Sample records for nanocrystalline material technical

  1. Nanocrystalline ceramic materials

    DOEpatents

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  2. Nanocrystalline ceramic materials

    DOEpatents

    Siegel, R.W.; Nieman, G.W.; Weertman, J.R.

    1994-06-14

    A method is disclosed for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material. 19 figs.

  3. Nanocrystalline heterojunction materials

    DOEpatents

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2003-07-15

    Mesoporous nanocrystalline titanium dioxide heterojunction materials are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  4. Nanocrystalline Heterojunction Materials

    DOEpatents

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2004-02-03

    Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  5. Synthesis of Nano-Crystalline Gamma-TiAl Materials

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Vasquez, Peter

    2003-01-01

    One of the principal problems with nano-crystalline materials is producing them in quantities and sizes large enough for valid mechanical property evaluation. The purpose of this study was to explore an innovative method for producing nano-crystalline gamma-TiAl bulk materials using high energy ball milling and brief secondary processes. Nano-crystalline powder feedstock was produced using a Fritsch P4(TM) vario-planetary ball mill recently installed at NASA-LaRC. The high energy ball milling process employed tungsten carbide tooling (vials and balls) and no process control agents to minimize contamination. In a collaborative effort, two approaches were investigated, namely mechanical alloying of elemental powders and attrition milling of pre-alloyed powders. The objective was to subsequently use RF plasma spray deposition and short cycle vacuum hot pressing in order to effect consolidation while retaining nano-crystalline structure in bulk material. Results and discussion of the work performed to date are presented.

  6. Nanocrystalline cerium oxide materials for solid fuel cell systems

    DOEpatents

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  7. Functional materials based on nanocrystalline cellulose

    NASA Astrophysics Data System (ADS)

    Surov, O. V.; Voronova, M. I.; Zakharov, A. G.

    2017-10-01

    The data on the synthesis of functional materials based on nanocrystalline cellulose (NCC) published over the past 10 years are analyzed. The liquid-crystal properties of NCC suspensions, methods of investigation of NCC suspensions and films, conditions for preserving chiral nematic structure in the NCC films after removal of the solvent and features of templated sol-gel synthesis of functional materials based on NCC are considered. The bibliography includes 106 references.

  8. Model for temperature-dependent magnetization of nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2015-01-01

    A magnetization model of nanocrystalline materials incorporating intragrain anisotropies, intergrain interactions, and texture effects has been extended to include the thermal fluctuations. The method relies on the stochastic Landau-Lifshitz-Gilbert theory of magnetization dynamics and permits to study the magnetic properties of nanocrystalline materials at arbitrary temperature below the Currie temperature. The model has been used to determine the intergrain exchange constant and grain boundary anisotropy constant of nanocrystalline Ni at 100 K and 298 K. It is found that the thermal fluctuations suppress the strength of the intergrain exchange coupling and also reduce the grain boundary anisotropy. In comparison with its value at 2 K, the interparticle exchange constant decreases by 16% and 42% and the grain boundary anisotropy constant decreases by 28% and 40% at 100 K and 298 K, respectively. An application of the model to study the grain size-dependent magnetization indicates that when the thermal activation energy is comparable to the free energy of grains, the decrease in the grain size leads to the decrease in the magnetic permeability and saturation magnetization. The mechanism by which the grain size influences the magnetic properties of nc-Ni is discussed.

  9. Three-dimensional analysis by electron diffraction methods of nanocrystalline materials.

    PubMed

    Gammer, Christoph; Mangler, Clemens; Karnthaler, Hans-Peter; Rentenberger, Christian

    2011-12-01

    To analyze nanocrystalline structures quantitatively in 3D, a novel method is presented based on electron diffraction. It allows determination of the average size and morphology of the coherently scattering domains (CSD) in a straightforward way without the need to prepare multiple sections. The method is applicable to all kinds of bulk nanocrystalline materials. As an example, the average size of the CSD in nanocrystalline FeAl made by severe plastic deformation is determined in 3D. Assuming ellipsoidal CSD, it is deduced that the CSD have a width of 19 ± 2 nm, a length of 18 ± 1 nm, and a height of 10 ± 1 nm.

  10. High Temperature Stable Nanocrystalline SiGe Thermoelectric Material

    NASA Technical Reports Server (NTRS)

    Yang, Sherwin (Inventor); Matejczyk, Daniel Edward (Inventor); Determan, William (Inventor)

    2013-01-01

    A method of forming a nanocomposite thermoelectric material having microstructural stability at temperatures greater than 1000 C. The method includes creating nanocrystalline powder by cryomilling. The method is particularly useful in forming SiGe alloy powder.

  11. Application of ASTAR(TM)/Precession Electron Diffraction Technique to Quantitatively Study Defects in Nanocrystalline Metallic Materials

    NASA Astrophysics Data System (ADS)

    Ghamarian, Iman

    Nanocrystalline metallic materials have the potential to exhibit outstanding performance which leads to their usage in challenging applications such as coatings and biomedical implant devices. To optimize the performance of nanocrystalline metallic materials according to the desired applications, it is important to have a decent understanding of the structure, processing and properties of these materials. Various efforts have been made to correlate microstructure and properties of nanocrystalline metallic materials. Based on these research activities, it is noticed that microstructure and defects (e.g., dislocations and grain boundaries) play a key role in the behavior of these materials. Therefore, it is of great importance to establish methods to quantitatively study microstructures, defects and their interactions in nanocrystalline metallic materials. Since the mechanisms controlling the properties of nanocrystalline metallic materials occur at a very small length scale, it is fairly difficult to study them. Unfortunately, most of the characterization techniques used to explore these materials do not have the high enough spatial resolution required for the characterization of these materials. For instance, by applying complex profile-fitting algorithms to X-ray diffraction patterns, it is possible to get an estimation of the average grain size and the average dislocation density within a relatively large area. However, these average values are not enough for developing meticulous phenomenological models which are able to correlate microstructure and properties of nanocrystalline metallic materials. As another example, electron backscatter diffraction technique also cannot be used widely in the characterization of these materials due to problems such as relative poor spatial resolution (which is 90 nm) and the degradation of Kikuchi diffraction patterns in severely deformed nano-size grain metallic materials. In this study, ASTAR(TM)/precession electron

  12. Development of Nanocrystalline Zeolite Materials for the Decontamination of Chemical Warfare Agents

    DTIC Science & Technology

    2008-11-17

    phosphite (CH3O)2P(O)H or DMP. There is -40-20020406080100 In te ns ity ppm a) b) c) d) * ** ** ** * * 33 37 1225 9 Figure 6. 31P MAS NMR spectra...The main objective of this research is to use novel nanocrystalline zeolite materials synthesized in our laboratories for the decontamination of...nanocrystalline zeolite materials. In these studies, we have focused our attention on the decontamination of 2-CEES and DMMP, two simulants for mustard gas

  13. Method for producing nanocrystalline multicomponent and multiphase materials

    DOEpatents

    Eastman, Jeffrey A.; Rittner, Mindy N.; Youngdahl, Carl J.; Weertman, Julia R.

    1998-01-01

    A process for producing multi-component and multiphase nanophase materials is provided wherein a plurality of elements are vaporized in a controlled atmosphere, so as to facilitate thorough mixing, and then condensing and consolidating the elements. The invention also provides for a multicomponent and multiphase nanocrystalline material of specified elemental and phase composition having component grain sizes of between approximately 1 nm and 100 nm. This material is a single element in combination with a binary compound. In more specific embodiments, the single element in this material can be a transition metal element, a non-transition metal element, a semiconductor, or a semi-metal, and the binary compound in this material can be an intermetallic, an oxide, a nitride, a hydride, a chloride, or other compound.

  14. Method for producing nanocrystalline multicomponent and multiphase materials

    DOEpatents

    Eastman, J.A.; Rittner, M.N.; Youngdahl, C.J.; Weertman, J.R.

    1998-03-17

    A process for producing multi-component and multiphase nanophase materials is provided wherein a plurality of elements are vaporized in a controlled atmosphere, so as to facilitate thorough mixing, and then condensing and consolidating the elements. The invention also provides for a multicomponent and multiphase nanocrystalline material of specified elemental and phase composition having component grain sizes of between approximately 1 nm and 100 nm. This material is a single element in combination with a binary compound. In more specific embodiments, the single element in this material can be a transition metal element, a non-transition metal element, a semiconductor, or a semi-metal, and the binary compound in this material can be an intermetallic, an oxide, a nitride, a hydride, a chloride, or other compound. 6 figs.

  15. Synthesis and properties of nanocrystalline Bi-Te based thermoelectric materials for energy application

    NASA Astrophysics Data System (ADS)

    Almohaimeed, Sulaiman

    Thermoelectric phenomenon is the science associated with converting thermal energy into electricity based on the Seebeck effect. Bismuth telluride Bi 2Te3 is currently considered to be the state-of-the art thermoelectric material with high efficiency for low temperature applications and is therefore attractive for energy harvesting processes. Nanostructures thermoelectric materials provide a novel way to enhance thermoelectric properties and are considered to be the efficient building blocks for thermoelectric devices. In this work, n- and p-type bulk nanocrystalline Bismuth telluride thermoelectric materials were prepared by mechanical alloying / ball milling technique. The produced nano-crystalline powder were then consolidated using hot compaction under inert atmosphere. The novel processing of these materials maintained the nanostructure in both n- and p-type. Structural properties of the n- and p-types were characterized using X ray diffraction, scanning electron microscopy and transmission electron microscope. These techniques proved that the average grian size of the milled thermoelectric materials was about 20 nm. Accordingly, a Significant improvement in the figure of merit (ZT) is achieved through significant lattice thermal conductivity reduction and Seebeck coefficient improvement. The maximum ZT value for the n-type nanocrystalline thermoelectric was 1.67 at 373 K while the maximum ZT value for the p-type was 1.78 at the same temperature. These values are considered to be the highest values reported for similar materials. Evaluation of the mechanical properties was also performed through microhardness measurement using Vickers micro-hardness test, which shows an enhancement in mechanical properties for the produced materials.

  16. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Hai; Dong, Junhang; Lin, Jerry

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  17. Mechanical properties of nanocrystalline cobalt

    NASA Astrophysics Data System (ADS)

    Karimpoor, Amir A.; Erb, Uwe

    2006-05-01

    Due to their excellent wear and corrosion properties, nanocrystalline cobalt and several cobalt alloys made by electrodeposition are currently being developed as environmentally benign replacement coatings for hard chromium electrodeposits. The focus of this study is on the mechanical properties of nanocrystalline cobalt, which are currently not well understood. A comparison is presented for hardness, tensile properties, Charpy impact properties and fracture surface analysis of both nanocrystalline (grain size: 12 nm) and conventional polycrystalline (grain size: 4.8 m) cobalt. It is shown that the hardness and tensile strength of nanocrystalline cobalt is 2-3 times higher than for polycrystalline cobalt. However, in contrast to other nanocrystalline materials tested previously, nanocrystalline cobalt retains considerable ductility with elongation to fracture values up to 7%.

  18. Characterization of Ultra-fine Grained and Nanocrystalline Materials Using Transmission Kikuchi Diffraction

    PubMed Central

    Proust, Gwénaëlle; Trimby, Patrick; Piazolo, Sandra; Retraint, Delphine

    2017-01-01

    One of the challenges in microstructure analysis nowadays resides in the reliable and accurate characterization of ultra-fine grained (UFG) and nanocrystalline materials. The traditional techniques associated with scanning electron microscopy (SEM), such as electron backscatter diffraction (EBSD), do not possess the required spatial resolution due to the large interaction volume between the electrons from the beam and the atoms of the material. Transmission electron microscopy (TEM) has the required spatial resolution. However, due to a lack of automation in the analysis system, the rate of data acquisition is slow which limits the area of the specimen that can be characterized. This paper presents a new characterization technique, Transmission Kikuchi Diffraction (TKD), which enables the analysis of the microstructure of UFG and nanocrystalline materials using an SEM equipped with a standard EBSD system. The spatial resolution of this technique can reach 2 nm. This technique can be applied to a large range of materials that would be difficult to analyze using traditional EBSD. After presenting the experimental set up and describing the different steps necessary to realize a TKD analysis, examples of its use on metal alloys and minerals are shown to illustrate the resolution of the technique and its flexibility in term of material to be characterized. PMID:28447998

  19. Characterization of Ultra-fine Grained and Nanocrystalline Materials Using Transmission Kikuchi Diffraction.

    PubMed

    Proust, Gwénaëlle; Trimby, Patrick; Piazolo, Sandra; Retraint, Delphine

    2017-04-01

    One of the challenges in microstructure analysis nowadays resides in the reliable and accurate characterization of ultra-fine grained (UFG) and nanocrystalline materials. The traditional techniques associated with scanning electron microscopy (SEM), such as electron backscatter diffraction (EBSD), do not possess the required spatial resolution due to the large interaction volume between the electrons from the beam and the atoms of the material. Transmission electron microscopy (TEM) has the required spatial resolution. However, due to a lack of automation in the analysis system, the rate of data acquisition is slow which limits the area of the specimen that can be characterized. This paper presents a new characterization technique, Transmission Kikuchi Diffraction (TKD), which enables the analysis of the microstructure of UFG and nanocrystalline materials using an SEM equipped with a standard EBSD system. The spatial resolution of this technique can reach 2 nm. This technique can be applied to a large range of materials that would be difficult to analyze using traditional EBSD. After presenting the experimental set up and describing the different steps necessary to realize a TKD analysis, examples of its use on metal alloys and minerals are shown to illustrate the resolution of the technique and its flexibility in term of material to be characterized.

