Sample records for nanocomposite strain gauges

  1. Nanocomposite Strain Gauges Having Small TCRs

    NASA Technical Reports Server (NTRS)

    Gregory, Otto; Chen, Ximing

    2009-01-01

    Ceramic strain gauges in which the strain-sensitive electrically conductive strips made from nanocomposites of noble metal and indium tin oxide (ITO) are being developed for use in gas turbine engines and other power-generation systems in which gas temperatures can exceed 1,500 F (about 816 C). In general, strain gauges exhibit spurious thermally induced components of response denoted apparent strain. When temperature varies, a strain-gauge material that has a nonzero temperature coefficient of resistance (TCR) exhibits an undesired change in electrical resistance that can be mistaken for the change in resistance caused by a change in strain. It would be desirable to formulate straingauge materials having TCRs as small as possible so as to minimize apparent strain. Most metals exhibit positive TCRs, while most semiconductors, including ITO, exhibit negative TCRs. The present development is based on the idea of using the negative TCR of ITO to counter the positive TCRs of noble metals and of obtaining the benefit of the ability of both ITO and noble metals to endure high temperatures. The noble metal used in this development thus far has been platinum. Combinatorial libraries of many ceramic strain gauges containing nanocomposites of various proportions of ITO and platinum were fabricated by reactive co-sputtering from ITO and platinum targets onto alumina- and zirconia-based substrates mounted at various positions between the targets.

  2. The piezoresistive effect in graphene-based polymeric composites.

    PubMed

    Tamburrano, A; Sarasini, F; De Bellis, G; D'Aloia, A G; Sarto, M S

    2013-11-22

    The strain-dependent electrical resistance of polyvinyl ester-based composites filled with different weight fractions of graphene nanoplatelets (GNPs) has been experimentally investigated. The GNP synthesis and nanocomposite fabrication process have been optimized in order to obtain highly homogeneous filler dispersion and outstanding electrical properties. The produced nanocomposites showed a low percolation threshold of 0.226 wt% and electrical conductivity of nearly 10 S m(-1) at only 4 wt% of GNPs. The piezoresistive response of thin nanocomposite laminae has been assessed by measuring the variation of the electrical resistance as a function of the flexural strain in three-point bending tests under both quasi-static monotonic and dynamic cyclic loading conditions. The obtained results showed higher strain sensitivity than traditional metal foil strain gauges or recently investigated carbon-based nanocomposite films.

  3. Stretchable, Highly Durable Ternary Nanocomposite Strain Sensor for Structural Health Monitoring of Flexible Aircraft

    PubMed Central

    Yin, Feng; Ye, Dong; Zhu, Chen; Qiu, Lei; Huang, YongAn

    2017-01-01

    Harmonious developments of electrical and mechanical performances are crucial for stretchable sensors in structural health monitoring (SHM) of flexible aircraft such as aerostats and morphing aircrafts. In this study, we prepared a highly durable ternary conductive nanocomposite made of polydimethylsiloxane (PDMS), carbon black (CB) and multi-walled carbon nanotubes (MWCNTs) to fabricate stretchable strain sensors. The nanocomposite has excellent electrical and mechanical properties by intensively optimizing the weight percentage of conducting fillers as well as the ratio of PDMS pre-polymer and curing agent. It was found that the nanocomposite with homogeneous hybrid filler of 1.75 wt % CB and 3 wt % MWCNTs exhibits a highly strain sensitive characteristics of good linearity, high gauge factor (GF ~ 12.25) and excellent durability over 105 stretching-releasing cycles under a tensile strain up to 25% when the PDMS was prepared at the ratio of 12.5:1. A strain measurement of crack detection for the aerostats surface was also employed, demonstrating a great potential of such ternary nanocomposite used as stretchable strain sensor in SHM. PMID:29156620

  4. Strain Sensors with Adjustable Sensitivity by Tailoring the Microstructure of Graphene Aerogel/PDMS Nanocomposites.

    PubMed

    Wu, Shuying; Ladani, Raj B; Zhang, Jin; Ghorbani, Kamran; Zhang, Xuehua; Mouritz, Adrian P; Kinloch, Anthony J; Wang, Chun H

    2016-09-21

    Strain sensors with high elastic limit and high sensitivity are required to meet the rising demand for wearable electronics. Here, we present the fabrication of highly sensitive strain sensors based on nanocomposites consisting of graphene aerogel (GA) and polydimethylsiloxane (PDMS), with the primary focus being to tune the sensitivity of the sensors by tailoring the cellular microstructure through controlling the manufacturing processes. The resultant nanocomposite sensors exhibit a high sensitivity with a gauge factor of up to approximately 61.3. Of significant importance is that the sensitivity of the strain sensors can be readily altered by changing the concentration of the precursor (i.e., an aqueous dispersion of graphene oxide) and the freezing temperature used to process the GA. The results reveal that these two parameters control the cell size and cell-wall thickness of the resultant GA, which may be correlated to the observed variations in the sensitivities of the strain sensors. The higher is the concentration of graphene oxide, then the lower is the sensitivity of the resultant nanocomposite strain sensor. Upon increasing the freezing temperature from -196 to -20 °C, the sensitivity increases and reaches a maximum value of 61.3 at -50 °C and then decreases with a further increase in freezing temperature to -20 °C. Furthermore, the strain sensors offer excellent durability and stability, with their piezoresistivities remaining virtually unchanged even after 10 000 cycles of high-strain loading-unloading. These novel findings pave the way to custom design strain sensors with a desirable piezoresistive behavior.

  5. Self-sensing performance of MWCNT-low density polyethylene nanocomposites

    NASA Astrophysics Data System (ADS)

    Gupta, Tejendra K.; Kumar, S.; Khan, Amal Z.; Varadarajan, Kartik M.; Cantwell, Wesley J.

    2018-01-01

    Carbon nanotubes (CNTs) based polymer nanocomposites offer a range of remarkable properties. Here, we demonstrate self-sensing performance of low density polyethylene (LDPE)-multiwalled carbon nanotubes (MWCNTs) nanocomposites for the first time. The dispersion of the CNTs and the morphology of the nanocomposites was investigated using scanning electron microscopy, x-ray diffraction and Raman spectroscopic techniques. The thermal properties were measured using thermal gravimetric analysis and differential scanning calorimetry and were found to increase with increasing wt% of MWCNTs in LDPE matrix. An overall improvement in ultimate tensile strength, yield strength and Young’s modulus was found to be 59.6%, 48.5% and 129.3%, respectively for 5.0 wt% loading of MWCNTs. The electrical percolation threshold was observed at 1.0 wt% of MWCNTs and the highest electrical conductivity of 2.8 × 10-2 Scm-1 was observed at 5.0 wt% loading of MWCNTs. These piezo-resistive nanocomposites offer tunable self-sensing capabilities with gauge factors in the ranges of 17-52 and 42-530 in linear elastic (strain ˜3%) and inelastic regimes (strain ˜15%) respectively. Our demonstration would provide guidelines for the fabrication of low cost, self-sensing MWCNT-LDPE nanocomposites for potential use as civil water pipelines and landfill membranes.

  6. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites.

    PubMed

    Boland, Conor S; Khan, Umar; Ryan, Gavin; Barwich, Sebastian; Charifou, Romina; Harvey, Andrew; Backes, Claudia; Li, Zheling; Ferreira, Mauro S; Möbius, Matthias E; Young, Robert J; Coleman, Jonathan N

    2016-12-09

    Despite its widespread use in nanocomposites, the effect of embedding graphene in highly viscoelastic polymer matrices is not well understood. We added graphene to a lightly cross-linked polysilicone, often encountered as Silly Putty, changing its electromechanical properties substantially. The resulting nanocomposites display unusual electromechanical behavior, such as postdeformation temporal relaxation of electrical resistance and nonmonotonic changes in resistivity with strain. These phenomena are associated with the mobility of the nanosheets in the low-viscosity polymer matrix. By considering both the connectivity and mobility of the nanosheets, we developed a quantitative model that completely describes the electromechanical properties. These nanocomposites are sensitive electromechanical sensors with gauge factors >500 that can measure pulse, blood pressure, and even the impact associated with the footsteps of a small spider. Copyright © 2016, American Association for the Advancement of Science.

  7. Investigation on strain sensing properties of carbon-based nanocomposites for structural aircraft applications

    NASA Astrophysics Data System (ADS)

    Lamberti, Patrizia; Spinelli, Giovanni; Tucci, Vincenzo; Guadagno, Liberata; Vertuccio, Luigi; Russo, Salvatore

    2016-05-01

    The mechanical and electrical properties of a thermosetting epoxy resin particularly indicated for the realization of structural aeronautic components and reinforced with multiwalled carbon nanotubes (MWCNTs, at 0.3 wt%) are investigated for specimens subjected to cycles and different levels of applied strain (i.e. ɛ) loaded both in axial tension and flexural mode. It is found that the piezoresistive behavior of the resulting nanocomposite evaluated in terms of variation of the electrical resistance is strongly affected by the applied mechanical stress mainly due to the high sensibility and consequent rearrangement of the electrical percolating network formed by MWCNTs in the composite at rest or even under a small strain. In fact, the variations in electrical resistance that occur during the mechanical stress are correlated to the deformation exhibited by the nanocomposites. In particular, the overall response of electrical resistance of the composite is characterized by a linear increase with the strain at least in the region of elastic deformation of the material in which the gauge factor (i.e. G.F.) of the sensor is usually evaluated. Therefore, the present study aims at investigating the possible use of the nanotechnology for application of embedded sensor systems in composite structures thus having capability of self-sensing and of responding to the surrounding environmental changes, which are some fundamental requirements especially for structural aircraft monitoring applications.

  8. Highly Sensitive and Very Stretchable Strain Sensor Based on a Rubbery Semiconductor.

    PubMed

    Kim, Hae-Jin; Thukral, Anish; Yu, Cunjiang

    2018-02-07

    There is a growing interest in developing stretchable strain sensors to quantify the large mechanical deformation and strain associated with the activities for a wide range of species, such as humans, machines, and robots. Here, we report a novel stretchable strain sensor entirely in a rubber format by using a solution-processed rubbery semiconductor as the sensing material to achieve high sensitivity, large mechanical strain tolerance, and hysteresis-less and highly linear responses. Specifically, the rubbery semiconductor exploits π-π stacked poly(3-hexylthiophene-2,5-diyl) nanofibrils (P3HT-NFs) percolated in silicone elastomer of poly(dimethylsiloxane) to yield semiconducting nanocomposite with a large mechanical stretchability, although P3HT is a well-known nonstretchable semiconductor. The fabricated strain sensors exhibit reliable and reversible sensing capability, high gauge factor (gauge factor = 32), high linearity (R 2 > 0.996), and low hysteresis (degree of hysteresis <12%) responses at the mechanical strain of up to 100%. A strain sensor in this format can be scalably manufactured and implemented as wearable smart gloves. Systematic investigations in the materials design and synthesis, sensor fabrication and characterization, and mechanical analysis reveal the key fundamental and application aspects of the highly sensitive and very stretchable strain sensors entirely from rubbers.

  9. Electromechanical Behavior of Chemically Reduced Graphene Oxide and Multi-walled Carbon Nanotube Hybrid Material

    NASA Astrophysics Data System (ADS)

    Benchirouf, Abderrahmane; Müller, Christian; Kanoun, Olfa

    2016-01-01

    In this paper, we propose strain-sensitive thin films based on chemically reduced graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) without adding any further surfactants. In spite of the insulating properties of the thin-film-based GO due to the presence functional groups such as hydroxyl, epoxy, and carbonyl groups in its atomic structure, a significant enhancement of the film conductivity was reached by chemical reduction with hydro-iodic acid. By optimizing the MWCNT content, a significant improvement of electrical and mechanical thin film sensitivity is realized. The optical properties and the morphology of the prepared thin films were studied using ultraviolet-visible spectroscopy (UV-Vis) and scanning electron microscope (SEM). The UV-Vis spectra showed the ability to tune the band gap of the GO by changing the MWCNT content, whereas the SEM indicated that the MWCNTs were well dissolved and coated by the GO. Investigations of the piezoresistive properties of the hybrid nanocomposite material under mechanical load show a linear trend between the electrical resistance and the applied strain. A relatively high gauge factor of 8.5 is reached compared to the commercial metallic strain gauges. The self-assembled hybrid films exhibit outstanding properties in electric conductivity, mechanical strength, and strain sensitivity, which provide a high potential for use in strain-sensing applications.

  10. Electromechanical Behavior of Chemically Reduced Graphene Oxide and Multi-walled Carbon Nanotube Hybrid Material.

    PubMed

    Benchirouf, Abderrahmane; Müller, Christian; Kanoun, Olfa

    2016-12-01

    In this paper, we propose strain-sensitive thin films based on chemically reduced graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) without adding any further surfactants. In spite of the insulating properties of the thin-film-based GO due to the presence functional groups such as hydroxyl, epoxy, and carbonyl groups in its atomic structure, a significant enhancement of the film conductivity was reached by chemical reduction with hydro-iodic acid. By optimizing the MWCNT content, a significant improvement of electrical and mechanical thin film sensitivity is realized. The optical properties and the morphology of the prepared thin films were studied using ultraviolet-visible spectroscopy (UV-Vis) and scanning electron microscope (SEM). The UV-Vis spectra showed the ability to tune the band gap of the GO by changing the MWCNT content, whereas the SEM indicated that the MWCNTs were well dissolved and coated by the GO. Investigations of the piezoresistive properties of the hybrid nanocomposite material under mechanical load show a linear trend between the electrical resistance and the applied strain. A relatively high gauge factor of 8.5 is reached compared to the commercial metallic strain gauges. The self-assembled hybrid films exhibit outstanding properties in electric conductivity, mechanical strength, and strain sensitivity, which provide a high potential for use in strain-sensing applications.

  11. A coatable, light-weight, fast-response nanocomposite sensor for the in situ acquisition of dynamic elastic disturbance: from structural vibration to ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Zeng, Zhihui; Liu, Menglong; Xu, Hao; Liu, Weijian; Liao, Yaozhong; Jin, Hao; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2016-06-01

    Inspired by an innovative sensing philosophy, a light-weight nanocomposite sensor made of a hybrid of carbon black (CB)/polyvinylidene fluoride (PVDF) has been developed. The nanoscalar architecture and percolation characteristics of the hybrid were optimized in order to fulfil the in situ acquisition of dynamic elastic disturbance from low-frequency vibration to high-frequency ultrasonic waves. Dynamic particulate motion induced by elastic disturbance modulates the infrastructure of the CB conductive network in the sensor, with the introduction of the tunneling effect, leading to dynamic alteration in the piezoresistivity measured by the sensor. Electrical analysis, morphological characterization, and static/dynamic electromechanical response interrogation were implemented to advance our insight into the sensing mechanism of the sensor, and meanwhile facilitate understanding of the optimal percolation threshold. At the optimal threshold (˜6.5 wt%), the sensor exhibits high fidelity, a fast response, and high sensitivity to ultrafast elastic disturbance (in an ultrasonic regime up to 400 kHz), yet with an ultralow magnitude (on the order of micrometers). The performance of the sensor was evaluated against a conventional strain gauge and piezoelectric transducer, showing excellent coincidence, yet a much greater gauge factor and frequency-independent piezoresistive behavior. Coatable on a structure and deployable in a large quantity to form a dense sensor network, this nanocomposite sensor has blazed a trail for implementing in situ sensing for vibration- or ultrasonic-wave-based structural health monitoring, by striking a compromise between ‘sensing cost’ and ‘sensing effectiveness’.

  12. Evolution of microstructure, strain and physical properties in oxide nanocomposite films

    DOE PAGES

    Chen, Aiping; Weigand, Marcus; Bi, Zhenxing; ...

    2014-06-24

    Using LSMO:ZnO nanocomposite films as a model system, we have researched the effect of film thickness on the physical properties of nanocomposites. It shows that strain, microstructure, as well as magnetoresistance strongly rely on film thickness. The magnetotransport properties have been fitted by a modified parallel connection channel model, which is in agreement with the microstructure evolution as a function of film thickness in nanocomposite films on sapphire substrates. The strain analysis indicates that the variation of physical properties in nanocomposite films on LAO is dominated by strain effect. These results confirm the critical role of film thickness on microstructures,more » strain states, and functionalities. Furthermore, it shows that one can use film thickness as a key parameter to design nanocomposites with optimum functionalities.« less

  13. Highly tensile-strained Ge/InAlAs nanocomposites

    NASA Astrophysics Data System (ADS)

    Jung, Daehwan; Faucher, Joseph; Mukherjee, Samik; Akey, Austin; Ironside, Daniel J.; Cabral, Matthew; Sang, Xiahan; Lebeau, James; Bank, Seth R.; Buonassisi, Tonio; Moutanabbir, Oussama; Lee, Minjoo Larry

    2017-01-01

    Self-assembled nanocomposites have been extensively investigated due to the novel properties that can emerge when multiple material phases are combined. Growth of epitaxial nanocomposites using lattice-mismatched constituents also enables strain-engineering, which can be used to further enhance material properties. Here, we report self-assembled growth of highly tensile-strained Ge/In0.52Al0.48As (InAlAs) nanocomposites by using spontaneous phase separation. Transmission electron microscopy shows a high density of single-crystalline germanium nanostructures coherently embedded in InAlAs without extended defects, and Raman spectroscopy reveals a 3.8% biaxial tensile strain in the germanium nanostructures. We also show that the strain in the germanium nanostructures can be tuned to 5.3% by altering the lattice constant of the matrix material, illustrating the versatility of epitaxial nanocomposites for strain engineering. Photoluminescence and electroluminescence results are then discussed to illustrate the potential for realizing devices based on this nanocomposite material.

  14. Highly tensile-strained Ge/InAlAs nanocomposites

    PubMed Central

    Jung, Daehwan; Faucher, Joseph; Mukherjee, Samik; Akey, Austin; Ironside, Daniel J.; Cabral, Matthew; Sang, Xiahan; Lebeau, James; Bank, Seth R.; Buonassisi, Tonio; Moutanabbir, Oussama; Lee, Minjoo Larry

    2017-01-01

    Self-assembled nanocomposites have been extensively investigated due to the novel properties that can emerge when multiple material phases are combined. Growth of epitaxial nanocomposites using lattice-mismatched constituents also enables strain-engineering, which can be used to further enhance material properties. Here, we report self-assembled growth of highly tensile-strained Ge/In0.52Al0.48As (InAlAs) nanocomposites by using spontaneous phase separation. Transmission electron microscopy shows a high density of single-crystalline germanium nanostructures coherently embedded in InAlAs without extended defects, and Raman spectroscopy reveals a 3.8% biaxial tensile strain in the germanium nanostructures. We also show that the strain in the germanium nanostructures can be tuned to 5.3% by altering the lattice constant of the matrix material, illustrating the versatility of epitaxial nanocomposites for strain engineering. Photoluminescence and electroluminescence results are then discussed to illustrate the potential for realizing devices based on this nanocomposite material. PMID:28128282

  15. Fiber-Optic Strain Gauge With High Resolution And Update Rate

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Mahajan, Ajay; Sayeh, Mohammad; Regez, Bradley

    2007-01-01

    An improved fiber-optic strain gauge is capable of measuring strains in the approximate range of 0 to 50 microstrains with a resolution of 0.1 microstrain. (To some extent, the resolution of the strain gauge can be tailored and may be extensible to 0.01 microstrain.) The total cost of the hardware components of this strain gauge is less than $100 at 2006 prices. In comparison with prior strain gauges capable of measurement of such low strains, this strain gauge is more accurate, more economical, and more robust, and it operates at a higher update rate. Strain gauges like this one are useful mainly for measuring small strains (including those associated with vibrations) in such structures as rocket test stands, buildings, oilrigs, bridges, and dams. The technology was inspired by the need to measure very small strains on structures supporting liquid oxygen tanks, as a way to measure accurately mass of liquid oxygen during rocket engine testing. This improved fiber-optic strain gauge was developed to overcome some of the deficiencies of both traditional foil strain gauges and prior fiber-optic strain gauges. Traditional foil strain gages do not have adequate signal-to-noise ratios at such small strains. Fiber-optic strain gauges have been shown to be potentially useful for measuring such small strains, but heretofore, the use of fiberoptic strain gauges has been inhibited, variously, by complexity, cost, or low update rate.

  16. Suggested Procedures for Installing Strain Gauges on Langley Research Center Wind Tunnel Balances, Custom Force Measuring Transducers, Metallic and Composite Structural Test Articles

    NASA Technical Reports Server (NTRS)

    Moore, Thomas C., Sr.

    2004-01-01

    The character of force and strain measurement testing at LaRC is such that the types of strain gauge installations, the materials upon which the strain gauges are applied, and the test environments encountered, require many varied approaches. In 1997, a NASA Technical Memorandum (NASA TM 110327) was generated to provide the strain gauge application specialist with a listing of recommended procedures for strain gauging various transducers and test articles at LaRC. The technical memorandum offered here is an effort to keep the strain gauge user informed of new technological enhancements in strain-gauging methodology while preserving the strain-gauging guidelines set forth in the 1997 TM. This document provides detailed recommendations for strain gauging LaRC-designed balances and custom transducers, composite materials, cryogenic and high-temperature test articles, and selected non-typical or unique materials or test conditions. Additionally, one section offers details for installing Bragg-Grating type fiber-optic strain sensors for non-typical test scenarios.

  17. Gauge Factor and Stretchability of Silicon-on-Polymer Strain Gauges

    PubMed Central

    Yang, Shixuan; Lu, Nanshu

    2013-01-01

    Strain gauges are widely applied to measure mechanical deformation of structures and specimens. While metallic foil gauges usually have a gauge factor slightly over 2, single crystalline silicon demonstrates intrinsic gauge factors as high as 200. Although silicon is an intrinsically stiff and brittle material, flexible and even stretchable strain gauges have been achieved by integrating thin silicon strips on soft and deformable polymer substrates. To achieve a fundamental understanding of the large variance in gauge factor and stretchability of reported flexible/stretchable silicon-on-polymer strain gauges, finite element and analytically models are established to reveal the effects of the length of the silicon strip, and the thickness and modulus of the polymer substrate. Analytical results for two limiting cases, i.e., infinitely thick substrate and infinitely long strip, have found good agreement with FEM results. We have discovered that strains in silicon resistor can vary by orders of magnitude with different substrate materials whereas strip length or substrate thickness only affects the strain level mildly. While the average strain in silicon reflects the gauge factor, the maximum strain in silicon governs the stretchability of the system. The tradeoff between gauge factor and stretchability of silicon-on-polymer strain gauges has been proposed and discussed. PMID:23881128

  18. Foil Strain Gauges Using Piezoresistive Carbon Nanotube Yarn: Fabrication and Calibration

    PubMed Central

    Góngora-Rubio, Mário R.; Kiyono, César Y.; Mello, Luis A. M.; Cardoso, Valtemar F.; Rosa, Reinaldo L. S.; Kuebler, Derek A.; Brodeur, Grace E.; Alotaibi, Amani H.; Coene, Marisa P.; Coene, Lauren M.; Jean, Elizabeth; Santiago, Rafael C.; Oliveira, Francisco H. A.; Rangel, Ricardo; Thomas, Gilles P.; Belay, Kalayu; da Silva, Luciana W.; Moura, Rafael T.; Seabra, Antonio C.; Silva, Emílio C. N.

    2018-01-01

    Carbon nanotube yarns are micron-scale fibers comprised by tens of thousands of carbon nanotubes in their cross section and exhibiting piezoresistive characteristics that can be tapped to sense strain. This paper presents the details of novel foil strain gauge sensor configurations comprising carbon nanotube yarn as the piezoresistive sensing element. The foil strain gauge sensors are designed using the results of parametric studies that maximize the sensitivity of the sensors to mechanical loading. The fabrication details of the strain gauge sensors that exhibit the highest sensitivity, based on the modeling results, are described including the materials and procedures used in the first prototypes. Details of the calibration of the foil strain gauge sensors are also provided and discussed in the context of their electromechanical characterization when bonded to metallic specimens. This characterization included studying their response under monotonic and cyclic mechanical loading. It was shown that these foil strain gauge sensors comprising carbon nanotube yarn are sensitive enough to capture strain and can replicate the loading and unloading cycles. It was also observed that the loading rate affects their piezoresistive response and that the gauge factors were all above one order of magnitude higher than those of typical metallic foil strain gauges. Based on these calibration results on the initial sensor configurations, new foil strain gauge configurations will be designed and fabricated, to increase the strain gauge factors even more. PMID:29401745

  19. Measuring systolic ankle and toe pressure using the strain gauge technique--a comparison study between mercury and indium-gallium strain gauges.

    PubMed

    Broholm, Rikke; Wiinberg, Niels; Simonsen, Lene

    2014-09-01

    Measurement of the ankle and toe pressures are often performed using a plethysmograph, compression cuffs and a strain gauge. Usually, the strain gauge contains mercury but other alternatives exist. From 2014, the mercury-containing strain gauge will no longer be available in the European Union. The aim of this study was to compare an indium-gallium strain gauge to the established mercury-containing strain gauge. Consecutive patients referred to the Department of Clinical Physiology and Nuclear Medicine at Bispebjerg and Frederiksberg Hospitals for measurements of systolic ankle and toe pressures volunteered for the study. Ankle and toe pressures were measured twice with the mercury and the indium-gallium strain gauge in random order. Comparison of the correlation between the mean pressure using the mercury and the indium-gallium device and the difference between the two devices was performed for both toe and ankle level. A total of 53 patients were included (36 male). Mean age was 69 (range, 45-92 years). Mean pressures at toe and ankle level with the mercury and the indium-gallium strain gauges were 77 (range, 0-180) mm Hg and 113 (range, 15-190) mm Hg, respectively. Comparison between the mercury and the indium-gallium strain gauge showed a difference in toe blood pressure values of - 0.7 mm Hg (SD: 7.0). At the ankle level, a difference of 2.0 mm Hg (SD: 8.6) was found. The two different devices agree sufficiently in the measurements of systolic ankle and toe pressure for the indium-gallium strain gauge to replace the mercury strain gauge.

  20. The NASA Lewis Strain Gauge Laboratory: An update

    NASA Technical Reports Server (NTRS)

    Hobart, H. F.

    1986-01-01

    Efforts continue in the development and evaluation of electrical resistance strain gauges of the thin film and small diameter wire type. Results obtained early in 1986 on some Chinese gauges and Kanthal A-1 gauges mounted on a Hastelloy-X substrate are presented. More recent efforts include: (1) the determination of the uncertainty in the ability to establish gauge factor, (2) the evaluation of sputtered gauges that were fabricated at Lewis, (3) an investigation of the efficacy of dual element temperature compensated gauges when using strain gauge alloys having large thermal coefficients of resistance, and (4) an evaluation of the practical methods of stabilizing gauges whose apparent strain is dependent on cooling rate (e.g., FeCrAl gauges).

  1. Anisotropic piezoresistivity characteristics of aligned carbon nanotube-polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Sengezer, Engin C.; Seidel, Gary D.; Bodnar, Robert J.

    2017-09-01

    Dielectrophoresis under the application of AC electric fields is one of the primary fabrication techniques for obtaining aligned carbon nanotube (CNT)-polymer nanocomposites, and is used here to generate long range alignment of CNTs at the structural level. The degree of alignment of CNTs within this long range architecture is observed via polarized Raman spectroscopy so that its influence on the electrical conductivity and piezoresistive response in both the alignment and transverse to alignment directions can be assessed. Nanocomposite samples consisting of randomly oriented, well dispersed single-wall carbon nanotubes (SWCNTs) and of long range electric field aligned SWCNTs in a photopolymerizable monomer blend (urethane dimethacrylate and 1,6-hexanediol dimethacrylate) are quantitatively and qualitatively evaluated. Piezoresistive sensitivities in form of gauge factors were measured for randomly oriented, well dispersed specimens with 0.03, 0.1 and 0.5 wt% SWCNTs and compared with gauge factors in both the axial and transverse to SWCNT alignment directions for electric field aligned 0.03 wt% specimens under both quasi-static monotonic and cyclic tensile loading. Gauge factors in the axial direction were observed to be on the order of 2, while gauge factors in the transverse direction demonstrated a 5 fold increase with values on the order of 10 for aligned specimens. Based on Raman analysis, it is believed the higher sensitivity of the transverse direction is related to architectural evolution of misaligned bridging structures which connect alignment structures under load due to Poisson’s contraction.

  2. Alignment verification procedures

    NASA Technical Reports Server (NTRS)

    Edwards, P. R.; Phillips, E. P.; Newman, J. C., Jr.

    1988-01-01

    In alignment verification procedures each laboratory is required to align its test machines and gripping fixtures to produce a nearly uniform tensile stress field on an un-notched sheet specimen. The blank specimens (50 mm w X 305 mm l X 2.3 mm th) supplied by the coordinators were strain gauged. Strain gauge readings were taken at all gauges (n = 1 through 10). The alignment verification procedures are as follows: (1) zero all strain gauges while specimen is in a free-supported condition; (2) put strain-gauged specimen in the test machine so that specimen front face (face 1) is in contact with reference jaw (standard position of specimen), tighten grips, and at zero load measure strains on all gauges. (epsilon sub nS0 is strain at gauge n, standard position, zero load); (3) with specimen in machine and at a tensile load of 10 kN measure strains (specimen in standard position). (Strain = epsilon sub nS10); (4) remove specimen from machine. Put specimen in machine so that specimen back face (face 2) is in contact with reference jaw (reverse position of specimen), tighten grips, and at zero load measure strains on all gauges. (Strain - epsilon sub nR0); and (5) with specimen in machine and at tensile load of 10 kN measure strains (specimen in reverse position). (epsilon sub nR10 is strain at gauge n, reverse position, 10 kN load).

  3. "Zero-Mass" Noninvasive Pressure Transducers

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2009-01-01

    Extremely lightweight, compact, noninvasive, rugged, relatively inexpensive strain-gauge transducers have been developed for use in measuring pressures of fluids in tubes. These gauges were originally intended for measuring pressures of spacecraft-propulsion fluids, but they are also attractive for use in numerous terrestrial applications especially those involving fluids that are extremely chemically reactive, fluids that must be isolated for hygienic purposes, fluids that must be allowed to flow without obstruction, and fluid-containing tubes exposed to severe environments. A basic pressure transducer of this type comprises one or more pair(s) of thin-film strain gauges integral with a tube that contains the fluid of interest. Following established strain-gauge practice, the gauges in each pair are connected into opposite arms of a Wheatstone bridge (see figure). Typically, each pressure transducer includes one pair (the active pair) of strain gauges for measuring the hoop stress proportional to the pressure of the fluid in the tube and another pair (the dummy pair) of strain gauges that are nominally unstrained: The dummy gauges are mounted on a substrate that is made of the same material as that of the tube. The substrate is welded to the tube at only one spot so that stresses and strains are not coupled from the tube into the substrate. The dummy strain gauges measure neutral strains (basically, strains associated with thermal expansion), so that the neutral-strain contribution can be subtracted out of the final gauge reading.

  4. Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites

    PubMed Central

    Alamusi; Hu, Ning; Fukunaga, Hisao; Atobe, Satoshi; Liu, Yaolu; Li, Jinhua

    2011-01-01

    In recent years, nanocomposites based on various nano-scale carbon fillers, such as carbon nanotubes (CNTs), are increasingly being thought of as a realistic alternative to conventional smart materials, largely due to their superior electrical properties. Great interest has been generated in building highly sensitive strain sensors with these new nanocomposites. This article reviews the recent significant developments in the field of highly sensitive strain sensors made from CNT/polymer nanocomposites. We focus on the following two topics: electrical conductivity and piezoresistivity of CNT/polymer nanocomposites, and the relationship between them by considering the internal conductive network formed by CNTs, tunneling effect, aspect ratio and piezoresistivity of CNTs themselves, etc. Many recent experimental, theoretical and numerical studies in this field are described in detail to uncover the working mechanisms of this new type of strain sensors and to demonstrate some possible key factors for improving the sensor sensitivity. PMID:22346667

  5. Adjustable magnetoelectric effect of self-assembled vertical multiferroic nanocomposite films by the in-plane misfit strain and ferromagnetic volume fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Huaping, E-mail: wuhuaping@gmail.com; Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540; Chai, Guozhong

    The strain-mediated magnetoelectric (ME) property of self-assembled vertical multiferroic nanocomposite films epitaxially grown on cubic substrates was calculated by a nonlinear thermodynamic theory combined with the elastic theory. The dependent relations of phase state of ferroelectric films with the in-plane misfit strain, out-of-plane misfit strain, temperature, and volume fraction of ferromagnetic phase were confirmed. The effects of in-plane misfit strain and ferromagnetic volume fraction on the polarization and dielectric constant of ferroelectric films at room temperature were elaborately analyzed for the vertical BaTiO{sub 3}-CoFe{sub 2}O{sub 4} and PbTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films. Our calculated results confirmed the relationship amongmore » ME effect and in-plane misfit strain and ferromagnetic volume fraction in the nanocomposite films. The ME voltage coefficients of vertical BaTiO{sub 3}-CoFe{sub 2}O{sub 4} and PbTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films displayed various maximums and abrupt points at special phases and phase transition boundaries. The ME voltage coefficients of lead-free BaTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films epitaxially grown on different substrates could reach a comparative value of ∼2 V·cm{sup −1}·Oe{sup −1} under the controllable in-plane misfit strain induced by substrate clamping. Our results provided an available method for the optimal design of vertical multiferroic nanocomposites with adjustable ME effect by optimizing the ferromagnetic volume fraction and substrate type.« less

  6. Design and development of a novel strain gauge automatic pasting device for mini split Hopkinson pressure bar

    NASA Astrophysics Data System (ADS)

    Huang, Wenkai; Huan, Shi; He, Junfeng; Jiang, Jichang

    2018-03-01

    In a split Hopkinson pressure bar (SHPB) experiment, the pasting quality of strain gauges will directly affect the accuracy of the measurement results. The traditional method of pasting the strain gauges is done manually by the experimenter. In the process of pasting, it is easy to shift or twist the strain gauge, and the experimental results are greatly affected by human factors. In this paper, a novel type automatic pasting device for strain gauges is designed and developed, which can be used to accurately and rapidly paste the strain gauges. The paste quality is reliable, and it can guarantee the consistency of SHPB experimental measurement. We found that a clamping force of 74 N achieved a success rate of 97%, whilst ensuring good adhesion.

  7. Construction of an Optical Fiber Strain Gauge

    NASA Astrophysics Data System (ADS)

    Sulaiman, Najwa

    This project is focused on the construction of an optical fiber strain gauge that is based on a strain gauge described by Butter and Hocker. Our gauge is designed to generate an interference pattern from the signals carried on two bare single-mode fibers that are fastened to an aluminum cantilever. When the cantilever experiences flexural stress, the interference pattern should change. By observing this change, it is possible to determine the strain experienced by the cantilever. I describe the design and construction of our optical fiber strain gauge as well as the characterization of different parts of the apparatus.

  8. Measurement of high temperature strain by the laser-speckle strain gauge

    NASA Technical Reports Server (NTRS)

    Yamaguchi, I.

    1984-01-01

    By using the laser-speckle strain gauge, the strain of metal at the temperature lower than 250 C is measured. The principle of the gauge is to measure the expansion or contraction of the fine structures of surface by detecting the resultant speckle displacement in an optoelectronic way, whereby the effect of rigid-body motion is automatically cancelled out with the aid of a differential detection system. A transportable apparatus was built and a comparison experiment performed with a resistance strain gauge at room temperature. It has a strain sensitivity of .00002, a gauge length smaller than 1 mm, and no upper limit in a range of strain measurement. In the measurement of high-temperature strain it is free from the need for a dummy gauge and insensitive to an electric drift effect. As examples of strain measurement at high-temperature, thermal expansion and contraction of a top of a soldering iron are measured. The interval of the measurement can be made at shortest 1.6 sec. and the change in the strain is clearly followed until the ultimate stationary temperature is reached.

  9. Smart Nacre-inspired Nanocomposites.

    PubMed

    Peng, Jingsong; Cheng, Qunfeng

    2018-03-15

    Nacre-inspired nanocomposites with excellent mechanical properties have achieved remarkable attention in the past decades. The high performance of nacre-inspired nanocomposites is a good basis for the further application of smart devices. Recently, some smart nanocomposites inspired by nacre have demonstrated good mechanical properties as well as effective and stable stimuli-responsive functions. In this Concept, we summarize the recent development of smart nacre-inspired nanocomposites, including 1D fibers, 2D films and 3D bulk nanocomposites, in response to temperature, moisture, light, strain, and so on. We show that diverse smart nanocomposites could be designed by combining various conventional fabrication methods of nacre-inspired nanocomposites with responsive building blocks and interface interactions. The nacre-inspired strategy is versatile for different kinds of smart nanocomposites in extensive applications, such as strain sensors, displays, artificial muscles, robotics, and so on, and may act as an effective roadmap for designing smart nanocomposites in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites.

    PubMed

    Amjadi, Morteza; Yoon, Yong Jin; Park, Inkyu

    2015-09-18

    Super-stretchable, skin-mountable, and ultra-soft strain sensors are presented by using carbon nanotube percolation network-silicone rubber nanocomposite thin films. The applicability of the strain sensors as epidermal electronic systems, in which mechanical compliance like human skin and high stretchability (ϵ > 100%) are required, has been explored. The sensitivity of the strain sensors can be tuned by the number density of the carbon nanotube percolation network. The strain sensors show excellent hysteresis performance at different strain levels and rates with high linearity and small drift. We found that the carbon nanotube-silicone rubber based strain sensors possess super-stretchability and high reliability for strains as large as 500%. The nanocomposite thin films exhibit high robustness and excellent resistance-strain dependency for over ~1380% mechanical strain. Finally, we performed skin motion detection by mounting the strain sensors on different parts of the body. The maximum induced strain by the bending of the finger, wrist, and elbow was measured to be ~ 42%, 45% and 63%, respectively.

  11. More About High-Temperature Resistance Strain Gauges

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Williams, W. D.; Lei, Jih-Fen; Hulse, C. O.

    1994-01-01

    Two reports present additional information on electrical-resistance strain gauges described in "High-Temperature Resistance Strain Gauges" (LEW-15379). For protection against oxidation at high temperatures, gauges covered, by flame spraying, with coats of alumina containing up to 1 weight percent of yttria or, perferably, containing 4 to 6 weight percent of zirconia.

  12. Dynamic piezoresistive response of hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Gbaguidi, Audrey; Anees, Muhammad; Namilae, Sirish; Kim, Daewon

    2017-04-01

    Hybrid nanocomposites with carbon nanotubes and graphitic platelets as fillers are known to exhibit remarkable electrical and mechanical properties with many potential strain and damage sensing applications. In this work, we fabricate hybrid nanocomposites with carbon nanotube sheet and coarse graphite platelets as fillers with epoxy matrix. We then examine the electromechanical behavior of these nanocomposites under dynamic loading. The electrical resistivity responses of the nanocomposites are measured in frequency range of 1 Hz to 50 Hz with different levels of induced strains. Axial cycling loading is applied using a uniaxial electrodynamic shaker, and transverse loading is applied on end-clamped specimen using modified speakers. In addition, a dynamic mechanical analysis of nanocomposite specimen is performed to characterize the thermal and dynamic behavior of the nanocomposite. Our results indicate that these hybrid nanocomposites exhibit a distinct piezoresistive response under a wide range of dynamic loading conditions, which can be beneficial for potential sensing applications.

  13. Using Micro-Molding and Stamping to Fabricate Conductive Polydimethylsiloxane-Based Flexible High-Sensitivity Strain Gauges.

    PubMed

    Han, Chi-Jui; Chiang, Hsuan-Ping; Cheng, Yun-Chien

    2018-02-18

    In this study, polydimethylsiloxane (PDMS) and conductive carbon nanoparticles were combined to fabricate a conductive elastomer PDMS (CPDMS). A high sensitive and flexible CPDMS strain sensor is fabricated by using stamping-process based micro patterning. Compared with conventional sensors, flexible strain sensors are more suitable for medical applications but are usually fabricated by photolithography, which suffers from a large number of steps and difficult mass production. Hence, we fabricated flexible strain sensors using a stamping-process with fewer processes than photolithography. The piezoresistive coefficient and sensitivity of the flexible strain sensor were improved by sensor pattern design and thickness change. Micro-patterning is used to fabricate various CPDMS microstructure patterns. The effect of gauge pattern was evaluated with ANSYS simulations. The piezoresistance of the strain gauges was measured and the gauge factor determined. Experimental results show that the piezoresistive coefficient of CPDMS is approximately linear. Gauge factor measurement results show that the gauge factor of a 140.0 μm thick strain gauge with five grids is the highest.

  14. Use of Carbon Nano-Fiber Foams as Strain Gauges to Detect Crack Propagation

    DTIC Science & Technology

    2015-06-01

    FIBER FOAMS AS STRAIN GAUGES TO DETECT CRACK PROPAGATION by Ervin N. Mercado June 2015 Thesis Advisor: Claudia C. Luhrs Co-Advisor...AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE USE OF CARBON NANO-FIBER FOAMS AS STRAIN GAUGES TO DETECT CRACK PROPAGATION 5. FUNDING...using carbon nanofiber foams as strain gauge material to detect crack propagation in aluminum structures. We produced the tridimensional carbon

  15. Fracture Analysis of MWCNT/Epoxy Nanocomposite Film Deposited on Aluminum Substrate.

    PubMed

    Her, Shiuh-Chuan; Chien, Pao-Chu

    2017-04-13

    Multi-walled carbon nanotube (MWCNT) reinforced epoxy films were deposited on an aluminum substrate by a hot-pressing process. Three-point bending tests were performed to determine the Young's modulus of MWCNT reinforced nanocomposite films. Compared to the neat epoxy film, nanocomposite film with 1 wt % of MWCNT exhibits an increase of 21% in the Young's modulus. Four-point-bending tests were conducted to investigate the fracture toughness of the MWCNT/epoxy nanocomposite film deposited on an aluminum substrate with interfacial cracks. Based on the Euler-Bernoulli beam theory, the strain energy in a film/substrate composite beam is derived. The difference of strain energy before and after the propagation of the interfacial crack are calculated, leading to the determination of the strain energy release rate. Experimental test results show that the fracture toughness of the nanocomposite film deposited on the aluminum substrate increases with the increase in the MWCNT content.

  16. A kirigami approach to engineering elasticity in nanocomposites through patterned defects.

    PubMed

    Shyu, Terry C; Damasceno, Pablo F; Dodd, Paul M; Lamoureux, Aaron; Xu, Lizhi; Shlian, Matthew; Shtein, Max; Glotzer, Sharon C; Kotov, Nicholas A

    2015-08-01

    Efforts to impart elasticity and multifunctionality in nanocomposites focus mainly on integrating polymeric and nanoscale components. Yet owing to the stochastic emergence and distribution of strain-concentrating defects and to the stiffening of nanoscale components at high strains, such composites often possess unpredictable strain-property relationships. Here, by taking inspiration from kirigami—the Japanese art of paper cutting—we show that a network of notches made in rigid nanocomposite and other composite sheets by top-down patterning techniques prevents unpredictable local failure and increases the ultimate strain of the sheets from 4 to 370%. We also show that the sheets' tensile behaviour can be accurately predicted through finite-element modelling. Moreover, in marked contrast to other stretchable conductors, the electrical conductance of the stretchable kirigami sheets is maintained over the entire strain regime, and we demonstrate their use to tune plasma-discharge phenomena. The unique properties of kirigami nanocomposites as plasma electrodes open up a wide range of novel technological solutions for stretchable electronics and optoelectronic devices, among other application possibilities.

  17. Chromatic Mechanical Response in 2-D Layered Transition Metal Dichalcogenide (TMDs) based Nanocomposites

    PubMed Central

    Rahneshin, Vahid; Khosravi, Farhad; Ziolkowska, Dominika A.; Jasinski, Jacek B.; Panchapakesan, Balaji

    2016-01-01

    The ability to convert photons of different wavelengths directly into mechanical motion is of significant interest in many energy conversion and reconfigurable technologies. Here, using few layer 2H-MoS2 nanosheets, layer by layer process of nanocomposite fabrication, and strain engineering, we demonstrate a reversible and chromatic mechanical response in MoS2-nanocomposites between 405 nm to 808 nm with large stress release. The chromatic mechanical response originates from the d orbitals and is related to the strength of the direct exciton resonance A and B of the few layer 2H-MoS2 affecting optical absorption and subsequent mechanical response of the nanocomposite. Applying uniaxial tensile strains to the semiconducting few-layer 2H-MoS2 crystals in the nanocomposite resulted in spatially varying energy levels inside the nanocomposite that enhanced the broadband optical absorption up to 2.3 eV and subsequent mechanical response. The unique photomechanical response in 2H-MoS2 based nanocomposites is a result of the rich d electron physics not available to nanocomposites based on sp bonded graphene and carbon nanotubes, as well as nanocomposite based on metallic nanoparticles. The reversible strain dependent optical absorption suggest applications in broad range of energy conversion technologies that is not achievable using conventional thin film semiconductors. PMID:27713550

  18. Load cell having strain gauges of arbitrary location

    DOEpatents

    Spletzer, Barry [Albuquerque, NM

    2007-03-13

    A load cell utilizes a plurality of strain gauges mounted upon the load cell body such that there are six independent load-strain relations. Load is determined by applying the inverse of a load-strain sensitivity matrix to a measured strain vector. The sensitivity matrix is determined by performing a multivariate regression technique on a set of known loads correlated to the resulting strains. Temperature compensation is achieved by configuring the strain gauges as co-located orthogonal pairs.

  19. Improvements In A Laser-Speckle Surface-Strain Gauge

    NASA Technical Reports Server (NTRS)

    Lant, Christian T.

    1996-01-01

    Compact optical subsystem incorporates several improvements over optical subsystems of previous versions of laser-speckle surface-strain gauge: faster acquisition of data, faster response to transients, reduced size and weight, lower cost, and less complexity. Principle of operation described previously in "Laser System Measures Two-Dimensional Strain" (LEW-15046), and "Two-Dimensional Laser-Speckle Surface-Strain Gauge" (LEW-15337).

  20. Evaluation results of the 700 deg C Chinese strain gauges. [for gas turbine engine

    NASA Technical Reports Server (NTRS)

    Hobart, H. F.

    1985-01-01

    Gauges fabricated from specially developed Fe-Cr-Al-V-Ti-Y alloy wire in the Republic of China were evaluated for use in static strain measurement of hot gas turbine engines. Gauge factor variation with temperature, apparent strain, and drift were included. Results of gauge factor versus temperature tests show gauge factor decreasing with increasing temperature. The average slope is -3-1/2 percent/100 K, with an uncertainty band of + or - 8 percent. Values of room temperature gauge factor for the Chinese and Kanthal A-1 gauges averaged 2.73 and 2.12, respectively. The room temperature gauge factor of the Chinese gauges was specified to be 2.62. The apparent strain data for both the Chinese alloy and Kanthal A-1 showed large cycle to cycle nonrepeatability. All apparent strain curves had a similar S-shape, first going negative and then rising to positive value with increasing temperatures. The mean curve for the Chinese gauges between room temperature and 100 K had a total apparent strain of 1500 microstrain. The equivalent value for Kanthal A-1 was about 9000 microstrain. Drift tests at 950 K for 50 hr show an average drift rate of about -9 microstrain/hr. Short-term (1 hr) rates are higher, averaging about -40 microstrain for the first hour. In the temperature range 700 to 870 K, however, short-term drift rates can be as high as 1700 microstrain for the first hour. Therefore, static strain measurements in this temperature range should be avoided.

  1. Luminescent Tension-Indicating Orthopedic Strain Gauges for Non-Invasive Measurements Through Tissue

    NASA Technical Reports Server (NTRS)

    Anker, Jeffrey (Inventor); Anderson, Dakota (Inventor); Heath, Jonathon (Inventor); Rogalski, Melissa (Inventor)

    2015-01-01

    Strain gauges that can provide information with regard to the state of implantable devices are described. The strain gauges can exhibit luminescence that is detectable through living tissue, and the detectable luminescent emission can vary according to the strain applied to the gauge. A change in residual strain of the device can signify a loss of mechanical integrity and/or loosening of the implant, and this can be non-invasively detected either by simple visual detection of the luminescent emission or through examination of the emission with a detector such as a spectrometer or a camera.

  2. Comparison of three methods of calculating strain in the mouse ulna in exogenous loading studies.

    PubMed

    Norman, Stephanie C; Wagner, David W; Beaupre, Gary S; Castillo, Alesha B

    2015-01-02

    Axial compression of mouse limbs is commonly used to induce bone formation in a controlled, non-invasive manner. Determination of peak strains caused by loading is central to interpreting results. Load-strain calibration is typically performed using uniaxial strain gauges attached to the diaphyseal, periosteal surface of a small number of sacrificed animals. Strain is measured as the limb is loaded to a range of physiological loads known to be anabolic to bone. The load-strain relationship determined by this subgroup is then extrapolated to a larger group of experimental mice. This method of strain calculation requires the challenging process of strain gauging very small bones which is subject to variability in placement of the strain gauge. We previously developed a method to estimate animal-specific periosteal strain during axial ulnar loading using an image-based computational approach that does not require strain gauges. The purpose of this study was to compare the relationship between load-induced bone formation rates and periosteal strain at ulnar midshaft using three different methods to estimate strain: (A) Nominal strain values based solely on load-strain calibration; (B) Strains calculated from load-strain calibration, but scaled for differences in mid-shaft cross-sectional geometry among animals; and (C) An alternative image-based computational method for calculating strains based on beam theory and animal-specific bone geometry. Our results show that the alternative method (C) provides comparable correlation between strain and bone formation rates in the mouse ulna relative to the strain gauge-dependent methods (A and B), while avoiding the need to use strain gauges. Published by Elsevier Ltd.

  3. Development of a Spoke Type Torque Sensor Using Painting Carbon Nanotube Strain Sensors.

    PubMed

    Kim, Sung Yong; Park, Se Hoon; Choi, Baek Gyu; Kang, In Hyuk; Park, Sang Wook; Shin, Jeong Woo; Kim, Jin Ho; Baek, Woon Kyung; Lim, Kwon Taek; Kim, Young-Ju; Song, Jae-Bok; Kang, Inpil

    2018-03-01

    This study reports a hub-spoke type joint torque sensor involving strain gauges made of multiwalled carbon nanotubes (MWCNT). We developed the novel joint torque sensor for robots by means of MWCNT/epoxy strain sensors (0.8 wt%, gauge factor 2) to overcome the limits of conventional foil strain gauges. Solution mixing process was hired to fabricate a liquid strain sensor that can easily be installed on any complicated surfaces. We painted the MWCNT/epoxy mixing liquid on the hub-spoke type joint torque sensor to form the piezoresistive strain gauges. The painted sensor converted its strain into torque by mean of the installed hub-spoke structure after signal processing. We acquired sufficient torque voltage responses from the painted MWCNT/epoxy strain sensor.

  4. Vectorial strain gauge method using single flexible orthogonal polydimethylsiloxane gratings

    NASA Astrophysics Data System (ADS)

    Guo, Hao; Tang, Jun; Qian, Kun; Tsoukalas, Dimitris; Zhao, Miaomiao; Yang, Jiangtao; Zhang, Binzhen; Chou, Xiujian; Liu, Jun; Xue, Chenyang; Zhang, Wendong

    2016-03-01

    A vectorial strain gauge method using a single sensing element is reported based on the double-sided polydimethylsiloxane (PDMS) Fraunhofer diffraction gratings structures. Using O2 plasma treatment steps, orthogonal wrinkled gratings were fabricated on both sides of a pre-strained PDMS film. Diffracted laser spots from this structure have been used to experimentally demonstrate, that any applied strain can be quantitatively characterized in both the x and y directions with an error of less than 0.6% and with a gauge factor of approximately 10. This simple and low cost technology which is completely different from the traditional vectorial strain gauge method, can be applied to surface vectorial strain measurement and multi-axis integrated mechanical sensors.

  5. Metallic nanoparticle-based strain sensors elaborated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Puyoo, E.; Malhaire, C.; Thomas, D.; Rafaël, R.; R'Mili, M.; Malchère, A.; Roiban, L.; Koneti, S.; Bugnet, M.; Sabac, A.; Le Berre, M.

    2017-03-01

    Platinum nanoparticle-based strain gauges are elaborated by means of atomic layer deposition on flexible polyimide substrates. Their electro-mechanical response is tested under mechanical bending in both buckling and conformational contact configurations. A maximum gauge factor of 70 is reached at a strain level of 0.5%. Although the exponential dependence of the gauge resistance on strain is attributed to the tunneling effect, it is shown that the majority of the junctions between adjacent Pt nanoparticles are in a short circuit state. Finally, we demonstrate the feasibility of an all-plastic pressure sensor integrating Pt nanoparticle-based strain gauges in a Wheatstone bridge configuration.

  6. Strain measurement on stiff structures: experimental evaluation of three integrated measurement principles

    NASA Astrophysics Data System (ADS)

    Rausch, J.; Hatzfeld, C.; Karsten, R.; Kraus, R.; Millitzer, J.; Werthschützky, R.

    2012-06-01

    This paper presents an experimental evaluation of three different strain measuring principles. Mounted on a steel beam resembling a car engine mount, metal foil strain gauges, piezoresistive silicon strain gauges and piezoelectric patches are investigated to measure structure-borne forces to control an active mounting structure. FEA simulation determines strains to be measured in the range of 10-8 up to 10-5 m × m-1. These low strains cannot be measured with conventional metal foil strain gauges, as shown in the experiment conducted. Both piezoresistive and piezoelectric gauges show good results compared to a conventional piezoelectric force sensor. Depending on bandwidth, overload capacity and primary electronic costs, these principles seem to be worth considering in an adaptronic system design. These parameters are described in detail for the principles investigated.

  7. Large Strain Transparent Magneto-Active Polymer Nanocomposites

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra (Inventor); Meador, Michael A (Inventor)

    2016-01-01

    A large strain polymer nanocomposite actuator is provided that upon subjected to an external stimulus, such as a magnetic field (static or electromagnetic field), an electric field, thermal energy, light, etc., will deform to thereby enable mechanical manipulations of structural components in a remote and wireless manner.

  8. Miniature Six-Axis Load Sensor for Robotic Fingertip

    NASA Technical Reports Server (NTRS)

    Diftler, Myron A.; Martin, Toby B.; Valvo, Michael C.; Rodriguez, Dagoberto; Chu, Mars W.

    2009-01-01

    A miniature load sensor has been developed as a prototype of tactile sensors that could fit within fingertips of anthropomorphic robot hands. The sensor includes a force-and-torque transducer in the form of a spring instrumented with at least six semiconductor strain gauges. The strain-gauge wires are secured to one side of an interface circuit board mounted at the base of the spring. This board protects the strain-gauge wires from damage that could otherwise occur as a result of finger motions. On the opposite side of the interface board, cables routed along the neutral axis of the finger route the strain-gauge output voltages to an analog-to-digital converter (A/D) board. The A/D board is mounted as close as possible to the strain gauges to minimize electromagnetic noise and other interference effects. The outputs of the A/D board are fed to a controller, wherein, by means of a predetermined calibration matrix, the digitized strain-gauge output voltages are converted to three vector components of force and three of torque exerted by or on the fingertip.

  9. Strain gauge validation experiments for the Sandia 34-meter VAWT (Vertical Axis Wind Turbine) test bed

    NASA Astrophysics Data System (ADS)

    Sutherland, Herbert J.

    1988-08-01

    Sandia National Laboratories has erected a research oriented, 34- meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas. This machine, designated the Sandia 34-m VAWT Test Bed, is equipped with a large array of strain gauges that have been placed at critical positions about the blades. This manuscript details a series of four-point bend experiments that were conducted to validate the output of the blade strain gauge circuits. The output of a particular gauge circuit is validated by comparing its output to equivalent gauge circuits (in this stress state) and to theoretical predictions. With only a few exceptions, the difference between measured and predicted strain values for a gauge circuit was found to be of the order of the estimated repeatability for the measurement system.

  10. Thermoreversibly Cross-Linked EPM Rubber Nanocomposites with Carbon Nanotubes

    PubMed Central

    Criscitiello, Francesco; van Essen, Machiel; Araya-Hermosilla, Rodrigo; Migliore, Nicola; Lenti, Mattia; Raffa, Patrizio

    2018-01-01

    Conductive rubber nanocomposites were prepared by dispersing conductive nanotubes (CNT) in thermoreversibly cross-linked ethylene propylene rubbers grafted with furan groups (EPM-g-furan) rubbers. Their features were studied with a strong focus on conductive and mechanical properties relevant for strain-sensor applications. The Diels-Alder chemistry used for thermoreversible cross-linking allows for the preparation of fully recyclable, homogeneous, and conductive nanocomposites. CNT modified with compatible furan groups provided nanocomposites with a relatively large tensile strength and small elongation at break. High and low sensitivity deformation experiments of nanocomposites with 5 wt % CNT (at the percolation threshold) displayed an initially linear sensitivity to deformation. Notably, only fresh samples displayed a linear response of their electrical resistivity to deformations as the resistance variation collapsed already after one cycle of elongation. Notwithstanding this mediocre performance as a strain sensor, the advantages of using thermoreversible chemistry in a conductive rubber nanocomposite were highlighted by demonstrating crack-healing by welding due to the joule effect on the surface and the bulk of the material. This will open up new technological opportunities for the design of novel strain-sensors based on recyclable rubbers. PMID:29360772

  11. High performance, freestanding and superthin carbon nanotube/epoxy nanocomposite films.

    PubMed

    Li, Jinzhu; Gao, Yun; Ma, Wenjun; Liu, Luqi; Zhang, Zhong; Niu, Zhiqiang; Ren, Yan; Zhang, Xiaoxian; Zeng, Qingshen; Dong, Haibo; Zhao, Duan; Cai, Le; Zhou, Weiya; Xie, Sishen

    2011-09-01

    We develop a facile, effective and filter free infiltration method to fabricate high performance, freestanding and superthin epoxy nanocomposite films with directly synthesized Sing-Walled Carbon Nanotubes (SWNTs) film as reinforcement skeleton. It is found that the thicknesses of the nanocomposite films can be easily controlled in the range of 0.5-3 μm by dripping target amount of acetone diluted epoxy through the skeleton film. The consequent measurements reveal that the mechanical and electrical properties of SWNTs/epoxy nanocomposite films could be tailored in a quite wide range. For examples, the Young's modulus of nanocomposite films can be tuned from 10 to 30 GPa, and the electrical conductivity can be ranged from 1000 S·cm(-1) to be insulated. Moreover, high load transfer efficiency in the nanocomposite films is demonstrated by the measured ultrahigh Raman bands shift rate (-30 ± 5 cm(-1)/% strain) under strain. The high effective modulus is derived as 774 ± 70 GPa for SWNTs inside this nanocomposite film.

  12. Low TCR nanocomposite strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); Chen, Ximing (Inventor)

    2012-01-01

    A high temperature thin film strain gage sensor capable of functioning at temperatures above 1400.degree. C. The sensor contains a substrate, a nanocomposite film comprised of an indium tin oxide alloy, zinc oxide doped with alumina or other oxide semiconductor and a refractory metal selected from the group consisting of Pt, Pd, Rh, Ni, W, Ir, NiCrAlY and NiCoCrAlY deposited onto the substrate to form an active strain element. The strain element being responsive to an applied force.

  13. New strain states and radical property tuning of metal oxides using a nanocomposite thin film approach

    DOE PAGES

    MacManus-Driscoll, Judith; Suwardi, Ady; Kursumovic, Ahmed; ...

    2015-05-05

    Auxetic-like strain states were generated in self-assembled nanocomposite thin films of (Ba 0.6Sr 0.4TiO 3) 1–x – (Sm 2O 3) x(BSTO – SmO). A switch from auxetic-like to elastic-like strain behavior was observed for x > 0.50, when the SmO switched from being nanopillars in the BSTO matrix to being the matrix with BSTO nanopillars embedded in it. A simple model was adopted to explain how in-plane strain varies with x. At high x (0.75), strongly enhanced ferroelectric properties were obtained compared to pure BSTO films. Furthermore, the nanocomposite method represents a powerful new way to tune the properties ofmore » a wide range of strongly correlated metal oxides whose properties are very sensitive to strain.« less

  14. A Strain Gauge Manual.

    DTIC Science & Technology

    1984-04-01

    Applied Science Publications Ltd. (U.K.) "Strain Gauges, Kinds and Uses", H.K.P. Neubert . McMillan, London (U.K.) "A Strain Gauge Primer", Perry and...G.R. Paul (Materials) A.A. Baker (Materials) I.G. Powlesland G. Wright ." P. Ferrerotto J. Madej B. Ashcroft E.S. Moody M.T. Adams M. Cameron (GAF) (2

  15. Strain measurement based battery testing

    DOEpatents

    Xu, Jeff Qiang; Steiber, Joe; Wall, Craig M.; Smith, Robert; Ng, Cheuk

    2017-05-23

    A method and system for strain-based estimation of the state of health of a battery, from an initial state to an aged state, is provided. A strain gauge is applied to the battery. A first strain measurement is performed on the battery, using the strain gauge, at a selected charge capacity of the battery and at the initial state of the battery. A second strain measurement is performed on the battery, using the strain gauge, at the selected charge capacity of the battery and at the aged state of the battery. The capacity degradation of the battery is estimated as the difference between the first and second strain measurements divided by the first strain measurement.

  16. Distributed dynamic strain measurement using long-gauge FBG and DTR3 interrogator based on delayed transmission/reflection ratiometric reflectometry

    NASA Astrophysics Data System (ADS)

    Nishiyama, M.; Igawa, H.; Kasai, T.; Watanabe, N.

    2013-09-01

    In this paper, we reveal characteristics of static and dynamic distributed strain measurement using a long-gauge fiber Bragg grating (FBG) and a Delayed Transmission/Reflection Ratiometric Reflectometry (DTR3) scheme. The DTR3 scheme has capability of detecting distributed strain using the long-gauge FBG with 50-cm spatial resolution. Additionally, dynamic strain measurement can be achieved using this technique in 100-Hz sampling rate. We evaluated strain sensing characteristics of the long-gauge FBG attached on 2.5-m aluminum bar by a four-point bending equipment. Experimental results showed that the DTR3 using the long-gauge FBG could detect distributed strain in static tests and resonance frequency of structure in free vibration tests. As a result, it is suggested that the DTR3 scheme using the longgauge FBG is attractive to structural health monitoring (SHM) as dynamic deformation detection of a few and tensmeters structure such as the airplane wing and the helicopter blade.

  17. Performance Evaluation of Strain Gauge Printed Using Automatic Fluid Dispensing System on Conformal Substrates

    NASA Astrophysics Data System (ADS)

    Khairilhijra Khirotdin, Rd.; Faridzuan Ngadiron, Mohamad; Adzeem Mahadzir, Muhammad; Hassan, Nurhafizzah

    2017-08-01

    Smart textiles require flexible electronics that can withstand daily stresses like bends and stretches. Printing using conductive inks provides the flexibility required but the current printing techniques suffered from ink incompatibility, limited of substrates to be printed with and incompatible with conformal substrates due to its rigidity and low flexibility. An alternate printing technique via automatic fluid dispensing system is proposed and its performances on printing strain gauge on conformal substrates were evaluated to determine its feasibility. Process parameters studied including printing speed, deposition height, curing time and curing temperature. It was found that the strain gauge is proven functional as expected since different strains were induced when bent on variation of bending angles and curvature radiuses from designated bending fixtures. The average change of resistances were doubled before the strain gauge starts to break. Printed strain gauges also exhibited some excellence elasticity as they were able to resist bending up to 70° angle and 3 mm of curvature radius.

  18. Giant room temperature magnetoelectric response in strain controlled nanocomposites

    NASA Astrophysics Data System (ADS)

    Rafique, Mohsin; Herklotz, Andreas; Dörr, Kathrin; Manzoor, Sadia

    2017-05-01

    We report giant magnetoelectric coupling at room temperature in a self-assembled nanocomposite of BiFeO3-CoFe2O4 (BFO-CFO) grown on a BaTiO3 (BTO) crystal. The nanocomposite consisting of CFO nanopillars embedded in a BFO matrix exhibits weak perpendicular magnetic anisotropy due to a small out-of-plane compression (˜0.3%) of the magnetostrictive (CFO) phase, enabling magnetization rotation under moderate in-plane compression. Temperature dependent magnetization measurements demonstrate strong magnetoelastic coupling between the BaTiO3 substrate and the nanocomposite film, which has been exploited to produce a large magnetoelectric response in the sample. The reorientation of ferroelectric domains in the BTO crystal upon the application of an electric field (E) alters the strain state of the nanocomposite film, thus enabling control of its magnetic anisotropy. The strain mediated magnetoelectric coupling coefficient α = μ o d M / d E calculated from remnant magnetization at room temperature is 2.6 × 10-7 s m-1 and 1.5 × 10-7 s m-1 for the out-of-plane and in-plane orientations, respectively.

  19. Assessment of mechanical strain in the intact plantar fascia.

    PubMed

    Clark, Ross A; Franklyn-Miller, Andrew; Falvey, Eanna; Bryant, Adam L; Bartold, Simon; McCrory, Paul

    2009-09-01

    A method of measuring tri-axial plantar fascia strain that is minimally affected by external compressive force has not previously been reported. The purpose of this study was to assess the use of micro-strain gauges to examine strain in the different axes of the plantar fascia. Two intact limbs from a thawed, fresh-frozen cadaver were dissected, and a combination of five linear and one three-way rosette gauges were attached to the fascia of the foot and ankle. Strain was assessed during two trials, both consisting of an identical controlled, loaded dorsiflexion. An ICC analysis of the results revealed that the majority of gauge placement sites produced reliable measures (ICC>0.75). Strain mapping of the plantar fascia indicates that the majority of the strain is centrally longitudinal, which provides supportive evidence for finite element model analysis. Although micro-strain gauges do possess the limitation of calibration difficulty, they provide a repeatable measure of fascial strain and may provide benefits in situations that require tri-axial assessment or external compression.

  20. Polymer optical fiber strain gauge for human-robot interaction forces assessment on an active knee orthosis

    NASA Astrophysics Data System (ADS)

    Leal-Junior, Arnaldo G.; Frizera, Anselmo; Marques, Carlos; Sánchez, Manuel R. A.; Botelho, Thomaz R.; Segatto, Marcelo V.; Pontes, Maria José

    2018-03-01

    This paper presents the development of a polymer optical fiber (POF) strain gauge based on the light coupling principle, which the power attenuation is created by the misalignment between two POFs. The misalignment, in this case, is proportional to the strain on the structure that the fibers are attached. This principle has the advantages of low cost, ease of implementation, temperature insensitiveness, electromagnetic fields immunity and simplicity on the sensor interrogation and signal processing. Such advantages make the proposed solution an interesting alternative to the electronic strain gauges. For this reason, an analytical model for the POF strain gauge is proposed and validated. Furthermore, the proposed POF sensor is applied on an active orthosis for knee rehabilitation exercises through flexion/extension cycles. The controller of the orthosis provides 10 different levels of robotic assistance on the flexion/extension movement. The POF strain gauge is tested at each one of these levels. Results show good correlation between the optical and electronic strain gauges with root mean squared deviation (RMSD) of 1.87 Nm when all cycles are analyzed, which represents a deviation of less than 8%. For the application, the proposed sensor presented higher stability than the electronic one, which can provide advantages on the rehabilitation exercises and on the inner controller of the device.

  1. Fiber Optic Rosette Strain Gauge Development and Application on a Large-Scale Composite Structure

    NASA Technical Reports Server (NTRS)

    Moore, Jason P.; Przekop, Adam; Juarez, Peter D.; Roth, Mark C.

    2015-01-01

    A detailed description of the construction, application, and measurement of 196 FO rosette strain gauges that measured multi-axis strain across the outside upper surface of the forward bulkhead component of a multibay composite fuselage test article is presented. A background of the FO strain gauge and the FO measurement system as utilized in this application is given and results for the higher load cases of the testing sequence are shown.

  2. High barrier multilayer packaging by the coextrusion method: The effect of nanocomposites and biodegradable polymers on flexible film properties

    NASA Astrophysics Data System (ADS)

    Thellen, Christopher T.

    The objective of this research was to investigate the use of nanocomposite and multilayer co-extrusion technologies for the development of high gas barrier packaging that is more environmentally friendly than many current packaging system. Co-extruded bio-based and biodegradable polymers that could be composted in a municipal landfill were one direction that this research was aimed. Down-gauging of high performance barrier films using nanocomposite technology and co-extrusion was also investigated in order to reduce the amount of solid waste being generated by the packaging. Although the research is focused on military ration packaging, the technologies could easily be introduced into the commercial flexible packaging market. Multilayer packaging consisting of poly(m-xylylene adipamide) nanocomposite layers along with adhesive and tie layers was co-extruded using both laboratory and pilot-scale film extrusion equipment. Co-extrusion of biodegradable polyhydroxyalkanoates (PHA) along with polyvinyl alcohol (PVOH) and tie layers was also accomplished using similar co-extrusion technology. All multilayer films were characterized for gas barrier, mechanical, and thermal properties. The biodegradability of the PVOH and PHA materials in a marine environment was also investigated. The research has shown that co-extrusion of these materials is possible at a research and pilot level. The use of nanocomposite poly(m-xylylene adipamide) was effective in down-gauging the un-filled barrier film to thinner structures. Bio-based PHA/PVOH films required the use of a malefic anhydride grafted PHA tie layer to improve layer to layer adhesion in the structure to avoid delamination. The PHA polymer demonstrated a high rate of biodegradability/mineralization in the marine environment while the rate of biodegradation of the PVOH polymer was slower.

  3. Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites via the construction of a self-segregated structure.

    PubMed

    Wang, Ming; Zhang, Kai; Dai, Xin-Xin; Li, Yin; Guo, Jiang; Liu, Hu; Li, Gen-Hui; Tan, Yan-Jun; Zeng, Jian-Bing; Guo, Zhanhu

    2017-08-10

    Formation of highly conductive networks is essential for achieving flexible conductive polymer composites (CPCs) with high force sensitivity and high electrical conductivity. In this study, self-segregated structures were constructed in polydimethylsiloxane/multi-wall carbon nanotube (PDMS/MWCNT) nanocomposites, which then exhibited high piezoresistive sensitivity and low percolation threshold without sacrificing their mechanical properties. First, PDMS was cured and pulverized into 40-60 mesh-sized particles (with the size range of 250-425 μm) as an optimum self-segregated phase to improve the subsequent electrical conductivity. Then, the uncured PDMS/MWCNT base together with the curing agent was mixed with the abovementioned PDMS particles, serving as the segregated phase. Finally, the mixture was cured again to form the PDMS/MWCNT nanocomposites with self-segregated structures. The morphological evaluation indicated that MWCNTs were located in the second cured three-dimensional (3D) continuous PDMS phase, resulting in an ultralow percolation threshold of 0.003 vol% MWCNTs. The nanocomposites with self-segregated structures with 0.2 vol% MWCNTs achieved a high electrical conductivity of 0.003 S m -1 , whereas only 4.87 × 10 -10 S m -1 was achieved for the conventional samples with 0.2 vol% MWCNTs. The gauge factor GF of the self-segregated samples was 7.4-fold that of the conventional samples at 30% compression strain. Furthermore, the self-segregated samples also showed higher compression modulus and strength as compared to the conventional samples. These enhanced properties were attributed to the construction of 3D self-segregated structures, concentrated distribution of MWCNTs, and strong interfacial interaction between the segregated phase and the continuous phase with chemical bonds formed during the second curing process. These self-segregated structures provide a new insight into the fabrication of elastomers with high electrical conductivity and piezoresistive sensitivity for flexible force-sensitive materials.

  4. Al2O3 Nanoparticle Addition to Commercial Magnesium Alloys: Multiple Beneficial Effects

    PubMed Central

    Paramsothy, Muralidharan; Chan, Jimmy; Kwok, Richard; Gupta, Manoj

    2012-01-01

    The multiple beneficial effects of Al2O3 nanoparticle addition to cast magnesium based systems (followed by extrusion) were investigated, constituting either: (a) enhanced strength; or (b) simultaneously enhanced strength and ductility of the corresponding magnesium alloys. AZ31 and ZK60A nanocomposites containing Al2O3 nanoparticle reinforcement were each fabricated using solidification processing followed by hot extrusion. Compared to monolithic AZ31 (tension levels), the corresponding nanocomposite exhibited higher yield strength (0.2% tensile yield strength (TYS)), ultimate strength (UTS), failure strain and work of fracture (WOF) (+19%, +21%, +113% and +162%, respectively). Compared to monolithic AZ31 (compression levels), the corresponding nanocomposite exhibited higher yield strength (0.2% compressive yield strength (CYS)) and ultimate strength (UCS), lower failure strain and higher WOF (+5%, +5%, −4% and +11%, respectively). Compared to monolithic ZK60A (tension levels), the corresponding nanocomposite exhibited lower 0.2% TYS and higher UTS, failure strain and WOF (−4%, +13%, +170% and +200%, respectively). Compared to monolithic ZK60A (compression levels), the corresponding nanocomposite exhibited lower 0.2% CYS and higher UCS, failure strain and WOF (−10%, +7%, +15% and +26%, respectively). The capability of Al2O3 nanoparticles to enhance the properties of cast magnesium alloys in a way never seen before with micron length scale reinforcements is clearly demonstrated. PMID:28348301

  5. Sensate Scaffolds Can Reliably Detect Joint Loading

    PubMed Central

    Bliss, C. L.; Szivek, J. A.; Tellis, B. C.; Margolis, D. S.; Schnepp, A. B.; Ruth, J. T.

