Science.gov

Sample records for nanocrystalline dye-sensitized solar

  1. Dye-sensitized solar cells based on nanocrystalline titania electrodes made at various sintering temperatures.

    PubMed

    Stathatos, Elias; Lianos, Panagiotis

    2007-02-01

    Dye-sensitized solar cells were made by using nanocrystalline titania deposited on Fluorine-doped SnO2 (FTO) electrodes. Nanocrystalline titania deposition was made by the sol-gel method using reverse micelles of bis(2-ethylhexyl) sulfosuccinate sodium salt (AOT) in cyclohexane as reaction medium. This surfactant could be easily removed from the deposited nanocomposite organic-inorganic film by simple rinsing with distilled water, without affecting titania adherence on FTO electrode. These nanocrystalline titania electrodes were used to make solar cells either without sintering or after sintering at various temperatures. Sintering extensively affected short circuit current but had small effect on device open-circuit voltage. Thus satisfactory photovoltaic response could be obtained even with devices made of non-sintered (room-temperature) titania.

  2. Photochemical solar cells based on dye-sensitization of nanocrystalline TiO{sub 2}

    SciTech Connect

    Deb, S.K.; Ellingson, R.; Ferrere, S.; Frank, A.J.; Gregg, B.A.; Nozik, A.J.; Park, N.; Schlichthoerl, G.

    1998-09-01

    A photoelectrochemical solar cell that is based on the dye-sensitization of thin nanocrystalline films of TiO{sub 2} (anatase) nanoparticles in contact with a non-aqueous liquid electrolyte is described. The cell, fabricated at NREL, shows a conversion efficiency of {approximately} 9.2% at AM1.5, which approaches the best reported value of 10--11% by Graetzel at EPFL in Lausanne, Switzerland. The femtosecond (fs) pump-probe spectroscopy has been used to time resolve the injection of electrons into the conduction band of nanocrystalline TiO{sub 2} films under ambient conditions following photoexcitation of the adsorbed Ru(II)-complex dye. The measurement indicates an instrument-limited {minus}50 fs upper limit on the electron injection time. The authors also report the sensitization of nanocrystalline TiO{sub 2} by a novel iron-based dye, CIS-[Fe{sup II}(2,2{prime}-bipyridine-4,4,{prime}-dicarboxylic acid){sub 2}(CN){sub 2}], a chromophore with an extremely short-lived, nonemissive excited state. The dye also exhibits a unique band selective sensitization through one of its two absorption bands. The operational principle of the device has been studied through the measurement of electric field distribution within the device structure and studies on the pH dependence of dye-redox potential. The incorporation of WO{sub 3}-based electrochromic layer into this device has led to a novel photoelectrochromic device structure for smart window application.

  3. Dye sensitized solar cells.

    PubMed

    Wei, Di

    2010-03-16

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO(2), ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed.

  4. Dye Sensitized Solar Cells

    PubMed Central

    Wei, Di

    2010-01-01

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

  5. Coupling of titania inverse opals to nanocrystalline titania layers in dye-sensitized solar cells.

    PubMed

    Lee, Seung-Hyun Anna; Abrams, Neal M; Hoertz, Paul G; Barber, Greg D; Halaoui, Lara I; Mallouk, Thomas E

    2008-11-20

    We report a quantitative comparison of the photoaction spectra, short circuit current densities, and power conversion efficiencies of dye-sensitized solar cells (DSSCs) that contain bilayers of nanocrystalline TiO2 (nc-TiO2) and titania inverse opal photonic crystals (PCs). Cells were fabricated with PC/nc-TiO2 and nc-TiO2/PC bilayer films on glass/tin oxide anode of the cell, as well as in a split configuration in which the nc-TiO2 and PC layers were deposited on the anode and cathode sides of the cell, respectively. Incident photon current efficiencies at single wavelengths and current-voltage curves in white light were obtained with both cathode and anode side illumination. The results obtained support a model proposed by Miguez and co-workers, in which coupling of the low refractive index PC layer to the higher index nc-TiO2 layer creates a standing wave in the nc-TiO2 layer, enhancing the response of the DSSC in the red region of the spectrum. This enhancement is very sensitive to the degree of physical contact between the two layers. A gap on the order of 200 nm thick, created by a polymer templating technique, is sufficient to decouple the two layers optically. The coupling of the nc-TiO2 and PC layers across the gap could be improved slightly by treatment with TiCl4 vapor. In the bilayer configuration, there is an enhancement in the IPCE across the visible spectrum, which is primarily caused by defect scattering in the PC layer. There is also an increase of 20-50 mV in the open circuit photovoltage of the cell. With anode side illumination, the addition of a PC layer to the nc-TiO2 layer increased the efficiency of DSSCs from 6.5 to 8.3% at a constant N719 dye loading of 155-160 nmol/cm2.

  6. Enhancing the photoelectric conversion of dye-sensitized solar cell via nitrogen-doped nanocrystalline titania electrode.

    PubMed

    Cheng, Ping; Lan, Tian; Yang, Haijun; Wang, Wanjun; Wu, Haixia; Deng, Changsheng; Dai, Xiaming; Guo, Shouwu

    2010-11-01

    A high efficient dye-sensitized solar cell (DSC) was fabricated using nitrogen-doped nanocrystalline titania(TiO2) photoanode. X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS), X-ray powder diffraction (XRD), zeta potentials, nitrogen adsorption-desorption and elemental analysis experiments were employed to characterize the nitrogen-doped nanocrystalline TiO2 photoanode. An obvious enhancement of the optical absorption in the range of 380-550 nm was observed for nitrogen-doped TiO2, which was attributed to both the substitutional N and the chemisorbed N2 molecules. A conversion efficiency of 9.04% was obtained on the DSC based on nitrogen-doped TiO2 photoanode annealed in a flow of NH3 at 550 degrees C, with an increase of 15.6% improvement in comparison with pure TiO2 (7.82%). The mechanism for the enhanced photovoltaic performance was discussed.

  7. Microwave-assisted synthesis of nanocrystalline TiO2 for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kuo, Ta-Chuan; Guo, Tzung-Fang; Chen, Peter

    2012-09-01

    The main purposes of this study are replacing conventional hydro-thermal method by microwave heating using water as reaction medium to rapidly synthesize TiO2.Titanium tetraisopropoxide (TTIP) was hydrolyzed in water. The solution is subsequently processed with microwave heating for crystal growth. The reaction time could be shortened into few minutes. Then we chose different acids as dispersion agents to prepare TiO2 paste for investigating the effects of dispersion on the power conversion efficiency of dye-sensitized solar cells (DSCs). The photovoltaic performance of the microwave-assisted synthesized TiO2 achieved power conversion efficiency of 6.31% under AM 1.5 G condition (100 mW/cm2). This PCE value is compatible with that of the devices made from commercial TiO2.

  8. Artificial photosynthesis based on ruthenium(II) tetrazole-dye-sensitized nanocrystalline TiO2 solar cells.

    PubMed

    Shahroosvand, Hashem; Najafi, Leyla; Khanmirzaei, Leyla; Tarighi, Sara

    2015-11-01

    We have demonstrated the optical and morphological properties of a novel TiO2 nanoparticle as photoanode in order to apply in dye sensitized solar cells. The nanoparticles were synthesized through hydrothermal method in Tri-n-octyl amine (TOA) as capping agent. From the results it is concluded that the molar ratio of TiCl4 and TOA has remarkable influence on the size and homogeneity of the nanoparticles. The optimized nanoparticles structure for photoanode incorporated into dye-sensitized solar cell was obtained via the molar ratio of 1:10 for TiCl4:TOA. It has also studied the photovoltaic properties of different synthesized TiO2 nanocrystalline (1-4) anchored to ruthenium(II) complexes. 4-(1H-tetrazole-5-yl) benzoic acid (TzBA) applied as an anchoring ligand and 2,2-bipyridine (bpy), 1,10-phenanthroline (phen) and pyridine tetrazole (pyTz) used as ancillary ligands. A solar energy to electricity conversion efficiency (η) of 1.06% was obtained for [Ru(TzBA)(bpy)(pyTz)(NCS)] (5) under the standard AM 1.5 irradiation with a Jsc of 2.29 mA cm(-2), a Voc of 0.51 V, and FF of 55% which are the highest values among Ru(TzBA) complexes. DSSC study reveals that pyTz as an auxiliary ligand exhibits improved current generating capacity than the bpy and phen, which are introduced by dye (5).

  9. Home-made experiment of Dye-sensitized TiO2 Nanocrystalline Solar Cells and its education evaluation

    NASA Astrophysics Data System (ADS)

    Tai, M. F.; Shieh, M. C.; Chen, T. W.

    2010-03-01

    Dyes extracted from some natural fruits including anthocyanins absorb sunlight and effectively activate electrons of anthocyanins. Thus these activated electrons are conducted between TiO2 nanocrystals and form electric potential and current between two electrodes. The dyes can be gotten from the natural fruits, such as blackberries, raspberry, pomegranate seeds and bing cherries. This principle permits making a dye sensitized TiO2 nanocrystallines solar cell (DSSC). All required materials and tools for fabricating a home- made DSSC are easy to obtain around home. The procedures are perfect hands-on experiment as well as demonstration in K-12 schools or home settings. We have designed several protocols for fabricating DSSC and have successfully demonstrated in more than 100 activities with different level students. K-12 Students were able to build their own working DSSC's within 2-3 hours sessions and learned about alternative energy sources. These experiments can inspire students and general public about the modern technology in daily life. Low cost (low than US 3 in Taiwan)and safety are also ensured in our DSSC experiments.

  10. Multifunctional alumina/titania hybrid blocking layer modified nanocrystalline titania films as efficient photoanodes in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Changlei; Yu, Zhenhua; Bu, Chenghao; Liu, Pei; Bai, Sihang; Liu, Chang; Kondamareddy, Kiran Kumar; Sun, Weiwei; Zhan, Kan; Zhang, Kun; Guo, Shishang; Zhao, Xingzhong

    2015-05-01

    A facile way of fabricating efficient blocking layer on mesoporous TiO2 film of dye-sensitized solar cells (DSSCs) is demonstrated here for the first time. Al2O3 and TiO2 are combined together to form a blocking layer. A simple spin coating technique is employed which is a versatile and low-cost method over the atomic layer deposition (ALD) technique. Multifunctional alumina/titania (Al2O3/TiO2) hybrid overlayer is prepared on traditional TiO2 nanocrystalline thin film surface, through sequential deposition of AlCl3·6H2O and TiCl4 precursor solutions followed by sintering at 500 °C for 30 min. Al2O3 effectively plays its role in retarding interfacial recombination of electrons and improving open circuit potential (Voc), while the tiny TiO2 clusters synthesized from TiCl4 treatment act as electron transporting channels to facilitate electron diffusion which leads to enhanced photocurrent (Jsc). Compared to the device without blocking layer, the DSSCs assembled with Al2O3/TiO2 hybrid blocking layer showed improvement in Jsc (from 13.09 mA/cm2 to 16.90 mA/cm2) as well as in Voc (from 0.72 V to 0.73 V) resulting a much better conversion efficiency of 8.60%.

  11. Explanation of Effect of Added Water on Dye-Sensitized Nanocrystalline TiO2 Solar Cell: Correlation between Performance and Carrier Relaxation Kinetics

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Yin, Xiong; Li, Heng; Lin, Yuan; Weng, Yu-Xiang

    2007-11-01

    Time-resolved mid-IR transient absorption spectroscopy is employed to explore the mechanism of improving the performance of dye-sensitized TiO2 solar cell (DSSC) when a certain amount of H2O is added into the electrolyte. The relaxation kinetics of dye-sensitized TiO2 nanocrystalline film and the corresponding DSSC performance are investigated under different conditions. It is found that the interfacial charge recombination is retarded and electron injection efficiency is increased in the water vapour and in the electrolyte when D2O is added. The values of open-circuit photovoltage Voc and the short-circuit photocurrent Jsc of the cells are linearly correlated to the product of the two decay time constants. We also observed that Voc well correlates with electron injection efficiency. It provides a preliminary microscopic account for the function of the added water in improving the performance of DSSCs.

  12. Nanocrystalline porous TiO2 electrode with ionic liquid impregnated solid polymer electrolyte for dye sensitized solar cells.

    PubMed

    Singh, Pramod K; Kim, Kang-Wook; Kim, Ki-Il; Park, Nam-Gyu; Rhee, Hee-Woo

    2008-10-01

    This communication reports the detailed fabrication of electrodes and solid polymer electrolyte with ionic liquid (IL) as an electrolyte for dye sensitized solar cell (DSSC). Thick porous TiO2 film has been obtained by spreading and sintering TiO2 colloidal paste using "doctor blade" and characterized by SEM, TEM and XRD. The polymer electrolyte was PEO:KI/I2 incorporated with 1-ethyl 3-methylimidazolium thiocyanate (EMImSCN) as IL. Dispersal of IL in the polymer electrolyte improved the ionic conductivity and cell efficiency.

  13. Dye-sensitized solar cells based on nanocrystalline TiO2 films surface treated with Al3+ ions: photovoltage and electron transport studies.

    PubMed

    Alarcón, H; Boschloo, G; Mendoza, P; Solis, J L; Hagfeldt, A

    2005-10-06

    Nanocrystalline TiO2 films, surface modified with Al3+, were manufactured by depositing a TiO2 suspension containing small amounts of aluminum nitrate or aluminum chloride onto conducting glass substrates, followed by drying, compression, and finally heating to 530 degrees C. Electrodes prepared with TiO2 nanoparticles coated with less than 0.3 wt % aluminum oxide with respect to TiO2 improved the efficiency of the dye sensitized solar cell. This amount corresponds to less than a monolayer of aluminum oxide. Thus, the Al ions terminate the TiO2 surface rather than form a distinct aluminum oxide layer. The aluminum ion surface treatment affects the solar cell in different ways: the potential of the conduction band is shifted, the electron lifetime is increased, and the electron transport is slower when aluminum ions are present between interconnected TiO2 particles.

  14. The effect of optical properties on photovoltaic performance in dye-sensitized TiO2 nanocrystalline solar cells.

    PubMed

    Ji, Ya-Jun; Zhang, Ming-Dao; Cui, Jie-Hu; Zheng, He-Gen; Zhu, Jun-Jie

    2013-06-01

    In this study, well-crystallized TiO2 nanoparticles with average size of -20 nm were synthesized by hydrolysis of titania salt in aqueous medium. The effect of the optical properties of the obtained titania particles based thin films with different thickness on the photovoltaic performance of dye-sensitized solar cells were investigated. Differential thermal analysis/thermo-gravimetric analysis, scanning electron microscopy, transmission electron microscopy and X-ray diffraction were used to characterize the morphology, structure and crystal formation of the obtained samples. The optical properties such as reflectance and transmittance of the photoanodes with different thickness were systematically investigated. The reflectance property increased with increasing the film thickness, however, the transmittance property showed the opposite way. The improved scattering property with increasing the film thickness facilitated efficient utilization of solar spectrum, which was verified by incident photon-to-current conversion efficiency. The maximum energy conversion efficiency of 5.0% was achieved on photoelectrode film with 17.8 microm.

  15. Dye-sensitized solar cells

    DOEpatents

    Skotheim, T.A.

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell is comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent. 3 figs.

  16. Dye-sensitized solar cells

    DOEpatents

    Skotheim, Terje A. [Berkeley, CA

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  17. Carbonaceous Dye-Sensitized Solar Cell Photoelectrodes.

    PubMed

    Batmunkh, Munkhbayar; Biggs, Mark J; Shapter, Joseph G

    2015-03-01

    High photovoltaic efficiency is one of the most important keys to the commercialization of dye sensitized solar cells (DSSCs) in the quickly growing renewable electricity generation market. The heart of the DSSC system is a wide bandgap semiconductor based photoelectrode film that helps to adsorb dye molecules and transport the injected electrons away into the electrical circuit. However, charge recombination, poor light harvesting efficiency and slow electron transport of the nanocrystalline oxide photoelectrode film are major issues in the DSSC's performance. Recently, semiconducting composites based on carbonaceous materials (carbon nanoparticles, carbon nanotubes (CNTs), and graphene) have been shown to be promising materials for the photoelectrode of DSSCs due to their fascinating properties and low cost. After a brief introduction to development of nanocrystalline oxide based films, this Review outlines advancements that have been achieved in the application of carbonaceous-based materials in the photoelectrode of DSSCs and how these advancements have improved performance. In addition, several of the unsolved issues in this research area are discussed and some important future directions are also highlighted.

  18. Enhanced photovoltaic performance of dye-sensitized solar cells based on NaYF4:Yb(3+), Er(3+)-incorporated nanocrystalline TiO2 electrodes.

    PubMed

    Zhu, Guang; Wang, Hongyan; Zhang, Quanxin; Zhang, Li

    2015-08-01

    Near infrared to visible up-conversion of light by rare earth ion-doped phosphors (NaYF4:Yb(3+), Er(3+)) that convert multiple photons of lower energy to higher energy photons offer new possibilities for improved performance of photovoltaic devices. Here, up-conversion phosphor NaYF4:Yb(3+), Er(3+) doped nanocrystalline TiO2 films are designed and used as a electrode for dye-sensitized solar cells, and the photovoltaic performance of DSSCs based on composite electrodes are investigated. The results show the cell with NaYF4:Yb(3+), Er(3+) achieves a power conversion efficiency of 7.65% under one sun illumination (AM 1.5G, 100mWcm(-2)), which is an increase of 14% compared to the cell without NaYF4:Yb(3+), Er(3+) (6.71%). The performance improvement is attributed to the dual effects of enhanced light harvesting from extended light absorption range and increased light scattering, and lower electron transfer resistance.

  19. Interplay between transparency and efficiency in dye sensitized solar cells.

    PubMed

    Tagliaferro, Roberto; Colonna, Daniele; Brown, Thomas M; Reale, Andrea; Di Carlo, Aldo

    2013-02-11

    In this paper we analyze the interplay between transparency and efficiency in dye sensitized solar cells by varying fabrication parameters such as the thickness of the nano-crystalline TiO(2) layer, the dye loading and the dye type. Both transparency and efficiency show a saturation trend when plotted versus dye loading. By introducing the transparency-efficiency plot, we show that the relation between transparency and efficiency is linear and is almost independent on the TiO(2) thickness for a certain thickness range. On the contrary, the relation between transparency and efficiency depends strongly on the type of the dye. Moreover, we show that co-sensitization techniques can be effectively used to access regions of the transparency-efficiency space that are forbidden for single dye sensitization. The relation found between transparency and efficiency (T&E) can be the general guide for optimization of Dye Solar Cells in building integration applications.

  20. Stretchable, wearable dye-sensitized solar cells.

    PubMed

    Yang, Zhibin; Deng, Jue; Sun, Xuemei; Li, Houpu; Peng, Huisheng

    2014-05-01

    A stretchable, wearable dye-sensitized solar-cell textile is developed from elastic, electrically conducting fiber as a counter electrode and spring-like titanium wire as the working electrode. Dyesensitized solar cells are demonstrated with energy-conversion efficiencies up to 7.13%. The high energy-conversion efficiencies can be well maintained under stretch by 30% and after stretch for 20 cycles.

  1. EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION.

    SciTech Connect

    BOWERMAN,B.; FTHENAKIS,V.

    2001-10-01

    Photovoltaic solar cells based on a dye-sensitized nanocrystalline titanium dioxide photoelectrode have been researched and reported since the early 1990's. Commercial production of dye-sensitized photovoltaic solar cells has recently been reported in Australia. In this report, current manufacturing methods are described, and estimates are made of annual chemical use and emissions during production. Environmental, health and safety considerations for handling these materials are discussed. This preliminary EH and S evaluation of dye-sensitized titanium dioxide solar cells indicates that some precautions will be necessary to mitigate hazards that could result in worker exposure. Additional information required for a more complete assessment is identified.

  2. Direct measurement of the temperature coefficient of the electron quasi-fermi level in dye-sensitized nanocrystalline solar cells using a titanium sensor electrode.

    PubMed

    Lobato, K; Peter, L M

    2006-11-02

    A novel type of dye-sensitized cell (DSC) with a passivated titanium sensor electrode located on top of the nanocrystalline titanium dioxide layer has been used to study the temperature dependence of the electron quasi-Fermi level relative to the I3-/I- redox-Fermi level under short circuit conditions. The results show that the Fermi level decreases with increasing temperature (-1.76 meV K(-1)) as predicted for diffusive electron transport at short circuit. A smaller temperature dependence (-0.25 meV K(-1)) of the position of the TiO2 conduction band relative to the I3-/I- redox-Fermi level was deduced from the shifts in the trap distribution. An expression for the temperature dependence of the open circuit voltage, U(photo), has been derived. The experimentally observed temperature dependence of U(photo) gave values of the activation energy (0.25 eV) and preexponential factor (10(8) s(-1)) for the transfer of electrons from the conduction band of the nanocrystalline TiO2 to triiodide ions.

  3. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells.

    PubMed

    Gao, Feifei; Wang, Yuan; Shi, Dong; Zhang, Jing; Wang, Mingkui; Jing, Xiaoyan; Humphry-Baker, Robin; Wang, Peng; Zakeeruddin, Shaik M; Grätzel, Michael

    2008-08-13

    We report two new heteroleptic polypyridyl ruthenium complexes, coded C101 and C102, with high molar extinction coefficients by extending the pi-conjugation of spectator ligands, with a motivation to enhance the optical absorptivity of mesoporous titania film and charge collection yield in a dye-sensitized solar cell. On the basis of this C101 sensitizer, several DSC benchmarks measured under the air mass 1.5 global sunlight have been reached. Along with an acetonitrile-based electrolyte, the C101 sensitizer has already achieved a strikingly high efficiency of 11.0-11.3%, even under a preliminary testing. More importantly, based on a low volatility 3-methoxypropionitrile electrolyte and a solvent-free ionic liquid electrolyte, cells have corresponding >9.0% and approximately 7.4% efficiencies retained over 95% of their initial performances after 1000 h full sunlight soaking at 60 degrees C. With the aid of electrical impedance measurements, we further disclose that, compared to the cell with an acetonitrile-based electrolyte, a dye-sensitized solar cell with an ionic liquid electrolyte shows a feature of much shorter effective electron diffusion lengths due to the lower electron diffusion coefficients and shorter electron lifetimes in the mesoporous titania film, explaining the photocurrent difference between these two type devices. This highlights the next necessary efforts to further improve the efficiency of cells with ionic liquid electrolytes, facilitating the large-scale production and application of flexible thin film mesoscopic solar cells.

  4. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    SciTech Connect

    Das, P.; Sengupta, D.; Kasinadhuni, U.; Mondal, B.; Mukherjee, K.

    2015-06-15

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.

  5. Dye-Sensitized Solar Cells for Space Power

    NASA Technical Reports Server (NTRS)

    Harris, Jerry D.; Hehemann, David G.; Duraj, Stan A.

    2003-01-01

    During the course of this grant, dye-sensitized solar cells were prepared and characterized. The solar cells were prepared using materials (dyes, electrolytes, transparent conductive oxide coated glass, nanocrystalline TiO2) entirely prepared in-house, as well as prepared using materials available commercially. Complete cells were characterized under simulated AM0 illumination. The best cell prepared at NASA had an AM0 efficiency of 1.22% for a 1.1 sq cm cell. Short circuit current (Isc), open circuit voltage (Voc) and fill factor (FF) for the cell were 6.95 mA, 618 mV and 42.8%, respectively. For comparison purposes, two commercially prepared dye-sensitized solar cells were obtained from Solaronix SA, Aubonne, Switzerland. The Solaronix cells were also characterized under simulated AM0 illumination. The best cell from Solaronix had an active area of 3.71 sq cm and measured an AM0 efficiency of 3.16%. with Isc, Voc and FF of 45.80 mA, 669.6 mV and 52.3%, respectively. Both cells from Solaronix were rapid thermal cycled between -80 C and 80 C. Thermal cycling led to a 4.6% loss of efficiency in one of the cells and led to nearly a complete failure in the second cell.

  6. One-Pot Low Temperature Synthesis and Characterization Studies of Nanocrystalline α-Fe2O3 Based Dye Sensitized Solar Cells.

    PubMed

    Manikandan, A; Saravanan, A; Antony, S Arul; Bououdina, M

    2015-06-01

    Dye-sensitized solar cell (DSSC) based α-Fe2O3 nanostructures with two different morphologies, such as nanorods (FeONRs) and nanoparticles (FeONPs), were synthesized by one-pot low temperature method. The crystal structure and phase purity of the as-prepared samples were characterized by X-ray powder diffraction (XRD) and further determined by Rietveld refinements XRD analysis. The average crystallite size was calculated using Debye Sherrer formula, and it shows the range of 9.43-26.56 nm. The morphologies of the products were studied by high resolution scanning electron microscopy (HR-SEM) and it was confirmed by high resolution transmission electron microscopy (HR-TEM). The formation of pure α-Fe2O3 samples was further confirmed by energy dispersive X-ray (EDX) analysis. The optical properties and the band gap energy (E(g)) were measured by UV-Visible diffuse reflectance spectra (DRS) and photoluminescence (PL) spectra. The band gap energy was measured using Kubelka-Munk method, and the values are decreased from 2.36 eV to 2.21 eV as the temperature increased from 300 to 400 degrees C with increasing the crystallite size. Magnetic hysteresis (M-H) loop revealed that the as-prepared α-Fe2O3 samples displayed ferromagnetic behavior. FeONRs sample shows higher saturation magnetization (M(s)) value (40.21 emu/g) than FeONPs sample (23.06 emu/g). The dye-sensitized solar cell based on the optimized FeONRs array reaches a conversion efficiency of 0.43%, which is higher than that obtained from FeONPs (0.29%) under the light radiation of 1000 W/m2.

  7. Surface modification of porous nanocrystalline TiO{sub 2} films for dye-sensitized solar cell application by various gas plasmas

    SciTech Connect

    Kim, Youngsoo; Yoon, Chang-Ho; Kim, Kang-Jin; Lee, Yeonhee

    2007-07-15

    Titanium dioxide (TiO{sub 2}) film for dye-sensitized solar cells (DSSCs) has surface defects such as oxygen vacancies created during the annealing process. The authors used a plasma treatment technique to reduce defects on TiO{sub 2} surfaces. They investigated the influence of different gas plasma treatments of TiO{sub 2} film on the photoelectric performance of DSSC. Short-circuit photocurrent density (J{sub sc}), open-circuit photovoltage (V{sub oc}), and the amount of adsorbed dye for DSSCs were measured. As a result, the solar-to-electricity conversion efficiencies of the O{sub 2}- and N{sub 2}-treated cells increased by 15%-20% compared to untreated cells. On the other hand, solar energy conversion efficiency of CF{sub 4}-plasma treated cells decreased drastically. The increased amount of adsorbed dye on the TiO{sub 2} film was measured by time-of-flight secondary ion mass spectrometry. TiO{sub 2} surfaces modified by plasma treatment were characterized using analytical instruments such as x-ray photoelectron spectroscopy and near-edge x-ray absorption fine structure.

  8. Nanomaterials Enabled Dye-sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Dong, Pei

    Dye sensitized solar cells (DSCs), as the third generation of solar cells, have attracted tremendous attention for their unique properties. The semi-transparent nature, low-cost, environmental friendliness, and convenient manufacturing conditions of this generation of solar cells are promising aspects of DSCs that make them competitive in their future applications. However, much improvement in many aspects of DSCs' is required for the realization of its full potential. In this thesis, various nanomaterials, such as graphene, multi wall carbon nanotubes, vertically aligned single wall carbon nanotubes, hybrid structures and etc, have been used to improve the performance of DSCs. First, the application of graphene covered metal grids as transparent conductive electrodes in DSCs is explored. It is demonstrated that the mechanical properties of these flexible hybrid transparent electrodes, in both bending and stretching tests, are better than their oxide-based counter parts. Moreover, different kinds of carbon nanotubes, for instance vertically aligned single wall carbon nanotubes, have been used as a replacement for traditional platinum counter electrodes, in both iodine electrolyte, and sulfide-electrolyte. Further, a flexible, seamlessly connected, 3-dimensional vertically-aligned few wall carbon nanotubes graphene hybrid structures on Ni foil as DSCs' counter electrodes improve their efficiency significantly. All these nanomaterials enabled DSCs architectures achieve a comparable or better performance than standard brittle platinum/fluorine doped tin oxide combination. The large surface area of such nanomaterials in addition to the high electrical conductivity and their mechanical robustness provides a platform for significant enhancements in DSCs' performance.

  9. Space Environmental Testing of Dye-Sensitized Solar Cells

    NASA Technical Reports Server (NTRS)

    Harris, Jerry D.; Anglin, Emily J.; Hepp, Aloysius F.; Bailey, Sheila G.; Scheiman, David A.; Castro, Stephenie L.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Recent advances in nanocrystalline dye-sensitized solar cells has lead NASA to investigate the potential of these devices for space power generation, Reported here is the first space environment characterization of these type of photovoltaic devices. Cells containing liquid electrolytes were exposed to simulated low-earth orbit conditions and their performance evaluated. All cells were characterized under simulated air mass zero (AMO) illumination. Complete cells were exposed to pressures less than 1 x 10(exp -7) torr for over a month, with no sign of sealant failure or electrolyte leakage. Cells from Solaronix SA were rapid thermal cycled under simulated low-earth orbit conditions. The cells were cycled 100 times from -80 C to 80 C, which is equivalent to 6 days in orbit. The best cell had a 4.6% loss in efficiency as a result of the thermal cycling,

  10. Highly efficient nanocrystalline ZnO thin films prepared by a novel method and their application in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Bahadur, Lal; Kushwaha, Suman

    2012-11-01

    Nanostructured ZnO aggregates are synthesized under controlled conditions using zinc acetate dihydrate and 1-butanol as the starting materials and triethylamine as precipitating agent. Thin films were formed by a doctor-blade technique. The phase and morphology were investigated by using SEM and XRD. These films, derivatized by N719 dye, (Bu4N)2[Ru(dcbpyH)2(NCS)2], were used to construct sandwich-type dye-sensitized solar cells (DSSCs) and their photoelectrochemical characteristics were determined. The photocurrent, photovoltage and power conversion efficiency characteristics for the DSSCs were measured under illumination by light of varied irradiance power. With a typical cell, V OC=0.518 V, J SC=11.1 mA cm-2, fill factor (FF)=0.50, overall conversion efficiency ( η)=0.69 % and incident photon to current conversion efficiency (IPCE)=35 % were achieved under full light illumination (430 mW cm-2) and V OC=0.516 V, J SC=8.72 mA cm-2, fill factor 0.54 and overall conversion efficiency η=0.64 % were achieved under visible light illumination (380 mW cm-2). With the use of a thin ZnO film prepared during the present work, improved results have been achieved than many of the earlier reported ones. The good structural quality (crystallinity, densely packed spherical grains, lack of voids, nanometer-size crystallites etc.) of our thin films is mainly responsible for their better photoactivity.

  11. Photocurrent-voltage of a dye-sensitized nanocrystalline TiO2 solar cells influenced by N719 dye adsorption properties.

    PubMed

    Lee, Jae-Wook; Hwang, Kyung-Jun; Park, Dong-Won; Park, Kyung-Hee; Shim, Wang-Geun; Kim, Sang-Chai

    2007-11-01

    Titanium particles of single-phase anatase nanocrystallites were prepared by the hydrolysis of titanium tetraisopropoxide. A dye-sensitized solar cell (DSSC) was fabricated by adsorbing cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II)bis-tetrabutylammonium dye (N719) onto TiO2 film. The samples were characterized by XRD, TEM, FE-SEM, AFM, and Brunauer-Emmett-Teller (BET) analysis. The influence of the acetic acid treatment of TiO2 electrode with different concentrations on the photovoltaic performance of DSSC was investigated. It was found that DSSC had better photoelectric performance when the TiO2 electrode was treated by acetic acid of 0.5 M. An equivalent circuit analysis using the one-diode model was used to evaluate the influences of adsorption quantity and acetic acid treatment on the energy conversion efficiency of DSSC. A nonlinear least-square optimization method was used to determine five model parameters.

  12. Dye-sensitized Schottky barrier solar cells

    DOEpatents

    Skotheim, Terje A.

    1978-01-01

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  13. Aqueous dye-sensitized solar cells.

    PubMed

    Bella, Federico; Gerbaldi, Claudio; Barolo, Claudia; Grätzel, Michael

    2015-06-07

    Nowadays, dye-sensitized solar cells (DSSCs) are the most extensively investigated systems for the conversion of solar energy into electricity, particularly for implementation in devices where low cost and good performance are required. Nevertheless, a key aspect is still to be addressed, being considered strongly harmful for a long time, which is the presence of water in the cell, either in the electrolyte or at the electrode/electrolyte interface. Here comes the present review, in the course of which we try our best to address the highly topical role of water in DSSCs, trying to figure out if it is a poisoner or the keyword to success, by means of a thoroughly detailed analysis of all the established phenomena in an aqueous environment. Actually, in the last few years the scientific community has suddenly turned its efforts in the direction of using water as a solvent, as demonstrated by the amount of research articles being published in the literature. Indeed, by means of DSSCs fabricated with water-based electrolytes, reduced costs, non-flammability, reduced volatility and improved environmental compatibility could be easily achieved. As a result, an increasing number of novel electrodes, dyes and electrolyte components are continuously proposed, being highly challenging from the materials science viewpoint and with the golden thread of producing truly water-based DSSCs. If the initial purpose of DSSCs was the construction of an artificial photosynthetic system able to convert solar light into electricity, the use of water as the key component may represent a great step forward towards their widespread diffusion in the market.

  14. Towards low temperature sintering methods for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Murali, Sukanya

    Access to economically viable renewable energy sources is essential for the development of a globally sustainable society. Solar energy has a large potential to satisfy the future need for renewable energy sources. Dye sensitized solar cells are a third generation of photovoltaic technologies with the potential for low cost environmentally safe energy production. Commercialization of this technology requires that dye sensitized solar cells with higher efficiencies can be fabricated on flexible substrates. The commonly used material for the anode in a Dye Sensitized Solar Cell consists of titanium dioxide nanoparticles covered with a layer of light sensitizing dye. For efficient electron transport throughout the nanoparticle network, good particle interconnections are necessary. For low temperature processing these interconnections can be achieved through a hydrothermal process. The focus of this research is to understand at a fundamental level this reaction-based sintering process. A titanium alkoxide precursor was mixed with commercial titania nanoparticles and coated on a transparent conductive oxide substrate. The product of the hydrolysis and condensation of the alkoxide served to connect the nanoparticles thus improving the electrical conduction of the titania electrode; this was confirmed by solar cell testing and electrochemical impedance spectroscopy. To further understand the formation of interconnections during reactive sintering, a model system based on inert silica particles was investigated. Titanium alkoxide precursor was mixed with commercial silica particles and reacted. Three different types of silica particles were used: each with a different morphology. The silica-titania multilayers/powders were characterized using SEM, XRD and BET. The efficiency of DSSCs is higher when larger non-porous silica particles are used and thin nanocrystalline titania is coated on this superstructure. This gave insight into the locations where the reactive liquid

  15. Rose Bengal sensitized bilayered photoanode of nano-crystalline TiO2-CeO2 for dye-sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Sayyed, Suhail A. A. R.; Beedri, Niyamat I.; Kadam, Vishal S.; Pathan, Habib M.

    2016-08-01

    The present work deals with the study of TiO2-CeO2 bilayered photoanode with low-cost Rose Bengal (RB) dye as sensitizer for dye-sensitized solar cell application. The recombination reactions are reduced in bilayered TiO2-CeO2 photoanode as compared to the single-layered CeO2 photoanode. Once the electrons get transferred from lowest unoccupied molecular orbital level of RB dye to the conduction band (CB) of TiO2, then the possibilities of recombination of electrons with oxidized dye molecules or oxidized redox couple are reduced. This is because the CB position of CeO2 is higher than that of TiO2, which blocks the path of electrons. The electrochemical impedance spectroscopy (EIS) analysis shows negative shift in frequency for bilayered TiO2-CeO2 photoanode as compared to CeO2 photoanode. Hence, in bilayered photoanode lifetime of electrons is more than in single-layered photoanode, confirming reduction in recombination reactions. The X-ray diffraction patterns confirm both anatase TiO2 and CeO2 with crystalline size using Scherrer formula as 24 and 10 nm, respectively. The scanning electron microscopy images of photoanode show the porous structure useful for dye adsorption. The presence of Ti and Ce is confirmed by electron diffraction studies. The band gap values for TiO2 and CeO2 were calculated as 3.20 and 3.11 eV, respectively, using diffused reflectance spectroscopy. The bilayered TiO2-CeO2 photoanode showed open-circuit voltage ( V OC) ~500 mV and short-circuit photocurrent density ( J SC) ~0.29 mA/cm2 with fill factor (FF) ~62.17 %. There is increase in V OC and J SC values by 66.67 and 38.10 %, respectively, compared to RB-sensitized CeO2 photoanode.

  16. Current trends in materials for dye sensitized solar cells.

    PubMed

    Faccio, Ricardo; Fernández-Werner, Luciana; Pardo, Helena; Mombré, Alvaro W

    2011-01-01

    Here, we intend to review those patents related with the technology of dye sensitized solar cells. In particular we discuss patents and papers that enable metal oxide layer to be more controllable and feasible for applications, and new and innovative dyes, sensitizers and electrolytes with promising features. Finally various methods were reviewed for fabricating semiconductor layers and complete DSSC devices focusing on the mass production of photovoltaic cells.

  17. Exploiting nanocarbons in dye-sensitized solar cells.

    PubMed

    Kavan, Ladislav

    2014-01-01

    Fullerenes, carbon nanotubes, nanodiamond, and graphene find various applications in the development of solar cells, including dye sensitized solar cells. Nanocarbons can be used as (1) active light-absorbing component, (2) current collector, (3) photoanode additive, or (4) counter electrode. Graphene-based materials have attracted considerable interest for catalytic counter electrodes, particularly in state-of-the-art dye sensitized solar cells with Co-mediators. The understanding of electrochemical charge-transfer at carbon surfaces is key to optimization of these solar cells, but the electrocatalysis on carbon surfaces is still a subject of conflicting debate. Due to the rich palette of problems at the interface of nanocarbons and photovoltaics, this review is selective rather than comprehensive. Its motivation was to highlight selected prospective inputs from nanocarbon science towards the development of novel dye sensitized solar cells with improved efficiency, durability, and cost.

  18. Dye-sensitized solar cells based on purple corn sensitizers

    NASA Astrophysics Data System (ADS)

    Phinjaturus, Kawin; Maiaugree, Wasan; Suriharn, Bhalang; Pimanpaeng, Samuk; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan

    2016-09-01

    Natural dye extracted from husk, cob and silk of purple corn, were used for the first time as photosensitizers in dye sensitized solar cells (DSSCs). The dye sensitized solar cells fabrication process has been optimized in terms of solvent extraction. The resulting maximal efficiency of 1.06% was obtained from purple corn husk extracted by acetone. The ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS) and incident photon-to-current efficiency (IPCE) were employed to characterize the natural dye and the DSSCs.

  19. Dye-Sensitization Of Nanocrystalline ZnO Thin Films

    SciTech Connect

    Ajimsha, R. S.; Tyagi, M.; Das, A. K.; Misra, P.; Kukreja, L. M.

    2010-12-01

    Nannocrystalline and nanoporus thin films of ZnO were synthesized on glass substrates by using wet chemical drop casting method. X-ray diffraction measurements on these samples confirmed the formation of ZnO nanocrystallites in hexagonal wurtzite phase with mean size of {approx}20 nm. Photo sensitization of these nanostructured ZnO thin films was carried out using three types of dyes Rhodamine 6 G, Chlorophyll and cocktail of Rhodamine 6 G and Chlorophyll in 1:1 ratio. Dye sensitized ZnO thin films showed enhanced optical absorption in visible spectral region compared to the pristine ZnO thin films.

  20. Conjugation of selenophene with bipyridine for a high molar extinction coefficient sensitizer in dye-sensitized solar cells.

    PubMed

    Gao, Feifei; Cheng, Yueming; Yu, Qingjiang; Liu, Shi; Shi, Dong; Li, Yunhui; Wang, Peng

    2009-03-16

    A high molar extinction coefficient heteroleptic polypyridyl ruthenium sensitizer, featuring a conjugated electron-rich selenophene unit in its ancillary ligand, has been synthesized and demonstrated as an efficient sensitizer in dye-sensitized solar cells. A nanocrystalline titania film stained with this sensitizer shows improved optical absorptivity, which is highly desirable for dye-sensitized solar cells with a thin photoactive layer. With preliminary testing, this sensitizer has already achieved a high efficiency of 10.6% measured under the air mass 1.5 global conditions.

  1. Recent developments in dye-sensitized solar cells.

    PubMed

    Sharifi, Nafiseh; Tajabadi, Fariba; Taghavinia, Nima

    2014-12-15

    The knowledge of dye-sensitized solar cells (DSCs) has expanded considerably in recent years. They are multiparameter and complex systems that work only if various parameters are tuned simultaneously. This makes it difficult to target to a single parameter to improve the efficiency. There is a wealth of knowledge concerning different DSC structures and characteristics. In this review, the present knowledge and recent achievements are surveyed with emphasis on the more promising cell materials and designs.

  2. Nano-TiO2 for dye-sensitized solar cells.

    PubMed

    Baraton, Marie-Isabelle

    2012-01-01

    Photovoltaics are amongst the most popular renewable energy sources and low-cost solar cell technologies are making progress to the market. Research on dye-sensitized solar cells (DSSCs) usually based on nanocrystalline TiO2 has been extensively pursued, and the number of papers and patents published in this area has grown exponentially over the last ten years. Research efforts have largely focused on the optimization of the dye, but recently the TiO2 nanocrystalline electrode itself has attracted more attention. It has been shown that particle size and shape, crystallinity, surface morphology and chemistry of the TiO2 material are key parameters to be controlled for optimized performance of the solar cell. This article will review the most recent research activities on nanostructured TiO2 for improvement of the DSSC performance.

  3. Near-infrared sensitization in dye-sensitized solar cells.

    PubMed

    Park, Jinhyung; Viscardi, Guido; Barolo, Claudia; Barbero, Nadia

    2013-01-01

    Dye-sensitized solar cells (DSCs) are a low cost and colorful promising alternative to standard silicon photovoltaic cells. Though many of the highest efficiencies have been associated with sensitizers absorbing only in the visible portion of the solar radiation, there is a growing interest for NIR sensitization. This paper reviews the efforts made so far to find sensitizers able to absorb efficiently in the far-red NIR region of solar light. Panchromatic sensitizers as well as dyes absorbing mainly in the 650-920 nm region have been considered.

  4. Capturing the Potential of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Benson, James

    2010-10-01

    Dye-sensitized solar cells are a continually developing type of low-cost solar cells that have commercial efficiency around 6-10%. The proposed research here will be focusing on the photo-bleaching and improving techniques for electron transport. Nature has given us a goal to reach towards with proven techniques for converting light into energy with around 30-40% efficiency, however, chlorophyll, the light absorber in plants, is expensive and it is not practical to make solar cells with only chlorophyll as the absorber. One such alternative to chlorophyll is phthalocyanines which is a common industrial dye used in many applications. This dye has a common similar ring without the long phytol chain that chlorophyll has. Previous research has shown that encapsulating organic dyes can magnify the properties of dye from the increased concentration with a possible benefit of stabilizing the dye allowing it to slow down the photo bleaching significantly. Likewise, such encapsulation may help with thermal stability since many dye-sensitized solar cells require a liquid or gel solution that is sensitive to thermal expansion. Many researchers are also finding new ways to encapsulate the dyes or dope the p-n layers with nano and meso tubes to help with electron transport or build the p-n layers right in the tubes. This allows for countless layers and an overall more efficient design.

  5. ZnO nanotube based dye-sensitized solar cells.

    PubMed

    Martinson, Alex B F; Elam, Jeffrey W; Hupp, Joseph T; Pellin, Michael J

    2007-08-01

    We introduce high surface area ZnO nanotube photoanodes templated by anodic aluminum oxide for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition is utilized to coat pores conformally, providing a direct path for charge collection over tens of micrometers thickness. Compared to similar ZnO-based devices, ZnO nanotube cells show exceptional photovoltage and fill factors, in addition to power efficiencies up to 1.6%. The novel fabrication technique provides a facile, metal-oxide general route to well-defined DSSC photoanodes.

  6. Metal oxide-encapsulated dye-sensitized photoanodes for dye-sensitized solar cells

    SciTech Connect

    Hupp, Joseph T.; Son, Ho-Jin

    2016-01-12

    Dye-sensitized semiconducting metal oxide films for photoanodes, photoanodes incorporating the films and DSCs incorporating the photoanodes are provided. Also provided are methods for making the dye sensitized semiconducting metal oxide films. The methods of making the films are based on the deposition of an encapsulating layer of a semiconducting metal oxide around the molecular anchoring groups of photosensitizing dye molecules adsorbed to a porous film of the semiconducting metal oxide. The encapsulating layer of semiconducting metal oxide is formed in such a way that it is not coated over the chromophores of the adsorbed dye molecules and, therefore, allows the dye molecules to remain electrochemically addressable.

  7. Aggregated TiO2 Based Nanotubes for Dye Sensitized Solar Cells

    SciTech Connect

    Nie, Zimin; Zhou, Xiaoyuan; Zhang, Qifeng; Cao, Guozhong; Liu, Jun

    2013-11-01

    One-dimensional (1D) semiconducting oxides have attracted great attention for dye sensitized solar cells (DSCs), but the overall performance is still quite limited as compared to TiO2 nanocrystalline DSCs. Here, we report the synthesis of aggregated TiO2 based nanotubes with controlled morphologies and crystalline structures to obtain an overall power conversion efficiency of 9.9% using conventional dye without any additional chemical treatment steps. The high efficiency is attributed to the unique aggregate structure for light harvesting, optimized high surface area, and good crystallinity of the nanotube aggregates obtained through proper thermal annealing. This study demonstrates that high efficiency DSCs can be obtained with 1D nanomaterials, and provides lessons on the importance of optimizing both the nanocrystalline structure and the overall microscale morphology.

  8. Digital Printing of Titanium Dioxide for Dye Sensitized Solar Cells

    PubMed Central

    Cherrington, Ruth; Wood, Benjamin Michael; Salaoru, Iulia; Goodship, Vannessa

    2016-01-01

    Silicon solar cell manufacturing is an expensive and high energy consuming process. In contrast, dye sensitized solar cell production is less environmentally damaging with lower processing temperatures presenting a viable and low cost alternative to conventional production. This paper further enhances these environmental credentials by evaluating the digital printing and therefore additive production route for these cells. This is achieved here by investigating the formation and performance of a metal oxide photoelectrode using nanoparticle sized titanium dioxide. An ink-jettable material was formulated, characterized and printed with a piezoelectric inkjet head to produce a 2.6 µm thick layer. The resultant printed layer was fabricated into a functioning cell with an active area of 0.25 cm2 and a power conversion efficiency of 3.5%. The binder-free formulation resulted in a reduced processing temperature of 250 °C, compatible with flexible polyamide substrates which are stable up to temperatures of 350 ˚C. The authors are continuing to develop this process route by investigating inkjet printing of other layers within dye sensitized solar cells. PMID:27166761

  9. Digital Printing of Titanium Dioxide for Dye Sensitized Solar Cells.

    PubMed

    Cherrington, Ruth; Wood, Benjamin Michael; Salaoru, Iulia; Goodship, Vannessa

    2016-05-04

    Silicon solar cell manufacturing is an expensive and high energy consuming process. In contrast, dye sensitized solar cell production is less environmentally damaging with lower processing temperatures presenting a viable and low cost alternative to conventional production. This paper further enhances these environmental credentials by evaluating the digital printing and therefore additive production route for these cells. This is achieved here by investigating the formation and performance of a metal oxide photoelectrode using nanoparticle sized titanium dioxide. An ink-jettable material was formulated, characterized and printed with a piezoelectric inkjet head to produce a 2.6 µm thick layer. The resultant printed layer was fabricated into a functioning cell with an active area of 0.25 cm(2) and a power conversion efficiency of 3.5%. The binder-free formulation resulted in a reduced processing temperature of 250 °C, compatible with flexible polyamide substrates which are stable up to temperatures of 350 ˚C. The authors are continuing to develop this process route by investigating inkjet printing of other layers within dye sensitized solar cells.

  10. Modeling materials and processes in dye-sensitized solar cells: understanding the mechanism, improving the efficiency.

    PubMed

    Pastore, Mariachiara; De Angelis, Filippo

    2014-01-01

    We present a review of recent first-principles computational modeling studies on dye-sensitized solar cells (DSCs), focusing on the materials and processes modeling aspects which are key to the functioning of this promising class of photovoltaic devices. Crucial to the DSCs functioning is the photoinduced charge separation occurring at the heterointerface(s) between a dye-sensitized nanocrystalline, mesoporous metal oxide electrode and a redox shuttle. Theoretical and computational modeling of isolated cell components (e.g., dye, semiconductor nanoparticles, redox shuttle, etc…) as well as of combined dye/semiconductor/redox shuttle systems can successfully assist the experimental research by providing basic design rules of new sensitizers and a deeper comprehension of the fundamental chemical and physical processes governing the cell functioning and its performances. A computational approach to DSCs modeling can essentially be cast into a stepwise problem, whereby one first needs to simulate accurately the individual DSCs components to move to relevant pair (or higher order) interactions characterizing the device functioning. This information can contribute to enhancing further the target DSCs characteristics, such as temporal stability and optimization of device components. After presenting selected results for isolated dyes, including the computational design of new dyes, and model semiconductors, including realistic nanostructure models, we focus in the remainder of this review on the interaction between dye-sensitizers and semiconductor oxides, covering organic as well as metallorganic dyes.

  11. Photoconductivity of an inorganic/organic composite containing dye-sensitized nanocrystalline titanium dioxide

    NASA Astrophysics Data System (ADS)

    Kocher, M.; Däubler, T. K.; Harth, E.; Scherf, U.; Gügel, A.; Neher, D.

    1998-02-01

    The photophysical properties of solid films of an inorganic/organic composite composed of dye-sensitized nanocrystalline titanium dioxide (TiO2) particles, a conjugated polymer, and a [60] fullerene derivative have been investigated. Large charge collection efficiencies of up to 10% at a field of only 10 V/μm were observed. The photoaction spectrum of the composite is interpreted in terms of three major contributions: a weak photocurrent due to the absorption of photons by the polymer, photogeneration of charges involving the fullerene, and a broad region below the onset of the polymer absorption which involves photophysical processes in the dye-loaded TiO2 nanoparticles.

  12. Asymmetric Zinc Phthalocyanines as Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Tunc, Gulenay; Yavuz, Yunus; Gurek, Aysegul; Canimkurbey, Betul; Kosemen, Arif; San, Sait Eren; Ahsen, Vefa

    Dye-sensitized solar cells (DSSCs) have received increasing attention due to their high incident to photon efficiency, easy fabrication and low production cost . Tremendous research efforts have been devoted to the development of new and efficient sensitizers suitable for practical use. In TiO2-based DSSCs, efficiencies of up to 11.4% under simulated sunlight have been obtained with rutheniumepolypyridyl complexes. However, the main drawback of ruthenium complexes is the lack of absorption in the red region of the visible light and the high cost. For this reason, dyes with large and stable p-conjugated systems such as porphyrins and phthalocyanines are important classes of potential sensitizers for highly efficient DSSCs. Phthalocyanines (Pcs) have been widely used as sensitizers because of their improved light-harvesting properties in the far red- and near-IR spectral regions and their extraordinary robustness [1]. In this work, a series of asymmetric Zn(II) Pcs bearing a carboxylic acid group and six hexylthia groups either at the peripheral or non-peripheral positions have been designed and synthesized to investigate the influence of the COOH group and the positions of hexylthia groups on the dye-sensitized solar cell (DSSC) performance.

  13. Fabrication, Optimization and Characterization of Natural Dye Sensitized Solar Cell

    PubMed Central

    Ghann, William; Kang, Hyeonggon; Sheikh, Tajbik; Yadav, Sunil; Chavez-Gil, Tulio; Nesbitt, Fred; Uddin, Jamal

    2017-01-01

    The dyes extracted from pomegranate and berry fruits were successfully used in the fabrication of natural dye sensitized solar cells (NDSSC). The morphology, porosity, surface roughness, thickness, absorption and emission characteristics of the pomegranate dye sensitized photo-anode were studied using various analytical techniques including FESEM, EDS, TEM, AFM, FTIR, Raman, Fluorescence and Absorption Spectroscopy. Pomegranate dye extract has been shown to contain anthocyanin which is an excellent light harvesting pigment needed for the generation of charge carriers for the production of electricity. The solar cell’s photovoltic performance in terms of efficiency, voltage, and current was tested with a standard illumination of air-mass 1.5 global (AM 1.5 G) having an irradiance of 100 mW/cm2. After optimization of the photo-anode and counter electrode, a photoelectric conversion efficiency (η) of 2%, an open-circuit voltage (Voc) of 0.39 mV, and a short-circuit current density (Isc) of 12.2 mA/cm2 were obtained. Impedance determination showed a relatively low charge-transfer resistance (17.44 Ω) and a long lifetime, signifying a reduction in recombination losses. The relatively enhanced efficiency is attributable in part to the use of a highly concentrated pomegranate dye, graphite counter electrode and TiCl4 treatment of the photo-anode. PMID:28128369

  14. Fabrication, Optimization and Characterization of Natural Dye Sensitized Solar Cell.

    PubMed

    Ghann, William; Kang, Hyeonggon; Sheikh, Tajbik; Yadav, Sunil; Chavez-Gil, Tulio; Nesbitt, Fred; Uddin, Jamal

    2017-01-27

    The dyes extracted from pomegranate and berry fruits were successfully used in the fabrication of natural dye sensitized solar cells (NDSSC). The morphology, porosity, surface roughness, thickness, absorption and emission characteristics of the pomegranate dye sensitized photo-anode were studied using various analytical techniques including FESEM, EDS, TEM, AFM, FTIR, Raman, Fluorescence and Absorption Spectroscopy. Pomegranate dye extract has been shown to contain anthocyanin which is an excellent light harvesting pigment needed for the generation of charge carriers for the production of electricity. The solar cell's photovoltic performance in terms of efficiency, voltage, and current was tested with a standard illumination of air-mass 1.5 global (AM 1.5 G) having an irradiance of 100 mW/cm(2). After optimization of the photo-anode and counter electrode, a photoelectric conversion efficiency (η) of 2%, an open-circuit voltage (Voc) of 0.39 mV, and a short-circuit current density (Isc) of 12.2 mA/cm(2) were obtained. Impedance determination showed a relatively low charge-transfer resistance (17.44 Ω) and a long lifetime, signifying a reduction in recombination losses. The relatively enhanced efficiency is attributable in part to the use of a highly concentrated pomegranate dye, graphite counter electrode and TiCl4 treatment of the photo-anode.

  15. Artificial evolution of coumarin dyes for dye sensitized solar cells.

    PubMed

    Venkatraman, Vishwesh; Abburu, Sailesh; Alsberg, Bjørn Kåre

    2015-11-07

    The design and discovery of novel molecular structures with optimal properties has been an ongoing effort for materials scientists. This field has in general been dominated by experiment driven trial-and-error approaches that are often expensive and time-consuming. Here, we investigate if a de novo computational design methodology can be applied to the design of coumarin-based dye sensitizers with improved properties for use in Grätzel solar cells. To address the issue of synthetic accessibility of the designed compounds, a fragment-based assembly is employed, wherein the combination of chemical motifs (derived from the existing databases of structures) is carried out with respect to user-adaptable set of rules. Rather than using computationally intensive density functional theory (DFT)/ab initio methods to screen candidate dyes, we employ quantitative structure-property relationship (QSPR) models (calibrated from empirical data) for rapid estimation of the property of interest, which in this case is the product of short circuit current (Jsc) and open circuit voltage (Voc). Since QSPR models have limited validity, pre-determined applicability domain criteria are used to prevent unacceptable extrapolation. DFT analysis of the top-ranked structures provides supporting evidence of their potential for dye sensitized solar cell applications.

  16. Charge transport in dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Yanagida, Masatoshi

    2015-03-01

    The effect of charge transport on the photovoltaic properties of dye-sensitized solar cells (DSCs) was investigated by the experimental results and the ion transport. The short current photocurrent density (Jsc) is determined by the electron transport in porous TiO2 when the diffusion limited current (Jdif) due to the {{I}3}- transport is larger than the photo-generated electron flux (Jg) estimated from the light harvesting efficiency of dye-sensitized porous TiO2 and the solar spectrum. However, the Jsc value is determined by the ion transport in the electrolyte solution at Jdif < Jg. The J value becomes constant against light intensity, and is expressed as the saturated current (Jscs). The {{J}s} value depends on the thickness (d) of the TiO2 layer, the initial concentration (COX0), and the diffusion coefficient (DOXb) of {{I}3}-. These suitable parameters were determined by using the ion transport. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam.

  17. Green grasses as light harvesters in dye sensitized solar cells.

    PubMed

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-25

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a).

  18. Green grasses as light harvesters in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A.; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-01

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a).

  19. Fabrication, Optimization and Characterization of Natural Dye Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Ghann, William; Kang, Hyeonggon; Sheikh, Tajbik; Yadav, Sunil; Chavez-Gil, Tulio; Nesbitt, Fred; Uddin, Jamal

    2017-01-01

    The dyes extracted from pomegranate and berry fruits were successfully used in the fabrication of natural dye sensitized solar cells (NDSSC). The morphology, porosity, surface roughness, thickness, absorption and emission characteristics of the pomegranate dye sensitized photo-anode were studied using various analytical techniques including FESEM, EDS, TEM, AFM, FTIR, Raman, Fluorescence and Absorption Spectroscopy. Pomegranate dye extract has been shown to contain anthocyanin which is an excellent light harvesting pigment needed for the generation of charge carriers for the production of electricity. The solar cell’s photovoltic performance in terms of efficiency, voltage, and current was tested with a standard illumination of air-mass 1.5 global (AM 1.5 G) having an irradiance of 100 mW/cm2. After optimization of the photo-anode and counter electrode, a photoelectric conversion efficiency (η) of 2%, an open-circuit voltage (Voc) of 0.39 mV, and a short-circuit current density (Isc) of 12.2 mA/cm2 were obtained. Impedance determination showed a relatively low charge-transfer resistance (17.44 Ω) and a long lifetime, signifying a reduction in recombination losses. The relatively enhanced efficiency is attributable in part to the use of a highly concentrated pomegranate dye, graphite counter electrode and TiCl4 treatment of the photo-anode.

  20. Quasi Solid Polymer Electrolytes for Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Dissanayake, M. A. K. Lakshman

    2013-07-01

    Dye-sensitized solar cell (DSSC) has been considered as an alternative to the conventional silicon solar cell because of low cost, easy fabrication and relatively high conversion efficiency. A DSSC consists of a dye-sensitized nanoparticulated TiO2 electrode, an electrolyte containing redox couple and a Pt coated counter electrode. Such solar cells based on an I-/I3- redox couple in an organic solvent usually have conversion efficiencies reaching around 11%. However, a major drawback of these solution based solar cells, originally developed by Gratzel and coworkers is the lack of long-term stability due to liquid leakage, usage of volatile liquids such as acetonitrile, electrode corrosion, and photodecomposition of the dye in the solvent medium. Therefore considerable research efforts have been made in recent years to replace the liquid electrolytes with solid polymer or quasi-solid polymer (gel) electrolytes. Among these approaches, the use of gel polymer electrolytes appears to give rise to successful results in terms of conversion efficiency. Conventional poly (ethylene oxide)(PEO)-based solid polymer electrolytes exhibit poor ionic conductivities at room temperature, which is not sufficient for practical applications. Therefore, most of the recent studies have been directed to the preparation and characterization of gel polymer electrolytes which exhibit higher ionic conductivity at ambient temperature while maintain quai-solid structure. These gel polymer electrolytes prepared by incorporating a liquid electrolyte into a matrix polymer such as polyacrylonitrile(PAN), poly(vinylidene fluoride)(PVdF), poly (methyl methacrylate) (PMMA) and PEO have been employed in quasi-solid-state DSSCs to achieve power conversion efficiencies of more than 5%. Significant improvements have been achieved in recent years by modifications of the electrolytes by optimizing the ionic salt, introducing additives such as inorganic nanofillers, organic molecules and ionic liquids in

  1. Synthesis, Characterization, and Application of Gold Nanoparticles in Green Nanochemistry Dye-Sensitized Solar Cells

    DTIC Science & Technology

    2012-06-01

    integrated with anthocyanin-based, dye-sensitized solar cells . The hybrid system was found to enhance the photovoltaic output of the system...Synthesis, Characterization, and Application of Gold Nanoparticles in Green Nanochemistry Dye-Sensitized Solar Cells by Hailey E. Cramer...Nanochemistry Dye-Sensitized Solar Cells Hailey E. Cramer University of Delaware Mark H. Griep National Research Council Shashi P. Karna

  2. Iodine/iodide-free dye-sensitized solar cells.

    PubMed

    Yanagida, Shozo; Yu, Youhai; Manseki, Kazuhiro

    2009-11-17

    Dye-sensitized solar cells (DSSCs) are built from nanocrystalline anatase TiO(2) with a 101 crystal face (nc-TiO(2)) onto which a dye is absorbed, ruthenium complex sensitizers, fluid I(-)/I(3)(-) redox couples with electrolytes, and a Pt-coated counter electrode. DSSCs have now reached efficiencies as high as 11%, and G24 Innovation (Cardiff, U.K.) is currently manufacturing them for commercial use. These devices offer several distinct advantages. On the basis of the electron lifetime and diffusion coefficient in the nc-TiO(2) layer, DSSCs maintain a diffusion length on the order of several micrometers when the dyed-nc-TiO(2) porous layer is covered by redox electrolytes of lithium and/or imidazolium iodide and their polyiodide salts. The fluid iodide/iodine (I(-)/I(3)(-)) redox electrolytes can infiltrate deep inside the intertwined nc-TiO(2) layers, promoting the mobility of the nc-TiO(2) layers and serving as a hole-transport material of DSSCs. As a result, these materials eventually give a respectable photovoltaic performance. On the other hand, fluid I(-)/I(3)(-) redox shuttles have certain disadvantages: reduced performance control and long-term stability and incompatibility with some metallic component materials. The I(-)/I(3)(-) redox shuttle shows a significant loss in short circuit current density and a slight loss in open circuit voltage, particularly in highly viscous electrolyte-based DSSC systems. Iodine can also act as an oxidizing agent, corroding metals, such as the grid metal Ag and the Pt mediator on the cathode, especially in the presence of water and oxygen. In addition, the electrolytes (I(-)/I(3)(-)) can absorb visible light (lambda = approximately 430 nm), leading to photocurrent loss in the DSSC. Therefore, the introduction of iodide/iodine-free electrolytes or hole-transport materials (HTMs) could lead to cost-effective alternatives to TiO(2) DSSCs. In this Account, we discuss the iodide/iodine-free redox couple as a substitute for the

  3. Review on Metallic and Plastic Flexible Dye Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Yugis, A. R.; Mansa, R. F.; Sipaut, C. S.

    2015-04-01

    Dye sensitized solar cells (DSSCs) are a promising alternative for the development of a new generation of photovoltaic devices. DSSCs have promoted intense research due to their low cost and eco-friendly advantage over conventional silicon-based crystalline solar cells. In recent years, lightweight flexible types of DSSCs have attracted much intention because of drastic reduction in production cost and more extensive application. The substrate that used as electrode of the DSSCs has a dominant impact on the methods and materials that can be applied to the cell and consequently on the resulting performance of DSSCs. Furthermore, the substrates influence significantly the stability of the device. Although the power conversion efficiency still low compared to traditional glass based DSSCs, flexible DSSCs still have potential to be the most efficient and easily implemented technology.

  4. Dna-Enhanced Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Pollum, Marvin; Crespo-Hernandez, Carlos E.

    2013-06-01

    Dye-sensitized solar cells (DSSCs) are a promising alternative to the current silicon solar cell technologies. DSSCs have a lower manufacturing cost, can be made to be flexible, semi-transparent, and in any variety of colors for aesthetic applications. Despite these advantageous properties, the stability and power conversion efficiency of DSSCs are still lacking. Recently, we have shown that the adsorption of DNA onto the semiconductor surface of a typical DSSC improves its overall performance. Structure-function analysis, in conjunction with steady-state and time-resolved spectroscopic studies, are currently being done to understand this phenomenon and to uncover the mechanism by which DNA boosts the overall performance of DSSCs. This new knowledge is expected to facilitate the rational design of DSSCs that exhibit higher power conversion efficiency than those currently available.

  5. Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells

    SciTech Connect

    Park, N. G.; van de Lagemaat, J.; Frank, A. J.

    2000-01-01

    The objective of this work is to develop and optimize the new dye-sensitized solar cell technology. In view of the infancy of rutile material development for solar cells, the PV response of the dye-sensitized rutile-based solar cell is remarkably close to that of the anatase-based cell.

  6. Carbon Nanotubes for Dye-Sensitized Solar Cells.

    PubMed

    Batmunkh, Munkhbayar; Biggs, Mark J; Shapter, Joseph G

    2015-07-01

    As one type of emerging photovoltaic cell, dye-sensitized solar cells (DSSCs) are an attractive potential source of renewable energy due to their eco-friendliness, ease of fabrication, and cost effectiveness. However, in DSSCs, the rarity and high cost of some electrode materials (transparent conducting oxide and platinum) and the inefficient performance caused by slow electron transport, poor light-harvesting efficiency, and significant charge recombination are critical issues. Recent research has shown that carbon nanotubes (CNTs) are promising candidates to overcome these issues due to their unique electrical, optical, chemical, physical, as well as catalytic properties. This article provides a comprehensive review of the research that has focused on the application of CNTs and their hybrids in transparent conducting electrodes (TCEs), in semiconducting layers, and in counter electrodes of DSSCs. At the end of this review, some important research directions for the future use of CNTs in DSSCs are also provided.

  7. Efficiency Records in Mesoscopic Dye-Sensitized Solar Cells.

    PubMed

    Albero, Josep; Atienzar, Pedro; Corma, Avelino; Garcia, Hermenegildo

    2015-08-01

    The aim of the present review article is to show the progress achieved in the efficiency of dye-sensitized solar cells (DSSCs) by evolution in the structure and composition of the dye. After an initial brief description of DSSCs and the operating mechanism the major part of the present article is organized according to the type of dye, trying to show the logic in the variation of the dye structure in order to achieve strong binding on the surface of the layer of nanoparticulate TiO2 , efficient interfacial electron injection between the excited dye and the semiconductor, and minimization of the unwanted dark current processes. Besides metal complexes, including polypyridyls and nitrogenated macro rings, organic dyes and inorganic light harvesters such as quantum dots and perovskites have also been included in the review. The last section summarizes the current state of the art and provides an overview on future developments in the field.

  8. Halogen Bonding Promotes Higher Dye-Sensitized Solar Cell Photovoltages.

    PubMed

    Simon, Sarah J C; Parlane, Fraser G L; Swords, Wesley B; Kellett, Cameron W; Du, Chuan; Lam, Brian; Dean, Rebecca K; Hu, Ke; Meyer, Gerald J; Berlinguette, Curtis P

    2016-08-24

    We report here an enhancement in photovoltage for dye-sensitized solar cells (DSSCs) where halogen-bonding interactions exist between a nucleophilic electrolyte species (I(-)) and a photo-oxidized dye immobilized on a TiO2 surface. The triarylamine-based dyes under investigation showed larger rate constants for dye regeneration (kreg) by the nucleophilic electrolyte species when heavier halogen substituents were positioned on the dye. The open-circuit voltages (VOC) tracked these kreg values. This analysis of a homologous series of dyes that differ only in the identity of two halogen substituents provides compelling evidence that the DSSC photovoltage is sensitive to kreg. This study also provides the first direct evidence that halogen-bonding interactions between the dye and the electrolyte can bolster DSSC performance.

  9. Dye Sensitized Solar Cells for Economically Viable Photovoltaic Systems.

    PubMed

    Jung, Hyun Suk; Lee, Jung-Kun

    2013-05-16

    TiO2 nanoparticle-based dye sensitized solar cells (DSSCs) have attracted a significant level of scientific and technological interest for their potential as economically viable photovoltaic devices. While DSSCs have multiple benefits such as material abundance, a short energy payback period, constant power output, and compatibility with flexible applications, there are still several challenges that hold back large scale commercialization. Critical factors determining the future of DSSCs involve energy conversion efficiency, long-term stability, and production cost. Continuous advancement of their long-term stability suggests that state-of-the-art DSSCs will operate for over 20 years without a significant decrease in performance. Nevertheless, key questions remain in regards to energy conversion efficiency improvements and material cost reduction. In this Perspective, the present state of the field and the ongoing efforts to address the requirements of DSSCs are summarized with views on the future of DSSCs.

  10. Natural dye -sensitized mesoporous ZnO solar cell

    NASA Astrophysics Data System (ADS)

    Wu, Qishuang; Shen, Yue; Wu, Guizhi; Li, Linyu; Cao, Meng; Gu, Feng

    2011-02-01

    Natural dye-sensitized solar cells (N-DSSCs) were assembled using chlorophyll sensitized mesoporous ZnO (based on FTO) as the photoanode and platinum plate as the cathode. The natural dyes (chlorophyll) were extracted from spinach by simple procedure. The absorption spectrum and fluorescence spectrum of chlorophyll were studied. Mesoporous ZnO (m-ZnO) applied to the N-DSSCs was synthesized through hydrothermal method. The structures and morphologies were characterized by X-ray Diffraction (XRD) and diffuse reflection. The results indicated that the samples had an average pore size of 17 nm and the m-ZnO was hexagonal wurtzite structure. The performances of the N-DSSCs were investigated under AM 1.5G illumination. The Voc of the N-DSSCs was about 480mv, and the Isc was about 470μA. The performance of the N-DSSCs could be further improved by adjusting its structure.