  20. Sinus Floor Elevation and Augmentation Using Synthetic Nanocrystalline and Nanoporous Hydroxyapatite Bone Substitute Materials: Preliminary Histologic Results.

    PubMed

    Belouka, Sofia-Maria; Strietzel, Frank Peter

    To compare the tissue composition of augmented sites after using two different synthetic bone substitute materials, nanocrystalline and nanoporous hydroxyapatite (HA), for sinus floor elevation and augmentation. Forty-four patients received 88 titanium screw implants (Camlog Promote plus) of 4.3-mm diameter and 11- or 13-mm length, placed simultaneously during sinus floor elevation and augmentation. Nanocrystalline (Ostim) or nanoporous (NanoBone) HA were used exclusively. Bone substitute materials and implant lengths were allocated by randomization. Bone biopsy specimens were obtained from the former area of the lateral access window at implant exposure during healing abutment placement after 6 months. Biopsy specimens were prepared and examined histologically and histomorphometrically. All implants were osseointegrated at the time of exposure. Clinically and histologically, no signs of inflammation in the augmented sites were present. The histomorphometric analysis of 44 biopsy specimens revealed 31.8% ± 11.6% newly formed bone for sites augmented with nanocrystalline HA and 34.6% ± 9.2% for nanoporous HA (P = .467). The proportion of remaining bone substitute material was 28.4% ± 18.6% and 30% ± 13%, respectively (P = .453). The proportion of soft tissue within the biopsy specimens was 39.9% ± 11.1% and 35.4% ± 6.8%, respectively (P = .064). No significant differences were found between the area fractions of bone, bone substitute material, and soft tissue concerning the bone substitute material utilized. Within the present study, both synthetic bone substitute materials, nanocrystalline and nanoporous HA, were found to support bone formation in sinus floor elevation and augmentation procedures by osteoconductivity. They were not completely resorbed after 6 months. The amounts of newly formed bone, soft tissue, and bone substitute material remnants were found to be similar, indicating that both materials are likewise suitable for sinus floor elevation and

  1. Local crystal/chemical structures at iron sites in amorphous, magnetic, and nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Clark, Ted Michael

    Order-disorder phenomena have been examined by means of Mossbauer spectroscopy in a variety of materials, including (a) tektites and other silicate glasses, (b) magnetic materials such as natural and synthetic magnetoplumbite, M-type hexagonal ferrites and magnetite, and (c) nanocrystalline zinc ferrite. A methodology has been established for the analysis of the local crystal/chemical structures of iron in tektites and its application has reconfirmed a low ferric/ferrous ratio of approximately 0.10 for tektites. Additionally, a greater degree of submirocscopic heterogeneity has been established for Muong Nong tektites in comparison with splash form tektites. The dynamics of the 2b site in hexagonal ferrites has been studied above and below the Curie temperature for magnetoplumbite and its synthetic analogs, and also for polycrystalline and oriented single-crystals of MeFesb{12}Osb{19} (Me=Ba, Sr, Pb). Cation ordering on this site is shown to be dependent on the thermal history of the material, while the dynamic disorder of the 2b site for the end-member hexagonal ferrites is shown to be influenced by the divalent heavy metal species, Me. The influence of chemical composition on the morphology of magnetite has been shown to depend on the site preference of impurity cations: Substitutional impurities with tetrahedral site preferences are postulated to result in the seldom-observed cubic habit. Based on the cation distributions of bulk and nanocrystalline material it is held that the enhanced magnetic moments and susceptibilities of nanocrystalline zinc ferrite are shown to be consistent with surface phenomena, independent of synthesis methodology, and contrary to claims of special effects resulting from a particular synthesis methodology.

  2. New atom probe approaches to studying segregation in nanocrystalline materials.

    PubMed

    Samudrala, S K; Felfer, P J; Araullo-Peters, V J; Cao, Y; Liao, X Z; Cairney, J M

    2013-09-01

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Ionic Conduction in Nanocrystalline Materials

    DTIC Science & Technology

    2000-02-10

    In the following, we review studies performed films prepared by a polymer precursor process on on stabilized zirconia ceramics with grain sizes alumina ... titania , is reviewed. While it remains too early to make firm conclusions, the following observations are made. Additives which contribute to ion blocking...Keywords: Ionic conductivity; Nanocrystalline; Zirconia; Ceria; Titania ; Defects 1. Introduction tivity by nearly two orders of magnitude [6]. Given the

  4. The importance of fracture toughness in ultrafine and nanocrystalline bulk materials

    PubMed Central

    Pippan, R.; Hohenwarter, A.

    2016-01-01

    ABSTRACT The suitability of high-strength ultrafine and nanocrystalline materials processed by severe plastic deformation methods and aimed to be used for structural applications will strongly depend on their resistance against crack growth. In this contribution some general available findings on the damage tolerance of this material class will be summarized. Particularly, the occurrence of a pronounced fracture anisotropy will be in the center of discussion. In addition, the great potential of this generated anisotropy to obtain high-strength materials with exceptionally high fracture toughness in specific loading and crack growth directions will be enlightened. IMPACT STATEMENT Severely plastically deformed materials are reviewed in light of their damage tolerance. The frequently observed toughness anisotropy allows unprecedented fracture toughness – strength combinations. PMID:27570712

  5. Nanocrystalline cellulose from coir fiber: preparation, properties, and applications

    USDA-ARS?s Scientific Manuscript database

    Nanocrystalline cellulose derived from various botanical sources offers unique and potentially useful characteristics. In principle, any cellulosic material can be considered as a potential source of a nanocrystalline material, including crops, crop residues, and agroindustrial wastes. Because of t...

  6. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Aaron Christopher; Sarobol, Pylin; Argibay, Nicolas

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. Wemore » demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.« less

  7. Method to produce nanocrystalline powders of oxide-based phosphors for lighting applications

    DOEpatents

    Loureiro, Sergio Paulo Martins; Setlur, Anant Achyut; Williams, Darryl Stephen; Manoharan, Mohan; Srivastava, Alok Mani

    2007-12-25

    Some embodiments of the present invention are directed toward nanocrystalline oxide-based phosphor materials, and methods for making same. Typically, such methods comprise a steric entrapment route for converting precursors into such phosphor material. In some embodiments, the nanocrystalline oxide-based phosphor materials are quantum splitting phosphors. In some or other embodiments, such nanocrystalline oxide based phosphor materials provide reduced scattering, leading to greater efficiency, when used in lighting applications.

  8. High Pressure X-Ray Diffraction Studies of Nanocrystalline Materials

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Stel'makh, S.; Grzanka, E.; Gierlotka, S.; Palosz, W.

    2004-01-01

    Experimental evidence obtained for a variety of nanocrystalline materials suggest that the crystallographic structure of a very small size particle deviates from that in the bulk crystals. In this paper we show the effect of the surface of nanocrystals on their structure by the analysis of generation and distribution of macro- and micro-strains at high pressures and their dependence on the grain size in nanocrystalline powders of Sic. We studied the structure of Sic nanocrystals by in-situ high-pressure powder diffraction technique using synchrotron and neutron sources and hydrostatic or isostatic pressure conditions. The diffraction measurements were done in HASYLAB at DESY using a Diamond Anvil Cell (DAC) in the energy dispersive geometry in the diffraction vector range up to 3.5 - 4/A and under pressures up to 50 GPa at room temperature. In-situ high pressure neutron diffraction measurements were done at LANSCE in Los Alamos National Laboratory using the HIPD and HIPPO diffractometers with the Paris-Edinburgh and TAP-98 cells, respectively, in the diffraction vector range up to 26 Examination of the response of the material to external stresses requires nonstandard methodology of the materials characterization and description. Although every diffraction pattern contains a complete information on macro- and micro-strains, a high pressure experiment can reveal only those factors which contribute to the characteristic diffraction patterns of the crystalline phases present in the sample. The elastic properties of powders with the grain size from several nm to micrometers were examined using three methodologies: (l), the analysis of positions and widths of individual Bragg reflections (used for calculating macro- and micro-strains generated during densification) [I], (2). the analysis of the dependence of the experimental apparent lattice parameter, alp, on the diffraction vector Q [2], and (3), the atomic Pair Distribution Function (PDF) technique [3]. The results

  9. Method of making nanocrystalline alpha alumina

    DOEpatents

    Siegel, Richard W.; Hahn, Horst; Eastman, Jeffrey A.

    1992-01-01

    Method of making selected phases of nanocrystalline ceramic materials. Various methods of controlling the production of nanocrystalline alpha alumina and titanium oxygen phases are described. Control of the gas atmosphere and use of particular oxidation treatments give rise to the ability to control the particular phases provided in the aluminum/oxygen and titanium/oxygen system.

  10. "Bulk" Nanocrystalline Metals: Review of the Current State of the Art and Future Opportunities for Copper and Copper Alloys

    NASA Astrophysics Data System (ADS)

    Tschopp, M. A.; Murdoch, H. A.; Kecskes, L. J.; Darling, K. A.

    2014-06-01

    It is a new beginning for innovative fundamental and applied science in nanocrystalline materials. Many of the processing and consolidation challenges that have haunted nanocrystalline materials are now more fully understood, opening the doors for bulk nanocrystalline materials and parts to be produced. While challenges remain, recent advances in experimental, computational, and theoretical capability have allowed for bulk specimens that have heretofore been pursued only on a limited basis. This article discusses the methodology for synthesis and consolidation of bulk nanocrystalline materials using mechanical alloying, the alloy development and synthesis process for stabilizing these materials at elevated temperatures, and the physical and mechanical properties of nanocrystalline materials with a focus throughout on nanocrystalline copper and a nanocrystalline Cu-Ta system, consolidated via equal channel angular extrusion, with properties rivaling that of nanocrystalline pure Ta. Moreover, modeling and simulation approaches as well as experimental results for grain growth, grain boundary processes, and deformation mechanisms in nanocrystalline copper are briefly reviewed and discussed. Integrating experiments and computational materials science for synthesizing bulk nanocrystalline materials can bring about the next generation of ultrahigh strength materials for defense and energy applications.

  11. Synthesis and properties of nickel-doped nanocrystalline barium hexaferrite ceramic materials

    NASA Astrophysics Data System (ADS)

    Waqar, Moaz; Rafiq, Muhammad Asif; Mirza, Talha Ahmed; Khalid, Fazal Ahmad; Khaliq, Abdul; Anwar, Muhammad Sabieh; Saleem, Murtaza

    2018-04-01

    M-type barium hexaferrite ceramics have emerged as important materials both for technological and commercial applications. However, limited work has been reported regarding the investigation of nanocrystalline Ni-doped barium hexaferrites. In this study, nanocrystalline barium hexaferrite ceramics with the composition BaFe12- x Ni x O19 (where x = 0, 0.3 and 0.5) were synthesized by sol-gel method and characterized using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometer and precision impedance analyzer. All the synthesized samples had single magnetoplumbite phase having space group P63/mmc showing the successful substitution of Ni in BaFe12O19 without the formation of any impurity phase. Average grain size of undoped samples was around 120 nm which increased slightly with the addition of Ni. Saturation magnetization ( M s) and remnant magnetization ( M r) increased with the addition of Ni, however, coercivity ( H c) decreased with the increase in Ni from x = 0 to x = 0.5. Real and imaginary parts of permittivity decreased with the increasing frequency and increased with Ni content. Dielectric loss and conductivity showed slight variation with the increase in Ni concentration.

  12. Lithium potential variations for metastable materials: case study of nanocrystalline and amorphous LiFePO4.

    PubMed

    Zhu, Changbao; Mu, Xiaoke; Popovic, Jelena; Weichert, Katja; van Aken, Peter A; Yu, Yan; Maier, Joachim

    2014-09-10

    Much attention has been paid to metastable materials in the lithium battery field, especially to nanocrystalline and amorphous materials. Nonetheless, fundamental issues such as lithium potential variations have not been pertinently addressed. Using LiFePO4 as a model system, we inspect such lithium potential variations for various lithium storage modes and evaluate them thermodynamically. The conclusions of this work are essential for an adequate understanding of the behavior of electrode materials and even helpful in the search for new energy materials.

  13. Bulk Nanocrystalline Metals: Review of the Current State of the Art and Future Opportunities for Copper and Copper Alloys

    DTIC Science & Technology

    2014-05-13

    nanocrystalline materials using mechanical alloying, the alloy development and synthesis process for stabilizing these materials at elevated temperatures, and...the physical and mechanical properties of nanocrystalline materials with a focus throughout on nanocrystalline copper and a nanocrystalline Cu-Ta...approaches as well as experimental results for grain growth, grain boundary processes, and deformation mechanisms in nanocrystalline copper are

  14. Adhesive bonding and brazing of nanocrystalline diamond foil onto different substrate materials

    NASA Astrophysics Data System (ADS)

    Lodes, Matthias A.; Sailer, Stefan; Rosiwal, Stefan M.; Singer, Robert F.

    2013-10-01

    Diamond coatings are used in heavily stressed industrial applications to reduce friction and wear. Hot-filament chemical vapour deposition (HFCVD) is the favourable coating method, as it allows a coating of large surface areas with high homogeneity. Due to the high temperatures occurring in this CVD-process, the selection of substrate materials is limited. With the desire to coat light materials, steels and polymers a new approach has been developed. First, by using temperature-stable templates in the HFCVD and stripping off the diamond layer afterwards, a flexible, up to 150 μm thick and free standing nanocrystalline diamond foil (NCDF) can be produced. Afterwards, these NCDF can be applied on technical components through bonding and brazing, allowing any material as substrate. This two-step process offers the possibility to join a diamond layer on any desired surface. With a modified scratch test and Rockwell indentation testing the adhesion strength of NCDF on aluminium and steel is analysed. The results show that sufficient adhesion strength is reached both on steel and aluminium. The thermal stress in the substrates is very low and if failure occurs, cracks grow undercritically. Adhesion strength is even higher for the brazed samples, but here crack growth is critical, delaminating the diamond layer to some extent. In comparison to a sample directly coated with diamond, using a high-temperature CVD interlayer, the brazed as well as the adhesively bonded samples show very good performance, proving their competitiveness. A high support of the bonding layer could be identified as crucial, though in some cases a lower stiffness of the latter might be acceptable considering the possibility to completely avoid thermal stresses which occur during joining at higher temperatures.