    2008-01-01

    Treatment of cartilage defects is essential to the prevention of osteoarthritis. Scaffold-based cartilage tissue engineering shows promise as a viable technique to treat focal defects. Added functionality can be achieved by incorporating strain gauges into scaffolds, thereby providing a real-time diagnostic measurement of joint loading. Strain-gauged scaffolds were placed into the medial femoral condyles of 14 adult canine knees and benchtop tested. Loads between 75 and 130 N were applied to the stifle joints at 30°, 50°, and 70° of flexion. Strain-gauged scaffolds were able to reliably assess joint loading at all applied flexion angles and loads. Pressure sensitive films were used to determine joint surface pressures during loading and to assess the effect of scaffold placement on joint pressures. A comparison of peak pressures in control knees and joints with implanted scaffolds, as well as a comparison of pressures before and after scaffold placement, showed that strain-gauged scaffold implantation did not significantly alter joint pressures. Future studies could possibly use strain-gauged scaffolds to clinically establish normal joint loads and to determine loads that are damaging to both healthy and tissue-engineered cartilage. Strain-gauged scaffolds may significantly aid the development of a functional engineered cartilage tissue substitute as well as provide insight into the native environment of cartilage. PMID:16941586

  6. Multiscale Modeling and Characterization of the Effects of Damage Evolution on the Multifunctional Properties of Polymer Nanocomposites

    DTIC Science & Technology

    2016-07-27

    the mechanical and electrical properties of carbon nanotube -polymer nanocomposites. Focus was placed on understanding and capturing the key... nanotube nanocomposite piezoresistive sensing in performing structural health monitoring in epoxy-based energetic materials. The focus was to...Carbon Nanotube , Nanocomposite, Structural Health Monitoring, Strain Sensing, Damage Sensing 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU

  7. Strain Gauges Based on CVD Graphene Layers and Exfoliated Graphene Nanoplatelets with Enhanced Reproducibility and Scalability for Large Quantities

    PubMed Central

    Yokaribas, Volkan; Schneider, Daniel S.; Friebertshäuser, Philipp; Lemme, Max C.; Fritzen, Claus-Peter

    2017-01-01

    The two-dimensional material graphene promises a broad variety of sensing activities. Based on its low weight and high versatility, the sensor density can significantly be increased on a structure, which can improve reliability and reduce fluctuation in damage detection strategies such as structural health monitoring (SHM). Moreover; it initializes the basis of structure–sensor fusion towards self-sensing structures. Strain gauges are extensively used sensors in scientific and industrial applications. In this work, sensing in small strain fields (from −0.1% up to 0.1%) with regard to structural dynamics of a mechanical structure is presented with sensitivities comparable to bulk materials by measuring the inherent piezoresistive effect of graphene grown by chemical vapor deposition (CVD) with a very high aspect ratio of approximately 4.86 × 108. It is demonstrated that the increasing number of graphene layers with CVD graphene plays a key role in reproducible strain gauge application since defects of individual layers may become less important in the current path. This may lead to a more stable response and, thus, resulting in a lower scattering.. Further results demonstrate the piezoresistive effect in a network consisting of liquid exfoliated graphene nanoplatelets (GNP), which result in even higher strain sensitivity and reproducibility. A model-assisted approach provides the main parameters to find an optimum of sensitivity and reproducibility of GNP films. The fabricated GNP strain gauges show a minimal deviation in PRE effect with a GF of approximately 5.6 and predict a linear electromechanical behaviour up to 1% strain. Spray deposition is used to develop a low-cost and scalable manufacturing process for GNP strain gauges. In this context, the challenge of reproducible and reliable manufacturing and operating must be overcome. The developed sensors exhibit strain gauges by considering the significant importance of reproducible sensor performances and open the path for graphene strain gauges for potential usages in science and industry. PMID:29258260

  8. Two-Dimensional Laser-Speckle Surface-Strain Gauge

    NASA Technical Reports Server (NTRS)

    Barranger, John P.; Lant, Christian

    1992-01-01

    Extension of Yamaguchi's laser-speckle surface-strain-gauge method yields data on two-dimensional surface strains in times as short as fractions of second. Laser beams probe rough spot on surface of specimen before and after processing. Changes in speckle pattern of laser light reflected from spot indicative of changes in surface strains during processing. Used to monitor strains and changes in strains induced by hot-forming and subsequent cooling of steel.

  9. Transfer of fuel assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuckovich, M.; Burkett, J. P.; Sallustio, J.

    1984-12-11

    Fuel assemblies of a nuclear reactor are transferred during fueling or refueling or the like by a crane. The work-engaging fixture of the crane picks up an assembly, removes it from this slot, transfers it to the deposit site and deposits it in its slot at the deposit site. The control for the crane includes a strain gauge connected to the crane line which raises and lowers the load. The strain gauge senses the load on the crane. The signal from the strain gauge is compared with setpoints; a high-level setpoint, a low-level setpoint and a slack-line setpoint. If themore » strain gauge signal exceeds the high-level setpoint, the line drive is disabled. This event may occur during raising of a fuel assembly which encounters resistance. The high-level setpoint may be overridden under proper precautions. The line drive is also disabled if the strain gauge signal is less than the low-level setpoint. This event occurs when a fuel assembly being deposited contacts the bottom of its slot or an obstruction in, or at the entry to the slot. To preclude lateral movement and possible damage to a fuel assembly suspended from the crane line, the traverse drive of the crane is disabled once the strain-gauge exceets the lov-level setpoint. The traverse drive can only be enabled after the strain-gauge signal is less than the slack-line set-point. This occurs when the lines has been set in slack-line setting. When the line is tensioned after slack-li ne setting, the traverse drive remains enabled only if the line has been disconnected from the fuel assembly.« less

  10. Damage identification method for continuous girder bridges based on spatially-distributed long-gauge strain sensing under moving loads

    NASA Astrophysics Data System (ADS)

    Wu, Bitao; Wu, Gang; Yang, Caiqian; He, Yi

    2018-05-01

    A novel damage identification method for concrete continuous girder bridges based on spatially-distributed long-gauge strain sensing is presented in this paper. First, the variation regularity of the long-gauge strain influence line of continuous girder bridges which changes with the location of vehicles on the bridge is studied. According to this variation regularity, a calculation method for the distribution regularity of the area of long-gauge strain history is investigated. Second, a numerical simulation of damage identification based on the distribution regularity of the area of long-gauge strain history is conducted, and the results indicate that this method is effective for identifying damage and is not affected by the speed, axle number and weight of vehicles. Finally, a real bridge test on a highway is conducted, and the experimental results also show that this method is very effective for identifying damage in continuous girder bridges, and the local element stiffness distribution regularity can be revealed at the same time. This identified information is useful for maintaining of continuous girder bridges on highways.

  11. Centrifugal Modelling of Soil Structures. Part III. The Stability of River Banks and Flood Embankments.

    DTIC Science & Technology

    1978-10-01

    mode Plate 3.6, and also electrically using a strain gauged diaphragm transducer. This transducer was mounted in a I" BSP plug and installed in a...manufactured by Druck Ltd of Leicester and have been described by Hird, 1974. The membrane is a single silicon crystal into which is diffused a strain gauge ...diaphragm strain gauge on the back. The transducers were very small and gave excellent results in the water line to the reservoir. In the soil, however

  12. Microminiature high-resolution linear displacement sensor for peak strain detection in smart structures

    NASA Astrophysics Data System (ADS)

    Arms, Steven W.; Guzik, David C.; Townsend, Christopher P.

    1998-07-01

    Critical civil and military structures require 'smart' sensors in order to report their strain histories; this can help to insure safe operation after exposure to potentially damaging loads. A passive resetable peak strain detector was developed by modifying the mechanics of a differential variable reluctance transducer. The peak strain detector was attached to an aluminum test beam along with a bonded resistance strain gauge and a standard DVRT. Strain measurements were recorded during cyclic beam deflections. DVRT output was compared to the bonded resistance strain gauge output, yielding correlation coefficients ranging from 0.9989 to 0.9998 for al teste, including re-attachment of the DVRT to the specimen. Peak bending strains were obtained by the modified peak detect DVRT to the specimen. Peak bending strains were obtained by the modified peak detect DVRT and this was compared to the peak bending strains as measured by the bonded strain gauge. The peak detect DVRT demonstrated an accuracy of approximately +/- 5 percent over a peak range of 2000 to 2800 microstrain.

  13. High-Temperature Resistance Strain Gauges

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1994-01-01

    Resistance strain gauges developed for use at high temperatures in demanding applications like testing aircraft engines and structures. Measures static strains at temperatures up to 800 degrees C. Small and highly reproducible. Readings corrected for temperature within small tolerances, provided temperatures measured simultaneously by thermocouples or other suitable devices. Connected in wheatstone bridge.

  14. Dynamic Force Measurement with Strain Gauges

    ERIC Educational Resources Information Center

    Lee, Bruce E.

    1974-01-01

    Discusses the use of four strain gauges, a Wheatstone bridge, and an oscilloscope to measure forces dynamically. Included is an example of determining the centripetal force of a pendulum in a general physics laboratory. (CC)

  15. Long-gauge FBGs interrogated by DTR3 for dynamic distributed strain measurement of helicopter blade model

    NASA Astrophysics Data System (ADS)

    Nishiyama, M.; Igawa, H.; Kasai, T.; Watanabe, N.

    2014-05-01

    In this paper, we describe characteristics of distributed strain sensing based on a Delayed Transmission/Reflection Ratiometric Reflectometry (DTR3) scheme with a long-gauge Fiber Bragg Grating (FBG), which is attractive to dynamic structural deformation monitoring such as a helicopter blade and an airplane wing. The DTR3 interrogator using the longgauge FBG has capability of detecting distributed strain with 50 cm spatial resolution in 100 Hz sampling rate. We evaluated distributed strain sensing characteristics of the long-gauge FBG attached on a 5.5 m helicopter blade model in static tests and free vibration dynamic tests.

  16. Development of a multi-cycle shear-compression testing for the modeling of severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Pesin, A.; Pustovoytov, D.; Lokotunina, N.

    2017-12-01

    The mechanism of severe plastic deformation comes from very significant shear strain. Shear-compression testing of materials is complicated by the fact that a state of large equivalent strain with dominant shear strain is not easily achievable. This paper presents the novel technique of laboratory simulation of severe plastic deformation by multi-cycle shear-compression testing at room temperature with equivalent strain e=1…5. The specimen consisted of a parallelepiped having an inclined gauge section created by two diametrically opposed semi-circular slots which were machined at 45°. Height of the specimen was 50 mm, section dimensions were 25×25 mm, gauge thickness was 5.0 mm and gauge width was 6.0 mm. The specimen provided dominant shear strain in an inclined gauge-section. The level of shear strain and equivalent strain was controlled through adjustment of the height reduction of the specimen, load application direction and number of cycles of shear-compression. Aluminium alloy Al-6.2Mg-0.7Mn was used as a material for specimen. FE simulation and analysis of the stress-strain state were performed. The microstructure of the specimen after multi-cycle shear-compression testing with equivalent strain e=1…5 was examined by optical and scanning electron microscope.

  17. Photothermal measurement of optical surface absorption using strain transducers

    NASA Astrophysics Data System (ADS)

    Leslie, D. H.; Trusty, G. L.

    1981-09-01

    We discuss the measurement of small optical surface absorption coefficients. A demonstration experiment was performed using a metallurgical strain gauge to measure 488 nm absorption on the surface of a glass plate. A strain of 10 to the minus 8th power resulted from absorption of 0.3 watts. The results are interpreted and the sensitivity of a proposed fiber optic strain gauge is discussed.

  18. Aerodynamic Applications of Boundary Layer Control Using Embedded Streamwise Vortices

    DTIC Science & Technology

    2003-07-01

    section, 0.02% free-stream turbulence level, free-stream velocity up to 18 m/s; the strain gauge can be used for aerodynamic force measurements. (2...section, free-stream velocity up to 28 m/s; equipped with the 3-component strain gauge (values of streamwise and normal forces measured up to 3N and 6...dimensional model: test section of 4m x 2.5m x 5.5m, free-stream velocities up to 42 m/s, multi-base 6-component strain gauge. Project Manager: Nina F

  19. Fiber-optic strain gauge with attached ends and unattached microbend section

    DOEpatents

    Weiss, J.D.

    1992-07-21

    A strain gauge is made of an optical fiber into which quasi-sinusoidal microbends have been permanently introduced. The permanent microbends cause a reduction in the fiber's optical transmission, but, when the gauge is attached to a substrate that is subsequently strained, the amplitude of the deformations will diminish and the optical transmission through the fiber will increase. An apparatus and process for manufacturing these microbends into the optical fiber through a heat-set process is employed; this apparatus and process includes a testing and calibration system. 5 figs.

  20. An Intelligent Strain Gauge with Debond Detection and Temperature Compensation

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L.

    2012-01-01

    The harsh rocket propulsion test environment will expose any inadequacies associated with preexisting instrumentation technologies, and the criticality for collecting reliable test data justifies investigating any encountered data anomalies. Novel concepts for improved systems are often conceived during the high scrutiny investigations by individuals with an in-depth knowledge from maintaining critical test operations. The Intelligent Strain Gauge concept was conceived while performing these kinds of activities. However, the novel concepts are often unexplored even if it has the potential for advancing the current state of the art. Maturing these kinds of concepts is often considered to be a tangential development or a research project which are both normally abandoned within the propulsion-oriented environment. It is also difficult to justify these kinds of projects as a facility enhancement because facility developments are only accepted for mature and proven technologies. Fortunately, the CIF program has provided an avenue for bringing the Intelligent Strain Gauge to fruition. Two types of fully functional smart strain gauges capable of performing reliable and sensitive debond detection have been successfully produced. Ordinary gauges are designed to provide test article data and they lack the ability to supply information concerning the gauge itself. A gauge is considered to be a smart gauge when it provides supplementary data relating other relevant attributes for performing diagnostic function or producing enhanced data. The developed strain gauges provide supplementary signals by measuring strain and temperature through embedded Karma and nickel chromium (NiCr) alloy elements. Intelligently interpreting the supplementary data into valuable information can be performed manually, however, integrating this functionality into an automatic system is considered to be an intelligent gauge. This was achieved while maintaining a very low mass. The low mass enables debond detection and temperature compensation to be performed when the gauge is utilized on small test articles. It was also found that the element's mass must be relatively small to avoid overbearing the desired thermal dissipation characteristics. Detecting the degradation of a gauge s bond was reliably achieved by correlating thermal dissipation with the bond s integrity. This was accomplished by precisely coupling a NiCr element with a Karma element for accurately interjecting and quantifying thermal energy. A finite amount of thermal energy is consistently placed in the gauge by electrically powering the NiCr element. The energy will only be temporarily stored before it begins to dissipate into the surrounding structure through the gauge bond. The ability to transmit the energy into the structure becomes greatly inhibited by any discontinuity in the bond s substrate. Therefore, the way the thermal dissipation occurs will reveal even the slightest change in the integrity of the bond.

  1. Multifunctional nanocomposites of chitosan, silver nanoparticles, copper nanoparticles and carbon nanotubes for water treatment: Antimicrobial characteristics.

    PubMed

    Morsi, Rania E; Alsabagh, Ahmed M; Nasr, Shimaa A; Zaki, Manal M

    2017-04-01

    Multifunctional nanocomposites of chitosan with silver nanoparticles, copper nanoparticles and carbon nanotubes either as bi- or multifunctional nanocomposites were prepared. Change in the overall morphology of the prepared nanocomposites was observed; carbon nanotubes, Ag NPs and Cu NPs are distributed homogeneously inside the polymer matrix individually in the case of the bi-nanocomposites while a combination of different dimensional shapes; spherical NPs and nanotubes was observed in the multifunctional nanocomposite. Multifunctional nanocomposites has a higher antimicrobial activity, in relative short contact times, against both Gram negative and Gram positive bacteria; E. coli, Staphylococcus aureus; respectively in addition to the fungal strain; Aspergillus flavus isolated from local wastewater sample. The nanocomposites are highly differentiable at the low contact time and low concentration; 1% concentration of the multifunctional nanocomposite is very effective against the tested microbes at contact time of only 10min. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Distributed strain measurement based on long-gauge FBG and delayed transmission/reflection ratiometric reflectometry for dynamic structural deformation monitoring.

    PubMed

    Nishiyama, Michiko; Igawa, Hirotaka; Kasai, Tokio; Watanabe, Naoyuki

    2015-02-10

    In this paper, we propose a delayed transmission/reflection ratiometric reflectometry (DTR(3)) scheme using a long-gauge fiber Bragg grating (FBG), which can be used for dynamic structural deformation monitoring of structures of between a few to tens of meters in length, such as airplane wings and helicopter blades. FBG sensors used for multipoint sensing generally employ wavelength division multiplexing techniques utilizing several Bragg central wavelengths; by contrast, the DTR(3) interrogator uses a continuous pulse array based on a pseudorandom number code and a long-gauge FBG utilizing a single Bragg wavelength and composed of simple hardware devices. The DTR(3) scheme can detect distributed strain at a 50 cm spatial resolution using a long-gauge FBG with a 100 Hz sampling rate. We evaluated the strain sensing characteristics of the long-gauge FBG when attached to a 2.5 m aluminum bar and a 5.5 m helicopter blade model, determining these structure natural frequencies in free vibration tests and their distributed strain characteristics in static tests.

  3. Hypersonic force measurements using internal balance based on optical micromachined Fabry-Perot interferometry.

    PubMed

    Qiu, Huacheng; Min, Fu; Zhong, Shaolong; Song, Xin; Yang, Yanguang

    2018-03-01

    Force measurements using wind tunnel balance are necessary for determining a variety of aerodynamic performance parameters, while the harsh environment in hypersonic flows requires that the measurement instrument should be reliable and robust, in against strong electromagnetic interference, high vacuum, or metal (oxide) dusts. In this paper, we demonstrated a three-component internal balance for hypersonic aerodynamic force measurements, using novel optical micromachined Fabry-Perot interferometric (FPI) strain gauges as sensing elements. The FPI gauges were fabricated using Micro-Opto-Electro-Mechanical Systems (MOEMS) surface and bulk fabrication techniques. High-reflectivity coatings are used to form a high-finesse Fabry-Perot cavity, which benefits a high resolution. Antireflective and passivation coatings are used to reduce unwanted interferences. The FPI strain gauge based balance has been calibrated and evaluated in a Mach 5 hypersonic flow. The results are compared with the traditional technique using the foil resistive strain gauge balance, indicating that the proposed balance based on the MOEMS FPI strain gauge is reliable and robust and is potentially suitable for the hypersonic wind tunnel harsh environment.

  4. Hypersonic force measurements using internal balance based on optical micromachined Fabry-Perot interferometry

    NASA Astrophysics Data System (ADS)

    Qiu, Huacheng; Min, Fu; Zhong, Shaolong; Song, Xin; Yang, Yanguang

    2018-03-01

    Force measurements using wind tunnel balance are necessary for determining a variety of aerodynamic performance parameters, while the harsh environment in hypersonic flows requires that the measurement instrument should be reliable and robust, in against strong electromagnetic interference, high vacuum, or metal (oxide) dusts. In this paper, we demonstrated a three-component internal balance for hypersonic aerodynamic force measurements, using novel optical micromachined Fabry-Perot interferometric (FPI) strain gauges as sensing elements. The FPI gauges were fabricated using Micro-Opto-Electro-Mechanical Systems (MOEMS) surface and bulk fabrication techniques. High-reflectivity coatings are used to form a high-finesse Fabry-Perot cavity, which benefits a high resolution. Antireflective and passivation coatings are used to reduce unwanted interferences. The FPI strain gauge based balance has been calibrated and evaluated in a Mach 5 hypersonic flow. The results are compared with the traditional technique using the foil resistive strain gauge balance, indicating that the proposed balance based on the MOEMS FPI strain gauge is reliable and robust and is potentially suitable for the hypersonic wind tunnel harsh environment.

  5. Control of a 45-cm long x-ray deformable mirror with either external or internal metrology

    NASA Astrophysics Data System (ADS)

    Poyneer, Lisa A.; Pardini, Tommaso; McCarville, Thomas; Palmer, David; Brooks, Audrey

    2014-09-01

    Our 45-cm long x-ray deformable mirror has 45 actuators along the tangential axis, along with one strain gauge per actuator and eight temperature sensors. We discuss the detailed calibration of the mirror's figure response to voltage (fourth-order) and the strain gauges' response to figure changes (linear). The mirror's cylinder shape changes with temperature, which can be tracked with the temperature sensors. We present initial results of measuring figure change with the strain gauges, which works very well for large changes (> 10 nm peak-to- valley), but is noisy with a single strain reading for small changes (5 nm peak-to-valley).

  6. Components of variation of surface hoof strain with time.

    PubMed

    Thomason, J J; Bignell, W W; Sears, W

    2001-04-01

    The relative contribution of a number of random and fixed variables to variation in surface strain magnitudes on the hoof capsule was assessed for healthy feet under normal conditions. Principal strains were recorded in vivo from 5 rosette gauges glued around the circumference of the right forefeet of 4 horses on 4 occasions over a 9 month period. Recordings were made at every other trimming and reshoeing. During each session, gauges were positioned with a template for repeatability. Strains were recorded at the trot and canter (at consistent speeds), for straight motion and turns, and before and after the hoof was trimmed and reset. Up to 30 strides were recorded for each combination of these variables. ANOVAs were performed on midstance strains of 7008 strides to determine the relative contributions to strain variation of individual horse, test day, gait and direction combined as one factor, gauge position on the hoof, trimming, interstride variability and the interactions among these factors. The ANOVA model explained 87% of the variation, of which approximately 84% was due to fixed effects and 16% to random effects. Circumferential position of the gauges and several of the interactions including this term were by far the greatest contributors to strain variation. Differences among gauge positions, individuals and gait + direction are consistent with previous work. This study has added the relative effects, which are small but significant, of trimming on a regular basis and of time. The change in strain magnitudes with trimming was different for each horse, which leads to the possibility that over- and underuse may have to be quantified on an individual basis.

  7. Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities.

    PubMed

    Hwang, Byeong-Ung; Lee, Ju-Hyuck; Trung, Tran Quang; Roh, Eun; Kim, Do-Il; Kim, Sang-Woo; Lee, Nae-Eung

    2015-09-22

    Monitoring of human activities can provide clinically relevant information pertaining to disease diagnostics, preventive medicine, care for patients with chronic diseases, rehabilitation, and prosthetics. The recognition of strains on human skin, induced by subtle movements of muscles in the internal organs, such as the esophagus and trachea, and the motion of joints, was demonstrated using a self-powered patchable strain sensor platform, composed on multifunctional nanocomposites of low-density silver nanowires with a conductive elastomer of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/polyurethane, with high sensitivity, stretchability, and optical transparency. The ultra-low-power consumption of the sensor, integrated with both a supercapacitor and a triboelectric nanogenerator into a single transparent stretchable platform based on the same nanocomposites, results in a self-powered monitoring system for skin strain. The capability of the sensor to recognize a wide range of strain on skin has the potential for use in new areas of invisible stretchable electronics for human monitoring. A new type of transparent, stretchable, and ultrasensitive strain sensor based on a AgNW/PEDOT:PSS/PU nanocomposite was developed. The concept of a self-powered patchable sensor system integrated with a supercapacitor and a triboelectric nanogenerator that can be used universally as an autonomous invisible sensor system was used to detect the wide range of strain on human skin.

  8. Carbon Nanotube/Polymer Nanocomposites Flexible Stress and Strain Sensors

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Scholl, Jonathan A.; Lowther, Sharon E.; Harrison, Joycelyn S.

    2008-01-01

    Conformable stress and strain sensors are required for monitoring the integrity of airframe structures as well as for sensing the mechanical stimuli in prosthetic arms. For this purpose, we have developed a series of piezoresistive single-wall carbon nanotube (SWCNT)/polymer nanocomposites. The electromechanical coupling of pressure with resistance changes in these nanocomposites is exceptionally greater than that of metallic piezoresistive materials. In fact, the piezoresistive stress coefficient (pi) of a SWCNT/polymer nanocomposite is approximately two orders of magnitude higher than that of a typical metallic piezoresistive. The piezoresistive stress coefficient is a function of the nanotube concentration wherein the maximum value occurs at a concentration just above the percolation threshold concentration (phi approx. 0.05 %). This response appears to originate from a change in intrinsic resistivity under compression/tension. A systematic study of the effect of the modulus of the polymer matrix on piezoresistivity allowed us to make flexible and conformable sensors for biomedical applications. The prototype haptic sensors using these nanocomposites are demonstrated. The piezocapacitive properties of SWCNT/polymer are also characterized by monitoring the capacitance change under pressure.

  9. Transparent Large Strain Thermoplastic Polyurethane Magneto-Active Nanocomposites

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Carpen, Ileana; Peck, John; Sola, Francisco; Bail, Justin; Lerch, Bradley; Meador, Michael

    2010-01-01

    Smart adaptive materials are an important class of materials which can be used in space deployable structures, morphing wings, and structural air vehicle components where remote actuation can improve fuel efficiency. Adaptive materials can undergo deformation when exposed to external stimuli such as electric fields, thermal gradients, radiation (IR, UV, etc.), chemical and electrochemical actuation, and magnetic field. Large strain, controlled and repetitive actuation are important characteristics of smart adaptive materials. Polymer nanocomposites can be tailored as shape memory polymers and actuators. Magnetic actuation of polymer nanocomposites using a range of iron, iron cobalt, and iron manganese nanoparticles is presented. The iron-based nanoparticles were synthesized using the soft template (1) and Sun's (2) methods. The nanoparticles shape and size were examined using TEM. The crystalline structure and domain size were evaluated using WAXS. Surface modifications of the nanoparticles were performed to improve dispersion, and were characterized with IR and TGA. TPU nanocomposites exhibited actuation for approximately 2wt% nanoparticle loading in an applied magnetic field. Large deformation and fast recovery were observed. These nanocomposites represent a promising potential for new generation of smart materials.

  10. Experimental Investigation of a Piezo-Optical Transducer for Highly Sensitive Strain Gauges

    NASA Astrophysics Data System (ADS)

    Paulish, A. G.; Zagubisalo, P. S.; Barakov, V. N.; Pavlov, M. A.

    2018-03-01

    The characteristics of a piezo-optical transducer of a new design with high strain sensitivity at compact size have been studied.The original form of the photoelastic element provides a considerable increase in the stress in its working area at a given external force, resulting in an increase in the sensitivity of the transducer. The main characteristics of the transducer were measured using a specially designed device. The strain at a given applied force was calculated using a developed mathematical model of the transducer. As a result, the sensitivity to the relative strain was Δ x/ x=3 · 10-10, the dynamic range was at least four orders of magnitude higher and the gauge factor three orders of magnitude higher than those of strain-resistive gauges.

  11. Study on Finite Element Model Updating in Highway Bridge Static Loading Test Using Spatially-Distributed Optical Fiber Sensors

    PubMed Central

    Wu, Bitao; Lu, Huaxi; Chen, Bo; Gao, Zhicheng

    2017-01-01

    A finite model updating method that combines dynamic-static long-gauge strain responses is proposed for highway bridge static loading tests. For this method, the objective function consisting of static long-gauge stains and the first order modal macro-strain parameter (frequency) is established, wherein the local bending stiffness, density and boundary conditions of the structures are selected as the design variables. The relationship between the macro-strain and local element stiffness was studied first. It is revealed that the macro-strain is inversely proportional to the local stiffness covered by the long-gauge strain sensor. This corresponding relation is important for the modification of the local stiffness based on the macro-strain. The local and global parameters can be simultaneously updated. Then, a series of numerical simulation and experiments were conducted to verify the effectiveness of the proposed method. The results show that the static deformation, macro-strain and macro-strain modal can be predicted well by using the proposed updating model. PMID:28753912

  12. Study on Finite Element Model Updating in Highway Bridge Static Loading Test Using Spatially-Distributed Optical Fiber Sensors.

    PubMed

    Wu, Bitao; Lu, Huaxi; Chen, Bo; Gao, Zhicheng

    2017-07-19

    A finite model updating method that combines dynamic-static long-gauge strain responses is proposed for highway bridge static loading tests. For this method, the objective function consisting of static long-gauge stains and the first order modal macro-strain parameter (frequency) is established, wherein the local bending stiffness, density and boundary conditions of the structures are selected as the design variables. The relationship between the macro-strain and local element stiffness was studied first. It is revealed that the macro-strain is inversely proportional to the local stiffness covered by the long-gauge strain sensor. This corresponding relation is important for the modification of the local stiffness based on the macro-strain. The local and global parameters can be simultaneously updated. Then, a series of numerical simulation and experiments were conducted to verify the effectiveness of the proposed method. The results show that the static deformation, macro-strain and macro-strain modal can be predicted well by using the proposed updating model.

  13. Probing localized strain in solution-derived YB a2C u3O7 -δ nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Guzman, Roger; Gazquez, Jaume; Mundet, Bernat; Coll, Mariona; Obradors, Xavier; Puig, Teresa

    2017-07-01

    Enhanced pinning due to nanoscale strain is unique to the high-Tc cuprates, where pairing may be modified with lattice distortion. Therefore a comprehensive understanding of the defect landscape is required for a broad range of applications. However, determining the type and distribution of defects and their associated strain constitutes a critical task, and for this aim, real-space techniques for atomic resolution characterization are necessary. Here, we use scanning transmission electron microscopy (STEM) to study the atomic structure of individual defects of solution-derived YB a2C u3O7 (YBCO) nanocomposites, where the inclusion of incoherent secondary phase nanoparticles within the YBCO matrix dramatically increases the density of Y1B a2C u4O8 (Y124) intergrowths, the commonest defect in YBCO thin films. The formation of the Y124 is found to trigger a concatenation of strain-derived interactions with other defects and the concomitant nucleation of intrinsic defects, which weave a web of randomly distributed nanostrained regions that profoundly transform the vortex-pinning landscape of the YBCO nanocomposite thin films.

  14. Phalange Tactile Load Cell

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor); Linn, Douglas Martin (Inventor); Platt, Robert (Inventor); Griffith, Bryan Kristian (Inventor)

    2010-01-01

    A tactile load cell that has particular application for measuring the load on a phalange in a dexterous robot system. The load cell includes a flexible strain element having first and second end portions that can be used to mount the load cell to the phalange and a center portion that can be used to mount a suitable contact surface to the load cell. The strain element also includes a first S-shaped member including at least three sections connected to the first end portion and the center portion and a second S-shaped member including at least three sections coupled to the second end portion and the center portion. The load cell also includes eight strain gauge pairs where each strain gauge pair is mounted to opposing surfaces of one of the sections of the S-shaped members where the strain gauge pairs provide strain measurements in six-degrees of freedom.

  15. Fiber optic gap gauge

    DOEpatents

    Wood, Billy E [Livermore, CA; Groves, Scott E [Brentwood, CA; Larsen, Greg J [Brentwood, CA; Sanchez, Roberto J [Pleasanton, CA

    2006-11-14

    A lightweight, small size, high sensitivity gauge for indirectly measuring displacement or absolute gap width by measuring axial strain in an orthogonal direction to the displacement/gap width. The gap gauge includes a preferably titanium base having a central tension bar with springs connecting opposite ends of the tension bar to a pair of end connector bars, and an elongated bow spring connected to the end connector bars with a middle section bowed away from the base to define a gap. The bow spring is capable of producing an axial strain in the base proportional to a displacement of the middle section in a direction orthogonal to the base. And a strain sensor, such as a Fabry-Perot interferometer strain sensor, is connected to measure the axial strain in the base, so that the displacement of the middle section may be indirectly determined from the measurement of the axial strain in the base.

  16. Kirigami Nanocomposites as Wide-Angle Diffraction Gratings.

    PubMed

    Xu, Lizhi; Wang, Xinzhi; Kim, Yoonseob; Shyu, Terry C; Lyu, Jing; Kotov, Nicholas A

    2016-06-28

    Beam steering devices represent an essential part of an advanced optics toolbox and are needed in a spectrum of technologies ranging from astronomy and agriculture to biosensing and networked vehicles. Diffraction gratings with strain-tunable periodicity simplify beam steering and can serve as a foundation for light/laser radar (LIDAR/LADAR) components of robotic systems. However, the mechanical properties of traditional materials severely limit the beam steering angle and cycle life. The large strain applied to gratings can severely impair the device performance both in respect of longevity and diffraction pattern fidelity. Here, we show that this problem can be resolved using micromanufactured kirigami patterns from thin film nanocomposites based on high-performance stiff plastics, metals, and carbon nanotubes, etc. The kirigami pattern of microscale slits reduces the stochastic concentration of strain in stiff nanocomposites including those made by layer-by-layer assembly (LBL). The slit patterning affords reduction of strain by 2 orders of magnitude for stretching deformation and consequently enables reconfigurable optical gratings with over a 100% range of period tunability. Elasticity of the stiff nanocomposites and plastics makes possible cyclic reconfigurability of the grating with variable time constant that can also be referred to as 4D kirigami. High-contrast, sophisticated diffraction patterns with as high as fifth diffraction order can be obtained. The angular range of beam steering can be as large as 6.5° for a 635 nm laser beam compared to ∼1° in surface-grooved elastomer gratings and ∼0.02° in MEMS gratings. The versatility of the kirigami patterns, the diversity of the available nanocomposite materials, and their advantageous mechanical properties of the foundational materials open the path for engineering of reconfigurable optical elements in LIDARs essential for autonomous vehicles and other optical devices with spectral range determined by the kirigami periodicity.

  17. Computational modelling of large deformations in layered-silicate/PET nanocomposites near the glass transition

    NASA Astrophysics Data System (ADS)

    Figiel, Łukasz; Dunne, Fionn P. E.; Buckley, C. Paul

    2010-01-01

    Layered-silicate nanoparticles offer a cost-effective reinforcement for thermoplastics. Computational modelling has been employed to study large deformations in layered-silicate/poly(ethylene terephthalate) (PET) nanocomposites near the glass transition, as would be experienced during industrial forming processes such as thermoforming or injection stretch blow moulding. Non-linear numerical modelling was applied, to predict the macroscopic large deformation behaviour, with morphology evolution and deformation occurring at the microscopic level, using the representative volume element (RVE) approach. A physically based elasto-viscoplastic constitutive model, describing the behaviour of the PET matrix within the RVE, was numerically implemented into a finite element solver (ABAQUS) using an UMAT subroutine. The implementation was designed to be robust, for accommodating large rotations and stretches of the matrix local to, and between, the nanoparticles. The nanocomposite morphology was reconstructed at the RVE level using a Monte-Carlo-based algorithm that placed straight, high-aspect ratio particles according to the specified orientation and volume fraction, with the assumption of periodicity. Computational experiments using this methodology enabled prediction of the strain-stiffening behaviour of the nanocomposite, observed experimentally, as functions of strain, strain rate, temperature and particle volume fraction. These results revealed the probable origins of the enhanced strain stiffening observed: (a) evolution of the morphology (through particle re-orientation) and (b) early onset of stress-induced pre-crystallization (and hence lock-up of viscous flow), triggered by the presence of particles. The computational model enabled prediction of the effects of process parameters (strain rate, temperature) on evolution of the morphology, and hence on the end-use properties.

  18. Effect of joining the sectioned implant-supported prosthesis on the peri-implant strain generated in simulated mandibular model.

    PubMed

    Singh, Ipsha; Nair, K Chandrasekharan; Shetty, Jayakar

    2017-01-01

    The aim of this study is to evaluate the strain developed in simulated mandibular model before and after the joining of an implant-supported screw-retained prosthesis by different joining techniques, namely, arc welding, laser welding, and soldering. A specimen simulating a mandibular edentulous ridge was fabricated in heat-cured acrylic resin. 4-mm holes were drilled in the following tooth positions; 36, 33, 43, 46. Implant analogs were placed in the holes. University of California, Los Angeles, abutment was attached to the implant fixture. Eight strain gauges were attached to the acrylic resin model. Six similar models were made. Implant-supported screw-retained fixed prosthesis was fabricated in nickel-chromium alloy. A load of 400 N was applied on the prosthesis using universal testing machine. Resultant strain was measured in each strain gauge. All the prostheses were sectioned at the area between 36 and 33, 33 and 43, and 43 and 46 using 35 micrometer carborundum disc, and strain was measured in each strain gauge after applying a load of 400 N on the prosthesis. Specimens were joined by arc welding, soldering, and laser welding. After joining, a load of 400 N was applied on each prosthesis and the resultant strain was measured in each strain gauge. Highest mean strain values were recorded before sectioning of the prostheses (889.9 microstrains). Lowest mean strain values were recorded after sectioning the prosthesis and before reuniting it (225.0 microstrains). Sectioning and reuniting the long-span implant prosthesis was found to be a significant factor in influencing the peri-implant strain.

  19. Development of dielectric elastomer nanocomposites as stretchable actuating materials

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Sun, L. Z.

    2017-10-01

    Dielectric elastomer nanocomposites (DENCs) filled with multi-walled carbon nanotubes are developed. The electromechanical responses of DENCs to applied electric fields are investigated through laser Doppler vibrometry. It is found that a small amount of carbon nanotube fillers can effectively enhance the electromechanical performance of DENCs. The enhanced electromechanical properties have shown not only that the desired thickness strain can be achieved with reduced required electric fields but also that significantly large thickness strain can be obtained with any electric fields compared to pristine dielectric elastomers.

  20. Parametric investigation of scalable tactile sensors

    NASA Astrophysics Data System (ADS)

    Saadatzi, Mohammad Nasser; Yang, Zhong; Baptist, Joshua R.; Sahasrabuddhe, Ritvij R.; Wijayasinghe, Indika B.; Popa, Dan O.

    2017-05-01

    In the near future, robots and humans will share the same environment and perform tasks cooperatively. For intuitive, safe, and reliable physical human-robot interaction (pHRI), sensorized robot skins for tactile measurements of contact are necessary. In a previous study, we presented skins consisting of strain gauge arrays encased in silicone encapsulants. Although these structures could measure normal forces applied directly onto the sensing elements, they also exhibited blind spots and response asymmetry to certain loading patterns. This study presents a parametric investigation of piezoresistive polymeric strain gauge that exhibits a symmetric omniaxial response thanks to its novel star-shaped structure. This strain gauge relies on the use of gold micro-patterned star-shaped structures with a thin layer of PEDOT:PSS which is a flexible polymer with piezoresistive properties. In this paper, the sensor is first modeled and comprehensively analyzed in the finite-element simulation environment COMSOL. Simulations include stress-strain loading for a variety of structure parameters such as gauge lengths, widths, and spacing, as well as multiple load locations relative to the gauge. Subsequently, sensors with optimized configurations obtained through simulations were fabricated using cleanroom photolithographic and spin-coating processes, and then experimentally tested. Results show a trend-wise agreement between experiments and simulations.

  1. Metal Amorphous Nanocomposite (MANC) Alloy Cores with Spatially Tuned Permeability for Advanced Power Magnetics Applications

    NASA Astrophysics Data System (ADS)

    Byerly, K.; Ohodnicki, P. R.; Moon, S. R.; Leary, A. M.; Keylin, V.; McHenry, M. E.; Simizu, S.; Beddingfield, R.; Yu, Y.; Feichter, G.; Noebe, R.; Bowman, R.; Bhattacharya, S.

    2018-04-01

    Metal amorphous nanocomposite (MANC) alloys are an emerging class of soft magnetic materials showing promise for a range of inductive components targeted for higher power density and higher efficiency power conversion applications including inductors, transformers, and rotating electrical machinery. Magnetization reversal mechanisms within these alloys are typically determined by composition optimization as well as controlled annealing treatments to generate a nanocomposite structure composed of nanocrystals embedded in an amorphous precursor. Here we demonstrate the concept of spatially varying the permeability within a given component for optimization of performance by using the strain annealing process. The concept is realized experimentally through the smoothing of the flux profile from the inner to outer core radius achieved by a monotonic variation in tension during the strain annealing process. Great potential exists for an extension of this concept to a wide range of other power magnetic components and more complex spatially varying permeability profiles through advances in strain annealing techniques and controls.

  2. Metal Amorphous Nanocomposite (MANC) Alloy Cores with Spatially Tuned Permeability for Advanced Power Magnetics Applications

    NASA Astrophysics Data System (ADS)

    Byerly, K.; Ohodnicki, P. R.; Moon, S. R.; Leary, A. M.; Keylin, V.; McHenry, M. E.; Simizu, S.; Beddingfield, R.; Yu, Y.; Feichter, G.; Noebe, R.; Bowman, R.; Bhattacharya, S.

    2018-06-01

    Metal amorphous nanocomposite (MANC) alloys are an emerging class of soft magnetic materials showing promise for a range of inductive components targeted for higher power density and higher efficiency power conversion applications including inductors, transformers, and rotating electrical machinery. Magnetization reversal mechanisms within these alloys are typically determined by composition optimization as well as controlled annealing treatments to generate a nanocomposite structure composed of nanocrystals embedded in an amorphous precursor. Here we demonstrate the concept of spatially varying the permeability within a given component for optimization of performance by using the strain annealing process. The concept is realized experimentally through the smoothing of the flux profile from the inner to outer core radius achieved by a monotonic variation in tension during the strain annealing process. Great potential exists for an extension of this concept to a wide range of other power magnetic components and more complex spatially varying permeability profiles through advances in strain annealing techniques and controls.

  3. Sensitivity and ex vivo validation of finite element models of the domestic pig cranium

    PubMed Central

    Bright, Jen A; Rayfield, Emily J

    2011-01-01

    A finite element (FE) validation and sensitivity study was undertaken on a modern domestic pig cranium. Bone strain data were collected ex vivo from strain gauges, and compared with results from specimen-specific FE models. An isotropic, homogeneous model was created, then input parameters were altered to investigate model sensitivity. Heterogeneous, isotropic models investigated the effects of a constant-thickness, stiffer outer layer (representing cortical bone) atop a more compliant interior (representing cancellous bone). Loading direction and placement of strain gauges were also varied, and the use of 2D membrane elements at strain gauge locations as a method of projecting 3D model strains into the plane of the gauge was investigated. The models correctly estimate the loading conditions of the experiment, yet at some locations fail to reproduce correct principal strain magnitudes, and hence strain ratios. Principal strain orientations are predicted well. The initial model was too stiff by approximately an order of magnitude. Introducing a compliant interior reported strain magnitudes more similar to the ex vivo results without notably affecting strain orientations, ratios or contour patterns, suggesting that this simple heterogeneity was the equivalent of reducing the overall stiffness of the model. Models were generally insensitive to moderate changes in loading direction or strain gauge placement, except in the squamosal portion of the zygomatic arch. The use of membrane elements made negligible differences to the reported strains. The models therefore seem most sensitive to changes in material properties, and suggest that failure to model local heterogeneity in material properties and structure of the bone may be responsible for discrepancies between the experimental and model results. This is partially attributable to a lack of resolution in the CT scans from which the model was built, and partially due to an absence of detailed material properties data for pig cranial bone. Thus, caution is advised when using FE models to estimate absolute numerical values of breaking stress and bite force unless detailed input parameters are available. However, if the objective is to compare relative differences between models, the fact that the strain environment is replicated well means that such investigations can be robust. PMID:21718316

  4. Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application.

    PubMed

    Qin, Yuyang; Peng, Qingyu; Ding, Yujie; Lin, Zaishan; Wang, Chunhui; Li, Ying; Xu, Fan; Li, Jianjun; Yuan, Ye; He, Xiaodong; Li, Yibin

    2015-09-22

    The creation of superelastic, flexible three-dimensional (3D) graphene-based architectures is still a great challenge due to structure collapse or significant plastic deformation. Herein, we report a facile approach of transforming the mechanically fragile reduced graphene oxide (rGO) aerogel into superflexible 3D architectures by introducing water-soluble polyimide (PI). The rGO/PI nanocomposites are fabricated using strategies of freeze casting and thermal annealing. The resulting monoliths exhibit low density, excellent flexibility, superelasticity with high recovery rate, and extraordinary reversible compressibility. The synergistic effect between rGO and PI endows the elastomer with desirable electrical conductivity, remarkable compression sensitivity, and excellent durable stability. The rGO/PI nanocomposites show potential applications in multifunctional strain sensors under the deformations of compression, bending, stretching, and torsion.

  5. Embedded Strain Gauges for Condition Monitoring of Silicone Gaskets

    PubMed Central

    Schotzko, Timo; Lang, Walter

    2014-01-01

    A miniaturized strain gauge with a thickness of 5 µm is molded into a silicone O-ring. This is a first step toward embedding sensors in gaskets for structural health monitoring. The signal of the integrated sensor exhibits a linear correlation with the contact pressure of the O-ring. This affords the opportunity to monitor the gasket condition during installation. Thus, damages caused by faulty assembly can be detected instantly, and early failures, with their associated consequences, can be prevented. Through the embedded strain gauge, the contact pressure applied to the gasket can be directly measured. Excessive pressure and incorrect positioning of the gasket can cause structural damage to the material of the gasket, which can lead to an early outage. A platinum strain gauge is fabricated on a thin polyimide layer and is contacted through gold connections. The measured resistance pressure response exhibits hysteresis for the first few strain cycles, followed by a linear behavior. The short-term impact of the embedded sensor on the stability of the gasket is investigated. Pull-tests with O-rings and test specimens have indicated that the integration of the miniaturized sensors has no negative impact on the stability in the short term. PMID:25014099

  6. Nanoparticle amount, and not size, determines chain alignment and nonlinear hardening in polymer nanocomposites

    PubMed Central

    Varol, H. Samet; Meng, Fanlong; Hosseinkhani, Babak; Malm, Christian; Bonn, Daniel; Bonn, Mischa; Zaccone, Alessio

    2017-01-01

    Polymer nanocomposites—materials in which a polymer matrix is blended with nanoparticles (or fillers)—strengthen under sufficiently large strains. Such strain hardening is critical to their function, especially for materials that bear large cyclic loads such as car tires or bearing sealants. Although the reinforcement (i.e., the increase in the linear elasticity) by the addition of filler particles is phenomenologically understood, considerably less is known about strain hardening (the nonlinear elasticity). Here, we elucidate the molecular origin of strain hardening using uniaxial tensile loading, microspectroscopy of polymer chain alignment, and theory. The strain-hardening behavior and chain alignment are found to depend on the volume fraction, but not on the size of nanofillers. This contrasts with reinforcement, which depends on both volume fraction and size of nanofillers, potentially allowing linear and nonlinear elasticity of nanocomposites to be tuned independently. PMID:28377517

  7. Antimicrobial and biocorrosion-resistant MoO3-SiO2 nanocomposite coating prepared by double cathode glow discharge technique

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Sun, Teng Teng; Jiang, Shuyun; Munroe, Paul; Xie, Zong-Han

    2018-07-01

    In this investigation, a MoO3-SiO2 nanocomposite coating was developed on a 316L stainless steel (SS) substrate by double-cathode glow discharge deposition. Chemical valence states, phase composition and microstructure features of the nanocomposite coating were studied using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that the nanocomposite coating was composed of a mixture of crystalline MoO3 and amorphous phases, in which amorphous SiO2 phase was embedded between the hexagonal-structured MoO3 grains with an average grain size of ∼8.4 nm. Nanoindentation and scratch tests, together with SEM and TEM observation of locally deformed regions, indicated that the nanocomposite coating exhibited high load-bearing capacity due to a combination of high hardness and good adhesion. Contact angle measurements suggested that the nanocomposite coating was more hydrophobic than uncoated 316L SS. The anti-bacterial activity of the MoO3-SiO2 nanocomposite coating against two bacterial strains (E. coli and S. aureus) was determined by the spread plate method. This showed that both bacterial strains exposed to the coating suffered a significant loss of viability. The influences of sulfate-reducing bacteria (SRB) on the electrochemical behavior of the MoO3-SiO2 nanocomposite coating in modified Postgate's C seawater (PCS) medium were investigated through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The electrochemical tests revealed that the coating had a greater resistance to microbiologically influenced corrosion induced by SRB than uncoated 316L SS. This was corroborated by electrochemical testing (potentiodynamic polarization and EIS), in conjunction with SEM observations of the corroded surfaces.

  8. Comparative study on stress distribution around internal tapered connection implants according to fit of cement- and screw-retained prostheses.

    PubMed

    Lee, Mi-Young; Heo, Seong-Joo; Park, Eun-Jin; Park, Ji-Man

    2013-08-01

    The aim of this study was to compare the passivity of implant superstructures by assessing the strain development around the internal tapered connection implants with strain gauges. A polyurethane resin block in which two implants were embedded served as a measurement model. Two groups of implant restorations utilized cement-retained design and internal surface of the first group was adjusted until premature contact between the restoration and the abutment completely disappeared. In the second group, only nodules detectable to the naked eye were removed. The third group employed screw-retained design and specimens were generated by computer-aided design/computer-aided manufacturing system (n=10). Four strain gauges were fixed on the measurement model mesially and distally to the implants. The strains developed in each strain gauge were recorded during fixation of specimens. To compare the difference among groups, repeated measures 2-factor analysis was performed at a level of significance of α=.05. The absolute strain values were measured to analyze the magnitude of strain. The mean absolute strain value ranged from 29.53 to 412.94 µm/m at the different strain gauge locations. According to the result of overall comparison, the cement-retained prosthesis groups exhibited significant difference. No significant difference was detected between milled screw-retained prostheses group and cement-retained prosthesis groups. Within the limitations of the study, it was concluded that the cement-retained designs do not always exhibit lower levels of stress than screw-retained designs. The internal adjustment of a cement-retained implant restoration is essential to achieve passive fit.

  9. Design and Analysis of a Compact Precision Positioning Platform Integrating Strain Gauges and the Piezoactuator

    PubMed Central

    Huang, Hu; Zhao, Hongwei; Yang, Zhaojun; Fan, Zunqiang; Wan, Shunguang; Shi, Chengli; Ma, Zhichao

    2012-01-01

    Miniaturization precision positioning platforms are needed for in situ nanomechanical test applications. This paper proposes a compact precision positioning platform integrating strain gauges and the piezoactuator. Effects of geometric parameters of two parallel plates on Von Mises stress distribution as well as static and dynamic characteristics of the platform were studied by the finite element method. Results of the calibration experiment indicate that the strain gauge sensor has good linearity and its sensitivity is about 0.0468 mV/μm. A closed-loop control system was established to solve the problem of nonlinearity of the platform. Experimental results demonstrate that for the displacement control process, both the displacement increasing portion and the decreasing portion have good linearity, verifying that the control system is available. The developed platform has a compact structure but can realize displacement measurement with the embedded strain gauges, which is useful for the closed-loop control and structure miniaturization of piezo devices. It has potential applications in nanoindentation and nanoscratch tests, especially in the field of in situ nanomechanical testing which requires compact structures. PMID:23012566

  10. Flexible heartbeat sensor for wearable device.

    PubMed

    Kwak, Yeon Hwa; Kim, Wonhyo; Park, Kwang Bum; Kim, Kunnyun; Seo, Sungkyu

    2017-08-15

    We demonstrate a flexible strain-gauge sensor and its use in a wearable application for heart rate detection. This polymer-based strain-gauge sensor was fabricated using a double-sided fabrication method with polymer and metal, i.e., polyimide and nickel-chrome. The fabrication process for this strain-gauge sensor is compatible with the conventional flexible printed circuit board (FPCB) processes facilitating its commercialization. The fabricated sensor showed a linear relation for an applied normal force of more than 930 kPa, with a minimum detectable force of 6.25Pa. This sensor can also linearly detect a bending radius from 5mm to 100mm. It is a thin, flexible, compact, and inexpensive (for mass production) heart rate detection sensor that is highly sensitive compared to the established optical photoplethysmography (PPG) sensors. It can detect not only the timing of heart pulsation, but also the amplitude or shape of the pulse signal. The proposed strain-gauge sensor can be applicable to various applications for smart devices requiring heartbeat detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Towards Scalable Strain Gauge-Based Joint Torque Sensors

    PubMed Central

    D’Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G.; Cuschieri, Alfred

    2017-01-01

    During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS), the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot-MiniHyQ. This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR). PMID:28820446

  12. Towards Scalable Strain Gauge-Based Joint Torque Sensors.

    PubMed

    Khan, Hamza; D'Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G; Cuschieri, Alfred; Semini, Claudio

    2017-08-18

    During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS) , the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot- MiniHyQ . This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR).

  13. Is It Possible To Fabricate a Nanocomposite with Excellent Mechanical Property Using Unmodified Inorganic Nanoparticles Directly?

    PubMed

    Zhang, Chunhua; Xia, Liangjun; Lyu, Pei; Wang, Yun; Li, Chen; Xiao, Xingfang; Dai, Fangyin; Xu, Weilin; Liu, Xin; Deng, Bo

    2018-05-09

    Unmodified ZrO 2 nanoparticles (ZDNPs) are used for the enhancement of polyurethane (PU) films. Optimized strain and toughness of PU/ZDNP nanocomposite at 9.09 wt % ZDNPs are up to 2714.6%, and 280.8 MJ m -3 , respectively. The unique bimodal ZDNP aggregate size distribution which exploits both interfacial positively and negatively toughening mechanisms accounts mainly for the excellent mechanical property of PU/ZDNP nanocomposite. The dependence of different toughening mechanisms on three sizes of ZDNP aggregates is summarized. These findings provide a new avenue for the industrial production of nanocomposites at low cost without surface modification of inorganic nanoparticles.

  14. Eco-friendly decoration of graphene oxide with biogenic silver nanoparticles: antibacterial and antibiofilm activity

    NASA Astrophysics Data System (ADS)

    de Faria, Andreia Fonseca; de Moraes, Ana Carolina Mazarin; Marcato, Priscyla Daniely; Martinez, Diego Stéfani Teodoro; Durán, Nelson; Filho, Antônio Gomes Souza; Brandelli, Adriano; Alves, Oswaldo Luiz

    2014-02-01

    This work reports on preparation, characterization, and antibacterial activity of graphene oxide (GO) decorated with biogenic silver nanoparticles (Bio-AgNPs) produced by the fungus Fusarium oxysporum. This nanocomposite (Bio-GOAg) was prepared by an ex situ process through the physical mixture of a GO dispersion with the previously prepared Bio-AgNPs. The adsorption of the Bio-AgNPs onto the GO sheets was confirmed by transmission electron microscopy. The average size of the Bio-AgNPs anchored onto the GO surface was found to be 3.5 nm. The antibacterial activity of the Bio-GOAg nanocomposite against Gram-positive and Gram-negative microorganisms was investigated and a very promising result was found for the Gram-negative strains. In addition, the Bio-GOAg nanocomposite displayed a very strong biocidal activity against the Salmonella typhimurium strain at a concentration of 2.0 μg/mL. The antibiofilm activity toward S. typhimurium adhered on stainless steel surfaces was also investigated. The results showed 100 % inhibition of the adhered cells after exposure to the Bio-GOAg nanocomposite for 1 h.

  15. Preparation of Monodomain Liquid Crystal Elastomers and Liquid Crystal Elastomer Nanocomposites.

    PubMed

    Kim, Hojin; Zhu, Bohan; Chen, Huiying; Adetiba, Oluwatomiyin; Agrawal, Aditya; Ajayan, Pulickel; Jacot, Jeffrey G; Verduzco, Rafael

    2016-02-06

    LCEs are shape-responsive materials with fully reversible shape change and potential applications in medicine, tissue engineering, artificial muscles, and as soft robots. Here, we demonstrate the preparation of shape-responsive liquid crystal elastomers (LCEs) and LCE nanocomposites along with characterization of their shape-responsiveness, mechanical properties, and microstructure. Two types of LCEs - polysiloxane-based and epoxy-based - are synthesized, aligned, and characterized. Polysiloxane-based LCEs are prepared through two crosslinking steps, the second under an applied load, resulting in monodomain LCEs. Polysiloxane LCE nanocomposites are prepared through the addition of conductive carbon black nanoparticles, both throughout the bulk of the LCE and to the LCE surface. Epoxy-based LCEs are prepared through a reversible esterification reaction. Epoxy-based LCEs are aligned through the application of a uniaxial load at elevated (160 °C) temperatures. Aligned LCEs and LCE nanocomposites are characterized with respect to reversible strain, mechanical stiffness, and liquid crystal ordering using a combination of imaging, two-dimensional X-ray diffraction measurements, differential scanning calorimetry, and dynamic mechanical analysis. LCEs and LCE nanocomposites can be stimulated with heat and/or electrical potential to controllably generate strains in cell culture media, and we demonstrate the application of LCEs as shape-responsive substrates for cell culture using a custom-made apparatus.

  16. Characterization of a nine-meter sensor-equipped wind turbine blade using a laser measuring device

    USDA-ARS?s Scientific Manuscript database

    A nine-meter turbine blade was prepared for an experiment to examine the movement and fatigue patterns during operation on a 115 kW turbine. The blade, equipped with surface mounted fiber optic strain gauges, foil strain gauges, single, and triple axis accelerometers was placed on a calibration fixt...

  17. Feasibility of Detecting Natural Frequencies of Hydraulic Turbines While in Operation, Using Strain Gauges.

    PubMed

    Valentín, David; Presas, Alexandre; Bossio, Matias; Egusquiza, Mònica; Egusquiza, Eduard; Valero, Carme

    2018-01-10

    Nowadays, hydropower plays an essential role in the energy market. Due to their fast response and regulation capacity, hydraulic turbines operate at off-design conditions with a high number of starts and stops. In this situation, dynamic loads and stresses over the structure are high, registering some failures over time, especially in the runner. Therefore, it is important to know the dynamic response of the runner while in operation, i.e., the natural frequencies, damping and mode shapes, in order to avoid resonance and fatigue problems. Detecting the natural frequencies of hydraulic turbine runners while in operation is challenging, because they are inaccessible structures strongly affected by their confinement in water. Strain gauges are used to measure the stresses of hydraulic turbine runners in operation during commissioning. However, in this paper, the feasibility of using them to detect the natural frequencies of hydraulic turbines runners while in operation is studied. For this purpose, a large Francis turbine runner (444 MW) was instrumented with several strain gauges at different positions. First, a complete experimental strain modal testing (SMT) of the runner in air was performed using the strain gauges and accelerometers. Then, the natural frequencies of the runner were estimated during operation by means of analyzing accurately transient events or rough operating conditions.

  18. Feasibility of Detecting Natural Frequencies of Hydraulic Turbines While in Operation, Using Strain Gauges

    PubMed Central

    Presas, Alexandre; Bossio, Matias; Egusquiza, Eduard; Valero, Carme

    2018-01-01

    Nowadays, hydropower plays an essential role in the energy market. Due to their fast response and regulation capacity, hydraulic turbines operate at off-design conditions with a high number of starts and stops. In this situation, dynamic loads and stresses over the structure are high, registering some failures over time, especially in the runner. Therefore, it is important to know the dynamic response of the runner while in operation, i.e., the natural frequencies, damping and mode shapes, in order to avoid resonance and fatigue problems. Detecting the natural frequencies of hydraulic turbine runners while in operation is challenging, because they are inaccessible structures strongly affected by their confinement in water. Strain gauges are used to measure the stresses of hydraulic turbine runners in operation during commissioning. However, in this paper, the feasibility of using them to detect the natural frequencies of hydraulic turbines runners while in operation is studied. For this purpose, a large Francis turbine runner (444 MW) was instrumented with several strain gauges at different positions. First, a complete experimental strain modal testing (SMT) of the runner in air was performed using the strain gauges and accelerometers. Then, the natural frequencies of the runner were estimated during operation by means of analyzing accurately transient events or rough operating conditions. PMID:29320422

  19. Antibacterial applications of α-Fe2O3/Co3O4 nanocomposites and study of their structural, optical, magnetic and cytotoxic characteristics

    NASA Astrophysics Data System (ADS)

    Bhushan, Mayank; Kumar, Yogesh; Periyasamy, Latha; Viswanath, Annamraju Kasi

    2018-02-01

    Owing to their multiple mechanisms of bactericidal activity, inorganic metal oxides and hybrid metal oxide nanocomposites may serve as a new class of effective disinfectants. Among metal oxide nanoparticles, iron oxide nanoparticles exhibit minimal or no cytotoxicity to human cells with very efficient bactericidal properties over a wide spectrum of bacteria. This paper presents the very first report on antibacterial properties of novel nanocomposites of iron oxide and cobalt oxide nanoparticles against pathogenic bacterial strains B. subtilis, S. aureus, E.coli and S. typhi. The enhanced bactericidal activity of the Fe/Co oxide nanocomposite was the result of synergistic effect of iron oxide and cobalt oxide nanoparticles. The nanocomposites were synthesized using co-precipitation route with increasing cobalt content in the sample and further characterized using XRD, TEM, Raman and VSM to investigate structural, optical and magnetic properties of the prepared nanocomposites, respectively. Also, the prepared nanocomposites were highly biocompatible and found non-toxic to human cell line MCF7.

  20. Microstructural parameters and high third order nonlinear absorption characteristics of Mn-doped PbS/PVA nanocomposite films

    NASA Astrophysics Data System (ADS)

    Ramezanpour, B.; Mahmoudi Chenari, Hossein; Sadigh, M. Khadem

    2017-11-01

    In this work, undoped and Mn-doped PbS/PVA nanocomposite films have been successfully fabricated using the simple solution-casting method. Their crystalline structure was examined by X-ray powder diffraction (XRD). XRD pattern show the formation of cubic structure of PbS for Mn-doped PbS in PVA matrix. Microstructure parameters of Mn-doped PbS/PVA nanocomposite films were obtained through the size-strain plot (SSP) method. The thermal stability of the nanocomposite film was determined using Thermogravimetric analysis (TGA). Furthermore, Z-scan technique was used to investigate the optical nonlinearity of nanocomposite films by a continuous-wave laser irradiation at the wavelength of 655 nm. This experimental results show that undoped PbS/PVA nanocomposite films indicate high nonlinear absorption characteristics. Moreover, the nanocomposite films with easy preparation characteristics, high thermal stability and nonlinear absorption properties can be used as an active element in optics and photonic devices.

  1. Strain and dynamic measurements using fiber optic sensors embedded into graphite/epoxy tubes

    NASA Technical Reports Server (NTRS)

    Dehart, D. W.; Doederlein, T.; Koury, J.; Rogowski, R. S.; Heyman, J. S.; Holben, M. S., Jr.

    1989-01-01

    Graphite/epoxy tubes were fabricated with embedded optical fibers to evaluate the feasibility of monitoring strains with a fiber optic technique. Resistance strain gauges were attached to the tubes to measure strain at four locations along the tube for comparison with the fiber optic sensors. Both static and dynamic strain measurements were made with excellent agreement between the embedded fiber optic strain sensor and the strain gauges. Strain measurements of 10(exp -7) can be detected with the optical phase locked loop (OPLL) system using optical fiber. Because of their light weight, compatibility with composites, immunity to electromagnetic interference, and based on the static and dynamic results obtained, fiber optic sensors embedded in composites may be useful as the sensing component of smart structures.

  2. Sleep monitoring sensor using flexible metal strain gauge

    NASA Astrophysics Data System (ADS)

    Kwak, Yeon Hwa; Kim, Jinyong; Kim, Kunnyun

    2018-05-01

    This paper presents a sleep monitoring sensor based on a flexible metal strain gauge. As quality of life has improved, interest in sleep quality, and related products, has increased. In this study, unlike a conventional single sensor based on a piezoelectric material, a metal strain gauge-based array sensor based on polyimide and nickel chromium (NiCr) is applied to provide movement direction, respiration, and heartbeat data as well as contact-free use by the user during sleeping. Thin-film-type resistive strain gage sensors are fabricated through the conventional flexible printed circuit board (FPCB) process, which is very useful for commercialization. The measurement of movement direction and respiratory rate during sleep were evaluated, and the heart rate data were compared with concurrent electrocardiogram (ECG) data. An algorithm for analyzing sleep data was developed using MATLAB, and the error rate was 4.2% when compared with ECG for heart rate.

  3. Processing and Characterization of a Novel Distributed Strain Sensor Using Carbon Nanotube-Based Nonwoven Composites

    PubMed Central

    Dai, Hongbo; Thostenson, Erik T.; Schumacher, Thomas

    2015-01-01

    This paper describes the development of an innovative carbon nanotube-based non-woven composite sensor that can be tailored for strain sensing properties and potentially offers a reliable and cost-effective sensing option for structural health monitoring (SHM). This novel strain sensor is fabricated using a readily scalable process of coating Carbon nanotubes (CNT) onto a nonwoven carrier fabric to form an electrically-isotropic conductive network. Epoxy is then infused into the CNT-modified fabric to form a free-standing nanocomposite strain sensor. By measuring the changes in the electrical properties of the sensing composite the deformation can be measured in real-time. The sensors are repeatable and linear up to 0.4% strain. Highest elastic strain gage factors of 1.9 and 4.0 have been achieved in the longitudinal and transverse direction, respectively. Although the longitudinal gage factor of the newly formed nanocomposite sensor is close to some metallic foil strain gages, the proposed sensing methodology offers spatial coverage, manufacturing customizability, distributed sensing capability as well as transverse sensitivity. PMID:26197323

  4. Finite Element Simulation and X-Ray Microdiffraction Study of Strain Partitioning in a Layered Nanocomposite

    DOE PAGES

    Barabash, R. I.; Agarwal, V.; Koric, S.; ...

    2016-01-01

    Tmore » he depth-dependent strain partitioning across the interfaces in the growth direction of the NiAl/Cr(Mo) nanocomposite between the Cr and NiAl lamellae was directly measured experimentally and simulated using a finite element method (FEM). Depth-resolved X-ray microdiffraction demonstrated that in the as-grown state both Cr and NiAl lamellae grow along the 111 direction with the formation of as-grown distinct residual ~0.16% compressive strains for Cr lamellae and ~0.05% tensile strains for NiAl lamellae. hree-dimensional simulations were carried out using an implicit FEM. First simulation was designed to study residual strains in the composite due to cooling resulting in formation of crystals. Strains in the growth direction were computed and compared to those obtained from the microdiffraction experiments. Second simulation was conducted to understand the combined strains resulting from cooling and mechanical indentation of the composite. Numerical results in the growth direction of crystal were compared to experimental results confirming the experimentally observed trends.« less

  5. Highly Flexible and Sensitive Wearable E-Skin Based on Graphite Nanoplatelet and Polyurethane Nanocomposite Films in Mass Industry Production Available.

    PubMed

    Wu, Jianfeng; Wang, Huatao; Su, Zhiwei; Zhang, Minghao; Hu, Xiaodong; Wang, Yijie; Wang, Ziao; Zhong, Bo; Zhou, Weiwei; Liu, Junpeng; Xing, Scott Guozhong

    2017-11-08

    Graphene and nanomaterials based flexible pressure sensors R&D activities are becoming hot topics due to the huge marketing demand on wearable devices and electronic skin (E-Skin) to monitor the human body's actions for dedicated healthcare. Herein, we report a facile and efficient fabrication strategy to construct a new type of highly flexible and sensitive wearable E-Skin based on graphite nanoplates (GNP) and polyurethane (PU) nanocomposite films. The developed GNP/PU E-Skin sensors are highly flexible with good electrical conductivity due to their unique binary microstructures with synergistic interfacial characteristics, which are sensitive to both static and dynamic pressure variation, and can even accurately and quickly detect the pressure as low as 0.005 N/50 Pa and momentum as low as 1.9 mN·s with a gauge factor of 0.9 at the strain variation of up to 30%. Importantly, our GNP/PU E-Skin is also highly sensitive to finger bending and stretching with a linear correlation between the relative resistance change and the corresponding bending angles or elongation percentage. In addition, our E-Skin shows excellent sensitivity to voice vibration when exposed to a volunteer's voice vibration testing. Notably, the entire E-Skin fabrication process is scalable, low cost, and industrially available. Our complementary experiments with comprehensive results demonstrate that the developed GNP/PU E-Skin is impressively promising for practical healthcare applications in wearable devices, and enables us to monitor the real-world force signals in real-time and in-situ mode from pressing, hitting, bending, stretching, and voice vibration.

  6. Large-Strain Transparent Magnetoactive Polymer Nanocomposites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2012-01-01

    A document discusses polymer nano - composite superparamagnetic actuators that were prepared by the addition of organically modified superparamagnetic nanoparticles to the polymer matrix. The nanocomposite films exhibited large deformations under a magnetostatic field with a low loading level of 0.1 wt% in a thermoplastic polyurethane elastomer (TPU) matrix. The maximum actuation deformation of the nanocomposite films increased exponentially with increasing nanoparticle concentration. The cyclic deformation actuation of a high-loading magnetic nanocomposite film was examined in a low magnetic field, and it exhibited excellent reproducibility and controllability. Low-loading TPU nanocomposite films (0.1-2 wt%) were transparent to semitransparent in the visible wavelength range, owing to good dispersion of the magnetic nanoparticles. Magnetoactuation phenomena were also demonstrated in a high-modulus, high-temperature polyimide resin with less mechanical deformation.

  7. Functional Iron Oxide-Silver Hetero-Nanocomposites: Controlled Synthesis and Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Trang, Vu Thi; Tam, Le Thi; Van Quy, Nguyen; Huy, Tran Quang; Thuy, Nguyen Thanh; Tri, Doan Quang; Cuong, Nguyen Duy; Tuan, Pham Anh; Van Tuan, Hoang; Le, Anh-Tuan; Phan, Vu Ngoc

    2017-06-01

    Iron oxide-silver nanocomposites are of great interest for their antibacterial and antifungal activities. We report a two-step synthesis of functional magnetic hetero-nanocomposites of iron oxide nanoparticles and silver nanoparticles (Fe3O4-Ag). Iron oxide nanoparticles were prepared first by a co-precipitation method followed by the deposition of silver nanoparticles via a hydrothermal route. The prepared Fe3O4-Ag hetero-nanocomposites were characterized by x-ray diffraction, transmission electron microscopy, high resolution transmission electron microscopy and vibrating sample magnetometry. Their antibacterial activities were investigated by using paper-disc diffusion and direct-drop diffusion methods. The results indicate that the Fe3O4-Ag hetero-nanocomposites exhibit excellent antibacterial activities against two Gram-negative bacterial strains ( Salmonella enteritidis and Klebsiella pneumoniae).

  8. Origin of the Strain Sensitivity for an Organic Heptazole Thin-Film and Its Strain Gauge Application

    NASA Astrophysics Data System (ADS)

    Bae, Heesun; Jeon, Pyo Jin; Park, Ji Hoon; Lee, Kimoon

    2018-04-01

    The authors report on the origin of the strain sensitivity for an organic C26H16N2 (heptazole) thinfilm and its application for the detection of tensile strain. From the electrical characterization on the thin-film transistor adopting a heptazole channel, heptazole film exhibits p-channel conduction with a relatively low value of field-effect mobility (0.05 cm2/Vs), suggesting a hopping conduction behavior via hole carriers. By analyzing the strain and temperature dependences of the electrical conductivity, we reveal that the electrical conduction for a heptazole thin-film is dominated by the variable range hopping process with quite a large energy separation (224.9 meV) between the localized states under a relatively long attenuation length (10.46 Å). This indicates that a change in the inter-grain spacing that is much larger than the attenuation length is responsible for the reversible modification of electrical conductivity depending on strain for the heptazole film. By utilizing our heptazole thin-film both as a strain sensitive passive resistor and an active semiconducting channel layer, we can achieve a strain gauge device exhibiting reversible endurance for tensile strains up to 2.12%. Consequently, this study advances the understanding of the fundamental strain sensing mechanism in a heptazole thin-film toward finding a promise material with a strain gauge for applications as potential flexible devices and/or wearable electronics.

  9. Recent advances of conductive nanocomposites in printed and flexible electronics

    NASA Astrophysics Data System (ADS)

    Khan, Saleem; Lorenzelli, Leandro

    2017-08-01

    Conductive nanocomposites have emerged as significant smart engineered materials for realizing flexible electronics on diverse substrates in recent years. Conductive nanocomposites are comprised of conductive fillers mixed with polymeric elastomer (e.g. polydimethylsiloxane). The possibility to tune electrical as well as mechanical properties of nanocomposites makes them suitable for a wide spectrum of applications including sensors and electronics on non-planar and stretchable surfaces. A number of conductive nanofillers and manufacturing technologies have been developed to meet the diverse requirements of various applications. Considering the substantial contribution of conductive nanocomposites, it is opportune time to review the potentials of various nanofillers, their synthesis, processing methodologies and challenges associated to them. This paper reviews conductive nanocomposites, especially in context with their use in the development of electronic components and the sensors exploiting the piezoresistive behavior. The paper is structured around the nanocomposites related studies aiming to develop various building blocks of flexible electronic skin systems such as pressure, touch, strain and temperature sensors as well as stretchable interconnects. Besides this, the use of nanocomposites in other stimulating industrial and biomedical applications has also been explored briefly.

  10. Strain gauge using Si-based optical microring resonator.

    PubMed

    Lei, Longhai; Tang, Jun; Zhang, Tianen; Guo, Hao; Li, Yanna; Xie, Chengfeng; Shang, Chenglong; Bi, Yu; Zhang, Wendong; Xue, Chenyang; Liu, Jun

    2014-12-20

    This paper presents a strain gauge using the mechanical-optical coupling method. The Si-based optical microring resonator was employed as the sensing element, which was embedded on the microcantilevers. The experimental results show that applying external strain triggers a clear redshift of the output resonant spectrum of the structure. The sensitivity of 93.72  pm/MPa was achieved, which also was verified using theoretical simulations. This paper provides what we believe is a new method to develop micro-opto-electromechanical system (MOEMS) sensors.