  11. Natural dye -sensitized mesoporous ZnO solar cell

    NASA Astrophysics Data System (ADS)

    Wu, Qishuang; Shen, Yue; Wu, Guizhi; Li, Linyu; Cao, Meng; Gu, Feng

    2010-10-01

    Natural dye-sensitized solar cells (N-DSSCs) were assembled using chlorophyll sensitized mesoporous ZnO (based on FTO) as the photoanode and platinum plate as the cathode. The natural dyes (chlorophyll) were extracted from spinach by simple procedure. The absorption spectrum and fluorescence spectrum of chlorophyll were studied. Mesoporous ZnO (m-ZnO) applied to the N-DSSCs was synthesized through hydrothermal method. The structures and morphologies were characterized by X-ray Diffraction (XRD) and diffuse reflection. The results indicated that the samples had an average pore size of 17 nm and the m-ZnO was hexagonal wurtzite structure. The performances of the N-DSSCs were investigated under AM 1.5G illumination. The Voc of the N-DSSCs was about 480mv, and the Isc was about 470μA. The performance of the N-DSSCs could be further improved by adjusting its structure.

  12. Progress in nanostructured photoanodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Xueyang; Fang, Jian; Liu, Yong; Lin, Tong

    2016-09-01

    Solar cells represent a principal energy technology to convert light into electricity. Commercial solar cells are at present predominately produced by single- or multi-crystalline silicon wafers. The main drawback to silicon-based solar cells, however, is high material and manufacturing costs. Dye-sensitized solar cells (DSSCs) have attracted much attention during recent years because of the low production cost and other advantages. The photoanode (working electrode) plays a key role in determining the performance of DSSCs. In particular, nanostructured photoanodes with a large surface area, high electron transfer efficiency, and low electron recombination facilitate to prepare DSSCs with high energy conversion efficiency. In this review article, we summarize recent progress in the development of novel photoanodes for DSSCs. Effect of semiconductor material (e.g. TiO2, ZnO, SnO2, N2O5, and nano carbon), preparation, morphology and structure (e.g. nanoparticles, nanorods, nanofibers, nanotubes, fiber/particle composites, and hierarchical structure) on photovoltaic performance of DSSCs is described. The possibility of replacing silicon-based solar cells with DSSCs is discussed.

  13. Enhancement of Spectral Response of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Chang, Shuai

    Dye-Sensitized solar cell (DSSC) is a class of third-generation solar devices. A notable feature of DSSC is that it can be manufactured by solution-based approach; this non-vacuum processing renders significant reduction in manufacturing costs. Different from conventional solar cells, in a DSSC, mesoporous semiconductor film with large surface areas is utilized for anchoring dye molecules, serving as light absorbing layer. Dye sensitizers play an important role in determining the final performance in DSSCs. Since the first highly-efficient DSSC was reported in 1991 sensitized by a ruthenium-based dye, numerous researchers have been focused on the development and characterization of various kinds of dyes for the applications in DSSCs. These include mainly metal complexes dyes, organic dyes, porphyrins and phthalocyanines dyes. The first part of my thesis work is to develop and test new dyes for DSSCs and a series of phenothiazine-based organic dyes and new porphyrin dyes are reported during the process. It has been realized that extending the response of dye sensitizers to a wider range of the solar spectrum is a key step in further improving the device efficiency. Typically, there are two ways for expanding the strong spectral response of DSSCs from visible to far red/NIR region. One approach is called co-sensitization. Herein, we demonstrate a new co-sensitization concept where small molecules is used to insert the interstitial site of between the pre-adsorbed large molecules. In this case, the co-adsorbed small ones is found to improve the light response and impede the back recombination, finally leading to the power conversion efficiency over 10% in conventional DSSC devices and a record-equaling efficiency of 9.2% in quasi-solid-state devices. I also implemented graphene sheets in the anode films for better charge transfer efficiency and break the energy conversion limit of co-sensitization in DSSCs. The optimal configuration between porphyrin dyes and

  14. Parallel Tandems of Dye Sensitized Solar Cells with CNT Collector

    NASA Astrophysics Data System (ADS)

    Velten, Josef; Yuan, Chao-Chen; Zakhidov, Anvar

    2009-03-01

    In this presentation, we demonstrate the fabrication of monolithic parallel tandem dye sensitized solar cells using a semitransparent layer of carbon nanotubes. Each DSC sub-cell has titania photoelectrode with two different dyes: N 719 and N 749, which absorb light in different parts of solar spectrum. This layer of carbon nanotubes laminated on highly porous polymeric Millipore filter acts as both the collector of charge carrier and as the catalyst of the I/I3^- redox reaction that completes the function of the cell, overall allowing easier fabrication for tandem solar cell devices, with a potential for creating flexible devices in the future. The parallel tandem shows the total photocurrent which is nearly the sum of two Isc currents of constituent cells, and total Voc, which is average of two Voc, while conventional in-series DSC tandems show the lowest Voc and slightly increased Isc[1]. Thus the higher efficiency can be achieved in parallel DSC tandems, and we discuss the physical reasons for this effect. [1] Yanagida, et.al. J. of Photochemistry and Photobiology A: Chemistry Volume 164, Issues 1-3, 1 June 2004, Pages 33-39

  15. Vegetable-based dye-sensitized solar cells.

    PubMed

    Calogero, Giuseppe; Bartolotta, Antonino; Di Marco, Gaetano; Di Carlo, Aldo; Bonaccorso, Francesco

    2015-05-21

    There is currently a large effort to improve the performance of low cost renewable energy devices. Dye-sensitized solar cells (DSSCs) are emerging as one of the most promising low cost photovoltaic technologies, addressing "secure, clean and efficient solar energy conversion". Vegetable dyes, extracted from algae, flowers, fruit and leaves, can be used as sensitizers in DSSCs. Thus far, anthocyanin and betalain extracts together with selected chlorophyll derivatives are the most successful vegetable sensitizers. This review analyses recent progress in the exploitation of vegetable dyes for solar energy conversion and compares them to the properties of synthetic dyes. We provide an in-depth discussion on the main limitation of cell performance e.g. dye degradation, effective electron injection from the dye into the conduction band of semiconducting nanoparticles, such as titanium dioxide and zinc oxide, outlining future developments for the use of vegetable sensitizers in DSSCs. We also discuss the cost of vegetable dyes and how their versatility can boost the advancement of new power management solutions, especially for their integration in living environments, making the practical application of such systems economically viable. Finally, we present our view on future prospects in the development of synthetic analogues of vegetable dyes as sensitizers in DSSCs.

  16. Sensitizers containing donor cascade and rhodanine-3-acetic acid moieties for dye-sensitized solar cells

    SciTech Connect

    Wu, Quan-Ping; Zhang, Lu; Liang, Mao; Sun, Zhe; Xue, Song

    2011-01-15

    Three organic dyes with D-{pi}-D-{pi}-A structure based on triarylamine, dimethylarylamine, and rhodanine-3-acetic acid moieties are designed and synthesized. Incorporating thiophene moieties into the system affords sensitizers with high molar extinction coefficients. These dyes were applied into nanocrystalline TiO{sub 2} dye-sensitized solar cells through standard operations. For a typical device the maximal monochromatic incident photon-to-current conversion efficiency (IPCE) can reach 73%, with a short-circuit photocurrent density (J{sub sc}) of 7.3 mA/cm{sup 2}, an open-circuit voltage (V{sub oc}) of 636 mV, and a fill factor (ff) of 0.61, corresponding to an overall conversion efficiency ({eta}) of 2.86%. (author)

  17. Performance of Caesalpinia sappan heartwood extract as photo sensitizer for dye sensitized solar cells.

    PubMed

    Ananth, S; Vivek, P; Saravana Kumar, G; Murugakoothan, P

    2015-02-25

    A natural dye extracted from Caesalpinia sappan heartwood was used as photo sensitizer for the first time to fabricate titanium dioxide (TiO2) nanoparticles based dye sensitized solar cells. Brazilin and brazilein are the major pigments present in the natural dye and their optimized molecular structure were calculated using Density functional theory (DFT) at 6-31G (d) level. The HOMO-LUMO were performed to reveal the energy gap using optimized structure. Pure TiO2 nanoparticles in anatase phase were synthesized by sol-gel technique. The pure and natural dye sensitized TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Low cost and environment friendly dye sensitized solar cells were fabricated using natural dye sensitized TiO2 based photo anode. The solar light to electron conversion efficiency of Caesalpinia sappan heartwood extract sensitized dye sensitized solar cell is 1.1%.

  18. Low-voltage driving phototransistor based on dye-sensitized nanocrystalline titanium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqi; Xu, Jia; Liu, Zhiyong; Lu, Yuming; Cai, Chuanbing

    2012-01-01

    Photo-gated transistors based on dye-sensitized nanocrystalline titanium dioxide thin film are established. A transistor-like transport behavior characterized by the linear increase, saturated plateau, and breakdown-like increase in the voltage-current curve is achievable with a low driven bias for the present device. The response current exhibits a linear dependence on the intensity of gated light, and the measured maximum photosensitivity is approximately 0.1 A/W. The dynamic responses for various light frequencies and their dependences on the load resistances are investigated as well. The cut-off frequency of ~50 Hz is abstracted, indicating the potential application for economical and efficient light switch or optical communication unit. The dc photo-gated response is explained by the energy level diagram, and is numerically simulated by an equivalent circuit model, suggesting a clear correlation between photovoltaic and photoconductive behaviors as well as their optical responses.

  19. Anchoring groups for dye-sensitized solar cells.

    PubMed

    Zhang, Lei; Cole, Jacqueline M

    2015-02-18

    The dyes in dye-sensitized solar cells (DSSCs) require one or more chemical substituents that can act as an anchor, enabling their adsorption onto a metal oxide substrate. This adsorption provides a means for electron injection, which is the process that initiates the electrical circuit in a DSSC. Understanding the structure of various DSSC anchors and the search for new anchors are critical factors for the development of improved DSSCs. Traditionally, carboxylic acid and cyanoacrylic acid groups are employed as dye anchors in DSSCs. In recent years, novel anchor groups have emerged, which make a larger pool of materials available for DSSC dyes, and their associated physical and chemical characteristics offer interesting effects at the interface between dye and metal oxide. This review focuses especially on the structural aspects of these novel dye anchors for TiO2-based DSSCs, including pyridine, phosphonic acid, tetracyanate, perylene dicarboxylic acid anhydride, 2-hydroxylbenzonitrile, 8-hydroxylquinoline, pyridine-N-oxide, hydroxylpyridium, catechol, hydroxamate, sulfonic acid, acetylacetanate, boronic acid, nitro, tetrazole, rhodanine, and salicylic acid substituents. We anticipate that further exploration and understanding of these new types of anchoring groups for TiO2 substrates will not only contribute to the development of advanced DSSCs, but also of quantum dot-sensitized solar cells, water splitting systems, and other self-assembled monolayer-based technologies.

  20. The application of electrospun titania nanofibers in dye-sensitized solar cells.

    PubMed

    Krysova, Hana; Zukal, Arnost; Trckova-Barakova, Jana; Chandiran, Aravind Kumar; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Kavan, Ladislav

    2013-01-01

    Titania nanofibers were fabricated using the industrial Nanospider(TM) technology. The preparative protocol was optimized by screening various precursor materials to get pure anatase nanofibers. Composite films were prepared by mixing a commercial paste of nanocrystalline anatase particles with the electrospun nanofibers, which were shortened by milling. The composite films were sensitized by Ru-bipyridine dye (coded C106) and the solar conversion efficiency was tested in a dye-sensitized solar cell filled with iodide-based electrolyte solution (coded Z960). The solar conversion efficiency of a solar cell with the optimized composite electrode (η = 7.53% at AM 1.5 irradiation) outperforms that of a solar cell with pure nanoparticle film (η = 5.44%). Still larger improvement was found for lower light intensities. At 10% sun illumination, the best composite electrode showed η = 7.04%, referenced to that of pure nanoparticle film (η = 4.69%). There are non-monotonic relations between the film's surface area, dye sorption capacity and solar performance of nanofiber-containing composite films, but the beneficial effect of the nanofiber morphology for enhancement of the solar efficiency has been demonstrated.

  1. Metal-Free Sensitizers for Dye-Sensitized Solar Cells.

    PubMed

    Chaurasia, Sumit; Lin, Jiann T

    2016-06-01

    This review focuses on our work on metal-free sensitizers for dye-sensitized solar cells (DSSCs). Sensitizers based on D-A'-π-A architecture (D is a donor, A is an acceptor, A' is an electron-deficient entity) exhibit better light harvesting than D-π-A-type sensitizers. However, appropriate molecular design is needed to avoid excessive aggregation of negative charge at the electron-deficient entity upon photoexcitation. Rigidified aromatics, including aromatic segments comprising fused electron-excessive and -deficient units in the spacer, allow effective electronic communication, and good photoinduced charge transfer leads to excellent cell performance. Sensitizers with two anchors/acceptors, D(-π-A)2 , can more efficiently harvest light, inject electrons, and suppress dark current compared with congeners with a single anchor. Appropriate incorporation of heteroaromatic units in the spacer is beneficial to DSSC performance. High-performance, aqueous-based DSSCs can be achieved with a dual redox couple comprising imidazolium iodide and 2,2,6,6-tetramethylpiperidin-N-oxyl, and/or using dyes of improved wettability through the incorporation of a triethylene oxide methyl ether chain.

  2. Arylamine organic dyes for dye-sensitized solar cells.

    PubMed

    Liang, Mao; Chen, Jun

    2013-04-21

    Arylamine organic dyes with donor (D), π-bridge (π) and acceptor (A) moieties for dye-sensitized solar cells (DSCs) have received great attention in the last decade because of their high molar absorption coefficient, low cost and structural variety. In the early stages, the efficiency of DSCs with arylamine organic dyes with D-π-A character was far behind that of DSCs with ruthenium(II) complexes partly due to the lack of information about the relationship between the chemical structures and the photovoltaic performance. However, exciting progress has been recently made, and power conversion efficiencies over 10% were obtained for DSCs with arylamine organic dyes. It is thus that the recent research and development in the field of arylamine organic dyes employing an iodide/triiodide redox couple or polypyridyl cobalt redox shuttles as the electrolytes for either DSCs or solid-state DSCs has been summarized. The cell performance of the arylamine organic dyes are compared, providing a comprehensive overview of arylamine organic dyes, demonstrating the advantages/disadvantages of each class, and pointing out the field that needs to reinforce the research direction in the further application of DSCs.

  3. Peptide-templating dye-sensitized solar cells.

    PubMed

    Han, Tae Hee; Moon, Hyoung-Seok; Hwang, Jin Ok; Seok, Sang Il; Im, Sang Hyuk; Kim, Sang Ouk

    2010-05-07

    A hollow TiO(2) nanoribbon network electrode for dye-sensitized solar cells (DSSC) was fabricated by a biotemplating process combining peptide self-assembly and atomic layer deposition (ALD). An aromatic peptide of diphenylalanine was assembled into a three-dimensional network consisting of highly entangled nanoribbons. A thin TiO(2) layer was deposited at the surface of the peptide template via the ALD process. After the pyrolysis of the peptide template, a highly entangled nanotubular TiO(2) framework was successfully prepared. Evolution of the crystal phase and crystallite size of the TiO(2) nanostructure was exploited by controlling the calcination temperature. Finally, the hollow TiO(2) nanoribbon network electrode was integrated into DSSC devices and their photochemical performances were investigated. Hollow TiO(2) nanoribbon-based DSSCs exhibited a power conversion efficiency of 3.8%, which is comparable to the conventional TiO(2) nanoparticle-based DSSCs (3.5%). Our approach offers a novel pathway for DSSCs consisting of TiO(2) electrodes via biotemplating.

  4. Titanium dioxide dye-sensitized polyaniline solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Hooi-Sung

    2005-11-01

    A novel form of a dye-sensitized solar cell was investigated with in situ photopolymerization of aniline. Tris(4-carboxyphenyl)mono(4-aminophenyl) porphyrin (TC3APP) was successfully synthesized and used as a sensitizer. Nanoparticulate TiO2 electrodes were prepared from 25 nm size TiO 2 particles (P25); in addition, commercial TiO2 electrodes from Solaronix and INAP were used. Electrochemically polymerized polyaniline films were used as a counterelectrode. Aniline gel as an electrolyte solution was composed of (1S)-(+)-10-camphorsulfonic acid (CSA), lithium perchlorate (LiClO4), polyethylene oxide (PEO), and aniline as solvent. Morphology study of TiO2 electrodes and electropolymerized polyaniline films proceeded with atomic force microscopy (AFM) and scanning electron microscopy (SEM). Results showed that TiO2 electrodes have a highly porous and well connected structure and polyaniline film is composed of a waxy surface and bush-like structure. The conductive emeraldine salt form of polyaniline was confirmed with UV absorption spectroscopy. Adsorption study of TC3APP on TiO2 electrode suggested that most of the adsorption proceeded in 6 hours after the immersion of TiO 2 electrode in TC3APP solution. Greater amounts of TC 3APP were adsorbed on TiO2 electrode in the presence of deoxycholic acid as coadsorber. Photopolymerization proceeded in a sandwiched solar cell with TC 3APP-adsorbed TiO2 electrode and polyaniline counterelectrode including aniline gel. Photocurrent was observed with zero bias voltage. Photocurrent as a function of time was composed of two stages: (1) photoelectropolymerization of polyaniline and (2) conduction of photoelectrons as in a typical solar cell. The current-voltage measurement produced Voc = 0.6 V, J sc = 0.23 mA/cm2, FF = 0.78, and eta = 0.74% under 14.6 mW/cm2 of light intensity. Spectral study and action spectrum confirm that TC3APP is responsible for the photocurrent upon absorption of visible light, and some absorption by

  5. Effects of Dye Structure in Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Hoskins, Anna R.

    Dye sensitized solar cells (DSSCs) are photovoltaic devices that may compete with standard silicon solar cells due to their ease of construction and lower cost [32]. Ruthenium dye structures, such as N3 (Ru -- (4,4' -- dicarboxylic acid -- 2,2' -- bipyridine)2(NCS)2), have shown promise for collection efficiencies near silicon photovoltaic levels [20, 33]. DSSCs have not achieved the reproducibility and maximum efficiency of silicon solar cells [33, 34]. Altering ligands on the dye molecules may affect the energies of light that are absorbed by the DSSC. Photovoltaic testing, including current versus voltage tests, of DSSCs with both narrow band monochromated light sources and broadband (AM1.5 solar simulator) allows comparison between maximum efficiency, short-circuit current, open circuit voltage, and spectral response (SR) for the dye molecules. By studying how the efficiency and power output change with different dye structures, the nature of how to increase efficiency of the DSSC can be addressed. Conjugation length of the ligands in ruthenium dye molecules can be shown, through square-well and Huckel theory calculations, to have a role in changing the HOMO-LUMO gap of the molecules and the absorption of specific wavelengths of light by the DSSC. The efficiency, max power, short circuit current, open circuit voltage, and SR were all measured for the DSSCs at wavelengths from 350 nm to 690 nm using a monochromated light source. Measurements taken at 20 nm steps reveal trends in the photon acceptance for dye molecules that can be linked to the conjugation length of the ligands in the dye through the SR. The change in the SR centroid and UV-VIS measurements indicate a trend toward increasing optimal wavelength with increasing conjugation length in the dye molecules; however these trends are not as pronounced as theoretical calculations for the dyes. This difference in wavelength shift occurs due to the theoretical calculations accounting for only the ligands

  6. Photo-electrochemical studies of chemically deposited nanocrystalline meso-porous n-type TiO2 thin films for dye-sensitized solar cell (DSSC) using simple synthesized azo dye

    NASA Astrophysics Data System (ADS)

    Ezema, C. G.; Nwanya, A. C.; Ezema, B. E.; Patil, B. H.; Bulakhe, R. N.; Ukoha, P. O.; Lokhande, C. D.; Maaza, Malik; Ezema, Fabian I.

    2016-04-01

    Nanocrystalline titanium dioxide (TiO2) thin films were deposited by successive ionic layer adsorption and reaction method onto fluorine doped tin oxide coated glass substrate at room temperature (300 K). Titanium trichloride and sodium hydroxide were used as cationic and anionic sources, respectively. The as-deposited and annealed films were characterized for structural, morphological, optical, electrical and wettability properties. The photoelectrochemical study of TiO2 sensitized with a laboratory synthesized organic dye (azo) was evaluated in the polyiodide electrolyte at 40 mW cm-2 light illumination intensity. The photovoltaic characteristics show a fill factor of 0.24 and solar conversion efficiency value of 0.032 % for a TiO2 thickness of 0.96 µm as compared to efficiency of 0.014 % for rose Bengal of the same thickness.

  7. Dye Sensitized Tandem Photovoltaic Cells

    SciTech Connect

    Barber, Greg D.

    2009-12-21

    This work provided a new way to look at photoelectrochemical cells and their performance. Although thought of as low efficiency, a the internal efficiency of a 9% global efficiency dye sensitized solar cell is approximately equal to an 18% efficient silicon cell when each is compared to their useful spectral range. Other work undertaken with this contract also reported the first growth oriented titania and perovskite columns on a transparent conducting oxide. Other work has shown than significant performance enhancement in the performance of dye sensitized solar cells can be obtained through the use of coupling inverse opal photonic crystals to the nanocrystalline dye sensitized solar cell. Lastly, a quick efficient method was developed to bond titanium foils to transparent conducting oxide substrates for anodization.

  8. The electronic structure engineering of organic dye sensitizers for solar cells: The case of JK derivatives.

    PubMed

    Zhang, Cai-Rong; Ma, Jin-Gang; Zhe, Jian-Wu; Jin, Neng-Zhi; Shen, Yu-Lin; Wu, You-Zhi; Chen, Yu-Hong; Liu, Zi-Jiang; Chen, Hong-Shan

    2015-11-05

    The design and development of novel dye sensitizers are effective method to improve the performance of dye-sensitized solar cells (DSSCs) because dye sensitizers have significant influence on photo-to-current conversion efficiency. In the procedure of dye sensitizer design, it is very important to understand how to tune their electronic structures and related properties through the substitution of electronic donors, acceptors, and conjugated bridges in dye sensitizers. Here, the electronic structures and excited-state properties of organic JK dye sensitizers are calculated by using density functional theory (DFT) and time dependent DFT methods. Based upon the calculated results, we investigated the role of different electronic donors, acceptors, and π-conjugated bridges in the modification of electronic structures, absorption properties, as well as the free energy variations for electron injection and dye regeneration. In terms of the analysis of transition configurations and molecular orbitals, the effective chromophores which are favorable for electron injection in DSSCs are addressed. Meanwhile, considering the absorption spectra and free energy variation, the promising electronic donors, π-conjugated bridges, and acceptors are presented to design dye sensitizers.

  9. A Hybrid Tandem Solar Cell Combining a Dye-Sensitized and a Polymer Solar Cell.

    PubMed

    Shao, Zhipeng; Chen, Shuanghong; Zhang, Xuhui; Zhu, Liangzheng; Ye, Jiajiu; Dai, Songyuan

    2016-06-01

    A hybrid tandem solar cell was assambled by connecting a dye sensitized solar cell and a polymer solar cell in series. A N719 sensitized TiO2 was used as photocathode in dye-sensitized subcell, and a MEH-PPV/PCBM composite was used as active layer in the polymer subcell. The polymer subcell fabricated on the counter electrode of the dye sensitized solar cell. A solution processed TiO(x) layer was used as electron collection layer of the polymer sub cell and the charge recombination layer. The effects of the TiO(x) interlayer and the spectral overlap between the two sub cells have been studied and optimized. The results shows that a proper thickness of the TiO(x) layer is needed for tandem solar cells. Thick TiO(x) will enhance the series resistance, but too thin TiO(x), layer will damage the hole blocking effect and its hydrophilic. The resulting optimized tandem solar cells exhibited a power conversion efficiency of 1.28% with a V(oc) of 0.95 V under simulated 100 mW cm(-2) AM 1.5 illumination.

  10. Solid-state dye-sensitized solar cells fabricated by coupling photoelectrochemically deposited poly(3,4-ethylenedioxythiophene) (PEDOT) with silver-paint on cathode.

    PubMed

    Manseki, Kazuhiro; Jarernboon, Wirat; Youhai, You; Jiang, Ke-Jian; Suzuki, Kazuharu; Masaki, Naruhiko; Kim, Yukyeong; Xia, Jiangbin; Yanagida, Shozo

    2011-03-21

    A PEDOT-based dye-sensitized solar cell (DSC) is successfully improved by coupling photoelectrochemically deposited PEDOT layer with an Ag paste-paint on the cathode. With a 9.3 μm thick mesoscopic nanocrystalline TiO(2) film, a maximum cell performance of 3.2% with relatively high V(oc) of around 780 mV is achieved.

  11. Preparation of hierarchical TiO2 microspheres for enhancing photocurrent of dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Jia, QiaoYing; Que, WenXiu; Qiu, XinKu; Zhong, Peng; Chen, Jin

    2012-07-01

    Hierarchically structured TiO2 microspheres were prepared at a low temperature by combining a sol-gel process with a solvothermal route and characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction analysis. Results indicate that the phase structure of the as-prepared TiO2 products undergoes a transformation, which changes from amorphous microspheres with a smooth surface in the sol-gel process to hierarchical anatase ones consisting of nanocrystallines after the solvothermal treatment. The hierarchical anatase TiO2 microsphere shows large surface areas and good light scattering effects as the photoelectrodes for dye sensitized solar cells (DSSCs). DSSCs based on TiO2 microspheres exhibit an improvement power conversion efficiency of 6.58% and a high short current density of 13.83 mA/cm2 as compared to the commercial P25 based DSSCs with a power conversion efficiency of 4.94% and a high short current density of 10.28 mA/cm2.

  12. Influence of 4-guanidinobutyric acid as coadsorbent in reducing recombination in dye-sensitized solar cells.

    PubMed

    Zhang, Zhipan; Zakeeruddin, Shaik M; O'Regan, Brian C; Humphry-Baker, Robin; Grätzel, Michael

    2005-11-24

    Dye-sensitized solar cells based on nanocrystalline TiO(2) have been fabricated with an amphiphilic ruthenium sensitizer [Ru (4,4'-dicarboxylic acid-2,2'-bipyridine) (4,4'-bis(p-hexyloxystyryl)-2,2'-bipyridine)(NCS)(2)], coded as K-19, and 4-guanidinobutyric acid (GBA) as coadsorbent. The cells showed a approximately 50 mV increase in open-circuit voltage and a similar current in comparison with cells without GBA cografting. The performance of both types of devices was evaluated on the basis of their photocurrent-voltage characteristics, dark current measurements, cyclic voltammetry, electrochemical impedance spectroscopy, and phototransient decay methods. The results indicate that GBA shifted the conduction band of TiO(2) toward a more negative potential and reduced the interfacial charge-transfer reaction from conduction band electrons to triiodide in the electrolyte (also known as the back reaction). In addition, the devices with GBA cografting showed an excellent stability with a power conversion efficiency of approximately 8% under simulated full sunlight (air mass 1.5, 100 mW cm(-2)) during visible light soaking at 60 degrees C.

  13. The effects of anodization parameters on titania nanotube arrays and dye sensitized solar cells.

    PubMed

    Xie, Z B; Adams, S; Blackwood, D J; Wang, J

    2008-10-08

    Ordered, closely packed, and vertically oriented titania nanotube arrays with lengths exceeding 10 µm were fabricated by anodization of titanium foils. The effects of anodization voltage and time on the microstructural morphology and the photovoltaic performance of dye sensitized solar cells based on the titania nanotube arrays were investigated. On increasing the anodization voltage or time, the increase in active surface area leads to enhanced photovoltaic currents and thereby an overall higher performance of the dye sensitized solar cells. The efficiency enhancement with rising anodization voltage exceeds the increase in the outer surface area of the nanotubes, indicating that the active surface area is further enlarged by a more accessible inner surface of the nanotube arrays grown with a higher anodization voltage. A promising efficiency of 3.67% for dye sensitized solar cells based on anodized titania nanotube arrays was achieved under AM1.5, 100 mW cm(-2) illumination.

  14. Tuning the HOMO and LUMO energy levels of organic chromophores for dye sensitized solar cells.

    PubMed

    Hagberg, Daniel P; Marinado, Tannia; Karlsson, Karl Martin; Nonomura, Kazuteru; Qin, Peng; Boschloo, Gerrit; Brinck, Tore; Hagfeldt, Anders; Sun, Licheng

    2007-12-07

    A series of organic chromophores have been synthesized in order to approach optimal energy level composition in the TiO2-dye-iodide/triiodide system in the dye-sensitized solar cells. HOMO and LUMO energy level tuning is achieved by varying the conjugation between the triphenylamine donor and the cyanoacetic acid acceptor. This is supported by spectral and electrochemical experiments and TDDFT calculations. These results show that energetic tuning of the chromophores was successful and fulfilled the thermodynamic criteria for dye-sensitized solar cells, electrical losses depending on the size and orientation of the chromophores were observed.

  15. Synthesis and characterization of Allium cepa L. as photosensitizer of dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Sutikno, Afrian, Noverdi; Supriadi, Putra, Ngurah Made Dharma

    2016-04-01

    The synthesis and characterization of Allium cepa L. used as natural pigment for natural dye sensitizer of solar cell has successfully done and anthocyanin is extracted. Anthocynin is color pigment of plant which has characteristic absorption spectrum of photon and excites electrons up to pigment molecules. As the anthocyanin absorbed light increases the excited electrons increase as well. The generated current also increases and it leads to the efficiency increase. The energy conversion efficiency of the cells sensitized with dye of Allium cepa L. was 3,045 x 10-4%. A simple technique was taken to fabricate dye sensitizer solar cell is spincoating.

  16. Dual Functional TiO2-Au Nanocomposite Material for Solid-State Dye-Sensitized Solar Cells.

    PubMed

    Pandikumar, A; Suresh, S; Murugesan, S; Ramaraj, R

    2015-09-01

    Titanium dioxide-gold nanocomposite ((TiO2-Au)(nps)) materials dispersed in poly(diallyldimethylammonium chloride) (PDDA) polymer electrolyte are employed as solid-state electrolytes in a dye-sensitized solar cell (DSSC) containing nanocrystalline TiO2 nanoparticle (P25) or (P25-Au)(nps) thin film photoanode adsorbed with a near-IR dye sensitizer, nickel-phthalocyanine (NiPcTs). The photocurrent-photovoltage characteristics of the DSSCs are evaluated under standard AM 1.5 G simulated solar irradiation of 100 mW/cm2. The (TiO2-Au)(nps) nanocomposite material incorporated into the PDDA polymer electrolyte promotes interfacial charge transfer process, reduces crystallinity of the polymer electrolyte and enhances mobility of the /-/I3- redox couple, which are resulted in -6-fold increase in the overall solar to electrical energy conversion efficiency when compared to the unmodified polymer electrolyte based DSSC. When the P25 photoanode is replaced with the (P25-Au)(nps) photoanode, a further 8-fold increase in the overall energy conversion efficiency is achieved, owing to the increas in the charge transport through the photoanode. The photovoltaic performance of the present DSSC configuration is also compared with that of a cell sensitized by using standard N719 dye.

  17. Fabrication of dye-sensitized solar cells using Nb2O5 blocking layer made by sol-gel method.

    PubMed

    Kim, Jaehwan; Kim, Jongsung

    2011-08-01

    In this study, nanocrystalline Nb2O5 thin film has been prepared via sol-gel process using niobium ethoxide as a precursor. Sol-gel films using various ratios of H2O/Nb have been prepared on fluorinated tin oxide (FTO) glass substrate, and used as electron-blocking layer of dye-sensitized solar cell (DSSC). The Nb2O5 film as deposited was amorphous, but became crystalline with hexagonal phase after heat treatment at 600 degrees C. With higher H2O/Nb molar ratio, denser and more uniform Nb2O5 film surface was obtained. DSSCs with the structure of FTO/Nb2O5/TiO2/Dye/EL/Pt/FTO have been prepared, and their solar-cell performance was evaluated. By introduction of Nb2O5 sol-gel film between FTO and TiO2 layer in DSSCs, energy conversion efficiency could be improved.

  18. Preparation of a Phosphor/TiO2 nanoparticle composite layer for applications in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shin, Seong Gwan; Kim, Kyung Hwan; Bark, Chung Wung; Choi, Hyung Wook

    2014-08-01

    The conversion luminescence of a phosphor from the ultraviolet region to the visible region can enhance the light harvesting in dye-sensitized solar cells (DSSCs), because many dyes can only absorb visible light. To explore the influence of phosphor additives on the conversion efficiency of DSSC, we introduce the nanocrystalline YAG:Eu phosphors into TiO2 photoelectrodes. The photoluminescence measurement showed that a broad solar spectrum including the ultraviolet region could be reabsorbed by the dye N-719 via conversion luminescence due to the phosphor. With the introduction of the phosphor, both the photocurrent and the photovoltage of the DSSC could be improved due to the enhanced light harvesting and the elevated energy levels of the oxides. With the optimal concentration of phosphor doping in the electrode, the cells light-to-electricity conversion efficiency could be improved by a factor of 1.14 compared to that for a cell without phosphor doping.

  19. Heterogeneous electron transfer from dye-sensitized nanocrystalline TiO2 to [Co(bpy)3]3+: insights gained from impedance spectroscopy.

    PubMed

    Liu, Yeru; Jennings, James R; Zakeeruddin, Shaik M; Grätzel, Michael; Wang, Qing

    2013-03-13

    Dye-sensitized solar cells (DSCs) employing the [Co(bpy)3](3+/2+) redox mediator have recently attained efficiencies in excess of 12%, increasing the attractiveness of DSCs as an alternative to conventional photovoltaics. Heterogeneous electron transfer from dye-sensitized nanocrystalline TiO2 to [Co(bpy)3](3+) ions in solution, a process known as recombination in the context of DSC operation, is an important loss mechanism in these solar cells. Here, we employ impedance spectroscopy over a range of temperatures to characterize electron storage, transport, and recombination in efficient DSCs based on the [Co(bpy)3](3+/2+) redox mediator, with either the amphiphillic ruthenium sensitizer Z907 or the state-of-the-art organic sensitizer Y123. The temperature dependence of the electron-transport resistance indicates that transport occurs via states at energies lower than commonly assumed for the TiO2 conduction band edge. We show that a non-exponential dependence of capacitance, transport resistance, and recombination resistance on photovoltage can be interpreted as evidence for partial unpinning of the TiO2 energy levels. We also find that the nature of the sensitizing dye determines the predominant recombination route: via the conduction band for Y123 and via band gap states for Z907, which is the main reason for the superior performance of Y123. The different mechanisms appear to arise from changes in electronic coupling between TiO2 donor states and [Co(bpy)3](3+) acceptor states, as opposed to changes in the density of TiO2 states or their energetic matching with the acceptor-state distribution. These findings have implications for modeling heterogeneous electron transfer at dye-sensitized semiconductor-solution interfaces in general and for the optimization of DSCs.

  20. See-through dye-sensitized solar cells: photonic reflectors for tandem and building integrated photovoltaics.

    PubMed

    Heiniger, Leo-Philipp; O'Brien, Paul G; Soheilnia, Navid; Yang, Yang; Kherani, Nazir P; Grätzel, Michael; Ozin, Geoffrey A; Tétreault, Nicolas

    2013-10-25

    See-through dye-sensitized solar cells with 1D photonic crystal Bragg reflector photoanodes show an increase in peak external quantum efficiency of 47% while still maintaining high fill factors, resulting in an almost 40% increase in power conversion efficiency. These photoanodes are ideally suited for tandem and building integrated photovoltaics.

  1. Anisotropic TiO2 nanomaterials in dye-sensitized solar cells.

    PubMed

    Nair, A Sreekumaran; Peining, Zhu; Babu, V Jagadeesh; Shengyuan, Yang; Ramakrishna, Seeram

    2011-12-28

    The review presented below summarizes the up-to-date research efforts in using one-dimensional TiO(2) nanomaterials in dye-sensitized solar cells. A brief account of the methods of synthesis of the anisotropic nanomaterials as well as their photovoltaic performance in DSCs was summarily presented. The usefulness of the materials as scattering layer in DSCs was also surveyed.

  2. Fabrications of electrospun nanofibers containing inorganic fillers for dye-sensitized solar cells.

    PubMed

    Kim, Young-Keun; Hwang, Won-Pill; Seo, Min-Hye; Lee, Jin-Kook; Kim, Mi-Ra

    2014-08-01

    Poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) nanofibers containing inorganic fillers were fabricated by electrospinning. Dye-sensitized solar cells (DSSCs) using these nanofibers showed improved short circuit currents without degraded fill factors or open circuit voltages. The long-term stabilities of cells using electrospun PVDF-HFP/titanium isopropoxide (TIP) nanofibers were significantly improved.

  3. Dye-sensitized solar cells based on multichromophoric supramolecular light-harvesting materials.

    PubMed

    Panda, Dillip K; Goodson, Flynt S; Ray, Shuvasree; Saha, Sourav

    2014-05-25

    Multichromophoric dye-sensitized solar cells (DSSCs) comprised of a supramolecular zinc-phthalocyanineperyleneimide (ZnPc···PMI) dyad convert light to electrical energy with much higher power conversion efficiency (PCE = 2.3%) and incident-photon-to-current-efficiency (IPCE = ca. 40%) than the devices made of individual dyes.

  4. Highly efficient catalysts for Co(II/III) redox couples in dye-sensitized solar cells.

    PubMed

    Wang, Liang; Diau, Eric Wei-Guang; Wu, Mingxing; Lu, Hsueh-Pei; Ma, Tingli

    2012-03-07

    We developed several low-cost catalysts with high catalytic activity, which were used as counter electrodes in dye-sensitized solar cells (DSCs). They showed higher efficiencies than that of Pt. The efficiencies were improved by 18-42% for the DSCs composed of active carbon, niobium dioxide, ordered mesoporous carbon and commercial titanium carbide.

  5. Cylindrical dye-sensitized solar cells with high efficiency and stability over time and incident angle.

    PubMed

    Tang, Qunwei; Zhang, Lei; He, Benlin; Yu, Liangmin; Yang, Peizhi

    2016-02-28

    We present here the realization of cylindrical dye-sensitized solar cells composed of Ti wire supported TiO2 nanotube anodes and transparent metal selenide counter electrodes. The optimized device yields a high efficiency of 6.63%, good stability over time, and identical efficiency output at arbitrary incident angles.

  6. Triphenylamine-based indoline derivatives for dye-sensitized solar cells: a density functional theory investigation.

    PubMed

    Ren, Xue-Feng; Kang, Guo-Jun; He, Qiong-Qiong

    2016-01-01

    A new series of triphenylamine-based indoline dye sensitizers were molecularly designed and investigated for their potential use in dye-sensitized solar cells (DSSCs). Theoretical calculations revealed that modifying donor part of D149 by triphenylamine significantly altered the electronic structures, MO energies, and intramolecular charge transfer (ICT) absorption band. Key parameters associated with the light-harvesting efficiency at a given wavelength LHE(λ), the driving force ΔG inject, and the open-circuit photovoltage V oc were characterized. More importantly, these designed (dimeric) dye sensitizers were found to have similar broad absorption spectra to their corresponding monomers, indicating that modifying the donor part with triphenylamine may stop unfavorable dye aggregation. Further analyses of the dye-(TiO2)9 cluster interaction confirmed that there was strong electronic coupling at the interface. These results are expected to provide useful guidance in the molecular design of new highly efficient metal-free organic dyes.

  7. Highly stable tandem solar cell monolithically integrating dye-sensitized and CIGS solar cells

    NASA Astrophysics Data System (ADS)

    Chae, Sang Youn; Park, Se Jin; Joo, Oh-Shim; Jun, Yongseok; Min, Byoung Koun; Hwang, Yun Jeong

    2016-08-01

    A highly stable monolithic tandem solar cell was developed by combining the heterogeneous photovoltaic technologies of dye-sensitized solar cell (DSSC) and solution-processed CuInxGa1-xSeyS1-y (CIGS) thin film solar cells. The durability of the tandem cell was dramatically enhanced by replacing the redox couple from to [Co(bpy)3]2+ /[Co(bpy)3]3+), accompanied by a well-matched counter electrode (PEDOT:PSS) and sensitizer (Y123). A 1000 h durability test of the DSSC/CIGS tandem solar cell in ambient conditions resulted in only a 5% decrease in solar cell efficiency. Based on electrochemical impedance spectroscopy and photoelectrochemical cell measurement, the enhanced stability of the tandem cell is attributed to minimal corrosion by the cobalt-based polypyridine complex redox couple.

  8. Highly stable tandem solar cell monolithically integrating dye-sensitized and CIGS solar cells

    PubMed Central

    Chae, Sang Youn; Park, Se Jin; Joo, Oh-Shim; Jun, Yongseok; Min, Byoung Koun; Hwang, Yun Jeong

    2016-01-01

    A highly stable monolithic tandem solar cell was developed by combining the heterogeneous photovoltaic technologies of dye-sensitized solar cell (DSSC) and solution-processed CuInxGa1-xSeyS1-y (CIGS) thin film solar cells. The durability of the tandem cell was dramatically enhanced by replacing the redox couple from to [Co(bpy)3]2+ /[Co(bpy)3]3+), accompanied by a well-matched counter electrode (PEDOT:PSS) and sensitizer (Y123). A 1000 h durability test of the DSSC/CIGS tandem solar cell in ambient conditions resulted in only a 5% decrease in solar cell efficiency. Based on electrochemical impedance spectroscopy and photoelectrochemical cell measurement, the enhanced stability of the tandem cell is attributed to minimal corrosion by the cobalt-based polypyridine complex redox couple. PMID:27489138

  9. Monolithic-Structured Single-Layered Textile-Based Dye-Sensitized Solar Cells.

    PubMed

    Yun, Min Ju; Cha, Seung I; Kim, Han Seong; Seo, Seon Hee; Lee, Dong Y

    2016-10-06

    Textile-structured solar cells are frequently discussed in the literature due to their prospective applications in wearable devices and in building integrated solar cells that utilize their flexibility, mechanical robustness, and aesthetic appearance, but the current approaches for textile-based solar cells-including the preparation of fibre-type solar cells woven into textiles-face several difficulties from high friction and tension during the weaving process. This study proposes a new structural concept and fabrication process for monolithic-structured textile-based dye-sensitized solar cells that are fabricated by a process similar to the cloth-making process, including the preparation of wires and yarns that are woven for use in textiles, printed, dyed, and packaged. The fabricated single-layered textile-based dye-sensitized solar cells successfully act as solar cells in our study, even under bending conditions. By controlling the inter-weft spacing and the number of Ti wires for the photoelectrode conductor, we have found that the performance of this type of dye-sensitized solar cell was notably affected by the spacing between photoelectrodes and counter-electrodes, the exposed areas of Ti wires to photoelectrodes, and photoelectrodes' surface morphology. We believe that this study provides a process and concept for improved textile-based solar cells that can form the basis for further research.

  10. Monolithic-Structured Single-Layered Textile-Based Dye-Sensitized Solar Cells

    PubMed Central

    Yun, Min Ju; Cha, Seung I.; Kim, Han Seong; Seo, Seon Hee; Lee, Dong Y.

    2016-01-01

    Textile-structured solar cells are frequently discussed in the literature due to their prospective applications in wearable devices and in building integrated solar cells that utilize their flexibility, mechanical robustness, and aesthetic appearance, but the current approaches for textile-based solar cells—including the preparation of fibre-type solar cells woven into textiles—face several difficulties from high friction and tension during the weaving process. This study proposes a new structural concept and fabrication process for monolithic-structured textile-based dye-sensitized solar cells that are fabricated by a process similar to the cloth-making process, including the preparation of wires and yarns that are woven for use in textiles, printed, dyed, and packaged. The fabricated single-layered textile-based dye-sensitized solar cells successfully act as solar cells in our study, even under bending conditions. By controlling the inter-weft spacing and the number of Ti wires for the photoelectrode conductor, we have found that the performance of this type of dye-sensitized solar cell was notably affected by the spacing between photoelectrodes and counter-electrodes, the exposed areas of Ti wires to photoelectrodes, and photoelectrodes’ surface morphology. We believe that this study provides a process and concept for improved textile-based solar cells that can form the basis for further research. PMID:27708359

  11. Monolithic-Structured Single-Layered Textile-Based Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Yun, Min Ju; Cha, Seung I.; Kim, Han Seong; Seo, Seon Hee; Lee, Dong Y.

    2016-10-01

    Textile-structured solar cells are frequently discussed in the literature due to their prospective applications in wearable devices and in building integrated solar cells that utilize their flexibility, mechanical robustness, and aesthetic appearance, but the current approaches for textile-based solar cells—including the preparation of fibre-type solar cells woven into textiles—face several difficulties from high friction and tension during the weaving process. This study proposes a new structural concept and fabrication process for monolithic-structured textile-based dye-sensitized solar cells that are fabricated by a process similar to the cloth-making process, including the preparation of wires and yarns that are woven for use in textiles, printed, dyed, and packaged. The fabricated single-layered textile-based dye-sensitized solar cells successfully act as solar cells in our study, even under bending conditions. By controlling the inter-weft spacing and the number of Ti wires for the photoelectrode conductor, we have found that the performance of this type of dye-sensitized solar cell was notably affected by the spacing between photoelectrodes and counter-electrodes, the exposed areas of Ti wires to photoelectrodes, and photoelectrodes’ surface morphology. We believe that this study provides a process and concept for improved textile-based solar cells that can form the basis for further research.

  12. Natural dye sensitized TiO2 nanorods assembly of broccoli shape based solar cells.

    PubMed

    Yuvapragasam, Akila; Muthukumarasamy, N; Agilan, S; Velauthapillai, Dhayalan; Senthil, T S; Sundaram, Senthilarasu

    2015-07-01

    TiO2 nanorods based thin films with rutile phase have been synthesized using template free low temperature hydrothermal method. The scanning electron microscope images showed that the prepared TiO2 samples were made of TiO2 nanorods and the nanorods had arranged by itself to form a broccoli like shape. The X-ray diffraction studies revealed that the prepared TiO2 samples exhibit rutile phase. The grown TiO2 nanorods had been sensitized using the flowers of Sesbania (S) grandiflora, leaves of Camellia (C) sinensis and roots of Rubia (R) tinctorum. Dye sensitized solar cells had been fabricated using the natural dye sensitized TiO2 nanorods based thin film photoelectrode and the open circuit voltage and short circuit current density were found to lie in the range of 0.45-0.6 V and 5.6-6.4 mA/cm(2) respectively. The photovoltaic performance of all the fabricated natural dye sensitized TiO2 solar cells indicate that natural dyes have the potential to be used as effective sensitizer in dye sensitized solar cells.

  13. Efficient highly flexible dye sensitized solar cells of three dimensional graphene decorated titanium dioxide nanoparticles on plastic substrate

    NASA Astrophysics Data System (ADS)

    Zhi, Jian; Cui, Houlei; Chen, Angran; Xie, Yian; Huang, Fuqiang

    2015-05-01

    Dye-sensitized solar cells (DSSCs) on flexible plastic substrates usually suffer from a slower electron diffusion rate and insufficient surface area due to no sintering process. Therefore, the conversion efficiency (ƞ) of such flexible DSSCs is normally below 6%. Here, the highly flexible DSSCs with enhanced performance are fabricated at room temperature, employing 3D graphene decorated nanocrystalline TiO2 films (3DGT) as anode on plastic substrates. Owing to the enhanced charge transportation and increased surface area from 3D conductive graphene skeleton, the 13 μm-thick 3DGT-0.85 (0.85 wt% 3D graphene plus TiO2 nanoparticles) anode achieves a power conversion efficiency of 6.41%, which is 56% higher than pristine TiO2 based anode. This efficiency is among the highest values for the previously reported TiO2 photoanodes on plastic substrates.

  14. Electrochemical study on the TiO2 porous electrodes for metal-free dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, D. W.; Chen, S.; Li, X. D.; Wang, Z. A.; Shi, J. H.; Sun, Z.; Yin, X. J.; Huang, S. M.

    2009-08-01

    Nanocrystalline TiO2 porous electrodes were prepared by screen-printing method in order to efficiently control the fabrication process. TiO2 viscous pastes were prepared from commercial TiO2 nano powder using ethyl cellulose as a porosity controlling agent. A metal-free organic dye (indoline dye D102) was used as a sensitizer. TiO2 porous electrodes with different thicknesses were investigated. The optical and physical properties of the TiO2 films, dye adsorption behavior and performance of dye-sensitized solar cells (DSCs) were investigated systemically. The electronic and ionic processes in DSCs were analysized and discussed by electrochemical impedance spectroscopy (EIS). High conversion efficiencies over 8.00 % under illumination of simulated AM1.5 sunlight (60mW/cm2) were achieved.

  15. Fully printable transparent monolithic solid-state dye-sensitized solar cell with mesoscopic indium tin oxide counter electrode.

    PubMed

    Yang, Ying; Ri, Kwangho; Rong, Yaoguang; Liu, Linfeng; Liu, Tongfa; Hu, Min; Li, Xiong; Han, Hongwei

    2014-09-07

    We present a new transparent monolithic mesoscopic solid-state dye-sensitized solar cell based on trilamellar films of mesoscopic TiO2 nanocrystalline photoanode, a ZrO2 insulating layer and an indium tin oxide counter electrode (ITO-CE), which were screen-printed layer by layer on a single substrate. When the thickness of the ITO-CE was optimized to 2.1 μm, this very simple and fully printable solid-state DSSC with D102 dye and spiro-OMeTAD hole transport materials presents efficiencies of 1.73% when irradiated from the front side and 1.06% when irradiated from the rear side under a standard simulated sunlight condition (AM 1.5 Global, 100 mW cm(-2)). Higher parameters could be expected with a better transparent mesoscopic counter electrode and hole conductor for the printable monolithic mesoscopic solid-state DSSC.

  16. Light trapping and plasmonic enhancement in silicon, dye-sensitized and titania solar cells

    NASA Astrophysics Data System (ADS)

    Nhung Tran, Hong; Hieu Nguyen, Van; Nguyen, Bich Ha; Vu, Dinh Lam

    2016-03-01

    The efficiency of a solar cell depends on both the quality of its semiconductor active layer, as well as on the presence of other dielectric and metallic structural components which improve light trapping and exploit plasmonic enhancement. The purpose of this work is to review the results of recent research on light trapping and plasmonic enhancement in three types of solar cells: thin-film silicon solar cells, dye-sensitized solar cells and solid-state titania solar cells. The results of a study on modeling and the design of light trapping components in solar cells are also presented.

  17. Effects of cell area on the performance of dye sensitized solar cell

    SciTech Connect

    Khatani, Mehboob E-mail: noranimuti-mohamed@petronas.com.my E-mail: azclement@yahoo.com Mohamed, Norani Muti E-mail: noranimuti-mohamed@petronas.com.my E-mail: azclement@yahoo.com Hamid, Nor Hisham E-mail: noranimuti-mohamed@petronas.com.my E-mail: azclement@yahoo.com Sahmer, Ahmad Zahrin E-mail: noranimuti-mohamed@petronas.com.my E-mail: azclement@yahoo.com Samsudin, Adel E-mail: noranimuti-mohamed@petronas.com.my E-mail: azclement@yahoo.com

    2014-10-24

    Dye sensitized solar cells (DSCs) have significant advantage over the current silicon cells by having low manufacturing cost and potentially high conversion efficiency. Therefore, DSCs are expected to be used as the next generation solar cell device that covers wide range of new applications. In order to achieve highly efficient DSCs for practical application, study on the effect of increasing the cell’s area on the performance of dye sensitized solar need to be carried out. Three different DSC cell areas namely, 1, 12.96 and 93.5 cm{sup 2} respectively were fabricated and analyzed through solar simulator and electrochemical impedance spectroscopy (EIS). From the analysis of electrochemical impedance spectroscopy (EIS), it was observed that the cell’s electron lifetime was influenced significantly by the cell’s area. Although the collection efficiency of all cells recorded to be approximately 100% but higher recombination rate with increased cell area reduced the performance of the cell.

  18. Dye-Sensitized Solar Cells: The Future of Using Earth-Abundant Elements in Counter Electrodes for Dye-Sensitized Solar Cells (Adv. Mater. 20/2016).

    PubMed

    Briscoe, Joe; Dunn, Steve

    2016-05-01

    Sustainability is an important concept generating traction in the research community. To be really sustainable the full life cycle of a product needs to be carefully considered. A key aspect of this is using elements that are either readily recycled or accessible in the Earth's biosphere. Jigsawing these materials together in compounds to address our future energy needs represents a great opportunity for the current generation of researchers. On page 3802, S. Dunn and J. Briscoe summarize the performance of a selection of alternative materials to replace platinum in the counter electrodes of dye-sensitized solar cells.

  19. Photophysical and electrochemical properties, and molecular structures of organic dyes for dye-sensitized solar cells.

    PubMed

    Ooyama, Yousuke; Harima, Yutaka

    2012-12-21

    Dye-sensitized solar cells (DSSCs) based on organic dyes adsorbed on oxide semiconductor electrodes, such as TiO(2), ZnO, or NiO, which have emerged as a new generation of sustainable photovoltaic devices, have attracted much attention from chemists, physicists, and engineers because of enormous scientific interest in not only their construction and operational principles, but also in their high incident-solar-light-to-electricity conversion efficiency and low cost of production. To develop high-performance DSSCs, it is important to create efficient organic dye sensitizers, which should be optimized for the photophysical and electrochemical properties of the dyes themselves, with molecular structures that provide good light-harvesting features, good electron communication between the dye and semiconductor electrode and between the dye and electrolyte, and to control the molecular orientation and arrangement of the dyes on a semiconductor surface. The aim of this Review is not to make a list of a number of organic dye sensitizers developed so far, but to provide a new direction in the epoch-making molecular design of organic dyes for high photovoltaic performance and long-term stability of DSSCs, based on the accumulated knowledge of their photophysical and electrochemical properties, and molecular structures of the organic dye sensitizers developed so far.

  20. Nanofibrous TiO2 improving performance of mesoporous TiO2 electrode in dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Zukalová, Markéta; Kavan, Ladislav; Procházka, Jan; Zukal, Arnošt; Yum, Jun-Ho; Graetzel, Michael

    2013-05-01

    A method of direct coating of conducting glass by electrospinning was developed. Electrospun fibrous TiO2 consisting of closely packed anatase nanocrystals of 40-50 nm in size was incorporated into mesoporous TiO2 thin film stabilized by phosphorus. The mesoporous framework formed by walls with 5-6 nm TiO2 nanocrystals surrounding 20 nm mesopores exhibits extreme porosity and consequently limited number of necking points. TiO2 with fibrous morphology was found to solidify mesoporous titania and to be beneficial for the performance of corresponding photoanode in dye-sensitized solar cell (DSC). Obviously, its wire-like structure suitably interconnects mesoporous network and thus increases the electron collection efficiency from the TiO2 layer to the F-doped SnO2 electrode. The solar conversion efficiency of a DSC employing optimized photoanode consisting of nanocrystalline fibrous bottom layer, four mesoporous layers, and one nanocrystalline anatase scattering top layer sensitized with the N945 dye reached 5.35 %. This represents an improvement of about 9 % compared to the solar conversion efficiency of a DSC employing purely mesoporous TiO2 layer prepared by means of phosphorus doping (5.05 %).

  1. Porphyrin-Based Dye-Sensitized Solar Cells (DSSCs): a Review.

    PubMed

    Birel, Özgül; Nadeem, Said; Duman, Hakan

    2017-02-16

    The current review aims to collect short information about photovoltaic performance and structure of porphyrin-based sensitizers used in dye-sensitized solar cells (DSSC). Sensitizer is the key component of the DSSC device. Structure of sensitizer is important to achieve high photovoltaic performance. Porphyrin derivatives are suitable for DSSC applications due to their thermal, electronic and photovoltaic properties. It describes some electrochemical and spectral properties as well as thestructure of porphyrin dyes used in dye based-solar cells.

  2. Flexible Dye-Sensitized Solar Cell based on Vertical ZnO Nanowire Arrays

    SciTech Connect

    Chu, Sheng; Li, Dongdong; Chang, Pai-Chun; Lu, Jia Grace

    2010-09-26

    Flexible dye-sensitized solar cells are fabricated using vertically aligned ZnO nanowire arrays that are transferred onto ITO-coated poly(ethylene terephthalate) substrates using a simple peel-off process. The solar cells demonstrate an energy conversion efficiency of 0.44% with good bending tolerance. This technique paves a new route for building large-scale cost-effective flexible photovoltaic and optoelectronic devices.

  3. Flexible Dye-Sensitized Solar Cell Based on Vertical ZnO Nanowire Arrays

    PubMed Central

    2011-01-01

    Flexible dye-sensitized solar cells are fabricated using vertically aligned ZnO nanowire arrays that are transferred onto ITO-coated poly(ethylene terephthalate) substrates using a simple peel-off process. The solar cells demonstrate an energy conversion efficiency of 0.44% with good bending tolerance. This technique paves a new route for building large-scale cost-effective flexible photovoltaic and optoelectronic devices. PMID:27502660

  4. Effects of pH of Dyes on Characteristics of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Furukawa, Shoji; Iino, Hiroshi; Kukita, Koudai; Kaminosono, Kaoru

    Dye-sensitized solar cells were fabricated using natural dyes and synthesized dyes in which rear metal was not contained. Effects of pH of dyes on the characteristics of the dye-sensitized solar cells were also examined. As a result, it was found that the conversion efficiency of the dye-sensitized solar cell fabricated using red-cabbage dye with a pH of 2.5 was 0.10 point larger than that of the solar cell fabricated using red-cabbage dye with a pH of 4.0. It was also found that the conversion efficiency of the solar cell fabricated using red-perilla dye with a pH of 3.1 was 0.10 point larger than that of the solar cell fabricated using red-perilla dye with a pH of 5.8. The results are discussed on the bases of the molecular structure of mainly contained dye and the optical absorption spectra.

  5. Applications of Metal Oxide Materials in Dye Sensitized Photoelectrosynthesis Cells for Making Solar Fuels: Let the Molecules do the Work

    SciTech Connect

    Alibabaei, Leila; Luo, Hanlin; House, Ralph L.; Hoertz, Paul G.; Lopez, Rene; Meyer, Thomas J.

    2013-01-01

    Solar fuels hold great promise as a permanent, environmentally friendly, long-term renewable energy source, that would be readily available across the globe. In this account, an approach to solar fuels is described based on Dye Sensitized Photoelectrosynthesis Cells (DSPEC) that mimic the configuration used in Dye Sensitized Solar Cells (DSSC), but with the goal of producing oxygen and a high energy solar fuel in the separate compartments of a photoelectrochemical cell rather than a photopotential and photocurrent.

  6. Squaraine dyes for dye-sensitized solar cells: recent advances and future challenges.

    PubMed

    Qin, Chuanjiang; Wong, Wai-Yeung; Han, Liyuan

    2013-08-01

    In the past few years, squaraine dyes have received increasing attention as a sensitizer for application in dye-sensitized solar cells. This class of dyes not only leaves open a good opportunity to afford conventional high performance dyes but also holds great promise for applications in transparent solar cells due to its low absorption intensity in the eye-sensitive region. This review provides a summary of the developments on squaraine dyes in the field of dye-sensitized solar cells and the opportunities used to improve their overall energy conversion efficiency. In particular, the main factors responsible for the low values of open-circuit voltage, short-circuit photocurrent and fill factor are discussed in detail. Future directions in research and development of near-infrared (NIR) organic materials and their applications are proposed from a personal perspective.

  7. Single-crystalline zinc oxide nanowires as photoanode material for dye-sensitized solar cells.

    PubMed

    Ho, Shu-Te; Hsiao, Ching-Lun; Lin, Hsin-Yu; Chen, Hsiang-An; Wang, Chiu-Yen; Lin, Heh-Nan

    2010-10-01

    This study reports the use of single-crystalline and well-aligned ZnO nanowires as photoanode material for dye-sensitized solar cells. The ZnO nanowires are grown on fluorine-doped tin oxide coated glass substrates without catalysts by thermal evaporation. In spite of low roughness factors of around 25 for the nanowire photoanodes, the fabricated solar cells yield power conversion efficiencies of around 1.3% under AM 1.5G (100 mW cm-2) illumination. Moreover, fill factors of around 0.5 have been achieved and are relatively high when compared with reported values from ZnO nanowire photoanodes. The results reveal the advantage of using single-crystalline nanowires as photoanode material and provide clues for the advancement of nanowire based dye-sensitized solar cells.

  8. Organic photosensitizers with a heteroleptic dual donor for dye-sensitized solar cells.

    PubMed

    Kim, Joo Young; Kim, Young Sik

    2012-04-01

    Using DFT and TDDFT calculations, we investigated the substitution effect in the electronic and optical properties of dye sensitizers with a dual donor composed of triphenylamine and/or indoline moieties. Due to replacement with the dual donor moieties, the HOMO levels were split into HOMO and HOMO - 1 levels, and the bandgaps between the HOMO and LUMO levels decreased, leading to the creation of bathochromically extended absorption spectra. Nearly degenerated splitting of the HOMO levels resulted from the similarity of the electronic structure between the HOMO and the HOMO - 1 levels, delocalized over both dual-donor moieties, when replacing the dual donors. It was shown that the additional electron-donating group creates an additional absorption band and causes a cascading two-electron process aiding the charge separation process. Owing to a more panchromatic attribute, easier energy transfer and feasible retardation of the recombination between the injected electrons and the electrolyte, it is expected that dyeTI will show better performance than the other dyes (dyeT dyeTT and dyeIT) as denoted here in terms of the conversion efficiency of dye-sensitized solar cells (DSSCs). This work presents the probable benefits of dye sensitizers with dual-donor moieties and provides insight into the development of more efficient dye sensitizers for DSSCs through modification of the Frontier molecular orbitals.

  9. Multi-functionality of macroporous TiO2 spheres in dye-sensitized and hybrid heterojunction solar cells.

    PubMed

    Veerappan, Ganapathy; Jung, Dae-Woong; Kwon, Jeong; Choi, Jeong Mo; Heo, Nansra; Yi, Gi-Ra; Park, Jong Hyeok

    2014-03-25

    Micron-sized macroporous TiO2 spheres (MAC-TiO2) were synthesized using a colloidal templating process inside emulsions, which were then coated on a nanocrystalline TiO2 light absorption film to prepare a bilayered photoanode for liquid-based dye-sensitized solar cells (DSSC) and hybrid heterojunction solid-state solar cells. MAC-TiO2 layers can enhance light scattering as well as absorption, because their pore size and periodicity are comparable to light wavelength for unique multiple scattering and a porous surface can load dye more. Moreover, due to the bicontinuous nature of macropores and TiO2 walls, electrolyte could be transported much faster in between the TiO2 spheres rather than within the small TiO2 nonporous architectures. Electron transport was also facilitated along the interconnected TiO2 walls. In DSSCs with these MAC-TiO2 scattering layers, efficiency was higher than conventional DSSCs incorporating a commercial scattering layer. The unique geometry of MAC-TiO2 results in strong improvements in light scattering and infiltration of hole-transporting materials, thereby the MAC-TiO2-based solid-state device showed comparatively higher efficiency than the device with conventional nanocrystalline TiO2.

  10. Temperature effects in dye-sensitized solar cells.

    PubMed

    Raga, Sonia R; Fabregat-Santiago, Francisco

    2013-02-21

    In the standard solar cell technologies such as crystalline silicon and cadmium telluride, increments of temperature in the cell produce large variations in the energy conversion efficiency, which decreases at a constant rate. In dye solar cells the efficiency remains roughly constant with a maximum at around 30-40 °C and further decays above this temperature. In this work, the origin of this characteristic behavior is explained. Data show that under illumination recombination kinetics in the active layer of the cell is the same between -7 and 40 °C. Consequently, the efficiency of the cell remained virtually constant, with only small differences in the fill factor associated with changes in the series resistance. A further increase in temperature up to 70 °C produces an increase in recombination kinetics yielding lower photopotential and device performance. Finally, it is emphasized that at the normal operating temperatures of solar cells, the gap among the conversion efficiency of different technologies is much smaller than generally acknowledged.

  11. A home-made system for IPCE measurement of standard and dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Palma, Giuseppina; Cozzarini, Luca; Capria, Ennio; Fraleoni-Morgera, Alessandro

    2015-01-01

    A home-made system for incident photon-to-electron conversion efficiency (IPCE) characterization, based on a double-beam UV-Vis spectrophotometer, has been set up. In addition to its low cost (compared to the commercially available apparatuses), the double-beam configuration gives the advantage to measure, autonomously and with no need for supplementary equipment, the lamp power in real time, compensating possible variations of the spectral emission intensity and quality, thus reducing measurement times. To manage the optical and electronic components of the system, a custom software has been developed. Validations carried out on a common silicon-based photodiode and on a dye-sensitized solar cell confirm the possibility to adopt this system for determining the IPCE of solar cells, including dye-sensitized ones.

  12. A home-made system for IPCE measurement of standard and dye-sensitized solar cells

    SciTech Connect

    Palma, Giuseppina; Cozzarini, Luca; Capria, Ennio; Fraleoni-Morgera, Alessandro E-mail: afraleoni@units.it

    2015-01-15

    A home-made system for incident photon-to-electron conversion efficiency (IPCE) characterization, based on a double-beam UV-Vis spectrophotometer, has been set up. In addition to its low cost (compared to the commercially available apparatuses), the double-beam configuration gives the advantage to measure, autonomously and with no need for supplementary equipment, the lamp power in real time, compensating possible variations of the spectral emission intensity and quality, thus reducing measurement times. To manage the optical and electronic components of the system, a custom software has been developed. Validations carried out on a common silicon-based photodiode and on a dye-sensitized solar cell confirm the possibility to adopt this system for determining the IPCE of solar cells, including dye-sensitized ones.

  13. A home-made system for IPCE measurement of standard and dye-sensitized solar cells.

    PubMed

    Palma, Giuseppina; Cozzarini, Luca; Capria, Ennio; Fraleoni-Morgera, Alessandro

    2015-01-01

    A home-made system for incident photon-to-electron conversion efficiency (IPCE) characterization, based on a double-beam UV-Vis spectrophotometer, has been set up. In addition to its low cost (compared to the commercially available apparatuses), the double-beam configuration gives the advantage to measure, autonomously and with no need for supplementary equipment, the lamp power in real time, compensating possible variations of the spectral emission intensity and quality, thus reducing measurement times. To manage the optical and electronic components of the system, a custom software has been developed. Validations carried out on a common silicon-based photodiode and on a dye-sensitized solar cell confirm the possibility to adopt this system for determining the IPCE of solar cells, including dye-sensitized ones.

  14. Single-crystalline self-branched anatase titania nanowires for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Zhenquan; Yang, Huang; Wu, Fei; Fu, Jianxun; Wang, Linjun; Yang, Weiguang

    2016-12-01

    The morphology of the anatase titania plays an important role in improving the photovoltaic performance in dye-sensitized solar cells. In this work, single-crystalline self-branched anatase TiO2 nanowires have been synthesized by hydrothermal method using TBAH and CTAB as morphology controlling agents. The obtained self-branched TiO2 nanowires dominated by a large percentage of (010) facets. The photovoltaic conversion efficiency (6.37%) of dye-sensitized solar cell (DSSC) based on the self-branched TiO2 nanowires shows a significant improvement (26.6%) compared to that of P25 TiO2 (5.03%). The enhanced performance of the self-branched TiO2 nanowires-based DSSC is due to heir large percent of exposed (010) facets which have strong dye adsorption capacity and effective charge transport of the self-branched 1D nanostructures.

  15. Co-adsorbents: a key component in efficient and robust dye-sensitized solar cells.

    PubMed

    Manthou, Victoria S; Pefkianakis, Eleftherios K; Falaras, Polycarpos; Vougioukalakis, Georgios C

    2015-02-01

    Since the establishment of dye-sensitized solar cells in the early '90s, both the efficiency and stability of these third generation photovoltaics have been greatly enhanced. Nevertheless, there still exist many unwanted processes that impede operation of dye-sensitized solar cells, encumbering the achievement of the maximum theoretical power conversion efficiency and decreasing the devices' long-term operation. These processes include charge recombination, dye aggregation, dye desorption, and high protonation degrees of the semiconductor's surface. This Minireview focuses on a powerful strategy developed to address these problems, namely the use of co-adsorbents. All types of co-adsorbents utilized thus far are categorized in terms of the chemical identity of their anchoring group; in addition their operational mechanisms are presented and the properties that a functional molecule should possess to be applied as an efficient co-adsorbent are discussed.

  16. Improving optical absorptivity of natural dyes for fabrication of efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hemmatzadeh, Reza; Mohammadi, Ahmad

    2013-11-01

    Efficient and cheap dye-sensitized solar cells (DSSCs) were fabricated using natural dyes from Pastinaca sativa and Beta vulgaris. Natural dyes are environmentally and economically superior to ruthenium-based dyes because they are nontoxic and cheap. However, the conversion efficiency of dye-sensitized solar cells based on natural dyes is low. One way to improve the DSSC performance is to enhance the absorptivity of extracted dyes. We investigated the influence of various factors in the extraction process, such as utilization of different extraction approaches, the acidity of extraction solvent, and different compounds of solvents on the optical absorption spectra. It was found that we could considerably enhance the optical absorptivity of dye and consequently the performance of DSSC by choosing a proper mixture of ethanol and water for extracting solvent and also the acidity of dye solution.

  17. Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23 mA/cm2, a photovoltage (Voc) of 0.75 V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%.

  18. Characteristics of nanostructure dye-sensitized solar cells using food dyes

    NASA Astrophysics Data System (ADS)

    Hosseinnezhad, M.; Rouhani, S.

    2016-01-01

    Dye-sensitized solar cells (DSSCs) were prepared using various food dyes. Food dyes are economically superior to organometallic dyes since they are nontoxic and inexpensive. The spectrophotometric evaluation of chosen food dyes in solution and on a TiO2 substrate show that the dyes form J-aggregation on the photoelectrode substrate. Oxidation of potential measurements for used food dyes ensured an energetically permissible and thermodynamically favorable charge transfer throughout the continuous cycle of a photo-electric conversion. The performance of dye-sensitized solar cells based on food dyes was studied. The results illustrate that the dye containing carboxylic acid and sulfonic acid as the acceptor group gave the maximum conversion efficiency 4.20%.

  19. Characteristics of nanostructure dye-sensitized solar cells using food dyes

    NASA Astrophysics Data System (ADS)

    Hosseinnezhad, M.; Rouhani, S.

    2016-01-01

    Dye-sensitized solar cells (DSSCs) were prepared using various food dyes. Food dyes are economically superior to organometallic dyes since they are nontoxic and inexpensive. The spectrophotometric evaluation of chosen food dyes in solution and on a TO2 substrate show that the dyes form J-aggregation on the photoelectrode substrate. Oxidation of potential measurements for used food dyes ensured an energetically permissible and thermodynamically favorable charge transfer throughout the continuous cycle of a photo-electric conversion. The performance of dye-sensitized solar cells based on food dyes was studied. The results illustrate that the dye containing carboxylic acid and sulfonic acid as the acceptor group gave the maximum conversion efficiency 4.20%.