  15. ZnO and MgZnO Nanocrystalline Flexible Films: Optical and Material Properties

    DOE PAGES

    Huso, Jesse; Morrison, John L.; Che, Hui; ...

    2011-01-01

    An emore » merging material for flexible UV applications is Mg x Zn 1 − x O which is capable of tunable bandgap and luminescence in the UV range of ~3.4 eV–7.4 eV depending on the composition x . Studies on the optical and material characteristics of ZnO and Mg 0.3 Zn 0.7 O nanocrystalline flexible films are presented. The analysis indicates that the ZnO and Mg 0.3 Zn 0.7 O have bandgaps of 3.34 eV and 4.02 eV, respectively. The photoluminescence (PL) of the ZnO film was found to exhibit a structural defect-related emission at ~3.316 eV inherent to the nanocrystalline morphology. The PL of the Mg 0.3 Zn 0.7 O film exhibits two broad peaks at 3.38 eV and at 3.95 eV that are discussed in terms of the solubility limit of the ZnO-MgO alloy system. Additionally, external deformation of the film did not have a significant impact on its properties as indicated by the Raman LO-mode behavior, making these films attractive for UV flexible applications.« less

  16. Micromechanics Modeling of Fracture in Nanocrystalline Metals

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Piascik, R. S.; Raju, I. S.; Harris, C. E.

    2002-01-01

    Nanocrystalline metals have very high theoretical strength, but suffer from a lack of ductility and toughness. Therefore, it is critical to understand the mechanisms of deformation and fracture of these materials before their full potential can be achieved. Because classical fracture mechanics is based on the comparison of computed fracture parameters, such as stress intlmsity factors, to their empirically determined critical values, it does not adequately describe the fundamental physics of fracture required to predict the behavior of nanocrystalline metals. Thus, micromechanics-based techniques must be considered to quanti@ the physical processes of deformation and fracture within nanocrystalline metals. This paper discusses hndamental physicsbased modeling strategies that may be useful for the prediction Iof deformation, crack formation and crack growth within nanocrystalline metals.

  17. Application of micro- and nanocrystalline cellulose

    NASA Astrophysics Data System (ADS)

    Sotnikova, Yu S.; Demina, T. S.; Istomin, A. V.; Goncharuk, G. P.; Grandfils, Ch; Akopova, T. A.; Zelenetskii, A. N.; Babayevsky, P. G.

    2018-04-01

    Micro- and nanocrystalline forms of cellulose were extracted from flax stalks and evaluated in terms of their applicability for various materials science tasks. It was revealed that both form of cellulose had anisometric morphology with length of 27.1 μm and 159 nm; diameter of 8.7 μm and 85 nm, respectively. They were used as reinforcing fillers for fabrication of composite films based on hydroxyethylcellulose. Film-forming and mechanical properties of the composite materials were significantly varied in dependence on filler content (0–10 wt.%) and size. As a second option of micro- and nanocrystalline cellulose application, a study of their effectiveness as stabilizing agents for oil/water Pickering emulsions was carried out. In contrast to micron-sized cellulose the nanocrystalline form appeared to be successful in the process of CH2Cl2/water interface stabilization and fabrication of polylactide microparticles via oil/water Pickering emulsion solvent evaporation technique.

  18. Phase-field model with plastic flow for grain growth in nanocrystalline material

    NASA Astrophysics Data System (ADS)

    Steinbach, Ingo; Song, Xiaoyan; Hartmaier, Alexander

    2010-01-01

    A phase-field model is presented which considers the accumulation of structural defects in grain boundaries by an isotropic eigenstrain associated with the grain boundaries. It is demonstrated that the elastic energy caused by dilatation of the grain boundary with respect to the bulk crystal contributes largely to the grain boundary energy. The sign of this contribution can be both positive and negative dependent on the local stress state in the grain boundary. Self-diffusion of atoms is taken into account to relax the stress caused by the dilatation of the grain boundary. Application of the model to discontinuous grain growth in pure nanocrystalline cobalt material is presented. Linear grain growth is found in the nanocrystalline state, which is explained by the interpretation of grain boundary motion as a diffusive process defining an upper limit of the grain boundary velocity independent of the grain boundary curvature but dependent on temperature. The transition to regular grain growth at a critical temperature, as observed experimentally, is explained by the drop of theoretical grain boundary velocity due to its mean curvature during coarsening of the nanograin structure below the maximum velocity.

  19. Fatigue stress concentration and notch sensitivity in nanocrystalline metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furnish, Timothy A.; Boyce, Brad L.; Sharon, John A.

    Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zonesmore » underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. Furthermore, the onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.« less

  20. Fatigue stress concentration and notch sensitivity in nanocrystalline metals

    DOE PAGES

    Furnish, Timothy A.; Boyce, Brad L.; Sharon, John A.; ...

    2016-03-11

    Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zonesmore » underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. Furthermore, the onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.« less

  1. Electrode characteristics of nanocrystalline AB{sub 5} compounds prepared by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Chen, Z.; Zhou, D.

    1998-10-01

    Nanocrystalline LaNi{sub 5} and LaNi{sub 4.5}Si{sub 0.5} synthesized by mechanical alloying were used as negative materials for Ni-MH batteries. It was found that the electrodes prepared with the nanocrystalline powders had similar discharge capacities, better activation behaviors, and longer cycle lifetimes, compared with the negative electrode prepared with polycrystalline coarse-grained LaNi{sub 5} alloy. The properties of the electrodes prepared with these nanocrystalline materials were attributed to the structural characteristics of the compounds caused by mechanical alloying.

  2. An Investigation Into The Viability Of Nanocrystalline Cellulose As A Packaging Material

    NASA Astrophysics Data System (ADS)

    Glass, John

    The focus of this proposal is to identify unexplored areas of research in the field of packaging science, specifically related to the incorporation of Nanocrystalline Cellulose (NCC) as a functional material in fiber based packaging, as well as to highlight some of potential risks and unknowns in the product lifecycle. This research hypothesizes that incorporating NCC into wood fiber-based c-flute corrugated packaging medium will show a sufficient performance improvement to justify additional research. Nanomaterials, as a whole, are still being understood, including those using naturally occurring bases such as NCC. Further incremental testing with NCC will help provide a performance and safety baseline for the necessary future research prior to mass production. NCC holds great promise for the future: a commonly available, naturally occurring material that's easily recyclable and biodegradable, yet has the strength of steel. Due diligence is required for this material to come to market in a safe and sustainable manner.

  3. Iron-rich (Fe1-x-yNixCoy)88Zr7B4Cu1 nanocrystalline magnetic materials for high temperature applications with minimal magnetostriction

    NASA Astrophysics Data System (ADS)

    Martone, Anthony; Dong, Bowen; Lan, Song; Willard, Matthew A.

    2018-05-01

    As inductor technology advances, greater efficiency and smaller components demand new core materials. With recent developments of nanocrystalline magnetic materials, soft magnetic properties of these cores can be greatly improved. FeCo-based nanocrystalline magnetic alloys have resulted in good soft magnetic properties and high Curie temperatures; however, magnetoelastic anisotropies persist as a main source of losses. This investigation focuses on the design of a new Fe-based (Fe,Ni,Co)88Zr7B4Cu1 alloy with reduced magnetostriction and potential for operation at elevated temperatures. The alloys have been processed by arc melting, melt spinning, and annealing in a protective atmosphere to produce nanocrystalline ribbons. These ribbons have been analyzed for structure, hysteresis, and magnetostriction using X-Ray diffraction, vibrating sample magnetometry (VSM), and a home-built magnetostriction system, respectively. In addition, Curie temperatures of the amorphous phase were analyzed to determine the best performing, high-temperature material. Our best result was found for a Fe77Ni8.25Co2.75Zr7B4Cu1 alloy with a 12 nm average crystallite size (determined from Scherrer broadening) and a 2.873 Å lattice parameter determined from the Nelson-Riley function. This nanocrystalline alloy possesses a coercivity of 10 A/m, magnetostrictive coefficient of 4.8 ppm, and amorphous phase Curie temperature of 218°C.

  4. Initial stage corrosion of nanocrystalline copper particles and thin films

    NASA Astrophysics Data System (ADS)

    Tao, Weimin

    1997-12-01

    Corrosion behavior is an important issue in nanocrystalline materials research and development. A very fine grain size is expected to have significant effects on the corrosion resistance of these novel materials. However, both the macroscopic corrosion properties and the corresponding structure evolution during corrosion have not been fully studied. Under such circumstances, conducting fundamental research in this area is important and necessary. In this study, high purity nanocrystalline and coarse-grained copper were selected as our sample material, sodium nitrite aqueous solution at room temperature and air at a high temperature were employed as corrosive environments. The weight loss testing and electrochemical methods were used to obtain the macroscopic corrosion properties, whereas the high resolution transmission electron microscope was employed for the structure analysis. The weight loss tests indicate that the corrosion rate of nanocrystalline copper is about 5 times higher than that of coarse-grained copper at the initial stage of corrosion. The electrochemical measurements show that the corrosion potential of the nanocrystalline copper has a 230 mV negative shift in comparison with that of the coarse-grained copper. The nanocrystalline copper also exhibits a significantly higher exchange current density than the coarse-grained copper. High resolution TEM revealed that the surface structure changes at the initial stage of corrosion. It was found that the first copper oxide layer formed on the surface of nanocrystalline copper thin film contains a large density of high angle grain boundaries, whereas that formed on the surface of coarse-grained copper shows highly oriented oxide nuclei and appears to show a strong tendency for forming low angle grain boundaries. A correlation between the macroscopic corrosion properties and the structure characteristics is proposed for the nanocrystalline copper based on the concept of the "apparent" exchange current

  5. Electrodeposition of Nanocrystalline Co-P Coatings as a Hard Chrome Alternative

    DTIC Science & Technology

    2009-09-02

    Electrodeposition  of Nanocrystalline Co‐P  Coatings as a Hard Chrome Alternative Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden...AND SUBTITLE Electrodeposition of Nanocrystalline Co‐P Coatings as a Hard Chrome Alternative 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...Defense Conference – 2 September 2009 Conventional  Electrodeposits Polycrystalline (10‐100 µm) Electrodeposited Nanocrystalline Materials Pulsed

  6. Polymer blend of PLA/PHBV based bionanocomposites reinforced with nanocrystalline cellulose for potential application as packaging material.

    PubMed

    Dasan, Y K; Bhat, A H; Ahmad, Faiz

    2017-02-10

    The current research discusses the development of poly (lactic acid) (PLA) and poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced nanocrystalline cellulose bionanocomposites. The nanocrystalline cellulose was derived from waste oil palm empty fruit bunch fiber by acid hydrolysis process. The resulting nanocrystalline cellulose suspension was then surface functionalized by TEMPO-mediated oxidation and solvent exchange process. Furthermore, the PLA/PHBV/nanocrystalline cellulose bionanocomposites were produced by solvent casting method. The effect of the addition of nanocrystalline cellulose on structural, morphology, mechanical and barrier properties of bionanocomposites was investigated. The results revealed that the developed bionanocomposites showed improved mechanical properties and decrease in oxygen permeability rate. Therefore, the developed bio-based composite incorporated with an optimal composition of nanocrystalline cellulose exhibits properties as compared to the polymer blend. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    DOEpatents

    Gruen, Dieter M.

    2012-09-04

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  8. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    DOEpatents

    Gruen, Dieter M [Downers Grove, IL

    2009-08-11

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  9. Structural characterization of nanocrystalline cadmium sulphide powder prepared by solvent evaporation technique

    NASA Astrophysics Data System (ADS)

    Pandya, Samir; Tandel, Digisha; Chodavadiya, Nisarg

    2018-05-01

    CdS is one of the most important compounds in the II-VI group of semiconductor. There are numerous applications of CdS in the form of nanoparticles and nanocrystalline. Semiconductors nanoparticles (also known as quantum dots), belong to state of matter in the transition region between molecules and solids, have attracted a great deal of attention because of their unique electrical and optical properties, compared to bulk materials. In the field of optoelectronic, nanocrystalline form utilizes mostly in the field of catalysis and fluid technology. Considering these observations, presented work had been carried out, i.e. based on the nanocrystalline material preparation. In the present work CdS nano-crystalline powder was synthesized by a simple and cost effective chemical technique to grow cadmium sulphide (CdS) nanoparticles at 200 °C with different concentrations of cadmium. The synthesis parameters were optimized. The synthesized powder was structurally characterized by X-ray diffraction and particle size analyzer. In the XRD analysis, Micro-structural parameters such as lattice strain, dislocation density and crystallite size were analysed. The broadened diffraction peaks indicated nanocrystalline particles of the film material. In addition to that the size of the prepared particles was analyzed by particle size analyzer. The results show the average size of CdS particles ranging from 80 to 100 nm. The overall conclusion of the work can be very useful in the synthesis of nanocrystalline CdS powder.

  10. Hot pressing of nanocrystalline tantalum using high frequency induction heating and pulse plasma sintering

    NASA Astrophysics Data System (ADS)

    Jakubowicz, J.; Adamek, G.; Sopata, M.; Koper, J. K.; Siwak, P.