  11. Fabrication of High Content Carbon Nanotube-Polyurethane Sheets with Tailorable Properties.

    PubMed

    Martinez-Rubi, Yadienka; Ashrafi, Behnam; Jakubinek, Michael B; Zou, Shan; Laqua, Kurtis; Barnes, Michael; Simard, Benoit

    2017-09-13

    We have fabricated carbon nanotube (CNT)-polyurethane (TPU) sheets via a one-step filtration method that uses a TPU solvent/nonsolvent combination. This solution method allows for control of the composition and processing conditions, significantly reducing both the filtration time and the need for large volumes of solvent to debundle the CNTs. Through an appropriate selection of the solvents and tuning the solvent/nonsolvent ratio, it is possible to enhance the interaction between the CNTs and the polymer chains in solution and improve the CNT exfoliation in the nanocomposites. The composition of the nanocomposites, which defines the characteristics of the material and its mechanical properties, can be precisely controlled. The highest improvements in tensile properties were achieved at a CNT:TPU weight ratio around 35:65 with a Young's modulus of 1270 MPa, stress at 50% strain of 35 MPa, and strength of 41 MPa, corresponding to ∼10-fold improvement in modulus and ∼7-fold improvement in stress at 50% strain, while maintaining a high failure strain. At the same composition, CNTs with higher aspect ratio produce nanocomposites with greater improvements (e.g., strength of 99 MPa). Electrical conductivity also shows a maximum near the same composition, where it can exceed the values achieved for the pristine nanotube buckypaper. The trend in mechanical and electrical properties was understood in terms of the CNT-TPU interfacial interactions and morphological changes occurring in the nanocomposite sheets as a function of increasing the TPU content. The availability of such a simple method and the understanding of the structure-property relationships are expected to be broadly applicable in the nanocomposites field.

  12. Structure and magnetic properties of spinel-perovskite nanocomposite thin films on SrTiO3 (111) substrates

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hun; Yang, Junho; Kim, Min Seok; Kim, Tae Cheol

    2016-09-01

    Epitaxial CoFe2O4-BiFeO3 nanocomposite thin films were synthesized on perovskite structured SrTiO3 (001) and (111) substrates by combinatorial pulsed laser deposition and characterized using scanning electron microscopy, x-ray diffraction, and vibrating sample magnetometer. Triangular BiFeO3 nanopillars were formed in a CoFe2O4 matrix on (111) oriented SrTiO3 substrates, while CoFe2O4 nanopillars with rectangular or square top surfaces grew in a BiFeO3 matrix on (001) substrates. The magnetic hysteresis loops of nanocomposites on (111) oriented SrTiO3 substrates showed isotropic properties due to the strain relaxation while those of films on SrTiO3 (001) substrates exhibited a strong out-of-plane anisotropy originated from shape and strain effects.

  13. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery.

    PubMed

    Moradi Dalvand, Mohsen; Shirinzadeh, Bijan; Shamdani, Amir Hossein; Smith, Julian; Zhong, Yongmin

    2014-03-01

    Robotic-assisted minimally invasive surgery systems not only have the advantages of traditional laparoscopic instruments but also have other important advantages, including restoring the surgeon's hand-eye coordination and improving the surgeon's precision by filtering hand tremors. Unfortunately, these benefits have come at the expense of the surgeon's ability to feel. Various solutions for restoring this feature have been proposed. An actuated modular force feedback-enabled laparoscopic instrument was proposed that is able to measure tip-tissue lateral interaction forces as well as normal grasping forces. The instrument has also the capability to adjust the grasping direction inside the patient body. In order to measure the interaction forces, strain gauges were employed. A series of finite element analyses were performed to gain an understanding of the actual magnitude of surface strains where gauges are applied. The strain gauge bridge configurations were calibrated. A series of experiments was conducted and the results were analysed. The modularity feature of the proposed instrument makes it interchangeable between various tip types of different functionalities (e.g. cutter, grasper, dissector). Calibration results of the strain gauges incorporated into the tube and at the base of the instrument presented the monotonic responses for these strain gauge configurations. Experimental results from tissue probing and tissue characterization experiments verified the capability of the proposed instrument in measuring lateral probing forces and characterizing artificial tissue samples of varying stiffness. The proposed instrument can improve the quality of palpation and characterization of soft tissues of varying stiffness by restoring sense of touch in robotic assisted minimally invasive surgery operations. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Melt-state rheology, solid-state mechanical properties and microstructure of polymer-clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Somwangthanaroj, Anongnat

    Polymer/clay nanocomposites have the potential usefulness in industrial applications such as automotive and packaging due to their strong, light-weight and inexpensive properties. However, to respond to needs of various applications it is crucial to understand the crystallization and rheological properties of these materials. Our initial hypothesis was that the processing conditions such as shear rate, shear strain and temperature affect the crystallization kinetics of intercalated polypropylene nanocomposites. Another hypothesis was that the compatibilizer, PP-MA, affects the role of the nucleating agent, sodium benzoate. The final hypothesis was that the rheological properties of nanocomposites depend on the degree of clay dispersion. By means of time-resolved small-angle light scattering, we were able to demonstrate that clay enhances the crystallization kinetics in nanocomposites and its result differs significantly from that of pure polypropylene. Characteristic crystallization times are extracted from the time evolution of integral measures of the angularly dependent parallel polarized and cross polarized light scattering intensity. Flow acceleration of crystallization kinetics has been observed for the polymer nanocomposites at applied strain rates for which flow has only modest effect on polypropylene crystallization. Furthermore, we were able to conclude that the addition of the nucleating agent sodium benzoate in the presence of polypropylene grafted maleic anhydride is not effective in accelerating crystallization. The rheological properties of two types of polypropylene/clay nanocomposites, with different degrees of clay dispersion have been measured in both linear and non-linear viscoelastic regime. In the linear viscoelastic regime, the storage and loss modulus of nanocomposites increases when clay loading increases. The storage and loss modulus of unsonicated nanocomposites are higher than the sonicated ones because the ultrasonic processing alters the structure of clay and polymer blend in sonicated nanocomposite. Non-linear rheology addresses the possible structure of particulate domains of clays in polymers. From this research, we demonstrated the possible effect of clay and compatibilizer on the crystallization kinetics and the effect of structure of clay and polymer matrix on rheological properties. To understand how clay enhances the mechanical properties, we still need to investigate where the clay actually resides and how the polymer crystallite forms.

  15. First International Symposium on Strain Gauge Balances. Pt. 1

    NASA Technical Reports Server (NTRS)

    Tripp, John S. (Editor); Tcheng, Ping (Editor)

    1999-01-01

    The first International Symposium on Strain Gauge Balances was sponsored and held at NASA Langley Research Center during October 22-25, 1996. The symposium provided an open international forum for presentation, discussion, and exchange of technical information among wind tunnel test technique specialists and strain gauge balance designers. The Symposium also served to initiate organized professional activities among the participating and relevant international technical communities. Over 130 delegates from 15 countries were in attendance. The program opened with a panel discussion, followed by technical paper sessions, and guided tours of the National Transonic Facility (NTF) wind tunnel, a local commercial balance fabrication facility, and the LaRC balance calibration laboratory. The opening panel discussion addressed "Future Trends in Balance Development and Applications." Forty-six technical papers were presented in 11 technical sessions covering the following areas: calibration, automatic calibration, data reduction, facility reports, design, accuracy and uncertainty analysis, strain gauges, instrumentation, balance design, thermal effects, finite element analysis, applications, and special balances. At the conclusion of the Symposium, a steering committee representing most of the nations and several U.S. organizations attending the Symposium was established to initiate planning for a second international balance symposium, to be held in 1999 in the UK.

  16. Investigating pulmonary embolism in the emergency department with lower limb plethysmography: the Manchester Investigation of Pulmonary Embolism Diagnosis (MIOPED) study

    PubMed Central

    Hogg, K; Dawson, D; Mackway‐Jones, K

    2006-01-01

    Objectives To measure the diagnostic accuracy of computerised strain gauge plethysmography in the diagnosis of pulmonary embolism (PE). Methods Two researchers prospectively recruited 425 patients with pleuritic chest pain presenting to the emergency department (ED). Lower limb computerised strain gauge plethysmography was performed in the ED. All patients underwent an independent reference standard diagnostic algorithm to establish the presence or absence of PE. A low modified Wells' clinical probability combined with a normal D‐dimer excluded PE. All others required diagnostic imaging with PIOPED interpreted ventilation perfusion scanning and/or computerised tomography (CT) pulmonary angiography. Patients with a nondiagnostic CT had digital subtraction pulmonary angiography. All patients were followed up clinically for 3 months. Results The sensitivity of computerised strain gauge plethysmography was 33.3% (95% confidence interval (CI) 16.3 to 56.2%) and specificity 64.1% (95% CI 59.0 to 68.8%). The negative likelihood ratio was 1.04 (95% CI 0.68 to 1.33) and positive likelihood ratio 0.93 (95% CI 0.45 to 1.60). Conclusions Lower limb computerised strain gauge plethysmography does not aid in the diagnosis of PE. PMID:16439734

  17. Tower Based Load Measurements for Individual Pitch Control and Tower Damping of Wind Turbines

    NASA Astrophysics Data System (ADS)

    Kumar, A. A.; Hugues-Salas, O.; Savini, B.; Keogh, W.

    2016-09-01

    The cost of IPC has hindered adoption outside of Europe despite significant loading advantages for large wind turbines. In this work we presented a method for applying individual pitch control (including for higher-harmonics) using tower-top strain gauge feedback instead of blade-root strain gauge feedback. Tower-top strain gauges offer hardware savings of approximately 50% in addition to the possibility of easier access for maintenance and installation and requiring a less specialised skill-set than that required for applying strain gauges to composite blade roots. A further advantage is the possibility of using the same tower-top sensor array for tower damping control. This method is made possible by including a second order IPC loop in addition to the tower damping loop to reduce the typically dominating 3P content in tower-top load measurements. High-fidelity Bladed simulations show that the resulting turbine spectral characteristics from tower-top feedback IPC and from the combination of tower-top IPC and damping loops largely match those of blade-root feedback IPC and nacelle- velocity feedback damping. Lifetime weighted fatigue analysis shows that the methods allows load reductions within 2.5% of traditional methods.

  18. First International Symposium on Strain Gauge Balances. Part 2

    NASA Technical Reports Server (NTRS)

    Tripp, John S (Editor); Tcheng, Ping (Editor)

    1999-01-01

    The first International Symposium on Strain Gauge Balances was sponsored and held at NASA Langley Research Center during October 22-25, 1996. The symposium provided an open international forum for presentation, discussion, and exchange of technical information among wind tunnel test technique specialists and strain gauge balance designers. The Symposium also served to initiate organized professional activities among the participating and relevant international technical communities. Over 130 delegates from 15 countries were in attendance. The program opened with a panel discussion, followed by technical paper sessions, and guided tours of the National Transonic Facility (NTF) wind tunnel, a local commercial balance fabrication facility, and the LaRC balance calibration laboratory. The opening panel discussion addressed "Future Trends in Balance Development and Applications." Forty-six technical papers were presented in 11 technical sessions covering the following areas: calibration, automatic calibration, data reduction, facility reports, design, accuracy and uncertainty analysis, strain gauges, instrumentation, balance design, thermal effects, finite element analysis, applications, and special balances. At the conclusion of the Symposium, a steering committee representing most of the nations and several U.S. organizations attending the Symposium was established to initiate planning for a second international balance symposium, to be held in 1999 in the UK.

  19. Carbon nanotube thin film strain sensors: comparison between experimental tests and numerical simulations

    NASA Astrophysics Data System (ADS)

    Lee, Bo Mi; Loh, Kenneth J.

    2017-04-01

    Carbon nanotubes can be randomly deposited in polymer thin film matrices to form nanocomposite strain sensors. However, a computational framework that enables the direct design of these nanocomposite thin films is still lacking. The objective of this study is to derive an experimentally validated and two-dimensional numerical model of carbon nanotube-based thin film strain sensors. This study consisted of two parts. First, multi-walled carbon nanotube (MWCNT)-Pluronic strain sensors were fabricated using vacuum filtration, and their physical, electrical, and electromechanical properties were evaluated. Second, scanning electron microscope images of the films were used for identifying topological features of the percolated MWCNT network, where the information obtained was then utilized for developing the numerical model. Validation of the numerical model was achieved by ensuring that the area ratios (of MWCNTs relative to the polymer matrix) were equivalent for both the experimental and modeled cases. Strain sensing behavior of the percolation-based model was simulated and then compared to experimental test results.

  20. Interactive modeling-synthesis-characterization approach towards controllable in situ self-assembly of artificial pinning centers in RE-123 films

    NASA Astrophysics Data System (ADS)

    Wu, Judy; Shi, Jack

    2017-10-01

    Raising critical current density J c in high temperature superconductors (HTSs) is an important strategy towards performance-cost balanced HTS technology for commercialization. The development of strong nanoscale artificial pinning centers (APCs) in HTS, such as YBa2Cu3O7 or RE-123 in general, represents one of the most exciting progressions in HTS material research in the last decade. Significantly raised J c has been demonstrated in APC/RE-123 nanocomposites by enhanced pinning on magnetic vortices in magnetic fields towards that demanded in practical applications. Among other processes, strain-mediated self-organization has been explored extensively for in situ formation of the APCs based on fundamental physics design rules. The desire in controlling the morphology, dimension, orientation, and concentration of APCs has led to a fundamental question on how strains interact in determining APCs at a macroscopic scale. Answering this question demands an interactive modeling-synthesis-characterization approach towards a thorough understanding of fundamental physics governing the strain-mediated self-organization of the APCs in the APC/RE-123 nanocomposites. Such an understanding is the key for a leap forward from the traditionally empirical method to materials-by-design to enable an optimal APC landscape to be achieved in epitaxial films of APC/YBCO nanocomposites under a precise guidance of fundamental physics. The paper intends to provide a review of recent progress made in the controllable generation of APCs using the interactive modeling-synthesis-characterization approach. The emphasis will be given to the understanding so far achieved using such an approach on the collective effect of the strain field on the morphology, dimension, and orientation of APCs in epitaxial APC/RE-123 nanocomposite films.

  1. Strain gauge ambiguity sensor for segmented mirror active optical system

    NASA Technical Reports Server (NTRS)

    Wyman, C. L.; Howe, T. L. (Inventor)

    1974-01-01

    A system is described to measure alignment between interfacing edges of mirror segments positioned to form a segmented mirror surface. It serves as a gauge having a bending beam with four piezoresistive elements coupled across the interfaces of the edges of adjacent mirror segments. The bending beam has a first position corresponding to alignment of the edges of adjacent mirror segments, and it is bendable from the first position in a direction and to a degree dependent upon the relative misalignment between the edges of adjacent mirror segments to correspondingly vary the resistance of the strain guage. A source of power and an amplifier are connected in circuit with the strain gauge whereby the output of the amplifier varies according to the misalignment of the edges of adjacent mirror segments.

  2. Flexible Carbon Nanotube Films for High Performance Strain Sensors

    PubMed Central

    Kanoun, Olfa; Müller, Christian; Benchirouf, Abderahmane; Sanli, Abdulkadir; Dinh, Trong Nghia; Al-Hamry, Ammar; Bu, Lei; Gerlach, Carina; Bouhamed, Ayda

    2014-01-01

    Compared with traditional conductive fillers, carbon nanotubes (CNTs) have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors. PMID:24915183

  3. Design and Development of a Pressure Transducer for High Hydrostatic Pressure Measurements up to 200 MPa

    NASA Astrophysics Data System (ADS)

    Kumar, Anuj; Yadav, Sanjay; Agarwal, Ravinder

    2017-08-01

    A number of pressure transducers, based on strain gauge, capacitance/inductance type, frequency resonators, are commercially available and are being used for sensing and producing an electrical output proportional to applied pressure. These sensors have their own advantages and limitations due to operational ease, measurement uncertainty and the costs. Strain gauge type transducers are now well established devices for accurate and precise measurement of pressure within measurement uncertainty up to 0.1 % of full scale. In the present research work, an indigenous strain gauge pressure transducer has been designed, developed, tested and calibrated for pressure measurement up to 200 MPa. The measurement uncertainty estimated using the pressure transducer was found better than 0.1 % of full scale. This transducer was developed using four foil type strain gauges, bonded, two in axial direction while other two in radial direction, to the controlled stress zones of a tubular maraging steel active cylinder working also as diaphragm. The strain gages were then connected to a Wheatstone bridge arrangement to measure stress generated strains. The pressure was applied through matching connector designed in the same tubular transducer active element. The threaded unique design in a single piece through collar, ferule and tubing arrangement provides leak proof pressure connections with external devices without using additional seals. The calibration and performance checking of the pressure transducer was carried out using dead weight type national pressure standard using the internationally accepted calibration procedure.

  4. Scalable fabrication of nanomaterials based piezoresistivity sensors with enhanced performance

    NASA Astrophysics Data System (ADS)

    Hoang, Phong Tran

    Nanomaterials are small structures that have at least one dimension less than 100 nanometers. Depending on the number of dimensions that are not confined to the nanoscale range, nanomaterials can be classified into 0D, 1D and 2D types. Due to their small sizes, nanoparticles possess exceptional physical and chemical properties which opens a unique possibility for the next generation of strain sensors that are cheap, multifunctional, high sensitivity and reliability. Over the years, thanks to the development of new nanomaterials and the printing technologies, a number of printing techniques have been developed to fabricate a wide range of electronic devices on diverse substrates. Nanomaterials based thin film devices can be readily patterned and fabricated in a variety of ways, including printing, spraying and laser direct writing. In this work, we review the piezoresistivity of nanomaterials of different categories and study various printing approaches to utilize their excellent properties in the fabrication of scalable and printable thin film strain gauges. CNT-AgNP composite thin films were fabricated using a solution based screen printing process. By controlling the concentration ratio of CNTs to AgNPs in the nanocomposites and the supporting substrates, we were able to engineer the crack formation to achieve stable and high sensitivity sensors. The crack formation in the composite films lead to piezoresistive sensors with high GFs up to 221.2. Also, with a simple, low cost, and easy to scale up fabrication process they may find use as an alternative to traditional strain sensors. By using computer controlled spray coating system, we can achieve uniform and high quality CNTs thin films for the fabrication of strain sensors and transparent / flexible electrodes. A simple diazonium salt treatment of the pristine SWCNT thin film has been identified to be efficient in greatly enhancing the piezoresistive sensitivity of SWCNT thin film based piezoresistive sensors. The coupled mechanical stretching and Raman band shift characterization provides strong evidence to support this point of view. The same approach should be applicable to other types of carbon based strain sensors for improving their sensitivity. The direct laser writing (DLW) method has been used for producing flexible piezoresistive sensor and sensor arrays on polyimide film substrates. The effect of CO2 laser irradiation conditions on the morphology, chemical composition and piezoresistivity of the formed graphitic line features were systematically studied to establish the related processing-structure-property relationship. The DLW generated sensors have been demonstrated for their use as strain gauges for structural health monitoring of polymeric composites, and as flexible and wearable sensors of gesture recognition for human-machine interactions. The versatility of the DLW technique demonstrated in this work can be highly valuable in different industrial sectors for developing customized flexible electronics.

  5. Chitosan-Iron Oxide Coated Graphene Oxide Nanocomposite Hydrogel: A Robust and Soft Antimicrobial Biofilm.

    PubMed

    Konwar, Achyut; Kalita, Sanjeeb; Kotoky, Jibon; Chowdhury, Devasish

    2016-08-17

    We report a robust biofilm with antimicrobial properties fabricated from chitosan-iron oxide coated graphene oxide nanocomposite hydrogel. For the first time, the coprecipitation method was used for the successful synthesis of iron oxide coated graphene oxide (GIO) nanomaterial. After this, films were fabricated by the gel-casting technique aided by the self-healing ability of the chitosan hydrogel network system. Both the nanomaterial and the nanocomposite films were characterized by techniques such as scanning electron microscopy, FT-IR spectroscopy, X-ray diffraction, and vibrating sample magnetometry. Measurements of the thermodynamic stability and mechanical properties of the films indictaed a significant improvement in their thermal and mechanical properties. Moreover, the stress-strain profile indicated the tough nature of the nanocomposite hydrogel films. These improvements, therefore, indicated an effective interaction and good compatibility of the GIO nanomaterial with the chitosan hydrogel matrix. In addition, it was also possible to fabricate films with tunable surface properties such as hydrophobicity simply by varying the loading percentage of GIO nanomaterial in the hydrogel matrix. Fascinatingly, the chitosan-iron oxide coated graphene oxide nanocomposite hydrogel films displayed significant antimicrobial activities against both Gram-positive and Gram-negative bacterial strains, such as methicillin-resistant Staphylococcus aureus, Staphylococcus aureus, and Escherichia coli, and also against the opportunistic dermatophyte Candida albicans. The antimicrobial activities of the films were tested by agar diffusion assay and antimicrobial testing based on direct contact. A comparison of the antimicrobial activity of the chitosan-GIO nanocomposite hydrogel films with those of individual chitosan-graphene oxide and chitosan-iron oxide nanocomposite films demonstrated a higher antimicrobial activity for the former in both types of tests. In vitro hemolysis potentiality tests and MTT assays of the nanocomposite films indicated a noncytotoxic nature of the films, which conveyed the possibility of potential applications of these soft and tough films in biomedical as well as in the food industry.

  6. Designing Metallic and Insulating Nanocrystal Heterostructures to Fabricate Highly Sensitive and Solution Processed Strain Gauges for Wearable Sensors.

    PubMed

    Lee, Woo Seok; Lee, Seung-Wook; Joh, Hyungmok; Seong, Mingi; Kim, Haneun; Kang, Min Su; Cho, Ki-Hyun; Sung, Yun-Mo; Oh, Soong Ju

    2017-12-01

    All-solution processed, high-performance wearable strain sensors are demonstrated using heterostructure nanocrystal (NC) solids. By incorporating insulating artificial atoms of CdSe quantum dot NCs into metallic artificial atoms of Au NC thin film matrix, metal-insulator heterostructures are designed. This hybrid structure results in a shift close to the percolation threshold, modifying the charge transport mechanism and enhancing sensitivity in accordance with the site percolation theory. The number of electrical pathways is also manipulated by creating nanocracks to further increase its sensitivity, inspired from the bond percolation theory. The combination of the two strategies achieves gauge factor up to 5045, the highest sensitivity recorded among NC-based strain gauges. These strain sensors show high reliability, durability, frequency stability, and negligible hysteresis. The fundamental charge transport behavior of these NC solids is investigated and the combined site and bond percolation theory is developed to illuminate the origin of their enhanced sensitivity. Finally, all NC-based and solution-processed strain gauge sensor arrays are fabricated, which effectively measure the motion of each finger joint, the pulse of heart rate, and the movement of vocal cords of human. This work provides a pathway for designing low-cost and high-performance electronic skin or wearable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Concepts for smart nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Pammi, SriLaxmi; Brown, Courtney; Datta, Saurabh; Kirikera, Goutham R.; Schulz, Mark J.

    2003-10-01

    This paper explores concepts for new smart materials that have extraordinary properties based on nanotechnology. Carbon and boron nitride nanotubes in theory can be used to manufacture fibers that have piezoelectric, pyroelectric, piezoresistive, and electrochemical field properties. Smart nanocomposites designed using these fibers will sense and respond to elastic, thermal, and chemical fields in a positive human-like way to improve the performance of structures, devices, and possibly humans. Remarkable strength, morphing, cooling, energy harvesting, strain and temperature sensing, chemical sensing and filtering, and high natural frequencies and damping will be the properties of these new materials. Synthesis of these unique atomically precise nanotubes, fibers, and nanocomposites is at present challenging and expensive, however, there is the possibility that we can synthesize the strongest and lightest actuators and most efficient sensors man has ever made. A particular advantage of nanotube transducers is their very high load bearing capability. Carbon nanotube electrochemical actuators have a predicted energy density at low frequencies that is thirty times greater than typical piezoceramic materials while boron nitride nanotubes are insulators and can operate at high temperatures, but they have a predicted piezoelectric induced stress constant that is about twenty times smaller than piezoceramic materials. Carbon nanotube fibers and composites exhibit a change in electrical conductivity due to strain that can be used for sensing. Some concepts for nanocomposite material sensors are presented and initial efforts to fabricate carbon nanocomposite load sensors are discussed.

  8. Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO 2 emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yizhong; Chyu, Minking; Wang, Qing-Ming

    2013-02-14

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO 2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO 2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5more » times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO 2 . The sensor frequency change was around 300ppm for pure CO 2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.« less

  9. Sensor calibration of polymeric Hopkinson bars for dynamic testing of soft materials

    NASA Astrophysics Data System (ADS)

    Martarelli, Milena; Mancini, Edoardo; Lonzi, Barbara; Sasso, Marco

    2018-02-01

    Split Hopkinson pressure bar (SHPB) testing is one of the most common techniques for the estimation of the constitutive behaviour of metallic materials. In this paper, the characterisation of soft rubber-like materials has been addressed by means of polymeric bars thanks to their reduced mechanical impedance. Due to their visco-elastic nature, polymeric bars are more sensitive to temperature changes than metallic bars, and due to their low conductance, the strain gauges used to measure the propagating wave in an SHPB may be exposed to significant heating. Consequently, a calibration procedure has been proposed to estimate quantitatively the temperature influence on strain gauge output. Furthermore, the calibration is used to determine the elastic modulus of the polymeric bars, which is an important parameter for the synchronisation of the propagation waves measured in the input and output bar strain gate stations, and for the correct determination of stress and strain evolution within the specimen. An example of the application has been reported in order to demonstrate the effectiveness of the technique. Different tests at different strain rates have been carried out on samples made of nytrile butadyene rubber (NBR) from the same injection moulding batch. Thanks to the correct synchronisation of the measured propagation waves measured by the strain gauges and applying the calibrated coefficients, the mechanical behaviour of the NBR material is obtained in terms of strain-rate-strain and stress-strain engineering curves.

  10. Strain-Gauge Measurement of Weight of Fluid in a Tank

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge; St. Cyr, William; Rahman, Shamim; McVay, Gregory; Van Dyke, David; Mitchell, William; Langford, Lester

    2004-01-01

    A method of determining the amount of fluid in a tank is based on measurement of strains induced in tank supports by the weight of the fluid. Unlike most prior methods, this method is nonintrusive: there is no need to insert instrumentation in the tank and, hence, no need to run wires, cables, or tubes through the tank wall. Also unlike most prior methods, this method is applicable even if the fluid in the tank is at supercritical pressure and temperature, because it does not depend on the presence of a liquid/gas interface (as in liquid-level-measuring methods). The strain gauges used in this method may be of two types: foil and fiber-optic. Four foil gauges (full bridge) are mounted on each of the tank-supporting legs. As the tank is filled or emptied, the deformation in each leg increases or decreases, respectively. Measured deformations of all legs are added to obtain a composite deformation indicative of the change in weight of the tank plus fluid. An initial calibration is performed by recording data at two points (usually, empty and full) for which the mass or weight of fluid is known. It is assumed that the deformations are elastic, so that the line passing through the two points can be used as a calibration curve of mass (or weight) of fluid versus deformation. One or more fiber-optic gauges may be used instead of the foil gauges. The resolution of the fiber-optic and foil gauges is approximately the same, but the fiber-optic gauges are immune to EMI (electromagnetic interference), are linear with respect to temperature over their entire dynamic range (as defined by the behavior of the sample), and measure thermally induced deformations as predictable signals. Conversely, long term testing has demonstrated that the foil gauges exhibit an erratic behavior whenever subjected to direct sun radiation (even if protected with a rubberized cover). Henceforth, for deployment in outdoor conditions, fiber-optic gauges are the only option if one is to rely on the system for an extended period of time when a recalibration procedure may not be acceptable. A set of foil gauges had been tested on the supports of a 500-gallon (1,900-liter) tank. The gauges were found to be capable of measuring the deformations (up to 22 micro-strain) that occurred during filling and emptying of the tank. The fluid masses calculated from the gauge readings were found to be accurate within 4.5 percent. However, the reliability of the foil gauges over a few hours was not acceptable. Therefore, the foil sensor system is acceptable for use only in controlled environments (complete shade, or indoors).

  11. Experimental strain analysis of the high pressure strain gauge pressure transducer and verification by using a finite element method

    NASA Astrophysics Data System (ADS)

    Orhan, M. H.; Dogan, Ç.; Kocabas, H.; Tepehan, G.

    2001-03-01

    The finite element method (FEM) was used in this study for the analysis of the strain distribution of a strain gauge pressure transducer for hydrostatic pressure measurements up to 150 MPa. The pressure transducer, which we investigated, on the basis of `thick-walled cylindrical vessel' theory has a free steel active element. Pressure is applied to the inside and both open ends of this active element. The symmetrical shape of the transducer and all the design parameters of the active element were selected in such a way as to ensure that a symmetrical stress and strain distribution was obtained even at the maximum working pressure of the transducer. The FEM analysis was conducted by investigating one half of the element in three dimensions. This paper presents the FEM output strain values for the area where the strain gauges were bonded. The validity of those values was established by comparing them with the results obtained from the strain gauge measurements. The relative difference between the two sets of values determined to be lower than 13% of the full scale. The two kinds of measuring elements were made of two different materials; AISI 4340 steel and Invar steel, which work in the hydraulic gauge pressure ranges of up to 150 and 100 MPa respectively. The transducers were calibrated using piston pressure balance. The metrological specifications of a total of eight specimens were evaluated. Although the scope of the study is only an application of the FEM, this evaluation also suggests that this type of transducer can be used with an estimated uncertainty of up to 0.1% of the full scale. However, this uncertainty can be improved by a small modification in design, to reduce the reproducibility and hysteresis errors of the device, which are the main parameters in the evaluation of the uncertainty. The results presented in this paper will be helpful for practical static pressure measurements as well as for the appropriate design of this kind of pressure transducer using the FEM.

  12. Improved self-healing of polyethylene/carbon black nanocomposites by their shape memory effect.

    PubMed

    Wang, Xiaoyan; Zhao, Jun; Chen, Min; Ma, Lan; Zhao, Xiaodong; Dang, Zhi-Min; Wang, Zhenwen

    2013-02-07

    In this work, the improved self-healing of cross-linked polyethylene (PE) (cPE)/carbon black (CB) nanocomposites by their shape memory effect (SME) is investigated. CB nanoparticles are found to be homogeneously dispersed in the PE matrix and significantly increase the strength of the materials. Compared with the breaking of linear PE (lPE) at the melting temperature (T(m)), the cPE and cPE/CB nanocomposites still have high strength above T(m) due to the formation of networks. The cPE and cPE/CB nanocomposites show both high strain fixity ratio (R(f)) and high strain recovery ratio (R(r)). Crystallization-induced elongation is observed for all the prepared shape memory polymer (SMP) materials and the effect becomes less remarkable with increasing volume fraction of CB nanoparticles (v(CB)). The scratch self-healing tests show that the cross-linking of PE matrix, the addition of CB nanoparticles, and the previous stretching in the direction perpendicular to the scratch favor the closure of the scratch and its complete healing. This SME-aided self-healing could have potential applications in diverse fields such as coating and structure materials.

  13. A novel compliance measurement in radial arteries using strain-gauge plethysmography.

    PubMed

    Liu, Shing-Hong; Tyan, Chu-Chang; Chang, Kang-Ming

    2009-09-01

    We propose a novel method for assessing the compliance of the radial artery by using a two-axis mechanism and a standard positioning procedure for detecting the optimal measuring site. A modified sensor was designed to simultaneously measure the arterial diameter change waveform (ADCW) and pressure pulse waveform with a strain gauge and piezoresistor. In the x-axis scanning, the sensor could be placed close to the middle of the radial artery when the ADCW reached the maximum amplitude. In the Z-axis scanning, the contact pressure was continuously increased for data measurement. Upon the deformation of the strain gauge following the change in the vascular cross-section, the ADCW was transferred to the change of the vascular radius. The loaded strain compliance of the radial artery (C(strain)) can be determined by dividing the dynamic changed radius by the pulse pressure. Twenty-three untreated, mild or moderate hypertensive patients aged 29-85 were compared with 14 normotensive patients aged 25-62. The maximum strain compliance between the two groups was significantly different (p < 0.005). Of the hypertensive patients, 14 were at risk of developing hyperlipidemia. There was a significant difference between this and the normotension group (p < 0.005).

  14. Synthesis and characterization of the NiFe2O4@TEOS-TPS@Ag nanocomposite and investigation of its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Allafchian, Ali R.; Jalali, S. A. H.; Amiri, R.; Shahabadi, Sh.

    2016-11-01

    In this study, the NiFe2O4 was embedded in (3-mercaptopropyl) trimethoxysilane (TPS) and tetraethyl orthosilicate (TEOS) using the sol-gel method. These compounds were used as the support of Ag nanoparticles (Ag NPs). The NiFe2O4@TEOS-TPS@Ag nanocomposites were obtained with the development of bonding between the silver atoms of Ag NPs and the sulfur atoms of TPS molecule. Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were used for the characterization of the Ag nanocomposites. Also, the magnetic properties of these nanocomposites were studied by using a vibrating sample magnetometer (VSM) technique. The disk diffusion, minimum inhibition concentration (MIC) and minimum bactericidal concentrations (MBC) tests were used for the investigation of the antibacterial effect of this nanocomposite against bacterial strains. The synthesized nanocomposite presented high reusability and good antibacterial activity against gram-positive and gram-negative bacteria. Remarkably, this nanocomposite could be easily removed from the disinfected media by magnetic decantation.

  15. Strain-Gauge Measurement of Weight of Fluid in a Tank

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge; SaintCyr, William; Rahman, Shamim; McVay, Gregory; VanDyke, David; Mitchell, William; Langford, Lester

    2003-01-01

    A method of determining the amount of fluid in a tank is based on measurement of strains induced in tank supports by the weight of the fluid. Unlike most prior methods, this method is nonintrusive: there is no need to insert instrumentation in the tank and, hence, no need to run wires, cables, or tubes through the tank wall. Also unlike most prior methods, this method is applicable even if the fluid in the tank is at supercritical pressure and temperature, because it does not depend on the presence of a liquid/gas interface (as in liquid-level-measuring methods). The strain gauges used in this method are of two types: foil and fiber-optic. Four foil gauges and one or more fiber-optic gauges are mounted on each of the tank-supporting legs. An additional fiber-optic gauge is mounted on an object, made of the same material as that of the tank-supporting legs, that is not subjected to any mechanical load. The reading obtained by the additional fiber-optic gauge is used to compensate for apparent strains caused by changes in temperature. The signals from the foil and fiber-optic gauges are conditioned, then digitized for input to a computer. As the tank is filled or emptied, the deformation in each leg increases or decreases, respectively. Measured deformations of all legs are added to obtain a composite deformation indicative of the change in weight of the tank plus fluid. An initial calibration is performed by recording data at two points (usually, empty and full) for which the mass or weight of fluid is known. It is assumed that the deformations are elastic, so that the line passing through the two points can be used as a calibration curve of mass (or weight) of fluid versus deformation. At the time of reporting the information for this article, a set of foil gauges had been tested on the supports of a 500-gallon (1,900-liter) tank. The gauges were found to be capable of measuring the deformations (up to 22 microstrain) that occurred during filling and emptying the tank. The fluid masses calculated from the gauge readings were found to be accurate within 4.5 percent. It has been estimated that once the fiber-optic gauges are put into operation, it should be possible to determine fluid masses with 3 percent or less. It may be possible to increase accuracy further by increasing the signal-to-noise ratio through the use of more deformable tank supporting legs.

  16. Momentum Flux Measuring Instrument for Neutral and Charged Particle Flows

    NASA Technical Reports Server (NTRS)

    Chavers, Greg; Chang-Diaz, Franklin; Schafer, Charles F. (Technical Monitor)

    2002-01-01

    An instrument to measure the momentum flux (total pressure) of plasma and neutral particle jets onto a surface has been developed. While this instrument was developed for magnetized plasmas, the concept works for non-magnetized plasmas as well. We have measured forces as small as 10(exp -4) Newtons on a surface immersed in the plasma where small forces are due to ionic and neutral particles with kinetic energies on the order of a few eV impacting the surface. This instrument, a force sensor, uses a target plate (surface) that is immersed in the plasma and connected to one end of an alumina rod while the opposite end of the alumina rod is mechanically connected to a titanium beam on which four strain gauges are mounted. The force on the target generates torque causing strain in the beam. The resulting strain measurements can be correlated to a force on the target plate. The alumina rod electrically and thermally isolates the target plate from the strain gauge beam and allows the strain gauges to be located out of the plasma flow while also serving as a moment arm of several inches to increase the strain in the beam at the strain gauge location. These force measurements correspond directly to momentum flux and may be used with known plasma conditions to place boundaries on the kinetic energies of the plasma and neutral particles. The force measurements may also be used to infer thrust produced by a plasma propulsive device. Stainless steel, titanium, molybdenum, and aluminum flat target plates have been used. Momentum flux measurements of H2, D2, He, and Ar plasmas produced in a magnetized plasma device have been performed.

  17. The Impacts of Industrial Robots

    DTIC Science & Technology

    1981-11-01

    plastics, ’and strain gauges are used to measure very small forces at a number of points on the robot’s "end effector. Except for the simplest on-off...devices, tactile sensors are not yet found on commercially available robots. Forces are sensed by using strain gauges or piezoelectric sensors to...tools: deburring, drilling , grinding,milling,routing machines ii. plastic materialsformirg and injection machines iii. metal die casting machines iv

  18. Determination of the technical constants of laminates in oblique directions

    NASA Technical Reports Server (NTRS)

    Vidouse, F.

    1979-01-01

    An off-axis tensile test theory based on Hooke's Law is applied to glass fiber reinforced laminates. A corrective parameter dependent on the characteristics of the strain gauge used is introduced by testing machines set up for isotropic materials. Theoretical results for a variety of strain gauges are compared with those obtained by a finite element method and with experimental results obtained on laminates reinforced with glass.

  19. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure

    PubMed Central

    Tang, Yongsheng; Wu, Zhishen

    2016-01-01

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures. PMID:26927110

  20. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure.

    PubMed

    Tang, Yongsheng; Wu, Zhishen

    2016-02-25

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures.

  1. Nanoasperity: structure origin of nacre-inspired nanocomposites.

    PubMed

    Xia, Shuang; Wang, Zuoning; Chen, Hong; Fu, Wenxin; Wang, Jianfeng; Li, Zhibo; Jiang, Lei

    2015-02-24

    Natural nacre with superior mechanical property is generally attributed to the layered "brick-and-mortar" nanostructure. However, the role of nanograins on the hard aragonite platelets, which is so-called nanoasperity, is rarely addressed. Herein, we prepared silica platelets with aragonite-like nanoasperities via biomineralization strategy and investigated the effects of nanoasperity on the mechanical properties of resulting layered nanocomposites composed of roughened silica platelets and poly(vinyl alcohol). The tensile deformation behavior of the nanocomposites demonstrates that nanograins on silica platelets are responsive for strain hardening, improved strength, and toughness. The structure origin is attributed to the nanoasperity-controlled platelet sliding.

  2. A method for determination of equine hoof strain patterns using photoelasticity: an in vitro study.

    PubMed

    Dejardin, L M; Arnoczky, S P; Cloud, G L

    1999-05-01

    During impact, equine hooves undergo viscoelastic deformations which may result in potentially harmful strains. Previous hoof strain studies using strain gauges have been inconclusive due to arbitrary gauge placement. Photoelastic stress analysis (PSA) is a full-field technique which visually displays strains over entire loaded surfaces. This in vitro study identifies normal hoof strain patterns using PSA. Custom-made photoelastic plastic sheets were applied to the hoof surface. The hooves were axially loaded (225 kg) under level and varus/valgus conditions. Strain patterns were video-recorded through a polariscope. Strains were concentrated between middle and distal thirds of the hoof wall regardless of the loading conditions. This strain distribution appears to result from the differential expansion of the hoof wall under load. Increasing load resulted in higher strains and asymmetric loading resulted in an ipsilateral increase in strain magnitudes without altering strain locations. This study shows that PSA is a reliable method with which to evaluate hoof strains in vitro and is sensitive enough to reflect subtle load-related strain alterations.

  3. Wearable Electronics of Silver-Nanowire/Poly(dimethylsiloxane) Nanocomposite for Smart Clothing.

    PubMed

    Huang, Gui-Wen; Xiao, Hong-Mei; Fu, Shao-Yun

    2015-09-24

    Wearable electronics used in smart clothing for healthcare monitoring or personalized identification is a new and fast-growing research topic. The challenge is that the electronics has to be simultaneously highly stretchable, mechanically robust and water-washable, which is unreachable for traditional electronics or previously reported stretchable electronics. Herein we report the wearable electronics of sliver nanowire (Ag-NW)/poly(dimethylsiloxane) (PDMS) nanocomposite which can meet the above multiple requirements. The electronics of Ag-NW/PDMS nanocomposite films is successfully fabricated by an original pre-straining and post-embedding (PSPE) process. The composite film shows a very high conductivity of 1.52 × 10(4) S cm(-1) and an excellent electrical stability with a small resistance fluctuation under a large stretching strain. Meanwhile, it shows a robust adhesion between the Ag-NWs and the PDMS substrate and can be directly machine-washed. These advantages make it a competitive candidate as wearable electronics for smart clothing applications.

  4. Numerical and analytical investigation of steel beam subjected to four-point bending

    NASA Astrophysics Data System (ADS)

    Farida, F. M.; Surahman, A.; Sofwan, A.

    2018-03-01

    A One type of bending tests is four-point bending test. The aim of this test is to investigate the properties and behavior of materials with structural applications. This study uses numerical and analytical studies. Results from both of these studies help to improve in experimental works. The purpose of this study is to predict steel beam behavior subjected to four-point bending test. This study intension is to analyze flexural beam subjected to four-point bending prior to experimental work. Main results of this research are location of strain gauge and LVDT on steel beam based on numerical study, manual calculation, and analytical study. Analytical study uses linear elasticity theory of solid objects. This study results is position of strain gauge and LVDT. Strain gauge is located between two concentrated loads at the top beam and bottom beam. LVDT is located between two concentrated loads.

  5. Two-axis direct fluid shear stress sensor

    NASA Technical Reports Server (NTRS)

    Bajikar, Sateesh (Inventor); Scott, Michael A. (Inventor); Adcock, Edward E. (Inventor)

    2011-01-01

    A micro sized multi-axis semiconductor skin friction/wall shear stress induced by fluid flow. The sensor design includes a shear/strain transduction gimble connected to a force collecting plate located at the flow boundary surface. The shear force collecting plate is interconnected by an arm to offset the tortional hinges from the fluid flow. The arm is connected to the shear force collecting plate through dual axis torsional hinges with piezoresistive torsional strain gauges. These gauges are disposed on the tortional hinges and provide a voltage output indicative of applied shear stress acting on the force collection plate proximate the flow boundary surface. Offsetting the torsional hinges creates a force concentration and resolution structure that enables the generation of a large stress on the strain gauge from small shear stress, or small displacement of the collecting plate. The design also isolates the torsional sensors from exposure to the fluid flow.

  6. Measurement of the residual stress in hot rolled strip using strain gauge method

    NASA Astrophysics Data System (ADS)

    Kumar, Lokendra; Majumdar, Shrabani; Sahu, Raj Kumar

    2017-07-01

    Measurement of the surface residual stress in a flat hot rolled steel strip using strain gauge method is considered in this paper. Residual stresses arise in the flat strips when the shear cut and laser cut is applied. Bending, twisting, central buckled and edge waviness is the common defects occur during the cutting and uncoiling process. These defects arise due to the non-uniform elastic-plastic deformation, phase transformation occurring during cooling and coiling-uncoiling process. The residual stress analysis is very important because with early detection it is possible to prevent an object from failure. The goal of this paper is to measure the surface residual stress in flat hot rolled strip using strain gauge method. The residual stress was measured in the head and tail end of hot rolled strip considering as a critical part of the strip.

  7. Structural flexibility of laparoscopic instruments: implication for the design of virtual reality simulators.

    PubMed

    Shang, D; Carnahan, H; Dubrowski, A

    2006-01-01

    Laparoscopic training, under simulated settings, benefits from high fidelity models of the actual environment. This study was aimed at reducing uncertainty in the displacement and loads experienced by a laparoscopic instrument during surgical training. Infrared tracking of laparoscopic instruments is ineffective when real tissues attenuate the infrared signals. Incorporating the use of strain gauges for tip deflection measurements allows for online motion and load tracking during a procedure. Strain gauge voltages and infrared markers indicating displacement were both linear with respect to loads up to 700 grams. The resultant strain gauge voltage was equated to deflection values with a calibration constant. The results serve two purposes. First, it may enable the tracking and analysis of the skill level of novice surgeons using bench models. Second, the mechanical model of each instrument can be quantified and incorporated into virtual simulations, thus increasing model fidelity, effectively leading to better learning.

  8. Dielectric tunability of vertically aligned ferroelectric-metal oxide nanocomposite films controlled by out-of-plane misfit strain

    NASA Astrophysics Data System (ADS)

    Wu, Huaping; Ma, Xuefu; Zhang, Zheng; Zhu, Jun; Wang, Jie; Chai, Guozhong

    2016-04-01

    A nonlinear thermodynamic model based on the vertically aligned nanocomposite (VAN) thin films of ferroelectric-metal oxide system has been developed to investigate the physical properties of the epitaxial Ba0.6Sr0.4TiO3 (BST) films containing vertical Sm2O3 (SmO) nanopillar arrays on the SrTiO3 substrate. The phase diagrams of out-of-plane lattice mismatch vs. volume fraction of SmO are calculated by minimizing the total free energy. It is found that the phase transformation and dielectric response of BST-SmO VAN systems are extremely dependent on the in-plane misfit strain, the out-of-plane lattice mismatch, the volume fraction of SmO phase, and the external electric field applied to the nanocomposite films at room temperature. In particular, the BST-SmO VAN systems exhibit higher dielectric properties than pure BST films. Giant dielectric response and maximum tunability are obtained near the lattice mismatch where the phase transition occurs. Under the in-plane misfit strain of umf=0.3 % and the out-of-plane lattice mismatch of u3=0.002 , the dielectric tunability can be dramatically enhanced to 90% with the increase of SmO volume fraction, which is well consistent with previous experimental results. This work represents an approach to further understand the dependence of physical properties on the lattice mismatch (in-plane and out-of-plane) and volume fraction, and to manipulate or optimize functionalities in the nanocomposite oxide thin films.

  9. Thin Film Sensors for Surface Measurements

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Wrbanek, John D.; Fralick, Gustave C.

    2001-01-01

    Advanced thin film sensors that can provide accurate surface temperature, strain, and heat flux measurements have been developed at NASA Glenn Research Center. These sensors provide minimally intrusive characterization of advanced propulsion materials and components in hostile, high-temperature environments as well as validation of propulsion system design codes. The sensors are designed for applications on different material systems and engine components for testing in engine simulation facilities. Thin film thermocouples and strain gauges for the measurement of surface temperature and strain have been demonstrated on metals, ceramics and advanced ceramic-based composites of various component configurations. Test environments have included both air-breathing and space propulsion-based engine and burner rig environments at surface temperatures up to 1100 C and under high gas flow and pressure conditions. The technologies developed for these sensors as well as for a thin film heat flux gauge have been integrated into a single multifunctional gauge for the simultaneous real-time measurement of surface temperature, strain, and heat flux. This is the first step toward the development of smart sensors with integrated signal conditioning and high temperature electronics that would have the capability to provide feedback to the operating system in real-time. A description of the fabrication process for the thin film sensors and multifunctional gauge will be provided. In addition, the material systems on which the sensors have been demonstrated, the test facilities and the results of the tests to-date will be described. Finally, the results will be provided of the current effort to demonstrate the capabilities of the multifunctional gauge.

  10. Cable load sensing device

    DOEpatents

    Beus, Michael J.; McCoy, William G.

    1998-01-01

    Apparatus for sensing the magnitude of a load on a cable as the cable is employed to support the load includes a beam structure clamped to the cable so that a length of the cable lies along the beam structure. A spacer associated with the beam structure forces a slight curvature in a portion of the length of cable under a cable "no-load" condition so that the portion of the length of cable is spaced from the beam structure to define a cable curved portion. A strain gauge circuit including strain gauges is secured to the beam structure by welding. As the cable is employed to support a load the load causes the cable curved portion to exert a force normal to the cable through the spacer and on the beam structure to deform the beam structure as the cable curved portion attempts to straighten under the load. As this deformation takes place, the resistance of the strain gauges is set to a value proportional to the magnitude of the normal strain on the beam structure during such deformation. The magnitude of the normal strain is manipulated in a control device to generate a value equal to the magnitude or weight of the load supported by the cable.

  11. Dynamic Shape Reconstruction of Three-Dimensional Frame Structures Using the Inverse Finite Element Method

    NASA Technical Reports Server (NTRS)

    Gherlone, Marco; Cerracchio, Priscilla; Mattone, Massimiliano; Di Sciuva, Marco; Tessler, Alexander

    2011-01-01

    A robust and efficient computational method for reconstructing the three-dimensional displacement field of truss, beam, and frame structures, using measured surface-strain data, is presented. Known as shape sensing , this inverse problem has important implications for real-time actuation and control of smart structures, and for monitoring of structural integrity. The present formulation, based on the inverse Finite Element Method (iFEM), uses a least-squares variational principle involving strain measures of Timoshenko theory for stretching, torsion, bending, and transverse shear. Two inverse-frame finite elements are derived using interdependent interpolations whose interior degrees-of-freedom are condensed out at the element level. In addition, relationships between the order of kinematic-element interpolations and the number of required strain gauges are established. As an example problem, a thin-walled, circular cross-section cantilevered beam subjected to harmonic excitations in the presence of structural damping is modeled using iFEM; where, to simulate strain-gauge values and to provide reference displacements, a high-fidelity MSC/NASTRAN shell finite element model is used. Examples of low and high-frequency dynamic motion are analyzed and the solution accuracy examined with respect to various levels of discretization and the number of strain gauges.

  12. Synthesis of polystyrene coated SiC nanowires as fillers in a polyurethane matrix for electromechanical conversion.

    PubMed

    Rybak, Andrzej; Warde, Micheline; Beyou, Emmanuel; Chaumont, Philippe; Bechelany, Mikhael; Brioude, Arnaud; Toury, Bérangère; Cornu, David; Miele, Philippe; Guiffard, Benoit; Seveyrat, Laurence; Guyomar, Daniel

    2010-04-09

    Grafting of polystyrene (PS) from silica coating of silicon carbide nanowires (SiCNWs) has been performed by a two-step nitroxide mediated free radical polymerization (NMP) of styrene. First, an alkoxyamine based on N-tert-butyl-N-(1-diethylphosphono-2,2-dimethylpropyl) nitroxide (DEPN) was covalently attached onto NWs through free surface silanol groups. To immobilize the alkoxyamine initiator on the silica surface, alkoxylamine was formed in situ by the simultaneous reaction of polymerizable acryloxy propyl trimethoxysilane (APTMS), azobis isobutyronitrile (AIBN), and DEPN, which was used as a radical trap. Polystyrene chains with controlled molecular weights and narrow polydispersity were then grown from the alkoxyamine-functionalized NWs surface in the presence of a 'free' sacrificial styrylDEPN alkoxyamine. Both the initiator and polystyrene chains were characterized by FTIR and (13)C solid-state NMR and quantified by TGA. Ensuing nanocomposites were characterized by FEG-SEM, TEM and Raman spectroscopy. EDX analysis performed on functionalized nanowires during FEG-SEM analysis also gave evidence of grafting by a strong increase in the average C/Si atomic ratio. Incorporation of 2 wt% NWs into the polyurethane (PU) matrix has been carried out to prepare homogeneous nanocomposite films. The electric field induced thickness strain response has been investigated for the polystyrene-grafted silica coated SiC NWs (PU-SiC@SiO(2)@PS) nanocomposites and compared to pure polyurethane film and PU-SiC@SiO(2) nanocomposite without polystyrene grafting. At a moderate electric field of 10 V microm(-1), SiC@SiO(2)@PS loading increased the strain level of pure PU by a factor of 2.2. This improvement came partially due to polystyrene grafting since PU-SiC@SiO(2) films showed only a 1.7 times increase. The observed higher strain response of these nanocomposites makes them very attractive for micro-electromechanical applications.

  13. Enhancing overall tensile and compressive response of pure Mg using nano-TiB{sub 2} particulates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meenashisundaram, Ganesh Kumar; Seetharaman, Sankaranarayanan; Gupta, Manoj, E-mail: mpegm@nus.edu.sg

    2014-08-15

    A novel attempt is made to synthesize and study the isolated effects of less than two volume fraction TiB{sub 2} nanoparticulates (60 nm) on pure magnesium. New light weight Mg–TiB{sub 2} nanocomposites with superior mechanical properties compared to pure magnesium are synthesized using disintegrated melt deposition technique followed by hot extrusion. The microstructural characterization studies revealed that the samples exhibited fairly uniform distribution of TiB{sub 2} nanoparticulates with minimal porosity and good interfacial integrity between Mg matrix and TiB{sub 2} particulates. The coefficient of thermal expansion results indicates that the addition of 0.58, 0.97, and 1.98 vol.% TiB{sub 2} nanoparticulatesmore » marginally improves the dimensional stability of pure magnesium. A significant improvement in the room temperature tensile properties of pure magnesium was observed with the addition of less than two volume fraction TiB{sub 2} nanoparticulates. The synthesized Mg 1.98 vol.% TiB{sub 2} nanocomposite revealed the best room temperature tensile properties with a significant increase in the 0.2% tensile yield strength by ∼ 54%, ultimate tensile strength by ∼ 15% and fracture strain by ∼ 79% when compared to pure Mg. The X-ray diffraction studies indicated changes in the basal plane orientation of pure Mg with the addition of nano-TiB{sub 2} particulates. A maximum tensile fracture strain of ∼ 16% is achieved with the addition of 0.97 vol.% TiB{sub 2}. The room temperature compressive properties of the nanocomposites reveal that the addition of 1.98 TiB{sub 2} increases the 0.2% compressive yield strength of Mg by ∼ 47% and ultimate compressive strength by ∼ 10% with a marginal increase in the fracture strain (∼ 11%). Reduction in tensile–compression yield asymmetry was observed for Mg 0.58 and 0.97 vol.% TiB{sub 2} nanocomposites which can be attributed to the weakening of the strong basal texture of pure Mg. - Highlights: • First attempt is made to synthesize and characterize Mg-TiB{sub 2} nanocomposites. • XRD studies indicate nano TiB{sub 2} addition modifies the basal texture of pure Mg. • Maximum tensile fracture strain of ∼ 16 % in Mg 0.97 vol.% TiB{sub 2} nanocomposite. • Hardness values of Mg-TiB{sub 2} composites indicate superior tribological properties.« less

  14. Comparison of strains produced by titanium and poly D, L-lactide Acid plating systems to in vitro forces.

    PubMed

    Chacon, Guillermo E; Dillard, Frederick Matt; Clelland, Nancy; Rashid, Robert

    2005-07-01

    To determine if a specific resorbable plating system provides similar fixation, in terms of strain distribution under load, to a titanium system when the Champy technique is applied for the treatment of a mandibular angle fracture. A formalin-fixed cadaver mandible was harvested just before the study. A bicortical osteotomy was then made using a diamond disc extending in an oblique direction in the area of the angle. It was then passively fixated with a 4-hole 2.0-mm miniplate. Two stacked rosette strain gauges were bonded to the mandible on either side of the fracture. Each rosette had 3 strain gauges arranged in specific degrees relative to each other. The mandible was then placed on a dynanometer and 30 lb loads were delivered on the ipsilateral molar. Static resistance was placed in the condylar neck region to simulate the glenoid fossa. Loading was repeated 10 times with a period of 3 minutes between loads. Measurements were recorded for each strain gauge after loads were in place for 30 seconds. The same process was repeated using a 4-hole 2.1-mm resorbable miniplate. The strains were then used to calculate the maximum and minimum strains for each rosette. Hooke's law was used to calculate the principal stresses. Differences were observed between the strain gauges for each individual plating system. There was variability within the resorbable plate measurements as shown by the standard deviation. Using the REML ANOVA test, a significant difference was found between the 2 materials. In this in vitro study, there were significant biomechanical differences observed between a 2.0-mm titanium miniplate and a 2.1-mm resorbable miniplate when used to treat a mandibular angle fracture following Champy's principles. Based on our finding, both systems cannot be used interchangeably for the treatment of mandibular angle fractures under the same clinical conditions.

  15. Chemical synthesis and characterization of chitosan/silver nanocomposites films and their potential antibacterial activity.

    PubMed

    Shah, Aamna; Hussain, Izhar; Murtaza, Ghulam

    2018-05-12

    This study provides the optimum preparation parameters for functional chitosan silver nanocomposite (CSN) films with promising antibacterial efficacy though prepared with very low silver nitrate (AgNO 3 ) concentration. Chitosan nano‑silver composites were fabricated by In-situ chemical method utilizing the reducing ability of sodium borohydride (NaBH 4 ) and afterward casted into films. Utilization of response surface methodology, NCSS, and SigmaPlot for the optimization of CSN and their predicted antibacterial efficacy assessment of the selected bacterial strains (standard and clinical) was the essential part of the study. The cumulative silver ions released from the CSN films was examined by AAS and was found pH dependent. The developed nanocomposite films exhibited strong antibacterial activity against ATCC strains of Gram-positive Staphylococcus aureus, Gram-negative bacteria (Pseudomonas aeruginosa) and clinically isolated strains of MRSA. The antibacterial activity CSN films were compared with three commercially available dressings (Aquacel Ag®, Bactigras®, and Kaltostat®) and Quench cream. Statistical analysis of the results indicated that the developed CSN films were equally or even more effective than commercial products. Thus the fabricated CSN films may act as a potential candidate to overcome the emerging antibiotic resistance particularly in hospital-acquired skin infections caused by MRSA. Copyright © 2018. Published by Elsevier B.V.

  16. 3D printing of highly elastic strain sensors using polyurethane/multiwall carbon nanotube composites

    NASA Astrophysics Data System (ADS)

    Christ, Josef F.; Hohimer, Cameron J.; Aliheidari, Nahal; Ameli, Amir; Mo, Changki; Pötschke, Petra

    2017-04-01

    As the desire for wearable electronics increases and the soft robotics industry advances, the need for novel sensing materials has also increased. Recently, there have been many attempts at producing novel materials, which exhibit piezoresistive behavior. However, one of the major shortcomings in strain sensing technologies is in the fabrication of such sensors. While there is significant research and literature covering the various methods for developing piezoresistive materials, fabricating complex sensor platforms is still a manufacturing challenge. Here, we report a facile method to fabricate multidirectional embedded strain sensors using additive manufacturing technology. Pure thermoplastic polyurethane (TPU) and TPU/multiwall carbon nanotubes (MWCNT) nanocomposites were 3D printed in tandem using a low-cost multi-material FDM printer to fabricate uniaxial and biaxial strain sensors with conductive paths embedded within the insulative TPU platform. The sensors were then subjected to a series of cyclic strain loads. The results revealed excellent piezoresistive responses of the sensors with cyclic repeatability in both the axial and transverse directions and in response to strains as high as 50%. Further, while strain-softening did occur in the embedded printed strain sensors, it was predictable and similar to the results found in the literature for bulk polymer nanocomposites. This works demonstrates the possibility of manufacturing embedded and multidirectional flexible strain sensors using an inexpensive and versatile method, with potential applications in soft robotics and flexible electronics and health monitoring.

  17. Stretchable conductors by kirigami patterning of aramid-silver nanocomposites with zero conductance gradient

    NASA Astrophysics Data System (ADS)

    Lyu, Jing; Hammig, Mark D.; Liu, Lehao; Xu, Lizhi; Chi, Hang; Uher, Ctirad; Li, Tiehu; Kotov, Nicholas A.

    2017-10-01

    Materials that are both stretchable and electrically conductive enable a broad spectrum of applications in sensing, actuating, electronics, optics and energy storage. The materials engineering concept of stretchable conductors is primarily based on combining nanowires, nanoribbons, nanoparticles, or nanocarbons with rubbery polymers to obtain composites with different abilities to transport charge and alter their nanoscale organization under strain. Although some of these composites reveal remarkably interesting multiscale reconfigurability and self-assembly phenomena, decreasing conductance with increased strain has restricted their widespread implementation. In a broader physical sense, the dependence of conductance on stress is undesirable because it requires a correlated change of electrical inputs. In this paper, we describe highly conductive and deformable sheets with a conductivity as high as 230 000 S cm-1, composed of silver nanoparticles, infiltrated within a porous aramid nanofiber (ANF) matrix. By forming a kirigami pattern, consisting of a regularized network of notches cut within the films, their ultimate tensile strain is improved from ˜2% to beyond 100%. The use of ANFs derived from well-known ultrastrong Kevlar™ fibers imparts high mechanical performance to the base composite. Importantly, the conductance of the films remains constant, even under large deformation resulting in a material with a zero conductance gradient. Unlike other nanocomposites for which strain and conductance are strongly coupled, the kirigami nanocomposite provides a pathway to demanding applications for flexible and stretchable electronics with power/voltage being unaffected by the deformation mode and temperature.

  18. Fabrication of micromachined ceramic thin-film-type pressure sensors for overpressure tolerance and its characteristics

    NASA Astrophysics Data System (ADS)

    Chung, Gwiy-Sang; Kim, Jae-Min

    2004-04-01

    This paper describes the fabrication process and characteristics of ceramic thin-film pressure sensors based on Ta-N strain gauges for harsh environment applications. The Ta-N thin-film strain gauges are sputter-deposited on a thermally oxidized micromachined Si diaphragm with buried cavities for overpressure tolerance. The proposed device takes advantage of the good mechanical properties of single-crystalline Si as a diaphragm fabricated by SDB and electrochemical etch-stop technology, and in order to extend the temperature range, it has relatively higher resistance, stability and gauge factor of Ta-N thin-films more than other gauges. The fabricated pressure sensor presents a low temperature coefficient of resistance, high-sensitivity, low nonlinearity and excellent temperature stability. The sensitivity is 1.21-1.097 mV/V×kgf/cm2 in temperature ranges of 25-200°C and a maximum non-linearity is 0.43 %FS.

  19. Fluid force transducer

    DOEpatents

    Jendrzejczyk, Joseph A.

    1982-01-01

    An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

  20. Electron transport in gold colloidal nanoparticle-based strain gauges.

    PubMed

    Moreira, Helena; Grisolia, Jérémie; Sangeetha, Neralagatta M; Decorde, Nicolas; Farcau, Cosmin; Viallet, Benoit; Chen, Ke; Viau, Guillaume; Ressier, Laurence

    2013-03-08

    A systematic approach for understanding the electron transport mechanisms in resistive strain gauges based on assemblies of gold colloidal nanoparticles (NPs) protected by organic ligands is described. The strain gauges were fabricated from parallel micrometer wide wires made of 14 nm gold (Au) colloidal NPs on polyethylene terephthalate substrates, elaborated by convective self-assembly. Electron transport in such devices occurs by inter-particle electron tunneling through the tunnel barrier imposed by the organic ligands protecting the NPs. This tunnel barrier was varied by changing the nature of organic ligands coating the nanoparticles: citrate (CIT), phosphines (BSPP, TDSP) and thiols (MPA, MUDA). Electro-mechanical tests indicate that only the gold NPs protected by phosphine and thiol ligands yield high gauge sensitivity. Temperature-dependent resistance measurements are explained using the 'regular island array model' that extracts transport parameters, i.e., the tunneling decay constant β and the Coulomb charging energy E(C). This reveals that the Au@CIT nanoparticle assemblies exhibit a behavior characteristic of a strong-coupling regime, whereas those of Au@BSPP, Au@TDSP, Au@MPA and Au@MUDA nanoparticles manifest a weak-coupling regime. A comparison of the parameters extracted from the two methods indicates that the most sensitive gauges in the weak-coupling regime feature the highest β. Moreover, the E(C) values of these 14 nm NPs cannot be neglected in determining the β values.

  1. Electron transport in gold colloidal nanoparticle-based strain gauges

    NASA Astrophysics Data System (ADS)

    Moreira, Helena; Grisolia, Jérémie; Sangeetha, Neralagatta M.; Decorde, Nicolas; Farcau, Cosmin; Viallet, Benoit; Chen, Ke; Viau, Guillaume; Ressier, Laurence

    2013-03-01

    A systematic approach for understanding the electron transport mechanisms in resistive strain gauges based on assemblies of gold colloidal nanoparticles (NPs) protected by organic ligands is described. The strain gauges were fabricated from parallel micrometer wide wires made of 14 nm gold (Au) colloidal NPs on polyethylene terephthalate substrates, elaborated by convective self-assembly. Electron transport in such devices occurs by inter-particle electron tunneling through the tunnel barrier imposed by the organic ligands protecting the NPs. This tunnel barrier was varied by changing the nature of organic ligands coating the nanoparticles: citrate (CIT), phosphines (BSPP, TDSP) and thiols (MPA, MUDA). Electro-mechanical tests indicate that only the gold NPs protected by phosphine and thiol ligands yield high gauge sensitivity. Temperature-dependent resistance measurements are explained using the ‘regular island array model’ that extracts transport parameters, i.e., the tunneling decay constant β and the Coulomb charging energy EC. This reveals that the Au@CIT nanoparticle assemblies exhibit a behavior characteristic of a strong-coupling regime, whereas those of Au@BSPP, Au@TDSP, Au@MPA and Au@MUDA nanoparticles manifest a weak-coupling regime. A comparison of the parameters extracted from the two methods indicates that the most sensitive gauges in the weak-coupling regime feature the highest β. Moreover, the EC values of these 14 nm NPs cannot be neglected in determining the β values.

  2. Confining and repulsive potentials from effective non-Abelian gauge fields in graphene bilayers

    NASA Astrophysics Data System (ADS)

    González, J.

    2016-10-01

    We investigate the effect of shear and strain in graphene bilayers, under conditions where the distortion of the lattice gives rise to a smooth one-dimensional modulation in the stacking sequence of the bilayer. We show that strain and shear produce characteristic Moiré patterns which can have the same visual appearance on a large scale, but representing graphene bilayers with quite different electronic properties. The different features in the low-energy electronic bands can be ascribed to the effect of a fictitious non-Abelian gauge field mimicking the smooth modulation of the stacking order. Strained and sheared bilayers show a complementary behavior, which can be understood from the fact that the non-Abelian gauge field acts as a repulsive interaction in the former, expelling the electron density away from the stacking domain walls, while behaving as a confining interaction leading to localization of the electronic states in the sheared bilayers. In this latter case, the presence of the effective gauge field explains the development of almost flat low-energy bands, resembling the form of the zeroth Landau level characteristic of a Dirac fermion field. The estimate of the gauge field strength in those systems gives a magnitude of the order of several tens of tesla, implying a robust phenomenology that should be susceptible of being observed in suitably distorted bilayer samples.

  3. Aqueous synthesis of ZnTe/dendrimer nanocomposites and their antimicrobial activity: implications in therapeutics

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Ghosh, D.; Bag, P. K.; Bhattacharya, S. C.; Saha, A.

    2011-03-01

    The present strategy proposes a simple and single step aqueous route for synthesizing stable, fluorescent ZnTe/dendrimer nanocomposites with varying dendrimer terminal groups. In these hybrid materials, the fluorescence of the semiconductor combines with the biomimetic properties of the dendrimer making them suitable for various biomedical applications. The ZnTe nanocomposites thus obtained demonstrate bactericidal activity against enteropathogenic bacteria without having toxic effects on the human erythrocytes. The average size of the ZnTe nanoparticles within the dendrimer matrix was in the range of 2.9-6.0 nm, and they have a good degree of crystallinity with a hexagonal crystal phase. The antibacterial activities of the ZnTe/dendrimer nanocomposites (ZnTe DNCs) as well other semiconductor nanocomposites were evaluated against enteropathogenic bacteria including multi-drug resistant Vibrio cholerae serogroup O1 and enterotoxigenic Escherichia coli (ETEC). ZnTe DNCs had significant antibacterial activity against strains of V. cholerae and ETEC with minimum inhibitory concentrations ranging from 64 to 512 μg ml-1 and minimum bactericidal concentrations ranging from 128 to 1000 μg ml-1. Thus, the observed results suggest that these water-soluble active nanocomposites have potential for the treatment of enteric diseases like diarrhoea and cholera.The present strategy proposes a simple and single step aqueous route for synthesizing stable, fluorescent ZnTe/dendrimer nanocomposites with varying dendrimer terminal groups. In these hybrid materials, the fluorescence of the semiconductor combines with the biomimetic properties of the dendrimer making them suitable for various biomedical applications. The ZnTe nanocomposites thus obtained demonstrate bactericidal activity against enteropathogenic bacteria without having toxic effects on the human erythrocytes. The average size of the ZnTe nanoparticles within the dendrimer matrix was in the range of 2.9-6.0 nm, and they have a good degree of crystallinity with a hexagonal crystal phase. The antibacterial activities of the ZnTe/dendrimer nanocomposites (ZnTe DNCs) as well other semiconductor nanocomposites were evaluated against enteropathogenic bacteria including multi-drug resistant Vibrio cholerae serogroup O1 and enterotoxigenic Escherichia coli (ETEC). ZnTe DNCs had significant antibacterial activity against strains of V. cholerae and ETEC with minimum inhibitory concentrations ranging from 64 to 512 μg ml-1 and minimum bactericidal concentrations ranging from 128 to 1000 μg ml-1. Thus, the observed results suggest that these water-soluble active nanocomposites have potential for the treatment of enteric diseases like diarrhoea and cholera. Electronic supplementary information (ESI) available: Dynamic light scattering, atomic force microscopy and hemolytic activity of the nanocomposites. See DOI: 10.1039/c0nr00610f

  4. Self-sensing concrete-filled FRP tubes using FBG strain sensors

    NASA Astrophysics Data System (ADS)

    Yan, Xin; Li, Hui

    2007-07-01

    Concrete-filled fiber-reinforced polymer (FRP) tube is a type of newly developed structural column. It behaves brittle failure at its peak strength, and so the health monitoring on the hoop strain of the FRP tube is essential for the life cycle safety of the structure. Herein, three types of FRP tubes including 5-ply tube, 2-ply tube with local reinforcement and FRP-steel composite tube were embedded with the optic fiber Bragg grating (FBG) strain sensors in the inter-ply of FRP or the interface between FRP and steel in the middle height and the hoop direction. The compressive behaviors of the concrete-filled FRP tubes were experimentally studied. The hoop strains of the FRP tubes were recorded in real time using the embedded FBG strain sensors as well as the embedded or surface electric resistance strain gauges. Results indicated that the FBG strain sensors can faithfully record the hoop strains of the FRP tubes in compression as compared with the embedded or surface electric resistance strain gauges, and the strains recorded can reach more than μɛ.

  5. Mandibular corpus bone strains during mastication in goats (Capra hircus): a comparison of ingestive and rumination chewing.

    PubMed

    Williams, Susan H; Stover, Kristin K; Davis, Jillian S; Montuelle, Stephane J

    2011-10-01

    To compare the mechanical loading environment of the jaw in goats during ingestive and rumination chewing. Rosette strain gauges were attached to the external surface of the mandibular corpus in five goats to record bone strains during the mastication of hay and rumination. Strain magnitudes and maximum physiological strain rates during the mastication of hay are significantly higher than during rumination chewing on the working and balancing sides. Principal strain ratios and orientations are similar between the two chewing behaviours. Loading and chewing cycle duration are all longer during rumination chewing, whereas chew duty factor and variances in load and chewing cycle durations are higher during ingestive chewing. For most of the variables, differences in strain magnitudes or durations are similar at all three gauge sites, suggesting that rumination and ingestive chewing do not differentially influence bone at the three gauge sites. Despite lower strain magnitudes, the repetitive nature of rumination chewing makes it an important component of the mechanical loading environment of the selenodont artiodactyl jaw. However, similarities in principal strain orientations and ratios indicate that rumination chewing need not be considered as a unique loading behaviour influencing the biomechanics of the selenodont artiodactyl jaw. Differences in loading and chewing cycle durations during rumination and ingestion demonstrate flexibility in adult chewing frequencies. Finally, although the low within-sequence variability in chewing cycle durations supports the hypothesis that mammalian mastication is energetically efficient, chewing during rumination may not be more efficient than during ingestion. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized boron nitride nanoflakes.

    PubMed

    Lee, Dongju; Song, Sung Ho; Hwang, Jaewon; Jin, Sung Hwan; Park, Kwang Hyun; Kim, Bo Hyun; Hong, Soon Hyung; Jeon, Seokwoo

    2013-08-12

    The influence of surface modifications on the mechanical properties of epoxy-hexagonal boron nitride nanoflake (BNNF) nanocomposites is investigated. Homogeneous distributions of boron nitride nanoflakes in a polymer matrix, preserving intrinsic material properties of boron nitride nanoflakes, is the key to successful composite applications. Here, a method is suggested to obtain noncovalently functionalized BNNFs with 1-pyrenebutyric acid (PBA) molecules and to synthesize epoxy-BNNF nanocomposites with enhanced mechanical properties. The incorporation of noncovalently functionalized BNNFs into epoxy resin yields an elastic modulus of 3.34 GPa, and 71.9 MPa ultimate tensile strength at 0.3 wt%. The toughening enhancement is as high as 107% compared to the value of neat epoxy. The creep strain and the creep compliance of the noncovalently functionalized BNNF nanocomposite is significantly less than the neat epoxy and the nonfunctionalized BNNF nanocomposite. Noncovalent functionalization of BNNFs is effective to increase mechanical properties by strong affinity between the fillers and the matrix. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Probe Without Moving Parts Measures Flow Angle

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Vachon, M. Jake

    2003-01-01

    The measurement of local flow angle is critical in many fluid-dynamic applications, including the aerodynamic flight testing of new aircraft and flight systems. Flight researchers at NASA Dryden Flight Research Center have recently developed, flight-tested, and patented the force-based flow-angle probe (FLAP), a novel, force-based instrument for the measurement of local flow direction. Containing no moving parts, the FLAP may provide greater simplicity, improved accuracy, and increased measurement access, relative to conventional moving vane-type flow-angle probes. Forces in the FLAP can be measured by various techniques, including those that involve conventional strain gauges (based on electrical resistance) and those that involve more advanced strain gauges (based on optical fibers). A correlation is used to convert force-measurement data to the local flow angle. The use of fiber optics will enable the construction of a miniature FLAP, leading to the possibility of flow measurement in very small or confined regions. This may also enable the tufting of a surface with miniature FLAPs, capable of quantitative flow-angle measurements, similar to attaching yarn tufts for qualitative measurements. The prototype FLAP was a small, aerodynamically shaped, low-aspect-ratio fin about 2 in. (approximately equal to 5 cm) long, 1 in. (approximately equal to 2.5 cm) wide, and 0.125 in. (approximately equal to 0.3 cm) thick (see Figure 1). The prototype FLAP included simple electrical-resistance strain gauges for measuring forces. Four strain gauges were mounted on the FLAP; two on the upper surface and two on the lower surface. The gauges were connected to form a full Wheatstone bridge, configured as a bending bridge. In preparation for a flight test, the prototype FLAP was mounted on the airdata boom of a flight-test fixture (FTF) on the NASA Dryden F-15B flight research airplane.

