF sensors to consistent impacts. These effects can be classified into three general types: recoverable transient effects (such as those relating to viscoelasticity or capacitive charging), environmental drift (due to humidity and temperature), and permanent signal decay from material degradation. The motivation for the study arises from various potential repeat-impact applications where periodic recalibration of the sensor would be difficult (such as a gait-tracking insole in use for a marathon event). A cyclic drop testing machine was used to apply consistent impacts to NCF, and drift resulting from each factor (in ranges typical of an insole environment) was experimentally isolated. Models representing each factor’s contribution to signal drift are presented. Of the factors investigated, humidity and temperature caused the most significant drift, with permanent material degradation accounting for only minor decay in voltage response. Transient effects were also observed, with a characteristic ‘warm-up’ (or ‘charging’) time required for the NCF to achieve steady-state; this phenomenon, and the related ‘recovery’ time for the material to return to its original state, were determined. The resultant data can be leveraged to implement a correction algorithm or other drift-compensating method to retain an NCF sensor’s accuracy in both long and short data collection scenarios.

  12. Shape-memory effect of nanocomposites based on liquid-crystalline elastomers

    NASA Astrophysics Data System (ADS)

    Marotta, A.; Lama, G. C.; Gentile, G.; Cerruti, P.; Carfagna, C.; Ambrogi, V.

    2016-05-01

    In this work, nanocomposites based on liquid crystalline (LC) elastomers were prepared and characterized in their shape memory properties. For the synthesis of materials, p-bis(2,3-epoxypropoxy)-α-methylstilbene (DOMS) was used as mesogenic epoxy monomer, sebacic acid (SA) as curing agent and multi-walled carbon nanotubes (MWCNT) and graphene oxide (GO) as fillers. First, an effective compatibilization methodology was set up to improve the interfacial adhesion between the matrix and the carbonaceous nanofillers, thus obtaining homogeneous distribution and dispersion of the nanofillers within the polymer phase. Then, the obtained nanocomposite films were characterized in their morphological and thermal properties. In particular, the effect of the addition of the nanofillers on liquid crystalline behavior, as well as on shape-memory properties of the realized materials was investigated. It was found that both fillers were able to enhance the thermomechanical response of the LC elastomers, making them good candidates as shape memory materials.

  13. Polyolefin nanocomposites

    DOEpatents

    Chaiko, David J.

    2007-01-02

    The present invention relates to methods for the preparation of clay/polymer nanocomposites. The methods include combining an organophilic clay and a polymer to form a nanocomposite, wherein the organophilic clay and the polymer each have a peak recrystallization temperature, and wherein the organophilic clay peak recrystallization temperature sufficiently matches the polymer peak recrystallization temperature such that the nanocomposite formed has less permeability to a gas than the polymer. Such nanocomposites exhibit 2, 5, 10, or even 100 fold or greater reductions in permeability to, e.g., oxygen, carbon dioxide, or both compared to the polymer. The invention also provides a method of preparing a nanocomposite that includes combining an amorphous organophilic clay and an amorphous polymer, each having a glass transition temperature, wherein the organophilic clay glass transition temperature sufficiently matches the polymer glass transition temperature such that the nanocomposite formed has less permeability to a gas than the polymer.

  14. Nanocrystal-polymer nanocomposite electrochromic device

    DOEpatents

    Milliron, Delia; Runnerstrom, Evan; Helms, Brett; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2015-12-08

    Described is an electrochromic nanocomposite film comprising a solid matrix of an oxide based material, the solid matrix comprising a plurality of transparent conducting oxide (TCO) nanostructures dispersed in the solid matrix and a lithium salt dispersed in the solid matrix. Also described is a near infrared nanostructured electrochromic device having a functional layer comprising the electrochromic nanocomposite film.

  15. Nanoparticles based fiber optic SPR sensor

    NASA Astrophysics Data System (ADS)

    Shah, Kruti; Sharma, Navneet K.

    2018-05-01

    Localized surface plasmon resonance based fiber optic sensor using platinum nanoparticles is proposed and theoretically analyzed. Increase in thickness of nanoparticles layer increases the sensitivity of sensor. 50 nm thick platinum nanoparticles layer based sensor reveals highest sensitivity.

  16. Issues in nanocomposite ceramic engineering: focus on processing and properties of alumina-based composites.

    PubMed

    Palmero, Paola; Kern, Frank; Sommer, Frank; Lombardi, Mariangela; Gadow, Rainer; Montanaro, Laura

    2014-12-30

    Ceramic nanocomposites, containing at least one phase in the nanometric dimension, have received special interest in recent years. They have, in fact, demonstrated increased performance, reliability and lifetime with respect to monolithic ceramics. However, a successful approach to the production of tailored composite nanostructures requires the development of innovative concepts at each step of manufacturing, from the synthesis of composite nanopowders, to their processing and sintering.This review aims to deepen understanding of some of the critical issues associated with the manufacturing of nanocomposite ceramics, focusing on alumina-based composite systems. Two case studies are presented and briefly discussed. The former illustrates the benefits, in terms of sintered microstructure and related mechanical properties, resulting from the application of an engineering approach to a laboratory-scale protocol for the elaboration of nanocomposites in the system alumina-ZrO2-YAG (yttrium aluminium garnet). The latter illustrates the manufacturing of alumina-based composites for large-scale applications such as cutting tools, carried out by an injection molding process. The need for an engineering approach to be applied in all processing steps is demonstrated also in this second case study, where a tailored manufacturing process is required to obtain the desired results.

  17. Dielectric properties of polyhedral oligomeric silsesquioxane (POSS)-based nanocomposites at 77k

    NASA Astrophysics Data System (ADS)

    Pan, Ming-Jen; Gorzkowski, Edward; McAllister, Kelly

    2011-10-01

    The goal of this study is to develop dielectric nanocomposites for high energy density applications at liquid nitrogen temperature by utilizing a unique nano-material polyhedral oligomeric silsesquioxanes (POSS). A POSS molecule is consisted of a silica cage core with 8 silicon and 12 oxygen atoms and organic functional groups attached to the corners of the cage. In this study, we utilize POSS for the fabrication of nanocomposites both as a silica nanoparticle filler to enhance the breakdown strength and as a surfactant for effective dispersion of high permittivity ceramic nanoparticles in a polymer matrix. The matrix materials selected for the study are polyvinylidene fluoride (PVDF) and poly(methyl methacrylate) (PMMA). The ceramic nanoparticles are barium strontium titanate (BST 50/50) and strontium titanate. The dielectric properties of the solution-cast nanocomposites films were correlated to the composition and processing conditions. We determined that the addition of POSS did not provide enhanced dielectric performance in PVDF- and PMMA-based materials at either room temperature or 77K. In addition, we found that the dielectric breakdown strength of PMMA is lower at 77K than at room temperature, contradicting literature data.

  18. Silk fibroin/gold nanocrystals: a new example of biopolymer-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Noinville, S.; Garnier, A.; Courty, A.

    2017-05-01

    The dispersion of nanoparticles in ordered polymer nanostructures can provide control over particle location and orientation, and pave the way for tailored nanomaterials that have enhanced mechanical, electrical, or optical properties. Here we used silk fibroin, a natural biopolymer, to embed gold nanocrystals (NCs), so as to obtain well-ordered structures such as nanowires and self-assembled triangular nanocomposites. Monodisperse gold NCs synthesized in organic media are mixed to silk fibroin and the obtained nanocomposites are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and Infrared spectroscopy. The optical properties study of gold NCs and silk-gold nanocomposites shows that the Surface Plasmon band is blue shifted compared to gold NCs. The size and shape of NCs gold superlattices can be well controlled by the presence of silk fibroin giving nanowires and also self-assembled triangular nanocomposites as characterized by TEM, FE-SEM and AFM. The strong interaction between gold NCs and silk fibroin is also revealed by the conformation change of silk protein in presence of gold NCs, as shown by FTIR analysis. The formation of such ordered nanocomposites (gold NCs/silk fibroin) will provide new nanoplasmonic devices.

  19. Designing an ultra-sensitive aptasensor based on an AgNPs/thiol-GQD nanocomposite for TNT detection at femtomolar levels using the electrochemical oxidation of Rutin as a redox probe.

    PubMed

    Shahdost-Fard, Faezeh; Roushani, Mahmoud

    2017-01-15

    In this paper, for the first time a highly sensitive and low-cost electrochemical aptasensor was fabricated based on a silver nanoparticles/thiol functionalized graphene quantum dot (AgNPs/thiol-GQD) nanocomposite for the measurement of 2,4,6-Trinitrotoluen (TNT) as a nitroaromatic explosive. For the first time Rutin (RU) as a biological molecule with inherent properties was used as the redox probe in the development of the TNT aptasensor was used. The system was based on a TNT-binding aptamer which is covalently attached onto the surface of a glassy carbon electrode (GCE) modified with the nanocomposite for the formation of a sensing layer and improving the performance of the aptasensor. Using the proposed nanocomposite provides a specific platform with increased surface area which is capable of loading more Aptamer (Ap) molecules as a receptor element of TNT on the electrode surface. So, TNT molecules is in an upward position to be measured and the obtained results indicate that the aptasensor exhibits two wide linear ranges and an unprecedented LOD compared with previously reported analytical methods for TNT detection. Applicability of the developed aptasensor to easily detect TNT in real samples was evaluated. It seems that the proposed strategy can be expanded to other nanoparticles and is expected to have promising implications in the design of electrochemical sensors or biosensors for the detection of various targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Electrodeposited nitrogen-doped graphene/carbon nanotubes nanocomposite as enhancer for simultaneous and sensitive voltammetric determination of caffeine and vanillin.

    PubMed

    Jiang, Lin; Ding, Yaping; Jiang, Feng; Li, Li; Mo, Fan

    2014-06-23

    A nitrogen-doped graphene/carbon nanotubes (NGR-NCNTs) nanocomposite was employed into the study of the electrochemical sensor via electrodeposition for the first time. The morphology and structure of NGR-NCNTs nanocomposite were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. Meanwhile, the electrochemical performance of the glassy carbon electrode (GCE) modified with electrodeposited NGR-NCNTs (ENGR-NCNTs/GCE) towards caffeine (CAF) and vanillin (VAN) determination was demonstrated by cyclic voltammetry (CV) and square wave voltammetry (SWV). Under optimal condition, ENGR-NCNTs/GCE exhibited a wide linearity of 0.06-50 μM for CAF and 0.01-10 μM for VAN with detection limits of 0.02 μM and 3.3×10(-3) μM, respectively. Furthermore, the application of the proposed sensor in food products was proven to be practical and reliable. The desirable results show that the ENGR-NCNTs nanocomposite has promising potential in electrocatalytic biosensor application. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Stretchable piezoelectric nanocomposite generator

    NASA Astrophysics Data System (ADS)

    Park, Kwi-Il; Jeong, Chang Kyu; Kim, Na Kyung; Lee, Keon Jae

    2016-06-01

    Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricity properly facilitate not only the self-powered energy system for flexible and wearable electronics but also sensitive piezoelectric sensors for motion detectors and in vivo diagnosis kits. Since the piezoelectric ZnO nanowires (NWs)-based energy harvesters (nanogenerators) were proposed in 2006, many researchers have attempted the nanogenerator by using the various fabrication process such as nanowire growth, electrospinning, and transfer techniques with piezoelectric materials including polyvinylidene fluoride (PVDF) polymer and perovskite ceramics. In 2012, the composite-based nanogenerators were developed using simple, low-cost, and scalable methods to overcome the significant issues with previously-reported energy harvester, such as insufficient output performance and size limitation. This review paper provides a brief overview of flexible and stretchable piezoelectric nanocomposite generator for realizing the self-powered energy system with development history, power performance, and applications.

  2. CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel.

    PubMed

    Tokuda, Takashi; Takahashi, Masayuki; Uejima, Kazuhiro; Masuda, Keita; Kawamura, Toshikazu; Ohta, Yasumi; Motoyama, Mayumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Okitsu, Teru; Takeuchi, Shoji; Ohta, Jun

    2014-11-01

    A CMOS image sensor-based implantable glucose sensor based on an optical-sensing scheme is proposed and experimentally verified. A glucose-responsive fluorescent hydrogel is used as the mediator in the measurement scheme. The wired implantable glucose sensor was realized by integrating a CMOS image sensor, hydrogel, UV light emitting diodes, and an optical filter on a flexible polyimide substrate. Feasibility of the glucose sensor was verified by both in vitro and in vivo experiments.

  3. Recent Advances in Paper-Based Sensors

    PubMed Central

    Liana, Devi D.; Raguse, Burkhard; Gooding, J. Justin; Chow, Edith

    2012-01-01

    Paper-based sensors are a new alternative technology for fabricating simple, low-cost, portable and disposable analytical devices for many application areas including clinical diagnosis, food quality control and environmental monitoring. The unique properties of paper which allow passive liquid transport and compatibility with chemicals/biochemicals are the main advantages of using paper as a sensing platform. Depending on the main goal to be achieved in paper-based sensors, the fabrication methods and the analysis techniques can be tuned to fulfill the needs of the end-user. Current paper-based sensors are focused on microfluidic delivery of solution to the detection site whereas more advanced designs involve complex 3-D geometries based on the same microfluidic principles. Although paper-based sensors are very promising, they still suffer from certain limitations such as accuracy and sensitivity. However, it is anticipated that in the future, with advances in fabrication and analytical techniques, that there will be more new and innovative developments in paper-based sensors. These sensors could better meet the current objectives of a viable low-cost and portable device in addition to offering high sensitivity and selectivity, and multiple analyte discrimination. This paper is a review of recent advances in paper-based sensors and covers the following topics: existing fabrication techniques, analytical methods and application areas. Finally, the present challenges and future outlooks are discussed. PMID:23112667

  4. Carbon Nanotube-Based Chemiresistive Sensors

    PubMed Central

    Tang, Ruixian; Shi, Yongji; Hou, Zhongyu; Wei, Liangming

    2017-01-01

    The development of simple and low-cost chemical sensors is critically important for improving human life. Many types of chemical sensors have been developed. Among them, the chemiresistive sensors receive particular attention because of their simple structure, the ease of high precise measurement and the low cost. This review mainly focuses on carbon nanotube (CNT)-based chemiresistive sensors. We first describe the properties of CNTs and the structure of CNT chemiresistive sensors. Next, the sensing mechanism and the performance parameters of the sensors are discussed. Then, we detail the status of the CNT chemiresistive sensors for detection of different analytes. Lastly, we put forward the remaining challenges for CNT chemiresistive sensors and outlook the possible opportunity for CNT chemiresistive sensors in the future. PMID:28420195

  5. Carbon Nanotube-Based Chemiresistive Sensors.

    PubMed

    Tang, Ruixian; Shi, Yongji; Hou, Zhongyu; Wei, Liangming

    2017-04-18

    The development of simple and low-cost chemical sensors is critically important for improving human life. Many types of chemical sensors have been developed. Among them, the chemiresistive sensors receive particular attention because of their simple structure, the ease of high precise measurement and the low cost. This review mainly focuses on carbon nanotube (CNT)-based chemiresistive sensors. We first describe the properties of CNTs and the structure of CNT chemiresistive sensors. Next, the sensing mechanism and the performance parameters of the sensors are discussed. Then, we detail the status of the CNT chemiresistive sensors for detection of different analytes. Lastly, we put forward the remaining challenges for CNT chemiresistive sensors and outlook the possible opportunity for CNT chemiresistive sensors in the future.

  6. Passive Sensor Materials Based on Liquid Crystals

    DTIC Science & Technology

    2011-03-12

    REPORT Passive Sensor Materials based on Liquid Crystals 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Research supported by this grant entitled “Passive...Sensor Materials Based on Liquid Crystals” revolved around an investigation of liquid crystalline materials for use in passive sensors for chemical... based on Liquid Crystals Report Title ABSTRACT Research supported by this grant entitled “Passive Sensor Materials Based on Liquid Crystals” revolved

  7. CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel

    PubMed Central

    Tokuda, Takashi; Takahashi, Masayuki; Uejima, Kazuhiro; Masuda, Keita; Kawamura, Toshikazu; Ohta, Yasumi; Motoyama, Mayumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Okitsu, Teru; Takeuchi, Shoji; Ohta, Jun

    2014-01-01

    A CMOS image sensor-based implantable glucose sensor based on an optical-sensing scheme is proposed and experimentally verified. A glucose-responsive fluorescent hydrogel is used as the mediator in the measurement scheme. The wired implantable glucose sensor was realized by integrating a CMOS image sensor, hydrogel, UV light emitting diodes, and an optical filter on a flexible polyimide substrate. Feasibility of the glucose sensor was verified by both in vitro and in vivo experiments. PMID:25426316

  8. Low shrinkage light curable nanocomposite for dental restorative material.

    PubMed

    Chen, Min-Huey; Chen, Ci-Rong; Hsu, Seng-Haw; Sun, Shih-Po; Su, Wei-Fang

    2006-02-01

    The aim of this study was to develop a low shrinkage visible light curable nanocomposite dental restorative material without sacrificing the other properties of conventional materials. This nanocomposite was developed by using an epoxy resin 3,4-epoxycyclohexylmethyl-(3,4-epoxy)cyclohexane carboxylate (ERL4221) matrix with 55% wt of 70-100 nm nanosilica fillers through ring-opening polymerization. GPS (gamma-glycidoxypropyl trimethoxysilane) was used to modify the surfaces of silica nanoparticles. The nanocomposite was shown to exhibit low polymerization shrinkage strain, which is only a quarter of currently used methacrylate-based composites. It also exhibited a low thermal expansion coefficient of 49.8 microm/m degrees C which is comparable to that of the methacrylate based composites (51.2 microm/m degrees C). The strong interfacial interactions between the resin and fillers at nanoscales were demonstrated by an observed high strength and high thermal stability of the nanocomposite. A microhardness of 62 KHN and a tensile strength of 47 MPa were reached. A high degree of conversion ( approximately 70%) can be obtained after less than 60 s of irradiation upon the nanocomposite. A transmission electron microscope (TEM) study of the nanocomposite showed no aggregation of fillers. Comparable results to the methacrylate based composites were obtained from the one day MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) cytotoxicity test. The developed epoxy resin based nanocomposite demonstrated low shrinkage and high strength and is suitable for dental restorative material applications.

  9. Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lin; Zhang, Aidong; Du, Dan

    2012-07-13

    We demonstrate a facile procedure to efficiently prepare Prussian blue nanocubes/reduced graphene oxide (PBNCs/rGO) nanocomposite by directly mixing Fe3+ and [Fe(CN)6]3 in the presence of GO in polyethyleneimine aqueous solution, resulting in a novel acetylcholinesterase (AChE) biosensor for detection of organophosphorus pesticides (OPs). The obtained nanocomposite was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) microanalysis. It was clearly observed that the nanosheet has been decorated with cubic PB nanoparticles and nearly all the nanoparticles are distributed uniformly only on the surface of the reduced GO. No isolated PB nanoparticles were observed, indicatingmore » the strong interaction between PB nanocubes and the reduced GO and the formation of PBNCs/rGO nanocomposite. The obtained PBNCs/rGO based AChE biosensor make the peak potential shift negatively to 220 mV. The AChE biosensor shows rapid response and high sensitivity for detection of monocrotophos. These results suggest that the PBNCs/rGO hybrids nanocomposite exhibited high electrocatalytic activity towards the oxidation of thiocholine, which lead to the sensitive detection of OP pesticides.« less

  10. Method to produce catalytically active nanocomposite coatings

    DOEpatents

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  11. Atomistic simulation of graphene-based polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Rissanou, Anastassia N.; Bačová, Petra; Harmandaris, Vagelis

    2016-05-01

    Polymer/graphene nanostructured systems are hybrid materials which have attracted great attention the last years both for scientific and technological reasons. In the present work atomistic Molecular Dynamics simulations are performed for the study of graphene-based polymer nanocomposites composed of pristine, hydrogenated and carboxylated graphene sheets dispersed in polar (PEO) and nonpolar (PE) short polymer matrices (i.e., matrices containing chains of low molecular weight). Our focus is twofold; the one is the study of the structural and dynamical properties of short polymer chains and the way that they are affected by functionalized graphene sheets while the other is the effect of the polymer matrices on the behavior of graphene sheets.

  12. Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films.

    PubMed

    Chen, Fanhong; Wan, Pengbo; Xu, Haijun; Sun, Xiaoming

    2017-05-31

    Flexible transparent electronic devices have recently gained immense popularity in smart wearable electronics and touch screen devices, which accelerates the development of the portable power sources with reliable flexibility, robust transparency and integration to couple these electronic devices. For potentially coupled as energy storage modules in various flexible, transparent and portable electronics, the flexible transparent supercapacitors are developed and assembled from hierarchical nanocomposite films of reduced graphene oxide (rGO) and aligned polyaniline (PANI) nanoarrays upon their synergistic advantages. The nanocomposite films are fabricated from in situ PANI nanoarrays preparation in a blended solution of aniline monomers and rGO onto the flexible, transparent, and stably conducting film (FTCF) substrate, which is obtained by coating silver nanowires (Ag NWs) layer with Meyer rod and then coating of rGO layer on polyethylene terephthalate (PET) substrate. Optimization of the transparency, the specific capacitance, and the flexibility resulted in the obtained all-solid state nanocomposite supercapacitors exhibiting enhanced capacitance performance, good cycling stability, excellent flexibility, and superior transparency. It provides promising application prospects for exploiting flexible, low-cost, transparent, and high-performance energy storage devices to be coupled into various flexible, transparent, and wearable electronic devices.

  13. Electrical, Elastic, and Piezoresistive Properties of Nanocomposites of Poly(dimethylsiloxane) and Poly(phenylmethylsiloxane)-Functionalized Graphene Nanoplatelets

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Li, Buyin; Jiang, Shenglin

    2017-10-01

    High-performance piezoresistive materials can detect pressures in the finger-sensing regime (0 kPa to 100 kPa). Piezoresistive nanocomposites of poly(phenylmethylsiloxane) (PPMS)-functionalized graphene nanoplatelets (P-GNPs) as conductive filler and polydimethylsiloxane (PDMS) as polymer matrix have been prepared and their electrical, elastic, and piezoresistive properties investigated. GNPs were π-π stacked with PPMS by noncovalent functionalization, and P-GNPs/PDMS nanocomposites were prepared by solution casting. The results showed that P-GNPs with sandwiched nanostructures (PPMS/GNPs/PPMS) exhibited improved dispersibility and compatibility in the PDMS matrix. Compared with GNPs/PDMS nanocomposites, low percolation threshold (2.96 vol.%) was obtained for the P-GNPs/PDMS nanocomposites. P-GNPs/PDMS nanocomposite with 3.00 vol.% P-GNPs showed remarkable negative piezoresistivity with high sensitivity of -105.22 × 10-3 kPa-1 (0 kPa to 10 kPa), low Young's modulus of 408.26 kPa, and high electrical conductivity of 1.28 × 10-6 S/m. These results demonstrate a simple and low-cost method for preparation of high-performance nanocomposites and facilitate wide application of such piezoresistive materials, especially in cheap and flexible tactile sensors.

  14. Sulfonated poly(ether ether ketone)/polypyrrole core-shell nanofibers: a novel polymeric adsorbent/conducting polymer nanostructures for ultrasensitive gas sensors.

    PubMed

    Wang, Wei; Li, Zhenyu; Jiang, Tingting; Zhao, Zhiwei; Li, Ye; Wang, Zhaojie; Wang, Ce

    2012-11-01

    Conducting polymers-based gas sensors have attracted increasing research attention these years. The introduction of inorganic sensitizers (noble metals or inorganic semiconductors) within the conducting polymers-based gas sensors has been regarded as the generally effective route for further enhanced sensors. Here we demonstrate a novel route for highly-efficient conducting polymers-based gas sensors by introduction of polymeric sensitizers (polymeric adsorbent) within the conducting polymeric nanostructures to form one-dimensional polymeric adsorbent/conducting polymer core-shell nanocomposites, via electrospinning and solution-phase polymerization. The adsorption effect of the SPEEK toward NH₃ can facilitate the mass diffusion of NH₃ through the PPy layers, resulting in the enhanced sensing signals. On the basis of the SPEEK/PPy nanofibers, the sensors exhibit large gas responses, even when exposed to very low concentration of NH₃ (20 ppb) at room temperature.

  15. Collagen based magnetic nanocomposites for oil removal applications

    PubMed Central

    Thanikaivelan, Palanisamy; Narayanan, Narayanan T.; Pradhan, Bhabendra K.; Ajayan, Pulickel M.

    2012-01-01

    A stable magnetic nanocomposite of collagen and superparamagnetic iron oxide nanoparticles (SPIONs) is prepared by a simple process utilizing protein wastes from leather industry. Molecular interaction between helical collagen fibers and spherical SPIONs is proven through calorimetric, microscopic and spectroscopic techniques. This nanocomposite exhibited selective oil absorption and magnetic tracking ability, allowing it to be used in oil removal applications. The environmental sustainability of the oil adsorbed nanobiocomposite is also demonstrated here through its conversion into a bi-functional graphitic nanocarbon material via heat treatment. The approach highlights new avenues for converting bio-wastes into useful nanomaterials in scalable and inexpensive ways. PMID:22355744

  16. Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders

    NASA Technical Reports Server (NTRS)

    Tan, Seng; Zhou, Jian-guo

    2013-01-01

    Pitch-based nanocomposite carbon fibers were prepared with various percentages of carbon nanofibers (CNFs), and the fibers were used for manufacturing composite structures. Experimental results show that these nanocomposite carbon fibers exhibit improved structural and electrical conductivity properties as compared to unreinforced carbon fibers. Composite panels fabricated from these nanocomposite carbon fibers and an epoxy system also show the same properties transformed from the fibers. Single-fiber testing per ASTM C1557 standard indicates that the nanocomposite carbon fiber has a tensile modulus of 110% higher, and a tensile strength 17.7% times higher, than the conventional carbon fiber manufactured from pitch. Also, the electrical resistance of the carbon fiber carbonized at 900 C was reduced from 4.8 to 2.2 ohm/cm. The manufacturing of the nanocomposite carbon fiber was based on an extrusion, non-solvent process. The precursor fibers were then carbonized and graphitized. The resultant fibers are continuous.

  17. Theory of electrical conductivity and dielectric permittivity of highly aligned graphene-based nanocomposites.

    PubMed

    Xia, Xiaodong; Hao, Jia; Wang, Yang; Zhong, Zheng; Weng, George J

    2017-05-24

    Highly aligned graphene-based nanocomposites are of great interest due to their excellent electrical properties along the aligned direction. Graphene fillers in these composites are not necessarily perfectly aligned, but their orientations are highly confined to a certain angle, [Formula: see text] with 90° giving rise to the randomly oriented state and 0° to the perfectly aligned one. Recent experiments have shown that electrical conductivity and dielectric permittivity of highly aligned graphene-polymer nanocomposites are strongly dependent on this distribution angle, but at present no theory seems to exist to address this issue. In this work we present a new effective-medium theory that is derived from the underlying physical process including the effects of graphene orientation, filler loading, aspect ratio, percolation threshold, interfacial tunneling, and Maxwell-Wagner-Sillars polarization, to determine these two properties. The theory is formulated in the context of preferred orientational average. We highlight this new theory with an application to rGO/epoxy nanocomposites, and demonstrate that the calculated in-plane and out-of-plane conductivity and permittivity are in agreement with the experimental data as the range of graphene orientations changes from the randomly oriented to the highly aligned state. We also show that the percolation thresholds of highly aligned graphene nanocomposites are in general different along the planar and the normal directions, but they converge into a single one when the statistical distribution of graphene fillers is spherically symmetric.

  18. Improvement of food packaging related properties in whey protein isolate‑based nanocomposite films and coatings by addition of montmorillonite nanoplatelets

    NASA Astrophysics Data System (ADS)

    Schmid, Markus; Merzbacher, Sarah; Brzoska, Nicola; Müller, Kerstin; Jesdinszki, Marius

    2017-11-01

    In the present study the effects of the addition of montmorillonite (MMT) nanoplatelets on whey protein isolate (WPI)-based nanocomposite films and coatings were investigated. The main objective was the development of WPI-based MMT-nanocomposites with enhanced barrier and mechanical properties. WPI-based nanocomposite cast-films and coatings were prepared by dispersing 0 % (reference sample), 3 %, 6 %, 9 % (w/w protein) MMT, or, depending on the protein concentration, also 12 % and 15 % (w/w protein) MMT into native WPI-based dispersions, followed by subsequent denaturation during the drying and curing process. The natural MMT nanofillers could be randomly dispersed into film-forming WPI-based nanodispersions, displaying good compatibility with the hydrophilic biopolymer matrix. As a result, by addition of 15 % (w/w protein) MMT into 10 % (w/w dispersion) WPI-based cast-films or coatings, the oxygen permeability (OP) was reduced by 91 % for glycerol-plasticized and 84 % for sorbitol-plasticized coatings, water vapor transmission rate (WVTR) was reduced by 58 % for sorbitol-plasticized cast-films. Due to the addition of MMT- nanofillers the Young’s modulus and tensile strength improved by 315 % and 129 %, respectively, whereas elongation at break declined by 77 % for glycerol-plasticized cast-films. In addition, comparison of plasticizer type revealed that sorbitol-plasticized cast-films were generally stiffer and stronger, but less flexible compared glycerol-plasticized cast-films. Viscosity measurements demonstrated good processability and suitability for up-scaled industrial processes of native WPI-based nanocomposite dispersions, even at high nanofiller-loadings. These results suggest that the addition of natural MMT- nanofillers into native WPI-based matrices to form nanocomposite films and coatings holds great potential to replace well-established, fossil-based packaging materials for at least certain applications such as oxygen barriers as part of

  19. Removal of bisphenol A in canned liquid food by enzyme-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Tapia-Orozco, Natalia; Meléndez-Saavedra, Fanny; Figueroa, Mario; Gimeno, Miquel; García-Arrazola, Roeb

    2018-02-01

    Laccase from Trametes versicolor was immobilized on TiO2 nanoparticles; the nanocomposites obtained were used for the removal of bisphenol A (BPA) in a liquid food matrix. To achieve a high enzymatic stability over a wide pH range and at temperatures above 50 °C, the nanocomposite structures were prepared by both physical adsorption and covalent linking of the enzyme onto the nanometric support. All the nanocomposite structures retained 40% of their enzymatic activity after 60 days of storage. Proof-of-concept experiments in aqueous media using the nanocomposites resulted on a > 60% BPA removal after 48 h and showed that BPA was depleted within 5 days. The nanocomposites were tested in canned liquid food samples; the removal reached 93.3% within 24 h using the physically adsorbed laccase. For the covalently linked enzyme, maximum BPA removal was 91.3%. The formation of BPA dimers and trimers was observed in all the assays. Food samples with sugar and protein contents above 3 and 4 mg mL-1 showed an inhibitory effect on the enzymatic activity.

  20. Effect of type and content of modified montmorillonite on the structure and properties of bio-nanocomposite films based on soy protein isolate and montmorillonite.

    PubMed

    Kumar, P; Sandeep, K P; Alavi, S; Truong, V D; Gorga, R E

    2010-06-01

    The nonbiodegradable and nonrenewable nature of plastic packaging has led to a renewed interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanoparticles such as layered silicates). Bio-nanocomposite films based on soy protein isolate (SPI) and modified montmorillonite (MMT) were prepared using melt extrusion. The effect of different type (Cloisite 20A and Cloisite 30B) and content (0% to 15%) of modified MMT on the structure (degree of intercalation and exfoliation) and properties (color, mechanical, dynamic mechanical, thermal stability, and water vapor permeability) of SPI-MMT bio-nanocomposite films were investigated. Extrusion of SPI and modified MMTs resulted in bio-nanocomposites with exfoliated structures at lower MMT content (5%). At higher MMT content (15%), the structure of bio-nanocomposites ranged from intercalated for Cloisite 20A to disordered intercalated for Cloisite 30B. At an MMT content of 5%, bio-nanocomposite films based on modified MMTs (Cloisite 20A and Cloisite 30B) had better mechanical (tensile strength and percent elongation at break), dynamic mechanical (glass transition temperature and storage modulus), and water barrier properties as compared to those based on natural MMT (Cloisite Na(+)). Bio-nanocomposite films based on 10% Cloisite 30B had mechanical properties comparable to those of some of the plastics that are currently used in food packaging applications. However, much higher WVP values of these films as compared to those of existing plastics might limit the application of these films to packaging of high moisture foods such as fresh fruits and vegetables.

  1. Preparation, characterization and properties of polymer-layered silicate nanocomposites

    NASA Astrophysics Data System (ADS)

    Fonseca, Claudia Alencar

    Nanocomposites are a relatively new class of composites, that in the polymer area typically consist of particle-filled polymers where at least one dimension of the dispersed particles is in the nanometer range. Amongst all potential nanocomposite precursors, those based on clay and layered silicates have been more widely investigated. These nanocomposites exhibit markedly improved mechanical, thermal, optical and physico-chemical properties when compared to conventional (microscale) composites. In the present work, properties of nanocomposites of Ethylene Methacrylic Acid copolymers and organically modified Montmorillonite formed from the melt was investigated. Nanocomposites of Poly(vinyl alcohol) and Montmorillonite formed from solution was also studied.