    2017-12-01

    The paper presents the results of nanocrystalline powder tantalum consolidation using hot pressing. The authors used two different heating techniques during hot pressing: high-frequency induction heating (HFIH) and pulse plasma sintering (PPS). A comparison of the structure, microstructure, mechanical properties and corrosion resistance of the bulk nanocrystalline tantalum obtained in both techniques was performed. The nanocrystalline powder was made to start from the microcrystalline one using the high-energy ball milling process. The nanocrystalline powder was hot-pressed at 1000 °C, whereas, for comparison, the microcrystalline powder was hot pressed up to 1500 °C for proper consolidation. The authors found that during hot pressing, the powder partially reacts with the graphite die covered by boron nitride, which facilitated punches and powder displacement in the die during densification. Tantalum carbide and boride in the nanocrystalline material was found, which can improve the mechanical properties. The hardness of the HFIH and PPS nanocrystalline tantalum was as high as 625 and 615 HV, respectively. The microstructure was more uniform in the PPS nanomaterial. The corrosion resistance in both cases deteriorated, in comparison to the microcrystalline material, while the PPS material corrosion resistance was slightly better than that of the HFIH one.

  11. Grain boundary character distribution in nanocrystalline metals produced by different processing routes

    DOE PAGES

    Bober, David B.; Kumar, Mukal; Rupert, Timothy J.; ...

    2015-12-28

    Nanocrystalline materials are defined by their fine grain size, but details of the grain boundary character distribution should also be important. Grain boundary character distributions are reported for ball-milled, sputter-deposited, and electrodeposited Ni and Ni-based alloys, all with average grain sizes of ~20 nm, to study the influence of processing route. The two deposited materials had nearly identical grain boundary character distributions, both marked by a Σ3 length percentage of 23 to 25 pct. In contrast, the ball-milled material had only 3 pct Σ3-type grain boundaries and a large fraction of low-angle boundaries (16 pct), with the remainder being predominantlymore » random high angle (73 pct). Furthermore, these grain boundary character measurements are connected to the physical events that control their respective processing routes. Consequences for material properties are also discussed with a focus on nanocrystalline corrosion. As a whole, the results presented here show that grain boundary character distribution, which has often been overlooked in nanocrystalline metals, can vary significantly and influence material properties in profound ways.« less

  12. Rapid Growth of Nanocrystalline Diamond on Single Crystal Diamond for Studies on Materials under Extreme Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Samuel L.; Samudrala, Gopi K.; Catledge, Shane A.

    Early stage nucleation morphologies of spatially localized nanocrystalline diamond (NCD) micro-anvils grown on (100)-oriented single crystal diamond (SCD) anvil surfaces were analyzed and investigated for applications in high pressure studies on materials. NCD was grown on SCD using Microwave Plasma Chemical Vapor Deposition (MPCVD) for brief time intervals ranging from 1-15 minutes. Early stage film morphologies were characterized using scanning electron microscopy (SEM) and Raman spectroscopy and were compared to films grown for several hours. Rapid nucleation and growth of NCD on SCD is demonstrated without any pre-growth seeding of the substrate surface. As grown NCD diamond micro-anvils on SCDmore » were used to generate static pressure of 0.5 Terapascal (TPa) on a tungsten sample as measured by synchrotron x-ray diffraction in a diamond anvil cell. Atomic force microscopy (AFM) analysis after decompression from ultrahigh pressures showed that the detachment of the NCD stage occurred in the bulk of the SCD and not at the interface, suggesting significant adhesive bond strength between nanocrystalline and single crystal diamond.« less

  13. Rapid Growth of Nanocrystalline Diamond on Single Crystal Diamond for Studies on Materials under Extreme Conditions

    DOE PAGES

    Moore, Samuel L.; Samudrala, Gopi K.; Catledge, Shane A.; ...

    2018-01-23

    Early stage nucleation morphologies of spatially localized nanocrystalline diamond (NCD) micro-anvils grown on (100)-oriented single crystal diamond (SCD) anvil surfaces were analyzed and investigated for applications in high pressure studies on materials. NCD was grown on SCD using Microwave Plasma Chemical Vapor Deposition (MPCVD) for brief time intervals ranging from 1-15 minutes. Early stage film morphologies were characterized using scanning electron microscopy (SEM) and Raman spectroscopy and were compared to films grown for several hours. Rapid nucleation and growth of NCD on SCD is demonstrated without any pre-growth seeding of the substrate surface. As grown NCD diamond micro-anvils on SCDmore » were used to generate static pressure of 0.5 Terapascal (TPa) on a tungsten sample as measured by synchrotron x-ray diffraction in a diamond anvil cell. Atomic force microscopy (AFM) analysis after decompression from ultrahigh pressures showed that the detachment of the NCD stage occurred in the bulk of the SCD and not at the interface, suggesting significant adhesive bond strength between nanocrystalline and single crystal diamond.« less

  14. A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Jiang, B.; Weng, G. J.

    2004-05-01

    Inspired by recent molecular dynamic simulations of nanocrystalline solids, a generalized self-consistent polycrystal model is proposed to study the transition of yield strength of polycrystalline metals as the grain size decreases from the traditional coarse grain to the nanometer scale. These atomic simulations revealed that a significant portion of atoms resides in the grain boundaries and the plastic flow of the grain-boundary region is responsible for the unique characteristics displayed by such materials. The proposed model takes each oriented grain and its immediate grain boundary to form a pair, which in turn is embedded in the infinite effective medium with a property representing the orientational average of all these pairs. We make use of the linear comparison composite to determine the nonlinear behavior of the nanocrystalline polycrystal through the concept of secant moduli. To this end an auxiliary problem of Christensen and Lo (J. Mech. Phys. Solids 27 (1979) 315) superimposed on the eigenstrain field of Luo and Weng (Mech. Mater. 6 (1987) 347) is first considered, and then the nonlinear elastoplastic polycrystal problem is addressed. The plastic flow of each grain is calculated from its crystallographic slips, but the plastic behavior of the grain-boundary phase is modeled as that of an amorphous material. The calculated yield stress for Cu is found to follow the classic Hall-Petch relation initially, but as the gain size decreases it begins to depart from it. The yield strength eventually attains a maximum at a critical grain size and then the Hall-Petch slope turns negative in the nano-range. It is also found that, when the Hall-Petch relation is observed, the plastic behavior of the polycrystal is governed by crystallographic slips in the grains, but when the slope is negative it is governed by the grain boundaries. During the transition both grains and grain boundaries contribute competitively.

  15. Nanocarbon Allotropes-Graphene and Nanocrystalline Diamond-Promote Cell Proliferation.

    PubMed

    Verdanova, Martina; Rezek, Bohuslav; Broz, Antonin; Ukraintsev, Egor; Babchenko, Oleg; Artemenko, Anna; Izak, Tibor; Kromka, Alexander; Kalbac, Martin; Hubalek Kalbacova, Marie

    2016-05-01

    Two profoundly different carbon allotropes - nanocrystalline diamond and graphene - are of considerable interest from the viewpoint of a wide range of biomedical applications including implant coating, drug and gene delivery, cancer therapy, and biosensing. Osteoblast adhesion and proliferation on nanocrystalline diamond and graphene are compared under various conditions such as differences in wettability, topography, and the presence or absence of protein interlayers between cells and the substrate. The materials are characterized in detail by means of scanning electron microscopy, atomic force microscopy, photoelectron spectroscopy, Raman spectroscopy, and contact angle measurements. In vitro experiments have revealed a significantly higher degree of cell proliferation on graphene than on nanocrystalline diamond and a tissue culture polystyrene control material. Proliferation is promoted, in particular, by hydrophobic graphene with a large number of nanoscale wrinkles independent of the presence of a protein interlayer, i.e., substrate fouling is not a problematic issue in this respect. Nanowrinkled hydrophobic graphene, thus, exhibits superior characteristics for those biomedical applications where high cell proliferation is required under differing conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Direct Coating of Nanocrystalline Diamond on Steel

    NASA Astrophysics Data System (ADS)

    Tsugawa, Kazuo; Kawaki, Shyunsuke; Ishihara, Masatou; Hasegawa, Masataka

    2012-09-01

    Nanocrystalline diamond films have been successfully deposited on stainless steel substrates without any substrate pretreatments to promote diamond nucleation, including the formation of interlayers. A low-temperature growth technique, 400 °C or lower, in microwave plasma chemical vapor deposition using a surface-wave plasma has cleared up problems in diamond growth on ferrous materials, such as the surface graphitization, long incubation time, substrate softening, and poor adhesion. The deposited nanocrystalline diamond films on stainless steel exhibit good adhesion and tribological properties, such as a high wear resistance, a low friction coefficient, and a low aggression strength, at room temperature in air without lubrication.

  17. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments

    PubMed Central

    El-Atwani, O.; Hinks, J. A.; Greaves, G.; Gonderman, S.; Qiu, T.; Efe, M.; Allain, J. P.

    2014-01-01

    The accumulation of defects, and in particular He bubbles, can have significant implications for the performance of materials exposed to the plasma in magnetic-confinement nuclear fusion reactors. Some of the most promising candidates for deployment into such environments are nanocrystalline materials as the engineering of grain boundary density offers the possibility of tailoring their radiation resistance properties. In order to investigate the microstructural evolution of ultrafine- and nanocrystalline-grained tungsten under conditions similar to those in a reactor, a transmission electron microscopy study with in situ 2 keV He+ ion irradiation at 950°C has been completed. A dynamic and complex evolution in the microstructure was observed including the formation of defect clusters, dislocations and bubbles. Nanocrystalline grains with dimensions less than around 60 nm demonstrated lower bubble density and greater bubble size than larger nanocrystalline (60–100 nm) and ultrafine (100–500 nm) grains. In grains over 100 nm, uniform distributions of bubbles and defects were formed. At higher fluences, large faceted bubbles were observed on the grain boundaries, especially on those of nanocrystalline grains, indicating the important role grain boundaries can play in trapping He and thus in giving rise to the enhanced radiation tolerance of nanocrystalline materials. PMID:24796578

  18. Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures

    NASA Astrophysics Data System (ADS)

    Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.

    2017-12-01

    Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.

  19. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.

    PubMed

    Yang, Lina; Minnich, Austin J

    2017-03-14

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.

  20. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation

    PubMed Central

    Yang, Lina; Minnich, Austin J.

    2017-01-01

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials. PMID:28290484

  1. Grain Size Threshold for Enhanced Irradiation Resistance in Nanocrystalline and Ultrafine Tungsten

    DOE PAGES

    El Atwani, Osman; Hinks, Jonathan; Greaves, Graeme; ...

    2017-02-21

    Nanocrystalline metals are considered highly radiation-resistant materials due to their large grain boundary areas. Here, the existence of a grain size threshold for enhanced irradiation resistance in high-temperature helium-irradiated nanocrystalline and ultrafine tungsten is demonstrated. Average bubble density, projected bubble area and the corresponding change in volume were measured via transmission electron microscopy and plotted as a function of grain size for two ion fluences. Nanocrystalline grains of less than 35 nm size possess ~10–20 times lower change in volume than ultrafine grains and this is discussed in terms of the grain boundaries defect sink efficiency.

  2. Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method

    NASA Astrophysics Data System (ADS)

    Anwar, Budiman; Rosyid, Nurul Huda; Effendi, Devi Bentia; Nandiyanto, Asep Bayu Dani; Mudzakir, Ahmad; Hidayat, Topik

    2016-02-01

    Isolation of needle-shaped bacterial cellulose nanocrystalline with a diameter of 16-64 nm, a fiber length of 258-806 nm, and a degree of crystallinity of 64% from pineapple peel waste using an acid hydrolysis process was investigated. Experimental showed that selective concentration of acid played important roles in isolating the bacterial cellulose nanocrystalline from the cellulose source. To achieve the successful isolation of bacterial cellulose nanocrystalline, various acid concentrations were tested. To confirm the effect of acid concentration on the successful isolation process, the reaction conditions were fixed at a temperature of 50°C, a hydrolysis time of 30 minutes, and a bacterial cellulose-to-acid ratio of 1:50. Pineapple peel waste was used as a model for a cellulose source because to the best of our knowledge, there is no report on the use of this raw material for producing bacterial cellulose nanocrystalline. In fact, this material can be used as an alternative for ecofriendly and cost-free cellulose sources. Therefore, understanding in how to isolate bacterial cellulose nanocrystalline from pineapple peel waste has the potential for large-scale production of inexpensive cellulose nanocrystalline.