  8. Strain gauges used in the mechanical testing of bones. Part II: "In vitro" and "in vivo" technique.

    PubMed

    Cordey, J; Gautier, E

    1999-01-01

    How to choose and prepare the strain gauges for bonding on bones "in vitro" and "in vivo"? This communication aims to elucidate technical details and some applications: direct assessment of the axial load, the bending moment, and the torque applied to long bones by the physiological loads. As a typical example of application, we will show the assessment of stress protection due to plates on the bones in the sheep tibia.

  9. Full wave field recording of the vertical strain at SAFOD from local, regional and teleseismic earthquakes

    NASA Astrophysics Data System (ADS)

    Ellsworth, W. L.; Karrenbach, M. H.; Zumberge, M. A.

    2017-12-01

    The main borehole at the San Andreas Fault Observatory at Depth (SAFOD) contains optical fibers cemented in place in between casing strings from the surface to just below the top of the basement. The fibers are under tension of approximately 1 N and are housed in a 0.9 mm diameter stainless steel tube. Earth strain is transmitted to the fiber by frictional contact with the tube wall. One fiber has been in use as a vertical strainmeter since 2005, measuring the total strain between 9 and 740 m by laser interferometry. In June 2017 we attached an OptaSense Distributed Acoustic Sensing (DAS) system, model ODH3.1, to a second fiber that terminates at 864 m depth. The DAS laser interrogator measures the strain over a gauge length with a set spacing between gauge intervals. For this experiment we set the gauge length to 10 m with 1 m spacing between gauges. Including the surface run of the fiber, this gives us 936 channels measuring the vertical strain at a sample interval of 0.4 msec (2500 samples/s). Continuous recording of the string produces approximately 1 TB/day. During one month of data collection, we recorded local, regional and teleseismic earthquakes. With this recording geometry, the DAS system captures the full vertical wavefield between the basement interface and free surface, revealing direct, converted and refracted waves. Both P- and S- strain waves are clearly visible in the data, even for 10 km deep earthquakes located almost directly below the well (see figure). The incident and surface reflected wavefields can be separated by frequency-wavenumber filtering due to the large-aperture and fine spatial and temporal sampling. Up- and downgoing strain waves illuminate the subsurface within the sensor array's depth range. Accurate arrival time determinations of the initial arrival phase are possible due to consistent wave forms recorded at 1 m spatial intervals that can be used for fine-scale shallow velocity model estimation.

  10. Strain evaluation of strengthened concrete structures using FBG sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau Kintak; Zhou Limin; Ye Lin

    1999-12-02

    Fibre-optic Bragg Grating (FBG) sensor presents a great deal of potential in monitoring the internal status of the concrete structures after repairing or strengthening by an external adhered reinforcement. It can be used in a variety of configurations ranging from pointwise to multi-point strain measurement in order to investigate the strain distribution of the structures. In this paper, an experimental investigation on the rectangular notched-concrete beam, which was strengthened by glass fibre composites with the embedment of multiplexing FBG sensors is presented. Three point bending test was performed to investigate the strain profile of the specimen. Frequency modulated continuous wavemore » (FMCW) technique was used to measure the strain variation of the fibre-grating regions. The results give a good agreement with the electrical resistance strain gauge in early loading condition. The difference of the strain-measuring results between the strain-gauge and FBG sensor was increased when further increasing the applied load. It was suspected that the micro/marco cracks occurred on the concrete surface and that the externally bonded strain-measuring device cannot be detected.« less

  11. A High Performance Torque Sensor for Milling Based on a Piezoresistive MEMS Strain Gauge

    PubMed Central

    Qin, Yafei; Zhao, Yulong; Li, Yingxue; Zhao, You; Wang, Peng

    2016-01-01

    In high speed and high precision machining applications, it is important to monitor the machining process in order to ensure high product quality. For this purpose, it is essential to develop a dynamometer with high sensitivity and high natural frequency which is suited to these conditions. This paper describes the design, calibration and performance of a milling torque sensor based on piezoresistive MEMS strain. A detailed design study is carried out to optimize the two mutually-contradictory indicators sensitivity and natural frequency. The developed torque sensor principally consists of a thin-walled cylinder, and a piezoresistive MEMS strain gauge bonded on the surface of the sensing element where the shear strain is maximum. The strain gauge includes eight piezoresistances and four are connected in a full Wheatstone circuit bridge, which is used to measure the applied torque force during machining procedures. Experimental static calibration results show that the sensitivity of torque sensor has been improved to 0.13 mv/Nm. A modal impact test indicates that the natural frequency of torque sensor reaches 1216 Hz, which is suitable for high speed machining processes. The dynamic test results indicate that the developed torque sensor is stable and practical for monitoring the milling process. PMID:27070620

  12. Strain rate dependent hyperelastic stress-stretch behavior of a silica nanoparticle reinforced poly (ethylene glycol) diacrylate nanocomposite hydrogel.

    PubMed

    Zhan, Yuexing; Pan, Yihui; Chen, Bing; Lu, Jian; Zhong, Zheng; Niu, Xinrui

    2017-11-01

    Poly (ethylene glycol) diacrylate (PEGDA) derivatives are important biomedical materials. PEGDA based hydrogels have emerged as one of the popular regenerative orthopedic materials. This work aims to study the mechanical behavior of a PEGDA based silica nanoparticle (NP) reinforced nanocomposite (NC) hydrogel at physiological strain rates. The work combines materials fabrication, mechanical experiments, mathematical modeling and structural analysis. The strain rate dependent stress-stretch behaviors were observed, analyzed and quantified. Visco-hyperelasticity was identified as the deformation mechanism of the nano-silica/PEGDA NC hydrogel. NPs showed significant effect on both initial shear modulus and viscoelastic materials properties. A structure-based quasi-linear viscoelastic (QLV) model was constructed and capable to describe the visco-hyperelastic stress-stretch behavior of the NC hydrogel. A group of unified material parameters was extracted by the model from the stress-stretch curves obtained at different strain rates. Visco-hyperelastic behavior of NP/polymer interphase was not only identified but also quantified. The work could provide guidance to the structural design of next-generation NC hydrogel. Copyright © 2017. Published by Elsevier Ltd.

  13. Inexpensive Implementation of Many Strain Gauges

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew C.

    2010-01-01

    It has been proposed to develop arrays of strain gauges as arrays of ordinary metal film resistors and associated electronic readout circuitry on printed circuit boards or other suitable substrates. This proposal is a by-product of a development of instrumentation utilizing metal film resistors on printed-circuit boards to measure temperatures at multiple locations. In the course of that development, it was observed that in addition to being sensitive to temperature, the metal film resistors were also sensitive to strains in the printed-circuit boards to which they were attached. Because of the low cost of ordinary metal film resistors (typically <$0.01 apiece at 2007 prices), the proposal could enable inexpensive implementation of arrays of many (e.g., 100 or more) strain gauges, possibly concentrated in small areas. For example, such an array could be designed for use as a computer keyboard with no moving parts, as a device for sensing the shape of an object resting on a surface, or as a device for measuring strains at many points on a mirror, a fuel tank, an airplane wing, or other large object. Ordinarily, the effect of strain on resistance would be regarded as a nuisance in a temperature-measuring application, and the effect of temperature on resistance would be regarded as a nuisance in a strain-measuring application. The strain-induced changes in resistance of the metal film resistors in question are less than those of films in traditional strain gauges. The main novel aspect of present proposal lies in the use of circuitry affording sufficient sensitivity to measure strain plus means for compensating for the effect of temperature. For an array of metal film resistors used as proposed, the readout circuits would include a high-accuracy analog-to-digital converter fed by a low noise current source, amplifier chain, and an analog multiplexer chain. Corrections would be provided by use of high-accuracy calibration resistors and a temperature sensor. By use of such readout circuitry, it would be possible to read the resistances of as many as 100 fixed resistors in a time interval of 1 second at a resolution much greater than 16 bits. The readout data would be processed, along with temperature calibration data, to deduce the strain on the printed-circuit board or other substrate in the areas around the resistors. It should also be possible to also deduce the temperature from the readings.

  14. Stiffness monitoring and damage assessment of bridges under moving vehicular loads using spatially-distributed optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Wu, Bitao; Wu, Gang; Lu, Huaxi; Feng, De-chen

    2017-03-01

    Fiber optic sensing technology has been widely used in civil infrastructure health monitoring due to its various advantages, e.g., anti-electromagnetic interference, corrosion resistance, etc. This paper investigates a new method for stiffness monitoring and damage identification of bridges under moving vehicle loads using spatially-distributed optical fiber sensors. The relationship between the element stiffness of the bridge and the long-gauge strain history is firstly studied, and a formula which is expressed by the long-gauge strain history is derived for the calculation of the bridge stiffness. Meanwhile, the stiffness coefficient from the formula can be used to identify the damage extent of the bridge. In order to verify the proposed method, a model test of a 1:10 scale bridge-vehicle system is conducted and the long-gauge strain history is obtained through fiber Bragg grating sensors. The test results indicate that the proposed method is suitable for stiffness monitoring and damage assessment of bridges under moving vehicular loads.

  15. Fullerene reinforced ionic polymer transducer

    NASA Astrophysics Data System (ADS)

    Jung, J. H.; Cheng, T. H.; Oh, I. K.

    2009-07-01

    Novel fullerene reinforced nano-composite transducers based on nafion were developed inorder to improve the ionic polymer metal composite transducer. The fullerene reinforced nano-composite membranes were fabricated by recasting method with 0.1 and 0.5 weight percentage of a Fullerenes. Stress-Strain tests showed tremendous increase in stiffness and modulus of the nano-composite membranes even at these minute concentrations of Fullerenes. Ionic exchange capacity analysis and proton conductivity test were performed to calculate the electrical property of the composite films. Water uptake was measured to understand the liquid adsorbing characteristics of the membranes. Also, tip displacement of the nano-composite membrane transducer was investigated under AC excitations with various magnitudes and frequencies. Furthermore, the generated energy was measured from external sinusoidal physical input vibration with several displacements and frequencies by using a mechanical shaker. As a result, the fullerene reinforced nanocomposite membrane based on nafion shows higher stiffness and Young's modulus than that of pure nafion membrane. Also, the nano-composite membrane had better water uptake and proton conductivity than the pure membrane. Fullerene reinforced nano-composite membrane transducer actuates to a much larger deformations than pure nafion membrane transducer. The developed membrane transducer dissipates more energy from the physical input vibration than that of unfilled(or virgin) Nafion membrane transducer.

  16. Highly strain-sensitive magnetostrictive tunnel magnetoresistance junctions

    NASA Astrophysics Data System (ADS)

    Tavassolizadeh, Ali; Hayes, Patrick; Rott, Karsten; Reiss, Günter; Quandt, Eckhard; Meyners, Dirk

    2015-06-01

    Tunnel magnetoresistance (TMR) junctions with CoFeB/MgO/CoFeB layers are promising for strain sensing applications due to their high TMR effect and magnetostrictive sense layer (CoFeB). TMR junctions available even in submicron dimensions can serve as strain sensors for microelectromechanical systems devices. Upon stress application, the magnetization configuration of such junctions changes due to the inverse magnetostriction effect resulting in strain-sensitive tunnel resistance. Here, strain sensitivity of round-shaped junctions with diameters of 11.3 μm, 19.2 μm, 30.5 μm, and 41.8 μm were investigated on macroscopic cantilevers using a four-point bending apparatus. This investigation mainly focuses on changes in hard-axis TMR loops caused by the stress-induced anisotropy. A macrospin model is proposed, supported by micromagnetic simulations, which describes the complete rotation of the sense layer magnetization within TMR loops of junctions, exposed to high stress. Below 0.2‰ tensile strain, a representative junction with 30.5 μm diameter exhibits a very large gauge factor of 2150. For such high gauge factor a bias field H = - 3.2 kA / m is applied in an angle equal to 3 π / 2 toward the pinned magnetization of the reference layer. The strain sensitivity strongly depends on the bias field. Applying stress along π / 4 against the induced magnetocrystalline anisotropy, both compressive and tensile strain can be identified by a unique sensor. More importantly, a configuration with a gauge factor of 400 at zero bias field is developed which results in a straightforward and compact measuring setup.

  17. Evaluation of cable tension sensors of FAST reflector from the perspective of EMI

    NASA Astrophysics Data System (ADS)

    Zhu, Ming; Wang, Qiming; Egan, Dennis; Wu, Mingchang; Sun, Xiao

    2016-06-01

    The active reflector of FAST (five-hundred-meter aperture spherical radio telescope) is supported by a ring beam and a cable-net structure, in which nodes are actively controlled to form series of real-time paraboloids. To ensure the security and stability of the supporting structure, tension must be monitored for some typical cables. Considering the stringent requirements in accuracy and long-term stability, magnetic flux sensor, vibrating wire strain gauge and fiber bragg grating strain gauge are screened for the cable tension monitoring of the supporting cable-net. Specifically, receivers of radio telescopes have strict restriction on electro magnetic interference (EMI) or radio frequency interference (RFI). These three types of sensors are evaluated from the view of EMI/RFI. Firstly, these fundamentals are theoretically analyzed. Secondly, typical sensor signals are collected in the time and analyzed in the frequency domain, which shows the characteristic in the frequency domain. Finally, typical sensors are tested in an anechoic chamber to get the EMI levels. Theoretical analysis shows that Fiber Bragg Grating strain gauge itself will not lead to EMI/RFI. According to GJB151A, frequency domain analysis and test results show that for the vibrating wire strain gauge and magnetic flux sensor themselves, testable EMI/RFI levels are typically below the background noise of the anechoic chamber. FAST finally choses these three sensors as the monitoring sensors of its cable tension. The proposed study is also a reference to the monitoring equipment selection of other radio telescopes and large structures.

  18. A strong and deformable in-situ magnesium nanocomposite igniting above 1000 °C.

    PubMed

    Tekumalla, Sravya; Nandigam, Yogesh; Bibhanshu, Nitish; Rajashekara, Shabadi; Yang, Chen; Suwas, Satyam; Gupta, Manoj

    2018-05-04

    Magnesium has been trending of late in automobile, aerospace, defense, sports, electronic and biomedical sectors as it offers an advantage in light-weighting. In aluminum, titanium, and steel dominated aerospace and defense sectors, applications of Mg were banned/restricted until recently due to perceived easy ignition and inability to self-extinguish immediately. Strength is generally inversely related to ductility, weak texture and unrelated to ignition resistance, making it challenging to optimize all four concurrently in a material. We address this challenge by designing a low density (~1.76 g.cm -3 ) in-situ Mg nanocomposite. It is a resultant of a sequence of in-situ reactions during melt processing and extrusion. The in-situ formed Y 2 O 3 nanoparticles exhibit coherency with matrix and lead to development of large amount of elastic and plastic strain fields around them. These nanoparticles and secondary phases (Mg 2 Ca and Mg 2 Y) are responsible for the nanocomposite's high tensile strength (~343 MPa). A weak texture mediated tensile ductility of 30% and compressive failure strain of 44% is observed. Further, the ignition temperature increased to 1045 °C (near the boiling point of Mg)  due to the formation of protective surficial oxide layers aided by the presence of insulating Y 2 O 3 nanoparticles, rendering the nanocomposite outperform other traditional commercial Mg-based materials.

  19. MoO2-ordered mesoporous carbon nanocomposite as an anode material for lithium-ion batteries.

    PubMed

    Zeng, Lingxing; Zheng, Cheng; Deng, Cuilin; Ding, Xiaokun; Wei, Mingdeng

    2013-03-01

    In the present work, the nanocomposite of MoO2-ordered mesoporous carbon (MoO2-OMC) was synthesized for the first time using a carbon thermal reduction route and the mesoporous carbon as the nanoreactor. The synthesized nanocomposite was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), N2 adsorption-desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) measurements. Furthermore, this nanocomposite was used as an anode material for Li-ion intercalation and exhibited large reversible capacity, high rate performance, and good cycling stability. For instance, a high reversible capacity of 689 mAh g(-1) can remain after 50 cycles at a current density of 50 mA g(-1). It is worth mentioning that the MoO2-OMC nanocomposite electrode can attain a high reversible capacity of 401 mAh g(-1) at a current density as high as 2 A g(-1). These results might be due to the intrinsic characteristics of nanocomposite, which offered a better accommodation of the strain and volume changes and a shorter path for Li-ion and electron transport, leading to the improved capacity and enhanced rate capability.

  20. Computational Modeling of Interfacial Behaviors in Nanocomposite Materials

    PubMed Central

    Lin, Liqiang; Wang, Xiaodu; Zeng, Xiaowei

    2017-01-01

    Towards understanding the bulk material response in nanocomposites, an interfacial zone model was proposed to define a variety of material interface behaviors (e.g. brittle, ductile, rubber-like, elastic-perfectly plastic behavior etc.). It also has the capability to predict bulk material response though independently control of the interface properties (e.g. stiffness, strength, toughness). The mechanical response of granular nanocomposite (i.e. nacre) was investigated through modeling the “relatively soft” organic interface as an interfacial zone among “hard” mineral tablets and simulation results were compared with experimental measurements of stress-strain curves in tension and compression tests. Through modeling varies material interfaces, we found out that the bulk material response of granular nanocomposite was regulated by the interfacial behaviors. This interfacial zone model provides a possible numerical tool for qualitatively understanding of structure-property relationships through material interface design. PMID:28983123

  1. Prediction of strain values in reinforcements and concrete of a RC frame using neural networks

    NASA Astrophysics Data System (ADS)

    Vafaei, Mohammadreza; Alih, Sophia C.; Shad, Hossein; Falah, Ali; Halim, Nur Hajarul Falahi Abdul

    2018-03-01

    The level of strain in structural elements is an important indicator for the presence of damage and its intensity. Considering this fact, often structural health monitoring systems employ strain gauges to measure strains in critical elements. However, because of their sensitivity to the magnetic fields, inadequate long-term durability especially in harsh environments, difficulties in installation on existing structures, and maintenance cost, installation of strain gauges is not always possible for all structural components. Therefore, a reliable method that can accurately estimate strain values in critical structural elements is necessary for damage identification. In this study, a full-scale test was conducted on a planar RC frame to investigate the capability of neural networks for predicting the strain values. Two neural networks each of which having a single hidden layer was trained to relate the measured rotations and vertical displacements of the frame to the strain values measured at different locations of the frame. Results of trained neural networks indicated that they accurately estimated the strain values both in reinforcements and concrete. In addition, the trained neural networks were capable of predicting strains for the unseen input data set.

  2. Validation of strain gauges as a method of measuring precision of fit of implant bars.

    PubMed

    Hegde, Rashmi; Lemons, Jack E; Broome, James C; McCracken, Michael S

    2009-04-01

    Multiple articles in the literature have used strain gauges to estimate the precision of fit of implant bars. However, the accuracy of these measurements has not been fully documented. The purpose of this study was to evaluate the response of strain gauges to known amounts of misfit in an implant bar. This is an important step in validation of this device. A steel block was manufactured with five 4.0-mm externally hexed implant platforms machined into the block 7-mm apart. A 1.4-cm long gold alloy bar was cast to fit 2 of the platforms. Brass shims of varying thickness (150, 300, and 500 microm) were placed under one side of the bar to create misfit. A strain gage was used to record strain readings on top of the bar, one reading at first contact of the bar and one at maximum screw torque. Microgaps between the bar and the steel platforms were measured using a high-precision optical measuring device at 4 points around the platform. The experiment was repeated 3 times. Two-way analysis of variance and linear regression were used for statistical analyses. Shim thickness had a significant effect on strain (P < 0.0001). There was a significant positive correlation between shim thickness and strain (R(2) = 0.93) for strain at maximum torque, and for strain measurements at first contact (R(2) = 0.91). Microgap measurements showed no correlation with increasing misfit. Strain in the bar increased significantly with increasing levels of misfit. Strain measurements induced at maximum torque are not necessarily indicative of the maximum strains experienced by the bar. The presence or absence of a microgap between the bar and the platform is not necessarily indicative of passivity. These data suggest that microgap may not be clinically reliable as a measure of precision of fit.

  3. Optimization of Nickel Nanocomposite for Large Strain Sensing Applications

    DTIC Science & Technology

    2011-01-01

    piezoresistive response of the material. As part of this study the effect of the addition of a second conductive filler particle of a distinct length scale...corresponding increase in the overall conductivity of the composite. The composite conductivity is increased about an order of magnitude for each additional ...strain at which the mean resis - Fig. 10. Schematic representation of how εerr was calculated from the range of the volume resistivity for a given strain

  4. A novel solution blending method for using olive oil and corn oil as plasticizers in chitosan based organoclay nanocomposites.

    PubMed

    Giannakas, A; Patsaoura, A; Barkoula, N-M; Ladavos, A

    2017-02-10

    In the current study a novel reflux-solution blending method is being followed with the introduction of small ethanol volumes into chitosan acetic acid aquatic solution in order to incorporate olive oil and corn oil in chitosan and its organoclay nanocomposites. Ethanol enables the direct interaction of chitosan with oils and results in effective plasticization of chitosan/oil films with remarkable increase of the strain at break from 8% of chitosan and chitosan/oil aquatic samples to app. 22% for chitosan/oil ethanol samples. Compared with olive oil, corn oil is less effective as plasticizer (max strain at break app. 14%). Addition of oils is beneficial for water sorption, water vapor permeability and oxygen permeability response of the obtained films. Barrier properties are further improved after the use of OrgMMT, however OrgMMT results in significant reduction of strain at break of all oil containing samples (app. 8%) acting as stress concentrator upon deformation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Tracking Damage Nucleation and Propagation in Metallic Materials Using a Planar Biaxial Test System

    DTIC Science & Technology

    2008-09-30

    along the horizontal (x) axis. The dimensions of the system are shown in Fig. 1. It was delivered by MTS to ASU on Sep. 12, 2008, approximately 1 year...the y (vertical) and x ( horizontal ) axes is 3 Py/Px = 1.0. Figure 5 shows contours of resultant displacement in the gage area of both the simple and...sensors were used. Oile strain gauge is 1nounte<l on the horizontal flange (Fig. 4a), and one on the vertical flange (Fig. 4a) and two strain gauges

  6. Mobile detection system to evaluate reactive hyperemia using radionuclide plethysmography.

    PubMed

    Harel, François; Ngo, Quam; Finnerty, Vincent; Hernandez, Edgar; Khairy, Paul; Dupuis, Jocelyn

    2007-08-01

    We validated a novel mobile detection system to evaluate reactive hyperemia using the radionuclide plethysmography technique. Twenty-six subjects underwent simultaneously radionuclide plethysmography with strain gauge plethysmography. Strain gauge and radionuclide methods showed excellent reproducibility with intraclass correlation coefficients of 0.96 and 0.89 respectively. There was also a good correlation of flows between the two methods during reactive hyperemia (r = 0.87). We conclude that radionuclide plethysmography using this mobile detection system is a non-invasive alternative to assess forearm blood flow and its dynamic variations during reactive hyperemia.

  7. Tensile Modulus By X-Ray Diffraction: Instrument and Method

    DTIC Science & Technology

    1990-07-01

    from Bombyx mori ...................... 7 7. Active region of the tension arm showing strain gauges .................. 9 8. Strain gauge circuit diagram...45 70 100 DegumSilk Bombyx 1.353 1.356 11.9 880 9.79 3x6 45 70 200 mori 0 (𔃾 0 0 I I I I $ I I I I I I I I I I 10. 20. 30. 40. 50. 60. 70. 80. 90. 100...however, makes accurate modulus measurements possible. Degummed silk from Bombyx mori has one moderately strong, moderately sharp reflection at low

  8. Effects of Nanofillers on the Thermo-Mechanical Properties and Chemical Resistivity of Epoxy Nanocomposites.

    PubMed

    Atchudan, Raji; Pandurangan, Arumugam; Joo, Jin

    2015-06-01

    MWCNTs was synthesized using Ni-Cr/MgO by CVD method and were purified. The purified MWCNT was used as a filler material for the fabrication of epoxy nanocomposites. The epoxy nanocomposites with different amount (wt% = 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0) of nanofillers (CB, SiO2 and MWCNTs) were prepared by casting method. The effects of nanofillers on the properties of neat epoxy matrix were well studied. The thermal properties of nanocomposites were studied using DSC, TGA and flame retardant, and also the mechanical properties such as tensile strength, flexural strength, compressive strength, impact strength, determination of hardness and chemical resistance were studied extensively. Based on the experiment's results, 2 wt% MWCNTs loading in epoxy resin showed the highest improvement in tensile strength, as compared to neat epoxy and to other epoxy systems (CB/epoxy, SiO2/epoxy). Improvements in tensile strength, glass transition temperature and decomposition temperature were observed by the addition of MWCNTs. The mechanical properties of the epoxy nanocomposites were improved due to the interfacial bonding between the MWCNTs and epoxy resin. Strain hardening behavior was higher for MWCNT/epoxy nanocomposites compared with CB/epoxy and SiO2/epoxy nanocomposites. The investigation of thermal and mechanical properties reveals that the incorporation of MWCNTs into the epoxy nanocomposites increases its thermal stability to a great extent. Discrete increase of glass transition temperature of nanocomposites is linearly dependent on MWCNTs content. Due to strong interfacial bonding between MWCNTs and epoxy resin, the chemical resistivity of MWCNT/epoxy nanocomposites is superior to neat epoxy and other epoxy systems.

  9. Antibacterial properties of amino acid functionalized silver nanoparticles decorated on graphene oxide sheets

    NASA Astrophysics Data System (ADS)

    Chandraker, Kumudini; Nagwanshi, Rekha; Jadhav, S. K.; Ghosh, Kallol K.; Satnami, Manmohan L.

    2017-06-01

    Graphene oxide (GO) sheets decorated with amino acid L-cysteine (L-cys) functionalized silver nanoparticles (GO-L-cys-Ag) was synthesized by AgNO3, trisodium citrate, and NaBH4. GO-L-cys-Ag nanocomposite was characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra, ultraviolet-visible (UV-vis) absorption spectra, which demonstrated that a diameter of L-cys-AgNPs compactly deposited on GO. Antibacterial activity tests of GO-L-cys-Ag nanocomposite were carried out using Escherichia coli MTCC 1687 and Staphylococcus aureus MTCC 3160 as model strains of Gram-negative and Gram-positive bacteria, respectively. The effect of bactericide dosage on antibacterial activity of GO-L-cys-Ag nanocomposite was examined by plate count, well diffusion and broth dilution methods. Morphological observation of bacterial cells by scanning electron microscope (SEM) showed that GO-L-cys-Ag nanocomposite was more destructive to cell membrane of Escherichia coli than that of Staphylococcus aureus. The above technique establish that the bactericidal property of GO-L-cys-Ag nanocomposite with wide range of applications in biomedical science.

  10. Effects of Primary Processing Techniques and Significance of Hall-Petch Strengthening on the Mechanical Response of Magnesium Matrix Composites Containing TiO2 Nanoparticulates

    PubMed Central

    Meenashisundaram, Ganesh Kumar; Nai, Mui Hoon; Gupta, Manoj

    2015-01-01

    In the present study, Mg (1.98 and 2.5) vol % TiO2 nanocomposites are primarily synthesized utilizing solid-phase blend-press-sinter powder metallurgy (PM) technique and liquid-phase disintegrated melt deposition technique (DMD) followed by hot extrusion. Microstructural characterization of the synthesized Mg-TiO2 nanocomposites indicated significant grain refinement with DMD synthesized Mg nanocomposites exhibiting as high as ~47% for 2.5 vol % TiO2 NPs addition. X-ray diffraction studies indicated that texture randomization of pure Mg depends not only on the critical amount of TiO2 NPs added to the Mg matrix but also on the adopted synthesis methodology. Irrespective of the processing technique, theoretically predicted tensile yield strength of Mg-TiO2 nanocomposites was found to be primarily governed by Hall-Petch mechanism. Among the synthesized Mg materials, solid-phase synthesized Mg 1.98 vol % TiO2 nanocomposite exhibited a maximum tensile fracture strain of ~14.5%. Further, the liquid-phase synthesized Mg-TiO2 nanocomposites exhibited higher tensile and compression properties than those primarily processed by solid-phase synthesis. The tensile-compression asymmetry values of the synthesized Mg-TiO2 nanocomposite was found to be lower than that of pure Mg with solid-phase synthesized Mg 1.98 vol % TiO2 nanocomposite exhibiting as low as 1.06. PMID:28347063

  11. Low shrinkage light curable nanocomposite for dental restorative material.

    PubMed

    Chen, Min-Huey; Chen, Ci-Rong; Hsu, Seng-Haw; Sun, Shih-Po; Su, Wei-Fang

    2006-02-01

    The aim of this study was to develop a low shrinkage visible light curable nanocomposite dental restorative material without sacrificing the other properties of conventional materials. This nanocomposite was developed by using an epoxy resin 3,4-epoxycyclohexylmethyl-(3,4-epoxy)cyclohexane carboxylate (ERL4221) matrix with 55% wt of 70-100 nm nanosilica fillers through ring-opening polymerization. GPS (gamma-glycidoxypropyl trimethoxysilane) was used to modify the surfaces of silica nanoparticles. The nanocomposite was shown to exhibit low polymerization shrinkage strain, which is only a quarter of currently used methacrylate-based composites. It also exhibited a low thermal expansion coefficient of 49.8 microm/m degrees C which is comparable to that of the methacrylate based composites (51.2 microm/m degrees C). The strong interfacial interactions between the resin and fillers at nanoscales were demonstrated by an observed high strength and high thermal stability of the nanocomposite. A microhardness of 62 KHN and a tensile strength of 47 MPa were reached. A high degree of conversion ( approximately 70%) can be obtained after less than 60 s of irradiation upon the nanocomposite. A transmission electron microscope (TEM) study of the nanocomposite showed no aggregation of fillers. Comparable results to the methacrylate based composites were obtained from the one day MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) cytotoxicity test. The developed epoxy resin based nanocomposite demonstrated low shrinkage and high strength and is suitable for dental restorative material applications.

  12. Mandibular Denture Base Deformation with Locator and Ball Attachments of Implant-Retained Overdentures.

    PubMed

    ELsyad, Moustafa Abdou; Errabti, Hatem Mokhtar; Mustafa, Aisha Zakaria

    2016-12-01

    The aim of this in vitro study was to evaluate and compare mandibular denture base deformation between ball and Locator attachments of implant-retained overdentures. An experimental acrylic model covered with resilient silicone mucosal simulation was constructed. Two laboratory implants were placed in the canine areas of the model. Two duplicate experimental overdentures were constructed and connected to the implants with either ball (GI) or Locator (GII) attachments. To measure overdenture strain around the attachments, 3 strain gauges were attached to the lingual polished surface of the overdentures opposite to the right implant (loading side) 2 mm above the attachment level (Ch1), at the attachment level (Ch2), and 2 mm below the attachment level (Ch3). Another 3 gauges were bonded opposite to the left implant (non-loading side) in the same manner (Ch6, Ch7, and Ch8). To measure strain at the midline of the overdentures, two strain gauges were attached in the midline at 5 mm intervals (Ch4 and Ch5). A universal testing device was used to deliver vertical static load of 50 N unilaterally and bilaterally to the first molar area to measure strain using a multi-channel digital strain meter. During bilateral load application, GII recorded higher compressive strains than GI at the majority of channels. During unilateral load application, GI recorded higher tensile strains at Ch1, Ch2, and Ch3, and GII recorded higher strains than GI at Ch6, Ch7, and Ch8. During bilateral loading the highest strain was concentrated at Ch5 for both groups. During unilateral loading, the highest strain was concentrated at Ch2 for GI, and at Ch5 for GII. Ball attachments for implant-retained overdentures were associated with significant mandibular denture base deformation over the implants compared to Locator attachments. Therefore, denture base reinforcement may be recommended with ball attachmentz to increase fracture resistance of the base. © 2015 by the American College of Prosthodontists.

  13. Flexible and Transparent Strain Sensors with Embedded Multiwalled Carbon Nanotubes Meshes.

    PubMed

    Nie, Bangbang; Li, Xiangming; Shao, Jinyou; Li, Xin; Tian, Hongmiao; Wang, Duorui; Zhang, Qiang; Lu, Bingheng

    2017-11-22

    Strain sensors combining high sensitivity with good transparency and flexibility would be of great usefulness in smart wearable/flexible electronics. However, the fabrication of such strain sensors is still challenging. In this study, new strain sensors with embedded multiwalled carbon nanotubes (MWCNTs) meshes in polydimethylsiloxane (PDMS) films were designed and tested. The strain sensors showed elevated optical transparency of up to 87% and high sensitivity with a gauge factor of 1140 at a small strain of 8.75%. The gauge factors of the sensors were also found relatively stable since they did not obviously change after 2000 stretching/releasing cycles. The sensors were tested to detect motion in the human body, such as wrist bending, eye blinking, mouth phonation, and pulse, and the results were shown to be satisfactory. Furthermore, the fabrication of the strain sensor consisting of mechanically blading MWCNTs aqueous dispersions into microtrenches of prestructured PDMS films was straightforward, was low cost, and resulted in high yield. All these features testify to the great potential of these sensors in future real applications.

  14. Flexible piezotronic strain sensor.

    PubMed

    Zhou, Jun; Gu, Yudong; Fei, Peng; Mai, Wenjie; Gao, Yifan; Yang, Rusen; Bao, Gang; Wang, Zhong Lin

    2008-09-01

    Strain sensors based on individual ZnO piezoelectric fine-wires (PFWs; nanowires, microwires) have been fabricated by a simple, reliable, and cost-effective technique. The electromechanical sensor device consists of a single electrically connected PFW that is placed on the outer surface of a flexible polystyrene (PS) substrate and bonded at its two ends. The entire device is fully packaged by a polydimethylsiloxane (PDMS) thin layer. The PFW has Schottky contacts at its two ends but with distinctly different barrier heights. The I- V characteristic is highly sensitive to strain mainly due to the change in Schottky barrier height (SBH), which scales linear with strain. The change in SBH is suggested owing to the strain induced band structure change and piezoelectric effect. The experimental data can be well-described by the thermionic emission-diffusion model. A gauge factor of as high as 1250 has been demonstrated, which is 25% higher than the best gauge factor demonstrated for carbon nanotubes. The strain sensor developed here has applications in strain and stress measurements in cell biology, biomedical sciences, MEMS devices, structure monitoring, and more.

  15. Hybrid graphene/geopolymeric cement as a superionic conductor for structural health monitoring applications

    NASA Astrophysics Data System (ADS)

    Saafi, M.; Piukovics, G.; Ye, J.

    2016-10-01

    In this paper, we demonstrate for the first time a novel hybrid superionic long gauge sensor for structural health monitoring applications. The sensor consists of two graphene electrodes and a superionic conductor film made entirely of fly ash geopolymeric material. The sensor employs ion hopping as a conduction mechanism for high precision temperature and tensile strain sensing in structures. The design, fabrication and characterization of the sensor are presented. The temperature and strain sensing mechanisms of the sensor are also discussed. The experimental results revealed that the crystal structure of the superionic film is a 3D sodium-poly(sialate-siloxo) framework, with a room temperature ionic conductivity between 1.54 × 10-2 and 1.72 × 10-2 S m-1 and, activation energy of 0.156 eV, which supports the notion that ion hopping is the main conduction mechanism for the sensor. The sensor showed high sensitivity to both temperature and tensile strain. The sensor exhibited temperature sensitivity as high as 21.5 kΩ °C-1 and tensile strain sensitivity (i.e., gauge factor) as high as 358. The proposed sensor is relatively inexpensive and can easily be manufactured with long gauges to measure temperature and bulk strains in structures. With further development and characterization, the sensor can be retrofitted onto existing structures such as bridges, buildings, pipelines and wind turbines to monitor their structural integrity.

  16. Flexible gas sensor based on graphene/ethyl cellulose nanocomposite with ultra-low strain response for volatile organic compounds rapid detection

    NASA Astrophysics Data System (ADS)

    Zhang, Qiankun; An, Chunhua; Fan, Shuangqing; Shi, Sigang; Zhang, Rongjie; Zhang, Jing; Li, Quanning; Zhang, Daihua; Hu, Xiaodong; Liu, Jing

    2018-07-01

    Minimizing the strain-induced undesirable effects is one of the major efforts to be made for flexible electronics. This work demonstrates a highly sensitive flexible gas sensor with ultra-low strain response, which is potentially suitable for wearable electronics applications. The gas sensing material is a free-standing and flexible thin film made of graphene/ethyl cellulose (EC) nanocomposite, which is then integrated with flexible substrate of polyethylene terephthalate. The sensor exhibits relative resistance change within 0.3% at a minimum bending radius of 3.18 mm and 0.2% at the bending radius of 5 mm after 400 bending cycles. The limited strain response attributes to several applied strategies, including using EC with high Young’s modulus as the matrix material, maintaining high graphene concentration and adopting suspended device structure. In contrast to the almost negligible strain sensitivity, the sensor presents large and rapid responses toward volatile organic compounds (VOCs) at room temperature. Specifically, the sensor resistance rapidly increases upon the exposure to VOCs with detection limits ranging from 37 to 167 ppm. A preliminary demo of wearable gas sensing capability is also implemented by wearing the sensor on human hand, which successfully detects several VOCs, instead of normal hand gestures.

  17. Flexible gas sensor based on graphene/ethyl cellulose nanocomposite with ultra-low strain response for volatile organic compounds rapid detection.

    PubMed

    Zhang, Qiankun; An, Chunhua; Fan, Shuangqing; Shi, Sigang; Zhang, Rongjie; Zhang, Jing; Li, Quanning; Zhang, Daihua; Hu, Xiaodong; Liu, Jing

    2018-04-18

    Minimizing the strain-induced undesirable effects is one of the major efforts to be made for flexible electronics. This work demonstrates a highly sensitive flexible gas sensor with ultra-low strain response, which is potentially suitable for wearable electronics applications. The gas sensing material is a free-standing and flexible thin film made of graphene/ethyl cellulose (EC) nanocomposite, which is then integrated with flexible substrate of polyethylene terephthalate. The sensor exhibits relative resistance change within 0.3% at a minimum bending radius of 3.18 mm and 0.2% at the bending radius of 5 mm after 400 bending cycles. The limited strain response attributes to several applied strategies, including using EC with high Young's modulus as the matrix material, maintaining high graphene concentration and adopting suspended device structure. In contrast to the almost negligible strain sensitivity, the sensor presents large and rapid responses toward volatile organic compounds (VOCs) at room temperature. Specifically, the sensor resistance rapidly increases upon the exposure to VOCs with detection limits ranging from 37 to 167 ppm. A preliminary demo of wearable gas sensing capability is also implemented by wearing the sensor on human hand, which successfully detects several VOCs, instead of normal hand gestures.

  18. Piezoresistivity of Resin-Impregnated Carbon Nanotube Film at High Temperatures.

    PubMed

    Li, Min; Zuo, Tianyi; Wang, Shaokai; Gu, Yizhuo; Gao, Limin; Li, Yanxia; Zhang, Zuoguang

    2018-06-13

    This paper presents the development of a continuous carbon nanotube (CNT) composite film sensor with a strain detecting range of 0-2% for structural composites. The strain-dependent resistance responses of continuous CNT film and its resin-impregnated composite films were investigated at temperatures as high as 200 °C. The results manifest that impregnation with resin leads to a much larger gauge factor than pristine film. Both the pristine and composite films show an increase in resistivity with increasing temperature. For different composite films, the ordering of gauge factors is consistent with that of the matrix moduli. This indicates that a resin matrix with higher modulus and strong interactions between CNTs/CNT bundles and the resin matrix are beneficial for enhancing the piezoresistive effect. The CNT/PAA composite film has a gauge factor of 4.3 at 150 °C, an order of magnitude higher than the metal foil sensor. Therefore, the CNT composite films have great potential for simultaneous application for reinforcement and as strain sensor to realise a multifunctional composite. © 2018 IOP Publishing Ltd.

  19. Research of a smart cutting tool based on MEMS strain gauge

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhao, Y. L.; Shao, YW; Hu, T. J.; Zhang, Q.; Ge, X. H.

    2018-03-01

    Cutting force is an important factor that affects machining accuracy, cutting vibration and tool wear. Machining condition monitoring by cutting force measurement is a key technology for intelligent manufacture. Current cutting force sensors exist problems of large volume, complex structure and poor compatibility in practical application, for these problems, a smart cutting tool is proposed in this paper for cutting force measurement. Commercial MEMS (Micro-Electro-Mechanical System) strain gauges with high sensitivity and small size are adopted as transducing element of the smart tool, and a structure optimized cutting tool is fabricated for MEMS strain gauge bonding. Static calibration results show that the developed smart cutting tool is able to measure cutting forces in both X and Y directions, and the cross-interference error is within 3%. Its general accuracy is 3.35% and 3.27% in X and Y directions, and sensitivity is 0.1 mV/N, which is very suitable for measuring small cutting forces in high speed and precision machining. The smart cutting tool is portable and reliable for practical application in CNC machine tool.

  20. Stress Wave Attenuation in Aluminum Alloy and Mild Steel Specimens Under SHPB Tensile Testing

    NASA Astrophysics Data System (ADS)

    Pothnis, J. R.; Ravikumar, G.; Arya, H.; Yerramalli, Chandra S.; Naik, N. K.

    2018-02-01

    Investigations on the effect of intensity of incident pressure wave applied through the striker bar on the specimen force histories and stress wave attenuation during split Hopkinson pressure bar (SHPB) tensile testing are presented. Details of the tensile SHPB along with Lagrangian x- t diagram of the setup are included. Studies were carried out on aluminum alloy 7075 T651 and IS 2062 mild steel. While testing specimens using the tensile SHPB setup, it was observed that the force calculated from the transmitter bar strain gauge was smaller than the force obtained from the incident bar strain gauge. This mismatch between the forces in the incident bar and the transmitter bar is explained on the basis of stress wave attenuation in the specimens. A methodology to obtain force histories using the strain gauges on the specimen during SHPB tensile testing is also presented. Further, scanning electron microscope images and photomicrographs are given. Correlation between the microstructure and mechanical properties is explained. Further, uncertainty analysis was conducted to ascertain the accuracy of the results.

  1. Electrical conductivity of nanocomposites based on carbon nanotubes: a 3D multiscale modeling approach

    NASA Astrophysics Data System (ADS)

    Grabowski, Krzysztof; Zbyrad, Paulina; Staszewski, Wieslaw J.; Uhl, Tadeusz; Wiatr, Kazimierz; Packo, Pawel

    2016-04-01

    Remarkable electrical properties of carbon nanotubes (CNT) have lead to increased interest in studying CNT- based devices. Many of current researches are devoted to using all kinds of carbon nanomaterials in the con- struction of sensory elements. One of the most common applications is the development of high performance, large scale sensors. Due to the remarkable conductivity of CNT's such devices represent very high sensitivity. However, there are no sufficient tools for studying and designing such sensors. The main objective of this paper is to develop and validate a multiscale numerical model for a carbon nanotubes based sensor. The device utilises the change of electrical conductivity of a nanocomposite material under applied deformation. The nanocomposite consists of a number of CNTs dispersed in polymer matrix. The paper is devoted to the analysis of the impact of spatial distribution of carbon nanotubes in polymer matrix on electrical conductivity of the sensor. One of key elements is also to examine the impact of strain on electric charge ow in such anisotropic composite structures. In the following work a multiscale electro-mechanical model for CNT - based nanocomposites is proposed. The model comprises of two length scales, namely the meso- and the macro-scale for mechanical and electrical domains. The approach allows for evaluation of macro-scale mechanical response of a strain sensor. Electrical properties of polymeric material with certain CNT fractions were derived considering electrical properties of CNTs, their contact and the tunnelling effect.

  2. Matrix Structure Evolution and Nanoreinforcement Distribution in Mechanically Milled and Spark Plasma Sintered Al-SiC Nanocomposites.

    PubMed

    Saheb, Nouari; Aliyu, Ismaila Kayode; Hassan, Syed Fida; Al-Aqeeli, Nasser

    2014-09-19

    Development of homogenous metal matrix nanocomposites with uniform distribution of nanoreinforcement, preserved matrix nanostructure features, and improved properties, was possible by means of innovative processing techniques. In this work, Al-SiC nanocomposites were synthesized by mechanical milling and consolidated through spark plasma sintering. Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X-ray Spectroscopy (EDS) facility was used for the characterization of the extent of SiC particles' distribution in the mechanically milled powders and spark plasma sintered samples. The change of the matrix crystallite size and lattice strain during milling and sintering was followed through X-ray diffraction (XRD). The density and hardness of the developed materials were evaluated as function of SiC content at fixed sintering conditions using a densimeter and a digital microhardness tester, respectively. It was found that milling for 24 h led to uniform distribution of SiC nanoreinforcement, reduced particle size and crystallite size of the aluminum matrix, and increased lattice strain. The presence and amount of SiC reinforcement enhanced the milling effect. The uniform distribution of SiC achieved by mechanical milling was maintained in sintered samples. Sintering led to the increase in the crystallite size of the aluminum matrix; however, it remained less than 100 nm in the composite containing 10 wt.% SiC. Density and hardness of sintered nanocomposites were reported and compared with those published in the literature.

  3. Orientations and Relative Shear-strain Response Coefficients for PBO Gladwin Tensor Strainmeters from Teleseismic Love Waves

    NASA Astrophysics Data System (ADS)

    Roeloffs, E. A.

    2016-12-01

    A Gladwin Tensor Strainmeter (GTSM) is designed to measure changes of the horizontal strain tensor, derived as linear combinations of radial elongations or contractions of the strainmeter's cylindrical housing measured at four azimuths. Each radial measurement responds to changes in the areal, horizontal shear and vertical components of the strain tensor in the surrounding formation. The elastic response coefficients to these components depend on the relative elastic moduli of the housing, formation, and cement. These coefficients must be inferred for each strainmeter after it is cemented into its borehole by analyzing the instrument response to well-characterized strain signals such as earth tides. For some GTSMs of the Earthscope Plate Boundary Observatory (PBO), however, reconciling observed earth-tide signals with modeled tidal strains requires response coefficients that differ substantially between the instrument's four gauges, and/or orientation corrections of tens of degrees. GTSM response coefficients can also be estimated from high-resolution records of teleseismic Love waves from great earthquakes around the world. Such records can be used in conjunction with apparent propagation azimuths from nearby broadband seismic stations to determine the GTSM's orientation. Knowing the orientation allows the ratios between the shear strain response coefficients of a GTSM's four gauges to be estimated. Applying this analysis to 14 PBO GTSMs confirms that orientations of some instruments differ significantly from orientations measured during installation. Orientations inferred from earth-tide response tend to agree with those inferred from Love waves for GTSMs far from tidal water bodies, but to differ for GTSMs closer to coastlines. Orientations derived from teleseismic Love waves agree with those estimated by Grant and Langston (2010) using strains from a broadband seismic array near Anza, California. PBO GTSM recordings of teleseismic Love waves show differences of more than 20% among the shear-strain response coefficients of the four gauges. Love-wave derived orientations and relative shear-strain response coefficients can reduce uncertainties in shear strains derived from PBO GTSM data.

  4. Biocompatible high performance hyperbranched epoxy/clay nanocomposite as an implantable material.

    PubMed

    Barua, Shaswat; Dutta, Nipu; Karmakar, Sanjeev; Chattopadhyay, Pronobesh; Aidew, Lipika; Buragohain, Alak K; Karak, Niranjan

    2014-04-01

    Polymeric biomaterials are in extensive use in the domain of tissue engineering and regenerative medicine. High performance hyperbranched epoxy is projected here as a potential biomaterial for tissue regeneration. Thermosetting hyperbranched epoxy nanocomposites were prepared with Homalomena aromatica rhizome oil-modified bentonite as well as organically modified montmorillonite clay. Fourier transformed infrared spectroscopy, x-ray diffraction and scanning and transmission electron microscopic techniques confirmed the strong interfacial interaction of clay layers with the epoxy matrix. The poly(amido amine)-cured thermosetting nanocomposites exhibited high mechanical properties like impact resistance (>100 cm), scratch hardness (>10 kg), tensile strength (48-58 MPa) and elongation at break (11.9-16.6%). Cytocompatibility of the thermosets was found to be excellent as evident by MTT and red blood cell hemolytic assays. The nanocomposites exhibited antimicrobial activity against Staphylococcus aureus (ATCC 11632), Escherichia coli (ATCC 10536), Mycobacterium smegmatis (ATCC14468) and Candida albicans (ATCC 10231) strains. In vivo biocompatibility of the best performing nanocomposite was ascertained by histopathological study of the brain, heart, liver and skin after subcutaneous implantation in Wistar rats. The material supported the proliferation of dermatocytes without induction of any sign of toxicity to the above organs. The adherence and proliferation of cells endorse the nanocomposite as a non-toxic biomaterial for tissue regeneration.

  5. Magnetic Poly(N-isopropylacrylamide) Nanocomposites: Effect of Preparation Method on Antibacterial Properties

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhung H. A.; Darwish, Mohamed S. A.; Stibor, Ivan; Kejzlar, Pavel; Ševců, Alena

    2017-10-01

    The most challenging task in the preparation of magnetic poly(N-isopropylacrylamide) (Fe3O4-PNIPAAm) nanocomposites for bio-applications is to maximise their reactivity and stability. Emulsion polymerisation, in situ precipitation and physical addition were used to produce Fe3O4-PNIPAAm-1, Fe3O4-PNIPAAm-2 and Fe3O4-PNIPAAm-3, respectively. Their properties were characterised using scanning electron microscopy (morphology), zeta-potential (surface charge), thermogravimetric analysis (stability), vibrating sample magnetometry (magnetisation) and dynamic light scattering. Moreover, we investigated the antibacterial effect of each nanocomposite against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Both Fe3O4-PNIPAAm-1 and Fe3O4-PNIPAAm-2 nanocomposites displayed high thermal stability, zeta potential and magnetisation values, suggesting stable colloidal systems. Overall, the presence of Fe3O4-PNIPAAm nanocomposites, even at lower concentrations, caused significant damage to both E. coli and S. aureus DNA and led to a decrease in cell viability. Fe3O4-PNIPAAm-1 displayed a stronger antimicrobial effect against both bacterial strains than Fe3O4-PNIPAAm-2 and Fe3O4-PNIPAAm-3. Staphylococcus aureus was more sensitive than E. coli to all three magnetic PNIPAAm nanocomposites.

  6. Diffraction grating strain gauge method: error analysis and its application for the residual stress measurement in thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Yin, Yuanjie; Fan, Bozhao; He, Wei; Dai, Xianglu; Guo, Baoqiao; Xie, Huimin

    2018-03-01

    Diffraction grating strain gauge (DGSG) is an optical strain measurement method. Based on this method, a six-spot diffraction grating strain gauge (S-DGSG) system has been developed with the advantages of high and adjustable sensitivity, compact structure, and non-contact measurement. In this study, this system is applied for the residual stress measurement in thermal barrier coatings (TBCs) combining the hole-drilling method. During the experiment, the specimen’s location is supposed to be reset accurately before and after the hole-drilling, however, it is found that the rigid body displacements from the resetting process could seriously influence the measurement accuracy. In order to understand and eliminate the effects from the rigid body displacements, such as the three-dimensional (3D) rotations and the out-of-plane displacement of the grating, the measurement error of this system is systematically analyzed, and an optimized method is proposed. Moreover, a numerical experiment and a verified tensile test are conducted, and the results verify the applicability of this optimized method successfully. Finally, combining this optimized method, a residual stress measurement experiment is conducted, and the results show that this method can be applied to measure the residual stress in TBCs.

  7. Low Dimensional Tools for Flow-Structure Interaction Problems: Application to Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Schmit, Ryan F.; Glauser, Mark N.; Gorton, Susan A.

    2003-01-01

    A low dimensional tool for flow-structure interaction problems based on Proper Orthogonal Decomposition (POD) and modified Linear Stochastic Estimation (mLSE) has been proposed and was applied to a Micro Air Vehicle (MAV) wing. The method utilizes the dynamic strain measurements from the wing to estimate the POD expansion coefficients from which an estimation of the velocity in the wake can be obtained. For this experiment the MAV wing was set at five different angles of attack, from 0 deg to 20 deg. The tunnel velocities varied from 44 to 58 ft/sec with corresponding Reynolds numbers of 46,000 to 70,000. A stereo Particle Image Velocimetry (PIV) system was used to measure the wake of the MAV wing simultaneously with the signals from the twelve dynamic strain gauges mounted on the wing. With 20 out of 2400 POD modes, a reasonable estimation of the flow flow was observed. By increasing the number of POD modes, a better estimation of the flow field will occur. Utilizing the simultaneously sampled strain gauges and flow field measurements in conjunction with mLSE, an estimation of the flow field with lower energy modes is reasonable. With these results, the methodology for estimating the wake flow field from just dynamic strain gauges is validated.

  8. Noncontacting-optical-strain device

    NASA Technical Reports Server (NTRS)

    Silver, R. H.

    1970-01-01

    Noncontacting-strain-measuring gauge and extensometer remotely measures the mechanical displacement along the entire length of a test specimen. Measurement is accomplished by continuous scanning of a reflected light from reflective bench markings or stripes previously affixed to the specimen.

  9. High-strain rate tensile characterization of graphite platelet reinforced vinyl ester based nanocomposites using split-Hopkinson pressure bar

    NASA Astrophysics Data System (ADS)

    Pramanik, Brahmananda

    The dynamic response of exfoliated graphite nanoplatelet (xGnP) reinforced and carboxyl terminated butadiene nitrile (CTBN) toughened vinyl ester based nanocomposites are characterized under both dynamic tensile and compressive loading. Dynamic direct tensile tests are performed applying the reverse impact Split Hopkinson Pressure Bar (SHPB) technique. The specimen geometry for tensile test is parametrically optimized by Finite Element Analysis (FEA) using ANSYS Mechanical APDLRTM. Uniform stress distribution within the specimen gage length has been verified using high-speed digital photography. The on-specimen strain gage installation is substituted by a non-contact Laser Occlusion Expansion Gage (LOEG) technique for infinitesimal dynamic tensile strain measurements. Due to very low transmitted pulse signal, an alternative approach based on incident pulse is applied for obtaining the stress-time history. Indirect tensile tests are also performed combining the conventional SHPB technique with Brazilian disk test method for evaluating cylindrical disk specimens. The cylindrical disk specimen is held snugly in between two concave end fixtures attached to the incident and transmission bars. Indirect tensile stress is estimated from the SHPB pulses, and diametrical transverse tensile strain is measured using LOEG. Failure diagnosis using high-speed digital photography validates the viability of utilizing this indirect test method for characterizing the tensile properties of the candidate vinyl ester based nanocomposite system. Also, quasi-static indirect tensile response agrees with previous investigations conducted using the traditional dog-bone specimen in quasi-static direct tensile tests. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Finally, the conventional compressive SHPB tests are performed. It is observed that both strength and energy absorbing capacity of these candidate material systems are distinctively less under dynamic tension than under compressive loading. Nano-reinforcement appears to marginally improve these properties for pure vinyl ester under dynamic tension, although it is found to be detrimental under dynamic compression.

  10. Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions.

    PubMed

    Tao, Lu-Qi; Wang, Dan-Yang; Tian, He; Ju, Zhen-Yi; Liu, Ying; Pang, Yu; Chen, Yuan-Quan; Yang, Yi; Ren, Tian-Ling

    2017-06-22

    Conventional strain sensors rarely have both a high gauge factor and a large strain range simultaneously, so they can only be used in specific situations where only a high sensitivity or a large strain range is required. However, for detecting human motions that include both subtle and large motions, these strain sensors can't meet the diverse demands simultaneously. Here, we come up with laser patterned graphene strain sensors with self-adapted and tunable performance for the first time. A series of strain sensors with either an ultrahigh gauge factor or a preferable strain range can be fabricated simultaneously via one-step laser patterning, and are suitable for detecting all human motions. The strain sensors have a GF of up to 457 with a strain range of 35%, or have a strain range of up to 100% with a GF of 268. Most importantly, the performance of the strain sensors can be easily tuned by adjusting the patterns of the graphene, so that the sensors can meet diverse demands in both subtle and large motion situations. The graphene strain sensors show significant potential in applications such as wearable electronics, health monitoring and intelligent robots. Furthermore, the facile, fast and low-cost fabrication method will make them possible and practical to be used for commercial applications in the future.

  11. Spin-valve giant magneto-resistance film with magnetostrictive FeSiB amorphous layer and its application to strain sensors

    NASA Astrophysics Data System (ADS)

    Hashimoto, Y.; Yamamoto, N.; Kato, T.; Oshima, D.; Iwata, S.

    2018-03-01

    Giant magneto-resistance (GMR) spin-valve films with an FeSiB/CoFeB free layer were fabricated to detect applied strain in a GMR device. The magnetostriction constant of FeSiB was experimentally determined to have 32 ppm, which was one order of magnitude larger than that of CoFeB. In order to detect the strain sensitively and robustly against magnetic field fluctuation, the magnetic field modulation technique was applied to the GMR device. It was confirmed that the output voltage of the GMR device depends on the strain, and the gauge factor K = 46 was obtained by adjusting the applied DC field intensity and direction. We carried out the simulation based on a macro-spin model assuming uniaxial anisotropy, interlayer coupling between the free and pin layers, strain-induced anisotropy, and Zeeman energy, and succeeded in reproducing the experimental results. The simulation predicts that improving the magnetic properties of GMR films, especially reducing interlayer coupling, will be effective for increasing the output, i.e., the gauge factor, of the GMR strain sensors.

  12. Microstructure, strengthening mechanisms and hot deformation behavior of an oxide-dispersion strengthened UFG Al6063 alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asgharzadeh, H.; Kim, H.S.; Simchi, A., E-mail: simchi@sharif.edu

    2013-01-15

    An ultrafine-grained Al6063/Al{sub 2}O{sub 3} (0.8 vol.%, 25 nm) nanocomposite was prepared via powder metallurgy route through reactive mechanical alloying and hot powder extrusion. Scanning electron microcopy, transmission electron microscopy, and back scattered electron diffraction analysis showed that the grain structure of the nanocomposite is trimodal and composed of nano-size grains (< 0.1 {mu}m), ultrafine grains (0.1-1 {mu}m), and micron-size grains (> 1 {mu}m) with random orientations. Evaluation of the mechanical properties of the nanocomposite based on the strengthening-mechanism models revealed that the yield strength of the ultrafine-grained nanocomposite is mainly controlled by the high-angle grain boundaries rather than nanometricmore » alumina particles. Hot deformation behavior of the material at different temperatures and strain rates was studied by compression test and compared to coarse-grained Al6063 alloy. The activation energy of the hot deformation process for the nanocomposite was determined to be 291 kJ mol{sup -1}, which is about 64% higher than that of the coarse-grained alloy. Detailed microstructural analysis revealed that dynamic recrystallization is responsible for the observed deformation softening in the ultrafine-grained nanocomposite. - Highlights: Black-Right-Pointing-Pointer The strengthening mechanisms of Al6063/Al{sub 2}O{sub 3} nanocomposite were evaluated. Black-Right-Pointing-Pointer Hot deformation behavior of the nanocomposite was studied. Black-Right-Pointing-Pointer The hot deformation activation energy was determined using consecutive models. Black-Right-Pointing-Pointer The restoration mechanisms and microstructural changes are presented.« less

  13. Multifunctional zirconium oxide doped chitosan based hybrid nanocomposites as bone tissue engineering materials.

    PubMed

    Bhowmick, Arundhati; Jana, Piyali; Pramanik, Nilkamal; Mitra, Tapas; Banerjee, Sovan Lal; Gnanamani, Arumugam; Das, Manas; Kundu, Patit Paban

    2016-10-20

    This paper reports the development of multifunctional zirconium oxide (ZrO2) doped nancomposites having chitosan (CTS), organically modified montmorillonite (OMMT) and nano-hydroxyapatite (HAP). Formation of these nanocomposites was confirmed by various characterization techniques such as Fourier transform infrared spectroscopy and powder X-ray diffraction. Scanning electron microscopy images revealed uniform distribution of OMMT and nano-HAP-ZrO2 into CTS matrix. Powder XRD study and TEM study revealed that OMMT has partially exfoliated into the polymer matrix. Enhanced mechanical properties in comparison to the reported literature were obtained after the addition of ZrO2 nanoparticle into the nanocomposites. In rheological measurements, CMZH I-III exhibited greater storage modulus (G') than loss modulus (G″). TGA results showed that these nanocomposites are thermally more stable compare to pure CTS film. Strong antibacterial zone of inhibition and the lowest minimum inhibition concentration (MIC) value of these nanocomposites against bacterial strains proved that these materials have the ability to prevent bacterial infection in orthopedic implants. Compatibility of these nanocomposites with pH and blood of human body was established. It was observed from the swelling study that the swelling percentage was increased with decreasing the hydrophobic OMMT content. Human osteoblastic MG-63 cell proliferations were observed on the nanocomposites and cytocompatibility of these nanocomposites was also established. Moreover, addition of 5wt% OMMT and 5wt% nano-HAP-ZrO2 into 90wt% CTS matrix provides maximum tensile strength, storage modulus, aqueous swelling and cytocompatibility along with strong antibacterial effect, pH and erythrocyte compatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Strain-induced macroscopic magnetic anisotropy from smectic liquid-crystalline elastomer-maghemite nanoparticle hybrid nanocomposites.

    PubMed

    Haberl, Johannes M; Sánchez-Ferrer, Antoni; Mihut, Adriana M; Dietsch, Hervé; Hirt, Ann M; Mezzenga, Raffaele

    2013-06-21

    We combine tensile strength analysis and X-ray scattering experiments to establish a detailed understanding of the microstructural coupling between liquid-crystalline elastomer (LCE) networks and embedded magnetic core-shell ellipsoidal nanoparticles (NPs). We study the structural and magnetic re-organization at different deformations and NP loadings, and the associated shape and magnetic memory features. In the quantitative analysis of a stretching process, the effect of the incorporated NPs on the smectic LCE is found to be prominent during the reorientation of the smectic domains and the softening of the nanocomposite. Under deformation, the soft response of the nanocomposite material allows the organization of the nanoparticles to yield a permanent macroscopically anisotropic magnetic material. Independent of the particle loading, the shape-memory properties and the smectic phase of the LCEs are preserved. Detailed studies on the magnetic properties demonstrate that the collective ensemble of individual particles is responsible for the macroscopic magnetic features of the nanocomposite.

  15. Development of Noncytotoxic Chitosan–Gold Nanocomposites as Efficient Antibacterial Materials

    PubMed Central

    2014-01-01

    This work describes the synthesis and characterization of noncytotoxic nanocomposites either colloidal or as films exhibiting high antibacterial activity. The biocompatible and biodegradable polymer chitosan was used as reducing and stabilizing agent for the synthesis of gold nanoparticles embedded in it. Herein, for the first time, three different chitosan grades varying in the average molecular weight and deacetylation degree (DD) were used with an optimized gold precursor concentration. Several factors were analyzed in order to obtain antimicrobial but not cytotoxic nanocomposite materials. Films based on chitosan with medium molecular weight and the highest DD exhibited the highest antibacterial activity against biofilm forming strains of Staphylococcus aureus and Pseudomonas aeruginosa. The resulting nanocomposites did not show any cytotoxicity against mammalian somatic and tumoral cells. They produced a disruptive effect on the bacteria wall while their internalization was hindered on the eukaryotic cells. This selectivity and safety make them potentially applicable as antimicrobial coatings in the biomedical field. PMID:25522372

  16. Stress transfer and matrix-cohesive fracture mechanism in microfibrillated cellulose-gelatin nanocomposite films.

    PubMed

    Quero, Franck; Padilla, Cristina; Campos, Vanessa; Luengo, Jorge; Caballero, Leonardo; Melo, Francisco; Li, Qiang; Eichhorn, Stephen J; Enrione, Javier

    2018-09-01

    Microfibrillated cellulose (MFC) obtained from eucalyptus was embedded in gelatin from two sources; namely bovine and salmon gelatin. Raman spectroscopy revealed that stress is transferred more efficiently from bovine gelatin to the MFC when compared to salmon gelatin. Young's modulus, tensile strength, strain at failure and work of fracture of the nanocomposite films were improved by ∼67, 131, 43 y 243% respectively when using salmon gelatin as matrix material instead of bovine gelatin. Imaging of the tensile fracture surface of the MFC-gelatin nanocomposites revealed that crack formation occurs predominantly within bovine and salmon gelatin matrices rather than within the MFC or at the MFC/gelatin interface. This suggests that the mechanical failure mechanism in these nanocomposite materials is predominantly governed by a matrix-cohesive fracture mechanism. Both strength and flexibility are desirable properties for composite coatings made from gelatin-based materials, and so the findings of this study could assist in their utilization in the food and pharmaceutical industry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Thermodynamic Approach to Enhanced Dispersion and Physical Properties in a Carbon Nanotube/Polypeptide Nanocomposite

    NASA Technical Reports Server (NTRS)

    Lovell, Conrad S.; Wise, Kristopher E.; Kim, Jae-Woo; Lillehei, Peter T.; Harrison, Joycelyn S.; Park, Cheol

    2009-01-01

    A high molecular weight synthetic polypeptide has been designed which exhibits favorable interactions with single wall carbon nanotubes (SWCNTs). The enthalpic and entropic penalties of mixing between these two molecules are reduced due to the polypeptide's aromatic sidechains and helical secondary structure, respectively. These enhanced interactions result in a well dispersed SWCNT/Poly (L-Leucine-ran-L-Phenylalanine) nanocomposite with enhanced mechanical and electrical properties using only shear mixing and sonication. At 0.5 wt% loading of SWCNT filler, the nanocomposite exhibits simultaneous increases in the Young's modulus, failure strain, and toughness of 8%, 120%, and 144%, respectively. At one kHz, the same nanotube loading level also enhances the dielectric constant from 2.95 to 22.81, while increasing the conductivity by four orders of magnitude.

  18. Antituberculous effect of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Kreytsberg, G. N.; Gracheva, I. E.; Kibrik, B. S.; Golikov, I. V.

    2011-04-01

    The in vitro experiment, involving 1164 strains of the tuberculosis mycobacteria, exhibited a potentiating effect of silver nanoparticles on known antituberculous preparations in respect of overcoming drug-resistance of the causative agent. The in vitro experiment, based on the model of resistant tuberculosis, was performed on 65 white mice. An evident antituberculous effect of the nanocomposite on the basis of silver nanoparticles and isoniazid was proved. Toxicological assessment of the of nanopreparations was carried out. The performed research scientifically establishes efficacy and safety of the nanocomposite application in combination therapy of patients suffering from drug-resistant tuberculosis.

  19. Monitoring of Carbon Fiber-Reinforced Old Timber Beams via Strain and Multiresonant Acoustic Emission Sensors

    PubMed Central

    Rescalvo, Francisco J.; Valverde-Palacios, Ignacio; Gallego, Antolino

    2018-01-01

    This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes), reinforced using carbon composite materials (CFRP). Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE) sensors. Results demonstrate that: (1) the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness); (2) Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures. PMID:29673155

  20. Monitoring of Carbon Fiber-Reinforced Old Timber Beams via Strain and Multiresonant Acoustic Emission Sensors.

    PubMed

    Rescalvo, Francisco J; Valverde-Palacios, Ignacio; Suarez, Elisabet; Roldán, Andrés; Gallego, Antolino

    2018-04-17

    This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes), reinforced using carbon composite materials (CFRP). Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE) sensors. Results demonstrate that: (1) the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness); (2) Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures.

  1. Intergranular Strain Evolution During Biaxial Loading: A Multiscale FE-FFT Approach

    NASA Astrophysics Data System (ADS)

    Upadhyay, M. V.; Capek, J.; Van Petegem, S.; Lebensohn, R. A.; Van Swygenhoven, H.

    2017-05-01

    Predicting the macroscopic and microscopic mechanical response of metals and alloys subjected to complex loading conditions necessarily requires a synergistic combination of multiscale material models and characterization techniques. This article focuses on the use of a multiscale approach to study the difference between intergranular lattice strain evolution for various grain families measured during in situ neutron diffraction on dog bone and cruciform 316L samples. At the macroscale, finite element simulations capture the complex coupling between applied forces and gauge stresses in cruciform geometries. The predicted gauge stresses are used as macroscopic boundary conditions to drive a mesoscale full-field elasto-viscoplastic fast Fourier transform crystal plasticity model. The results highlight the role of grain neighborhood on the intergranular strain evolution under uniaxial and equibiaxial loading.

  2. Carbon nanotube-embedded advanced aerospace composites for early-stage damage sensing

    NASA Astrophysics Data System (ADS)

    Nataraj, Latha; Coatney, Michael; Cain, Jason; Hall, Asha

    2018-03-01

    Fiber reinforced polymer (FRP) composites featuring outstanding fatigue performance, high specific stiffness and strength, and low density have evolved as critical structural materials in aerospace applications. Microscale damage such as fiber breakage, matrix cracking, and delamination could occur in layered composites compromising structural integrity, emphasizing the critical need to monitor structural health. Early damage detection would lead to enhanced reliability, lifetime, and performance while minimizing maintenance time, leading to enormous scientific and technical interest in realizing physically stable, quick responding, and cost effective strain sensing materials, devices, and techniques with high sensitivity over a broad range of the practical strain spectrum. Today's most commonly used strain sensing techniques are metal foil strain gauges and optical fiber sensors. Metal foil gauges offer high stability and cost-effectiveness but can only be surface-mounted and have a low gauge factor. Optical fibers require expensive instrumentation, are mostly insensitive to cracks parallel to the fiber orientation and may lead to crack initiation as the diameter is larger than that of the reinforcement fibers. Carbon nanotubes (CNTs) have attracted much attention due to high aspect ratio and superior electrical, thermal, and mechanical properties. CNTs embedded in layered composites have improved performance. A variety of CNT architectures and configurations have shown improved piezoresistive behavior and stability for sensing applications. However, scaling up and commercialization remain serious challenges. The current study investigates a simple, cost effective and repeatable technique for highly sensitive, stable, linear and repeatable strain sensing for damage detection by integrating CNT laminates into composites.

  3. Optical-fiber strain sensors with asymmetric etched structures.

    PubMed

    Vaziri, M; Chen, C L

    1993-11-01

    Optical-fiber strain gauges with asymmetric etched structures have been analyzed, fabricated, and tested. These sensors are very sensitive with a gauge factor as high as 170 and a flat frequency response to at least 2.7 kHz. The gauge factor depends on the asymmetry of the etched structures and the number of etched sections. To understand the physical principles involved, researchers have used structural analysis programs based on a finite-element method to analyze fibers with asymmetric etched structures under tensile stress. The results show that lateral bends are induced on the etched fibers when they are stretched axially. To relate the lateral bending to the optical attenuation, we have also employed a ray-tracing technique to investigate the dependence of the attenuation on the structural deformation. Based on the structural analysis and the ray-tracing study parameters affecting the sensitivity have been studied. These results agree with the results of experimental investigations.

  4. Pile Model Tests Using Strain Gauge Technology

    NASA Astrophysics Data System (ADS)

    Krasiński, Adam; Kusio, Tomasz

    2015-09-01

    Ordinary pile bearing capacity tests are usually carried out to determine the relationship between load and displacement of pile head. The measurement system required in such tests consists of force transducer and three or four displacement gauges. The whole system is installed at the pile head above the ground level. This approach, however, does not give us complete information about the pile-soil interaction. We can only determine the total bearing capacity of the pile, without the knowledge of its distribution into the shaft and base resistances. Much more information can be obtained by carrying out a test of instrumented pile equipped with a system for measuring the distribution of axial force along its core. In the case of pile model tests the use of such measurement is difficult due to small scale of the model. To find a suitable solution for axial force measurement, which could be applied to small scale model piles, we had to take into account the following requirements: - a linear and stable relationship between measured and physical values, - the force measurement accuracy of about 0.1 kN, - the range of measured forces up to 30 kN, - resistance of measuring gauges against aggressive counteraction of concrete mortar and against moisture, - insensitivity to pile bending, - economical factor. These requirements can be fulfilled by strain gauge sensors if an appropriate methodology is used for test preparation (Hoffmann [1]). In this paper, we focus on some aspects of the application of strain gauge sensors for model pile tests. The efficiency of the method is proved on the examples of static load tests carried out on SDP model piles acting as single piles and in a group.

  5. An accuracy improvement method for the topology measurement of an atomic force microscope using a 2D wavelet transform.