  2. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    PubMed Central

    Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel

    2015-01-01

    The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail. PMID:28347023

  3. High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating.

    PubMed

    Wang, Xuefen; Chen, Xuming; Yoon, Kyunghwan; Fang, Dufei; Hsiao, Benjamin S; Chu, Benjamin

    2005-10-01

    A novel high flux filtration medium, consisting of a three-tier composite structure, i.e., a nonporous hydrophilic nanocomposite coating top layer, an electrospun nanofibrous substrate midlayer, and a conventional nonwoven microfibrous support, was demonstrated for oil/water emulsion separations for the first time. The nanofibrous substrate was prepared by electrospinning of poly(vinyl alcohol) (PVA) followed by chemical cross-linking with glutaraldehyde (GA) in acetone. The resulting cross-linked PVA substrates showed excellent water resistance and good mechanical properties. The top coating was based on a nanocomposite layer containing hydrophilic polyether-b-polyamide copolymer or a cross-linked PVA hydrogel incorporated with surface-oxidized multiwalled carbon nanotubes (MWNTs). Scanning electron microscopy (SEM) examinations indicated that the nanocomposite layer was nonporous within the instrumental resolution and MWNTs were well dispersed in the polymer matrix. Oil/ water emulsion tests showed that this unique type of filtration media exhibited a high flux rate (up to 330 L/m2-h at the feed pressure of 100 psi) and an excellent total organic solute rejection rate (99.8%) without appreciable fouling. The increase in the concentration of surface-oxidized MWNT in the coating layer generally improves the flux rate, which can be attributed to the generation of more effective hydrophilic nanochannels for water passage in the composite membranes.

  4. Development of Dielectric Elastomer Nanocomposites as Stretchable and Flexible Actuating Materials

    NASA Astrophysics Data System (ADS)

    Wang, Yu

    Dielectric elastomers (DEs) are a new type of smart materials showing promising functionalities as energy harvesting materials as well as actuating materials for potential applications such as artificial muscles, implanted medical devices, robotics, loud speakers, micro-electro-mechanical systems (MEMS), tunable optics, transducers, sensors, and even generators due to their high electromechanical efficiency, stability, lightweight, low cost, and easy processing. Despite the advantages of DEs, technical challenges must be resolved for wider applications. A high electric field of at least 10-30 V/um is required for the actuation of DEs, which limits the practical applications especially in biomedical fields. We tackle this problem by introducing the multiwalled carbon nanotubes (MWNTs) in DEs to enhance their relative permittivity and to generate their high electromechanical responses with lower applied field level. This work presents the dielectric, mechanical and electromechanical properties of DEs filled with MWNTs. The micromechanics-based finite element models are employed to describe the dielectric, and mechanical behavior of the MWNT-filled DE nanocomposites. A sufficient number of models are computed to reach the acceptable prediction of the dielectric and mechanical responses. In addition, experimental results are analyzed along with simulation results. Finally, laser Doppler vibrometer is utilized to directly detect the enhancement of the actuation strains of DE nanocomposites filled with MWNTs. All the results demonstrate the effective improvement in the electromechanical properties of DE nanocomposites filled with MWNTs under the applied electric fields.

  5. Model-Based Method for Sensor Validation

    NASA Technical Reports Server (NTRS)

    Vatan, Farrokh

    2012-01-01

    Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in situ platforms. One of NASA s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation can be considered to be part of the larger effort of improving reliability and safety. The standard methods for solving the sensor validation problem are based on probabilistic analysis of the system, from which the method based on Bayesian networks is most popular. Therefore, these methods can only predict the most probable faulty sensors, which are subject to the initial probabilities defined for the failures. The method developed in this work is based on a model-based approach and provides the faulty sensors (if any), which can be logically inferred from the model of the system and the sensor readings (observations). The method is also more suitable for the systems when it is hard, or even impossible, to find the probability functions of the system. The method starts by a new mathematical description of the problem and develops a very efficient and systematic algorithm for its solution. The method builds on the concepts of analytical redundant relations (ARRs).

  6. Amperometric Determination of Ascorbic Acid in Pharmaceutical Formulations by a Reduced Graphene Oxide-cobalt Hexacyanoferrate Nanocomposite

    PubMed Central

    Heli, Hossein

    2015-01-01

    Investigation of the redox properties of drugs and their determination are performed by electrochemical techniques. Data obtained from electrochemical techniques are often correlated with molecular structure and pharmacological activity of drugs. In this regard, different modified electrodes were applied as sensors for quantification of different drugs. A nanocomposite of reduced graphene oxide-cobalt hexacyanoferrate was synthesized by a simple precipitation route. Scanning electron microscopy revealed that the nanocomposite comprised nanoparticles of cobalt hexacyanoferrate attached to the reduced graphene oxide nanosheets. A nanocomposite-modified carbon paste electrode was then fabricated. It represented prominent activity toward the electrocatalytic oxidation of ascorbic acid, and the kinetics of the electrooxidation process was evaluated. Finally, an amperometric method was developed for the quantification of ascorbic acid in different pharmaceutical formulations. PMID:25901152

  7. Fully Printed Organic-Inorganic Nanocomposites for Flexible Thermoelectric Applications.

    PubMed

    Ou, Canlin; Sangle, Abhijeet L; Datta, Anuja; Jing, Qingshen; Busolo, Tommaso; Chalklen, Thomas; Narayan, Vijay; Kar-Narayan, Sohini

    2018-06-13

    Thermoelectric materials, capable of interconverting heat and electricity, are attractive for applications in thermal energy harvesting as a means to power wireless sensors, wearable devices, and portable electronics. However, traditional inorganic thermoelectric materials pose significant challenges due to high cost, toxicity, scarcity, and brittleness, particularly when it comes to applications requiring flexibility. Here, we investigate organic-inorganic nanocomposites that have been developed from bespoke inks which are printed via an aerosol jet printing method onto flexible substrates. For this purpose, a novel in situ aerosol mixing method has been developed to ensure uniform distribution of Bi 2 Te 3 /Sb 2 Te 3 nanocrystals, fabricated by a scalable solvothermal synthesis method, within a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate matrix. The thermoelectric properties of the resulting printed nanocomposite structures have been evaluated as a function of composition, and the power factor was found to be maximum (∼30 μW/mK 2 ) for a nominal loading fraction of 85 wt % Sb 2 Te 3 nanoflakes. Importantly, the printed nanocomposites were found to be stable and robust upon repeated flexing to curvatures up to 300 m -1 , making these hybrid materials particularly suitable for flexible thermoelectric applications.

  8. Effect of Immersion Time on Corrosion Behavior of Single-Phase Alloy and Nanocomposite Bismuth Telluride-Based Thermoelectrics in NaCl Solution

    NASA Astrophysics Data System (ADS)

    Keshavarz, Mohsen K.; Fattah-Alhosseini, Arash

    2018-05-01

    The corrosiveness of bismuth telluride-based thermoelectric materials (n-type single-phase alloy and a nanocomposite with MoS2 nanoinclusions), in 0.1 molar solution of sodium chloride (NaCl), was investigated. The electrochemical impedance spectroscopy curves obtained after 1, 24, 48 and 72 h immersion time revealed the enhancement of the corrosion resistance of the nanocomposite specimen in a 0.1 molar NaCl solution in comparison with the single-phase bismuth telluride-based alloys, and the passivity increased by immersion time up to 72 h. The nanocomposite sample with submicron grains provided suitable nucleation sites for passive film nucleation that led to higher protective behavior.

  9. Recent Advances in Upconversion Nanoparticles-Based Multifunctional Nanocomposites for Combined Cancer Therapy.

    PubMed

    Tian, Gan; Zhang, Xiao; Gu, Zhanjun; Zhao, Yuliang

    2015-12-16

    Lanthanide-doped upconversion nanoparticles (UCNPs) have the ability to generate ultraviolet or visible emissions under continuous-wave near-infrared (NIR) excitation. Utilizing this special luminescence property, UCNPs are approved as a new generation of contrast agents in optical imaging with deep tissue-penetration ability and high signal-to-noise ratio. The integration of UCNPs with other functional moieties can endow them with highly enriched functionalities for imaging-guided cancer therapy, which makes composites based on UCNPs emerge as a new class of theranostic agents in biomedicine. Here, recent progress in combined cancer therapy using functional nanocomposites based on UCNPs is reviewed. Combined therapy referring to the co-delivery of two or more therapeutic agents or a combination of different treatments is becoming more popular in clinical treatment of cancer because it generates synergistic anti-cancer effects, reduces individual drug-related toxicity and suppresses multi-drug resistance through different mechanisms of action. Here, the recent advances of combined therapy contributed by UCNPs-based nanocomposites on two main branches are reviewed: i) photodynamic therapy and ii) chemotherapy, which are the two most widely adopted therapies of UCNPs-based composites. The future prospects and challenges in this emerging field will be also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Sensitivity Enhancement of FBG-Based Strain Sensor.

    PubMed

    Li, Ruiya; Chen, Yiyang; Tan, Yuegang; Zhou, Zude; Li, Tianliang; Mao, Jian

    2018-05-17

    A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on a substrate with a lever structure. This typical mechanical configuration mechanically amplifies the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working range. The sensing principle is presented, and the corresponding theoretical model is derived and validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves an enhanced strain sensitivity of 6.2 pm/με, which is consistent with the theoretical analysis result. The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh industrial environments.

  11. Sensitivity Enhancement of FBG-Based Strain Sensor

    PubMed Central

    Chen, Yiyang; Tan, Yuegang; Zhou, Zude; Mao, Jian

    2018-01-01

    A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on a substrate with a lever structure. This typical mechanical configuration mechanically amplifies the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working range. The sensing principle is presented, and the corresponding theoretical model is derived and validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves an enhanced strain sensitivity of 6.2 pm/με, which is consistent with the theoretical analysis result. The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh industrial environments. PMID:29772826

  12. Synthesis of carbon nanotube-nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing.

    PubMed

    Choi, Taejin; Kim, Soo Hyeon; Lee, Chang Wan; Kim, Hangil; Choi, Sang-Kyung; Kim, Soo-Hyun; Kim, Eunkyoung; Park, Jusang; Kim, Hyungjun

    2015-01-15

    A useful strategy has been developed to fabricate carbon-nanotube-nickel (CNT-Ni) nanocomposites through atomic layer deposition (ALD) of Ni and chemical vapor deposition (CVD) of functionalized CNTs. Various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), were used to characterize the morphology and the structure of as-prepared samples. It was confirmed that the products possess uniform Ni nanoparticles that are constructed by finely controlled deposition of Ni onto oxygen or bromine functionalized CNT surface. Electrochemical studies indicate that the CNT-Ni nanocomposites exhibit high electrocatalytic activity for glucose oxidation in alkaline solutions, which enables the products to be used in enzyme-free electrochemical sensors for glucose determination. It was demonstrated that the CNT-Ni nanocomposite-based glucose biosensor offers a variety of merits, such as a wide linear response window for glucose concentrations of 5 μM-2 mM, short response time (3 s), a low detection limit (2 μM), high sensitivity (1384.1 μA mM(-1) cm(-2)), and good selectivity and repeatability. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Nanocomposites based on thermoplastic elastomers with functional basis of nano titanium dioxide

    NASA Astrophysics Data System (ADS)

    Yulovskaya, V. D.; Kuz'micheva, G. M.; Klechkovskaya, V. V.; Orekhov, A. S.; Zubavichus, Ya. V.; Domoroshchina, E. N.; Shegay, A. V.

    2016-03-01

    Nanocomposites based on a thermoplastic elastomer (TPE) (low-density polyethylene (LDPE) and 1,2-polybutadiene in a ratio of 60/40) with functional titanium dioxide nanoparticles of different nature, TiO2/TPE, have been prepared and investigated by a complex of methods (X-ray diffraction analysis using X-ray and synchrotron radiation beams, scanning electron microscopy, transmission electron microscopy, and X-ray energy-dispersive spectroscopy). The morphology of the composites is found to be somewhat different, depending on the TiO2 characteristics. It is revealed that nanocomposites with cellular or porous structures containing nano-TiO2 aggregates with a large specific surface and large sizes of crystallites and nanoparticles exhibit the best deformation‒strength and fatigue properties and stability to the effect of active media under conditions of ozone and vapor‒air aging.

  14. Storage stability of banana chips in polypropylene based nanocomposite packaging films.

    PubMed

    Manikantan, M R; Sharma, Rajiv; Kasturi, R; Varadharaju, N

    2014-11-01

    In this study, polypropylene (PP) based nanocomposite films of 15 different compositions of nanoclay, compatibilizer and thickness were developed and used for packaging and storage of banana chips. The effect of nanocomposite films on the quality characteristics viz. moisture content (MC), water activity (WA), total color difference(TCD), breaking force (BF), free fatty acid (FFA), peroxide value(PV), total plate count (TPC) and overall acceptability score of banana chips under ambient condition at every 15 days interval were studied for 120 days. All quality parameters of stored banana chips increased whereas overall acceptability scores decreased during storage. The elevation in FFA, BF and TCD of stored banana chips increased with elapse of storage period as well as with increased proportion of both nanoclay and compatibilizer but decreased by reducing the thickness of film. Among all the packaging materials, the WA of banana chips remained lower than 0.60 i.e. critical limit for microbial growth up to 90 days of storage. The PV of banana chips packaged also remained within the safe limit of 25 meq oxygen kg(-1) throughout the storage period. Among all the nanocomposite films, packaging material having 5 % compatibilizer, 2 % nanoclay & 100 μm thickness (treatment E) and 10 % compatibilizer, 4 % nanoclay & 120 μm thickness (treatment N) showed better stability of measured quality characteristics of banana chips than any other treatment.

  15. High oxygen nanocomposite barrier films based on xylan and nanocrystalline cellulose

    Treesearch

    Amit Saxena; Thomas J. Elder; Jeffrey Kenvin; Arthur J. Ragauskas

    2010-01-01

    The goal of this work is to produce nanocomposite film with low oxygen permeability by casting an aqueous solution containing xylan, sorbitol and nanocrystalline cellulose. The morphology of the resulting nanocomposite films was examined by scanning electron microscopy and atomic force microscopy which showed that control films containing xylan and sorbitol had a more...

  16. A Large Area Tactile Sensor Patch Based on Commercial Force Sensors

    PubMed Central

    Vidal-Verdú, Fernando; Barquero, Maria Jose; Castellanos-Ramos, Julián; Navas-González, Rafael; Sánchez, Jose Antonio; Serón, Javier; García-Cerezo, Alfonso

    2011-01-01

    This paper reports the design of a tactile sensor patch to cover large areas of robots and machines that interact with human beings. Many devices have been proposed to meet such a demand. These realizations are mostly custom-built or developed in the lab. The sensor of this paper is implemented with commercial force sensors. This has the benefit of a more foreseeable response of the sensor if its behavior is understood as the aggregation of readings from all the individual force sensors in the array. A few reported large area tactile sensors are also based on commercial sensors. However, the one in this paper is the first of this kind based on the use of polymeric commercial force sensing resistors (FSR) as unit elements of the array or tactels, which results in a robust sensor. The paper discusses design issues related to some necessary modifications of the force sensor, its assembly in an array, and the signal conditioning. The patch has 16 × 9 force sensors mounted on a flexible printed circuit board with a spatial resolution of 18.5 mm. The force range of a tactel is 6 N and its sensitivity is 0.6 V/N. The array is read at a rate of 78 frames per second. Finally, two simple application examples are also carried out with the sensor mounted on the forearm of a rescue robot that communicates with the sensor through a CAN bus. PMID:22163910

  17. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel.

    PubMed

    Rakhshaei, Rasul; Namazi, Hassan

    2017-04-01

    Lack of antibacterial activity, deficient water vapor and oxygen permeability, and insufficient mechanical properties are disadvantages of existing wound dressings. Hydrogels could absorb wound exudates due to their strong swelling ratio and give a cooling sensation and a wet environment. To overcome these shortcomings, flexible nanocomposite hydrogel films was prepared through combination of zinc oxide impregnated mesoporous silica (ZnO-MCM-41) as a nano drug carrier with carboxymethyl cellulose (CMC) hydrogel. Citric acid was used as cross linker to avoid the cytotoxicity of conventional cross linkers. The prepared nanocomposite hydrogel was characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential and UV-vis spectroscopy. Results of swelling and erosion tests showed CMC/ZnO nanocomposite hydrogel disintegrated during the first hours of the test. Using MCM-41 as a substrate for ZnO nanoparticles solved this problem and the CMC/ZnO-MCM-41 showed a great improvement in tensile strength (12%), swelling (100%), erosion (53%) and gas permeability (500%) properties. Drug delivery and antibacterial properties of the nanocomposite hydrogel films studied using tetracycline (TC) as a broad spectrum antibiotic and showed a sustained TC release. This could efficiently decrease bandage exchange. Cytocompatibility of the nanocomposite hydrogel films has been analyzed in adipose tissue-derived stem cells (ADSCs) and results showed cytocompatibility of CMC/ZnO-MCM-41. Based on these results the prepared CMC nanocomposite hydrogel containing ZnO impregnated MCM-41, could serve as a kind of promising wound dressing with sustained drug delivery properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Biobased Epoxy Nanocomposites Derived from Lignin-Based Monomers.

    PubMed

    Zhao, Shou; Abu-Omar, Mahdi M

    2015-07-13

    Biobased epoxy nanocomposites were synthesized based on 2-methoxy-4-propylphenol (dihydroeugenol, DHE), a molecule that has been obtained from the lignin component of biomass. To increase the content of hydroxyl groups, DHE was o-demethylated using aqueous HBr to yield propylcatechol (DHEO), which was subsequently glycidylated to epoxy monomer. Optimal conditions in terms of yield and epoxy equivalent weight were found to be 60 °C with equal NaOH/phenolic hydroxyl molar ratio. The structural evolution from DHE to cured epoxy was followed by (1)H NMR and Fourier transform infrared spectroscopy. The nano-montmorillonite modified DHEO epoxy exhibited improved storage modulus and thermal stability as determined from dynamic mechanical analysis and thermogravimetric analysis. This study widens the synthesis routes of biobased epoxy thermosets from lignin-based molecules.

  19. Sonication-Induced Modification of Carbon Nanotubes: Effect on the Rheological and Thermo-Oxidative Behaviour of Polymer-Based Nanocomposites.

    PubMed

    Arrigo, Rossella; Teresi, Rosalia; Gambarotti, Cristian; Parisi, Filippo; Lazzara, Giuseppe; Dintcheva, Nadka Tzankova

    2018-03-05

    The aim of this work is the investigation of the effect of ultrasound treatment on the structural characteristics of carbon nanotubes (CNTs) and the consequent influence that the shortening induced by sonication exerts on the morphology, rheological behaviour and thermo-oxidative resistance of ultra-high molecular weight polyethylene (UHMWPE)-based nanocomposites. First, CNTs have been subjected to sonication for different time intervals and the performed spectroscopic and morphological analyses reveal that a dramatic decrease of the CNT's original length occurs with increased sonication time. The reduction of the initial length of CNTs strongly affects the nanocomposite rheological behaviour, which progressively changes from solid-like to liquid-like as the CNT sonication time increases. The study of the thermo-oxidative behaviour of the investigated nanocomposites reveals that the CNT sonication has a detrimental effect on the thermo-oxidative stability of nanocomposites, especially for long exposure times. The worsening of the thermo-oxidative resistance of sonicated CNT-containing nanocomposites could be attributed to the lower thermal conductivity of low-aspect-ratio CNTs, which causes the increase of the local temperature at the polymer/nanofillers interphase, with the consequent acceleration of the degradative phenomena.

  20. Sonication-Induced Modification of Carbon Nanotubes: Effect on the Rheological and Thermo-Oxidative Behaviour of Polymer-Based Nanocomposites

    PubMed Central

    Teresi, Rosalia; Gambarotti, Cristian; Dintcheva, Nadka Tzankova

    2018-01-01

    The aim of this work is the investigation of the effect of ultrasound treatment on the structural characteristics of carbon nanotubes (CNTs) and the consequent influence that the shortening induced by sonication exerts on the morphology, rheological behaviour and thermo-oxidative resistance of ultra-high molecular weight polyethylene (UHMWPE)-based nanocomposites. First, CNTs have been subjected to sonication for different time intervals and the performed spectroscopic and morphological analyses reveal that a dramatic decrease of the CNT’s original length occurs with increased sonication time. The reduction of the initial length of CNTs strongly affects the nanocomposite rheological behaviour, which progressively changes from solid-like to liquid-like as the CNT sonication time increases. The study of the thermo-oxidative behaviour of the investigated nanocomposites reveals that the CNT sonication has a detrimental effect on the thermo-oxidative stability of nanocomposites, especially for long exposure times. The worsening of the thermo-oxidative resistance of sonicated CNT-containing nanocomposites could be attributed to the lower thermal conductivity of low-aspect-ratio CNTs, which causes the increase of the local temperature at the polymer/nanofillers interphase, with the consequent acceleration of the degradative phenomena. PMID:29510595

  1. Development of glucose biosensors based on plasma polymerization-assisted nanocomposites of polyaniline, tin oxide, and three-dimensional reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Wu, Shide; Su, Fangfang; Dong, Xiaodong; Ma, Chuang; Pang, Long; Peng, Donglai; Wang, Minghua; He, Linghao; Zhang, Zhihong

    2017-04-01

    A biosensor based on the plasma polyaniline (pPANI)-modified tin oxide and 3D reduced graphene oxide (SnO2@3D-rGO) nanocomposite was fabricated to detect glucose. The SnO2@3D-rGO nanocomposite was synthesized by simultaneously reducing 3D graphene oxide (3D-GO) and translating SnCl4 into SnO2, followed by pPANI modification. The content of amino groups in the SnO2@3D-rGO@pPANI nanocomposites depended on the plasma input powers used in plasma deposition. The SnO2@3D-rGO nanocomposite was important in the electrochemical biosensor to detect glucose. The fabricated biosensor exhibited a much higher sensitivity than that formed from individual components, namely, SnO2@3D-rGO and pPANI. This biosensor demonstrated a low detection limit of 0.047 ng mL-1 (0.26 nM) (S/N = 3) within the concentration range of 0.1 ng mL-1 to 5 μg mL-1. The selectivity, stability, and practicality of the SnO2@3D-rGO@pPANI-based biosensor were observed. In conclusion, the plasma surface-modified nanocomposite is a promising candidate as biosensor for glucose detection and biological diagnosis.

  2. Polyimide-Based Capacitive Humidity Sensor

    PubMed Central

    Steinmaßl, Matthias; Endres, Hanns-Erik; Drost, Andreas; Eisele, Ignaz; Kutter, Christoph; Müller-Buschbaum, Peter

    2018-01-01

    The development of humidity sensors with simple transduction principles attracts considerable interest by both scientific researchers and industrial companies. Capacitive humidity sensors, based on polyimide sensing material with different thickness and surface morphologies, are prepared. The surface morphology of the sensing layer is varied from flat to rough and then to nanostructure called nanograss by using an oxygen plasma etch process. The relative humidity (RH) sensor selectively responds to the presence of water vapor by a capacitance change. The interaction between polyimide and water molecules is studied by FTIR spectroscopy. The complete characterization of the prepared capacitive humidity sensor performance is realized using a gas mixing setup and an evaluation kit. A linear correlation is found between the measured capacitance and the RH level in the range of 5 to 85%. The morphology of the humidity sensing layer is revealed as an important parameter influencing the sensor performance. It is proved that a nanograss-like structure is the most effective for detecting RH, due to its rapid response and recovery times, which are comparable to or even better than the ones of commercial polymer-based sensors. This work demonstrates the readiness of the developed RH sensor technology for industrialization. PMID:29751632

  3. Pyrene-based fluorescent ambidextrous gelators: scaffolds for mechanically robust SWNT-gel nanocomposites.

    PubMed

    Mandal, Deep; Kar, Tanmoy; Das, Prasanta Kumar

    2014-01-27

    With the rapid progress in the development of supramolecular soft materials, examples of low-molecular-weight gelators (LMWGs) with the ability to immobilise both water and organic solvents by the same structural scaffold are very limited. In this paper, we report the development of pyrene-containing peptide-based ambidextrous gelators (AGs) with the ability to efficiently gelate both organic and aqueous solvents. The organo- and hydrogelation efficiencies of these gelators are in the range 0.7-1.1% w/v in various organic solvents and 0.5-5% w/v in water at certain acidic pH values (pH 2.0-4.0). Moreover, for the first time, AGs have been utilised to prepare single-walled carbon-nanotube (SWNT)-included soft nanocomposites in both hydro- and organogel matrices. The influence of different non-covalent interactions such as hydrogen bonding, hydrophobic, π-π and van der Waals interactions in self-assembled gelation has been studied in detail by circular dichroism, FTIR, variable-temperature NMR, 2D NOESY and luminescence spectroscopy. Interestingly, the presence of the pyrene moiety in the structure rendered these AGs intrinsically fluorescent, which was quenched upon successful integration of the SWNTs within the gel. The prepared hydro- and organogels along with their SWNT-integrated nanocomposites are thermoreversible in nature. The supramolecular morphologies of the dried gels and SWNT-gel nanocomposites have been studied by transmission electron microscopy, fluorescence microscopy and polarising optical microscopy, which confirmed the presence of three-dimensional self-assembled fibrillar networks (SAFINs) as well as the integrated SWNTs. Importantly, rheological studies revealed that the inclusion of SWNTs within the ambidextrous gels improved the mechanical rigidity of the resulting soft nanocomposites up to 3.8-fold relative to the native gels. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Polyaniline-CuO hybrid nanocomposite with enhanced electrical conductivity

    NASA Astrophysics Data System (ADS)

    de Souza, Vânia S.; da Frota, Hidembergue O.; Sanches, Edgar A.

    2018-02-01

    A hybrid nanocomposite based on a polymer matrix constituted of Polyaniline Emeraldine-salt form (PANI-ES) reinforced by copper oxide II (CuO) particles was obtained by in situ polymerization. Structural, morphological and electrical properties of the pure materials and nanocomposite form were investigated. The presence of CuO particles in the nanocomposite material affected the natural alignment of the polymer chains. XRD technique allowed the visualization of the polymer amorphization in the nanocomposite form, suggesting an interaction between both phases. The FTIR spectra confirmed this molecular interaction due to the blue shift of the characteristic absorption peaks of PANI-ES in the nanocomposite form. SEM images revealed that the polymer nanofiber morphology was no longer observed in the nanocomposite. The CuO spherical particles are randomly dispersed in the polymer matrix. The density functional theory plus the Coulomb interaction method revealed a charge transfer from PANI to CuO slab. Moreover, the density of states (DOS) has revealed that the nanocomposite behaves as a metal. In agreement, the electrical conductivity showed an increase of 60% in the nanocomposite material.

  5. Synthesis of photothermal nanocomposites and their application to antibacterial assays

    NASA Astrophysics Data System (ADS)

    Yang, Ning; Wang, Chun; Wang, Xiaoyu; Li, Lidong

    2018-04-01

    In this work, we report a novel gold nanorod (AuNR)-based nanocomposite that shows strong binding to bacterium and high antibacterial efficiency. The AuNRs were used as a photothermal material to transform near-infrared radiation (NIR) into heat. We selected poly (acrylic acid) to modify the surface of the AuNRs based on a simple self-assembly method. After conjugation of the bacterium-binding molecule vancomycin, the nanocomposites were capable of efficiently gathering on the cell walls of bacteria. The nanocomposites exhibited a high bacterial inhibition capability owing to NIR-induced heat generation in situ. Therefore, the prepared photothermal nanocomposites show great potential for use in antibacterial assays.

  6. An Effective Way to Optimize the Functionality of Graphene-Based Nanocomposite: Use of the Colloidal Mixture of Graphene and Inorganic Nanosheets

    NASA Astrophysics Data System (ADS)

    Jin, Xiaoyan; Adpakpang, Kanyaporn; Young Kim, In; Mi Oh, Seung; Lee, Nam-Suk; Hwang, Seong-Ju

    2015-06-01

    The best electrode performance of metal oxide-graphene nanocomposite material for lithium secondary batteries can be achieved by using the colloidal mixture of layered CoO2 and graphene nanosheets as a precursor. The intervention of layered CoO2 nanosheets in-between graphene nanosheets is fairly effective in optimizing the pore and composite structures of the Co3O4-graphene nanocomposite and also in enhancing its electrochemical activity via the depression of interaction between graphene nanosheets. The resulting CoO2 nanosheet-incorporated nanocomposites show much greater discharge capacity of ~1750 mAhg-1 with better cyclability and rate characteristics than does CoO2-free Co3O4-graphene nanocomposite (~1100 mAhg-1). The huge discharge capacity of the present nanocomposite is the largest one among the reported data of cobalt oxide-graphene nanocomposite. Such a remarkable enhancement of electrode performance upon the addition of inorganic nanosheet is also observed for Mn3O4-graphene nanocomposite. The improvement of electrode performance upon the incorporation of inorganic nanosheet is attributable to an improved Li+ ion diffusion, an enhanced mixing between metal oxide and graphene, and the prevention of electrode agglomeration. The present experimental findings underscore an efficient and universal role of the colloidal mixture of graphene and redoxable metal oxide nanosheets as a precursor for improving the electrode functionality of graphene-based nanocomposites.

  7. Effect of type and content of modified montmorillonite on the structure and properties of bio-nanocomposite films based on soy protein isolate and montmorillonite

    USDA-ARS?s Scientific Manuscript database

    The non-biodegradable and non-renewable nature of plastic packaging has led to a renewed interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanoparticles such as layered silicates). Bio-nanocomposite films based on soy protein isolate (SPI) and modified mo...

  8. Improved conductivity and antibacterial activity of poly(2-aminothiophenol)-silver nanocomposite against human pathogens.

    PubMed

    Boomi, P; Anandha Raj, J; Palaniappan, S P; Poorani, G; Selvam, S; Gurumallesh Prabu, H; Manisankar, P; Jeyakanthan, J; Langeswaran, V K

    2018-01-01

    A rapid and simple chemical synthesis of poly(2-aminothiophenol)‑silver (P2ATP-Ag) nanocomposite using conductive and electroactive silver nanoparticles (AgNPs) is reported. The AgNPs was synthesized by chemical reduction method using tri‑sodium citrate as reducing agent and poly(N-vinyl-2-pyrrolidone) (PVP) as stabilizing agent. P2ATP-Ag nanocomposite was synthesized by using potassium peroxodisulphate as oxidant and the samples were characterized. The presence of AgNPs in the composite was confirmed from UV-Vis, FTIR and X-ray diffraction studies. Morphology of the P2ATP and its composite were investigated by SEM. HR-TEM images show spherical, trigonal and rod like morphologies with sizes of Ag nanoparticles and its composite. Thermal analysis revealed that the thermal stability of the P2ATP-Ag nanocomposite is improved when compared with pure P2ATP. The synthesized AgNPs, pure P2ATP and P2ATP-Ag nanocomposite were screened for antibacterial activity test against human pathogen such as Gram positive (Bacillus subtilis, ATCC-6051) and Gram negative (Vibrio cholerae, ATCC-14035), carried out by agar-well diffusion method at micro molar concentration. The result shows that P2ATP-Ag nanocomposite has excellent antibacterial activity due to the presence of Ag nanoparticles. The electrical conductivity of the P2ATP-Ag nanocomposite is better than that of pure P2ATP. The reported nanocomposite will be a potential material for electrocatalysis, sensors and biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Force/torque and tactile sensors for sensor-based manipulator control

    NASA Technical Reports Server (NTRS)

    Vanbrussel, H.; Belieen, H.; Bao, Chao-Ying

    1989-01-01

    The autonomy of manipulators, in space and in industrial environments, can be dramatically enhanced by the use of force/torque and tactile sensors. The development and future use of a six-component force/torque sensor for the Hermes Robot Arm (HERA) Basic End-Effector (BEE) is discussed. Then a multifunctional gripper system based on tactile sensors is described. The basic transducing element of the sensor is a sheet of pressure-sensitive polymer. Tactile image processing algorithms for slip detection, object position estimation, and object recognition are described.

  10. Biopolymer-modified graphite oxide nanocomposite films based on benzalkonium chloride-heparin intercalated in graphite oxide

    NASA Astrophysics Data System (ADS)

    Meng, Na; Zhang, Shuang-Quan; Zhou, Ning-Lin; Shen, Jian

    2010-05-01

    Heparin is a potent anticoagulant agent that interacts strongly with antithrombin III to prevent the formation of fibrin clots. In the present work, poly(dimethylsiloxane)(PDMS)/graphite oxide-benzalkonium chloride-heparin (PDMS/modified graphite oxide) nanocomposite films were obtained by the solution intercalation technique as a possible drug delivery system. The heparin-benzalkonium chloride (BAC-HEP) was intercalated into graphite oxide (GO) layers to form GO-BAC-HEP (modified graphite oxide). Nanocomposite films were characterized by XRD, SEM, TEM, ATR-FTIR and TGA. The modified graphite oxide was observed to be homogeneously dispersed throughout the PDMS matrix. The effect of modified graphite oxide on the mechanical properties of the nanocomposite film was investigated. When the modified graphite oxide content was lower than 0.2 wt%, the nanocomposites showed excellent mechanical properties. Furthermore, nanocomposite films become delivery systems that release heparin slowly to make the nanocomposite films blood compatible. The in vitro studies included hemocompatibility testing for effects on platelet adhesion, platelet activation, plasma recalcification profiles, and hemolysis. Results from these studies showed that the anticoagulation properties of PDMS/GO-BCA-HEP nanocomposite films were greatly superior to those for no treated PDMS. Cell culture assay indicated that PDMS/GO-BCA-HEP nanocomposite films showed enhanced cell adhesion.