  20. Metal substrate based electrodes for flexible dye-sensitized solar cells: fabrication methods, progress and challenges.

    PubMed

    Balasingam, Suresh Kannan; Kang, Man Gu; Jun, Yongseok

    2013-12-21

    A step towards commercialization of dye-sensitized solar cells (DSSCs) requires more attention to engineering aspects, such as flexibility, the roll to roll fabrication process, the use of cost effective materials, etc. In this aspect, advantages of flexible DSSCs attracted many researchers to contemplate the transparent conducting oxide coated flexible plastic substrates and the thin metallic foils. In this feature article, the pros and cons of these two kinds of substrates are compared. The flexible dye-sensitized solar cells fabricated using metal substrates are briefly discussed. The working electrodes of DSSCs fabricated on various metal substrates, their fabrication methods, the effect of high temperature calcination and drawbacks of back illumination are reviewed in detail. A few reports on the flexible metal substrate based counter electrodes that could be combined with the plastic substrate based working electrodes are also covered at the end.

  1. Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell.

    PubMed

    Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee

    2014-05-21

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23mA/cm(2), a photovoltage (Voc) of 0.75V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%.

  2. Stability issues pertaining large area perovskite and dye-sensitized solar cells and modules

    NASA Astrophysics Data System (ADS)

    Castro-Hermosa, S.; Yadav, S. K.; Vesce, L.; Guidobaldi, A.; Reale, A.; Di Carlo, A.; Brown, T. M.

    2017-01-01

    Perovskite and dye-sensitized solar cells are PV technologies which hold promise for PV application. Arguably, the biggest issue facing these technologies is stability. The vast majority of studies have been limited to small area laboratory cells. Moisture, oxygen, UV light, thermal and electrical stresses are leading the degradation causes. There remains a shortage of stability investigations on large area devices, in particular modules. At the module level there exist particular challenges which can be different from those at the small cell level such as encapsulation (not only of the unit cells but of interconnections and contacts), non-uniformity of the layer stacks and unit cells, reverse bias stresses, which are important to investigate for technologies that aim for industrial acceptance. Herein we present a review of stability investigations published in the literature pertaining large area perovskite and dye-sensitized solar devices fabricated both on rigid (glass) and flexible substrates.

  3. Optically transparent FTO-free cathode for dye-sensitized solar cells.

    PubMed

    Kavan, Ladislav; Liska, Paul; Zakeeruddin, Shaik M; Grätzel, Michael

    2014-12-24

    The woven fabric containing electrochemically platinized tungsten wire is an affordable flexible cathode for liquid-junction dye-sensitized solar cells with the I3(-)/I(-) redox mediator and electrolyte solution consisting of ionic liquids and propionitrile. The fabric-based electrode outperforms the thermally platinized FTO in serial ohmic resistance and charge-transfer resistance for triiodide reduction, and it offers comparable or better optical transparency in the visible and particularly in the near-IR spectral region. The electrode exhibits good stability during electrochemical loading and storage at open circuit. The dye-sensitized solar cells with a C101-sensitized titania photoanode and either Pt-W/PEN or Pt-FTO cathodes show a comparable performance.

  4. Single-crystalline self-branched anatase titania nanowires for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Zhenquan; Yang, Huang; Wu, Fei; Fu, Jianxun; Wang, Linjun; Yang, Weiguang

    2017-03-01

    The morphology of the anatase titania plays an important role in improving the photovoltaic performance in dye-sensitized solar cells. In this work, single-crystalline self-branched anatase TiO2 nanowires have been synthesized by hydrothermal method using TBAH and CTAB as morphology controlling agents. The obtained self-branched TiO2 nanowires dominated by a large percentage of (010) facets. The photovoltaic conversion efficiency (6.37%) of dye-sensitized solar cell (DSSC) based on the self-branched TiO2 nanowires shows a significant improvement (26.6%) compared to that of P25 TiO2 (5.03%). The enhanced performance of the self-branched TiO2 nanowires-based DSSC is due to heir large percent of exposed (010) facets which have strong dye adsorption capacity and effective charge transport of the self-branched 1D nanostructures.

  5. High excitation transfer efficiency from energy relay dyes in dye-sensitized solar cells.

    PubMed

    Hardin, Brian E; Yum, Jun-Ho; Hoke, Eric T; Jun, Young Chul; Péchy, Peter; Torres, Tomás; Brongersma, Mark L; Nazeeruddin, Md Khaja; Grätzel, Michael; McGehee, Michael D

    2010-08-11

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3.5% to 4.5%. The unattached DCM dyes exhibit an average excitation transfer efficiency (ETE) of 96% inside TT1-covered, mesostructured TiO(2) films. Further performance increases were limited by the solubility of DCM in an acetonitrile based electrolyte. This demonstration shows that energy relay dyes can be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly soluble energy relay dyes with high molar extinction coefficients.

  6. The 2010 millennium technology grand prize: dye-sensitized solar cells.

    PubMed

    Meyer, Gerald J

    2010-08-24

    The 2010 Millennium Technology Grand Prize was awarded to Michael Gratzel for his ground-breaking research that has led to the practical application of dye-sensitized solar cells. Although Gratzel began his research well before nanotechnology had the "buzz" that it does today, the mesoscopic thin films he has developed have paved the way for generations of scientists to exploit the nanoscale for energy conversion. In addition to practical application, his research has led to a deeper understanding of photoinitiated charge-transfer processes at semiconductor interfaces. Here, the key scientific developments that guided early progress in dye-sensitized solar cells are summarized, with emphasis on fundamental advances that have enabled practical application.

  7. Metal complex-based electron-transfer mediators in dye-sensitized solar cells

    DOEpatents

    Elliott, C. Michael; Sapp, Shawn A.; Bignozzi, Carlo Alberto; Contado, Cristiano; Caramori, Stefano

    2006-03-28

    This present invention provides a metal-ligand complex and methods for using and preparing the same. In particular, the metal-ligand complex of the present invention is of the formula: L.sub.a-M-X.sub.b where L, M, X, a, and b are those define herein. The metal-ligand complexes of the present invention are useful in a variety of applications including as electron-transfer mediators in dye-sensitized solar cells and related photoelectrochromic devices.

  8. Osmium polypyridyl complexes and their applications to dye-sensitized solar cells.

    PubMed

    Swetha, T; Reddy, K Raveendranath; Singh, Surya Prakash

    2015-04-01

    Dye-sensitized solar cells (DSSCs) have received much attention in recent years owing to their efficient conversion of sunlight to electricity. DSSCs became successful alternatives to silicon photovoltaic devices by virtue of their low fabrication costs and easy preparation methods. In DSSCs the dye plays the key role. This review summarizes the applications of osmium sensitizers in DSSCs. We also briefly discussed their synthesis and the effect of various electrolyte systems on device efficiencies.

  9. Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells.

    PubMed

    Wooh, Sanghyuk; Yoon, Hyunsik; Jung, Jae-Hyun; Lee, Yong-Gun; Koh, Jai Hyun; Lee, Byoungho; Kang, Yong Soo; Char, Kookheon

    2013-06-11

    3D TiO2 photoanodes in dye-sensitized solar cells (DSCs) are fabricated by the soft lithographic technique for efficient light trapping. An extended strategy to the construction of randomized pyramid structure is developed by the conventional wet-etching of a silicon wafer for low-cost fabrication. Moreover, the futher enhancement of light absorption resulting in photocurrent increase is achieved by combining the 3D photoanode with a conventional scattering layer.

  10. A strategy to design highly efficient porphyrin sensitizers for dye-sensitized solar cells.

    PubMed

    Chang, Yu-Cheng; Wang, Chin-Li; Pan, Tsung-Yu; Hong, Shang-Hao; Lan, Chi-Ming; Kuo, Hshin-Hui; Lo, Chen-Fu; Hsu, Hung-Yu; Lin, Ching-Yao; Diau, Eric Wei-Guang

    2011-08-21

    We designed highly efficient porphyrin sensitizers with two phenyl groups at meso-positions of the macrocycle bearing two ortho-substituted long alkoxyl chains for dye-sensitized solar cells; the ortho-substituted devices exhibit significantly enhanced photovoltaic performances with the best porphyrin, LD14, showing J(SC) = 19.167 mA cm(-2), V(OC) = 0.736 V, FF = 0.711, and overall power conversion efficiency η = 10.17%.

  11. Silicon-naphthalo/phthalocyanine-hybrid sensitizer for efficient red response in dye-sensitized solar cells.

    PubMed

    Lim, Bogyu; Margulis, George Y; Yum, Jun-Ho; Unger, Eva L; Hardin, Brian E; Grätzel, Michael; McGehee, Michael D; Sellinger, Alan

    2013-02-15

    Introduction of a naphthalocyanine moiety to phthalocyanine allows for a gradual red shift of the absorption spectrum in the resulting chromophore. Using silicon as a core atom allows for the introduction of additional siloxane side chains which mitigate dye aggregation. A dye-sensitized solar cell with this hybrid sensitizer exhibits a broad and flat IPCE of 80% between 600 and 750 nm and high photocurrent densities of 19.0 mA/cm(2).

  12. Surface modifications of photoanodes in dye sensitized solar cells: enhanced light harvesting and reduced recombination

    NASA Astrophysics Data System (ADS)

    Saxena, Vibha; Aswal, D. K.

    2015-06-01

    In a quest to harvest solar power, dye-sensitized solar cells (DSSCs) have potential for low-cost eco-friendly photovoltaic devices. The major processes which govern the efficiency of a DSSC are photoelectron generation, injection of photo-generated electrons to the conduction band (CB) of the mesoporous nanocrystalline semiconductor (nc-SC); transport of CB electrons through nc-SC and subsequent collection of CB electrons at the counter electrode (CE) through the external circuit; and dye regeneration by redox couple or hole transport layer (HTL). Most of these processes occur at various interfaces of the photoanode. In addition, recombination losses of photo-generated electrons with either dye or redox molecules take place at the interfaces. Therefore, one of the key requirements for high efficiency is to improve light harvesting of the photoanode and to reduce the recombination losses at various interfaces. In this direction, surface modification of the photoanode is the simplest method among the various other approaches available in the literature. In this review, we present a comprehensive discussion on surface modification of the photoanode, which has been adopted in the literature for not only enhancing light harvesting but also reducing recombination. Various approaches towards surface modification of the photoanode discussed are (i) fluorine-doped tin oxide (FTO)/nc-SC interface modified via a compact layer of semiconductor material which blocks exposed sites of FTO to electrolyte (or HTL), (ii) nc-SC/dye interface modification either through acid treatment resulting in enhanced dye loading due to a positively charged surface or by depositing insulating/semiconducting blocking layer on the nc-SC surface, which acts as a tunneling barrier for recombination, (iii) nc-SC/dye interface modified by employing co-adsorbents which helps in reducing the dye aggregation and thereby recombination, and (iv) dye/electrolyte (or dye/HTL) interface modification using

  13. Silver nanoparticle doped TiO2 nanofiber dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Jinwei; Chen, Xi; Ai, Nan; Hao, Jumin; Chen, Qi; Strauf, Stefan; Shi, Yong

    2011-09-01

    Silver nanoparticle doped TiO2 nanofibers, prepared by the electrospinning process were used as the photoanode to fabricate dye sensitized solar cells. It was found that the nanoparticle doped solar cells have a significantly increased photocurrent density resulting in a 25% improved conversion efficiency compared to undoped solar cells. The improved performance is attributed to two factors: (1) the increased light harvesting efficiency due to the plasmon enhanced optical absorption induced by Ag nanoparticles, and (2) the improved electron collection efficiency as a result of faster electron transport in the Ag doped TiO2 nanofiber photoanode.

  14. Electronic structures and optical properties of organic dye sensitizer NKX derivatives for solar cells: a theoretical approach.

    PubMed

    Zhang, Cai-Rong; Liu, Li; Liu, Zi-Jiang; Shen, Yu-Lin; Sun, Yi-Tong; Wu, You-Zhi; Chen, Yu-Hong; Yuan, Li-Hua; Wang, Wei; Chen, Hong-Shan

    2012-09-01

    The photon to current conversion efficiency of dye-sensitized solar cells (DSCs) can be significantly affected by dye sensitizers. The design of novel dye sensitizers with good performance in DSCs depend on the dye's information about electronic structures and optical properties. Here, the geometries, electronic structures, as well as the dipole moments and polarizabilities of organic dye sensitizers C343 and 20 kinds of NKX derivatives were calculated using density functional theory (DFT), and the computations of the time dependent DFT with different functionals were performed to explore the electronic absorption properties. Based upon the calculated results and the reported experimental work, we analyzed the role of different conjugate bridges, chromophores, and electron acceptor groups in tuning the geometries, electronic structures, optical properties of dye sensitizers, and the effects on the parameters of DSCs were also investigated.

  15. Preparation of flexible TiO2 photoelectrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Wen-Ren; Wang, Hsiu-Hsuan; Lin, Chia-Feng; Su, Chaochin

    2014-09-01

    Dye-sensitized solar cells (DSSCs) based on nanocrystalline TiO2 photoelectrodes on indium tin oxide (ITO) coated polymer substrates have drawn great attention due to its lightweight, flexibility and advantages in commercial applications. However, the thermal instability of polymer substrates limits the process temperature to below 150 °C. In order to assure high and firm interparticle connection between TiO2 nanocrystals (TiO2-NC) and polymer substrates, the post-treatment of flexible TiO2 photoelectrodes (F-TiO2-PE) by mechanical compression was employed. In this work, Degussa P25 TiO2-NC was mixed with tert-butyl alcohol and DI-water to form TiO2 paste. F-TiO2-PE was then prepared by coating the TiO2 paste onto ITO coated polyethylene terephthalate (PET) substrate using doctor blade followed by low temperature sintering at 120 °C for 2 hours. To study the effect of mechanical compression, we applied 50 and 100 kg/cm2 pressure on TiO2/PET to complete the fabrication of F-TiO2-PE. The surface morphology of F-TiO2-PE was characterized using scanning electron microscopy. The resultant F-TiO2-PE sample exhibited a smooth, crack-free structure indicating the great improvement in the interparticle connection of TiO2-NC. Increase of compression pressure could lead to the increase of DSSC photoconversion efficiency. The best photoconversion efficiency of 4.19 % (open circuit voltage (Voc) = 0.79 V, short-circuit photocurrent density (Jsc) = 7.75 mA/cm2, fill factor (FF) = 0.68) was obtained for the F-TiO2-PE device, which showed great enhancement compared with the F-TiO2-PE cell without compression treatment. The effect of compression in DSSC performance was vindicated by the electrochemical impedance spectroscopy measurement.

  16. Near infrared organic semiconducting materials for bulk heterojunction and dye-sensitized solar cells.

    PubMed

    Singh, Surya Prakash; Sharma, G D

    2014-06-01

    Dye sensitized solar cells (DSSCs) and bulk heterojunction (BHJ) solar cells have been the subject of intensive academic interest over the past two decades, and significant commercial effort has been directed towards this area with the vison of developing the next generation of low cost solar cells. Materials development has played a vital role in the dramatic improvement of both DSSC and BHJ solar cell performance in the recent years. Organic conjugated polymers and small molecules that absorb solar light in the visible and near infrared (NIR) regions represent a class of emering materials and show a great potential for the use of different optoelectronic devices such as DSSCs and BHJ solar cells. This account describes the emering class of near infrared (NIR) organic polymers and small molecules having donor and acceptors units, and explores their potential applications in the DSSCs and BHJ solar cells.

  17. Dye sensitization of nanocrystalline titanium dioxide with square planar platinum(II) diimine dithiolate complexes.

    PubMed

    Islam, A; Sugihara, H; Hara, K; Singh, L P; Katoh, R; Yanagida, M; Takahashi, Y; Murata, S; Arakawa, H; Fujihashi, G

    2001-10-08

    A series of platinum-based sensitizers of the general type Pt(NN)(SS), where NN is 4,4'-dicarboxy-2,2'-bipyridine (dcbpy) or 4,7-dicarboxy-1,10-phenanthroline (dcphen) and SS is ethyl-2-cyano-3,3-dimercaptoacrylate (ecda), quinoxaline-2,3-dithiolate (qdt), 1,2-benzenedithiolate (bdt), or 3,4-toluenedithiolate (tdt), that have various ground-state oxidation potentials has been synthesized and anchored to nanocrystalline titanium dioxide electrodes for light-to-electricity conversion in regenerative photoelectrochemical cells with an I(-)/I(-)(3) acetonitrile electrolyte. The intense mixed-Pt/dithiolate-to-diimine charge-transfer absorption bands in this series could be tuned from 440 to 580 nm by choosing appropriate dithiolate ligands, and the highest occupied molecular orbitals varied by more than 500 mV. Spectrophotometric titration of the Pt(dcphen)(bdt) complex exhibits a ground-state pK(a) value of 3.2 +/- 0.1, which can be assigned to the protonation of the carboxylate group of the dcphen ligand. Binding of Pt(dcbpy)(qdt) to porous nanostructured TiO(2) films was analyzed using the Langmuir adsorption isotherm model, yielding an adsorption equilibrium constant of 4 x 10(5) M(-1). The amount of dye adsorbed at the surface of TiO(2) films was 9.5 x 10(-8) mol/cm(2), which is ca. 50% lower than the full monolayer coverage. The resulting complexes efficiently sensitized TiO(2) over a notably broad spectral range and showed an open-circuit potential of ca. 600 mV with an impressive fill factor of > 0.70, making them attractive candidates for solar energy conversion applications. The visible spectra of the 3,4-toluenedithiol-based sensitizers showed an enhanced red response, but the lower photocurrent efficiency observed for these sensitizers stems in part from a sluggish halide oxidation rate and a fast recombination of injected electrons with the oxidized dye.

  18. Dye-sensitized solar cells: Atomic scale investigation of interface structure and dynamics

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Zhang, Fan; Meng, Sheng

    2014-08-01

    Recent progress in dye-sensitized solar cells (DSC) research is reviewed, focusing on atomic-scale investigations of the interface electronic structures and dynamical processes, including the structure of dye adsorption onto TiO2, ultrafast electron injection, hot-electron injection, multiple-exciton generation, and electron—hole recombination. Advanced experimental techniques and theoretical approaches are briefly summarized, and then progressive achievements in photovoltaic device optimization based on insights from atomic scale investigations are introduced. Finally, some challenges and opportunities for further improvement of dye solar cells are presented.

  19. Lessons learned: from dye-sensitized solar cells to all-solid-state hybrid devices.

    PubMed

    Docampo, Pablo; Guldin, Stefan; Leijtens, Tomas; Noel, Nakita K; Steiner, Ullrich; Snaith, Henry J

    2014-06-25

    The field of solution-processed photovoltaic cells is currently in its second spring. The dye-sensitized solar cell is a widely studied and longstanding candidate for future energy generation. Recently, inorganic absorber-based devices have reached new record efficiencies, with the benefits of all-solid-state devices. In this rapidly changing environment, this review sheds light on recent developments in all-solid-state solar cells in terms of electrode architecture, alternative sensitizers, and hole-transporting materials. These concepts are of general applicability to many next-generation device platforms.

  20. Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons

    NASA Astrophysics Data System (ADS)

    Hägglund, Carl; Zäch, Michael; Kasemo, Bengt

    2008-01-01

    An interesting possibility to improve the conversion and cost efficiencies of photovoltaic solar cells is to exploit the large optical cross sections of localized (nanoparticle) surface plasmon resonances (LSPRs). We have investigated this prospect for dye sensitized solar cells. Photoconductivity measurements were performed on flat TiO2 films, sensitized by a combination of dye molecules and arrays of nanofabricated elliptical gold disks. An enhanced dye charge carrier generation rate was found and shown to derive from the LSPR contribution by means of the polarization dependent resonance frequency in the anisotropic, aligned gold disks.

  1. TiO2 Nanowire dye-sensitized solar cells Fabricated by Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Gu, Haoshuang; Xia, Huating; Hu, Mingzhe

    2011-02-01

    TiO2 nanowire dye-sensitized solar cells were fabricated by using hydrothermal method. The synthesizing of TiO2 nanowire/nanorod arrays directly on FTO substrate would cause a high conducting loss to solar cells. Through la minating a compact layer between FTO substrate and photonic anode layer, the conducting loss could be effectively prevented. Results indicated that using different concentration of titanium tetrabutoxide would affect the photoelectric conversion efficiency and different producing methods of the compact layer also played an important role to the conversion efficiency.

  2. Incorporating multiple energy relay dyes in liquid dye-sensitized solar cells.

    PubMed

    Yum, Jun-Ho; Hardin, Brian E; Hoke, Eric T; Baranoff, Etienne; Zakeeruddin, Shaik M; Nazeeruddin, Mohammad K; Torres, Tomas; McGehee, Michael D; Grätzel, Michael

    2011-02-25

    Panchromatic response is essential to increase the light-harvesting efficiency in solar conversion systems. Herein we show increased light harvesting from using multiple energy relay dyes inside dye-sensitized solar cells. Additional photoresponse from 400-590 nm matching the optical window of the zinc phthalocyanine sensitizer was observed due to Förster resonance energy transfer (FRET) from the two energy relay dyes to the sensitizing dye. The complementary absorption spectra of the energy relay dyes and high excitation transfer efficiencies result in a 35% increase in photovoltaic performance.

  3. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts.

    PubMed

    Bai, Yu; Cao, Yiming; Zhang, Jing; Wang, Mingkui; Li, Renzhi; Wang, Peng; Zakeeruddin, Shaik M; Grätzel, Michael

    2008-08-01

    Low-cost excitonic solar cells based on organic optoelectronic materials are receiving an ever-increasing amount of attention as potential alternatives to traditional inorganic photovoltaic devices. In this rapidly developing field, the dye-sensitized solar cell (DSC) has achieved so far the highest validated efficiency of 11.1% (ref. 2) and remarkable stability. However, the cells with the best performance use volatile solvents in their electrolytes, which may be prohibitive for outdoor solar panels in view of the need for robust encapsulation. Solvent-free room-temperature ionic liquids have been pursued as an attractive solution to this dilemma, and device efficiencies of over 7% were achieved by using some low-viscosity formulations containing 1-ethyl-3-methylimidazolium thiocyanate, selenocyanate, tricyanomethide or tetracyanoborate. Unfortunately, apart from tetracyanoborate, all of these low-viscosity melts proved to be unstable under prolonged thermal stress and light soaking. Here, we introduce the concept of using eutectic melts to produce solvent-free liquid redox electrolytes. Using a ternary melt in conjunction with a nanocrystalline titania film and the amphiphilic heteroleptic ruthenium complex Z907Na (ref. 10) as a sensitizer, we reach excellent stability and an unprecedented efficiency of 8.2% under air-mass 1.5 global illumination. Our results are of importance to realize large-scale outdoor applications of mesoscopic DSCs.

  4. Photocurrent enhanced by singlet fission in a dye-sensitized solar cell.

    PubMed

    Schrauben, Joel N; Zhao, Yixin; Mercado, Candy; Dron, Paul I; Ryerson, Joseph L; Michl, Josef; Zhu, Kai; Johnson, Justin C

    2015-02-04

    Investigations of singlet fission have accelerated recently because of its potential utility in solar photoconversion, although only a few reports definitively identify the role of singlet fission in a complete solar cell. Evidence of the influence of singlet fission in a dye-sensitized solar cell using 1,3-diphenylisobenzofuran (DPIBF, 1) as the sensitizer is reported here. Self-assembly of the blue-absorbing 1 with co-adsorbed oxidation products on mesoporous TiO2 yields a cell with a peak internal quantum efficiency of ∼70% and a power conversion efficiency of ∼1.1%. Introducing a ZrO2 spacer layer of thickness varying from 2 to 20 Å modulates the short-circuit photocurrent such that it is initially reduced as thickness increases but 1 with 10-15 Å of added ZrO2. This rise can be explained as being due to a reduced rate of injection of electrons from the S1 state of 1 such that singlet fission, known to occur with a 30 ps time constant in polycrystalline films, has the opportunity to proceed efficiently and produce two T1 states per absorbed photon that can subsequently inject electrons into TiO2. Transient spectroscopy and kinetic simulations confirm this novel mode of dye-sensitized solar cell operation and its potential utility for enhanced solar photoconversion.

  5. One-dimensional (1D) ZnO nanowires dye sensitized solar cell.

    PubMed

    Kiliç, Bayram; Wang, Lianzhou; Ozdemir, Orhan; Lu, Max; Tüzemen, Sebahattin

    2013-01-01

    High ordered one-dimensional (1D) Zinc oxide (ZnO) nanowires were grown on FTO substrate by using the hydrothermal method. Nanowires structures were used as the wide band-gap semiconducting photo-electrode in dye sensitized solar cell (DSSCs). Solar cell made from ZnO nanowire at 50 nm radius and several tens micron lengths showed high solar conversion efficiency (eta) of 2.1% and incident photon current efficiency (IPCE) 35% using nanowire/N719 dye/I-/I3- electrolyte. We also compared Ru N719 dye and N3 dye on ZnO nanowire against each other in respect to solar conversion efficiency and IPCE measurements. In the case of the N3 dye on ZnO nanowire conversion efficiency (eta) of 1.32% and IPCE 23% were obtained under an illumination of 100 mW/cm2. It was found that the performance of the Ru N719 dyes was better than about 50% that of the N3 dye in ZnO nanowire dye-sensitized solar cells.

  6. Self-assembled ultra small ZnO nanocrystals for dye-sensitized solar cell application

    SciTech Connect

    Patra, Astam K.; Dutta, Arghya; Bhaumik, Asim

    2014-07-01

    We demonstrate a facile chemical approach to produce self-assembled ultra-small mesoporous zinc oxide nanocrystals using sodium salicylate (SS) as a template under hydrothermal conditions. These ZnO nanomaterials have been successfully fabricated as a photoanode for the dye-sensitized solar cell (DSSC) in the presence of N719 dye and iodine–triiodide electrolyte. The structural features, crystallinity, purity, mesophase and morphology of the nanostructure ZnO are investigated by several characterization tools. N{sub 2} sorption analysis revealed high surface areas (203 m{sup 2} g{sup −1}) and narrow pore size distributions (5.1–5.4 nm) for different samples. The mesoporous structure and strong photoluminescence facilitates the high dye loading at the mesoscopic void spaces and light harvesting in DSSC. By utilizing this ultra-small ZnO photoelectrode with film thickness of about 7 μm in the DSSC with an open-circuit voltage (V{sub OC}) of 0.74 V, short-circuit current density (J{sub SC}) of 3.83 mA cm{sup −2} and an overall power conversion efficiency of 1.12% has been achieved. - Graphical abstract: Ultra-small ZnO nanocrystals have been synthesized with sodium salicylate as a template and using it as a photoanode in a dye-sensitized solar cell 1.12% power conversion efficiency has been observed. - Highlights: • Synthesis of self-assembled ultra-small mesoporous ZnO nanocrystals by using sodium salicylate as a template. • Mesoporous ZnO materials have high BET surface areas and void space. • ZnO nanoparticles serve as a photoanode for the dye-sensitized solar cell (DSSC). • Using ZnO nanocrystals as photoelectrode power conversion efficiency of 1.12% has been achieved.

  7. Surface plasma resonant effect of gold nanoparticles on the photoelectrodes of dye-sensitized solar cells

    PubMed Central

    2013-01-01

    In this study, we prepared different shapes of gold nanoparticles by seed-mediated growth method and applied them on the photoelectrodes of dye-sensitized solar cells (DSSCs) to study the surface plasma resonant (SPR) effect of gold nanoparticles on the photoelectrodes of dye-sensitized solar cells. The analyses of field emission scanning electron microscopy show that the average diameter of the spherical gold nanoparticles is 45 nm, the average length and width of the short gold nanorods were 55 and 22 nm, respectively, and the average length and width of the long gold nanorods were 55 and 14 nm, respectively. The aspect ratio of the short and long gold nanorods was about 2.5 and 4, respectively. The results of ultraviolet–visible absorption spectra show that the absorption wavelength is about 540 nm for spherical gold nanoparticles, and the absorption of the gold nanorods reveals two peaks. One is about 510 to 520 nm, and the other is about 670 and 710 nm for the short and long gold nanorods, respectively. The best conversion efficiency of the dye-sensitized solar cells with spherical gold nanoparticles and short and long gold nanorods added in is 6.77%, 7.08%, and 7.29%, respectively, and is higher than that of the cells without gold nanoparticles, which is 6.21%. This result indicates that the effect of gold nanoparticles on the photoelectrodes can increase the conductivity and reduce the recombination of charges in the photoelectrodes, resulting in the increase of conversion efficiency for DSSCs. In addition, the long gold nanorods have stronger SPR effect than the spherical gold nanoparticles and short gold nanorods at long wavelength. This may be the reason for the higher conversion efficiency of DSSCs with long gold nanorods than those of the cells with spherical gold nanoparticles and short gold nanorods. PMID:24172147

  8. Nitrogen-doped graphene as transparent counter electrode for efficient dye-sensitized solar cells

    SciTech Connect

    Wang, Guiqiang; Fang, Yanyan; Lin, Yuan; Xing, Wei; Zhuo, Shuping

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► NG sheets are prepared through a hydrothermal reduction of graphite oxide. ► The transparent NG counter electrodes of DSCs are fabricated at room temperature. ► Transparent NG electrode exhibits excellent catalytic activity for the reduction of I{sub 3}{sup −}. ► The DSC with NG electrode achieves a comparable efficiency to that of the Pt-based cell. ► The efficiency of rear illumination is about 85% that of front illumination. -- Abstract: Nitrogen-doped graphene sheets are prepared through a hydrothermal reduction of graphite oxide in the presence of ammonia and applied to fabricate the transparent counter electrode of dye-sensitized solar cells. The atomic percentage of nitrogen in doped graphene sample is about 2.5%, and the nitrogen bonds display pyridine and pyrrole-like configurations. Cyclic voltammetry studies demonstrate a much higher electrocatalytic activity toward I{sup −}/I{sub 3}{sup −} redox reaction for nitrogen-doped graphene, as compared with pristine graphene. The dye-sensitized solar cell with this transparent nitrogen-doped graphene counter electrode shows conversion efficiencies of 6.12% and 5.23% corresponding to front-side and rear-side illumination, respectively. Meanwhile, the cell with a Pt counter electrode shows a conversion efficiency of 6.97% under the same experimental condition. These promising results highlight the potential application of nitrogen-doped graphene in cost-effective, transparent dye-sensitized solar cells.

  9. Influence of TiO2 nanofiber additives for high efficient dye-sensitized solar cells.

    PubMed

    Hwang, Kyung-Jun; Lee, Jae-Wook; Park, Ju-Young; Kim, Sun-Il

    2011-02-01

    TiO2 nanofibers were prepared from a mixture of titanium-tetra-isopropoxide and poly vinyl pyrrolidone by applying the electrospinning method. The samples were characterized by XRD, FE-SEM, TEM and BET analyses. The diameter of electrospun TiO2 nanofibers is in the range of 70 approximately 160 nm. To improve the short-circuit photocurrent, we added the TiO2 nanofibers in the TiO2 electrode of dye-sensitized solar cells (DSSCs). TiO2 nanofibers added in DSSCs can make up to 20% more conversion energy than the conventional DSSC with only TiO2 films only.

  10. Application of 3A molecular sieve layer in dye-sensitized solar cells

    SciTech Connect

    Yan, Yuan; Wang, Jinzhong E-mail: qingjiang.yu@hit.edu.cn; Yu, Qingjiang E-mail: qingjiang.yu@hit.edu.cn; Huang, Yuewu; Chang, Quanhong; Hao, Chunlei; Jiao, Shujie; Gao, Shiyong; Li, Hongtao; Wang, Dongbo

    2014-08-25

    3A molecular sieve layer was used as dehydration and electronic-insulation layer on the TiO{sub 2} electrode of dye-sensitized solar cells. This layer diminished the effect of water in electrolyte efficiently and enhanced the performance of cells. The conversion efficiency increased from 9.58% to 10.2%. The good moisture resistance of cells was attributed to the three-dimensional interconnecting structure of 3A molecular sieve with strong adsorption of water molecule. While the performance enhancement benefited from the suppression of the charge recombination of electronic-insulation layer and scattering effect of large particles.

  11. Conducting polymers based counter electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Veerender, P.; Saxena, Vibha; Gusain, Abhay; Jha, P.; Koiry, S. P.; Chauhan, A. K.; Aswal, D. K.; Gupta, S. K.

    2014-04-01

    Conducting polymer films were synthesized and employed as an alternative to expensive platinum counter electrodes for dye-sensitized solar cells. poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin films were spin-coated and polypyrrole films were electrochemically deposited via cyclic voltammetry method on ITO substrates. The morphology of the films were imaged by SEM and AFM. These films show good catalytic activity towards triiodide reduction as compared to Pt/FTO electrodes. Finally the photovoltaic performance of DSSC fabricated using N3 dye were compared with PT/FTO, PEDOT/ITO, and e-PPy counter electrodes.

  12. Conducting polymers based counter electrodes for dye-sensitized solar cells

    SciTech Connect

    Veerender, P. E-mail: veeru1009@gmail.com; Saxena, Vibha E-mail: veeru1009@gmail.com; Gusain, Abhay E-mail: veeru1009@gmail.com; Jha, P. E-mail: veeru1009@gmail.com; Koiry, S. P. E-mail: veeru1009@gmail.com; Chauhan, A. K. E-mail: veeru1009@gmail.com; Aswal, D. K. E-mail: veeru1009@gmail.com; Gupta, S. K. E-mail: veeru1009@gmail.com

    2014-04-24

    Conducting polymer films were synthesized and employed as an alternative to expensive platinum counter electrodes for dye-sensitized solar cells. poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin films were spin-coated and polypyrrole films were electrochemically deposited via cyclic voltammetry method on ITO substrates. The morphology of the films were imaged by SEM and AFM. These films show good catalytic activity towards triiodide reduction as compared to Pt/FTO electrodes. Finally the photovoltaic performance of DSSC fabricated using N3 dye were compared with PT/FTO, PEDOT/ITO, and e-PPy counter electrodes.

  13. Enhanced performance of dye-sensitized solar cells via plasmonic sandwiched structure

    NASA Astrophysics Data System (ADS)

    Lin, Su-Jien; Lee, Kuang-Che; Wu, Jyun-Lin; Wu, Jun-Yi

    2011-07-01

    The plasmonic structure of sandwiched TiO2/NPs-Ag/TiO2 electrodes was fabricated by sputter technology and sol-gel and spin coating procedure to enhance the performance of dye-sensitized solar cells. The improvement of the incident photon to photocurrent efficiency spectrum corresponding to the strong absorption and damping reflection indicated light trapping of plasmonic structure to elongate the optical pathways of photons. More light trapped close to photocurrent collecting electrode provides better charge-collection and light harvesting efficiencies. As a result of improved dye absorption, about 23% enhancement in photocurrent density has been achieved.

  14. CoS-Graphene Composite Counter Electrode for High Performance Dye-Sensitized Solar Cell.

    PubMed

    Wang, Fen; Wu, Congcong; Tan, Yuan; Jin, Tetsuro; Chi, Bo; Pu, Jian; Jian, Li

    2015-02-01

    CoS-graphene composite counter electrode for dye-sensitized solar cell (DSSC) was prepared by coating hydrothermal synthesized CoS with graphene onto the FTO conductive glass. SEM shows that CoS particles are uniformly dispersed in the graphene. The result confirms that the prepared composite counter electrode is of highly electrocatalytic activity towards iodine reduction, which is even better than Pt electrode. And cyclic voltammetry measurement also shows that the composite counter electrode has good stability after 100 scan cycles. DSSC with CoS-graphene as composite counter electrode achieves a maximum power conversion efficiency of 6.31%, which is better than Pt electrode.

  15. Nanographite-TiO2 photoanode for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sharma, S. S.; Sharma, Khushboo; Sharma, Vinay

    2016-05-01

    Nanographite-TiO2 (NG-TiO2) composite was successfully synthesized by the hydrothermal method and its performance as the photoanode for dye-sensitized solar cells (DSSCs) was investigated. Environmental Scanning electron microscope (E-SEM) micrographs show the uniform distribution of TiO2 nanoflowers deposited over nanographite sheets. The average performance characteristics of the assembled cell in terms of short-ciruit current density (JSC), open circuit voltage (VOC), fill factor (FF) and photoelectric conversion efficiency (η) were measured.

  16. Determining the locus for photocarrier recombination in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhu, Kai; Schiff, E. A.; Park, N.-G.; van de Lagemaat, J.; Frank, A. J.

    2002-01-01

    We present intensity-modulated photocurrent and infrared transmittance measurements on dye-sensitized solar cells based on a mesoporous titania (TiO2) matrix immersed in an iodine-based electrolyte. Under short-circuit conditions, we show that an elementary analysis accurately relates the two measurements. Under open-circuit conditions, infrared transmittance, and photovoltage measurements yield information on the characteristic depth at which electrons recombine with ions (the "locus of recombination"). For one particular series of samples recombination occurred near the substrate supporting the titania film, as opposed to homogeneously throughout the film.

  17. High performance dye-sensitized solar cell based on hydrothermally deposited multiwall carbon nanotube counter electrode

    NASA Astrophysics Data System (ADS)

    Siriroj, Sumeth; Pimanpang, Samuk; Towannang, Madsakorn; Maiaugree, Wasan; Phumying, Santi; Jarernboon, Wirat; Amornkitbamrung, Vittaya

    2012-06-01

    Conductive glass was coated with multiwall carbon nanotubes (MWCNTs) by a hydrothermal method. MWCNTs films were subsequently used as dye-sensitized solar cell (DSSC) counter electrodes. The performance of hydrothermal MWCNT DSSC was ˜2.37%. After film annealing in an Ar atmosphere, annealed-hydrothermal MWCNT (AHT-CNT) DSSC efficiency was significantly increased to ˜7.66%, in comparison to ˜8.01% for sputtered-Pt DSSC. Improvement of AHT-CNT DSSC performance is attributed to a decrease in charge-transfer resistance from 1500 Ω to 30 Ω as observed by electrochemical impedance spectroscopy.

  18. Multifunctional Interface Modification of Energy Relay Dye in Quasi-solid Dye-sensitized Solar Cells

    PubMed Central

    Gao, Rui; Cui, Yixiu; Liu, Xiaojiang; Wang, Liduo

    2014-01-01

    In this paper, 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) has been used in interface modification of dye-sensitized solar cells (DSCs) with combined effects of retarding charge recombination and Förster resonant energy transfer (FRET). DCJTB interface modification significantly improved photovoltaic performance of DSCs. I–V curves shows the conversion efficiency increases from 4.27% to 5.64% with DCJTB coating. The application of DCJTB with combined effects is beneficial to explore more novel multi-functional interface modification materials to improve the performance of DSCs. PMID:24993900

  19. Ultrafast Fabrication of Flexible Dye-Sensitized Solar Cells by Ultrasonic Spray-Coating Technology.

    PubMed

    Han, Hyun-Gyu; Weerasinghe, Hashitha C; Min Kim, Kwang; Soo Kim, Jeong; Cheng, Yi-Bing; Jones, David J; Holmes, Andrew B; Kwon, Tae-Hyuk

    2015-09-30

    This study investigates novel deposition techniques for the preparation of TiO2 electrodes for use in flexible dye-sensitized solar cells. These proposed new methods, namely pre-dye-coating and codeposition ultrasonic spraying, eliminate the conventional need for time-consuming processes such as dye soaking and high-temperature sintering. Power conversion efficiencies of over 4.0% were achieved with electrodes prepared on flexible polymer substrates using this new deposition technology and N719 dye as a sensitizer.

  20. Photocurrent generation by dye-sensitized solar cells using natural pigments.

    PubMed

    Armendáriz-Mireles, Eddie Nahúm; Rocha-Rangel, Enrique; Caballero-Rico, Frida; Ramírez-de-León, José Alberto; Vázquez, Manuel

    2017-01-01

    The development of photovoltaic panels has improved the conversion of solar radiation into electrical energy. This paper deals with the electrical and thermal characteristics (voltage, current, and temperature) of photovoltaic solar cells sensitized with natural pigments (dye-sensitized solar cell, DSSC) based on a titanium dioxide semiconductor. Several natural pigments (blackberry, beets, eggplant skin, spinach, flame tree flower, papaya leaf, and grass extracts) were evaluated to determine their sensitizing effect on titanium dioxide. The results showed the great potential of natural pigments for use in solar cells. The best results were obtained with the blackberry pigment, reaching a value of 7.1 mA current, open-circuit voltage (Voc ) of 0.72 V in 2 cm(2) , and fill factor (ff) of 0.51 in the DSSC. This performance is well above than that currently offers by actual cells.

  1. Dye ingredients and energy conversion efficiency at natural dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Özbay Karakuş, Mücella; Koca, İrfan; Er, Orhan; Çetin, Hidayet

    2017-04-01

    In this work, natural dyes extracted from the same genus but different species flowers were used as sensitizer in Dye Sensitized Solar Cell (DSSC). To clearly show dye ingredients effect on electrical characteristics, the same genus flowers were selected. The dye ingredients were analyzed by Gas Chromatography Mass Spectrometer (GC-MS). The dyes were modified by a procedure that includes refluxing in acetone. All results indicate a relationship between gallic acid quantity in dyes and solar cell efficiency. To gain further insight, the solar cell parameters were obtained by using the single-diode and double-diode models and they were compared to each other. It was observed that the applied process causes a decrease in series resistance. How the modification process and gallic acid affect energy conversion efficiency were argued in detail in the frame of results that were obtained from solar cell models.

  2. Highly asymmetrical porphyrins with enhanced push-pull character for dye-sensitized solar cells.

    PubMed

    Kurotobi, Kei; Toude, Yuuki; Kawamoto, Kyosuke; Fujimori, Yamato; Ito, Seigo; Chabera, Pavel; Sundström, Villy; Imahori, Hiroshi

    2013-12-09

    A porphyrin π-system has been modulated by enhancing the push-pull character with highly asymmetrical substitution for dye-sensitized solar cells for the first time. Namely, both two diarylamino moieties as a strong electron-donating group and one carboxyphenylethynyl moiety as a strong electron-withdrawing, anchoring group were introduced into the meso-positions of the porphyrin core in a lower symmetrical manner. As a result of the improved light-harvesting property as well as high electron distribution in the anchoring group of LUMO, a push-pull-enhanced, porphyrin-sensitized solar cell exhibited more than 10% power conversion efficiency, which exceeded that of a representative highly efficient porphyrin (i.e., YD2)-sensitized solar cell under optimized conditions. The rational molecular design concept based on highly asymmetric, push-pull substitution will open the possibilities of further improving cell performance in organic solar cells.

  3. Dye-sensitized solar cells with improved performance using cone-calix[4]arene based dyes.

    PubMed

    Tan, Li-Lin; Liu, Jun-Min; Li, Shao-Yong; Xiao, Li-Min; Kuang, Dai-Bin; Su, Cheng-Yong

    2015-01-01

    Three cone-calix[4]arene-based sensitizers (Calix-1-Calix-3) with multiple donor-π-acceptor (D-π-A) moieties are designed, synthesized, and applied in dye-sensitized solar cells (DSSCs). Their photophysical and electrochemical properties are characterized by measuring UV/Vis absorption and emission spectra, cyclic voltammetry, and density functional theory (DFT) calculations. Calix-3 has excellent thermo- and photostability, as illustrated by thermogravimetric analysis (TGA) and dye-aging tests, respectively. Importantly, a DSSC using the Calix-3 dye displays a conversion efficiency of 5.48 % in under standard AM 1.5 Global solar illumination conditions, much better than corresponding DSSCs that use the rod-shaped dye M-3 with a single D-π-A chain (3.56 %). The dyes offer advantages in terms of higher molar extinction coefficients, longer electron lifetimes, better stability, and stronger binding ability to TiO2 film. This is the first example of calixarene-based sensitizers for efficient dye-sensitized solar cells.

  4. Ionic liquid electrolyte based on S-propyltetrahydrothiophenium iodide for dye-sensitized solar cells

    SciTech Connect

    Guo, Lei; Pan, Xu; Zhang, Changneng; Liu, Weiqing; Wang, Meng; Fang, Xiaqin; Dai, Songyuan

    2010-03-15

    A new ionic liquid S-propyltetrahydrothiophenium iodide (T{sub 3}I) was developed as the solvent and iodide ion source in electrolyte for dye-sensitized solar cells. The electrochemical behavior of the I{sub 3}{sup -}/I{sup -} redox couple and effect of additives in this ionic liquid system was tested and the results showed that this ionic liquid electrolyte revealed good conducting abilities and potential application for solar devices. The effects of LiI and dark-current inhibitors were investigated. The dye-sensitized solar cell with the electrolyte (0.1 mol L{sup -1} LiI, 0.35 mol L{sup -1} I{sub 2}, 0.5 mol L{sup -1} NMBI in pure T{sub 3}I) gave short-circuit photocurrent density (J{sub sc}) of 11.22 mA cm{sup 2}, open-circuit voltage (V{sub oc}) of 0.61 V and fill factor (FF) of 0.51, corresponding to the photoelectric conversion efficiency ({eta}) of 3.51% under one Sun (AM1.5). (author)

  5. Microstructure characterization of onion (A.cepa) peels and thin films for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Abodunrin, T.; Boyo, A.; Usikalu, M.; Obafemi, L.; Oladapo, O.; Kotsedi, L.; Yenus, Z.; Maaza, M.

    2017-03-01

    A.cepa peels are obtained from mature onion bulbs. Because of the continuous need for energy, alternative avenues for producing energy are gaining importance. The motivation for this work is based on an urgent need to source energy from readily available waste materials like domestic onion peels. Dye sensitized solar cells (DSSCs) fabricated via doctor blade method and high temperature sintering from waste (onion peels) are investigated for their ability to convert solar to electrical energy. The charge carriers were revealed under phytochemical screening. Functional groups of compounds present in A.cepa peel were analyzed with Fourier transform in infrared (FTIR). The influence of different electrolyte sensitizer is observed on the DSSCs under standard air mass conditions of 1.5 AM. The microstructure properties of these A.cepa DSSCs were explored using scanning electron microscope with energy dispersive spectroscopy (SEM/EDS), x-ray diffraction and Fluorecence spectroscopy (XRF). The interfacial boundary between A.cepa dye, TiO2 framework of TiO2 and indium doped tin oxide (ITO) reveals several prominent anatase and rutile peaks. Photoelectric results, revealed dye-sensitized solar cells with a maximum power output of 126 W and incident photon to conversion energy (IPCE) of 0.13%.This work has established that A.cepa peels can be used as a source of micro-energy generation.

  6. Near-infrared squaraine co-sensitizer for high-efficiency dye-sensitized solar cells.

    PubMed

    Rao, G Hanumantha; Venkateswararao, A; Giribabu, L; Han, Liyuan; Bedja, Idriss; Gupta, Ravindra Kumar; Islam, Ashraful; Singh, Surya Prakash

    2016-06-07

    A combination of squaraine-based dyes (SPSQ1 and SPSQ2) and a ruthenium-based dye (N3) were chosen as co-sensitizers to construct efficient dye-sensitized solar cells. The co-sensitization of squaraine dyes with N3 enhanced their light-harvesting properties as a result of the broad spectral coverage in the region 350-800 nm. The co-sensitized solar cells based on SPSQ2 + N3 showed the highest short circuit current density of 17.10 mA cm(-2), an open circuit voltage of 0.66 V and a fill factor of 0.73, resulting in the highest power conversion efficiency of 8.2%, which is higher than that of the dye-sensitized solar cells based on the individual SPSQ1 and SPSQ2 dyes. The high power conversion efficiency of SPSQ2 + N3 was ascribed to its good light-harvesting properties, which resulted from its broader incident photon current conversion spectrum than that of the individual dyes. The high electron life time and electron recombination, which were the main causes of the higher efficiency of the device, were successfully analysed and correlated using transient absorption spectrometry and intensity-modulated photovoltage spectrometry.

  7. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.

    PubMed

    Imahori, Hiroshi; Umeyama, Tomokazu; Ito, Seigo

    2009-11-17

    Recently, dye-sensitized solar cells have attracted much attention relevant to global environmental issues. Thus far, ruthenium(II) bipyridyl complexes have proven to be the most efficient TiO(2) sensitizers in dye-sensitized solar cells. However, a gradual increment in the highest power conversion efficiency has been recognized in the past decade. More importantly, considering that ruthenium is a rare metal, novel dyes without metal or using inexpensive metal are desirable for highly efficient dye-sensitized solar cells. Large pi-aromatic molecules, such as porphyrins, phthalocyanines, and perylenes, are important classes of potential sensitizers for highly efficient dye-sensitized solar cells, owing to their photostability and high light-harvesting capabilities that can allow applications in thinner, low-cost dye-sensitized solar cells. Porphyrins possess an intense Soret band at 400 nm and moderate Q bands at 600 nm. Nevertheless, the poor light-harvesting properties relative to the ruthenium complexes have limited the cell performance of porphyrin-sensitized TiO(2) cells. Elongation of the pi conjugation and loss of symmetry in porphyrins cause broadening and a red shift of the absorption bands together with an increasing intensity of the Q bands relative to that of the Soret band. On the basis of the strategy, the cell performance of porphyrin-sensitized solar cells has been improved intensively by the enhanced light absorption. Actually, some push-pull-type porphyrins have disclosed a remarkably high power conversion efficiency (6-7%) that was close to that of the ruthenium complexes. Phthalocyanines exhibit strong absorption around 300 and 700 nm and redox features that are similar to porphyrins. Moreover, phthalocyanines are transparent over a large region of the visible spectrum, thereby enabling the possibility of using them as "photovoltaic windows". However, the cell performance was poor, owing to strong aggregation and lack of directionality in the

  8. High-efficiency dye-sensitized solar cells using ferrocene-based electrolytes and natural photosensitizers

    NASA Astrophysics Data System (ADS)

    Sönmezoğlu, Savaş; Akyürek, Cafer; Akin, Seçkin

    2012-10-01

    A new and promising dye-sensitized solar cell (DSSC) bilayer design was developed using an Fe2+/Fe3+ (ferrocene) liquid electrolyte and natural dyes extracted from Hypericum perforatum, Rubia tinctorum L. and Reseda luteola. The photovoltaic parameters controlling the device performance were then investigated. A DSSC based on quercetin dye displayed the most efficient solar to electricity conversion efficiency compared with other dyes with a maximum η value of 2.17%. Maximum overall conversion efficiencies under simulated sunlight that was comparable to natural photosynthesis were increased by 15%. The identification of appropriate additives for improving VOC without causing dye degradation may result in further enhancement of cell performance, making the practical application of such systems more suitable for achieving economically viable solar energy devices.

  9. Triarylamine: Versatile Platform for Organic, Dye-Sensitized, and Perovskite Solar Cells.

    PubMed

    Wang, Jiayu; Liu, Kuan; Ma, Lanchao; Zhan, Xiaowei

    2016-12-14

    Triarylamine (TAA) and related materials have dramatically promoted the development of organic and hybrid photovoltaics during the past decade. The power conversion efficiencies of TAA-based organic solar cells (OSCs), dye-sensitized solar cells (DSSCs), and perovskite solar cells (PSCs) have exceeded 11%, 14%, and 20%, which are among the best results for these three kinds of devices, respectively. In this review, we summarize the recent advances of the high-performance TAA-based materials in OSCs, DSSCs, and PSCs. We focus our discussion on the structure-property relationship of the TAA-based materials in order to shed light on the solutions to the challenges in the field of organic and hybrid photovoltaics. Some design strategies for improving the materials and device performance and possible research directions in the near future are also proposed.

  10. Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kinoshita, Takumi; Nonomura, Kazuteru; Joong Jeon, Nam; Giordano, Fabrizio; Abate, Antonio; Uchida, Satoshi; Kubo, Takaya; Seok, Sang Il; Nazeeruddin, Mohammad Khaja; Hagfeldt, Anders; Grätzel, Michael; Segawa, Hiroshi

    2015-11-01

    The extension of the light absorption of photovoltaics into the near-infrared region is important to increase the energy conversion efficiency. Although the progress of the lead halide perovskite solar cells is remarkable, and high conversion efficiency of >20% has been reached, their absorption limit on the long-wavelength side is ~800 nm. To further enhance the conversion efficiency of perovskite-based photovoltaics, a hybridized system with near-infrared photovoltaics is a useful approach. Here we report a panchromatic sensitizer, coded DX3, that exhibits a broad response into the near-infrared, up to ~1100 nm, and a photocurrent density exceeding 30 mA cm-2 in simulated air mass 1.5 standard solar radiation. Using the DX3-based dye-sensitized solar cell in conjunction with a perovskite cell that harvests visible light, the hybridized mesoscopic photovoltaics achieved a conversion efficiency of 21.5% using a system of spectral splitting.

  11. Efficient dye-sensitized solar cells using red turnip and purple wild sicilian prickly pear fruits.

    PubMed

    Calogero, Giuseppe; Di Marco, Gaetano; Cazzanti, Silvia; Caramori, Stefano; Argazzi, Roberto; Di Carlo, Aldo; Bignozzi, Carlo Alberto

    2010-01-20

    Dye-sensitized solar cells (DSSCs) were assembled by using the bougainvillea flowers, red turnip and the purple wild Sicilian prickly pear fruit juice extracts as natural sensitizers of TiO(2) films. The yellow orange indicaxanthin and the red purple betacyanins are the main components in the cocktail of natural dyes obtained from these natural products. The best overall solar energy conversion efficiency of 1.7% was obtained, under AM 1.5 irradiation, with the red turnip extract, that showed a remarkable current density (Jsc = 9.5 mA/cm(2)) and a high IPCE value (65% at lambda = 470 nm). Also the purple extract of the wild Sicilian prickly pear fruit showed interesting performances, with a Jsc of 9.4 mA/cm(2), corresponding to a solar to electrical power conversion of 1.26%.

  12. Efficient Dye-Sensitized Solar Cells Using Red Turnip and Purple Wild Sicilian Prickly Pear Fruits

    PubMed Central

    Calogero, Giuseppe; Di Marco, Gaetano; Cazzanti, Silvia; Caramori, Stefano; Argazzi, Roberto; Di Carlo, Aldo; Bignozzi, Carlo Alberto

    2010-01-01

    Dye-sensitized solar cells (DSSCs) were assembled by using the bougainvillea flowers, red turnip and the purple wild Sicilian prickly pear fruit juice extracts as natural sensitizers of TiO2 films. The yellow orange indicaxanthin and the red purple betacyanins are the main components in the cocktail of natural dyes obtained from these natural products. The best overall solar energy conversion efficiency of 1.7% was obtained, under AM 1.5 irradiation, with the red turnip extract, that showed a remarkable current density (Jsc = 9.5 mA/cm2) and a high IPCE value (65% at λ = 470 nm). Also the purple extract of the wild Sicilian prickly pear fruit showed interesting performances, with a Jsc of 9.4 mA/cm2, corresponding to a solar to electrical power conversion of 1.26%. PMID:20162014

  13. Improved dye-sensitized solar cell with a ZnO nanotree photoanode by hydrothermal method.

    PubMed

    Kuo, Shou-Yi; Yang, Jui-Fu; Lai, Fang-I

    2014-01-01

    This study investigated the influence of ZnO nanostructures on dye adsorption to increase the photovoltaic conversion efficiency of solar cells. ZnO nanostructures were grown in both tree-like and nanorod (NR) arrays on an AZO/FTO film structure by using a hydrothermal method. The results were observed in detail using X-ray diffraction, field-emission scanning electron microscopy (FE-SEM), UV-visible spectrophotometry, electrochemical impedance spectroscopy, and solar simulation. The selective growth of tree-like ZnO was found to exhibit higher dye adsorption loading and conversion efficiency than ZnO NRs. The multiple 'branches' of 'tree-like nanostructures' increases the surface area for higher light harvesting and dye loading while reducing charge recombination. These improvements result in a 15% enhancement in power conversion. The objective of this study is to facilitate the development of a ZnO-based dye-sensitized solar cell.

  14. Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode

    NASA Astrophysics Data System (ADS)

    Jiang, C. Y.; Sun, X. W.; Lo, G. Q.; Kwong, D. L.; Wang, J. X.

    2007-06-01

    In this letter, the authors report a dye-sensitized solar cell (DSSC) using a ZnO-nanoflower film photoanode, which was grown by a hydrothermal method at 95°C. The dye used was cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II) bis-tetrabutylam-monium (N-719). At AM1.5G irradiation with 100mW/cm2 light intensity, the DSSC based on ZnO-nanoflower film showed an energy conversion efficiency of 1.9%, which is much higher compared to that (1.0%) of the control device constructed using a photoanode of upstanding ZnO-nanorod array fabricated by hydrothermal method as well. The better performance of ZnO-nanoflower DSSC was due to a better dye loading and light harvesting of the ZnO-nanoflower film. The results demonstrate potential application of ZnO-nanoflower array for efficient dye-sensitized solar cells.

  15. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes.

    PubMed

    Abdou, E M; Hafez, H S; Bakir, E; Abdel-Mottaleb, M S A

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k=1.6, 2.1 and 1.9×10(-3)min(-1) for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100mWcm(-2), reveals highly stable DSSCs.

  16. Conformal growth of anodic nanotubes for dye-sensitized solar cells: part II. Nonplanar electrode.

    PubMed

    Sun, Lidong; Zhang, Sam; Wang, Qing

    2014-02-01

    Anodic titania nanotube array features highly ordered alignment as well as porous nature, and exhibits intriguing properties when employed in a variety of applications. All these profit from the continuous efforts on controlling the nanotube configurations. Recently, nonplanar electrodes have also been used to grow the nanotubes besides the conventional planar counterparts. As such, it is of great interest and significance to complete a picture to link the nanotubes grown on planar and various nonplanar electrodes for a comprehensive understanding of nanotube growing manners, in an attempt to boost their future applications. In the first part of this review, planar electrodes are focused with regard to nanotube growth and application in dye-sensitized solar cells. In this part, the nanotubes grown on patterned or curved surfaces are discussed first with reference to a similar structure of alumina nanopores, which are subsequently used to mirror the growth of nanotubes on cylindrical electrodes (i.e., titanium wires or meshes). The last section focuses on titanium tubular electrodes which are attractive for thermal fluids in view of the drastically reduced thermal conductivity in the presence of anodic nanotubes. As a recent hot topic, wire-shaped dye-sensitized solar cells are deliberated in terms of cell structure, efficiency calculation, merits, challenges and outlook.

  17. A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Raj, C. Clement; Prasanth, R.

    2016-06-01

    In a dye sensitized solar cell the photoanode performs a dual role of acting as a matrix for dye adsorption and as a charge transport medium for electron transport. The surface area and the electronic property of the material determine the current output of the device. So the performance of dye sensitized solar cell is significantly affected by our choice of material to be used as photoanode. High surface area, optimum carrier density, low impedance and efficient carrier transport are requirements for an efficient photoanode material in a DSSC. The goal of this review article is to highlight the fabrication methods used for the preparation of efficient nanostructured photoanodes. The application of these nanostructured photoanode materials and their impact on the device efficiency has been described in detail. The enhancement in the surface area of the material and its impact on the dye adsorption and current generation has been discussed. A detailed analysis of the role of different blocking layers used in improving the open circuit voltage of the device has been done. The outlook and future directions in improving the device performance are also discussed.

  18. Hydrothermally growth of novel hierarchical structures titanium dioxide for high efficiency dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Cheng, Pengfei; Liu, Yang; Sun, Peng; Du, Sisi; Cai, Yaxin; Liu, Fengmin; Zheng, Jie; Lu, Geyu

    2014-12-01

    We report an innovative development of novel double layered photoanodes made of hierarchical TiO2 micro-corollas as the overlayer and TiO2 nanoforest as the underlayer (HTCF), for dye-sensitized solar cells (DSSCs). They are obtained by a facile hydrothermal reaction of TiO2 nanorods array with top microspheres (MS)/FTO (Fluorine-doped tin oxide) glass substrate in an alkaline solution. In this process, the microspheres and nanorods are transformed into micro-corollas and nanotrees, respectively. The photoanodes with HTCF structure can greatly improve the light scattering ability due to their novel structures. Moreover, the enhanced surface area of HTCF can lead to larger dye loading, which achieves the higher light harvesting capacity. Base on the fast electron transport of the interior nanorods, higher light scattering and harvesting capacities, this novel HTCF photoanode realizes tri-functions. The overall power conversion efficiency (PCE) of the HTCF DSSCs are 51% increase in the conversion efficiency compare with those of constructed by bare TiO2 nanorod arrays. In our work, tri-functions of photoanodes are obtained by improving the 1D TiO2 nanostructures (nanorod, nanowire, nanotube et al.). To the best of our knowledge, it is a significant fabrication technology breakthrough for the photoanode of dye-sensitized solar cells.

  19. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes

    NASA Astrophysics Data System (ADS)

    Abdou, E. M.; Hafez, H. S.; Bakir, E.; Abdel-Mottaleb, M. S. A.

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k = 1.6, 2.1 and 1.9 × 10-3 min-1 for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100 mW cm-2, reveals highly stable DSSCs.

  20. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules.

    PubMed

    Hu, Linhua; Dai, Songyuan; Weng, Jian; Xiao, Shangfeng; Sui, Yifeng; Huang, Yang; Chen, Shuanghong; Kong, Fantai; Pan, Xu; Liang, Linyun; Wang, Kongjia

    2007-01-18

    The optimization of dye-sensitized solar cells, especially the design of nanoporous TiO2 film microstructure, is an urgent problem for high efficiency and future commercial applications. However, up to now, little attention has been focused on the design of nanoporous TiO2 microstructure for a high efficiency of dye-sensitized solar cell modules. The optimization and design of TiO2 photoelectrode microstructure are discussed in this paper. TiO2 photoelectrodes with three different layers, including layers of small pore size films, larger pore size films, and light-scattering particles on the conducting glass with the desirable thickness, were designed and investigated. Moreover, the photovoltaic properties showed that the different porosities, pore size distribution, and BET surface area of each layer have a dramatic influence on short-circuit current, open-circuit voltage, and fill factor of the modules. The optimization and design of TiO2 photoelectrode microstructure contribute a high efficiency of DSC modules. The photoelectric conversion efficiency around 6% with 15 x 20 cm2 modules under illumination of simulated AM1.5 sunlight (100 mW/cm2) and 40 x 60 cm2 panels with the same performance tested outdoor have been achieved by our group.

  1. Energy and hole transfer between dyes attached to titania in cosensitized dye-sensitized solar cells.

    PubMed

    Hardin, Brian E; Sellinger, Alan; Moehl, Thomas; Humphry-Baker, Robin; Moser, Jacques-E; Wang, Peng; Zakeeruddin, Shaik M; Grätzel, Michael; McGehee, Michael D

    2011-07-13

    Cosensitization of broadly absorbing ruthenium metal complex dyes with highly absorptive near-infrared (NIR) organic dyes is a clear pathway to increase near-infrared light harvesting in liquid-based dye-sensitized solar cells (DSCs). In cosensitized DSCs, dyes are intimately mixed, and intermolecular charge and energy transfer processes play an important role in device performance. Here, we demonstrate that an organic NIR dye incapable of hole regeneration is able to produce photocurrent via intermolecular energy transfer with an average excitation transfer efficiency of over 25% when cosensitized with a metal complex sensitizing dye (SD). We also show that intermolecular hole transfer from the SD to NIR dye is a competitive process with dye regeneration, reducing the internal quantum efficiency and the electron lifetime of the DSC. This work demonstrates the general feasibility of using energy transfer to boost light harvesting from 700 to 800 nm and also highlights a key challenge for developing highly efficient cosensitized dye-sensitized solar cells.

  2. Nanostructured TiO2 films for dye-sensitized solar cells prepared by the sol-gel method.

    PubMed

    Jin, Young Sam; Kim, Kyung Hwan; Park, Sang Joon; Yoon, Hyon Hee; Choi, Hyung Wook

    2011-12-01

    TiO2 films were prepared on glass substrates using the sol-gel process for a dye-sensitized solar cell application. The TiO2 sol was prepared using hydrolysis/polycondensation. Titanium (IV) Tetra Isopropoxide (TTIP) was used as precursor and Nitric acid (HNO3) was used as a catalyst for the peptization. The crystal structure and morphology of the prepared materials were characterized by XRD, and an SEM. The observations confirmed the nanocrystalline nature of the TiO2. The reaction parameters, such as the catalyst concentrations, the calcination time, and the calcination temperature were varied during the synthesis in order to achieve nanosize TiO2 particles. The prepared TiO2 particles were coated onto FTO glass using a screen printing technique. The prepared TiO2 films were characterized by UV-vis. The TiO2 particles calcinated at low temperatures showed an anatase phase they grew into a rutile phase when the calcination temperature increased. The size and structure of the TiO2 particles were adjusted to specific surface areas. It was found that the conversion efficiency of the DSSC was highly affected by the properties of the TiO2 particles.

  3. Effect of compressed TiO2 nanoparticle thin film thickness on the performance of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Tsai, Jenn Kai; Hsu, Wen Dung; Wu, Tian Chiuan; Meen, Teen Hang; Chong, Wen Jie

    2013-11-01

    In this study, dye-sensitized solar cells (DSSCs) were fabricated using nanocrystalline titanium dioxide (TiO2) nanoparticles as photoanode. Photoanode thin films were prepared by doctor blading method with 420 kg/cm2 of mechanical compression process and heat treatment in the air at 500°C for 30 min. The optimal thickness of the TiO2 NP photoanode is 26.6 μm with an efficiency of 9.01% under AM 1.5G illumination at 100 mW/cm2. The efficiency is around two times higher than that of conventional DSSCs with an uncompressed photoanode. The open-circuit voltage of DSSCs decreases as the thickness increases. One DSSC (sample D) has the highest conversion efficiency while it has the maximum short-circuit current density. The results indicate that the short-circuit current density is a compromise between two conflict factors: enlargement of the surface area by increasing photoanode thickness and extension of the electron diffusion length to the electrode as the thickness increases.

  4. Preparation of TiO₂ nanowires/nanotubes using polycarbonate membranes and their uses in dye-sensitized solar cells.

    PubMed

    Roh, Dong Kyu; Patel, Rajkumar; Ahn, Sung Hoon; Kim, Dong Jun; Kim, Jong Hak

    2011-10-05

    Track-etched polycarbonate (PC) membranes were used as a soft template to synthesize mesoporous TiO(2) for use in dye-sensitized solar cells (DSSCs). The Ti precursor infiltrated into the cylindrical confined spaces of PC membranes. Upon calcination at 500 °C, TiO(2) nanowires (15TNW) were obtained from PC with a 15 nm pore diameter, whereas TiO(2) nanotubes (50TNT and 100TNT) were generated from PC with 50 and 100 nm diameter pores, respectively. TNW and TNT were used as photoelectrodes in DSSCs employing a polymer electrolyte. The ranking of the cell efficiencies of the 200 nm thick TiO(2) films was 50TNT (1.1%) > 15TNW (0.8%) ≅ 100TNT (0.7%), which was mostly attributed to different amounts of dye adsorption due to different surface areas. These TNW and TNT films were further coated with the graft copolymer-directed mesoporous TiO(2) and were used as interfacial layers between the FTO glass and the 4 μm thick nanocrystalline TiO(2) film. As a result, the order of energy conversion efficiency was 15TNW (5.0%) ≅ 50TNT (4.8%) > 100TNT (4.1%). The improved performance of 15TNW was due to a higher transmittance through the electrode and a longer electron lifetime for recombination. The DSSC performance was systematically investigated in terms of interfacial resistance and charge recombination using electrochemical impedance spectroscopy.

  5. Consistent static and small-signal physics-based modeling of dye-sensitized solar cells under different illumination conditions.

    PubMed

    Cappelluti, Federica; Ma, Shuai; Pugliese, Diego; Sacco, Adriano; Lamberti, Andrea; Ghione, Giovanni; Tresso, Elena

    2013-09-21

    A numerical device-level model of dye-sensitized solar cells (DSCs) is presented, which self-consistently couples a physics-based description of the photoactive layer with a compact circuit-level description of the passive parts of the cell. The opto-electronic model of the nanoporous dyed film includes a detailed description of photogeneration and trap-limited kinetics, and a phenomenological description of nonlinear recombination. Numerical simulations of the dynamic small-signal behavior of DSCs, accounting for trapping and nonlinear recombination mechanisms, are reported for the first time and validated against experiments. The model is applied to build a consistent picture of the static and dynamic small-signal performance of nanocrystalline TiO2-based DSCs under different incident illumination intensity and direction, analyzed in terms of current-voltage characteristic, Incident Photon to Current Efficiency, and Electrochemical Impedance Spectroscopy. This is achieved with a reliable extraction and validation of a unique set of model parameters against a large enough set of experimental data. Such a complete and validated description allows us to gain a detailed view of the cell collection efficiency dependence on different operating conditions. In particular, based on dynamic numerical simulations, we provide for the first time a sound support to the interpretation of the diffusion length, in the presence of nonlinear recombination and non-uniform electron density distribution, as derived from small-signal characterization techniques and clarify its correlation with different estimation methods based on spectral measurements.

  6. Multifunctional graded index TiO2 compact layer for performance enhancement in dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Abdullah, M. H.; Rusop, M.

    2013-11-01

    A specially tailored index TiO2 compact layer (arc-TiO2) has been successfully deposited to serve as photoanode of a dye-sensitized solar cell (DSSC) by radio-frequency magnetron sputtering. The employment of the TiO2 compact layer in the DSSC was systematically investigated by means of UV-absorption spectra, incident photon to current efficiency (IPCE), open-circuit voltage decay (OCVD) and electrochemical impedance spectroscopy (EIS). The higher and red-shifted transmittance spectra of the ITO/arc-TiO2 electrode mimic the IPCE spectra of the DSSC, in a specific wavelength region. Furthermore, the blue-shift of the UV-absorption spectra and lower R1 value obtained from EIS measurements implied the decrease of the charge interfacial resistance, and this consequently facilitates the charge transport from the nanocrystalline-TiO2 to the ITO. The integrated effects of the arc-TiO2 compact layer originate the remarkable improvement in this type of DSSC applications. As a result, the arc-TiO2-based DSSC showed higher conversion efficiency of about 4.38%, representing almost 53% increment compared to bare ITO cell. This work also discuss the fundamental insight of the compact layer that determines the origin of such improvement in the DSSC performance.