    PubMed

    Yoon, Yeomin; Noh, Suwoo; Jeong, Jiseong; Park, Kyihwan

    2018-05-01

    The topology image is constructed from the 2D matrix (XY directions) of heights Z captured from the force-feedback loop controller. For small height variations, nonlinear effects such as hysteresis or creep of the PZT-driven Z nano scanner can be neglected and its calibration is quite straightforward. For large height variations, the linear approximation of the PZT-driven Z nano scanner fail and nonlinear behaviors must be considered because this would cause inaccuracies in the measurement image. In order to avoid such inaccuracies, an additional strain gauge sensor is used to directly measure displacement of the PZT-driven Z nano scanner. However, this approach also has a disadvantage in its relatively low precision. In order to obtain high precision data with good linearity, we propose a method of overcoming the low precision problem of the strain gauge while its feature of good linearity is maintained. We expect that the topology image obtained from the strain gauge sensor showing significant noise at high frequencies. On the other hand, the topology image obtained from the controller output showing low noise at high frequencies. If the low and high frequency signals are separable from both topology images, the image can be constructed so that it is represented with high accuracy and low noise. In order to separate the low frequencies from high frequencies, a 2D Haar wavelet transform is used. Our proposed method use the 2D wavelet transform for obtaining good linearity from strain gauge sensor and good precision from controller output. The advantages of the proposed method are experimentally validated by using topology images. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Design of a CMOS readout circuit on ultra-thin flexible silicon chip for printed strain gauges

    NASA Astrophysics Data System (ADS)

    Elsobky, Mourad; Mahsereci, Yigit; Keck, Jürgen; Richter, Harald; Burghartz, Joachim N.

    2017-09-01

    Flexible electronics represents an emerging technology with features enabling several new applications such as wearable electronics and bendable displays. Precise and high-performance sensors readout chips are crucial for high quality flexible electronic products. In this work, the design of a CMOS readout circuit for an array of printed strain gauges is presented. The ultra-thin readout chip and the printed sensors are combined on a thin Benzocyclobutene/Polyimide (BCB/PI) substrate to form a Hybrid System-in-Foil (HySiF), which is used as an electronic skin for robotic applications. Each strain gauge utilizes a Wheatstone bridge circuit, where four Aerosol Jet® printed meander-shaped resistors form a full-bridge topology. The readout chip amplifies the output voltage difference (about 5 mV full-scale swing) of the strain gauge. One challenge during the sensor interface circuit design is to compensate for the relatively large dc offset (about 30 mV at 1 mA) in the bridge output voltage so that the amplified signal span matches the input range of an analog-to-digital converter (ADC). The circuit design uses the 0. 5 µm mixed-signal GATEFORESTTM technology. In order to achieve the mechanical flexibility, the chip fabrication is based on either back thinned wafers or the ChipFilmTM technology, which enables the manufacturing of silicon chips with a thickness of about 20 µm. The implemented readout chip uses a supply of 5 V and includes a 5-bit digital-to-analog converter (DAC), a differential difference amplifier (DDA), and a 10-bit successive approximation register (SAR) ADC. The circuit is simulated across process, supply and temperature corners and the simulation results indicate excellent performance in terms of circuit stability and linearity.

  7. Aligned Carbon Nanotube Tape for Sensor Applications

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.

    2013-01-01

    For this effort, will concentrate on three applications: Vibration Gyroscope utilizes piezoelectric properties of the tape and Coriolis effect Accelerometer utilizes the piezoresistive property Strain Gauge utilizes piezoresistive property Accelerometer and Strain Gauge can also utilize piezoelectric effect Test piezoelectric properties using facilities at the Microfabrication Laboratory (AMRDEC) . Enhance piezoelectric effect using polyvinylidine fluoride and P(VDF ]TrFE) which is readily polarizable .Spray matrix solution while winding fiber; Sandwich of CNT tape and PVDF film (DOE .Two Level) . Construct and test prototype vibration gyroscope . Construct and test prototype accelerometer using cantilever design . Test strain sensitivity of CNT tape against industrial strain gauge . Embed CNT tape in composite samples as well as on surface and test to failure (4 ]point bend) A piezoelectric device exhibits an electrical response from a mechanical applied stress. . A piezoelectric device has both capacitance and resistance properties in which by applying an electric field from a waveform will exert a mechanical stress that can be monitored for a response. . The typical waveform applied is a sinusoidal waveform of a defined voltage for a defined period. The defined voltage is driven from 0 volts to the positive defined volts then back to 0 and driven to negative defined volts then back to 0. . Example. Vmax set to 10V and period set to 10 ms. . Voltage will start at zero, go to 10 volts, return to zero, go to ]10 volts and return to zero during 10 ms. . Applying this electrical field to a DUT, the capacitance response and resistance response can be observed. CNT tape is easier to manufacture and cheaper than micromachining silicon or other ceramic piezoelectric used in gyroscopes and accelerometers CNT tape properties can be modified during manufacture for specific application CNT tape has enhanced mechanical and thermal properties in addition to unique electrical properties CNT tape as a strain gauge in Structural Health Monitoring will provide an excellent material to embed within composite structures

  8. Strain tuning and strong enhancement of ionic conductivity in SrZrO 3-RE 2O 3 (RE = Sm, Eu, Gd, Dy, and Er) nanocomposite films

    DOE PAGES

    Lee, Shinbuhm; Zhang, Wenrui; Khatkhatay, Fauzia; ...

    2015-06-05

    Fast ion transport channels at interfaces in thin films have attracted great attention due to a range of potential applications for energy materials and devices, for, solid oxide fuel cells, sensors, and memories. Here, it is shown that in vertical nanocomposite heteroepitaxial films of SrZrO 3–RE 2O 3 (RE = Sm, Eu, Gd, Dy, and Er) the ionic conductivity of the composite can be tuned and strongly enhanced using embedded, stiff, and vertical nanopillars of RE 2O 3. With increasing lattice constant of RE 2O 3 from Er 2O 3 to Sm 2O 3, it is found that the tensilemore » strain in the SrZrO 3 increases proportionately, and the ionic conductivity of the composite increases accordingly, by an order of magnitude. Lastly, the results here conclusively show, for the first time, that strain in films can be effectively used to tune the ionic conductivity of the materials.« less

  9. HOLEGAGE 1.0 - Strain-Gauge Drilling Analysis Program

    NASA Technical Reports Server (NTRS)

    Hampton, Roy V.

    1992-01-01

    Interior stresses inferred from changes in surface strains as hole is drilled. Computes stresses using strain data from each drilled-hole depth layer. Planar stresses computed in three ways: least-squares fit for linear variation with depth, integral method to give incremental stress data for each layer, and/or linear fit to integral data. Written in FORTRAN 77.

  10. Physicochemical properties of nanocomposite: Hydroxyapatite in reduced graphene oxide.

    PubMed

    Rajesh, A; Mangamma, G; Sairam, T N; Subramanian, S; Kalavathi, S; Kamruddin, M; Dash, S

    2017-07-01

    Graphene oxide (GO) based nanocomposites have gained considerable attention in the field of material science due to their excellent physicochemical and biological properties. Incorporation of nanomaterials into GO sheets prevents the formation of π-π stacking bond thereby giving rise to composites that show the improved properties compared to their individual counterparts. In this work, reduced graphene oxide (rGO) - hydroxyapatite (HAP) nanocomposites were synthesized by ultrasonic method. Increasing the c/a ratio of HAP in the diffraction pattern of rGO/HAP nanocomposites indicates the c-axis oriented grown HAP nanorods interacting with rGO layers. Shift in wavenumber (15cm -1 ) and increase of full width at half maximum (45cm -1 ) of G band in Raman spectra of the rGO/HAP nanocomposites are observed and attributed to the tensile strain induced due to the intercalated HAP nanorods between the rGO layers. Atomic force microscopy (AFM) and phase imaging studies revealed the intercalation of HAP nanorod with diameter 30nm and length 110-120nm in rGO sheets was clearly perceived along with improved elasticity compared to pristine HAP. 13 C-NMR results proved the synergistic interaction between both components in rGO/HAP nanocomposite. The novel properties observed and the microscopic mechanism responsible for this are a result of the structural modification in rGO layers brought about by the intercalation of HAP nanorods. Copyright © 2017. Published by Elsevier B.V.

  11. GaAs-based resonant tunneling diode (RTD) epitaxy on Si for highly sensitive strain gauge applications.

    PubMed

    Li, Jie; Guo, Hao; Liu, Jun; Tang, Jun; Ni, Haiqiao; Shi, Yunbo; Xue, Chenyang; Niu, Zhichuan; Zhang, Wendong; Li, Mifeng; Yu, Ying

    2013-05-08

    As a highly sensitive strain gauge element, GaAs-based resonant tunneling diode (RTD) has already been applied in microelectromechanical system (MEMS) sensors. Due to poor mechanical properties and high cost, GaAs-based material has been limited in applications as the substrate for MEMS. In this work, we present a method to fabricate the GaAs-based RTD on Si substrate. From the experimental results, it can be concluded that the piezoresistive coefficient achieved with this method reached 3.42 × 10-9 m2/N, which is about an order of magnitude higher than the Si-based semiconductor piezoresistors.

  12. Summary Report of the First International Symposium on Strain Gauge Balances and Workshop on AoA/Model Deformation Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping; Burner, Alpheus W.; Finley, Tom D.

    1999-01-01

    The first International Symposium on Strain Gauge Balances was sponsored under the auspices of the NASA Langley Research Center (LaRC), Hampton, Virginia during October 22-25, 1996. Held at the LaRC Reid Conference Center, the Symposium provided an open international forum for presentation, discussion, and exchange of technical information among wind tunnel test technique specialists and strain gauge balance designers. The Symposium also served to initiate organized professional activities among the participating and relevant international technical communities. The program included a panel discussion, technical paper sessions, tours of local facilities, and vendor exhibits. Over 130 delegates were in attendance from 15 countries. A steering committee was formed to plan a second international balance symposium tentatively scheduled to be hosted in the United Kingdom in 1998 or 1999. The Balance Symposium was followed by the half-day Workshop on Angle of Attack and Model Deformation on the afternoon of October 25. The thrust of the Workshop was to assess the state of the art in angle of attack (AoA) and model deformation measurement techniques and to discuss future developments.

  13. A calibration rig for multi-component internal strain gauge balance using the new design-of-experiment (DOE) approach

    NASA Astrophysics Data System (ADS)

    Nouri, N. M.; Mostafapour, K.; Kamran, M.

    2018-02-01

    In a closed water-tunnel circuit, the multi-component strain gauge force and moment sensor (also known as balance) are generally used to measure hydrodynamic forces and moments acting on scaled models. These balances are periodically calibrated by static loading. Their performance and accuracy depend significantly on the rig and the method of calibration. In this research, a new calibration rig was designed and constructed to calibrate multi-component internal strain gauge balances. The calibration rig has six degrees of freedom and six different component-loading structures that can be applied separately and synchronously. The system was designed based on the applicability of formal experimental design techniques, using gravity for balance loading and balance positioning and alignment relative to gravity. To evaluate the calibration rig, a six-component internal balance developed by Iran University of Science and Technology was calibrated using response surface methodology. According to the results, calibration rig met all design criteria. This rig provides the means by which various methods of formal experimental design techniques can be implemented. The simplicity of the rig saves time and money in the design of experiments and in balance calibration while simultaneously increasing the accuracy of these activities.

  14. Finite Element Approach for the Design of Control Algorithms for Vertical Fin Buffeting Using Strain Actuation

    DTIC Science & Technology

    2001-06-01

    Algorithms for Vertical Fin Buffeting Using Strain Actuation DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the...UNCLASSIFIED 8-1 Finite Element Approach for the Design of Control Algorithms for Vertical Fin Buffeting Using Strain Actuation Fred Nitzsche...groups), the disturbance (buffet load), and the two output variables (a choice among four Introduction accelerometers and five strain - gauge positions

  15. Understanding the etiology of the posteromedial tibial stress fracture.

    PubMed

    Milgrom, Charles; Burr, David B; Finestone, Aharon S; Voloshin, Arkady

    2015-09-01

    Previous human in vivo tibial strain measurements from surface strain gauges during vigorous activities were found to be below the threshold value of repetitive cyclical loading at 2500 microstrain in tension necessary to reduce the fatigue life of bone, based on ex vivo studies. Therefore it has been hypothesized that an intermediate bone remodeling response might play a role in the development of tibial stress fractures. In young adults tibial stress fractures are usually oblique, suggesting that they are the result of failure under shear strain. Strains were measured using surface mounted unstacked 45° rosette strain gauges on the posterior aspect of the flat medial cortex just below the tibial midshaft, in a 48year old male subject while performing vertical jumps, staircase jumps and running up and down stadium stairs. Shear strains approaching 5000 microstrain were recorded during stair jumping and vertical standing jumps. Shear strains above 1250 microstrain were recorded during runs up and down stadium steps. Based on predictions from ex vivo studies, stair and vertical jumping tibial shear strain in the test subject was high enough to potentially produce tibial stress fracture subsequent to repetitive cyclic loading without necessarily requiring an intermediate remodeling response to microdamage. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Evaluation of the dynamic behavior of a Pelton runner based on strain gauge measurements

    NASA Astrophysics Data System (ADS)

    Mack, Reiner; Probst, Christian

    2016-11-01

    A reliable mechanical design of Pelton runners is very important in the layout of new installations and modernizations. Especially in horizontal machines, where the housing is not embedded into concrete, a rupture of a runner bucket can have severe consequences. Even if a crack in the runner is detected on time, the outage time that follows the malfunction of the runner is shortening the return of investment. It is a fact that stresses caused by the runner rotation and the jet forces are superposed by high frequent dynamic stresses. In case of resonance it even can be the dominating effect that is limiting the lifetime of a runner. Therefore a clear understanding of the dynamic mechanisms is essential for a safe runner design. This paper describes the evaluation of the dynamic behavior of a Pelton runner installed in a model turbine based on strain gauge measurements. Equipped with strain gauges at the root area of the buckets, the time responses of the strains under the influence of various operational parameters were measured. As a result basic theories for the jet bucket excitation were verified and the influence of the water mass was detected by evaluating the frequency shift in case of resonance. Furthermore, the influence of the individual bucket masses onto the dynamic behaviour for different mode shapes got measured.

  17. Two-dimensional surface strain measurement based on a variation of Yamaguchi's laser-speckle strain gauge

    NASA Technical Reports Server (NTRS)

    Barranger, John P.

    1990-01-01

    A novel optical method of measuring 2-D surface strain is proposed. Two linear strains along orthogonal axes and the shear strain between those axes is determined by a variation of Yamaguchi's laser-speckle strain gage technique. It offers the advantages of shorter data acquisition times, less stringent alignment requirements, and reduced decorrelation effects when compared to a previously implemented optical strain rosette technique. The method automatically cancels the translational and rotational components of rigid body motion while simplifying the optical system and improving the speed of response.

  18. PVA/NaCl/MgO nanocomposites-microstructural analysis by whole pattern fitting method

    NASA Astrophysics Data System (ADS)

    Prashanth, K. S.; Mahesh, S. S.; Prakash, M. B. Nanda; Somashekar, R.; Nagabhushana, B. M.

    2018-04-01

    The nanofillers in the macromolecular matrix have displayed noteworthy changes in the structure and reactivity of the polymer nanocomposites. Novel functional materials usually consist of defects and are largely disordered. The intriguing properties of these materials are often attributed to defects. X-ray line profiles from powder diffraction reveal the quantitative information about size distribution and shape of diffracting domains which governs the contribution from small conventional X-ray diffraction (XRD) techniques to enumerate the microstructural information. In this study the MgO nanoparticles were prepared by solution combustion method and PVA/NaCl/MgO nanocomposite films were synthesized by the solvent cast method. Microstructural parameters viz crystal defects like stacking faults and twin faults, compositional inhomogeneity, crystallite size and lattice strain (g in %), were extracted using whole pattern fitting method.

  19. A Biomimetic Structural Health Monitoring Approach Using Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Yingtao; Rajadas, Abhishek; Chattopadhyay, Aditi

    2012-07-01

    A self-sensing nanocomposite material has been developed to track the presence of damage in complex composite structures. Multiwalled carbon nanotubes are integrated with polymer matrix to develop a novel bonding material with sensing capabilities. The changes of the piezoresistance in the presence of damage are used to monitor the condition of bonded joints, where the usual bonding material is replaced by the self-sensing nanocomposite. The feasibility of this concept is investigated through experiments conducted on single-lap joints subject to monotonic tensile loading conditions. The results show that the self-sensing nanocomposite is sensitive to crack propagation within the matrix material. An acoustic emission-based sensing technique has been used to validate these results and shows good correlation with damage growth. A digital image correlation system is used to measure the shear strain field in the joint area.

  20. Hybrid MoS2/h-BN Nanofillers As Synergic Heat Dissipation and Reinforcement Additives in Epoxy Nanocomposites.

    PubMed

    Ribeiro, Hélio; Trigueiro, João Paulo C; Silva, Wellington M; Woellner, Cristiano F; Owuor, Peter S; Cristian Chipara, Alin; Lopes, Magnovaldo C; Tiwary, Chandra S; Pedrotti, Jairo J; Villegas Salvatierra, Rodrigo; Tour, James M; Chopra, Nitin; Odeh, Ihab N; Silva, Glaura G; Ajayan, Pulickel M

    2017-09-26

    Two-dimensional (2D) nanomaterials as molybdenum disulfide (MoS 2 ), hexagonal boron nitride (h-BN), and their hybrid (MoS 2 /h-BN) were employed as fillers to improve the physical properties of epoxy composites. Nanocomposites were produced in different concentrations and studied in their microstructure, mechanical and thermal properties. The hybrid 2D mixture imparted efficient reinforcement to the epoxy leading to increases of up to 95% in tensile strength, 60% in ultimate strain, and 58% in Young's modulus. Moreover, an enhancement of 203% in thermal conductivity was achieved for the hybrid composite as compared to the pure polymer. The incorporation of MoS 2 /h-BN mixture nanofillers in epoxy resulted in nanocomposites with multifunctional characteristics for applications that require high mechanical and thermal performance.

  1. Study on dynamic response measurement of the submarine pipeline by full-term FBG sensors.

    PubMed

    Zhou, Jinghai; Sun, Li; Li, Hongnan

    2014-01-01

    The field of structural health monitoring is concerned with accurately and reliably assessing the integrity of a given structure to reduce ownership costs, increase operational lifetime, and improve safety. In structural health monitoring systems, fiber Bragg grating (FBG) is a promising measurement technology for its superior ability of explosion proof, immunity to electromagnetic interference, and high accuracy. This paper is a study on the dynamic characteristics of fiber Bragg grating (FBG) sensors applied to a submarine pipeline, as well as an experimental investigation on a laboratory model of the pipeline. The dynamic response of a submarine pipeline under seismic excitation is a coupled vibration of liquid and solid interaction. FBG sensors and strain gauges are used to monitor the dynamic response of a submarine pipeline model under a variety of dynamic loading conditions and the maximum working frequency of an FBG strain sensor is calculated according to its dynamic strain responses. Based on the theoretical and experimental results, it can be concluded that FBG sensor is superior to strain gauge and satisfies the demand of dynamic strain measurement.

  2. Laboratory and field performance of FOS sensors in static and dynamic strain monitoring in concrete bridge decks

    NASA Astrophysics Data System (ADS)

    Benmokrane, B.; Debaiky, A.; El-Ragaby, A.; Roy, R.; El-Gamal, S.; El-Salakawy, E.

    2006-03-01

    There is a growing need for designing and constructing innovative concrete bridges using FRP reinforcing bars as internal reinforcement to avoid the corrosion problems and high costs of maintenance and repair. For efficient use and to increase the lifetime of these bridges, it is important to develop efficient monitoring systems for such innovative structures. Fabry-Perot and Bragg fibre optic sensors (FOS) that can measure the strains and temperature are promising candidates for life-long health monitoring of these structures. This article reports laboratory and field performance of Fabry-Perot and Bragg FOS sensors as well as electrical strain gauges in static and dynamic strain monitoring in concrete bridge decks. The laboratory tests include tensile testing of glass FRP bars and testing of full-scale concrete bridge deck slabs reinforced with glass and carbon FRP bars under static and cyclic concentrated loads. The field tests include static and dynamic testing of two bridges reinforced with steel and glass FRP bars. The obtained strain results showed satisfactory agreement between the different gauges.

  3. Study on Dynamic Response Measurement of the Submarine Pipeline by Full-Term FBG Sensors

    PubMed Central

    Zhou, Jinghai; Sun, Li; Li, Hongnan

    2014-01-01

    The field of structural health monitoring is concerned with accurately and reliably assessing the integrity of a given structure to reduce ownership costs, increase operational lifetime, and improve safety. In structural health monitoring systems, fiber Bragg grating (FBG) is a promising measurement technology for its superior ability of explosion proof, immunity to electromagnetic interference, and high accuracy. This paper is a study on the dynamic characteristics of fiber Bragg grating (FBG) sensors applied to a submarine pipeline, as well as an experimental investigation on a laboratory model of the pipeline. The dynamic response of a submarine pipeline under seismic excitation is a coupled vibration of liquid and solid interaction. FBG sensors and strain gauges are used to monitor the dynamic response of a submarine pipeline model under a variety of dynamic loading conditions and the maximum working frequency of an FBG strain sensor is calculated according to its dynamic strain responses. Based on the theoretical and experimental results, it can be concluded that FBG sensor is superior to strain gauge and satisfies the demand of dynamic strain measurement. PMID:24971391

  4. Influence of purified multiwalled carbon nanotubes on the mechanical and morphological behavior in poly (L-lactic acid) matrix.

    PubMed

    Leal, C V; Martinez, D S T; Más, B A; Alves, O L; Duek, E A R

    2016-06-01

    Poly (L-latic acid) (PLLA) is a bioresorbable polymer widely used as a biomaterial, but its fragility can limit its use. An alternative is to produce polymer nanocomposites, which can enhance the mechanical properties of polymeric matrix, resulting in a material with differentiated properties. In this work, PLLA based nanocomposites containing 0.25, 0.5 and 1.0wt% of purified multiwalled carbon nanotubes (p-MWCNTs) were prepared by the solvent casting method. The morphology and mechanical properties results show an improvement in strain at break for 0.25 and 0.5wt% p-MWCNTs and an increase in stiffness and elastic modulus for all compositions. Nanocomposites presented a p-MWCNTs agglomeration; however, there was a good stress transfer between PLLA and p-MWCNTs, which was confirmed by the increase in the hardness and elastic modulus. Atomic force microscopy analysis indicated an increase in roughness after nanotube addition. The in vitro biological study showed that PLLA/p-MWCNTs nanocomposites are cytocompatible with osteoblasts cells. The capacity of PLLA nanocomposites to stimulate osteogenesis was investigated by alkaline phosphatase (ALP) activity assay. Higher ALP activity was found on osteoblasts cultured on nanocomposites with 0.25 and 0.5wt% p-MWCNT compared to neat PLLA, confirming that PLLA cytocompatibility was improved on these compositions. Finally, our results showed that by a simple and inexpensive solvent casting method, it is possible to manufacture biofunctional nanocomposites devices with potential for orthopedic applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Composite material embedded fiber-optic Fabry-Perot strain rosette

    NASA Astrophysics Data System (ADS)

    Valis, Thomas; Hogg, Dayle; Measures, Raymond M.

    1990-12-01

    A fiber-optic strain rosette is embedded in Kevlar/epoxy. The individual arms of the rosette are fiber Fabry-Perot interferometers operated in reflection-mode with gauge (i.e., cavity) lengths of approximately 5 mm. Procedures for manufacturing the cavities, and bending the fibers, to form a strain rosette are described. Experimental results showing 2D interlaminar strain-tensor measurement are presented. The sensor is also tested as a surface adhered device.

  6. Summary of laser speckle photogrammetry for HOST

    NASA Technical Reports Server (NTRS)

    Pollack, Frank G.

    1986-01-01

    High temperature static strain measurement capability is important for the success of the HOST program. As part of the NASA Lewis effort to develop the technology for improved hot-section durability, the HOST instrumentation program has, as a major goal, the development of methods for measuring strain at high temperature. Development work includes both improvements in resistance strain-gauge technology and, as an alternative approach, the development of optical techniques for high temperature strain measurement.

  7. Synthesis and characterization of fluorapatite-titania (FAp-TiO 2) nanocomposite via mechanochemical process

    NASA Astrophysics Data System (ADS)

    Ebrahimi-Kahrizsangi, Reza; Nasiri-Tabrizi, Bahman; Chami, Akbar

    2010-09-01

    In this paper, synthesis of bionanocomposite of fluorapatite-titania (FAp-TiO 2) was studied by using one step mechanochemical process. Characterization of the products was accomplished by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. Based on XRD patterns and FT-IR spectroscopy, correlation between the structural features of the nanostructured FAp-TiO 2 and the process conditions was discussed. Variations in crystallite size, lattice strain, and volume fraction of grain boundary were investigated during milling and the following heat treatment. Crystallization of the nanocomposite occurred after thermal treatment at 650 °C. Morphological features of powders were influenced by the milling time. The resulting FAp-20 wt.%TiO 2 nanocomposite powder exhibited an average particle size of 15 nm after 20 h of milling. The results show that the one step mechanosynthesis technique is an effective route to prepare FAp-based nanocomposites with excellent morphological and structural features.

  8. Optical Fiber Distributed Sensing Structural Health Monitoring (SHM) Strain Measurements Taken During Cryotank Y-Joint Test Article Load Cycling at Liquid Helium Temperatures

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Prosser, William H.; Hare, David A.; Moore, Thomas C.; Kenner, Winfred S.

    2007-01-01

    This paper outlines cryogenic Y-joint testing at Langley Research Center (LaRC) to validate the performance of optical fiber Bragg grating strain sensors for measuring strain at liquid helium temperature (-240 C). This testing also verified survivability of fiber sensors after experiencing 10 thermal cool-down, warm-up cycles and 400 limit load cycles. Graphite composite skins bonded to a honeycomb substrate in a sandwich configuration comprised the Y-joint specimens. To enable SHM of composite cryotanks for consideration to future spacecraft, a light-weight, durable monitoring technology is needed. The fiber optic distributed Bragg grating strain sensing system developed at LaRC is a viable substitute for conventional strain gauges which are not practical for SHM. This distributed sensing technology uses an Optical Frequency Domain Reflectometer (OFDR). This measurement approach has the advantage that it can measure hundreds of Bragg grating sensors per fiber and the sensors are all written at one frequency, greatly simplifying fiber manufacturing. Fiber optic strain measurements compared well to conventional strain gauge measurements obtained during these tests. These results demonstrated a high potential for a successful implementation of a SHM system incorporating LaRC's fiber optic sensing system on the composite cryotank and other future cryogenic applications.

  9. GIPAW (gauge including projected augmented wave) and local dynamics in 13C and 29Si solid state NMR: the study case of silsesquioxanes (RSiO1.5)8.

    PubMed

    Gervais, Christel; Bonhomme-Coury, Laure; Mauri, Francesco; Babonneau, Florence; Bonhomme, Christian

    2009-08-28

    Octameric silsesquioxanes (RSiO(1.5))(8) are versatile and interesting nano building blocks, suitable for the synthesis of nanocomposites with controlled porosity. In this paper, we revisit the (29)Si and (13)C solid state NMR spectroscopy for this class of materials, by using GIPAW (gauge including projected augmented wave) first principles calculations [Pickard & Mauri, Phys. Rev. B, 2001, 63, 245101]. Full tensorial data, including the chemical shift anisotropies (CSA) and the absolute orientation of the corresponding principal axes systems (PAS), were calculated. Subsequent averaging of the calculated tensors (due to fast reorientation of the R groups around the Si-C bonds) allowed for the interpretation of the strong reduction of CSA and dipolar couplings for these derivatives. Good agreement was observed between the averaged calculated data and the experimental parameters. Interesting questions related to the interplay between X-ray crystallography and solid state NMR are raised and will be emphasized.

  10. Highly Controlled Diffusion Drug Release from Ureasil-Poly(ethylene oxide)-Na+-Montmorillonite Hybrid Hydrogel Nanocomposites.

    PubMed

    Jesus, Celso R N; Molina, Eduardo F; Pulcinelli, Sandra H; Santilli, Celso V

    2018-06-06

    In this work, we report the effects of incorporation of variable amounts (1-20 wt %) of sodium montmorillonite (MMT) into a siloxane-poly(ethylene oxide) hybrid hydrogel prepared by the sol-gel route. The aim was to control the nanostructural features of the nanocomposite, improve the release profile of the sodium diclofenac (SDCF) drug, and optimize the swelling behavior of the hydrophilic matrix. The nanoscopic characteristics of the siloxane-cross-linked poly(ethylene oxide) network, the semicrystallinity of the hybrid, and the intercalated or exfoliated structure of the clay were investigated by X-ray diffraction, small-angle X-ray scattering, and differential scanning calorimetry. The correlation between the nanoscopic features of nanocomposites containing different amounts of MMT and the swelling behavior revealed the key role of exfoliated silicate in controlling the water uptake by means of a flow barrier effect. The release of the drug from the nanocomposite displayed a stepped pattern kinetically controlled by the diffusion of SDCF molecules through the mass transport barrier created by the exfoliated silicate. The sustained SDCF release provided by the hybrid hydrogel nanocomposite could be useful for the prolonged treatment of painful conditions, such as arthritis, sprains and strains, gout, migraine, and pain after surgical procedures.

  11. Effects of different numbers of mini-dental implants on alveolar ridge strain distribution under mandibular implant-retained overdentures.

    PubMed

    Warin, Pongsakorn; Rungsiyakull, Pimduen; Rungsiyakull, Chaiy; Khongkhunthian, Pathawee

    2018-01-01

    To investigate the strains around mini-dental implants (MDIs) and retromolar edentulous areas when using different numbers of MDIs in order to retain mandibular overdentures. Four different prosthetic situations were fabricated on an edentulous mandibular model including a complete denture (CD), and three overdentures, retained by four, three or two MDIs in the interforaminal region with retentive attachments. A static load of 200N was applied on the posterior teeth of the dentures under bilateral or unilateral loading conditions. The strains at the mesial and distal of the MDIs and the retromolar edentulous ridges were measured using twelve strain gauges. Comparisons of the mean microstrains among all strain gauges in all situations were analyzed. The strain distribution determined during bilateral loading experienced a symmetrical distribution; while during unilateral loading, the recorded strains tended to change from compressive strains on the loaded side to tensile strains. Overall, the number of MDIs was found to be passively correlated to the generated compressive strain. The highest strains were recorded in the four MDIs followed by three, two MDIs retained overdenture and CD situations, respectively. The highest strain was found around the terminal MDI. The use of a low number of MDIs tends to produce low strain values in the retromolar denture-bearing area and around the terminal MDIs during posterior loadings. However, when using a high number of MDIs, the overdenture tends to have more stability during function. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  12. Feasibility of fatigue crack detection and tracking with a multi-sensor in-situ monitoring system

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoliang; Qi, Kevin; Qian, Tao; Mei, Gang

    2014-02-01

    Fatigue crack is a common problem for steel bridges. A cost effective and reliable method for detecting and verifying growth of a crack is desired. In this work, feasibilities of fatigue crack monitoring with acoustic emission sensors and strain gauges were studied on an A36 steel compact-tension coupon under cyclic tensile loading. By examining the ultrasonic signal time-of-arrival and frequency spectrum, acoustic emissions from a crack growth can be distinguished from other structural borne noises such as those from the interaction of loading bolts with the bolt holes on the plate. Strain sensor and clip gauge sensor data were also correlated well with the growth of the crack.

  13. GaAs-based resonant tunneling diode (RTD) epitaxy on Si for highly sensitive strain gauge applications

    PubMed Central

    2013-01-01

    As a highly sensitive strain gauge element, GaAs-based resonant tunneling diode (RTD) has already been applied in microelectromechanical system (MEMS) sensors. Due to poor mechanical properties and high cost, GaAs-based material has been limited in applications as the substrate for MEMS. In this work, we present a method to fabricate the GaAs-based RTD on Si substrate. From the experimental results, it can be concluded that the piezoresistive coefficient achieved with this method reached 3.42 × 10−9 m2/N, which is about an order of magnitude higher than the Si-based semiconductor piezoresistors. PMID:23651496

  14. A strain gauge analysis comparing 4‐unit veneered zirconium dioxide implant‐borne fixed dental prosthesis on engaging and non‐engaging abutments before and after torque application

    PubMed Central

    Epprecht, Alyssa; Zeltner, Marco; Benic, Goran

    2018-01-01

    Abstract This study quantified the strain development after inserting implant‐borne fixed dental prosthesis (FDP) to various implant–abutment joints. Two bone‐level implants (∅ = 4.1 mm, RC, SLA 10 mm, Ti, Straumann) were inserted in polyurethane models (N = 3) in the area of tooth nos 44 and 47. Four‐unit veneered zirconium dioxide FDPs (n = 2) were fabricated, one of which was fixed on engaging (E; RC Variobase, ∅ = 4.5 mm, H = 3.5 mm) and the other on non‐engaging (NE) abutments (RC Variobase, ∅ = 4.5 mm, H = 5.5 mm). One strain gauge was bonded to the occlusal surface of pontic no. 46 on the FDP and the other two on the polyurethane model. Before (baseline) and after torque (35 Ncm), strain values were recorded three times. Data were analyzed using Kruskal–Wallis and Mann–Whitney U tests (α = 0.05). Mean strain values presented significant increase after torque for both E and NE implant–abutment connection type (baseline: E = 4.33 ± 4.38; NE = 4.85 ± 4.85; torque: E = 196.56 ± 188.02; NE = 275.63 ± 407.7; p < .05). Mean strain values based on implant level presented significant increase after torque for both E and NE implant–abutment connection (baseline: E = 4.94 ± 5.29; NE = 5.78 ± 5.69; torque: E = 253.78 ± 178.14; NE = 347.72 ± 493.06; p < .05). The position of the strain gauge on implants (p = .895), FDP (p = .275), and abutment connection type (p = .873) did not significantly affect the strain values. Strain levels for zirconium dioxide implant‐borne FDPs were not affected by the implant–abutment connection type. PMID:29744210

  15. Application of nonlinear rheology to assess the effect of secondary nanofiller on network structure of hybrid polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Kamkar, Milad; Aliabadian, Ehsan; Shayesteh Zeraati, Ali; Sundararaj, Uttandaraman

    2018-02-01

    Carbon nanotube (CNT)/polymer nanocomposites exhibit excellent electrical properties by forming a percolated network. Adding a secondary filler can significantly affect the CNTs' network, resulting in changing the electrical properties. In this work, we investigated the effect of adding manganese dioxide nanowires (MnO2NWs) as a secondary nanofiller on the CNTs' network structure inside a poly(vinylidene fluoride) (PVDF) matrix. Incorporating MnO2NWs to PVDF/CNT samples produced a better state of dispersion of CNTs, as corroborated by light microscopy and transmission electron microscopy. The steady shear and oscillatory shear flows were employed to obtain a better insight into the nanofiller structure and viscoelastic behavior of the nanocomposites. The transient response under steady shear flow revealed that the stress overshoot of hybrid nanocomposites (two-fillers), PVDF/CNT/MnO2NWs, increased dramatically in comparison to binary nanocomposites (single-filler), PVDF/CNT and PVDF/MnO2NWs. This can be attributed to microstructural changes. Large amplitude oscillatory shear characterization was also performed to further investigate the effect of the secondary nanofiller on the nonlinear viscoelastic behavior of the samples. The nonlinear rheological observations were explained using quantitative nonlinear parameters [strain-stiffening ratio (S) and shear-thickening ratio (T)] and Lissajous-Bowditch plots. Results indicated that a more rigid nanofiller network was formed for the hybrid nanocomposites due to the better dispersion state of CNTs and this led to a more nonlinear viscoelastic behavior.

  16. Development of bone-like zirconium oxide nanoceramic modified chitosan based porous nanocomposites for biomedical application.

    PubMed

    Bhowmick, Arundhati; Pramanik, Nilkamal; Jana, Piyali; Mitra, Tapas; Gnanamani, Arumugam; Das, Manas; Kundu, Patit Paban

    2017-02-01

    Here, zirconium oxide nanoparticles (ZrO 2 NPs) were incorporated for the first time in organic-inorganic hybrid composites containing chitosan, poly(ethylene glycol) and nano-hydroxypatite (CS-PEG-HA) to develop bone-like nanocomposites for bone tissue engineering application. These nanocomposites were characterized by FT-IR, XRD, TEM combined with SAED. SEM images and porosity measurements revealed highly porous structure having pore size of less than 1μm to 10μm. Enhanced water absorption capacity and mechanical strengths were obtained compared to previously reported CS-PEG-HA composite after addition of 0.1-0.3wt% of ZrO 2 NPs into these nanocomposites. The mechanical strengths and porosities were similar to that of human spongy bone. Strong antimicrobial effects against gram-negative and gram-positive bacterial strains were also observed. Along with getting low alkalinity pH (7.4) values, similar to the pH of human plasma, hemocompatibility and cytocompatibility with osteoblastic MG-63 cells were also established for these nanocomposites. Addition of 15wt% HA-ZrO 2 (having 0.3wt% ZrO 2 NPs) into CS-PEG (55:30wt%) composite resulted in greatest mechanical strength, porosity, antimicrobial property and cytocompatibility along with suitable water absorption capacity and compatibility with human pH and blood. Thus, this nanocomposite could serve as a potential candidate to be used for bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications

    PubMed Central

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan

    2016-01-01

    We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications. PMID:27472335

  18. Preparation and properties of poly HTBN-based urethane-urea/organo reactive montmorillonite nanocomposites

    NASA Astrophysics Data System (ADS)

    Li, Zai-Feng; Wu, Yuan; Zhang, Fu-Tao; Cao, Yu-Yang; Wu, Shou-Peng; Wang, Ting

    2012-12-01

    With ultrasonic assistant mixing way, an intercalated mixture of polyol/organo reactive montmorillonite (ORMMT) was pretreated. The prepolymer composed MMT clay was prepared by reaction of polyol/ORMMT mixture with toluene diisocyanate (TDI). The resultant prepolymer reacted with extender (DMTDA) and then the polyurethane-urea/organo reactive montmorillonite (PUU/ORMMT) nanocomposites were obtained. The structure, morphology and properties of PUU/ORMMT nanocomposites were characterized by FT-IR, TEM, AFM, strain-stress machine, TGA, and dynamic mechanical analysis (DMA). The results showed that when the OMMT content is 3%, the PUU/ORMMT nanocomposities performed super mechanical properties. Because of the presence of ORMMT, both T g of the soft segment and tan δ of the PUU increased, and the decomposition temperature for the first step and the second step increased respectively. TEM images showed that the organophilic MMT particles in the PUU composite exhibit a high degree of intercalation and exfoliation.

  19. IN SITU Deposition of Fe-TiC Nanocomposite on Steel by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Razavi, Mansour; Rahimipour, Mohammad Reza; Ganji, Mojdeh; Ganjali, Mansoreh; Gangali, Monireh

    The possibility of deposition of Fe-TiC nanocomposite on the surface of carbon steel substrate with the laser coating method had been investigated. Mechanical milling was used for the preparation of raw materials. The mixture of milled powders was used as a coating material on the substrate steel surface and a CO2 laser was used in continuous mode for coating. Microstructural studies were performed by scanning electron microscopy. Determinations of produced phases, crystallite size and mean strain have been done by X-ray diffraction. The hardness and wear resistance of coated samples were measured. The results showed that the in situ formation of Fe-TiC nanocomposite coating using laser method is possible. This coating has been successfully used to improve the hardness and wear resistance of the substrate so that the hardness increased by about six times. Coated iron and titanium carbide crystallite sizes were in the nanometer scale.

  20. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications.

    PubMed

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan

    2016-07-26

    We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications.

  1. Ferroelectricity of strained SrTiO3 in lithium tetraborate glass-nanocomposite and glass-ceramic

    NASA Astrophysics Data System (ADS)

    Abdel-Khalek, E. K.; Mohamed, E. A.; Kashif, I.

    2018-02-01

    Glass-nanocomposite (GNCs) sample of the composition [90Li2B4O7-10SrTiO3] (mol %) was prepared by conventional melt quenching technique. The glassy phase and the amorphous nature of the GNCs sample were identified by Differential thermal analysis (DTA) and X-ray diffraction (XRD) studies, respectively. DTA of the GNCs exhibits sharp and broad exothermic peaks which represent the crystallization of Li2B4O7 and SrTiO3, respectively. The tetragonal Li2B4O7 and tetragonal SrTiO3 crystalline phases in glass-ceramic (GC) were identified by XRD and scanning electron microscopic (SEM). The strain tetragonal SrTiO3 phase in GNCs and GC has been confirmed by SEM. The values of crystallization activation energies (Ec1 and Ec2) for the first and second exothermic peaks are equal to 174 and 1452 kJ/mol, respectively. The Ti3+ ions in tetragonal distorted octahedral sites in GNCs were identified by optical transmission spectrum. GNCs and GC samples exhibit broad dielectric anomalies at 303 and 319 K because of strained SrTiO3 ferroelectric, respectively.

  2. Method and apparatus for steady-state magnetic measurement of poloidal magnetic field near a tokamak plasma

    DOEpatents

    Woolley, R.D.

    1998-09-08

    A method and apparatus are disclosed for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators. 6 figs.

  3. Method and apparatus for steady-state magnetic measurement of poloidal magnetic field near a tokamak plasma

    DOEpatents

    Woolley, Robert D.

    1998-01-01

    A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.

  4. The Effects of Strain-Annealing on Tuning Permeability and Lowering Losses in Fe-Ni-Based Metal Amorphous Nanocomposites

    DOE PAGES

    Aronhime, Natan; DeGeorge, Vincent; Keylin, Vladimir; ...

    2017-07-25

    Here, Fe-Ni-based metal amorphous nanocomposites with a range of compositions (Fe 100–xNi x) 80Nb 4Si 2B 14 (30 ≤ x ≤ 70) are investigated for motor and transformer applications, where it is beneficial to have tunable permeability. It is shown that strain annealing offers an effective method for tuning permeability in these alloys. For an Fe-rich alloy, permeability increased from 4000 to 16,000 with a positive magnetostriction. In a Ni-rich alloy, permeability decreased from 290 to 40 with a negative magnetostriction. Significant elongations (above 60%) are observed during strain annealing at high stress. Crystallization products have been determined in allmore » alloys heated to 480°C. γ-FeNi is formed in all alloys, while (Fe 30Ni 70) 80Nb 4Si 2B 14 also undergoes secondary crystallization at temperatures of approximately 480°C to form a phase with the Cr 23C 6-type structure and a likely composition of Fe 21Nb 2B 6. Toroidal losses have been measured for (Fe 70Ni 30) 80Nb 4Si y B 16–y (0 ≤ y ≤ 3) at various annealing temperatures. At an induction of 1 T and frequency of 400 Hz and 1 kHz, the toroidal losses obtained are W 1.0T, 400 Hz = 0.9 W/kg and W 1.0T, 1 kHz = 2.3 W/kg, respectively. These losses are lower than losses recently reported for state of the art 3.0% and 6.5% silicon steels, a Metglas Fe-based amorphous alloy, and some Fe-based nanocomposites.« less

  5. The Effects of Strain-Annealing on Tuning Permeability and Lowering Losses in Fe-Ni-Based Metal Amorphous Nanocomposites

    NASA Astrophysics Data System (ADS)

    Aronhime, Natan; DeGeorge, Vincent; Keylin, Vladimir; Ohodnicki, Paul; McHenry, Michael E.

    2017-11-01

    Fe-Ni-based metal amorphous nanocomposites with a range of compositions (Fe100- x Ni x )80Nb4Si2B14 (30 ≤ x ≤ 70) are investigated for motor and transformer applications, where it is beneficial to have tunable permeability. It is shown that strain annealing offers an effective method for tuning permeability in these alloys. For an Fe-rich alloy, permeability increased from 4000 to 16,000 with a positive magnetostriction. In a Ni-rich alloy, permeability decreased from 290 to 40 with a negative magnetostriction. Significant elongations (above 60%) are observed during strain annealing at high stress. Crystallization products have been determined in all alloys heated to 480°C. γ-FeNi is formed in all alloys, while (Fe30Ni70)80Nb4Si2B14 also undergoes secondary crystallization at temperatures of approximately 480°C to form a phase with the Cr23C6-type structure and a likely composition of Fe21Nb2B6. Toroidal losses have been measured for (Fe70Ni30)80Nb4Si y B16- y (0 ≤ y ≤ 3) at various annealing temperatures. At an induction of 1 T and frequency of 400 Hz and 1 kHz, the toroidal losses obtained are W1.0T, 400 Hz = 0.9 W/kg and W1.0T, 1 kHz = 2.3 W/kg, respectively. These losses are lower than losses recently reported for state of the art 3.0% and 6.5% silicon steels, a Metglas Fe-based amorphous alloy, and some Fe-based nanocomposites.

  6. The Effects of Strain-Annealing on Tuning Permeability and Lowering Losses in Fe-Ni-Based Metal Amorphous Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aronhime, Natan; DeGeorge, Vincent; Keylin, Vladimir

    Here, Fe-Ni-based metal amorphous nanocomposites with a range of compositions (Fe 100–xNi x) 80Nb 4Si 2B 14 (30 ≤ x ≤ 70) are investigated for motor and transformer applications, where it is beneficial to have tunable permeability. It is shown that strain annealing offers an effective method for tuning permeability in these alloys. For an Fe-rich alloy, permeability increased from 4000 to 16,000 with a positive magnetostriction. In a Ni-rich alloy, permeability decreased from 290 to 40 with a negative magnetostriction. Significant elongations (above 60%) are observed during strain annealing at high stress. Crystallization products have been determined in allmore » alloys heated to 480°C. γ-FeNi is formed in all alloys, while (Fe 30Ni 70) 80Nb 4Si 2B 14 also undergoes secondary crystallization at temperatures of approximately 480°C to form a phase with the Cr 23C 6-type structure and a likely composition of Fe 21Nb 2B 6. Toroidal losses have been measured for (Fe 70Ni 30) 80Nb 4Si y B 16–y (0 ≤ y ≤ 3) at various annealing temperatures. At an induction of 1 T and frequency of 400 Hz and 1 kHz, the toroidal losses obtained are W 1.0T, 400 Hz = 0.9 W/kg and W 1.0T, 1 kHz = 2.3 W/kg, respectively. These losses are lower than losses recently reported for state of the art 3.0% and 6.5% silicon steels, a Metglas Fe-based amorphous alloy, and some Fe-based nanocomposites.« less

  7. High-performance antibacterial of montmorillonite decorated with silver nanoparticles using microwave-assisted method

    NASA Astrophysics Data System (ADS)

    Kheiralla, Zeinab Mohamed Hassan; Rushdy, Abeer Ahmed; Betiha, Mohamed Ahmed; Yakob, Naglaa Abdullah Nasif

    2014-08-01

    Syntheses of silver nanocomposites (AgNPs@MMT) were fabricated with different silver nanoparticles to montmorillonite clay (MMT) ratios using microwave-assisted synthesis method, and silver nitrate was used as the precursor of silver nanoparticles. The antibacterial activities of the nanocomposite were evaluated against Staphylococcus aureus and Pseudomonas aeruginosa bacteria by the disk diffusion and macrodilution broth techniques. The prepared nanocomposites were characterized by N2 adsorption-desorption isotherms, X-ray diffraction (XRD), field emission scanning electron microscope, high-resolution transmission electron microscope (HRTEM), X-ray fluorescence spectroscopy and Fourier transform infrared spectroscopy. The wide-angle XRD patterns and HRTEM images demonstrate that silver nanoparticles were fabricated on surface and within MMT channels. The diameters of the AgNPs were below 15 nm, as indicated by UV-Vis absorption, which effectively controlled by the pores of the MMT host. Data revealed that 5 % AgNP@MMT nanocomposite is much more effective than silver nitrate and shows strong antibacterial activities. The efficiency of antibiotics increased when combined with 5 % AgNP@MMT nanocomposite against both the tested strains. The increase in fold area was higher in case of P. aeruginosa than S. aureus. The highest percentage of fold increases was found for Sulfamethaxole/Trimethoprim and Oxacillin followed by Levofloxaci and Nalidixic acid against P.aeruginosa. On the other hand, Imipenem increases activity in presence of AgNP@MMT nanocomposite against S. aureus. Overall, the synergistic effect of antibiotics and nanoparticles clearly revealed that nanoparticles can be effectively used in combination with antibiotics in order to improve their efficiency against various pathogenic microbes. The suspensions of the synthesized nanocomposites were found to be stable over a long time without any sign of detachment of AgNPs.

  8. Validation of an improved method to calculate the orientation and magnitude of pedicle screw bending moments.

    PubMed

    Freeman, Andrew L; Fahim, Mina S; Bechtold, Joan E

    2012-10-01

    Previous methods of pedicle screw strain measurement have utilized complex, time consuming methods of strain gauge application, experience high failure rates, do not effectively measure resultant bending moments, and cannot predict moment orientation. The purpose of this biomechanical study was to validate an improved method of quantifying pedicle screw bending moment orientation and magnitude. Pedicle screws were instrumented to measure biplanar screw bending moments by positioning four strain gauges on flat, machined surfaces below the screw head. Screws were calibrated to measure bending moments by hanging certified weights a known distance from the strain gauges. Loads were applied in 30 deg increments at 12 different angles while recording data from two independent strain channels. The data were then analyzed to calculate the predicted orientation and magnitude of the resultant bending moment. Finally, flexibility tests were performed on a cadaveric motion segment implanted with the instrumented screws to demonstrate the implementation of this technique. The difference between the applied and calculated orientation of the bending moments averaged (±standard error of the mean (SEM)) 0.3 ± 0.1 deg across the four screws for all rotations and loading conditions. The calculated resultant bending moments deviated from the actual magnitudes by an average of 0.00 ± 0.00 Nm for all loading conditions. During cadaveric testing, the bending moment orientations were medial/lateral in flexion-extension, variable in lateral bending, and diagonal in axial torsion. The technique developed in this study provides an accurate method of calculating the orientation and magnitude of screw bending moments and can be utilized with any pedicle screw fixation system.

  9. Nanostructured composite material graphite/TiO2 and its antibacterial activity under visible light irradiation.

    PubMed

    Dědková, Kateřina; Lang, Jaroslav; Matějová, Kateřina; Peikertová, Pavlína; Holešinský, Jan; Vodárek, Vlastimil; Kukutschová, Jana

    2015-08-01

    The paper addresses laboratory preparation, characterization and in vitro evaluation of antibacterial activity of graphite/TiO2 nanocomposites. Composites graphite/TiO2 with various ratio of TiO2 nanoparticles (30wt.%, and 50wt.%) to graphite were prepared using a thermal hydrolysis of titanylsulfate in the presence of graphite particles, and subsequently dried at 80°C. X-ray powder diffraction, transmission electron microscopy and Raman microspectroscopy served as phase-analytical methods distinguishing anatase and rutile phases in the prepared composites. Scanning and transmission electron microscopy techniques were used for characterization of morphology of the prepared samples. A developed modification of the standard microdilution test was used for in vitro evaluation of daylight induced antibacterial activity, using four common human pathogenic bacterial strains (Staphylococcus aureus, Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa). Antibacterial activity of the graphite/TiO2 nanocomposites could be based mainly on photocatalytic reaction with subsequent potential interaction of reactive oxygen species with bacterial cells. During the antibacterial activity experiments, the graphite/TiO2 nanocomposites exhibited antibacterial activity, where differences in the onset of activity and activity against bacterial strains were observed. The highest antibacterial activity evaluated as minimum inhibitory concentration was observed against P. aeruginosa after 180min of irradiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Impact initiation of reactive aluminized fluorinated acrylic nanocomposites

    DOE PAGES

    White, Bradley W.; Crouse, Christopher A.; Spowart, Jonathan E.; ...

    2016-04-18

    The initiation of aluminized fluorinated acrylic (AlFA) nanocomposites during modified Taylor impact tests was investigated. Samples were impacted against a steel or sapphire anvil at a nominal velocity of 150 m/s. A framing camera was used to capture head-on and side-profile impact images for the sapphire window and steel plate rigid anvils, respectively. Correlations were drawn between both experimental setups to determine the initiation locations and reaction times. Reactions were found to initiate at an intermediate radius on the impact face of the pellet at a time near full compaction. From simulations, the highest strains and temperatures were found atmore » radii similar to those observed in experiments at the time of ignition. Off-normal impacts produced higher localized straining and temperatures on one-half of the pellet. As a result, the copper projectile, used for delivery, was revealed to aid in a shear assisted reaction by helping to drive the pellet material outward as the projectile deformed radially.« less

  11. Converse magnetoelectric coupling in NiFe/Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3} nanocomposite thin films grown on Si substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Ming; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000; Hu, Jiamian

    2013-11-04

    Multiferroic NiFe (∼30 nm)/Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3}(PMN–PT, ∼220 nm) bilayered thin films were grown on common Pt/Ti/SiO{sub 2}/Si substrates by a combination of off-axis magnetron sputtering and sol-gel spin-coating technique. By using AC-mode magneto-optical Kerr effect technique, the change in the Kerr signal (magnetization) of the NiFe upon applying a low-frequency AC voltage to the PMN–PT film was in situ acquired at zero magnetic field. The obtained Kerr signal versus voltage loop essentially tracks the electromechanical strain curve of the PMN–PT thin film, clearly demonstrating a strain-mediated converse magnetoelectric coupling, i.e., voltage-modulated magnetization, in the NiFe/PMN–PT nanocomposite thin films.

  12. Impact initiation of reactive aluminized fluorinated acrylic nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Bradley W.; Crouse, Christopher A.; Spowart, Jonathan E.

    The initiation of aluminized fluorinated acrylic (AlFA) nanocomposites during modified Taylor impact tests was investigated. Samples were impacted against a steel or sapphire anvil at a nominal velocity of 150 m/s. A framing camera was used to capture head-on and side-profile impact images for the sapphire window and steel plate rigid anvils, respectively. Correlations were drawn between both experimental setups to determine the initiation locations and reaction times. Reactions were found to initiate at an intermediate radius on the impact face of the pellet at a time near full compaction. From simulations, the highest strains and temperatures were found atmore » radii similar to those observed in experiments at the time of ignition. Off-normal impacts produced higher localized straining and temperatures on one-half of the pellet. As a result, the copper projectile, used for delivery, was revealed to aid in a shear assisted reaction by helping to drive the pellet material outward as the projectile deformed radially.« less

  13. Experimental study on the dynamic mechanical behaviors of polycarbonate

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Gao, Yubo; Cai, Xuanming; Ye, Nan; Huang, Wei; Hypervelocity Impact Research Center Team

    2015-06-01

    Polycarbonate (PC) is a widely used engineering material in aerospace field, since it has excellent mechanical and optical property. In present study, both compress and tensile tests of PC were conducted at high strain rates by using a split Hopkinson pressure bar. The high-speed camera and 2D digital speckle correlation method (DIC) were used to analyze the dynamic deformation behavior of PC. Meanwhile, the plate impact experiment was carried out to measure the equation of state of PC in a single-stage gas gun, which consists of asymmetric impact technology, manganin gauges, PVDF, electromagnetic particle velocity gauges. The results indicate that the yield stress of PC increased with the strain rates. The strain softening occurred when the stress over yield point except the tensile tests in the strain rates of 1076s-1 and 1279s-1. The ZWT model can describe the constitutive behaviors of PC accurately in different strain rates by contrast with the results of 2D-DIC. At last, The D-u Hugoniot curve of polycarbonate in high pressure was fitted by the least square method. And the final results showed more closely to Cater and Mash than other previous data.

  14. Study of Strain-Stress Behavior of Non-Pressure Reinforced Concrete Pipes Used in Road Building

    NASA Astrophysics Data System (ADS)

    Rakitin, B. A.; Pogorelov, S. N.; Kolmogorova, A. O.

    2017-11-01

    The article contains the results of the full-scale tests performed for special road products - large-diameter non-pressure concrete pipes reinforced with a single space cylindrical frame manufactured with the technology of high-frequency vertical vibration molding with an immediate demolding. The authors studied the change in the strain-stress behavior of reinforced concrete pipes for underground pipeline laying depending on their laying depth in the trench and the transport load considering the properties of the surrounding ground mass. The strain-stress behavior of the reinforced concrete pipes was evaluated using the strain-gauge method based on the application of active resistance strain gauges. Based on the completed research, the authors made a conclusion on the applicability of a single space frame for reinforcement of large-diameter non-pressure concrete pipes instead of a double frame which allows one to significantly reduce the metal consumption for the production of one item. As a result of the full-scale tests of reinforced concrete pipes manufactured by vertical vibration molding, the authors obtained new data on the deformation of a pipeline cross-section depending on the placement of the transport load with regard to the axis.

  15. Pushing the Limits of Piezoresistive Effect by Optomechanical Coupling in 3C-SiC/Si Heterostructure.

    PubMed

    Md Foisal, Abu Riduan; Qamar, Afzaal; Phan, Hoang-Phuong; Dinh, Toan; Tuan, Khoa-Nguyen; Tanner, Philip; Streed, Erik W; Dao, Dzung Viet

    2017-11-22

    This letter reports a giant opto-piezoresistive effect in p-3C-SiC/p-Si heterostructure under visible-light illumination. The p-3C-SiC/p-Si heterostructure has been fabricated by growing a 390 nm p-type 3C-SiC on a p-type Si substrate using the low pressure chemical vapor deposition (LPCVD) technique. The gauge factor of the heterostructure was found to be 28 under a dark condition; however, it significantly increased to about -455 under illumination of 635 nm wavelength at 3.0 mW/cm 2 . This gauge factor is over 200 times higher than that of commercial metal strain gauge, 16 times higher than that of 3C-SiC thinfilm, and approximately 5 times larger than that of bulk Si. This enhancement of the gauge factor was attributed to the opto-mechanical coupling effect in p-3C-SiC/p-Si heterostructure. The opto-mechanical coupling effect is the amplified effect of the photoconductivity enhancement and strain-induced band structure modification in the p-type Si substrate. These findings enable extremely high sensitive and robust mechanical sensors, as well as optical sensors at low cost, as no complicated nanofabrication process is required.

  16. Early Damage Detection in Composites during Fabrication and Mechanical Testing.

    PubMed

    Chandarana, Neha; Sanchez, Daniel Martinez; Soutis, Constantinos; Gresil, Matthieu

    2017-06-22

    Fully integrated monitoring systems have shown promise in improving confidence in composite materials while reducing lifecycle costs. A distributed optical fibre sensor is embedded in a fibre reinforced composite laminate, to give three sensing regions at different levels through-the-thickness of the plate. This study follows the resin infusion process during fabrication of the composite, monitoring the development of strain in-situ and in real time, and to gain better understanding of the resin rheology during curing. Piezoelectric wafer active sensors and electrical strain gauges are bonded to the plate after fabrication. This is followed by progressive loading/unloading cycles of mechanical four point bending. The strain values obtained from the optical fibre are in good agreement with strain data collected by surface mounted strain gauges, while the sensing regions clearly indicate the development of compressive, neutral, and tensile strain. Acoustic emission event detection suggests the formation of matrix (resin) cracks, with measured damage event amplitudes in agreement with values reported in published literature on the subject. The Felicity ratio for each subsequent loading cycle is calculated to track the progression of damage in the material. The methodology developed here can be used to follow the full life cycle of a composite structure, from manufacture to end-of-life.

  17. Early Damage Detection in Composites during Fabrication and Mechanical Testing

    PubMed Central

    Chandarana, Neha; Sanchez, Daniel Martinez; Soutis, Constantinos; Gresil, Matthieu

    2017-01-01

    Fully integrated monitoring systems have shown promise in improving confidence in composite materials while reducing lifecycle costs. A distributed optical fibre sensor is embedded in a fibre reinforced composite laminate, to give three sensing regions at different levels through-the-thickness of the plate. This study follows the resin infusion process during fabrication of the composite, monitoring the development of strain in-situ and in real time, and to gain better understanding of the resin rheology during curing. Piezoelectric wafer active sensors and electrical strain gauges are bonded to the plate after fabrication. This is followed by progressive loading/unloading cycles of mechanical four point bending. The strain values obtained from the optical fibre are in good agreement with strain data collected by surface mounted strain gauges, while the sensing regions clearly indicate the development of compressive, neutral, and tensile strain. Acoustic emission event detection suggests the formation of matrix (resin) cracks, with measured damage event amplitudes in agreement with values reported in published literature on the subject. The Felicity ratio for each subsequent loading cycle is calculated to track the progression of damage in the material. The methodology developed here can be used to follow the full life cycle of a composite structure, from manufacture to end-of-life. PMID:28773048

  18. Internal tibial torsion correction study. [measurements of strain for corrective rotation of stressed tibia

    NASA Technical Reports Server (NTRS)

    Cantu, J. M.; Madigan, C. M.

    1974-01-01

    A quantitative study of internal torsion in the entire tibial bone was performed by using strain gauges to measure the amount of deformation occuring at different locations. Comparison of strain measurements with physical dimensions of the bone produced the modulus of rigidity and its behavior under increased torque. Computerized analysis of the stress distribution shows that more strain occurs near the torqued ends of the bones where also most of the twisting and fracturing takes place.

  19. Role of scaffold network in controlling strain and functionalities of nanocomposite films

    DOE PAGES

    Chen, Aiping; Hu, Jia -Mian; Lu, Ping; ...

    2016-06-10

    One novel approach to manipulating functionalities in correlated complex oxides is strain. However, significant epitaxial strain can only be achieved in ultrathin layers. We show that, under direct lattice matching framework, large and uniform vertical strain up to 2% can be achieved to significantly modify the magnetic anisotropy, magnetism, and magnetotransport properties in heteroepitaxial nanoscaffold films, over a few hundred nanometers in thickness. Comprehensive designing principles of large vertical strain have been proposed. Phase-field simulations not only reveal the strain distribution but also suggest that the ultimate strain is related to the vertical interfacial area and interfacial dislocation density. Moreover,more » by changing the nanoscaffold density and dimension, the strain and the magnetic properties can be tuned. The established correlation among the vertical interface—strain—properties in nanoscaffold films can consequently be used to tune other functionalities in a broad range of complex oxide films far beyond critical thickness.« less

  20. Role of scaffold network in controlling strain and functionalities of nanocomposite films

    PubMed Central

    Chen, Aiping; Hu, Jia-Mian; Lu, Ping; Yang, Tiannan; Zhang, Wenrui; Li, Leigang; Ahmed, Towfiq; Enriquez, Erik; Weigand, Marcus; Su, Qing; Wang, Haiyan; Zhu, Jian-Xin; MacManus-Driscoll, Judith L.; Chen, Long-Qing; Yarotski, Dmitry; Jia, Quanxi

    2016-01-01

    Strain is a novel approach to manipulating functionalities in correlated complex oxides. However, significant epitaxial strain can only be achieved in ultrathin layers. We show that, under direct lattice matching framework, large and uniform vertical strain up to 2% can be achieved to significantly modify the magnetic anisotropy, magnetism, and magnetotransport properties in heteroepitaxial nanoscaffold films, over a few hundred nanometers in thickness. Comprehensive designing principles of large vertical strain have been proposed. Phase-field simulations not only reveal the strain distribution but also suggest that the ultimate strain is related to the vertical interfacial area and interfacial dislocation density. By changing the nanoscaffold density and dimension, the strain and the magnetic properties can be tuned. The established correlation among the vertical interface—strain—properties in nanoscaffold films can consequently be used to tune other functionalities in a broad range of complex oxide films far beyond critical thickness. PMID:27386578

  1. Nanoscale deformations in graphene by laser annealing

    NASA Astrophysics Data System (ADS)

    Coleman, Christopher; Erasmus, Rudolph; Bhattacharyya, Somnath

    2016-12-01

    We investigate a method of inducing nano to micron scale strained regions in graphene using a laser treatment monitored by Raman spectroscopy. The Raman G-peak of the strained region shows a splitting and redshift for graphene exposed to a laser power density above a certain threshold limit (20 mW). We also note blue-shifting of the positions of both Raman D and 2D-peaks and the decrease of both their intensities relative to the G-peak with increasing laser power. These features correspond to p-type doping effects that are believed to be caused by gas adsorbates released from the substrate during the laser treatment. The induced strain is verified by AFM analysis, which shows the blister-like deformations of the treated area and the corresponding strength of the induced gauge fields in the deformed region. We find that, depending on the exact size and geometry of the blisters, the gauge fields can range between 0.4 mT and 300 T. This laser treatment procedure establishes an effective method for the local deformation and doping of graphene, which may be useful for strain engineering in device fabrication.

  2. Experimental study on dynamic mechanical behaviors of polycarbonate

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Gao, Yubo; Ye, Nan; Huang, Wei; Li, Dacheng

    2017-01-01

    Polycarbonate (PC) is a widely used engineering material in aerospace field, since it has excellent mechanical and optical property. In present study, both compressive and tensile tests of PC were conducted at high strain rates by using a split Hopkinson pressure bar. The high-speed camera and 2D Digital Image Correlation method (DIC) were used to analyze the dynamic deformation behavior of PC. Meanwhile, the plate impact experiment was carried out to measure the equation of state of PC in a single-stage gas gun, which consists of asymmetric impact technology, manganin gauges, PVDF, electromagnetic particle velocity gauges. The results indicate that the yield stress of PC increased with the strain rates in both dynamic compression and tension tests. The same phenomenon was similar to elasticity modulus at different strain rate. A constitutive model was used to describe the mechanical behaviors of PC accurately in different strain rates by contrast with the results of 2D-DIC. At last, The D-u Hugoniot curve of polycarbonate in high pressure was fitted by the least square method.

  3. Thin Film Ceramic Strain Sensor Development for Harsh Environments: Interim Report on Identification of Candidate Thin Film Ceramics to Test for Viability for Static Strain Sensor Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.

    2006-01-01

    The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in propulsion system applications. In order to have a more passive method of negating changes of resistance due to temperature, an effort is underway at NASA Glenn to develop high temperature thin film ceramic static strain gauges for application in turbine engines, specifically in the fan and compressor modules on blades. Other applications can be on aircraft hot section structures and on thermal protection systems. The near-term interim goal of the research effort was to identify candidate thin film ceramic sensor materials to test for viability and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. This goal was achieved by a thorough literature search for ceramics that have the potential for application as high temperature thin film strain gauges, reviewing potential candidate materials for chemical and physical compatibility with our microfabrication procedures and substrates.

  4. Thin Film Ceramic Strain Sensor Development for Harsh Environments: Identification of Candidate Thin Film Ceramics to Test for Viability for Static Strain Sensor Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.

    2006-01-01

    The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in propulsion system applications. In order to have a more passive method of negating changes of resistance due to temperature, an effort is underway at NASA GRC to develop high temperature thin film ceramic static strain gauges for application in turbine engines, specifically in the fan and compressor modules on blades. Other applications include on aircraft hot section structures and on thermal protection systems. The near-term interim goal of this research effort was to identify candidate thin film ceramic sensor materials to test for viability and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. This goal was achieved by a thorough literature search for ceramics that have the potential for application as high temperature thin film strain gauges, reviewing potential candidate materials for chemical & physical compatibility with NASA GRC's microfabrication procedures and substrates.

  5. Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering.

    PubMed

    Torabinejad, Bahman; Mohammadi-Rovshandeh, Jamshid; Davachi, Seyed Mohammad; Zamanian, Ali

    2014-09-01

    The employment of biodegradable polymer scaffolds is one of the main approaches for achieving a tissue engineered construct to reproduce bone tissues, which provide a three dimensional template to regenerate desirable tissues for different applications. The main goal of this study is to design a novel triblock scaffold reinforced with nano-hydroxyapatite (nHA) for hard tissue engineering using gas foaming/salt leaching method with minimum solvent usage. With this end in view, the biodegradable triblock copolymers of l-lactide and ε-caprolactone with different mol% were synthesized by ring-opening polymerization method in the presence of Sn(Oct)2 catalyst as initiator and ethylene glycol as co-initiator. The chemical compositions of biodegradable copolymers were characterized by means of FTIR and NMR. The thermal and crystallization behaviors of copolymers were characterized using TGA and DSC thermograms. Moreover, nano-hydroxyapatite was synthesized by the chemical precipitation process and was thoroughly characterized by FTIR, XRD and TEM. Additionally, the nanocomposites with different contents of nHA were prepared by mixing triblock copolymer with nHA. Mechanical properties of the prepared nanocomposites were evaluated by stress-strain measurements. It was found that the nanocomposite with 30% of nHA showed the optimum result. Therefore, nanocomposite scaffolds with 30% nHA were fabricated by gas foaming/salt leaching method and SEM images were used to observe the microstructure and morphology of nanocomposites and nanocomposite scaffolds before and after cell culture. The in-vitro and cell culture tests were also carried out to further evaluate the biological properties. The results revealed that the porous scaffolds were biocompatible to the osteoblast cells because the cells spread and grew well. The resultant nanocomposites could be considered as good candidates for use in bone tissue engineering. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Precursory, Nucleation and Propagation of Ruptures Along Heterogeneously Loaded, Circular Experimental Faults

    NASA Astrophysics Data System (ADS)

    Reches, Z.; Zu, X.; Jeffers, J.

    2017-12-01

    We explored the evolution of dynamic rupture along a circular experimental fault composed of clear acrylic blocks. The ring-shaped fault surface has inner and outer diameters of 7.72 and 10.16 cm, respectively. An array of ten rossette strain-gauges is attached to the outer rim of one block that provide the 2D strain tensor in a plane normal to the fault. The 30 components of the gauges are monitored at 10^6 samples/second. One 3D miniature accelerometer is attached to the fault block. The initial asperities of the fault surface generated a non-uniform strain (=stress) distribution that was recorded, and indicated local deviations of ±30% from the mean stress. The mean normal stress was up to 3.5 MPa, the remotely applied velocity was up to .002 m/s, and the slip velocities during rupture were not measured. The rupture characteristics, namely propagation velocity and rupture front strain-field, were determined from strain-gauge outputs. The analysis of tens of stick-slip events revealed the following preliminary results: (1) The ruptures consistently nucleated at sites of high local strains (=stresses) that were formed by the pre-shear, normal stress loading. (2) The pre-rupture nucleation process was recognized a by temporal (< 0.1 s), local (<20 mm) reduction of the shear strain. (3) Commonly, the initiation of nucleation was associated with micro acoustic emissions, whereas the initiation of rupture was associated with intense acoustic activity. (4) Nucleation could occur quasi-simultaneously at two, highly stressed sites. (5) From the nucleation site, the ruptures propagated in two directions along the ring-shaped fault, and the collision between the two fronts led to rupture `shut-off'. (5) The strain-field of rupture fronts was well-recognized for ruptures propagating faster than 50 m/s, and the fastest fronts propagated at 1000 m/s. (7) It appears that the rupture front strain-field close to the nucleation site differs from the front strain-field far from nucleation site. (8) Post-shear examination of the fault surfaces revealed evidence of brittle wear of the acrylic including gouge formation, ploughing, and powder smearing. (9) Work in progress includes attempts to achieve faster dynamic ruptures, and the utilization of the existing monitoring system to rupture granite faults.

  7. Switchable 3-0 magnetoelectric nanocomposite thin film with high coupling.

    PubMed

    McDannald, Austin; Ye, Linghan; Cantoni, Claudia; Gollapudi, Sreenivasulu; Srinivasan, Gopalan; Huey, Bryan D; Jain, Menka

    2017-03-02

    A mixed precursor solution method was used to deposit 3-0 nanocomposite thin films of PbZr 0.52 Ti 0.48 O 3 (PZT) and CoFe 2 O 4 (CFO). The piezoelectric behavior of PZT and magnetostrictive behavior of CFO allow for magnetoelectric (ME) coupling through strain transfer between the respective phases. High ME coupling is desired for many applications including memory devices, magnetic field sensors, and energy harvesters. The spontaneous phase separation in the 3-0 nanocomposite film was observed, with 25 nm CFO particle or nanophases distributed in discrete layers through the thickness of the PZT matrix. Magnetic-force microscopy images of the nanocomposite thin film under opposite magnetic poling conditions revealed in-plane pancake-like regions of higher concentration of the CFO nanoparticles. The constraints on the size and distribution of the CFO nanoparticles created a unique distribution in a PZT matrix and achieved values of ME coupling of 3.07 V cm -1 Oe -1 at a DC bias of 250 Oe and 1 kHz, increasing up to 25.0 V cm -1 Oe -1 at 90 kHz. Piezo-force microscopy was used to investigate the ferroelectric domain structure before and after opposite magnetic poling directions. It was found that in this nanocomposite, the polarization of the ferroelectric domains switched direction as a result of switching the direction of the magnetization by magnetic fields.

  8. Nanoparticle Addition to Enhance the Mechanical Response of Magnesium Alloys Including Nanoscale Deformation Mechanisms

    NASA Astrophysics Data System (ADS)

    Paramsothy, Muralidharan; Gupta, Manoj

    In this study, various magnesium alloy nanocomposites derived from AZ (Aluminium-Zinc) or ZK (Zinc-Zirconium) series matrices and containing Al2O3, Si3N4, TiC or carbon nanotube (CNT) nanoparticle reinforcement (representative oxide, nitride, carbide or carbon nanoparticle reinforcement, respectively) were fabricated using solidification processing followed by hot extrusion. The main aim here was to simultaneously enhance tensile strength and ductility of each alloy using nanoparticles. The magnesium-oxygen strong affinity and magnesium-carbon weak affinity (comparison of extremes in affinity) are both well known in the context of magnesium composite processing. However, an approach to possibly quantify this affinity in magnesium nanocomposite processing is not clear. In this study accordingly, Nanoscale Electro Negative Interface Density or NENID quantifies the nanoparticle-alloy matrix interfacial area per unit volume in the magnesium alloy nanocomposite taking into consideration the electronegativity of the nanoparticle reinforcement. The beneficial (as well as comparative) effect of the nanoparticles on each alloy is discussed in this article. Regarding the mechanical performance of the nanocomposites, it is important to understand the experimentally observed nanoparticle-matrix interactions during plastic deformation (nanoscale deformation mechanisms). Little is known in this area based on direct observations for metal matrix nanocomposites. Here, relevant multiple nanoscale phenomena includes the emanation of high strain zones (HSZs) from nanoparticle surfaces.