  11. Mesoporous ZnS–NiS Nanocomposites for Nonenzymatic Electrochemical Glucose Sensors

    PubMed Central

    Wei, Chengzhen; Cheng, Cheng; Zhao, Junhong; Wang, Zhangtao; Wu, Haipeng; Gu, Kaiyue; Du, Weimin; Pang, Huan

    2015-01-01

    Mesoporous ZnS–NiS composites are prepared via ion- exchange reactions using ZnS as the precursor. The prepared mesoporous ZnS–NiS composite materials have large surface areas (137.9 m2 g−1) compared with the ZnS precursor. More importantly, the application of these mesoporous ZnS–NiS composites as nonenzymatic glucose sensors was successfully explored. Electrochemical sensors based on mesoporous ZnS–NiS composites exhibit a high selectivity and a low detection limit (0.125 μm) toward the oxidation of glucose, which can mainly be attributed to the morphological characteristics of the mesoporous structure with high specific surface area and a rational composition of the two constituents. In addition, the mesoporous ZnS–NiS composites coated on the surface of electrodes can be used to modify the mass transport regime, and this alteration can, in favorable circumstances, facilitate the amperometric discrimination between species. These results suggest that such mesoporous ZnS–NiS composites are promising materials for nonenzymatic glucose sensors. PMID:25861568

  12. Facile one-step synthesis of nanocomposite based on carbon nanotubes and Nickel-Aluminum layered double hydroxides with high cycling stability for supercapacitors.

    PubMed

    Bai, Caihui; Sun, Shiguo; Xu, Yongqian; Yu, Ruijin; Li, Hongjuan

    2016-10-15

    Nickel-Aluminum Layered Double Hydroxide (NiAl-LDH) and nanocomposite of Carbon Nanotubes (CNTs) and NiAl-LDH (CNTs/NiAl-LDH) were prepared by using a facile one-step homogeneous precipitation approach. The morphology, structure and electrochemical properties of the as-prepared CNTs/NiAl-LDH nanocomposite were then systematically studied. According to the galvanostatic charge-discharge curves, the CNTs/NiAl-LDH nanocomposite exhibited a high specific capacitance of 694Fg(-1) at the 1Ag(-1). Furthermore, the specific capacitance of the CNTs/NiAl-LDH nanocomposite still retained 87% when the current density was increased from 1 to 10Ag(-1). These results indicated that the CNTs/NiAl-LDH nanocomposite displayed a higher specific capacitance and rate capability than pure NiAl-LDH. And the participation of CNTs in the NiAl-LDH composite improved the electrochemical properties. Additionally, the capacitance of the CNTs/NiAl-LDH nanocomposite kept at least 92% after 3000cycles at 20Ag(-1), suggesting that the nanocomposite exhibited excellent cycling durability. This strategy provided a facile and effective approach for the synthesis of nanocomposite based on CNTs and NiAl-LDH with enhanced supercapacitor behaviors, which can be potentially applied in energy storage conversion devices. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Optical fiber-based sensors: application to chemical biology.

    PubMed

    Brogan, Kathryn L; Walt, David R

    2005-10-01

    Optical fibers have been used to develop sensors based on nucleic acids and cells. Sensors employing DNA probes have been developed for various genomics applications and microbial pathogen detection. Live cell-based sensors have enabled the monitoring of environmental toxins, and have been used for fundamental studies on populations of individual cells. Both single-core optical fiber sensors and optical fiber sensor arrays have been used for sensing based on nucleic acids and live cells.

  14. Chitosan-based nanocomposites for de-nitrification of water

    NASA Astrophysics Data System (ADS)

    Masheane, Monaheng L.; Nthunya, Lebea N.; Malinga, Soraya P.; Nxumalo, Edward N.; Mhlanga, Sabelo D.

    2017-08-01

    Novel chitosan (CTs) nanocomposite beads containing alumina (Al2O3, denoted as Al in the nanocomposites) and functionalized multiwalled carbon nanotubes (f-MWCNTs) (CTsAl/f-MWCNTs) were prepared using an environmentally benign phase inversion method and subsequently used for the removal of nitrates (NO3-) in water. The ellipsoidal beads with an average size of 3 mm were readily formed at room temperature and contained a small amount of Al (20 wt%) and f-MWCNTs (5%). The beads were found to adsorb nitrates effectively over a wide range of pH (pH 2 - pH 6) and showed maximum nitrates removal of 96.8% from a 50 mg/L nitrate water solution. Pure CTs beads on the other hand removed only 23% at pH 4. Kinetic studies suggested that the particle diffusion was rate controlling step for the adsorption of nitrates on CTsAl/f-MWCNT nanocomposite beads. Langmuir-Freundlich isotherms revealed that the adsorption of nitrates was on the heterogeneous surface of CTsAl/f-MWCNT beads. The Dubinin-Radushkevich (D-R) isotherm further revealed that the adsorption of nitrates was by electrostatic interaction. Thermodynamic studies suggested that the adsorption was spontaneous and exothermic. More than 70% recovery was achieved for 5 cycles of desorption-degeneration studies. Al and f-MWCNTs have shown to improve swelling and solubility of CTs.

  15. Nanocomposites based on thermoplastic elastomers with functional basis of nano titanium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yulovskaya, V. D.; Kuz’micheva, G. M., E-mail: galina-kuzmicheva@list.ru; Klechkovskaya, V. V.

    2016-03-15

    Nanocomposites based on a thermoplastic elastomer (TPE) (low-density polyethylene (LDPE) and 1,2-polybutadiene in a ratio of 60/40) with functional titanium dioxide nanoparticles of different nature, TiO{sub 2}/TPE, have been prepared and investigated by a complex of methods (X-ray diffraction analysis using X-ray and synchrotron radiation beams, scanning electron microscopy, transmission electron microscopy, and X-ray energy-dispersive spectroscopy). The morphology of the composites is found to be somewhat different, depending on the TiO{sub 2} characteristics. It is revealed that nanocomposites with cellular or porous structures containing nano-TiO{sub 2} aggregates with a large specific surface and large sizes of crystallites and nanoparticles exhibitmore » the best deformation‒strength and fatigue properties and stability to the effect of active media under conditions of ozone and vapor‒air aging.« less

  16. Synthesis of polyetherimide / halloysite nanotubes (PEI/HNTs) based nanocomposite membrane towards hydrogen storage

    NASA Astrophysics Data System (ADS)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2018-04-01

    Even though hydrogen is considered as green and clean energy sources of future, the blooming of hydrogen economy mainly relies on the development of safe and efficient hydrogen storage medium. The present work is aimed at the synthesis and characterization of polyetherimide/acid treated halloysite nanotubes (PEI/A-HNTs) nanocomposite membranes for solid state hydrogen storage medium, where phase inversion technique was adopted for the synthesis of nanocomposite membrane. The synthesized PEI/A-HNTs nanocomposite membranes were characterized by XRD, FTIR, SEM, EDX, CHNS elemental analysis and TGA. Hydrogenation studies were performed using a Sievert's-like hydrogenation setup. The important conclusions arrived from the present work are the PEI/A-HNTs nanocomposite membranes have better performance with a maximum hydrogen storage capacity of 3.6 wt% at 100 °C than pristine PEI. The adsorbed hydrogen possesses the average binding energy of 0.31 eV which lies in the recommended range of US- DOE 2020 targets. Hence it is expected that the PEI/A-HNTs nanocomposite membranes may have bright extent in the scenario of hydrogen fuel cell applications.

  17. Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticancer nanotherapy.

    PubMed

    Gurunathan, Sangiliyandi; Han, Jae Woong; Park, Jung Hyun; Kim, Eunsu; Choi, Yun-Jung; Kwon, Deug-Nam; Kim, Jin-Hoi

    2015-01-01

    Graphene and graphene-based nanocomposites are used in various research areas including sensing, energy storage, and catalysis. The mechanical, thermal, electrical, and biological properties render graphene-based nanocomposites of metallic nanoparticles useful for several biomedical applications. Epithelial ovarian carcinoma is the fifth most deadly cancer in women; most tumors initially respond to chemotherapy, but eventually acquire chemoresistance. Consequently, the development of novel molecules for cancer therapy is essential. This study was designed to develop a simple, non-toxic, environmentally friendly method for the synthesis of reduced graphene oxide-silver (rGO-Ag) nanoparticle nanocomposites using Tilia amurensis plant extracts as reducing and stabilizing agents. The anticancer properties of rGO-Ag were evaluated in ovarian cancer cells. The synthesized rGO-Ag nanocomposite was characterized using various analytical techniques. The anticancer properties of the rGO-Ag nanocomposite were evaluated using a series of assays such as cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, cellular levels of malonaldehyde and glutathione, caspase-3 activity, and DNA fragmentation in ovarian cancer cells (A2780). AgNPs with an average size of 20 nm were uniformly dispersed on graphene sheets. The data obtained from the biochemical assays indicate that the rGO-Ag nanocomposite significantly inhibited cell viability in A2780 ovarian cancer cells and increased lactate dehydrogenase leakage, reactive oxygen species generation, caspase-3 activity, and DNA fragmentation compared with other tested nanomaterials such as graphene oxide, rGO, and AgNPs. T. amurensis plant extract-mediated rGO-Ag nanocomposites could facilitate the large-scale production of graphene-based nanocomposites; rGO-Ag showed a significant inhibiting effect on cell viability compared to graphene oxide, rGO, and silver nanoparticles. The nanocomposites could be

  18. Reduced graphene oxide–silver nanoparticle nanocomposite: a potential anticancer nanotherapy

    PubMed Central

    Gurunathan, Sangiliyandi; Han, Jae Woong; Park, Jung Hyun; Kim, Eunsu; Choi, Yun-Jung; Kwon, Deug-Nam; Kim, Jin-Hoi

    2015-01-01

    Background Graphene and graphene-based nanocomposites are used in various research areas including sensing, energy storage, and catalysis. The mechanical, thermal, electrical, and biological properties render graphene-based nanocomposites of metallic nanoparticles useful for several biomedical applications. Epithelial ovarian carcinoma is the fifth most deadly cancer in women; most tumors initially respond to chemotherapy, but eventually acquire chemoresistance. Consequently, the development of novel molecules for cancer therapy is essential. This study was designed to develop a simple, non-toxic, environmentally friendly method for the synthesis of reduced graphene oxide–silver (rGO–Ag) nanoparticle nanocomposites using Tilia amurensis plant extracts as reducing and stabilizing agents. The anticancer properties of rGO–Ag were evaluated in ovarian cancer cells. Methods The synthesized rGO–Ag nanocomposite was characterized using various analytical techniques. The anticancer properties of the rGO–Ag nanocomposite were evaluated using a series of assays such as cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, cellular levels of malonaldehyde and glutathione, caspase-3 activity, and DNA fragmentation in ovarian cancer cells (A2780). Results AgNPs with an average size of 20 nm were uniformly dispersed on graphene sheets. The data obtained from the biochemical assays indicate that the rGO–Ag nanocomposite significantly inhibited cell viability in A2780 ovarian cancer cells and increased lactate dehydrogenase leakage, reactive oxygen species generation, caspase-3 activity, and DNA fragmentation compared with other tested nanomaterials such as graphene oxide, rGO, and AgNPs. Conclusion T. amurensis plant extract-mediated rGO–Ag nanocomposites could facilitate the large-scale production of graphene-based nanocomposites; rGO–Ag showed a significant inhibiting effect on cell viability compared to graphene oxide, rGO, and

  19. Sensitive detection of pyoverdine with an electrochemical sensor based on electrochemically generated graphene functionalized with gold nanoparticles.

    PubMed

    Gandouzi, Islem; Tertis, Mihaela; Cernat, Andreea; Bakhrouf, Amina; Coros, Maria; Pruneanu, Stela; Cristea, Cecilia

    2018-04-01

    The design and development of an electrochemical sensor for the sensitive and selective determination of pyoverdine, a virulence factor secreted by Pseudomonas aeruginosa, bacteria involved in nosocomial infections is presented in this work. The presence of pyoverdine in water and body fluids samples can be directly linked to the presence of the Pseudomonas bacteria, thus being a nontoxic and low cost marker for the detection of water pollution as well as for the biological contamination of other media. The sensor was elaborated using layer-by-layer technique for the deposition of a graphene‑gold nanoparticles composite film on the graphite-based screen printed electrode, from aqueous suspension. Under optimal conditions, the electrochemical signal corresponding to the pyoverdine oxidation process was proportional to its concentration, showing a wide linear range from 1 to 100μmolL -1 and a detection limit of 0.33μmolL -1 . This sensor discriminate with satisfactory recoveries the target analyte in different real matrices and also exhibited low response to other interfering species, proving that this technique is promising for medical and environmental applications. In addition, the proposed nanocomposite platform presented good reproducibility, high and long term stability, the sensitivity for pyoverdine remain unchanged after being stored at 4°C for four weeks. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Multifunctional zirconium oxide doped chitosan based hybrid nanocomposites as bone tissue engineering materials.

    PubMed

    Bhowmick, Arundhati; Jana, Piyali; Pramanik, Nilkamal; Mitra, Tapas; Banerjee, Sovan Lal; Gnanamani, Arumugam; Das, Manas; Kundu, Patit Paban

    2016-10-20

    This paper reports the development of multifunctional zirconium oxide (ZrO2) doped nancomposites having chitosan (CTS), organically modified montmorillonite (OMMT) and nano-hydroxyapatite (HAP). Formation of these nanocomposites was confirmed by various characterization techniques such as Fourier transform infrared spectroscopy and powder X-ray diffraction. Scanning electron microscopy images revealed uniform distribution of OMMT and nano-HAP-ZrO2 into CTS matrix. Powder XRD study and TEM study revealed that OMMT has partially exfoliated into the polymer matrix. Enhanced mechanical properties in comparison to the reported literature were obtained after the addition of ZrO2 nanoparticle into the nanocomposites. In rheological measurements, CMZH I-III exhibited greater storage modulus (G') than loss modulus (G″). TGA results showed that these nanocomposites are thermally more stable compare to pure CTS film. Strong antibacterial zone of inhibition and the lowest minimum inhibition concentration (MIC) value of these nanocomposites against bacterial strains proved that these materials have the ability to prevent bacterial infection in orthopedic implants. Compatibility of these nanocomposites with pH and blood of human body was established. It was observed from the swelling study that the swelling percentage was increased with decreasing the hydrophobic OMMT content. Human osteoblastic MG-63 cell proliferations were observed on the nanocomposites and cytocompatibility of these nanocomposites was also established. Moreover, addition of 5wt% OMMT and 5wt% nano-HAP-ZrO2 into 90wt% CTS matrix provides maximum tensile strength, storage modulus, aqueous swelling and cytocompatibility along with strong antibacterial effect, pH and erythrocyte compatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Thermal and mechanical properties of palm oil-based polyurethane acrylate/clay nanocomposites prepared by in-situ intercalative method and electron beam radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salih, A. M.; Ahmad, Mansor Bin; Ibrahim, Nor Azowa

    2014-02-12

    Palm oil based-polyurethane acrylate (POBUA)/clay nanocomposites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5%wt), and then subjected to polycondensation reaction with MDI. Nanocomposites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nanoclay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up tomore » 37 Å, while the structure morphology of the nanocomposites was investigated by TEM and SEM. The nanocomposites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nanocomposites was significantly increased by incorporation of nanoclay into the polymer matrix. DSC results reveal that the Tg was shifted to higher values, gradually with increasing the amount of filler in the nanocomposites. Tensile strength and Young's modulus of the nanocomposites showed remarkable improvement compared to the neat POBUA.« less

  2. Synthesis of transparent nanocomposite monoliths for gamma scintillation

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Hajagos, Tibor J.; Kishpaugh, David; Jin, Yunxia; Hu, Wei; Chen, Qi; Pei, Qibing

    2015-08-01

    During the past decade, inorganic nanoparticles/polymer nanocomposites have been intensively studied to provide a low cost, high performance alternative for gamma scintillation. However, the aggregation of nanoparticles often occurs even at low nanoparticle concentrations and thus deteriorates the transparency and performance of these nanocomposite scintillators. Here we report an efficient fabrication protocol of transparent nanocomposite monoliths based on surface modified hafnium oxide nanoparticles. Using hafnium oxide nanoparticles with surface-grafted methacrylate groups, highly transparent bulk-size nanocomposite monoliths (2 mm thick, transmittance at 550 nm >75%) are fabricated with nanoparticle loadings up to 40 wt% (net hafnium wt% up to 28.5%). These nanocomposite monoliths of 1 cm diameter and 2 mm thickness are capable of producing a full energy photopeak for 662 keV gamma rays, with the best deconvoluted photopeak energy resolution reaching 8%.

  3. Effect of Few-Layered Graphene-Based CdO Nanocomposite-Enhanced Power Conversion Efficiency of Dye-Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Bykkam, Satish; Kalagadda, Bikshalu; Kalagadda, Venkateswara Rao; Ahmadipour, Mohsen; Chakra, Ch. Shilpa; Rajendar, V.

    2018-01-01

    A few-layered graphene (FLG)/cadmium oxide (CdO) nanocomposite was sucessfully prepared through ultrasonic-assisted synthesis. The morphology of FLG (1.0 wt.%, 2.0 wt.%, and 3.0 wt.%)/CdO nanocomposites were characterized using high-resolution transmission electron microscopy and field emission scanning electron microscopy techniques. The optical properties were studied with the help of UV-Vis diffuse reflectance spectroscopy and Raman spectroscopy, while the crystalline phases were analyzed using x-ray diffraction. The doctor blade method was used to deposit FLG/CdO nanocomposites on fluorine-doped tin oxide conductive glass substrates. The effect of FLG weight percentage (1.0 wt.%, 2.0 wt.%, and 3.0 wt.%) was studied on the power conversion efficiency of dye-sensitized solar cell applications. The photovoltaic characteristics, current density-voltage curves were measured with ruthenium (II)-based dye under air mass condition 1.5G, 100 m W m-2 of a solar simulator. The results showed that higher power conversion efficiency of 3.54% was achieved at the appropriate weight percentage of FLG (1.0 wt.%)/CdO nanocomposite, compared to the CdO and other nanocomposite working electrodes FLG (2.0 wt.%, and 3.0 wt.%)/CdO.

  4. An electrochemical sensor for detection of neurotransmitter-acetylcholine using metal nanoparticles, 2D material and conducting polymer modified electrode.

    PubMed

    Chauhan, Nidhi; Chawla, Sheetal; Pundir, C S; Jain, Utkarsh

    2017-03-15

    An essential biological sensor for acetylcholine (ACh) detection is constructed by immobilizing enzymes, acetylcholinesterase (AChE) and choline oxidase (ChO), on the surface of iron oxide nanoparticles (Fe 2 O 3 NPs), poly(3,4-ethylenedioxythiophene) (PEDOT)-reduced graphene oxide (rGO) nanocomposite modified fluorine doped tin oxide (FTO). The qualitative and quantitative measurements of nanocomposites properties were accomplished by scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). This prepared biological sensor delineated a wide linear range of 4.0nM to 800μM with a response time less than 4s and detection limit (based on S/N ratio) of 4.0nM. The sensor showed perfect sensitivity, excessive selectivity and stability for longer period of time during storage. Besides its very high-sensitivity, the biosensor has displayed a low detection limit which is reported for the first time in comparison to previously reported ACh sensors. By fabricating Fe 2 O 3 NPs/rGO/PEDOT modified FTO electrode for determining ACh level in serum samples, the applicability of biosensor has increased immensely as the detection of the level neurotransmitter is first priority for patients suffering from memory loss or Alzheimer's disease (AD). Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Carbon-based nanocomposites with aptamer-templated silver nanoclusters for the highly sensitive and selective detection of platelet-derived growth factor.

    PubMed

    Zhang, Zhihong; Guo, Chuanpan; Zhang, Shuai; He, Linghao; Wang, Minghua; Peng, Donglai; Tian, Junfeng; Fang, Shaoming

    2017-03-15

    We synthesized two kinds of carbon-based nanocomposites of silver nanoclusters (AgNCs). An aptamer for targeted platelet-derived growth factor-BB (PDGF-BB) detection was used as the organic phase to produce AgNCs@Apt, three dimensional reduced graphene oxide@AgNCs@Aptamer (3D-rGO@AgNCs@Apt), and graphene quantum dots@AgNCs@Aptamer (GQD@AgNCs@Apt) nanocomposites. The formation mechanism of the developed nanocomposites was described by detailed characterizations of their chemical and crystal structures. Subsequently, the as-synthesized nanoclusters containing aptamer strands were applied as the sensitive layers to fabricate a novel electrochemical aptasensor for the detection of PDGF-BB, which may be directly used to determine the target protein. Electrochemical impedance spectra showed that the developed 3D-rGO@AgNCs@Apt-based biosensor exhibited the highest sensitivity for PDGF-BB detection among three kinds of fabricated aptasensors, with an extremely low detection limit of 0.82pgmL -1 . In addition, the 3D-rGO@AgNCs@Apt-based biosensor showed high selectivity, stability, and applicability for the detection of PDGF-BB. This finding indicated that the AgNC-based nanocomposites prepared by a one-step method could be used as an electrochemical biosensor for various detection procedures in the biomedical field. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Spectral properties of nanocomposites based on fluorine-containing polymer and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Barmina, E. V.; Mel’nik, N. N.; Rakov, I. I.; Ivanov, V. E.; Simakin, A. V.; Gudkov, S. V.; Shafeev, G. A.

    2018-04-01

    The optical properties of nanocomposites of gold nanoparticles and fluorine-containing polymer have been studied. Gold nanoparticles were obtained by laser ablation of gold or terbium targets in organic solvents. The thus formed colloidal solutions were used to prepare nanocomposites of gold nanoparticles in polymer matrices of transparent and colorless fluorine-containing polymer. The polymer matrix is found to promote aggregation of nanoparticles of metal under study into elongated chains. In turn, metal nanoparticles influence on the polymer matrix. Gold nanoparticles amplify the Raman signal of the polymer matrix. In addition, the Raman spectra of nanocomposites indicate aggregation of disordered carbon around the nanoparticles obtained by laser ablation in organic solvents.

  7. Tunable green graphene-silk biomaterials: Mechanism of protein-based nanocomposites.

    PubMed

    Wang, Fang; Jyothirmayee Aravind, S S; Wu, Hao; Forys, Joseph; Venkataraman, Venkat; Ramanujachary, Kandalam; Hu, Xiao

    2017-10-01

    Green graphene materials prepared by photoreduction of graphite oxide were first time blended with aqueous-based silk fibroin proteins to improve the mechanical and thermal properties of silk biomaterials, and their nanocomposite interaction mechanism was illustrated. Powder X-ray diffraction (XRD) analysis confirmed the complete exfoliation of graphite oxide to graphene in presence of focused pulses of solar radiation. By varying the concentration of graphene (0.1wt% to 10wt%), a series of free standing graphene-silk films were prepared and were systematically characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and nanoindentation measurements. The homogeneity of graphene in silk as well as the thermal stability of the composite films was demonstrated by thermal gravimetric analysis (TGA) and temperature-modulated differential scanning calorimetry (TMDSC). Surprisingly, silk composite film containing only 0.5wt% of graphene gives the highest Young's modulus of 1.65GPa (about 5.8 times higher than the pure silk's modulus), indicating a nano-composite to micro-composite transition of silk-graphene structure occurred around this mixing ratio. This finding provided an easy approach to improve the elastic modulus and other physical properties of silk materials by adding a tiny amount of graphene sheets. Fibroblast cells studies also proved that these graphene-silk materials can significantly improve cell adhesion, growth and proliferation. This protein nanocomposite study provided a useful model to understand how to manipulate the hydrophobic-hydrophobic and polar-polar interactions between high-surface-area inorganic nanomaterials and amphiphilic protein materials, which has many emerging applications in the material science and engineering, such as bio-device fabrication, drug storage and release, and tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Nanocomposites based on pH-sensitive hydrogels and chitosan decorated carbon nanotubes with antibacterial properties.

    PubMed

    Bellingeri, Romina; Mulko, Lucinda; Molina, Maria; Picco, Natalia; Alustiza, Fabrisio; Grosso, Carolina; Vivas, Adriana; Acevedo, Diego F; Barbero, Cesar A

    2018-09-01

    The present work aimed to study the properties of a novel nanocomposite with promising biomedical applications. Nanocomposites were prepared by the addition of different concentrations of chitosan decorated carbon nanotubes to acrylamide-co-acrylic acid hydrogels. The nanocomposites chemical structure was characterized by Fourier Transform Infrared Spectroscopy (FT-IR). The FT-IR shows the typical bands due to the hydrogel and additionally the peaks at 1750 cm -1 and 1450 cm -1 that correspond to the carbon nanotubes incorporated into the polymer matrix. Mechanical properties and swelling measurements in different buffer solutions were also performed. The nanocomposites showed improved mechanical properties and a stronger pH-response. In order to evaluate antimicrobial activity, the growth and adhesion of Staphylococcus aureus to nanocomposites were studied. Cytocompatibility was also evaluated by MTT assay on MDCK and 3T3 cell lines. The nanocomposites were found to be cytocompatible and showed a reduced bacterial colonization. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Indium oxide based fiber optic SPR sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Sarika; Sharma, Navneet K., E-mail: navneetk.sharma@jiit.ac.in

    2016-05-06

    Surface plasmon resonance based fiber optic sensor using indium oxide layer is presented and theoretically studied. It has been found that with increase in thickness of indium oxide layer beyond 170 nm, the sensitivity of SPR sensor decreases. 170 nm thick indium oxide layer based SPR sensor holds maximum sensitivity.

  10. Graphene-Silver-Induced Self-Polarized PVDF-Based Flexible Plasmonic Nanogenerator Toward the Realization for New Class of Self Powered Optical Sensor.

    PubMed

    Sinha, Tridib Kumar; Ghosh, Sujoy Kumar; Maiti, Rishi; Jana, Santanu; Adhikari, Basudam; Mandal, Dipankar; Ray, Samit K

    2016-06-22

    Plasmonic characteristics of graphene-silver (GAg) nanocomposite coupled with piezoelectric property of Poly(vinylidene fluoride) (PVDF) have been utilized to realize a new class of self-powered flexible plasmonic nanogenerator (PNG). A few layer graphene has been prepared in a facile and cost-effective method and GAg doped PVDF hybrid nanocomposite (PVGAg) is synthesized in a one-pot method. The PNG exhibits superior piezoelectric energy conversion efficiency (∼15%) under the dark condition. The plasmonic behavior of GAg nanocomposite makes the PNG highly responsive to the visible light illumination that leads to ∼50% change in piezo-voltage and ∼70% change in piezo-current, leading to enhanced energy conversion efficiency up to ∼46.6%. The piezoelectric throughput of PNG (e.g., capacitor charging performance) has been monitored during the detection of the different wavelengths of visible light illumination and showed maximum selectivity to the green light. The simultaneous mechanical energy harvesting and visible-light detection capabilities of the PNG are attractive for futuristic self-powered optoelectronic smart sensors and devices.

  11. Synthesis of ZnO nanorods and observation of resistive switching memory in ZnO based polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Nair, Manjula G.; Malakar, Meenakshi; Mohapatra, Saumya R.; Chowdhury, Avijit

    2018-05-01

    This research reports the observation of bipolar resistive switching memory in ZnO nanorod based polymer nanocomposites. We synthesized ZnO nanorods by wet-chemical method and characterized them using XRD, UV-VIS spectroscopy and SEM. The synthesized materials have hexagonal ZnO phase with grain size of 24 nm and having strong orientation along (101) direction as observed from XRD. The SEM micrograph confirms the formation of ZnO nanorods with diameter in the range of 10 to 20 nm and length of the order of 1 µm. From optical absorption spectra the band gap is estimated to be 2.42 eV. ZnO nanorods were dispersed in PVDF-HFP polymer matrix to prepare the nanocomposite. This nanocomposite was used as active layer in the devices having sandwich structure of ITO/PVDF-HFP+ZnO nanorods/Al. Bipolar non-volatile memory was observed with ON-OFF resistance ratio of the order of 103 and with a wide voltage window of 2.3V. The switching mechanism could be due to the trapping and de-trapping of electrons by the ZnO nanorods in the nanocomposite during ON and OFF states respectively.

  12. A novel glucose biosensor platform based on Ag@AuNPs modified graphene oxide nanocomposite and SERS application.

    PubMed

    Gupta, Vinod Kumar; Atar, Necip; Yola, Mehmet Lütfi; Eryılmaz, Merve; Torul, Hilal; Tamer, Uğur; Boyacı, Ismail Hakkı; Ustündağ, Zafer

    2013-09-15

    This study represents a novel template demonstration of a glucose biosensor based on mercaptophenyl boronic acid (MBA) terminated Ag@AuNPs/graphene oxide (Ag@AuNPs-GO) nanomaterials. The nanocomposites were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) method. The TEM image shows that Ag@AuNPs in the nanocomposite is in the range of diameters of 10-20 nm. The nanocomposite was used for the determination of glucose through the complexation between boronic acid and diol groups of glucose. Thus, a novel glucose biosensor was further fabricated by immobilizing glucose oxidase (GOD) into MBA terminated Ag@AuNPs-GO nanocomposite film (MBA-Ag@AuNPs-GO). The linearity range of glucose was obtained as 2-6mM with detection limit of 0.33 mM. The developed biosensor was also applied successfully for the determination of glucose in blood samples. The concentration value of glucose in blood samples was calculated to be 1.97±0.002 mM from measurements repeated for six times. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Reagentless, Structure-Switching, Electrochemical Aptamer-Based Sensors

    NASA Astrophysics Data System (ADS)

    Schoukroun-Barnes, Lauren R.; Macazo, Florika C.; Gutierrez, Brenda; Lottermoser, Justine; Liu, Juan; White, Ryan J.

    2016-06-01

    The development of structure-switching, electrochemical, aptamer-based sensors over the past ˜10 years has led to a variety of reagentless sensors capable of analytical detection in a range of sample matrices. The crux of this methodology is the coupling of target-induced conformation changes of a redox-labeled aptamer with electrochemical detection of the resulting altered charge transfer rate between the redox molecule and electrode surface. Using aptamer recognition expands the highly sensitive detection ability of electrochemistry to a range of previously inaccessible analytes. In this review, we focus on the methods of sensor fabrication and how sensor signaling is affected by fabrication parameters. We then discuss recent studies addressing the fundamentals of sensor signaling as well as quantitative characterization of the analytical performance of electrochemical aptamer-based sensors. Although the limits of detection of reported electrochemical aptamer-based sensors do not often reach that of gold-standard methods such as enzyme-linked immunosorbent assays, the operational convenience of the sensor platform enables exciting analytical applications that we address. Using illustrative examples, we highlight recent advances in the field that impact important areas of analytical chemistry. Finally, we discuss the challenges and prospects for this class of sensors.

  14. Polymer-Based Nanocomposites: An Internship Program for Deaf and Hard of Hearing Students

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Cherdack, Daniel; Seyhan Ince-Gunduz, B.; Guertin, Robert; Haas, Terry; Valluzzi, Regina

    2007-03-01

    We report on our summer internship program in Polymer-Based Nanocomposites, for deaf and hard of hearing undergraduates who engage in classroom and laboratory research work in polymer physics. The unique attributes of this program are its emphasis on: 1. Teamwork; 2. Performance of a start-to-finish research project; 3. Physics of materials approach; and 4. Diversity. Students of all disability levels have participated in this program, including students who neither hear nor voice. The classroom and laboratory components address the materials chemistry and physics of polymer-based nanocomposites, crystallization and melting of polymers, the interaction of X-rays and light with polymers, mechanical properties of polymers, and the connection between thermal processing, structure, and ultimate properties of polymers. A set of Best Practices is developed for accommodating deaf and hard of hearing students into the laboratory setting. The goal is to bring deaf and hard of hearing students into the larger scientific community as professionals, by providing positive scientific experiences at a formative time in their educational lives.