  7. Interfacial modification to optimize stainless steel photoanode design for flexible dye sensitized solar cells: an experimental and numerical modeling approach

    NASA Astrophysics Data System (ADS)

    Salehi Taleghani, Sara; Zamani Meymian, Mohammad Reza; Ameri, Mohsen

    2016-10-01

    In the present research, we report fabrication, experimental characterization and theoretical analysis of semi and full flexible dye sensitized solar cells (DSSCs) manufactured on the basis of bare and roughened stainless steel type 304 (SS304) substrates. The morphological, optical and electrical characterizations confirm the advantage of roughened SS304 over bare and even common transparent conducting oxides (TCOs). A significant enhancement of about 51% in power conversion efficiency is obtained for flexible device (5.51%) based on roughened SS304 substrate compared to the bare SS304. The effect of roughening the SS304 substrates on electrical transport characteristics is also investigated by means of numerical modeling with regard to metal-semiconductor and interfacial resistance arising from the metallic substrate and nanocrystalline semiconductor contact. The numerical modeling results provide a reliable theoretical backbone to be combined with experimental implications. It highlights the stronger effect of series resistance compared to schottky barrier in lowering the fill factor of the SS304-based DSSCs. The findings of the present study nominate roughened SS304 as a promising replacement for conventional DSSCs substrates as well as introducing a highly accurate modeling framework to design and diagnose treated metallic or non-metallic based DSSCs.

  8. Efficiency enhancement in solid state dye sensitized solar cells by including inverse opals with controlled layer thicknesses

    NASA Astrophysics Data System (ADS)

    Zheng, Hanbin; Shah, Said Karim; Abbas, Mamatimin; Ly, Isabelle; Rivera, Thomas; Almeida, Rui M.; Hirsch, Lionel; Toupance, Thierry; Ravaine, Serge

    2016-09-01

    The photoconversion efficiency of dye sensitized solar cells can be enhanced by the incorporation of light management nanostructures such as photonic crystals. Here, we present a facile route to incorporate titania inverse opals into solid state dye sensitized solar cells and report photoconversion efficiency enhancements of up to 56% compared with a model system without the inverse opal. Our approach is based on the precise design of titania inverse opals with a predetermined thickness that can be controlled at the individual layer level. By choosing an inverse opal exhibiting a photonic bandgap which overlaps the absorption bands of the dye, our results show that there is an optimal thickness of the inverse opal structure for maximum efficiency enhancement of the cell. This is the first experimental proof that the thickness of a titania inverse opal plays a pivotal role in cell efficiency enhancement in solid state dye sensitized solar cells.

  9. Charge and Energy Transfer in the Metal-free Indoline Dyes for Dye-sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Diao, Li-ying; Gu, Wen-xiang; Chen, Yue-hui; Ma, Feng-cai

    2006-06-01

    Metal-free indoline dyes for dye-sensitized solar cells were studied by employing quantum chemistry methods. Comparative study of the properties of both ground and excited states of metal-free indoline dyes for dye- sensitized solar cells revealed: (i) as the number of rhodanine rings increases, the energy difference between HOMO and LUMO decreases and there is a red shift in the absorption spectrum with the binding energy increased, and the transition dipole moment decreased; (ii) Based on an analysis of charge differential density, we observed that the charge and energy are transfered from the phenylethenyl to the indoline and rhodanine rings; (iii) The electron-hole coherences are mainly on the indoline and rhodanine rings, and the exciton sizes are 30 and 40 atoms for indoline dyes with one and two rhodanline rings, respectively. These results serve as a good example of computer-aided design in metal-free indoline dyes for dye-sensitized solar cells.

  10. Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers

    SciTech Connect

    Ma, Shengbo; Ting, Hungkit; Ma, Yingzhuang; Zheng, Lingling; Zhang, Miwei; Xiao, Lixin E-mail: lxxiao@pku.edu.cn; Chen, Zhijian E-mail: lxxiao@pku.edu.cn

    2015-05-15

    In this paper, smart photovoltaic (SPV) devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE) and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced visible light absorption and electron delocalization. Therefore, increased PCE and absorption in SPV devices were observed under UV treatment and the devices can be restored gradually to the initial status when kept in dark. The SPV devices have self-regulation of PCE and sunlight transmission responding to the changing sun spectra in different times of a day, providing a proper energy usage and a better sun-shading.

  11. Gold nanoparticle decorated multi-walled carbon nanotubes as counter electrode for dye sensitized solar cells.

    PubMed

    Kaniyoor, Adarsh; Ramaprabhu, Sundara

    2012-11-01

    A novel counter electrode material for dye sensitized solar cells (DSSCs) composed of nanostructured Au particles decorated on functionalized multi-walled carbon nanotubes (f-MWNTs) is demonstrated for the first time. MWNTs synthesized by catalytic chemical vapor deposition technique are purified and functionalized by treating with concentrated acids. Au nanoparticles are decorated on f-MWNTs by a rapid and facile microwave assisted polyol reduction method. The materials are characterized by X-ray diffractometry, Fourier transform infra red spectroscopy and electron microscopy. The DSSC fabricated with Au/f-MWNTs based counter electrode shows enhanced power conversion efficiency (eta) of 4.9% under AM 1.5G simulated solar radiation. In comparison, the reference DSSCs fabricated with f-MWNTs and Pt counter electrodes show eta of 2.1% and 4.5%. This high performance of Au/f-MWNTs counter electrode is investigated using electrochemical impedance spectroscopy and cyclic voltammetry studies.

  12. Vanadium oxide (VO) based low cost counter electrode in dye sensitized solar cell (DSSC) applications

    SciTech Connect

    Vijayakumar, P.; Pandian, Muthu Senthil; Ramasamy, P.

    2015-06-24

    Vanadium oxide nanostars were synthesized by chemical method. The prepared Vanadium oxide nanostars are introduced into dye sensitized solar cell (DSSC) as counter electrode (CE) catalyst to replace the expensive platinum (Pt). The products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) method. The photovoltaic performance of the VO as counter electrode based DSSC was evaluated under simulated standard global AM 1.5G sunlight (100 mW/cm{sup 2}). The solar to electrical energy conversion efficiency (η) of the DSSC was found to be 0.38%.This work expands the Counter electrode catalyst, which can help to reduce the cost of DSSC and thereby encourage their fundamental research and commercial application.

  13. Dye-sensitized solar cells with natural dyes extracted from plant seeds

    NASA Astrophysics Data System (ADS)

    El-Ghamri, Hatem S.; El-Agez, Taher M.; Taya, Sofyan A.; Abdel-Latif, Monzir S.; Batniji, Amal Y.

    2014-12-01

    The application of natural dyes extracted from plant seeds in the fabrication of dye-sensitized solar cells (DSSCs) has been explored. Ten dyes were extracted from different plant seeds and used as sensitizers for DSSCs. The dyes were characterized using UV-Vis spectrophotometry. DSSCs were prepared using TiO2 and ZnO nanostructured mesoporous films. The highest conversion efficiency of 0.875 % was obtained with an allium cepa (onion) extract-sensitized TiO2 solar cell. The process of TiO2-film sintering was studied and it was found that the sintering procedure significantly affects the response of the cell. The short circuit current of the DSSC was found to be considerably enhanced when the TiO2 semiconducting layer was sintered gradually.

  14. Dye-sensitized solar cells fabricated with black raspberry, black carrot and rosella juice

    NASA Astrophysics Data System (ADS)

    Tekerek, S.; Kudret, A.; Alver, Ü.

    2011-10-01

    In this work, dye sensitized solar cells (DSSC's) were constructed from black raspberry ( Rubus Ideaus), black carrot ( Daucuscarota L.) and rosella juice ( Hibiscus Sabdariffa L.). In order to fabricate a DSSC the fluorine-doped tin (IV) oxide (FTO) thin films obtained by using spray pyrolysis technique were used as a substrate. TiO2 films on FTO layers were prepared by doctor-blading technique. Platinum-coated counter electrode and liquid Iodide/Iodine electrolyte solution were used to fabricate DSSC's. The efficiencies of solar cells produced with black carrot, rosella and black raspberry juice were calculated as 0.25%, 0.16% and 0.16% respectively, under a sunny day in Kahramanmaraş-Turkey.

  15. Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers

    NASA Astrophysics Data System (ADS)

    Ma, Shengbo; Ting, Hungkit; Ma, Yingzhuang; Zheng, Lingling; Zhang, Miwei; Xiao, Lixin; Chen, Zhijian

    2015-05-01

    In this paper, smart photovoltaic (SPV) devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE) and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced visible light absorption and electron delocalization. Therefore, increased PCE and absorption in SPV devices were observed under UV treatment and the devices can be restored gradually to the initial status when kept in dark. The SPV devices have self-regulation of PCE and sunlight transmission responding to the changing sun spectra in different times of a day, providing a proper energy usage and a better sun-shading.

  16. Dye-sensitized solar cells based on different nano-oxides on plastic PET substrate

    NASA Astrophysics Data System (ADS)

    Mikula, Milan; Gemeiner, Pavol; Beková, Zuzana; Dvonka, Vladimír; Búc, Dalibor

    2015-01-01

    Polyethylene-terephthalate (PET) foils and glass slides coated with thin conductive layers were used as substrates for TiO2 or ZnO based photoactive electrodes of dye-sensitized solar cells (DSSC) with organo-metallic Ru-dye, standard iodine electrolyte and Pt coated FTO/glass counterelectrode (CE). Different compositions of nanoparticle oxides in forms of alcohol pastes as well as the CE paste were applied onto the substrates by screen printing or by doctor blade techniques. Photocurrents and I-V loading characteristics were measured depending on the solar cell structure and preparation, including the oxide composition, electrode conductivity and the dye type. The influence of thin TiO2 blocking layer prepared by sol-gel technique is also discussed.

  17. International round-robin inter-comparison of dye-sensitized and crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Yuan; Ahn, Seung Kyu; Aoki, Dasiuke; Kokubo, Junichi; Yoon, Kyung Hoon; Saito, Hidenori; Lee, Kyung Sik; Magaino, Shinichi; Takagi, Katsuhiko; Lin, Ling-Chuan; Lee, Kun-Mu; Wu, Chun-Guey; Zhou, Hong; Igari, Sanekazu

    2017-02-01

    An international round-robin inter-comparison of the spectral responsivity (SR) and current-voltage (I-V) characteristics for dye-sensitized solar cells (DSCs) and crystalline silicon solar cells is reported for the first time. The crystalline silicon cells with various spectral responsivities were also calibrated by AIST to validate this round-robin activity. On the basis of the remarkable consistency in Pmax (within ±1.4% among participants) and Isc (within ±1.2% compared to the primary calibration of AIST) of the silicon specimens, the discrepancy in the SR and photovoltaic parameters of five DSCs among three national laboratories can be verified and diagnosed. Recommendations about sample packages, SR and I-V measurement methods as well as the inter-comparison protocol for improving the performance characterization of the mesoscopic DSCs are presented according to the consolidated data and the experience of the participants.

  18. Dye-sensitized solar cells using double-oxide electrodes: a brief review

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshikazu; Okamoto, Yuji; Ishii, Natsumi

    2015-04-01

    Dye-sensitized solar cells (DSC or DSSC) have been widely investigated because of their potentially high cost performance compared with Si-based solar cells and of their fascinating appearance. DSC with photoelectric conversion efficiency of >10 % (or even 12 %) have been reported, where porous TiO2 films are generally used as semi-conductor electrodes. Such porous TiO2 films usually have high specific surface area, and thus, they adsorb plenty of dye molecules, resulting in high photocurrent density. Recently, some double oxides have been examined as alternative photoanode materials, mainly in order to improve photovoltage. Here, studies on DSC using double-oxide electrodes, i.e., perovskite, spinel, ilmenite, wolframite, scheelite and pseudobrookite-types, are briefly reviewed.

  19. Electrochemically Reduced Graphene Oxide Multilayer Films as Efficient Counter Electrode for Dye-Sensitized Solar Cells

    PubMed Central

    Xu, Xiaobao; Huang, Dekang; Cao, Kun; Wang, Mingkui; Zakeeruddin, Shaik M.; Grätzel, Michael

    2013-01-01

    We report on a new counter electrode for dye-sensitized solar cells (DSCs), which is prepared using layer-by-layer assembly of negatively charged graphene oxide and positively charged poly (diallyldimethylammonium chloride) followed by an electrochemical reduction procedure. The DSC devises using the heteroleptic Ru complex C106TBA as sensitizer and this new counter electrode reach power conversion efficiencies of 9.5% and 7.6% in conjunction with low volatility and solvent free ionic liquid electrolytes, respectively. The new counter electrode exhibits good durability (60°C for 1000 h in a solar simulator, 100 mW cm−2) during the accelerated tests when used in combination with an ionic liquid electrolyte. This work identifies a new class of electro-catalysts with potential for low cost photovoltaic devices. PMID:23508212

  20. Hysteresis analysis in dye-sensitized solar cells based on external bias field effects

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Li, Xiaoyi; Tong, Yanhua; Zhang, Tiansheng

    2017-02-01

    The current density-voltage (J-V) hysteresis phenomenon occurs in perovskite solar cells as well as dye-sensitized solar cells (DSCs); however, it has received little attention in DSCs. We consider that the trapping-detrapping-induced variation of the charge collection efficiency might cause J-V hysteresis. Therefore, we conduct a systematic study on the influence of an external bias field during and before J-V measurements in typical DSCs. We find that the J-V performance of DSCs significantly depends on the scan bias direction and the external bias field before and during measurements. Our results indicate that the external-bias-field-modulated charge injection, trapping-detrapping, and accumulation processes in DSCs are possible causes for the anomalous J-V behavior.

  1. Membrane-Inspired Acidically Stable Dye-Sensitized Photocathode for Solar Fuel Production.

    PubMed

    Click, Kevin A; Beauchamp, Damian R; Huang, Zhongjie; Chen, Weilin; Wu, Yiying

    2016-02-03

    Tandem dye-sensitized photoelectrochemical cells (DSPECs) for water splitting are a promising method for sustainable energy conversion but so far have been limited by their lack of aqueous stability and photocurrent mismatch between the cathode and anode. In nature, membrane-enabled subcellular compartmentation is a general approach to control local chemical environments in the cell. The hydrophobic tails of the lipid make the bilayer impermeable to ions and hydrophilic molecules. Herein we report the use of an organic donor-acceptor dye that prevents both dye desorption and semiconductor degradation by mimicking the hydrophobic/hydrophilic properties of lipid bilayer membranes. The dual-functional photosensitizer (denoted as BH4) allows for efficient light harvesting while also protecting the semiconductor surface from protons and water via its hydrophobic π linker. The protection afforded by this membrane-mimicking dye gives this system excellent stability in extremely acidic (pH 0) conditions. The acidic stability also allows for the use of cubane molybdenum-sulfide cluster as the hydrogen evolution reaction (HER) catalyst. This system produces a proton-reducing current of 183 ± 36 μA/cm(2) (0 V vs NHE with 300 W Xe lamp) for an unprecedented 16 h with no degradation. These results introduce a method for developing high-current, low-pH DSPECs and are a significant move toward practical dye-sensitized solar fuel production.

  2. Interaction of Sensitizing Dyes with Nanostructured TiO2 Film in Dye-Sensitized Solar Cells Using Terahertz Spectroscopy

    PubMed Central

    Ghann, William; Rahman, Aunik; Rahman, Anis; Uddin, Jamal

    2016-01-01

    The objective of this investigation was to shed light on the nature of interaction of different organic dyes and an inorganic dye, Ruthenium (II) polypyridine complex, with TiO2 nanoparticles. TiO2 is commonly deployed as an efficient energy transfer electrode in dye sensitized solar cells. The efficiency of dye sensitized solar cells is a function of the interaction of a dye with the electrode material such as TiO2. To the best of our knowledge the present study is the first effort in the determination of terahertz absorbance signals, investigation of real-time dye permeation kinetics, and the surface profiling and 3D imaging of dye sensitized TiO2 films. Herein, we report that the terahertz spectra of the natural dye sensitized TiO2 films were distinctively different from that of the inorganic dye with prominent absorption of natural dyes occurring at approximately the same wavelength. It was observed that the permeation of the natural dyes were more uniform through the layers of the mesoporous TiO2 compared to the inorganic dye. Finally, defects and flaws on TiO2 film were easily recognized via surface profiling and 3D imaging of the films. The findings thus offer a new approach in characterization of dye sensitized solar cells. PMID:27443236

  3. Influence of TiCl4 post-treatment condition on TiO2 electrode for enhancement photovoltaic efficiency of dye-sensitized solar cells.

    PubMed

    Eom, Tae Sung; Kim, Kyung Hwan; Bark, Chung Wung; Choi, Hyung Wook

    2014-10-01

    Titanium tetrachloride (TiCl4) treatment processed by chemical bath deposition is usually adopted as pre- and post-treatment for nanocrystalline titanium dioxide (TiO2) film deposition in the dye-sensitized solar cells (DSSCs) technology. TiCl4 post-treatment is a widely known method capable of improving the performance of dye-sensitized solar cells. In this work, the effect of TiCl4 post-treatment on the TiO2 electrode is proposed and compared to the untreated film. A TiO2 passivating layer was deposited on FTO glass by RF magnetron sputtering. The TiO2 sol prepared sol-gel method, nanoporous TiO2 upper layer was deposited by screen printing method on the passivating layer. TiCl4 post-treatment was deposited on the substrate by hydrolysis of TiCl4 aqueous solution. Crystalline structure was adjusted by various TiCl4 concentration and dipping time: 20 mM-150 mM and 30 min-120 min. The conversion efficiency was measured by solar simulator (100 mW/cm2). The dye-sensitized solar cell using TiCl4 post-treatment was measured the maximum conversion efficiency of 5.04% due to electron transport effectively. As a result, the DSSCs based on TiCl4 post-treatment showed better photovoltaic performance than cells made purely of TiO2 nanoparticles. The relative DSSCs devices are characterized in terms of short circuit current density, open circuit voltage, fill factor, conversion efficiency.

  4. Analysis of Chameleonic Change of Red Cabbage Depending on Broad pH Range for Dye-Sensitized Solar Cells.

    PubMed

    Park, Kyung Hee; Kim, Tae Young; Ko, Hyun Seok; Han, Eun Mi; Lee, Suk-Ho; Kim, Jung-Hun; Lee, Jae Wook

    2015-08-01

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from red cabbage as a sensitizer. In this work, we investigated the adsorption characteristics and the electrochemical behavior for harvesting sunlight and electron transfer in red cabbage DSSCs under different solvents and pH. For the red cabbage dye-sensitized electrode adsorbed at pH 3.5, the solar cell yields a short-circuit current density (Jsc) of 1.60 mA/cm2, a photovoltage (Vcc) of 0.46 V, and a fill factor of 0.55, corresponding to an energy conversion efficiency (η) of 0.41%.

  5. Fabrication of dye-sensitized solar cell (DSSC) using annato seeds (Bixa orellana Linn)

    SciTech Connect

    Haryanto, Ditia Allindira; Landuma, Suarni; Purwanto, Agus

    2014-02-24

    The Fabrication of dye sensitized solar cell (DSSC) using Annato seeds has been conducted in this study. Annato seeds (Bixa orellana Linn) used as a sensitizer for dye sensitized solar cell. The experimental parameter was concentration of natural dye. Annato seeds was extracted using etanol solution and the concentration was controlled by varying mass of Annato seeds. A semiconductor TiO{sub 2} was prepared by a screen printing method for coating glass use paste of TiO{sub 2}. Construction DSSC used layered systems (sandwich) consists of working electrode (TiO{sub 2} semiconductor-dye) and counter electrode (platina). Both are placed on conductive glass and electrolytes that occur electrons cycle. The characterization of thin layer of TiO{sub 2} was conducted using SEM (Scanning Electron Microscpy) analysis showed the surface morphology of TiO{sub 2} thin layer and the cross section of a thin layer of TiO{sub 2} with a thickness of 15–19 μm. Characterization of natural dye extract was determined using UV-Vis spectrometry analysis shows the wavelength range annato seeds is 328–515 nm, and the voltage (V{sub oc}) and electric current (I{sub sc}) resulted in keithley test for 30 gram, 40 gram, and 50 gram were 0,4000 V; 0,4251 V; 0,4502 V and 0,000074 A; 0,000458 A; 0,000857 A, respectively. The efficiencies of the fabricated solar cells using annato seeds as senstizer for each varying mass are 0,00799%, 0,01237%, and 0,05696%.

  6. Molecular and Material Approaches to Overcome Kinetic and Energetic Constraints in Dye-Sensitized Solar Cells

    SciTech Connect

    Hamann, Thomas

    2016-08-14

    Dye-sensitized solar cells (DSSCs) have attracted a lot of interest as they proffer the possibility of extremely inexpensive and efficient solar energy conversion. The excellent performance of the most efficient DSSCs relies on two main features: 1) a high surface area nanoparticle semiconductor photoanode to allow for excellent light absorption with moderate extinction molecular dyes and 2) slow recombination rates from the photoanode to I3- allowing good charge collection. The I3-/I- couple, however, has some disadvantages, notably the redox potential limits the maximum open-circuit voltage, and the dye regeneration requires a large driving force which constrains the light harvesting ability. Thus, the design features that allow DSSCs to perform as well as they do also prevent further significant improvements in performance. As a consequence, the most efficient device configuration, and the maximum efficiency, has remained essentially unchanged over the last 16 years. Significant gains in performance are possible; however it will likely require a substantial paradigm shift. The general goal of this project is to understand the fundamental role of dye-sensitized solar cell, DSSC, components (sensitizer, redox shuttle, and photoanode) involved in key processes in order to overcome the kinetic and energetic constraints of current generation DSSCs. For example, the key to achieving high energy conversion efficiency DSSCs is the realization of a redox shuttle which fulfills the dual requirements of 1) efficient dye regeneration with a minimal driving force and 2) efficient charge collection. In current generation DSSCs, however, only one or the other of these requirements is met. We are currently primarily interested in understanding the physical underpinnings of the regeneration and recombination reactions. Our approach is to systematically vary the components involved in reactions and interrogate them with a

  7. Effect of photoanode thickness on electrochemical performance of dye sensitized solar cell

    SciTech Connect

    Khatani, Mehboob Hamid, Nor Hisham Sahmer, Ahmed Zahrin; Mohamed, Norani Muti Muhsan, Ali Samer

    2015-07-22

    The thickness of photoanode is crucial as it adsorbed a large amount of dye molecules that provide electrons for generation of electricity in dye sensitized solar cell (DSC). Thus, in order to realize the practical application of DSC, study on various thickness of photoanode need to be carried out to analyze its effect on the electrochemical behavior of dye sensitized solar cell. To enhance the conversion efficiency, an additional layer of TiO{sub 2} using TiCl{sub 4} treatment was deposited prior to the deposition of the photoanode (active area of 1cm{sup 2}) with the thickness of 6, 12, 18, 24, and 30 µm on fluorine doped tin oxide (FTO) glass substrate. The resulting photoanode after the soak in N719 dye for more than 12hrs were used to be assembled in a test cell in combination with liquid electrolyte and counter electrode. The fabricated cells were characterized by solar simulator, ultraviolet-visible spectroscopy (UV-VIS), and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) was used to approximate the thickness of photoanode. An optimum power conversion efficiency of 4.54% was obtained for the cell fabricated with 18 µm photoanode thickness. This is attributed to the reduced resistance related to electron transport in the TiO{sub 2}/dye/electrolyte interface as proven by the EIS result. This led to the reduction of internal resistance, the increase in the electron life time and the improvement in the conversion efficiency.

  8. Two-electron photo-oxidation of betanin on titanium dioxide and potential for improved dye-sensitized solar energy conversion

    NASA Astrophysics Data System (ADS)

    Knorr, Fritz J.; Malamen, Deborah J.; McHale, Jeanne L.; Marchioro, Arianna; Moser, Jacques E.

    2014-09-01

    The plant pigment betanin is investigated as a dye-sensitizer on TiO2 with regard to its potential to undergo twoelectron oxidation following one-photon excitation. Electrochemical, spectroelectrochemical and transient absorption measurements provide evidence for two-electron proton-coupled photo-oxidation leading to a quinone methide intermediate which rearranges to 2-decarboxy-2,3-dehydrobetanin. Time-resolved spectroscopy measurements of betanin on nanocrystalline TiO2 and ZrO2 films were performed on femtosecond and nanosecond time-scales and provide evidence for transient species with absorption bands in the blue and the red. The results shed light on previous reports of high quantum efficiencies for electron injection and point the way to improved solar conversion efficiency of organic dyesensitized solar cells.

  9. Enhanced efficiency of dye-sensitized solar cells with novel synthesized TiO2.

    PubMed

    Ju, Ki-Young; Cho, Jung-Min; Cho, Sung-June; Yun, Je-Jung; Mun, Soo-San; Han, Eun-Mi

    2010-05-01

    An anatase TiO2 and three kinds of novel TiO2 nanoparticles were prepared by a hydrothermal method for dye-sensitized solar cells (DSSCs), which were obtained by mixing NaOH (10 M), KOH (14 M) and LiOH (10 M) solution with an anatase TiO2 powder, respectively. The TiO2 working electrodes of DSSCs were prepared and the photoelectric properties of the cells were characterized. The influence of different poly(ethylene glycol) contents in TiO2 films with and without HNO3 treatment on the electron transfer in DSSCs were investigated. It is found that the DSSC with HNO3 (0.002 mol/l)-treated film containing 16.7 wt% PEG shows the higher power conversion efficiency of 6.0%, which was mainly depended on the degrees of TiO2 pore size and uniformity of TiO2 films.

  10. Hierarchical structured TiO2 photoanodes for dye-sensitized solar cells.

    PubMed

    Shih, Yen-Chen; Chu, Ann-Kuo; Huang, Wen-Yao

    2012-04-01

    A novel approach has been developed to fabricate hills-like hierarchical structured TiO2 photoanodes for dye-sensitized solar cells (DSSCs). The appropriately aggregated TiO2 clusters in the photoanode layer could cause stronger light scattering and higher dye loading that increases the efficiency of photovoltaic device. For detailed light-harvesting study, different molecular weights of polyvinyl alcohol (PVA) were used as binders for TiO2 nanoparticles (P-25 Degussa) aggregation. A series of TiO2 films with dissimilar morphology, the reflection of TiO2 films, absorbance of attached dye, amount of dye loading, and performance of fabricated DSSC devices, were measured and investigated. An optimized device had energy conversion efficiency of 4.47% having a higher dye loading and good light harvesting, achieving a 23% increase of short-circuit current J(sc) in DSSCs.

  11. A model for recombination in Type II dye-sensitized solar cells: Catechol-thiophene dyes

    NASA Astrophysics Data System (ADS)

    Manzhos, Sergei; Segawa, Hiroshi; Yamashita, Koichi

    2011-03-01

    Recombination in dye-sensitized solar cells with direct injection is cast as internal conversion in the dye-Ti(OH) 2 complex. For catechol-thiophene dyes with 1, 2, or 3 thiophene units, the complex reproduces the previously observed dye-to-semiconductor bands. We compare the decomposition of the internal conversion rate by vibrational mode and predict a trend in recombination with the extension of conjugation, which offers an explanation for the trend in DSSC efficiency. We employ a simple model for the vibrational factors and show that they are only important in the presence of vibrational modes with ℏω⩽kT and strong electronic factors, as is the case here.

  12. Preparation and properties of low-cost graphene counter electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Qishuang; Shen, Yue; Wang, Qiandi; Gu, Feng; Cao, Meng; Wang, Linjun

    2013-12-01

    With the advantages of excellent electrical properties, high catalytic activity and low-cost preparation, Graphene is one of the most expected carbon materials to replace the expensive Pt as counter electrodes for dye-sensitized solar cells (DSSCs). In this paper, graphene counter electrodes were obtained by simple doctor-blade coating method on fluorine tin oxides (FTOs). The samples were investigated by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscope (SEM). Then the low-cost graphene electrodes were applied in typical sandwich-type DSSCs with TiO2 or ZnO as photoanodes, and their photoelectric conversion efficiency (η) were about 4.34% and 2.28%, respectively, which were a little lower than those of Pt electrodes but much higher than those of graphite electrodes. This law was consistent with the test results of electrochemical impedance spectroscopy (EIS). Low-cost graphene electrodes can be applied in DSSCs by process optimization.

  13. The Dye Sensitized Photoelectrosynthesis Cell (DSPEC) for Solar Water Splitting and CO2 Reduction

    NASA Astrophysics Data System (ADS)

    Meyer, Thomas; Alibabaei, Leila; Sherman, Benjamin; Sheridan, Matthew; Ashford, Dennis; Lapides, Alex; Brennaman, Kyle; Nayak, Animesh; Roy, Subhangi; Wee, Kyung-Ryang; Gish, Melissa; Meyer, Jerry; Papanikolas, John

    The dye-sensitized photoelectrosynthesis cell (DSPEC) integrates molecular level light absorption and catalysis with the bandgap properties of stable oxide materials such as TiO2 and NiO. Excitation of surface-bound chromophores leads to excited state formation and rapid electron or hole injection into the conduction or valence bands of n or p-type oxides. Addition of thin layers of TiO2 or NiO on the surfaces of mesoscopic, nanoparticle films of semiconductor or transparent conducting oxides to give core/shell structures provides a basis for accumulating multiple redox equivalents at catalysts for water oxidation or CO2 reduction. UNC EFRC Center for Solar Fuels, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001011.

  14. Tropolone as a High-Performance Robust Anchoring Group for Dye-Sensitized Solar Cells.

    PubMed

    Higashino, Tomohiro; Fujimori, Yamato; Sugiura, Kenichi; Tsuji, Yukihiro; Ito, Seigo; Imahori, Hiroshi

    2015-07-27

    A tropolone group has been employed for the first time as an anchoring group for dye-sensitized solar cells (DSSCs). The DSSC based on a porphyrin, YD2-o-C8T, with a tropolone moiety exhibited a power-conversion efficiency of 7.7 %, which is only slightly lower than that observed for a reference porphyrin, YD2-o-C8, with a conventional carboxylic group. More importantly, YD2-o-C8T was found to be superior to YD2-o-C8 with respect to DSSC durability and binding ability to TiO2 . These results unambiguously demonstrate that tropolone is a highly promising dye-anchoring group for DSSCs in terms of device durability as well as photovoltaic performance.

  15. Comparison of different structures of niobium oxide blocking layer for dye-sensitized solar cells.

    PubMed

    Chun, Jae Hwan; Kim, Jong Sung

    2014-08-01

    In this study, four different types of Nb2O5 thin layers were prepared using sol-gel process to improve energy conversion efficiency of dye sensitized solar cells (DSSCs). Nb2O5 layer was prepared on the fluorine-doped tin oxide (FTO) layer, TiO2 electrode layer, and inside of TiO2 layer, respectively. The Nb2O5 layer was used to reduce the recombination of photo induced electrons and holes. The DSSCs were assembled with platinum (Pt) coated counter electrode, ruthenium dye, and iodine based electrolyte. The photocurrent-voltage (I-V) characteristics of DSSCs with different types of Nb2O5 were studied. The efficiency depends not only on the structure of DSSCs but also on the initial compositions for the preparation of Nb2O5.

  16. Dye-sensitized solar cell employing zinc oxide aggregates grown in the presence of lithium

    DOEpatents

    Zhang, Qifeng; Cao, Guozhong

    2013-10-15

    Provided are a novel ZnO dye-sensitized solar cell and method of fabricating the same. In one embodiment, deliberately added lithium ions are used to mediate the growth of ZnO aggregates. The use of lithium provides ZnO aggregates that have advantageous microstructure, morphology, crystallinity, and operational characteristics. Employing lithium during aggregate synthesis results in a polydisperse collection of ZnO aggregates favorable for porosity and light scattering. The resulting nanocrystallites forming the aggregates have improved crystallinity and more favorable facets for dye molecule absorption. The lithium synthesis improves the surface stability of ZnO in acidic dyes. The procedures developed and disclosed herein also help ensure the formation of an aggregate film that has a high homogeneity of thickness, a high packing density, a high specific surface area, and good electrical contact between the film and the fluorine-doped tin oxide electrode and among the aggregate particles.

  17. Panchromatic donor-acceptor-donor conjugated oligomers for dye-sensitized solar cell applications.

    PubMed

    Stalder, Romain; Xie, Dongping; Islam, Ashraful; Han, Liyuan; Reynolds, John R; Schanze, Kirk S

    2014-06-11

    We report on a sexithienyl and two donor-acceptor-donor oligothiophenes, employing benzothiadiazole and isoindigo as electron-acceptors, each functionalized with a phosphonic acid group for anchoring onto TiO2 substrates as light-harvesting molecules for dye sensitized solar cells (DSSCs). These dyes absorb light to wavelengths as long as 700 nm, as their optical HOMO/LUMO energy gaps are reduced from 2.40 to 1.77 eV with increasing acceptor strength. The oligomers were adsorbed onto mesoporous TiO2 films on fluorine doped tin oxide (FTO)/glass substrates and incorporated into DSSCs, which show AM1.5 power conversion efficiencies (PCEs) ranging between 2.6% and 6.4%. This work demonstrates that the donor-acceptor-donor (D-A-D) molecular structures coupled to phosphonic acid anchoring groups, which have not been used in DSSCs, can lead to high PCEs.

  18. A flexible polypyrrole-coated fabric counter electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Li, Meixia; Wu, Lei; Sun, Yongyuan; Zhu, Ligen; Gu, Shaojin; Liu, Li; Bai, Zikui; Fang, Dong; Xu, Weilin

    2014-07-01

    The current dye-sensitized solar cell (DSSC) technology is mostly based on fluorine doped tin oxide (FTO) coated glass substrate. The main problem with the FTO glass substrate is its rigidity, heavyweight and high cost. DSSCs with a fabric as substrate not only offer the advantages of flexibility, stretchability and light mass, but also provide the opportunities for easy implantation to wearable electronics. Herein, a novel fabric counter electrode (CE) for DSSCs has been reported employing a daily-used cotton fabric as substrate and polypyrrole (PPy) as catalytic material. Nickel (Ni) is deposited on the cotton fabric as metal contact by a simple electroless plating method to replace the expensive FTO. PPy is synthesized by in situ polymerization of pyrrole monomer on the Ni-coated fabric. The fabric CE shows sufficient catalytic activity towards the reduction of I3-. The DSSC fabricated using the fabric CE exhibits power conversion efficiency of ∼3.30% under AM 1.5.

  19. Flexible, Low Cost, and Platinum-Free Counter Electrode for Efficient Dye-Sensitized Solar Cells.

    PubMed

    Ali, Abid; Shehzad, Khurram; Ur-Rahman, Faiz; Shah, Syed Mujtaba; Khurram, Muhammad; Mumtaz, Muhammad; Sagar, Rizwan Ur Rehman

    2016-09-28

    A platinum-free counter electrode composed of surface modified aligned multiwalled carbon nanotubes (MWCNTs) fibers was fabricated for efficient flexible dye-sensitized solar cells (DSSCs). Surface modification of MWCNTs fibers with simple one step hydrothermal deposition of cobalt selenide nanoparticles, confirmed by scanning electron microscopy and X-ray diffraction, provided a significant improvement (∼2-times) in their electrocatalytic activity. Cyclic voltammetry and electrochemical impedance spectroscopy suggest a photoelectric conversion efficiency of 6.42% for our modified fibers, higher than 3.4% and 5.6% efficeincy of pristine MWCNTs fiber and commonly used Pt wire, respectively. Good mechanical and performance stability after repeated bending and high output voltage for in-series connection suggest that our surface modified MWCNTs fiber based DSSCs may find applications as flexible power source in next-generation flexible/wearable electronics.

  20. Fabrication of carbon-coated silicon nanowires and their application in dye-sensitized solar cells.

    PubMed

    Kim, Junhee; Lim, Jeongmin; Kim, Minsoo; Lee, Hae-Seok; Jun, Yongseok; Kim, Donghwan

    2014-11-12

    We report the fabrication of silicon/carbon core/shell nanowire arrays using a two-step process, involving electroless metal deposition and chemical vapor deposition. In general, foreign shell materials that sheath core materials change the inherent characteristics of the core materials. The carbon coating functionalized the silicon nanowire arrays, which subsequently showed electrocatalytic activities for the reduction of iodide/triiodide. This was verified by cyclic voltammetry and electrochemical impedance spectroscopy. We employed the carbon-coated silicon nanowire arrays in dye-sensitized solar cells as counter electrodes. We optimized the carbon shells to maximize the photovoltaic performance of the resulting devices, and subsequently, a peak power conversion efficiency of 9.22% was achieved.

  1. Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells.

    PubMed

    Xu, Qi; Liu, Fang; Meng, Weisi; Huang, Yidong

    2012-11-05

    We present an investigation on introducing core-shell Au@PVP nanoparticles (NPs) into dye-sensitized solar cells. As a novel core-shell NPs structure, Au@PVP present not only the chemical stability to iodide/triiodide electrolyte, but also the adhesiveness to dye molecules, which could help to localize most of dye molecules around plasmonic NPs, hence increasing the optical absorption consequently the power conversion efficiency (PCE) of the device. We obtain a PCE enhancement of 30% from 3.3% to 4.3% with incorporation of Au@PVP NPs. Moreover, the device performance with different concentration of Au@PVP NPs from 0 to 12.5 wt% has been studied, and we draw the conclusion that the performance of DSCs could be well improved through enhancing the light absorption by local surface plasmon (LSP) effect from Au@PVP NPs with an optimized concentration.

  2. Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization.

    PubMed

    Ohsaki, Yoshinori; Masaki, Naruhiko; Kitamura, Takayuki; Wada, Yuji; Okamoto, Takumi; Sekino, Toru; Niihara, Kohichi; Yanagida, Shozo

    2005-12-21

    TiO2 nanotubes (TNTs) with large aspect ratio and large specific surface area were prepared from P25 (Nippon Aerosil) and applied to dye-sensitized titanium dioxide solar cells (DSSCs). Optimization of fabrication conditions, i.e., pH of the starting paste, sintering temperature for the TiO2 electrodes, electrolyte compositions of DSSCs gave the high conversion efficiency with improved open circuit voltage (V(oc)) and fill factor (FF) when compared to DSSCs made of P25. The evaluation of dye adsorption and the photo-injected electron transport such as electron diffusion coefficient (D) and electron lifetime (tau) in TNTs electrodes revealed that the higher efficiency resulted from increase of electron density with keeping much longer tau in TNTs electrodes than in P25 electrodes.

  3. Magnetic field effects in dye-sensitized solar cells controlled by different cell architecture

    NASA Astrophysics Data System (ADS)

    Klein, M.; Pankiewicz, R.; Zalas, M.; Stampor, W.

    2016-07-01

    The charge recombination and exciton dissociation are generally recognized as the basic electronic processes limiting the efficiency of photovoltaic devices. In this work, we propose a detailed mechanism of photocurrent generation in dye-sensitized solar cells (DSSCs) examined by magnetic field effect (MFE) technique. Here we demonstrate that the magnitude of the MFE on photocurrent in DSSCs can be controlled by the radius and spin coherence time of electron-hole (e-h) pairs which are experimentally modified by the photoanode morphology (TiO2 nanoparticles or nanotubes) and the electronic orbital structure of various dye molecules (ruthenium N719, dinuclear ruthenium B1 and fully organic squaraine SQ2 dyes). The observed MFE is attributed to magnetic-field-induced spin-mixing of (e-h) pairs according to the Δg mechanism.

  4. Enhanced Performance of Dye-Sensitized Solar Cells with Nanostructure InN Compact Layer

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Chiang; Chen, Lung-Chien; Kuo, Shu-Jung

    2013-05-01

    This study presents a dye-sensitized solar cells (DSSCs) with a nanostructured InN compact layer (InN-CPL). The effect of a nanostructured InN-CPL in a DSSC structure prepared by radio frequency magnetron sputtering was examined. The InN-CPL effectively reduces the back reaction at the interface between the indium tin oxide (ITO) transparent conductive film and the electrolyte in the DSSC. DSSCs fabricated on ITO/InN-CPL/TiO2/D719 exhibited a short-circuit current density (JSC), open-circuit voltage (VOC), and power conversion efficiency (η) of 23.2 mA/cm2, 0.7 V, and 8.9%, respectively.

  5. Improved dye-sensitized solar cells by composite ionic liquid electrolyte incorporating layered titanium phosphate

    SciTech Connect

    Cheng, Ping; Lan, Tian; Wang, Wanjun; Wu, Haixia; Yang, Haijun; Guo, Shouwu

    2010-05-15

    We reported a composite electrolyte prepared by incorporating layered {alpha}-titanium phosphate ({alpha}-TiP) into a binary ionic liquid of 1-propyl-3-methylimidazolium iodide (PMII) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EmimBF{sub 4}) (volume ratio, 13:7) electrolyte. The addition of {alpha}-TiP markedly improved the photovoltaic properties of dye-sensitized solar cells (DSSCs) compared to that without {alpha}-TiP. The enhancement was explained by improved diffusion of tri-iodide (I{sub 3}{sup -}) ions, suppressed electron recombination with I{sub 3}{sup -} in the electrolyte and increased lifetime of electrons in mesoscopic TiO{sub 2} film. (author)

  6. Blue-Coloured Highly Efficient Dye-Sensitized Solar Cells by Implementing the Diketopyrrolopyrrole Chromophore

    PubMed Central

    Yum, Jun-Ho; Holcombe, Thomas W.; Kim, Yongjoo; Rakstys, Kasparas; Moehl, Thomas; Teuscher, Joel; Delcamp, Jared H.; Nazeeruddin, Mohammed K.; Grätzel, Michael

    2013-01-01

    The paradigm shift in dye sensitized solar cells (DSCs) – towards donor- π bridge-acceptor (D-π-A) dyes – increases the performances of DSCs and challenges established design principles. Framed by this shifting landscape, a series of four diketopyrrolopyrrole (DPP)-based sensitizers utilizing the donor-chromophore-anchor (D-C-A) motif were investigated computationally, spectroscopically, and fabricated by systematic evaluation of finished photovoltaic cells. In all cases, the [Co(bpy)3]3+/2+ redox-shuttle afforded superior performance compared to I3−/I−. Aesthetically, careful molecular engineering of the DPP chromophore yielded the first example of a high-performance blue DSC – a challenge unmet since the inception of this photovoltaic technology: DPP17 yields over 10% power conversion efficiency (PCE) with the [Co(bpy)3]3+/2+ electrolyte at full AM 1.5 G simulated sun light. PMID:23945746

  7. BaSnO3 perovskite nanoparticles for high efficiency dye-sensitized solar cells.

    PubMed

    Kim, Dong Wook; Shin, Seong Sik; Lee, Sangwook; Cho, In Sun; Kim, Dong Hoe; Lee, Chan Woo; Jung, Hyun Suk; Hong, Kug Sun

    2013-03-01

    The synthesis of highly crystalline perovskite BaSnO3 nanoparticles for use as photoanode materials in dye-sensitized solar cells (DSSCs) is reported, and the photovoltaic properties of DSSCs based on BaSnO3 nanoparticles (BaSnO3 cells) are demonstrated. The resulting DSSCs exhibit remarkably rapid charge collection and a DSSC fabricated with a BaSnO3 film thickness of 43 µm leads to a high energy conversion efficiency of 5.2 %, which is one of the highest reported for ternary oxide-based DSSCs. More importantly, the BaSnO3 cells show superior charge collection in nanoparticle films compared to TiO2 cells and could offer a breakthrough in the efficiencies of DSSCs.

  8. Application of Y(2)O(3):Er(3+) nanorods in dye-sensitized solar cells.

    PubMed

    Wang, Jiangli; Wu, Jihuai; Lin, Jianming; Huang, Miaoliang; Huang, Yunfang; Lan, Zhang; Xiao, Yaoming; Yue, Gentian; Yin, Shu; Sato, Tsugio

    2012-07-01

    Y(2)O(3):Er(3+) nanorods are synthesized by means of a hydrothermal method and then introduced into a TiO(2) electrode in a dye-sensitized solar cell (DSSC). Y(2)O(3):Er(3+) improves infrared light harvest via up-conversion luminescence and increases the photocurrent of the DSSC. The rare earth ions improve the energy level of the TiO(2) electrode through a doping effect and thus increase the photovoltage. The light scattering is ameliorated by the one-dimensional nanorod structure. The DSSC containing Y(2)O(3):Er(3+) (5 wt%) in the doping layer achieves a light-to-electric energy conversion efficiency of 7.0%, which is an increase of 19.9% compared to the DSSC lacking of Y(2)O(3):Er(3+).

  9. Effective solid electrolyte based on benzothiazolium for dye-sensitized solar cells.

    PubMed

    Han, Lu; Wang, Ye Feng; Zeng, Jing Hui

    2014-12-24

    Thiaozole/benzothiaozole-based dicationic conductors were synthesized and applied as solid-state electrolyte in dye-sensitized solar cells (DSSCs). X-ray diffraction, scanning electron microscopy, thermal gravimetric analysis, steady-state voltammogram, photocurrent intensity-photovoltage test, and electrochemical impedance spectroscopy are used to characterize the materials and the mechanism of the cell performance. Compared to the traditional monocationic crystals, the dicationic crystals have a larger size and can provide more opportunities to fine-tune their physical/chemical properties. As a consequence, this solid-state electrolyte-based DSSC achieved photoelectric conversion efficiency of 7.90% under full air-mass (AM 1.5) sunlight (100 mW·cm(-2)).

  10. Magnetic field effects in dye-sensitized solar cells controlled by different cell architecture

    PubMed Central

    Klein, M.; Pankiewicz, R.; Zalas, M.; Stampor, W.

    2016-01-01

    The charge recombination and exciton dissociation are generally recognized as the basic electronic processes limiting the efficiency of photovoltaic devices. In this work, we propose a detailed mechanism of photocurrent generation in dye-sensitized solar cells (DSSCs) examined by magnetic field effect (MFE) technique. Here we demonstrate that the magnitude of the MFE on photocurrent in DSSCs can be controlled by the radius and spin coherence time of electron-hole (e-h) pairs which are experimentally modified by the photoanode morphology (TiO2 nanoparticles or nanotubes) and the electronic orbital structure of various dye molecules (ruthenium N719, dinuclear ruthenium B1 and fully organic squaraine SQ2 dyes). The observed MFE is attributed to magnetic-field-induced spin-mixing of (e-h) pairs according to the Δg mechanism. PMID:27440452

  11. Density functional theory study on dye-sensitized solar cells using oxadiazole-based dyes

    NASA Astrophysics Data System (ADS)

    Mehmood, Umer; Hussein, Ibnelwaleed A.; Harrabi, Khalil; Reddy, Belum V. S.

    2015-01-01

    Density functional theory (DFT) and time-dependent DFT(TD-DFT) modeling techniques are used to conduct a computational study of the geometry and electronic structure of oxadiazole-based organic sensitizers. A DFT study on the thermodynamic aspects of the charge transport processes associated with dye-sensitized solar cells (DSSCs) suggests that the system with 1,2,4-oxadiazole has a balance among the different crucial factors and may result in the highest incident photon to charge carrier efficiency. The dye/) anatase clusters were also simulated to illustrate the electron injection efficiency at the interface. This study provides basic understanding of the impact of molecular design on the performance of oxadiazole dyes in DSSCs.

  12. Synthesis of dye-sensitized solar cells. Efficiency cells as a thickness of titanium dioxide

    NASA Astrophysics Data System (ADS)

    Szura, Dominika

    2016-12-01

    Defying the influence of the thickness of TiO2 efficiency of dye-sensitized solar cell. It was confirmed that the compatibility of printed layers with the parameters closely related with the DSSC. It was found that the increase in thickness of the titanium dioxide layer, increases the distance between the electrodes, determined by the thickness of the Surlyn foil. With the rise of thickness of dyed layer of TiO2 established decrease in the value of its transmittance. Greatest transparency and aesthetic value obtained for photovoltaic modules with a single layer of titanium dioxide. The improved performance efficiency and preferred yields maximum power were noticed and exhibited by the cells covered with three layers of TiO2. It was established that the behaviour of economic efficiency in the production process, provides a range of cells with two layers of oxide, showing a similar performance and greater transparency.

  13. Pt crystalline ultrathin films as counter electrodes for bifacial dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng-En; Lin, Zheng-Kun; Lin, Yu-Chang; Lei, Bi-Chen; Chang, Chen-Shiung; Shih-Sen Chien, Forest

    2017-01-01

    This study is to develop the Pt crystalline ultrathin films as high-transparent, efficient, and low-Pt-loaded counter electrodes (CEs) for bifacial dye-sensitized solar cells (DSCs). The 1-nm-thick Pt ultrathin films are sputtered on fluorine-doped tin oxide substrates and thermal annealed at 400 °C. After annealing, as-prepared amorphous-nanocrystal-mixed Pt films become high-crystalline films with better optical transmittance and electrocatalytic ability to I3 - reduction for bifacial DSCs. The rear-to-front ratios of short-circuit current density and power conversion efficiency of DSCs with crystalline ultrathin Pt CEs are as high as 81 and 83%, respectively.

  14. Transparent nickel selenide alloy counter electrodes for bifacial dye-sensitized solar cells exceeding 10% efficiency.

    PubMed

    Duan, Yanyan; Tang, Qunwei; He, Benlin; Li, Ru; Yu, Liangmin

    2014-11-07

    In the current work, we report a series of bifacial dye-sensitized solar cells (DSSCs) that provide power conversion efficiencies of more than 10% from bifacial irradiation. The device comprises an N719-sensitized TiO2 anode, a transparent nickel selenide (Ni-Se) alloy counter electrode (CE), and liquid electrolyte containing I(-)/I3(-) redox couples. Because of the high optical transparency, electron conduction ability, electrocatalytic activity of Ni-Se CEs, as well as dye illumination, electron excitation and power conversion efficiency have been remarkably enhanced. Results indicate that incident light from a transparent CE has a compensation effect to the light from the anode. The impressive efficiency along with simple preparation of the cost-effective Ni-Se alloy CEs highlights the potential application of bifacial illumination technique in robust DSSCs.

  15. Graphene-based large area dye-sensitized solar cell modules.

    PubMed

    Casaluci, Simone; Gemmi, Mauro; Pellegrini, Vittorio; Di Carlo, Aldo; Bonaccorso, Francesco

    2016-03-07

    We demonstrate spray coating of graphene ink as a viable method for large-area fabrication of graphene-based dye-sensitized solar cell (DSSC) modules. A graphene-based ink produced by liquid phase exfoliation of graphite is spray coated onto a transparent conductive oxide substrate to realize a large area (>90 cm(2)) semi-transparent (transmittance 44%) counter-electrode (CE) replacing platinum, the standard CE material. The graphene-based CE is successfully integrated in a large-area (43.2 cm(2) active area) DSSC module achieving a power conversion efficiency of 3.5%. The approach demonstrated here paves the way to all-printed, flexible, and transparent graphene-based large-area and cost-effective photovoltaic devices on arbitrary substrates.

  16. Ultralong Rutile TiO2 Nanowire Arrays for Highly Efficient Dye-Sensitized Solar Cells.

    PubMed

    Li, Hailiang; Yu, Qingjiang; Huang, Yuewu; Yu, Cuiling; Li, Renzhi; Wang, Jinzhong; Guo, Fengyun; Jiao, Shujie; Gao, Shiyong; Zhang, Yong; Zhang, Xitian; Wang, Peng; Zhao, Liancheng

    2016-06-01

    Vertically aligned rutile TiO2 nanowire arrays (NWAs) with lengths of ∼44 μm have been successfully synthesized on transparent, conductive fluorine-doped tin oxide (FTO) glass by a facile one-step solvothermal method. The length and wire-to-wire distance of NWAs can be controlled by adjusting the ethanol content in the reaction solution. By employing optimized rutile TiO2 NWAs for dye-sensitized solar cells (DSCs), a remarkable power conversion efficiency (PCE) of 8.9% is achieved. Moreover, in combination with a light-scattering layer, the performance of a rutile TiO2 NWAs based DSC can be further enhanced, reaching an impressive PCE of 9.6%, which is the highest efficiency for rutile TiO2 NWA based DSCs so far.

  17. Investigating the performance of nitrogen-doped graphene photoanode in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Joseph, Easter; Singh, Balbir Singh Mahinder; Mohamed, Norani Muti; Kait, Chong Fai; Saheed, Mohamed Shuaib Mohamed; Khatani, Mehboob

    2016-11-01

    In this paper, the atmospheric pressure chemical vapor deposition (AP-CVD) is used to synthesize graphene on a copper substrate by utilizing methane as a precursor and N-doped graphene (NDG) in the presence of ammonia. The performance of pure titanium dioxide (TiO2), TiO2/graphene, and TiO2/NDG as photoanodes in dye-sensitized solar cell (DSSC) were compared. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) showed flakes of few layers with an interrupted layer in both graphene and NDG. DSSC consist of TiO2/NDG photoanode exhibits a better enhancement due to the high conductivity of donor N in graphene which enhances the electron transportation across nanoporous TiO2.

  18. Dyes extracted from Trigonella seeds as photosensitizers for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Batniji, Amal; Abdel-Latif, Monzir S.; El-Agez, Taher M.; Taya, Sofyan A.; Ghamri, Hatem

    2016-12-01

    In this paper, the extract of Trigonella seeds was used as sensitizer for dye-sensitized solar cells (DSSCs). The natural dye was extracted from the seeds using water and alcohol as solvents for the raw material. The UV-Vis absorption spectra of Trigonella extract solution and dye adsorbed on TiO2 film were measured. DSSCs sensitized by Trigonella extracted using water as a solvent exhibited better performance with efficiency of 0.215 %. The performance of the fabricated DSSCs was attempted to enhance by acid treatment of the FTO substrates with HNO3, H3PO4, and H2SO4. Electrochemical impedance spectroscopy of the fabricated cells was also carried out.

  19. Highly soluble energy relay dyes for dye-sensitized solar cells.

    PubMed

    Margulis, George Y; Lim, Bogyu; Hardin, Brian E; Unger, Eva L; Yum, Jun-Ho; Feckl, Johann M; Fattakhova-Rohlfing, Dina; Bein, Thomas; Grätzel, Michael; Sellinger, Alan; McGehee, Michael D

    2013-07-21

    High solubility is a requirement for energy relay dyes (ERDs) to absorb a large portion of incident light and significantly improve the efficiency of dye-sensitized solar cells (DSSCs). Two benzonitrile-soluble ERDs, BL302 and BL315, were synthesized, characterized, and resulted in a 65% increase in the efficiency of TT1-sensitized DSSCs. The high solubility (180 mM) of these ERDs allows for absorption of over 95% of incident light at their peak wavelength. The overall power conversion efficiency of DSSCs with BL302 and BL315 was found to be limited by their energy transfer efficiency of approximately 70%. Losses due to large pore size, dynamic collisional quenching of the ERD, energy transfer to desorbed sensitizing dyes and static quenching by complex formation were investigated and it was found that a majority of the losses are caused by the formation of statically quenched ERDs in solution.

  20. Implication of Blocking Layer Functioning with the Effect of Temperature in Dye-Sensitized Solar Cells.

    PubMed

    Kou, Dongxing; Chen, Shuanghong; Hu, Linhua; Wu, Sixin; Dai, Songyuan

    2016-06-01

    The properties of thin titanium dioxide blocking layers onto TCO in dye-sensitized solar cells (DSCs) have been widely reported as their intensity dependence of illumination intensity. Herein, a further investigation about their functioning with the effect of temperature is developed. The electron recombination process, photovoltage response on illumination intensity and photocurrent-voltage properties for DSCs with/without blocking layer at different temperatures are detected. It is found that the electron recombination via TCO becomes increasingly pronounced with increasing temperature and the effect of blocking layer is extremely temperature dependent. The band bending of the compact layer is more effectively to block electron losses at high temperatures, preventing large falloff of photovoltage. Hence, a resistive layer at the surface of TCO keeps comparable cell performances without falloff over a wide temperature range, while the device without blocking layer shows large decrease by over 10% at high temperature for contrast.

  1. Effect of polymer electrolyte on the performance of natural dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Adel, R.; Abdallah, T.; Moustafa, Y. M.; Al-sabagh, A. M.; Talaat, H.

    2015-10-01

    Polymer electrolyte based on polyacrylonitrile (PAN), Ethylene Carbonate (EC) and Acetonitrile (ACN) mixed with Potassium Iodide and Iodine in liquid and thin film forms were employed in natural dye sensitized solar cells (NDSSCs). Three natural dyes; black berry, hibiscus and rose are used as the sensitizing dye. The NDSSCs used, follow the configuration: FTO/TiO2/Natural Dye/Electrolyte/ Carbon/FTO. The liquid form polymer electrolyte with black berry natural dye gives an increase of 111% in short circuit photocurrent density (Jsc), 17.5% to open circuit voltage (Voc), fill factor of 0.57 ± 0.05 and three times increase in the conversion efficiency of 0.242 ± 0.012% compared to the iodine electrolyte.

  2. Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells.

    PubMed

    Boercker, J E; Enache-Pommer, E; Aydil, E S

    2008-03-05

    Mesoporous films made of titanium dioxide nanowires are desirable for dye-sensitized solar cells because nanowires provide direct conduction pathways for photogenerated electrons. Anatase titanium dioxide nanowires with polycrystalline microstructure were synthesized on titanium foil using a three-step process. First, the top surface of the titanium foil was transformed to Na(2)Ti(2)O(4)(OH)(2) nanotubes through hydrothermal oxidation in NaOH. Next, the Na(2)Ti(2)O(4)(OH)(2) nanotubes were converted to H(2)Ti(2)O(4)(OH)(2) nanotubes by ion exchange. Finally, the H(2)Ti(2)O(4)(OH)(2) nanotubes were converted to polycrystalline anatase nanowires through a topotactic transformation. The film morphology evolution, crystal structure transformations and growth mechanism are described in detail. Titanium foil reacts with NaOH to form Na(2)Ti(2)O(4)(OH)(2) sheets, which exfoliate and spiral into nanotubes. The Na(2)Ti(2)O(4)(OH)(2) nanotubes are immersed in HCl solution to replace the Na(+) ions with H(+) ions. During the topotactic transformation of H(2)Ti(2)O(4)(OH)(2) nanotubes to anatase TiO(2) nanowires, the sheets made of edge bonded TiO(6) octahedra in the H(2)Ti(2)O(4)(OH)(2) nanotubes dehydrate and move towards each other to form anatase crystals oriented along the nanotube axis which creates a polycrystalline nanowire. These mesoporous TiO(2) nanowire films were suitable for use as dye-sensitized solar cell photoanodes.

  3. Characterization of Nephelium Lappaceum Peel Extract as a Dye Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Budi Poernomo, Joko; Hidayati Mukaromah, Ana; Widiyandari, Hendri; Marwoto, Putut

    2016-08-01

    The world now is searching for a new renewable alternative energy. Nephelium lappaceum is a popular fruit in Indonesia that contains anthocyanin. Anthocyanin can absorb light on the range of visible light due to its conjugated double bonds. This finding makes Nephelium lappaceum as a potential Dye Sensitized Solar Cell (DSSC). The Nephelium lappaceum extract can be taken through extraction technique, called maserasi. The process of developing DSSC material was initiated by preparing TiO2 photoanode using a conventional sintering procedure. It was, then, followed by doping TiO2 on the Fluoride doped tin oxcide (FTO) with resistance value of 10-20 ohm/q. Finally, the electrode counter made of platinum paste was developed by implementing conventional sintering procedure. All of the above process were then continued by the DSSC assembly. In this process, the TiO2 photoanode which has passed the absorption process for 24 hours, was doped on the counter electrode. After doping, the process was stopped by doing electrolyte solution filling into prepared electrode counter holes. In order to characterize the DSSC, a solar simulator connected to a computer was employed. Based on this characterization process, it was found that the maximum value of Voc was 0.29 V, the maximum value of current density was 0.56 mA / cm2, the maximum power was 0.062 mW / cm2 and efficiency of 0.063. Characteristics of Nephelium lappaceum peel extract is one of the DSSC cells using TiO2 as a semiconductor material as a dye sensitizer that can convert light energy into electrical energy.

  4. Insertion of Dye-Sensitized Solar Cells in Textiles using a Conventional Weaving Process.

    PubMed

    Yun, Min Ju; Cha, Seung I; Seo, Seon Hee; Kim, Han Seong; Lee, Dong Y

    2015-06-18

    Increasing demands for wearable energy sources and highly flexible, lightweight photovoltaic devices have stimulated the development of textile-structured solar cells. However, the former approach of wire-type solar cell fabrication, followed by weaving of these devices, has had limited success, due to device failure caused by high friction forces and tension forces during the weaving process. To overcome this limitation, we present a new approach for textile solar cell fabrication, in which dye-sensitized solar cell (DSSC) electrodes are incorporated into the textile during the weaving process, using the textile warp as a spacer to maintain the DSSC structure. Porous, dye-loaded TiO2-coated holed metal ribbon and Pt nanoparticle-loaded carbon yarn were used as the photoanode and counterelectrode, respectively. The highly flexible textile-based solar cell was fabricated using a common weaving process with a loom. The inserted DSSCs in the textile demonstrated an energy conversion efficiency of 2.63% (at 1 sun, 1.5 A.M.). Our results revealed that additional performance enhancement was possible by considering other electrode materials and textile structures, as well as where and how the DSSC electrodes are inserted. In addition, we demonstrated that the inserted DSSCs could be electrically connected using a parallel configuration.

  5. Insertion of Dye-Sensitized Solar Cells in Textiles using a Conventional Weaving Process

    NASA Astrophysics Data System (ADS)

    Yun, Min Ju; Cha, Seung I.; Seo, Seon Hee; Kim, Han Seong; Lee, Dong Y.

    2015-06-01

    Increasing demands for wearable energy sources and highly flexible, lightweight photovoltaic devices have stimulated the development of textile-structured solar cells. However, the former approach of wire-type solar cell fabrication, followed by weaving of these devices, has had limited success, due to device failure caused by high friction forces and tension forces during the weaving process. To overcome this limitation, we present a new approach for textile solar cell fabrication, in which dye-sensitized solar cell (DSSC) electrodes are incorporated into the textile during the weaving process, using the textile warp as a spacer to maintain the DSSC structure. Porous, dye-loaded TiO2-coated holed metal ribbon and Pt nanoparticle-loaded carbon yarn were used as the photoanode and counterelectrode, respectively. The highly flexible textile-based solar cell was fabricated using a common weaving process with a loom. The inserted DSSCs in the textile demonstrated an energy conversion efficiency of 2.63% (at 1 sun, 1.5 A.M.). Our results revealed that additional performance enhancement was possible by considering other electrode materials and textile structures, as well as where and how the DSSC electrodes are inserted. In addition, we demonstrated that the inserted DSSCs could be electrically connected using a parallel configuration.

  6. Insertion of Dye-Sensitized Solar Cells in Textiles using a Conventional Weaving Process

    PubMed Central

    Yun, Min Ju; Cha, Seung I.; Seo, Seon Hee; kim, Han Seong; Lee, Dong Y.

    2015-01-01

    Increasing demands for wearable energy sources and highly flexible, lightweight photovoltaic devices have stimulated the development of textile-structured solar cells. However, the former approach of wire-type solar cell fabrication, followed by weaving of these devices, has had limited success, due to device failure caused by high friction forces and tension forces during the weaving process. To overcome this limitation, we present a new approach for textile solar cell fabrication, in which dye-sensitized solar cell (DSSC) electrodes are incorporated into the textile during the weaving process, using the textile warp as a spacer to maintain the DSSC structure. Porous, dye-loaded TiO2-coated holed metal ribbon and Pt nanoparticle-loaded carbon yarn were used as the photoanode and counterelectrode, respectively. The highly flexible textile-based solar cell was fabricated using a common weaving process with a loom. The inserted DSSCs in the textile demonstrated an energy conversion efficiency of 2.63% (at 1 sun, 1.5 A.M.). Our results revealed that additional performance enhancement was possible by considering other electrode materials and textile structures, as well as where and how the DSSC electrodes are inserted. In addition, we demonstrated that the inserted DSSCs could be electrically connected using a parallel configuration. PMID:26087134

  7. Electron transport and recombination in dye-sensitized solar cells made from single-crystal rutile TiO2 nanowires.

    PubMed

    Enache-Pommer, Emil; Liu, Bin; Aydil, Eray S

    2009-11-14

    Contrary to expectations, the electron transport rate in dye-sensitized solar cells made from single-crystal rutile titanium dioxide nanowires is found to be similar to that measured in dye-sensitized solar cells made from titanium dioxide nanoparticles.

  8. Novel Ru(II) sensitizers bearing an unsymmetrical pyridine-quinoline hybrid ligand with extended π-conjugation: synthesis and application in dye-sensitized solar cells.

    PubMed

    Vougioukalakis, Georgios C; Stergiopoulos, Thomas; Kontos, Athanassios G; Pefkianakis, Eleftherios K; Papadopoulos, Kyriakos; Falaras, Polycarpos

    2013-05-14

    Heteroleptic ruthenium(II) sensitizers DV42 and DV51, encompassing a novel unsymmetrical pyridine-quinoline hybrid ligand with extended π-conjugation, were synthesized, characterized, and utilized in nanocrystalline dye-sensitized solar cells. Due to the extended conjugation of DV42 and DV51, the absorption of the corresponding sensitized TiO2 films extends into the red spectral range, shifted by 30-40 nm relative to the absorption of TiO2 films sensitized with the standard Z907 ruthenium(II) dye. Contact angle measurements of DV42- and DV51-sensitized TiO2 films suggest that these films are hydrophilic with contact angle values commonly observed upon sensitization with the standard N3 ruthenium(II) dye. Electrochemical studies of the novel ruthenium(II) dyes show that their first oxidation potentials lie well below the I(-)/I3(-) redox potential allowing easy regeneration. The excited-state oxidation potentials of both dyes lie above the TiO2 conduction band, permitting efficient electron injection from the excited dye molecules into the semiconductor conduction band. Liquid electrolyte dye-sensitized solar cells incorporating DV42- or DV51-sensitized TiO2 photoelectrodes afford overall power conversion efficiencies of 3.24 or 4.36% respectively. These efficiencies are up to 56% of the power conversion efficiencies attained by TiO2 photoelectrodes sensitized by the benchmark Z907 ruthenium(II) dye under similar experimental conditions.

  9. Pigments from UV-resistant Antarctic bacteria as photosensitizers in Dye Sensitized Solar Cells.

    PubMed

    Órdenes-Aenishanslins, N; Anziani-Ostuni, G; Vargas-Reyes, M; Alarcón, J; Tello, A; Pérez-Donoso, J M

    2016-09-01

    Here we report the use of pigments produced by UV-resistant Antarctic bacteria as photosensitizers in Dye Sensitized Solar Cells (DSSCs). Pigments were obtained from red and yellow colored psychrotolerant bacteria isolated from soils of King George Island, Antarctica. Based on metabolic characteristics and 16s DNA sequence, pigmented bacteria were identified as Hymenobacter sp. (red) and Chryseobacterium sp. (yellow). Pigments produced by these microorganisms were extracted and classified as carotenoids based on their spectroscopic and structural characteristics, determined by UV-Vis spectrophotometry and infrared spectroscopy (FTIR), respectively. With the purpose of develop green solar cells based on bacterial pigments, the photostability and capacity of these molecules as light harvesters in DSSCs were determined. Absorbance decay assays determined that bacterial carotenoids present high photostability. In addition, solar cells based on these photosensitizers exhibit an open circuit voltage (VOC) of 435.0 [mV] and a short circuit current density (ISC) of 0.2 [mA·cm(-2)] for the red pigment, and a VOC of 548.8 [mV] and a ISC of 0.13 [mA·cm(-2)] for the yellow pigment. This work constitutes the first approximation of the use of pigments produced by non-photosynthetic bacteria as photosensitizers in DSSCs. Determined photochemical characteristics of bacterial pigments, summed to their easy obtention and low costs, validates its application as photosensitizers in next-generation biological solar cells.

  10. Stabilized Conversion Efficiency and Dye-Sensitized Solar Cells from Beta vulgaris Pigment

    PubMed Central

    Hernández-Martínez, Angel Ramon; Estévez, Miriam; Vargas, Susana; Rodríguez, Rogelio

    2013-01-01

    Dye-Sensitized Solar Cells (DSSCs), based on TiO2 and assembled using a dye from Beta vulgaris extract (BVE) with Tetraethylorthosilicate (TEOS), are reported. The dye BVE/TEOS increased its UV resistance, rendering an increase in the cell lifetime; the performance of these solar cells was compared to those prepared with BVE without TEOS. The efficiency η for the solar energy conversion was, for BVE and BVE/TEOS, of 0.89% ± 0.006% and 0.68% ± 0.006% with a current density Jsc of 2.71 ± 0.003 mA/cm2 and 2.08 ± 0.003 mA/cm2, respectively, using in both cases an irradiation of 100 mW/cm2 at 25 °C. The efficiency of the BVE solar cell dropped from 0.9 ± 0.006 to 0.85 ± 0.006 after 72 h of operation, whereas for the BVE/TEOS, the efficiency remained practically constant in the same period of time. PMID:23429194

  11. Long-term stability for cobalt-based dye-sensitized solar cells obtained by electrolyte optimization.

    PubMed

    Gao, Jiajia; Bhagavathi Achari, Muthuraaman; Kloo, Lars

    2014-06-14

    A significant improvement in the long-term stability for cobalt-based dye-sensitized solar cells (DSCs) under light-soaking conditions has been achieved by optimization of the composition of tris(2,2'-bipyridine) Co(ii)/Co(iii) electrolytes. The effects of component exchanges and changes were also studied during the optimization process.

  12. Ru complexes of thienyl-functionalized dipyrrins as NCS-free sensitizers for the dye-sensitized solar cell.

    PubMed

    Li, Guocan; Bomben, Paolo G; Robson, Kiyoshi C D; Gorelsky, Serge I; Berlinguette, Curtis P; Shatruk, Michael

    2012-09-11

    We report the first case of Ru(II) dipyrrinates employed as dyes in dye-sensitized solar cells. These complexes exhibit panchromatic light harvesting that results in significant DSSC current densities, rendering them promising for photovoltaic applications. Adjustment of the lowest excited state energy is required to boost the power conversion efficiency.

  13. Synthesis and electron-transfer properties of benzimidazole-functionalized ruthenium complexes for highly efficient dye-sensitized solar cells.