  3. Understanding the low temperature electrical properties of nanocrystalline tin oxide for gas sensor applications

    NASA Astrophysics Data System (ADS)

    Drake, Christina Hartsell

    Nanocrystalline metal/metal oxide is an important class of transparent and electronic materials due to its potential use in many applications, including gas sensors. At the nanoscale, many of the phenomena observed that give nanocrystalline semiconducting oxide enhanced performance as a gas sensor material over other conventional engineering materials is still poorly understood. This study is aimed at understanding the low temperature electrical and chemical properties of nanocrystalline SnO2 that makes it suitable for room temperature gas detectors. Studies were carried out in order to understand how various synthesis methods affect the surfaces on the nano-oxides, interactions of a target gas (in this study hydrogen) with different surface species, and changes in the electrical properties as a function of dopants and grain size. A correlation between the surface reactions and the electrical response of doped nanocrystalline metal-oxide-semiconductors exposed to a reducing gas is established using Fourier Transform Infrared (FTIR) Spectroscopy attached to a specially built custom designed catalytic cell. First principle calculations of oxygen vacancy concentrations from absorbance spectra are presented. FTIR is used for effectively screening of these nanostructures for gas sensing applications. The effect of processing temperature on the microstructural evolution and on the electronic properties of nanocrystalline trivalent doped-SnO 2 is also presented. This study includes the effect of dopants (In and Ce) on the growth of nano-SnO2, as well as their effects on the electronic properties and gas sensor behavior of the nanomaterial at room temperature. Band bending affects are also investigated for this system and are related to enhanced low temperature gas sensing. The role and importance of oxygen vacancies in the electronic and chemical behavior of surface modified nanocrystalline SnO2 are explored in this study. A generalized explanation for the low temperature

  4. Effects of oxide distributed in grain boundaries on microstructure stability of nanocrystalline metals

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Li, Hui; Biao Pang, Jin; Wang, Zhu

    2013-06-01

    Nanocrystalline copper and zinc prepared by high-pressure compaction method have been studied by positron lifetime spectroscopy associated with X-ray diffraction. For nanocrystalline Cu, mean grain sizes of the samples decrease after being annealed at 900 °C and increase during aging at 180 °C, revealing that the atoms exchange between the two regions. The positron lifetime results indicate that the vacancy clusters formed in the annealing process are unstable and decomposed at the aging time below 6 hours. In addition, the partially oxidized surfaces of the nanoparticles hinder the grain growth during the ageing at 180 °C, and the vacancy clusters inside the disorder regions which are related to Cu2O need longer aging time to decompose. In the case of nanocrystalline Zn, the open volume defect (not larger than divacancy) is dominant according to the high relative intensity for the short positron lifetime (τ1). The oxide (ZnO) inside the grain boundaries has been found having an effect to hinder the decrease of average positron lifetime (τav) during the annealing, which probably indicates that the oxide stabilizes the microstructure of the grain boundaries. For both nanocrystalline copper and zinc, the oxides in grain boundaries enhance the thermal stability of the microstucture, in spite of their different crystal structures. This effect is very important for the nanocrystalline materials using as radiation resistant materials.

  5. Stabilizing Nanocrystalline Oxide Nanofibers at Elevated Temperatures by Coating Nanoscale Surface Amorphous Films.

    PubMed

    Yao, Lei; Pan, Wei; Luo, Jian; Zhao, Xiaohui; Cheng, Jing; Nishijima, Hiroki

    2018-01-10

    Nanocrystalline materials often exhibit extraordinary mechanical and physical properties but their applications at elevated temperatures are impaired by the rapid grain growth. Moreover, the grain growth in nanocrystalline oxide nanofibers at high temperatures can occur at hundreds of degrees lower than that would occur in corresponding bulk nanocrystalline materials, which would eventually break the fibers. Herein, by characterizing a model system of scandia-stabilized zirconia using hot-stage in situ scanning transmission electron microscopy, we discover that the enhanced grain growth in nanofibers is initiated at the surface. Subsequently, we demonstrate that coating the fibers with nanometer-thick amorphous alumina layer can enhance their temperature stability by nearly 400 °C via suppressing the surface-initiated grain growth. Such a strategy can be effectively applied to other oxide nanofibers, such as samarium-doped ceria, yttrium-stabilized zirconia, and lanthanum molybdate. The nanocoatings also increase the flexibility of the oxide nanofibers and stabilize the high-temperature phases that have 10 times higher ionic conductivity. This study provides new insights into the surface-initiated grain growth in nanocrystalline oxide nanofibers and develops a facile yet innovative strategy to improve the high-temperature stability of nanofibers for a broad range of applications.

  6. Framework Stability of Nanocrystalline NaY in Aqueous Solution at Varying pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petushkov, Anton; Freeman, Jasmine; Larsen, Sarah C.

    Nanocrystalline zeolites (with crystal sizes of less than 50 nm) are versatile, porous nanomaterials with potential applications in a broad range of areas including bifunctional catalysis, drug delivery, environmental protection, and sensing, to name a few. The characterization of the properties of nanocrystalline zeolites on a fundamental level is critical to the realization of these innovative applications. Nanocrystalline zeolites have unique surface chemistry that is distinct from conventional microcrystalline zeolite materials and that will result in novel applications. In the proposed work, magnetic resonance techniques (solid state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR)) will be used tomore » elucidate the structure and reactivity of nanocrystalline zeolites and to motivate bifunctional applications. Density functional theory (DFT) calculations will enhance data interpretation through chemical shift, quadrupole coupling constant, g-value and hyperfine calculations.« less

  7. Thermally Stable Nanocrystalline Steel

    NASA Astrophysics Data System (ADS)

    Hulme-Smith, Christopher Neil; Ooi, Shgh Woei; Bhadeshia, Harshad K. D. H.

    2017-10-01

    Two novel nanocrystalline steels were designed to withstand elevated temperatures without catastrophic microstructural changes. In the most successful alloy, a large quantity of nickel was added to stabilize austenite and allow a reduction in the carbon content. A 50 kg cast of the novel alloy was produced and used to verify the formation of nanocrystalline bainite. Synchrotron X-ray diffractometry using in situ heating showed that austenite was able to survive more than 1 hour at 773 K (500 °C) and subsequent cooling to ambient temperature. This is the first reported nanocrystalline steel with high-temperature capability.

  8. Nanocrystalline Iron-Ore-Based Catalysts for Fischer-Tropsch Synthesis.

    PubMed

    Yong, Seok; Park, Ji Chan; Lee, Ho-Tae; Yang, Jung-Il; Hong, SungJun; Jung, Heon; Chun, Dong Hyun

    2016-02-01

    Nanocrystalline iron ore particles were fabricated by a wet-milling process using an Ultra Apex Mill, after which they were used as raw materials of iron-based catalysts for low-temperature Fischer-Tropsch synthesis (FTS) below 280 degrees C, which usually requires catalysts with a high surface area, a large pore volume, and a small crystallite size. The wet-milling process using the Ultra Apex Mill effectively destroyed the initial crystallite structure of the natural iron ores of several tens to hundreds of nanometers in size, resulting in the generation of nanocrystalline iron ore particles with a high surface area and a large pore volume. The iron-ore-based catalysts prepared from the nanocrystalline iron ore particles effectively catalyzed the low-temperature FTS, displaying a high CO conversion (about 90%) and good C5+ hydrocarbon productivity (about 0.22 g/g(cat)(-h)). This demonstrates the feasibility of using the iron-ore-based catalysts as inexpensive and disposable catalysts for the low-temperature FTS.

  9. Microstructures and mechanical properties of nanocrystalline NiTi intermetallics formed by mechanosynthesis

    NASA Astrophysics Data System (ADS)

    Arunkumar, S.; Kumaravel, P.; Velmurugan, C.; Senthilkumar, V.

    2018-01-01

    The formulation of nanocrystalline NiTi shape memory alloys has potential effects in mechanical stimulation and medical implantology. The present work elucidates the effect of milling time on the product's structural characteristics, chemical composition, and microhardness for NiTi synthesized by mechanical alloying for different milling durations. Increasing the milling duration led to the formation of a nanocrystalline NiTi intermetallic at a higher level. The formation of nanocrystalline materials was directed through cold fusion, fracturing, and the development of a steady state, which were influenced by the accumulation of strain energy. In the morphological study, uninterrupted cold diffusion and fracturing were visualized using transmission electron microscopy. Particle size analysis revealed that the mean particle size was reduced to 93 μm after 20 h of milling. The mechanical strength was enhanced by the formation of a nanocrystalline intermetallic phase at longer milling time, which was confirmed by the results of Vickers hardness analyses.

  10. Influence of voids distribution on the deformation behavior of nanocrystalline palladium

    NASA Astrophysics Data System (ADS)

    Bachurin, D. V.

    2018-07-01

    Uniaxial deformation of three-dimensional nanocrystalline palladium containing porosity in the form of voids was investigated by means of molecular dynamics method. Simulations were performed at temperature of 300 K and at a constant strain rate of 108s-1. Two cases of voids distribution were considered: random and at triple or quadrupole junctions. It has been revealed that both the voids distribution and subsequent annealing at elevated temperature influence the deformation behavior of nanocrystalline palladium. In particular, the presence of voids at grain junctions results in a reduction of the Young's modulus and more pronounced softening effect during plastic deformation. The subsequent annealing evokes shrinkage of voids and strengthening effect. Contribution of grain boundary accommodation processes into both elastic and plastic deformation of nanocrystalline materials is discussed.

  11. 76 FR 72902 - Materials Processing Equipment Technical Advisory Committee;

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical... questions that affect the level of export controls applicable to materials processing equipment and related...

  12. Nanocrystalline sp{sup 2} and sp{sup 3} carbons: CVD synthesis and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terranova, M. L.; Rossi, M.; Tamburri, E., E-mail: emanuela.tamburri@uniroma2.it

    The design and production of innovative materials based on nanocrystalline sp{sup 2}- and sp{sup 3}-coordinated carbons is presently a focus of the scientific community. We present a review of the nanostructures obtained in our labs using a series of synthetic routes, which make use of chemical vapor deposition (CVD) techniques for the selective production of non-planar graphitic nanostructures, nanocrystalline diamonds, and hybrid two-phase nanostructures.

  13. Materials Technical Team Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2013-08-01

    Roadmap identifying the efforts of the Materials Technical Team (MTT) to focus primarily on reducing the mass of structural systems such as the body and chassis in light-duty vehicles (including passenger cars and light trucks) which enables improved vehicle efficiency regardless of the vehicle size or propulsion system employed.

  14. Technical Education Outreach in Materials Science and Technology Based on NASA's Materials Research

    NASA Technical Reports Server (NTRS)

    Jacobs, James A.

    2003-01-01

    The grant NAG-1 -2125, Technical Education Outreach in Materials Science and Technology, based on NASA s Materials Research, involves collaborative effort among the National Aeronautics and Space Administration s Langley Research Center (NASA-LaRC), Norfolk State University (NSU), national research centers, private industry, technical societies, colleges and universities. The collaboration aims to strengthen math, science and technology education by providing outreach related to materials science and technology (MST). The goal of the project is to transfer new developments from LaRC s Center for Excellence for Structures and Materials and other NASA materials research into technical education across the nation to provide educational outreach and strengthen technical education. To achieve this goal we are employing two main strategies: 1) development of the gateway website and 2) using the National Educators Workshop: Update in Engineering Materials, Science and Technology (NEW:Updates). We have also participated in a number of national projects, presented talks at technical meetings and published articles aimed at improving k-12 technical education. Through the three years of this project the NSU team developed the successful MST-Online site and continued to upgrade and update it as our limited resources permitted. Three annual NEW:Updates conducted from 2000 though 2002 overcame the challenges presented first by the September 11,2001 terrorist attacks and the slow U.S. economy and still managed to conduct very effective workshops and expand our outreach efforts. Plans began on NEW:Update 2003 to be hosted by NASA Langley as a part of the celebration of the Centennial of Controlled Flight.

  15. Evidence of a temperature transition for denuded zone formation in nanocrystalline Fe under He irradiation

    DOE PAGES

    El-Atwani, Osman; Nathaniel II, James E.; Leff, Asher C.; ...

    2016-10-18

    Nanocrystalline materials are radiation-tolerant materials’ candidates due to their high defect sink density. Here, nanocrystalline iron films were irradiated with 10 keV helium ions in situ in a transmission electron microscope at elevated temperatures. Grain-size-dependent bubble density changes and denuded zone occurrence were observed at 700 K, but not at 573 K. This transition, attributed to increased helium–vacancy migration at elevated temperatures, suggests that nanocrystalline microstructures are more resistant to swelling at 700 K due to decreased bubble density. Finally, denuded zone formation had no correlation with grain size and misorientation angle under the conditions studied.

  16. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties

    NASA Astrophysics Data System (ADS)

    Cheng, Shaoling; Zhang, Yapei; Cha, Ruitao; Yang, Jinliang; Jiang, Xingyu

    2015-12-01

    By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food.By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07647a

  17. Characteristics of W Doped Nanocrystalline Carbon Films Prepared by Unbalanced Magnetron Sputtering.

    PubMed

    Park, Yong Seob; Park, Chul Min; Kim, Nam-Hoon; Kim, Jae-Moon

    2016-05-01

    Nanocrystalline tungsten doped carbon (WC) films were prepared by unbalanced magnetron sputtering. Tungsten was used as the doping material in carbon thin films with the aim of application as a contact strip in an electric railway. The structural, physical, and electrical properties of the fabricated WC films with various DC bias voltages were investigated. The films had a uniform and smooth surface. Hardness and frication characteristics of the films were improved, and the resistivity and sheet resistance decreased with increasing negative DC bias voltage. These results are associated with the nanocrystalline WC phase and sp(2) clusters in carbon networks increased by ion bombardment enhanced with increasing DC bias voltage. Consequently, the increase of sp(2) clusters containing WC nanocrystalline in the carbon films is attributed to the improvement in the physical and electrical properties.

  18. Electrode characteristics of nanocrystalline (Zr, Ti)(V, Cr, Ni) 2.41 compound

    NASA Astrophysics Data System (ADS)

    Majchrzycki, W.; Jurczyk, M.

    The electrochemical properties of nanocrystalline Zr 0.35Ti 0.65V 0.85Cr 0.26Ni 1.30 alloy, which has the hexagonal C14 type structure, have been investigated. This material has been prepared using mechanical alloying (MA) followed by annealing. The amorphous phase forms directly from the starting mixture of the elements, without other phase formation. Heating the MA samples at 1070 K for 0.5 h resulted in the creation of ordered alloy. This alloy was used as negative electrode for Ni-MH x battery. The electrochemical results show very little difference between the nanocrystalline and polycrystalline powders, as compared with the substantial difference between these and the amorphous powder. In the annealed nanocrystalline Zr 0.35Ti 0.65V 0.85Cr 0.26Ni 1.30 powders discharging capacities up to 150 mA h g -1 (at 160 mA g -1 discharging current) have been measured. The properties of nanocrystalline electrode were attributed to the structural characteristics of the compound caused by mechanical alloying.