  9. Retaining large and adjustable elastic strains of kilogram-scale Nb nanowires [Better Superconductor by Elastic Strain Engineering: Kilogram-scale Free-Standing Niobium Metal Composite with Large Retained Elastic Strains

    DOE PAGES

    Hao, Shijie; Cui, Lishan; Wang, Hua; ...

    2016-02-10

    Crystals held at ultrahigh elastic strains and stresses may exhibit exceptional physical and chemical properties. Individual metallic nanowires can sustain ultra-large elastic strains of 4-7%. However, retaining elastic strains of such magnitude in kilogram-scale nanowires is challenging. Here, we find that under active load, ~5.6% elastic strain can be achieved in Nb nanowires in a composite material. Moreover, large tensile (2.8%) and compressive (-2.4%) elastic strains can be retained in kilogram-scale Nb nanowires when the composite is unloaded to a free-standing condition. It is then demonstrated that the retained tensile elastic strains of Nb nanowires significantly increase their superconducting transitionmore » temperature and critical magnetic fields, corroborating ab initio calculations based on BCS theory. This free-standing nanocomposite design paradigm opens new avenues for retaining ultra-large elastic strains in great quantities of nanowires and elastic-strain-engineering at industrial scale.« less

  10. Strains Around Abutment Teeth with Different Attachments Used for Implant-Assisted Distal Extension Partial Overdentures: An In Vitro Study.

    PubMed

    ELsyad, Moustafa Abdou; Omran, Abdelbaset Omar; Fouad, Mohammed Mohammed

    2017-01-01

    The aim of this study was to evaluate and compare strain around abutment teeth with different attachments used for implant-assisted distal extension partial overdentures (IADEPODs). A mandibular Kennedy class I acrylic model (remaining teeth from first premolar to first premolar) was constructed. A conventional partial denture was constructed over the model (control, group 1). Two laboratory implants were then placed bilaterally in the first molar areas parallel to each other and perpendicular to the residual ridge. Three additional experimental partial overdentures (PODs) were constructed and connected to the implants using ball (group 2), magnetic (group 3), and Locator (group 4) attachments. Three linear strain gauges were bonded buccal, lingual, and distal to the first premolar abutment tooth at the right (loading) and the left (nonloading) sides. For each group, a universal testing device was used to apply a unilateral vertical static load (50 N) on the first molar area, and the strain was recorded using a multichannel digital strainometer. Significant differences between groups and between sites of strain gauges were detected. Strains recorded for all groups were compressive (negative) in nature. Group 1 demonstrated the highest strain, followed by group 3 and group 4; group 2 recorded the lowest strain. For group 2, the highest strain was recoded at the lingual nonloading side. For group 1, group 3, and group 4, the highest strain was recorded at the buccal loading side. Within the limitation of the present study, ball attachments used to retain IADEPODs to the implants were associated with lower strains around abutment teeth than Locator and magnetic attachments. The highest strain was recorded with conventional partial dentures. © 2015 by the American College of Prosthodontists.

  11. Fabrication and characterization of aerosol-jet printed strain sensors for multifunctional composite structures

    NASA Astrophysics Data System (ADS)

    Zhao, Da; Liu, Tao; Zhang, Mei; Liang, Richard; Wang, Ben

    2012-11-01

    Traditional multifunctional composite structures are produced by embedding parasitic parts, such as foil sensors, optical fibers and bulky connectors. As a result, the mechanical properties of the composites, especially the interlaminar shear strength (ILSS), could be largely undermined. In the present study, we demonstrated an innovative aerosol-jet printing technology for printing electronics inside composite structures without degrading the mechanical properties. Using the maskless fine feature deposition (below 10 μm) characteristics of this printing technology and a pre-cure protocol, strain sensors were successfully printed onto carbon fiber prepregs to enable fabricating composites with intrinsic sensing capabilities. The degree of pre-cure of the carbon fiber prepreg on which strain sensors were printed was demonstrated to be critical. Without pre-curing, the printed strain sensors were unable to remain intact due to the resin flow during curing. The resin flow-induced sensor deformation can be overcome by introducing 10% degree of cure of the prepreg. In this condition, the fabricated composites with printed strain sensors showed almost no mechanical degradation (short beam shearing ILSS) as compared to the control samples. Also, the failure modes examined by optical microscopy showed no difference. The resistance change of the printed strain sensors in the composite structures were measured under a cyclic loading and proved to be a reliable mean strain gauge factor of 2.2 ± 0.06, which is comparable to commercial foil metal strain gauge.

  12. Polymer film strain gauges for measuring large elongations

    NASA Astrophysics Data System (ADS)

    Kondratov, A. P.; Zueva, A. M.; Varakin, R. S.; Taranec, I. P.; Savenkova, I. A.

    2018-02-01

    The paper shows the possibility to print polymer strain gages, microstrip lines, coplanar waveguides, and other prints for avionics using printing technology and equipment. The methods of screen and inkjet printing have been complemented by three new operations of preparing print films for application of an electrically conductive ink layer. Such additional operations make it possible to enhance the conductive ink layer adhesion to the film and to manufacture strain gages for measuring large elongations.

  13. Measurement Techniques for Flow Diagnostic in ITAM Impulse Wind Tunnels

    DTIC Science & Technology

    2010-04-01

    time of wind - tunnel operation, so that oscillations caused by initial shock loads could decay and a comparatively long time period with constant flow...Flow Diagnostic in ITAM Impulse Wind Tunnels 7 - 4 RTO-EN-AVT-186 A strain-gauge pressure probe is an elastic element (membrane) in a sealed...Diagnostic in ITAM Impulse Wind Tunnels RTO-EN-AVT-186 7 - 5 probes are individually calibrated. Piezoelectric pressure gauges are based

  14. Optimization of geometric characteristics to improve sensing performance of MEMS piezoresistive strain sensors

    NASA Astrophysics Data System (ADS)

    Mohammed, Ahmed A. S.; Moussa, Walied A.; Lou, Edmond

    2010-01-01

    In this paper, the design of MEMS piezoresistive strain sensor is described. ANSYS®, finite element analysis (FEA) software, was used as a tool to model the performance of the silicon-based sensor. The incorporation of stress concentration regions (SCRs), to localize stresses, was explored in detail. This methodology employs the structural design of the sensor silicon carrier. Therefore, the induced strain in the sensing chip yielded stress concentration in the vicinity of the SCRs. Hence, this concept was proved to enhance the sensor sensitivity. Another advantage of the SCRs is to reduce the sensor transverse gauge factor, which offered a great opportunity to develop a MEMS sensor with minimal cross sensitivity. Two basic SCR designs were studied. The depth of the SCRs was also investigated. Moreover, FEA simulation is utilized to investigate the effect of the sensing element depth on the sensor sensitivity. Simulation results showed that the sensor sensitivity is independent of the piezoresistors' depth. The microfabrication process flow was introduced to prototype the different sensor designs. The experiments covered operating temperature range from -50 °C to +50 °C. Finally, packaging scheme and bonding adhesive selection were discussed. The experimental results showed good agreement with the FEA simulation results. The findings of this study confirmed the feasibility of introducing SCRs in the sensor silicon carrier to improve the sensor sensitivity while using relatively high doping levels (5 × 1019 atoms cm-3). The fabricated sensors have a gauge factor about three to four times higher compared to conventional thin-foil strain gauges.

  15. Comparison of holographic and numerical vibration modes on ductile cast iron containers at drop tests

    NASA Astrophysics Data System (ADS)

    Ettemeyer, Andreas; Schreiber, Dietmar; Voelzer, W.

    1996-08-01

    Ductile cast iron containers for transportation and deposition of radioactive waste have to be designed carefully in order to avoid unacceptable damages and leakages in case of an accident. Therefore various calculation and experimental methods are used during development and licensing of the containers. Besides others the container has to suffer severe impacts (e.g. falling from a height of several meters onto a concrete base). The level of strains must not exceed a value which would adversely affect the package in such a way that it would fail to meet the applicable requirements. In practice complex events such as drop tests are very difficult to calculate. Both the position of Maximum stress and the time of its occurrence are not easy to be predicted with the method of FEM. The uncertainty of the material modelling for plastic deformations by dynamic loading rates is the limiting factor. Therefore holography as an integral measuring technique in combination with strain gauge techniques were used to fit the FEM. By using the FEM calculations in the case of licensing, the FE and the material model have to be verified. The verification of the FE model has to be done by comparison of the local maxima measured by strain gauges and by comparison of the vibration modes. These vibration modes we take from holographic measurements. In this paper we explain container vibrations after impact analyzed with holographic measurements, FEM calculations and the comparison of the results. The comparison of the local maxima (strain gauges/FEM) is reported earlier.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Bo; Yao, Shurong; Nie, Xu

    In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages,more » as its gauge factor is 500 times of that of the conventional foil strain gages.« less

  17. Highly stretchable miniature strain sensor for large dynamic strain measurement

    DOE PAGES

    Song, Bo; Yao, Shurong; Nie, Xu; ...

    2016-01-01

    In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages,more » as its gauge factor is 500 times of that of the conventional foil strain gages.« less

  18. On the use of electrical and optical strain gauges paired to magnetostrictive patch actuators

    NASA Astrophysics Data System (ADS)

    Braghin, Francesco; Cinquemani, Simone; Cazzulani, Gabriele; Comolli, Lorenzo

    2014-04-01

    Giant Magnetostrictive Actuators (GMA) can be profitably used in application of vibration control on smart structures. In this field, the use of inertial actuators based on magnetostrictive materials has been consolidate. Such devices turn out to be very effective in applications of vibration control, since they can be easily paired with sensors able to ensure the feedback signal necessary to perform the control action. Unlike most widespread applications, this paper studies the use of patch magnetostrictive actuators. They are made of a sheet of magnetostrictive material, rigidly constrained to the structure, and wrapped in a solenoid whose purpose is to change the intensity of the magnetic field within the material itself. The challenge in the use of such devices resides in the impossibility of having co-located sensors. This limit may be exceeded by using strain gauge sensors to measure the deformation of the structure at the actuator. This work analyzes experimentally the opportunity of introducing, inside a composite material structure, both the conventional electric strain gauges and the less conventional optical sensors based on Bragg's gratings. The performance of both solutions are analyzed with particular reference to the signal to noise ratio, the resolution of the sensors, the sensitivity to variations of the electric and magnetic fields and the temperature change associated with the operation of the actuator.

  19. A novel method of strain - bending moment calibration for blade testing

    NASA Astrophysics Data System (ADS)

    Greaves, P.; Prieto, R.; Gaffing, J.; van Beveren, C.; Dominy, R.; Ingram, G.

    2016-09-01

    A new method of interpreting strain data in full scale static and fatigue tests has been implemented as part of the Offshore Renewable Energy Catapult's ongoing development of biaxial fatigue testing of wind turbine blades. During bi-axial fatigue tests, it is necessary to be able to distinguish strains arising from the flapwise motion of the blade from strains arising from the edgewise motion. The method exploits the beam-like structure of blades and is derived using the equations of beam theory. It offers several advantages over the current state of the art method of calibrating strain gauges.

  20. Development of an embedded Fabry Perot Fiber Optic Strain Rosette Sensor (FP-FOSRS)

    NASA Technical Reports Server (NTRS)

    Carman, Gregory P.; Lesko, John J.; Case, Scott W.; Fogg, Brian; Claus, Richard O.

    1992-01-01

    We investigate the feasibility of utilizing a Fabry-Perot Fiber Optic Strain Rosette Sensor (FP-FOSRS) for the evaluation of the internal strain state of a material system. We briefly describe the manufacturing process for this sensor and point out some potential problem areas. Results of an embedded FP-FOSRS in an epoxy matrix with external resistance strain gauges applied for comparative purposes are presented. We show that the internal and external strain measurements are in close agreement. This work lays the foundation for embedding this sensor in actual composite laminas.

  1. Bactericidal activities of woven cotton and nonwoven polypropylene fabrics coated with hydroxyapatite-binding silver/titanium dioxide ceramic nanocomposite “Earth-plus”

    PubMed Central

    Kasuga, Eriko; Kawakami, Yoshiyuki; Matsumoto, Takehisa; Hidaka, Eiko; Oana, Kozue; Ogiwara, Naoko; Yamaki, Dai; Sakurada, Tsukasa; Honda, Takayuki

    2011-01-01

    Background Bacteria from the hospital environment, including linens and curtains, are often responsible for hospital-associated infections. The aim of the present study was to evaluate the bactericidal effects of fabrics coated with the hydroxyapatite-binding silver/titanium dioxide ceramic nanocomposite “Earth-plus”. Methods Bactericidal activities of woven and nonwoven fabrics coated with Earth-plus were investigated by the time-kill curve method using nine bacterial strains, including three Staphylococcus aureus, three Escherichia coli, and three Pseudomonas aeruginosa strains. Results The numbers of viable S. aureus and E. coli cells on both fabrics coated with Earth-plus decreased to below 2 log10 colony-forming units/mL in six hours and reached the detection limit in 18 hours. Viable cell counts of P. aeruginosa on both fabrics coated with Earth-plus could not be detected after 3–6 hours. Viable cells on woven fabrics showed a more rapid decline than those on nonwoven fabrics. Bacterial cell counts of the nine strains on fabrics without Earth-plus failed to decrease even after 18 hours. Conclusion Woven cotton and nonwoven polypropylene fabrics were shown to have excellent antibacterial potential. The woven fabric was more bactericidal than the nonwoven fabric. PMID:21931489

  2. An ultrasensitive strain sensor with a wide strain range based on graphene armour scales.

    PubMed

    Yang, Yi-Fan; Tao, Lu-Qi; Pang, Yu; Tian, He; Ju, Zhen-Yi; Wu, Xiao-Ming; Yang, Yi; Ren, Tian-Ling

    2018-06-12

    An ultrasensitive strain sensor with a wide strain range based on graphene armour scales is demonstrated in this paper. The sensor shows an ultra-high gauge factor (GF, up to 1054) and a wide strain range (ε = 26%), both of which present an advantage compared to most other flexible sensors. Moreover, the sensor is developed by a simple fabrication process. Due to the excellent performance, this strain sensor can meet the demands of subtle, large and complex human motion monitoring, which indicates its tremendous application potential in health monitoring, mechanical control, real-time motion monitoring and so on.

  3. Magnetic attachment for implant overdentures: influence of contact relationship with the denture base on stability and bending strain.

    PubMed

    Yang, Tsung-Chieh; Maeda, Yoshinobu; Gonda, Tomoya; Wada, Masahiro

    2013-01-01

    This study evaluated how the contact height between the magnetic attachment and denture base influences stability and bending strain. An implant modified with strain gauges and a magnetic attachment mounted in an acrylic resin block were used to characterize systems with varying degrees or heights of contact with the abutment. Bending strain under lateral loading increased significantly as the contact height decreased. In the no contact and resilient contact groups, magnetic assemblies separated at reduced bending strain in all loading conditions. The contact height of the magnetic attachment influenced the stability and the amount of bending strain on the implant.

  4. Piezoresistive strain sensing of carbon black /silicone composites above percolation threshold

    NASA Astrophysics Data System (ADS)

    Shang, Shuying; Yue, Yujuan; Wang, Xiaoer

    2016-12-01

    A series of flexible composites with a carbon black (CB) filled silicone rubber matrix were made by an improved process in this work. A low percolation threshold with a mass ratio of 2.99% CB was achieved. The piezoresistive behavior of CB/silicone composites above the critical value, with the mass ratio of carbon black to the silicone rubber ranging from 0.01 to 0.2, was studied. The piezoresistive behavior was different from each other for the composites with different CB contents. But, the composites show an excellent repeatability of piezoresistivity under cyclic compression, no matter with low filler content or with high filler content. The most interesting phenomena were that the plots of gauge factor versus strain of the composites with different CB contents constructed a master curve and the curve could be well fitted by a function. It was showed that the gauge factor of the composites was strain-controlled showing a promising prospect of application.

  5. Structural health monitoring of Lindquist bridge

    NASA Astrophysics Data System (ADS)

    Sargent, D. D.; Murison, E. R.; Bakht, B.; Mufti, A. A.

    2007-04-01

    Many forestry bridges in Canada are typically single-lane, single span structures with two steel plate girders and a deck comprising of precast reinforced concrete panels. The concept of arching in deck slabs was utilized in the steel-free precast panels used in the Lindquist Bridge in British Columbia, Canada. The panels were completely devoid of tensile reinforcement and transverse confinement to the panels was provided by external steel straps. After the bridge was constructed in 1998, electrical strain gauges were installed on the girders and straps. Static and dynamic load tests were performed. The cracks on the top and bottom of the deck were mapped in 1999 and 2003. In 2006, a load test and crack mapping were performed on the bridge. The strain readings in the straps were compared with the data obtained 8 years prior. After analysis of the strain gauge readings, conclusions were drawn on the performance of the bridge. The cracks were formed to accommodate arching action and it was concluded that the bridge is still performing as it was designed.

  6. Experimental and computational investigation of lateral gauge response in polycarbonate

    NASA Astrophysics Data System (ADS)

    Eliot, Jim; Harris, Ernst; Hazell, Paul; Appleby-Thomas, Gareth; Winter, Ronald; Wood, David; Owen, Gareth

    2011-06-01

    Polycarbonate's use in personal armour systems means its high strain-rate response has been extensively studied. Interestingly, embedded lateral manganin stress gauges in polycarbonate have shown gradients behind incident shocks, suggestive of increasing shear strength. However, such gauges need to be embedded in a central (typically) epoxy interlayer - an inherently invasive approach. Recently, research has suggested that in such metal systems interlayer/target impedance may contribute to observed gradients in lateral stress. Here, experimental T-gauge (Vishay Micro-Measurements® type J2M-SS-580SF-025) traces from polycarbonate targets are compared to computational simulations. This work extends previous efforts such that similar impedance exists between the interlayer and matrix (target) interface. Further, experiments and simulations are presented investigating the effects of a ``dry joint'' in polycarbonate, in which no encapsulating medium is employed.

  7. Nanodopant-Induced Band Modulation in AgPbmSbTe2+m-Type Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yi; Ke, Xuezhi; Chen, Changfeng

    2011-01-01

    We elucidate the fundamental physics of nanoscale dopants in narrow band-gap thermoelectric nanocomposites XPbmYTe2+m (X=Ag,Na; Y=Sb,Bi) using first-principles calculations. Our re- sults unveil distinct band-structure modulations, most notably a sizable band-gap widening driven by nanodopant-induced lattice strain and a band split-off at the conduction band minimum caused by the spin-orbit interaction of the dopant Sb or Bi atoms. Boltzmann transport calculations demon- strate that these band modulations have significant but competing effects on high-temperature elec- tron transport behavior. These results offer insights for understanding recent experimental findings and suggest principles for optimizing thermoelectric properties of narrow band-gap semiconductors.

  8. Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers

    PubMed Central

    Domun, Nadiim; Paton, Keith R.; Sainsbury, Toby; Zhang, Tao; Mohamud, Hibaaq

    2017-01-01

    In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs) was used as single filler, increased the critical strain energy release rate, GIC, by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the tensile or thermal properties of the nanocomposite was observed compared to the neat epoxy. When two-dimensional boron nitride nanosheets (BNNS) were added along with the one-dimensional f-MWCNTs, the fracture toughness increased further to 71.6% higher than that of the neat epoxy. Interestingly, when functionalised graphene nanoplatelets (f-GNPs) and boron nitride nanotubes (BNNTs) were used as hybrid filler, the fracture toughness of neat epoxy is improved by 91.9%. In neither of these hybrid filler systems the tensile properties were degraded, but the thermal properties of the nanocomposites containing boron nitride materials deteriorated slightly. PMID:29048345

  9. A ballistic performance study on multiphase particulate systems impacted by various projectiles

    NASA Astrophysics Data System (ADS)

    Comtois-Arnaldo, Christian; Petel, Oren

    2017-06-01

    The present study investigates the complex multiscale dynamic response of particulate composites, in an effort to link the bulk material behavior to strain-rate activated microstructures. These investigations involve multiphase systems containing micron-sized ceramic particles integrated into a siloxane elastomer to create flexible nanocomposites with varying inclusion properties. In particular, the effects of varying particle morphology, strength, volume fraction, and density are under investigation. The experimental focus of the study concerns the ballistic penetration of the nanocomposite targets. The targets are impacted by fragment simulating steel projectiles of constant mass and varying nose shapes (i.e., flat, ogive, and chisel-nose) to identify variations in the penetration mechanics. The projectiles are accelerated in a single-stage gas gun to velocities ranging from 200 m/s to 900 m/s prior to impact. The results for each projectile type are compared to analytical penetration models in order to shed light on the dominant penetration mechanisms and their relationship to the microstructure of the nanocomposites.

  10. TiO2 nanocomposites: Preparation, characterization, mechanical and biological properties

    NASA Astrophysics Data System (ADS)

    Koşarsoy, Gözde; Şen, Elif Hilal; Aksöz, Nilüfer; İde, Semra; Aksoy, Hüsnü

    2014-11-01

    Some novel nanocomposites, which contain different concentrations of TiO2 nanopowders, were firstly prepared by using marble dust with convenient chemical components. Their nano structures characterized and distributions of the nano-aggregations related with internal structural content of the samples have been determined by X-ray Scattering Methods (SAXS and WAXS) and mechanical properties were determined by using strain-stress measurements to increase their potential usage possibility as building materials in health and research centers. In the last and important part of the study, Candida albicans and Aspergillus niger which are a significant risk to medical patients were used to investigate originally prepared nanostructured samples' photocatalyst effect. During the last part of the study, effect of UV and visible light on photocatalyst nanocomposites were also researched. Heterogeneous photocatalysts can carry out advanced oxidation processes used for an antimicrobial effect on microorganisms. TiO2 nanoparticles as one of heterogeneous photocatalysts have been shown to exhibit strong cytotoxicity when exposed to UV and visible light.

  11. Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers.

    PubMed

    Domun, Nadiim; Paton, Keith R; Hadavinia, Homayoun; Sainsbury, Toby; Zhang, Tao; Mohamud, Hibaaq

    2017-10-19

    In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs) was used as single filler, increased the critical strain energy release rate, G IC , by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the tensile or thermal properties of the nanocomposite was observed compared to the neat epoxy. When two-dimensional boron nitride nanosheets (BNNS) were added along with the one-dimensional f-MWCNTs, the fracture toughness increased further to 71.6% higher than that of the neat epoxy. Interestingly, when functionalised graphene nanoplatelets (f-GNPs) and boron nitride nanotubes (BNNTs) were used as hybrid filler, the fracture toughness of neat epoxy is improved by 91.9%. In neither of these hybrid filler systems the tensile properties were degraded, but the thermal properties of the nanocomposites containing boron nitride materials deteriorated slightly.

  12. Cutting force measurement of electrical jigsaw by strain gauges

    NASA Astrophysics Data System (ADS)

    Kazup, L.; Varadine Szarka, A.

    2016-11-01

    This paper describes a measuring method based on strain gauges for accurate specification of electric jigsaw's cutting force. The goal of the measurement is to provide an overall perspective about generated forces in a jigsaw's gearbox during a cutting period. The lifetime of the tool is affected by these forces primarily. This analysis is part of the research and development project aiming to develop a special linear magnetic brake for realizing automatic lifetime tests of electric jigsaws or similar handheld tools. The accurate specification of cutting force facilitates to define realistic test cycles during the automatic lifetime test. The accuracy and precision resulted by the well described cutting force characteristic and the possibility of automation provide new dimension for lifetime testing of the handheld tools with alternating movement.

  13. Wireless digital pressure gauge based on nanomaterials

    NASA Astrophysics Data System (ADS)

    Abay, Dilyara; Otarbay, Zhuldyz; Token, Madengul; Guseinov, Nazim; Muratov, Mukhit; Gabdullin, Maratbek; Ismailov, Daniyar

    2018-03-01

    In the article studies the efficiency of using nanostructured nickel copper films as thin films for bending sensors. Thin films of nickel-copper alloy were deposited using magnetron sputtering technology followed by the appropriate masks. Scanning electron microscopy (SEM) and energy- dispersive X-ray spectroscopy (EDS) techniques were used to examine structure and surface of the Ni Cu coatings. The results of the bending sensors result indicated that the Ni Cu thin film strain gauge showed an excellent sensitive.

  14. Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human-Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers.

    PubMed

    Roh, Eun; Hwang, Byeong-Ung; Kim, Doil; Kim, Bo-Yeong; Lee, Nae-Eung

    2015-06-23

    Interactivity between humans and smart systems, including wearable, body-attachable, or implantable platforms, can be enhanced by realization of multifunctional human-machine interfaces, where a variety of sensors collect information about the surrounding environment, intentions, or physiological conditions of the human to which they are attached. Here, we describe a stretchable, transparent, ultrasensitive, and patchable strain sensor that is made of a novel sandwich-like stacked piezoresisitive nanohybrid film of single-wall carbon nanotubes (SWCNTs) and a conductive elastomeric composite of polyurethane (PU)-poly(3,4-ethylenedioxythiophene) polystyrenesulfonate ( PSS). This sensor, which can detect small strains on human skin, was created using environmentally benign water-based solution processing. We attributed the tunability of strain sensitivity (i.e., gauge factor), stability, and optical transparency to enhanced formation of percolating networks between conductive SWCNTs and PEDOT phases at interfaces in the stacked PU-PEDOT:PSS/SWCNT/PU-PEDOT:PSS structure. The mechanical stability, high stretchability of up to 100%, optical transparency of 62%, and gauge factor of 62 suggested that when attached to the skin of the face, this sensor would be able to detect small strains induced by emotional expressions such as laughing and crying, as well as eye movement, and we confirmed this experimentally.

  15. Valley-polarized quantum transport generated by gauge fields in graphene

    NASA Astrophysics Data System (ADS)

    Settnes, Mikkel; Garcia, Jose H.; Roche, Stephan

    2017-09-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by the superposition/cancellation of superimposed gauge fields which differently affect time reversal symmetry. The onset of a valley-polarized Hall current concomitant to a dissipative valley-polarized current flow in the opposite valley is revealed by a {{e}2}/h Hall conductivity plateau. We employ efficient linear scaling Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder.

  16. Organically modified clay supported chitosan/hydroxyapatite-zinc oxide nanocomposites with enhanced mechanical and biological properties for the application in bone tissue engineering.

    PubMed

    Bhowmick, Arundhati; Banerjee, Sovan Lal; Pramanik, Nilkamal; Jana, Piyali; Mitra, Tapas; Gnanamani, Arumugam; Das, Manas; Kundu, Patit Paban

    2018-01-01

    The objective of this study is to design biomimetic organically modified montmorillonite clay (OMMT) supported chitosan/hydroxyapatite-zinc oxide (CTS/HAP-ZnO) nanocomposites (ZnCMH I-III) with improved mechanical and biological properties compared to previously reported CTS/OMMT/HAP composite. Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy were used to analyze the composition and surface morphology of the prepared nanocomposites. Strong antibacterial properties against both Gram-positive and Gram-negative bacterial strains were established for ZnCMH I-III. pH and blood compatibility study revealed that ZnCMH I-III should be nontoxic to the human body. Cytocompatibility of these nanocomposites with human osteoblastic MG-63 cells was also established. Experimental findings suggest that addition of 5wt% of OMMT into CTS/HAP-ZnO (ZnCMH I) gives the best mechanical strength and water absorption capacity. Addition of 0.1wt% of ZnO nanoparticles into CTS-OMMT-HAP significantly enhanced the tensile strengths of ZnCMH I-III compared to previously reported CTS-OMMT-HAP composite. In absence of OMMT, control sample (ZnCH) also showed reduced tensile strength, antibacterial effect and cytocompatibility with osteoblastic cell compared to ZnCMH I. Considering all of the above-mentioned studies, it can be proposed that ZnCMH I nanocomposite has a great potential to be applied in bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. High Electromechanical Response of Ionic Polymer Actuators with Controlled-Morphology Aligned Carbon Nanotube/Nafion Nanocomposite Electrodes

    PubMed Central

    Liu, Sheng; Liu, Yang; Cebeci, Hülya; de Villoria, Roberto Guzmán; Lin, Jun-Hong

    2011-01-01

    Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fraction create unique opportunities for markedly improving the electromechanical performance of ionic polymer conductor network composite (IPCNC) actuators. Continuous paths through inter-VA-CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast device actuation speed (>10% strain/second). One critical issue in developing advanced actuator materials is how to suppress the strain that does not contribute to the actuation (unwanted strain) thereby reducing actuation efficiency. Here our experiments demonstrate that the VA-CNTs give an anisotropic elastic response in the composite electrodes, which suppresses the unwanted strain and markedly enhances the actuation strain (>8% strain under 4 volts). The results reported here suggest pathways for optimizing the electrode morphology in IPCNCs using ultra-high volume fraction VA-CNTs to further enhanced performance. PMID:21765822

  18. 49 CFR 178.59 - Specification 8 steel cylinders with porous fillings for acetylene.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... as follows: (1) The test must be by water-jacket, or other suitable method, operated so as to obtain... in tension must be the stress corresponding to a permanent strain of 0.2 percent of the gauge length...”) corresponding to the stress at which the 0.2 percent permanent strain occurs may be determined with sufficient...

  19. Silicon microengineering for accelerometers

    NASA Astrophysics Data System (ADS)

    Satchell, D. W.

    Silicon microengineering enables the excellent mechanical properties of silicon to be combined with electronic ones to produce accelerometers of good performance, small size and low cost. The design and fabrication of two types of analogue accelerometer, using this technique, are described. One employs implanted strain gauges to give a dc output, while the other has a strain-sensitive resonant structure which gives a varying frequency signal.

  20. Experimental study of thin film sensor networks for wind turbine blade damage detection

    NASA Astrophysics Data System (ADS)

    Downey, A.; Laflamme, S.; Ubertini, F.; Sauder, H.; Sarkar, P.

    2017-02-01

    Damage detection of wind turbine blades is difficult due to their complex geometry and large size, for which large deployment of sensing systems is typically not economical. A solution is to develop and deploy dedicated sensor networks fabricated from inexpensive materials and electronics. The authors have recently developed a novel skin-type strain gauge for measuring strain over very large surfaces. The skin, a type of large-area electronics, is constituted from a network of soft elastomeric capacitors. The sensing system is analogous to a biological skin, where local strain can be monitored over a global area. In this paper, we propose the utilization of a dense network of soft elastomeric capacitors to detect, localize, and quantify damage on wind turbine blades. We also leverage mature off-the-shelf technologies, in particular resistive strain gauges, to augment such dense sensor network with high accuracy data at key locations, therefore constituting a hybrid dense sensor network. The proposed hybrid dense sensor network is installed inside a wind turbine blade model, and tested in a wind tunnel to simulate an operational environment. Results demonstrate the ability of the hybrid dense sensor network to detect, localize, and quantify damage.

  1. Verification of Experimental Techniques for Flow Surface Determination

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Lerch, Bradley A.; Ellis, John R.; Robinson, David N.

    1996-01-01

    The concept of a yield surface is central to the mathematical formulation of a classical plasticity theory. However, at elevated temperatures, material response can be highly time-dependent, which is beyond the realm of classical plasticity. Viscoplastic theories have been developed for just such conditions. In viscoplastic theories, the flow law is given in terms of inelastic strain rate rather than the inelastic strain increment used in time-independent plasticity. Thus, surfaces of constant inelastic strain rate or flow surfaces are to viscoplastic theories what yield surfaces are to classical plasticity. The purpose of the work reported herein was to validate experimental procedures for determining flow surfaces at elevated temperatures. Since experimental procedures for determining yield surfaces in axial/torsional stress space are well established, they were employed -- except inelastic strain rates were used rather than total inelastic strains. In yield-surface determinations, the use of small-offset definitions of yield minimizes the change of material state and allows multiple loadings to be applied to a single specimen. The key to the experiments reported here was precise, decoupled measurement of axial and torsional strain. With this requirement in mind, the performance of a high-temperature multi-axial extensometer was evaluated by comparing its results with strain gauge results at room temperature. Both the extensometer and strain gauges gave nearly identical yield surfaces (both initial and subsequent) for type 316 stainless steel (316 SS). The extensometer also successfully determined flow surfaces for 316 SS at 650 C. Furthermore, to judge the applicability of the technique for composite materials, yield surfaces were determined for unidirectional tungsten/Kanthal (Fe-Cr-Al).

  2. Development of a high-sensitivity strain measurement system based on a SH SAW sensor

    NASA Astrophysics Data System (ADS)

    Oh, Haekwan; Lee, Keekeun; Eun, Kyoungtae; Choa, Sung-Hoon; Yang, Sang Sik

    2012-02-01

    A strain measurement system based on a shear horizontal surface acoustic wave (SH SAW) was developed. The developed system is composed of a SAW microsensor, a printed circuit board (PCB), an adhesive and a strain gauge. When a compression force is applied to the PCB by the strain gauge, the PCB is bent so that external strain energy can be evenly delivered to the microsensor without any detachment of the sensor from the board. When a stretching force is applied to the PCB under the condition that one side of the PCB is fixed and the other side is modulated, the actual length of the SAW delay line between the two interdigital transducers (IDTs) is increased. The increase in the delay line length causes a change in the time for the propagating SAW to reach the output IDT. If strain energy is applied to the piezoelectric substrate, the substrate density is changed, which then changes the propagation velocity of the SAW. Coupling-of-modes modeling was conducted prior to fabrication to determine the optimal device parameters. Depending on the strain, the frequency difference was linearly modulated. The obtained sensitivity for stretching was 17.3 kHz/% for the SH wave mode and split electrode. And the obtained sensitivity for bending was 46.1 kHz/% for the SH wave mode and split electrode. The SH wave showed about 15% higher sensitivity than the Rayleigh wave, and the dog-bone PCB showed about 8% higher sensitivity than the rectangular PCB. The obtained sensitivity was about five times higher than that of existing SAW-based strain sensors.

  3. Detecting Wear In Ball Bearings During Operation

    NASA Technical Reports Server (NTRS)

    Hine, Michael J.

    1988-01-01

    Strain-gauge signals at harmonics of ball-bearing-cage frequencies signify wear. Brief report describes experiments in continuing effort to interpret vibrations of machinery in terms of wear in ball bearing.

  4. A microfabricated strain gauge array on polymer substrate for tactile neuroprostheses in rats

    NASA Astrophysics Data System (ADS)

    Beygi, M.; Mutlu, S.; Güçlü, B.

    2016-08-01

    In this study, we present the design, microfabrication and characterization of a tactile sensor system which can be used for sensory neuroprostheses in rats. The sensor system consists of an array of 2  ×  7 cells, each of which has a series combination of four strain gauges. Each group of four strain gauges is placed around a square membrane with a size of 2.5  ×  2.5 mm2. Unlike most common tactile sensors based on silicon substrates, we used 3D-printed polylactic acid as a substrate, because it is not brittle, and under local extremes, it would prevent the catastrophic failure of all cells. The strain gauges were fabricated by depositing and patterning a 50 nm thick aluminum (Al) film on a polyimide sheet with a thickness of 0.125 mm. Polydimethylsiloxane (PDMS) elastomer was bonded on the top surface of the PI membrane. The PDMS layer was prepared in two different thicknesses, 1.2 and 1.7 mm, to investigate its effect on the static response of the sensor. The sensitivity and the maximum allowable force, corresponding to the maximum deformation of 0.9 mm at the center of each cell, changed based on the thickness of the PDMS layer. Sensor cells operated linearly up to 3 N with an average sensitivity of 200 mΩ N-1 (0.7 Ω mm-1) for 1.2 mm thick PDMS. These values changed to 4 N and 70 mΩ N-1 (0.3 Ω mm-1), respectively, for 1.7 mm thick PDMS. The nonlinearity was less than 3%. The cells had low cross-talk (~5 mΩ N-1 and 0.02 Ω mm-1) relative to the average sensitivity. Additionally, the dynamic response of the sensor was characterized at several frequencies by using a vibrotactile stimulation system previously designed for psychophysics experiments. The sensor was also tested inside the rat conditioning chamber to demonstrate the relevant signals in a tactile neuroprosthesis.

  5. Simple fabrication of reduced graphene oxide -few layer MoS2 nanocomposite for enhanced electrochemical performance in supercapacitors and water purification

    NASA Astrophysics Data System (ADS)

    Raghu, M. S.; Yogesh Kumar, K.; Rao, Srilatha; Aravinda, T.; Sharma, S. C.; Prashanth, M. K.

    2018-05-01

    Expelling of heavy metal ions into water resource systems is extremely hazardous to the environment. Adsorption is one of the most cost effective and potential methods to remove the heavy metal ions from the effluents. Therefore, an attempt has been made to study the adsorption of metal particles of Cd and Hg from aqueous solution by using reduced graphene oxide-molybdenum disulphide (rGO-MoS2) nanocomposites as adsorbents. The rGO-MoS2 composites were synthesized by following simple physical methods; which involve the mixing of dispersions of MoS2 and graphene oxide (GO) by sonication, followed by subsequent reduction with hydrazine hydrate. Characterization of the nanocomposites was performed by FESEM, TEM, EDAX, raman spectroscopy, XRD and BET surface area analysis. Electron microscopic images validate the presence of homogeneity in the synthesized nanocomposite. Batch adsorption experiments were used to scrutinizethe effect of an array of parameters like effect of pH, initial concentration of the metal ions, adsorbent dose, and contact time on the adsorption capacity of metal ions on rGO-MoS2 nanocomposites. The thorough examination of adsorbed isotherm and energy demonstrates the best fitting of the adsorption data with the 'Langmuir adsorption isotherm model' and follows the pseudo-second-order kinetic in active condition. The synthesized materials havealso been tested against Gram-positive and Gram-negative bacterial strains and have showcased promising antimicrobial activities. At the same time, the nanocomposites were evaluated for electrochemical performance in supercapacitors. The rGO-MoS2 nanocomposite demonstrates better capacitance (440 Fg-1) at 5 mvs-1 scan rate. The inimitable surface property of MoS2 and good electrical conductivity of rGO results show versatile usage and formidable performance as an adsorbent, antibacterial agent and electrode material for supercapacitors.

  6. High-purity production of ultrathin boron nitride nanosheets via shock chilling and their enhanced mechanical performance and transparency in nanocomposite hydrogels.

    PubMed

    Sun, Zemin; Lin, Liu; Yuan, Mengwei; Li, Huifeng; Sun, Genban; Ma, Shulan; Yang, Xiaojing

    2018-05-25

    A simple, highly efficient, and eco-friendly method is prepared to divide bulk boron nitride (BN) into boron nitride nanosheets (BNNSs). Due to the anisotropy of the hexagonal BN expansion coefficient, bulk BN is exfoliated utilizing the rapid and tremendous change in temperature, the extreme gasification of water, and ice thermal expansion pressure under freeze drying. The thickness of most of the BNNSs was less than ∼3 nm with a yield of 12-16 wt%. The as-obtained BNNS/polyacrylamide (PAAm) composite hydrogels exhibited outstanding mechanical properties. The tensile strength is fives times the bulk of the BN/PAAm composite hydrogels and the elongations are more than nine-fold the bulk of the BN/PAAm composite hydrogels. The BNNS/PAAm nanocomposite hydrogels also exhibited excellent elastic recovery, and the hysteresis of the BNNS nanocomposite hydrogels was negligible even after 30 cycles with a maximum tensile strain (ε max ) of 700%. This work provides new insight into the fabrication of BN/polymer nanocomposites utilizing the excellent mechanical properties and transparency of BN. The results confirm that a few layers of BNNSs can also efficiently and directly improve the mechanical properties of composite polymer due to its stronger surface free energy and better wettability.

  7. High-purity production of ultrathin boron nitride nanosheets via shock chilling and their enhanced mechanical performance and transparency in nanocomposite hydrogels

    NASA Astrophysics Data System (ADS)

    Sun, Zemin; Lin, Liu; Yuan, Mengwei; Li, Huifeng; Sun, Genban; Ma, Shulan; Yang, Xiaojing

    2018-05-01

    A simple, highly efficient, and eco-friendly method is prepared to divide bulk boron nitride (BN) into boron nitride nanosheets (BNNSs). Due to the anisotropy of the hexagonal BN expansion coefficient, bulk BN is exfoliated utilizing the rapid and tremendous change in temperature, the extreme gasification of water, and ice thermal expansion pressure under freeze drying. The thickness of most of the BNNSs was less than ∼3 nm with a yield of 12–16 wt%. The as-obtained BNNS/polyacrylamide (PAAm) composite hydrogels exhibited outstanding mechanical properties. The tensile strength is fives times the bulk of the BN/PAAm composite hydrogels and the elongations are more than nine-fold the bulk of the BN/PAAm composite hydrogels. The BNNS/PAAm nanocomposite hydrogels also exhibited excellent elastic recovery, and the hysteresis of the BNNS nanocomposite hydrogels was negligible even after 30 cycles with a maximum tensile strain (ε max) of 700%. This work provides new insight into the fabrication of BN/polymer nanocomposites utilizing the excellent mechanical properties and transparency of BN. The results confirm that a few layers of BNNSs can also efficiently and directly improve the mechanical properties of composite polymer due to its stronger surface free energy and better wettability.

  8. Preparation and characterization of potato starch nanocrystal reinforced natural rubber nanocomposites.

    PubMed

    Rajisha, K R; Maria, H J; Pothan, L A; Ahmad, Zakiah; Thomas, S

    2014-06-01

    Potato starch nanocrystals were found to serve as an effective reinforcing agent for natural rubber (NR). Starch nanocrystals were obtained by the sulfuric acid hydrolysis of potato starch granules. After mixing the latex and the starch nanocrystals, the resulting aqueous suspension was cast into film by solvent evaporation method. The composite samples were successfully prepared by varying filler loadings, using a colloidal suspension of starch nanocrystals and NR latex. The morphology of the nanocomposite prepared was analyzed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). FESEM analysis revealed the size and shape of the crystal and their homogeneous dispersion in the composites. The crystallinity of the nanocomposites was studied using XRD analysis which indicated an overall increase in crystallinity with filler content. The mechanical properties of the nanocomposites such as stress-strain behavior, tensile strength, tensile modulus and elongation at break were measured according to ASTM standards. The tensile strength and modulus of the composites were found to improve tremendously with increasing nanocrystal content. This dramatic increase observed can be attributed to the formation of starch nanocrystal network. This network immobilizes the polymer chains leading to an increase in the modulus and other mechanical properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. NASA Tech Briefs, March 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Topics covered include: Improved Instrument for Detecting Water and Ice in Soil; Real-Time Detection of Dust Devils from Pressure Readings; Determining Surface Roughness in Urban Areas Using Lidar Data; DSN Data Visualization Suite; Hamming and Accumulator Codes Concatenated with MPSK or QAM; Wide-Angle-Scanning Reflectarray Antennas Actuated by MEMS; Biasable Subharmonic Membrane Mixer for 520 to 600 GHz; Hardware Implementation of Serially Concatenated PPM Decoder; Symbolic Processing Combined with Model-Based Reasoning; Presentation Extensions of the SOAP; Spreadsheets for Analyzing and Optimizing Space Missions; Processing Ocean Images to Detect Large Drift Nets; Alternative Packaging for Back-Illuminated Imagers; Diamond Machining of an Off-Axis Biconic Aspherical Mirror; Laser Ablation Increases PEM/Catalyst Interfacial Area; Damage Detection and Self-Repair in Inflatable/Deployable Structures; Polyimide/Glass Composite High-Temperature Insulation; Nanocomposite Strain Gauges Having Small TCRs; Quick-Connect Windowed Non-Stick Penetrator Tips for Rapid Sampling; Modeling Unsteady Cavitation and Dynamic Loads in Turbopumps; Continuous-Flow System Produces Medical-Grade Water; Discrimination of Spore-Forming Bacilli Using spoIVA; nBn Infrared Detector Containing Graded Absorption Layer; Atomic References for Measuring Small Accelerations; Ultra-Broad-Band Optical Parametric Amplifier or Oscillator; Particle-Image Velocimeter Having Large Depth of Field; Enhancing SERS by Means of Supramolecular Charge Transfer; Improving 3D Wavelet-Based Compression of Hyperspectral Images; Improved Signal Chains for Readout of CMOS Imagers; SOI CMOS Imager with Suppression of Cross-Talk; Error-Rate Bounds for Coded PPM on a Poisson Channel; Biomorphic Multi-Agent Architecture for Persistent Computing; and Using Covariance Analysis to Assess Pointing Performance.

  10. Experimental determination of the yield stress curve of the scotch pine wood materials

    NASA Astrophysics Data System (ADS)

    Günay, Ezgi; Aygün, Cevdet; Kaya, Şükrü Tayfun

    2013-12-01

    Yield stress curve is determined for the pine wood specimens by conducting a series of tests. In this work, pinewood is modeled as a composite material with transversely isotropic fibers. Annual rings (wood grain) of the wood specimens are taken as the major fiber directions with which the strain gauge directions are aligned. For this purpose, three types of tests are arranged. These are tensile, compression and torsion loading tests. All of the tests are categorized with respect to fiber orientations and their corresponding loading conditions. Each test within these categories is conducted separately. Tensile and compression tests are conducted in accordance with standards of Turkish Standards Institution (TSE) whereas torsion tests are conducted in accordance with Standards Australia. Specimens are machined from woods of Scotch pine which is widely used in boat building industries and in other structural engineering applications. It is determined that this species behaves more flexibly than the others. Strain gauges are installed on the specimen surfaces in such a way that loading measurements are performed along directions either parallel or perpendicular to the fiber directions. During the test and analysis phase of yield stress curve, orientation of strain gauge directions with respect to fiber directions are taken into account. The diagrams of the normal stress vs. normal strain or the shear stress vs. shear strain are plotted for each test. In each plot, the yield stress is determined by selecting the point on the diagram, the tangent of which is having a slope of 5% less than the slope of the elastic portion of the diagram. The geometric locus of these selected points constitutes a single yield stress curve on σ1-σ2 principal plane. The resulting yield stress curve is plotted as an approximate ellipse which resembles Tsai-Hill failure criterion. The results attained in this work, compare well with the results which are readily available in the literature.

  11. Micromachined silicon cantilevers with integrated high-frequency magnetoimpedance sensors for simultaneous strain and magnetic field detection

    NASA Astrophysics Data System (ADS)

    Buettel, G.; Joppich, J.; Hartmann, U.

    2017-12-01

    Giant magnetoimpedance (GMI) measurements in the high-frequency regime utilizing a coplanar waveguide with an integrated Permalloy multilayer and micromachined on a silicon cantilever are reported. The fabrication process is described in detail. The aspect ratio of the magnetic multilayer in the magnetoresistive and magnetostrictive device was varied. Tensile strain and compressive strain were applied. Vector network analyzer measurements in the range from the skin effect to ferromagnetic resonance confirm the technological potential of GMI-based micro-electro-mechanical devices for strain and magnetic field sensing applications. The strain-impedance gauge factor was quantified by finite element strain calculations and reaches a maximum value of almost 200.

  12. Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration

    PubMed Central

    2013-01-01

    Background The replacement of hard tissues demands biocompatible and sometimes bioactive materials with properties similar to those of bone. Nano-composites made of biocompatible polymers and bioactive inorganic nano particles such as HDPE/HA have attracted attention as permanent bone substitutes due to their excellent mechanical properties and biocompatibility. Method The HDPE/HA nano-composite is prepared using melt blending at different HA loading ratios. For evaluation of the degradation by radiation, gamma rays of 35 kGy, and 70 kGy were used to irradiate the samples at room temperature in vacuum. The effects of accelerated ageing after gamma irradiation on morphological, mechanical and thermal properties of HDPE/HA nano-composites were measured. Results In Vitro test results showed that the HDPE and all HDPE/HA nano-composites do not exhibit any cytotoxicity to WISH cell line. The results also indicated that the tensile properties of HDPE/HA nano-composite increased with increasing the HA content except fracture strain decreased. The dynamic mechanical analysis (DMA) results showed that the storage and loss moduli increased with increasing the HA ratio and the testing frequency. Finally, it is remarked that all properties of HDPE/HA is dependent on the irradiation dose and accelerated aging. Conclusion Based on the experimental results, it is found that the addition of 10%, 20% and 30% HA increases the HDPE stiffness by 23%, 44 and 59% respectively. At the same time, the G’ increased from 2.25E11 MPa for neat HDPE to 4.7E11 MPa when 30% HA was added to the polymer matrix. Also, significant improvements in these properties have been observed due to irradiation. Finally, the overall properties of HDPE and its nano-composite properties significantly decreased due to aging and should be taken into consideration in the design of bone substitutes. It is attributed that the developed HDPE/HA nano-composites could be a good alternative material for bone tissue regeneration due to their acceptable properties. PMID:24059280

  13. Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration.

    PubMed

    Alothman, Othman Y; Almajhdi, Fahad N; Fouad, H

    2013-09-24

    The replacement of hard tissues demands biocompatible and sometimes bioactive materials with properties similar to those of bone. Nano-composites made of biocompatible polymers and bioactive inorganic nano particles such as HDPE/HA have attracted attention as permanent bone substitutes due to their excellent mechanical properties and biocompatibility. The HDPE/HA nano-composite is prepared using melt blending at different HA loading ratios. For evaluation of the degradation by radiation, gamma rays of 35 kGy, and 70 kGy were used to irradiate the samples at room temperature in vacuum. The effects of accelerated ageing after gamma irradiation on morphological, mechanical and thermal properties of HDPE/HA nano-composites were measured. In Vitro test results showed that the HDPE and all HDPE/HA nano-composites do not exhibit any cytotoxicity to WISH cell line. The results also indicated that the tensile properties of HDPE/HA nano-composite increased with increasing the HA content except fracture strain decreased. The dynamic mechanical analysis (DMA) results showed that the storage and loss moduli increased with increasing the HA ratio and the testing frequency. Finally, it is remarked that all properties of HDPE/HA is dependent on the irradiation dose and accelerated aging. Based on the experimental results, it is found that the addition of 10%, 20% and 30% HA increases the HDPE stiffness by 23%, 44 and 59% respectively. At the same time, the G' increased from 2.25E11 MPa for neat HDPE to 4.7E11 MPa when 30% HA was added to the polymer matrix. Also, significant improvements in these properties have been observed due to irradiation. Finally, the overall properties of HDPE and its nano-composite properties significantly decreased due to aging and should be taken into consideration in the design of bone substitutes. It is attributed that the developed HDPE/HA nano-composites could be a good alternative material for bone tissue regeneration due to their acceptable properties.

  14. Accurate Assessment of the Oxygen Reduction Electrocatalytic Activity of Mn/Polypyrrole Nanocomposites Based on Rotating Disk Electrode Measurements, Complemented with Multitechnique Structural Characterizations

    PubMed Central

    Sánchez, Carolina Ramírez; Taurino, Antonietta; Bozzini, Benedetto

    2016-01-01

    This paper reports on the quantitative assessment of the oxygen reduction reaction (ORR) electrocatalytic activity of electrodeposited Mn/polypyrrole (PPy) nanocomposites for alkaline aqueous solutions, based on the Rotating Disk Electrode (RDE) method and accompanied by structural characterizations relevant to the establishment of structure-function relationships. The characterization of Mn/PPy films is addressed to the following: (i) morphology, as assessed by Field-Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscope (AFM); (ii) local electrical conductivity, as measured by Scanning Probe Microscopy (SPM); and (iii) molecular structure, accessed by Raman Spectroscopy; these data provide the background against which the electrocatalytic activity can be rationalised. For comparison, the properties of Mn/PPy are gauged against those of graphite, PPy, and polycrystalline-Pt (poly-Pt). Due to the literature lack of accepted protocols for precise catalytic activity measurement at poly-Pt electrode in alkaline solution using the RDE methodology, we have also worked on the obtainment of an intralaboratory benchmark by evidencing some of the time-consuming parameters which drastically affect the reliability and repeatability of the measurement. PMID:28042491

  15. A three-dimensional strain measurement method in elastic transparent materials using tomographic particle image velocimetry

    PubMed Central

    Suzuki, Sara; Aoyama, Yusuke; Umezu, Mitsuo

    2017-01-01

    Background The mechanical interaction between blood vessels and medical devices can induce strains in these vessels. Measuring and understanding these strains is necessary to identify the causes of vascular complications. This study develops a method to measure the three-dimensional (3D) distribution of strain using tomographic particle image velocimetry (Tomo-PIV) and compares the measurement accuracy with the gauge strain in tensile tests. Methods and findings The test system for measuring 3D strain distribution consists of two cameras, a laser, a universal testing machine, an acrylic chamber with a glycerol water solution for adjusting the refractive index with the silicone, and dumbbell-shaped specimens mixed with fluorescent tracer particles. 3D images of the particles were reconstructed from 2D images using a multiplicative algebraic reconstruction technique (MART) and motion tracking enhancement. Distributions of the 3D displacements were calculated using a digital volume correlation. To evaluate the accuracy of the measurement method in terms of particle density and interrogation voxel size, the gauge strain and one of the two cameras for Tomo-PIV were used as a video-extensometer in the tensile test. The results show that the optimal particle density and interrogation voxel size are 0.014 particles per pixel and 40 × 40 × 40 voxels with a 75% overlap. The maximum measurement error was maintained at less than 2.5% in the 4-mm-wide region of the specimen. Conclusions We successfully developed a method to experimentally measure 3D strain distribution in an elastic silicone material using Tomo-PIV and fluorescent particles. To the best of our knowledge, this is the first report that applies Tomo-PIV to investigate 3D strain measurements in elastic materials with large deformation and validates the measurement accuracy. PMID:28910397

  16. Sensing sheets based on large area electronics for fatigue crack detection

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Glisic, Branko

    2015-03-01

    Reliable early-stage damage detection requires continuous structural health monitoring (SHM) over large areas of structure, and with high spatial resolution of sensors. This paper presents the development stage of prototype strain sensing sheets based on Large Area Electronics (LAE), in which thin-film strain gauges and control circuits are integrated on the flexible electronics and deposited on a polyimide sheet that can cover large areas. These sensing sheets were applied for fatigue crack detection on small-scale steel plates. Two types of sensing-sheet interconnects were designed and manufactured, and dense arrays of strain gauge sensors were assembled onto the interconnects. In total, four (two for each design type) strain sensing sheets were created and tested, which were sensitive to strain at virtually every point over the whole sensing sheet area. The sensing sheets were bonded to small-scale steel plates, which had a notch on the boundary so that fatigue cracks could be generated under cyclic loading. The fatigue tests were carried out at the Carleton Laboratory of Columbia University, and the steel plates were attached through a fixture to the loading machine that applied cyclic fatigue load. Fatigue cracks then occurred and propagated across the steel plates, leading to the failure of these test samples. The strain sensor that was close to the notch successfully detected the initialization of fatigue crack and localized the damage on the plate. The strain sensor that was away from the crack successfully detected the propagation of fatigue crack based on the time history of measured strain. Overall, the results of the fatigue tests validated general principles of the strain sensing sheets for crack detection.

  17. Package analysis of 3D-printed piezoresistive strain gauge sensors

    NASA Astrophysics Data System (ADS)

    Das, Sumit Kumar; Baptist, Joshua R.; Sahasrabuddhe, Ritvij; Lee, Woo H.; Popa, Dan O.

    2016-05-01

    Poly(3,4-ethyle- nedioxythiophene)-poly(styrenesulfonate) or PEDOT:PSS is a flexible polymer which exhibits piezo-resistive properties when subjected to structural deformation. PEDOT:PSS has a high conductivity and thermal stability which makes it an ideal candidate for use as a pressure sensor. Applications of this technology includes whole body robot skin that can increase the safety and physical collaboration of robots in close proximity to humans. In this paper, we present a finite element model of strain gauge touch sensors which have been 3D-printed onto Kapton and silicone substrates using Electro-Hydro-Dynamic ink-jetting. Simulations of the piezoresistive and structural model for the entire packaged sensor was carried out using COMSOLR , and compared with experimental results for validation. The model will be useful in designing future robot skin with predictable performances.

  18. Research on the nonintrusive measurement of the turbine blade vibration

    NASA Astrophysics Data System (ADS)

    Zhang, Shi hai; Li, Lu-ping; Rao, Hong-de

    2008-11-01

    It's one of the important ways to monitor the change of dynamic characteristic of turbine blades for ensuring safety operation of turbine unit. Traditional measurement systems for monitoring blade vibration generally use strain gauges attached to the surface of turbine blades, each strain gauge gives out an analogue signal related to blade deformation, it's maximal defect is only a few blades could be monitored which are attached by strain gauge. But the noncontact vibration measurement will be discussed would solve this problem. This paper deals with noncontact vibration measurement on the rotor blades of turbine through experiments. In this paper, the noncontact vibration measurement - Tip Timing Measurement will be presented, and will be improved. The statistics and DFT will be used in the improved measurement. The main advantage of the improved measurement is that only two sensors over the top of blades and one synchronous sensor of the rotor are used to get the exact vibration characteristics of the each blade in a row. In our experiment, we adopt NI Company's DAQ equipment: SCXI1001 and PCI 6221, three optical sensors, base on the graphics program soft LabVIEW to develop the turbine blade monitor system. At the different rotational speed of the rotor (1000r/m and 1200r/m) we do several experiments on the bench of the Turbine characteristic. Its results indicated that the vibration of turbine blade could be real-time monitored and accurately measured by the improved Tip Timing Measurement.

  19. Dynamic Strain Measured by Mach-Zehnder Interferometric Optical Fiber Sensors

    PubMed Central

    Her, Shiuh-Chuan; Yang, Chih-Min

    2012-01-01

    Optical fibers possess many advantages such as small size, light weight and immunity to electro-magnetic interference that meet the sensing requirements to a large extent. In this investigation, a Mach-Zehnder interferometric optical fiber sensor is used to measure the dynamic strain of a vibrating cantilever beam. A 3 × 3 coupler is employed to demodulate the phase shift of the Mach-Zehnder interferometer. The dynamic strain of a cantilever beam subjected to base excitation is determined by the optical fiber sensor. The experimental results are validated with the strain gauge. PMID:22737010

  20. Silver-pig skin nanocomposites and mesenchymal stem cells: suitable antibiofilm cellular dressings for wound healing.

    PubMed

    Pérez-Díaz, Mario Alberto; Silva-Bermudez, Phaedra; Jiménez-López, Binisa; Martínez-López, Valentín; Melgarejo-Ramírez, Yaaziel; Brena-Molina, Ana; Ibarra, Clemente; Baeza, Isabel; Martínez-Pardo, M Esther; Reyes-Frías, M Lourdes; Márquez-Gutiérrez, Erik; Velasquillo, Cristina; Martínez-Castañon, Gabriel; Martinez-Gutierrez, Fidel; Sánchez-Sánchez, Roberto

    2018-01-10

    Treatment of severe or chronic skin wounds is an important challenge facing medicine and a significant health care burden. Proper wound healing is often affected by bacterial infection; where biofilm formation is one of the main risks and particularly problematic because it confers protection to microorganisms against antibiotics. One avenue to prevent bacterial colonization of wounds is the use of silver nanoparticles (AgNPs); which have proved to be effective against non-multidrug-resistant and multidrug-resistant bacteria. In addition, the use of mesenchymal stem cells (MSC) is an excellent option to improve wound healing due to their capability for differentiation and release of relevant growth factors. Finally, radiosterilized pig skin (RPS) is a biomatrix successfully used as wound dressing to avoid massive water loss, which represents an excellent carrier to deliver MSC into wound beds. Together, AgNPs, RPS and MSC represent a potential dressing to control massive water loss, prevent bacterial infection and enhance skin regeneration; three essential processes for appropriate wound healing with minimum scaring. We synthesized stable 10 nm-diameter spherical AgNPs that showed 21- and 16-fold increase in bacteria growth inhibition (in comparison to antibiotics) against clinical strains Staphylococcus aureus and Stenotrophomonas maltophilia, respectively. RPS samples were impregnated with different AgNPs suspensions to develop RPS-AgNPs nanocomposites with different AgNPs concentrations. Nanocomposites showed inhibition zones, in Kirby-Bauer assay, against both clinical bacteria tested. Nanocomposites also displayed antibiofilm properties against S. aureus and S. maltophilia from RPS samples impregnated with 250 and 1000 ppm AgNPs suspensions, respectively. MSC were isolated from adipose tissue and seeded on nanocomposites; cells survived on nanocomposites impregnated with up to 250 ppm AgNPs suspensions, showing 35% reduction in cell viability, in comparison to cells on RPS. Cells on nanocomposites proliferated with culture days, although the number of MSC on nanocomposites at 24 h of culture was lower than that on RPS. AgNPs with better bactericide activity than antibiotics were synthesized. RPS-AgNPs nanocomposites impregnated with 125 and 250 ppm AgNPs suspensions decreased bacterial growth, decreased biofilm formation and were permissive for survival and proliferation of MSC; constituting promising multi-functional dressings for successful treatment of skin wounds.

  1. Effect of graphenenano-platelets on the mechanical properties of Mg/3wt%Al alloy-nanocomposite

    NASA Astrophysics Data System (ADS)

    Kumar, Pravir; Kujur, MilliSuchita; Mallick, Ashis; Sandar Tun, Khin; Gupta, Manoj

    2018-04-01

    The bulk Mg/3%Al/0.1%GNP alloy-nano composite was fabricated using powder metallurgy route assisted with microwave sintering and followed by hot extrusion. The microstructural and Raman spectroscopy studies were performed to characterize the graphene nano-platelet(GNP).EDX tests confirmed the presence and the homogeneous distribution of Al and graphene nano-platelets in the magnesium alloy-nanocomposite. The addition of 3 wt% Al and 0.1wt%GNP to the Mg changed Vicker hardness, ultimate tensile strength and failure strain by +46.15%,+17.6% and -5% respectively. The fabricated composite offers higher resistance to the local deformation than monolithic Mg and Mg/3%Al alloy, revealed by the load/unload-indentation depth curve.

  2. Tensile strength of Fe-Ni and Mg-Al nanocomposites: Molecular dynamic simulations

    NASA Astrophysics Data System (ADS)

    Pogorelko, V. V.; Mayer, A. E.

    2018-01-01

    In this work, molecular dynamic simulations of the tensile strength of Fe-Ni and Mg-Al nanocomposites in the conditions of high-rate uniaxial tension were carried out. Two different mechanisms of fracture were identified. In the case of nickel inclusion in iron matrix, the fracture begins on the interface between the inclusion and the matrix, a formed void penetrates both into the inclusion and into the matrix; presence of inclusion reduces the tensile strength. In the case of aluminum inclusion in magnesium matrix, fracture takes place into magnesium matrix and does not touch the inclusion; presence of inclusion has practically no effect on the tensile strength. Molecular dynamic simulations were carried out in a wide range of strain rates and temperatures.

  3. Damage Detection of CFRP Plates by Full-Spectral Analysis of a Fibre Bragg Grating Sensor Signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizutani, Yoshihiro; Solid and Structures Engineering Laboratory, Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, Japan, 2-12-1-I1-70, Ookayama, Meguro-ku, Tokyo 152-8552; Groves, Roger M.

    2010-05-28

    This paper describes the measurement of average strain, strain distribution and vibration of cantilever beam made of Carbon Fiber Reinforced Plastics (CFRP), using a single Fibre Bragg Grating (FBG) sensor mounted on the beam surface. Average strain is determined from the displacement of the peak wavelength of reflected light from the FBG sensor. Unstrained reference FBG sensors were used to compensate for temperature drift and the photoelastic coefficient (P{sub e}), which was used to calculate the gauge factor. Measured strains agree with those measured by a resistance foil strain gauge attached to the sample. Stress distributions are measured by monitoringmore » the variation in the full width half maximum (FWHM) values of the reflected spectrum, using a proposed optical analytical model, described in the paper. FWHM values were measured for both the cantilever test beam and a for a reference beam, loaded using a four-point bending rig. The trend of the stress distribution for the test beam matches with our analytical model, however with a relatively large noise present in the experimentally determined data. The vibration of cantilever beam was measured by temporal analysis of the peak reflection wavelength. This technique is very stable as measurements are not affected by variations in the signal amplitude. Finally an application of FBG sensors for damage detection of CFRP plates is demonstrated, by measuring the average strain and natural frequency. With small defects of different sizes applied to the CFRP plate, average strains were seen to increase with damage size and the natural frequency decreased with damage size.« less

  4. Non-invasive timing of gas gun-launched projectiles using external surface-mounted optical fiber-Bragg grating strain gauges

    NASA Astrophysics Data System (ADS)

    Goodwin, Peter M.; Marshall, Bruce R.; Stevens, Gerald D.; Dattelbaum, Dana M.

    2013-03-01

    Non-invasive detection methods for tracking gun-launched projectiles are important not only for assessment of gun performance but are also essential for timing a variety of diagnostics, for example, to investigate plate-impact events for shock compression experiments. Measurement of the time of passage of a projectile moving inside of the gun barrel can be achieved by detection of the transient hoop strain induced in the barrel of a light-gas gun by the passage of the projectile using external, barrel surface-mounted optical fiber-Bragg grating strain gauges. Optical fiber-Bragg gratings have been implemented and their response characterized on single-stage and two-stage light gas guns routinely used for dynamic experimentation at Los Alamos National Laboratory. Two approaches, using either broadband or narrowband illumination, were used to monitor changes in the Bragg wavelength of the fiber-Bragg gratings. The second approach, using narrowband laser illumination, offered the highest sensitivity. The feasibility of using these techniques to generate early, pre-event signals useful for triggering high-latency diagnostics was demonstrated.

  5. Non-invasive timing of gas gun-launched projectiles using external surface-mounted optical fiber-Bragg grating strain gauges.

    PubMed

    Goodwin, Peter M; Marshall, Bruce R; Stevens, Gerald D; Dattelbaum, Dana M

    2013-03-01

    Non-invasive detection methods for tracking gun-launched projectiles are important not only for assessment of gun performance but are also essential for timing a variety of diagnostics, for example, to investigate plate-impact events for shock compression experiments. Measurement of the time of passage of a projectile moving inside of the gun barrel can be achieved by detection of the transient hoop strain induced in the barrel of a light-gas gun by the passage of the projectile using external, barrel surface-mounted optical fiber-Bragg grating strain gauges. Optical fiber-Bragg gratings have been implemented and their response characterized on single-stage and two-stage light gas guns routinely used for dynamic experimentation at Los Alamos National Laboratory. Two approaches, using either broadband or narrowband illumination, were used to monitor changes in the Bragg wavelength of the fiber-Bragg gratings. The second approach, using narrowband laser illumination, offered the highest sensitivity. The feasibility of using these techniques to generate early, pre-event signals useful for triggering high-latency diagnostics was demonstrated.

  6. Advances in Thin Film Sensor Technologies for Engine Applications

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Martin, Lisa C.; Will, Herbert A.

    1997-01-01

    Advanced thin film sensor techniques that can provide accurate surface strain and temperature measurements are being developed at NASA Lewis Research Center. These sensors are needed to provide minimally intrusive characterization of advanced materials (such as ceramics and composites) and structures (such as components for Space Shuttle Main Engine, High Speed Civil Transport, Advanced Subsonic Transports and General Aviation Aircraft) in hostile, high-temperature environments and for validation of design codes. This paper presents two advanced thin film sensor technologies: strain gauges and thermocouples. These sensors are sputter deposited directly onto the test articles and are only a few micrometers thick; the surface of the test article is not structurally altered and there is minimal disturbance of the gas flow over the surface. The strain gauges are palladium-13% chromium based and the thermocouples are platinum-13% rhodium vs. platinum. The fabrication techniques of these thin film sensors in a class 1000 cleanroom at the NASA Lewis Research Center are described. Their demonstration on a variety of engine materials, including superalloys, ceramics and advanced ceramic matrix composites, in several hostile, high-temperature test environments are discussed.

  7. Effect of framework soldering on the deformation of implant abutments after framework seating: a study with strain gauges.

    PubMed

    Mendes, Stella de N C; Edwards Rezende, Carlos E; Moretti Neto, Rafael T; Capello Sousa, Edson A; Henrique Rubo, José

    2013-04-01

    Passive fit has been considered an important requirement for the longevity of implant-supported prostheses. Among the different steps of prostheses construction, casting is a feature that can influence the precision of fit and consequently the uniformity of possible deformation among abutments upon the framework connection. This study aimed at evaluating the deformation of abutments after the connection of frameworks either cast in one piece or after soldering. A master model was used to simulate a human mandible with 5 implants. Ten frameworks were fabricated on cast models and divided into 2 groups. Strain gauges were attached to the mesial and distal sides of the abutments to capture their deformation after the framework's screw retentions were tightened to the abutments. The mean values of deformation were submitted to a 3-way analysis of variance that revealed significant differences between procedures and the abutment side. The results showed that none of the frameworks presented a complete passive fit. The soldering procedure led to a better although uneven distribution of compression strains on the abutments.

  8. Infrastructure monitoring data management.

    DOT National Transportation Integrated Search

    2015-07-01

    The primary objective of this project is to advance the development of a structural health monitoring : system (SHMS) for the Cut River Bridge. The scope includes performing an analysis from the fiber : optic strain gauge readings and making recommen...

  9. Simultaneous imaging of strain waves and induced magnetization dynamics at the nanometer scale

    NASA Astrophysics Data System (ADS)

    Macia, Ferran; Foerster, Michael; Statuto, Nahuel; Finizio, Simone; Hernandez-Minguez, Alberto; Lendinez, Sergi; Santos, Paulo V.; Fontcuberta, Josep; Hernandez, Joan Manel; Klaui, Mathias; Aballe, Lucia

    The magnetoelastic effect or inverse magnetostriction-the change of magnetic properties by elastic deformation or strain-is often a key coupling mechanism in multiferroic heterostructures and nanocomposites. It has lately attracted considerable interest as a possible approach for controlling magnetization by electric fields (instead of current) in future devices with low power consumption. However, many experiments addressing the magnetoelastic effect are performed at slow speeds, often using materials and conditions which are impractical or too expensive for device integration. Here, we have studied the effect of the dynamic strain accompanying a surface acoustic wave on magnetic nanostructures. We have simultaneously imaged the temporal evolution of both strain waves and magnetization dynamics of nanostructures at the picosecond timescale. Our experimental technique, based on X-ray microscopy, is versatile and provides a pathway to the study of strain-induced effects at the nanoscale.

  10. Effect of Restorative Configurations and Occlusal Schemes on Strain Levels in Bone Surrounding Implants.

    PubMed

    Block, Jonathan; Matalon, Shlomo; Tanase, Gabriela; Ormianer, Zeev

    2017-08-01

    This study investigated strain levels during and after implant insertion, and during and after simulated mastication, in splinted and nonsplinted restorations with different occlusal schemes. Fresh bovine bone resembling type I jawbone was collected. Strain gauges were placed at each implant's neck, one horizontally and one vertically. Strains at and after implant insertion were recorded. The restoration was loaded with cyclic load simulating mastication. Loading and residual strains were recorded for 6 experimental loading types. At and after implant insertion, high horizontal strains were measured. Full splint loading presented higher vertical compared with horizontal strains (P < 0.05). Segmented cross-arch splint showed higher horizontal strains (P < 0.05). Premolar loading guidance presented the most favorable loading and residual strain results (P < 0.05). Splinting implant restorations may reduce strain levels at implant neck area and provide preferable strain distribution during cyclic loading.

  11. Development of an optically-based tension-indicating implanted orthopedic screw with a luminescent spectral ruler

    NASA Astrophysics Data System (ADS)

    Ravikumar, Nakul; Rogalski, Melissa M.; Benza, Donny; Lake, Joshua; Urban, Matthew; Pelham, Hunter; Anker, Jeffrey N.; DesJardins, John D.

    2017-03-01

    An orthopaedic screw was designed with an optical tension-indicator to non-invasively quantify screw tension and monitor the load sharing between the bone and the implant. The screw both applies load to the bone, and measures this load by reporting the strain on the screw. The screw contains a colorimetric optical encoder that converts axial strain into colorimetric changes visible through the head of the screw, or luminescent spectral changes that are detected through tissue. Screws were tested under cyclic mechanical loading to mimic in-vivo conditions to verify the sensitivity, repeatability, and reproducibility of the sensor. In the absence to tissue, color was measured using a digital camera as a function of axial load on a stainless steel cannulated (hollow) orthopedic screw, modified by adding a passive colorimetric strain gauge through the central hole. The sensor was able to quantify clinically-relevant bone healing strains. The sensor exhibited good repeatability and reproducibility but also displayed hysteresis due to the internal mechanics of the screw. The strain indicator was also modified for measurement through tissue by replacing the reflective colorimetric sensor with a low-background X-ray excited optical luminescence signal. Luminescent spectra were acquired through 6 mm of chicken breast tissue. Overall, this research shows feasibility for a unique device which quantifies the strain on an orthopedic screw. Future research will involve reducing hysteresis by changing the mechanism of strain transduction in the screw, miniaturizing the luminescent strain gauge, monitoring bending as well as tension, using alternative luminescent spectral rulers based upon near infrared fluorescence or upconversion luminescence, and application to monitoring changes in pretension and load sharing during bone healing.

  12. Sost deficiency leads to reduced mechanical strains at the tibia midshaft in strain-matched in vivo loading experiments in mice.