  15. Switchable 3-0 magnetoelectric nanocomposite thin film with high coupling.

    PubMed

    McDannald, Austin; Ye, Linghan; Cantoni, Claudia; Gollapudi, Sreenivasulu; Srinivasan, Gopalan; Huey, Bryan D; Jain, Menka

    2017-03-02

    A mixed precursor solution method was used to deposit 3-0 nanocomposite thin films of PbZr 0.52 Ti 0.48 O 3 (PZT) and CoFe 2 O 4 (CFO). The piezoelectric behavior of PZT and magnetostrictive behavior of CFO allow for magnetoelectric (ME) coupling through strain transfer between the respective phases. High ME coupling is desired for many applications including memory devices, magnetic field sensors, and energy harvesters. The spontaneous phase separation in the 3-0 nanocomposite film was observed, with 25 nm CFO particle or nanophases distributed in discrete layers through the thickness of the PZT matrix. Magnetic-force microscopy images of the nanocomposite thin film under opposite magnetic poling conditions revealed in-plane pancake-like regions of higher concentration of the CFO nanoparticles. The constraints on the size and distribution of the CFO nanoparticles created a unique distribution in a PZT matrix and achieved values of ME coupling of 3.07 V cm -1 Oe -1 at a DC bias of 250 Oe and 1 kHz, increasing up to 25.0 V cm -1 Oe -1 at 90 kHz. Piezo-force microscopy was used to investigate the ferroelectric domain structure before and after opposite magnetic poling directions. It was found that in this nanocomposite, the polarization of the ferroelectric domains switched direction as a result of switching the direction of the magnetization by magnetic fields.

  16. The location and extent of exfoliation of clay on the fracture mechanisms in nylon 66-based ternary nanocomposites.

    PubMed

    Dasari, Aravind; Yu, Zhong-Zhen; Mai, Yiu-Wing; Yang, Mingshu

    2008-04-01

    The primary focus of this work is to elucidate the location and extent of exfoliation of clay on fracture (under both static and dynamic loading conditions) of melt-compounded nylon 66/clay/SEBS-g-MA ternary nanocomposites fabricated by different blending sequences. Distinct microstructures are obtained depending on the blending protocol employed. The state of exfoliation and dispersion of clay in nylon 66 matrix and SEBS-g-MA phase are quantified and the presence of clay in rubber is shown to have a negative effect on the toughness of the nanocomposites. The level of toughness enhancement of ternary nanocomposites depends on the blending protocol and the capability of different fillers to activate the plastic deformation mechanisms in the matrix. These mechanisms include: cavitation of SEBS-g-MA phase, stretching of voided matrix material, interfacial debonding of SEBS-g-MA particles, debonding of intercalated clay embedded inside the SEBS-g-MA phase, and delamination of intercalated clay platelets. Based on these results, new insights and approaches for the processing of better toughened polymer ternary nanocomposites are discussed.

  17. Biodegradability and swelling capacity of kaolin based chitosan-g-PHEMA nanocomposite hydrogel.

    PubMed

    Pradhan, Arun Kumar; Rana, Pradeep Kumar; Sahoo, Prafulla Kumar

    2015-03-01

    Chitosan, a natural biopolymer, obtained by alkaline deacetylation of chitin, exhibits excellent biological properties such as biodegradability, immunological and antibacterial activity. Recently, there has been a growing interest in the chemical modification of chitosan in order to widen its applications. The chemical modification of chitosan has been achieved via grafting of monomer, 2-hydroxyethyl methacrylate (HEMA) in the presence of the initiator, ammonium persulfate (APS) and kaolin was added to improve the mechanical strength of the newly developed nanocomposites hydrogel. The so prepared grafted nanocomposites hydrogel was characterized by FTIR, XRD, SEM, TEM and TGA. The equilibrium water content (EWC) of the samples were measured at different pH ranges 6.5-8.0 and found optimum at pH 7.5 for biomedical applications. Further, the biodegradability of the samples was studied at different time intervals from 15 days to 1 year but, the kaolin based nanohydrogels exhibited good biodegradability. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. LWT Based Sensor Node Signal Processing in Vehicle Surveillance Distributed Sensor Network

    NASA Astrophysics Data System (ADS)

    Cha, Daehyun; Hwang, Chansik

    Previous vehicle surveillance researches on distributed sensor network focused on overcoming power limitation and communication bandwidth constraints in sensor node. In spite of this constraints, vehicle surveillance sensor node must have signal compression, feature extraction, target localization, noise cancellation and collaborative signal processing with low computation and communication energy dissipation. In this paper, we introduce an algorithm for light-weight wireless sensor node signal processing based on lifting scheme wavelet analysis feature extraction in distributed sensor network.

  19. Sn-Based Nanocomposite for Li-Ion Battery Anode with High Energy Density, Rate Capability, and Reversibility.

    PubMed

    Park, Min-Gu; Lee, Dong-Hun; Jung, Heechul; Choi, Jeong-Hee; Park, Cheol-Min

    2018-03-27

    To design an easily manufactured, large energy density, highly reversible, and fast rate-capable Li-ion battery (LIB) anode, Co-Sn intermetallics (CoSn 2 , CoSn, and Co 3 Sn 2 ) were synthesized, and their potential as anode materials for LIBs was investigated. Based on their electrochemical performances, CoSn 2 was selected, and its C-modified nanocomposite (CoSn 2 /C) as well as Ti- and C-modified nanocomposite (CoSn 2 / a-TiC/C) was straightforwardly prepared. Interestingly, the CoSn 2 , CoSn 2 /C, and CoSn 2 / a-TiC/C showed conversion/nonrecombination, conversion/partial recombination, and conversion/full recombination during Li insertion/extraction, respectively, which were thoroughly investigated using ex situ X-ray diffraction and extended X-ray absorption fine structure analyses. As a result of the interesting conversion/full recombination mechanism, the easily manufactured CoSn 2 / a-TiC/C nanocomposite for the Sn-based Li-ion battery anode showed large energy density (first reversible capacity of 1399 mAh cm -3 ), high reversibility (first Coulombic efficiency of 83.2%), long cycling behavior (100% capacity retention after 180 cycles), and fast rate capability (appoximately 1110 mAh cm -3 at 3 C rate). In addition, degradation/enhancement mechanisms for high-capacity and high-performance Li-alloy-based anode materials for next-generation LIBs were also suggested.

  20. Plasma - enhanced dispersion of metal and ceramic nanoparticles in polymer nanocomposite films

    NASA Astrophysics Data System (ADS)

    Maguire, Paul; Liu, Yazi; Askari, Sadegh; Patel, Jenish; Macia-Montero, Manuel; Mitra, Somak; Zhang, Richao; Sun, Dan; Mariotti, Davide

    2015-09-01

    In this work we demonstrate a facile method to synthesize a nanoparticle/PEDOT:PSS hybrid nanocomposite material in aqueous solution through atmospheric pressure direct current (DC) plasma processing at room temperature. Both metal (Au) and ceramic (TiO2) nanoparticle composite films have been fabricated. Nanoparticle dispersion is enhanced considerable and remains stable. TiO2/polymer hybrid nanoparticles with a distinct core shell structure have been obtained. Increased nanoparticle/PEDOT:PSS nanocomposite electrical conductivity has been observed. The improvement in nanocomposite properties is due to the enhanced dispersion and stability in liquid polymer of microplasma processed Au or TiO2 nanoparticles. Both plasma induced surface charge and nanoparticle surface termination with specific plasma chemical species are thought to provide an enhanced barrier to nanoparticle agglomeration and promote nanoparticle-polymer bonding. This is expected to have a significant benefit in materials processing with inorganic nanoparticles for applications in energy storage, photocatalysis and biomedical sensors. Engineering and Physical Sciences Research Council (EPSRC: EP/K006088/1, EP/K006142, Nos. EP/K022237/1).

  1. Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent.

    PubMed

    Tamboli, Mohaseen S; Kulkarni, Milind V; Patil, Rajendra H; Gade, Wasudev N; Navale, Shalaka C; Kale, Bharat B

    2012-04-01

    Silver-polyaniline (Ag-PANI) nanocomposite was synthesized by in situ polymerization method using ammonium persulfate (APS) as an oxidizing agent in the presence of dodecylbenzene sulfonic acid (DBSA) and silver nitrate (AgNO(3)). The as synthesized Ag-PANI nanocomposite was characterized by using different analytical techniques such as UV-visible (UV-vis) and Fourier transform Infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). UV-visible spectra of the synthesized nanocomposite showed a sharp peak at ~420 nm corresponding to the surface plasmon resonance (SPR) of the silver nanoparticles (AgNPs) embedded in the polymer matrix which is overlapped by the polaronic peak of polyaniline appearing at that wavelength. Nanowires of Ag-PANI nanocomposite with diameter 50-70 nm were observed in FE-SEM and TEM. TGA has indicated an enhanced thermal stability of nanocomposite as compared to that of pure polymer. The Ag-PANI nanocomposite has shown an antibacterial activity against model organisms, a gram positive Bacillus subtilis NCIM 6633 in Mueller-Hinton (MH) medium, which is hitherto unattempted. The Ag-PANI nanocomposite with monodispersed AgNPs is considered to have potential applications in sensors, catalysis, batteries and electronic devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/sewage sludge-based activated carbon nanocomposites

    NASA Astrophysics Data System (ADS)

    Rashed, M. Nageeb; Eltaher, M. A.; Abdou, A. N. A.

    2017-12-01

    Nanocomposite TiO2/ASS (TiO2 nanoparticle coated sewage sludge-based activated carbon) was synthesized by the sol-gel method. The changes in surface properties of the TiO2/ASS nanocomposite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence. The prepared TiO2/ASS nanocomposite was applied for simultaneous removal of methyl orange dye (MO) and Cd2+ from bi-pollutant solution. The factors influencing photocatalysis (TiO2 : ASS ratios, initial pollutant concentrations, solution pH, nanocomposite dosage and UV irradiation time) were investigated. The results revealed that high removal efficiency of methyl orange dye (MO) and Cd2+ from bi-pollutant solution was achieved with TiO2/ASS at a ratio (1 : 2). The obtained results revealed that degradation of MO dye on the TiO2/ASS nanocomposite was facilitated by surface adsorption and photocatalytic processes. The coupled photocatalysis and adsorption shown by TiO2/ASS nanocomposite resulted in faster and higher degradation of MO as compared to MO removal by ASS adsorbent. The removal efficiency of MO by ASS adsorbent and TiO2/ASS (1 : 2) nanocomposite at optimum pH value 7 were 74.14 and 94.28%, respectively, while for Cd2+ it was more than 90%. The experimental results fitted well with the second-order kinetic reaction.

  3. Copper-Nitrogen-Doped Graphene Hybrid as an Electrochemical Sensing Platform for Distinguishing DNA Bases.

    PubMed

    Sun, Shu-Wen; Liu, Hai-Ling; Zhou, Yue; Wang, Feng-Bin; Xia, Xing-Hua

    2017-10-17

    An electrochemical sensor using ultralight and porous copper-nitrogen-doped graphene (CuNRGO) nanocomposite as the electrocatalyst has been constructed to simultaneously determine DNA bases such as guanine (G) and cytosine (C), adenine (A), and thymine (T). The nanocomposite is synthesized by thermally annealing an ice-templated structure of graphene oxide (GO) and Cu(phen) 2 . Because of the unique structure and the presence of Cu 2+ -N active sites, the CuNRGO exhibits outstanding electrocatalytic activity toward the oxidation of free DNA bases. After optimizing the experimental conditions, the CuNRGO-based electrochemical sensor shows good linear responses for the G, A, T, and C bases in the concentration ranges of 0.132-6.62 μM, 0.37-5.18 μM, 198.2-5551 μM, and 270.0-1575 μM, respectively. The results demonstrate that CuNRGO is a promising electrocatalyst for electrochemical sensing devices.

  4. Study of injection molded microcellular polyamide-6 nanocomposites

    Treesearch

    Mingjun Yuan; Lih-Sheng Turng; Shaoqin Gong; Daniel Caulfield; Chris Hunt; Rick Spindler

    2004-01-01

    This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The microcellular nanocomposite processing was performed on an injection-molding machine equipped with a commercially available supercritical fluid (SCF) system. The molded samples produced based on the Design of Experiments (...

  5. Magnetic nanocomposites based on phosphorus-containing polymers—structural characterization and thermal analysis

    NASA Astrophysics Data System (ADS)

    Alosmanov, R. M.; Szuwarzyński, M.; Schnelle-Kreis, J.; Matuschek, G.; Magerramov, A. M.; Azizov, A. A.; Zimmermann, R.; Zapotoczny, S.

    2018-04-01

    Fabrication of magnetic nanocomposites containing iron oxide nanoparticles formed in situ within a phosphorus-containing polymer matrix as well as its structural characterization and its thermal degradation is reported here. Comparative structural studies of the parent polymer and nanocomposites were performed using FTIR spectroscopy, x-ray diffraction, and atomic force microscopy. The results confirmed the presence of dispersed iron oxide magnetic nanoparticles in the polymer matrix. The formed composite combines the properties of porous polymer carriers and magnetic particles enabling easy separation and reapplication of such polymeric carriers used in, for example, catalysis or environmental remediation. Studies on thermal degradation of the composites revealed that the process proceeds in three stages while a significant influence of the embedded magnetic particles on that process was observed in the first two stages. Magnetic force microscopy studies revealed that nanocomposites and its calcinated form have strong magnetic properties. The obtained results provide a comprehensive characterization of magnetic nanocomposites and the products of their calcination that are important for their possible applications as sorbents (regeneration conditions, processing temperature, disposal, etc).

  6. Observability-Based Guidance and Sensor Placement

    NASA Astrophysics Data System (ADS)

    Hinson, Brian T.

    Control system performance is highly dependent on the quality of sensor information available. In a growing number of applications, however, the control task must be accomplished with limited sensing capabilities. This thesis addresses these types of problems from a control-theoretic point-of-view, leveraging system nonlinearities to improve sensing performance. Using measures of observability as an information quality metric, guidance trajectories and sensor distributions are designed to improve the quality of sensor information. An observability-based sensor placement algorithm is developed to compute optimal sensor configurations for a general nonlinear system. The algorithm utilizes a simulation of the nonlinear system as the source of input data, and convex optimization provides a scalable solution method. The sensor placement algorithm is applied to a study of gyroscopic sensing in insect wings. The sensor placement algorithm reveals information-rich areas on flexible insect wings, and a comparison to biological data suggests that insect wings are capable of acting as gyroscopic sensors. An observability-based guidance framework is developed for robotic navigation with limited inertial sensing. Guidance trajectories and algorithms are developed for range-only and bearing-only navigation that improve navigation accuracy. Simulations and experiments with an underwater vehicle demonstrate that the observability measure allows tuning of the navigation uncertainty.

  7. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes.

    PubMed

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Yamakov, Vesselin I; Wise, Kristopher E; Lowther, Sharon E; Fay, Catharine C; Thibeault, Sheila A; Bryant, Robert G

    2015-12-22

    Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 °C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buckypaper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions.

  8. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Yamakov, Vesselin I.; Wise, Kristopher E.; Lowther, Sharon E.; Fay, Catharine C.; Thibeault, Sheila A.; Bryant, Robert G.

    2015-01-01

    Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buck-paper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions. utilizing the unique characteristics of BNNTs.

  9. Time temperature transformation diagram for secondary crystal products of Co-based Co-Fe-B-Si-Nb-Mn soft magnetic nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGeorge, V., E-mail: vdegeorge@cmu.edu; Zoghlin, E.; Keylin, V.

    2015-05-07

    Secondary crystallization is the subject of much investigation in magnetic amorphous and nanocomposites (MANCs) as it limits the long term and thermal stability of their operation in device applications, including power electronics, sensors, and electric motors. Secondary crystal products [Blazquez et al., Philos. Mag. Lett. 82(7), 409–417 (2002); Ohodnicki et al., Phys. Rev. B 78, 144414 (2008); Willard et al., Metall. Mater. Trans. A 38, 725 (2007)], nanostructure and crystallization kinetics [Hsiao et al., IEEE Trans. Magn. 38(5), 3039 (2002); McHenry et al., Scr. Mater. 48(7), 881 (2003)], and onset temperatures and activation energies [Ohodnicki et al., Acta. Mater. 57,more » 87 (2009); Long et al., J. Appl. Phys. 101, 09N114 (2007)] at constant heating have been reported for similar alloys. However, a time-temperature-transformation (TTT) diagram for isothermal crystallization, more typical of application environments, has not been reported in literature. Here, a TTT diagram for the Co based, Co-Fe-Si-Nb-B-Mn MANC system is presented, along with a method for determining such. The method accounts for the presence of primary crystal phases and yields crystal fraction of secondary phase(s) by using a novel four stage heating profile. The diagram, affirmed by Kissinger activation energy analysis, reports thermal stability of the MANC for millennia at conventional device operating temperatures, and stability limits less than a minute at elevated temperatures. Both extremes are necessary to be able to avoid secondary crystalline products and establish operating limits for this mechanically attractive, high induction soft magnetic nanocomposite.« less

  10. Pd-Ni-MWCNT nanocomposite thin films: preparation and structure

    NASA Astrophysics Data System (ADS)

    Kozłowski, Mirosław; Czerwosz, ElŻbieta; Sobczak, Kamil

    2017-08-01

    The properties of nanocomposite palladium-nickel-multi-walled (Pd-Ni-MWCNT) films deposited on aluminum oxide (Al2O3) substrate have been prepared and investigated. These films were obtained by 3 step process consisted of PVD/CVD/PVD methods. The morphology and structure of the obtained films were characterized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques at various stages of the film formation. EDX spectrometer was used to measurements of elements segregation in the obtained film. TEM and STEM (Scanning Transmission Electron Microscopy) observations showed MWCNTs decorated with palladium nanoparticles in the film obtained in the last step of film formation (final PVD process). The average size of the palladium nanoparticles observed both on MWCNTs and carbonaceous matrix does not exceed 5 nm. The research was conducted on the use of the obtained films as potential sensors of gases (e.g. H2, NH3, CO2) and bio-sensors or optical sensors.

  11. A fluidics-based impact sensor

    PubMed Central

    Takahashi, Daigo; Hara, Keisuke; Okano, Taiji

    2018-01-01

    Microelectromechanical systems (MEMS)-based high-performance accelerometers are ubiquitously used in various electronic devices. However, there is an existing need to detect physical impacts using low-cost devices with no electronic circuits or a battery. We designed and fabricated an impact sensor prototype using a commercial stereolithography apparatus that only consists of a plastic housing and working fluids. The sensor device responds to the instantaneous acceleration (impact) by deformation and pinch off of a water droplet that is suspended in oil in a sensor cavity. We tested the various geometrical and physical parameters of the impact sensor to identify their relations to threshold acceleration values. We show that the state diagram that is plotted against the dimensionless Archimedes and Bond numbers adequately describes the response of the proposed sensor. PMID:29634750

  12. Strength and fatigue life evaluation of composite laminate with embedded sensors

    NASA Astrophysics Data System (ADS)

    Rathod, Vivek T.; Hiremath, S. R.; Roy Mahapatra, D.

    2014-04-01

    Prognosis regarding durability of composite structures using various Structural Health Monitoring (SHM) techniques is an important and challenging topic of research. Ultrasonic SHM systems with embedded transducers have potential application here due to their instant monitoring capability, compact packaging potential toward unobtrusiveness and noninvasiveness as compared to non-contact ultrasonic and eddy current techniques which require disassembly of the structure. However, embedded sensors pose a risk to the structure by acting as a flaw thereby reducing life. The present paper focuses on the determination of strength and fatigue life of the composite laminate with embedded film sensors like CNT nanocomposite, PVDF thin films and piezoceramic films. First, the techniques of embedding these sensors in composite laminates is described followed by the determination of static strength and fatigue life at coupon level testing in Universal Testing Machine (UTM). Failure mechanisms of the composite laminate with embedded sensors are studied for static and dynamic loading cases. The coupons are monitored for loading and failure using the embedded sensors. A comparison of the performance of these three types of embedded sensors is made to study their suitability in various applications. These three types of embedded sensors cover a wide variety of applications, and prove to be viable in embedded sensor based SHM of composite structures.

  13. Recent progress in graphene-material-based optical sensors.

    PubMed

    Deng, Xianghua; Tang, Hao; Jiang, Jianhui

    2014-11-01

    Graphene material has been widely used for optical sensors owing to its excellent properties, including high-energy transfer efficiency, large surface area, and great biocompatibility. Different analytes such as nucleic acids, proteins, and small molecules can be detected by graphene-material-based optical sensors. This review provides a comprehensive discussion of graphene-material-based optical sensors focusing on detection mechanisms and biosensor designs. Challenges and future perspectives for graphene-material-based optical sensors are also presented.

  14. Highly tensile-strained Ge/InAlAs nanocomposites

    NASA Astrophysics Data System (ADS)

    Jung, Daehwan; Faucher, Joseph; Mukherjee, Samik; Akey, Austin; Ironside, Daniel J.; Cabral, Matthew; Sang, Xiahan; Lebeau, James; Bank, Seth R.; Buonassisi, Tonio; Moutanabbir, Oussama; Lee, Minjoo Larry

    2017-01-01

    Self-assembled nanocomposites have been extensively investigated due to the novel properties that can emerge when multiple material phases are combined. Growth of epitaxial nanocomposites using lattice-mismatched constituents also enables strain-engineering, which can be used to further enhance material properties. Here, we report self-assembled growth of highly tensile-strained Ge/In0.52Al0.48As (InAlAs) nanocomposites by using spontaneous phase separation. Transmission electron microscopy shows a high density of single-crystalline germanium nanostructures coherently embedded in InAlAs without extended defects, and Raman spectroscopy reveals a 3.8% biaxial tensile strain in the germanium nanostructures. We also show that the strain in the germanium nanostructures can be tuned to 5.3% by altering the lattice constant of the matrix material, illustrating the versatility of epitaxial nanocomposites for strain engineering. Photoluminescence and electroluminescence results are then discussed to illustrate the potential for realizing devices based on this nanocomposite material.

  15. Highly tensile-strained Ge/InAlAs nanocomposites

    PubMed Central

    Jung, Daehwan; Faucher, Joseph; Mukherjee, Samik; Akey, Austin; Ironside, Daniel J.; Cabral, Matthew; Sang, Xiahan; Lebeau, James; Bank, Seth R.; Buonassisi, Tonio; Moutanabbir, Oussama; Lee, Minjoo Larry

    2017-01-01

    Self-assembled nanocomposites have been extensively investigated due to the novel properties that can emerge when multiple material phases are combined. Growth of epitaxial nanocomposites using lattice-mismatched constituents also enables strain-engineering, which can be used to further enhance material properties. Here, we report self-assembled growth of highly tensile-strained Ge/In0.52Al0.48As (InAlAs) nanocomposites by using spontaneous phase separation. Transmission electron microscopy shows a high density of single-crystalline germanium nanostructures coherently embedded in InAlAs without extended defects, and Raman spectroscopy reveals a 3.8% biaxial tensile strain in the germanium nanostructures. We also show that the strain in the germanium nanostructures can be tuned to 5.3% by altering the lattice constant of the matrix material, illustrating the versatility of epitaxial nanocomposites for strain engineering. Photoluminescence and electroluminescence results are then discussed to illustrate the potential for realizing devices based on this nanocomposite material. PMID:28128282

  16. Nanocomposites and bone regeneration

    NASA Astrophysics Data System (ADS)

    James, Roshan; Deng, Meng; Laurencin, Cato T.; Kumbar, Sangamesh G.

    2011-12-01

    This manuscript focuses on bone repair/regeneration using tissue engineering strategies, and highlights nanobiotechnology developments leading to novel nanocomposite systems. About 6.5 million fractures occur annually in USA, and about 550,000 of these individual cases required the application of a bone graft. Autogenous and allogenous bone have been most widely used for bone graft based therapies; however, there are significant problems such as donor shortage and risk of infection. Alternatives using synthetic and natural biomaterials have been developed, and some are commercially available for clinical applications requiring bone grafts. However, it remains a great challenge to design an ideal synthetic graft that very closely mimics the bone tissue structurally, and can modulate the desired function in osteoblast and progenitor cell populations. Nanobiomaterials, specifically nanocomposites composed of hydroxyapatite (HA) and/or collagen are extremely promising graft substitutes. The biocomposites can be fabricated to mimic the material composition of native bone tissue, and additionally, when using nano-HA (reduced grain size), one mimics the structural arrangement of native bone. A good understanding of bone biology and structure is critical to development of bone mimicking graft substitutes. HA and collagen exhibit excellent osteoconductive properties which can further modulate the regenerative/healing process following fracture injury. Combining with other polymeric biomaterials will reinforce the mechanical properties thus making the novel nano-HA based composites comparable to human bone. We report on recent studies using nanocomposites that have been fabricated as particles and nanofibers for regeneration of segmental bone defects. The research in nanocomposites, highlight a pivotal role in the future development of an ideal orthopaedic implant device, however further significant advancements are necessary to achieve clinical use.

  17. Effect of surfactant concentration on the ultraviolet sensing properties of ZnO-cellulose nanocomposites

    NASA Astrophysics Data System (ADS)

    Sahoo, Karunakar; Nayak, J.

    2018-05-01

    ZnO nanoparticles were grown, on cellulose fiber surfaces, at three different concentrations of hexamethylenetetramine by an aqueous chemical method. A typical ZnO-cellulose nanocomposite showed an enhanced UV sensing activity due to its large surface area. Due to illumination with ultraviolet light, the surface photocurrent of ZnO-cellulose nanocomposite pellet increased from 8.90 × 10‒7 A to 3.18 × 10‒5 A in 15 s. The UV ON to OFF (IUV/IDark) ratio for this sample was 35.73. Hence, an enhancement in the conductivity due to UV illumination shows that our ZnO-cellulose can be used for the fabrication of UV sensors.

  18. Production and characterization of a new biodegradable fenugreek seed gum based active nanocomposite film reinforced with nanoclays.

    PubMed

    Memiş, Saliha; Tornuk, Fatih; Bozkurt, Fatih; Durak, M Zeki

    2017-10-01

    In the present work, fenugreek seed gum (FSG)/clay nanocomposite films were prepared with nanoclays (Na + montmorillonite [MMT], halloysite [HNT] and Nanomer ® I.44 P [NM]) at different amounts (0, 2.5, 5.0 and 7.5g clay/100g FSG) by solution casting method and characterized. Increasing amount of nanoclay significantly (P<0.05) improved oxygen barrier and thermal properties of the biodegradable films. Agar diffusion tests revealed that FSG based nanocomposite films exhibited strong antimicrobial properties against foodborne pathogens namely Listeria monocytogenes, Escherichia coli O157:H7, Staphylococcus aureus and Bacillus cereus independently of clay type and concentration. In the case of mechanical properties, nanoclay incorporation up to 5% provided higher (P<0.05) tensile strength (TS) properties while elongation at break (EB) values of the films significantly (P<0.05) decreased in the presence of clay in the film matrix. SEM micrographs showed that especially lower levels (up to 5%) of nanoclay reinforcements provided a homogeneous and smooth film structure. In conclusion, FSG based nanocomposite films reinforced with nanoclays up to 5% showed a precious potential to be used in antimicrobial food packaging applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Reversible Bending Behaviors of Photomechanical Soft Actuators Based on Graphene Nanocomposites.

    PubMed

    Niu, Dong; Jiang, Weitao; Liu, Hongzhong; Zhao, Tingting; Lei, Biao; Li, Yonghao; Yin, Lei; Shi, Yongsheng; Chen, Bangdao; Lu, Bingheng

    2016-06-06

    Photomechanical nanocomposites embedded with light-absorbing nanoparticles show promising applications in photoresponsive actuations. Near infrared (nIR)-responsive nanocomposites based photomechanical soft actuators can offer lightweight functional and underexploited entry into soft robotics, active optics, drug delivery, etc. A novel graphene-based photomechanical soft actuators, constituted by Polydimethylsiloxane (PDMS)/graphene-nanoplatelets (GNPs) layer (PDMS/GNPs) and pristine PDMS layer, have been constructed. Due to the mismatch of coefficient of thermal expansion of two layers induced by dispersion of GNPs, controllable and reversible bendings response to nIR light irradiation are observed. Interestingly, two different bending behaviors are observed when the nIR light comes from different sides, i.e., a gradual single-step photomechanical bending towards PDMS/GNPs layer when irradiation from PDMS side, while a dual-step bending (finally bending to the PDMS/GNPs side but with an strong and fast backlash at the time of light is on/off) when irradiation from PDMS/GNPs side. The two distinctive photomechanical bending behaviors are investigated in terms of heat transfer and thermal expansion, which reveals that the distinctive bending behaviors can be attributed to the differences in temperature gradients along the thickness when irradiation from different sides. In addition, the versatile photomechanical bending properties will provide alternative way for drug-delivery, soft robotics and microswitches, etc.

  20. Reversible Bending Behaviors of Photomechanical Soft Actuators Based on Graphene Nanocomposites

    PubMed Central

    Niu, Dong; Jiang, Weitao; Liu, Hongzhong; Zhao, Tingting; Lei, Biao; Li, Yonghao; Yin, Lei; Shi, Yongsheng; Chen, Bangdao; Lu, Bingheng

    2016-01-01

    Photomechanical nanocomposites embedded with light-absorbing nanoparticles show promising applications in photoresponsive actuations. Near infrared (nIR)-responsive nanocomposites based photomechanical soft actuators can offer lightweight functional and underexploited entry into soft robotics, active optics, drug delivery, etc. A novel graphene-based photomechanical soft actuators, constituted by Polydimethylsiloxane (PDMS)/graphene-nanoplatelets (GNPs) layer (PDMS/GNPs) and pristine PDMS layer, have been constructed. Due to the mismatch of coefficient of thermal expansion of two layers induced by dispersion of GNPs, controllable and reversible bendings response to nIR light irradiation are observed. Interestingly, two different bending behaviors are observed when the nIR light comes from different sides, i.e., a gradual single-step photomechanical bending towards PDMS/GNPs layer when irradiation from PDMS side, while a dual-step bending (finally bending to the PDMS/GNPs side but with an strong and fast backlash at the time of light is on/off) when irradiation from PDMS/GNPs side. The two distinctive photomechanical bending behaviors are investigated in terms of heat transfer and thermal expansion, which reveals that the distinctive bending behaviors can be attributed to the differences in temperature gradients along the thickness when irradiation from different sides. In addition, the versatile photomechanical bending properties will provide alternative way for drug-delivery, soft robotics and microswitches, etc. PMID:27265380

  1. Synthesis of gold-cellobiose nanocomposites for colorimetric measurement of cellobiase activity.

    PubMed

    Lai, Cui; Zeng, Guang-Ming; Huang, Dan-Lian; Zhao, Mei-Hua; Wei, Zhen; Huang, Chao; Xu, Piao; Li, Ning-Jie; Zhang, Chen; Chen, Ming; Li, Xue; Lai, Mingyong; He, Yibin

    2014-11-11

    Gold-cellobiose nanocomposites (GCNCs) were synthesized by reducing gold salt with a polysaccharide, cellobiose. Here, cellobiose acted as a controller of nucleation or stabilizer in the formation of gold nanoparticles. The obtained GCNCs were characterized with UV-visible spectroscopy; Zetasizer and Fourier transform infrared (FT-IR) spectrophotometer. Moreover, 6-Mercapto-1-hexanol (MCH) was modified on GCNCs, and the MCH-GCNCs were used to determine the cellobiase activity in compost extracts based on the surface plasmon resonance (SPR) property of MCH-GCNCs. The degradation of cellobiose on MCH-GCNCs by cellobiase could induce the aggregation, and the SPR absorption wavelength of MCH-GCNCs correspondingly red shifted. Thus, the absorbance ratio of treated MCH-GCNCs (A650/A520) could be used to estimate the cellobiase activity, and the probe exhibited highly sensitive and selective detection of the cellobiase activity with a wide linear from 3.0 to 100.0U L(-1) within 20 min. Meanwhile, a good linear relationship with correlation coefficient of R2=0.9976 was obtained. This approach successfully showed the suitability of gold nanocomposites as a colorimetric sensor for the sensitive and specific enzyme activity detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Li, Zijiong; Zhou, Zhihua; Yun, Gaoqian; Shi, Kai; Lv, Xiaowei; Yang, Baocheng

    2013-11-01

    In this paper, we report a facile low-cost synthesis of the graphene-ZnO hybrid nanocomposites for solid-state supercapacitors. Structural analysis revealed a homogeneous distribution of ZnO nanorods that are inserted in graphene nanosheets, forming a sandwiched architecture. The material exhibited a high specific capacitance of 156 F g-1 at a scan rate of 5 mV.s-1. The fabricated solid-state supercapacitor device using these graphene-ZnO hybrid nanocomposites exhibits good supercapacitive performance and long-term cycle stability. The improved supercapacitance property of these materials could be ascribed to the increased conductivity of ZnO and better utilization of graphene. These results demonstrate the potential of the graphene-ZnO hybrid nanocomposites as an electrode in high-performance supercapacitors.

  3. Synthesis of nanocomposites based on carbon nanotube/smart copolymer with nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Sousani, Abbas; Motiei, Hamideh; Najafimoghadam, Peyman; Hasanzade, Reza

    2017-05-01

    In this study new nanocompoites based on polyglycidylmethacrylate grafted 4-[(4-methoxyphenyl) diazenyl] phenol (Azo-PGMA) and Carboxylicacid functionalized multi-walled carbon nanotubes (MWCNT-COOH) were prepared. The nanocomposites structure was characterized by FT-IR, TGA and SEM. The Z-scan technique was applied for measuring the nonlinear parameters of nanocomposites. The samples after solving in AWM solution (equal ratio of acetone, deionized water and methanol) were investigated by using closed aperture Z-scan technique and a diode-pumped laser at the line 532 nm. All the nonlinear refractive index of the samples at three concentrations of carbon nanotubes in three different intensities of the laser beam were investigated and the nonlinear optical response of them are compared under the same condition. Because of high order of nonlinear refractive coefficient and good nonlinearity, these compounds are suitable candidate for optical switching, optical limiting and electro-optical devices.