    PubMed

    Huang, Wei-Kai; Cheng, Chi-Wen; Chang, Shu-Mei; Lee, Yuan-Pern; Diau, Eric Wei-Guang

    2010-12-21

    Novel heteroleptic ruthenium complexes--RD1, RD5, RD10 and RD11--with ligands based on benzimidazole were synthesized and characterized for application to dye-sensitized solar cells (DSSC); the remarkable performance of RD5-based DSSC is understood for its superior light-harvesting ability and slower charge-recombination kinetics.

  14. Design and characterization of alkoxy-wrapped push-pull porphyrins for dye-sensitized solar cells.

    PubMed

    Ripolles-Sanchis, Teresa; Guo, Bo-Cheng; Wu, Hui-Ping; Pan, Tsung-Yu; Lee, Hsuan-Wei; Raga, Sonia R; Fabregat-Santiago, Francisco; Bisquert, Juan; Yeh, Chen-Yu; Diau, Eric Wei-Guang

    2012-05-07

    Three alkoxy-wrapped push-pull porphyrins were designed and synthesized for dye-sensitized solar cell (DSSC) applications. Spectral, electrochemical, photovoltaic and electrochemical impedance spectroscopy properties of these porphyrin sensitizers were well investigated to provide evidence for the molecular design.

  15. Improvement of Thiolate/Disulfide Mediated Dye-Sensitized Solar Cells through Supramolecular Lithium Cation Assembling of Crown Ether

    PubMed Central

    Liu, Linfeng; Li, Xiong; Chen, Jiangzhao; Rong, Yaoguang; Ku, Zhiliang; Han, Hongwei

    2013-01-01

    A supramolecular lithium cation assemblies of crown ether, [Li⊂12-crown-4]+, has been used to replace conventional tetraalkylammonium counterion in thiolate/disulfide (ET−/BET) mediated dye-sensitized solar cells (DSCs), which exhibit high stability and efficiency of 6.61% under 100 mW·cm−2 simulated sunlight illumination. PMID:23933601

  16. On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology.

    PubMed

    Reddy, K Govardhan; Deepak, T G; Anjusree, G S; Thomas, Sara; Vadukumpully, Sajini; Subramanian, K R V; Nair, Shantikumar V; Nair, A Sreekumaran

    2014-04-21

    One of the major problems that humanity has to face in the next 50 years is the energy crisis. The rising population, rapidly changing life styles of people, heavy industrialization and changing landscape of cities have increased energy demands, enormously. The present annual worldwide electricity consumption is 12 TW and is expected to become 24 TW by 2050, leaving a challenging deficit of 12 TW. The present energy scenario of using fossil fuels to meet the energy demand is unable to meet the increase in demand effectively, as these fossil fuel resources are non-renewable and limited. Also, they cause significant environmental hazards, like global warming and the associated climatic issues. Hence, there is an urgent necessity to adopt renewable sources of energy, which are eco-friendly and not extinguishable. Of the various renewable sources available, such as wind, tidal, geothermal, biomass, solar, etc., solar serves as the most dependable option. Solar energy is freely and abundantly available. Once installed, the maintenance cost is very low. It is eco-friendly, safely fitting into our society without any disturbance. Producing electricity from the Sun requires the installation of solar panels, which incurs a huge initial cost and requires large areas of lands for installation. This is where nanotechnology comes into the picture and serves the purpose of increasing the efficiency to higher levels, thus bringing down the overall cost for energy production. Also, emerging low-cost solar cell technologies, e.g. thin film technologies and dye-sensitized solar cells (DSCs) help to replace the use of silicon, which is expensive. Again, nanotechnological implications can be applied in these solar cells, to achieve higher efficiencies. This paper vividly deals with the various available solar cells, choosing DSCs as the most appropriate ones. The nanotechnological implications which help to improve their performance are dealt with, in detail. Additionally, the

  17. Improved solar efficiency by introducing graphene oxide in purple cabbage dye sensitized TiO2 based solar cell

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, Ahmed A.; Gupta, R. K.; Kahol, P. K.; Wageh, S.; Al-Turki, Y. A.; El Shirbeeny, W.; Yakuphanoglu, F.

    2014-04-01

    Natural dye extracted from purple cabbage was used for fabrication of TiO2 dye-sensitized solar cells (DSSCs). The effect of light intensity on the solar efficiency of the device was investigated. It was observed that the efficiency of the DSSC increases with increasing the light intensity e.g. the efficiency of the solar cell increases from 0.013±0.002% to 0.150±0.020% by increase in light intensity from 30 to 100 mW/cm2, respectively. The solar efficiency of the natural dye used in this research was compared with commercial dye (N 719) under similar experimental conditions and observed that the natural (purple cabbage) dye has higher efficiency (0.150±0.020%) than N 719 (0.078±0.002%). It was further evaluated that the efficiency of the fabricated solar cell could improve by incorporating graphene oxide. The efficiency of the TiO2 dye-sensitized solar cell was found to increase from 0.150±0.020% to 0.361±0.009% by incorporating graphene oxide into purple cabbage dye.

  18. Toward rational design of organic dye sensitized solar cells (DSSCs): an application to the TA-St-CA dye.

    PubMed

    Mohammadi, Narges; Mahon, Peter J; Wang, Feng

    2013-03-01

    A computer aided rational design has been performed on TA-St-CA dye sensitizer in order to improve the desirable properties for new organic dye sensitized solar cell (DSSC). A number of electron-donating (ED) and electron-withdrawing (EW) units based on Dewar's rules are substituted into the π-conjugated oligo-phenylenevinylene bridge of the reference TA-St-CA dye. The effects of these alternations on the molecular structures and the electron absorption spectra are calculated using time-dependant density functional theory (TDDFT). It is found that chemical modifications using electron donating (ED) substitutions exhibit advantages over the electron withdrawing (EW) substitutes to reduce the HOMO-LUMO energy gap as well as the electron distribution of the frontier orbitals of the new dyes. Dewar's rule is a useful guideline for rational design of new dye sensitizers with desired HOMO-LUMO gap. The impact on the optical spectra of new dyes are, however, less significant.

  19. Photoelectrochemical characteristics of dye-sensitized solar cells incorporating innovative and inexpensive materials

    NASA Astrophysics Data System (ADS)

    Harlow, Lisa Jean

    The use of energy is going to continue to increase rapidly due to population and economic advances occurring throughout the world. The most widely used energies produce carbon dioxide during their combustion and have finite limits on how much of these resources are available. A strong push to utilizing renewable energy is necessary to keep up with the demand. The only renewable energy that has unlimited supply is solar. Our goal is to find cost-effective alternatives to historically the most extensively used materials in dye-sensitized solar cells. In order to rely on efficiency changes coinciding with the introduction of a new component, a standard baseline of performance is necessary to establish. A reproducible fabrication procedure composed of standard materials was instituted; the efficiency parameters exhibited a less than 10% standard deviation for any set of solar cells. Any modifications to the cell components would be apparent in the change in efficiency. Our cell modifications focused on economical alternatives to the electrolyte, the counter electrode and the chromophore. Solution-based electrolytes were replaced with a non-volatile ionic liquid, 1-methyl-3-propylimidazolium iodide, and then a poly(imidazole-functionalized) silica nanoparticle. Solid-state electrolytes reduce or prevent leakage and could ease manufacturing in large-scale devices. Platinum has been the counter electrode catalyst primarily used with the iodide/triiodide redox couple, but is a rare metal making it rather costly. We reduce platinum loading by introducing a novel counter electrode that employs platinum nanoparticles embedded on a graphene nanoplatelet paper. The highly conductive carbon base also negates the use of the expensive conductive substrate necessary for the platinum catalyst, further reducing cost. We also study the differences in transitioning from ruthenium polypyridyls to iron-based chromophores in dye-sensitized solar cells. Iron introduces low-lying ligand

  20. Graphene supported nickel nanoparticle as a viable replacement for platinum in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Bajpai, Reeti; Roy, Soumyendu; Kulshrestha, Neha; Rafiee, Javad; Koratkar, Nikhil; Misra, D. S.

    2012-01-01

    A platinum free counter electrode for dye sensitized solar cells was developed using graphene platelets (GP) supported nickel nanoparticles (NPs) as the active catalyst. Few layered GP were prepared by chemical oxidation of graphite powders followed by thermal exfoliation and reduction. The nanoparticles of nickel were deposited directly onto the platelets by pulsed laser ablation. The composite electrodes of GP and Ni nanoparticles (GP-Ni) thus obtained showed better performance compared to conventional Pt thin film electrodes (Std Pt) and unsupported Ni NPs. The efficiencies of the cells fabricated using GP-Ni, Std Pt and Ni NP CEs were 2.19%, 2% and 1.62%, respectively. The GP-Ni composite solar cell operated with an open circuit voltage of 0.7 V and a fill factor of 0.6. Electrochemical impedance spectroscopy using the I3-/I- redox couple confirms lower values of charge transfer resistance for the composite electrodes, 4.67 Ω cm2 as opposed to 7.73 Ω cm2 of Std Pt. The better catalytic capability of these composite materials is also reflected in the stronger I3- reduction peaks in cyclic voltammetry scans.A platinum free counter electrode for dye sensitized solar cells was developed using graphene platelets (GP) supported nickel nanoparticles (NPs) as the active catalyst. Few layered GP were prepared by chemical oxidation of graphite powders followed by thermal exfoliation and reduction. The nanoparticles of nickel were deposited directly onto the platelets by pulsed laser ablation. The composite electrodes of GP and Ni nanoparticles (GP-Ni) thus obtained showed better performance compared to conventional Pt thin film electrodes (Std Pt) and unsupported Ni NPs. The efficiencies of the cells fabricated using GP-Ni, Std Pt and Ni NP CEs were 2.19%, 2% and 1.62%, respectively. The GP-Ni composite solar cell operated with an open circuit voltage of 0.7 V and a fill factor of 0.6. Electrochemical impedance spectroscopy using the I3-/I- redox couple confirms lower

  1. An efficient photoanode for dye sensitized solar cells using naturally derived S/TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Arunmetha, S.; Rajendran, V.; Vinoth, M.; Karthik, A.; Srither, S. R.; Srither Panday, M.; Nithyavathy, N.; Manivasakan, P.; Maaza, M.

    2017-03-01

    Natural mineral rutile sand is used for preparing titania (TiO2) nanoparticles employing a cost-effective simple chemical method and mass production technology. Further the sulfur doped (S/TiO2) and pure TiO2 are produced from chemical precursor also. Different techniques are used to analyse the effect of sulfur dopant like x-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, x-ray photoelectrons spectroscopy, ultraviolet–visible spectra, photoluminescence, Brunauer–Emmett–Teller analyser, field emission scanning electron microscopy with energy-dispersive x-ray analysis, and high-resolution transmission electron microscopy. Under visible light, a useful procedure is followed on the sulfur-doped samples preparation, enhancing the charge carrier recombination, and reducing crystallite size. In the improvement of the efficiency of dye-sensitized solar cells, this dopant could open up vast opportunities; consequently, our work is extended to apply these prepared samples in standard dye-sensitized solar cells. The photoanode of dye-sensitized solar cells are made up of these prepared materials (S-doped TiO2 and pure TiO2) and compared with both commercial TiO2 (P-25) powder, as well as commercially available paste (Dyesol). The S/TiO2 nanoparticles on dye-sensitized solar cells exhibit enhanced ultra-violet visible light absorbance with increased photogenerated electrons and holes meanwhile reduce the recombination rate of charge carriers in dye-sensitized solar cells. Further, the overall power-conversion efficiency (η) and external quantum efficiency of the S/TiO2 cells (η  =  4.32% and EQE  =  32%) is two times higher than that of pure TiO2 cells (η  =  2.75% and EQE  =  16%).

  2. Enhanced power conversion efficiency of dye-sensitized solar cells assisted with phosphor materials

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Min; Kim, Dong In; Hwang, Ki-Hwan; Nam, Sang Hun; Boo, Jin-Hyo

    2016-07-01

    Theoretically dye-sensitized solar cells (DSSCs) are high efficiency solar cells. However, DSSCs have lower power conversion efficiency (PCE) than silicon based solar cells. In this study, we use scattering layer and phosphor materials, such as ZrO2 and Zn2SiO4:Mn (Green), to enhance the PCE of DSSCs. The scattering layer and phosphor materials were prepared and used as an effective scattering layer on the transparent TiO2 photoelectrode through the doctor blade method. We confirmed that the scattering layer improves the PCE and J sc due to the enhancement of light harvesting by increasing the scattering and absorbance in the visible range. Under sun illumination AM 1.5 conditions, the PCE of the mesoporous TiO2 based DSSCs was 5.18%. The PCE of the DSSCs with ZrO2 scattering layer was 5.61% and Zn2SiO4:Mn as the scattering layer was enhanced to 5.72%. In order to compare the change in optical properties, DSSCs were measured by EQE, reflectance and PCE. At the same time, FE-SEM and XRD were used to confirm the structural changes in each layer. [Figure not available: see fulltext.

  3. Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells

    PubMed Central

    Kinoshita, Takumi; Nonomura, Kazuteru; Joong Jeon, Nam; Giordano, Fabrizio; Abate, Antonio; Uchida, Satoshi; Kubo, Takaya; Seok, Sang Il; Nazeeruddin, Mohammad Khaja; Hagfeldt, Anders; Grätzel, Michael; Segawa, Hiroshi

    2015-01-01

    The extension of the light absorption of photovoltaics into the near-infrared region is important to increase the energy conversion efficiency. Although the progress of the lead halide perovskite solar cells is remarkable, and high conversion efficiency of >20% has been reached, their absorption limit on the long-wavelength side is ∼800 nm. To further enhance the conversion efficiency of perovskite-based photovoltaics, a hybridized system with near-infrared photovoltaics is a useful approach. Here we report a panchromatic sensitizer, coded DX3, that exhibits a broad response into the near-infrared, up to ∼1100 nm, and a photocurrent density exceeding 30 mA cm−2 in simulated air mass 1.5 standard solar radiation. Using the DX3-based dye-sensitized solar cell in conjunction with a perovskite cell that harvests visible light, the hybridized mesoscopic photovoltaics achieved a conversion efficiency of 21.5% using a system of spectral splitting. PMID:26538097

  4. Nicotinic acid as a new co-adsorbent in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuong Tuyet; Nguyen, Vinh Son; Phan, Thu Anh Pham; Le, Tan Nhut Van; Le, Duyen My; Le, Duy Dang; Tran, Vy Anh; Huynh, Tuan Van; Lund, Torben

    2017-01-01

    With the aim of introduction a new inexpensive co-adsorbent to improve solar cell performance, the influence of nicotinic acid (NTA) used as a co-adsorbent in dye-sensitized solar cells (DSCs) was investigated. The findings showed that low concentrations of NTA (<10 mM) increased the N719 ruthenium dye loading on the TiO2 electrode surface by 10-12%, whereas higher concentrations of NTA lowered the dye loading. The adsorption of NTA onto the TiO2 electrode surface was studied by attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, and the blocking effect of NTA toward electron transfer between the electrode and 1,4-dicyanonaphthalene (redox couple electrolyte probe) was investigated by cyclic voltammetry. Subsequently, the performance of NTA in functional DSCs was evaluated by current-voltage (J-V) DSC characterization and compared with that of DSCs fabricated with two well-established co-adsorbents i.e., chenodeoxycholic acid (CDA) and octadecylphosphonic acid (OPA). The findings showed that under optimized co-adsorbent concentration (1 mM NTA, 0.03 mM CDA, 0.015 mM OPA), the efficiency of the corresponding solar cells increased to the same extent. Specifically, the use of NTA at optimum concentration improved the efficiency of the resulting DSC from 3.14 to 5.02%.

  5. Effect of Anatase Synthesis on the Performance of Dye-Sensitized Solar Cells.

    PubMed

    Sánchez-García, Mario Alberto; Bokhimi, Xim; Maldonado-Álvarez, Arturo; Jiménez-González, Antonio Esteban

    2015-12-01

    Anatase nanoparticles were synthesized from a titanium isopropoxide solution using a hydrothermal process at different pressures in an autoclave system while keeping the volume of the solution constant. As the autoclave pressure was increased from 1 to 71 atm (23 to 210 °C), the crystal size in the nanoparticles increased from 9 to 13.8 nm. The anatase nanoparticles were used to build dye-sensitized solar cells (DSSC). Mesoporous films of this oxide were deposited over conducting SnO2:F substrates using the screen-printing technique and then annealed at 530 °C at 1 atm of air pressure. The morphology of the mesoporous film surface of anatase, studied using scanning electron microscopy, revealed that the crystal size and pore distribution were functions of the pressure conditions. The energy band gap of the films as a function of the crystal size exhibited quantum effects below 11.8 nm. The effects of the anatase synthesis conditions and properties of the mesoporous film on the DSSC-type solar cell parameters, η%, V OC, J SC, and FF, were also investigated: the mesoporous anatase films prepared at 200 °C (54 atm of pressure in the autoclave) and annealed at 530 °C in air generated the best solar cell, having the highest conversion efficiency.

  6. Nitrogen Doped Multi-Walled Carbon Nanotubes as Counter Electrodes in Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Velten, Josef; Lepro-Chavez, Xavier; Kuanyshbekova, Zharkynay; Bykova, Julia; Zakhidov, Anvar

    2012-02-01

    Dye-sensitized solar cells (DSSC) are an electrochemical solar cell based upon an iodide/triiodide redox couple mediating between a photosensitive electrode of a high bandgap semiconductor material stained with a photosensitive dye and a catalytic counter electrode. The standard counter electrode used in these dye solar cells has a function of reducing the triiodide back to iodide, and is composed of thermally decomposed platinum upon a transparent conductive oxide surface, generally Indium Tin Oxide (ITO) or Fluorinated Tin Oxide (FTO). While the highest performances found for DSSCs all use this platinum counter electrode, it is an undesirable material to use for scale production. The most common substitute materials are all based around carbon based materials. Carbon nanotubes have been applied to the DSSC counter electrode, with good success, where the defect sites of the carbon nanotubes offering sites for reduction of the triiodide. In this work, we investigated the use of nitrogen doped carbon noantubes, where the carbon atoms next to the nitrogen doping atoms have a higher positive charge density counter balancing the electron affinity of the nitrogen act as reduction sites as well, with electrochemical characterization describing the reduction in the charge transfer resistance from this doping scheme.

  7. Improved dye-sensitized solar cell with a ZnO nanotree photoanode by hydrothermal method

    PubMed Central

    2014-01-01

    This study investigated the influence of ZnO nanostructures on dye adsorption to increase the photovoltaic conversion efficiency of solar cells. ZnO nanostructures were grown in both tree-like and nanorod (NR) arrays on an AZO/FTO film structure by using a hydrothermal method. The results were observed in detail using X-ray diffraction, field-emission scanning electron microscopy (FE-SEM), UV-visible spectrophotometry, electrochemical impedance spectroscopy, and solar simulation. The selective growth of tree-like ZnO was found to exhibit higher dye adsorption loading and conversion efficiency than ZnO NRs. The multiple ‘branches’ of ‘tree-like nanostructures’ increases the surface area for higher light harvesting and dye loading while reducing charge recombination. These improvements result in a 15% enhancement in power conversion. The objective of this study is to facilitate the development of a ZnO-based dye-sensitized solar cell. PMID:24872799

  8. Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells.

    PubMed

    Kinoshita, Takumi; Nonomura, Kazuteru; Jeon, Nam Joong; Giordano, Fabrizio; Abate, Antonio; Uchida, Satoshi; Kubo, Takaya; Seok, Sang Il; Nazeeruddin, Mohammad Khaja; Hagfeldt, Anders; Grätzel, Michael; Segawa, Hiroshi

    2015-11-05

    The extension of the light absorption of photovoltaics into the near-infrared region is important to increase the energy conversion efficiency. Although the progress of the lead halide perovskite solar cells is remarkable, and high conversion efficiency of >20% has been reached, their absorption limit on the long-wavelength side is ∼800 nm. To further enhance the conversion efficiency of perovskite-based photovoltaics, a hybridized system with near-infrared photovoltaics is a useful approach. Here we report a panchromatic sensitizer, coded DX3, that exhibits a broad response into the near-infrared, up to ∼1100 nm, and a photocurrent density exceeding 30 mA cm(-2) in simulated air mass 1.5 standard solar radiation. Using the DX3-based dye-sensitized solar cell in conjunction with a perovskite cell that harvests visible light, the hybridized mesoscopic photovoltaics achieved a conversion efficiency of 21.5% using a system of spectral splitting.

  9. Polyaniline Nanofibers as the Hole Transport Medium in an Inverse Dye-Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Hesselsweet, Ian Brock

    In order to become a viable alternative to silicon photovoltaics, dye-sensitized solar cells must overcome several issues primarily resulting from their use of a liquid electrolyte. Much research has gone into correcting these shortcomings by replacing the liquid electrolyte with solid-state hole-transport media. Using these solid-state materials brings new difficulties, such as completely filling the pores in the TiO2 nanostructure, and achieving good adhesion with the dye-coated TiO2. A novel approach to addressing these difficulties is the inverse dye-sensitized solar cell design. In this method the devices are constructed in reverse order, with the solidstate hole-transport medium providing the nanostructure instead of the TiO2. This allows new materials and methods to be used which may better address these issues. In this project, inverse dye-sensitized solar cells using polyaniline nanofibers as the hole transport medium were prepared and characterized. The devices were prepared on fluorine-doped tin oxide (FTO) coated glass electrodes. The first component was a dense spin-coated polyaniline blocking layer, to help prevent short circuiting of the devices. The second layer was a thin film of drop cast polyaniline nanofibers which acted as the hole transport medium and provided high surface area for the dye attachment. The dye used was 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP), which was covalently attached to the nanofibers using a Friedel-Crafts acylation. Titania gel was then deposited into the pores of the nanofiber film by controlled hydrolysis of a titanium complex (Tyzor LA). A back electrode of TiO2 nanoparticles sintered on FTO was pressed on top to complete the devices. A typical device generated an open circuit voltage of 0.17 V and a closed circuit current of 5.7 nA/cm2 while the highest open circuit voltage recorded for any variation on a device was 0.31 V and the highest short circuit current was 52 nA/cm2 under AM 1.5 simulated solar

  10. Performance Enhancement of Dye-Sensitized Solar Cells Based on TiO₂ Thick Mesoporous Photoanodes by Morphological Manipulation.

    PubMed

    Keshavarzi, Reza; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj

    2015-10-27

    This study is an attempt to give an account of the preparation of mesoporous TiO2 thick templated films of nonsimilar pore architecture and their use in dye-sensitized solar cells (DSSCs). Highly crystallized mesoporous titania thick templated films with four different morphologies including hexagonal, wormlike, cubic, and gridlike mesostructure, have been successfully synthesized through an evaporation-induced self-assembly (EISA) route followed by layer-by-layer deposition. Stabilization, followed by each coating, and calcinations, carried out after every five layers, were used to produce crack-free thick films. These mesoporous templated titanium dioxide samples were characterized by TEM, XRD, SEM, BET, and UV-vis measurements and used as a photoelectrode material in DSSCs. The mesostructured films with a thickness of about 7 μm demonstrated better performance in comparison to nanocrystalline TiO2 films (NC-TiO2) at a film thickness of 13 μm as the most typical films utilized in DSSCs. The findings reveal that a surfactant/Ti ratio change undergone for developing cubic mesostructures can enhance the crystallinity and roughness factor and therefore increase the energy conversion efficiency of DSSC. The cell performances derived from these mesofilms were enhanced compared to the efficiencies reported thus far. The best photovoltaic performance of 8.73% came from DSSC using the cubic mesoporous TiO2 photoelectrode with the following properties: open circuit voltage of 743 mV, short circuit photocurrent density of 16.35 mA/cm(2), and fill factor of 0.72.

  11. Mesoporous TiO2 Bragg Stack Templated by Graft Copolymer for Dye-sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Park, Jung Tae; Chi, Won Seok; Kim, Sang Jin; Lee, Daeyeon; Kim, Jong Hak

    2014-07-01

    Organized mesoporous TiO2 Bragg stacks (om-TiO2 BS) consisting of alternating high and low refractive index organized mesoporous TiO2 (om-TiO2) films were prepared to enhance dye loading, light harvesting, electron transport, and electrolyte pore-infiltration in dye-sensitized solar cells (DSSCs). The om-TiO2 films were synthesized via a sol-gel reaction using amphiphilic graft copolymers consisting of poly(vinyl chloride) backbones and poly(oxyethylene methacrylate) side chains, i.e., PVC-g-POEM as templates. To generate high and low index films, the refractive index of om-TiO2 film was tuned by controlling the grafting ratio of PVC-g-POEM via atomic transfer radical polymerization (ATRP). A polymerized ionic liquid (PIL)-based DSSC fabricated with a 1.2-μm-thick om-TiO2 BS-based photoanode exhibited an efficiency of 4.3%, which is much higher than that of conventional DSSCs with a nanocrystalline TiO2 layer (nc-TiO2 layer) (1.7%). A PIL-based DSSC with a heterostructured photoanode consisting of 400-nm-thick organized mesoporous TiO2 interfacial (om-TiO2 IF) layer, 7-μm-thick nc-TiO2, and 1.2-μm-thick om-TiO2 BS as the bottom, middle and top layers, respectively, exhibited an excellent efficiency of 7.5%, which is much higher than that of nanocrystaline TiO2 photoanode (3.5%).

  12. Investigation of the influence of coadsorbent dye upon the interfacial structure of dye-sensitized solar cells

    SciTech Connect

    Honda, M. Miyano, K.; Yanagida, M.; Han, L.

    2014-11-07

    The interface between Ru(tcterpy)(NCS){sub 3}TBA{sub 2} [black dye (BD); tcterpy = 4,4{sup ′},4{sup ″}-tricarboxy-2,2{sup ′}:6{sup ′},2{sup ″}-terpyridine, NCS = thiocyanato, TBA = tetrabutylammonium cation] and nanocrystalline TiO{sub 2}, as found in dye-sensitized solar cells, is investigated by soft-X-ray synchrotron radiation and compared with the adsorption structure of cis-Ru(Hdcbpy){sub 2}(NCS){sub 2}TBA{sub 2} (N719; dcbpy = 4,4{sup ′}-dicarboxy-2,2{sup ′}-bipyridine) on TiO{sub 2} to elucidate the relationship between the adsorption mode of BD and the photocurrent with and without coadsorbed indoline dye D131. The depth profile is characterized with X-ray photoelectron spectroscopy and S K-edge X-ray absorption fine structure using synchrotron radiation. Both datasets indicate that one of the isothiocyanate groups of BD interacts with TiO{sub 2} via its S atom when the dye is adsorbed from a single-component solution. In contrast, the interaction is slightly suppressed when D131 is coadsorbed, indicated by the fact that the presence of D131 changes the adsorption mode of BD. Based upon these results, the number of BD dye molecules interacting with the substrate is shown to decrease by 10% when D131 is coadsorbed, and the dissociation is shown to be related to the short-circuit photocurrent in the 600–800 nm region. The design of a procedure to promote the preferential adsorption of D131 therefore leads to an improvement of the short-circuit current and conversion efficiency.

  13. Mesoporous TiO2 Bragg Stack Templated by Graft Copolymer for Dye-sensitized Solar Cells

    PubMed Central

    Park, Jung Tae; Chi, Won Seok; Kim, Sang Jin; Lee, Daeyeon; Kim, Jong Hak

    2014-01-01

    Organized mesoporous TiO2 Bragg stacks (om-TiO2 BS) consisting of alternating high and low refractive index organized mesoporous TiO2 (om-TiO2) films were prepared to enhance dye loading, light harvesting, electron transport, and electrolyte pore-infiltration in dye-sensitized solar cells (DSSCs). The om-TiO2 films were synthesized via a sol-gel reaction using amphiphilic graft copolymers consisting of poly(vinyl chloride) backbones and poly(oxyethylene methacrylate) side chains, i.e., PVC-g-POEM as templates. To generate high and low index films, the refractive index of om-TiO2 film was tuned by controlling the grafting ratio of PVC-g-POEM via atomic transfer radical polymerization (ATRP). A polymerized ionic liquid (PIL)-based DSSC fabricated with a 1.2-μm-thick om-TiO2 BS-based photoanode exhibited an efficiency of 4.3%, which is much higher than that of conventional DSSCs with a nanocrystalline TiO2 layer (nc-TiO2 layer) (1.7%). A PIL-based DSSC with a heterostructured photoanode consisting of 400-nm-thick organized mesoporous TiO2 interfacial (om-TiO2 IF) layer, 7-μm-thick nc-TiO2, and 1.2-μm-thick om-TiO2 BS as the bottom, middle and top layers, respectively, exhibited an excellent efficiency of 7.5%, which is much higher than that of nanocrystaline TiO2 photoanode (3.5%). PMID:24980936

  14. Plasmonic-resonance-based ternary composite complementary enhancement of the performance of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Bai, Lihua; Li, Meiya; Liu, Xiaolian; Luoshan, Mengdai; Zhang, Feng; Guo, Kaimo; Zhu, Yongdan; Sun, Beilei; Zhao, Xingzhong

    2016-10-01

    Graphene (G), TiO2 fusiform nanorods (TiO2NRs) adsorbed with Au nanoparticles (AuNPs) are prepared and blended as multifunctional materials into TiO2 nanocrystalline film to form a novel ternary (G-TiO2NRs-Au) composite photoanode in dye-sensitized solar cells (DSSCs). The effects of G-TiO2NRs-Au on the properties of the photoanode and DSSC are investigated. Results show that, by blending G-TiO2NRs-Au, the light absorption and scattering of the photoanode are obviously improved, and the charge transfer resistance R2 and electron recombination are decreased, resulting in a significant enhancement in the short-circuit current density (J sc) and the photoelectric conversion efficiency (PCE) of the DSSCs. The maximum J sc of 17.66 mA cm-2 and PCE of 8.56% are obtained in the optimal G-TiO2NRs-Au-based DSSC, about 33.6% and 35.0% higher than that obtained in the conventional TiO2-based DSSC. This significant improvement in the performance of the DSSC can be attributed to the ternary composite complementary effects of multi-functions from the surface plasmon resonance of AuNPs, light scattering of TiO2NRs, and the improved dye loading and fast electron transmission channel from graphene. This study provides an effective way of ternary composite complementary enhancement of the J sc and PCE of the DSSCs.

  15. Cosensitization with Vat-Based Organic Dyes for Enhanced Spectral Response of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Hosseinnezhad, Mozhgan

    2017-04-01

    Cosensitization using two organic dyes with supplementary absorption spectra on a photoelectrode is an effective method for improving the photovoltaic properties of dye-sensitized solar cells. Two organic dyes based on indigo and thioindigo have been synthesized, purified, and used to sensitize solar cells with spectral response extending across the entire visible region. To improve their photoelectric properties, different molar ratios were investigated, yielding total efficiency of 6.17% at dye 1:dye 2 = 4:6. The effect of the concentration of Cheno antiaggregation agent on the performance of the dye-sensitized solar cells was also considered. The results demonstrate that higher conversion efficiency ( η = 6.82%) was achieved with 10 × 10-3 M Cheno. Finally, the performance of cosensitized solar cells was measured at different temperatures between 10°C and 50°C. The results indicated that J sc decreased with increasing temperature, directly affecting the conversion efficiency.

  16. Improving Performance of Dye-Sensitized Solar Cell by Multi-Emission Effect of Phosphors.

    PubMed

    Kim, Young Moon; Kim, Chang Seob; Choi, Hyung Wook

    2015-10-01

    Generally, the N-719 dye, used in dye-sensitized solar cells (DSSCs), only absorbs visible light in the wavelength range from 400 to 700 nm. Consequently, most of the ultraviolet and infrared rays from the sun are not utilized by this dye. However, ultraviolet and infrared rays can be converted to visible light by upconversion luminescence. Such visible light can then be reabsorbed by the dye, allowing for a larger range of solar irradiation to be utilized in DSSCs. Phosphor (ZnGa2O4, Y2O3:Er(3+)), acting as a luminescence medium, was added to the TiO2 electrode of DSSCs, and owing to the effect of upconversion, it increased their photocurrent density and efficiency. Phosphor (ZnGa2O4, Y2O3:Er(3+)) co-doped TiO2 electrode cells showed better performance than phosphor-free cells. In fact, the highest efficiency observed for a DSSC containing five phosphor layers was 7.03% with a short-circuit current density (Jsc) of 15.62 mA/cm2, an open circuit voltage (Voc) of 0.661 V, and a fill factor (FF) of 68.17%.

  17. One electron changes everything: a multispecies copper redox shuttle for dye-sensitized solar cells.

    SciTech Connect

    Hoffeditz, William L.; Katz, Michael J.; Deria, Pravas; Cutsail, George E.; Pellin, Michael J.; Farha, Omar K.; Hupp, Joseph T.

    2016-02-25

    Dye-sensitized solar cells (DSCs) are an established alternative photovoltaic technology that offers numerous potential advantages in solar energy applications. However, this technology has been limited by the availability of molecular redox couples that are both noncorrosive/nontoxic and do not diminish the performance of the device. In an effort to overcome these shortcomings, a copper-containing redox shuttle derived from 1,8-bis(2'-pyridyl)-3,6-dithiaoctane (PDTO) ligand and the common DSC additive 4-tert-butylpyridine (TBP) was investigated. Electrochemical measurements, single-crystal X-ray diffraction, and absorption and electron paramagnetic resonance spectroscopies reveal that, upon removal of one metal-centered electron, PDTO-enshrouded copper ions completely shed the tetradentate PDTO ligand and replace it with four or more TBP ligands. Thus, the Cu(I) and Cu(II) forms of the electron shuttle have completely different coordination spheres and are characterized by widely differing Cu(II/I) formal potentials and reactivities for forward versus reverse electron transfer. Notably, the coordination-sphere replacement process is fully reversed upon converting Cu(II) back to Cu(I). In cells featuring an adsorbed organic dye and a nano- and mesoparticulate, TiO2-based, photoelectrode, the dual species redox shuttle system engenders performance superior to that obtained with shuttles based on the (II/I) forms of either of the coordination complexes in isolation.

  18. Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights.

    PubMed

    Higashino, Tomohiro; Imahori, Hiroshi

    2015-01-14

    Dye-sensitized solar cells (DSSCs) have attracted much attention as an alternative to silicon-based solar cells because of their low-cost production and high power conversion efficiency. Among various sensitizers, numerous research activities have been focused on porphyrins due to their strong absorption bands in the visible region, versatile modifications of their core, and facile tuning of the electronic structures. In 2005-2007, Officer and Grätzel et al. had achieved a rapid increase in the power conversion efficiency of porphyrin DSSCs from a few percent to as much as 7%. Encouraged by these pioneering works, further high-performance porphyrin dyes have been developed in the last decade. These studies have provided us profound hints for the rational design of sensitizers toward highly efficient DSSCs. Push-pull structures and/or π-extensions have made porphyrins panchromatic in visible and even near-infrared regions. Consequently, porphyrin sensitizers have exhibited power conversion efficiencies that are comparable to or even higher than those of well-established highly efficient DSSCs based on ruthenium complexes. So far the power conversion efficiency has increased up to ca. 13% by using a push-pull porphyrin with a cobalt-based redox shuttle. In this perspective, we review the recent developments in the synthetic design of porphyrins for highly efficient DSSCs.

  19. Absorption spectra and photovoltaic characterization of chlorophyllins as sensitizers for dye-sensitized solar cells.

    PubMed

    Calogero, Giuseppe; Citro, Ilaria; Crupi, Cristina; Di Marco, Gaetano

    2014-11-11

    Dye-sensitized solar cells (DSSCs) based on Chlorine-e6 (Chl-e6), a Chlorophyll a derivative, and Chl-e6 containing Cu, have been investigated by carrying out incident photon to current efficiency (IPCE) and current-voltage (I-V) measurements. The effect of the metallic ion and the influence of the solvent polarity on the dye aggregation and their absorption bands have been analysed by performing electronic absorption measurements. The dependence of the photoelectrochemical parameters of these DSSCs on the electrolyte by the addition of pyrimidine and/or pyrrole has been discussed in details. For the first time I-V curves for a DSSC based on copper Chl-e6 dye have been shown and compared with Zn based chlorophyllin. Furthermore, the performance of a Cu-Chl-e6 based DSSC has been deeply improved by a progressive optimization of the TiO2 multilayer photoanode overcoming the best data reported in literature so far for this dye. It's worth to emphasize that, the analysis reported in this paper supplies very useful information which paves the way to further detailed studies turned to the employment of natural pigments as sensitizers for solar cells.

  20. Characteristics of dye Rhoeo spathacea in dye sensitizer solar cell (DSSC)

    NASA Astrophysics Data System (ADS)

    Sumardiasih, Sri; Obina, Wilfrida M.; Cari; Supriyanto, Agus; Septiawan, Trio Y.; Khairuddin

    2017-01-01

    Dye-sensitized solar cell (DSSC) is a device that converts solar energy into electrical energy. The magnitude of the efficiency of DSSC is mainly based on the amount of dye absorbed by the surface of TiO2. In this work, used natural dye extracted from leaves Rhoeo spathacea. The dye partially used to immerse of TiO2 as working electrodes, and the rest are directly mixed TiO2 paste to obtain dye titanium dioxide.The paste TiO2 and dye titanium dioxide coated onto the fluorine-doped tin oxide (FTO) glass plate by spin coating method. The absorbance spectra of the dye, dye titanium dioxide and TiO2 were obtained by UV-Vis spectroscopy. The conductivity of the dye, dye titanium dioxide, and TiO2 was measured by two point probe El-Kahfi 100. The DSSC based on dye titanium dioxide that stirring for 5 hours the highest efficiency of 0,0520 % whereas those based on TiO2 immersed for 36 hours showed achieved 0,0501 % obtained from I-V characterization.

  1. Perfluoro anion based binary and ternary ionic liquids as electrolytes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lin, Hsi-Hsin; Peng, Jia-De; Suryanarayanan, V.; Velayutham, D.; Ho, Kuo-Chuan

    2016-04-01

    In this work, eight new ionic liquids (ILs) based on triethylammonium (TEA) or n-methylpiperidinium (NMP) cations and perfluoro carboxylate (PFC) anions having different carbon chain lengths are synthesized and their physico-chemical properties such as density, decomposition temperature, viscosity and conductivity are determined. Photovoltaic characteristics of dye-sensitized solar cells (DSSCs) with binary ionic liquids electrolytes, containing the mixture of the synthesized ILs and 1-methyl-3-propyl imidazolium iodide (PMII) (v/v = 35/65), are evaluated. Among the different ILs, solar cells containing NMP based ILs show higher VOC than that of TEA, whereas, higher JSC is noted for the DSSCs incorporated with the latter when compared to the former. Further, the photo-current of the DSSCs decreases with the increase of the carbon chain length of perfluoro carboxylate anionic group of ILs. The cell performance of the DSSC containing ternary ionic liquids-based electrolytes compose of NMP-2C/TEA-2C/PMII (v/v/v = 28/7/65) exhibits a JSC of 12.99 mA cm-2, a VOC of 639.0 mV, a FF of 0.72, and a cell efficiency of 6.01%. The extraordinary durability of the DSSC containing the above combination of electrolytes stored in dark at 50 °C is proved to be unfailing up to 1200 h.

  2. Bifacial dye-sensitized solar cells with enhanced rear efficiency and power output.

    PubMed

    Cai, Hongyuan; Tang, Qunwei; He, Benlin; Li, Ru; Yu, Liangmin

    2014-12-21

    Pursuing a high power conversion efficiency with no sacrifice of cost-effectiveness has been a persistent objective for dye-sensitized solar cells (DSSCs). One promising solution to this impasse is increased light harvesting. Previous efforts in light harvesting have been made on setting blocking layers or reflecting layers, or adding a light harvester, resulting in tedious procedures without reducing the expenses. We present a mild solution strategy for synthesizing transparent Ru-Se alloy counter electrodes (CEs) for bifacial DSSC applications, displaying optimal front and rear efficiencies of 8.76% and 5.90%, respectively. In comparison with pristine Pt-based solar cells, the maximum power output has also been markedly enhanced. Moreover, fast start-up, high multiple start capability, and good stability are observed in the bifacial DSSCs with transparent Ru-Se binary alloy electrodes. The impressive efficiencies along with simple preparation of the cost-effective Ru-Se alloy CEs demonstrates their potential application in robust DSSCs.

  3. Mesoporous TiO2 Nanowire Film for Dye-Sensitized Solar Cell.

    PubMed

    Xiao, Li; Xu, Jia; Liu, Xiu; Zhang, Yongzhe; Zhang, Bing; Yao, Jianxi; Dai, Songyuan; Tan, Zhanao; Pan, Xu

    2016-06-01

    In this work, TiO2 nanowire arrays were grown on fluorine-doped tin oxide (FTO) glass substrate, and then were converted into mesoporous nanowires (MNWs). The TiO2 MNWs are about 5 μm in length and 30-200 nm in diameter, with mesopores size of 5-30 nm randomly distributed on the NW surface. X-ray diffraction pattern reports show that the NWs are single crystallized rutile TiO2 and oriented grown along [001]. Through further characterization of FT-IR and TG-DSC, we proposed a reasonable explanation for pore existence. After dye-sensitized solar cells (DSSCs) assembly, the photoelectric conversion efficiency (PCE) of MNWs based DSSC achieved 3.2%. It means tenfold enhancement of photoelectric property compare with the as-grown NWs. Furthermore, dye absorb capacity of MNWs can reach up to 4.11 x 10(-8) mol/cm2. However, such MNWs can not only provide quick and efficient electron transmission channel, but also owns big specific surface area to absorb abundant dyes, thus conducive to fabricate solar cell with a high PCE.

  4. Synthetic analogues of anthocyanins as sensitizers for dye-sensitized solar cells.

    PubMed

    Calogero, Giuseppe; Sinopoli, Alessandro; Citro, Ilaria; Di Marco, Gaetano; Petrov, Vesselin; Diniz, Ana M; Parola, A Jorge; Pina, Fernando

    2013-05-01

    Seven flavylium salt dyes were employed for the first time as sensitizers for dye-sensitized solar cells (DSSCs). The theoretical and experimental wavelengths of the maximum absorbances, the HOMO and LUMO energy levels, the coefficients, the oscillator strengths and the dipole moments are calculated for these synthetic dyes. The introduction of a donor group in the flavylium molecular structure was investigated. Photophysical and photoelectrochemical measurements showed that some of these synthetic analogues of anthocyanins are very promising for DSSC applications. The best performance was obtained by a DSSC based on the novel compound 7-(N,N-diethylamino)-3',4'-dihydroxyflavylium which produced a 2.15% solar energy-to-electricity conversion efficiency, under AM 1.5 irradiation (100 mW cm(-2)) with a short-circuit current density (J(sc)) of 12.0 mA cm(-2), a fill factor of 0.5 and an open-circuit voltage (V(oc)) of 0.355 V; its incident photocurrent efficiency of 51% at the peak of the visible absorption band of the dye is remarkable. Our results demonstrated that the substitution of a hydroxylic group with a diethylamine unit in position 7 of ring A of the flavylium backbone expanded the π-conjugation in the dye and thus resulted in a higher absorption in the visible region and is advantageous for effective electron injection from the dye into the conduction band of TiO2.

  5. A complete carbon counter electrode for high performance quasi solid state dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Arbab, Alvira Ayoub; Peerzada, Mazhar Hussain; Sahito, Iftikhar Ali; Jeong, Sung Hoon

    2017-03-01

    The proposed research describes the design and fabrication of a quasi-solid state dye sensitized solar cells (Q-DSSCs) with a complete carbon based counter electrode (CC-CE) and gel infused membrane electrolyte. For CE, the platinized fluorinated tin oxide glass (Pt/FTO) was replaced by the soft cationic functioned multiwall carbon nanotubes (SCF-MWCNT) catalytic layer coated on woven carbon fiber fabric (CFF) prepared on handloom by interlacing of carbon filament tapes. SCF-MWCNT were synthesized by functionalization of cationised lipase from Candida Ragusa. Cationised enzyme solution was prepared at pH ∼3 by using acetic acid. The cationic enzyme functionalization of MWCNT causes the minimum damage to the tubular morphology and assist in fast anchoring of negative iodide ions present in membrane electrolyte. The high electrocatalytic activity and low charge transfer resistance (RCT = 2.12 Ω) of our proposed system of CC-CE shows that the woven CFF coated with cationised lipase treated carbon nanotubes enriched with positive surface ions. The Q-DSSCs fabricated with CC-CE and 5 wt% PEO gel infused PVDF-HFP membrane electrolyte exhibit power conversion efficiency of 8.90% under masking. Our suggested low cost and highly efficient system of CC-CE helps the proposed quasi-solid state DSSCs structure to stand out as sustainable next generation solar cells.

  6. Optical, electrical and electrochemical evaluation of sputtered platinum counter electrodes for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Moraes, R. S.; Saito, E.; Leite, D. M. G.; Massi, M.; da Silva Sobrinho, A. S.

    2016-02-01

    Since Grätzel and O'Regan started in 1991, dye-sensitized solar cells (DSSC) have been extensively studied around the world. In addition to increasing efficiency, their characteristics such as low cost materials and inexpensive manufacturing processes are attractive for organic solar cells. Several parts of DSSC devices are being researched such as semiconductor engineering, low cost counter electrodes, electrolytes, and dyes. In this work, platinum (Pt) thin films were deposited by sputtering technique to produce counter electrodes for DSSC. The films were characterized by profilometry, elipsometry, four-point probe sheet resistance, spectrophotometry, and electrochemical impedance spectroscopy. The electrode response was also compared to that built from a commercial platinum solution. The results allow us to determine the minimum Pt film thickness necessary to achieve a relevant reduction of the sheet resistance and charge transfer resistance, which preserve a significant electrode transparency. The 22 nm and 24.8 nm thick films combined low charge transfer resistance and good transparency. The 122 nm Pt film presented the lowest charge transfer resistance.

  7. Ultra-high aspect ratio copper nanowires as transparent conductive electrodes for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaozhao; Mankowski, Trent; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2016-09-01

    We report the synthesis of ultra-high aspect ratio copper nanowires (CuNW) and fabrication of CuNW-based transparent conductive electrodes (TCE) with high optical transmittance (>80%) and excellent sheet resistance (Rs <30 Ω/sq). These CuNW TCEs are subsequently hybridized with aluminum-doped zinc oxide (AZO) thin-film coatings, or platinum thin film coatings, or nickel thin-film coatings. Our hybrid transparent electrodes can replace indium tin oxide (ITO) films in dye-sensitized solar cells (DSSCs) as either anodes or cathodes. We highlight the challenges of integrating bare CuNWs into DSSCs, and demonstrate that hybridization renders the solar cell integrations feasible. The CuNW/AZO-based DSSCs have reasonably good open-circuit voltage (Voc = 720 mV) and short-circuit current-density (Jsc = 0.96 mA/cm2), which are comparable to what is obtained with an ITO-based DSSC fabricated with a similar process. Our CuNW-Ni based DSSCs exhibit a good open-circuit voltage (Voc = 782 mV) and a decent short-circuit current (Jsc = 3.96 mA/cm2), with roughly 1.5% optical-to-electrical conversion efficiency.

  8. π-Spacer effect in dithiafulvenyl-π-phenothiazine dyes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofeng; Gou, Faliang; Zhao, Dongning; Shi, Jian; Gao, Hong; Zhu, Zhenping; Jing, Huanwang

    2016-08-01

    New dithiafulvenyl-π-phenothiazine dyes have been devised and prepared for dye-sensitized solar cells. Various π-spacers have been successfully introduced into the skeleton of dithiafulvenyl and phenothiazine unit to generate novel D-π-D-A dyes (DPP-1 ∼ 4). All dyes have been characterized with NMR, HRMS, UV-vis and fluorescence spectra, and taken into cyclic voltammetry measurements. The devices of new dyes have been determined by photoelectrochemical experiments (IV, IPCE and EIS), in which, solar cell of DPP-4 with biphenyl ring π-spacer enhances obviously its photoelectric conversion efficiency to 7.66% reaching 94% of N719-based standard cell and displays good long-term stability with quasi-solid-state electrolyte. Density functional theory (DFT) calculations of new dyes provide further insight into the molecular geometries and the impacts of the torsion angles on their photovoltaic performance. Large dihedral angles in DPP dyes induce good charge separation for efficient unidirectional flow of electron from donor to acceptor.

  9. Pt-free counter electrode for dye-sensitized solar cells with high efficiency.

    PubMed

    Yun, Sining; Hagfeldt, Anders; Ma, Tingli

    2014-09-01

    Dye-sensitized solar cells (DSSCs) have attracted widespread attention in recent years as potential cost-effective alternatives to silicon-based and thin-film solar cells. Within typical DSSCs, the counter electrode (CE) is vital to collect electrons from the external circuit and catalyze the I3- reduction in the electrolyte. Careful design of the CEs can improve the catalytic activity and chemical stability associated with the liquid redox electrolyte used in most cells. In this Progress Report, advances made by our groups in the development of CEs for DSSCs are reviewed, highlighting important contributions that promise low-cost, efficient, and robust DSSC systems. Specifically, we focus on the design of novel Pt-free CE catalytic materials, including design ideas, fabrication approaches, characterization techniques, first-principle density functional theory (DFT) calculations, ab-initio Car-Parrinello molecular dynamics (CPMD) simulations, and stability evaluations, that serve as practical alternatives to conventional noble metal Pt electrodes. We stress the merits and demerits of well-designed Pt-free CEs, such as carbon materials, conductive polymers, transition metal compounds (TMCs) and their corresponding hybrids. Also, the prospects and challenges of alternative Pt catalysts for their applications in new-type DSSCs and other catalytic fields are discussed.

  10. Transparent metal selenide alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells.

    PubMed

    Duan, Yanyan; Tang, Qunwei; Liu, Juan; He, Benlin; Yu, Liangmin

    2014-12-22

    The exploration of cost-effective and transparent counter electrodes (CEs) is a persistent objective in the development of bifacial dye-sensitized solar cells (DSSCs). Transparent counter electrodes based on binary-alloy metal selenides (M-Se; M=Co, Ni, Cu, Fe, Ru) are now obtained by a mild, solution-based method and employed in efficient bifacial DSSCs. Owing to superior charge-transfer ability for the I(-) /I3 (-) redox couple, electrocatalytic activity toward I3 (-) reduction, and optical transparency, the bifacial DSSCs with CEs consisting of a metal selenide alloy yield front and rear efficiencies of 8.30 % and 4.63 % for Co0.85 Se, 7.85 % and 4.37 % for Ni0.85 Se, 6.43 % and 4.24 % for Cu0.50 Se, 7.64 % and 5.05 % for FeSe, and 9.22 % and 5.90 % for Ru0.33 Se in comparison with 6.18 % and 3.56 % for a cell with an electrode based on pristine platinum, respectively. Moreover, fast activity onset, high multiple start/stop capability, and relatively good stability demonstrate that these new electrodes should find applications in solar panels.

  11. Influence of cell fabrication procedure on the performance of the dye sensitized solar cell.

    PubMed

    Jen, C Y; Munukutla, L V; Radhakrishnan, S; Kannan, A M; Htun, A

    2012-03-01

    The recent technological advancements of the Dye Sensitized Solar Cells (DSSCs) fabrication technology is gaining momentum as a low cost and simple fabrication technology to convert solar energy into electric energy. A systematic study of the DSSC fabrication procedure and its influence on the cell efficiency are presented in this paper. Preparation of the titanium dioxide (TiO2) layer on the working electrode was the most significant process improvement made to enhance cell efficiency. The Coatema tool was used to develop an automated TiO2 coating process, which yielded layer thicknesses with minimum micro cracks and repeatable TiO2 weight loading in the range of 8-13 microm. Secondary process improvements implemented were: vacuum drying step for the TiO2 layer, dilution ratio of the sensitized dye and sealant thickness. These optimized cell fabrication steps enhanced cell efficiencies over 200% and reduced total process time. The work in progress demonstrated higher cell efficiency slightly greater than 9% by reducing the cell size using the optimized fabrication process described in this paper. We are confident that higher efficiency cells can be fabricated with this optimized fabrication process illustrated in this paper.

  12. Colloidal graphene quantum dots incorporated with a Cobalt electrolyte in a dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Lim, Hyuna

    The utilization of sun light as a renewable energy source has been pursued for a long time, but the ultimate goal of developing inexpensive and highly efficient photovoltaic devices remains elusive. To address this problem, colloidal graphene quantum dots (GQDs) were synthesized and used as a new sensitizer in dye sensitized solar cells (DSCs). Not only do the GQDs have a well-defined structure, but their large absorptivity, tunable bandgap, and size- and functional group-dependent redox potentials make them promising candidates for photovoltaic applications. Because volatile organic solvents in electrolyte solutions hinder long-term use and mass production of DSC devices, imidazolium based ionic liquids (ILs) were investigated. Cobalt-bipyridine complexes were successfully synthesized and characterized for use as new redox shuttles in DSCs. In the tested DSCs, J-V (current density-voltage) curves illustrate that the short circuit current and fill factor decrease significantly as the active area in the TiO2 photo anode increases. Dark current measurement indicated that the diode factor is bigger than one, which is different from the conventional p-n junction type solar cells, due to the high efficiency of photoelectron injection. The variation of the diode factor in dark and in light would show various types of recombination behaviors in DSCs. The performance of the DSC stained by GQDs incorporated with the cobalt redox couple was tested, but further study to improve the efficiency and to understand photochemical reaction in the DSCs is needed.

  13. Dye-sensitized solar cell with energy storage function through PVDF/ZnO nanocomposite counter electrode.

    PubMed

    Zhang, Xi; Huang, Xuezhen; Li, Chensha; Jiang, Hongrui

    2013-08-14

    Dye-sensitized solar cells with an energy storage function are demonstrated by modifying its counter electrode with a poly (vinylidene fluoride)/ZnO nanowire array composite. This simplex device could still function as an ordinary solar cell with a steady photocurrent output even after being fully charged. An energy storage density of 2.14 C g(-1) is achieved, while simultaneously a 3.70% photo-to-electric conversion efficiency is maintained.

  14. Enhancing the power conversion efficiency of dye-sensitized solar cells via molecular plasmon-like excitations.

    PubMed

    Li, Jian-Hao; Gryn'ova, Ganna; Prlj, Antonio; Corminboeuf, Clémence

    2017-02-21

    We introduce a tactic for employing molecular plasmon-like excitations to enhance solar-to-electric power conversion efficiency of dye-sensitized solar cells. We offer general design principles of dimeric dyes, in which a strong plasmonic interaction between two π-conjugated moieties is promoted. The π-stacked conformations of these dimeric dyes result in a desirable broadened absorption and a longer absorption onset wavelength.

  15. Structure-function relationships in unsymmetrical zinc phthalocyanines for dye-sensitized solar cells.

    PubMed

    Cid, Juan-José; García-Iglesias, Miguel; Yum, Jun-Ho; Forneli, Amparo; Albero, Josep; Martínez-Ferrero, Eugenia; Vázquez, Purificación; Grätzel, Michael; Nazeeruddin, Mohammad K; Palomares, Emilio; Torres, Tomás

    2009-01-01

    A series of unsymmetrical zinc phthalocyanines bearing an anchoring carboxylic function linked to the phthalocyanine ring through different spacers were designed for dye-sensitised solar cells (DSSC). The modification of the spacer group allows not only a variable distance between the dye and the nanocrystalline TiO(2), but also a distinct orientation of the phthalocyanine on the semiconductor surface. The photovoltaic data show that the nature of the spacer group plays a significant role in the electron injection from the photo-excited dye into the nanocrystalline TiO(2) semiconductor, the recombination rates and the efficiency of the cells. The incident monochromatic photon-to-current conversion efficiency (IPCE) for phthalocyanines bearing an insulating spacer is as low as 9%, whereas for those with a conducting spacer an outstanding IPCE 80% was obtained.

  16. Natural dye extracted from karkadah and its application in dye-sensitized solar cells: experimental and density functional theory study.

    PubMed

    Reda, S M; Soliman, K A

    2016-02-01

    This work presents an experimental and theoretical study of cyanidin natural dye as a sensitizer for ZnO dye-sensitized solar cells. ZnO nanoparticles were prepared using ammonia and oxalic acid as a capping agent. The calculated average size of the synthesized ZnO with different capping agents was found to be 32.1 nm. Electronic properties of cyanidin and delphinidin dye were studied using density functional theory (DFT) and time-dependent DFT with a B3LYP/6-31G(d,p) level. By comparing the theoretical results with the experimental data, the cyanidin dye can be used as a sensitizer in dye-sensitized solar cells. An efficiency of 0.006% under an AM-1.5 illumination at 100  mW/cm(2) was attained. The influence of dye adsorption time on the solar cell performance is discussed.

  17. A dye sensitized solar cell using natural counter electrode and natural dye derived from mangosteen peel waste

    PubMed Central

    Maiaugree, Wasan; Lowpa, Seksan; Towannang, Madsakorn; Rutphonsan, Phikun; Tangtrakarn, Apishok; Pimanpang, Samuk; Maiaugree, Prapen; Ratchapolthavisin, Nattawat; Sang-aroon, Wichien; Jarernboon, Wirat; Amornkitbamrung, Vittaya

    2015-01-01

    Mangosteen peel is an inedible portion of a fruit. We are interested in using these residues as components of a dye sensitized solar cell (DSSC). Carbonized mangosteen peel was used with mangosteen peel dye as a natural counter electrode and a natural photosensitizer, respectively. A distinctive mesoporous honeycomb-like carbon structure with a rough nanoscale surface was found in carbonized mangosteen peels. The efficiency of a dye sensitized solar cell using carbonized mangosteen peel was compared to that of DSSCs with Pt and PEDOT-PSS counter electrodes. The highest solar conversion efficiency (2.63%) was obtained when using carbonized mangosteen peel and an organic disulfide/thiolate (T2/T−) electrolyte. PMID:26458745

  18. Printable electrolytes based on polyacrylonitrile and gamma-butyrolactone for dye-sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Venkatesan, Shanmugam; Su, Song-Chuan; Hung, Wei-Ning; Liu, I.-Ping; Teng, Hsisheng; Lee, Yuh-Lang

    2015-12-01

    Printable electrolytes for dye-sensitized solar cells (DSSCs) are prepared using a low volatile solvent, gamma-butyrolactone (gBL). Various polymers including polyvinyl acetate (PVA), polyacrylonotrile (PAN), and poly(acrylonitrile-co-vinylacetate) (PAN-VA) are used to regulate the viscosity of the electrolytes. The results show that PAN is the best polymer interms of viscosity, conductivity, and performance of the DSSCs. Increasing the concentration of PAN increases the viscosity of the electrolyte paste, which is advantageous to the operation of a printing process but decreases the electrolyte conductivity and cell performance. This drawback can be compensated by introducing of TiO2 or TiC nanofillers. The quasi-solid-state DSSC prepared using a printing process achieves a conversion efficiency (7.85%) similar to that of the corresponding liquid cell (7.87%). The stability test shows that the presence of TiO2 nanofillers triggers a gradual desorption of dye, decreasing DSSC performance. However, this problem does not appear for the electrolyte using TiC nanofillers, with cell efficiency retaining 96% of its initial value after a 500 h test.

  19. A hybrid electron donor comprising cyclopentadithiophene and dithiafulvenyl for dye-sensitized solar cells.

    PubMed

    Sorohhov, Gleb; Yi, Chenyi; Grätzel, Michael; Decurtins, Silvio; Liu, Shi-Xia

    2015-01-01

    Two new photosensitizers featured with a cyanoacrylic acid electron acceptor (A) and a hybrid electron donor (D) of cyclopentadithiophene and dithiafulvenyl, either directly linked or separated by a phenyl ring, were synthesized and characterized. Both of them undergo two reversible oxidations and strongly absorb in the visible spectral region due to a photo-induced intramolecular charge-transfer (ICT) transition. To a great extent, the electronic interaction between the D and A units is affected by the presence of a phenyl spacer. Without a phenyl ring, the D unit appears more difficult to oxidize due to a strong electron-withdrawing effect of the A moiety. In sharp contrast, the insertion of the phenyl ring between the D and A units leads to a broken π-conjugation and therefore, the oxidation potentials remain almost unchanged compared to those of an analogue without the A group, suggesting that the electronic coupling between D and A units is relatively weak. As a consequence, the lowest-energy absorption band shows a slight hypsochromic shift upon the addition of the phenyl spacer, indicative of an increased HOMO-LUMO gap. In turn, the direct linkage of D and A units leads to an effective π-conjugation, thus substantially lowering the HOMO-LUMO gap. Moreover, the application in dye-sensitized solar cells was investigated, showing that the power conversion efficiency increases by the insertion of the phenyl unit.

  20. 1-Alkyl-1H-imidazole-based dipolar organic compounds for dye-sensitized solar cells.

    PubMed

    Velusamy, Marappan; Hsu, Ying-Chan; Lin, Jiann T; Chang, Che-Wei; Hsu, Chao-Ping

    2010-01-04

    A series of donor-pi-acceptor-type organic dyes based on 1-alkyl-1H-imidazole spacers 1-5 have been developed and characterized. The two electron donors are at positions 4 and 5 of the imidazole, while the electron-accepting cyanoacrylic acid is incorporated at position 2 by a spacer-containing heteroaromatic rings, such as thiophene and thiazole. Detailed investigation on the relationship between the structure, spectral and electrochemical properties, and performance of DSSC is described here. Dye-sensitized solar cells (DSSCs) using dyes as the sensitizers exhibit good efficiencies, ranging from 3.06 to 6.35 %, which reached 42-87 % with respect to that of N719-based device (7.33 %) fabricated and measured under similar conditions. Time-dependent density functional theory (TDDFT) calculations have been performed on the dyes, and the results show that both electron donors can contribute to electron injection upon photo-excitation, either directly or indirectly by internal conversion to the lowest excited state.

  1. Transition metal ferrocenyl dithiocarbamates functionalized dye-sensitized solar cells with hydroxy as an anchoring group

    NASA Astrophysics Data System (ADS)

    Yadav, Reena; Waghadkar, Yogesh; Kociok-Köhn, Gabriele; Kumar, Abhinav; Rane, Sunit B.; Chauhan, Ratna

    2016-12-01

    Three new transition-metal dithiocarbamates involving ferrocene (Fc), namely [Co(FcCH2EtOHdtc)3] (Co), [M(FcCH2EtOHdtc)2] M = Ni (Ni), Cu (Cu) (EtOHdtc = N-ethanol dithiocarbamate), have been synthesized and characterized by microanalyses, FTIR, 1H and 13C NMR spectroscopies and single crystal X-ray diffraction technique. The peak broadening in the 1H spectrum of the copper complex indicates the paramagnetic behavior of this compound. The observed single quasi-reversible cyclic voltammograms for the complexes indicate the stabilization of a metal center (except copper) other than Fe in their characteristic oxidation state. These complexes have been used as photo-sensitizer in dye-sensitized solar cells which indicates that Co displays the best photosensitization property with an overall conversion efficiency of 3.25 ± 0.04%. The low cell efficiency of Ni and Cu complexes may be due to slow regeneration of the dye by iodine/iodide redox couple followed by charge injection into TiO2.

  2. Photoinduced Interfacial Electron Injection Dynamics in Dye-Sensitized Solar Cells under Photovoltaic Operating Conditions.

    PubMed

    Teuscher, Joël; Décoppet, Jean-David; Punzi, Angela; Zakeeruddin, Shaik M; Moser, Jacques-E; Grätzel, Michael

    2012-12-20

    We report a pump-probe spectroscopy study of electron injection rates in dye-sensitized solar cell (DSSC) devices. We examine the case of working devices employing an N719 ruthenium sensitizer and an iodide electrolyte. Electron injection is found to occur mainly on a sub-100 fs time scale, followed by a slower component with a lifetime of 26.9 ps, in accordance with previous reports on model samples. The amplitude of this latter component varies with electrolyte composition from 25 to 9%. The appearance of slower components in the electron injection dynamics may be attributed to an aggregated or weakly bound state of the surface-adsorbed N719 sensitizer. Further measurements are reported varying the cell light bias and load conditions, revealing no influence on electron injection dynamics. No other electron injection event is found to occur up to 1 ns. These results show no evidence for a slowdown of electron injection under working conditions compared to model systems for the electrolytes examined in this study.

  3. Spherical TiO2 aggregates with different building units for dye-sensitized solar cells.

    PubMed

    Liu, Zhaohui; Su, Xunjia; Hou, Genliang; Bi, Song; Xiao, Zhou; Jia, Haipeng

    2013-09-07

    Tailoring the architectures of spherical TiO2 aggregates is crucial to obtain superior photovoltaic properties and promote their application in dye-sensitized solar cells (DSSCs). Herein, we synthesized spherical TiO2 aggregates using different building units, including nanocrystallites, nanorods, nanosheets, and nanotubes, via a hydrothermal method, and studied the effect of the building units on the performances of DSSCs. The aggregates assembled by uniform nanosheet and nanotube building units were synthesized with the use of spherical TiO2 nanorod aggregates as titanium sources in an alkaline hydrothermal reaction. Compared with TiO2 nanoparticles, the spherical TiO2 aggregates possess higher surface area, more efficient light scattering ability, and better electron transport properties. Among the four types of spherical TiO2 aggregates; the nanorod, nanotube, and nanosheet aggregates demonstrate better electron transport properties than the nanocrystallite aggregates; the nanotube and nanosheet aggregates exhibit more efficient light scattering than the nanocrystallite and nanorod aggregates; and the nanotube aggregates show the highest surface area. Thus the DSSC based on nanotube aggregates exhibited the highest energy conversion efficiency of 7.48%, which is 16.0%, 9.7%, and 19.5% higher than those of the DSSCs based on the nanosheet, nanorod, and nanocrystallite aggregates, respectively.

  4. Solution processable titanium dioxide precursor and nanoparticulated ink: application in Dye Sensitized Solar Cells.

    PubMed

    Bosch-Jimenez, Pau; Yu, Youhai; Lira-Cantu, Mónica; Domingo, Concepción; Ayllón, José A

    2014-02-15

    Colloidal TiO2 anatase nanoparticles of 4-8 nm diameter capped with 3,6,9-trioxadecanoic acid (TODA) were synthesized at low temperature using water and ethanol as the solvents. ATR-FTIR and (1)H NMR characterization showed the capping acid capability of stabilizing the TiO2 nanoparticles through labile hydrogen bonds. The presence of the capping ligand permitted the further preparation of homogeneous and stable colloidal dispersions of the TiO2 powder in aqueous media. Moreover, after solvent evaporation, the ligand could be easily eliminated by soft treatments, such as UV irradiation or low-temperature thermal annealing. These properties have been used in this work to fabricate mesoporous TiO2 electrodes, which can be applied as photoanodes in Dye Sensitized Solar Cells (DSSCs). For the preparation of the electrodes, the as-synthesized mesoporous TiO2 nanoparticles were mixed with commercial TiO2 (Degussa P25) and deposited on FTO substrates by using the doctor blade technique. A mixture of water and ethanol was used as the solvent. A soft thermal treatment at 140 °C for 2h eliminated the organic compound and produced a sintered mesoporous layer of 6 μm thickness. The photovoltaic performance of the DSSCs applying these electrodes sensitized with the N3 dye resulted in 5.6% power conversion efficiency.

  5. The emergence of copper(I)-based dye sensitized solar cells.

    PubMed

    Housecroft, Catherine E; Constable, Edwin C

    2015-12-07

    Since the discovery of Grätzel-type dye sensitized solar cells (DSCs) in the early 1990s, there has been an exponential growth in the number of publications dealing with their optimization and new design concepts. Conventional Grätzel DSCs use ruthenium(II) complexes as sensitizers, and the highest photon-to-electrical current conversion efficiency for a ruthenium dye is ≈12%. However, ruthenium is both rare and expensive, and replacement by cheaper and more sustainable metals is desirable. In this Tutorial Review, we describe strategies for assembling copper(I) complexes for use as dyes in DSCs, a research area that has been active since ≈2008. We demonstrate design principles for (I) ligands to anchor the complex to a semiconductor surface and promote electron transfer from dye to semiconductor, and (II) ancillary ligands to tune the light absorption properties of the dye and facilitate electron transfer from electrolyte to dye in the DSC. We assess the progress made in terms of light-harvesting and overall photoconversion efficiencies of copper(I)-containing DSCs and highlight areas that remain ripe for development and improvement.

  6. Polyiodides formation in solvent based Dye Sensitized Solar Cells under reverse bias stress

    NASA Astrophysics Data System (ADS)

    Agresti, Antonio; Pescetelli, Sara; Gatto, Emanuela; Venanzi, Mariano; Di Carlo, Aldo

    2015-08-01

    In this work we investigate electrolyte degradation mechanisms in a Dye Sensitized Solar Cell (DSSC), when stressed under forced reverse bias (RB) conditions. During the stress test, we observe a gradual and visually evident cluster shaped browning of platinised counter-electrode in contact with electrolyte solution; Raman spectroscopy confirms that the observed phenomena is due to formation of polyiodide ions and reveals an arose marked fluorescence background, stemming from new chemical species induced by RB stress test. Raman and fluorescence measurements on RB stressed model electrolyte solutions reveal that photoluminescence emission is mainly related to degradation mechanisms involving the I-/I3- redox couple. In fact, due to the RB stress, the redox couple is unbalanced and the formation of various associated structures between 1-methyl-3-propyl imidazolium iodide (PMII) ions is favored. This can be detected by observing the Red Edge Effect (REE) in fluorescence emission spectra of stressed solutions. Thus, polyiodides formation in RB stressed DSSCs could be added to the several depletion channels of triiodide anions and should be taken into account in designing new stable and efficient electrolytes.

  7. Doped In₂O₃ inverse opals as photoanode for dye sensitized solar cells.

    PubMed

    Kong, Lingxin; Dai, Qilin; Miao, Chuang; Xu, Lin; Song, Hongwei

    2015-07-15

    One promising way to improve the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs), which have attracted great interest due to their low cost, is modifying the working electrode. In this work, Tm and Yb doped as well as undoped In2O3 inverse opals (IOs) were synthesized by the sol-gel method. DSSCs based on In2O3, In2O3:Tm and In2O3:Yb IOs as photoanodes were fabricated and studied. It is observed that the device performance including open-circuit voltage (V(oc)) and short-circuit current (J(sc)) increased largely with the increasing pore size of the IOs and the introduction of Tm and Yb elements in the In2O3 lattices. The PCE of the DSSC was increased from 0.33% to 0.96% when the ln2O3 IOs photoanode was substituted by ln2O3:Yb IOs. The electrochemical impedance spectroscopy (EIS) measurements indicate that the modification of band gap in the Tm and Yb doped In2O3 IOs is significant for the improved performance, which can effectively suppress the charge transfer recombination and improve the electron lifetime.