  19. Probing nanocrystalline grain dynamics in nanodevices

    PubMed Central

    Yeh, Sheng-Shiuan; Chang, Wen-Yao; Lin, Juhn-Jong

    2017-01-01

    Dynamical structural defects exist naturally in a wide variety of solids. They fluctuate temporally and hence can deteriorate the performance of many electronic devices. Thus far, the entities of these dynamic objects have been identified to be individual atoms. On the other hand, it is a long-standing question whether a nanocrystalline grain constituted of a large number of atoms can switch, as a whole, reversibly like a dynamical atomic defect (that is, a two-level system). This is an emergent issue considering the current development of nanodevices with ultralow electrical noise, qubits with long quantum coherence time, and nanoelectromechanical system sensors with ultrahigh resolution. We demonstrate experimental observations of dynamic nanocrystalline grains that repeatedly switch between two or more metastable coordinate states. We study temporal resistance fluctuations in thin ruthenium dioxide (RuO2) metal nanowires and extract microscopic parameters, including relaxation time scales, mobile grain sizes, and the bonding strengths of nanograin boundaries. These material parameters are not obtainable by other experimental approaches. When combined with previous in situ high-resolution transmission electron microscopy, our electrical method can be used to infer rich information about the structural dynamics of a wide variety of nanodevices and new two-dimensional materials. PMID:28691094

  20. Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    PubMed Central

    Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.

    2013-01-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics. PMID:23884324

  1. Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    NASA Astrophysics Data System (ADS)

    Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.

    2013-07-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics.

  2. Ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon.

    PubMed

    Lang, S B; Tofail, S A M; Kholkin, A L; Wojtaś, M; Gregor, M; Gandhi, A A; Wang, Y; Bauer, S; Krause, M; Plecenik, A

    2013-01-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone--a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics.

  3. Extreme creep resistance in a microstructurally stable nanocrystalline alloy

    NASA Astrophysics Data System (ADS)

    Darling, K. A.; Rajagopalan, M.; Komarasamy, M.; Bhatia, M. A.; Hornbuckle, B. C.; Mishra, R. S.; Solanki, K. N.

    2016-09-01

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10-6 per second—six to eight orders of magnitude lower than most nanocrystalline metals—at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  4. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes

    NASA Astrophysics Data System (ADS)

    Zhang, Lijie; Rodriguez, Jose; Raez, Jose; Myles, Andrew J.; Fenniri, Hicham; Webster, Thomas J.

    2009-04-01

    Today, bone diseases such as bone fractures, osteoporosis and bone cancer represent a common and significant public health problem. The design of biomimetic bone tissue engineering materials that could restore and improve damaged bone tissues provides exciting opportunities to solve the numerous problems associated with traditional orthopedic implants. Therefore, the objective of this in vitro study was to create a biomimetic orthopedic hydrogel nanocomposite based on the self-assembly properties of helical rosette nanotubes (HRNs), the osteoconductive properties of nanocrystalline hydroxyapatite (HA), and the biocompatible properties of hydrogels (specifically, poly(2-hydroxyethyl methacrylate), pHEMA). HRNs are self-assembled nanomaterials that are formed from synthetic DNA base analogs in water to mimic the helical nanostructure of collagen in bone. In this study, different geometries of nanocrystalline HA were controlled by either hydrothermal or sintering methods. 2 and 10 wt% nanocrystalline HA particles were well dispersed into HRN hydrogels using ultrasonication. The nanocrystalline HA and nanocrystalline HA/HRN hydrogels were characterized by x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Mechanical testing studies revealed that the well dispersed nanocrystalline HA in HRN hydrogels possessed improved mechanical properties compared to hydrogel controls. In addition, the results of this study provided the first evidence that the combination of either 2 or 10 wt% nanocrystalline HA and 0.01 mg ml-1 HRNs in hydrogels greatly increased osteoblast (bone-forming cell) adhesion up to 236% compared to hydrogel controls. Moreover, this study showed that HRNs stimulated HA nucleation and mineralization along their main axis in a way that is very reminiscent of the HA/collagen assembly pattern in natural bone. In summary, the presently observed excellent properties of the biomimetic nanocrystalline HA/HRN hydrogel composites

  5. Nanocrystalline zirconia can be amorphized by ion irradiation.

    PubMed

    Meldrum, A; Boatner, L A; Ewing, R C

    2002-01-14

    Nanocrystalline composites are finding applications in high-radiation environments due to their excellent mechanical and electronic properties. We show, however, that at the smallest particle sizes, radiation damage effects can be so strongly enhanced that under the right conditions, materials that have never been made amorphous can become highly susceptible to irradiation-induced amorphization. Because light-weight, high-strength nanocomposites are potential materials for spacecraft shielding and sensor systems, these fundamental results have significant implications for the design and selection of materials to be used in environments where a large ion flux will be encountered.

  6. Temperature dependence of the radiation tolerance of nanocrystalline pyrochlores A 2Ti 2O 7 (A = Gd, Ho and Lu)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, J.; Sun, C.; Dholabhai, P. P.

    A potentially enhanced radiation resistance of nanocrystalline materials, as a consequence of the high density of interfaces and surfaces, has attracted much attention both to understand the fundamental role of these defect sinks and to develop them for high-radiation environments. Here, irradiation response of nanocrystalline A 2Ti 2O 7 (A = Gd, Ho and Lu) pyrochlore powders with grain sizes of 20–30 nm was investigated by 1-MeV Kr 2+ ion bombardment. In situ transmission electron microscopy (TEM) revealed that the critical amorphization fluence for each nanocrystalline compound at room temperature was greater than that for their coarse-grained counterparts, indicating anmore » enhanced amorphization resistance. The effect of temperature on the irradiation response of one of these compounds, nanocrystalline Lu 2Ti 2O 7, was further examined by performing ion irradiation at an elevated temperature range of 480–600 K. The critical amorphization temperature (T c) was found to be noticeably higher in nanocrystalline Lu 2Ti 2O 7 (610 K) than its coarse-grained counterpart (480 K), revealing that nanocrystalline Lu 2Ti 2O 7 is less resistant to amorphization compared to its coarse-grained phase under high temperatures. We interpret these results with the aid of atomistic simulations. Molecular statics calculations find that cation antisite defects are less energetically costly to form near surfaces than in the bulk, suggesting that the nanocrystalline form of these materials is generally less susceptible to amorphization than coarse-grained counterparts at low temperatures where defect kinetics are negligible. In contrast, at high temperatures, the annealing efficiency of antisite defects by cation interstitials is significantly reduced due to the sink properties of the surfaces in the nanocrystalline pyrochlore, which contributes to the observed higher amorphization temperature in the nano-grained phase than in coarse-grained counterpart. Altogether, these

  7. Temperature dependence of the radiation tolerance of nanocrystalline pyrochlores A 2Ti 2O 7 (A = Gd, Ho and Lu)

    DOE PAGES

    Wen, J.; Sun, C.; Dholabhai, P. P.; ...

    2016-03-21

    A potentially enhanced radiation resistance of nanocrystalline materials, as a consequence of the high density of interfaces and surfaces, has attracted much attention both to understand the fundamental role of these defect sinks and to develop them for high-radiation environments. Here, irradiation response of nanocrystalline A 2Ti 2O 7 (A = Gd, Ho and Lu) pyrochlore powders with grain sizes of 20–30 nm was investigated by 1-MeV Kr 2+ ion bombardment. In situ transmission electron microscopy (TEM) revealed that the critical amorphization fluence for each nanocrystalline compound at room temperature was greater than that for their coarse-grained counterparts, indicating anmore » enhanced amorphization resistance. The effect of temperature on the irradiation response of one of these compounds, nanocrystalline Lu 2Ti 2O 7, was further examined by performing ion irradiation at an elevated temperature range of 480–600 K. The critical amorphization temperature (T c) was found to be noticeably higher in nanocrystalline Lu 2Ti 2O 7 (610 K) than its coarse-grained counterpart (480 K), revealing that nanocrystalline Lu 2Ti 2O 7 is less resistant to amorphization compared to its coarse-grained phase under high temperatures. We interpret these results with the aid of atomistic simulations. Molecular statics calculations find that cation antisite defects are less energetically costly to form near surfaces than in the bulk, suggesting that the nanocrystalline form of these materials is generally less susceptible to amorphization than coarse-grained counterparts at low temperatures where defect kinetics are negligible. In contrast, at high temperatures, the annealing efficiency of antisite defects by cation interstitials is significantly reduced due to the sink properties of the surfaces in the nanocrystalline pyrochlore, which contributes to the observed higher amorphization temperature in the nano-grained phase than in coarse-grained counterpart. Altogether, these

  8. Nanocrystalline Cobalt-Phosphorous Electroplating as an Alternative to Hard Chromium Electroplating

    DTIC Science & Technology

    2012-08-01

    Validate pulsed electrodeposition of Nanocrystalline Cobalt-Phosphorous (nCoP) alloy coatings as a Hard Chrome electroplating alternative for DoD...limits Cr+6  Cathode Efficiency Cr Plating *Co PEL is 20 µg/m3  ≈5X faster than Chrome plating  Increased throughput  One nCo-P tank can...replace several hard chrome tanks  Bath is Stable nCoP Plating Approaches 100% Efficiency  Process Comparison CoP Technical Approach

  9. Superhard Nanocrystalline Homometallic Stainless Steel on Steel for Seamless Coatings

    NASA Technical Reports Server (NTRS)

    Tobin, Eric J.; Hafley, R. (Technical Monitor)

    2002-01-01

    The objective of this work is to deposit nanocrystalline stainless steel onto steel substrates (homometallic) for enhanced wear and corrosion resistance. Homometallic coatings provide superior adhesion, and it has been shown that ultrafine-grained materials exhibit the increased hardness and decreased permeability desired for protective coatings. Nanocrystals will be produced by controlling nucleation and growth and use of an ion beam during deposition by e-beam evaporation or sputtering. Phase I is depositing 31 6L nanocrystalline stainless steel onto 31 6L stainless steel substrates. These coatings exhibit hardnesses comparable to those normally obtained for ceramic coatings such ZrO2, and possess the superior adhesion of seamless, homometallic coatings. Hardening the surface with a similar material also enhances adhesion, by avoiding problems associated with thermal and lattice mismatch. So far we have deposited nanocrystalline homometallic 316L stainless steel coatings by varying the ions and the current density of the ion beams. For all deposition conditions we have produced smooth, uniform, superhard coatings. All coatings exhibit hardness of at least 200% harder than that of bulk materials. Our measurements indicate that there is a direct relationship between nanohardness and the current density of the ion beam. Stress measurements indicate that stress in the films is increasingly proportional to current density of the ion beam. TEM, XPS, and XRD results indicate that the coated layers consist of FCC structure nanocrystallites with a dimension of about 10 to 20 nm. The Ni and Mo concentration of these coating are lower than those of bulk 316L but the concentration of Cr is higher.

  10. Nanocrystalline Nb-Al-Ge mixtures fabricated using wet mechanical milling

    NASA Astrophysics Data System (ADS)

    Pusceddu, E.; Charlton, S.; Hampshire, D. P.

    2008-02-01

    An investigation into Nb-Al-Ge mixtures is presented with special attention to the superconducting compounds Nb3(Al1-xGex) with x = 0, 0.3 and 1, which are reported to provide the highest upper critical field values for Nb-based compounds. Wet mechanical milling using copper milling media and distilled water as a process control agent (PCA) was used with the intention of improving the yield, properties and the performance of these materials. Very high yields of nanocrystalline material were achieved but significant copper contamination occurred - confirmed using inductively-coupled-plasma atomic-emission-spectroscopy. Simultaneous thermogravimetric measurements and differential scanning calorimetry were performed on powders milled for up to 20 h with different PCA content, to quantify the work done on the powders. A typical grain size of a few nm was obtained for the Nb-Al-Ge mixtures after several hours milling. Powder ground for 20 h with 5% PCA was processed using a hot isostatic press (HIP) operating at 2000 atm and temperatures up to 750 °C. The room temperature resistivity decreased as the temperature of the HIPing increased. Unfortunately, despite the nanocrystalline microstructure of the powders and the high HIP temperatures, if superconducting material was formed it was below the detection level of resistivity, Ac. susceptibility and SQUID measurements. We conclude that during milling there was widespread contamination of the powders by the PCA so that milling with distilled water as a PCA is not to be recommended for fabricating nanocrystalline Nb3(Al1-xGex) A15 superconducting compounds.

  11. Nanocrystalline CuNi alloys: improvement of mechanical properties and thermal stability

    NASA Astrophysics Data System (ADS)

    Nogues, Josep; Varea, A.; Pellicer, E.; Sivaraman, K. M.; Pane, S.; Nelson, B. J.; Surinach, S.; Baro, M. D.; Sort, J.

    2014-03-01

    Nanocrystalline metallic films are known to benefit from novel and enhanced physical and chemical properties. In spite of these outstanding properties, nanocrystalline metals typically show relatively poor thermal stability which leads to deterioration of the properties due to grain coarsening. We have studied nanocrystalline Cu1-xNix (0.56 < x < 1) thin films (3 μm-thick) electrodeposited galvanostatically onto Cu/Ti/Si (100) substrates. CuNi thin films exhibit large values of hardness (6.15 < H < 7.21 GPa), which can be tailored by varying the composition. However, pure Ni films (x = 1) suffer deterioration of their mechanical and magnetic properties after annealing during 3 h at relatively low temperatures (TANN > 475 K) due to significant grain growth. Interestingly, alloying Ni with Cu clearly improves the thermal stability of the material because grain coarsening is delayed due to segregation of a Cu-rich phase at grain boundaries, thus preserving both the mechanical and magnetic properties up to higher TANN.