    PubMed

    Albiol, Laia; Cilla, Myriam; Pflanz, David; Kramer, Ina; Kneissel, Michaela; Duda, Georg N; Willie, Bettina M; Checa, Sara

    2018-04-01

    Sclerostin, a product of the Sost gene, is a Wnt-inhibitor and thus negatively regulates bone accrual. Canonical Wnt/β-catenin signalling is also known to be activated in mechanotransduction. Sclerostin neutralizing antibodies are being tested in ongoing clinical trials to target osteoporosis and osteogenesis imperfecta but their interaction with mechanical stimuli on bone formation remains unclear. Sost knockout (KO) mice were examined to gain insight into how long-term Sost deficiency alters the local mechanical environment within the bone. This knowledge is crucial as the strain environment regulates bone adaptation. We characterized the bone geometry at the tibial midshaft of young and adult Sost KO and age-matched littermate control (LC) mice using microcomputed tomography imaging. The cortical area and the minimal and maximal moment of inertia were higher in Sost KO than in LC mice, whereas no difference was detected in either the anterior-posterior or medio-lateral bone curvature. Differences observed between age-matched genotypes were greater in adult mice. We analysed the local mechanical environment in the bone using finite-element models (FEMs), which showed that strains in the tibiae of Sost KO mice are lower than in age-matched LC mice at the diaphyseal midshaft, a region commonly used to assess cortical bone formation and resorption. Our FEMs also suggested that tissue mineral density is only a minor contributor to the strain distribution in tibial cortical bone from Sost KO mice compared to bone geometry. Furthermore, they indicated that although strain gauging experiments matched strains at the gauge site, strains along the tibial length were not comparable between age-matched Sost KO and LC mice or between young and adult animals within the same genotype. © 2018 The Author(s).

  13. Reduced Graphene Oxide-Containing Smart Hydrogels with Excellent Electro-Response and Mechanical Properties for Soft Actuators.

    PubMed

    Yang, Chao; Liu, Zhuang; Chen, Chen; Shi, Kun; Zhang, Lei; Ju, Xiao-Jie; Wang, Wei; Xie, Rui; Chu, Liang-Yin

    2017-05-10

    A novel reduced graphene oxide/poly(2-acrylamido-2-methylpropanesulfonic acid-co-acrylamide) (rGO/poly(AMPS-co-AAm)) nanocomposite hydrogel that possesses excellent electro-response and mechanical properties has been successfully developed. The rGO nanosheets that homogeneously dispersed in the hydrogels could provide prominent conductive platforms for promoting the ion transport inside the hydrogels to generate significant osmotic pressure between the outside and inside of such nanocomposite hydrogels. Thus, the electro-responsive rate and degree of the hydrogel for both deswelling and bending performances become rapid and remarkable. Moreover, the enhanced mechanical properties including both the tensile strength and compressive strength of rGO/poly(AMPS-co-AAm) hydrogels are improved by the hydrogen-bond interactions between the rGO nanosheets and polymer chains, which could dissipate the strain energy in the polymeric networks of the hydrogels. The proposed rGO/poly(AMPS-co-AAm) nanocomposite hydrogels with improved mechanical properties exhibit rapid, significant, and reversible electro-response, which show great potential for developing remotely controlled electro-responsive hydrogel systems, such as smart actuators and soft manipulators.

  14. The young's modulus of 1018 steel and 67061-T6 aluminum measured from quasi-static to elastic precursor strain-rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rae, Philip J; Trujillo, Carl; Lovato, Manuel

    2009-01-01

    The assumption that Young's modulus is strain-rate invariant is tested for 6061-T6 aluminium alloy and 1018 steel over 10 decades of strain-rate. For the same billets of material, 3 quasi-static strain-rates are investigated with foil strain gauges at room temperature. The ultrasonic sound speeds are measured and used to calculate the moduli at approximately 10{sup 4} s{sup -1}. Finally, ID plate impact is used to generate an elastic pre-cursor in the alloys at a strain-rate of approximately 10{sup 6} s{sup -1} from which the longitudinal sound speed may be obtained. It is found that indeed the Young's modulus is strain-ratemore » independent within the experimental accuracy.« less

  15. Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Fang, Xiaoliang; Tan, Jianping; Lu, Ting; Pan, Likun; Xuan, Fuzhen

    2018-06-01

    Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human–machine interfaces, etc. In this research, a type of high performance strain sensors has been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF < 1). The enhanced sensitivity of the strain sensors is ascribed to the sliding of individual fragmentized-CNT/PDMS-composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing.

  16. Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites.

    PubMed

    Gao, Yang; Fang, Xiaoliang; Tan, Jianping; Lu, Ting; Pan, Likun; Xuan, Fuzhen

    2018-06-08

    Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human-machine interfaces, etc. In this research, a type of high performance strain sensors has been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF < 1). The enhanced sensitivity of the strain sensors is ascribed to the sliding of individual fragmentized-CNT/PDMS-composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing.

  17. Enhancing the humidity sensitivity of Ga2O3 /SnO2 core/shell microribbon by applying mechanical strain and its application as a flexible strain sensor.

    PubMed

    Liu, Kewei; Sakurai, Makoto; Aono, Masakazu

    2012-12-07

    The humidity sensitivity of a single β-Ga(2) O(3) /amorphous SnO(2) core/shell microribbon on a flexible substrate is enhanced by the application of tensile strain and increases linearly with the strain. The strain-induced enhancement originates from the increase in the effective surface area where water molecules are adsorbed. This strain dependence of humidity sensitivity can be used to monitor the external strain. The strain sensing of the microribbon device under various amounts of mechanical loading shows excellent reliability and reproducibility with a gauge factor of -41. The flexible device has high potential to detect both humidity and strain at room temperature. These findings and the mechanism involved are expected to pave the way for new flexible strain and multifunctional sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Pencil drawn strain gauges and chemiresistors on paper.

    PubMed

    Lin, Cheng-Wei; Zhao, Zhibo; Kim, Jaemyung; Huang, Jiaxing

    2014-01-22

    Pencil traces drawn on print papers are shown to function as strain gauges and chemiresistors. Regular graphite/clay pencils can leave traces composed of percolated networks of fine graphite powders, which exhibit reversible resistance changes upon compressive or tensile deflections. Flexible toy pencils can leave traces that are essentially thin films of graphite/polymer composites, which show reversible changes in resistance upon exposure to volatile organic compounds due to absorption/desorption induced swelling/recovery of the polymer binders. Pencil-on-paper devices are low-cost, extremely simple and rapid to fabricate. They are light, flexible, portable, disposable, and do not generate potentially negative environmental impact during processing and device fabrication. One can envision many other types of pencil drawn paper electronic devices that can take on a great variety of form factors. Hand drawn devices could be useful in resource-limited or emergency situations. They could also lead to new applications integrating art and electronics.

  19. Introductory Physics Experiments Using the Wii Balance Board

    NASA Astrophysics Data System (ADS)

    Starr, Julian; Sobczak, Robert; Iqbal, Zohaib; Ochoa, Romulo

    2010-02-01

    The Wii, a video game console by Nintendo, utilizes several different controllers, such as the Wii remote (Wiimote) and the balance board, for game-playing. The balance board was introduced in early 2008. It contains four strain gauges and has Bluetooth connectivity at a relatively low price. Thanks to available open source code, such as GlovePie, any PC with Bluetooth capability can detect the information sent out by the balance board. Based on the ease with which the forces measured by each strain gauge can be obtained, we have designed several experiments for introductory physics courses that make use of this device. We present experiments to measure the forces generated when students lift their arms with and without added weights, distribution of forces on an extended object when weights are repositioned, and other normal forces cases. The results of our experiments are compared with those predicted by Newtonian mechanics. )

  20. Ultra-Precision Measurement and Control of Angle Motion in Piezo-Based Platforms Using Strain Gauge Sensors and a Robust Composite Controller

    PubMed Central

    Liu, Lei; Bai, Yu-Guang; Zhang, Da-Li; Wu, Zhi-Gang

    2013-01-01

    The measurement and control strategy of a piezo-based platform by using strain gauge sensors (SGS) and a robust composite controller is investigated in this paper. First, the experimental setup is constructed by using a piezo-based platform, SGS sensors, an AD5435 platform and two voltage amplifiers. Then, the measurement strategy to measure the tip/tilt angles accurately in the order of sub-μrad is presented. A comprehensive composite control strategy design to enhance the tracking accuracy with a novel driving principle is also proposed. Finally, an experiment is presented to validate the measurement and control strategy. The experimental results demonstrate that the proposed measurement and control strategy provides accurate angle motion with a root mean square (RMS) error of 0.21 μrad, which is approximately equal to the noise level. PMID:23860316

  1. Determination of Elastic Moduli of Fiber-Resin Composites Using an Impulse Excitation Technique

    NASA Technical Reports Server (NTRS)

    Viens, Michael J.; Johnson, Jeffrey J.

    1996-01-01

    The elastic moduli of graphite/epoxy and graphite/cyanate ester composite specimens with various laminate lay-ups was determined using an impulse excitation/acoustic resonance technique and compared to those determined using traditional strain gauge and extensometer techniques. The stiffness results were also compared to those predicted from laminate theory using uniaxial properties. The specimen stiffnesses interrogated ranged from 12 to 30 Msi. The impulse excitation technique was found to be a relatively quick and accurate method for determining elastic moduli with minimal specimen preparation and no requirement for mechanical loading frames. The results of this investigation showed good correlation between the elastic modulus determined using the impulse excitation technique, strain gauge and extensometer techniques, and modulus predicted from laminate theory. The flexural stiffness determined using the impulse excitation was in good agreement with that predicted from laminate theory. The impulse excitation/acoustic resonance interrogation technique has potential as a quality control test.

  2. High-Pressure Study of Bio-inspired Multi-Functional Nanocomposites Using Atomic Force Microscopy Methods

    NASA Astrophysics Data System (ADS)

    Diaz Gonzalez, Alfredo J.

    Bioinspired design has been crucial in the development of new types of hierarchical nanocomposites. Particularly, the nacre-mimetic brick-and-mortar structure has shown excellent mechanical properties as well as gas barrier properties and optical transparency. Along with these intrinsic properties, the layered structure has been designed to serve as sensing devices. Here we expand the multi-functionality of nacre-mimetics by designing an optically transparent and electron conductive coating that reacts to high-pressure based on PEDOT:PSS and nanoclay. The main objectives of this project are: (i) to develop a multifunctional nanocomposite and evaluate the effect of high-pressure applied at the surface and (ii) to establish protocols for the morphological and structural characterization, and electro-mechanical testing of the nanocomposites based on a combination of atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmittance spectroscopy. The synthesis of the nanocomposite, containing PEDOT:PSS (conductive polymer) and nanoclay, was achieved using the self-assembly of core/shell platelets. Two different types of nanoclay, Cloisite Na+ and Laponite RD, are used and their properties compared. The reduction of thickness in PEDOT:PSS has been shown to increase the light transmittance across a film. Similarly, the thickness of the nanocomposite was reduced and compared to PEDOT:PSS. The measured optical transmittance for both nanocomposites is comparable to the bare polymer, demonstrating that the addition of the nanoclay does not affect the transparency of PEDOT:PSS significantly. The layered structure of the nanocomposites is investigated by imaging the fracture surface with SEM. The fracture surface of the Laponite RD based nanocomposite is much flatter than the Cloisite Na+ nanocomposite, since the particle size in Cloisite Na+ is about 10 times larger than Laponite RD. The characterization of electro-mechanical properties of the nanocomposites was performed using the correlation of conductive atomic force microscopy and contact resonance force microscopy to measure the local variations. The analysis shows that in thin and transparent films, there is segregation in the response of Cloisite Na+ based nanocomposites compared to the bare polymer or Laponite RD nanocomposite, hence the investigation focuses on Laponite RD. For Laponite RD, we investigate the 3-D distribution of nanoclay in the coating. The distribution of nanoclay at the surface is elucidated by mapping the dissipative and conservative interactions between tip and sample in bimodal AFM. Measuring the strain produced by the tip, the 3-D structure is inferred using models for mechanical properties of nanocomposites. Single platelet measurements are used to infer the inter-platelet distance. It is known that the free amplitude of the higher eigenmode can be modulated to produce large forces in bimodal AFM. The pressure estimated for the typical cantilever parameters used are in the range 1.2-3.3 GPa, which is used to apply high-pressure to the subsurface structure of the nanocomposite. We show that the tip-surface interaction modifies the subsurface morphology of the nanocomposite and results in changes of the out-of-plane current. Also, the structural modification caused by the bimodal AFM treatment results in local changes in mechanical properties. This behavior is obtained for the Laponite RD nanocomposite, but it is not observed for the Cloisite Na+ nanocomposite or the bare polymer. Laponite RD has a platelet size similar to the tip, while Cloisite Na+ is much larger leading to a reduction in pressure. By modelling the transmission probability of electrons, geometrical changes in the structure are examined and shown to modify the tunneling of the electrons through the coating. Specifically, parallel compression of the nanoclay (modelled as barriers for electrons) leads to a change in the transmission probability of the electrons. Depending on the kinetic energy of the electrons, the transmission probability could either increase or decrease.

  3. Anisotropic Nanomechanics of Boron Nitride Nanotubes: Nanostructured "Skin" Effect

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madhu; Cho, KyeongJae

    2000-01-01

    The stiffness and plasticity of boron nitride nanotubes are investigated using generalized tight-binding molecular dynamics and ab-initio total energy methods. Due to boron-nitride BN bond buckling effects, compressed zigzag BN nanotubes are found to undergo novel anisotropic strain release followed by anisotropic plastic buckling. The strain is preferentially released towards N atoms in the rotated BN bonds. The tubes buckle anisotropically towards only one end when uniaxially compressed from both. A "skin-effect" model of smart nanocomposite materials is proposed which will localize the structural damage towards the 'skin' or surface side of the material.

  4. Field monitoring of static, dynamic, and statnamic pile loading tests using fibre Bragg grating strain sensors

    NASA Astrophysics Data System (ADS)

    Li, Jin; Correia, Ricardo P.; Chehura, Edmon; Staines, Stephen; James, Stephen W.; Tatam, Ralph; Butcher, Antony P.; Fuentes, Raul

    2009-10-01

    Pile loading test plays an important role in the field of piling engineering. In order to gain further insight into the load transfer mechanism, strain gauges are often used to measure local strains along the piles. This paper reports a case whereby FBG strain sensors was employed in a field trial conducted on three different types of pile loading tests in a glacial till. The instrumentation systems were configured to suit the specific characteristic of each type of test. Typical test results are presented. The great potential of using FBG sensors for pile testing is shown.

  5. Development of Dielectric Elastomer Nanocomposites as Stretchable and Flexible Actuating Materials

    NASA Astrophysics Data System (ADS)

    Wang, Yu

    Dielectric elastomers (DEs) are a new type of smart materials showing promising functionalities as energy harvesting materials as well as actuating materials for potential applications such as artificial muscles, implanted medical devices, robotics, loud speakers, micro-electro-mechanical systems (MEMS), tunable optics, transducers, sensors, and even generators due to their high electromechanical efficiency, stability, lightweight, low cost, and easy processing. Despite the advantages of DEs, technical challenges must be resolved for wider applications. A high electric field of at least 10-30 V/um is required for the actuation of DEs, which limits the practical applications especially in biomedical fields. We tackle this problem by introducing the multiwalled carbon nanotubes (MWNTs) in DEs to enhance their relative permittivity and to generate their high electromechanical responses with lower applied field level. This work presents the dielectric, mechanical and electromechanical properties of DEs filled with MWNTs. The micromechanics-based finite element models are employed to describe the dielectric, and mechanical behavior of the MWNT-filled DE nanocomposites. A sufficient number of models are computed to reach the acceptable prediction of the dielectric and mechanical responses. In addition, experimental results are analyzed along with simulation results. Finally, laser Doppler vibrometer is utilized to directly detect the enhancement of the actuation strains of DE nanocomposites filled with MWNTs. All the results demonstrate the effective improvement in the electromechanical properties of DE nanocomposites filled with MWNTs under the applied electric fields.

  6. Development of noncytotoxic silver–chitosan nanocomposites for efficient control of biofilm forming microbes† †Electronic supplementary information (ESI) available: ICP-MS, DLS, FTIR, contact angle measurements, TEM/EDS, cytotoxicity results. See DOI: 10.1039/c7ra08359a

    PubMed Central

    Kus-Liśkiewicz, Małgorzata; Sebastian, Victor; Irusta, Silvia; Kyzioł, Agnieszka

    2017-01-01

    Severe bacterial and fungal infections have become a major clinical and public health concern. Nowadays, additional efforts are needed to develop effective antimicrobial materials that are not harmful to human cells. This work describes the synthesis and characterization of chitosan–ascorbic acid–silver nanocomposites as films exhibiting high antimicrobial activity and non-cytotoxicity towards human cells. The reductive and stabilizing activity of both the biocompatible polymer chitosan and ascorbic acid were used in the synthesis of silver nanoparticles (AgNPs). Herein, we propose an improved composite synthesis based on medium average molecular weight chitosan with a high deacetylation degree, that together with ascorbic acid gave films with a uniform distribution of small AgNPs (<10 nm) exhibiting high antimicrobial activity against biofilm forming bacterial and fungal strains of Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans. At the same time, the resulting solid nanocomposites showed, at the same doses, reduced or totally excluded cytotoxicity on mammalian somatic and tumoral cells. Data obtained in the present study suggest that adequately designed chitosan–silver nanocomposites are powerful and promising materials for reducing pathogenic microorganism-associated infections without harmful effects towards mammalian cells. PMID:29308194

  7. Fabrication and calibration of a piezoelectric nanocomposite paint

    NASA Astrophysics Data System (ADS)

    Osho, Samuel; Wu, Nan; Aramfard, Mohammad; Deng, Chuang; Ojo, Olanrewaju

    2018-03-01

    A new liquid form piezoelectric nanocomposite paint material is fabricated with possible applications as dynamic strain sensors and/or piezoelectric transducers. The applied coating is in the form of low-cost paint, which is flexible and bonds strongly on a metallic surface after drying out via the solvent-casting method. The nanocomposite is produced by an ultrasonic mixture of varying percentages of zinc oxide (ZnO) nanoparticle water dispersion, poly vinyl acetate glue (PVA) and carbon nanotubes (CNTs). ZnO nanoparticles are used as the piezoelectric sensing elements in a PVA matrix of the paint, while CNTs are introduced as robust bridge of ZnO particles enhancing the piezoelectricity and material properties. Transmission electron microscopy (TEM) images confirmed the linkages of ZnO nanoparticles in the composite by CNTs. Through piezoelectricity calibration, the optimum mixing ratio with the highest piezoelectricity is 78.1 wt% ZnO, 19.5 wt% PVA glue and 2.4 wt% multi-wall carbon nanotubes (MWCNTs). Through nanoindentation tests for the characterization of the mechanical properties of the nano-composite paint, it is found that Young’s modulus and hardness reached a threshold point in the increment in the addition of CNTs to the paint before showing signs of decline. Detailed analysis and explanation of the calibration results and physical phenomenon are provided. The stable paint material is ready to be applied on rough area of engineering structures as sensor and transducer.

  8. Functionalized Graphene Reinforced Thermoplastic Nanocomposites as Strain Sensors in Structural Health Monitoring (Preprint)

    DTIC Science & Technology

    2012-02-01

    2008, 3, 491-495. 5. S. Stankovich, D. A. Dikin , G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S...Eswaraiah, V. Sankaranarayanan and S. Ramaprabhu, Nanoscale Res. Lett., 2011, 6, 137. 14. T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin , M. 5

  9. Strain-enhanced tunneling magnetoresistance in MgO magnetic tunnel junctions

    PubMed Central

    Loong, Li Ming; Qiu, Xuepeng; Neo, Zhi Peng; Deorani, Praveen; Wu, Yang; Bhatia, Charanjit S.; Saeys, Mark; Yang, Hyunsoo

    2014-01-01

    While the effects of lattice mismatch-induced strain, mechanical strain, as well as the intrinsic strain of thin films are sometimes detrimental, resulting in mechanical deformation and failure, strain can also be usefully harnessed for applications such as data storage, transistors, solar cells, and strain gauges, among other things. Here, we demonstrate that quantum transport across magnetic tunnel junctions (MTJs) can be significantly affected by the introduction of controllable mechanical strain, achieving an enhancement factor of ~2 in the experimental tunneling magnetoresistance (TMR) ratio. We further correlate this strain-enhanced TMR with coherent spin tunneling through the MgO barrier. Moreover, the strain-enhanced TMR is analyzed using non-equilibrium Green's function (NEGF) quantum transport calculations. Our results help elucidate the TMR mechanism at the atomic level and can provide a new way to enhance, as well as tune, the quantum properties in nanoscale materials and devices. PMID:25266219

  10. Biocompatibility of Titania Nanotube Coatings Enriched with Silver Nanograins by Chemical Vapor Deposition

    PubMed Central

    Piszczek, Piotr; Lewandowska, Żaneta; Radtke, Aleksandra; Kozak, Wiesław; Sadowska, Beata; Szubka, Magdalena; Talik, Ewa; Fiori, Fabrizio

    2017-01-01

    Bioactivity investigations of titania nanotube (TNT) coatings enriched with silver nanograins (TNT/Ag) have been carried out. TNT/Ag nanocomposite materials were produced by combining the electrochemical anodization and chemical vapor deposition methods. Fabricated coatings were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The release effect of silver ions from TNT/Ag composites immersed in bodily fluids, has been studied using inductively coupled plasma mass spectrometry (ICP-MS). The metabolic activity assay (MTT) was applied to determine the L929 murine fibroblasts adhesion and proliferation on the surface of TNT/Ag coatings. Moreover, the results of immunoassays (using peripheral blood mononuclear cells—PBMCs isolated from rats) allowed the estimation of the immunological activity of TNT/Ag surface materials. Antibacterial activity of TNT/Ag coatings with different morphological and structural features was estimated against two Staphylococcus aureus strains (ATCC 29213 and H9). The TNT/Ag nanocomposite layers produced revealed a good biocompatibility promoting the fibroblast adhesion and proliferation. A desirable anti-biofilm activity against the S. aureus reference strain was mainly noticed for these TiO2 nanotube coatings, which contain dispersed Ag nanograins deposited on their surface. PMID:28914821

  11. Ultrahigh Elastic Strain Energy Storage in Metal-Oxide-Infiltrated Patterned Hybrid Polymer Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dusoe, Keith J.; Ye, Xinyi; Kisslinger, Kim

    Modulus of resilience, the measure of a material’s capacity to store and release elastic strain energy, is critical for realizing advanced mechanical actuation technologies in micro/nanoelectromechanical systems. In general, engineering the modulus of resilience is difficult because it requires asymmetrically increasing yield strength and Young’s modulus against their mutual scaling behavior. This task becomes further challenging if it needs to be carried out at the nanometer scale. Here, we demonstrate organic–inorganic hybrid composite nanopillars with one of the highest modulus of resilience per density by utilizing vapor-phase aluminum oxide infiltration in lithographically patterned negative photoresist SU-8. In situ nanomechanical measurementsmore » reveal a metal-like high yield strength (~500 MPa) with an unusually low, foam-like Young’s modulus (~7 GPa), a unique pairing that yields ultrahigh modulus of resilience, reaching up to ~24 MJ/m 3 as well as exceptional modulus of resilience per density of ~13.4 kJ/kg, surpassing those of most engineering materials. The hybrid polymer nanocomposite features lightweight, ultrahigh tunable modulus of resilience and versatile nanoscale lithographic patternability with potential for application as nanomechanical components which require ultrahigh mechanical resilience and strength.« less

  12. Ultrahigh Elastic Strain Energy Storage in Metal-Oxide-Infiltrated Patterned Hybrid Polymer Nanocomposites

    DOE PAGES

    Dusoe, Keith J.; Ye, Xinyi; Kisslinger, Kim; ...

    2017-10-19

    Modulus of resilience, the measure of a material’s capacity to store and release elastic strain energy, is critical for realizing advanced mechanical actuation technologies in micro/nanoelectromechanical systems. In general, engineering the modulus of resilience is difficult because it requires asymmetrically increasing yield strength and Young’s modulus against their mutual scaling behavior. This task becomes further challenging if it needs to be carried out at the nanometer scale. Here, we demonstrate organic–inorganic hybrid composite nanopillars with one of the highest modulus of resilience per density by utilizing vapor-phase aluminum oxide infiltration in lithographically patterned negative photoresist SU-8. In situ nanomechanical measurementsmore » reveal a metal-like high yield strength (~500 MPa) with an unusually low, foam-like Young’s modulus (~7 GPa), a unique pairing that yields ultrahigh modulus of resilience, reaching up to ~24 MJ/m 3 as well as exceptional modulus of resilience per density of ~13.4 kJ/kg, surpassing those of most engineering materials. The hybrid polymer nanocomposite features lightweight, ultrahigh tunable modulus of resilience and versatile nanoscale lithographic patternability with potential for application as nanomechanical components which require ultrahigh mechanical resilience and strength.« less

  13. Free-standing nanocomposites with high conductivity and extensibility.

    PubMed

    Chun, Kyoung-Yong; Kim, Shi Hyeong; Shin, Min Kyoon; Kim, Youn Tae; Spinks, Geoffrey M; Aliev, Ali E; Baughman, Ray H; Kim, Seon Jeong

    2013-04-26

    The prospect of electronic circuits that are stretchable and bendable promises tantalizing applications such as skin-like electronics, roll-up displays, conformable sensors and actuators, and lightweight solar cells. The preparation of highly conductive and highly extensible materials remains a challenge for mass production applications, such as free-standing films or printable composite inks. Here we present a nanocomposite material consisting of carbon nanotubes, ionic liquid, silver nanoparticles, and polystyrene-polyisoprene-polystyrene having a high electrical conductivity of 3700 S cm(-1) that can be stretched to 288% without permanent damage. The material is prepared as a concentrated dispersion suitable for simple processing into free-standing films. For the unstrained state, the measured thermal conductivity for the electronically conducting elastomeric nanoparticle film is relatively high and shows a non-metallic temperature dependence consistent with phonon transport, while the temperature dependence of electrical resistivity is metallic. We connect an electric fan to a DC power supply using the films to demonstrate their utility as an elastomeric electronic interconnect. The huge strain sensitivity and the very low temperature coefficient of resistivity suggest their applicability as strain sensors, including those that operate directly to control motors and other devices.

  14. A green single-step procedure to synthesize Ag-containing nanocomposite coatings with low cytotoxicity and efficient antibacterial properties

    PubMed Central

    Ma, Kena; Gong, Lingling; Cai, Xinjie; Huang, Pin; Cai, Jing; Huang, Dan; Jiang, Tao

    2017-01-01

    Implant-associated infections still pose a serious threat leading to several complications. This study reported an environmentally benign Ag-containing nanocomposite coating with efficient antibacterial property fabricated on the metal implant via electrophoretic deposition (EPD). In such coatings, Ag2O/AgCl mixed with chitosan/gelatin (CS/G) polymers work together to exert the antibacterial property which could act as an alternative to traditional Ag nanoparticles. Scanning electron microscopy images showed the shuttle fiber-like morphology distributed lamellarly and some nanoparticles carved uniformly into the cross section. Transmission electron microscopy results revealed a core–shell-like structure of the released nanoparticles in experimental groups. The Ag-containing coatings exhibited strong antibacterial properties against Staphylococcus aureus strains and Escherichia coli strains. Meanwhile, the CCK-8 tests showed that after assembling with chitosan and gelatin polymers, the cytotoxicity of Ag was largely decreased. In addition, such coatings also exhibited strong bond strength with metal substrates and good degradable properties. Therefore, such Ag-containing CS/G coatings fabricated via EPD may be a promising candidate to be administrated in controlling the implant-associated infections. PMID:28553106

  15. Real time in-situ sensing of damage evolution in nanocomposite bonded surrogate energetic materials

    NASA Astrophysics Data System (ADS)

    Sengezer, Engin C.; Seidel, Gary D.

    2016-04-01

    The current work aims to explore the potential for in-situ structural health monitoring in polymer bonded energetic materials through the introduction of carbon nanotubes (CNTs) into the binder phase as a means to establish a significant piezoresistive response through the resulting nanocomposite binder. The experimental effort herein is focused towards electro-mechanical characterization of surrogate materials in place of actual energetic (explosive) materials in order to provide proof of concept for the strain and damage sensing. The electrical conductivity and the piezoresistive behavior of samples containing randomly oriented MWCNTs introduced into the epoxy (EPON 862) binder of 70 wt% ammonium perchlorate-epoxy hybrid composites are quantitatively and qualitatively evaluated. Brittle failure going through linear elastic behavior, formation of microcracks leading to reduction in composite load carrying capacity and finally macrocracks resulting in eventual failure are observed in the mechanical response of MWNT-ammonium perchlorateepoxy hybrid composites. Incorporating MWNTs into local polymer binder improves the effective stiffness about 40% compared to neat ammonium perchlorate-polymer samples. The real time in-situ relative change in resistance for MWNT hybrid composites was detected with the applied strains through piezoresistive response.

  16. Electromechanical response of reduced graphene oxide-polyvinylidene fluoride nanocomposites prepared through in-situ thermal reduction

    NASA Astrophysics Data System (ADS)

    Sigamani, Nirmal; Ounaies, Zoubeida; Ehlert, Greg; Sodano, Henry

    2015-04-01

    Carbon fillers, such as carbon nanotubes, have been used to address drawbacks of existing electroactive polymers (EAPs) with varying success. More recently, there has been interest in investigating potential of 2D graphene in improving the actuation response of EAPs, owing to its unique geometry and electrical properties. In our study, the effect of graphene oxide (GO) nanosheets on electromechanical response of polyvinylidene fluoride (PVDF)-based nanocomposites is studied. We show that incorporating GO produces considerable strain under an applied electric field when processed using a co-solvent approach involving water and N, N dimethylformamide. Starting with GO enables good dispersion and interaction with PVDF and then thermally reducing it in-situ yields EAP with some controllability over the desired properties. A key result is that the extensional strain S11 is quadratic with the electric field, which suggests electric field-induced electrostrictive response. Dielectric relaxation spectroscopy results indicate that the mechanism for the electrostrictive response is due to induced polarization resulting from the enhanced dipolar mobility from polar γ-phase PVDF and reduced GO. Finally, we show that the coefficient of electrostriction depends on the GO content and on the amount of conversion from GO to reduced GO.

  17. Very high commutation quality factor and dielectric tunability in nanocomposite SrTiO 3 thin films with T c enhanced to >300 °C

    DOE PAGES

    Sangle, Abhijeet L.; Lee, Oon Jew; Kursumovic, Ahmed; ...

    2018-02-05

    We report on nanoengineered SrTiO 3–Sm2O 3 nanocomposite thin films with the highest reported values of commutation quality factor (CQF or K-factor) of >2800 in SrTiO 3 at room temperature. The films also had a large tunability of dielectric constant (49%), low tangent loss (tan δ = 0.01) and a Curie temperature for SrTiO 3 > 300 °C, making them very attractive for tunable RF applications. The enhanced properties originate from the unique nanostructure in the films, with <20 nm diameter strain-controlling Sm 2O 3 nanocolumns embedded in a SrTiO 3 matrix. Very large out-of-plane strains (up to 2.6%) andmore » high tetragonality (c/a) (up to 1.013) were induced in the SrTiO 3. Finally, the K-factor was further enhanced by adding 1 at% Sc 3+ (acceptor) dopant in SrTiO 3 to a value of 3300 with the tangent loss being ≤0.01 up to 1000 kV cm -1.« less

  18. Very high commutation quality factor and dielectric tunability in nanocomposite SrTiO 3 thin films with T c enhanced to >300 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangle, Abhijeet L.; Lee, Oon Jew; Kursumovic, Ahmed

    We report on nanoengineered SrTiO 3–Sm2O 3 nanocomposite thin films with the highest reported values of commutation quality factor (CQF or K-factor) of >2800 in SrTiO 3 at room temperature. The films also had a large tunability of dielectric constant (49%), low tangent loss (tan δ = 0.01) and a Curie temperature for SrTiO 3 > 300 °C, making them very attractive for tunable RF applications. The enhanced properties originate from the unique nanostructure in the films, with <20 nm diameter strain-controlling Sm 2O 3 nanocolumns embedded in a SrTiO 3 matrix. Very large out-of-plane strains (up to 2.6%) andmore » high tetragonality (c/a) (up to 1.013) were induced in the SrTiO 3. Finally, the K-factor was further enhanced by adding 1 at% Sc 3+ (acceptor) dopant in SrTiO 3 to a value of 3300 with the tangent loss being ≤0.01 up to 1000 kV cm -1.« less

  19. Instrumentation, digital image correlation, and modeling to monitor bridge behavior and condition assessment.

    DOT National Transportation Integrated Search

    2015-06-01

    Bridge managers have historically relied on visual inspection reports and field observation, including : photographs, to assess bridge health. The inclusion of instrumentation, including strain gauges, along : with a structural model can enhance brid...

  20. Plate Instrumented Wheelsets for the Measurement of Wheel/Rail Forces

    DOT National Transportation Integrated Search

    1980-10-01

    Strain gauge instrumented wheelsets are an important research tool in experimental rail vehicle testing. This report expounds the principle of operation of the instrumented plate type of wheelset which is constructed by the scientifically exact appli...

  1. Improved analysis tool for concrete pavement : [project summary].

    DOT National Transportation Integrated Search

    2017-10-01

    University of Florida researchers developed 3D-FE models to more accurately predict the behavior of concrete slabs. They also followed up on a project to characterize strain gauge performance for a Florida Department of Transportation (FDOT) concrete...

  2. Accuracy of Different Implant Impression Techniques: Evaluation of New Tray Design Concept.

    PubMed

    Liu, David Yu; Cader, Fathima Nashmie; Abduo, Jaafar; Palamara, Joseph

    2017-12-29

    To evaluate implant impression accuracy with a new tray design concept in comparison to nonsplinted and splinted impression techniques for a 2-implant situation. A reference bar titanium framework was fabricated to fit on 2 parallel implants. The framework was used to generate a resin master model with 2 implants that fit precisely against the framework. Three impression techniques were evaluated: (1) nonsplinted, (2) splinted, and (3) nonsplinted with modified tray impressions. All the trays were fabricated from light-cured acrylic resin material with openings that corresponded to the implant impression copings. Ten impressions were taken for each technique using poly(vinyl siloxane) impression material. The impressions were poured with type IV dental stone to generate the test casts. A rosette strain gauge was bonded to the middle of the framework. As the framework retaining screws were tightened on each test cast, the developed strains were recorded until the completion of the tightening to 35 Ncm. The generated strains of the rosette strain gauge were used to calculate the maximum principal strain. A statistically significant difference was observed among the different impression techniques. The modified tray design impression technique was associated with the least framework strains, which indicates greater accuracy compared with the other techniques. There was no significant difference between the splinted and the nonsplinted impression techniques. The new tray design concept appeared to produce more accurate implant impressions than the other techniques. Despite the statistical difference among the impression techniques, the clinical significance of this difference is yet to be determined. © 2017 by the American College of Prosthodontists.

  3. Static vs dynamic loads as an influence on bone remodelling.

    PubMed

    Lanyon, L E; Rubin, C T

    1984-01-01

    Remodelling activity in the avian ulna was assessed under conditions of disuse alone, disuse with a superimposed continuous compressive load, and disuse interrupted by a short daily period of intermittent loading. The ulnar preparation consisted of the 110mm section of the bone shaft between two submetaphyseal osteotomies. Each end of the preparation was transfixed by a stainless steel pin and the shaft either protected from normal functional loading with the pins joined by external fixators, loaded continuously in compression by joining the pins with springs, or loaded intermittently in compression for a single 100s period per day by engaging the pins in an Instron machine. Similar loads (525 N) were used in both static and dynamic cases. The strains engendered were determined by strain gauges, and at their maximum around the bone's midshaft were -0.002. The intermittent load was applied at a frequency of 1 Hz as a ramped square wave, with a rate of change of strain during the ramp of 0.01 s-1. Peak strain at the midshaft of the ulna during wing flapping in the intact bone was recorded from bone bonded strain gauges in vivo as -0.0033 with a maximum rate of change of strain of 0.056 s-1. Examination of bone sections from the midpoint of the preparation after an 8 week period indicated that in both non-loaded and statically loaded bones there was an increase in both endosteal diameter and intra cortical porosity. These changes produced a decrease in cross sectional area which was similar in the two groups (-13%).(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Alteration of functional loads after tongue volume reduction.

    PubMed

    Ye, W; Duan, Y Z; Liu, Z J

    2013-11-01

    An earlier study revealed that the patterns of biomechanical loads on bones around the tongue altered significantly right after tongue volume reduction surgery. The current study was to examine whether these alterations persist or vanish over time post-surgery. Five sibling pairs of 12-week-old Yucatan minipigs were used. For each pair, one had surgery reducing tongue volume by about 15% (reduction) while the other had same incisions without tissue removal (sham). All animals were raised for 4 weeks after surgery. Three rosette strain gauges were placed on the bone surfaces of pre-maxilla (PM), mandibular incisor (MI), and mandibular molar (MM); two single-element gauges were placed across the pre-maxilla-maxillar suture (PMS) and mandibular symphysis (MSP), and two pressure transducers were placed on the bone surfaces of hard palate (PAL) and mandibular body (MAN). These bone strains and pressures were recorded during natural mastication. Overall amount of all loads increased significantly as compared to those in previous study in all animals. Instead of decreased loads in reduction animals as seen in that study, shear strains at PM, MI, and MM, tensile strains at PMS, and pressure at MAN were significantly higher in reduction than sham animals. Compared to the sham, strain dominance shifted at PM, MI, and MM and orientation of tensile strain altered at MI in reduction animals. A healed volume-reduced tongue may change loading regime significantly by elevating loading and altering strain-dominant pattern and orientation on its surrounding structures, and these changes are more remarkable in mandibular than maxillary sites. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Strain characteristics of Marburg double crown-retained implant overdentures compared with bar and ball-retained implant overdentures, with and without a rigid major connector.

    PubMed

    Kazokoğlu, F Şehnaz; Akaltan, Funda

    2014-12-01

    It is hard to identify the most favorable retainer type and the denture design when considering strain levels around implants and in edentulous ridges for implant overdentures (IOVD). The purpose of this study was to evaluate the strain transmitted to the implants and edentulous ridges by Marburg double crown (MDC)-retained IOVD as opposed to bar and ball-retained IOVD and the efficiency of a rigid major connector in the maxilla. An in vitro maxillary model was prepared with 4 implants, with strain gauges placed distally to each implant and also in the anterior and posterior edentulous ridges. Five overdentures were fabricated for each MDC and each ball and bar attachment retainers. Vertical loads of 280 N were applied bilaterally on the first molar region. Then the palatal bars of each IOVD were disconnected, and loading procedures were repeated for the prostheses. No significant difference was observed among the MDC and the bar and ball-retained IOVD, with and without a rigid bar according to the data taken from both the implants and edentulous ridges. However, when the strain values attained from each strain gauge separately were considered, a slight difference was observed around the implants of ball-retained overdentures and in the edentulous ridges of MDC-retained overdentures. Within the limitations of this in vitro study, MDC-retained maxillary overdentures with 4 parallel and symmetrically placed implants can be used safely without a rigid major connector as with bar and ball-retained IOVD with regard to the strains generated in the edentulous ridge and around implants. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. A novel method for the simultaneous measurement of temperature and strain using a three-wire connection

    NASA Astrophysics Data System (ADS)

    Cappa, Paolo; Marinozzi, Franco; Sciuto, Salvatore Andrea

    2001-04-01

    A novel methodology to simultaneously measure strain and temperature by means of an electrical resistance strain gauge powered by an ac signal and connected to a strain indicator by means of thermocouple wires is proposed. The experimental validation of the viability of this method is conducted by means of a purely electrical simulation of both strain and temperature signals, respectively from -2000 to 2000 µm m-1 and -250 to 230 °C. The results obtained showed that strain measurement is affected by an error always less than ±2 µm m-1 for the whole range of simulated strains, while the error in temperature evaluation is always less than 0.6 °C. The effect of cross-talk between the two signals was determined to be insignificant.

  7. Strain Sensing Based on Multiscale Composite Materials Reinforced with Graphene Nanoplatelets.

    PubMed

    Moriche, Rocío; Prolongo, Silvia G; Sánchez, María; Jiménez-Suárez, Alberto; Campo, Mónica; Ureña, Alejandro

    2016-11-07

    The electrical response of NH2-functionalized graphene nanoplatelets composite materials under strain was studied. Two different manufacturing methods are proposed to create the electrical network in this work: (a) the incorporation of the nanoplatelets into the epoxy matrix and (b) the coating of the glass fabric with a sizing filled with the same nanoplatelets. Both types of multiscale composite materials, with an in-plane electrical conductivity of ~10 -3 S/m, showed an exponential growth of the electrical resistance as the strain increases due to distancing between adjacent functionalized graphene nanoplatelets and contact loss between overlying ones. The sensitivity of the materials analyzed during this research, using the described procedures, has been shown to be higher than commercially available strain gauges. The proposed procedures for self-sensing of the structural composite material would facilitate the structural health monitoring of components in difficult to access emplacements such as offshore wind power farms. Although the sensitivity of the multiscale composite materials was considerably higher than the sensitivity of metallic foils used as strain gauges, the value reached with NH2 functionalized graphene nanoplatelets coated fabrics was nearly an order of magnitude superior. This result elucidated their potential to be used as smart fabrics to monitor human movements such as bending of fingers or knees. By using the proposed method, the smart fabric could immediately detect the bending and recover instantly. This fact permits precise monitoring of the time of bending as well as the degree of bending.

  8. Vega interstage strain measurements: comparison between conventional strain gauges and fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Cheng, Lun; Ahlers, Berit

    2017-11-01

    Europe is developing a new generation launcher, called Vega, a small launcher with a capacity to place satellites into polar and low-Earth orbits, which are used for many scientific and Earth observation missions. Its first launch is scheduled for early 2008. Dutch Space is responsible for the development, qualification and manufacturing of the Vega Interstage 1/2. This all-aluminium conically shaped section is designed as a monocoque structure. This subsystem of Vega has undergone its first qualification tests of force loading combined with an extensive programme of measurements (forces, displacements and strains), at TNO in Delft. In parallel to conventional strain gauges Fibre Optic Sensors (FOS) in the form of Fibre Bragg Grating (FBG) sensor arrays, consisting of five strain sensors and one temperature sensor, have been installed on different locations of the interstage. Direct comparisons of the results with conventional sensors during load tests up to several hundred tons are therefore possible. A self-evident benefit of FBG sensors in an array application is that each sensing FBG can have a different Bragg wavelength to reflect. Thus, Wavelength Division Multiplexing (WDM) can conveniently be used to distinguish the different sensing FBG's at the receiving side. First test results from load measurements performed on the Qualification Model (QM) of the Vega Interstage 1/2 are presented in this paper as well as an outlook to future integration of the FBG in this field.

  9. Wireless measurement of elastic and plastic deformation by a metamaterial-based sensor.

    PubMed

    Ozbey, Burak; Demir, Hilmi Volkan; Kurc, Ozgur; Erturk, Vakur B; Altintas, Ayhan

    2014-10-20

    We report remote strain and displacement measurement during elastic and plastic deformation using a metamaterial-based wireless and passive sensor. The sensor is made of a comb-like nested split ring resonator (NSRR) probe operating in the near-field of an antenna, which functions as both the transmitter and the receiver. The NSRR probe is fixed on a standard steel reinforcing bar (rebar), and its frequency response is monitored telemetrically by a network analyzer connected to the antenna across the whole stress-strain curve. This wireless measurement includes both the elastic and plastic region deformation together for the first time, where wired technologies, like strain gauges, typically fail to capture. The experiments are further repeated in the presence of a concrete block between the antenna and the probe, and it is shown that the sensing system is capable of functioning through the concrete. The comparison of the wireless sensor measurement with those undertaken using strain gauges and extensometers reveals that the sensor is able to measure both the average strain and the relative displacement on the rebar as a result of the applied force in a considerably accurate way. The performance of the sensor is tested for different types of misalignments that can possibly occur due to the acting force. These results indicate that the metamaterial-based sensor holds great promise for its accurate, robust and wireless measurement of the elastic and plastic deformation of a rebar, providing beneficial information for remote structural health monitoring and post-earthquake damage assessment.

  10. Progress of a Cross-Correlation Based Optical Strain Measurement Technique for Detecting Radial Growth on a Rotating Disk

    NASA Technical Reports Server (NTRS)

    Clem, Michelle M.; Abdul-Aziz, Ali; Woike, Mark R.; Fralick, Gustave C.

    2015-01-01

    The modern turbine engine operates in a harsh environment at high speeds and is repeatedly exposed to combined high mechanical and thermal loads. The cumulative effects of these external forces lead to high stresses and strains on the engine components, such as the rotating turbine disks, which may eventually lead to a catastrophic failure if left undetected. The operating environment makes it difficult to use conventional strain gauges, therefore, non-contact strain measurement techniques is of interest to NASA and the turbine engine community. This presentation describes one such approach; the use of cross correlation analysis to measure strain experienced by the engine turbine disk with the goal of assessing potential faults and damage.

  11. Ultrathin epidermal strain sensor based on an elastomer nanosheet with an inkjet-printed conductive polymer

    NASA Astrophysics Data System (ADS)

    Tetsu, Yuma; Yamagishi, Kento; Kato, Akira; Matsumoto, Yuya; Tsukune, Mariko; Kobayashi, Yo; Fujie, Masakatsu G.; Takeoka, Shinji; Fujie, Toshinori

    2017-08-01

    To minimize the interference that skin-contact strain sensors cause natural skin deformation, physical conformability to the epidermal structure is critical. Here, we developed an ultrathin strain sensor made from poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) inkjet-printed on a polystyrene-polybutadiene-polystyrene (SBS) nanosheet. The sensor, whose total thickness and gauge factor were ˜1 µm and 0.73 ± 0.10, respectively, deeply conformed to the epidermal structure and successfully detected the small skin strain (˜2%) while interfering minimally with the natural deformation of the skin. Such an epidermal strain sensor will open a new avenue for precisely detecting the motion of human skin and artificial soft-robotic skin.

  12. Supramolecular Engineering of Hierarchically Self-Assembled, Bioinspired, Cholesteric Nanocomposites Formed by Cellulose Nanocrystals and Polymers.

    PubMed

    Zhu, Baolei; Merindol, Remi; Benitez, Alejandro J; Wang, Baochun; Walther, Andreas

    2016-05-04

    Natural composites are hierarchically structured by combination of ordered colloidal and molecular length scales. They inspire future, biomimetic, and lightweight nanocomposites, in which extraordinary mechanical properties are in reach by understanding and mastering hierarchical structure formation as tools to engineer multiscale deformation mechanisms. Here we describe a hierarchically self-assembled, cholesteric nanocomposite with well-defined colloid-based helical structure and supramolecular hydrogen bonds engineered on the molecular level in the polymer matrix. We use reversible addition-fragmentation transfer polymerization to synthesize well-defined hydrophilic, nonionic polymers with a varying functionalization density of 4-fold hydrogen-bonding ureidopyrimidinone (UPy) motifs. We show that these copolymers can be coassembled with cellulose nanocrystals (CNC), a sustainable, stiff, rod-like reinforcement, to give ordered cholesteric phases with characteristic photonic stop bands. The dimensions of the helical pitch are controlled by the ratio of polymer/CNC, confirming a smooth integration into the colloidal structure. With respect to the effect of the supramolecular motifs, we demonstrate that those regulate the swelling when exposing the biomimetic hybrids to water, and they allow engineering the photonic response. Moreover, the amount of hydrogen bonds and the polymer fraction are decisive in defining the mechanical properties. An Ashby plot comparing previous ordered CNC-based nanocomposites with our new hierarchical ones reveals that molecular engineering allows us to span an unprecedented mechanical property range from highest inelastic deformation (strain up to ∼13%) to highest stiffness (E ∼ 15 GPa) and combinations of both. We envisage that further rational design of the molecular interactions will provide efficient tools for enhancing the multifunctional property profiles of such bioinspired nanocomposites.

  13. Dynamic strain distribution of FRP plate under blast loading

    NASA Astrophysics Data System (ADS)

    Saburi, T.; Yoshida, M.; Kubota, S.

    2017-02-01

    The dynamic strain distribution of a fiber re-enforced plastic (FRP) plate under blast loading was investigated using a Digital Image Correlation (DIC) image analysis method. The testing FRP plates were mounted in parallel to each other on a steel frame. 50 g of composition C4 explosive was used as a blast loading source and set in the center of the FRP plates. The dynamic behavior of the FRP plate under blast loading were observed by two high-speed video cameras. The set of two high-speed video image sequences were used to analyze the FRP three-dimensional strain distribution by means of DIC method. A point strain profile extracted from the analyzed strain distribution data was compared with a directly observed strain profile using a strain gauge and it was shown that the strain profile under the blast loading by DIC method is quantitatively accurate.

  14. Rail passenger equipment collision tests : analysis of structural measurements

    DOT National Transportation Integrated Search

    2000-11-01

    A two-car full-scale collision test was conducted on April 4, 2000. Two coupled rail passenger cars impacted a rigid wall at 26 mph. The cars were instrumented with strain gauges, accelerometers, and string potentiometers, to measure the deformation ...

  15. Long-Term Structural Performance Monitoring of Bridges : Hardware Maintenance and, Long-term Data Collection/Analysis

    DOT National Transportation Integrated Search

    2011-06-01

    In this project a description of the maintenance of the sensor monitoring systems installed on three California : highway bridges is presented. The monitoring systems consist of accelerometers, strain gauges, pressure sensors, : and displacement sens...

  16. Long-term structural performance monitoring of bridges : hardware maintenance and, long-term data collection/analysis.

    DOT National Transportation Integrated Search

    2011-06-01

    In this project a description of the maintenance of the sensor monitoring systems installed on three California : highway bridges is presented. The monitoring systems consist of accelerometers, strain gauges, pressure sensors, : and displacement sens...

  17. Wireless Zigbee strain gage sensor system for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost, and temperature insensitivity for critical structural applications, which require immediate monitoring and feedback.

  18. Sheath-Core Graphite/Silk Fiber Made by Dry-Meyer-Rod-Coating for Wearable Strain Sensors.

    PubMed

    Zhang, Mingchao; Wang, Chunya; Wang, Qi; Jian, Muqiang; Zhang, Yingying

    2016-08-17

    Recent years have witnessed the explosive development of flexible strain sensors. Nanomaterials have been widely utilized to fabricate flexible strain sensors, because of their high flexibility and electrical conductivity. However, the fabrication processes for nanomaterials and the subsequent strain sensors are generally complicated and are manufactured at high cost. In this work, we developed a facile dry-Meyer-rod-coating process to fabricate sheath-core-structured single-fiber strain sensors using ultrafine graphite flakes as the sheath and silk fibers as the core by virtue of their flexibility, high production, and low cost. The fabricated strain sensor exhibits a high sensitivity with a gauge factor of 14.5 within wide workable strain range up to 15%, and outstanding stability (up to 3000 cycles). The single-fiber-based strain sensors could be attached to a human body to detect joint motions or easily integrated into the multidirectional strain sensor for monitoring multiaxial strain, showing great potential applications as wearable strain sensors.

  19. NASA Tech Briefs, May 2007

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Topics include: Noise-Canceling Helmet Audio System; Program Analyzes Spacecraft/Ground Radio Links; Two-Way Communication Using RFID Equipment and Techniques; Six-Message Electromechanical Display System; Scanning Terahertz Heterodyne Imaging Systems; Master Clock and Time-Signal-Distribution System; Synchronous Phase-Resolving Flash Range Imaging; Integrated Radial Probe Transition From MMIC to Waveguide; Bar-Code System for a Microbiological Laboratory; MMIC Amplifier Produces Gain of 10 dB at 235 GHz; Mapping Nearby Terrain in 3D by Use of a Grid of Laser Spots; Digital Beam Deflectors Based Partly on Liquid Crystals; Narrow-Band WGM Optical Filters With Tunable FSRs; Better Finite-Element Analysis of Composite Shell Structures; Computing Spacecraft-Pointing Vectors for Limb Tracking; Enhanced Master Controller Unit Tester; Rover Graphical Simulator; Increasing Durability of Flame-Sprayed Strain Gauges; Multifunctional, High-Temperature Nanocomposites; Multilayer Impregnated Fibrous Thermal Insulation Tiles; Radiation-Shielding Polymer/Soil Composites; Film/Adhesive Processing Module for Fiber-Placement Processing of Composites; Fabrication of Submillimeter Axisymmetric Optical Components; Electrochemical Disposal of Hydrazines in Water; Statistical Model of Evaporating Multicomponent Fuel Drops; Resistively Heated SiC Nozzle for Generating Molecular Beams; Compact Packaging of Photonic Millimeter-Wave Receiver; Diffractive Combiner of Single-Mode Pump Laser-Diode Beams; Wide-Band, High-Quantum-Efficiency Photodetector; A Robustly Stabilizing Model Predictive Control Algorithm; Modeling Evaporation of Drops of Different Kerosenes; Development of Vapor-Phase Catalytic Ammonia Removal System; Several Developments in Space Tethers; Design Concept for a Nuclear Reactor-Powered Mars Rover; Formation-Initialization Algorithm for N Spacecraft; and DNSs of Multicomponent Gaseous and Drop-Laden Mixing Layers Achieving Transition to Turbulence.

  20. Dynamic Method of Neutral Axis Position Determination and Damage Identification with Distributed Long-Gauge FBG Sensors

    PubMed Central

    Tang, Yongsheng; Ren, Zhongdao

    2017-01-01

    The neutral axis position (NAP) is a key parameter of a flexural member for structure design and safety evaluation. The accuracy of NAP measurement based on traditional methods does not satisfy the demands of structural performance assessment especially under live traffic loads. In this paper, a new method to determine NAP is developed by using modal macro-strain (MMS). In the proposed method, macro-strain is first measured with long-gauge Fiber Bragg Grating (FBG) sensors; then the MMS is generated from the measured macro-strain with Fourier transform; and finally the neutral axis position coefficient (NAPC) is determined from the MMS and the neutral axis depth is calculated with NAPC. To verify the effectiveness of the proposed method, some experiments on FE models, steel beam and reinforced concrete (RC) beam were conducted. From the results, the plane section was first verified with MMS of the first bending mode. Then the results confirmed the high accuracy and stability for assessing NAP. The results also proved that the NAPC was a good indicator of local damage. In summary, with the proposed method, accurate assessment of flexural structures can be facilitated. PMID:28230747

  1. Bone microstrain values of 1-piece and 2-piece implants subjected to mechanical loading.

    PubMed

    Harel, Noga; Eshkol-Yogev, Inbar; Piek, Dana; Livne, Shiri; Lavi, David; Ormianer, Zeev

    2013-06-01

    The purpose of this study was to measure and compare the strain levels in peri-implant bone as generated by 1-piece (1P) and 2-piece (2P) implant systems. The implants (1P and 2P) were placed into bovine bone according to the manufacturer's protocol. Four linear strain gauges were placed around each implant neck and apex. Each model was loaded in static loading by a material testing machine in ascending forces ranging from 20 to 120 N. Microstrains (μ[Latin Small Letter Open E]) generated in the surrounding bone were measured by a strain gauge and recorded. Recorded microstrains were significantly higher for 1P implants than for 2P implants. Average recorded microstrain values were significantly lower in the neck (71.6 and 17.3 µs) compared with the apical (132 and 60 µs) regions of 1P and 2P implants, respectively (P < 0.0001). Within the limitations of this study, highest microstrains were generated in apical regions regardless of implant design, but the 2P implant ap-peared to provide a stress-damping effect in both the cervical and apical regions compared with the 1P implant.

  2. Dynamic Method of Neutral Axis Position Determination and Damage Identification with Distributed Long-Gauge FBG Sensors.

    PubMed

    Tang, Yongsheng; Ren, Zhongdao

    2017-02-20

    The neutral axis position (NAP) is a key parameter of a flexural member for structure design and safety evaluation. The accuracy of NAP measurement based on traditional methods does not satisfy the demands of structural performance assessment especially under live traffic loads. In this paper, a new method to determine NAP is developed by using modal macro-strain (MMS). In the proposed method, macro-strain is first measured with long-gauge Fiber Bragg Grating (FBG) sensors; then the MMS is generated from the measured macro-strain with Fourier transform; and finally the neutral axis position coefficient (NAPC) is determined from the MMS and the neutral axis depth is calculated with NAPC. To verify the effectiveness of the proposed method, some experiments on FE models, steel beam and reinforced concrete (RC) beam were conducted. From the results, the plane section was first verified with MMS of the first bending mode. Then the results confirmed the high accuracy and stability for assessing NAP. The results also proved that the NAPC was a good indicator of local damage. In summary, with the proposed method, accurate assessment of flexural structures can be facilitated.

  3. Smart photonic coating as a new visualization technique of strain deformation of metal plates

    NASA Astrophysics Data System (ADS)

    Fudouzi, Hiroshi; Sawada, Tsutomu; Tanaka, Yoshikazu; Ario, Ichiro; Hyakutake, Tsuyoshi; Nishizaki, Itaru

    2012-04-01

    We will present a simple and low cost method to visualize local strain distribution in deformed aluminum plates. In this study, aluminum plates were coated with opal photonic crystal film with tunable structural color. The photonic crystal films consist of a silicone elastomer that contains an array of submicron polystyrene colloidal particles. When the aluminum sheets were stretched, the change in the spacing of the colloidal particles in the opal film alters the color of the film. This approach could be useful as a new strain gauge having a visual indicator to detect mechanical deformation.

  4. X-ray peak broadening analysis of AA 6061{sub 100-x} - x wt.% Al{sub 2}O{sub 3} nanocomposite prepared by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivasankaran, S., E-mail: sivasankarangs1979@gmail.com; Sivaprasad, K., E-mail: ksp@nitt.edu; Narayanasamy, R., E-mail: narayan@nitt.edu

    2011-07-15

    Nanocrystalline AA 6061 alloy reinforced with alumina (0, 4, 8, and 12 wt.%) in amorphized state composite powder was synthesized by mechanical alloying and consolidated by conventional powder metallurgy route. The as-milled and as-sintered (573 K and 673 K) nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The peaks corresponding to fine alumina was not observed by XRD patterns due to amorphization. Using high-resolution transmission electron microscope, it is confirmed that the presence of amorphized alumina observed in Al lattice fringes. The crystallite size, lattice strain, deformation stress, and strain energy density of AA 6061 matrixmore » were determined precisely from the first five most intensive reflection of XRD using simple Williamson-Hall models; uniform deformation model, uniform stress deformation model, and uniform energy density deformation model. Among the developed models, uniform energy density deformation model was observed to be the best fit and realistic model for mechanically alloyed powders. This model evidenced the more anisotropic nature of the ball milled powders. The XRD peaks of as-milled powder samples demonstrated a considerable broadening with percentage of reinforcement due to grain refinement and lattice distortions during same milling time (40 h). The as-sintered (673 K) unreinforced AA 6061 matrix crystallite size from well fitted uniform energy density deformation model was 98 nm. The as-milled and as-sintered (673 K) nanocrystallite matrix sizes for 12 wt.% Al{sub 2}O{sub 3} well fitted by uniform energy density deformation model were 38 nm and 77 nm respectively, which indicate that the fine Al{sub 2}O{sub 3} pinned the matrix grain boundary and prevented the grain growth during sintering. Finally, the lattice parameter of Al matrix in as-milled and as-sintered conditions was also investigated in this paper. Research highlights: {yields} Integral breadth methods using various Williamson-Hall models were investigated for line profile analysis. {yields} Uniform energy density deformation model is observed to the best realistic model. {yields} The present analysis is used for understanding the stress and the strain present in the nanocomposites.« less

  5. AGARD Flight Test Instrumentation Series. Volume 7. Strain Gauge Measurements on Aircraft

    DTIC Science & Technology

    1976-04-01

    U.S. DEPARTMENT OF CRY11ERCE Natioal Techaical Infnaitm Soice AD-A026 838 AGARD FLIGHT TEST INSTRUMENTATION SERIES VOLUME 7. STRAIN GUAGE...MEASUREMENTS ON AIRCRAFT ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT PREPARED FOR.I NORTH ATLANTIC TREATY ORGANIZATION APRIL 1976 • • ,. h VI -i• d...INFORMATION DOCUMENT PROCESSING WORKSHEET ,5.RVICE USCOMM-DC 41420.P7I AGARD-AG-160 Volume 7 NORTH ATLANTIC TREATY ORGANIZATION ADVISORY GROUP FOR AEROSPACE

  6. Thin Film Ceramic Strain Sensor Development for High Temperature Environments

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M.; Laster, Kimala L.

    2008-01-01

    The need for sensors to operate in harsh environments is illustrated by the need for measurements in the turbine engine hot section. The degradation and damage that develops over time in hot section components can lead to catastrophic failure. At present, the degradation processes that occur in the harsh hot section environment are poorly characterized, which hinders development of more durable components, and since it is so difficult to model turbine blade temperatures, strains, etc, actual measurements are needed. The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in harsh environments. The effort at the NASA Glenn Research Center (GRC) to develop high temperature thin film ceramic static strain gauges for application in turbine engines is described, first in the fan and compressor modules, and then in the hot section. The near-term goal of this research effort was to identify candidate thin film ceramic sensor materials and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. A thorough literature search was conducted for ceramics that have the potential for application as high temperature thin film strain gauges chemically and physically compatible with the NASA GRCs microfabrication procedures and substrate materials. Test results are given for tantalum, titanium and zirconium-based nitride and oxynitride ceramic films.

  7. A skin-integrated transparent and stretchable strain sensor with interactive color-changing electrochromic displays.

    PubMed

    Park, Heun; Kim, Dong Sik; Hong, Soo Yeong; Kim, Chulmin; Yun, Jun Yeong; Oh, Seung Yun; Jin, Sang Woo; Jeong, Yu Ra; Kim, Gyu Tae; Ha, Jeong Sook

    2017-06-08

    In this study, we report on the development of a stretchable, transparent, and skin-attachable strain sensor integrated with a flexible electrochromic device as a human skin-inspired interactive color-changing system. The strain sensor consists of a spin-coated conductive nanocomposite film of poly(vinyl alcohol)/multi-walled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) on a polydimethylsiloxane substrate. The sensor exhibits excellent performance of high sensitivity, high durability, fast response, and high transparency. An electrochromic device (ECD) made of electrochemically synthesized polyaniline nanofibers and V 2 O 5 on an indium-tin-oxide-coated polyethylene terephthalate film experiences a change in color from yellow to dark blue on application of voltage. The strain sensor and ECD are integrated on skin via an Arduino circuit for an interactive color change with the variation of the applied strain, which enables a real-time visual display of body motion. This integrated system demonstrates high potential for use in interactive wearable devices, military applications, and smart robots.

  8. Effect of bentonite modification on hardness and mechanical properties of natural rubber nanocomposites

    NASA Astrophysics Data System (ADS)

    Santiago, Denise Ester O.; Pajarito, Bryan B.; Mangaccat, Winna Faye F.; Tigue, Maelyn Rose M.; Tipton, Monica T.

    2016-05-01

    The effect of sodium activation, ion-exchange with tertiary amine salt, surface treatment with non-ionic surfactant, and wet grinding of bentonite on hardness and mechanical properties of natural rubber nanocomposites (NRN) was studied using full factorial design of experiment. Results of X-ray diffraction (XRD) show increase in basal spacing d of bentonite due to modification, while attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirm the organic modification of bentonite. Analysis of variance (ANOVA) shows that the main effect of surface treatment increases the hardness and decreases the tensile modulus of the NRN. The surface treatment and wet grinding of bentonite decrease the tensile stresses at 100, 200 and 300% strain of NRN. Sodium activation and ion-exchange negatively affect the compressive properties, while surface treatment significantly improves the compressive properties of NRN.

  9. Water-dispersible silver nanoparticles-decorated carbon nanomaterials: synthesis and enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Dinh, Ngo Xuan; Chi, Do Thi; Lan, Nguyen Thi; Lan, Hoang; Van Tuan, Hoang; Van Quy, Nguyen; Phan, Vu Ngoc; Huy, Tran Quang; Le, Anh-Tuan

    2015-04-01

    In recent years, a growing number of outbreak of infectious diseases have emerged all over the world. The outbreak of re-emerging and emerging infectious diseases is a considerable burden on global economies and public health. Nano-antimicrobials have been studied as an effective solution for the prevention of infectious diseases. In this work, we demonstrated a modified photochemical approach for the preparation of carbon nanotubes-silver nanoparticles (CNTs-Ag) and graphene oxide-silver nanoparticles (GO-Ag) nanocomposites, which can be stably dispersible in aqueous solution. The formation of silver nanoparticles (Ag-NPs) on the functionalized CNTs and GO nanosheets was analyzed by X-ray diffraction, transmission electron microscopy, Raman spectroscopy and UV-Vis measurements. These analyses indicated that the average particle sizes of Ag-NPs deposited on GO/CNTs nanostructures were ~6-7 nm with nearly uniform size distribution. Moreover, these nanocomposites were found to exhibit enhanced antibacterial activity against two strains of infectious bacteria including Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria as compared to bare Ag-NPs. Our obtained studies showed a high potential of GO-Ag and CNTs-Ag nanocomposites as effective and long-term disinfection solution to eliminate infectious bacterial pathogens.

  10. Preparation and characterization of a magneto-polymeric nanocomposite: Fe 3O 4 nanoparticles in a grafted, cross-linked and plasticized poly(vinyl chloride) matrix

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernández, Oliverio S.; Rodríguez-Calzadíaz, C. A.; Yáñez-Flores, Isaura G.; Montemayor, Sagrario M.

    In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) "plastic films" and (2) magnetic plastic films "magneto-polymeric nanocomposites" were prepared. Precursor solutions or "plastisols" used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe 3O 4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis.

  11. Unified equivalent circuit model for carbon nanotube-based nanocomposites.

    PubMed

    Zhao, Chaoyang; Yuan, Weifeng; Zhao, Yangzhou; Hu, Ning; Gu, Bin; Liu, Haidong; Alamusi

    2018-07-27

    Carbon nanotubes form a complex network in nanocomposites. In the network, the configuration of the nanotubes is various. A carbon nanotube may be curled or straight, and it may be parallel or crossed to another. As a result, carbon nanotube-based composites exhibit integrated characteristics of inductor, capacitor and resistor. In this work, it is hypothesised that carbon nanotube-based composites all adhere to a RLC interior circuit. To verify the hypothesis, three different composites, viz multi-walled carbon nanotube/polyvinylidene fluoride (MWCNT/PVDF), multi-walled carbon nanotube/epoxy (MWCNT/EP), multi-walled carbon nanotube/polydimethylsiloxane (MWCNT/PDMS) were fabricated and tested. The resistances and the dielectric loss tangent (tanδ) of the materials were measured in direct and alternating currents. The measurement shows that the value of tanδ is highly affected by the volume fraction of MWCNT in the composites. The experimental results prove that the proposed RLC equivalent circuit model can fully describe the electrical properties of the MWCNT network in nanocomposites. The RLC model provides a new route to detect the inductance and capacitance of carbon nanotubes. Moreover, the model also indicates that the carbon nanotube-based composite films may be used to develop wireless strain sensors.

  12. Effect of amorphous lamella on the crack propagation behavior of crystalline Mg/amorphous Mg-Al nanocomposites

    NASA Astrophysics Data System (ADS)

    Hai-Yang, Song; Yu-Long, Li

    2016-02-01

    The effects of amorphous lamella on the crack propagation behavior in crystalline/amorphous (C/A) Mg/Mg-Al nanocomposites under tensile loading are investigated using the molecular dynamics simulation method. The sample with an initial crack of orientation [0001] is considered here. For the nano-monocrystal Mg, the crack growth exhibits brittle cleavage. However, for the C/A Mg/Mg-Al nanocomposites, the ‘double hump’ behavior can be observed in all the stress-strain curves regardless of the amorphous lamella thickness. The results indicate that the amorphous lamella plays a critical role in the crack deformation, and it can effectively resist the crack propagation. The above mentioned crack deformation behaviors are also disclosed and analyzed in the present work. The results here provide a strategy for designing the high-performance hexagonal-close-packed metal and alloy materials. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372256 and 11572259), the 111 Project (Grant No. B07050), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1046), and the Program for New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2012KJXX-39).

  13. Passive-quadrature demodulated localized-Michelson fiber-optic strain sensor embedded in composite materials

    NASA Astrophysics Data System (ADS)

    Valis, Tomas; Tapanes, Edward; Liu, Kexing; Measures, Raymond M.

    1991-04-01

    A strain sensor embedded in composite materials that is intrinsic, all fiber, local, and phase demodulated is described. It is the combination of these necessary elements that represents an advance in the state of the art. Sensor localization is achieved by using a pair of mirror-ended optical fibers of different lengths that are mechanically coupled up until the desired gauge length for common-mode suppression has been reached. This fiber-optic sensor has been embedded in both thermoset (Kevlar/epoxy and graphite/epoxy) and thermoplastic (graphite/PEEK) composite materials in order to make local strain measurements at the lamina level. The all-fiber system uses a 3 x 3 coupler for phase demodulation. Parameters such as strain sensitivity, transverse strain sensitivity, failure strain, and frequency response are discussed, along with applications.

  14. OSM-Classic : An optical imaging technique for accurately determining strain

    NASA Astrophysics Data System (ADS)

    Aldrich, Daniel R.; Ayranci, Cagri; Nobes, David S.

    OSM-Classic is a program designed in MATLAB® to provide a method of accurately determining strain in a test sample using an optical imaging technique. Measuring strain for the mechanical characterization of materials is most commonly performed with extensometers, LVDT (linear variable differential transistors), and strain gauges; however, these strain measurement methods suffer from their fragile nature and it is not particularly easy to attach these devices to the material for testing. To alleviate these potential problems, an optical approach that does not require contact with the specimen can be implemented to measure the strain. OSM-Classic is a software that interrogates a series of images to determine elongation in a test sample and hence, strain of the specimen. It was designed to provide a graphical user interface that includes image processing with a dynamic region of interest. Additionally, the stain is calculated directly while providing active feedback during the processing.

  15. Reliability of mercury-in-silastic strain gauge plethysmography curve reading: influence of clinical clues and observer variation.

    PubMed

    Høyer, Christian; Pavar, Susanne; Pedersen, Begitte H; Biurrun Manresa, José A; Petersen, Lars J

    2013-08-01

    Mercury-in-silastic strain gauge pletysmography (SGP) is a well-established technique for blood flow and blood pressure measurements. The aim of this study was to examine (i) the possible influence of clinical clues, e.g. the presence of wounds and color changes during blood pressure measurements, and (ii) intra- and inter-observer variation of curve interpretation for segmental blood pressure measurements. A total of 204 patients with known or suspected peripheral arterial disease (PAD) were included in a diagnostic accuracy trial. Toe and ankle pressures were measured in both limbs, and primary observers analyzed a total of 804 pressure curve sets. The SGP curves were later reanalyzed separately by two observers blinded to clinical clues. Intra- and inter-observer agreement was quantified using Cohen's kappa and reliability was quantified using intra-class correlation coefficients, coefficients of variance, and Bland-Altman analysis. There was an overall agreement regarding patient diagnostic classification (PAD/not PAD) in 202/204 (99.0%) for intra-observer (κ = 0.969, p < 0.001), and 201/204 (98.5%) for inter-observer readings (κ = 0.953, p < 0.001). Reliability analysis showed excellent correlation between blinded versus non-blinded and inter-observer readings for determination of absolute segmental pressures (all intraclass correlation coefficients ≥ 0.984). The coefficient of variance for determination of absolute segmental blood pressure ranged from 2.9-3.4% for blinded/non-blinded data and from 3.8-5.0% for inter-observer data. This study shows a low inter-observer variation among experienced laboratory technicians for reading strain gauge curves. The low variation between blinded/non-blinded readings indicates that SGP measurements are minimally biased by clinical clues.

  16. A reassessment of mercury in silastic strain gauge plethysmography for microvascular permeability assessment in man.

    PubMed Central

    Gamble, J; Gartside, I B; Christ, F

    1993-01-01

    1. We have used non-invasive mercury in a silastic strain gauge system to assess the effect of pressure step size, on the time course of the rapid volume response (RVR) to occlusion pressure. We also obtained values for hydraulic conductance (Kf), isovolumetric venous pressure (Pvi) and venous pressure (Pv) in thirty-five studies on the legs of twenty-three supine control subjects. 2. The initial rapid volume response to small (9.53 +/- 0.45 mmHg, mean +/- S.E.M.) stepped increases in venous pressure, the rapid volume response, could be described by a single exponential of time constant 15.54 +/- 1.14 s. 3. Increasing the size of the pressure step, to 49.8 +/- 1.1 mmHg, gave a larger value for the RVR time constant (mean 77.3 +/- 11.6 s). 4. We propose that the pressure-dependent difference in the duration of the rapid volume response, in these two situations, might be due to a vascular smooth muscle-based mechanism, e.g. the veni-arteriolar reflex. 5. The mean (+/- S.E.M.) values for Kf, Pvi and Pv were 4.27 +/- 0.18 (units, ml min-1 (100 g)-1 mmHg-1 x 10(-3), 21.50 +/- 0.81 (units, mmHg) and 9.11 +/- 0.94 (units, mmHg), respectively. 6. During simultaneous assessment of these parameters in arms and legs, it was found that they did not differ significantly from one another. 7. We propose that the mercury strain gauge system offers a useful, non-invasive means of studying the mechanisms governing fluid filtration in human limbs. Images Fig. 1 PMID:8229810

  17. A new reference tip-timing test bench and simulator for blade synchronous and asynchronous vibrations

    NASA Astrophysics Data System (ADS)

    Hajnayeb, Ali; Nikpour, Masood; Moradi, Shapour; Rossi, Gianluca

    2018-02-01

    The blade tip-timing (BTT) measurement technique is at present the most promising technique for monitoring the blades of axial turbines and aircraft engines in operating conditions. It is generally used as an alternative to strain gauges in turbine testing. By conducting a comparison with the standard methods such as those based on strain gauges, one determines that the technique is not intrusive and does not require a complicated installation process. Despite its superiority to other methods, the experimental performance analysis of a new BTT method needs a test stand that includes a reference measurement system (e.g. strain gauges equipped with telemetry or other complex optical measurement systems, like rotating laser Doppler vibrometers). In this article, a new reliable, low-cost BTT test setup is proposed for simulating and analyzing blade vibrations based on kinematic inversion. In the proposed test bench, instead of the blades vibrating, it is the BTT sensor that vibrates. The vibration of the sensor is generated by a shaker and can therefore be easily controlled in terms of frequency, amplitude and waveform shape. The amplitude of vibration excitation is measured by a simple accelerometer. After introducing the components of the simulator, the proposed test bench is used in practice to simulate both synchronous and asynchronous vibration scenarios. Then two BTT methods are used to evaluate the quality of the acquired data. The results demonstrate that the proposed setup is able to generate simulated pulse sequences which are almost the same as those generated by the conventional BTT systems installed around a bladed disk. Moreover, the test setup enables its users to evaluate BTT methods by using a limited number of sensors. This significantly reduces the total costs of the experiments.