  8. The role of printing techniques for large-area dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Mariani, Paolo; Vesce, Luigi; Di Carlo, Aldo

    2015-10-01

    The versatility of printing technologies and their intrinsic ability to outperform other techniques in large-area deposition gives scope to revolutionize the photovoltaic (PV) manufacturing field. Printing methods are commonly used in conventional silicon-based PVs to cover part of the production process. Screen printing techniques, for example, are applied to deposit electrical contacts on the silicon wafer. However, it is with the advent of third generation PVs that printing/coating techniques have been extensively used in almost all of the manufacturing processes. Among all the third generation PVs, dye sensitized solar cell (DSSC) technology has been developed up to commercialization levels. DSSCs and modules can be fabricated by adopting all of the main printing techniques on both rigid and flexible substrates. This allows an easy tuning of cell/module characteristics to the desired application. Transparency, colour, shape, layout and other DSSC’s features can be easily varied by changing the printing parameters and paste/ink formulations used in the printing process. This review focuses on large-area printing/coating technologies for the fabrication of DSSCs devices. The most used and promising techniques are presented underlining the process parameters and applications.

  9. Comparative study of TiO2 nanoparticles applied to dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yacoubi, Besma; Bennaceur, Jamila; Ben Taieb, S.; Chtourou, Rathowan

    2014-02-01

    Microcrystalline titanium oxide (TiO2) particles of anatase crystal phase were prepared by the sol-gel route, varying thermal treatment conditions (400 °C and 600 °C), for a comparison purpose with commercial TiO2 (P25). Structural, optical and electrical properties were investigated for dye-sensitized solar cells (DSSCs) application. Both microcrystalline TiO2 particles, synthesized by the sol-gel method and obtained from the P25 powder were used to prepare a light scattering layer of the working electrode. The obtained electrodes were then immersed in a solution of N-719 (ruthenium) dye, at the ambient temperature, during 24 h. Finally, the DSSCs were assembled, the short circuit photocurrent, the open circuit photovoltage, and the power conversion efficiency were measured using an I-V measurement system. The overall conversion efficiencies for all elaborated DSSCs were proximate. A maximum efficiency of 2.3% was achieved for the sol-gel TiO2 thin film annealed at 400 °C, under one sun irradiation, with an open circuit voltage of 0.61 V and a current density of 6.54 mA/cm2. The higher efficiency value of the sol-gel TiO2 sample, annealed at 400 °C, was attributed to the uniformity of the prepared titanium oxide substrate, which provides a better surface for the dye absorption.

  10. Tungsten doped titanium dioxide nanowires for high efficiency dye-sensitized solar cells.

    PubMed

    Archana, P S; Gupta, Arunava; Yusoff, Mashitah M; Jose, Rajan

    2014-04-28

    Metal oxide semiconductors offering simultaneously high specific surface area and high electron mobility are actively sought for fabricating high performance nanoelectronic devices. The present study deals with synthesis of tungsten doped TiO2 (W:TiO2) nanowires (diameter ∼50 nm) by electrospinning and evaluation of their performance in dye-sensitized solar cells (DSCs). Similarity in the ionic radii between W(6+) and Ti(4+) and availability of two free electrons per dopant are the rationale for the present study. Materials were characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray fluorescence measurements, and absorption spectroscopy. Nanowires containing 2 at% W:TiO2 gave 90% higher short circuit current density (JSC) (∼15.39 mA cm(-2)) in DSCs with a nominal increase in the open circuit voltage compared with that of the undoped analogue (JSC ∼8.1 mA cm(-2)). The results are validated by multiple techniques employing absorption spectroscopy, electrochemical impedance spectroscopy and open circuit voltage decay. The above studies show that the observed increments resulted from increased dye-loading, electron density, and electron lifetime in tungsten doped samples.

  11. Optimization of the dye-sensitized solar cell performance by mechanical compression.

    PubMed

    Meen, Teen Hang; Tsai, Jenn Kai; Tu, Yu Shin; Wu, Tian Chiuan; Hsu, Wen Dung; Chang, Shoou-Jinn

    2014-01-01

    In this study, the P25 titanium dioxide (TiO2) nanoparticle (NP) thin film was coated on the fluorine-doped tin oxide (FTO) glass substrate by a doctor blade method. The film then compressed mechanically to be the photoanode of dye-sensitized solar cells (DSSCs). Various compression pressures on TiO2 NP film were tested to optimize the performance of DSSCs. The mechanical compression reduces TiO2 inter-particle distance improving the electron transport efficiency. The UV-vis spectrophotometer and electrochemical impedance spectroscopy (EIS) were employed to quantify the light-harvesting efficiency and the charge transport impedance at various interfaces in DSSC, respectively. The incident photon-to-current conversion efficiency was also monitored. The results show that when the DSSC fabricated by the TiO2 NP thin film compressed at pressure of 279 kg/cm(2), the minimum resistance of 9.38 Ω at dye/TiO2 NP/electrolyte interfaces, the maximum short-circuit photocurrent density of 15.11 mA/cm(2), and the photoelectric conversion efficiency of 5.94% were observed. Compared to the DSSC fabricated by the non-compression of TiO2 NP thin film, the overall conversion efficiency is improved over 19.5%. The study proves that under suitable compression pressure the performance of DSSC can be optimized.

  12. Molecular modification of coumarin dyes for more efficient dye sensitized solar cells

    SciTech Connect

    Sanchez-de-Armas, Rocio; San-Miguel, Miguel A.; Oviedo, Jaime; Sanz, Javier Fdez.

    2012-05-21

    In this work, new coumarin based dyes for dye sensitized solar cells (DSSC) have been designed by introducing several substituent groups in different positions of the NKX-2311 structure. Two types of substitutions have been considered: the introduction of three electron-donating groups (-OH, -NH{sub 2}, and -OCH{sub 3}) and two different substituents with steric effect: -CH{sub 2}-CH{sub 2}-CH{sub 2}- and -CH{sub 2}-HC=CH-. The electronic absorption spectra (position and width of the first band and absorption threshold) and the position of the LUMO level related to the conduction band have been used as theoretical criteria to evaluate the efficiency of the new dyes. The introduction of a -NH{sub 2} group produces a redshift of the absorption maximum position and the absorption threshold, which could improve the cell efficiency. In contrast, the introduction of -CH{sub 2}-CH{sub 2}-CH{sub 2}- does not modify significantly the electronic structure of NKX-2311, but it might prevent aggregation. Finally, -CH{sub 2}-HC=CH- produces important changes both in the electronic spectrum and in the electronic structure of the dye, and it would be expected as an improvement of cell efficiency for these dyes.

  13. A transparent nickel selenide counter electrode for high efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Dong, Jia; Wu, Jihuai; Jia, Jinbiao; Ge, Jinhua; Bao, Quanlin; Wang, Chaotao; Fan, Leqing

    2017-04-01

    Nickel selenide (Ni0.85Se) was synthesized by a facile one-step hydrothermal reaction and Ni0.85Se film was prepared by spin-coating Ni0.85Se ink on FTO and used as counter electrode (CE) in dye-sensitized solar cells (DSSC). The Ni0.85Se CEs not only show high transmittance in visible range, but also possess remarkable electrocatalytic activity toward I-/I3-. The electrocatalytic ability of Ni0.85Se films was verified by cyclic voltammetry, electrochemical impedance spectroscopy and Tafel polarization curves. The DSSC using Ni0.85Se CE exhibits a power conversion efficiency (PCE) of 8.96%, while the DSSC consisting of sputtered Pt CE only exhibits a PCE of 8.15%. When adding a mirror under Ni0.85Se CE, the resultant DSSC exhibits a PCE of 10.76%, which exceeds that of a DSSC based on sputtered Pt CE (8.44%) by 27.49%.

  14. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-05-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4‧-(2,2-dicyanovinyl)-[1,1‧-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up.

  15. Recent Advances of Cobalt(II/III) Redox Couples for Dye-Sensitized Solar Cell Applications.

    PubMed

    Giribabu, Lingamallu; Bolligarla, Ramababu; Panigrahi, Mallika

    2015-08-01

    In recent years dye-sensitized solar cells (DSSCs) have emerged as one of the alternatives for the global energy crisis. DSSCs have achieved a certified efficiency of >11% by using the I(-) /I3 (-) redox couple. In order to commercialize the technology almost all components of the device have to be improved. Among the various components of DSSCs, the redox couple that regenerates the oxidized sensitizer plays a crucial role in achieving high efficiency and durability of the cell. However, the I(-) /I3 (-) redox couple has certain limitations such as the absorption of triiodide up to 430 nm and the volatile nature of iodine, which also corrodes the silver-based current collectors. These limitations are obstructing the commercialization of this technology. For this reason, one has to identify alternative redox couples. In this regard, the Co(II/III) redox couple is found to be the best alternative to the existing I(-) /I3 (-) redox couple. Recently, DSSC test cell efficiency has risen up to 13% by using the cobalt redox couple. This review emphasizes the recent development of Co(II/III) redox couples for DSSC applications.

  16. Organic sensitizers for dye-sensitized solar cell (DSSC): Properties from computation, progress and future perspectives

    NASA Astrophysics Data System (ADS)

    Obotowo, I. N.; Obot, I. B.; Ekpe, U. J.

    2016-10-01

    The advent of the dye-sensitized solar cells (DSSCs) came at a time when the quest for alternative energy was high, replacing p-n junction photovoltaic devices. Its uniqueness arises from the fact that unlike the conventional systems where the semiconductor assumes the task of light absorption and charge transport, the two functions are separated in DSSC. Organic sensitizers have been used to harvest a large fraction of sunlight ranging from the UV region to the near infrared region of the spectrum leading to power conversion efficiencies of up to ∼ 10.65 % for metal-free organic sensitizers. Currently, experimental analysis of photo sensitizers utilized in DSSCs is often a trial and error process, often laborious and require extensive and expensive chemical synthesis. In most cases, disappointing results from late-stage of the dye synthesis indicate an urgent need to understand the properties of the dyes at a molecular level, before experiments take place. Fortunately, the use of quantum chemical calculations especially Density Functional Theory (DFT) to screen potential dyes has helped in developing efficient sensitizers and to reduce cost. In the present review article, we discuss the current state of the field, new concepts, design strategies, challenges facing the theoretical design and development of organic sensitizers for DSSCs and future perspectives.

  17. Graphite nanoplatelet assemblies for transparent and catalytic electrodes in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Aderhold, Patrick

    Dye sensitized solar cells (DSSCs) are a class of photovoltaic devices that have the potential to provide high conversion efficiency at low production cost. Research to improve performance in the individual components is active, but attention must be paid to methods that improve scalability and production cost as well. Graphite nanoplatelets (GNP), thin stacks of graphene sheets with nanometer-scale thickness and micron-scale lateral dimensions, provide a unique opportunity for creating DSSC electrodes with simple manufacturing techniques and low-energy processing. For the counterelectrode, a composite paper, made by cofiltration and pressing of GNP and polypropylene (PP), yields a highly electrical conductive surface that is mechanically robust and chemically stable in electrolyte. Decoration of this surface with platinum nanoparticles (PtNPs) by a rapid microwave heating process produces a catalytic surface that rivals the current "thermalized" platinum standard counterelectrode. The GNP/PP/PtNP system, however, requires lower processing temperature and requires a fraction of the Pt loading. For the transparent electrode, thin sheets of GNP can be deposited on glass surfaces to create highly transparent coatings for use in photoanode construction. Substrate interactions and post treatments are examined and techniques for optimization are outlined. Overall GNP is shown to be a versatile and effective starting material for DSSC electrode construction and demonstrates its potential as a building-block in next-generation photovoltaic devices.

  18. Efficient organic dye-sensitized solar cells: molecular engineering of donor-acceptor-acceptor cationic dyes.

    PubMed

    Cheng, Ming; Yang, Xichuan; Zhao, Jianghua; Chen, Cheng; Tan, Qin; Zhang, Fuguo; Sun, Licheng

    2013-12-01

    Three metal-free donor-acceptor-acceptor sensitizers with ionized pyridine and a reference dye were synthesized, and a detailed investigation of the relationship between the dye structure and the photophysical and photoelectrochemical properties and the performance of dye-sensitized solar cells (DSSCs) is described. The ionization of pyridine results in a red shift of the absorption spectrum in comparison to that of the reference dye. This is mainly attributable to the ionization of pyridine increasing the electron-withdrawing ability of the total acceptor part. Incorporation of the strong electron-withdrawing units of pyridinium and cyano acrylic acid gives rise to optimized energy levels, resulting in a large response range of wavelengths. When attached to TiO2 film, the conduction band of TiO2 is negatively shifted to a different extent depending on the dye. This is attributed to the electron recombination rate between the TiO2 film and the electrolyte being efficiently suppressed by the introduction of long alkyl chains and thiophene units. DSSCs assembled using these dyes show efficiencies as high as 8.8 %.

  19. Polypyrrole thin films decorated with copper nanostructures as counter electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ghani, Sheeba; Sharif, Rehana; Bashir, Saima; Zaidi, Azhar A.; Rafique, M. S.; Ashraf, Ayesha; Shahzadi, Shamaila; Rafique, Shaista; Kamboh, Afzal H.

    2015-05-01

    A two-step electrochemical polymerization method for the fabrication of polypyrrole (PPY) thin films decorated with copper nanostructures on a stainless steel has been employed. The PPY film thickness affects the size, shape, and the number density of the copper nanostructures and provides an easy approach to control the morphology of these nanostructures. SEM images show nanorod like structures of copper on 200 nm PPY film. By employing this composite film as counter electrode (CE), a dye-sensitized solar cell (DSSC) achieves a conversion efficiency of 7.42%, which is greater than Pt CE based DSSC (5.63%). The superior photovoltaic efficiency for the Cu-PPY film is attributed to unique porous PPY thin film and copper nanorods structure that leads to higher cathodic current density (5.38 mA/cm2), large electrocatalytic activity, and small charge transfer resistance(1.92 Ω cm-2). Therefore, Cu-PPY composite can be considered a competitive and promising CE material with the traditional and expensive Pt CE, for large-scale DSSCs production.

  20. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    PubMed Central

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-01-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4′-(2,2-dicyanovinyl)-[1,1′-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up. PMID:27196877

  1. Comparing electron recombination via interfacial modifications in dye-sensitized solar cells.

    PubMed

    Li, Luping; Chen, Shikai; Xu, Cheng; Zhao, Yang; Rudawski, Nicholas G; Ziegler, Kirk J

    2014-12-10

    Establishing a blocking layer between the interfaces of the photoanode is an effective approach to improve the performance of dye-sensitized solar cells (DSSCs). In this work, HfO2 blocking layers are deposited via atomic layer deposition (ALD) onto tin-doped indium oxide (ITO) and TiO2. In both cases, addition of the blocking layer increases cell efficiencies to greater than 7%. The improved performance for a HfO2 layer inserted between the ITO/TiO2 interface is associated with an energy barrier that reduces electron recombination. HfO2 blocking layers between the TiO2/dye interface show more complex behavior and are more sensitive to the number of ALD cycles. For thin blocking layers on TiO2, the improved device performance is attributed to the passivation of surface states in TiO2. A distinct transition in dark current and electron lifetime are observed after 4 ALD cycles. These changes to performance indicate thick HfO2 layers on TiO2 formed an energy barrier that significantly hinders cell performance.

  2. A Novel Photo-Thermoelectric Generator Integrating Dye-sensitized Solar Cells with Thermoelectric Modules

    NASA Astrophysics Data System (ADS)

    Chang, Ho; Kao, Mu-Jung; Huang, Kouhsiu David; Chen, Sih-Li; Yu, Zhi-Rong

    2010-06-01

    In this study, we adopt two different morphologies of self-made nano-TiO2 powder to prepare a double-layer photoelectrode for dye-sensitized solar cells (DSSCs). Further, DSSC module and thermoelectric generator (TEG) coated with nano-Cu thin film were integrated with a novel photo-thermoelectric generator. For the fabrication of photoelectric conversion modules, TiO2 nanoparticles (H200) fabricated by the hydrothermal method and the powder of TiO2 nanofluid prepared by the submerged arc nanofluid synthesis system (SANSS) were utilized to prepare a double-layer thin film using a surgical blade as the photoelectrode of DSSCs. And then, commercial nano-Cu powder was coated on two sides of TEG to fabricate thermoelectric conversion module by surgical blade. Nano-Cu thin film, as the medium of thermal conductivity, can effectively transfer heat produced by sunlight on the surface of DSSC to the two sides of TEG. Finally, the two modules were combined into the optical thermoelectric generator. The overall experiment utilizes the intensity of 100 mW/cm2 illumination of simulated sunlight, which can produce 4.97 mW/cm2, an increase of 2.87% output compared with merely employing the DSSCs.

  3. Light collection optimization for composite photoanode in dye-sensitized solar cells: Towards higher efficiency

    SciTech Connect

    Guo, X. Z.; Shen, W. Z.

    2015-06-14

    Composite photoanode comprising nanoparticles and one-dimensional (1D) nanostructure is a promising alternative to conventional photoanode for dye-sensitized solar cells (DSCs). Besides fast electron transport channels, the 1D nanostructure also plays as light scattering centers. Here, we theoretically investigate the light scattering properties of capsule-shaped 1D nanostructure and their influence on the light collection of DSCs. It is found that the far-field light scattering of a single capsule depends on its volume, shape, and orientation: capsules with bigger equivalent spherical diameter, smaller aspect ratio, and horizontal orientation demonstrate stronger light scattering especially at large scattering angle. Using Monte Carlo approach, we simulated and optimized the light harvesting efficiency of the cell. Two multilayer composite photoanodes containing orderly or randomly oriented capsules are proposed. DSCs composed of these two photoanodes are promising for higher efficiencies because of their efficient light collection and superior electron collection. These results will provide practical guidance to the design and optimization of the photoanodes for DSCs.

  4. Energy Storage via Polyvinylidene Fluoride Dielectric on the Counterelectrode of Dye-Sensitized Solar Cells.

    PubMed

    Huang, Xuezhen; Zhang, Xi; Jiang, Hongrui

    2014-02-15

    To study the fundamental energy storage mechanism of photovoltaically self-charging cells (PSCs) without involving light-responsive semiconductor materials such as Si powder and ZnO nanowires, we fabricate a two-electrode PSC with the dual functions of photocurrent output and energy storage by introducing a PVDF film dielectric on the counterelectrode of a dye-sensitized solar cell. A layer of ultrathin Au film used as a quasi-electrode establishes a shared interface for the I(-)/I3(-) redox reaction and for the contact between the electrolyte and the dielectric for the energy storage, and prohibits recombination during the discharging period because of its discontinuity. PSCs with a 10-nm-thick PVDF provide a steady photocurrent output and achieve a light-to-electricity conversion efficiency (η) of 3.38%, and simultaneously offer energy storage with a charge density of 1.67 C g(-1). Using this quasi-electrode design, optimized energy storage structures may be used in PSCs for high energy storage density.

  5. Investigation the cause of plasma treatment for low temperature annealed dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zen, Shungo; Komatsu, Yuta; Ono, Ryo

    2015-09-01

    Dye-sensitized solar cells (DSSCs) require annealing of TiO2photoelectrodes at 450 C to 550 C. However, such high-temperature annealing is unfavorable because it limits the use of materials that cannot withstand high temperatures, such as plastic substrates. In our previous paper, a low temperature annealing technique of TiO2 photoelectrodes using ultraviolet light and dielectric barrier discharge treatments was proposed to reduce the annealing temperature from 450 C to 150 C for a TiO2 paste containing an organic binder. Here, we investigated the cause of plasma treatment via the Nyquist diagram (Cole-Cole plot) of DSSCs. The Nyquist diagram was masured with a frequency response analyzer (NF Corporation, FRA5022) under 100 mW/cm2 illumination of a calibrated xenon lamp (Hamamatsu L2274, 150W). The lifetime of the electrons, the effective electron diffusion coefficient, and the electron diffusion length of TiO2 photoelectrodes were determined by analyzing the Nyquist diagrams. As a result of analyzing the Nyquist diagrams, it was shown that plasma treatment can reduce the electron transport resistance and promote the necking of Hot UV annealed TiO2 nanoparticles. This work was supported by Grant-in-Aid for JSPS Fellows.

  6. The influence of magnesium oxide interfacial layer on photovoltaic properties of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Asemi, M.; Ghanaatshoar, M.

    2016-09-01

    In the present study, to enhance the power conversion efficiency of the DSSCs, we introduce MgO insulating layers at the interface between TiO2 and electrolyte to decrease charge recombination rate by suppressing the electron transfer from TiO2 to the electrolyte. The thickness of the MgO layer plays a vital role in the kinetics of dye-sensitized solar cells and affects their overall efficiency. The cell with optimized thickness of MgO layer exhibits the highest conversion efficiency ( η = 5.12 %) with a high short-circuit current density (18.15 mA/cm2) and open-circuit voltage (0.571 V). Open-circuit voltage decay measurement results verify the improvement of the electrons lifetime in the DSSCs fabricated with surface-modified photoanodes due to the retarding the charge recombination. In order to explore the reasons for the J SC improvement, incident photon-to-current conversion efficiency measurement was taken. Our results show that the enhancement in the photoinjected electron lifetime can contribute to an increase in the electron collection efficiency, leading to the improved J SC value. Furthermore, the enhancement in the photoinjected electron recombination rate is also demonstrated by electrochemical impedance spectroscopy.

  7. Preparation of 1-methyl-3-propylimidazolium acetate and its application in dye sensitized solar cells

    SciTech Connect

    Zhang, Zhihai; Wu, Yucheng; Ge, Qian; Sun, Songquan; Shi, Chengwu

    2010-03-15

    In this paper, we reported the preparation of 1-methyl-3-propylimidazolium acetate (MPIAc), which proceeded via the metathesis of 1-methyl-3-propylimidazolium iodide (MPII) and lead acetate or potassium acetate. The apparent diffusion coefficients of triiodide and iodide in binary ionic liquids, MPIAc and MPII with various weight ratios, were demonstrated by cyclic voltammetry using a Pt ultramicroelectrode. It was found that the apparent diffusion coefficients of triiodide increased and those of iodide slightly increased with the weight ratio increase of MPIAc and MPII. The dye sensitized solar cells with the electrolyte, which was composed of 0.13 M I{sub 2}, 0.10 M LiI, 0.50 M 4-tert-butylpyrdine in the binary ionic liquid electrolyte of MPIAc (employing potassium acetate) and MPII (weight ratio 0.2), gave short circuit photocurrent density of 9.40 mA cm{sup -2}, open circuit voltage of 0.62 V, and fill factor of 0.57, corresponding to the photoelectric conversion efficiency of 3.34% at the illumination (air mass 1.5, 100 mW cm{sup -2}). (author)

  8. Improving Light Harvesting in Dye-Sensitized Solar Cells Using Hybrid Bimetallic Nanostructures

    DOE PAGES

    Zarick, Holly F.; Erwin, William R.; Boulesbaa, Abdelaziz; ...

    2016-01-25

    In this paper, we demonstrate improved light trapping in dye-sensitized solar cells (DSSCs) with hybrid bimetallic gold core/silver shell nanostructures. Silica-coated bimetallic nanostructures (Au/Ag/SiO2 NSs) integrated in the active layer of DSSCs resulted in 7.51% power conversion efficiency relative to 5.97% for reference DSSCs, giving rise to 26% enhancement in device performance. DSSC efficiencies were governed by the particle density of Au/Ag/SiO2 NSs with best performing devices utilizing only 0.44 wt % of nanostructures. We performed transient absorption spectroscopy of DSSCs with variable concentrations of Au/Ag/SiO2 NSs and observed an increase in amplitude and decrease in lifetime with increasing particlemore » density relative to reference. Finally, we attributed this trend to plasmon resonant energy transfer and population of the singlet excited states of the sensitizer molecules at the optimum concentration of NSs promoting enhanced exciton generation and rapid charge transfer into TiO2.« less

  9. Silicon Pedot-Pss Nanocomposite as AN Efficient Counter Electrode for Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Song, Dandan; Li, Meicheng; Bai, Fan; Li, Yingfeng; Jiang, Yongjian; Jiang, Bing

    2013-07-01

    A novel inorganic/organic nanocomposite film composed of Si nanoparticles (NPs) and poly-(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) is obtained from a simple mechanical mixture of Si NPs powder and aqueous PEDOT-PSS solution. Employing this composite film as a counter electrode, dye-sensitized solar cell (DSSC) exhibits an efficiency of 5.7% and a fill factor of 0.51, which are much higher than these of DSSC using pristine PEDOT-PSS electrode (2.9% and 0.25, respectively). The improvements in the photovoltaic performance of the former are primarily derived from improved electrocatalytic performance of the electrode, as evidenced by electrochemical measurements, the composite electrode has lower impedance and higher electrocatalytic activity when in comparison with pristine PEDOT-PSS electrode. These improvements are primarily deriving from the increased electrochemical surface by the addition of Si NPs. The characteristics of Si NPs/PEDOT-PSS composite counter electrode reveal its potential for the use of low-cost and stable Pt-free counter electrode materials. In addition, the results achieved in this work also provide a facile and efficient approach to improve the photovoltaic performance of DSSCs using PEDOT-PSS electrodes.

  10. Improving Light Harvesting in Dye-Sensitized Solar Cells Using Hybrid Bimetallic Nanostructures

    SciTech Connect

    Zarick, Holly F.; Erwin, William R.; Boulesbaa, Abdelaziz; Hurd, Olivia K.; Webb, Joseph A.; Puretzky, Alexander A.; Geohegan, David B.; Bardhan, Rizia

    2016-01-25

    In this paper, we demonstrate improved light trapping in dye-sensitized solar cells (DSSCs) with hybrid bimetallic gold core/silver shell nanostructures. Silica-coated bimetallic nanostructures (Au/Ag/SiO2 NSs) integrated in the active layer of DSSCs resulted in 7.51% power conversion efficiency relative to 5.97% for reference DSSCs, giving rise to 26% enhancement in device performance. DSSC efficiencies were governed by the particle density of Au/Ag/SiO2 NSs with best performing devices utilizing only 0.44 wt % of nanostructures. We performed transient absorption spectroscopy of DSSCs with variable concentrations of Au/Ag/SiO2 NSs and observed an increase in amplitude and decrease in lifetime with increasing particle density relative to reference. Finally, we attributed this trend to plasmon resonant energy transfer and population of the singlet excited states of the sensitizer molecules at the optimum concentration of NSs promoting enhanced exciton generation and rapid charge transfer into TiO2.

  11. Structure and photovoltaic properties of ZnO nanowire for dye-sensitized solar cells.

    PubMed

    Kao, Ming-Cheng; Chen, Hone-Zern; Young, San-Lin; Lin, Chen-Cheng; Kung, Chung-Yuan

    2012-05-18

    Aligned ZnO nanowires with different lengths (1 to approximately 4 μm) have been deposited on indium titanium oxide-coated glass substrates by using the solution phase deposition method for application as a work electrode in dye-sensitized solar cells (DSSC). From the results, the increases in length of zinc oxide (ZnO) nanowires can increase adsorption of the N3 dye through ZnO nanowires to improve the short-circuit photocurrent (Jsc) and open-circuit voltage (Voc), respectively. However, the Jsc and Voc values of DSSC with ZnO nanowires length of 4.0 μm (4.8 mA/cm2 and 0.58 V) are smaller than those of DSSC with ZnO nanowires length of 3.0 μm (5.6 mA/cm2 and 0.62 V). It could be due to the increased length of ZnO nanowires also resulted in a decrease in the transmittance of ZnO nanowires thus reducing the incident light intensity on the N3 dye. Optimum power conversion efficiency (η) of 1.49% was obtained in a DSSC with the ZnO nanowires length of 3 μm.

  12. Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells.

    PubMed

    Velten, Josef; Mozer, Attila J; Li, Dan; Officer, David; Wallace, Gordon; Baughman, Ray; Zakhidov, Anvar

    2012-03-02

    We demonstrated the replacement of the Pt catalyst normally used in the counter electrode of a dye-sensitized solar cell (DSSC) by a nanocomposite of dry spun carbon multi-walled nanotube (MWNT) sheets with graphene flakes (Gr-F). The effectiveness of this counter electrode on the reduction of the triiodide in the iodide/triiodide redox (I(-)/I(3)(-)) redox reaction was studied in parallel with the use of the dry spun carbon MWNT sheets alone and graphene flakes used independent of each other. This nanocomposite deposited onto fluorinated tin-oxide-coated glass showed improved catalytic behavior and power conversion efficiency (7.55%) beyond the use of the MWNTs alone (6.62%) or graphene alone (4.65%) for the triiodide reduction reaction in DSSC. We also compare the use of the carbon MWNT/Gr-F composite counter electrode with a DSSC using the standard Pt counter electrode (8.8%). The details of increased performance of graphene/MWNT composite electrodes as studied are discussed in terms of increased catalytic activity permitted by sharp atomic edges that arise from the structure of graphene flakes or the defect sites in the carbon MWNT and increased electrical conductivity between the carbon MWNT bundles by the graphene flakes.

  13. Performance and stability improvements for dye-sensitized solar cells in the presence of luminescent coatings

    NASA Astrophysics Data System (ADS)

    Bella, Federico; Griffini, Gianmarco; Gerosa, Matteo; Turri, Stefano; Bongiovanni, Roberta

    2015-06-01

    Here we present how the sunlight radiation incident on a dye-sensitized solar cell (DSSC) can be shifted of a few tens of nanometers by means of an economical, easy to prepare and multifunctional photocurable fluoropolymeric light-shifting (LS) coating, to achieve both improved efficiency and device stability. By the introduction of a very small amount of a luminescent agent in the LS coating, the down-shifting of near-UV photons to higher wavelengths easily harvestable by the organic dye of a DSSC is successfully demonstrated. This optical effect not only results in an over 60% improvement of the power conversion efficiency of DSSC devices, but the UV light filtering action promoted by the luminescent agent also provides protection to the photosensitive DSSC components. This aspect, combined with a potential thermal shielding effect and the easy-cleaning behavior imparted to the coating by its fluorinated nature, leads to excellent device stability as evidenced from an aging test performed outdoors under real operating conditions for more than 2000 h. Our study demonstrates that the use of light-cured multifunctional coatings with light management characteristics at the nanometer scale represents a new promising strategy to simultaneously increase the performance and durability of DSSC devices.

  14. Charge recombination mechanism to explain the negative capacitance in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lie-Feng, Feng; Kun, Zhao; Hai-Tao, Dai; Shu-Guo, Wang; Xiao-Wei, Sun

    2016-03-01

    Negative capacitance (NC) in dye-sensitized solar cells (DSCs) has been confirmed experimentally. In this work, the recombination behavior of carriers in DSC with semiconductor interface as a carrier’s transport layer is explored theoretically in detail. Analytical results indicate that the recombination behavior of carriers could contribute to the NC of DSCs under small signal perturbation. Using this recombination capacitance we propose a novel equivalent circuit to completely explain the negative terminal capacitance. Further analysis based on the recombination complex impedance show that the NC is inversely proportional to frequency. In addition, analytical recombination resistance is composed by the alternating current (AC) recombination resistance (Rrac) and the direct current (DC) recombination resistance (Rrdc), which are caused by small-signal perturbation and the DC bias voltage, respectively. Both of two parts will decrease with increasing bias voltage. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204209 and 60876035) and the Natural Science Foundation of Tianjin City, China (Grant No. 13JCZDJC32800).

  15. Ligand Engineering for the Efficient Dye-Sensitized Solar Cells with Ruthenium Sensitizers and Cobalt Electrolytes.

    PubMed

    Aghazada, Sadig; Gao, Peng; Yella, Aswani; Marotta, Gabriele; Moehl, Thomas; Teuscher, Joël; Moser, Jacques-E; De Angelis, Filippo; Grätzel, Michael; Nazeeruddin, Mohammad Khaja

    2016-07-05

    Over the past 20 years, ruthenium(II)-based dyes have played a pivotal role in turning dye-sensitized solar cells (DSCs) into a mature technology for the third generation of photovoltaics. However, the classic I3(-)/I(-) redox couple limits the performance and application of this technique. Simply replacing the iodine-based redox couple by new types like cobalt(3+/2+) complexes was not successful because of the poor compatibility between the ruthenium(II) sensitizer and the cobalt redox species. To address this problem and achieve higher power conversion efficiencies (PCEs), we introduce here six new cyclometalated ruthenium(II)-based dyes developed through ligand engineering. We tested DSCs employing these ruthenium(II) complexes and achieved PCEs of up to 9.4% using cobalt(3+/2+)-based electrolytes, which is the record efficiency to date featuring a ruthenium-based dye. In view of the complicated liquid DSC system, the disagreement found between different characterizations enlightens us about the importance of the sensitizer loading on TiO2, which is a subtle but equally important factor in the electronic properties of the sensitizers.

  16. A hybrid electron donor comprising cyclopentadithiophene and dithiafulvenyl for dye-sensitized solar cells

    PubMed Central

    Sorohhov, Gleb; Yi, Chenyi; Grätzel, Michael; Decurtins, Silvio

    2015-01-01

    Summary Two new photosensitizers featured with a cyanoacrylic acid electron acceptor (A) and a hybrid electron donor (D) of cyclopentadithiophene and dithiafulvenyl, either directly linked or separated by a phenyl ring, were synthesized and characterized. Both of them undergo two reversible oxidations and strongly absorb in the visible spectral region due to a photo-induced intramolecular charge-transfer (ICT) transition. To a great extent, the electronic interaction between the D and A units is affected by the presence of a phenyl spacer. Without a phenyl ring, the D unit appears more difficult to oxidize due to a strong electron-withdrawing effect of the A moiety. In sharp contrast, the insertion of the phenyl ring between the D and A units leads to a broken π-conjugation and therefore, the oxidation potentials remain almost unchanged compared to those of an analogue without the A group, suggesting that the electronic coupling between D and A units is relatively weak. As a consequence, the lowest-energy absorption band shows a slight hypsochromic shift upon the addition of the phenyl spacer, indicative of an increased HOMO–LUMO gap. In turn, the direct linkage of D and A units leads to an effective π-conjugation, thus substantially lowering the HOMO–LUMO gap. Moreover, the application in dye-sensitized solar cells was investigated, showing that the power conversion efficiency increases by the insertion of the phenyl unit. PMID:26199660

  17. Thermally exfoliated graphene based counter electrode for low cost dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kaniyoor, Adarsh; Ramaprabhu, Sundara

    2011-06-01

    Graphene obtained from thermal exfoliation of graphite oxide are highly wrinkled and have large surface area. Their wrinkled nature is expected to give them excellent catalytic activity. Herein, we demonstrate the use of thermally exfoliated graphene (TEG) as cost effective electrocatalyst for the tri-iodide reduction in dye sensitized solar cells (DSSCs). X-ray diffraction, Raman and Infra red spectroscopy and electron microscopy studies confirm the defective and wrinkled nature of TEG. BET surface area measurement show a large surface area of ˜ 470 m2/g. The counter electrode was fabricated by drop casting a slurry of TEG dispersed in a Nafion:Ethanol solution on fluorine doped tin oxide (FTO) substrates. The use of Nafion prevented film "peel off," thus ensuring a good substrate adhesion. Electrochemical impedance spectroscopy reveals that TEG had a catalytic performance comparable to that of Pt, suggesting its use as counter electrode material. As expected, the DSSC fabricated with Nafion solubilized TEG/FTO as counter electrode shows an efficiency of about 2.8%, comparable to Pt counter electrode based DSSC which has an efficiency of about 3.4%.

  18. Tandem Dye-Sensitized Solar Cells Consisting of Nanoporous Titania Sheet

    NASA Astrophysics Data System (ADS)

    Uzaki, Kenshiro; Pandey, Shyam S.; Ogimi, Yuhei; Hayase, Shuzi

    2010-08-01

    Tandem dye-sensitized solar cells consisting of two electrodes in one cell are reported. A tandem cell (Cell TAN GF or Cell TAN St) has a floating electrode (bottom cell) and a TiO2 electrode prepared on a F-doped SnO2 glass substrate (top cell). The floating electrode is a flexible and self-standing composite film consisting of a porous titania/dye layer supported by a glass mesh sheet or a stainless-steel mesh sheet. The incident photon-to-current conversion efficiency (IPCE) curves for Cell TAN GF and Cell TAN St had two peaks corresponding to the visible absorption of the two dyes. The open circuit voltages (Voc) of Cell TAN GF and Cell TAN St were 0.82 and 0.88 V, respectively, which were higher than that of the corresponding single cell (0.6-0.64 V). These results demonstrated that both Cell TAN GF and Cell TAN St can be used as tandem cells. The fact that the Voc of Cell TAN GF is almost the same as that of Cell TAN St leads to the conclusion that a conductive layer is not necessarily needed for the bottom electrode.

  19. TiO2 hierarchical nanostructures: Hydrothermal fabrication and application in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liang, Jia; Zhang, Gengmin; Yang, Jin; Sun, Wentao; Shi, Mingji

    2015-01-01

    Arrays of TiO2 hierarchical nanostructures that consisted of rutile nanorods and anatase branches were hydrothermally fabricated and employed as photoanodes in dye-sensitized solar cells (DSSCs). Each hierarchical nanostructure array was attained in two steps. First, a primary nanorod array was synthesized in aqueous solutions of hydrochloric acid (HCl) and tetrabutyl titanate (C16H36O4Ti); subsequently, secondary branches were grown on the nanorods in aqueous solutions of ammonium hexafluorotitanate ((NH4)2TiF6) and boric acid (H3BO3). The secondary anatase branches filled part of the space among the primary rutile nanorods and gave rise to a larger surface area. Light-harvesting capability of the DSSCs with TiO2 hierarchical nanostructures as photoanodes was appreciably improved because more dye molecules could be loaded on the photoanodes and more light could be scattered inside the DSSCs. Therefore, the conversion efficiencies of the DSSCs were doubled by replacing the photoanode of primary TiO2 nanorod array with the photoanodes of TiO2 hierarchical nanostructure arrays. Furthermore, in order to reach a compromise between the photoanode surface area and the inter-nanorod space volume, the growth time of the secondary TiO2 anatase branches was optimized.

  20. Controllable synthesis of hierarchical SnO2 microspheres for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Fen; Li, Xi-Fei; Li, De-Jun; Sun, Yuan-Wei; Zhang, Xian-Xi

    2015-04-01

    Three-dimensional hierarchical SnO2 microspheres were successfully synthesized through a rapid sonochemical reaction followed by a facile solvothermal process. The resultant samples were characterized in detail by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM). It was observed that the hierarchical SnO2 microspheres (∼2.2 μm) consist of nanoparticles (∼23-30 nm). These samples are used to fabricate photoelectrodes for dye-sensitized solar cells (DSSCs). The effects of different samples on the photovoltaic performance were studied based on photocurrent-voltage (J-V), intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated voltage spectroscopy (IMVS). It is found that the highest power conversion efficiency of 6.25% has been achieved based on the hierarchical SnO2 microspheres film photoanode with thickness of ∼13.5 μm, and the corresponding photovoltaic parameters are 14.11 mA cm-2 in short-circuit current density, 803 mV in open-circuit voltage and 0.55 in fill factor, respectively.

  1. Functionalized graphene sheets as a versatile replacement for platinum in dye-sensitized solar cells.

    PubMed

    Roy-Mayhew, Joseph D; Boschloo, Gerrit; Hagfeldt, Anders; Aksay, Ilhan A

    2012-05-01

    Several techniques for fabricating functionalized graphene sheet (FGS) electrodes were tested for catalytic performance in dye-sensitized solar cells (DSSCs). By using ethyl cellulose as a sacrificial binder, and partially thermolyzing it, we were able to create electrodes which exhibited lower effective charge transfer resistance (<1 Ω cm(2)) than the thermally decomposed chloroplatinic acid electrodes traditionally used. This performance was achieved not only for the triiodide/iodide redox couple, but also for the two other major redox mediators used in DSSCs, based on cobalt and sulfur complexes, showing the versatility of the electrode. DSSCs using these FGS electrodes had efficiencies (η) equal to or higher than those using thermally decomposed chloroplatinic acid electrodes in each of the three major redox mediators: I (η(FGS) = 6.8%, η(Pt) = 6.8%), Co (4.5%, 4.4%), S (3.5%, 2.0%). Through an analysis of the thermolysis of the binder and composite material, we determined that the high surface area of an electrode, as determined by nitrogen adsorption, is consistent with but not sufficient for high performing electrodes. Two other important considerations are that (i) enough residue remains in the composite to maintain structural stability and prevent restacking of FGSs upon the introduction of the solvent, and (ii) this residue must not disperse in the electrolyte.

  2. Self-assembled ultra small ZnO nanocrystals for dye-sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Patra, Astam K.; Dutta, Arghya; Bhaumik, Asim

    2014-07-01

    We demonstrate a facile chemical approach to produce self-assembled ultra-small mesoporous zinc oxide nanocrystals using sodium salicylate (SS) as a template under hydrothermal conditions. These ZnO nanomaterials have been successfully fabricated as a photoanode for the dye-sensitized solar cell (DSSC) in the presence of N719 dye and iodine-triiodide electrolyte. The structural features, crystallinity, purity, mesophase and morphology of the nanostructure ZnO are investigated by several characterization tools. N2 sorption analysis revealed high surface areas (203 m2 g-1) and narrow pore size distributions (5.1-5.4 nm) for different samples. The mesoporous structure and strong photoluminescence facilitates the high dye loading at the mesoscopic void spaces and light harvesting in DSSC. By utilizing this ultra-small ZnO photoelectrode with film thickness of about 7 μm in the DSSC with an open-circuit voltage (VOC) of 0.74 V, short-circuit current density (JSC) of 3.83 mA cm-2 and an overall power conversion efficiency of 1.12% has been achieved.

  3. Application of mesoporous carbon to counter electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Guiqiang; Xing, Wei; Zhuo, Shuping

    The mesoporous carbons were prepared by the carbonation of the triblock copolymer F127/phloroglucinol-formaldehyde composite self-assembled in an acid medium and employed as the catalyst for triiodide reduction in dye-sensitized solar cells (DSCs). The characteristics of mesoporous carbon were analyzed by scanning electron microscopy, transmission electron microscopy, N 2 sorption measurement and X-ray diffraction. The mesoporous carbon with low crystallinity exhibited Brunauer-Emmett-Teller surface area of 400 m 2 g -1, pore diameter of 6.8 nm and pore volume of 0.63 cm 3 g -1. The photovoltaic performances of DSCs with mesoporous carbon counter electrode were improved by increasing the carbon loading on counter electrode due to the charge-transfer resistance of mesoporous carbon counter electrode decreasing with the increase of the carbon loading. However, further carbon loading increase has no obvious effect on the photovoltaic performance of DSCs with carbon electrode when carbon loading exceeds 300 μg cm -2. The overall conversion efficiency of 6.18% was obtained by DSCs composed of mesoporous carbon counter electrode with the carbon loading of 339 μg cm -2. This value is comparable to that of DSCs with conventional platinum counter electrode.

  4. Interface Engineering through Atomic Layer Deposition towards Highly Improved Performance of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Lu, Hao; Tian, Wei; Guo, Jun; Li, Liang

    2015-08-01

    A composite photoanode comprising ultralong ZnO nanobelts and TiO2 nanoparticles was prepared and its performance in dye-sensitized solar cells (DSSCs) was optimized and compared to the photoanode consisting of conventional TiO2 nanoparticles. The ultralong ZnO nanobelts were synthesized in high yield by a facile solution approach at 90 oC followed by annealing at 500 oC. The effect of the ratio of ZnO nanobelts to TiO2 nanoparticles on the light scattering, specific surface area, and interface recombination were investigated. An optimum amount of ZnO nanobelts enhanced the photon-conversion efficiency by 61.4% compared to that of the conventional TiO2 nanoparticles. To further reduce the recombination rate and increase the carrier lifetime, Atomic Layer Deposition (ALD) technique was utilized to coat a continuous TiO2 film surrounding the ZnO nanobelts and TiO2 nanoparticles, functioning as a barrier-free access of all electrons to conductive electrodes. This ALD treatment improved the interface contact within the whole photoanode system, finally leading to significant enhancement (137%) in the conversion efficiency of DSSCs.

  5. Enhancing electron collection efficiency and effective diffusion length in dye-sensitized solar cells.

    PubMed

    Wong, Daniel Kwan-Pang; Ku, Chen-Hao; Chen, Yen-Ru; Chen, Guan-Ren; Wu, Jih-Jen

    2009-10-19

    Intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy are employed to measure the dynamics of electron transport and recombination in the ZnO nanowire (NW) array-ZnO/layered basic zinc acetate (LBZA) nanoparticle (NP) composite dye-sensitized solar cells (DSSCs). The roles of the vertical ZnO NWs and insulating LBZA in the electron collection and transport in DSSCs are investigated by comparing the results to those in the TiO(2)-NP, horizontal TiO(2)-NW and vertical ZnO-NW-array DSSCs. The electron transport rate and electron lifetime in the ZnO NW/NP composite DSSC are superior to those in the conventional TiO(2)-NP cell due to the existence of the vertical ZnO NWs and insulating LBZA. It indicates that the ZnO NW/NP composite anode is able to sustain efficient electron collection over much greater thickness than the TiO(2)-NP cell does. Consequently, a larger effective electron diffusion length is available in the ZnO composite DSSC.

  6. Energy Storage via Polyvinylidene Fluoride Dielectric on the Counterelectrode of Dye-Sensitized Solar Cells

    PubMed Central

    Huang, Xuezhen; Zhang, Xi

    2013-01-01

    To study the fundamental energy storage mechanism of photovoltaically self-charging cells (PSCs) without involving light-responsive semiconductor materials such as Si powder and ZnO nanowires, we fabricate a two-electrode PSC with the dual functions of photocurrent output and energy storage by introducing a PVDF film dielectric on the counterelectrode of a dye-sensitized solar cell. A layer of ultrathin Au film used as a quasi-electrode establishes a shared interface for the I−/I3− redox reaction and for the contact between the electrolyte and the dielectric for the energy storage, and prohibits recombination during the discharging period because of its discontinuity. PSCs with a 10-nm-thick PVDF provide a steady photocurrent output and achieve a light-to-electricity conversion efficiency (η) of 3.38%, and simultaneously offer energy storage with a charge density of 1.67 C g−1. Using this quasi-electrode design, optimized energy storage structures may be used in PSCs for high energy storage density. PMID:24327797

  7. TiO2 nanotubes infiltrated with nanoparticles for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Pan, Xuan; Chen, Changhong; Zhu, Kai; Fan, Zhaoyang

    2011-06-01

    We present a detailed study of the infiltration of titanium dioxide (TiO2) nanotubes (NTs) with TiO2 nanoparticles (NPs) for dye sensitized solar cells (DSSCs). The aim is to combine the merits of the NP's high dye loading and high light harvesting capability with the NT's straight carrier transport path and high electron collection efficiency to improve the DSSC performance. On infiltrating NTs with TiCl4 solution followed by hydrothermal synthesis, 10 nm size NPs were observed to form a conformal and dense layer on the NT walls. Compared with the bare NT structure, dye loading of this mixed NT and NP structure is more than doubled. The overall photon conversion efficiencies of the fabricated DSSCs are improved by 152%, 107%, and 49% for 8, 13, and 20 µm long NTs, respectively. Electron transport and recombination parameters were extracted based on electrochemical impedance spectroscopy measurements. Although a slight reduction of electron lifetime was observed in the mixed structures due to enhanced recombination with a larger surface area, the diffusion length is still significantly longer than the NT length used, suggesting that most electrons are collected. In addition to dye loading and hence photocurrent increment, the photovoltage and filling factor were also improved in the mixed structure due to a low serial resistance, leading to the enhancement of the overall efficiency.

  8. TiO2 nanotubes infiltrated with nanoparticles for dye sensitized solar cells.

    PubMed

    Pan, Xuan; Chen, Changhong; Zhu, Kai; Fan, Zhaoyang

    2011-06-10

    We present a detailed study of the infiltration of titanium dioxide (TiO(2)) nanotubes (NTs) with TiO(2) nanoparticles (NPs) for dye sensitized solar cells (DSSCs). The aim is to combine the merits of the NP's high dye loading and high light harvesting capability with the NT's straight carrier transport path and high electron collection efficiency to improve the DSSC performance. On infiltrating NTs with TiCl(4) solution followed by hydrothermal synthesis, 10 nm size NPs were observed to form a conformal and dense layer on the NT walls. Compared with the bare NT structure, dye loading of this mixed NT and NP structure is more than doubled. The overall photon conversion efficiencies of the fabricated DSSCs are improved by 152%, 107%, and 49% for 8, 13, and 20 µm long NTs, respectively. Electron transport and recombination parameters were extracted based on electrochemical impedance spectroscopy measurements. Although a slight reduction of electron lifetime was observed in the mixed structures due to enhanced recombination with a larger surface area, the diffusion length is still significantly longer than the NT length used, suggesting that most electrons are collected. In addition to dye loading and hence photocurrent increment, the photovoltage and filling factor were also improved in the mixed structure due to a low serial resistance, leading to the enhancement of the overall efficiency.

  9. Near Field Enhanced Photocurrent Generation in P-type Dye-Sensitized Solar Cells

    PubMed Central

    Xu, Xiaobao; Cui, Jin; Han, Junbo; Zhang, Junpei; Zhang, Yibo; Luan, Lin; Alemu, Getachew; Wang, Zhong; Shen, Yan; Xiong, Dehua; Chen, Wei; Wei, Zhanhua; Yang, Shihe; Hu, Bin; Cheng, Yibing; Wang, Mingkui

    2014-01-01

    Over the past few decades, the field of p-type dye-sensitized solar cell (p-DSSC) devices has undergone tremendous advances, in which Cu-based delafossite nanocrystal is of prime interest. This paper presents an augment of about 87% improvement in photocurrent observed in a particular configuration of organic dye P1 sensitized CuCrO2 delafossite nanocrystal electrode coupled with organic redox shuttle, 1-methy-1H- tetrazole-5-thiolate and its disulfide dimer when Au nanoparticles (NPs, with diameter of about 20 nm) is added into the photocathode, achieving a power convert efficiency of 0.31% (measured under standard AM 1.5 G test conditions). Detailed investigation shows that the local electrical-magnetic field effect, induced by Au NPs among the mesoporous CuCrO2 film, can improve the charge injection efficiency at dye/semiconductor interface, which is responsible for the bulk of the gain in photocurrent. PMID:24492539

  10. Mondo Grass Berry Pigment for Visible to Near Infrared Absorption in Dye Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Desilva, L. A. A.; Pitigala, P. K. D. D. P.; Perera, A. G. U.

    2013-03-01

    The development of dye sensitized solar cells (DSSC) is an exciting field in the low cost renewable energy production. Two major draw backs in the DSSCs are the narrow spectral response and the short term stability. Synthesis of artificial dyes with broad response is important in developing an efficient DSSC. Artificial dyes can add up to the cost of the device; therefore, it is important to identify natural dyes with broad abortion and required energy levels. Work presented here shows a broad spectral response with a natural dye extracted from a Mondo Grass berry (Ophiopogonjaponicus).The dye is extracted by crushing the berries and filtering to remove the pulp. A DSSC sensitized with Mondo Grass dye, and with TiO2 film screen printed on a Florien doped Tin Oxide (FTO) glass and baked for 30 minutes at 450 degree C as the working electrode and Iodine/triiodide red-ox electrolyte as the hole collector was tested for its performance. An open circuit photovoltage of 495 mV and a short circuit photocurrent of 0.6 mA/cm2 were observed under a simulated lamp equivalent to 1 sun illumination and have a broad spectral response extending from 400 nm to 750 nm. This work is supported by COSM at UWG.

  11. Interpretation of optoelectronic transient and charge extraction measurements in dye-sensitized solar cells.

    PubMed

    Barnes, Piers R F; Miettunen, Kati; Li, Xiaoe; Anderson, Assaf Y; Bessho, Takeru; Gratzel, Michael; O'Regan, Brian C

    2013-04-04

    Tools that assess the limitations of dye sensitized solar cells (DSSCs) made with new materials are critical for progress. Measuring the transient electrical signals (voltage or current) after optically perturbing a DSSC is an approach which can give information about electron concentration, transport and recombination. Here we describe the theory and practice of this class of optoelectronic measurements, illustrated with numerous examples. The measurements are interpreted with the multiple trapping continuum model which describes electrons in a semiconductor with an exponential distribution of trapping states. We review standard small perturbation photocurrent and photovoltage transients, and introduce the photovoltage time of flight measurement which allows the simultaneous derivation of both effective diffusion and recombination coefficients. We then consider the utility of large perturbation measurements such as charge extraction and the current interrupt technique for finding the internal charge and voltage within a device. Combining these measurements allows differences between DSSCs to be understood in terms such as electron collection efficiency, semiconductor conduction band edge shifts and recombination kinetics.

  12. A novel hierarchical Pt- and FTO-free counter electrode for dye-sensitized solar cell

    PubMed Central

    2014-01-01

    A novel hierarchical Pt- and FTO-free counter electrode (CE) for the dye-sensitized solar cell (DSSC) was prepared by spin coating the mixture of TiO2 nanoparticles and poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) solution onto the glass substrate. Compared with traditional Pt/FTO CE, the cost of the new CE is dramatically reduced by the application of bilayer TiO2-PEDOT:PSS/PEDOT:PSS film and the glass substrate. The sheet resistance of this composite film is 35 Ω sq−1 and is low enough to be used as an electrode. The surface morphologies of TiO2-PEDOT:PSS layer and modified PEDOT:PSS layer were characterized by scanning electron microscope, which shows that the former had larger surface areas than the latter. Electrochemical impedance spectra and Tafel polarization curves prove that the catalytic activity of TiO2-PEDOT:PSS/PEDOT:PSS/glass CE is higher than that of PEDOT:PSS/FTO CE and is similar to Pt/FTO CE's. This new fabricated device with TiO2-PEDOT:PSS/PEDOT:PSS/glass CE achieves a high power conversion efficiency (PCE) of 4.67%, reaching 91.39% of DSSC with Pt/FTO CE (5.11%). PMID:24808802

  13. Fast Low-Spin Cobalt Complex Redox Shuttles for Dye-Sensitized Solar Cells.

    PubMed

    Xie, Yuling; Hamann, Thomas W

    2013-01-17

    A low-spin cobalt(II) complex, cobalt bis(trithiacyclononane), [Co(ttcn)2](3+/2+), was investigated for use as a redox shuttle in dye-sensitized solar cells, DSSCs. This unique cobalt complex redox shuttle is stable, transparent, and easy to synthesize from commercial ligands and has attractive energetic and kinetic features for use in DSSCs. Initial results indicate that the overall performance is limited by recombination. Variation of the sensitizer and deposition of an ultrathin coating of alumina on nanoparticle-based TiO2 DSSC photoanodes reduced recombination, which resulted in significantly improved quantum yields. The photovoltaic behavior was compared to the current record efficiency cobalt tris-bipyridine, [Co(bpy)3](3+/2+), redox shuttle and produced similar results. Further use of high extinction organic sensitizers with only ∼200 mV of driving force for regeneration was examined, which produced efficiencies of over 2%; importantly, regeneration is not rate-limiting in this system, thus demonstrating the promise of using such fast redox shuttles.

  14. High efficiency solid state dye sensitized solar cells with graphene-polyethylene oxide composite electrolytes.

    PubMed

    Akhtar, M Shaheer; Kwon, Soonji; Stadler, Florian J; Yang, O Bong

    2013-06-21

    Novel and highly effective composite electrolytes were prepared by combining the two dimensional graphene (Gra) and polyethylene oxide (PEO) for the solid electrolyte of dye sensitized solar cells (DSSCs). Gra sheets were uniformly coated by the polymer layer through the ester carboxylate bonding between oxygenated species on Gra sheets and PEO. The Gra-PEO composite electrolyte showed the large scale generation of iodide ions in a redox couple. From rheological analysis, the decrease in viscosity after the addition of LiI and I2 in the Gra-PEO electrolyte might be explained by the dipolar interactions being severely disrupted by the ionic interactions of Li(+), I(-), and I3(-) ions. A composite electrolyte with 0.5 wt% Gra presented a higher ionic conductivity (3.32 mS cm(-1)) than those of PEO and other composite electrolytes at room temperature. A high overall conversion efficiency (∼5.23%) with a very high short circuit current (JSC) of 18.32 mA cm(-2), open circuit voltage (VOC) of 0.592 V and fill factor (FF) of 0.48 was achieved in DSSCs fabricated with the 0.5 wt% Gra-PEO composite electrolyte. This enhanced photovoltaic performance might be attributed to the large scale formation of iodide ions in the redox electrolyte and the relatively high ionic conductivity.

  15. Influence of electrolyte co-additives on the performance of dye-sensitized solar cells

    PubMed Central

    2011-01-01

    The presence of specific chemical additives in the redox electrolyte results in an efficient increase of the photovoltaic performance of dye-sensitized solar cells (DSCs). The most effective additives are 4-tert-butylpyridine (TBP), N-methylbenzimidazole (NMBI) and guanidinium thiocyanate (GuNCS) that are adsorbed onto the photoelectrode/electrolyte interface, thus shifting the semiconductor's conduction band edge and preventing recombination with triiodides. In a comparative work, we investigated in detail the action of TBP and NMBI additives in ionic liquid-based redox electrolytes with varying iodine concentrations, in order to extract the optimum additive/I2 ratio for each system. Different optimum additive/I2 ratios were determined for TBP and NMBI, despite the fact that both generally work in a similar way. Further addition of GuNCS in the optimized electrolytic media causes significant synergistic effects, the action of GuNCS being strongly influenced by the nature of the corresponding co-additive. Under the best operation conditions, power conversion efficiencies as high as 8% were obtained. PMID:21711833

  16. Photovoltaic properties of high efficiency plastic dye-sensitized solar cells employing interparticle binding agent ``nanoglue''

    NASA Astrophysics Data System (ADS)

    Li, Yuelong; Yoo, Kicheon; Lee, Doh-Kwon; Kim, Jin Young; Kim, Honggon; Kim, Bongsoo; Ko, Min Jae

    2013-05-01

    An interparticle binding agent, or nanoglue, was synthesized by a sol-gel process, which facilitated the preparation of well-interconnected TiO2 electrodes at low-temperatures for plastic dye-sensitized solar cells. The viscosity of the nanoglue-based pastes was seven times higher than that obtained in pastes without any nanoglue. The increased viscosity was sufficiently high enough for coating thick films to fabricate TiO2 electrodes. The structural and photovoltaic properties of the films were extensively investigated by varying the amounts of nanoglue. A reduced pore size and greatly enhanced surface area were observed in the nanoglue-based films. Improved interparticle connectivity, resulting in faster electron transport, was confirmed by photocurrent transient spectroscopy and electrochemical impedance measurements of the nanoglue-based films. The electron diffusion length and charge collection efficiency were also enhanced in these nanoglue-based films. A maximum conversion efficiency of 5.43% was achieved in films containing 20 wt% nanoglue fabricated on a plastic substrate under one-sun illumination, even without any additional treatment.

  17. Dye-sensitized solar cells using natural dyes as sensitizers from Malaysia local fruit `Buah Mertajam'

    NASA Astrophysics Data System (ADS)

    Hambali, N. A. M. Ahmad; Roshidah, N.; Hashim, M. Norhafiz; Mohamad, I. S.; Saad, N. Hidayah; Norizan, M. N.

    2015-05-01

    We experimentally demonstrate the high conversion efficiency, low cost, green technology and easy to fabricate dye-sensitized solar cells (DSSCs) using natural anthocyanin dyes as sensitizers. The DSSCs was fabricated by using natural anthocyanin dyes which were extracted from different parts of the plants inclusive `Buah Mertajam', `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. The natural anthocyanin dyes that found in flower, leaves and fruits were extracted by the simple procedures. This anthocyanin dye is used to replace the expensive chemical synthetic dyes due to its ability to effectively attach into the surface of Titanium dioxide (TiO2). A natural anthocyanin dyes molecule adsorbs to each particle of the TiO2 and acts as the absorber of the visible light. A natural anthocyanin dye from Buah Mertajam shows the best performance with the conversion efficiency of 5.948% and fill factor of 0.708 followed by natural anthocyanin dyes from `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. Buah Mertajam or scientifically known as eriglossum rubiginosum is a local Malaysia fruit.

  18. Fabrication of Copper(I) Bipyridyl Complex Based Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Vuong, Son; Nguyen-Dang, Ha-My; Tran, Quang Thinh; Luong, Thi Thu Thuy; Pham, Trang T. T.; Nguyen-Tran, Thuat; Mai, Anh Tuan

    2017-01-01

    This study investigates the performance of dye-sensitized solar cells (DSSC) based on a copper(I) complex. A simple form of copper(I) complex dye was synthesized with a structure of [Cu(L)(CH3CN)], where L is the 6,6'-dimethyl-4,4'-bis(phenylethynyl)-2,2'-bipyridine ligand. The full structure of DSSC investigated in this study is as follows: FTO/TiO2/dye Cu(I) bipyridyl/3I-/I3 - electrolyte/graphite/FTO. The TiO2 photoanodes were deposited from apoly(vinylpyrrolidone)-based paste using a spin coating technique. Different conditions of fabrication, such as paste dispersion time and total TiO2 thickness, were systematically studied in order to optimize the performance of the DSSC. The trigonal planar complex [Cu(L)CH3CN] was revealed to be suitable for applications in DSSC. The highest exhibited short circuit current density was found to be 0.48 mA/cm2, with an open voltage of 477 mV, a form factor of 34% and a power conversion efficiency of 0.08% for the cell with photoanodes thickness of about 2.2 μm. It was shown that the dye and the paste formulation had great potential for applications in DSSC.

  19. Thermally exfoliated graphene based counter electrode for low cost dye sensitized solar cells

    SciTech Connect

    Kaniyoor, Adarsh; Ramaprabhu, Sundara

    2011-06-15

    Graphene obtained from thermal exfoliation of graphite oxide are highly wrinkled and have large surface area. Their wrinkled nature is expected to give them excellent catalytic activity. Herein, we demonstrate the use of thermally exfoliated graphene (TEG) as cost effective electrocatalyst for the tri-iodide reduction in dye sensitized solar cells (DSSCs). X-ray diffraction, Raman and Infra red spectroscopy and electron microscopy studies confirm the defective and wrinkled nature of TEG. BET surface area measurement show a large surface area of {approx} 470 m{sup 2}/g. The counter electrode was fabricated by drop casting a slurry of TEG dispersed in a Nafion:Ethanol solution on fluorine doped tin oxide (FTO) substrates. The use of Nafion prevented film ''peel off,'' thus ensuring a good substrate adhesion. Electrochemical impedance spectroscopy reveals that TEG had a catalytic performance comparable to that of Pt, suggesting its use as counter electrode material. As expected, the DSSC fabricated with Nafion solubilized TEG/FTO as counter electrode shows an efficiency of about 2.8%, comparable to Pt counter electrode based DSSC which has an efficiency of about 3.4%.

  20. Incorporation of graphene into SnO2 photoanodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Batmunkh, Munkhbayar; Dadkhah, Mahnaz; Shearer, Cameron J.; Biggs, Mark J.; Shapter, Joseph G.

    2016-11-01

    In dye-sensitized solar cell (DSSC) photoanodes, tin dioxide (SnO2) structures present a promising alternative semiconducting oxide to the conventional titania (TiO2), but they suffer from poor photovoltaic (PV) efficiency caused by insufficient dye adsorption and low energy value of the conduction band. A hybrid structure consisting of SnO2 and reduced graphene oxide (SnO2-RGO) was synthesized via a microwave-assisted method and has been employed as a photoanode in DSSCs. Incorporation of RGO into the SnO2 photoanode enhanced the power conversion efficiency of DSSC device by 91.5%, as compared to the device assembled without RGO. This efficiency improvement can be attributed to increased dye loading, enhanced electron transfer and addition of suitable energy levels in the photoanode. Finally, the use of RGO addresses the major shortcoming of SnO2 when employed as a DSSC photoanode, namely poor dye adsorption and slow electron transfer rate.

  1. Effects of Ethyl Cellulose on Performance of Titania Photoanode for Dye-sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Liu, Ting-Chien; Wu, Chih-Chung; Huang, Chih-Hsiang; Chen, Chih-Ming

    2016-12-01

    Ethyl cellulose (EC) was added to a titania (TiO2) paste from 2 wt.% to 18 wt.% as a binder/dispersant, and its effects on the photovoltaic performance of dye-sensitized solar cells (DSSCs) were investigated. The TiO2 mesoporous film constructed on the photoanode exhibited a dense and network structure composed of well-interconnected TiO2 nanoparticles when using a proper amount of EC (10 wt.%). Excessive and deficient addition of EC resulted in aggregation of TiO2 nanoparticles and formation of pores, respectively, in the TiO2 film. The power conversion efficiency (PCE) of DSSC showed a strong dependence on the EC content and the highest PCE of 7.53% with the highest short-circuit current density ( J SC) of 12.7 mA/cm2 was achieved when the content of EC was 10 wt.%. The incident photon-to-current conversion efficiency (IPCE) results indicated that the TiO2 mesoporous film fabricated using a proper EC addition was beneficial for electron generation (also confirmed by dye desorption experiments) and electron transport, and, therefore, improved the photovoltaic performance of DSSCs.

  2. Improved performance of dye-sensitized solar cells using gallium nitride-titanium dioxide composite photoelectrodes.

    PubMed

    Huang, Yin-Rou; Huang, Tzu-Wei; Wang, Tzu-Hui; Tsai, Yu-Chen

    2014-08-15

    Dye-sensitized solar cells (DSSCs) are fabricated with gallium nitride-titanium dioxide (GaN-TiO2) composite photoelectrodes to enhance the power conversion efficiency. The value of power conversion efficiency increases with the incorporation of GaN in TiO2 matrix and reaches a maximum at 0.05 wt% GaN. Internal resistance in the DSSC is characterized by electrochemical impedance spectroscopy (EIS). From the EIS of electrolyte/dye/GaN-TiO2 interface resistances under illumination and in the dark, a decrease in the charge transfer resistance and an increase in the charge recombination resistance of the DSSCs are obtained after the inclusion of GaN (0.01-0.05 wt%) in the TiO2 matrix. The power conversion efficiency of the DSSC based on the GaN (0.05 wt%)-TiO2 composite photoelectrode is enhanced by ∼61% in comparison with a pristine TiO2 photoelectrode.

  3. TiO2-nanotube-based dye-sensitized solar cells containing fluorescent material.

    PubMed

    Kim, Woong-Rae; Lee, Young-Joon; Park, Hun; Lee, Jae-Joon; Choi, Won-Youl

    2013-05-01

    We fabricated a dye-sensitized solar cells (DSCs) with TiO2 nanotube arrays obtained by anodization of Ti foil. Vertical structure of TiO2 nanotube arrays is very attractive due to a high electron transfer from dye to electrode. To improve the power conversion efficiency, fluorescent material, F-6377, was applied in TiO2-nanotube-based DSCs to use a light spectrum efficiently. Fluorescent material was absorbed the different wavelength of 460 nm from the light absorbed by N719 dye. Fluorescent material to emit the absorbed light energy provided an additional light for dye in DSCs and additional electrons was generated. Thickness of TiO2 nanotube arrays grown by anodic oxidation was 15 microm. N719 dye and 13(-)/l(-) electrolyte were used to fabricate the DSCs. The short circuit current densities (J(sc)) and the power conversion efficiency in DSCs with fluorescent were 10.8 mA/cm2 and 2.48%, respectively. Electrochemical impedance spectroscopy (EIS) was observed to understand an electron transfer and life time.

  4. Interface Engineering through Atomic Layer Deposition towards Highly Improved Performance of Dye-Sensitized Solar Cells

    PubMed Central

    Lu, Hao; Tian, Wei; Guo, Jun; Li, Liang

    2015-01-01

    A composite photoanode comprising ultralong ZnO nanobelts and TiO2 nanoparticles was prepared and its performance in dye-sensitized solar cells (DSSCs) was optimized and compared to the photoanode consisting of conventional TiO2 nanoparticles. The ultralong ZnO nanobelts were synthesized in high yield by a facile solution approach at 90 oC followed by annealing at 500 oC. The effect of the ratio of ZnO nanobelts to TiO2 nanoparticles on the light scattering, specific surface area, and interface recombination were investigated. An optimum amount of ZnO nanobelts enhanced the photon-conversion efficiency by 61.4% compared to that of the conventional TiO2 nanoparticles. To further reduce the recombination rate and increase the carrier lifetime, Atomic Layer Deposition (ALD) technique was utilized to coat a continuous TiO2 film surrounding the ZnO nanobelts and TiO2 nanoparticles, functioning as a barrier-free access of all electrons to conductive electrodes. This ALD treatment improved the interface contact within the whole photoanode system, finally leading to significant enhancement (137%) in the conversion efficiency of DSSCs. PMID:26238737

  5. Cycloruthenated sensitizers: improving the dye-sensitized solar cell with classical inorganic chemistry principles.

    PubMed

    Robson, Kiyoshi C D; Bomben, Paolo G; Berlinguette, Curtis P

    2012-07-14

    A divergence from the conventional approach to chromophore design has led to the establishment of many exciting new benchmarks for the dye-sensitized solar cell (DSSC), including the first documented power conversion efficiency in excess of 12% at 1 sun illumination [Yella et al., Science 2011, 334, 629]. Paramount to these advances is the deviation from polypyridyl ruthenium dyes bearing NCS(-) ligands, such as [Ru(dcbpy)(2)(NCS)(2)] (N3; dcbpy = 4,4'-dicarboxy-2,2'-bipyridine). While metal-free and porphyrin dyes have demonstrated much promise, the discovery that the NCS(-) ligands of N3 can be replaced by anionic, chelating cyclometalating ligands without compromising device efficiencies has ushered in a new era of ruthenium dye development. A particularly appealing feature of this class of dyestuff is that they offer acute control of the frontier molecular orbitals to enable the precise attenuation of both the ground and excited state redox potentials through judicious chemical modification of the aryl ring. This Perspective summarizes very recent developments in the field, and demonstrates how the new and rapidly expanding class of Ru-based sensitizers provides a conduit for enhancing the performance (and potentially the stability) of the DSSC.

  6. Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites.