  12. Transition from Irradiation-Induced Amorphization to Crystallization in Nanocrystalline Silicon Carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weilin; Jiao, Liang; Wang, Haiyan

    2011-12-01

    Response to irradiation of nanocrystalline 3C-SiC is studied using 2 MeV Au+ ions near the critical temperature for amorphization and is compared to the behavior of its monocrystalline counterpart under the identical irradiation conditions. The irradiated samples have been characterized using in-situ ion channeling, ex-situ x-ray diffraction, and helium ion microscopy. Compared to monocrystalline 3C-SiC, a faster amorphization process in the nanocrystalline material (average grain size = 3.3 nm) is observed at 500 K. However, the nanograin grows with increasing ion fluence at 550 K and the grain size tends to saturate at high fluences. The striking contrast demonstrates amore » sharp transition from irradiation-induced interface-driven amorphization at 500 K to crystallization at 550 K. The results could show potential impacts of nanocrystalline SiC on nuclear fuel cladding and structural components of next-generation nuclear energy systems.« less

  13. Understanding and controlling low-temperature aging of nanocrystalline materials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battaile, Corbett Chandler; Boyce, Brad Lee; Brons, Justin G.

    2013-10-01

    Nanocrystalline copper lms were created by both repetitive high-energy pulsed power, to produce material without internal nanotwins; and pulsed laser deposition, to produce nan- otwins. Samples of these lms were indented at ambient (298K) and cryogenic temperatures by immersion in liquid nitrogen (77K) and helium (4K). The indented samples were sectioned through the indented regions and imaged in a scanning electron microscope. Extensive grain growth was observed in the lms that contained nanotwins and were indented cryogenically. The lms that either lacked twins, or were indented under ambient conditions, were found to exhibit no substantial grain growth by visual inspection.more » Precession transmission elec- tron microscopy was used to con rm these ndings quantitatively, and show that 3 and 7 boundaries proliferate during grain growth, implying that these interface types play a key role in governing the extensive grain growth observed here. Molecular dynamics sim- ulations of the motion of individual grain boundaries demonstrate that speci c classes of boundaries - notably 3 and 7 - exhibit anti- or a-thermal migration, meaning that their mobilities either increase or do not change signi cantly with decreasing temperature. An in-situ cryogenic indentation capability was developed and implemented in a transmission electron microscope. Preliminary results do not show extensive cryogenic grain growth in indented copper lms. This discrepancy could arise from the signi cant di erences in con g- uration and loading of the specimen between the two approaches, and further research and development of this capability is needed.« less

  14. Solid state amorphization of nanocrystalline nickel by cryogenic laser shock peening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Chang, E-mail: cye@uakron.edu; Ren, Zhencheng; Zhao, Jingyi

    2015-10-07

    In this study, complete solid state amorphization in nanocrystalline nickel has been achieved through cryogenic laser shock peening (CLSP). High resolution transmission electron microscopy has revealed the complete amorphous structure of the sample after CLSP processing. A molecular dynamic model has been used to investigate material behavior during the shock loading and the effects of nanoscale grain boundaries on the amorphization process. It has been found that the initial nanoscale grain boundaries increase the initial Gibbs free energy before plastic deformation and also serve as dislocation emission sources during plastic deformation to contribute to defect density increase, leading to themore » amorphization of pure nanocrystalline nickel.« less

  15. Grain boundary and triple junction diffusion in nanocrystalline copper

    NASA Astrophysics Data System (ADS)

    Wegner, M.; Leuthold, J.; Peterlechner, M.; Song, X.; Divinski, S. V.; Wilde, G.

    2014-09-01

    Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes, , of ˜35 and ˜44 nm produced by spark plasma sintering were investigated by the radiotracer method using the 63Ni isotope. The measured diffusivities, Deff, are comparable with those determined previously for Ni grain boundary diffusion in well-annealed, high purity, coarse grained, polycrystalline copper, substantiating the absence of a grain size effect on the kinetic properties of grain boundaries in a nanocrystalline material at grain sizes d ≥ 35 nm. Simultaneously, the analysis predicts that if triple junction diffusion of Ni in Cu is enhanced with respect to the corresponding grain boundary diffusion rate, it is still less than 500ṡDgb within the temperature interval from 420 K to 470 K.

  16. Thermal conductivity of amorphous and nanocrystalline silicon films prepared by hot-wire chemical-vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jugdersuren, B.; Kearney, B. T.; Queen, D. R.

    We report 3..omega.. thermal conductivity measurements of amorphous and nanocrystalline silicon thin films from 85 to 300 K prepared by hot-wire chemical-vapor deposition, where the crystallinity of the films is controlled by the hydrogen dilution during growth. The thermal conductivity of the amorphous silicon film is in agreement with several previous reports of amorphous silicon prepared by a variety of deposition techniques. The thermal conductivity of the as-grown nanocrystalline silicon film is 70% higher and increases 35% more after an anneal at 600 degrees C. They all have similarly weak temperature dependence. Structural analysis shows that the as-grown nanocrystalline siliconmore » is approximately 60% crystalline, nanograins and grain boundaries included. The nanograins, averaging 9.1 nm in diameter in the as-grown film, are embedded in an amorphous matrix. The grain size increases to 9.7 nm upon annealing, accompanied by the disappearance of the amorphous phase. We extend the models of grain boundary scattering of phonons with two different non-Debye dispersion relations to explain our result of nanocrystalline silicon, confirming the strong grain size dependence of heat transport for nanocrystalline materials. However, the similarity in thermal conductivity between amorphous and nanocrystalline silicon suggests the heat transport mechanisms in both structures may not be as dissimilar as we currently understand.« less

  17. Nanocrystalline silicon: Lattice dynamics and enhanced thermoelectric properties

    DOE PAGES

    Claudio, Tania; Stein, Niklas; Stroppa, Daniel G.; ...

    2014-12-21

    In this study, silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K -1 m -1 at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phonon scattering has been a subject of many studies. In this work we have evaluated the effects of nanostructuration on the lattice dynamics of bulk nanocrystalline doped silicon. The samples were prepared by gas phase synthesis, followed by current and pressure assisted sintering. The heat capacity, density of phonons states, and elastic constantsmore » were measured, which all reveal a significant, ≈25%, reduction in the speed of sound. The samples present a significantly decreased lattice thermal conductivity, ≈25 W K -1 m -1, which, combined with a very high carrier mobility, results in a dimensionless figure of merit with a competitive value that peaks at ZT ≈ 0.57 at 973 °C. Due to its easily scalable and extremely low-cost production process, nanocrystalline Si prepared by gas phase synthesis followed by sintering could become the material of choice for high temperature thermoelectric generators.« less

  18. Effect of Fe3O4 addition on dielectric properties of LaFeO3 nano-crystalline materials synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Laysandra, H.; Triyono, D.

    2017-04-01

    Dielectric properties of nano-crystalline material LaFeO3.xFe3O4 with x = 0, 0.1, 0.2, 0.3, and 0.4 at.% have been studied by impedance spectroscopy method. LaFeO3 was synthesized by sol-gel method resulting nano-particle. Then, it was mixed with Fe3O4 powder. The mixture powder was pressed to form pellet and then sintered at 1300°C for 1 h to form nano-crystalline of LaFeO3.xFe3O4. X-ray diffraction characterization at room temperature for all samples show two phases i.e. perovskite LaFeO3 (orthorhombic) as a main phase and Fe3O4 (cubic) as second phase. It is found that the crystallite size of main phase increases with addition of Fe3O4 until 0.3 at.%. The electrical properties as a function of temperature (300-500 K) and frequency (100 Hz - 1 MHz) are presented in Nyquist and Bode plots. It is observed that from equivalent circuit and their parameters, dielectrical properties are contributed by grain and grain boundary. The dielectric constant, ε‧ were calculated by parallel plate method and their values reach up to 107 exhibiting typical colossal dielectric constant (CDC) material like behavior.

  19. Direct Observation of Sink-Dependent Defect Evolution in Nanocrystalline Iron under Irradiation

    DOE PAGES

    El Atwani, Osman; Nathaniel, James; Leff, Asher C.; ...

    2017-05-12

    Crystal defects generated during irradiation can result in severe changes in morphology and an overall degradation of mechanical properties in a given material. Nanomaterials have been proposed as radiation damage tolerant materials, due to the hypothesis that defect density decreases with grain size refinement due to the increase in grain boundary surface area. The lower defect density should arise from grain boundary-point defect absorption and enhancement of interstitial-vacancy annihilation. In this study, low energy helium ion irradiation on free-standing iron thin films were performed at 573 K. Interstitial loops of a 0 /2 [111] Burgers vector were directly observed asmore » a result of the displacement damage. Loop density trends with grain size demonstrated an increase in the nanocrystalline (<100 nm) regime, but scattered behavior in the transition from the nanocrystalline to the ultra-fine regime (100–500 nm). To examine the validity of such trends, loop density and area for different grains at various irradiation doses were compared and revealed efficient defect absorption in the nanocrystalline grain size regime, but loop coalescence in the ultra-fine grain size regime. Lastly, a relationship between the denuded zone formation, a measure of grain boundary absorption efficiency, grain size, grain boundary type and misorientation angle is determined.« less

  20. Direct Observation of Sink-Dependent Defect Evolution in Nanocrystalline Iron under Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Atwani, Osman; Nathaniel, James; Leff, Asher C.

    Crystal defects generated during irradiation can result in severe changes in morphology and an overall degradation of mechanical properties in a given material. Nanomaterials have been proposed as radiation damage tolerant materials, due to the hypothesis that defect density decreases with grain size refinement due to the increase in grain boundary surface area. The lower defect density should arise from grain boundary-point defect absorption and enhancement of interstitial-vacancy annihilation. In this study, low energy helium ion irradiation on free-standing iron thin films were performed at 573 K. Interstitial loops of a 0 /2 [111] Burgers vector were directly observed asmore » a result of the displacement damage. Loop density trends with grain size demonstrated an increase in the nanocrystalline (<100 nm) regime, but scattered behavior in the transition from the nanocrystalline to the ultra-fine regime (100–500 nm). To examine the validity of such trends, loop density and area for different grains at various irradiation doses were compared and revealed efficient defect absorption in the nanocrystalline grain size regime, but loop coalescence in the ultra-fine grain size regime. Lastly, a relationship between the denuded zone formation, a measure of grain boundary absorption efficiency, grain size, grain boundary type and misorientation angle is determined.« less

  1. Application Potential of Nanocrystalline Ribbons Still Pending

    NASA Astrophysics Data System (ADS)

    Butvin, Pavol; Butvinová, Beata; Švec, Peter; Sitek, Jozef

    2010-09-01

    Nanocrystalline soft-magnetic ribbons promised a wide-spread practical use when introduced at the beginning of nineties. After 20 years of extensive research there are still unclear material problems which are thought to be the principal reason why these materials show but marginal use. Poorly controllable magnetic anisotropy due to spontaneous intrinsic macroscopic stress that comes from an inevitable heterogeneity of the ribbon materials is pointed to in this work. Certain stress-based mechanisms are shown to induce the unintended anisotropy in the already familiar Finemets as well as in the newer Hitperms. Hysteresis loops, domain structure and power loss is used to reveal the anisotropy consequences and particular connected but still unanswered questions are pinpointed.

  2. A general higher-order nonlocal couple stress based beam model for vibration analysis of porous nanocrystalline nanobeams

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2017-12-01

    This paper develops a higher order refined beam model with a parabolic shear strain function for vibration analysis of porous nanocrystalline nanobeams based on nonlocal couple stress theory. Nanocrystalline nanobeam is composed from three phases which are nano-grains, nano-voids and interface. Nano-voids or porosities inside the material have a stiffness-softening impact on the nanobeam. Nonlocal elasticity theory of Eringen is applied in analysis of nanocrystalline nanobeams for the first time. Also, modified couple stress theory is employed to capture grains rigid rotations. The governing equations obtained from Hamilton's principle are solved applying an analytical approach which satisfies various boundary conditions. The reliability of present approach is verified by comparing obtained results with those provided in literature. Finally the influences of nonlocal parameter, couple stress, grain size, porosities and shear deformation on the vibration characteristics of nanocrystalline nanobeams are explored.

  3. Softening due to Grain Boundary Cavity Formation and its Competition with Hardening in Helium Implanted Nanocrystalline Tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, W. Streit; Gentile, Jonathan M.; El-Atwani, Osman

    The unique ability of grain boundaries to act as effective sinks for radiation damage plays a significant role in nanocrystalline materials due to their large interfacial area per unit volume. Leveraging this mechanism in the design of tungsten as a plasma-facing material provides a potential pathway for enhancing its radiation tolerance under fusion-relevant conditions. In this study, we explore the impact of defect microstructures on the mechanical behavior of helium ion implanted nanocrystalline tungsten through nanoindentation. Softening was apparent across all implantation temperatures and attributed to bubble/cavity loaded grain boundaries suppressing the activation barrier for the onset of plasticity viamore » grain boundary mediated dislocation nucleation. An increase in fluence placed cavity induced grain boundary softening in competition with hardening from intragranular defect loop damage, thus signaling a new transition in the mechanical behavior of helium implanted nanocrystalline tungsten.« less

  4. Softening due to Grain Boundary Cavity Formation and its Competition with Hardening in Helium Implanted Nanocrystalline Tungsten

    DOE PAGES

    Cunningham, W. Streit; Gentile, Jonathan M.; El-Atwani, Osman; ...