  4. Nanocomposites for Machining Tools

    PubMed Central

    Loginov, Pavel; Mishnaevsky, Leon; Levashov, Evgeny

    2017-01-01

    Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance. PMID:29027926

  5. Methods of making non-covalently bonded carbon-titania nanocomposite thin films and applications of the same

    DOEpatents

    Liang, Yu Teng; Vijayan, Baiju K.; Gray, Kimberly A.; Hersam, Mark C.

    2016-07-19

    In one aspect, a method of making non-covalently bonded carbon-titania nanocomposite thin films includes: forming a carbon-based ink; forming a titania (TiO.sub.2) solution; blade-coating a mechanical mixture of the carbon-based ink and the titania solution onto a substrate; and annealing the blade-coated substrate at a first temperature for a first period of time to obtain the carbon-based titania nanocomposite thin films. In certain embodiments, the carbon-based titania nanocomposite thin films may include solvent-exfoliated graphene titania (SEG-TiO.sub.2) nanocomposite thin films, or single walled carbon nanotube titania (SWCNT-TiO.sub.2) nanocomposite thin films.

  6. Transmission-grating-based wavefront tilt sensor.

    PubMed

    Iwata, Koichi; Fukuda, Hiroki; Moriwaki, Kousuke

    2009-07-10

    We propose a new type of tilt sensor. It consists of a grating and an image sensor. It detects the tilt of the collimated wavefront reflected from a plane mirror. Its principle is described and analyzed based on wave optics. Experimental results show its validity. Simulations of the ordinary autocollimator and the proposed tilt sensor show that the effect of noise on the measured angle is smaller for the latter. These results show a possibility of making a smaller and simpler tilt sensor.

  7. Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/sewage sludge-based activated carbon nanocomposites

    PubMed Central

    Eltaher, M. A.; Abdou, A. N. A.

    2017-01-01

    Nanocomposite TiO2/ASS (TiO2 nanoparticle coated sewage sludge-based activated carbon) was synthesized by the sol-gel method. The changes in surface properties of the TiO2/ASS nanocomposite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence. The prepared TiO2/ASS nanocomposite was applied for simultaneous removal of methyl orange dye (MO) and Cd2+ from bi-pollutant solution. The factors influencing photocatalysis (TiO2 : ASS ratios, initial pollutant concentrations, solution pH, nanocomposite dosage and UV irradiation time) were investigated. The results revealed that high removal efficiency of methyl orange dye (MO) and Cd2+ from bi-pollutant solution was achieved with TiO2/ASS at a ratio (1 : 2). The obtained results revealed that degradation of MO dye on the TiO2/ASS nanocomposite was facilitated by surface adsorption and photocatalytic processes. The coupled photocatalysis and adsorption shown by TiO2/ASS nanocomposite resulted in faster and higher degradation of MO as compared to MO removal by ASS adsorbent. The removal efficiency of MO by ASS adsorbent and TiO2/ASS (1 : 2) nanocomposite at optimum pH value 7 were 74.14 and 94.28%, respectively, while for Cd2+ it was more than 90%. The experimental results fitted well with the second-order kinetic reaction. PMID:29308227

  8. Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/sewage sludge-based activated carbon nanocomposites.

    PubMed

    Rashed, M Nageeb; Eltaher, M A; Abdou, A N A

    2017-12-01

    Nanocomposite TiO 2 /ASS (TiO 2 nanoparticle coated sewage sludge-based activated carbon) was synthesized by the sol-gel method. The changes in surface properties of the TiO 2 /ASS nanocomposite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence. The prepared TiO 2 /ASS nanocomposite was applied for simultaneous removal of methyl orange dye (MO) and Cd 2+ from bi-pollutant solution. The factors influencing photocatalysis (TiO 2  : ASS ratios, initial pollutant concentrations, solution pH, nanocomposite dosage and UV irradiation time) were investigated. The results revealed that high removal efficiency of methyl orange dye (MO) and Cd 2+ from bi-pollutant solution was achieved with TiO 2 /ASS at a ratio (1 : 2). The obtained results revealed that degradation of MO dye on the TiO 2 /ASS nanocomposite was facilitated by surface adsorption and photocatalytic processes. The coupled photocatalysis and adsorption shown by TiO 2 /ASS nanocomposite resulted in faster and higher degradation of MO as compared to MO removal by ASS adsorbent. The removal efficiency of MO by ASS adsorbent and TiO 2 /ASS (1 : 2) nanocomposite at optimum pH value 7 were 74.14 and 94.28%, respectively, while for Cd 2+ it was more than 90%. The experimental results fitted well with the second-order kinetic reaction.

  9. Effects of nanoclay type on the physical and antimicrobial properties of PVOH-based nanocomposite films

    USDA-ARS?s Scientific Manuscript database

    Polyvinyl alcohols-based nanocomposite films were fabricated with four types of montmorillonite (MMT) nanoclay, including 18-amino stearic acid (I.24TL), methyl, bis hydroxyethyl, octadecyl ammonium (I.34TCN), di-methyl, di-hydrogenated tallow ammonium/siloxane (I.44PSS) organically modified MMT, an...

  10. Barrier and Mechanical Properties of Starch-Clay Nanocomposite Films

    USDA-ARS?s Scientific Manuscript database

    The poor barrier and mechanical properties of biopolymer-based food packaging can potentially be enhanced by the use of layered silicates (nanoclay) to produce nanocomposites. In this study, starch-clay nano-composites were synthesized by a melt extrusion method. Natural (MMT) and organically modifi...

  11. Physiological sensor signals classification for healthcare using sensor data fusion and case-based reasoning.

    PubMed

    Begum, Shahina; Barua, Shaibal; Ahmed, Mobyen Uddin

    2014-07-03

    Today, clinicians often do diagnosis and classification of diseases based on information collected from several physiological sensor signals. However, sensor signal could easily be vulnerable to uncertain noises or interferences and due to large individual variations sensitivity to different physiological sensors could also vary. Therefore, multiple sensor signal fusion is valuable to provide more robust and reliable decision. This paper demonstrates a physiological sensor signal classification approach using sensor signal fusion and case-based reasoning. The proposed approach has been evaluated to classify Stressed or Relaxed individuals using sensor data fusion. Physiological sensor signals i.e., Heart Rate (HR), Finger Temperature (FT), Respiration Rate (RR), Carbon dioxide (CO2) and Oxygen Saturation (SpO2) are collected during the data collection phase. Here, sensor fusion has been done in two different ways: (i) decision-level fusion using features extracted through traditional approaches; and (ii) data-level fusion using features extracted by means of Multivariate Multiscale Entropy (MMSE). Case-Based Reasoning (CBR) is applied for the classification of the signals. The experimental result shows that the proposed system could classify Stressed or Relaxed individual 87.5% accurately compare to an expert in the domain. So, it shows promising result in the psychophysiological domain and could be possible to adapt this approach to other relevant healthcare systems.

  12. Effect of heterocyclic based organoclays on the properties of polyimide-clay nanocomposites.

    PubMed

    Krishnan, P Santhana Gopala; Joshi, Mangala; Bhargava, Prachur; Valiyaveettil, Suresh; He, Chaobin

    2005-07-01

    Polyimide-clay nanocomposites were prepared from their precursor, namely, polyamic acid, by the solution-casting method. Organomodified montmorillonite (MMT) clay was prepared by treating Na+MMT (Kunipia F) with three different intercalating agents, namely, piperazine dihydrochloride, 1,3-bis(4-piperidinylpropane) dihydrochloride and 4,4'-bipiperidine dihydrochloride at 80 degrees C. Polyamic acid solutions containing various weight percentages of organomodified MMT were prepared by reacting 4,4'-(1,1'-biphenyl-4,4'-diyldioxy)dianiline with bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride in N-methyl-2-pyrrolidinone containing dispersed particles of organomodified MMT at 20 degrees C. Nanocomposite films were prepared from these solutions by solution casting and heated subsequently at a programmed heating rate. These films were transparent and brown in color. The extent of layer separation in nanocomposite films depends upon the chemical structure of the organoclay. These films were characterized by inherent viscosity, FT-IR, DSC, TMA, WAXD, TEM, UV, and TGA. The tensile behavior and surface energy studies were also investigated. The nanocomposite films had superior tensile properties, thermal behavior, and solvent resistance. Among the three organoclays, piperazine dihydrochloride was the best modifier.

  13. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review.

    PubMed

    Pina, Sandra; Oliveira, Joaquim M; Reis, Rui L

    2015-02-18

    Tissue engineering and regenerative medicine has been providing exciting technologies for the development of functional substitutes aimed to repair and regenerate damaged tissues and organs. Inspired by the hierarchical nature of bone, nanostructured biomaterials are gaining a singular attention for tissue engineering, owing their ability to promote cell adhesion and proliferation, and hence new bone growth, compared with conventional microsized materials. Of particular interest are nanocomposites involving biopolymeric matrices and bioactive nanosized fillers. Biodegradability, high mechanical strength, and osteointegration and formation of ligamentous tissue are properties required for such materials. Biopolymers are advantageous due to their similarities with extracellular matrices, specific degradation rates, and good biological performance. By its turn, calcium phosphates possess favorable osteoconductivity, resorbability, and biocompatibility. Herein, an overview on the available natural polymer/calcium phosphate nanocomposite materials, their design, and properties is presented. Scaffolds, hydrogels, and fibers as biomimetic strategies for tissue engineering, and processing methodologies are described. The specific biological properties of the nanocomposites, as well as their interaction with cells, including the use of bioactive molecules, are highlighted. Nanocomposites in vivo studies using animal models are also reviewed and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. SnO2-SrO based nanocomposites and their photocatalytic activity for the treatment of organic pollutants

    NASA Astrophysics Data System (ADS)

    Sultana, Saima; Rafiuddin; Khan, Mohammad Zain; Umar, Khalid; Ahmed, Arham S.; Shahadat, Mohammad

    2015-10-01

    The present paper reports development of SnO2-SrO based nanocomposites using facile hydrothermal and sol-gel method. Nanocomposites were characterized on the basis of X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Studies (EDS), Transmission Electron Microscopy (TEM), Fourier Transform Infrared (FTIR), Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) techniques. The materials were explored for the photocatalytic activity regarding the treatment of organic pollutants viz-azo-dye, pesticide and drug. In addition, a comparative study was performed in term of particle size using hydrothermal and sol-gel route. It was observed that hydrothermal route showed an improved particle size, which affects the photocatalytic activity, porosity and crystalline nature of the nanocomposite. Further, kinetic and thermodynamic parameters were also calculated for the photodegradation experiments. It was found that the rate of photodegradation reaction followed the pseudo-first order kinetics and the highest rate was observed for azo-dye while it was lowest for the drug. A negative values of the Gibbs free energy (ΔG) show that the photodegradation proceeds with a net decrease in free energy of the system. The results of photodegradation of dye, pesticide and drug indicate that nanocomposites of SnO2-SrO can be effectively applied for the treatment of organic pollutants.

  15. Microstructure and Properties of Polypropylene/Carbon Nanotube Nanocomposites

    PubMed Central

    Bikiaris, Dimitrios

    2010-01-01

    In the last few years, great attention has been paid to the preparation of polypropylene (PP) nanocomposites using carbon nanotubes (CNTs) due to the tremendous enhancement of the mechanical, thermal, electrical, optical and structural properties of the pristine material. This is due to the unique combination of structural, mechanical, electrical, and thermal transport properties of CNTs. However, it is well-known that the properties of polymer-based nanocomposites strongly depend on the dispersion of nanofillers and almost all the discussed properties of PP/CNTs nanocomposites are strongly related to their microstructure. PP/CNTs nanocomposites were, mainly, prepared by melt mixing and in situ polymerization. Young’s modulus, tensile strength and storage modulus of the PP/CNTs nanocomposites can be increased with increasing CNTs content due to the reinforcement effect of CNTs inside the polymer matrix. However, above a certain CNTs content the mechanical properties are reduced due to the CNTs agglomeration. The microstructure of nanocomposites has been studied mainly by SEM and TEM techniques. Furthermore, it was found that CNTs can act as nucleating agents promoting the crystallization rates of PP and the addition of CNTs enhances all other physical properties of PP. The aim of this paper is to provide a comprehensive review of the existing literature related to PP/CNTs nanocomposite preparation methods and properties studies.

  16. Structural and Dielectric Properties of Ionic Liquid Doped Metal Organic Framework based Polymer Electrolyte Nanocomposites

    NASA Astrophysics Data System (ADS)

    Dutta, Rituraj; Kumar, Ashok

    2016-10-01

    Metal Organic Frameworks (MOFs) are mesoporous materials that can be treated as potential hosts for trapping guest molecules in their pores. Ion conduction and phase behavior dynamics of Ionic Liquids (ILs) can be controlled by tunable interactions of MOFs with the ILs. MOFs incorporated with ionic liquid can be dispersed in the polymers to synthesize polymer electrolyte nanocomposites with high ionic conductivity, electrochemical and thermal stability for applications in energy storage and conversion devices such as rechargeable Li-ion batteries. In the present work we have synthesized Cu-based MOF [Cu3(l,3,5-benzene tricarboxylate)2(H2O)] incorporated with the ionic liquid 1-Butyl-3-methylimidazolium bromide at different weight ratios of MOF and IL. The synthesized MOF-IL composites are dispersed in Poly (ethylene oxide) (PEO). Frequency dependent behavior of permittivity and dielectric loss of the nanocomposites depict the non-Debye dielectric relaxation mechanism. The room temperature Nyquist plots reveal decreasing bulk resistance upto 189 Ω with optimum ionic conductivity of 1.3×10-3S cm-1at maximum doping concentration of IL in the nanocomposite system.

  17. Analysis of the Barrier Properties of Polyimide-Silicate Nanocomposites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi; Johnston, J. Chris; Inghram, Linda; McCorkle, Linda; Silverman, Edward

    2003-01-01

    Montmorillonite clay was organically modified and dispersed into a thermoplastic (BPADA-BAPP) and a thermosetting (PMR-15) polyimide matrix. The barrier properties of the neat resins and the nanocomposites were evaluated. Reductions in gas permeability and water absorption were observed in thermoplastic polyimide nanocomposites. The thermosetting polyimide showed a reduction in weight loss during isothermal aging at 288 C. Carbon fabric (T650-35, 8 HS, 8 ply) composites were prepared using both the BPADE-BAPP and PMR-15 based nanocomposites. Dispersion of the layered silicate in the BPADA-BAPP matrix reduced helium permeability by up to 70 percent. The PMR-15/ silicate nanocomposite matrix had an increase in thermal oxidative stability of up to 25 percent.

  18. Standards-based sensor interoperability and networking SensorWeb: an overview

    NASA Astrophysics Data System (ADS)

    Bolling, Sam

    2012-06-01

    The War fighter lacks a unified Intelligence, Surveillance, and Reconnaissance (ISR) environment to conduct mission planning, command and control (C2), tasking, collection, exploitation, processing, and data discovery of disparate sensor data across the ISR Enterprise. Legacy sensors and applications are not standardized or integrated for assured, universal access. Existing tasking and collection capabilities are not unified across the enterprise, inhibiting robust C2 of ISR including near-real time, cross-cueing operations. To address these critical needs, the National Measurement and Signature Intelligence (MASINT) Office (NMO), and partnering Combatant Commands and Intelligence Agencies are developing SensorWeb, an architecture that harmonizes heterogeneous sensor data to a common standard for users to discover, access, observe, subscribe to and task sensors. The SensorWeb initiative long term goal is to establish an open commercial standards-based, service-oriented framework to facilitate plug and play sensors. The current development effort will produce non-proprietary deliverables, intended as a Government off the Shelf (GOTS) solution to address the U.S. and Coalition nations' inability to quickly and reliably detect, identify, map, track, and fully understand security threats and operational activities.

  19. Highly Flexible and Sensitive Wearable E-Skin Based on Graphite Nanoplatelet and Polyurethane Nanocomposite Films in Mass Industry Production Available.

    PubMed

    Wu, Jianfeng; Wang, Huatao; Su, Zhiwei; Zhang, Minghao; Hu, Xiaodong; Wang, Yijie; Wang, Ziao; Zhong, Bo; Zhou, Weiwei; Liu, Junpeng; Xing, Scott Guozhong

    2017-11-08

    Graphene and nanomaterials based flexible pressure sensors R&D activities are becoming hot topics due to the huge marketing demand on wearable devices and electronic skin (E-Skin) to monitor the human body's actions for dedicated healthcare. Herein, we report a facile and efficient fabrication strategy to construct a new type of highly flexible and sensitive wearable E-Skin based on graphite nanoplates (GNP) and polyurethane (PU) nanocomposite films. The developed GNP/PU E-Skin sensors are highly flexible with good electrical conductivity due to their unique binary microstructures with synergistic interfacial characteristics, which are sensitive to both static and dynamic pressure variation, and can even accurately and quickly detect the pressure as low as 0.005 N/50 Pa and momentum as low as 1.9 mN·s with a gauge factor of 0.9 at the strain variation of up to 30%. Importantly, our GNP/PU E-Skin is also highly sensitive to finger bending and stretching with a linear correlation between the relative resistance change and the corresponding bending angles or elongation percentage. In addition, our E-Skin shows excellent sensitivity to voice vibration when exposed to a volunteer's voice vibration testing. Notably, the entire E-Skin fabrication process is scalable, low cost, and industrially available. Our complementary experiments with comprehensive results demonstrate that the developed GNP/PU E-Skin is impressively promising for practical healthcare applications in wearable devices, and enables us to monitor the real-world force signals in real-time and in-situ mode from pressing, hitting, bending, stretching, and voice vibration.

  20. MEMS-based thermoelectric infrared sensors: A review

    NASA Astrophysics Data System (ADS)

    Xu, Dehui; Wang, Yuelin; Xiong, Bin; Li, Tie

    2017-12-01

    In the past decade, micro-electromechanical systems (MEMS)-based thermoelectric infrared (IR) sensors have received considerable attention because of the advances in micromachining technology. This paper presents a review of MEMS-based thermoelectric IR sensors. The first part describes the physics of the device and discusses the figures of merit. The second part discusses the sensing materials, thermal isolation microstructures, absorber designs, and packaging methods for these sensors and provides examples. Moreover, the status of sensor implementation technology is examined from a historical perspective by presenting findings from the early years to the most recent findings.

  1. A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates.

    PubMed

    Johnson, Ian; Wang, Sebo Michelle; Silken, Christine; Liu, Huinan

    2016-05-01

    Nanocomposite coatings offer multiple functions simultaneously to improve the interfacial properties of magnesium (Mg) alloys for skeletal implant applications, e.g., controlling the degradation rate of Mg substrates, improving bone cell functions, and providing drug delivery capability. However, the effective service time of nanocomposite coatings may be limited due to their early delamination from the Mg-based substrates. Therefore, the objective of this study was to address the delamination issue of nanocomposite coatings, improve the coating properties for reducing the degradation of Mg-based substrates, and thus improve their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The surface conditions of the substrates, polymer component type of the nanocomposite coatings, and post-deposition processing are the key parameters that contribute to the efficacy of the nanocomposite coatings in regulating substrate degradation and bone cell responses. Specifically, the effects of metallic surface versus alkaline heat-treated hydroxide surface of the substrates on coating quality were investigated. For the nanocomposite coatings, nanophase hydroxyapatite (nHA) was dispersed in three types of biodegradable polymers, i.e., poly(lactic-co-glycolic acid) (PLGA), poly(l-lactic acid) (PLLA), or poly(caprolactone) (PCL) to determine which polymer component could provide integrated properties for slowest Mg degradation. The nanocomposite coatings with or without post-deposition processing, i.e., melting, annealing, were compared to determine which processing route improved the properties of the nanocomposite coatings most significantly. The results showed that optimizing the coating processes addressed the delamination issue. The melted then annealed nHA/PCL coating on the metallic Mg substrates showed the slowest degradation and the best coating adhesion, among all the combinations of conditions studied; and, it improved the adhesion density of BMSCs

  2. Recent Advances in Silicon Nanomaterial-Based Fluorescent Sensors.

    PubMed

    Wang, Houyu; He, Yao

    2017-02-03

    During the past decades, owing to silicon nanomaterials' unique optical properties, benign biocompatibility, and abundant surface chemistry, different dimensional silicon nanostructures have been widely employed for rationally designing and fabricating high-performance fluorescent sensors for the detection of various chemical and biological species. Among of these, zero-dimensional silicon nanoparticles (SiNPs) and one-dimensional silicon nanowires (SiNWs) are of particular interest. Herein, we focus on reviewing recent advances in silicon nanomaterials-based fluorescent sensors from a broad perspective and discuss possible future directions. Firstly, we introduce the latest achievement of zero-dimensional SiNP-based fluorescent sensors. Next, we present recent advances of one-dimensional SiNW-based fluorescent sensors. Finally, we discuss the major challenges and prospects for the development of silicon-based fluorescent sensors.

  3. Recent Advances in Silicon Nanomaterial-Based Fluorescent Sensors

    PubMed Central

    Wang, Houyu; He, Yao

    2017-01-01

    During the past decades, owing to silicon nanomaterials’ unique optical properties, benign biocompatibility, and abundant surface chemistry, different dimensional silicon nanostructures have been widely employed for rationally designing and fabricating high-performance fluorescent sensors for the detection of various chemical and biological species. Among of these, zero-dimensional silicon nanoparticles (SiNPs) and one-dimensional silicon nanowires (SiNWs) are of particular interest. Herein, we focus on reviewing recent advances in silicon nanomaterials-based fluorescent sensors from a broad perspective and discuss possible future directions. Firstly, we introduce the latest achievement of zero-dimensional SiNP-based fluorescent sensors. Next, we present recent advances of one-dimensional SiNW-based fluorescent sensors. Finally, we discuss the major challenges and prospects for the development of silicon-based fluorescent sensors. PMID:28165357

  4. Optical and Electrical Characteristics of Silver Ion Conducting Nanocomposite Solid Polymer Electrolytes Based on Chitosan

    NASA Astrophysics Data System (ADS)

    Aziz, Shujahadeen B.; Rasheed, Mariwan A.; Abidin, Zul H. Z.

    2017-10-01

    Optical and electrical properties of nanocomposite solid polymer electrolytes based on chitosan have been investigated. Incorporation of alumina nanoparticles into the chitosan:silver triflate (AgTf) system broadened the surface plasmon resonance peaks of the silver nanoparticles and shifted the absorption edge to lower photon energy. A clear decrease of the optical bandgap in nanocomposite samples containing alumina nanoparticles was observed. The variation of the direct-current (DC) conductivity and dielectric constant followed the same trend with alumina concentration. The DC conductivity increased by two orders of magnitude, which can be attributed to hindrance of silver ion reduction. Transmission electron microscopy was used to interpret the space-charge and blocking effects of alumina nanoparticles on the DC conductivity and dielectric constant. The ion conduction mechanism was interpreted based on the dependences of the electrical and dielectric parameters. The dependence of the DC conductivity on the dielectric constant is explained empirically. Relaxation processes associated with conductivity and viscoelasticity were distinguished based on the incomplete semicircular arcs in plots of the real and imaginary parts of the electric modulus.

  5. Recent Advances in Nanocomposite Materials of Graphene Derivatives with Polysaccharides

    PubMed Central

    Terzopoulou, Zoi; Kyzas, George Z.; Bikiaris, Dimitrios N.

    2015-01-01

    This review article presents the recent advances in syntheses and applications of nanocomposites consisting of graphene derivatives with various polysaccharides. Graphene has recently attracted much interest in the materials field due to its unique 2D structure and outstanding properties. To follow, the physical and mechanical properties of graphene are then introduced. However it was observed that the synthesis of graphene-based nanocomposites had become one of the most important research frontiers in the application of graphene. Therefore, this review also summarizes the recent advances in the synthesis of graphene nanocomposites with polysaccharides, which are abundant in nature and are easily synthesized bio-based polymers. Polysaccharides can be classified in various ways such as cellulose, chitosan, starch, and alginates, each group with unique and different properties. Alginates are considered to be ideal for the preparation of nanocomposites with graphene derivatives due to their environmental-friendly potential. The characteristics of such nanocomposites are discussed here and are compared with regard to their mechanical properties and their various applications. PMID:28787964

  6. Thermal stability increase in metallic nanoparticles-loaded cellulose nanocrystal nanocomposites.

    PubMed

    Goikuria, U; Larrañaga, A; Vilas, J L; Lizundia, E

    2017-09-01

    Due to the potential of CNC-based flexible materials for novel industrial applications, the aim of this work is to improve the thermal stability of cellulose nanocrystals (CNC) films through a straightforward and scalable method. Based of nanocomposite approach, five different metallic nanoparticles (ZnO, SiO 2 , TiO 2 , Al 2 O 3 and Fe 2 O 3 ) have been co-assembled in water with CNCs to obtain free-standing nanocomposite films. Thermogravimetric analysis (TGA) reveals an increased thermal stability upon nanoparticle. This increase in the thermal stability reaches a maximum of 75°C for the nanocomposites having 10wt% of Fe 2 O 3 and ZnO. The activation energies of thermodegradation process (E a ) determined according to Kissinger and Ozawa-Flynn-Wall methods further confirm the delayed degradation of CNC nanocomposites upon heating. Finally, the changes induced in the crystalline structure during thermodegradation were followed by wide angle X-ray diffraction (WAXD). It is also observed that thermal degradation proceeds at higher temperatures for nanocomposites having metallic nanoparticles. Overall, experimental findings here showed make nanocomposite approach a simple low-cost environmentally-friendly strategy to overcome the relatively poor thermal stability of CNCs when extracted via sulfuric acid assisted hydrolysis of cellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. PET based nanocomposite films for microwave packaging applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galdi, M. R., E-mail: mrgaldi@unisa.it; Olivieri, R.; Liguori, L.

    In recent years, changes in life standards have promoted the diffusion of Ready to Cook (RTC) and Ready to Eat (RTE) products for microwave ovens. However, the main limits in microwave (MW) ovens usage are often related to the proper choice of packaging materials suitable for such technology. In fact, packages for microwaveable RTC and RTE foods should ensure adequate preservation of the product before cooking/heating such as high barriers to gases and aromas and adequate control of water vapor transmission. In addition, microwaveable packaging material must be transparent to MW, thermally stable and resistant to the mechanical stress inducedmore » by the accumulation in the head space of volatile substances produced during the cooking. Polymeric materials are good candidates for microwaveable packaging thanks to their transparency to MW. In the last years a great interest is devoted to developing innovative solution based on the use of additives or systems that act as susceptors or heating enhancers for improving the characteristics of polymers in cooking/heating in MW ovens. The present work was focused on the production and characterization of nanocomposite copolyester based films suitable for microwaveable food packaging applications. The matrices selected consist in two PET copolymers modified with carbon black (ULTRA STD) and with titanium oxide (ULTRA NA). Nanocomposite co-extruded multilayer films were produced using different percentages (0%, 2% and 4%wt/wt) of Cloisite 20A (C20A). Films were analyzed for evaluating the effect of nanofiller on the morphology and barrier properties. Moreover, to verify the effectiveness of the designed systems in reducing the cooking times of meat products, MW heating tests were carried out on pork meat hamburgers in MW oven at varying supplied powers. The cooking tests have pointed out that the selected matrices are efficient in reducing cooking times and that even low concentration of C20A acts as heating enhancers of

  8. PET based nanocomposite films for microwave packaging applications

    NASA Astrophysics Data System (ADS)

    Galdi, M. R.; Olivieri, R.; Liguori, L.; Albanese, D.; Di Matteo, M.; Di Maio, L.

    2015-12-01

    In recent years, changes in life standards have promoted the diffusion of Ready to Cook (RTC) and Ready to Eat (RTE) products for microwave ovens. However, the main limits in microwave (MW) ovens usage are often related to the proper choice of packaging materials suitable for such technology. In fact, packages for microwaveable RTC and RTE foods should ensure adequate preservation of the product before cooking/heating such as high barriers to gases and aromas and adequate control of water vapor transmission. In addition, microwaveable packaging material must be transparent to MW, thermally stable and resistant to the mechanical stress induced by the accumulation in the head space of volatile substances produced during the cooking. Polymeric materials are good candidates for microwaveable packaging thanks to their transparency to MW. In the last years a great interest is devoted to developing innovative solution based on the use of additives or systems that act as susceptors or heating enhancers for improving the characteristics of polymers in cooking/heating in MW ovens. The present work was focused on the production and characterization of nanocomposite copolyester based films suitable for microwaveable food packaging applications. The matrices selected consist in two PET copolymers modified with carbon black (ULTRA STD) and with titanium oxide (ULTRA NA). Nanocomposite co-extruded multilayer films were produced using different percentages (0%, 2% and 4%wt/wt) of Cloisite 20A (C20A). Films were analyzed for evaluating the effect of nanofiller on the morphology and barrier properties. Moreover, to verify the effectiveness of the designed systems in reducing the cooking times of meat products, MW heating tests were carried out on pork meat hamburgers in MW oven at varying supplied powers. The cooking tests have pointed out that the selected matrices are efficient in reducing cooking times and that even low concentration of C20A acts as heating enhancers of PET.

  9. Nanocomposites for bone tissue regeneration.

    PubMed

    Sahoo, Nanda Gopal; Pan, Yong Zheng; Li, Lin; He, Chao Bin

    2013-04-01

    Natural bone tissue possesses a nanocomposite structure that provides appropriate physical and biological properties. For bone tissue regeneration, it is crucial for the biomaterial to mimic living bone tissue. Since no single type of material is able to mimic the composition, structure and properties of native bone, nanocomposites are the best choice for bone tissue regeneration as they can provide the appropriate matrix environment, integrate desirable biological properties, and provide controlled, sequential delivery of multiple growth factors for the different stages of bone tissue regeneration. This article reviews the composition, structure and properties of advanced nanocomposites for bone tissue regeneration. It covers aspects of interest such as the biomimetic synthesis of bone-like nanocomposites, guided bone regeneration from inert biomaterials and bioactive nanocomposites, and nanocomposite scaffolds for bone tissue regeneration. The design, fabrication, and in vitro and in vivo characterization of such nanocomposites are reviewed.

  10. High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites.

    PubMed

    Li, Zijiong; Zhou, Zhihua; Yun, Gaoqian; Shi, Kai; Lv, Xiaowei; Yang, Baocheng

    2013-11-12

    In this paper, we report a facile low-cost synthesis of the graphene-ZnO hybrid nanocomposites for solid-state supercapacitors. Structural analysis revealed a homogeneous distribution of ZnO nanorods that are inserted in graphene nanosheets, forming a sandwiched architecture. The material exhibited a high specific capacitance of 156 F g-1 at a scan rate of 5 mV.s-1. The fabricated solid-state supercapacitor device using these graphene-ZnO hybrid nanocomposites exhibits good supercapacitive performance and long-term cycle stability. The improved supercapacitance property of these materials could be ascribed to the increased conductivity of ZnO and better utilization of graphene. These results demonstrate the potential of the graphene-ZnO hybrid nanocomposites as an electrode in high-performance supercapacitors.

  11. High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites

    PubMed Central

    2013-01-01

    In this paper, we report a facile low-cost synthesis of the graphene-ZnO hybrid nanocomposites for solid-state supercapacitors. Structural analysis revealed a homogeneous distribution of ZnO nanorods that are inserted in graphene nanosheets, forming a sandwiched architecture. The material exhibited a high specific capacitance of 156 F g−1 at a scan rate of 5 mV.s−1. The fabricated solid-state supercapacitor device using these graphene-ZnO hybrid nanocomposites exhibits good supercapacitive performance and long-term cycle stability. The improved supercapacitance property of these materials could be ascribed to the increased conductivity of ZnO and better utilization of graphene. These results demonstrate the potential of the graphene-ZnO hybrid nanocomposites as an electrode in high-performance supercapacitors. PMID:24215772

  12. Graphene Oxide-Based Nanocomposites Decorated with Silver Nanoparticles as an Antibacterial Agent

    NASA Astrophysics Data System (ADS)

    Jaworski, Sławomir; Wierzbicki, Mateusz; Sawosz, Ewa; Jung, Anna; Gielerak, Grzegorz; Biernat, Joanna; Jaremek, Henryk; Łojkowski, Witold; Woźniak, Bartosz; Wojnarowicz, Jacek; Stobiński, Leszek; Małolepszy, Artur; Mazurkiewicz-Pawlicka, Marta; Łojkowski, Maciej; Kurantowicz, Natalia; Chwalibog, André

    2018-04-01

    One of the most promising methods against drug-resistant bacteria can be surface-modified materials with biocidal nanoparticles and nanocomposites. Herein, we present a nanocomposite with silver nanoparticles (Ag-NPs) on the surface of graphene oxide (GO) as a novel multifunctional antibacterial and antifungal material. Ultrasonic technologies have been used as an effective method of coating polyurethane foils. Toxicity on gram-negative bacteria ( Escherichia coli), gram-positive bacteria ( Staphylococcus aureus and Staphylococcus epidermidis), and pathogenic yeast ( Candida albicans) was evaluated by analysis of cell morphology, assessment of cell viability using the PrestoBlue assay, analysis of cell membrane integrity using the lactate dehydrogenase assay, and reactive oxygen species production. Compared to Ag-NPs and GO, which have been widely used as antibacterial agents, our nanocomposite shows much higher antimicrobial efficiency toward bacteria and yeast cells.