    PubMed

    Tan, Bing; Wu, Yiying

    2006-08-17

    Dye-sensitized solar cells were fabricated based on the composites of anatase TiO2 nanoparticles and single crystalline anatase TiO2 nanowires. Nanoparticle/nanowire composites can possess the advantages of both building blocks, i.e., the high surface area of nanoparticle aggregates and the rapid electron transport rate and the light scattering effect of single-crystalline nanowires. Three different composites were prepared with 5 wt %, 20 wt %, and 77 wt % nanowires, respectively. The performances of composite solar cells were compared with pure nanoparticle cells at a series of film thickness. With low nanowire concentrations (5 wt % and 20 wt %), the composite films maintain similar specific surface area as the pure nanoparticle films, while the composite cells show higher short-circuit current density and open-circuit voltage. An enhancement of power efficiency from 6.7% for pure nanoparticle cells to 8.6% for the composite cell with 20 wt % nanowires has been achieved under 1 Sun AM1.5 illumination (100 mW/cm2). For the composite film with 77 wt % nanowires, the nanowires became the major phase. Their less compact packing resulted in significant decrease of the specific surface area, and thus the current density. However, with the increase of film thickness, the current density showed a continuous increase in the whole thickness range up to 17 microm, indicating the improved electron diffusion length due to the formed nanowire network. The nanowires also helped to preserve crack-free thick films. These results show that employing nanoparticle/nanowire composites represents a promising approach for further improving the efficiencies of sensitized solar cells.

  7. First-principles modeling of dye-sensitized solar cells: challenges and perspectives.

    PubMed

    Labat, Frédéric; Le Bahers, Tangui; Ciofini, Ilaria; Adamo, Carlo

    2012-08-21

    Since dye-sensitized solar cells (DSSCs) appeared as a promising inexpensive alternative to the traditional silicon-based solar cells, DSSCs have attracted a considerable amount of experimental and theoretical interest. In contrast with silicon-based solar cells, DSSCs use different components for the light-harvesting and transport functions, which allow researchers to fine-tune each material and, under ideal conditions, to optimize their overall performance in assembled devices. Because of the variety of elementary components present in these cells and their multiple possible combinations, this task presents experimental challenges. The photoconversion efficiencies obtained up to this point are still low, despite the significant experimental efforts spent in their optimization. The development of a low-cost and efficient computational protocol that could qualitatively (or even quantitatively) identify the promising semiconductors, dyes, and electrolytes, as well as their assembly, could save substantial experimental time and resources. In this Account, we describe our computational approach that allows us to understand and predict the different elementary mechanisms involved in DSSC working principles. We use this computational framework to propose an in silico route for the ab initio design of these materials. Our approach relies on a unique density functional theory (DFT) based model, which allows for an accurate and balanced treatment of electronic and spectroscopic properties in different phases (such as gas, solution, or interfaces) and avoids or minimizes spurious computational effects. Using this tool, we reproduced and predicted the properties of the isolated components of the DSSC assemblies. We accessed the microscopic measurable characteristics of the cells such as the short circuit current (J(sc)) or the open circuit voltage (V(oc)), which define the overall photoconversion efficiency of the cell. The absence of empirical or material-related parameters

  8. Role of temperature in the recombination reaction on dye-sensitized solar cells.

    PubMed

    Maçaira, J; Mesquita, I; Andrade, L; Mendes, A

    2015-09-21

    The performance of photovoltaic (PV) devices as a function of temperature is crucial for technical development and for accurate commercial information. Along with solar irradiance, temperature is the most important operating factor of the PV device performance. Normally, it is widely accepted that dye sensitized solar cells (DSC) show minimal energy efficiency dependence with temperature (20-60 °C). The energy efficiency in DSCs depends on the light absorption, charge transport (ohmic resistances) and recombination rates. In this study, the recombination reaction kinetics was studied within a wide temperature range. A unique laser assisted sealing technique that allows studying the temperature effect between -5 °C and 105 °C without electrolyte leakage or external contamination was used. To the best of our knowledge, this is the highest operating temperature ever considered in kinetic studies of liquid state DSCs. The electrochemical reaction between electrons and triiodide/iodide ions was shown to be the most important factor for determining the energy efficiency of DSCs as a function of temperature. It was concluded that the activation energy of the recombination reactions depends on the interface where it happens - TiO2/electrolyte and SnO2-F/electrolyte - and on the temperature. It was found that in addition to temperature having a deep influence on the recombination reaction rate, the energy of the injecting electron is also critical. These conclusions should provide solid ground for further developments in the DSCs and perovskite solar cells, and allow a better comparison of the energy efficiency of different PV technologies over a range of operating temperatures.

  9. Saddle-shaped porphyrins for dye-sensitized solar cells: new insight into the relationship between nonplanarity and photovoltaic properties.

    PubMed

    Shahroosvand, Hashem; Zakavi, Saeed; Sousaraei, Ahmad; Eskandari, Mortaza

    2015-03-07

    We report on the theoretical and experimental studies of the new dye-sensitized solar cells functionalized with 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin zinc(II) complexes bearing 2- and 8-bromo substituents at the β positions. In agreement with the results of TD-DFT calculations, the absorption maxima of di- and octa-brominated Zn(II) complexes, ZnTCPPBr2 and ZnTCPPBr8, exhibited large red-shift compared to that of the non-brominated free base porphyrin (H2TCPP). Furthermore, DFT calculations showed that the higher stabilization of the LUMO levels relative to the HOMO ones makes the HOMO-LUMO gap of the brominated Zn-porphyrins models smaller compared to that of the nonbrominated counterparts, which explains the red shifts of the Soret and Q bands of the brominated compounds. Solar cells containing the new saddle-shaped Zn(II) porphyrins were subjected to analysis in a photovoltaic calibration laboratory to determine their solar to electric energy conversion. In this regard, we found that the overall conversion efficiency of ZnTCPPBr8 adsorbed on TiO2 nanocrystalline films was 5 times as large as that of ZnTCPPBr2 adsorbed on the same films. The effect of the increasing number of Br groups on the photovoltaic performance of the complexes was compared to the results of computational methods using ab initio DFT molecular dynamics simulations and quantum dynamics calculations of electronic relaxation to investigate the interfacial electron transfer (IET) in TCPPBrx/TiO2-anatase nanostructures. Better IET in ZnTCPPBr8 compared to ZnTCPPBr2, and in H2TCPP was evaluated from interfacial electron transfer (IET) simulations. The IET results indicate that electron injection in ZnTCPPBr8-TiO2 (τ = 25 fs) can be up to 5 orders of magnitude faster than ZnTCPPBr2-TiO2 (τ = 125 fs). Both experimental and theoretical results demonstrate that the increase of the number of bromo-substituents at the β-pyrrole positions of the porphyrin macrocycle created a new class of

  10. Preparation of nanostructured TiO2 photoelectrode for flexible dye-sensitized solar cell applications

    NASA Astrophysics Data System (ADS)

    Karuppuchamy, S.; Andou, Y.; Endo, T.

    2013-08-01

    Nanocrystalline titanium dioxide (TiO2) thin film was successfully prepared by simple electrodeposition method from alkaline aqueous solution containing potassium titanium oxalate and hydroxylamine. Surface characterization of the electrodeposited films indicates the formation of crystalline TiO2. The dye solar cell constructed from dye-modified electrodeposited TiO2 film achieved an overall light-to-electricity conversion efficiency of 2.1 % under 1 sun illumination, indicating its high potential as a photoelectrode material for the DSCs.

  11. Dye-sensitized TiO2 nanotube solar cells: rational structural and surface engineering on TiO2 nanotubes.

    PubMed

    Wang, Jun; Lin, Zhiqun

    2012-12-01

    Owing to well-defined structural parameters and enhanced electronic properties, highly ordered TiO(2) nanotube arrays have been employed to substitute TiO(2) nanoparticles for use in dye-sensitized solar cells. To further improve the performance of dye-sensitized TiO(2) nanotube solar cells, efforts have been directed toward the optimization of TiO(2) photoanodes, dyes, electrolytes, and counter electrodes. Herein, we highlight recent progress in rational structural and surface engineering on anodic TiO(2) nanotube arrays and their effects on improving the power conversion efficiency of dye-sensitized TiO(2) nanotube solar cells.

  12. Improvement in light harvesting in a dye sensitized solar cell based on cascade charge transfer

    NASA Astrophysics Data System (ADS)

    Yang, Lijun; Leung, Wallace Woon-Fong; Wang, Jingchuan

    2013-07-01

    Dye sensitized solar cells (DSSCs) offer the potential of being low-cost, high-efficiency photovoltaic devices. However, the power conversion efficiency is limited as they cannot utilize all photons of the visible solar spectrum. A novel design of a core-shell photoanode is presented herein where a thin shell of infrared dye is deposited over the core of a sensitized TiO2 nanofiber. Specifically, a ruthenium based dye (N719) sensitized TiO2 nanofiber is wrapped by a thin shell of copper phthalocyanine (CuPc). In addition to broadening the absorption spectrum, this core-shell configuration further suppresses the electron-hole recombination process. Instead of adopting the typical Förster resonance energy transfer, upon photons being absorbed by the infrared dye, electrons are transferred efficiently through a cascade process from the CuPc to the N719 dye, the conduction band of TiO2, the FTO electrode and finally the external circuit. Concurrently, photons are also absorbed by the N719 dye with electrons being transferred in the cell. These additive effects result in a high power conversion efficiency of 9.48% for the device. The proposed strategy provides an alternative method for enhancing the performance of DSSCs for low-cost renewable energy in the future.Dye sensitized solar cells (DSSCs) offer the potential of being low-cost, high-efficiency photovoltaic devices. However, the power conversion efficiency is limited as they cannot utilize all photons of the visible solar spectrum. A novel design of a core-shell photoanode is presented herein where a thin shell of infrared dye is deposited over the core of a sensitized TiO2 nanofiber. Specifically, a ruthenium based dye (N719) sensitized TiO2 nanofiber is wrapped by a thin shell of copper phthalocyanine (CuPc). In addition to broadening the absorption spectrum, this core-shell configuration further suppresses the electron-hole recombination process. Instead of adopting the typical Förster resonance energy

  13. Redox Active Compounds in Controlled Radical Polymerization and Dye-Sensitized Solar Cells: Mutual Solutions to Disparate Problems.

    PubMed

    Ballard, Nicholas; Mecerreyes, David; Asua, José M

    2015-12-14

    Controlled radical polymerization (CRP) and dye-sensitized solar cells (DSSCs) are two fields of research that at an initial glance appear to have little in common. However, despite their obvious differences, both in application and in scientific nature, a closer look reveals a striking similarity between many of the compounds widely used as control agents in radical polymerization and as redox couples in dye-sensitized solar cells. Herein, we review the various redox active compounds used and examine the characteristics that give them the ability to perform this dual function. In addition we explore the advances in the understanding of the structural features that enhance their activity in both CRP and DSSCs. It is hoped that such a comparison will be conducive to improving process performance in both fields.

  14. Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules.

    PubMed

    Mishra, Amaresh; Fischer, Markus K R; Bäuerle, Peter

    2009-01-01

    Dye-sensitized solar cells (DSSC) have attracted considerable attention in recent years as they offer the possibility of low-cost conversion of photovoltaic energy. This Review focuses on recent advances in molecular design and technological aspects of metal-free organic dyes for applications in dye-sensitized solar cells. Special attention has been paid to the design principles of these dyes and on the effect of various electrolyte systems. Cosensitization, an emerging technique to extend the absorption range, is also discussed as a way to improve the performance of the device. In addition, we report on inverted dyes for photocathodes, which constitutes a relatively new approach for the production of tandem cells. Special consideration has been paid to the correlation between the molecular structure and physical properties to their performance in DSSCs.

  15. Effect of TiO2 rutile nanorods on the photoelectrodes of dye-sensitized solar cells

    PubMed Central

    2013-01-01

    In order to enhance the electron transport on the photoelectrodes of dye-sensitized solar cells, one-dimensional rutile nanorods were prepared using electrospun TiO2 nanofibers. The grain size of the nanorods increased with increasing temperature. Electrochemical impedance spectroscopy measurements revealed reduced interface resistance of the cells with the one-dimensional rutile nanorods due to the improved electron transport and the enhanced electrolyte penetration. Intensity-modulated photocurrent/photovoltage spectroscopy showed that the one-dimensional rutile nanorods provided the electrons with a moving pathway and suppressed the recombination of photogenerated electrons. However, an excessive quantity of rutile nanorods created an obstacle to the electrons moving in the TiO2 thin film. The photoelectrode with 7 wt.% rutile nanorods optimized the performance of the dye-sensitized solar cells. PMID:23331863

  16. Evaluation of microwave plasma sintering for the fabrication of dye sensitized solar cell (DSSC) electrodes.

    PubMed

    Dembele, A; Rahman, M; MacElroy, J M D; Dowling, D P

    2012-06-01

    Dye-sensitized solar cells (DSSCs) have demonstrated considerable potential due to their solar energy conversion efficiency and their fabrication from relatively low cost materials. Titanium dioxide (TiO2) nanoparticles are widely used in the fabrication of the DSSC electrodes. There is a considerable energy requirement however required for the sintering of the TiO2 particles during the fabrication of the mesoporous electrodes. This study investigates the use of microwave (MW) plasma treatments as a rapid, energy efficient processing technique for the sintering of the metal oxide particles. A comparison is made with conventional furnace treatments for the sintering of TiO2 nanoparticles (Degussa P25), deposited onto fluorine doped tin oxide (FTO) coated glass substrates. Subsequent to the TiO2 sintering, ruthenium based dye (N719) adsorption studies were carried out for coatings heated using both sintering techniques. Based on UV/Vis absorption spectra measurements of 5 mins plasma and 30 mins furnace sintering, it was observed that both sintering techniques exhibited similar levels of dye adsorption. A decrease in the level of dye adsorption was observed for the TiO2 coatings sintered for longer periods (up to 10 mins in this study). This change with longer plasma treatment times was associated with rutile grain growth and a decrease in surface roughness, possibly due to a densification of the mesoporous structure. The effect of TiO2 coating plasma treatment times on the conversion efficiency of the dye sensitised electrodes was also evaluated. Plasma treatments of 5 mins were found to yield the highest conversion efficiency of 6.4%.

  17. Metal-free organic dye sensitized solar cell based on perpendicular zinc oxide nanosheet thick films with high conversion efficiency.

    PubMed

    Hosono, Eiji; Mitsui, Yosuke; Zhou, Haoshen

    2008-10-28

    Dye-sensitized solar cells (DSCs) with a high efficiency of 4.27%, which is superior to that of ZnO-based DSCs containing metal complex dyes such as N-719, under 100 mW cm(-2) illumination, are achieved by using metal-free organic dyes and a perpendicular ZnO nanosheet thick film synthesized by a self-templating method.

  18. Enhanced Electron Lifetimes in Dye-Sensitized Solar Cells Using a Dichromophoric Porphyrin: The Utility of Intermolecular Forces.

    PubMed

    Zhao, Long; Wagner, Pawel; van der Salm, Holly; Gordon, Keith C; Mori, Shogo; Mozer, Attila J

    2015-10-07

    Electron lifetimes in dye-sensitized solar cells employing a porphyrin dye, an organic dye, a 1:1 mixture of the two dyes, and a dichromophoric dye design consisting of the two dyes using a nonconjugated linker were measured, suggesting that the dispersion force of the organic dyes has a significant detrimental effect on the electron lifetime and that the dichromophoric design can be utilized to control the effect of the dispersion force.

  19. Multichromophoric dye-sensitized solar cells based on supramolecular zinc-porphyrin···perylene-imide dyads.

    PubMed

    Panda, Dillip K; Goodson, Flynt S; Ray, Shuvasree; Lowell, Rachel; Saha, Sourav

    2012-09-11

    Multichromophoric dye-sensitized solar cells (DSCs) based on self-assembled zinc-porphyrin···peryleneimide dyads on TiO(2) films display more efficient light-to-electrical energy conversion than DSCs based on individual dyes. Higher efficiency of multichromophoric dyes can be attributed to co-sensitization as well as vectorial electron transfer that lead to better electron-hole separation in the device.

  20. A metal-free N-annulated thienocyclopentaperylene dye: power conversion efficiency of 12% for dye-sensitized solar cells.

    PubMed

    Yao, Zhaoyang; Zhang, Min; Li, Renzhi; Yang, Lin; Qiao, Yongna; Wang, Peng

    2015-05-11

    Reported are two highly efficient metal-free perylene dyes featuring N-annulated thienobenzoperylene (NTBP) and N-annulated thienocyclopentaperylene (NTCP), which are coplanar polycyclic aromatic hydrocarbons. Without the use of any coadsorbate, the metal-free organic dye derived from the NTCP segment was used for a dye-sensitized solar cell which attained a power conversion efficiency of 12% under an irradiance of 100 mW cm(-2), simulated air mass global (AM1.5G) sunlight.

  1. Dye-sensitized solar cells based on organic dual-channel anchorable dyes with well-defined core bridge structures.

    PubMed

    Seo, Kang Deuk; You, Ban Seok; Choi, In Taek; Ju, Myung Jong; You, Mi; Kang, Hong Seok; Kim, Hwan Kyu

    2013-11-01

    In stereo, where available: A new approach towards dye-sensitized solar cells is based on dianchoring structural motifs with two donors, two acceptors, and a core bridge donor as a spacer. Their high molar absorption coefficients result in favorable light-harvesting efficiencies for DSSCs based on these dyes. A high conversion efficiency of 4.90 % is achieved when using dye DC4, containing a core bridge carbazole unit, with a multifunctional coadsorbent.

  2. Control of dark current in photoelectrochemical (TiO2/I--I3-)) and dye-sensitized solar cells.

    PubMed

    Ito, Seigo; Liska, Paul; Comte, Pascal; Charvet, Raphaël; Péchy, Peter; Bach, Udo; Schmidt-Mende, Lukas; Zakeeruddin, Shaik Mohammed; Kay, Andreas; Nazeeruddin, Mohammad K; Grätzel, Michael

    2005-09-14

    The ruthenium complex bis-tetrabutylammonium cis-dithiocyanato-N,N'-bis-2,2'-bipyridine-4-carboxylic acid, 4'-carboxylate ruthenium(II), N-719, was found to block the dark current of dye sensitized solar cells (DSC), based on mesoporous TiO2 films deposited on a F-doped tin oxide electrode and the effect was compared to surface treatment by TiCl4 and the introduction of a compact TiO2 blocking layer.

  3. TiO2 derived by titanate route from electrospun nanostructures for high-performance dye-sensitized solar cells.

    PubMed

    Nair, A Sreekumaran; Zhu, Peining; Babu, V Jagadeesh; Yang, Shengyuan; Krishnamoorthy, Thirumal; Murugan, Rajendiran; Peng, Shengjie; Ramakrishna, Seeram

    2012-04-17

    We report the use of highly porous, dense, and anisotropic TiO(2) derived from electrospun TiO(2)-SiO(2) nanostructures through titanate route in dye-sensitized solar cells. The titanate-derived TiO(2) of high surface areas exhibited superior photovoltaic parameters (efficiency > 7%) in comparison to the respective electrospun TiO(2) nanomaterials and commercially available P-25.

  4. High-temperature solid-state dye-sensitized solar cells based on organic ionic plastic crystal electrolytes.

    PubMed

    Li, Qing; Zhao, Jie; Sun, Baoquan; Lin, Bencai; Qiu, Lihua; Zhang, Yueguang; Chen, Xiaojian; Lu, Jianmei; Yan, Feng

    2012-02-14

    Organic ionic plastic crystal, 1-ethyl-1-methyl pyrrolidinium iodide (P(12) I), is employed as the solid-state electrolytes for dye-sensitized solar cells. The fabricated solid-state devices show an overall power conversion efficiency of ~5.8% under AM 1.5 radiation (50 mW/cm(2) ) and excellent long-term stability at 80 °C.

  5. Wurtzite copper-zinc-tin sulfide as a superior counter electrode material for dye-sensitized solar cells

    PubMed Central

    2013-01-01

    Wurtzite and kesterite Cu2ZnSnS4 (CZTS) nanocrystals were employed as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). Compared to kesterite CZTS, the wurtzite CZTS exhibited higher electrocatalytic activity for catalyzing reduction of iodide electrolyte and better conductivity. Accordingly, the DSSC with wurtzite CZTS CE generated higher power conversion efficiency (6.89%) than that of Pt (6.23%) and kesterite CZTS (4.89%) CEs. PMID:24191954

  6. Simulation and modelling of charge transport in dye-sensitized solar cells based on carbon nano-tube electrodes

    NASA Astrophysics Data System (ADS)

    Gacemi, Yahia; Cheknane, Ali; Hilal, Hikmat S.

    2013-03-01

    For a better understanding of the mechanisms of dye-sensitized solar cells (DSSCs), based on carbon nano-tube (CNT) electrodes, a phenomenological model is proposed. For modelling purposes, the meso-scopic porous CNT electrode is considered as a homogeneous nano-crystalline structure with thickness L. The CNT electrode is covered with light-absorbing dye molecules, and interpenetrated by the tri-iodide (I-/I3-) redox couple. A simulation platform, designed to study coupled charge transport in such cells, is presented here. The work aims at formulating a mathematical model that describes charge transfer and charge transport within the porous CNT window electrode. The model is based on a pseudo-homogeneous active layer using drift-diffusion transport equations for free electron and ion transport. Based on solving the continuity equation for electrons, the model uses the numerical finite difference method. The numerical solution of the continuity equation produces current-voltage curves that fit the diode equation with an ideality factor of unity. The calculated current-voltage (J-V) characteristics of the illuminated idealized DSSCs (100 mW cm-2, AM1.5), and the different series resistances of the transparent conductor oxide (TCO) layer were introduced into the idealized simulated photo J-V characteristics. The results obtained are presented and discussed in this paper. Thus, for a series resistance of 4 Ω of the TCO layer, the conversion efficiency (η) was 7.49% for the CNT-based cell, compared with 6.11% for the TiO2-based cell. Two recombination kinetic models are used, the electron transport kinetics within the nano-structured CNT film, or the electron transfer rate across the CNT-electrolyte interface. The simulations indicate that both electron and ion transport properties should be considered when modelling CNT-based DSSCs and other similar systems. Unlike conventional polycrystalline solar cells which exhibit carrier recombination, which limits their

  7. Catalytic Improvement on Counter Electrode of Dye-Sensitized Solar Cells Using Electrospun Pt Nano-Fibers.

    PubMed

    Seol, Hyunwoong; Shiratani, Masaharu; Seneekatima, Kannanut; Pornprasertsuk, Rojana

    2016-04-01

    A dye-sensitized solar cell is one of cost-competitive photovoltaic devices. For higher performance, all components have been actively studied and improved. However, Pt is still a dominant catalyst since first development although some catalytic materials were studied so far. Catalytic materials of counter electrode play an important role in the performance because it supplies electrons from counter electrode to electrolyte. Therefore, the catalytic activation of counter electrode is closely connected with the performance enhancement. In this work, Pt nano-fiber was fabricated by electrospinning and applied for the counter electrode. Its wide surface area is advantageous for good conductivity and catalytic activation. Morphological characteristics of nano-fibers were analyzed according to electrospinning conditions. Photovoltaic properties, cyclic voltammetry, impedance analysis verified the catalytic activation. Consequently, dye-sensitized solar cell with Pt nano-fiber electrospun at 5.0 kV of applied voltage had higher performance than conventional dye-sensitized solar cell with Pt thin film. This work is significant for related researches because all nano-fibers counter electrode material proposed so far never exceeded the performance of conventional Pt counter electrode.

  8. Improve photovoltaic performance of titanium dioxide nanorods based dye-sensitized solar cells by Ca-doping

    SciTech Connect

    Li, Weixin; Yang, Junyou Zhang, Jiaqi; Gao, Sheng; Luo, Yubo; Liu, Ming

    2014-09-15

    Highlights: • TiO{sub 2} nanorods doped with Ca ions were synthesized by one-step hydrothermal method. • The flat band edge of rutile TiO{sub 2} shifted positively via Ca-doping. • The photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs) based on TiO{sub 2} electrode was much enhanced by Ca-doping. • A relatively high open circuit voltage was obtained by adopting Ca-doped TiO{sub 2} nanorods electrode. - Abstract: Ca-doped TiO{sub 2} nanorod arrays were prepared via the one-step hydrothermal method successfully, and the effect of Ca ions content on the photovoltaic conversion efficiency of dye-sensitized solar cells has been fully discussed in the paper. Although no obvious change on the microstructure and morphology was observed by field emission scanning electron microscope and transmission electron microscope for the Ca-doped samples, the results of X-ray diffraction and X-ray photoelectron spectroscopy confirmed that Ti{sup 4+} was substituted with Ca{sup 2+} successfully. UV–vis spectroscopy results revealed that the flat band edge shifted positively by Ca ions doping. The photovoltaic conversion efficiency of the dye-sensitized solar cells based on the 2 mol% Ca-doped TiO{sub 2} electrode was 43% higher than that of the undoped one due to the less recombination possibility.

  9. Fabrication, characterization of two nano-composite CuO-ZnO working electrodes for dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Habibi, Mohammad Hossein; Karimi, Bahareh; Zendehdel, Mahmoud; Habibi, Mehdi

    2013-12-01

    Two kind of CuO-ZnO nanocomposite working electrodes were synthesized by sol-gel technology and applied in dye-sensitized solar cells (DSSCs). Their characteristics were studied by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and UV-Vis diffuse reflectance spectrum (DRS). CuO-ZnO nanocomposite thin films were prepared doctor blade technique on the fluorine-doped tin oxide (FTO) and used as working electrodes in dye sensitized solar cells (DSSC). Their photovoltaic behavior were compared with standard using D35 dye and an electrolyte containing [Co(bpy)3](PF6)2, [Co(pby)3](PF6)3, LiClO4, and 4-tert-butylpyridine (TBP). The ranges of short-circuit current (JSC) from 0.18 to 0.21 (mA/cm2), open-circuit voltage (VOC) from 0.24 to 0.55 V, and fill factor from 0.34 to 0.39 were obtained for the DSSCs made using the working electrodes. The efficiency of the working electrodes after the addition of TBL was more than doubled. The light scattering and carrier transport properties of these composites promote the performance of dye-sensitized solar cells (DSSCs).

  10. Metal Selenides as Efficient Counter Electrodes for Dye-Sensitized Solar Cells.

    PubMed

    Jin, Zhitong; Zhang, Meirong; Wang, Min; Feng, Chuanqi; Wang, Zhong-Sheng

    2017-03-10

    Solar energy is the most abundant renewable energy available to the earth and can meet the energy needs of humankind, but efficient conversion of solar energy to electricity is an urgent issue of scientific research. As the third-generation photovoltaic technology, dye-sensitized solar cells (DSSCs) have gained great attention since the landmark efficiency of ∼7% reported by O'Regan and Grätzel. The most attractive features of DSSCs include low cost, simple manufacturing processes, medium-purity materials, and theoretically high power conversion efficiencies. As one of the key materials in DSSCs, the counter electrode (CE) plays a crucial role in completing the electric circuit by catalyzing the reduction of the oxidized state to the reduced state for a redox couple (e.g., I3(-)/I(-)) in the electrolyte at the CE-electrolyte interface. To lower the cost caused by the typically used Pt CE, which restricts the large-scale application because of its low reserves and high price, great effort has been made to develop new CE materials alternative to Pt. A lot of Pt-free electrocatalysts, such as carbon materials, inorganic compounds, conductive polymers, and their composites with good electrocatalytic activity, have been applied as CEs in DSSCs in the past years. Metal selenides have been widely used as electrocatalysts for the oxygen reduction reaction and light-harvesting materials for solar cells. Our group first expanded their applications to the DSSC field by using in situ-grown Co0.85Se nanosheet and Ni0.85Se nanoparticle films as CEs. This finding has inspired extensive studies on developing new metal selenides in order to seek more efficient CE materials for low-cost DSSCs, and a lot of meaningful results have been achieved in the past years. In this Account, we summarize recent advances in binary and mutinary metal selenides applied as CEs in DSSCs. The synthetic methods for metal selenides with various morphologies and stoichiometric ratios and deposition

  11. Development of carbon nanotube paste for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Tsuji, Masaya; Sugiyama, Seiichi; Oya, Takahide

    2012-09-01

    We propose a new type of dye-sensitized solar cell (DSC) using carbon nanotubes (CNTs). Recently, global warming due to CO2 generated from power plants, cars, and so on has received much attention. Therefore, clean power, e.g., solar power, is gaining in importance. In this study, we focused on a DSC that uses CNTs. Generally, sensitized dyes on semiconducting and metallic electrodes are used for constructing DSCs. In contrast, CNTs have many excellent properties. In particular, they have metallic and semiconducting properties that are used for the electrodes of DSCs. Therefore, we applied CNTs for fabricating a new "painting-type" DSC with semiconducting and metallic electrodes. CNTs are dispersed in water with surfactant to prepare CNT-paste for painting. This resulting CNT-paste has the same properties as a normal CNT. A DSC is comprised of two electrodes. One is a semiconducting electrode with a sensitized dye and another is a metallic one, as mentioned above. We fabricated the two electrodes by painting the CNT-paste onto substrates. Thus, this type of DSC can be applied to various objects, for example, the wall and car and housetop. An electrolyte is required and must be put between the electrodes. The method for fabricating a painting type DSC is very simple. First, two versions of the paste are used. One is a semiconducting CNT-paste that adsorbs a dye and the other is a CNT-paste without a dye. Second, we paint each paste onto two substrates. Finally, the two substrates are stacked. We drip about 10μl of an electrolyte onto the stacked substrates and irradiate them with solar light (1300 W/m2). An electromotive force (EMF) is generated by excited electrons from the dye, which are adsorbed on the semiconducting electrode. The maximum EMF reached about 250 mV and the current reached about 10 μA. These results indicate that the proposed painting-type DSC can be used a new type of solar cell.

  12. Preparation and surface modification of hierarchical nanosheets-based ZnO microstructures for dye-sensitized solar cells

    SciTech Connect

    Meng, Yongming; Lin, Yu Lin, Yibing; Yang, Jiyuan

    2014-02-15

    This paper reports a simple one-step hydrothermal route for the preparation of hierarchical nanosheets-based ZnO microstructures and their application to dye-sensitized solar cells. The morphologies of the products were controlled by the dosage of the reactants. Their physical characteristics were detected by X-ray diffraction, a field-emission scanning electron microscope and a surface analyzer. It is proved that the sample of ZnO microspheres with larger surface area and stronger light-trapping capacity since the superiority of their entirely spherical structures exhibits better photoelectrochemical properties than the mixtures of ZnO microspheres and ZnO microflowers. A dye-sensitized solar cell assembled by the ZnO microspheres as photoanode shows an energy conversion efficiency of 2.94% after surface modification by tetrabutyl titanate solution at 90 {sup °}C. This result is over 1.6 times higher than the non-modified cell fabricated by the ZnO microspheres on the basis of the external improvement and the stability enhancement for the dye-sensitized ZnO photoanode. - Graphical abstract: Influences on energy conversion efficiency of the dye-sensitized solar cells assembled by decorating hierarchical nanosheets-based ZnO microstructures with tetrabutyl titanate solution at different temperatures. Display Omitted - Highlights: • Hierarchical nanosheets-based ZnO microstructures were controllably synthesized. • The ZnO microspheres show good optical and electrochemical properties. • The ZnO microspheres were modified by C{sub 16}H{sub 36}O{sub 4}Ti solution. • Remarkable increase of conversion efficiency is observed after surface modification.

  13. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye.

    PubMed

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-05

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.

  14. ZnO@SnO2 engineered composite photoanodes for dye sensitized solar cells.

    PubMed

    Milan, R; Selopal, G S; Epifani, M; Natile, M M; Sberveglieri, G; Vomiero, A; Concina, I

    2015-09-30

    Layered multi-oxide concept was applied for fabrication of photoanodes for dye-sensitized solar cells based on ZnO and SnO2, capitalizing on the beneficial properties of each oxide. The effect of different combinations of ZnO@SnO2 layers was investigated, aimed at exploiting the high carrier mobility provided by the ZnO and the higher stability under UV irradiation pledged by SnO2. Bi-oxide photoanodes performed much better in terms of photoconversion efficiency (PCE) (4.96%) compared to bare SnO2 (1.20%) and ZnO (1.03%). Synergistic cooperation is effective for both open circuit voltage and photocurrent density: enhanced values were indeed recorded for the layered photoanode as compared with bare oxides (Voc enhanced from 0.39 V in case of bare SnO2 to 0.60 V and Jsc improved from 2.58 mA/cm(2) pertaining to single ZnO to 14.8 mA/cm(2)). Improved functional performances of the layered network were ascribable to the optimization of both high chemical capacitance (provided by the SnO2) and low recombination resistance (guaranteed by ZnO) and inhibition of back electron transfer from the SnO2 conduction band to the oxidized species of the electrolyte. Compared with previously reported results, this study testifies how a simple electrode design is powerful in enhancing the functional performances of the final device.

  15. Porphyrin sensitizers with π-extended pull units for dye-sensitized solar cells.

    PubMed

    Reddy, Nagannagari Masi; Pan, Tsung-Yu; Rajan, Yesudoss Christu; Guo, Bo-Cheng; Lan, Chi-Ming; Diau, Eric Wei-Guang; Yeh, Chen-Yu

    2013-06-07

    New π-extended porphyrin dyes YD26-YD29 with long alkoxyl chains at the ortho positions of the meso-phenyls, and meta di-tert-butylphenyl-substituted porphyrins YD12-CN, and YD13-CN were synthesized for dye-sensitized solar cells, and their optical, electrochemical and photovoltaic properties were investigated and compared with those of YD12 and YD13. The absorption spectra of YD26-YD29 showed a slight red shift of Soret bands and blue shift of Q bands as compared to the meta-substituted porphyrins due to the electron-donating effects of dioctyloxy substituents at the ortho-positions of the meso-phenyl rings. Replacement of the carboxyl with a cyanoacrylic acid as the anchoring group results in significant broadening and red shifts of the absorptions, which is due to the strong electronic coupling between the pull unit and the porphyrin ring facilitated by the C≡C triple bond. The electrochemical studies and quantum-chemical calculations (DFT) indicated that the ortho alkoxy-substituted sensitizers exhibit lower oxidation potential, i.e. a higher HOMO energy level, and their HOMO-LUMO gaps are comparable to the meta-substituted analogues. The photovoltaic measurements confirmed that the ortho-octyloxy groups in the two meso-phenyls of YD26 and YD27 play a significant role in preventing dye aggregation thereby enhancing the corresponding short-circuit current density and open-circuit voltage. The power conversion efficiency (η) of YD26 is 8.04%, which is 11% higher than that of YD12, whereas the efficiency of YD27 is 6.03%, which is 135% higher than that of YD13. On the other hand, the poor performance of YD28 and YD29 is due to the floppy structural nature and limited molecular rigidity of the cyanoacrylic acid anchor.

  16. Improving Performance via Blocking Layers in Dye-Sensitized Solar Cells Based on Nanowire Photoanodes.

    PubMed

    Li, Luping; Xu, Cheng; Zhao, Yang; Chen, Shikai; Ziegler, Kirk J

    2015-06-17

    Electron recombination in dye-sensitized solar cells (DSSCs) results in significant electron loss and performance degradation. However, the reduction of electron recombination via blocking layers in nanowire-based DSSCs has rarely been investigated. In this study, HfO2 or TiO2 blocking layers are deposited on nanowire surfaces via atomic layer deposition (ALD) to reduce electron recombination in nanowire-based DSSCs. The control cell consisting of ITO nanowires coated with a porous shell of TiO2 by TiCl4 treatment yields an efficiency of 2.82%. The efficiency increases dramatically to 5.38% upon the insertion of a 1.3 nm TiO2 compact layer between the nanowire surface and porous TiO2 shell. This efficiency enhancement implies that porous sol-gel coatings on nanowires (e.g., via TiCl4 treatment) result in significant electron recombination in nanowire-based DSSCs, while compact coatings formed by ALD are more advantageous because of their ability to act as a blocking layer. By comparing nanowire-based DSSCs with their nanoparticle-based counterparts, we find that the nanowire-based DSSCs suffer more severe electron recombination from ITO due to the much higher surface area exposed to the electrolyte. While the insertion of a high band gap compact layer of HfO2 between the interface of the conductive nanowire and TiO2 shell improves performance, a comparison of the cell performance between TiO2 and HfO2 compact layers indicates that charge collection is suppressed by the difference in energy states. Consequently, the use of high band gap materials at the interface of conductive nanowires and TiO2 is not recommended.

  17. Preparation and characterization of TiO2 barrier layers for dye-sensitized solar cells.

    PubMed

    Zheng, Yichen; Klankowski, Steven; Yang, Yiqun; Li, Jun

    2014-07-09

    A TiO2 barrier layer is critical in enhancing the performance of dye-sensitized solar cells (DSSCs). Two methods to prepare the TiO2 barrier layer on fluorine-doped tin dioxide (FTO) surface were systematically studied in order to minimize electron-hole recombination and electron backflow during photovoltaic processes of DSSCs. The film structure and materials properties were correlated with the photovoltaic characteristics and electrochemical properties. In the first approach, a porous TiO2 layer was deposited by wet chemical treatment of the sample with TiCl4 solution for time periods varying from 0 to 60 min. The N719 dye molecules were found to be able to insert into the porous barrier layers. The 20 min treatment formed a nonuniform but intact TiO2 layer of ∼100-300 nm in thickness, which gave the highest open-circuit voltage VOC, short-circuit photocurrent density JSC, and energy conversion efficiency. But thicker TiO2 barrier layers by this method caused a decrease in JSC, possibly limited by lower electrical conductance. In the second approach, a compact TiO2 barrier layer was created by sputter-coating 0-15 nm Ti metal films on FTO/glass and then oxidizing them into TiO2 with thermal treatment at 500 °C in the air for 30 min. The dye molecules were found to only attach at the outer surface of the barrier layer and slightly increased with the layer thickness. These two kinds of barrier layer showed different characteristics and may be tailored for different DSSC studies.

  18. Nickel tetraphenylporphyrin doping into ZnO nanoparticles for flexible dye-sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Shamimul Haque Choudhury, Mohammad; Kato, Shinya; Kishi, Naoki; Soga, Tetsuo

    2017-04-01

    In this study, we report on ZnO-based flexible dye-sensitized solar cells (DSCs) doped with different concentrations of 5,10,15,20-tetraphenyl-21H,23H-porphyrin nickel(II) (NiTPP). The photoelectrodes were prepared by blade coating, followed by a hot-compression technique. The effects of NiTPP doping on the surface morphology, structural, optical, and photovoltaic properties were studied. The surface morphology was observed by scanning electron microscopy (SEM), which confirmed the presence of NiTPP particles and also some aggregated particles visible at higher doping concentrations. The structural properties were examined by X-ray diffraction analysis and Raman spectroscopy, which confirmed the hexagonal wurtzite ZnO structure. The crystallite size of the ZnO nanoparticles (NPs) increased while the lattice strain decreased with increasing NiTPP doping concentration. The increment in the crystallite size might have induced light scattering inside the film to some extent. Optical absorption spectra showed the broadening of the spectrum in the lower-wavelength region, and a new absorption peak appeared (at 422 nm) as an effect of NiTPP doping. The red and blue shifts were observed for that peak as an effect of various doping concentrations. The Raman study of the films showed that there is no significant changes in the ZnO or NiTPP crystallite structure because of the NiTPP doping at different concentrations. Photocurrent–voltage (I–V) analysis showed that the 0.7%-NiTPP-doped cell attained the highest light-to-electric conversion efficiency of 2.7% in this investigation, which was about 42% higher than that of a non-NiTPP-doped cell.

  19. Optical properties of natural dyes on the dye-sensitized solar cells (DSSC) performance

    NASA Astrophysics Data System (ADS)

    Pratiwi, D. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2016-11-01

    This study reported several natural dyes for application in dye-sensitized solar cells (DSSC). This study aims was to determine the effect of optical absorption properties of natural dyes on efficiency of DSSC. The sandwich structure of DSSC consist of TiO2 as working electrode, carbon layer as counter electrode, natural dyes as photosensitizer, and electrolyte as electron transfer media. The natural dyes used in this experiment were extracted from dragon fruit anthocyanin, mangosteen peels anthocyanin, and red cabbage anthocyanin. The absorbance of dyes solutions and the adsorption of the dye on the surface of TiO2 were characterized using UV-Vis spectrophotometer, the quantum efficiency versus wavelength was characterized using incident photon-to-current efficiency (IPCE) measurement system, and the efficiency of DSSC was calculated using I-V meter. UV-Vis characteristic curves showed that wavelength absorption of anthocyanin dye of red cabbage was 450 - 580 nm, anthocyanin of mangosteen peels was 400 - 480 nm, and anthocyanin of dragon fruit was 400 - 650 nm. Absorption spectra of the dye adsorption on the surface of TiO2 which was resulted in the highest absorbance of red cabbage anthocyanin. IPCE characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted quantum efficiency of 0.058%; 0.047%; and 0.043%, respectively at wavelength maximum about 430 nm. I-V characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted efficiency of 0.054%; 0.042%; and 0.024%, respectively.

  20. ZnO@SnO2 engineered composite photoanodes for dye sensitized solar cells

    PubMed Central

    Milan, R.; Selopal, G. S.; Epifani, M.; Natile, M. M.; Sberveglieri, G.; Vomiero, A.; Concina, I.

    2015-01-01

    Layered multi-oxide concept was applied for fabrication of photoanodes for dye-sensitized solar cells based on ZnO and SnO2, capitalizing on the beneficial properties of each oxide. The effect of different combinations of ZnO@SnO2 layers was investigated, aimed at exploiting the high carrier mobility provided by the ZnO and the higher stability under UV irradiation pledged by SnO2. Bi-oxide photoanodes performed much better in terms of photoconversion efficiency (PCE) (4.96%) compared to bare SnO2 (1.20%) and ZnO (1.03%). Synergistic cooperation is effective for both open circuit voltage and photocurrent density: enhanced values were indeed recorded for the layered photoanode as compared with bare oxides (Voc enhanced from 0.39 V in case of bare SnO2 to 0.60 V and Jsc improved from 2.58 mA/cm2 pertaining to single ZnO to 14.8 mA/cm2). Improved functional performances of the layered network were ascribable to the optimization of both high chemical capacitance (provided by the SnO2) and low recombination resistance (guaranteed by ZnO) and inhibition of back electron transfer from the SnO2 conduction band to the oxidized species of the electrolyte. Compared with previously reported results, this study testifies how a simple electrode design is powerful in enhancing the functional performances of the final device. PMID:26419618

  1. Catalytic, conductive, and transparent platinum nanofiber webs for FTO-free dye-sensitized solar cells.

    PubMed

    Kim, Jongwook; Kang, Jonghyun; Jeong, Uiyoung; Kim, Heesuk; Lee, Hyunjung

    2013-04-24

    We report a multifunctional platinium nanofiber (PtNF) web that can act as a catalyst layer in dye-sensitized solar cell (DSSC) to simultaneously function as a transparent counter electrode (CE), i.e., without the presence of an indium-doped tin oxide (ITO) or fluorine-doped tin oxide (FTO) glass. This PtNF web can be easily produced by electrospinning, which is highly cost-effective and suitable for large-area industrial-scale production. Electrospun PtNFs are straight and have a length of a few micrometers, with a common diameter of 40-70 nm. Each nanofiber is composed of compact, crystalline Pt grains and they are well-fused and highly interconnected, which should be helpful to provide an efficient conductive network for free electron transport and a large surface area for electrocatalytic behavior. A PtNF web is served as a counter electrode in DSSC and the photovoltaic performance increases up to a power efficiency of 6.0%. It reaches up to 83% of that in a conventional DSSC using a Pt-coated FTO glass as a counter electrode. Newly designed DSSCs containing PtNF webs display highly stable photoelectric conversion efficiencies, and excellent catalytic, conductive, and transparent properties, as well as long-term stability. Also, while the DSSC function is retained, the fabrication cost is reduced by eliminating the transparent conducting layer on the counter electrode. The presented method of fabricating DSSCs based on a PtNF web can be extended to other electrocatalytic optoelectronic devices that combine superior catalytic activity with high conductivity and transparency.

  2. Energy storage capability of the dye sensitized solar cells via utilization of highly porous carbon electrodes

    NASA Astrophysics Data System (ADS)

    Rahimi, Fatemeh; Takshi, Arash

    2016-09-01

    Dye sensitized solar cells (DSSCs) have shown promising results in the field of renewable energy owing to their low cost and portable features. In practical applications, their harvested energy could be stored in a supercapacitor once it exceeds the regular consumption. Various methods of manipulation of the active electrode have been examined to facilitate the energy storage of the system, whereas the counter electrode has always been known for its catalytic functionality and its contribution to the capacitive response of the device left a well-oriented study to be desired. In this work, the substitution of the platinum electrode with a specific porous electrode resulted in a supercapacitive behavior of the device. The photoactive electrode was fabricated using zinc oxide nanowires (ZnO) grown on a conductive transparent substrate with hydrothermal deposition method. The electrode was used to make a standard DSSC using a ruthenium dye, iodide/triiodide standard redox electrolyte, and a platinum counter electrode. The cyclic voltammetry (CV) study of the device showed a low capacitance with 350 mV open circuit voltage. Replacing the platinum counter electrode with a particularly designed porous paper-based carbon nanotube electrode resulted in a considerable difference in the CV response. A capacitive behavior was observed due to the large surface area of the counter electrode and the ZnO nanostructures on the photoactive electrode. Due to the large capacitance and relatively small photocurrent, the change in the open circuit voltage was limited. However, enhancement of the photocurrent could improve both the energy harvesting and charge storage in the device.

  3. Highly efficient dye-sensitized solar cell with GNS/MWCNT/PANI as a counter electrode

    SciTech Connect

    Al-bahrani, Majid Raissan; Xu, Xiaobao; Ahmad, Waqar; Ren, Xiaoliang; Su, Jun; Cheng, Ze; Gao, Yihua

    2014-11-15

    Highlights: • High-performance PANI/MWCNT-CE was incorporated in a Pt-CE in DSSCs. • GNS/MWCNT/PANI-CE exhibits a high power conversion efficiency (PCE) of 7.52%. • GNS/MWCNT/PANI composite has a high catalytic activity for the reduction of I{sub 3}{sup −}. • GNS/MWCNT/PANI composite has a low R{sub CT} on the electrolyte/CE interface. - Abstract: A graphene-based nanosheet composite/multiwalled carbon nanotube/polyaniline (GNS/MWCNT/PANI) was synthesized via an in situ polymerization technique and applied by the spin-coating method as a counter electrode (CE) in dye-sensitized solar cells (DSSCs). The combination of the high catalytic activity of PANI and outstanding conductivity of GNS/MWCNT improved the photovoltaic performance of the hybrid CE. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) showed that the GNS/MWCNT/PANI composite has high catalytic activity for the reduction of triiodide to iodide and low charge-transfer resistance at the electrolyte/electrode interface. Transmission electron microscopy (TEM) images showed that the GNS/MWCNT/PANI-CE has a rough and porous structure and X-ray diffraction analysis confirmed the formation of PANI coating on the surface of the GNS/CNT. In particular, current–voltage measurements showed the superior power conversion efficiency (PCE) of 7.52% of the DSSC based on GNS/MWCNT/PANI-CE compared to the PCE of 6.69% of the DSSC based on Pt-CE.

  4. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye

    NASA Astrophysics Data System (ADS)

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-01

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.

  5. Hierarchical porous photoanode based on acid boric catalyzed sol for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Maleki, Khatereh; Abdizadeh, Hossein; Golobostanfard, Mohammad Reza; Adelfar, Razieh

    2017-02-01

    The hierarchical porous photoanode of the dye sensitized solar cell (DSSC) is synthesized through non-aqueous sol-gel method based on H3BO3 as an acid catalyst and the efficiencies of the fabricated DSSC based on these photoanodes are compared. The sol parameters of 0.17 M, water mole ratio of 4.5, acid mole ratio of 0.45, and solvent type of ethanol are introduced as optimum parameters for photoanode formation without any detectable cracks. The optimized hierarchical photoanode mainly contains anatase phase with slight shift toward higher angles, confirming the doping of boron into titania structure. Moreover, the porous structure involves two ranges of average pore sizes of 20 and 635 nm. The diffuse reflectance spectroscopy (DRS) shows the proper scattering and blueshift in band gap. The paste parameters of solid:liquid, TiO2:ethyl cellulose, and terpineol:ethanol equal to 11:89, 3.5:7.5, and 25:64, respectively, are assigned as optimized parameters for this novel paste. The photovoltaic properties of short circuit current density, open circuit voltage, fill factor, and efficiency of 5.89 mA/cm2, 703 mV, 0.7, and 2.91% are obtained for the optimized sample, respectively. The relatively higher short circuit current of the main sample compared to other samples is mainly due to higher dye adsorption in this sample corresponding to its higher surface area and presumably higher charge transfer confirmed by low RS and Rct in electrochemical impedance spectroscopy data. Boric acid as a catalyst in titania sol not only forms hierarchical porous structure, but also dopes the titania lattice, which results in appreciated performance in this device.

  6. Large-scale G W -BSE calculations with N3 scaling: Excitonic effects in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Marsili, Margherita; Mosconi, Edoardo; De Angelis, Filippo; Umari, Paolo

    2017-02-01

    Excitonic effects due to electron-hole coupling play a fundamental role in renormalizing energy levels in dye sensitized and organic solar cells determining the driving force for electron extraction. We show that first-principles calculations based on many-body perturbation theory within the G W -BSE approach provide a quantitative picture of interfacial excited state energetics in organic dye-sensitized TiO2, delivering a general rule for evaluating relevant energy levels. To perform G W -BSE calculations in such large systems we introduce a scheme based on maximally localized Wannier' s functions. With this method the overall scaling of G W -BSE calculations is reduced from O (N4 ) to O (N3 ).

  7. Obviating the requirement for oxygen in SnO2-based solid-state dye-sensitized solar cells.

    PubMed

    Docampo, Pablo; Snaith, Henry J

    2011-06-03

    Organic semiconductors employed in solar cells are perfectly stable to solar irradiation provided oxygen content can be kept below 1 ppm. Paradoxically, the state-of-the-art molecular hole-transporter-based solid-state dye-sensitized solar cells only operate efficiently if measured in an atmosphere containing oxygen. Without oxygen, these devices rapidly lose photovoltage and photocurrent and are rendered useless. Clearly this peculiar requirement has detrimental implications to the long term stability of these devices. Through characterizing the solar cells in air and in oxygen-free atmospheres, and considering the device architecture, we identify that direct contact between the metallic cathode and the mesoporous metal oxide photo-anode is responsible for a shunting path through the device. This metal-metal oxide contact forms a Schottky barrier under ambient conditions and the barrier is suitably high so as to prevent significant shunting of the solar cells. However, under light absorption in an anaerobic atmosphere the barrier reduces significantly, opening a low resistance shunting path which dominates the current-voltage characteristics in the solar cell. By incorporating an extra interlayer of insulating mesoporous aluminum oxide, on top of the mesoporous semiconducting metal oxide electrode, we successfully block this shunting path and subsequently the devices operate efficiently in an oxygen-free atmosphere, enabling the possibility of long term stability of solid-state dye-sensitized solar cells.

  8. Optoelectronic and Photovoltaic Performances of Pyridine Based Monomer and Polymer Capped ZnO Dye-Sensitized Solar Cells.

    PubMed

    Singh, Satbir; Raj, Tilak; Singh, Amarpal; Kaur, Navneet

    2016-06-01

    The present research work describes the comparative analysis and performance characteristics of 4-pyridine based monomer and polymer capped ZnO dye-sensitized solar cells. The N, N-dimethyl-N4-((pyridine-4yl)methylene) propaneamine (4,monomer) and polyamine-4-pyridyl Schiff base (5, polymer) dyes were synthesized through one step condensation reaction between 4-pyridinecarboxaldehyde 1 and N, N-dimethylpropylamine 2/polyamine 3. Products obtained N, N-dimethyl-N4-((pyridine-4yl)methylene)propaneamine (4) and polyamine-4-pyridyl Schiff base (5) were purified and characterized using 1H, 13C NMR, mass, IR and CHN spectroscopy. Both the dyes 4 and 5 were further coated over ZnO nanoparticles and characterized using SEM, DLS and XRD analysis. Absorption profile and emission profile was monitored using fluorescence and UV-Vis absorption spectroscopy. A thick layer of these inbuilt dye linked ZnO nanoparticles of dyes (4) and (5) was pasted on one of the conductive side of ITO glass followed with a liquid electrolyte and counter electrode of the same conductive glass. Polyamine-4-pyridyl Schiff base polymer (5) decorated dye sensitized solar cell has shown better exciting photovoltaic properties in the form of short circuit current density (J(sc) = 6.3 mA/cm2), open circuit photo voltage (V(oc) = 0.7 V), fill factor (FF = 0.736) than monomer decorated dye sensitized solar cell. Polymer dye (5) based ZnO solar cell has shown a maximum solar power to electrical conversion efficiency of 3.25%, which is enhanced by 2.16% in case of monomer dye based ZnO solar cell under AM 1.5 sun illuminations.

  9. Combination of optical and electrical loss analyses for a Si-phthalocyanine dye-sensitized solar cell.

    PubMed

    Lin, Keng-Chu; Wang, Lili; Doane, Tennyson; Kovalsky, Anton; Pejic, Sandra; Burda, Clemens

    2014-12-11

    In order to promote the development of solar cells with varying types of sensitizers including dyes and quantum dots, it is crucial to establish a general experimental analysis that accounts for all important optical and electrical losses resulting from interfacial phenomena. All of these varying types of solar cells share common features where a mesoporous scaffold is used as a sensitizer loading support as well as an electron transport material, which may result in light scattering. The loss of efficiency at interfaces of the sensitizer, the mesoporous TiO2 nanoparticle films, the FTO conductive layer, and the supportive glass substrate should be considered in addition to the photoinduced electron transport properties within a cell. On the basis of optical parameters, one can obtain the internal quantum efficiency (IQE) of a solar cell, an important parameter that cannot be directly measured but must be derived from several key experiments. By integrating an optical loss model with an electrical loss model, many solar cell parameters could be characterized from electro-optical observables including reflectance, transmittance, and absorptance of the dye sensitizer, the electron injection efficiency, and the charge collection efficiency. In this work, an integrated electro-optical approach has been applied to SiPc (Pc 61) dye-sensitized solar cells for evaluating the parameters affecting the overall power conversion efficiency. The absorptance results of the Pc 61 dye-sensitized solar cell provide evidence that the adsorbed Pc 61 forms noninjection layers on TiO2 surfaces when the dye immersion time exceeds 120 min, resulting in shading light from the active layer rather than an increase in photoelectric current efficiency.

  10. Efficiency enhancement for dye-sensitized solar cells with a porous NiO/Pt counter electrode

    NASA Astrophysics Data System (ADS)

    Maiaugree, Wasan; Kongprakaiwoot, Natcharee; Tangtrakarn, Apishok; Saekow, Samarn; Pimanpang, Samuk; Amornkitbamrung, Vittaya

    2014-01-01

    Bi-layer counter electrodes made of platinum films (Pt) coated on porous nickel oxide nanosheets (PNO) were investigated for a dye sensitized solar cell (DSSC). The PNO and Pt films were deposited using a chemical bath deposition and a DC sputtering technique, respectively. Connected networks of sputtered Pt on PNO nanosheets significantly enhanced electrocatalytic activities due to the increase in the electroactive areas. The solar conversion efficiency of the FTO/PNO/Pt DSSC was 8.17% in comparison to 7.23% for the FTO/Pt DSSC.

  11. The growth mechanism of ordered mesoporous electrodes in view of their response in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Mohan, Devendra; Jyoti, Divya; Dhar, Rakesh; Singh, Amrik

    2013-06-01

    The effect of morphology of photoelectrode films on photoelectrochemical properties of solar cells has been studied. Crack free mesoporous anatase and rutile films of thickness˜16μm have been synthesized and characterized in concern with their use in dye-sensitized solar cells (DSSC). Surface morphologies have been studied with the help of scanning electron microscopy (SEM). The open-circuit photovoltage for mesoporous anatase and rutile based cells is approximately same but short-circuit photocurrent of mesoporous rutile based cell is lower than that of the mesoporous anatase based cell.

  12. DFT and TD-DFT study on geometries, electronic structures and electronic absorption of some metal free dye sensitizers for dye sensitized solar cells.

    PubMed

    Mohr, T; Aroulmoji, V; Ravindran, R Samson; Müller, M; Ranjitha, S; Rajarajan, G; Anbarasan, P M

    2015-01-25

    The geometries, electronic structures, polarizabilities and hyperpolarizabilities of 2-hydroxynaphthalene-1,4-dione (henna1), 3-(5-((1E)-2-(1,4-dihydro-1,4-dioxonaphthalen-3-yloxy) vinyl) thiophen-2-yl)-2-isocyanoacrylic acid (henna2) and anthocyanin dye sensitizers were studied based on density functional theory (DFT) using the hybrid functional B3LYP. The Ultraviolet-Visible (UV-Vis) spectrum was investigated by using a hybrid method which combines the properties and dynamics of many-body in the presence of time-dependent (TD) potentials, i.e. TDSCF-DFT (B3LYP). Features of the electronic absorption spectrum in the visible and near-UV regions were plotted and assigned based on TD-DFT calculations. Due to the absorption, bands of the metal-organic compound are n→π(*) present. The calculated results suggest that the three lowest energy excited states of the investigated dye sensitizers are due to photoinduced electron transfer processes. The interfacial electron transfer between semiconductor TiO2 electrode and dye sensitizer is owing to an electron injection process from excited dye to the semiconductor's conduction band. The role of linking the henna1 dye with a carboxylic acid via a thiophene bridge was analyzed. The results are that using a stronger π-conjugate bridge as well as a strong donator and acceptor group enhances the efficiency.

  13. Nanostructured Zinc Oxide Materials for Use as Dye Sensitized Solar Cell Working Electrodes and Photocatalysts

    NASA Astrophysics Data System (ADS)

    Chang, Roger

    Since their invention in 1991, dye-sensitized solar cells (DSCs) have been the subject of intense research interest owing to their low cost, ease of manufacture and potential for low-light applications. In this thesis, the focus is on replacing TiO2 with ZnO, a semiconductor that exhibits much higher electron mobility. The shape of the ZnO nanomaterial is investigated in order to determine if shape and connectivity play a role in how best to exploit the high electron mobility of ZnO. When ZnO nanoparticles are replaced with 1-D nanowires in a DSC, it has been shown that electron transport is improved as measured by faster electron transport times and high electron diffusion coefficients. However, despite these electron transport advantages, ZnO nanowire-based DSCs still suffer from lower efficiencies than ZnO nanoparticle-based DSCs because of their much smaller surface area for dye loading. In the thesis work, zinc oxide nanorods are introduced as a compromise material that can maintain a large surface area, while taking advantage of 1-D fast electron transport. It is shown that by changing the shape of the semiconductor nanomaterial to elongated nanorods, electron transport time, electron lifetime, electron diffusivity and other measures of DSC performance are enhanced. Additionally, electrodeposition into hard templates was used to fabricate ZnO nanowires with magnetic Ni caps. The electrodeposited Ni-ZnO nanowires are shown to be useful in catalyzing the photodegradation of methylene blue (MB) , a model organic dye, and the result is compared to ZnO nanoparticles. The elongated shape of the nanowires is expected to prevent the aggregation that reduces the catalytic efficacy of ZnO nanoparticles, whereas the Ni segment is expected to enhance photocatalysis by increasing the production of radical hydroxide species that degrade the dye. Our experiments show that Ni-ZnO nanowires are more effective photocatalysts than ZnO nanoparticles as measured by the decrease

  14. Dye sensitized solar cells based on nanowire sculptured thin film titanium dioxide photoanodes

    NASA Astrophysics Data System (ADS)

    Pursel, Sean M.

    Energy harvested from the sun using photovoltaics (PVs) is a renewable resource in high demand. Photovoltaics convert photons into electron-hole pairs which are then separated and used for electrical power. 75 TW of energy arrives from the sun every year onto US soil. Harvesting it all would provide enough energy to power the entire world for more than five years. It is this abundance of energy that makes PVs an attractive alternative to fossil fuels. PVs currently produce 0.15% of the energy consumed in the US. Production needs to grow as the worldwide demand for energy is projected to almost double by 2050. Fundamental and device based PV research have made steady efficiency gains in silicon based devices and thin film devices have started to become commercially viable. However, less expensive devices with suitable efficiency have not been fully developed. Dye sensitized solar cells (DSSCs) are one such device which has been optimized using standard components. However, device efficiency has not increased significantly since DSSCs were first conceived in 1991. Interestingly, none of the standard components are optimized, but act in a synergistic way in the most efficient devices. This research, along with other parallel research, attempts to optimize a single component of DSSCs with the goal of combining efforts to produce a device with increased efficiency. This research attempts to optimize the TiO2 photoanode used in DSSCs in terms of electron collection, dye coverage, light harvesting, and novel electrolyte infiltration by replacing the standard colloidal structure with nanowires deposited using physical vapor deposition at an oblique angle to form sculptured thin films. The results are quantified through standard photovoltaic testing, electrochemical impedance spectroscopy, UV-Vis-NIR spectroscopy, and general materials characterization techniques. The nanowire photoanodes are engineered during deposition using reactive evaporation, substrate heating

  15. Dye sensitized photovoltaic miniaturized solar cells, used as optical sensors for line of sight detection

    NASA Astrophysics Data System (ADS)

    Cesar, Cortes Torres Carlos; Sampei, Kota; Miho, Ogawa; Masataka, Ozawa; Norihisa, Miki

    2014-11-01

    Dye sensitized photovoltaic devices have been studied as transparent and low-cost solar cells. Our group have miniaturized the cells and used them as transparent optical sensors. This paper reports the design and fabrication of the cells and avoids the cross talk among cells, which was found recently and such effect provokes hardware instability. We use these optical sensors as an eye tracking device. The sensor array detects the difference in the intensity of light reflected from the pupil and the sclera and then determines the pupil position. Each sensor consists of two electrodes and electrolyte; hence our device conformed by only four semi-circular shaped sensors on eyeglasses can detect the view angle in both horizontal and vertical directions. Manufacturing process gives us freedom to easily re-arrange, add or remove sensors. In our prior work we had good performance in stand-alone configuration. We used specialized equipment from National Instruments for our measurements. However we found that: A cell is not 100% independent from the others, is affected by the absence or presence of light at the neighbour cells. When our device is connected to other electronic devices (for data processing), all cells have the same voltage among them; therefore, all cells behave the same way when any of them is affected by light. The root cause is, due to all sensors were interconnected via a micro channel and filled with electrolyte, due to its conductive properties, electrolyte does neither need electrodes nor physical paths to conduct electricity, so it creates a liquid wire between sensors, hence the gap between them become inexistent, consequently when our device is connected to other electronic devices, due to this unique channel and by sharing a common electronic ground, this connection provokes the voltage to be the same among all sensors in the array. Our device becomes four separate voltage lines in a parallel circuit. The device was also in short circuit provoked

  16. Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells

    SciTech Connect

    Chang, Ho; Lo, Yu-Jen

    2010-10-15

    This study employs chlorophyll extract from pomegranate leaf and anthocyanin extract from mulberry fruit as the natural dyes for a dye-sensitized solar cell (DSSC). A self-developed nanofluid synthesis system is employed to prepare TiO{sub 2} nanofluid with an average particle size of 25 nm. Electrophoresis deposition was performed to deposit TiO{sub 2} nanoparticles on the indium tin oxide (ITO) conductive glass, forming a TiO{sub 2} thin film with the thickness of 11 {mu}m. Furthermore, this TiO{sub 2} thin film was sintered at 450 C to enhance the thin film compactness. Sputtering was used to prepare counter electrode by depositing Pt thin film on FTO glass at a thickness of 20 nm. The electrodes, electrolyte (I{sub 3}{sup -}), and dyes were assembled into a cell module and illuminated by a light source simulating AM 1.5 with a light strength of 100 mW/cm{sup 2} to measure the photoelectric conversion efficiency of the prepared DSSCs. According to experimental results, the conversion efficiency of the DSSCs prepared by chlorophyll dyes from pomegranate leaf extract is 0.597%, with open-circuit voltage (V{sub OC}) of 0.56 V, short-circuit current density (J{sub SC}) of 2.05 mA/cm{sup 2}, and fill factor (FF) of 0.52. The conversion efficiency of the DSSCs prepared by anthocyanin dyes from mulberry extract is 0.548%, with V{sub OC} of 0.555 V and J{sub SC} of 1.89 mA/cm{sup 2} and FF of 0.53. The conversion efficiency is 0.722% for chlorophyll and anthocyanin as the dye mixture, with V{sub OC} of 0.53 V, J{sub SC} of 2.8 mA/cm{sup 2}, and FF of 0.49. (author)

  17. Synthesis and characterization of ZnO and ZnO:Ga films and their application in dye-sensitized solar cells.

    PubMed

    de Souza Gonçalves, Agnaldo; Davolos, Marian Rosaly; Masaki, Naruhiko; Yanagida, Shozo; Morandeira, Ana; Durrant, James R; Freitas, Jilian Nei; Nogueira, Ana Flávia

    2008-03-21

    Highly crystalline ZnO and Ga-modified zinc oxide (ZnO:Ga) nanoparticles containing 1, 3 and 5 atom% of Ga3+ were prepared by precipitation method at low temperature. The films were characterized by XRD, BET, XPS and SEM. No evidence of zinc gallate formation (ZnGa2O4), even in the samples containing 5 atom% of gallium, was detected by XRD. XPS data revealed that Ga is present into the ZnO matrix as Ga3+, according to the characteristic binding energies. The particle size decreased as the gallium level was increased as observed by SEM, which might be related to a faster hydrolysis reaction rate. The smaller particle size provided films with higher porosity and surface area, enabling a higher dye loading. When these films were applied to dye-sensitized solar cells (DSSCs) as photoelectrodes, the device based on ZnO:Ga 5 atom% presented an overall conversion efficiency of 6% (at 10 mW cm(-2)), a three-fold increase compared to the ZnO-based DSSCs under the same conditions. To our knowledge, this is one of the highest efficiencies reported so far for ZnO-based DSSCs. Transient absorption (TAS) study of the photoinduced dynamics of dye-sensitized ZnO:Ga films showed that the higher the gallium content, the higher the amount of dye cation formed, while no significant change on the recombination dynamics was observed. The study indicates that Ga-modification of nanocrystalline ZnO leads to an improvement of photocurrent and overall efficiency in the corresponding device.

  18. Impact of the molecular structure and adsorption mode of D-π-A dye sensitizers with a pyridyl group in dye-sensitized solar cells on the adsorption equilibrium constant for dye-adsorption on TiO2 surface.

    PubMed

    Ooyama, Yousuke; Yamaguchi, Naoya; Ohshita, Joji; Harima, Yutaka

    2016-12-07

    D-π-A dyes NI-4 bearing a pyridyl group, YNI-1 bearing two pyridyl groups and YNI-2 bearing two thienylpyridyl groups as the anchoring group on the TiO2 surface have been developed as dye sensitizers for dye-sensitized solar cells (DSSCs), where NI-4 and YNI-2 can adsorb onto the TiO2 electrode through the formation of the coordinate bond between the pyridyl group of the dye and the Lewis acid site (exposed Ti(n+) cations) on the TiO2 surface, but YNI-1 is predominantly adsorbed on the TiO2 electrode through the formation of the hydrogen bond between the pyridyl group of the dye and the Brønsted acid sites (surface-bound hydroxyl groups, Ti-OH) on the TiO2 surface. The difference in the dye-adsorption mode among the three dyes on the TiO2 surface has been investigated from the adsorption equilibrium constant (Kad) based on the Langmuir adsorption isotherms. It was found that the Kad values of YNI-1 and YNI-2 are higher than that of NI-4, and more interestingly, the Kad value of YNI-2 is higher than that of YNI-1. This work demonstrates that that for the D-π-A dye sensitizers with the pyridyl group as the anchoring group to the TiO2 surface the number of pyridyl groups and the dye-adsorption mode on the TiO2 electrode as well as the molecular structure of the dye sensitizer affect the Kad value for the adsorption of the dye to the TiO2 electrode, that is, resulting in a difference in the Kad value among the D-π-A dye sensitizers NI-4, YNI-1 and YNI-2.

  19. Self-ordering anodized nanotubes: Enhancing the performance by surface plasmon for dye-sensitized solar cell

    SciTech Connect

    Agarwala, S.; Ho, G.W.

    2012-05-15

    In the present work, electrochemical anodization has been used to prepare uniform TiO{sub 2} nanotube array photoelectrode. The average internal diameter, tube length and wall thickness of the optimized morphology is {approx}180 nm, 14 {mu}m and 10 nm, respectively. It was found that the tube diameter increases with the anodization voltage. Diffraction data reveals that the nanotubes consist solely of anatase phase. Back illuminated geometry of dye-sensitized solar cell (DSSC), with nanotubes grown at 60 V for 2 h, gave a cell performance of 4.5%. TiO{sub 2} nanotubes are loaded with silver (Ag) nanoparticles synthesized by a hydrothermal route. The Ag particle size is controlled resulting in solar conversion efficiency to increase by 22%. The DSSC based on TiO{sub 2} nanotube with Ag nanoparticles shows power conversion efficiency of 5.5%. Detailed characterization are performed, presented and discussed. - Graphical abstract: Enhanced solar conversion efficiency of dye-sensitized solar cells by decorating TiO{sub 2} nanotube array with Ag nanoparticles. Highlights: Black-Right-Pointing-Pointer Uniform array of TiO{sub 2} nanotubes synthesized via electrochemical anodization. Black-Right-Pointing-Pointer Back illuminated DSSC gave a cell performance of 4.5%. Black-Right-Pointing-Pointer TiO{sub 2} nanotubes are loaded with Ag nanoparticles, which increased the power conversion efficiency to 5.5%.

  20. Influence of Nitrogen Doping on Device Operation for TiO₂-Based Solid-State Dye-Sensitized Solar Cells: Photo-Physics from Materials to Devices.