  18. High-stress study of bioinspired multifunctional PEDOT:PSS/nanoclay nanocomposites using AFM, SEM and numerical simulation.

    PubMed

    Diaz, Alfredo J; Noh, Hanaul; Meier, Tobias; Solares, Santiago D

    2017-01-01

    Bioinspired design has been central in the development of hierarchical nanocomposites. Particularly, the nacre-mimetic brick-and-mortar structure has shown excellent mechanical properties, as well as gas-barrier properties and optical transparency. Along with these intrinsic properties, the layered structure has also been utilized in sensing devices. Here we extend the multifunctionality of nacre-mimetics by designing an optically transparent and electron conductive coating based on PEDOT:PSS and nanoclays Laponite RD and Cloisite Na + . We carry out extensive characterization of the nanocomposite using transmittance spectra (transparency), conductive atomic force microscopy (conductivity), contact-resonance force microscopy (mechanical properties), and SEM combined with a variety of stress-strain AFM experiments and AFM numerical simulations (internal structure). We further study the nanoclay's response to the application of pressure with multifrequency AFM and conductive AFM, whereby increases and decreases in conductivity can occur for the Laponite RD composites. We offer a possible mechanism to explain the changes in conductivity by modeling the coating as a 1-dimensional multibarrier potential for electron transport, and show that conductivity can change when the separation between the barriers changes under the application of pressure, and that the direction of the change depends on the energy of the electrons. We did not observe changes in conductivity under the application of pressure with AFM for the Cloisite Na + nanocomposite, which has a large platelet size compared with the AFM probe diameter. No pressure-induced changes in conductivity were observed in the clay-free polymer either.

  19. [A biomechanical study on the fracture treatment--intravital measurement of the strain on an intramedullary nail in the healing process of the femoral fracture in goats (author's transl)].

    PubMed

    Obara, T

    1979-02-01

    There have been many biomechanical studies throughout the world on the fracture treatment. However, only a few were performed under intravital condition. The purpose of the present study is to measure the successive strength changes of the callus after a fracture, in vivo in an animal. Specifically designed Küntscher nails were made to meet the anterior convexity and the size of the medullary canal of the femora of goats. Three self-temperature-compensating semi-conductor strain-gauges were glued on the inner surface of the nail and coated with epoxy-resin and silicone rubber. The nail was inserted into the intact femur, and the initial measurement of the strains was performed using a specially designed wooden three point bending jig. Then the femur was transected at the middle. Periodical measurements of the strains were done, first, during walking and, then, with the three point bending jig under general anesthesia. Ten goats were used for the experiments. The measurement was undertaken every two to three weeks. Serial x-rays were taken. The femur was studied histopathologically after the death of the animal. 1. Although the nail with the strain-gauges presented some foreign body reaction and certain difficulties in sterilization, it was well tolerated by the animal, permitting the strain measurement for as long as 18 weeks after the fracture. 2. There was a tendency that the less loosening is found between the nail and the bone, the larger is the strain and the smaller becomes the dispersion of the strains. 3. On the three point bending test, the post-fracture strain changes were not directly proportional to the lapse of time. In the early phase, the strains remained large for about four weeks and tended to rapidly decrease in the middle and late phases in accordance with the development of callus formation on x-ray. 4. A similar strain change was observed on the walking test, although the animal presented with some painful limp. The results suggest that early excessive exercise to be avoided when an intramedullary fixation is not sufficiently rigid.

  20. Strain of implants depending on occlusion types in mandibular implant-supported fixed prostheses

    PubMed Central

    Sohn, Byoung-Sup; Heo, Seong-Joo; Koak, Jai-Young; Kim, Seong-Kyun

    2011-01-01

    PURPOSE This study investigated the strain of implants using a chewing simulator with strain gauges in mandibular implant-supported fixed prostheses under various dynamic loads. MATERIALS AND METHODS Three implant-supported 5-unit fixed prostheses were fabricated with three different occlusion types (Group I: Canine protected occlusion, Group II: Unilaterally balanced occlusion, Group III: Bilaterally balanced occlusion). Two strain gauges were attached to each implant abutment. The programmed dynamic loads (0 - 300 N) were applied using a chewing simulator (MTS 858 Mini Bionix II systems, MTS systems corp., Minn, USA) and the strains were monitored. The statistical analyses were performed using the paired t-test and the ANOVA. RESULTS The mean strain values (MSV) for the working sides were 151.83 µε, 176.23 µε, and 131.07 µε for Group I, Group II, and Group III, respectively. There was a significant difference between Group II and Group III (P < .05). Also, the MSV for non-working side were 58.29 µε, 72.64 µε, and 98.93 µε for Group I, Group II, and Group III, respectively. One was significantly different from the others with a 95% confidence interval (P < .05). CONCLUSION The MSV for the working side of Groups I and II were significantly different from that for the non-working side (Group I: t = 7.58, Group II: t = 6.25). The MSV for the working side of Group II showed significantly larger than that of Group III (P < .01). Lastly, the MSV for the non-working side of Group III showed significantly larger than those of Group I or Group II (P < .01). PMID:21503186

  1. Electrical tuning of microwave properties via strain-mediated magnetoelectric coupling in multiferroic composites

    NASA Astrophysics Data System (ADS)

    Phuoc, Nguyen N.; Ong, C. K.

    2018-02-01

    Electrical field induced electromagnetic properties via strain-mediated magnetoelectric effect were studied in FeCoNi/[Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0.32 (PMN-PT) multiferroic heterostructures. Both the resonance frequency f FMR and the frequency linewidth Δ f are electrically tunable with f FMR being varied from 3.8 to 8.1 GHz and Δ f from 0.66 to 3.6 GHz. The static magnetic characterization result of the sample before and after poling is also in good agreement with the dynamic magnetic measurement. These results were discussed in details within the framework of the strain-mediated magnetoelectric coupling, which was firmly supported by the electrical field dependence of the in-plane strain measured by a strain gauge.

  2. Evaluation results of the 700 deg C Chinese strain gages

    NASA Technical Reports Server (NTRS)

    Hobart, H. F.

    1984-01-01

    There is a continuing interest and need for resistance strain gages capable of making static strain measurements on components located in the hot section of gas turbine engines. A paper by Tsen-tai Wu describes the development and evaluation of high temperature gauges fabricated from specially developed Fe-Cr-Al-V-Ti-Y alloy wire. Several of these gages and a quantity of P12-2 ceramic adhesive were purchased for evaluation. Nine members of the aircraft turbine engine community were invited to participate in an evaluation of these gages. Each participant was sent one strain gage, a small amount of ceramic adhesive, instructions for mounting the gage on a test beam, and a set of suggestions for the experiment. Data on gage factor variation with temperature, apparent strain, and drift are discussed.

  3. Exercise Countermeasures for Bone Loss During Space Flight: A Method for the Study of Ground Reaction Forces and their Implications for Bone Strain

    NASA Technical Reports Server (NTRS)

    Peterman, M.; McCrory, J. L.; Sharkey, N. A.; Piazza, S.; Cavanagh, P. R.

    1999-01-01

    Effective countermeasures to prevent loss of bone mineral during long duration space flight remain elusive. Despite an exercise program on MIR flights, the data from LeBlanc et al. (1996) indicated that there was still a mean rate of loss of bone mineral density in the proximal femur of 1.58% per month (n=18, flight duration 4 - 14.4 months). The specific mechanisms regulating bone mass are not known, but most investigators agree that bone maintenance is largely dependent upon mechanical demand and the resultant local bone strains. A plausible hypothesis is that bone loss during space flight, such as that reported by LeBlanc et al. (1996), may result from failure to effectively load the skeleton in order to generate localized bone strains of sufficient magnitude to prevent disuse osteoporosis. A variety of methods have been proposed to simulate locomotor exercise in reduced gravity. In such simulations, and in an actual microgravity environment, a gravity replacement load (GRL) must always be added to return the exercising subject to the support surface and the resulting skeletal load is critically dependent upon the magnitude of the GRL. To our knowledge, GRLs during orbital flight have only been measured once (on STS 81) and it is likely that most or all prior treadmill exercise in space has used GRLs that were less than one body weight. McCrory (1997) has shown that subjects walking and running in simulated zero-G can tolerate GRLs of 1 if an appropriate harness is used. Several investigators have attempted to measure in vivo strains and forces in the bones of humans, but have faced ethical and technical limitations. The anteromedial aspect of the tibial midshaft has been a common site for the placement of strain gauges; one reason to measure strains in the anterior tibia is that this region is surgically accessible. Aamodt et al. (1997) were able to measure strains on the lateral surface of the proximal femur only because their experimental subjects were already scheduled for hip surgery. Lu et al. (1997) used an instrumented massive proximal femoral prosthesis along with electromyographic measurements to demonstrate that femoral forces depend on muscular activity. These analyses of in vivo bone mechanics are valuable. The invasive nature of the procedures involved, however, limits both the number of subjects and the number of strain gauge locations. Further, the results of these studies may be confounded by the inclusion of subjects with pathological conditions. Gross et al. (1992) measured strain at three locations on the equine third metacarpal and used those data to construct a computer model of the internal strain environment of the bone. An analogous placement of multiple gauges in living humans would be difficult and potentially hazardous because of the depth of soft tissue overlying the tibia and femur.

  4. Improving the Response of a Load Cell by Using Optimal Filtering

    PubMed Central

    Hernandez, Wilmar

    2006-01-01

    Load cells are transducers used to measure force or weight. Despite the fact that there is a wide variety of load cells, most of these transducers that are used in the weighing industry are based on strain gauges. In this paper, an s-beam load cell based on strain gauges was suitably assembled to the mechanical structure of several seats of a bus under performance tests and used to measure the resistance of their mechanical structure to tension forces applied horizontally to the seats being tested. The load cell was buried in a broad-band noise background where the unwanted information and the relevant signal sometimes share a very similar frequency spectrum and its performance was improved by using a recursive least-squares (RLS) lattice algorithm. The experimental results are satisfactory and a significant improvement in the signal-to-noise ratio at the system output of 27 dB was achieved, which is a good performance factor for judging the quality of the system.

  5. Quantification of a contact stimulus by diapers

    NASA Astrophysics Data System (ADS)

    Nomata, Takuya; Okuyama, Takeshi; Teraoka, Hiromi; Murakami, Yasuo; Miyazawa, Kiyoshi; Tanaka, Mami

    2010-01-01

    This paper describes a development of a sensor system for measurement of a contact stimulus which diapers give to infants. A polyvinyliden fluoride (PVDF) film and a strain gauge are used as the sensor receptors. The PVDF is a kind of piezoelectric material. The sensor consists of a surface contact layer, a PVDF film, a strain gauge and an aluminum plate. First, in order to investigate the sensor performance, the sensor was located on a silicone plate and the upper part of the sensor was rubbed with an acrylic artificial finger. The finger enabled the measurement to carry out at a constant speed and force. Next, the sensor was attached on an infant dummy and the sensor outputs were measured under conditions with and without diapers. By comparison of the output under two different conditions, it was confirmed that there is a clearly difference between the two conditions. It was found that the developed sensor system has the possibility to quantify a contact stimulus which diapers give infants.

  6. Quantification of a contact stimulus by diapers

    NASA Astrophysics Data System (ADS)

    Nomata, Takuya; Okuyama, Takeshi; Teraoka, Hiromi; Murakami, Yasuo; Miyazawa, Kiyoshi; Tanaka, Mami

    2009-12-01

    This paper describes a development of a sensor system for measurement of a contact stimulus which diapers give to infants. A polyvinyliden fluoride (PVDF) film and a strain gauge are used as the sensor receptors. The PVDF is a kind of piezoelectric material. The sensor consists of a surface contact layer, a PVDF film, a strain gauge and an aluminum plate. First, in order to investigate the sensor performance, the sensor was located on a silicone plate and the upper part of the sensor was rubbed with an acrylic artificial finger. The finger enabled the measurement to carry out at a constant speed and force. Next, the sensor was attached on an infant dummy and the sensor outputs were measured under conditions with and without diapers. By comparison of the output under two different conditions, it was confirmed that there is a clearly difference between the two conditions. It was found that the developed sensor system has the possibility to quantify a contact stimulus which diapers give infants.

  7. Rotational strain in Weyl semimetals: A continuum approach

    NASA Astrophysics Data System (ADS)

    Arjona, Vicente; Vozmediano, María A. H.

    2018-05-01

    We use a symmetry approach to derive the coupling of lattice deformations to electronic excitations in three-dimensional Dirac and Weyl semimetals in the continuum low-energy model. We focus on the effects of rotational strain and show that it can drive transitions from Dirac to Weyl semimetals, gives rise to elastic gauge fields, tilts the cones, and generates pseudo-Zeeman couplings. It also can generate a deformation potential in volume-preserving deformations. The associated pseudoelectric field contributes to the chiral anomaly.

  8. Interfacial Engineering for Low-Density Graphene Nanocomposites

    DTIC Science & Technology

    2014-07-23

    structure of polydimethylsiloxane ( PDMS ) to contain pyrene pendant groups such that it would non-covalently bind to graphene. This would allow for...high graphene loadings and conductive strain-sensitivity in PDMS . SEM images of these composites are shown here: 2 The high level of dispersion...allowed for a pristine graphene composite conductivity of 220 S/m; this is after using a membrane to induce separation between graphene-bound PDMS

  9. Simple and cost-effective method of highly conductive and elastic carbon nanotube/polydimethylsiloxane composite for wearable electronics.

    PubMed

    Kim, Jeong Hun; Hwang, Ji-Young; Hwang, Ha Ryeon; Kim, Han Seop; Lee, Joong Hoon; Seo, Jae-Won; Shin, Ueon Sang; Lee, Sang-Hoon

    2018-01-22

    The development of various flexible and stretchable materials has attracted interest for promising applications in biomedical engineering and electronics industries. This interest in wearable electronics, stretchable circuits, and flexible displays has created a demand for stable, easily manufactured, and cheap materials. However, the construction of flexible and elastic electronics, on which commercial electronic components can be mounted through simple and cost-effective processing, remains challenging. We have developed a nanocomposite of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) elastomer. To achieve uniform distributions of CNTs within the polymer, an optimized dispersion process was developed using isopropyl alcohol (IPA) and methyl-terminated PDMS in combination with ultrasonication. After vaporizing the IPA, various shapes and sizes can be easily created with the nanocomposite, depending on the mold. The material provides high flexibility, elasticity, and electrical conductivity without requiring a sandwich structure. It is also biocompatible and mechanically stable, as demonstrated by cytotoxicity assays and cyclic strain tests (over 10,000 times). We demonstrate the potential for the healthcare field through strain sensor, flexible electric circuits, and biopotential measurements such as EEG, ECG, and EMG. This simple and cost-effective fabrication method for CNT/PDMS composites provides a promising process and material for various applications of wearable electronics.

  10. Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring.

    PubMed

    Liu, Menglong; Zeng, Zhihui; Xu, Hao; Liao, Yaozhong; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2017-07-01

    A novel nanocomposite-inspired in-situ broadband ultrasonic sensor previously developed, with carbon black as the nanofiller and polyvinylidene fluoride as the matrix, was networked for acousto-ultrasonic wave-based passive and active structural health monitoring (SHM). Being lightweight and small, this kind of sensor was proven to be capable of perceiving strain perturbation in virtue of the tunneling effect in the formed nanofiller conductive network when acousto-ultrasonic waves traverse the sensor. Proof-of-concept validation was implemented, to examine the sensor performance in responding to acousto-ultrasonic waves in a broad frequency regime: from acoustic emission (AE) of lower frequencies to guided ultrasonic waves (GUWs) of higher frequencies. Results have demonstrated the high fidelity, ultrafast response and high sensitivity of the sensor to acousto-ultrasonic waves up to 400kHz yet with an ultra-low magnitude (of the order of micro-strain). The sensor is proven to possess sensitivity and accuracy comparable with commercial piezoelectric ultrasonic transducers, whereas with greater flexibility in accommodating curved structural surfaces. Application paradigms of using the sensor for damage evaluation have spotlighted the capability of the sensor in compromising "sensing cost" with "sensing effectiveness" for passive AE- or active GUW-based SHM. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Elastic and Plastic Behavior of an Ultrafine-Grained Mg Reinforced with BN Nanoparticles

    NASA Astrophysics Data System (ADS)

    Trojanová, Zuzanka; Dash, Khushbu; Máthis, Kristián; Lukáč, Pavel; Kasakewitsch, Alla

    2018-04-01

    Pure microcrystalline magnesium (µMg) was reinforced with hexagonal boron nitride (hBN) nanoparticles and was fabricated by powder metallurgy process followed by hot extrusion. For comparison pure magnesium powder was consolidated by hot extrusion too. Both materials exhibited a significant fiber texture. Mg-hBN nanocomposites (nc) and pure Mg specimens were deformed between room temperature and 300 °C under tension and compression mode. The yield strength and ultimate tensile and compression strength as well as characteristic stresses were evaluated and reported. The tensile and compressive strengths of Mg-hBN nc are quiet superior in values compared to monolithic counterpart as well as Mg alloys. The compressive yield strength of µMg was recorded as 90 MPa, whereas the Mg-hBN nancomposite shows 125 MPa at 200 °C. The tensile yield strength of µMg was computed as 67 MPa which is quite lower as compared to Mg-hBN nanocomposite's value which was recorded as 157 MPa at 200 °C. Under tensile stress the true stress-strain curves are flat in nature, whereas the stress-strain curves observed in compression at temperatures up to 100 °C exhibited small local maxima at the onset of deformation followed by a significant work hardening.

  12. Development and validation of a method to directly measure the cable force during the hammer throw.

    PubMed

    Brice, Sara M; Ness, Kevin F; Rosemond, Doug; Lyons, Keith; Davis, Mark

    2008-05-01

    The development of cable force during hammer-throw turns is crucial to the throw distance. In this paper, we present a method that is capable of measuring cable force in real time and, as it does not interfere with technique, it is capable of providing immediate feedback to coaches and athletes during training. A strain gauge was mounted on the wires of three hammers to measure the tension in the wire and an elite male hammer thrower executed three throws with each hammer. The output from the gauges was recorded by a data logger positioned on the lower back of the thrower. The throws were captured by three high-speed video cameras and the three-dimensional position of the hammer's head was determined by digitizing the images manually. The five best throws were analysed. The force acting on the hammer's head was calculated from Newton's second law of motion and this was compared with the force measured via the strain gauge. Qualitatively the time dependence of the two forces was essentially the same, although the measured force showed more detail in the troughs of the force-time curves. Quantitatively the average difference between the measured and calculated forces over the five throws was 76 N, which corresponds to a difference of 3.8% for a cable force of 2000 N.

  13. Strain Measurement System Developed for Biaxially Loaded Cruciform Specimens

    NASA Technical Reports Server (NTRS)

    Krause, David L.

    2000-01-01

    A new extensometer system developed at the NASA Glenn Research Center at Lewis Field measures test area strains along two orthogonal axes in flat cruciform specimens. This system incorporates standard axial contact extensometers to provide a cost-effective high-precision instrument. The device was validated for use by extensive testing of a stainless steel specimen, with specimen temperatures ranging from room temperature to 1100 F. In-plane loading conditions included several static biaxial load ratios, plus cyclic loadings of various waveform shapes, frequencies, magnitudes, and durations. The extensometer system measurements were compared with strain gauge data at room temperature and with calculated strain values for elevated-temperature measurements. All testing was performed in house in Glenn's Benchmark Test Facility in-plane biaxial load frame.

  14. Self-Evaluation of PANDA-FBG Based Sensing System for Dynamic Distributed Strain and Temperature Measurement.

    PubMed

    Zhu, Mengshi; Murayama, Hideaki; Wada, Daichi

    2017-10-12

    A novel method is introduced in this work for effectively evaluating the performance of the PANDA type polarization-maintaining fiber Bragg grating (PANDA-FBG) distributed dynamic strain and temperature sensing system. Conventionally, the errors during the measurement are unknown or evaluated by using other sensors such as strain gauge and thermocouples. This will make the sensing system complicated and decrease the efficiency since more than one kind of sensor is applied for the same measurand. In this study, we used the approximately constant ratio of primary errors in strain and temperature measurement and realized the self-evaluation of the sensing system, which can significantly enhance the applicability, as well as the reliability in strategy making.

  15. The Role of Touch in Facilitated Communication.

    ERIC Educational Resources Information Center

    Kezuka, Emiko

    1997-01-01

    A study investigated the role of touch in the use of facilitated communication with Japanese individuals with autism. Five experiments were conducted involving a "telepathy game" using a rod with an attached strain gauge. Results found the facilitator's contact controlled the motor responses of the subjects. (Author/CR)

  16. Measuring Poisson Ratios at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Boozon, R. S.; Shepic, J. A.

    1987-01-01

    Simple extensometer ring measures bulges of specimens in compression. New method of measuring Poisson's ratio used on brittle ceramic materials at cryogenic temperatures. Extensometer ring encircles cylindrical specimen. Four strain gauges connected in fully active Wheatstone bridge self-temperature-compensating. Used at temperatures as low as liquid helium.

  17. Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles.

    PubMed

    Shengbo, Sang; Lihua, Liu; Aoqun, Jian; Qianqian, Duan; Jianlong, Ji; Qiang, Zhang; Wendong, Zhang

    2018-06-22

    Here, we propose a highly sensitive and stretchable strain sensor based on silver nanoparticles and nanowires (Ag NPs and NWs), advancing the rapid development of electronic skin. To improve the sensitivity of strain sensors based on silver nanowires (Ag NWs), Ag NPs and NWs were added to polydimethylsiloxane (PDMS) as an aid filler. Silver nanoparticles (Ag NPs) increase the conductive paths for electrons, leading to the low resistance of the resulting sensor (14.9 Ω). The strain sensor based on Ag NPs and NWs showed strong piezoresistivity with a tunable gauge factor (GF) at 3766, and a change in resistance as the strain linearly increased from 0% to 28.1%. The high GF demonstrates the irreplaceable role of Ag NPs in the sensor. Moreover, the applicability of our high-performance strain sensor has been demonstrated by its ability to sense movements caused by human talking, finger bending, wrist raising and walking.

  18. Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors.

    PubMed

    Amjadi, Morteza; Turan, Mehmet; Clementson, Cameron P; Sitti, Metin

    2016-03-02

    There is an increasing demand for flexible, skin-attachable, and wearable strain sensors due to their various potential applications. However, achieving strain sensors with both high sensitivity and high stretchability is still a grand challenge. Here, we propose highly sensitive and stretchable strain sensors based on the reversible microcrack formation in composite thin films. Controllable parallel microcracks are generated in graphite thin films coated on elastomer films. Sensors made of graphite thin films with short microcracks possess high gauge factors (maximum value of 522.6) and stretchability (ε ≥ 50%), whereas sensors with long microcracks show ultrahigh sensitivity (maximum value of 11,344) with limited stretchability (ε ≤ 50%). We demonstrate the high performance strain sensing of our sensors in both small and large strain sensing applications such as human physiological activity recognition, human body large motion capturing, vibration detection, pressure sensing, and soft robotics.

  19. Characterization of the strain-life fatigue properties of thin sheet metal using an optical extensometer

    NASA Astrophysics Data System (ADS)

    Zhang, Shuiqiang; Mao, Shuangshuang; Arola, Dwayne; Zhang, Dongsheng

    2014-09-01

    Characterizing the strain-life fatigue behavior of thin sheet metals is often challenging since the required specimens have short gauge lengths to avoid buckling, thereby preventing the use of conventional mechanical extensometers. To overcome this obstacle a microscopic optical imaging system has been developed to measure the strain amplitude during fatigue testing using Digital Image Correlation (DIC). A strategy for rapidly recording images is utilized to enable sequential image sampling rates of at least 10 frames per second (fps) using a general digital camera. An example of a complete strain-life fatigue test for thin sheet steel under constant displacement control is presented in which the corresponding strain within the gage section of the specimen is measured using the proposed imaging system. The precision in strain measurement is assessed and methods for improving the image sampling rates in dynamic testing are discussed.

  20. Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles

    NASA Astrophysics Data System (ADS)

    Shengbo, Sang; Lihua, Liu; Aoqun, Jian; Qianqian, Duan; Jianlong, Ji; Qiang, Zhang; Wendong, Zhang

    2018-06-01

    Here, we propose a highly sensitive and stretchable strain sensor based on silver nanoparticles and nanowires (Ag NPs and NWs), advancing the rapid development of electronic skin. To improve the sensitivity of strain sensors based on silver nanowires (Ag NWs), Ag NPs and NWs were added to polydimethylsiloxane (PDMS) as an aid filler. Silver nanoparticles (Ag NPs) increase the conductive paths for electrons, leading to the low resistance of the resulting sensor (14.9 Ω). The strain sensor based on Ag NPs and NWs showed strong piezoresistivity with a tunable gauge factor (GF) at 3766, and a change in resistance as the strain linearly increased from 0% to 28.1%. The high GF demonstrates the irreplaceable role of Ag NPs in the sensor. Moreover, the applicability of our high-performance strain sensor has been demonstrated by its ability to sense movements caused by human talking, finger bending, wrist raising and walking.

  1. Effect of Attachment Type on Denture Strain in Maxillary Implant Overdentures: Part 1. Overdenture with Palate.

    PubMed

    Takahashi, Toshihito; Gonda, Tomoya; Maeda, Yoshinobu

    This study examined the effects of attachments on strain in maxillary implant overdentures supported by two or four implants. A maxillary edentulous model with implants inserted into anterior, premolar, and molar areas was fabricated, and three types of unsplinted attachments-ball, locator, and magnet-were set on the implants distributed under various conditions. Maxillary experimental dentures were fabricated, and two strain gauges were attached at the anterior midline on the labial and palatal sides. A vertical occlusal load of 98 N was applied and shear strain of the dentures was measured. On both sides, magnet attachments resulted in the lowest shear strain, while ball attachments resulted in the highest shear strain under most conditions. However, differences in shear strain among the three attachment types were not significant when supported by four implants, especially molar implants. Shear strain of the maxillary implant overdenture was lowest when using magnet attachments. Magnet attachments mounted on four implants are recommended to prevent denture complications when using maxillary implant overdentures.

  2. Effect of bentonite modification on hardness and mechanical properties of natural rubber nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santiago, Denise Ester O.; Department of Chemical Engineering, University of the Philippines, Los Baños, College, Laguna 4031 Philippines; Pajarito, Bryan B.

    The effect of sodium activation, ion-exchange with tertiary amine salt, surface treatment with non-ionic surfactant, and wet grinding of bentonite on hardness and mechanical properties of natural rubber nanocomposites (NRN) was studied using full factorial design of experiment. Results of X-ray diffraction (XRD) show increase in basal spacing d of bentonite due to modification, while attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirm the organic modification of bentonite. Analysis of variance (ANOVA) shows that the main effect of surface treatment increases the hardness and decreases the tensile modulus of the NRN. The surface treatment and wet grinding of bentonitemore » decrease the tensile stresses at 100, 200 and 300% strain of NRN. Sodium activation and ion-exchange negatively affect the compressive properties, while surface treatment significantly improves the compressive properties of NRN.« less

  3. Characterization of Thermo-Elastic Properties and Microcracking Behaviors of CFRP Laminates Using Cup-Stacked Carbon Nanotubes (CSCNT) Dispersed Resin

    NASA Astrophysics Data System (ADS)

    Yokozeki, Tomohiro; Iwahori, Yutaka; Ishiwata, Shin

    This study investigated the thermo-elastic properties and microscopic ply cracking behaviors in carbon fiber reinforced nanotube-dispersed epoxy laminates. The nanocomposite laminates used in this study consisted of traditional carbon fibers and epoxy resin filled with cup-stacked carbon nanotubes (CSCNTs). Thermo-mechanical properties of unidirectional nanocomposite laminates were evaluated, and quasi-static and fatigue tension tests of cross-ply laminates were carried out in order to observe the damage accumulation behaviors of matrix cracks. Clear retardation of matrix crack onset and accumulation was found in composite laminates with CSCNT compared to those without CSCNT. Fracture toughness associated with matrix cracking was evaluated based on the analytical model using the experimental results. It was concluded that the dispersion of CSCNT resulted in fracture toughness improvement and residual thermal strain decrease, and specifically, the former was the main contribution to the retardation of matrix crack formation.

  4. Ab Initio Predictions of Strong Interfaces in Transition-Metal Carbides and Nitrides for Superhard Nanocomposite Coating Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Chongze; Huang, Jingsong; Sumpter, Bobby G.

    Conceiving strong interfaces represents an effective direction in the development of superhard nanocomposite materials for practical applications in protective coatings. Additionally, in the pursuit of engineering strong nanoscale interfaces between cubic rock-salt (B1) domains, we investigate using density functional theory (DFT) coherent interface models designed based on hexagonal (HX) NiAs and WC structures, as well as experiment. The DFT screening of a collection of transition-metal (M = Zr, Hf, Nb, Ta) carbides and nitrides indicates that the interface models provided by the HX polymorphs store little coherency strain and develop an energetic advantage as the valence-electron concentration increases. Finally, ourmore » result suggests that harnessing the polymorphism encountered in transition-metal (M = Zr, Hf, Nb, Ta) carbides and nitrides for interface design represents a promising strategy for advancing superhard nanomaterials.« less

  5. Autonomous sensing of composites with carbon nanotubes for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Yingtao; Yekani Fard, Masoud; Rajadas, Abhishek; Chattopadhyay, Aditi

    2012-04-01

    The development of structural health monitoring techniques leads to the integration of sensing capability within engineering structures. This study investigates the application of multi walled carbon nanotubes in polymer matrix composites for autonomous damage detection through changes in electrical resistance. The autonomous sensing capabilities of fiber reinforced nanocomposites are studied under multiple loading conditions including tension loads. Single-lap joints with different joint lengths are tested. Acoustic emission sensing is used to validate the matrix crack propagation. A digital image correlation system is used to measure the shear strain field of the joint area. The joints with 1.5 inch length have better autonomous sensing capabilities than those with 0.5 inch length. The autonomous sensing capabilities of nanocomposites are found to be sensitive to crack propagation and can revolutionize the research on composite structural health management in the near future.

  6. Ab Initio Predictions of Strong Interfaces in Transition-Metal Carbides and Nitrides for Superhard Nanocomposite Coating Applications

    DOE PAGES

    Hu, Chongze; Huang, Jingsong; Sumpter, Bobby G.; ...

    2018-04-19

    Conceiving strong interfaces represents an effective direction in the development of superhard nanocomposite materials for practical applications in protective coatings. Additionally, in the pursuit of engineering strong nanoscale interfaces between cubic rock-salt (B1) domains, we investigate using density functional theory (DFT) coherent interface models designed based on hexagonal (HX) NiAs and WC structures, as well as experiment. The DFT screening of a collection of transition-metal (M = Zr, Hf, Nb, Ta) carbides and nitrides indicates that the interface models provided by the HX polymorphs store little coherency strain and develop an energetic advantage as the valence-electron concentration increases. Finally, ourmore » result suggests that harnessing the polymorphism encountered in transition-metal (M = Zr, Hf, Nb, Ta) carbides and nitrides for interface design represents a promising strategy for advancing superhard nanomaterials.« less

  7. Polymer/metal nanocomposite coating with antimicrobial activity against hospital isolated pathogen

    NASA Astrophysics Data System (ADS)

    Carvalho, D.; Sousa, T.; Morais, P. V.; Piedade, A. P.

    2016-08-01

    Nosocomial infections are considered an important problem in healthcare systems and are responsible for a high percentage of morbidity. Among the pathogenic microorganisms responsible for this situation Pseudomonas aeruginosa (P. aeruginosa) is consider one of the most hazardous also due to the fact that antibiotic resistant and multi-resistant organisms begin to emerge as the prevalent strains. In this work the surface of poly(tetrafluoroethylene) (PTFE) was modified by the deposition of PTFE thin films with and without silver. The hydrophobic characteristics of PTFE were attenuated by the co-deposition of PTFE and poly(amide) (PA) with and without silver. The results show that this hospital isolated bacteria is able to degrade PTFE as bulk material as well as some of the developed thin films. However, the combination of both polymer and metal induced the formation of a nanocomposite structure with antimicrobial properties against P. aeruginosa, assessed in three different biotic tests.

  8. Wellbore Seal Repair Using Nanocomposite Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stormont, John

    2016-08-31

    Nanocomposite wellbore repair materials have been developed, tested, and modeled through an integrated program of laboratory testing and numerical modeling. Numerous polymer-cement nanocomposites were synthesized as candidate wellbore repair materials using various combinations of base polymers and nanoparticles. Based on tests of bond strength to steel and cement, ductility, stability, flowability, and penetrability in opening of 50 microns and less, we identified Novolac epoxy reinforced with multi-walled carbon nanotubes and/or alumina nanoparticles to be a superior wellbore seal material compared to conventional microfine cements. A system was developed for testing damaged and repaired wellbore specimens comprised of a cement sheathmore » cast on a steel casing. The system allows independent application of confining pressures and casing pressures while gas flow is measured through the specimens along the wellbore axis. Repair with the nanocomposite epoxy base material was successful in dramatically reducing the flow through flaws of various sizes and types, and restoring the specimen comparable to an intact condition. In contrast, repair of damaged specimens with microfine cement was less effective, and the repair degraded with application of stress. Post-test observations confirm the complete penetration and sealing of flaws using the nanocomposite epoxy base material. A number of modeling efforts have supported the material development and testing efforts. We have modeled the steel-repair material interface behavior in detail during slant shear tests, which we used to characterize bond strength of candidate repair materials. A numerical model of the laboratory testing of damaged wellbore specimens was developed. This investigation found that microannulus permeability can satisfactorily be described by a joint model. Finally, a wellbore model has been developed that can be used to evaluate the response of the wellbore system (casing, cement, and microannulus), including the use of either cement or a nanocomposite in the microannulus to represent a repaired system. This wellbore model was successfully coupled with a field-scale model of CO 2 injection, to enable predictions of stress and strains in the wellbore subjected to subsurface changes (i.e. domal uplift) associated with fluid injection.« less

  9. Zinc-oxide-silica-silver nanocomposite: Unique one-pot synthesis and enhanced catalytic and anti-bacterial performance.

    PubMed

    Kokate, Mangesh; Garadkar, Kalyanrao; Gole, Anand

    2016-12-01

    We describe herein a unique approach to synthesize zinc oxide-silica-silver (ZnO-SiO2-Ag) nanocomposite, in a simple, one-pot process. The typical process for ZnO synthesis by alkaline precipitation of zinc salts has been tweaked to replace alkali by alkaline sodium silicate. The free acid from zinc salts helps in the synthesis of silica nanoparticles, whereas the alkalinity of sodium silicate precipitates the zinc salts. Addition of silver ions into the reaction pot prior to addition of sodium silicate, and subsequent reduction by borohydride, gives additional functionality of metallic centres for catalytic applications. The synthesis strategy is based on our recent work typically involving acid-base type of cross-reactions and demonstrates a novel strategy to synthesize nanocomposites in a one-pot approach. Each component in the composite offers a unique feature. ZnO besides displaying mild catalytic and anti-bacterial behaviour is an excellent and a cheap 3-D support for heterogeneous catalysis. Silver nanoparticles enhance the catalytic & anti-bacterial properties of ZnO. Silica is an important part of the composite; which not only "glues" the two nanoparticles thereby stabilizing the nanocomposite, but also significantly enhances the surface area of the composite; which is an attractive feature of any catalyst composite. The nanocomposite is found to show excellent catalytic performance with very high turnover frequencies (TOFs) when studied for catalytic reduction of Rhodamine B (RhB) and 4-Nitrophenol (4-NP). Additionally, the composite has been tested for its anti-bacterial properties on three different bacterial strains i.e. E. coli, B. Cereus and Bacillus firmus. The mechanism for enhancement of catalytic performance has been probed by understanding the role of silica in offering accessibility to the catalyst via its porous high surface area network. The nanocomposite has been characterized by a host of different analytical techniques. The uniqueness of our product and process stems from the novel synthesis strategy, the choice and combination of the three moieties, increased surface area offered by silica, and cost effectiveness, thereby making our product and process commercially viable and sustainable for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Comparative Microstrain Study of Internal Hexagon and Plateau Design of Short Implants Under Vertical Loading.

    PubMed

    Nishioka, Renato Sussumu; Rodrigues, Vinicius Anéas; De Santis, Leandro Ruivo; Nishioka, Gabriela Nogueira De Melo; Santos, Vivian Mayumi Miyazaki; Souza, Francisley Ávila

    2016-02-01

    To quantify microstrain development during axial loading using strain gauge analysis for short implants, varying the type of fixture-abutment joint and thread design. An internal hexagon implant (4 × 8 mm) and a plateau design implant (4 × 8 mm) were embedded on the center of 10 polyurethane blocks with dimensions of 190 × 30 × 12 mm. The respective abutments were screwed onto the implants. Four strain gauges (SGs) were bonded onto the surface of each block, and 4 vertical SGs were bonded onto the side of each block. Axial load of 30 kgf was applied for 10 seconds in the center of each implant. The data were analyzed statistically by analysis of variance for repeated measures and Tukey test (P < 0.05). The interaction between implant and region factors have been statistically significant (P = 0.0259). Tukey test revealed a difference on plateau's horizontal region. The cervical region presented higher microstrain values, when compared with the medium and apical regions of the implants. Within the purpose of the study, the type of fixture-abutment joint is a relevant factor to affect the amount of stress/strain in bone simulation. The microstrain development was concentrated on the cervical region of the implant.

  11. Experimental Study on Strength Evaluation Applied for Teeth Extraction: An In Vivo Study

    PubMed Central

    Cicciù, Marco; Bramanti, Ennio; Signorino, Fabrizio; Cicciù, Alessandra; Sortino, Francesco

    2013-01-01

    Purpose: The aim of this work was to analyse all the applied movements when extracting healthy upper and lower jaw premolars for orthodontic purposes. The authors wanted to demonstrate that the different bone densities of the mandible and maxilla are not a significant parameter when related to the extraction force applied. The buccal and palatal rocking movements, plus the twisting movements were also measured in this in-vivo study during premolar extraction for orthodontic purposes. Methods: The physical strains or forces transferred onto the teeth during extraction are the following three movements: gripping, twisting, and traction. A strain measurement gauge was attached onto an ordinary dentistry plier. The strain measurement gauge was constituted with an extensimetric washer with three 45º grids. The system operation was correlated to the variation of electrical resistance. Results: The variations of resistance (∆R) and all the different forces applied to the teeth (∆V) were recorded by a computerized system. Data results were processed through Microsoft Excel. The results underlined the stress distribution on the extracted teeth during gripping, twisting and flexion. Conclusions: The obtained data showed that the strength required to effect teeth extraction is not influenced by the quality of the bone but is instead influenced by the shape of the tooth’s root. PMID:23539609

  12. Fabrication of a Low Density Carbon Fiber Foam and Its Characterization as a Strain Gauge

    PubMed Central

    Luhrs, Claudia C.; Daskam, Chris D.; Gonzalez, Edwin; Phillips, Jonathan

    2014-01-01

    Samples of carbon nano-fiber foam (CFF), essentially a 3D solid mat of intertwined nanofibers of pure carbon, were grown using the Constrained Formation of Fibrous Nanostructures (CoFFiN) process in a steel mold at 550 °C from a palladium particle catalysts exposed to fuel rich mixtures of ethylene and oxygen. The resulting material was studied using Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), Surface area analysis (BET), and Thermogravimetric Analysis (TGA). Transient and dynamic mechanical tests clearly demonstrated that the material is viscoelastic. Concomitant mechanical and electrical testing of samples revealed the material to have electrical properties appropriate for application as the sensing element of a strain gauge. The sample resistance versus strain values stabilize after a few compression cycles to show a perfectly linear relationship. Study of microstructure, mechanical and electrical properties of the low density samples confirm the uniqueness of the material: It is formed entirely of independent fibers of diverse diameters that interlock forming a tridimensional body that can be grown into different shapes and sizes at moderate temperatures. It regains its shape after loads are removed, is light weight, presents viscoelastic behavior, thermal stability up to 550 °C, hydrophobicity, and is electrically conductive. PMID:28788644

  13. Skull flexure as a contributing factor in the mechanism of injury in the rat when exposed to a shock wave.

    PubMed

    Bolander, Richard; Mathie, Blake; Bir, Cynthia; Ritzel, David; VandeVord, Pamela

    2011-10-01

    The manner in which energy from an explosion is transmitted into the brain is currently a highly debated topic within the blast injury community. This study was conducted to investigate the injury biomechanics causing blast-related neurotrauma in the rat. Biomechanical responses of the rat head under shock wave loading were measured using strain gauges on the skull surface and a fiber optic pressure sensor placed within the cortex. MicroCT imaging techniques were applied to quantify skull bone thickness. The strain gauge results indicated that the response of the rat skull is dependent on the intensity of the incident shock wave; greater intensity shock waves cause greater deflections of the skull. The intracranial pressure (ICP) sensors indicated that the peak pressure developed within the brain was greater than the peak side-on external pressure and correlated with surface strain. The bone plates between the lambda, bregma, and midline sutures are probable regions for the greatest flexure to occur. The data provides evidence that skull flexure is a likely candidate for the development of ICP gradients within the rat brain. This dependency of transmitted stress on particular skull dynamics for a given species should be considered by those investigating blast-related neurotrauma using animal models.

  14. Modulation of strain, resistance, and capacitance of tantalum oxide film by converse piezoelectric effect

    NASA Astrophysics Data System (ADS)

    Jia, Yanmin; Tian, Xiangling; Si, Jianxiao; Huang, Shihua; Wu, Zheng; Zhu, Chenchen

    2011-07-01

    We deposited tantalum oxide film on a laminate structure composed of a Si substrate and a piezoelectric 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 single crystal and achieved in situ modulation of the resistance and capacitance of the Ta2O5 film. The modulation arises from the induced lattice strain in the Ta2O5 film, which is induced by the electric-field-induced strain in the piezoelectric crystal. Under an external electric field of ˜2 kV/cm, the longitudinal gauge factor of the Ta2O5 film is ˜3300. The control of the strain using the converse piezoelectric effect may be further extended to tune the intrinsic strain of other oxide thin films.

  15. Design with high strength steel: A case of failure and its implications

    NASA Astrophysics Data System (ADS)

    Rahka, Klaus

    1992-10-01

    A recent proof test failure of a high strength steel pressure vessel is scrutinized. Apparent deficiencies in the procedures to account for elasto-plastic local strain are indicated for the applicable routine (code) strength calculations. Tentative guidance is given for the use of material tensile fracture strain and its strain state (plane strain) correction in fracture margin estimation. A hypothesis that the calculated local strain is comparable with a gauge length weighted tensile ductility for fracture to initiate at a notch root is given. A discussion about the actual implications of the failure case and the suggested remedy in the light of the ASME Boiler and Pressure Vessel Code section 3 and 8 is presented. Further needs for research and development are delineated. Possible yield and ductility related design limits and their use as material quality indices are discussed.

  16. Investigation of Carbon-Polymer Structures with Embedded Fiber-Optic Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Kaul, R.; Taylor, S.; Myers, G.; Sharma, A.

    2003-01-01

    Several Bragg-grating sensors fabricated within the same optical fiber are buried within multiple-ply carbon-epoxy planar and cylindrical structures. Effect of different orientation of fiber-sensors with respect to carbon fibers in the composite structure is investigated. This is done for both fabric and uni-tape material samples. Response of planar structures to axial and transverse strain up to 1 millistrain is investigated with distributed Bragg-grating sensors. Material properties like Young's Modulus and Poisson ratio is measured. A comparison is made between response measured by sensors in different ply-layers and those bonded on the surface. The results from buried fiber- sensors do not completely agree with surface bonded conventional strain gauges. A plausible explanation is given for observed differences. The planar structures are subjected to impacts with energies up to 10 ft-lb. Effect of this impact on the material stiffness is also investigated with buried fiber-optic Bragg sensors. The strain response of such optical sensors is also measured for cylindrical carbon-epoxy composite structures. The sensors are buried within the walls of the cylinder as well as surface bonded in both the axial as well as hoop directions. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 1500 psi. This is done at both room temperature as well as cryogenic temperatures. The recorded response is compared with that from a conventional strain gauge.

  17. Finite Element Simulations to Explore Assumptions in Kolsky Bar Experiments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crum, Justin

    2015-08-05

    The chief purpose of this project has been to develop a set of finite element models that attempt to explore some of the assumptions in the experimental set-up and data reduction of the Kolsky bar experiment. In brief, the Kolsky bar, sometimes referred to as the split Hopkinson pressure bar, is an experimental apparatus used to study the mechanical properties of materials at high strain rates. Kolsky bars can be constructed to conduct experiments in tension or compression, both of which are studied in this paper. The basic operation of the tension Kolsky bar is as follows: compressed air ismore » inserted into the barrel that contains the striker; the striker accelerates towards the left and strikes the left end of the barrel producing a tensile stress wave that propogates first through the barrel and then down the incident bar, into the specimen, and finally the transmission bar. In the compression case, the striker instead travels to the right and impacts the incident bar directly. As the stress wave travels through an interface (e.g., the incident bar to specimen connection), a portion of the pulse is transmitted and the rest reflected. The incident pulse, as well as the transmitted and reflected pulses are picked up by two strain gauges installed on the incident and transmitted bars as shown. By interpreting the data acquired by these strain gauges, the stress/strain behavior of the specimen can be determined.« less

  18. Piezoresistive strain sensing of carbon nanotubes-based composite skin for aeronautical morphing structures

    NASA Astrophysics Data System (ADS)

    Viscardi, Massimo; Arena, Maurizio; Barra, Giuseppina; Vertuccio, Luigi; Ciminello, Monica; Guadagno, Liberata

    2018-03-01

    Nowadays, smart composites based on different nano-scale carbon fillers, such as carbon nanotubes (CNTs), are increasingly being thought of as a more possible alternative solution to conventional smart materials, mainly for their improved electrical properties. Great attention is being given by the research community in designing highly sensitive strain sensors for more and more ambitious challenges: in such context, interest fields related to carbon nanotubes have seen extraordinary development in recent years. The authors aim to provide the most contemporary overview possible of carbon nanotube-based strain sensors for aeronautical application. A smart structure as a morphing wing needs an embedded sensing system in order to measure the actual deformation state as well as to "monitor" the structural conditions. Looking at more innovative health monitoring tools for the next generation of composite structures, a resin strain sensor has been realized. The epoxy resin was first analysed by means of a micro-tension test, estimating the electrical resistance variations as function of the load, in order to demonstrate the feasibility of the sensor. The epoxy dogbone specimen has been equipped with a standard strain gauge to quantify its strain sensitivity. The voltamperometric tests highlight a good linearity of the electrical resistance value as the load increases at least in the region of elastic deformation of the material. Such intrinsic piezoresistive performance is essentially attributable to the re-arrangement of conductive percolating network formed by MWCNT, induced by the deformation of the material due to the applied loads. The specimen has been prepared within this investigation, to demonstrate its performance for a future composite laminate typical of aerospace structures. The future carbon-fiber sensor can replace conventional metal foil strain gauges in aerospace applications. Furthermore, dynamic tests will be carried out to detect any non-reversible changes to the sensing response.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prime, Michael B.; DeWald, Adrian T.; Hill, Michael R.

    Forensic engineering - the scientific examination and analysis of failed structures and parts relating to their failure or cause of damage. Real advances in experimental mechanics require innovative theoretical and analytical thinking to go with innovative capabilities. For example, taking full field data (e.g., DIC) and treating it like discrete data (strain gauge) misses a wonderful opportunity.

  20. A comparison of force sensing techniques for planetary manipulation

    NASA Technical Reports Server (NTRS)

    Helmick, Daniel; Okon, Avi; DiCicco, Matt

    2006-01-01

    Five techniques for sensing forces with a manipulator are compared analytically and experimentally. The techniques compared are: a six-axis wrist force/torque sensor, joint torque sensors, link strain gauges, motor current sensors, and flexibility modeling. The accuracy and repeatability fo each technique is quantified and compared.

  1. Linear Controller Design: Limits of Performance

    DTIC Science & Technology

    1991-01-01

    where a sensor should be placed eg where an accelerometer is to be positioned on an aircraft or where a strain gauge is placed along a beam The...309 VIII CONTENTS 14 Special Algorithms for Convex Optimization 311 Notation and Problem Denitions...311 On Algorithms for Convex Optimization 312 CuttingPlane Algorithms

  2. High-stress study of bioinspired multifunctional PEDOT:PSS/nanoclay nanocomposites using AFM, SEM and numerical simulation

    PubMed Central

    Diaz, Alfredo J; Noh, Hanaul; Meier, Tobias

    2017-01-01

    Bioinspired design has been central in the development of hierarchical nanocomposites. Particularly, the nacre-mimetic brick-and-mortar structure has shown excellent mechanical properties, as well as gas-barrier properties and optical transparency. Along with these intrinsic properties, the layered structure has also been utilized in sensing devices. Here we extend the multifunctionality of nacre-mimetics by designing an optically transparent and electron conductive coating based on PEDOT:PSS and nanoclays Laponite RD and Cloisite Na+. We carry out extensive characterization of the nanocomposite using transmittance spectra (transparency), conductive atomic force microscopy (conductivity), contact-resonance force microscopy (mechanical properties), and SEM combined with a variety of stress-strain AFM experiments and AFM numerical simulations (internal structure). We further study the nanoclay’s response to the application of pressure with multifrequency AFM and conductive AFM, whereby increases and decreases in conductivity can occur for the Laponite RD composites. We offer a possible mechanism to explain the changes in conductivity by modeling the coating as a 1-dimensional multibarrier potential for electron transport, and show that conductivity can change when the separation between the barriers changes under the application of pressure, and that the direction of the change depends on the energy of the electrons. We did not observe changes in conductivity under the application of pressure with AFM for the Cloisite Na+ nanocomposite, which has a large platelet size compared with the AFM probe diameter. No pressure-induced changes in conductivity were observed in the clay-free polymer either. PMID:29090109

  3. Synthesis of Ag/CNT hybrid nanoparticles and fabrication of their Nylon-6 polymer nanocomposite fibers for antimicrobial applications

    NASA Astrophysics Data System (ADS)

    Rangari, Vijaya K.; Mohammad, Ghouse M.; Jeelani, Shaik; Hundley, Angel; Vig, Komal; Ram Singh, Shree; Pillai, Shreekumar

    2010-03-01

    Ag-coated CNTs hybrid nanoparticles (Ag/CNTs) were prepared by ultrasonic irradiation of dimethylformamide (DMF) and silver (I) acetate precursors in the presence of CNTs. The morphology of Ag/CNTs was characterized using x-ray diffraction and transmission electron microscopy (TEM) techniques. The Nylon-6 powder and 1 wt% Ag/CNTs mixture was dispersed uniformly using a noncontact spinning technique. The dried mixture was melted in a single screw extrusion machine and then extruded through an orifice. Extruded filaments were later stretched and stabilized by sequentially passing them through a set of tension adjusters and a secondary heater. The Nylon-6/Ag/CNT hybrid polymer nanocomposite (HPNC) fibers, which were of ~ 80 µm size, were tested for their tensile properties. The failure stress and modulus of the extruded HPNC fibers (doped with 1% Ag/CNTs) was about 72.19 % and 342.62% higher than the neat extruded Nylon-6 fiber, respectively. DSC results indicated an increase in the thermal stability and crystallization for HPNC fibers. The antibacterial activity of the Ag-coated CNTs, commercial Ag, neat Nylon-6 and plain CNTs were evaluated. Ag-coated CNTs at 25 µg demonstrated good antimicrobial activity against four common bacterial pathogens as tested by the Kirby-Bauer assay. The mean diameters of the zones of inhibition were 27.9 ± 6.72 mm, 19.4 ± 3.64 mm, 21.9 ± 4.33 mm, and 24.1 ± 4.14 mm, respectively, for Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli and Salmonella enterica serovar Typhimurium. By comparison, those obtained using the broad spectrum antibiotic amoxicillin-clavulanic acid were 37.7 ± 2.13 mm, 28.6 ± 4.27 mm, 22.6 ± 1.27 mm, and 27.0 ± 1.41 mm, respectively, for the same strains. The zones of inhibition obtained for Nylon-6 Ag-coated CNT powder at 25 µg were also high, ranging from 15.2 to 25.3 mm in contrast to commercial silver or neat Nylon-6, which did not inhibit the bacterial strains tested. Further, the Nylon-6 nanocomposite fibers infused with Ag/CNTs inhibited bacterial growth by 11-20%. Our results suggest that nylon nanocomposite fibers infused with Ag-coated CNTs have significant antimicrobial activity.

  4. The study of poly(L-lactide) grafted silica nanoparticles on the film blowing of poly(L-lactide)

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Liu, Zhengying; Yang, Mingbo

    2015-05-01

    PLA nanocomposites are prepared by us, and to better develop the function of silica nanoparticle, the surface of silica nanoparticles are modified by introducing PLA chains via "grafting to" method in our research. According to the results of 1H NMR and TGA, it shows that the PLA grafted Silica nanoparticles are successfully synthesized by controlling the reaction condition, and the molecular weight of the grafted PLA chains is relatively as high as 22 400 g/mol. PLA Nanocomposites with modified nanoparticles are prepared using a convenient melt blending method to guarantee well-distribution of the particles. The well-dispersion state of silica nanospheres is confirmed by Scan Electrical Micrograph (SEM) technology. From the dynamic shear rheology tests, the strain and time sweep both reveal that stability networks are formed in these nanocomposites. And the frequency sweep shows that the nanoparticles with long grafted chains dramatically enhanced the storage and viscosity of the pure PLA. The rheology testing suggests that strong particle-matrix interactions between molecularly/nano-level dispersed grafted silica and PLA chains formed; and the elongational viscosity of PLA has been markedly improved with the addition of the nanoparticle. The effect of modified nanoparticles on the thermal properties of PLA has also been studied by us using Differential Scanning Calorimetry (DSC). It reveals that the crystallization rate of PLA has been improved as the long grafted chains play as the nucleation sites for PLA. Finally based on these rheology and crystallization researches, the nanocomposites are used to prepare PLA blowing films. Compared to pure PLA and PLA/unmodified silica nanocomposites, the results show that the stability of the film blowing has been greatly improved and the blow-up ratio has been increased with the addition of PLA grafted nanoparticles. The modified nanoparticles hold significant candidates to improve the thermal stability and the processability of pure PLA, especially used as special processing agent in the field of PLA stretch shaping process.

  5. Layered nanocomposites inspired by the structure and mechanical properties of nacre.

    PubMed

    Wang, Jianfeng; Cheng, Qunfeng; Tang, Zhiyong

    2012-02-07

    Nacre (mother-of-pearl), made of inorganic and organic constituents (95 vol% aragonite calcium carbonate (CaCO(3)) platelets and 5 vol% elastic biopolymers), possesses a unique combination of remarkable strength and toughness, which is compatible for conventional high performance materials. The excellent mechanical properties are related to its hierarchical structure and precisely designed organic-inorganic interface. The rational design of aragonite platelet strength, aspect ratio of aragonite platelets, and interface strength ensures that the strength of nacre is maximized under platelet pull-out failure mode. At the same time, the synergy of strain hardening mechanisms acting over multiple scales results in platelets sliding on one another, and thus maximizes the energy dissipation of viscoplastic biopolymers. The excellent integrated mechanical properties with hierarchical structure have inspired chemists and materials scientists to develop biomimetic strategies for artificial nacre materials. This critical review presents a broad overview of the state-of-the-art work on the preparation of layered organic-inorganic nanocomposites inspired by nacre, in particular, the advantages and disadvantages of various biomimetic strategies. Discussion is focused on the effect of the layered structure, interface, and component loading on strength and toughness of nacre-mimic layered nanocomposites (148 references). This journal is © The Royal Society of Chemistry 2012

  6. 3D-Hydrogel Based Polymeric Nanoreactors for Silver Nano-Antimicrobial Composites Generation.

    PubMed

    Soto-Quintero, Albanelly; Romo-Uribe, Ángel; Bermúdez-Morales, Víctor H; Quijada-Garrido, Isabel; Guarrotxena, Nekane

    2017-08-01

    This study underscores the development of Ag hydrogel nanocomposites, as smart substrates for antibacterial uses, via innovative in situ reactive and reduction pathways. To this end, two different synthetic strategies were used. Firstly thiol-acrylate (PSA) based hydrogels were attained via thiol-ene and radical polymerization of polyethylene glycol (PEG) and polycaprolactone (PCL). As a second approach, polyurethane (PU) based hydrogels were achieved by condensation polymerization from diisocyanates and PCL and PEG diols. In fact, these syntheses rendered active three-dimensional (3D) hydrogel matrices which were used as nanoreactors for in situ reduction of AgNO₃ to silver nanoparticles. A redox chemistry of stannous catalyst in PU hydrogel yielded spherical AgNPs formation, even at 4 °C in the absence of external reductant; and an appropriate thiol-functionalized polymeric network promoted spherical AgNPs well dispersed through PSA hydrogel network, after heating up the swollen hydrogel at 103 °C in the presence of citrate-reductant. Optical and swelling behaviors of both series of hydrogel nanocomposites were investigated as key factors involved in their antimicrobial efficacy over time. Lastly, in vitro antibacterial activity of Ag loaded hydrogels exposed to Pseudomona aeruginosa and Escherichia coli strains indicated a noticeable sustained inhibitory effect, especially for Ag-PU hydrogel nanocomposites with bacterial inhibition growth capabilities up to 120 h cultivation.

  7. Design and analysis of a novel mechanical loading machine for dynamic in vivo axial loading

    NASA Astrophysics Data System (ADS)

    Macione, James; Nesbitt, Sterling; Pandit, Vaibhav; Kotha, Shiva

    2012-02-01

    This paper describes the construction of a loading machine for performing in vivo, dynamic mechanical loading of the rodent forearm. The loading machine utilizes a unique type of electromagnetic actuator with no mechanically resistive components (servotube), allowing highly accurate loads to be created. A regression analysis of the force created by the actuator with respect to the input voltage demonstrates high linear correlation (R2 = 1). When the linear correlation is used to create dynamic loading waveforms in the frequency (0.5-10 Hz) and load (1-50 N) range used for in vivo loading, less than 1% normalized root mean square error (NRMSE) is computed. Larger NRMSE is found at increased frequencies, with 5%-8% occurring at 40 Hz, and reasons are discussed. Amplifiers (strain gauge, linear voltage displacement transducer (LVDT), and load cell) are constructed, calibrated, and integrated, to allow well-resolved dynamic measurements to be recorded at each program cycle. Each of the amplifiers uses an active filter with cutoff frequency at the maximum in vivo loading frequencies (50 Hz) so that electronic noise generated by the servo drive and actuator are reduced. The LVDT and load cell amplifiers allow evaluation of stress-strain relationships to determine if in vivo bone damage is occurring. The strain gauge amplifier allows dynamic force to strain calibrations to occur for animals of different sex, age, and strain. Unique features are integrated into the loading system, including a weightless mode, which allows the limbs of anesthetized animals to be quickly positioned and removed. Although the device is constructed for in vivo axial bone loading, it can be used within constraints, as a general measurement instrument in a laboratory setting.

  8. Design and analysis of a novel mechanical loading machine for dynamic in vivo axial loading.

    PubMed

    Macione, James; Nesbitt, Sterling; Pandit, Vaibhav; Kotha, Shiva

    2012-02-01

    This paper describes the construction of a loading machine for performing in vivo, dynamic mechanical loading of the rodent forearm. The loading machine utilizes a unique type of electromagnetic actuator with no mechanically resistive components (servotube), allowing highly accurate loads to be created. A regression analysis of the force created by the actuator with respect to the input voltage demonstrates high linear correlation (R(2) = 1). When the linear correlation is used to create dynamic loading waveforms in the frequency (0.5-10 Hz) and load (1-50 N) range used for in vivo loading, less than 1% normalized root mean square error (NRMSE) is computed. Larger NRMSE is found at increased frequencies, with 5%-8% occurring at 40 Hz, and reasons are discussed. Amplifiers (strain gauge, linear voltage displacement transducer (LVDT), and load cell) are constructed, calibrated, and integrated, to allow well-resolved dynamic measurements to be recorded at each program cycle. Each of the amplifiers uses an active filter with cutoff frequency at the maximum in vivo loading frequencies (50 Hz) so that electronic noise generated by the servo drive and actuator are reduced. The LVDT and load cell amplifiers allow evaluation of stress-strain relationships to determine if in vivo bone damage is occurring. The strain gauge amplifier allows dynamic force to strain calibrations to occur for animals of different sex, age, and strain. Unique features are integrated into the loading system, including a weightless mode, which allows the limbs of anesthetized animals to be quickly positioned and removed. Although the device is constructed for in vivo axial bone loading, it can be used within constraints, as a general measurement instrument in a laboratory setting.

  9. Monitoring Pre-Stressed Composites Using Optical Fibre Sensors.

    PubMed

    Krishnamurthy, Sriram; Badcock, Rodney A; Machavaram, Venkata R; Fernando, Gerard F

    2016-05-28

    Residual stresses in fibre reinforced composites can give rise to a number of undesired effects such as loss of dimensional stability and premature fracture. Hence, there is significant merit in developing processing techniques to mitigate the development of residual stresses. However, tracking and quantifying the development of these fabrication-induced stresses in real-time using conventional non-destructive techniques is not straightforward. This article reports on the design and evaluation of a technique for manufacturing pre-stressed composite panels from unidirectional E-glass/epoxy prepregs. Here, the magnitude of the applied pre-stress was monitored using an integrated load-cell. The pre-stressing rig was based on a flat-bed design which enabled autoclave-based processing. A method was developed to end-tab the laminated prepregs prior to pre-stressing. The development of process-induced residual strain was monitored in-situ using embedded optical fibre sensors. Surface-mounted electrical resistance strain gauges were used to measure the strain when the composite was unloaded from the pre-stressing rig at room temperature. Four pre-stress levels were applied prior to processing the laminated preforms in an autoclave. The results showed that the application of a pre-stress of 108 MPa to a unidirectional [0]16 E-glass/913 epoxy preform, reduced the residual strain in the composite from -600 µε (conventional processing without pre-stress) to approximately zero. A good correlation was observed between the data obtained from the surface-mounted electrical resistance strain gauge and the embedded optical fibre sensors. In addition to "neutralising" the residual stresses, superior axial orientation of the reinforcement can be obtained from pre-stressed composites. A subsequent publication will highlight the consequences of pres-stressing on fibre alignment, the tensile, flexural, compressive and fatigue performance of unidirectional E-glass composites.

  10. Monitoring Pre-Stressed Composites Using Optical Fibre Sensors

    PubMed Central

    Krishnamurthy, Sriram; Badcock, Rodney A.; Machavaram, Venkata R.; Fernando, Gerard F.

    2016-01-01

    Residual stresses in fibre reinforced composites can give rise to a number of undesired effects such as loss of dimensional stability and premature fracture. Hence, there is significant merit in developing processing techniques to mitigate the development of residual stresses. However, tracking and quantifying the development of these fabrication-induced stresses in real-time using conventional non-destructive techniques is not straightforward. This article reports on the design and evaluation of a technique for manufacturing pre-stressed composite panels from unidirectional E-glass/epoxy prepregs. Here, the magnitude of the applied pre-stress was monitored using an integrated load-cell. The pre-stressing rig was based on a flat-bed design which enabled autoclave-based processing. A method was developed to end-tab the laminated prepregs prior to pre-stressing. The development of process-induced residual strain was monitored in-situ using embedded optical fibre sensors. Surface-mounted electrical resistance strain gauges were used to measure the strain when the composite was unloaded from the pre-stressing rig at room temperature. Four pre-stress levels were applied prior to processing the laminated preforms in an autoclave. The results showed that the application of a pre-stress of 108 MPa to a unidirectional [0]16 E-glass/913 epoxy preform, reduced the residual strain in the composite from −600 µε (conventional processing without pre-stress) to approximately zero. A good correlation was observed between the data obtained from the surface-mounted electrical resistance strain gauge and the embedded optical fibre sensors. In addition to “neutralising” the residual stresses, superior axial orientation of the reinforcement can be obtained from pre-stressed composites. A subsequent publication will highlight the consequences of pres-stressing on fibre alignment, the tensile, flexural, compressive and fatigue performance of unidirectional E-glass composites. PMID:27240378

  11. A built-in sensor with carbon nanotubes coated by Ag clusters for deformation monitoring of glass fibre/epoxy composites

    NASA Astrophysics Data System (ADS)

    Slobodian, P.; Riha, P.; Matyas, J.; Olejnik, R.; Lloret Pertegás, S.; Schledjewski, R.; Kovar, M.

    2018-03-01

    A multiwalled carbon nanotube network embedded in a polyurethane membrane was integrated into a glass fibre reinforced epoxy composite by means of vacuum infusion to become a part of the composite and has been serving for a strain self-sensing functionality. Besides the pristine nanotubes also nanotubes with Ag nanoparticles attached to their surfaces were used to increase strain sensing. Moreover, the design of the carbon nanotube/polyurethane sensor allowed formation of network micro-sized cracks which increased its reversible electrical resistance resulted in an enhancement of strain sensing. The resistance sensitivity, quantified by a gauge factor, increased more than hundredfold in case of a pre-strained sensor with Ag decorated nanotubes in comparison with the sensor with pristine nanotubes.

  12. Calibration for the shear strain of 3-component borehole strainmeters in eastern Taiwan through Earth and ocean tidal waveform modeling

    NASA Astrophysics Data System (ADS)

    Canitano, Alexandre; Hsu, Ya-Ju; Lee, Hsin-Ming; Linde, Alan T.; Sacks, Selwyn

    2018-03-01

    We propose an approach for calibrating the horizontal tidal shear components [(differential extension (γ _1) and engineering shear (γ _2)] of two Sacks-Evertson (in Pap Meteorol Geophys 22:195-208, 1971) SES-3 borehole strainmeters installed in the Longitudinal Valley in eastern Taiwan. The method is based on the waveform reconstruction of the Earth and ocean tidal shear signals through linear regressions on strain gauge signals, with variable sensor azimuth. This method allows us to derive the orientation of the sensor without any initial constraints and to calibrate the shear strain components γ _1 and γ _2 against M_2 tidal constituent. The results illustrate the potential of tensor strainmeters for recording horizontal tidal shear strain.

  13. Strain measurements in a rotary engine housing

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Bond, T. H.; Addy, H. E.; Chun, K. S.; Lu, C. Y.

    1989-01-01

    The development of structural design tools for Rotary Combustion Engines (RCE) using Finite Element Modeling (FEM) requires knowledge about the response of engine materials to various service conditions. This paper describes experimental work that studied housing deformation as a result of thermal, pressure and mechanical loads. The measurement of thermal loads, clamping pressure, and deformation was accomplished by use of high-temperature strain gauges, thermocouples, and a high speed data acquisition system. FEM models for heat transfer stress analysis of the rotor housing will be verified and refined based on these experimental results.

  14. Combined Synchrotron X-ray Diffraction and Digital Image Correlation Technique for Measurement of Austenite Transformation with Strain in TRIP-assisted Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poling, Whitney A.; Savic, Vesna; Hector, Louis G.

    2016-04-05

    The strain-induced, diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain in TRIP-assisted steels with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut frommore » the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing. Results obtained for a QP980 steel are used to study the influence of initial volume fraction of austenite and the austenite transformation with strain on tensile mechanical behavior.« less

  15. Finite element simulations of the Portevin Le Chatelier effect in aluminium alloy

    NASA Astrophysics Data System (ADS)

    Hopperstad, O. S.; Børvik, T.; Berstad, T.; Benallal, A.

    2006-08-01

    Finite element simulations of the Portevin-Le Chatelier effect in aluminium alloy 5083-H116 are presented and evaluated against existing experimental results. The constitutive model of McCormick (1988) for materials exhibiting negative steady-state strain-rate sensitivity is incorporated into an elastic-viscoplastic model for large plastic deformations and implemented in LS-DYNA for use with the explicit or implicit solver. Axisymmetric tensile specimens loaded at different strain rates are studied numerically, and it is shown that the model predicts the experimental behaviour with reasonable accuracy; including serrated yielding and propagating bands of localized plastic deformation along the gauge length of the specimen at intermediate strain rates.

  16. Three-Dimensional Digital Image Correlation of a Composite Overwrapped Pressure Vessel During Hydrostatic Pressure Tests

    NASA Technical Reports Server (NTRS)

    Revilock, Duane M., Jr.; Thesken, John C.; Schmidt, Timothy E.

    2007-01-01

    Ambient temperature hydrostatic pressurization tests were conducted on a composite overwrapped pressure vessel (COPV) to understand the fiber stresses in COPV components. Two three-dimensional digital image correlation systems with high speed cameras were used in the evaluation to provide full field displacement and strain data for each pressurization test. A few of the key findings will be discussed including how the principal strains provided better insight into system behavior than traditional gauges, a high localized strain that was measured where gages were not present and the challenges of measuring curved surfaces with the use of a 1.25 in. thick layered polycarbonate panel that protected the cameras.

  17. Behavior of fiber reinforced metal laminates at high strain rate

    NASA Astrophysics Data System (ADS)

    Newaz, Golam; Sasso, Marco; Amodio, Dario; Mancini, Edoardo

    2018-05-01

    Carbon Fiber Reinforced Aluminum Laminate (CARALL) is a good system for energy absorption through plastic deformation in aluminum and micro-cracking in the composite layers. Moreover, CARALL FMLs also provide excellent impact resistance due to the presence of aluminum layer. The focus of this research is to characterize the CARALL behavior under dynamic conditions. High strain rate tests on sheet laminate samples have been carried out by means of direct Split Hopkinson Tension Bar. The sample geometry and the clamping system were optimized by FEM simulations. The clamping system has been designed and optimized in order reduce impedance disturbance due to the fasteners and to avoid the excessive plastic strain outside the gauge region of the samples.

  18. Highly Sensitive Electromechanical Piezoresistive Pressure Sensors Based on Large-Area Layered PtSe2 Films.

    PubMed

    Wagner, Stefan; Yim, Chanyoung; McEvoy, Niall; Kataria, Satender; Yokaribas, Volkan; Kuc, Agnieszka; Pindl, Stephan; Fritzen, Claus-Peter; Heine, Thomas; Duesberg, Georg S; Lemme, Max C

    2018-05-23

    Two-dimensional (2D) layered materials are ideal for micro- and nanoelectromechanical systems (MEMS/NEMS) due to their ultimate thinness. Platinum diselenide (PtSe 2 ), an exciting and unexplored 2D transition metal dichalcogenide material, is particularly interesting because its low temperature growth process is scalable and compatible with silicon technology. Here, we report the potential of thin PtSe 2 films as electromechanical piezoresistive sensors. All experiments have been conducted with semimetallic PtSe 2 films grown by thermally assisted conversion of platinum at a complementary metal-oxide-semiconductor (CMOS)-compatible temperature of 400 °C. We report high negative gauge factors of up to -85 obtained experimentally from PtSe 2 strain gauges in a bending cantilever beam setup. Integrated NEMS piezoresistive pressure sensors with freestanding PMMA/PtSe 2 membranes confirm the negative gauge factor and exhibit very high sensitivity, outperforming previously reported values by orders of magnitude. We employ density functional theory calculations to understand the origin of the measured negative gauge factor. Our results suggest PtSe 2 as a very promising candidate for future NEMS applications, including integration into CMOS production lines.

  19. Design of pressure-sensing diaphragm for MEMS capacitance diaphragm gauge considering size effect

    NASA Astrophysics Data System (ADS)

    Li, Gang; Li, Detian; Cheng, Yongjun; Sun, Wenjun; Han, Xiaodong; Wang, Chengxiang

    2018-03-01

    MEMS capacitance diaphragm gauge with a full range of (1˜1000) Pa is considered for its wide application prospect. The design of pressure-sensing diaphragm is the key to achieve balanced performance for this kind of gauges. The optimization process of the pressure-sensing diaphragm with island design of a capacitance diaphragm gauge based on MEMS technique has been reported in this work. For micro-components in micro scale range, mechanical properties are very different from that in the macro scale range, so the size effect should not be ignored. The modified strain gradient elasticity theory considering size effect has been applied to determine the bending rigidity of the pressure-sensing diaphragm, which is then used in the numerical model to calculate the deflection-pressure relation of the diaphragm. According to the deflection curves, capacitance variation can be determined by integrating over the radius of the diaphragm. At last, the design of the diaphragm has been optimized based on three parameters: sensitivity, linearity and ground capacitance. With this design, a full range of (1˜1000) Pa can be achieved, meanwhile, balanced sensitivity, resolution and linearity can be kept.

  20. A highly stretchable, transparent, and conductive polymer.

    PubMed

    Wang, Yue; Zhu, Chenxin; Pfattner, Raphael; Yan, Hongping; Jin, Lihua; Chen, Shucheng; Molina-Lopez, Francisco; Lissel, Franziska; Liu, Jia; Rabiah, Noelle I; Chen, Zheng; Chung, Jong Won; Linder, Christian; Toney, Michael F; Murmann, Boris; Bao, Zhenan

    2017-03-01

    Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm under 100% strain-among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire- or carbon nanotube-based stretchable conductor films. The combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects.

Top