  13. Graphene Oxide-Based Nanocomposites Decorated with Silver Nanoparticles as an Antibacterial Agent.

    PubMed

    Jaworski, Sławomir; Wierzbicki, Mateusz; Sawosz, Ewa; Jung, Anna; Gielerak, Grzegorz; Biernat, Joanna; Jaremek, Henryk; Łojkowski, Witold; Woźniak, Bartosz; Wojnarowicz, Jacek; Stobiński, Leszek; Małolepszy, Artur; Mazurkiewicz-Pawlicka, Marta; Łojkowski, Maciej; Kurantowicz, Natalia; Chwalibog, André

    2018-04-23

    One of the most promising methods against drug-resistant bacteria can be surface-modified materials with biocidal nanoparticles and nanocomposites. Herein, we present a nanocomposite with silver nanoparticles (Ag-NPs) on the surface of graphene oxide (GO) as a novel multifunctional antibacterial and antifungal material. Ultrasonic technologies have been used as an effective method of coating polyurethane foils. Toxicity on gram-negative bacteria (Escherichia coli), gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis), and pathogenic yeast (Candida albicans) was evaluated by analysis of cell morphology, assessment of cell viability using the PrestoBlue assay, analysis of cell membrane integrity using the lactate dehydrogenase assay, and reactive oxygen species production. Compared to Ag-NPs and GO, which have been widely used as antibacterial agents, our nanocomposite shows much higher antimicrobial efficiency toward bacteria and yeast cells.

  14. Approaching the alloy limit of thermal conductivity in single-crystalline Si-based thermoelectric nanocomposites: A molecular dynamics investigation

    PubMed Central

    Guo, Ruiqiang; Huang, Baoling

    2015-01-01

    Single-crystalline Si-based nanocomposites have become promising candidates for thermoelectric applications due to their prominent merits. Reducing the thermal conductivity κ without deteriorating the electrical properties is the key to improve their performance. Through non-equilibrium molecular dynamics simulations, we show that κ of single-crystalline Si-based nanocomposites can be reduced to the alloy limit by embedding various nanoinclusions of similar lattice constants but different lattice orientations or space symmetries with respect to the matrix. The surprisingly low κ is mainly due to the large acoustic phonon density of states mismatch caused by the destruction of lattice periodicity at the interfaces between the nanoinclusions and matrix, which leads to the substantial reduction of phonon group velocity and relaxation time, as well as the enhancement of phonon localization. The resulting κ is also temperature-insensitive due to the dominance of boundary scattering. The increase in thermal resistance induced by lattice structure mismatch mainly comes from the nanoinclusions and the channels between them and is caused by the enhanced boundary scattering at the interfaces parallel to the heat flux. Approaching the alloy limit of κ with potentially improved electrical properties by fillers will remarkably improve ZT of single-crystalline Si-based nanocomposites and extend their application. PMID:25851401

  15. Optical and Thermal Behaviors of Polyamide-Layered Silicate Nanocomposites Based on 4,4'-Azodibenzoic Acid by Solution Intercalation Technique

    NASA Astrophysics Data System (ADS)

    Faghihi, Khalil; Shabanian, Meisam

    2011-04-01

    Two new samples of polyamide-montmorillonite reinforced nanocomposites based on 4,4'-azodibenzoic acid were prepared by a convenient solution intercalation technique. Polyamide (PA) 4 as a source of polymer matrix was synthesized by the direct polycondensation reaction of 4,4'-azodibenzoic acid 2 with 4,4'-diamino diphenyl sulfone 3 in the presence of triphenyl phosphate (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). Morphology and structure of the resulting PA-nanocomposite films 4a and 4b with 10 and 20% silicate particles were characterized by FTIR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of clay dispersion and the interaction between clay and polymeric chains on the properties of nanocomposite films were investigated by using Uv-vis spectroscopy, thermogravimetric analysis (TGA) and water uptake measurements.

  16. Functional Carbon Nanocomposite, Optoelectronic, and Catalytic Coatings

    NASA Astrophysics Data System (ADS)

    Liang, Yu Teng

    coatings have been demonstrated. In particular, co-deposited platinum, silicon, and carbon nanomaterial films were fashioned into electronic hydrogen gas sensors, cost efficient dye sensitized solar cell electrodes, and high capacity lithium ion battery anodes. Furthermore, concentrated graphene inks were coated to form aligned graphene-polymer nanocomposites and outstanding carbon nanotube-graphene hybrid semitransparent electrical conductors. Nanocomposite graphene-titanium dioxide catalysts produced from these cellulosic inks have low covalent defect densities and were shown to be approximately two and seven times more active than those based on reduced graphene oxide in photo-oxidation and photo-reduction reactions, respectively. Using a broad range of material characterization techniques, mechanistic insight was obtained using composite photocatalysts fabricated from well defined nanomaterials. For instance, optical spectroscopy and electronic measurements revealed a direct correlation between graphene charge transport performance and composite photochemical activity. Moreover, investigations into multidimensional composites based on 1D carbon nanotubes, 2D graphene, and 2D titanium dioxide nanosheets generated additional mechanistic insight for extending photocatalytic spectral response and increasing reaction specificity. Together, these results demonstrate the versatility of vacuum co-deposition and cellulosic nanomaterial inks for fabricating carbon nanocomposite optoelectronic and energy conversion coatings.

  17. An Internship Program for Deaf and Hard of Hearing Students in Polymer-Based Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cebe,P.; Cherdack, D.; Guertin, R.

    2006-01-01

    We report on our summer internship program in Polymer-Based Nanocomposites, for deaf and hard of hearing undergraduates who engage in classroom and laboratory research work in polymer physics. The unique attributes of this program are its emphasis on: 1. Teamwork; 2. Performance of a start-to-finish research project; 3. Physics of materials approach; and 4. Diversity. Students of all disability levels have participated in this program, including students who neither hear nor voice. The classroom and laboratory components address the materials chemistry and physics of polymer-based nanocomposites, crystallization and melting of polymers, the interaction of X-rays and light with polymers, mechanicalmore » properties of polymers, and the connection between thermal processing, structure, and ultimate properties of polymers. A set of Best Practices is developed for accommodating deaf and hard of hearing students into the laboratory setting. The goal is to bring deaf and hard of hearing students into the larger scientific community as professionals, by providing positive scientific experiences at a formative time in their educational lives.« less

  18. Metal-polymer nanocomposites for stretchable optics and plasmonics

    NASA Astrophysics Data System (ADS)

    Potenza, Marco A. C.; Minnai, Chloé; Milani, Paolo

    2016-12-01

    Stretchable and conformable optical devices open very exciting perspectives for the fabrication of systems incorporating diffracting and optical power in a single element and of tunable plasmonic filters and absorbers. The use of nanocomposites obtained by inserting metallic nanoparticles produced in the gas phase into polymeric matrices allows to effectively fabricate cheap and simple stretchable optical elements able to withstand thousands of deformations and stretching cycles without any degradation of their optical properties. The nanocomposite-based reflective optical devices show excellent performances and stability compared to similar devices fabricated with standard techniques. The nanocomposite-based devices can be therefore applied to arbitrary curved non-optical grade surfaces in order to achieve optical power and to minimize aberrations like astigmatism. Examples discussed here include stretchable reflecting gratings, plasmonic filters tunable by mechanical stretching and light absorbers.

  19. Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G (Inventor)

    2013-01-01

    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.

  20. pH-Responsive Shape Memory Poly(ethylene glycol)-Poly(ε-caprolactone)-based Polyurethane/Cellulose Nanocrystals Nanocomposite.

    PubMed

    Li, Ying; Chen, Hongmei; Liu, Dian; Wang, Wenxi; Liu, Ye; Zhou, Shaobing

    2015-06-17

    In this study, we developed a pH-responsive shape-memory polymer nanocomposite by blending poly(ethylene glycol)-poly(ε-caprolactone)-based polyurethane (PECU) with functionalized cellulose nanocrystals (CNCs). CNCs were functionalized with pyridine moieties (CNC-C6H4NO2) through hydroxyl substitution of CNCs with pyridine-4-carbonyl chloride and with carboxyl groups (CNC-CO2H) via 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) mediated surface oxidation, respectively. At a high pH value, the CNC-C6H4NO2 had attractive interactions from the hydrogen bonding between pyridine groups and hydroxyl moieties; at a low pH value, the interactions reduced or disappeared due to the protonation of pyridine groups, which are a Lewis base. The CNC-CO2H responded to pH variation in an opposite manner. The hydrogen bonding interactions of both CNC-C6H4NO2 and CNC-CO2H can be readily disassociated by altering pH values, endowing the pH-responsiveness of CNCs. When these functionalized CNCs were added in PECU polymer matrix to form nanocomposite network which was confirmed with rheological measurements, the mechanical properties of PECU were not only obviously improved but also the pH-responsiveness of CNCs could be transferred to the nanocomposite network. The pH-sensitive CNC percolation network in polymer matrix served as the switch units of shape-memory polymers (SMPs). Furthermore, the modified CNC percolation network and polymer molecular chains also had strong hydrogen bonding interactions among hydroxyl, carboxyl, pyridine moieties, and isocyanate groups, which could be formed or destroyed through changing pH value. The shape memory function of the nanocomposite network was only dependent on the pH variation of the environment. Therefore, this pH-responsive shape-memory nancomposite could be potentially developed into a new smart polymer material.

  1. Tactile-Sensing Based on Flexible PVDF Nanofibers via Electrospinning: A Review

    PubMed Central

    Wang, Xiaomei; Sun, Fazhe; Yin, Guangchao; Wang, Yuting; Liu, Bo

    2018-01-01

    The flexible tactile sensor has attracted widespread attention because of its great flexibility, high sensitivity, and large workable range. It can be integrated into clothing, electronic skin, or mounted on to human skin. Various nanostructured materials and nanocomposites with high flexibility and electrical performance have been widely utilized as functional materials in flexible tactile sensors. Polymer nanomaterials, representing the most promising materials, especially polyvinylidene fluoride (PVDF), PVDF co-polymer and their nanocomposites with ultra-sensitivity, high deformability, outstanding chemical resistance, high thermal stability and low permittivity, can meet the flexibility requirements for dynamic tactile sensing in wearable electronics. Electrospinning has been recognized as an excellent straightforward and versatile technique for preparing nanofiber materials. This review will present a brief overview of the recent advances in PVDF nanofibers by electrospinning for flexible tactile sensor applications. PVDF, PVDF co-polymers and their nanocomposites have been successfully formed as ultrafine nanofibers, even as randomly oriented PVDF nanofibers by electrospinning. These nanofibers used as the functional layers in flexible tactile sensors have been reviewed briefly in this paper. The β-phase content, which is the strongest polar moment contributing to piezoelectric properties among all the crystalline phases of PVDF, can be improved by adjusting the technical parameters in electrospun PVDF process. The piezoelectric properties and the sensibility for the pressure sensor are improved greatly when the PVDF fibers become more oriented. The tactile performance of PVDF composite nanofibers can be further promoted by doping with nanofillers and nanoclay. Electrospun P(VDF-TrFE) nanofiber mats used for the 3D pressure sensor achieved excellent sensitivity, even at 0.1 Pa. The most significant enhancement is that the aligned electrospun core-shell P

  2. Novel cell-based odorant sensor elements based on insect odorant receptors.

    PubMed

    Mitsuno, Hidefumi; Sakurai, Takeshi; Namiki, Shigehiro; Mitsuhashi, Hiroyuki; Kanzaki, Ryohei

    2015-03-15

    Development of cell-based odorant sensor elements combined not only high degree of sensitivity and selectivity but also long-term stability is crucial for their practical applications. Here we report the development of a novel cell-based odorant sensor element that sensitively and selectively detects odorants and displays increased fluorescent intensities over a long period of time. Our odorant sensor elements, based on Sf21 cell lines expressing insect odorant receptors, are sensitive to the level of several tens of parts per billion in solution, can selectively distinguish between different types of odorants based on the odorant selectivity intrinsic to the expressed receptors, and have response times of approximately 13s. Specifically, with the use of Sf21 cells and insect odorant receptors, we demonstrated that the established cell lines stably expressing insect odorant receptors are able to detect odorants with consistent responsiveness for at least 2 months, thus exceeding the short life-span normally associated with cell-based sensors. We also demonstrated the development of a compact odorant sensor chip by integrating the established insect cell lines into a microfluidic chip. The methodology we established in this study, in conjunction with the large repertoire of insect odorant receptors, will aid in the development of practical cell-based odorant sensors for various applications, including food administration and health management. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Surface modification of carbon nanotubes using 3-aminopropyltriethoxysilane to improve mechanical properties of nanocomposite based polymer matrix: Experimental and Density functional theory study

    NASA Astrophysics Data System (ADS)

    Hamed Mashhadzadeh, A.; Fereidoon, Ab.; Ghorbanzadeh Ahangari, M.

    2017-10-01

    In current study we combined theoretical and experimental studies to evaluate the effect of functionalization and silanization on mechanical behavior of polymer-based/CNT nanocomposites. Epoxy was selected as thermoset polymer, polypropylene and poly vinyl chloride were selected as thermoplastic polymers. The whole procedure is divided to two sections . At first we applied density functional theory (DFT) to analyze the effect of functionalization on equilibrium distance and adsorption energy of unmodified, functionalized by sbnd OH group and silanized epoxy/CNT, PP/CNT and PVC/CNT nanocomposites and the results showed that functionalization increased adsorption energy and reduced the equilibrium distance in all studied nanocomposites and silanization had higher effect comparing to OH functionalizing. Then we prepared experimental samples of all mentioned nanocomposites and tested their tensile and flexural strength properties. The obtained results showed that functionalization increased the studied mechanical properties in all evaluated nanocomposites. Finally we compared the results of experimental and theoretical sections with each other and estimated a suitable agreement between these parts.

  4. A study of preparation techniques and properties of bulk nanocomposites based on aqueous albumin dispersion

    NASA Astrophysics Data System (ADS)

    Gerasimenko, A. Yu.; Dedkova, A. A.; Ichkitidze, L. P.; Podgaetskii, V. M.; Selishchev, S. V.

    2013-08-01

    Bulk nanocomposites prepared from an aqueous albumin dispersion with carbon nanotubes by removing the liquid component from the dispersion have been investigated. The composites were obtained by thermostating and exposure to LED and IR diode laser radiation. The nanocomposites obtained under laser irradiation retain their shape and properties for several years, in contrast to the composites fabricated in different ways (which decompose into small fragments immediately after preparation). The low density of the composites under study (˜1200 kg/m3), which is close to the density of water, is due to their high porosity. The hardness of stable nanocomposites (˜300 MPa) was found to be at the same level as the hardness of polymethylmethacrylate, aluminum, and iron and close to the hardness of human bone tissue. The cluster quasiordering of the inner structure of nanocomposites revealed by atomic force microscopy indicates the possibility of forming a bulk nanotube framework in them, which can be caused by the effect of the electric field of laser radiation and ensure their stability and hardness. The presence of a framework in nanocomposites provides conditions for self-assembly of biological tissues and makes it possible to apply laser-prepared nanocomposites as a component of surgical implants.

  5. Evaporation-induced self-assembly of quantum dots-based concentric rings on polymer-based nanocomposite films.

    PubMed

    Zhang, Shaofu; Luan, Weiling; Zhong, Qixin; Yin, Shaofeng; Yang, Fuqian

    2016-10-12

    The "ball-on-film" template is used to construct concentric rings on the surface of PMMA-QDs (polymethyl methacrylate - quantum dots) nanocomposite films via the evaporation of pure chloroform droplets, which are confined by a steel ball. The concentric rings consist of QDs, as revealed by the fluorescence images of the concentric rings. The photoluminescence intensity of the concentric rings increases with the increase of the distance to the ball center, suggesting that the amount of QDs accumulated around the contact line at individual stick state increases with the increase of the distance to the ball center. Both the wavelength and cross-sectional area (width) of the concentric rings increase approximately linearly with increasing distance to the ball center, independent of the ball size, the film thickness and the QDs concentration. For the PMMA-QDs nanocomposite films prepared from the same QDs concentration in chloroform, the thicker the PMMA-QDs nanocomposite film, the larger the wavelength for the same distance to the ball center. The effect of confinement of two steel balls on the surface patterns over the PMMA-QDs nanocomposite films is studied via a template of "two spheres on film". Symmetric surface patterns are formed. There exist two types of featureless zone between the two balls, depending on the distance between the two balls: one is the inner featureless zone and the other is the outer featureless zone. The size of both featureless zones increases with the increase of the ball distance.

  6. Investigation on sodium benzoate release from poly(butylene adipate-co-terephthalate)/organoclay/sodium benzoate based nanocomposite film and their antimicrobial activity.

    PubMed

    Mondal, Dibyendu; Bhowmick, Biplab; Maity, Dipanwita; Mollick, Md Masud R; Rana, Dipak; Rangarajan, Vivek; Sen, Ramkrishna; Chattopadhyay, Dipankar

    2015-03-01

    Polymeric nanocomposites embedded with nontoxic antimicrobial agents have recently gained potential industrial significance, mainly for their applicability to preserve food quality and ensure safety. In this study, a poly(butylene adipate-co-terephthalate) (PBAT)/organoclay (CMMT) based nanocomposite film doped with sodium benzoate (SB) as antimicrobial agent was prepared by a solution mixing process. A homogenous dispersion of organoclay (cetyltrimethylammonium-modified montmorillonite [CMMT]) in PBAT matrix was observed by X-ray diffraction and transmission electron microscopy. PBAT/CMMT nanocomposite film showed higher barrier properties against water and methanol vapor compared to the PBAT film. The release of SB from PBAT and its nanocomposite film was measured and the relevant data were fitted to the Weibull model. The higher values of Weibull's shape factor and scale parameter as corroborated by experimental findings indicated faster rate of SB release from PBAT/CMMT/SB nanocomposite film, when compared to the pristine PBAT film. Bacterial inhibition studies were accomplished against 2 food pathogenic bacteria, Bacillus subtilis and Staphylococcus aureus, by determining the zone of inhibition and corresponding growth profiles. Both bacterial inhibition studies and growth profiles established that PBAT/CMMT/SB demonstrated better antimicrobial activity than PBAT/SB film. Therefore, PBAT/CMMT/SB nanocomposite film can be used for food packaging application as it showed good barrier properties and antimicrobial activity against food pathogenic bacteria. © 2015 Institute of Food Technologists®

  7. New biocide guanidine-containing nanocomposites

    NASA Astrophysics Data System (ADS)

    Gorbunova, Marina; Lemkina, Larisa

    2014-08-01

    New water-soluble nanocomposites based on Ag and copolymers of 2,2-diallyl-1,1,3,3-tetraethylguanidiniumchloride with N-vinylpyrrolidone [poly(AGC-VP)] and vinylacetate [poly(AGC-VA)] have been developed. The average silver particle size ranged from 52 to 62 nm for poly(AGC-VA) and from 28 to 30 nm for poly(AGC-VP), with the corresponding UV-vis absorption peak position at 405-410 nm. The using of copolymers resulted in improvement in bactericide properties of composites. Following these results, the newly developed nanocomposite scaffold may be considered for new water-soluble medicines and biocides.

  8. Design of Inkjet-Printed RFID-Based Sensor on Paper: Single- and Dual-Tag Sensor Topologies.

    PubMed

    Kim, Sangkil; Georgiadis, Apostolos; Tentzeris, Manos M

    2018-06-17

    The detailed design considerations for the printed RFID-based sensor system is presented in this paper. Starting from material selection and metallization method, this paper discusses types of RFID-based sensors (single- & dual-tag sensor topologies), design procedures, and performance evaluation methods for the wireless sensor system. The electrical properties of the paper substrates (cellulose-based and synthetic papers) and the silver nano-particle-based conductive film are thoroughly characterized for RF applications up to 8 GHz. The reported technology could potentially set the foundation for truly “green”, low-cost, scalable wireless topologies for autonomous Internet-of-Things (IoT), bio-monitoring, and “smart skin” applications.

  9. 3D printing of highly elastic strain sensors using polyurethane/multiwall carbon nanotube composites

    NASA Astrophysics Data System (ADS)

    Christ, Josef F.; Hohimer, Cameron J.; Aliheidari, Nahal; Ameli, Amir; Mo, Changki; Pötschke, Petra

    2017-04-01

    As the desire for wearable electronics increases and the soft robotics industry advances, the need for novel sensing materials has also increased. Recently, there have been many attempts at producing novel materials, which exhibit piezoresistive behavior. However, one of the major shortcomings in strain sensing technologies is in the fabrication of such sensors. While there is significant research and literature covering the various methods for developing piezoresistive materials, fabricating complex sensor platforms is still a manufacturing challenge. Here, we report a facile method to fabricate multidirectional embedded strain sensors using additive manufacturing technology. Pure thermoplastic polyurethane (TPU) and TPU/multiwall carbon nanotubes (MWCNT) nanocomposites were 3D printed in tandem using a low-cost multi-material FDM printer to fabricate uniaxial and biaxial strain sensors with conductive paths embedded within the insulative TPU platform. The sensors were then subjected to a series of cyclic strain loads. The results revealed excellent piezoresistive responses of the sensors with cyclic repeatability in both the axial and transverse directions and in response to strains as high as 50%. Further, while strain-softening did occur in the embedded printed strain sensors, it was predictable and similar to the results found in the literature for bulk polymer nanocomposites. This works demonstrates the possibility of manufacturing embedded and multidirectional flexible strain sensors using an inexpensive and versatile method, with potential applications in soft robotics and flexible electronics and health monitoring.

  10. Electrochemical Co-Reduction Synthesis of AuPt Bimetallic Nanoparticles-Graphene Nanocomposites for Selective Detection of Dopamine in the Presence of Ascorbic Acid and Uric Acid

    PubMed Central

    Zhao, Zongya; Zhang, Mingming; Chen, Xiang; Li, Youjun; Wang, Jue

    2015-01-01

    In this paper, AuPt bimetallic nanoparticles-graphene nanocomposites were obtained by electrochemical co-reduction of graphene oxide (GO), HAuCl4 and H2PtCl6. The as-prepared AuPt bimetallic nanoparticles-graphene nanocomposites were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and other electrochemical methods. The morphology and composition of the nanocomposite could be easily controlled by adjusting the HAuCl4/H2PtCl6 concentration ratio. The electrochemical experiments showed that when the concentration ratio of HAuCl4/H2PtCl6 was 1:1, the obtained AuPt bimetallic nanoparticles-graphene nanocomposite (denoted as Au1Pt1NPs-GR) possessed the highest electrocatalytic activity toward dopamine (DA). As such, Au1Pt1NPs-GR nanocomposites were used to detect DA in the presence of ascorbic acid (AA) and uric acid (UA) using the differential pulse voltammetry (DPV) technique and on the modified electrode, there were three separate DPV oxidation peaks with the peak potential separations of 177 mV, 130 mV and 307 mV for DA and AA, DA and UA, AA and UA, respectively. The linear range of the constructed DA sensor was from 1.6 μM to 39.7 μM with a detection limit of 0.1 μM (S/N = 3). The obtained DA sensor with good stability, high reproducibility and excellent selectivity made it possible to detect DA in human urine samples. PMID:26184200

  11. Electrochemical Co-Reduction Synthesis of AuPt Bimetallic Nanoparticles-Graphene Nanocomposites for Selective Detection of Dopamine in the Presence of Ascorbic Acid and Uric Acid.

    PubMed

    Zhao, Zongya; Zhang, Mingming; Chen, Xiang; Li, Youjun; Wang, Jue

    2015-07-09

    In this paper, AuPt bimetallic nanoparticles-graphene nanocomposites were obtained by electrochemical co-reduction of graphene oxide (GO), HAuCl4 and H2PtCl6. The as-prepared AuPt bimetallic nanoparticles-graphene nanocomposites were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and other electrochemical methods. The morphology and composition of the nanocomposite could be easily controlled by adjusting the HAuCl4/H2PtCl6 concentration ratio. The electrochemical experiments showed that when the concentration ratio of HAuCl4/H2PtCl6 was 1:1, the obtained AuPt bimetallic nanoparticles-graphene nanocomposite (denoted as Au1Pt1NPs-GR) possessed the highest electrocatalytic activity toward dopamine (DA). As such, Au1Pt1NPs-GR nanocomposites were used to detect DA in the presence of ascorbic acid (AA) and uric acid (UA) using the differential pulse voltammetry (DPV) technique and on the modified electrode, there were three separate DPV oxidation peaks with the peak potential separations of 177 mV, 130 mV and 307 mV for DA and AA, DA and UA, AA and UA, respectively. The linear range of the constructed DA sensor was from 1.6 μM to 39.7 μM with a detection limit of 0.1 μM (S/N = 3). The obtained DA sensor with good stability, high reproducibility and excellent selectivity made it possible to detect DA in human urine samples.

  12. Textile-Based Weft Knitted Strain Sensors: Effect of Fabric Parameters on Sensor Properties

    PubMed Central

    Atalay, Ozgur; Kennon, William Richard; Husain, Muhammad Dawood

    2013-01-01

    The design and development of textile-based strain sensors has been a focus of research and many investigators have studied this subject. This paper presents a new textile-based strain sensor design and shows the effect of base fabric parameters on its sensing properties. Sensing fabric could be used to measure articulations of the human body in the real environment. The strain sensing fabric was produced by using electronic flat-bed knitting technology; the base fabric was produced with elastomeric yarns in an interlock arrangement and a conductive yarn was embedded in this substrate to create a series of single loop structures. Experimental results show that there is a strong relationship between base fabric parameters and sensor properties. PMID:23966199

  13. Long term determination of dopamine and uric acid in the presence of ascorbic acid using ytterbia/reduced graphene oxide nanocomposite prepared through a sonochemical route

    NASA Astrophysics Data System (ADS)

    Jafari, Hossein; Ganjali, Mohammad Reza; Dezfuli, Amin Shiralizadeh; Faridbod, Farnoush

    2018-01-01

    Decoration of reduced graphene oxide (RGO) with nano-size inorganic particles creates a class of composites with considerably improved characteristics. Improvements in the function of electrochemical energy-storage devices, catalysts and sensors using such particles, have hence attracted a great deal of interest to the area. This manuscript tends to report the results of the research on the application of a sonochemical route for anchoring nano-sized Yb2O3 (Ytterbia) particles, on sheets of RGO. The anchoring phenomenon is based on the self-assembly of the Yb2O3 nano-particles under sonochemical treatments in an ultrasonic bath. To evaluate the method, the produced Yb2O3-RGO nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and field-emission scanning electron microscopy (FE-SEM), which proved the uniform distribution of the nano-particles on the RGO sheets. Additionally, the Yb2O3-RGO nano-composites were evaluated through cyclic voltammetry (CV), to assess the potentials of their application in electrochemical devices. The high activity of the produced Yb2O3-RGO nanocomposites can be attributed to the synergistic effect between Yb2O3 and RGO as well as the porous structure of the nanocomposite. Due to their stability, electrocatalytic properties and large accessible surface area, the low detection limit sensor is usable for long term usages in blood serum and wide linear dynamic range. There are linear relationships between current intensities and concentrations in the region 0.3-800 μM dopamine (DA), and 0.2-210 μM uric acid (UA), and the limits of detection (LOD) (S/N = 3) are down to 0.02 μM and 0.01 μM for DA and UA, respectively in 0.5 mM solution of ascorbic acid.

  14. Novel Preparation of Calcium Borate/Graphene Oxide Nanocomposites and Their Tribological Properties in Oil

    NASA Astrophysics Data System (ADS)

    Li, Wei; Cheng, Zhi-Lin; Liu, Zan

    2017-01-01

    The calcium borate/graphene oxide (CB/GO) nanocomposites have been successfully prepared by a liquid phase-based ultrasonic-assisted stripping method, which were subsequently explored as lubricant additive. The structure and morphology of the as-prepared nanocomposites were characterized by FT-IR, XRD, Raman, TEM, EDS and TGA, revealing that CB nanoparticles were uniformly loaded on GO surfaces. The nanocomposites were highly dispersed into the base oil by sand milling. The tribological properties of CB/GO nanocomposites as lubricating oil additive were investigated using a four-ball machine, and the wear scar surfaces were observed by the 3D Laser Scanning Microscope. The results indicated that CB/GO nanocomposites were of excellent antifriction, antiwear ability and load-carrying capacity.

  15. Aptamer-based SERRS Sensor for Thrombin Detection

    PubMed Central

    Cho, Hansang; Baker, Brian R.; Wachsmann-Hogiu, Sebastian; Pagba, Cynthia V.; Laurence, Ted A.; Lane, Stephen M.; Lee, Luke P.; Tok, Jeffrey B.-H.

    2012-01-01

    We describe an aptamer-based Surface Enhanced Resonance Raman Scattering (SERRS) sensor with high sensitivity, specificity, and stability for the detection of a coagulation protein, human α-thrombin. The sensor achieves high sensitivity and a limit of detection of 100 pM by monitoring the SERRS signal change upon the single step of thrombin binding to immobilized thrombin binding aptamer. The selectivity of the sensor is demonstrated by the specific discrimination of thrombin from other protein analytes. The specific recognition and binding of thrombin by the thrombin binding aptamer is essential to the mechanism of the aptamer-based sensor, as shown through measurements using negative control oligonucleotides. In addition, the sensor can detect 1 nM thrombin in the presence of complex biofluids, such as 10% fetal calf serum, demonstrating that the immobilized, 5'-capped, 3'-capped aptamer is sufficiently robust for clinical diagnostic applications. Furthermore, the proposed sensor may be implemented for multiplexed detection using different aptamer-Raman probe complexes. PMID:19367849

  16. Synthesis, Structure And Properties of Electrochemically Active Nanocomposites

    DTIC Science & Technology

    2003-05-01

    milling. Detailed systematic impedance analysis , electronic conductivity measurement and high-resolution electron microscopy studies have shown that...carbon particles determined by TEM analysis . Results of the studies so far have shown that Sn and Si-based nanocomposites appear to be quite promising... Analysis of the As-milled Powders 117 2. Electrochemical Characteristics of Si/SiC Nanocomposites 120 3. Microstructural/Morphological Analysis of

  17. Nacre-inspired integrated strong and tough reduced graphene oxide-poly(acrylic acid) nanocomposites

    NASA Astrophysics Data System (ADS)

    Wan, Sijie; Hu, Han; Peng, Jingsong; Li, Yuchen; Fan, Yuzun; Jiang, Lei; Cheng, Qunfeng

    2016-03-01

    Inspired by the relationship between interface interactions and the high performance mechanical properties of nacre, a strong and tough nacre-inspired nanocomposite was demonstrated based on graphene oxide (GO) and polyacrylic acid (PAA) prepared via a vacuum-assisted filtration self-assembly process. The abundant hydrogen bonding between GO and PAA results in both high strength and toughness of the bioinspired nanocomposites, which are 2 and 3.3 times higher than that of pure reduced GO film, respectively. In addition, the effect of environmental relative humidity on the mechanical properties of bioinspired nanocomposites is also investigated, and is consistent with previous theoretical predictions. Moreover, this nacre-inspired nanocomposite also displays high electrical conductivity of 108.9 S cm-1. These excellent physical properties allow this type of nacre-inspired nanocomposite to be used in many applications, such as flexible electrodes, aerospace applications, and artificial muscles etc. This nacre-inspired strategy also opens an avenue for constructing integrated high performance graphene-based nanocomposites in the near future.

  18. Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode.

    PubMed

    Cheemalapati, Srikanth; Palanisamy, Selvakumar; Mani, Veerappan; Chen, Shen-Ming

    2013-12-15

    In the present study, multiwalled carbon nanotubes (MWCNT)/graphene oxide (GO) nanocomposite was prepared by homogenous dispersion of MWCNT and GO and used for the simultaneous voltammetric determination of dopamine (DA) and paracetamol (PA). The TEM results confirmed that MWCNT walls were wrapped well with GO sheets. The MWCNT/GO nanocomposite showed superior electrocatalytic activity towards the oxidation of DA and PA, when compared with either pristine MWCNT or GO. The major reason for the efficient simultaneous detection of DA and PA at nanocomposite was the synergistic effect between MWCNT and GO. The electrochemical oxidation of DA and PA was investigated by cyclic voltammetry, differential pulse voltammetry and amperometry. The nanocomposite modified electrode showed electrocatalytic oxidation of DA and PA in the linear response range from 0.2 to 400 µmol L(-1) and 0.5 to 400 µmol L(-1) with the detection limit of 22 nmol L(-1) and 47 nmol L(-1) respectively. The proposed sensor displayed good selectivity, sensitivity, stability with appreciable consistency and precision. © 2013 Elsevier B.V. All rights reserved.