    PubMed

    Wang, Jin; Tapio, Kosti; Habert, Aurélie; Sorgues, Sebastien; Colbeau-Justin, Christophe; Ratier, Bernard; Scarisoreanu, Monica; Toppari, Jussi; Herlin-Boime, Nathalie; Bouclé, Johann

    2016-02-23

    Solid-state dye-sensitized solar cells (ssDSSC) constitute a major approach to photovoltaic energy conversion with efficiencies over 8% reported thanks to the rational design of efficient porous metal oxide electrodes, organic chromophores, and hole transporters. Among the various strategies used to push the performance ahead, doping of the nanocrystalline titanium dioxide (TiO₂) electrode is regularly proposed to extend the photo-activity of the materials into the visible range. However, although various beneficial effects for device performance have been observed in the literature, they remain strongly dependent on the method used for the production of the metal oxide, and the influence of nitrogen atoms on charge kinetics remains unclear. To shed light on this open question, we synthesized a set of N-doped TiO₂ nanopowders with various nitrogen contents, and exploited them for the fabrication of ssDSSC. Particularly, we carefully analyzed the localization of the dopants using X-ray photo-electron spectroscopy (XPS) and monitored their influence on the photo-induced charge kinetics probed both at the material and device levels. We demonstrate a strong correlation between the kinetics of photo-induced charge carriers probed both at the level of the nanopowders and at the level of working solar cells, illustrating a direct transposition of the photo-physic properties from materials to devices.

  1. Electronic optimization of heteroleptic Ru(II) bipyridine complexes by remote substituents: synthesis, characterization, and application to dye-sensitized solar cells.

    PubMed

    Han, Won-Sik; Han, Jung-Kyu; Kim, Hyun-Young; Choi, Mi Jin; Kang, Yong-Soo; Pac, Chyongjin; Kang, Sang Ook

    2011-04-18

    We prepared a series of new heteroleptic ruthenium(II) complexes, Ru(NCS)(2)LL' (3a-3e), where L is 4,4'-di(hydroxycarbonyl)-2,2'-bipyridine and L' is 4,4'-di(p-X-phenyl)-2,2'-pyridine (X = CN (a), F (b), H (c), OMe (d), and NMe(2) (e)), in an attempt to explore the structure-activity relationships in their photophysical and electrochemical behavior and in their performance in dye-sensitized solar cells (DSSCs). When substituent X is changed from electron-donating NMe(2) to electron-withdrawing CN, the absorption and emission maxima reveal systematic bathochromic shifts. The redox potentials of these dyes are also significantly influenced by X. The electronic properties of the dyes were theoretically analyzed using density functional theory calculations; the results show good correlations with the experimental results. The solar-cell performance of DSSCs based on dye-grafted nanocrystalline TiO(2) using 3a-3e and standard N3 (bis[(4,4'-carboxy-2,2'-bipyridine)(thiocyanato)]ruthenium(II)) were compared, revealing substantial dependences on the dye structures, particularly on the remote substituent X. The 3d-based device showed the best performance: η = 8.30%, J(SC) = 16.0 mA·cm(-2), V(OC) = 717 mV, and ff = 0.72. These values are better than N3-based device.

  2. Influence of Nitrogen Doping on Device Operation for TiO2-Based Solid-State Dye-Sensitized Solar Cells: Photo-Physics from Materials to Devices

    PubMed Central

    Wang, Jin; Tapio, Kosti; Habert, Aurélie; Sorgues, Sebastien; Colbeau-Justin, Christophe; Ratier, Bernard; Scarisoreanu, Monica; Toppari, Jussi; Herlin-Boime, Nathalie; Bouclé, Johann

    2016-01-01

    Solid-state dye-sensitized solar cells (ssDSSC) constitute a major approach to photovoltaic energy conversion with efficiencies over 8% reported thanks to the rational design of efficient porous metal oxide electrodes, organic chromophores, and hole transporters. Among the various strategies used to push the performance ahead, doping of the nanocrystalline titanium dioxide (TiO2) electrode is regularly proposed to extend the photo-activity of the materials into the visible range. However, although various beneficial effects for device performance have been observed in the literature, they remain strongly dependent on the method used for the production of the metal oxide, and the influence of nitrogen atoms on charge kinetics remains unclear. To shed light on this open question, we synthesized a set of N-doped TiO2 nanopowders with various nitrogen contents, and exploited them for the fabrication of ssDSSC. Particularly, we carefully analyzed the localization of the dopants using X-ray photo-electron spectroscopy (XPS) and monitored their influence on the photo-induced charge kinetics probed both at the material and device levels. We demonstrate a strong correlation between the kinetics of photo-induced charge carriers probed both at the level of the nanopowders and at the level of working solar cells, illustrating a direct transposition of the photo-physic properties from materials to devices. PMID:28344292

  3. In situ monitoring and optimization of room temperature ultra-fast sensitization for dye-sensitized solar cells.

    PubMed

    Davies, Matthew L; Watson, Trystan M; Holliman, Peter J; Connell, Arthur; Worsley, David A

    2014-10-25

    We describe the fastest dyeing of TiO2 photo-electrodes for dye-sensitized solar cells reported to date (<2 min) at room temperature giving η = 7.5% for an N719-SQ1-CDCA mixture which is significantly higher than devices dyed for >12 h using the same dye mixture (η = 5.5%). Time-lapse photography has been used to monitor the ultra-fast co-sensitization. The data show significantly different dye uptake between passive and pump dyeing reflecting competitive sorption between a Ru complex (N719) and an organic dye (SQ1).

  4. Fabrication and characterization of carbon-based counter electrodes prepared by electrophoretic deposition for dye-sensitized solar cells

    PubMed Central

    2012-01-01

    Three different carbon-based counter electrodes are investigated in light of catalytic activities such as electrochemical frequencies and interface impedances. We fabricated carbon-based counter electrodes of dye-sensitized solar cells [DSSCs] using graphene, single-walled carbon nanotubes [SWNTs], and graphene-SWNT composites by electrophoretic deposition method. We observed the optical and electrochemical properties of the carbon-based counter electrodes. The DSSC with the graphene-deposited counter electrode demonstrated the best conversion efficiency of 5.87% under AM 1.5 and 1 sun condition. It could be utilized for a low-cost and high-throughput process for DSSCs. PMID:22221501

  5. Enhanced efficiency of the dye-sensitized solar cells by excimer laser irradiated carbon nanotube network counter electrode

    SciTech Connect

    Chien, Yun-San Fu, Wei-En; Yang, Po-Yu; Lee, I-Che; Chu, Chih-Chieh; Chou, Chia-Hsin; Cheng, Huang-Chung

    2014-02-03

    The carbon nanotube network decorated with Pt nanoparticles (PtCNT) irradiated by excimer laser as counter electrode (CE) of dye-sensitized solar cells (DSSCs) has been systematically demonstrated. The conversion efficiency would be improved from 7.12% to 9.28% with respect to conventional Pt-film one. It was attributed to the enhanced catalytic surface from Pt nanoparticles and the improved conductivity due to the adjoining phenomenon of PtCNTs irradiated by laser. Moreover, the laser annealing could also promote the interface contact between CE and conductive glass. Therefore, such a simple laser-irradiated PtCNT network is promising for the future flexible DSSCs applications.

  6. Large-Sized Dye-Sensitized Solar Cells with TiO2 Cemented and Protected Silver Grids

    NASA Astrophysics Data System (ADS)

    Lan, Zhang; Wu, Jihuai; Lin, Jianming; Miaoliang

    2012-03-01

    Large-sized dye-sensitized solar cells were prepared with TiO2 cemented and protected Ag grids in the photo and counter electrodes. The addition of high conductive TiO2 cemented Ag grids can maintain high performance with the enlargement of the cells. The preparation of the compact TiO2 layer on the Ag grids can prevent the corrosion of the electrolyte, moreover, when it is prepared on the whole area of the photo electrode, it also can play as the blocking layer for further enhancing the performance of cells. The presented method shows a simple and efficient way to prepare high performance large single cells.

  7. A small electron donor in cobalt complex electrolyte significantly improves efficiency in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hao, Yan; Yang, Wenxing; Zhang, Lei; Jiang, Roger; Mijangos, Edgar; Saygili, Yasemin; Hammarström, Leif; Hagfeldt, Anders; Boschloo, Gerrit

    2016-12-01

    Photoelectrochemical approach to solar energy conversion demands a kinetic optimization of various light-induced electron transfer processes. Of great importance are the redox mediator systems accomplishing the electron transfer processes at the semiconductor/electrolyte interface, therefore affecting profoundly the performance of various photoelectrochemical cells. Here, we develop a strategy--by addition of a small organic electron donor, tris(4-methoxyphenyl)amine, into state-of-art cobalt tris(bipyridine) redox electrolyte--to significantly improve the efficiency of dye-sensitized solar cells. The developed solar cells exhibit efficiency of 11.7 and 10.5%, at 0.46 and one-sun illumination, respectively, corresponding to a 26% efficiency improvement compared with the standard electrolyte. Preliminary stability tests showed the solar cell retained 90% of its initial efficiency after 250 h continuous one-sun light soaking. Detailed mechanistic studies reveal the crucial role of the electron transfer cascade processes within the new redox system.

  8. Self-assembled molecular p/n junctions for applications in dye-sensitized solar energy conversion.

    PubMed

    Farnum, Byron H; Wee, Kyung-Ryang; Meyer, Thomas J

    2016-09-01

    The achievement of long-lived photoinduced redox separation lifetimes has long been a central goal of molecular-based solar energy conversion strategies. The longer the redox-separation lifetime, the more time available for useful work to be extracted from the absorbed photon energy. Here we describe a novel strategy for dye-sensitized solar energy applications in which redox-separated lifetimes on the order of milliseconds to seconds can be achieved based on a simple toolkit of molecular components. Specifically, molecular chromophores (C), electron acceptors (A) and electron donors (D) were self-assembled on the surfaces of mesoporous, transparent conducting indium tin oxide nanoparticle (nanoITO) electrodes to prepare both photoanode (nanoITO|-A-C-D) and photocathode (nanoITO|-D-C-A) assemblies. Nanosecond transient-absorption and steady-state photolysis measurements show that the electrodes function microscopically as molecular analogues of semiconductor p/n junctions. These results point to a new chemical strategy for dye-sensitized solar energy conversion based on molecular excited states and electron acceptors/donors on the surfaces of transparent conducting oxide nanoparticle electrodes.

  9. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells.

    PubMed

    Ananth, S; Vivek, P; Arumanayagam, T; Murugakoothan, P

    2014-07-15

    Natural dye extract of lawsonia inermis seed were used as photo sensitizer to fabricate titanium dioxide nanoparticles based dye sensitized solar cells. Pure titanium dioxide (TiO2) nanoparticles in anatase phase were synthesized by sol-gel technique and pre dye treated TiO2 nanoparticles were synthesized using modified sol-gel technique by mixing lawsone pigment rich natural dye during the synthesis itself. This pre dye treatment with natural dye has yielded colored TiO2 nanoparticles with uniform adsorption of natural dye, reduced agglomeration, less dye aggregation and improved morphology. The pure and pre dye treated TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Dye sensitized solar cells (DSSC) fabricated using the pre dye treated and pure TiO2 nanoparticles sensitized by natural dye extract of lawsonia inermis seed showed a promising solar light to electron conversion efficiency of 1.47% and 1% respectively. The pre dye treated TiO2 based DSSC showed an improved efficiency of 47% when compared to that of conventional DSSC.

  10. Improved conversion efficiency of dye sensitized solar cell using Zn doped TiO2-ZrO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Tomar, Laxmi J.; Bhatt, Piyush J.; Desai, Rahul K.; Chakrabarty, B. S.; Panchal, C. J.

    2016-05-01

    TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were prepared by hydrothermal method for dye sensitized solar cell (DSSC) application. The structural and optical properties were investigated by X -ray diffraction (XRD) and UV-Visible spectroscopy respectively. XRD results revealed the formation of material in nano size. The average crystallite size is 22.32 nm, 17.41 nm and 6.31 nm for TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites respectively. The optical bandgap varies from 2.04 eV to 3.75 eV. Dye sensitized solar cells were fabricated using the prepared material. Pomegranate juice was used as a sensitizer and graphite coated conducting glass plate was used as counter electrode. The I - V characteristics were recorded to measure photo response of DSSC. Photovoltaic parameter like open circuit voltage, power conversion efficiency, and fill factor were evaluated for fabricated solar cell. The power conversion efficiency of DSSC fabricated with TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were found 0.71%, 1.97% and 4.58% respectively.

  11. A simple recipe for an efficient TiO2 nanofiber-based dye-sensitized solar cell.

    PubMed

    Nair, A Sreekumaran; Jose, Rajan; Shengyuan, Yang; Ramakrishna, Seeram

    2011-01-01

    Development of highly efficient dye-sensitized solar cells (DSSCs) with good photovoltaic parameters is an active research area of current global interest. In this article, we provide a simple recipe for the fabrication of electrospun TiO(2) nanorod-based efficient dye-sensitized solar cell using a Pechini-type sol. The Pechini-type sol of TiO(2) nanofibers produces a highly porous and compact layer of TiO(2) upon doctor-blading and sintering without the need for an adhesion and scattering layers or TiCl(4) treatment. The best nanofiber DSSCs with an area of ~0.28 cm(2) shows an efficiency of ~4.2% under standard test conditions (100 mW/cm(2), 25°C and AM1.5 G) and an incident photon-to-electron conversion efficiency (IPCE) of ~50%. Impedance measurements show lower charge transfer resistance that improved the fill factor. We believe that simple approaches such as the present one to develop nanofiber DSSCs would open up enormous possibilities in effective harvesting of solar energy for commercial applications, considering the fact that electrospinning is a cost-effective method for the mass scale production of nanofibers and nanorods.

  12. Self-assembled molecular p/n junctions for applications in dye-sensitized solar energy conversion

    NASA Astrophysics Data System (ADS)

    Farnum, Byron H.; Wee, Kyung-Ryang; Meyer, Thomas J.

    2016-09-01

    The achievement of long-lived photoinduced redox separation lifetimes has long been a central goal of molecular-based solar energy conversion strategies. The longer the redox-separation lifetime, the more time available for useful work to be extracted from the absorbed photon energy. Here we describe a novel strategy for dye-sensitized solar energy applications in which redox-separated lifetimes on the order of milliseconds to seconds can be achieved based on a simple toolkit of molecular components. Specifically, molecular chromophores (C), electron acceptors (A) and electron donors (D) were self-assembled on the surfaces of mesoporous, transparent conducting indium tin oxide nanoparticle (nanoITO) electrodes to prepare both photoanode (nanoITO|-A-C-D) and photocathode (nanoITO|-D-C-A) assemblies. Nanosecond transient-absorption and steady-state photolysis measurements show that the electrodes function microscopically as molecular analogues of semiconductor p/n junctions. These results point to a new chemical strategy for dye-sensitized solar energy conversion based on molecular excited states and electron acceptors/donors on the surfaces of transparent conducting oxide nanoparticle electrodes.

  13. Modification of circuit module of dye-sensitized solar cells (DSSC) for solar windows applications

    NASA Astrophysics Data System (ADS)

    Hastuti, S. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2016-11-01

    This research has been conducted to obtain a modification of circuit producing the best efficiency of solar window modules as an alternative energy for daily usage. Solar window module was constructed by DSSC cells. In the previous research, solar window was created by a single cell of DSSC. Because it had small size, it could not be applied in the manufacture of solar window. Fabrication of solar window required a larger size of DSSC cell. Therefore, in the next research, a module of solar window was fabricated by connecting few cells of DSSC. It was done by using external electrical circuit method which was modified in the formation of series circuit and parallel circuit. Its fabrication used six cells of DSSC with the size of each cell was 1 cm × 9 cm. DSSC cells were sandwich structures constructed by an active layer of TiO2 as the working electrode, electrolyte solution, dye, and carbon layer. Characterization of module was started one by one, from one cell, two cells, three cells, until six cells of a module. It was conducted to recognize the increasing efficiency value as the larger surface area given. The efficiency of solar window module with series circuit was 0.06%, while using parallel circuit was 0.006%. Module with series circuit generated the higher voltage as the larger surface area. Meanwhile, module through parallel circuit tended to produce the constant voltage as the larger surface area. It was caused by the influence of resistance within the cable in each module. Module with circuit parallel used a longer cable than module with series circuit, so that its resistance increased. Therefore, module with parallel circuit generated voltage that tended to be constant and resulted small efficiency compared to the module with series circuit. It could be concluded that series external circuit was the best modification which could produce the higher efficiency.

  14. Fe(II)-Polypyridines as Chromophores in Dye-Sensitized Solar Cells: A Computational Perspective.

    PubMed

    Jakubikova, Elena; Bowman, David N

    2015-05-19

    Over the past two decades, dye-sensitized solar cells (DSSCs) have become a viable and relatively cheap alternative to conventional crystalline silicon-based systems. At the heart of a DSSC is a wide band gap semiconductor, typically a TiO2 nanoparticle network, sensitized with a visible light absorbing chromophore. Ru(II)-polypyridines are often utilized as chromophores thanks to their chemical stability, long-lived metal-to-ligand charge transfer (MLCT) excited states, tunable redox potentials, and near perfect quantum efficiency of interfacial electron transfer (IET) into TiO2. More recently, coordination compounds based on first row transition metals, such as Fe(II)-polypyridines, gained some attention as potential sensitizers in DSSCs due to their low cost and abundance. While such complexes can in principle sensitize TiO2, they do so very inefficiently since their photoactive MLCT states undergo intersystem crossing (ISC) into low-lying metal-centered states on a subpicosecond time scale. Competition between the ultrafast ISC events and IET upon initial excitation of Fe(II)-polypyridines is the main obstacle to their utilization in DSSCs. Suitability of Fe(II)-polypyridines to serve as sensitizers could therefore be improved by adjusting relative rates of the ISC and IET processes, with the goal of making the IET more competitive with ISC. Our research program in computational inorganic chemistry utilizes a variety of tools based on density functional theory (DFT), time-dependent density functional theory (TD-DFT) and quantum dynamics to investigate structure-property relationships in Fe(II)-polypyridines, specifically focusing on their function as chromophores. One of the difficult problems is the accurate determination of energy differences between electronic states with various spin multiplicities (i.e., (1)A, (1,3)MLCT, (3)T, (5)T) in the ISC cascade. We have shown that DFT is capable of predicting the trends in the energy ordering of these electronic

  15. Effect of testing conditions on the photovoltaic performance of ZnO-based dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gonzalez-Valls, Irene; Lira-Cantu, Mónica

    Dye-sensitized solar cells based on vertically-aligned ZnO nanorod, were analyzed at different conditions. Stability tests showed an improvement on solar conversion efficiency between ˜20% (1000 W/m2) and ˜50% (1800 W/m2). This behavior was ascribed to the physisorption/chemisorption of the N-719 dye on the ZnO due to UV light. Studies at different temperatures proved that the performance of the cells can double when decreasing temperature from 72 ∘C to room temperature. An increase on the efficiency and decrease in FF was observed when light intensity is increased. IPCE analyses were used to monitor the stability of the solar cells with time.

  16. Surfactant free most probable TiO2 nanostructures via hydrothermal and its dye sensitized solar cell properties

    PubMed Central

    Mali, Sawanta S.; Kim, Hyungjin; Shim, Chang Su; Patil, Pramod S.; Kim, Jin Hyeok; Hong, Chang Kook

    2013-01-01

    Tailoring the nano-morphology and nano-architecture of titanium dioxide (TiO2) is the most important task in the third generation solar cells (Dye sensitized solar cells/Quantum dot sensitized solar cells) (DSSCs/QDSSCs). In this article we present complete study of surfactant free synthesis of TiO2 nanostructures by a simple and promising hydrothermal route. The plethora of nanostructures like nanoparticles clusters, 1D tetragonal nanorods, 3D dendrites containing nanorods having <30 nm diameter and 3D hollow urchin like have been synthesized. These nanostructures possess effective large surface area and thus useful in DSSCs. In the present work, 7.16% power conversion efficiency has been demonstrated for 3D dendritic hollow urchin like morphology. Our synthetic strategy provides an effective solution for surfactant free synthesis of efficient TiO2 nanoarchitectures. PMID:24141599

  17. Quasi-solid electrolyte with polyamidoamine dendron modified-talc applied to dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Andrade, Marcos A. S.; Nogueira, Ana F.; Miettunen, Kati; Tiihonen, Armi; Lund, Peter D.; Pastore, Heloise O.

    2016-09-01

    A sequence of generations of polyamidoamine dendron modified-talc, PAMAM-talc-Gn (n = 1, 3, 5 and 7), is proposed as additive in a composite gel electrolyte for dye-sensitized solar cells. Polyiodides are intercalated into the organotalc interlamellar space by adsorption of iodine vapor, producing triiodide and polyiodides. We investigate the effect of organotalc content on the charge transport in the electrolyte and solar cell performance and optimize the organotalc content. Without the previous adsorption of iodine molecules, the organotalcs appear to remove iodine from the electrolyte solution decreasing device's performance significantly. Instead, the samples with additional iodide had higher Jsc and efficiency approaching the values of the reference cells containing liquid, which suggests that this kind of gelling method would be suitable for dye solar cells. Charge transport in the gel electrolyte is investigated with electrochemical impedance spectroscopy and cyclic voltammetry analyses using symmetrical CE-CE electrochemical cells.

  18. Development of dye-sensitized solar cells based on naturally extracted dye from the maqui berry (Aristotelia chilensis)

    NASA Astrophysics Data System (ADS)

    Leyrer, Julio; Hunter, Renato; Rubilar, Monica; Pavez, Boris; Morales, Eduardo; Torres, Simonet

    2016-10-01

    The mini modules of dye-sensitized solar cells (DSSCs) were investigated for their conversion efficiency using anthocyanin-enriched extracts from maqui berry, which to date has never been tested in a DSSC. Anthocyanins are a group of red, purple, violet and blue water-soluble polyphenolic pigments widely found in berry fruits. Maqui berries are a particularly rich source. The aqueous extract concentrations of maqui fruit were tested at 750 and 1500 mg of anthocyanin/L. The immersion time to produce sensitized TiO2 film was 8 h. According to the experimental results, the conversion efficiency of the DSSC prepared with 750 mg of anthocyanin/L was 0.14%, with an open-circuit voltage (VOC) of 0.43 V, a short-circuit current density (JSC) of 0.38 mA/cm2, and a fill factor (FF) of 0.450. The conversion efficiency attained with 1500 mg of anthocyanin/L was 0.19%, with (VOC) of 0.45 V, (JSC) of 0.44 mA/cm2 and FF of 0.55. Therefore, a higher concentration brought about a higher photosensitized performance. The maqui extracts were successfully dye sensitized over a layer of TiO2 nanoparticles, providing useful information for further studies related to the use of natural pigments as sensitizers for solar cells.

  19. The layer boundary effect on multi-layer mesoporous TiO2 film based dye sensitized solar cells

    DOE PAGES

    Xu, Feng; Zhu, Kai; Zhao, Yixin

    2016-10-10

    Multi-layer mesoporous TiO2 prepared by screen printing is widely used for fabrication of high-efficiency dye-sensitized solar cells (DSSCs). Here, we compare the three types of ~10 um thick mesoporous TiO2 films, which were screen printed as 1-, 2- and 4-layers using the same TiO2 nanocrystal paste. The layer boundary of the multi-layer mesoporous TiO2 films was observed in the cross-section SEM. The existence of a layer boundary could reduce the photoelectron diffusion length with the increase of layer number. However, the photoelectron diffusion lengths of the Z907 dye sensitized solar cells based on these different layered mesoporous TiO2 films aremore » all longer than the film thickness. Consequently, the photovoltaic performance seems to have little dependence on the layer number of the multi-layer TiO2 based DSSCs.« less

  20. Integration of TiO2 nanotube arrays into solid-state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Bandara, J.; Shankar, K.; Basham, J.; Wietasch, H.; Paulose, M.; Varghese, O. K.; Grimes, C. A.; Thelakkat, M.

    2011-02-01

    In this investigation, transparent TiO2 nanotube arrays prepared on a FTO substrate are employed as 1D nanostructures providing elongated direct pathways for electron transport and collection in solid-state dye-sensitized solar cell (SDSC). Donor-antenna (D-A) dyes provide an exciting route for improving the light harvesting efficiency in dye sensitized solar cells owing to their high molar extinction coefficients and the effective spatial separation of charges in the charge-separated state. Hence in this study we fabricated SDSC devices with different thicknesses of transparent TiO2 nanotube array electrodes sensitized with Ru-(II)-donor-antenna dye and spiro-OMeTAD as a hole conductor. At AM 1.5 G, 100 mW/cm2 illumination intensity, a power conversion efficiency of 1.94% was achieved when the TiO2 nanotubes are initially subjected to TiCl4 treatment. Furthermore, a linear increase in the cell current without loss in fill factor is observed for increasing length of TiO2 nanotubes. The structural and morphological characteristics of the transparent TiO2 nanotube arrays as well as the optimal conditions for the fabrication of SDSCs with transparent TiO2 nanotubes on FTO glass are reported.

  1. Niobium-Doped (001)-Dominated Anatase TiO2 Nanosheets as Photoelectrode for Efficient Dye-Sensitized Solar Cells.

    PubMed

    Jiang, Lei; Sun, Lei; Yang, Dong; Zhang, Jian; Li, Ya-Juan; Zou, Kun; Deng, Wei-Qiao

    2017-03-22

    TiO2 nanocrystals with different reactive facets have attracted extensive interest since they were first synthesized. The anatase TiO2 nanocrystals with (001) or (100) dominate facets were considered to be excellent electrode materials to enhance the cell performance of dye-sensitized solar cells. However, which reactive facet presents the best surface for benefiting photovoltaic effect is still unknown. We report a systematic study of various anatase TiO2 surfaces interacting with N719 dye by means of density functional theory calculations in combination with microscopic techniques. The (001) surface interacting with N719 would have the lowest work function, leading to the best photovoltaic performances. To further increase the efficiency, Nb dopant was incorporated into the anatase TiO2 nanocrystals. Based on the theoretical prediction, we proposed and demonstrated novel Nb-doped (001)-dominated anatase TiO2 nanosheets as photoelectrode in a dye-sensitized solar cell to further enhance the open-circuit voltage. And a power conversion efficiency of 10% was achieved, which was 22% higher than that of the undoped device (P25 as an electrode).

  2. Mechanisms of electron transport and recombination in ZnO nanostructures for dye-sensitized solar cells.

    PubMed

    Vega-Poot, Alberto G; Macías-Montero, Manuel; Idígoras, Jesus; Borrás, Ana; Barranco, Angel; Gonzalez-Elipe, Agustín R; Lizama-Tzec, Francisco I; Oskam, Gerko; Anta, Juan A

    2014-04-14

    ZnO is an attractive material for applications in dye-sensitized solar cells and related devices. This material has excellent electron-transport properties in the bulk but its electron diffusion coefficient is much smaller in mesoporous films. In this work the electron-transport properties of two different kinds of dye-sensitized ZnO nanostructures are investigated by small-perturbation electrochemical techniques. For nanoparticulate ZnO photoanodes prepared via a wet-chemistry technique, the diffusion coefficient is found to reproduce the typical behavior predicted by the multiple-trapping and the hopping models, with an exponential increase with respect to the applied bias. In contrast, in ZnO nanostructured thin films of controlled texture and crystallinity prepared via a plasma chemical vapor deposition method, the diffusion coefficient is found to be independent of the electrochemical bias. This observation suggests a different transport mechanism not controlled by trapping and electron accumulation. In spite of the quite different transport features, the recombination kinetics, the electron-collection efficiency and the photoconversion efficiency are very similar for both kinds of photoanodes, an observation that indicates that surface properties rather than electron transport is the main efficiency-determining factor in solar cells based on ZnO nanostructured photoanodes.

  3. Retarded hydrolysis-condensing reactivity of tetrabutyl titanate by acetylacetone and the application in dye-sensitized solar cells

    SciTech Connect

    Zhou, Conghua Ouyang, Jun; Yang, Bingchu

    2013-10-15

    Graphical abstract: - Highlights: • Effect of acetone acetyl on coarsening rate of TiO{sub 2} nanocrystallites was studied. • Hydrolysis reactivity of alkoxide was retarded with addition of acetone acetyl. • Coarsening rate of TiO{sub 2} nanocrystallites is retarded with addition of acetone acetyl. • The synthesized TiO{sub 2} sols were utilized in dye sensitized solar cells. • Small particles formed by Ti-complexes were beneficial for device performance. - Abstract: TiO{sub 2} nanocrystallites have been synthesized by hydrothermal reaction using tetrabutyl titanate as source material. Acetylacetone was utilized to modify hydrolysis-condensation behavior of the alkoxide and thus coarsening dynamics of TiO{sub 2} nanocrystallites in the reaction. With assistance of Fourier transformation infrared spectrum, transmission electron microscopy, selected area electron diffraction and X-ray diffraction, interaction between acetylacetone and tetrabutyltitanate was explored, crystallographic and morphological properties of TiO{sub 2} nanocrystallites were monitored. Less hydrolysable complex was formed by “method of chelating” as tetrabutyltitanate was mixed with acetylacetone, leading to retarded coarsening rate of nanocrystallites. The obtained TiO{sub 2} nanocrystallites were applied to fabricate nanoporous photoanode of dye sensitized solar cells. Improvement of 18% has been achieved for photo-to-electric energy conversion efficiency of the devices due to both upgraded open circuit voltage and photocurrent density.

  4. Enhanced power conversion efficiency of dye-sensitized solar cells using nanoparticle/nanotube double layered film.

    PubMed

    Sun, Kyung Chul; Yun, Sung Hoon; Yoon, Chang Hyun; Ko, Hwan Ho; Yi, Sung; Jeong, Sung Hoon

    2013-12-01

    To enhance the power conversion efficiency of dye-sensitized solar cell, a new type of double layered photoanode was prepared using TiO2 nanoparticle in under layer and TiO2 nanotube in upper layer. TiO2 nanotubes were synthesized by hydrothermal polymerization. The morphology and the properties were investigated and characterized by Field Emission-Scanning Electron Microscopy (FE-SEM), Field Emission-Transmission Electron Microscopy (FE-TEM), Wide Angle X-ray Diffraction (WAXD), Thermogravimetric analysis (TGA) and, Brunauer-Emmett-Teller test (BET). The light-to-electricity conversion efficiency was improved with the double-layered TiO2 film, which in turn, significantly increases the power conversion efficiency of dye-sensitized solar cells (DSSCs). This is due to large dye adsorption of light-scatters as well as TiO2 main layer. Moreover, rapid electron transport and light-havesting efficiency contributed to high conversion efficiency. The power conversion efficiency of an optimized cell (photoanode consisting of 13-15 microm main-layer and TNT over-layer) was 8.06% under simulated Air mass 1.5 (AM 1.5) global sunlight (1 Sun, 100 mW/cm2).

  5. High efficiency dye-sensitized solar cell based on novel TiO2 nanorod/nanoparticle bilayer electrode.

    PubMed

    Hafez, Hoda; Lan, Zhang; Li, Qinghua; Wu, Jihuai

    2010-08-26

    High light-to-energy conversion efficiency was achieved by applying novel TiO2 nanorod/nanoparticle (NR/NP) bilayer electrode in the N719 dye-sensitized solar cells. The short-circuit current density (J SC), the open-circuit voltage (V OC), the fill factor (FF), and the overall efficiency (η) were 14.45 mA/cm(2), 0.756 V, 0.65, and 7.1%, respectively. The single-crystalline TiO2 NRs with length 200-500 nm and diameter 30-50 nm were prepared by simple hydrothermal methods. The dye-sensitized solar cells with pure TiO2 NR and pure TiO2 NP electrodes showed only a lower light-to-electricity conversion efficiency of 4.4% and 5.8%, respectively, compared with single-crystalline TiO2 NRs. This can be attributed to the new NR/NP bilayer design that can possess the advantages of both building blocks, ie, the high surface area of NP aggregates and rapid electron transport rate and the light scattering effect of single-crystalline NRs.

  6. Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells.

    PubMed

    Wang, Hua; Bai, Yusong; Wu, Qiong; Zhou, Wei; Zhang, Hao; Li, Jinghong; Guo, Lin

    2011-04-21

    Hierarchical TiO(2) nanostructures would be desirable for preparing dye-sensitized solar cells because of their large amount of dye adsorption and superior light harvesting efficiency, as well as efficient charge separation and transport properties. In this study, rutile TiO(2) nano-branched arrays grown directly on transparent conductive glass (FTO) were prepared by a facile two-step wet chemical synthesis process, using a simple aqueous chemical growth method involving immersing the TiO(2) nanorod arrays in an aqueous TiCl(4) solution as seeds, which were prepared by a hydrothermal method. The dye-sensitized solar cells based on the TiO(2) nano-branched arrays which were only about 3 μm in length show a short-circuit current intensity of 10.05 mA cm(-2) and a light-to-electricity conversion efficiency of 3.75%, which is nearly three times as high as that of bare nanorod arrays, due to the preferable nanostructure, which not only retains the efficient charge separation and transport properties of the nanorod arrays, but also can improve the amount of dye adsorption due to the increased specific surface area from the nanobranches.

  7. Enhancing the efficiency of flexible dye-sensitized solar cells utilizing natural dye extracted from Azadirachta indica

    NASA Astrophysics Data System (ADS)

    Sahare, Sanjay; Veldurthi, Naresh; Singh, Ranbir; Swarnkar, A. K.; Salunkhe, Manauti; Bhave, Tejashree

    2015-10-01

    The natural dye extracted from Azadirechta indica (neem) was used as a sensitizer in flexible dye-sensitized solar cells (DSSCs). The fabricated DSSC exhibited open circuit voltage of 0.538 V with 2.81% power conversion efficiency (η) in back-illuminated mode which is higher than that reported in the literature. In order to understand the characteristics of DSSC, systematic study of solar cell component materials was carried out. Anatase TiO2 (30-40 nm) nanoparticles were synthesized by DC arc plasma method and deposited electrophoretically on a flexible titanium (Ti) substrate. A platinum-coated polyethylene terephthalate (PET) substrate was used as a counter electrode to construct flexible DSSC. The structural and optical behavior of neem-dye sensitized TiO2 thin film has been studied using x-ray diffraction, field emission scanning electron microscopy, high resolution transmission electron microscopy and UV-visible spectroscopy. We have observed that the neem dye gives a very good sensitization effect. In addition, the dye has good prospects as a low-cost and environmental friendly alternative to ruthenium-based sensitizers which are normally used in DSSCs.

  8. Enhanced Conversion Efficiencies in Dye-Sensitized Solar Cells Achieved through Self-Assembled Platinum(II) Metallacages

    PubMed Central

    He, Zuoli; Hou, Zhiqiang; Xing, Yonglei; Liu, Xiaobin; Yin, Xingtian; Que, Meidan; Shao, Jinyou; Que, Wenxiu; Stang, Peter J.

    2016-01-01

    Two-component self-assembly supramolecular coordination complexes with particular photo-physical property, wherein unique donors are combined with a single metal acceptor, can be utilized for many applications including in photo-devices. In this communication, we described the synthesis and characterization of two-component self-assembly supramolecular coordination complexes (SCCs) bearing triazine and porphyrin faces with promising light-harvesting properties. These complexes were obtained from the self-assembly of a 90° Pt(II) acceptor with 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPyT) or 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (TPyP). The greatly improved conversion efficiencies of the dye-sensitized TiO2 solar cells were 6.79 and 6.08 respectively, while these SCCs were introduced into the TiO2 nanoparticle film photoanodes. In addition, the open circuit voltage (Voc) of dye-sensitized solar cells was also increased to 0.769 and 0.768 V, which could be ascribed to the inhibited interfacial charge recombination due to the addition of SCCs. PMID:27404912

  9. Dual Functional Polymer Interlayer for Facilitating Ion Transport and Reducing Charge Recombination in Dye-Sensitized Solar Cells.

    PubMed

    Wang, Ying-Chiao; Li, Shao-Sian; Wen, Cheng-Yen; Chen, Liang-Yih; Ho, Kuo-Chuan; Chen, Chun-Wei

    2016-12-14

    Dye-sensitized solar cells (DSSCs) present low-cost alternatives to conventional wafer-based inorganic solar cells and have remarkable power conversion efficiency. To further enhance performance, we propose a new DSSC architecture with a novel dual-functional polymer interlayer that prevents charge recombination and facilitates ionic conduction, as well as maintaining dye loading and regeneration. Poly(vinylidene fluoride-trifluoroethylene) (p(VDF-TrFE)) was coated on the outside of a dye-sensitized TiO2 photoanode by a simple solution process that did not sacrifice the amount of adsorbed dye molecules in the DSSC device. Light-intensity-modulated photocurrent and photovoltage spectroscopy revealed that the proposed p(VDF-TrFE)-coated anode yielded longer electron lifetime and improved the injection of photogenerated electrons into TiO2, thereby reducing the electron transport time. Comparative cyclic voltammetry and UV-visible absorption spectroscopy based on a ferrocene-ferrocenium external standard material demonstrated that p(VDF-TrFE) enhanced the power conversion efficiency from 7.67% to 9.11%. This dual functional p(VDF-TrFE) interlayer is a promising candidate for improving the performance of DSSCs and can also be employed in other electrochemical devices.

  10. Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells.

    PubMed

    Choi, Hyunbong; Chen, Wei Ta; Kamat, Prashant V

    2012-05-22

    Neighboring metal nanoparticles influence photovoltaic and photocatalytic behavior of semiconductor nanostructures either through Fermi level equilibration by accepting electrons or inducing localized surface plasmon effects. By employing SiO(2)- and TiO(2)-capped Au nanoparticles we have identified the mechanism with which the performance of dye-sensitized solar cells (DSSC) is influenced by the neighboring metal nanoparticles. The efficiency of an N719 dye-sensitized solar cell (9.3%) increased to 10.2% upon incorporation of 0.7% Au@SiO(2) and to 9.8% upon loading of 0.7% Au@TiO(2) nanoparticles. The plasmonic effect as monitored by introducing Au@SiO(2) in DSSC produces higher photocurrent. However, Au nanoparticles undergo charge equilibration with TiO(2) nanoparticles and shift the apparent Fermi level of the composite to more negative potentials. As a result, Au@TiO(2) nanoparticle-embedded DSSC exhibit higher photovoltage. A better understanding of these two effects is crucial in exploiting the beneficial aspects of metal nanoparticles in photovoltaics.

  11. Enhanced Conversion Efficiencies in Dye-Sensitized Solar Cells Achieved through Self-Assembled Platinum(II) Metallacages

    NASA Astrophysics Data System (ADS)

    He, Zuoli; Hou, Zhiqiang; Xing, Yonglei; Liu, Xiaobin; Yin, Xingtian; Que, Meidan; Shao, Jinyou; Que, Wenxiu; Stang, Peter J.

    2016-07-01

    Two-component self-assembly supramolecular coordination complexes with particular photo-physical property, wherein unique donors are combined with a single metal acceptor, can be utilized for many applications including in photo-devices. In this communication, we described the synthesis and characterization of two-component self-assembly supramolecular coordination complexes (SCCs) bearing triazine and porphyrin faces with promising light-harvesting properties. These complexes were obtained from the self-assembly of a 90° Pt(II) acceptor with 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPyT) or 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (TPyP). The greatly improved conversion efficiencies of the dye-sensitized TiO2 solar cells were 6.79 and 6.08 respectively, while these SCCs were introduced into the TiO2 nanoparticle film photoanodes. In addition, the open circuit voltage (Voc) of dye-sensitized solar cells was also increased to 0.769 and 0.768 V, which could be ascribed to the inhibited interfacial charge recombination due to the addition of SCCs.

  12. Worm-like mesoporous TiO2 thin films templated using comb copolymer for dye-sensitized solar cells with polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Lee, Jae Hun; Park, Cheol Hun; Jung, Jung Pyo; Kim, Jong Hak

    2015-12-01

    A comb copolymer consisting of hydrophobic poly(2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl] ethyl methacrylate) (PBEM) and hydrophilic poly(oxyethylene methacrylate) (POEM) is synthesized via one-pot free radical polymerization. The PBEM-POEM comb copolymer is used as an agent to direct the structure toward one consisting of worm-like mesoporous TiO2 (WM-TiO2) films. The selective, preferential interaction between the titania precursor and the hydrophilic POEM chains is responsible for the formation of a well-organized worm-like mesostructure. The morphology of the WM-TiO2 films is characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In particular, the effects of film thickness on the optical and electrochemical properties are systematically investigated. The introduction of the WM-TiO2 layer between the nanocrystalline TiO2 (NC-TiO2) layer and fluorine-doped tin oxide (FTO) glass results in increased transmittance of visible light due to an antireflective property, decreased interfacial resistance and suppressed charge recombination at the interfaces of NC-TiO2/FTO glass. As a result, the photovoltaic conversion efficiency of the dye-sensitized solar cell (DSSC) with a polymer electrolyte is improved from 5.3% to 6.6% at an optimum film thickness (310 nm). The obtained efficiency represents a higher efficiency for the N719-based DSSC with a solvent-free, polymer electrolyte.

  13. Facile synthesis of SnO2 coated urchin-like TiO2 hollow microspheres as efficient scattering layer for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Xie, Fengyan; Li, Yafeng; Dou, Jie; Wu, Junxiu; Wei, Mingdeng

    2016-12-01

    SnO2 coated urchin-like TiO2 hollow microspheres are prepared via a facile one-step hydrothermal method by using titanium tetrabutoxide (TBOT) as titanium source. The synthesized products are characterized by XRD, SEM and TEM measurements. It's found that the as-prepared microspheres with a diameter of 500-800 nm are consisted of densely interconnected nanowires and possessed a high specific surface area of 134.92 m2 g-1. Moreover, HRTEM and element mapping results show that the surface of urchin-like microsphere is coated by lots of SnO2 nanoparticles. When used as scattering layer for dye-sensitized solar cells, the microspheres show good dye adsorption capability, superior light scattering and electron diffusibility, leading to a higher photovoltaic conversion efficiency of 8.33%, which is a 28.4% enhancement comparable to that of bare nanocrystalline TiO2 (Dyesol 18NR-T, 6.49%).

  14. One-step process for the synthesis and deposition of anatase, two-dimensional, disk-shaped TiO₂ for dye-sensitized solar cells.

    PubMed

    Lee, Chang Soo; Kim, Jin Kyu; Lim, Jung Yup; Kim, Jong Hak

    2014-12-10

    We report a one-step process for the synthesis and deposition of anatase, two-dimensional (2D), disk-shaped TiO2 (DS-TiO2) using titanium isopropoxide (TTIP), ethyl cellulose (EC), and solvents. The planar structure of EC plays a pivotal role as the sacrificing template to generate the 2D disk-shaped structure with a thickness of 1.5-3.5 μm, while a disk-like structure was well developed in the tetrahydrofuran (THF)/toluene mixed solvent. The quasi-solid-state dye-sensitized solar cells (qssDSSCs), fabricated with a nanogel electrolyte and a DS-TiO2 layer on a nanocrystalline (NC)-TiO2 photoanode, showed an energy conversion efficiency of 5.0% without any TiCl4 post-treatment, which is higher than that fabricated without DS-TiO2 (4.2%). When utilizing a poly((1-(4-ethenylphenyl)methyl)-3-butyl-imidazolium iodide) (PEBII) as the solid electrolyte, a high efficiency of 6.6% was achieved due to the combination of high mobility PEBII and a bifunctional DS-TiO2 layer with a 2D structure and anatase phase. The bifunctionality of the DS-TiO2 layer allows greater light scattering back into the device and provides additional surface area for improved dye adsorption, resulting in short circuit current density (Jsc).

  15. Synthesis, characterization and application of sol-gel derived mesoporous TiO{sub 2} nanoparticles for dye-sensitized solar cells

    SciTech Connect

    Khan, M. Alam; Shaheer Akhtar, M.; Yang, O-Bong

    2010-12-15

    Nanocrystalline mesoporous titania of anatase crystal phase were prepared by sol-gel route by varying calcination (400 C and 600 C) conditions, and the photo-electrochemical properties were investigated for dye-sensitized solar cell applications. The TTIP precursor in n-heptane solvent with ratio of water to TTIP (5:1) was found to be effective substrate for the working electrodes. The overall conversion efficiency of 7.59% was achieved under 1 sun irradiation with open circuit voltage of 0.77 V, current density of 17.00 mA/cm{sup 2} and FF of 51.12. The high efficiency of the 400 C calcined sample were attributed to its mesopores, high BET surface area (80.1 m{sup 2}/g) and large pore volume of prepared titania substrate which provide better surface for the absorption of dye, improves light harvesting efficiency and better charge injection. The prepared samples were characterized by XRD, small angle XRD, FE-SEM, TEM, IPCE, I-V curve, BET surface area and BJH plot techniques. (author)

  16. Influence of addition of larger particles into 3-nm particles of TiO II film on the performance of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Hongxia; Bell, John

    2007-12-01

    The performance of dye-sensitized solar cells (DSC) based on the TiO II film composed of 3 nm particles and mixtures of 3 nm and 400 nm or 25 nm particles synthesized by spray pyrolysis deposition has been investigated. An energy conversion efficiency of 8.44% (under the illumination of 100 mW/cm2, AM 1.5) has been achieved with the DSC based on the nanocrystalline TiO II film consisting of 3 nm and 25 nm particles with a ratio of 3:4 by weight. The maximum incident photo-to-current conversion efficiency (IPCE) of the cell is 0.91, which is much higher than the maximum IPCE of the photoelectrode composed of either only 3 nm or the mixture of 3 nm and 400 nm particles (with the same ratio by weight) over the visible spectrum. SEM images show the formation of clusters in the TiO II film containing 25 nm particles. It is proposed that the clusters are responsible for the high IPCE by increasing the light harvesting efficiency through enhanced light scattering and facilitating the electron transport of the DSC.

  17. Fabrication of dye-sensitized solar cell (DSSC) using different particle sizes of TiO2 deposited via nano-particle deposition system (NPDS).

    PubMed

    Kim, Yang-Hee; Kim, Kwang-Su; Lee, Jin-Woong; Kim, Min-Saeng; Choi, Jung-Oh; Ahn, Sung-Hoon; Lee, Caroline Sunyong

    2012-04-01

    TiO2 layers were fabricated using a nano-particle deposition system (NPDS) on transparent conductive oxide (TCO) glass for dye sensitized solar cells (DSSCs). Conventionally, TiO2 paste for working electrodes has been fabricated using paste type methods. The fabricated paste composed of a mixture of nano-sized TiO2 powders, binders and solutions is then painted on TCO glass. After drying, the TiO2 layer on TCO glass is sintered to make a path for electron transfer. TiO2 layers formed by this paste type method require numerous steps, which can be time consuming. In this study, TiO2 powders were sprayed directly on TCO glass using NPDS in order to simplify the fabrication steps. To improve porosity and produce scattering layers, commercial nanocrystalline TiO, powders with different sizes were alternately deposited. Moreover, powders with different sizes were mixed and deposited on the TCO glass. The results indicate that the DSSCs with a TiO2 layer composed of different particle sizes had better cell performance than the cells assembled with single-sized TiO2 particles. Therefore, this study shows that a dry TiO2 coating process is possible for DSSC fabrication to improve its cell efficiencies, and this method can easily be applied on flexible substrates since NPDS is a room-temperature deposition process.

  18. Dye-sensitized composite semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Tennakone, K.; Bandaranayake, P. K. M.; Jayaweera, P. V. V.; Konno, A.; Kumara, G. R. R. A.

    2002-04-01

    Understanding of the charge transport and recombination mechanisms of dye-sensitized solar cells based on semiconductor nanostructures is essential for the improvement of their performance. A great deal of information on these systems have been obtained from studies on a single material (mostly TiO 2 and to a lesser extent ZnO and SnO 2). We have conducted extensive measurements on composite dye-sensitized nanosturctures and found that the composite systems possess unusual properties. Dye-sensitized photoelectrochemical cells made from nanocrystalline films of some materials (e.g., SnO 2) yield comparatively small open-circuit voltages and energy and quantum conversion efficiencies, despite excellent dye-semiconductor interaction. However, on deposition of ultra-thin shells of insulators or high band gap semiconductors on the crystallites, a dramatic increase in the above parameters is observed. Outer shells were found to have insignificant or in most cases a negative effect on TiO 2 films. We explain the above findings on the basis of vast differences in the leakage rates of trapped electrons in different materials which is sensitive to the effective electron mass. Electrons injected to the conduction band in dye-sensitization enter into shallow traps from which they get thermally reemitted to the conduction band. The building up of the electron quasi-fermi level and transport depends on this process. The spread of the hydrogenic wave function of a trapped electron increases inverse exponentially with the effective mass so that the electron leakage and their recombination with acceptors ‘outside’ become severe when the crystallite size is comparable to the Bohr radius of the trapped electron. Such recombinations are effectively suppressed by deposition of thin films on the crystallites. Excited dye molecules anchored to the outer shell injects electrons to the conduction band via tunneling.

  19. Design of hybrid nanoheterostructure systems for enhanced quantum and solar conversion efficiencies in dye-sensitized solar cells

    SciTech Connect

    Kılıç, Bayram E-mail: kbayramkilic@gmail.com; Telli, Hakan; Başaran, Ali; Pirge, Gursev; Tüzemen, Sebahattin

    2015-04-07

    Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO{sub 2} structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO{sub 2} nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO{sub 2} owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO{sub 2} structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO{sub 2}, and TiO{sub 2}/ZnO hybrid structures are compared. The VA TiO{sub 2}/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO{sub 2} is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO{sub 2}/ZnO hybrid photoanode prepared with 15.8 wt. % TiO{sub 2} showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99 wt. % TiO{sub 2}, pure TiO{sub 2}, and pure ZnO photoanodes, respectively.

  20. Design of hybrid nanoheterostructure systems for enhanced quantum and solar conversion efficiencies in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kılıç, Bayram; Telli, Hakan; Tüzemen, Sebahattin; Başaran, Ali; Pirge, Gursev

    2015-04-01

    Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO2 structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO2 nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO2 owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO2 structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO2, and TiO2/ZnO hybrid structures are compared. The VA TiO2/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO2 is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO2/ZnO hybrid photoanode prepared with 15.8 wt. % TiO2 showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99 wt. % TiO2, pure TiO2, and pure ZnO photoanodes, respectively.

  1. Development of type-I/type-II hybrid dye sensitizer with both pyridyl group and catechol unit as anchoring group for type-I/type-II dye-sensitized solar cell.

    PubMed

    Ooyama, Yousuke; Furue, Kensuke; Enoki, Toshiaki; Kanda, Masahiro; Adachi, Yohei; Ohshita, Joji

    2016-11-09

    A type-I/type-II hybrid dye sensitizer with a pyridyl group and a catechol unit as the anchoring group has been developed and its photovoltaic performance in dye-sensitized solar cells (DSSCs) is investigated. The sensitizer has the ability to adsorb on a TiO2 electrode through both the coordination bond at Lewis acid sites and the bidentate binuclear bridging linkage at Brønsted acid sites on the TiO2 surface, which makes it possible to inject an electron into the conduction band of the TiO2 electrode by the intramolecular charge-transfer (ICT) excitation (type-I pathway) and by the photoexcitation of the dye-to-TiO2 charge transfer (DTCT) band (type-II pathway). It was found that the type-I/type-II hybrid dye sensitizer adsorbed on TiO2 film exhibits a broad photoabsorption band originating from ICT and DTCT characteristics. Here we reveal the photophysical and electrochemical properties of the type-I/type-II hybrid dye sensitizer bearing a pyridyl group and a catechol unit, along with its adsorption modes onto TiO2 film, and its photovoltaic performance in type-I/type-II DSSC, based on optical (photoabsorption and fluorescence spectroscopy) and electrochemical measurements (cyclic voltammetry), density functional theory (DFT) calculation, FT-IR spectroscopy of the dyes adsorbed on TiO2 film, photocurrent-voltage (I-V) curves, incident photon-to-current conversion efficiency (IPCE) spectra, and electrochemical impedance spectroscopy (EIS) for DSSC.

  2. Nanostructured materials and their charge transport properties in photoanodes of dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ponsaing, Anita Kristine

    Since the big progress of dye sensitized solar cells (DSCs) by adopting TiO2 nanoparticles for a photoanode in 1991, DSCs have been intensively studied as an alternative to conventional Si-based solar cells. As a main component of DSCs, a photoanode composed of a nanostructured semiconducting oxide network plays a significant role in determining performances of DSCs in terms of light harvesting efficiency (LHE) and charge collection efficiency related to charge transport and recombination. Nanomaterials with various morphologies, such as particles, rods and tubes have been fabricated and investigated to improve performances of DSCs. Among them, submicrometer-sized aggregates of nanocrystallites have demonstrated to be promising as a photoanode of DSCs for higher power conversion efficiency. Such hierarchical structures make it possible to have both high specific surface area for dye molecule adsorption and internal light scattering within the photoanode, leading to a much enhanced LHE. This work focused on the surface modification and charge transport characterization of such hierarchically structured photoanodes. First, a core-shell configuration was fabricated by atomic layer deposition (ALD) process, which was achieved by depositing ultrathin TiO2 layer on inner surface of ZnO aggregate film in which the TiO2 shell was anticipated to act as a chemical and energy barrier. Although the ALD-TiO2 coating failed to improve chemical stability of the ZnO aggregate against to an acidic dye solution due to the ultrathin thickness (< 1 nm), the ALD-TiO2 shell layer effectively suppressed charge recombination at the interface. As a result of the reduced charge recombination, Voc, and FF of DSCs were increased, leading to 20 % enhancement of power conversion efficiency. Second, effects of annealing temperatures on ALD-TiO2 coated aggregates of ZnO nanocrystallites were investigated in terms of sintering behavior and charge transport. 350 °C as the maximum temperature was

  3. Fabrication and Characterization of Sansevieria trifasciata, Pandanus amaryllifolius and Cassia angustifolia as Photosensitizer for Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Cari; Supriyanto, Agus; Mahfudli Fadli, Ulfa; Bayu Prasada, Ashari

    2016-04-01

    Dye sensitized Solar Cells (DSSC) is one of the electric cells photochemical consisting of photoelectrode, dye, counter electrode, and electrolyte. The aims of the research to determine of the optical and electrical characteristic of the extract Sansevieria trifasciata, Pandanus amaryllifolius, and Cassia angustifolia. The study is also aimed to determine the effect of natural dyes extract to increase the efficiency of solar cells based DSSC. Sandwich structures formed in the sample consisted of working electrode pair Titanium dioxide (TiO2) and the counter electrode platinum (Pt). Dye extraction process is performed by stirring for 1 hour and then allowed to stand for 24 hours. Absorbance test is measure by using UV-Vis spectrophotometer Lambda 25, conductivity test by using a two-point probes Elkahfi 100, and characterization of current and voltage (I-V) by using a Keithley 2602A. The results showed that the greatest efficiency of 0.160% at Dye Pandanus amaryllifolius.

  4. Dye-sensitized solar cell with natural gel polymer electrolytes and f-MWCNT as counter-electrode

    NASA Astrophysics Data System (ADS)

    Nwanya, A. C.; Amaechi, C. I.; Ekwealor, A. B. C.; Osuji, R. U.; Maaza, M.; Ezema, F. I.

    2015-05-01

    Samples of DSSCs were made with gel polymer electrolytes using agar, gelatin and DNA as the polymer hosts. Anthocyanine dye from Hildegardia barteri flower is used to sensitize the TiO2 electrode, and the spectrum of the dye indicates strong absorptions in the blue region of the solar spectrum. The XRD pattern of the TiO2 shows that the adsorption of the dye did not affect the crystallinity of the electrode. The f-MWCNT indicates graphite structure of the MWCNTs were acid oxidized without significant damage. Efficiencies of 3.38 and 0.1% were obtained using gelatin and DNA gel polymer electrolytes, respectively, for the fabricated dye-sensitized solar cells.

  5. Carbonaceous materials and their advances as a counter electrode in dye-sensitized solar cells: challenges and prospects.

    PubMed

    Kouhnavard, Mojgan; Ludin, Norasikin Ahmad; Ghaffari, Babak V; Sopian, Kamarozzaman; Ikeda, Shoichiro

    2015-05-11

    Dye-sensitized solar cells (DSSCs) serve as low-costing alternatives to silicon solar cells because of their low material and fabrication costs. Usually, they utilize Pt as the counter electrode (CE) to catalyze the iodine redox couple and to complete the electric circuit. Given that Pt is a rare and expensive metal, various carbon materials have been intensively investigated because of their low costs, high surface areas, excellent electrochemical stabilities, reasonable electrochemical activities, and high corrosion resistances. In this feature article, we provide an overview of recent studies on the electrochemical properties and photovoltaic performances of carbon-based CEs (e.g., activated carbon, nanosized carbon, carbon black, graphene, graphite, carbon nanotubes, and composite carbon). We focus on scientific challenges associated with each material and highlight recent advances achieved in overcoming these obstacles. Finally, we discuss possible future directions for this field of research aimed at obtaining highly efficient DSSCs.

  6. Transition from anodic titania nanotubes to nanowires: arising from nanotube growth to application in dye-sensitized solar cells.

    PubMed

    Sun, Lidong; Zhang, Sam; Wang, Xiu; Sun, Xiao Wei; Ong, Duen Yang; Wang, Xiaoyan; Zhao, Dongliang

    2011-12-23

    Anodic formation of titania nanowires has been interpreted using a bamboo-splitting model; however, a number of phenomena are difficult to explain with this model. Herein, transition from nanotubes to nanowires is investigated by varying the anodizing conditions. The results indicate that the transition requires a large number of hydrogen ions to reduce the passivated area of tube walls, and therefore can be observed only in an intermediate chemical dissolution environment. Accordingly, a model in terms of stretching and splitting is proposed to interpret the transition process. The model provides a basis to suppress the nanowires with surface treatments before anodization and to clear the nanowires with an ultrasonication process after anodization. The nanotube-nanowire transition also arises when the tubes are directly used in dye-sensitized solar cells. Treatment with titanium tetrachloride solution for about 10 h is found to be effective in suppressing the nanowires, and thus improving the photovoltaic properties of the solar cells.

  7. Scattering-layer-induced energy storage function in polymer-based quasi-solid-state dye-sensitized solar cells.

    PubMed

    Zhang, Xi; Jiang, Hongrui

    2015-03-09

    Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices.

  8. The application of hollow box TiO2 as scattering centers in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    He, Xiong; Li, Xin; Zhu, Menghua

    2016-11-01

    In this work, the hollow box TiO2 (BTiO2) with highly exposed (001) surface was synthesized through solid state precursor and various mixing ratio of BTiO2 film based dye-sensitized solar cells (DSSCs) were fabricated. The photoelectric conversion efficiency of solar cell with the content of 20 wt% BTiO2 could reach 6.1%, which greatly improves the photovoltaic performance by 101% compared with pure P25 film based photoanode (3.04%). This result may attribute to the enhanced light scattering capability and the prolonged electron lifetime with the increasing mixing ratio. Furthermore, the optical composite film structure can result in the faster electron transportation, great charge collection efficiency. This work shows a new photoelectrode design for enhanced energy conversion of DSSCs.

  9. Photovoltaic performance of dye-sensitized solar cells using TiO2 nanotubes aggregates produced by hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Chen, Qiufan; Sun, Xiaonan; Liu, Anping; Zhang, Qifeng; Cao, Guozhong; Zhou, Xiaoyuan

    2015-09-01

    This paper reports the synthesis, detailed structural characterization of aggregated TiO2 nanotubes and the application of such aggregated TiO2 nanotubes as photoelectrodes in solar cells (dye sensitized DSCs). A maximum overall conversion efficiency of 7.9% has been achieved, which use conventional dyes without any additional chemical treatments under circumstances of an open-circuit voltage of 710 mV, a short-circuit current density of 16.8mA/cm2, and a fill factor of 66%. This impressive performance is believed to attribute to the micron-sized aggregate structure which may be favorable for light harvesting, the desired high specific surface area and pure anatase phase for dye absorption. This significant improvement in the conversion efficiency indicates that DSCs based on aggregated TiO2 nanotubes are a promising alternative to semiconductor-based solar cells.

  10. Photocurrent enhancement by surface plasmon resonance of silver nanoparticles in highly porous dye-sensitized solar cells.

    PubMed

    Jeong, Nak Cheon; Prasittichai, Chaiya; Hupp, Joseph T

    2011-12-06

    Localized surface plasmon resonance (LSPR) by silver nanoparticles that are photochemically incorporated into an electrode-supported TiO(2) nanoparticulate framework enhances the extinction of a subsequently adsorbed dye (the ruthenium-containing molecule, N719). The enhancement arises from both an increase in the dye's effective absorption cross section and a modest increase in the framework surface area. Deployment of the silver-modified assembly as a photoanode in dye-sensitized solar cells leads to light-to-electrical energy conversion with an overall efficiency of 8.9%. This represents a 25% improvement over the performance of otherwise identical solar cells lacking corrosion-protected silver nanoparticles. As one would expect based on increased dye loading and electromagnetic field enhanced (LSPR-enhanced) absorption, the improvement is manifested chiefly as an increase in photocurrent density ascribable to improved light harvesting.

  11. Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO(2) hollow fibers.

    PubMed

    Ghadiri, Elham; Taghavinia, Nima; Zakeeruddin, Shaik M; Grätzel, Michael; Moser, Jacques-E

    2010-05-12

    Nanostructured TiO(2) hollow fibers have been prepared using natural cellulose fibers as a template. This cheap and easily processed material was used to produce highly porous photoanodes incorporated in dye-sensitized solar cells and exhibited remarkably enhanced electron transport properties compared to mesoscopic films made of spherical nanoparticles. Photoinjected electron lifetime, in particular, was multiplied by 3-4 in the fiber morphology, while the electron transport rate within the fibrous photoanaode was doubled. A nearly quantitative absorbed photon-to-electrical current conversion yield exceeding 95% was achieved upon excitation at 550 nm and a photovoltaic power conversion efficiency of 7.2% reached under simulated AM 1.5 (100 mW cm(-2)) solar illumination.

  12. Dye-sensitized solar cells and complexes between pyridines and iodines. A NMR, IR and DFT study

    NASA Astrophysics Data System (ADS)

    Hansen, Poul Erik; Nguyen, Phuong Tuyet; Krake, Jacob; Spanget-Larsen, Jens; Lund, Torben

    2012-12-01

    Interactions between triiodide (I3-) and 4-tert-butylpyridine (4TBP) as postulated in dye-sensitized solar cells (DSC) are investigated by means of 13C NMR and IR spectroscopy supported by DFT calculations. The charge transfer (CT) complex 4TBP·I2 and potential salts such as (4TBP)2I+, I3- were synthesized and characterized by IR and 13C NMR spectroscopy. However, mixing (butyl)4N+, I3- and 4TBP at concentrations comparable to those of the DSC solar cell did not lead to any reaction. Neither CT complexes nor cationic species like (4TBP)2I+ were observed, judging from the 13C NMR spectroscopic evidence. This questions the previously proposed formation of (4TBP)2I+ in DSC cells.

  13. Improving the performance of dye-sensitized solar cells by using the conversion luminescence of a phosphor

    NASA Astrophysics Data System (ADS)

    Shin, Seong Gwan; Kim, Kyung Hwan; Bark, Chung Wung; Choi, Hyung Wook

    2014-11-01

    Dye-sensitized solar cells (DSSCs) have been intensively studied since their discovery in 1991. A DSSC is composed of an electrode made of a dye-adsorbed nanoporous TiO2 layer on a fluorine-doped tin-oxide (FTO) glass substrate, redox electrolytes, and a counter electrode. One of the ways to increase the efficiency of DSSC is to enhance the harvest of light. Many synthetic dyes have been synthesized and employed to improve the harvest of light and increase photocurrent production by DSSCs; however, even the best dyes ( e.g., N-719) only absorb in the wavelength range of 400-800 nm, and most ultraviolet wavelengths are not used. In this work, phosphor is introduced to the TiO2 photoelectrode of a DSSC to improve the light harvesting, photovoltage, photocurrent production, and solar conversion efficiency by using a conversion-luminescence process. Moreover, further increases in the conversion efficiency of the DSSC are possible.

  14. Selective conditions for the fabrication of a flexible dye-sensitized solar cell with Ti/TiO 2 photoanode

    NASA Astrophysics Data System (ADS)

    Lin, Lu-Yin; Lee, Chuan-Pei; Vittal, R.; Ho, Kuo-Chuan

    The effects of four factors, i.e., (i) sputter-deposition time of platinum (Pt) film, (ii) sintering temperature of TiO 2-coated Ti foil (Ti/TiO 2), (iii) thickness of Ti foil, and (iv) concentration of iodine are reported for the photovoltaic performance of a back-illuminated flexible dye-sensitized solar cell (DSSC) with Ti foil substrate for the TiO 2 layer. Optimization of these four factors yields a solar-to-electricity conversion efficiency (η) of 5.95%. Transmittance spectra, cyclic voltammetry (CV), electrochemical impedance spectra (EIS), X-ray diffraction (XRD), scanning electron micrographs (SEM), and laser-induced photovoltage transient technique are used to substantiate the explanations.

  15. Scattering-layer-induced energy storage function in polymer-based quasi-solid-state dye-sensitized solar cells

    PubMed Central

    Zhang, Xi; Jiang, Hongrui

    2015-01-01

    Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices. PMID:25829547

  16. Optical description of solid-state dye-sensitized solar cells. I. Measurement of layer optical properties

    SciTech Connect

    Moule, Adam J.; Snaith, Henry J.; Kaiser, Markus; Klesper, Heike; Meerholz, Klaus; Huang, David M.; Graetzel, Michael

    2009-10-01

    The efficiency of a photovoltaic device is limited by the portion of solar energy that can be captured. We discuss how to measure the optical properties of the various layers in solid-state dye-sensitized solar cells (SDSC). We use spectroscopic ellipsometry to determine the complex refractive index of each of the various layers in a SDSC. Each of the ellipsometry fits is used to calculate a transmission spectrum that is compared to a measured transmission spectrum. The complexities of pore filling on the fitting of the ellipsometric data are discussed. Scanning electron microscopy and energy dispersive x-ray spectroscopy is shown to be an effective method for determining pore filling in SDSC layers. Accurate effective medium optical constants for each layer are presented and the material limits under which these optical constants can be used are discussed.

  17. Preparation of Nanoporous TiO2 for Dye-Sensitized Solar Cell (DSSC) Using Various Dyes

    NASA Astrophysics Data System (ADS)

    Yuliarto, Brian; Fanani, Fahiem; Fuadi, M. Kasyful; Nugraha

    2010-10-01

    This article reports the development of organic dyes as an attempt to reduce material costs of Dye-Sensitized Solar Cell (DSSC). Indonesia, a country with variety and considerable number of botanical resources, is suitable to perform the research. Indonesian black rice, curcuma, papaya leaf, and the combination were chosen as organic dyes source. Dyes were extracted using organic solvent and adsorbed on mesoporous Titanium Dioxide (TiO2) which has been optimized in our laboratory. The best dyes light absorbance and performance obtained from papaya leaf as chlorophyll dyes that gives two peaks at 432 nm and 664 nm from UV-Vis Spectrophotometry and performance under 100 mW/cm2 Xenon light solar simulator gives VOC = 0.566 Volt, JSC = 0.24 mA/cm2, Fill Factor = 0.33, and efficiency of energy conversion 0,045%.

  18. Cost-effective, transparent iron selenide nanoporous alloy counter electrode for bifacial dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Tang, Qunwei; He, Benlin; Yu, Liangmin

    2015-05-01

    Pursuit of cost-effective and efficient counter electrodes (CEs) is a persistent objective for dye-sensitized solar cells (DSSCs). We present here the design of transparent Fe-Se nanoporous alloy CEs for bifacial DSSC applications. Due to the superior charge-transfer ability for I-/I3- redox couples, electrocatalytic reduction toward I3- species, and optical transparency in visible-light region, the bifacial DSSC with FeSe alloy electrode yields maximum front and rear efficiencies of 9.16% and 5.38%, respectively. A fast start-up, high multiple start capability, and good stability of the FeSe alloy CE demonstrate the potential applications in driving solar panels. The impressive efficiency along with simple preparation of the cost-effective Fe-Se nanoporous alloy CEs highlights their potential application in robust bifacial DSSCs.

  19. Screening π-conjugated bridges of organic dyes for dye-sensitized solar cells with panchromatic visible light harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Zhenqing; Liu, Chunmeng; Shao, Changjin; Zeng, Xiaofei; Cao, Dapeng

    2016-07-01

    Developing highly efficient organic dyes with panchromatic visible light harvesting for dye-sensitized solar cells (DSSCs) is still one of the most important scientific challenges. Here, we design a series of phenothiazine derivative organic dyes with donor-π-acceptor (D-π-A) structure using density functional theory (DFT) and time-dependent DFT (TDDFT) based on experimentally synthesized typical SH-6 organic dyes. Results indicate that the newly designed BUCT13 - BUCT30 dyes show smaller HOMO-LUMO energy gaps, higher molar extinction coefficients and obvious redshifts compared to the SH-6 dye, and the maximum absorption peaks of eight dyes are greater than 650 nm among the newly designed dyes. In particular, BUCT27 exhibits a 234 nm redshift and the maximum molar extinction coefficient with an increment of about 80% compared to the SH-6 dye. BUCT19 exhibits not only a 269 nm redshift and higher molar extinction coefficient with an increment of about 50% compared to the SH-6 dye, but the extremely broad absorption spectrum covering the entire visible range up to the near-IR region of 1200 nm. It is expected that this work can provide a new strategy and guidance for the investigation of these dye-sensitized devices.

  20. Effect of ionic liquid-templated mesoporous anatase TiO2 on performance of dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Han, C. C.; Lin, Y. P.; Ho, S. Y.; Lai, Y. C.; Chen, S. Y.; Huang, J.; Chen-Yang, Y. W.

    2010-01-01

    In this study, the mesoporous anatase TiO2, TBF4, is synthesized by sol-gel polymerization using 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] as the template. The 450 °C-calcined TBF4 is found maintaining a mesoporous structure with a morphology that benefits dye adsorption and electrolyte diffusion. A series of dye-sensitized electrodes are prepared with a combination of the as-prepared TBF4 and P25, a commercial TiO2. It is found that the short-circuit photocurrent (Jsc) and open-circuit photovoltage (Voc) of the TBF4-containing electrodes are remarkably increased with the content of TBF4. The improvement is ascribed to an increase in the amount of dye molecules adsorbed and prolongation of the electron lifetimes (τeff). The highest light-to-electricity conversion efficiency (η) of the dye-sensitized solar cell is obtained from that prepared with the pure TBF4 electrode and is about 60% higher than that prepared with the pure P25 electrode under the same condition.