  19. Fabrication de structures tridimensionnelles de nanocomposites polymeres charges de nanotubes de carbone a simple paroi

    NASA Astrophysics Data System (ADS)

    Laberge Lebel, Louis

    There is currently a worldwide effort for advances in micro and nanotechnologies due to their high potential for technological applications in fields such as microelectromechanical systems (MEMS), organic electronics and structural microstructures for aerospace. In these applications, carbon nanotube/polymer nanocomposites represent interesting material options compared to conventional resins for their enhanced mechanical and electrical properties. However, several significant scientific and technological challenges must first be overcome in order to rapidly and cost-effectively fabricate nanocomposite-based microdevices. Fabrication techniques have emerged for fabricating one- of two-dimensional (1D/2D) nanocomposite structures but few techniques are available for three-dimensional (3D) nanocomposite structures. The overall objective of this thesis is the development of a manufacturing technique allowing the fabrication of 3D structures of single-walled carbon nanotube (C-SWNT)/polymer nanocomposite. This thesis reports the development of a direct-write fabrication technique that greatly extends the fabrication space for 3D carbon nanotube/polymer nanocomposite structures. The UV-assisted direct-write (UV-DW) technique employs the robotically-controlled micro-extrusion of a nanocomposite filament combined with a UV exposure that follows the extrusion point. Upon curing, the increased rigidity of the extruded filament enables the creation of multi-directional shapes along the trajectory of the extrusion point. The C-SWNT material is produced by laser ablation of a graphite target and purified using a nitric acid reflux. The as-grown and purified material is characterized under transmission electron microscopy and Raman spectroscopy. The purification procedure successfully graphed carboxylic groups on the surface of the C-SWNTs, shown by X-ray photoelectron spectroscopies. An incorporation procedure in the polymer is developed involving a non

  20. Bioactive and Biodegradable Nanocomposites and Hybrid Biomaterials for Bone Regeneration

    PubMed Central

    Allo, Bedilu A.; Costa, Daniel O.; Dixon, S. Jeffrey; Mequanint, Kibret; Rizkalla, Amin S.

    2012-01-01

    Strategies for bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix and act as templates onto which cells attach, multiply, migrate and function. Of particular interest are nanocomposites and organic-inorganic (O/I) hybrid biomaterials based on selective combinations of biodegradable polymers and bioactive inorganic materials. In this paper, we review the current state of bioactive and biodegradable nanocomposite and O/I hybrid biomaterials and their applications in bone regeneration. We focus specifically on nanocomposites based on nano-sized hydroxyapatite (HA) and bioactive glass (BG) fillers in combination with biodegradable polyesters and their hybrid counterparts. Topics include 3D scaffold design, materials that are widely used in bone regeneration, and recent trends in next generation biomaterials. We conclude with a perspective on the future application of nanocomposites and O/I hybrid biomaterials for regeneration of bone. PMID:24955542

  1. New nanocomposite surfaces and thermal interface materials based on mesoscopic microspheres, polymers and graphene flakes

    NASA Astrophysics Data System (ADS)

    Dmitriev, Alex A.; Dmitriev, Alex S.; Makarov, Petr; Mikhailova, Inna

    2018-04-01

    In recent years, there has been a great interest in the development and creation of new functional energy mate-rials, including for improving the energy efficiency of power equipment and for effectively removing heat from energy devices, microelectronics and optoelectronics (power micro electronics, supercapacitors, cooling of processors, servers and data centers). In this paper, the technology of obtaining new nanocomposites based on mesoscopic microspheres, polymers and graphene flakes is considered. The methods of sequential production of functional materials from graphene flakes of different volumetric concentration using epoxy polymers, as well as the addition of monodisperse microspheres are described. Data are given on the measurement of the contact angle and thermal conductivity of these nanocomposites with respect to the creation of thermal interface materials for cooling devices of electronics, optoelectronics and power engineering.

  2. Wellbore Seal Repair Using Nanocomposite Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stormont, John

    2016-08-31

    Nanocomposite wellbore repair materials have been developed, tested, and modeled through an integrated program of laboratory testing and numerical modeling. Numerous polymer-cement nanocomposites were synthesized as candidate wellbore repair materials using various combinations of base polymers and nanoparticles. Based on tests of bond strength to steel and cement, ductility, stability, flowability, and penetrability in opening of 50 microns and less, we identified Novolac epoxy reinforced with multi-walled carbon nanotubes and/or alumina nanoparticles to be a superior wellbore seal material compared to conventional microfine cements. A system was developed for testing damaged and repaired wellbore specimens comprised of a cement sheathmore » cast on a steel casing. The system allows independent application of confining pressures and casing pressures while gas flow is measured through the specimens along the wellbore axis. Repair with the nanocomposite epoxy base material was successful in dramatically reducing the flow through flaws of various sizes and types, and restoring the specimen comparable to an intact condition. In contrast, repair of damaged specimens with microfine cement was less effective, and the repair degraded with application of stress. Post-test observations confirm the complete penetration and sealing of flaws using the nanocomposite epoxy base material. A number of modeling efforts have supported the material development and testing efforts. We have modeled the steel-repair material interface behavior in detail during slant shear tests, which we used to characterize bond strength of candidate repair materials. A numerical model of the laboratory testing of damaged wellbore specimens was developed. This investigation found that microannulus permeability can satisfactorily be described by a joint model. Finally, a wellbore model has been developed that can be used to evaluate the response of the wellbore system (casing, cement, and microannulus

  3. Thermal properties of oil palm nano filler/kenaf reinforced epoxy hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Saba, N.; Paridah, M. T.; Abdan, K.; Ibrahim, N. A.

    2016-11-01

    The aim of this research study was to fabricate nano oil palm empty fruit bunch (OPEFB)/kenaf/epoxy hybrid nanocomposites and to make comparative study on the thermal properties of nano OPEFB/kenaf/epoxy hybrid nanocomposites with the montmorillonite (MMT)/kenaf/epoxy hybrid nanocomposites and organically modified MMT (OMMT)/kenaf/epoxy hybrid nanocomposites. Epoxy based kenaf hybrid nanocomposites was prepared by dispersing the nano filler (nano OPEFB filler, MMT, OMMT) at 3% loading through high speed mechanical stirrer followed by hand lay-up technique. Thermal properties of hybrid nanocomposites were analyzed through thermogravimetry analyzer (TGA), and differential scanning calorimetry (DSC). Obtained results specified that addition of nano OPEFB filler improves the thermal stability and char yield of kenaf/epoxy composites. Furthermore, the increase in decomposition temperature by the nano OPEFB filler was quite comparable to the MMT/kenaf/epoxy but relatively less than OMMT/kenaf/epoxy hybrid nanocomposites. We concluded from overall consequences that the nano OPEFB filler can be used as the promising and innovative alternative of existing expensive nano filler, with relatively lesser impact on the environment having marked pronounced impact on the construction, automotive, aerospace, electronics and semiconducting sectors as future industries based on bio-wastes with satisfactory light weight and thermal stability on other side.

  4. Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid.

    PubMed

    Varaprasad, Kokkarachedu; Pariguana, Manuel; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Sadiku, Emmanuel Rotimi

    2017-01-01

    The present investigation describes the development of metal-oxide polymer nanocomposite films from biodegradable poly-ε-caprolactone, disposed poly(ethylene terephthalate) oil bottles monomer and zinc oxide-copper oxide nanoparticles. The terephthalic acid and zinc oxide-copper oxide nanoparticles were synthesized by using a temperature-dependent precipitation technique and double precipitation method, respectively. The terephthalic acid synthesized was confirmed by FTIR analysis and furthermore, it was characterized by thermal analysis. The as-prepared CuO-ZnO nanoparticles structure was confirmed by XRD analysis and its morphology was analyzed by SEM/EDS and TEM. Furthermore, the metal-oxide polymer nanocomposite films have excellent mechanical properties, with tensile strength and modulus better than pure films. The metal-oxide polymer nanocomposite films that were successfully developed show a relatively brighter colour when compared to CuO film. These new metal-oxide polymer nanocomposite films can replace many non-degradable plastics. The new metal-oxide polymer nanocomposite films developed are envisaged to be suitable for use in industrial and domestic packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. An ultrasensitive electrochemical immunosensor for the detection of prostate-specific antigen based on conductivity nanocomposite with halloysite nanotubes.

    PubMed

    Li, Yueyuan; Khan, Malik Saddam; Tian, Lihui; Liu, Li; Hu, Lihua; Fan, Dawei; Cao, Wei; Wei, Qin

    2017-05-01

    A sensitive label-free amperometric electrochemical immunosensor for detection of prostate-specific antigen (PSA) was proposed in this work. The nanocomposite of halloysite nanotubes with polypyrrole shell and palladium nanoparticles (HNTs@PPy-Pd) was used as a novel signal label. The HNTs with adequate hydroxyl groups are economically available raw materials. PPy, as an electrically conducting polymer material, can be absorbed to the surface of HNTs by in situ oxidative polymerization of the pyrrole monomer and form a shell on the HNTs. The shell of PPy could not only improve the conductivity of the nanocomposite but also absorb large amounts of Pd nanoparticles (NPs). The Pd NPs with high electrocatalytic activity toward the reduction of H 2 O 2 and the HNTs@PPy-Pd nanocomposite as the analytical signal label could improve the sensitivity of the immunosensor. Under optimal conditions, the immunosensor showed a low detection limit (0.03 pg/mL) and a wide linear range (0.0001 to 25 ng/mL) of PSA. Moreover, its merits such as good selectivity, acceptable reproducibility, and stability indicate that the fabricated immunosensor has a promising application potential in clinical diagnosis. Graphical Abstract A new label-free amperometric electrochemical immunosensor based on HNTs@PPy-Pd nanocomposite for quantitative detection of PSA.

  6. Rigid polyurethane foam/cellulose whisker nanocomposites: preparation, characterization, and properties.

    PubMed

    Li, Yang; Ren, Hongfeng; Ragauskas, Arthur J

    2011-08-01

    Novel rigid polyurethane nanocomposite foams have been prepared by the polymerization of a sucrose-based polyol, a glycerol-based polyol and polymeric diphenylmethane diisocyanate in the presence of cellulose whiskers. Varying amounts of sulfuric acid hydrolyzed cellulose whiskers (0.25, 0.50, 0.75 and 1.00 wt%) prepared from a commercial fully bleached softwood kraft pulp were incorporated to investigate the effect of its dosage on the mechanical and thermal properties of polyurethane nanocomposites. Fourier transform infrared spectra of the nanocomposite foams suggested that additional hydrogen bonds were developed and crosslinking occurred between the hydroxyl groups of cellulose whiskers and isocyanate groups which increased the phase separation of soft and hard segments in the polyurethane. The closed cells of control foam and nanocomposite foams were homogeneously dispersed and the cell sizes were approximately 350 microm in diameter as observed by scanning electron microscope. A substantial improvement of mechanical properties at low whisker content (< or = 1.00 wt%) was obtained, especially the compressive strength and modulus at 1.00 wt% whiskers content which were increased by 269.7% and 210.0%, respectively. Thermal stability of the nanocomposites was also enhanced as determined by differential scanning calorimetry and thermogravimetric analysis.

  7. Inertial Sensor-Based Gait Recognition: A Review

    PubMed Central

    Sprager, Sebastijan; Juric, Matjaz B.

    2015-01-01

    With the recent development of microelectromechanical systems (MEMS), inertial sensors have become widely used in the research of wearable gait analysis due to several factors, such as being easy-to-use and low-cost. Considering the fact that each individual has a unique way of walking, inertial sensors can be applied to the problem of gait recognition where assessed gait can be interpreted as a biometric trait. Thus, inertial sensor-based gait recognition has a great potential to play an important role in many security-related applications. Since inertial sensors are included in smart devices that are nowadays present at every step, inertial sensor-based gait recognition has become very attractive and emerging field of research that has provided many interesting discoveries recently. This paper provides a thorough and systematic review of current state-of-the-art in this field of research. Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait. Furthermore, these approaches have also revealed considerable breakthrough by realistic use in uncontrolled circumstances, showing great potential for their further development and wide applicability. PMID:26340634

  8. Elastomeric nanocomposite scaffolds made from poly (glycerol sebacate) chemically crosslinked with carbon nanotubes

    PubMed Central

    Patel, Alpesh; Dolatshahi-Pirouz, Alireza; Zhang, Hongbin; Rangarajan, Kaushik; Iviglia, Giorgio; Shin, Su-Ryon; Hussain, Mohammad Asif

    2015-01-01

    Carbon nanotube (CNT)-based nanocomposites often possess properties such as high stiffness, electrical conductivity, and thermal stability and have been studied for various biomedical and biotechnological applications. However, the current design approaches utilize CNTs as physical filler, and thus, the true potential of CNT-based nanocomposites has not been achieved. Here, we introduce a general approach of fabricating stiff, elastomeric nanocomposites from poly(glycerol sebacate) (PGS) and CNTs. The covalent crosslinking between the nanotubes and polymer chains resulted in novel property combinations that are not observed in conventional nanocomposites. The addition of 1% CNTs resulted a five-fold increase in the tensile modulus and a six-fold increase in compression modulus compared with PGS alone, which is far superior to the previously reported studies for CNT-based nanocomposites. Despite significant increase in mechanical stiffness, the elasticity of the network was not compromised and the resulting nanocomposites showed more than 94% recovery. This study demonstrates that the chemical conjugation of CNTs to a PGS backbone results in stiff and elastomeric nanocomposites. Additionally, in vitro studies using human mesenchymal stem cells (hMSCs) indicated that the incorporation of CNTs to PGS network significantly enhanced the differentiation potential of the seeded hMSCs rendering them potentially suitable for applications ranging from scaffolding in musculoskeletal tissue engineering to biosensors in biomedical devices. PMID:26146547

  9. Composite-cavity-based Fabry-Perot interferometric strain sensors.

    PubMed

    Zhang, Jianzhong; Peng, G D; Yuan, Libo; Sun, Weimin

    2007-07-01

    A composite-cavity-based Fabry-Perot interferometric strain sensor system is proposed to gain the minimum cross sensitivity to temperature and a high multiplexing capability at the same time. The interrogation of the sensor system is based on a white-light interferometric technology, and the demodulation is achieved by analyzing the coherence spectra. A demonstration system with two sensors is presented and tested.

  10. Preparation and characterization of a poly (1, 4-phenylenevinylene) derivative-based hybrid thin film nanocomposites with enhanced performance

    NASA Astrophysics Data System (ADS)

    Belhaj, Marwa; Jemmeli, Dhouha; Dridi, Cherif; Ben Salem, Balkiss; Jaballah, Najmeddine; Majdoub, Mustapha; Yatskiv, Roman; Grym, Jan

    2018-05-01

    In this study, a poly (1, 4-phenylenevinylene) derivative (PPV-C6) was synthesized via Gilch polycondensation, and its electrochemical and optical characteristics were determined by cyclic voltammetry analysis, ultraviolet-visible, and photoluminescence spectroscopy. The polymer exhibited semiconductor behavior with an optical band gap of about 2.02 eV. Thin-film hybrid nanocomposites were prepared based on PPV-C6 with a large range of concentrations of sol-gel synthesized surfactant-free ZnO nanoparticles (n-ZnO). We investigated the photophysical properties of nanocomposites with different weight ratios of n-ZnO. The optical absorption spectra of PPV-C6: n-ZnO nanocomposites exhibited moderate variation in terms of the optical band gap energy with respect to the pristine polymer. Photoluminescence spectra indicated that the optimum n-ZnO concentration was about 50 wt% to achieve photoluminescence quenching, which corresponded to the most homogeneous surface and efficient charge transfer due to optimal exciton dissociation. We established good correlations between the investigated properties.

  11. Development of Novel Metal Hydride-Carbon Nanomaterial Based Nanocomposites as Anode Electrode Materials for Lithium Ion Battery

    DTIC Science & Technology

    2014-06-30

    The aim of this study is to develop metal hydride-carbon nanomaterial based nanocomposites as anode electrode materials for high capacity lithium ion battery and...henceforth to develop high energy density, and good cyclic stability lithium ion battery .

  12. Physical and structural properties of polyaniline/microcrystalline cellulose nanocomposite

    NASA Astrophysics Data System (ADS)

    Abdi, Mahnaz M.; Liyana, Rawaida; Tahir, Paridah Md; Heng, Lee Yook; Sulaiman, Yusran; Waheeda, Nur Farhana; Hassan, Nabihah Abu

    2017-12-01

    A composite of Polyaniline/Microcrystalline Cellulose (PAni/MCC) was prepared via a chemical polymerization method in the presence of ammonium persulfate (NH4)2S2O8 as oxidant and cetyltrimethylammonium bromide (CTAB) as a cationic surfactant. The results of FESEM showed that the morphology of nanocomposite depends on the monomer concentration. Wire-like and porous nanostructure was observed for PAni/MCC/CTAB composite that could be suitable for enzyme immobilization and sensor applications. The electrochemical properties of the composites were studied using Cyclic Voltammetry (CV) and it was shown that PAni/MCC/CTAB composite generated a higher current response compared to the pure PAni. The synergy effect of MCC and CTAB on the physical and electrochemical properties of composite resulted in higher electron transferring in PAni/MCC/CTAB. The presence of significant peaks of PAni and MCC in FT-IR spectrum of nanocomposite indicating polymerization of aniline on the surface of MCC. Characteristic peaks of crystalline cellulose were observed at 22.8 and 14.7 2theta in XRD pattern.

  13. Organic-inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides with intercalated phacolysin as ocular delivery system

    NASA Astrophysics Data System (ADS)

    Qin, Zhiguo; Zhang, Jie; Chi, Huibo; Cao, Feng

    2015-12-01

    This study was mainly aimed to evaluate the potential use of a novel ocular drug delivery system, organic-inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides (LDH). Organic polymers of chitosan-glutathione (CG) and pre-activated chitosan-glutathione (CG-2MNA) were successfully synthesized and characterized. LDH with intercalated phacolysin (PCL), including larger hexagonal LDH-PCL (Lh-LDH-PCL), larger spherical LDH-PCL (Ls-LDH-PCL), smaller hexagonal LDH-PCL (Sh-LDH-PCL), CG hybrid LDH-PCL (LDH-PCL-CG), and CG-2MNA hybrid LDH-PCL (LDH-PCL-CG-2MNA), were prepared. The nanocomposites with particle size of 107.2-274.9 nm were characterized by powder X-ray diffraction, Fourier transform infrared, transmission electron micrographs, etc. In vivo precorneal retention studies showed that the detectable time of all nanocomposites was prolonged from 2 to 6 h in comparison to PCL saline. Accordingly, the AUC0-6h values of Lh-LDH-PCL, Ls-LDH-PCL, Sh-LDH-PCL, LDH-PCL-CG, and LDH-PCL-CG-2MNA nanocomposites were increased by 2.27-, 2.08-, 3.08-, 4.67-, and 3.36-fold, respectively. The Draize test and hematoxylin and eosin staining demonstrated that modified LDH had no eye irritation after single and repeated administration. These results indicated that chitosan derivatives-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs.

  14. Hydrogen sulfide removal in water-based drilling fluid by metal oxide nanoparticle and ZnO/TiO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Salehi Morgani, M.; Saboori, R.; Sabbaghi, S.

    2017-07-01

    Advanced approaches to the application of nanomaterials for environmental studies, such as waste-water treatment and pollution removal/adsorption, have been considered in recent decades. In this research, hydrogen sulfide removal from water-based drilling fluid by ZnO and TiO2 nanoparticles and a ZnO/TiO2 nanocomposite was studied experimentally. The ZnO and TiO2 nanoparticles were synthesized by sedimentation and the sol-gel method. A sol-chemical was employed to synthesize the ZnO/TiO2 nanocomposite. X-ray diffraction, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface analysis, inductively coupled plasma mass spectrometry (ICP), dynamic light scattering (DLS) and Fourier transform infrared spectroscopy were used to characterize the produced ZnO and TiO2 nanoparticles, and the ZnO/TiO2 nanocomposite. The results showed that the concentration of hydrogen sulfide decreased from 800 ppm to about 250 ppm (about 70% removal) and less than 150 ppm (more than 80% removal) using the TiO2 and ZnO nanoparticles with a 0.67 wt% concentration, respectively. Hydrogen sulfide removal using the ZnO/TiO2 nanocomposite with a 0.67 wt% showed the highest value of removal in comparison with the TiO2 and ZnO nanoparticles. The hydrogen sulfide level was lowered from 800 ppm to less than 5 ppm (99% removal) by the nanocomposite.

  15. Graphene nanocomposites as thermal interface materials for cooling energy devices

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. S.; Valeev, A. R.

    2017-11-01

    The paper describes the technology of creating samples of graphene nanocomposites based on graphene flakes obtained by splitting graphite with ultrasound of high power. Graphene nanocomposites in the form of samples are made by the technology of weak sintering at high pressure (200-300 bar) and temperature up to 150 0 C, and also in the form of compositions with polymer matrices. The reflection spectra in the visible range and the near infrared range for the surface of nanocomposite samples are studied, the data of optical and electronic spectroscopy of such samples are givenIn addition, data on the electrophysical and thermal properties of the nanocomposites obtained are presented. Some analytical models of wetting and spreading over graphene nanocomposite surfaces have been constructed and calculated, and their effective thermal conductivity has been calculated and compared with the available experimental data. Possible applications of graphene nanocomposites for use as thermal interface materials for heat removal and cooling for power equipment, as well as microelectronics and optoelectronics devices are described.

  16. Chemical Sensors Based on Metal Oxide Nanostructures

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  17. Polyvinylpyrrolidone/reduced graphene oxide nanocomposites thin films coated on quartz crystal microbalance for NO2 detection at room temperature

    NASA Astrophysics Data System (ADS)

    Huang, Junlong; Xie, Guangzhong; Zhou, Yong; Xie, Tao; Tai, HuiLing; Yang, Guangjin

    2014-08-01

    Polyvinylpyrrolidone (PVP)/reduced graphene oxide (RGO) nanocomposites are sprayed on quartz crystal microbalance (QCM) for NO2 sensing. The thin films are characterized by Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The experimental results reveal that PVP/RGO sensor exhibits higher sensitivity and shorter recovery time than those of PVP. Besides, the response to 20 ppm NO2 is higher than other gases such as CO, CO2 and NH3 even at 100ppm. When the PVP/RGO sensor is exposed to these gases, the good selectivity to NO2 makes the sensor ideal for NO2 detection.

  18. Highly Thermal Conductive Nanocomposites

    NASA Technical Reports Server (NTRS)

    Sun, Ya-Ping (Inventor); Connell, John W. (Inventor); Veca, Lucia Monica (Inventor)

    2015-01-01

    Disclosed are methods for forming carbon-based fillers as may be utilized in forming highly thermal conductive nanocomposite materials. Formation methods include treatment of an expanded graphite with an alcohol/water mixture followed by further exfoliation of the graphite to form extremely thin carbon nanosheets that are on the order of between about 2 and about 10 nanometers in thickness. Disclosed carbon nanosheets can be functionalized and/or can be incorporated in nanocomposites with extremely high thermal conductivities. Disclosed methods and materials can prove highly valuable in many technological applications including, for instance, in formation of heat management materials for protective clothing and as may be useful in space exploration or in others that require efficient yet light-weight and flexible thermal management solutions.

  19. Highly Thermal Conductive Nanocomposites

    NASA Technical Reports Server (NTRS)

    Sun, Ya-Ping (Inventor); Connell, John W. (Inventor); Veca, Lucia Monica (Inventor)

    2017-01-01

    Disclosed are methods for forming carbon-based fillers as may be utilized in forming highly thermal conductive nanocomposite materials. Formation methods include treatment of an expanded graphite with an alcohol/water mixture followed by further exfoliation of the graphite to form extremely thin carbon nanosheets that are on the order of between about 2 and about 10 nanometers in thickness. Disclosed carbon nanosheets can be functionalized and/or can be incorporated in nanocomposites with extremely high thermal conductivities. Disclosed methods and materials can prove highly valuable in many technological applications including, for instance, in formation of heat management materials for protective clothing and as may be useful in space exploration or in others that require efficient yet light-weight and flexible thermal management solutions.

  20. Wearable PPG sensor based alertness scoring system.

    PubMed

    Dey, Jishnu; Bhowmik, Tanmoy; Sahoo, Saswata; Tiwari, Vijay Narayan

    2017-07-01

    Quantifying mental alertness in today's world is important as it enables the person to adopt lifestyle changes for better work efficiency. Miniaturized sensors in wearable devices have facilitated detection/monitoring of mental alertness. Photoplethysmography (PPG) sensors through Heart Rate Variability (HRV) offer one such opportunity by providing information about one's daily alertness levels without requiring any manual interference from the user. In this paper, a smartwatch based alertness estimation system is proposed. Data collected from PPG sensor of smartwatch is processed and fed to machine learning based model to get a continuous alertness score. Utility functions are designed based on statistical analysis to give a quality score on different stages of alertness such as awake, long sleep and short duration power nap. An intelligent data collection approach is proposed in collaboration with the motion sensor in the smartwatch to reduce battery drainage. Overall, our proposed wearable based system provides a detailed analysis of alertness over a period in a systematic and optimized manner. We were able to achieve an accuracy of 80.1% for sleep/awake classification along with alertness score. This opens up the possibility for quantifying alertness levels using a single PPG sensor for better management of health related activities including sleep.

  1. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch

    PubMed Central

    Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang

    2016-01-01

    Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture. PMID:26797616

  2. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch.

    PubMed

    Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang

    2016-01-19

    Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture.

  3. Toward sensor-based context aware systems.

    PubMed

    Sakurai, Yoshitaka; Takada, Kouhei; Anisetti, Marco; Bellandi, Valerio; Ceravolo, Paolo; Damiani, Ernesto; Tsuruta, Setsuo

    2012-01-01

    This paper proposes a methodology for sensor data interpretation that can combine sensor outputs with contexts represented as sets of annotated business rules. Sensor readings are interpreted to generate events labeled with the appropriate type and level of uncertainty. Then, the appropriate context is selected. Reconciliation of different uncertainty types is achieved by a simple technique that moves uncertainty from events to business rules by generating combs of standard Boolean predicates. Finally, context rules are evaluated together with the events to take a decision. The feasibility of our idea is demonstrated via a case study where a context-reasoning engine has been connected to simulated heartbeat sensors using prerecorded experimental data. We use sensor outputs to identify the proper context of operation of a system and trigger decision-making based on context information.

  4. Dielectric behaviour of montmorillonite/cyanoethylated cellulose nanocomposites.

    PubMed

    Madusanka, Nadeesh; Shivareddy, Sai G; Eddleston, Mark D; Hiralal, Pritesh; Oliver, Rachel A; Amaratunga, Gehan A J

    2017-09-15

    A dielectric nanocomposite based oncyanoethylatedcellulose (CRS) and MMT nanoclay was successfully prepared with different weight percentages (5%, 10% and 15%) of MMT. MMT nanoplatets obtained via sonication of MMT nanoclay in acetone for a prolonged period was used in the preparation of CRS-MMT nanocomposites. CRS-MMT thin films on SiO 2 /Si wafers are used to form metal-insulator-metal (MIM) type capacitors. At 1kHz CRS-MMT nanocomposites exhibited high dielectric constants (ε r ) of 71, 55 and 42 with low leakage current densities (10 -6 -10 -7 A/cm 2 ) for nanocomposites with 5%, 10% and 15% weight of MMT respectively, higher than values of pure CRS (21), Na-MMT(10). Reduction of ε r with higher MMT loading can be attributed to a network formation as evidenced via strong bonding interactions between CRS and MMT leading to a lower molecular mobility. The leakage is studied using conductive atomic force microscopy (C-AFM) indicates that leakage pathways are associated with MMT nanoplatelets embedded in the CRS polymer matrix. Copyright © 2017. Published by Elsevier Ltd.

  5. A label-free photoelectrochemical biosensor for urokinase-type plasminogen activator detection based on a g-C3N4/CdS nanocomposite.

    PubMed

    Liu, Xing-Pei; Chen, Jing-Shuai; Mao, Chang-Jie; Niu, He-Lin; Song, Ji-Ming; Jin, Bao-Kang

    2018-09-26

    Herein, we established a novel ultrasensitive photoelectrochemical biosensor for detecting urokinase-type plasminogen activator (u-PA), based on a g-C 3 N 4 /CdS nanocomposite. The prepared nanocomposite was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible absorption spectroscopy, and Fourier transform infrared spectroscopy, thus indicating that the nanocomposite was prepared successfully. In the typical process, the prepared nanocomposite was deposited on the surface of a bare FTO electrode. After being air-dried, the g-C 3 N 4 /CdS nanocomposite modified electrode was successively incubated with antibody against urokinase-type plasminogen activator and the blocking agent BSA to produce a photoelectrochemical biosensor for u-PA. In the presence of target u-PA antigen, the photocurrent response of the prepared biosensor electrode decreased significantly. The proposed novel photoelectrochemical biosensor exhibited good sensitivity, specificity, and reproducibility for u-PA detection, and a low detection limit of 33 fg mL -1 , ranging from 1 μg mL -1 -0.1 pg mL -1 . The proposed strategy should provide a promising method for detection of other biomarkers. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Thermoplastic vulcanizate nanocomposites based on polypropylene/ethylene propylene diene terpolymer (PP/EPDM) prepared by reactive extrusion

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Amin

    For this work, different grades of polypropylene-g-maleic anhydride polymers were chosen to elucidate the effect of compatibilizer on the nanoclay dispersion level in thermoplastic phase. X-ray diffraction (XRD) patterns along with transmission electron microscopy (TEM) and scanning electron microscope (SEM) micrographs confirmed that prepared PP nanocomposites ranged from intercalated structure to a coexistence of intercalated tactoids and exfoliated layers namely “partially exfoliated” nanocomposite. Among various factors affecting the compatibilizer performance, it is shown that only the relaxation behaviour of compatibilizer correlates directly with the nanocomposites characterization results; higher relaxation times of the compatibilizer are associated with better dispersion of nanoclay. To study the co-continuity development of the nonreactive blends, EPDM and the mentioned PP nanocomposites at various compositions were melt blended using an internal mixer. Based on continuity measurements of TPEs and TPE nanocomposites for both thermoplastic and rubber phase, it is shown that the presence of nanoclay decreases the co-continuity composition range and alters its symmetrical feature. However, this effect is more pronounced in the intercalated nanocomposites than in partially exfoliated nanocomposites. It seems that better nanoclay dispersion limits the reduction of the thermoplastic phase continuity in a manner that the continuity index of the thermoplastic phase for partially exfoliated TPE nanocomposite prepared at high EPDM content (i.e. at 70 wt%) is greater than that of corresponding TPE without nanoclay. According to these results, it is possible to shift to higher EPDM content using partially exfoliated system before formation of matrix-dispersed particle structure which limits thermoplastic vulcanizate production. This should be mentioned that gamma irradiation was carried out in order to fix the EPDM morphology to estimate the continuity of PP

  7. Immobilization of natural anti-oxidants on carbon nanotubes and aging behavior of ultra-high molecular weight polyethylene-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Dintcheva, Nadka Tzankova; Arrigo, Rossella; Gambarotti, Cristian; Guenzi, Monica; Carroccio, Sabrina; Cicogna, Francesca; Filippone, Giovanni

    2014-05-01

    The use of natural antioxidants is an attractive way to formulate nanocomposites with extended durability and with potential applications in bio-medical field. In this work, Vitamin E (VE) in the form of α-tocopherol and Quercetin (Q) are physically immobilized on the outer surface of multi-walled carbon nanotubes (CNTs). Afterward, the CNTs-VE and CNTs-Q are used to formulate thermally stable ultra high molecular weight polyethylene based nanocomposites. The obtained results in the study of the thermo-oxidation behavior suggest a beneficial effect of the natural anti-oxidant carbon nanotubes systems. The unexpected excellent thermo-resistance of the nanocomposites seems to be due to a synergistic effect of the natural anti-oxidant and carbon nanotubes, i.e. strong interaction between CNT surface and anti-oxidant molecules. Particularly, these interactions cause the formation of structural defects onto outer CNT surfaces, which, in turn, increase the CNT radical scavenging activity.

  8. Synthesis and characterization of poly (lactic acid)/chitosan nanocomposites based on renewable resources as biobased-material

    NASA Astrophysics Data System (ADS)

    Suryani; Agusnar, H.; Wirjosentono, B.; Rihayat, T.; Salisah, Z.

    2018-01-01

    Biobased becomes one of the new breakthrough in the smart engineering, especially in biomedical applications, such as tissue engineering that serves as a supporting physical structure to trigger the growth of skin tissue. From various studies which had been done, it was known that the optimal Biobased healed wounds or injuries in a relatively short time. In this study, a Biobased natural polymer based e.g Poly(Lactic Acid) (PLA)/Chitosan Nanocomposites was made. PLA was synthesized from saba banana (Musa acuminata) as raw material using Ring-Opening Polymerization (ROP) method. PLA was mixed with Chitosan with Chitosan concentration variations of 1%, 3%, and 5% to form a nanocomposites. The analysis result showed that Chitosan concentration in PLA/Chitosan Nanocomposites sample affected the value of tensile strength. The highest value of tensile strength was obtained on a sample of 100 ml volume with a concentration of 3%, which was 120.396 MPa. The highest percentage of elongation was obtained in 100 ml volume sample with 5% concentration, which was 26.3686%. In the hydrophilicity test, the highest percentage of water absorption was obtained in a 200 ml volume sample with 5% concentration, which was 44.615%. The addition of Chitosan to the sample affected the functional group bonding, where there was a functional group of NH2 at the wave number of 2923.92 cm-1. The sample characteristics based on water absorption indicated that the sample was potentially to be used as Biobased construction material.

  9. Anisotropic elasticity of quasi-one-component polymer nanocomposites.

    PubMed

    Voudouris, Panayiotis; Choi, Jihoon; Gomopoulos, Nikos; Sainidou, Rebecca; Dong, Hongchen; Matyjaszewski, Krzysztof; Bockstaller, Michael R; Fytas, George

    2011-07-26

    The in-plane and out-of-plane elastic properties of thin films of "quasi-one-component" particle-brush-based nanocomposites are compared to those of "classical" binary particle-polymer nanocomposite systems with near identical overall composition using Brillouin light scattering. Whereas phonon propagation is found to be independent of the propagation direction for the binary particle/polymer blend systems, a pronounced splitting of the phonon propagation velocity along the in-plane and out-of-plane film direction is observed for particle-brush systems. The anisotropic elastic properties of quasi-one-component particle-brush systems are interpreted as a consequence of substrate-induced order formation into layer-type structures and the associated breaking of the symmetry of the film. The results highlight new opportunities to engineer quasi-one-component nanocomposites with advanced control of structural and physical property characteristics based on the assembly of particle-brush materials.

  10. Fluorographene based Ultrasensitive Ammonia Sensor

    PubMed Central

    Tadi, Kiran Kumar; Pal, Shubhadeep; Narayanan, Tharangattu N.

    2016-01-01

    Single molecule detection using graphene can be brought by tuning the interactions via specific dopants. Electrostatic interaction between the most electronegative element fluorine (F) and hydrogen (H) is one of the strong interactions in hydrogen bonding, and here we report the selective binding of ammonia/ammonium with F in fluorographene (FG) resulting to a change in the impedance of the system. Very low limit of detection value of ~0.44 pM with linearity over wide range of concentrations (1 pM–0.1 μM) is achieved using the FG based impedance sensor, andthisscreen printed FG sensor works in both ionized (ammonium) and un-ionized ammonia sensing platforms. The interaction energies of FG and NH3/NH4+ are evaluated using density functional theory calculations and the interactions are mapped. Here FGs with two different amounts of fluorinecontents −~5 atomic% (C39H16F2) and ~24 atomic% (C39H16F12) - are theoretically and experimentally studied for selective, high sensitive and ultra-low level detection of ammonia. Fast responding, high sensitive, large area patternable FG based sensor platform demonstrated here can open new avenues for the development of point-of-care devices and clinical sensors. PMID:27142522

  11. Implantable fluorescence-based glucose sensor development

    NASA Astrophysics Data System (ADS)

    Ibey, Bennett L.; Yadavalli, Vamsi K.; Thomas, Hope R.; Rounds, Rebecca M.; Pishko, Michael V.; Cote, Gerard L.

    2005-03-01

    An implantable sensor is being created that allows measurement of blood glucose through fluorescent detection of an embedded chemical assay. The sensor is based on the competitive binding reaction between the protein Concanavalin A and various saccharide molecules, specifically a glycodendrimer and glucose. Previous studies have shown the ability of an embedded chemical assay using Con A and dextran with shorter wavelength dyes to both sense changes in glucose and generate sufficient fluorescent emission to pass through the dermal tissue. However, due to the chemical constituents of the assay, multivalent binding was evident resulting in poor spectral change due to glucose within the biological range. Use of a glycodendrimer and longer wavelength dyes has improved the sensor"s spectral change due to glucose and the overall signal to noise ratio of the sensor. In this work, a description of this sensor and the results obtained from it will be presented showing a large dynamic range of fluorescence with glucose.

  12. Latest developments for low-power infrared laser-based trace gas sensors for sensor networks

    NASA Astrophysics Data System (ADS)

    So, Stephen; Thomazy, David; Wang, Wen; Marchat, Oscar; Wysocki, Gerard

    2011-09-01

    Academic and industrial researchers require ultra-low power, compact laser based trace-gas sensor systems for the most demanding environmental and space-borne applications. Here the latest results from research projects addressing these applications will be discussed: 1) an ultra-compact CO2 sensor based on a continuous wave quantum cascade laser, 2) an ultra-sensitive Faraday rotation spectrometer for O2 detection, 3) a fully ruggedized compact and low-power laser spectrometer, and 4) a novel non-paraxial nonthin multipass cell. Preliminary tests and projection for performance of future sensors based on this technology is presented.

  13. TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Sciancalepore, C.; Cassano, T.; Curri, M. L.; Mecerreyes, D.; Valentini, A.; Agostiano, A.; Tommasi, R.; Striccoli, M.

    2008-05-01

    Original nanocomposites have been obtained by direct incorporation of pre-synthesized oleic acid capped TiO2 nanorods into properly functionalized poly(methyl methacrylate) copolymers, carrying carboxylic acid groups on the repeating polymer unit. The presence of carboxylic groups on the alkyl chain of the host functionalized copolymer allows an highly homogeneous dispersion of the nanorods in the organic matrix. The prepared TiO2/PMMA-co-MA nanocomposites show high optical transparency in the visible region, even at high TiO2 nanorod content, and tunable linear refractive index depending on the nanoparticle concentration. Finally measurements of nonlinear optical properties of TiO2 polymer nanocomposites demonstrate a negligible two-photon absorption and a negative value of nonlinear refractive index, highlighting the potential of the nanocomposite for efficient optical devices operating in the visible region.

  14. Radar based autonomous sensor module

    NASA Astrophysics Data System (ADS)

    Styles, Tim

    2016-10-01

    Most surveillance systems combine camera sensors with other detection sensors that trigger an alert to a human operator when an object is detected. The detection sensors typically require careful installation and configuration for each application and there is a significant burden on the operator to react to each alert by viewing camera video feeds. A demonstration system known as Sensing for Asset Protection with Integrated Electronic Networked Technology (SAPIENT) has been developed to address these issues using Autonomous Sensor Modules (ASM) and a central High Level Decision Making Module (HLDMM) that can fuse the detections from multiple sensors. This paper describes the 24 GHz radar based ASM, which provides an all-weather, low power and license exempt solution to the problem of wide area surveillance. The radar module autonomously configures itself in response to tasks provided by the HLDMM, steering the transmit beam and setting range resolution and power levels for optimum performance. The results show the detection and classification performance for pedestrians and vehicles in an area of interest, which can be modified by the HLDMM without physical adjustment. The module uses range-Doppler processing for reliable detection of moving objects and combines Radar Cross Section and micro-Doppler characteristics for object classification. Objects are classified as pedestrian or vehicle, with vehicle sub classes based on size. Detections are reported only if the object is detected in a task coverage area and it is classified as an object of interest. The system was shown in a perimeter protection scenario using multiple radar ASMs, laser scanners, thermal cameras and visible band cameras. This combination of sensors enabled the HLDMM to generate reliable alerts with improved discrimination of objects and behaviours of interest.

  15. Simulation of an enzyme-based glucose sensor

    NASA Astrophysics Data System (ADS)

    Sha, Xianzheng; Jablecki, Michael; Gough, David A.

    2001-09-01

    An important biosensor application is the continuous monitoring blood or tissue fluid glucose concentration in people with diabetes. Our research focuses on the development of a glucose sensor based on potentiostatic oxygen electrodes and immobilized glucose oxidase for long- term application as an implant in tissues. As the sensor signal depends on many design variables, a trial-and-error approach to sensor optimization can be time-consuming. Here, the properties of an implantable glucose sensor are optimized by a systematic computational simulation approach.

  16. Development of GaN-based microchemical sensor nodes

    NASA Technical Reports Server (NTRS)

    Prokopuk, Nicholas; Son, Kyung-Ah; George, Thomas; Moon, Jeong S.

    2005-01-01

    Sensors based III-N technology are gaining significant interest due to their potential for monolithic integration of RF transceivers and light sources and the capability of high temperature operations. We are developing a GaN-based micro chemical sensor node for remote detection of chemical toxins, and present electrical responses of AlGaN/GaN HEMT (High Electron Mobility Transistor) sensors to chemical toxins as well as other common gases.

  17. Fluorescent properties of a hybrid cadmium sulfide-dendrimer nanocomposite and its quenching with nitromethane.

    PubMed

    Campos, Bruno B; Algarra, Manuel; Esteves da Silva, Joaquim C G

    2010-01-01

    A fluorescent hybrid cadmium sulphide quantum dots (QDs) dendrimer nanocomposite (DAB-CdS) synthesised in water and stable in aqueous solution is described. The dendrimer, DAB-G5 dendrimer (polypropylenimine tetrahexacontaamine) generation 5, a diaminobutene core with 64 amine terminal primary groups. The maximum of the excitation and emission spectra, Stokes' shift and the emission full width of half maximum of this nanocomposite are, respectively: 351, 535, 204 and 212 nm. The fluorescence time decay was complex and a four component decay time model originated a good fit (chi = 1.20) with the following lifetimes: tau (1) = 657 ps; tau (2) = 10.0 ns; tau (3) = 59.42 ns; and tau (4) = 265 ns. The fluorescence intensity of the nanocomposite is markedly quenched by the presence of nitromethane with a dynamic Stern-Volmer constant of 25 M(-1). The quenching profiles show that about 81% of the CdS QDs are located in the external layer of the dendrimer accessible to the quencher. PARAFAC analysis of the excitation emission matrices (EEM) acquired as function of the nitromethane concentration showed a trilinear data structure with only one linearly independent component describing the quenching which allows robust estimation of the excitation and emission spectra and of the quenching profiles. This water soluble and fluorescent nanocomposite shows a set of favourable properties to its use in sensor applications.

  18. Preparation and characterization of graphene/CdS nanocomposites

    NASA Astrophysics Data System (ADS)

    Wu, Jili; Bai, Song; Shen, Xiaoping; Jiang, Lei

    2010-11-01

    Graphene-based nanocomposites are emerging as a new class of materials that hold promise for many applications. In this paper, we present a facile approach for the preparation of graphene/CdS nanocomposites through simple reflux processes, in which thiourea (CS(NH 2) 2) and thioacetamide (C 2H 5NS) act as a sulphide source, respectively. The samples were characterized by the X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectrum (FT-IR), ultraviolet-visible (UV-vis) spectroscopy and thermogravimetry analysis. It was shown that in the nanocomposites, the CdS nanoparticles were densely and uniformly deposited on the graphene sheets, and the sulphide source used has a great influence on the morphology, structure and property of the graphene/CdS nanocomposites. The good distribution of CdS nanoparticles on graphene sheets guarantees the efficient optoelectronic properties of graphene/CdS and would be promising for practical applications in future nanotechnology.

  19. Multifunctional Graphene-Silicone Elastomer Nanocomposite, Method of Making the Same, and Uses Thereof

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Pan, Shuyang (Inventor); Aksay, Ilhan A. (Inventor)

    2018-01-01

    A nanocomposite composition having a silicone elastomer matrix having therein a filler loading of greater than 0.05 wt %, based on total nanocomposite weight, wherein the filler is functional graphene sheets (FGS) having a surface area of from 300 sq m/g to 2630 sq m2/g; and a method for producing the nanocomposite and uses thereof.

  20. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology.

    PubMed

    Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang

    2018-02-08

    A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.

  1. Bioactive Nanocomposites for Tissue Repair and Regeneration: A Review

    PubMed Central

    Bramhill, Jane; Ross, Sukunya; Ross, Gareth

    2017-01-01

    This review presents scientific findings concerning the use of bioactive nanocomposites in the field of tissue repair and regeneration. Bioactivity is the ability of a material to incite a specific biological reaction, usually at the boundary of the material. Nanocomposites have been shown to be ideal bioactive materials due the many biological interfaces and structures operating at the nanoscale. This has resulted in many researchers investigating nanocomposites for use in bioapplications. Nanocomposites encompass a number of different structures, incorporating organic-inorganic, inorganic-inorganic and bioinorganic nanomaterials and based upon ceramic, metallic or polymeric materials. This enables a wide range of properties to be incorporated into nanocomposite materials, such as magnetic properties, MR imaging contrast or drug delivery, and even a combination of these properties. Much of the classical research was focused on bone regeneration, however, recent advances have enabled further use in soft tissue body sites too. Despite recent technological advances, more research is needed to further understand the long-term biocompatibility impact of the use of nanoparticles within the human body. PMID:28085054

  2. Effect of hydrolysed cellulose nanowhiskers on properties of montmorillonite/polylactic acid nanocomposites.

    PubMed

    Arjmandi, Reza; Hassan, Azman; Haafiz, M K M; Zakaria, Zainoha; Islam, Md Saiful

    2016-01-01

    Polylactic acid (PLA) nanocomposites reinforced with hybrid montmorillonite/cellulose nanowhiskers [MMT/CNW(SO4)] were prepared by solution casting. The CNW(SO4) nanofiller was first isolated from microcrystalline cellulose using acid hydrolysis treatment. PLA/MMT/CNW(SO4) hybrid nanocomposites were prepared by the addition of various amounts of CNW(SO4) [1-9 parts per hundred parts of polymer (phr)] into PLA/MMT nanocomposite at 5 phr MMT content, based on highest tensile strength values as reported previously. The biodegradability, thermal, tensile, morphological, water absorption and transparency properties of PLA/MMT/CNW(SO4) hybrid nanocomposites were investigated. The Biodegradability, thermal stability and crystallinity of hybrid nanocomposites increased compared to PLA/MMT nanocomposite and neat PLA. The highest tensile strength of hybrid nanocomposites was obtained by incorporating 1 phr CNW(SO4) [∼ 36 MPa]. Interestingly, the ductility of hybrid nanocomposites increased significantly by 87% at this formulation. The Young's modulus increased linearly with increasing CNW(SO4) content. This is due to the relatively good dispersion of nanofillers in the hybrid nanocomposites, as revealed by transmission electron microscopy. Fourier transform infrared spectroscopy indicated the formation of some polar interactions. In addition, water resistance of the hybrid nanocomposites improved and the visual transparency of neat PLA film did not affect by addition of CNW(SO4). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Ferromagnetic nanocomposites

    NASA Astrophysics Data System (ADS)

    Mazaleyrat, F.; Varga, L. K.

    2000-06-01

    A survey of magnetic nanocomposites applicable in high-frequency signal and power electronics is given. First, the preparation and properties of ribbon and powder cores from the nanocrystalline "bulk" alloys (Finemet and Nanoperm) is reviewed. A technology is presented to apply continuously a large stress during the annealing and winding of the rapidly quenched ribbons in order to induce uniaxial anisotropy in it. The obtained toroidal cores with flat hysteresis curve are applicable up to 1 MHz with considerable permeability (˜250). The powder cores prepared from ground Finemet with powder size of 30-400 μm are applicable up to 1 MHz and in some cases up to 10 MHz for smaller powder sizes with low permeability (˜10). Finally, the most common methods used for the preparation of metallic nano-particle s are presented. Presently, the compacts prepared from nano-size (40-80 nm) iron powders do not show the expected behavior. It is anticipated that the iron-based ferromagnetic nanocomposites should replace partly the ferrite-type materials in the forthcoming years.

  4. Development of a self-cleaning sensor membrane for implantable biosensors.

    PubMed

    Gant, Rebecca M; Hou, Yaping; Grunlan, Melissa A; Coté, Gerard L

    2009-09-01

    Fibrous tissue encapsulation may slow the diffusion of the target analyte to an implanted sensor and compromise the optical signal. Poly(N-isopropylacrylamide) (PNIPAAm) hydrogels are thermoresponsive, exhibiting temperature-modulated swelling behavior that could be used to prevent biofouling. Unfortunately, PNIPAAm hydrogels are limited by poor mechanical strength. In this study, a unique thermoresponsive nanocomposite hydrogel was developed to create a mechanically robust self-cleaning sensor membrane for implantable biosensors. This hydrogel was prepared by the photochemical cure of an aqueous solution of NIPAAm and copoly(dimethylsiloxane/methylvinylsiloxane) colloidal nanoparticles ( approximately 219 nm). At temperatures above the volume phase transition temperature (VPTT) of approximately 33-34 degrees C, the hydrogel deswells and becomes hydrophobic, whereas lowering the temperature below the VPTT causes the hydrogel to swell and become hydrophilic. The potential of this material to minimize biofouling via temperature-modulation while maintaining sensor viability was investigated using glucose as a target analyte. PNIPAAm composite hydrogels with and without poration were compared to a pure PNIPAAm hydrogel and a nonthermoresponsive poly(ethylene glycol) (PEG) hydrogel. Poration led to a substantial increase in diffusion. Cycling the temperature of the nanocomposite hydrogels around the VPTT caused significant detachment of GFP-H2B 3T3 fibroblast cells.

  5. Polymer-ceramic nanocomposites for applications in the bone surgery

    NASA Astrophysics Data System (ADS)

    Stodolak, E.; Gadomska, K.; Lacz, A.; Bogun, M.

    2009-01-01

    The subject of this work was preparation and investigation of properties of a nanocomposite material based on polymer matrix modified with nanometric silica particles (SiO2). The composite matrix consisted of resorbable P(L/DL)LA polymer with certified biocompatibility. Nanometric silica was introduced into the matrix by means of ultrasonic homogenisation and/or mechanical stirring. The silica was introduced directly e.g. as nanoparticles or inside calcium alginate fibres which contained 3 wt.% of amorphous SiO2. Proper dispersion of nano-filliers was confirmed by means of thermal analysis (TG/DTA, DSC). It was observed, that the presence of inorganic nanoparticles influenced several surface parameters of the nanocomposites i.e. hydrophility (a decrease of surface energy) and topography (both in micro- and nano-scale). Additionally, the nanocomposites exhibited enhanced mechanical properties (Young's modulus, tensile strength) compared to the pure polymer. The nanocomposites were bioactive materials (SBF/3 days/37oC). Biological tests (MTT test) showed a good viability of human osteoblasts (hFOB 1.19) in contact with the nanocomposites surface. Results of preliminary biological tests carried out with the use of mother cells extracted from human bone marrow showed that the nanocomposites may provide differenation of bone cells.

  6. Transmittance properties of one dimensional ternary nanocomposite photonic crystals

    NASA Astrophysics Data System (ADS)

    Elsayed, Hussein A.

    2018-03-01

    In the present work, we have theoretically investigated the transmittance characteristics of one dimensional ternary photonic crystals that containing a nanocomposite layer. The nanocomposite layer was designed from metallic nanoparticles of (Ag) in a transparent matrix of a dielectric material (MgF2). The numerical results are obtained based on the theoretical modeling of the characteristic matrix method and Maxwell-Garnett model. The investigated results demonstrate the significant effect of the volume fraction of the nanoparticles on the effective permittivity of the nanocomposite material as well as the transmission characteristics of our design. Moreover, the roles played by other parameters such as the thickness of the nanocomposite layer, the permittivity of the host dielectric material and the spherical radius of the nanoparticles are included her. The proposed structure could be promising for many applications such as THz optical filters, reflectors and optical switches.

  7. Chemical Sensors Based on Cyclodextrin Derivatives.

    PubMed

    Ogoshi, Tomoki; Harada, Akira

    2008-08-25

    This review focuses on chemical sensors based on cyclodextrin (CD) derivatives. This has been a field of classical interest, and is now of current interest for numerous scientists. First, typical chemical sensors using chromophore appended CDs are mentioned. Various "turn-off" and "turn-on" fluorescent chemical sensors, in which fluorescence intensity was decreased or increased by complexation with guest molecules, respectively, were synthesized. Dye modified CDs and photoactive metal ion-ligand complex appended CDs, metallocyclodextrins, were also applied for chemical sensors. Furthermore, recent novel approaches to chemical sensing systems using supramolecular structures such as CD dimers, trimers and cooperative binding systems of CDs with the other macrocycle [2]rotaxane and supramolecular polymers consisting of CD units are mentioned. New chemical sensors using hybrids of CDs with p-conjugated polymers, peptides, DNA, nanocarbons and nanoparticles are also described in this review.

  8. Synthesis of Conductive Polymeric Nanocomposites for Applications in Responsive Materials

    NASA Astrophysics Data System (ADS)

    Chavez, Jessica

    concentration as well as the extension of the reaction time. The overall interaction between the conductive polymer and the commercial fibers showed that the conductive polymer was physically adsorbed to the commercial fiber. This physical adsorption caused a decrease in conductive efficiency as a function of repeated washes because the weak intermolecular forces between the conductive polymer and the commercial fiber. This led to the synthesis of conductive films and nanofibers by integrating the conductive polymers directly into a cellulose acetate matrix. The voltage efficiency of the conductive films was lower compared to the coated commercial fiber nanocomposites. However, the conductive material generated greater lux values compared to the coated commercial fiber nanocomposites. Theses conductive materials can be applied to applications in both the medical field and water filtration. The conductive films can be used to create a sensor based system that can trigger a sensor to signify when bandages used for wound management need to be changed. The conductive nanofibers can be used in water filtration as a means of electroplating metals ions from contaminated water. Overall, the synthesis of these conductive materials can be applicable for responsive materials.

  9. Methyltrimethoxysilane (MTMS)-based silica-iron oxide superhydrophobic nanocomposites.

    PubMed

    Nadargi, Digambar; Gurav, Jyoti; Marioni, Miguel A; Romer, Sara; Matam, Santhosh; Koebel, Matthias M

    2015-12-01

    We report a facile synthesis of superhydrophobic silica-iron oxide nanocomposites via a co-precursor sol-gel process. The choice of the silica precursor (Methyltrimethoxysilane, MTMS) in combination with iron nitrate altered the pore structure dramatically. The influence of iron oxide doping on the structural properties of pristine MTMS aerogel is discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Graphene-Decorated Nanocomposites for Printable Electrodes in Thin Wafer Devices

    NASA Astrophysics Data System (ADS)

    Bakhshizadeh, N.; Sivoththaman, S.

    2017-12-01

    Printable electrodes that induce less stress and require lower curing temperatures compared to traditional screen-printed metal pastes are needed in thin wafer devices such as future solar cells, and in flexible electronics. The synthesis of nanocomposites by incorporating graphene nanopowders as well as silver nanowires into epoxy-based electrically conductive adhesives (ECA) is examined to improve electrical conductivity and to develop alternate printable electrode materials that induce less stress on the wafer. For the synthesized graphene and Ag nanowire-decorated ECA nanocomposites, the curing kinetics were studied by dynamic and isothermal differential scanning calorimetry measurements. Thermogravimetric analysis on ECA, ECA-AG and ECA/graphene nanopowder nanocomposites showed that the temperatures for onset of decomposition are higher than their corresponding glass transition temperature ( T g) indicating an excellent thermal resistance. Printed ECA/Ag nanowire nanocomposites showed 90% higher electrical conductivity than ECA films, whereas the ECA/graphene nanocomposites increased the conductivity by over two orders of magnitude. Scanning electron microscopy results also revealed the effect of fillers morphology on the conductivity improvement and current transfer mechanisms in nanocomposites. Residual stress analysis performed on Si wafers showed that the ECA and nanocomposite printed wafers are subjected to much lower stress compared to those printed with metallic pastes. The observed parameters of low curing temperature, good thermal resistance, reasonably high conductivity, and low residual stress in the ECA/graphene nanocomposite makes this material a promising alternative in screen-printed electrode formation in thin substrates.

  11. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    PubMed Central

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  12. Electrochemical DNA hybridization sensors based on conducting polymers.

    PubMed

    Rahman, Md Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-02-05

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.

  13. Dynamic piezoresistive response of hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Gbaguidi, Audrey; Anees, Muhammad; Namilae, Sirish; Kim, Daewon

    2017-04-01

    Hybrid nanocomposites with carbon nanotubes and graphitic platelets as fillers are known to exhibit remarkable electrical and mechanical properties with many potential strain and damage sensing applications. In this work, we fabricate hybrid nanocomposites with carbon nanotube sheet and coarse graphite platelets as fillers with epoxy matrix. We then examine the electromechanical behavior of these nanocomposites under dynamic loading. The electrical resistivity responses of the nanocomposites are measured in frequency range of 1 Hz to 50 Hz with different levels of induced strains. Axial cycling loading is applied using a uniaxial electrodynamic shaker, and transverse loading is applied on end-clamped specimen using modified speakers. In addition, a dynamic mechanical analysis of nanocomposite specimen is performed to characterize the thermal and dynamic behavior of the nanocomposite. Our results indicate that these hybrid nanocomposites exhibit a distinct piezoresistive response under a wide range of dynamic loading conditions, which can be beneficial for potential sensing applications.

  14. The MIL-88A-Derived Fe3O4-Carbon Hierarchical Nanocomposites for Electrochemical Sensing

    PubMed Central

    Wang, Li; Zhang, Yayun; Li, Xia; Xie, Yingzhen; He, Juan; Yu, Jie; Song, Yonghai

    2015-01-01

    Metal or metal oxides/carbon nanocomposites with hierarchical superstructures have become one of the most promising functional materials in sensor, catalysis, energy conversion, etc. In this work, novel hierarchical Fe3O4/carbon superstructures have been fabricated based on metal-organic frameworks (MOFs)-derived method. Three kinds of Fe-MOFs (MIL-88A) with different morphologies were prepared beforehand as templates, and then pyrolyzed to fabricate the corresponding novel hierarchical Fe3O4/carbon superstructures. The systematic studies on the thermal decomposition process of the three kinds of MIL-88A and the effect of template morphology on the products were carried out in detail. Scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy and thermal analysis were employed to investigate the hierarchical Fe3O4/carbon superstructures. Based on these resulted hierarchical Fe3O4/carbon superstructures, a novel and sensitive nonenzymatic N-acetyl cysteine sensor was developed. The porous and hierarchical superstructures and large surface area of the as-formed Fe3O4/carbon superstructures eventually contributed to the good electrocatalytic activity of the prepared sensor towards the oxidation of N-acetyl cysteine. The proposed preparation method of the hierarchical Fe3O4/carbon superstructures is simple, efficient, cheap and easy to mass production. It might open up a new way for hierarchical superstructures preparation. PMID:26387535

  15. Nanocomposites based on graphene oxide and mesoporous silica nanoparticles: Preparation, characterization and nanobiointeractions with red blood cells and human plasma proteins

    NASA Astrophysics Data System (ADS)

    Fonseca, Leandro C.; de Araújo, Maciel M.; de Moraes, Ana Carolina M.; da Silva, Douglas S.; Ferreira, Ariane G.; Franqui, Lidiane S.; Martinez, Diego Stéfani T.; Alves, Oswaldo L.

    2018-04-01

    The current work refers to the development of a novel nanocomposite based on graphene oxide (GO) and mesoporous amino silica nanoparticles (H2N-MSNs) and its biological interaction with red blood cells (RBCs) and human blood plasma toward the investigation of nanobiointeractions. Silica nanoparticles and several graphene oxide-based materials are, separately, known for their high hemolytic potential and strong interaction with human plasma proteins. In this context, the GO-MSN interaction and its influence in minimizing the reported effects were investigated. The materials were synthesized by covalently attaching H2N-MSNs onto the surface of GO through an amidation reaction. GO-MSN nanocomposites were obtained by varying the mass of H2N-MSNs and were characterized by FTIR, NMR, XRD, TGA, zeta potential and TEM. The characterization results confirm that nanocomposites were obtained, suggest covalent bond attachment mostly by amine-epoxy reactions and evidence an unexpected reduction reaction of GO by H2N-MSNs, whose mechanism is proposed. Biological assays showed a decrease of hemolysis (RBC lysis) and a minimization of the interaction with human plasma proteins (protein corona formation). These are important findings toward achieving in vivo biocompatibility and understanding the nanobiointeractions. Finally, this work opens possibilities for new nanomedicine applications of GO-MSN nanocomposites, such as drug delivery system.

  16. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology

    PubMed Central

    Xie, Wen-Ge; Wang, Peng-Zhao; Wang, Jian-Zhang

    2018-01-01

    A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach–Zehnder interferometer (MZI) typed sensors, Fabry–Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed. PMID:29419745

  17. Fluorescent sensors based on boronic acids

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher R.; James, Tony D.

    1999-05-01

    Sensor systems have long been needed for detecting the presence in solution of certain chemically or biologically important species. Sensors are used in a wide range of applications from simple litmus paper that shows a single color change in acidic or basic environments to complex biological assays that use enzymes, antibodies and antigens to display binding events. With this work the use of boronic acids in the design and synthesis of sensors for saccharides (diols) will be presented. The fluorescent sensory systems rely on photoinduced electron transfer (PET) to modulate the observed fluorescence. When saccharides form cyclic boronate esters with boronic acids, the Lewis acidity of the boronic acid is enhanced and therefore the Lewis acid-base interaction between the boronic acid and a neighboring amine is strengthened. The strength of this acid-base interaction modulates the PET from the amine (acting as a quencher) to anthracene (acting as a fluorophore). These compounds show increased fluorescence at neutral pH through suppression of the PET from nitrogen to anthracene on saccharide binding. The general strategy for the development of saccharide selective systems will be discussed. The potential of the boronic acid based systems will be illustrated using the development of glucose and glucosamine selective fluorescent sensors as examples.

  18. Atomic Layer Deposited Oxide-Based Nanocomposite Structures with Embedded CoPtx Nanocrystals for Resistive Random Access Memory Applications.

    PubMed

    Wang, Lai-Guo; Cao, Zheng-Yi; Qian, Xu; Zhu, Lin; Cui, Da-Peng; Li, Ai-Dong; Wu, Di

    2017-02-22

    Al 2 O 3 - or HfO 2 -based nanocomposite structures with embedded CoPt x nanocrystals (NCs) on TiN-coated Si substrates have been prepared by combination of thermal atomic layer deposition (ALD) and plasma-enhanced ALD for resistive random access memory (RRAM) applications. The impact of CoPt x NCs and their average size/density on the resistive switching properties has been explored. Compared to the control sample without CoPt x NCs, ALD-derived Pt/oxide/100 cycle-CoPt x NCs/TiN/SiO 2 /Si exhibits a typical bipolar, reliable, and reproducible resistive switching behavior, such as sharp distribution of RRAM parameters, smaller set/reset voltages, stable resistance ratio (≥10 2 ) of OFF/ON states, better switching endurance up to 10 4 cycles, and longer data retention over 10 5 s. The possible resistive switching mechanism based on nanocomposite structures of oxide/CoPt x NCs has been proposed. The dominant conduction mechanisms in low- and high-resistance states of oxide-based device units with embedded CoPt x NCs are Ohmic behavior and space-charge-limited current, respectively. The insertion of CoPt x NCs can effectively improve the formation of conducting filaments due to the CoPt x NC-enhanced electric field intensity. Besides excellent resistive switching performances, the nanocomposite structures also simultaneously present ferromagnetic property. This work provides a flexible pathway by combining PEALD and TALD compatible with state-of-the-art Si-based technology for multifunctional electronic devices applications containing RRAM.

  19. Poly(2-aminothiazole)-silica nanocomposite particles: Synthesis and morphology control

    NASA Astrophysics Data System (ADS)

    Zou, Hua; Wu, Di; Sun, Hao; Chen, Suwu; Wang, Xia

    2018-04-01

    Synthesis of conducting polymer-silica colloidal nanocomposites has been recognized as an effective method to overcome the poor processability of heterocyclic conducting polymers prepared by chemical oxidative method. However, the morphology control of such conducting polymer-silica nanocomposites was seldomly reported in the literature. Novel poly(2-aminothiazole)(PAT)-silica nanocomposite particles can be conveniently prepared by chemical oxidative polymerization of 2-aminothiazole using CuCl2 oxidant in the presence of ∼20 nm silica nanoparticles. The effects of varying the oxidant/monomer ratio and silica sol concentration on the morphology and size of the resulting PAT-silica nanocmposites have been studied. Optimization of the oxidant/monomer molar ratio and initial silica sol concentration allows relatively round spherical particles of 150-350 nm in diameter to be achieved. The nanocomposite particles have a well-defined raspberry-like morphology with a silica-rich surface, but a significant fraction of PAT component still exists on the surface and, which is beneficial for its applications. Furthermore, the surface compositions of the colloidal nanocomposites could be regulated to some extent. Based on the above results, a possible formation mechanism of the spherical nanocomposite particles is proposed.

  20. Multifunctional Graphene-Silicone Elastomer Nanocomposite, Method of Making the Same, and Uses Thereof

    NASA Technical Reports Server (NTRS)

    Aksay, Ilhan A. (Inventor); Pan, Shuyang (Inventor); Prud'Homme, Robert K. (Inventor)

    2016-01-01

    A nanocomposite composition having a silicone elastomer matrix having therein a filler loading of greater than 0.05 weight percentage, based on total nanocomposite weight, wherein the filler is functional graphene sheets (FGS) having a surface area of from 300 square meters per gram to 2630 square meters per gram; and a method for producing the nanocomposite and uses thereof.