    2018-02-13

    The unique ability of grain boundaries to act as effective sinks for radiation damage plays a significant role in nanocrystalline materials due to their large interfacial area per unit volume. Leveraging this mechanism in the design of tungsten as a plasma-facing material provides a potential pathway for enhancing its radiation tolerance under fusion-relevant conditions. In this study, we explore the impact of defect microstructures on the mechanical behavior of helium ion implanted nanocrystalline tungsten through nanoindentation. Softening was apparent across all implantation temperatures and attributed to bubble/cavity loaded grain boundaries suppressing the activation barrier for the onset of plasticity viamore » grain boundary mediated dislocation nucleation. An increase in fluence placed cavity induced grain boundary softening in competition with hardening from intragranular defect loop damage, thus signaling a new transition in the mechanical behavior of helium implanted nanocrystalline tungsten.« less

  5. Thermal Stability of Nanocrystalline Copper for Potential Use in Printed Wiring Board Applications

    NASA Astrophysics Data System (ADS)

    Woo, Patrick Kai Fai

    Copper is a widely used conductor in the manufacture of printed wiring boards (PWB). The trends in miniaturization of electronic devices create increasing challenges to all electronic industries. In particular PWB manufacturers face great challenges because the increasing demands in greater performance and device miniaturization pose enormous difficulties in manufacturing and product reliability. Nanocrystalline and ultra-fine grain copper can potentially offer increased reliability and functionality of the PWB due to the increases in strength and achievable wiring density by reduction in grain size. The first part of this thesis is concerned with the synthesis and characterization of nanocrystalline and ultra-fine grain-sized copper for potential applications in the PWB industry. Nanocrystalline copper with different amounts of sulfur impurities (25-230ppm) and grain sizes (31-49nm) were produced and their hardness, electrical resistivity and etchability were determined. To study the thermal stability of nanocrystalline copper, differential scanning calorimetry and isothermal heat treatments combined with electron microscopy techniques for microstructural analysis were used. Differential scanning calorimetry was chosen to continuously monitor the grain growth process in the temperature range from 40?C to 400?C. During isothermal annealing experiments samples were annealed at 23?C, 100?C and 300?C to study various potential thermal issues for these materials in PWB applications such as the long-term room temperature thermal stability as well as for temperature excursions above the operation temperature and peak temperature exposure during the PWB manufacturing process. From all annealing experiments the various grain growth events and the overall stability of these materials were analyzed in terms of driving and dragging forces. Experimental evidence is presented which shows that the overall thermal stability, grain boundary character and texture evolution of

  6. [Discussion on Technical Evaluation for Medical Device Registration Material].

    PubMed

    Chu, Yungao; Qian, Hong; Zhu, Yingfeng

    2017-07-30

    This article first introduces the main contents of the requirements for medical device registration. Secondly, this article chooses the vertebral forming surgery system as an example to discuss the technical evaluation for the registration research material. The article hopes to provide a reference for the applicant who prepare the registration material and the technical evaluator who make the evaluation for the medical device registration.

  7. Superparamagnetic nanocrystalline ZnFe2O4 with a very high Curie temperature.

    PubMed

    Deka, Sasanka; Joy, P A

    2008-08-01

    Studies on the magnetic properties of nanocrystalline ZnFe2O4 synthesized by an autocombustion method are reported. Superparamagnetic behavior is observed for the nanocrystalline materials with particle sizes of 8 nm and 17 nm, with superparamagnetic blocking temperatures of 65 K and 75 K, respectively. Magnetic hysteresis with very large coercivities of 533 Oe and 325 Oe, respectively, are observed at 12 K. Studies on the temperature variation of the magnetization above room temperature indicate that the Curie temperature is as high as approximately 800 K when compared to the paramagnetic nature of bulk zinc ferrite at room temperature.

  8. Synthesis, characterization, and photocatalytic properties of nanocrystalline NZO thin films

    NASA Astrophysics Data System (ADS)

    Aryanto, D.; Hastuti, E.; Husniya, N.; Sudiro, T.; Nuryadin, B. W.

    2018-03-01

    Nanocrystalline Ni-doped ZnO (NZO) thin films were synthesized on glass substrate using sol-gel spin coating methods. The effect of annealing on the structural and optical properties of nanocrystalline thin film was studied using X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), UV-VIS spectrophotometry, and photoluminescence (PL). The results showed that the annealing temperature strongly influenced the physical properties of nanocrystalline NZO thin films. The photocatalytic properties of nanocrystalline NZO thin films were evaluated using an aqueous solution of Rhodamine-B. The photocatalytic activity of nanocrystalline NZO thin films increased with the increase of annealing temperature. The results indicated that the structure, morphology, and band gap energy of nanocrystalline NZO thin films played an important role in photocatalytic activity.

  9. An Approach to the Reuse of Technical Materials for Educational Purposes

    NASA Technical Reports Server (NTRS)

    Levinstein, Irwin; Bryant, Wayne H. (Technical Monitor)

    2001-01-01

    This project addresses the problem of transforming technical documents intended for a technical audience into educational materials directed toward segments of the general public. In particular it addresses the conversion of technical material into Internet based educational materials. A major consideration of the project is the conservation of the time of subject matter experts in the organization in recognition of the fact that such experts are likely to be more valuable to the organization for purposes other than the production of educational outreach.

  10. Efficient Second-Harmonic Generation in Nanocrystalline Silicon Nanoparticles.

    PubMed

    Makarov, Sergey V; Petrov, Mihail I; Zywietz, Urs; Milichko, Valentin; Zuev, Dmitry; Lopanitsyna, Natalia; Kuksin, Alexey; Mukhin, Ivan; Zograf, George; Ubyivovk, Evgeniy; Smirnova, Daria A; Starikov, Sergey; Chichkov, Boris N; Kivshar, Yuri S

    2017-05-10

    Recent trends to employ high-index dielectric particles in nanophotonics are motivated by their reduced dissipative losses and large resonant enhancement of nonlinear effects at the nanoscale. Because silicon is a centrosymmetric material, the studies of nonlinear optical properties of silicon nanoparticles have been targeting primarily the third-harmonic generation effects. Here we demonstrate, both experimentally and theoretically, that resonantly excited nanocrystalline silicon nanoparticles fabricated by an optimized laser printing technique can exhibit strong second-harmonic generation (SHG) effects. We attribute an unexpectedly high yield of the nonlinear conversion to a nanocrystalline structure of nanoparticles supporting the Mie resonances. The demonstrated efficient SHG at green light from a single silicon nanoparticle is 2 orders of magnitude higher than that from unstructured silicon films. This efficiency is significantly higher than that of many plasmonic nanostructures and small silicon nanoparticles in the visible range, and it can be useful for a design of nonlinear nanoantennas and silicon-based integrated light sources.

  11. Examining the influence of grain size on radiation tolerance in the nanocrystalline regime

    DOE PAGES

    Barr, Christopher M.; Li, Nan; Boyce, Brad L.; ...

    2018-05-01

    Here, nanocrystalline materials have been proposed as superior radiation tolerant materials in comparison to coarse grain counterparts. However, there is still a limited understanding whether a particular nanocrystalline grain size is required to obtain significant improvements in key deleterious effects resulting from energetic irradiation. This work employs the use of in-situ heavy ion irradiation transmission electron microscopy experiments coupled with quantitative defect characterization and precession electron diffraction to explore the sensitivity of defect size and density within the nanocrystalline regime in platinum. Under the explored experimental conditions, no significant change in either the defect size or density between grain sizesmore » of 20 and 100 nm was observed. Furthermore, the in-situ transmission electron microscopy irradiations illustrate stable sessile defect clusters of 1–3 nm adjacent to most grain boundaries, which are traditionally treated as strong defect sinks. The stability of these sessile defects observed in-situ in small, 20–40 nm, grains is the proposed primary mechanism for a lack of defect density trends. Lastly, this scaling breakdown in radiation improvement with decreasing grain size has practical importance on nanoscale grain boundary engineering approaches for proposed radiation tolerant alloys.« less

  12. Examining the influence of grain size on radiation tolerance in the nanocrystalline regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, Christopher M.; Li, Nan; Boyce, Brad L.

    Here, nanocrystalline materials have been proposed as superior radiation tolerant materials in comparison to coarse grain counterparts. However, there is still a limited understanding whether a particular nanocrystalline grain size is required to obtain significant improvements in key deleterious effects resulting from energetic irradiation. This work employs the use of in-situ heavy ion irradiation transmission electron microscopy experiments coupled with quantitative defect characterization and precession electron diffraction to explore the sensitivity of defect size and density within the nanocrystalline regime in platinum. Under the explored experimental conditions, no significant change in either the defect size or density between grain sizesmore » of 20 and 100 nm was observed. Furthermore, the in-situ transmission electron microscopy irradiations illustrate stable sessile defect clusters of 1–3 nm adjacent to most grain boundaries, which are traditionally treated as strong defect sinks. The stability of these sessile defects observed in-situ in small, 20–40 nm, grains is the proposed primary mechanism for a lack of defect density trends. Lastly, this scaling breakdown in radiation improvement with decreasing grain size has practical importance on nanoscale grain boundary engineering approaches for proposed radiation tolerant alloys.« less

  13. Electrical relaxation, optical and magnetic studies of nanocrystalline lithium ferrite synthesized by different chemical routes

    NASA Astrophysics Data System (ADS)

    Cheruku, Rajesh; Govindaraj, G.; Vijayan, Lakshmi

    2017-12-01

    The nanocrystalline lithium ferrite was synthesized by wet chemical methods such as solution combustion technique, sol-gel, and hydrothermal for a comparative study. Different characterization techniques like x-ray powder diffraction and thermal analysis were employed to confirm the structure and phase. Temperature-dependent Raman analysis was employed to classify the phonon modes associated with precise atomic motions existing in the synthesized materials. Morphology of sample surface was explored by scanning electron microscopy, and elemental analysis was done by energy dispersive spectroscopy analysis. The nanocrystalline nature of the materials was confirmed through transmission electron microscopy. Magnetic properties of these samples were explored through a vibrating sample magnetometer. Ac electrical impedance spectroscopy data were investigated using two Cole-Cole functions, and activation energies were calculated for all materials. Among them, solution combustion prepared lithium ferrite shows the highest conductivity and lowest activation energy.

  14. Simultaneous determination of epinephrene and paracetamol at copper-cobalt oxide spinel decorated nanocrystalline zeolite modified electrodes.

    PubMed

    Samanta, Subhajyoti; Srivastava, Rajendra

    2016-08-01

    In this study, CuCo2O4 and CuCo2O4 decorated nanocrystalline ZSM-5 materials were prepared. For comparative study, a series of MCo2O4 spinels were also prepared. Materials were characterized by the complementary combination of X-ray diffraction, N2-adsorption, UV-visible, and electron microscopic techniques. A simple and rapid method for the simultaneous determination of paracetamol and epinephrine at MCo2O4 spinels modified electrodes is presented in this manuscript. Among the materials investigated in this study, CuCo2O4 decorated nanocrystalline ZSM-5 exhibited the highest electrocatalytic activity with excellent stability, sensitivity, and selectivity. Analytical performance of the sensor was demonstrated in the determination of epinephrine and paracetamol in the commercial pharmaceutical samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Stability of nanocrystalline Ni-based alloys: coupling Monte Carlo and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Waseda, O.; Goldenstein, H.; Silva, G. F. B. Lenz e.; Neiva, A.; Chantrenne, P.; Morthomas, J.; Perez, M.; Becquart, C. S.; Veiga, R. G. A.

    2017-10-01

    The thermal stability of nanocrystalline Ni due to small additions of Mo or W (up to 1 at%) was investigated in computer simulations by means of a combined Monte Carlo (MC)/molecular dynamics (MD) two-steps approach. In the first step, energy-biased on-lattice MC revealed segregation of the alloying elements to grain boundaries. However, the condition for the thermodynamic stability of these nanocrystalline Ni alloys (zero grain boundary energy) was not fulfilled. Subsequently, MD simulations were carried out for up to 0.5 μs at 1000 K. At this temperature, grain growth was hindered for minimum global concentrations of 0.5 at% W and 0.7 at% Mo, thus preserving most of the nanocrystalline structure. This is in clear contrast to a pure Ni model system, for which the transformation into a monocrystal was observed in MD simulations within 0.2 μs at the same temperature. These results suggest that grain boundary segregation of low-soluble alloying elements in low-alloyed systems can produce high-temperature metastable nanocrystalline materials. MD simulations carried out at 1200 K for 1 at% Mo/W showed significant grain boundary migration accompanied by some degree of solute diffusion, thus providing additional evidence that solute drag mostly contributed to the nanostructure stability observed at lower temperature.

  16. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties.

    PubMed

    Cheng, Shaoling; Zhang, Yapei; Cha, Ruitao; Yang, Jinliang; Jiang, Xingyu

    2016-01-14

    By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food.

  17. The Bulk Nanocrystalline zn Produced by Mechanical Attrition

    NASA Astrophysics Data System (ADS)

    Zhu, X. K.; Zhao, K. Y.; Li, C. J.; Tao, J. M.; Chan, T. L.; Koch, C. C.

    The purpose of experiment was to produce bulk nanocrystalline Zn by mechanical attrition. The bulk nanocrystalline Zn produced by mechanical attrition was studied. The microstructural evolution during cryomilling and subsequent room temperature milling was characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). In this paper, Nanocrystalline Zn was produced by insitu consolidation of Zn elemental powder using mechanical attrition at liquid nitrogen and room temperature. For the samples studied, the longest elongation of 65% and highest stress of 200 MPa is obtained in nanocrystalline Zn during tensile testing at the condition of strain rate (10-3 sec-1) and 20°C which is equal to 0.43 Tm (Tm is the melting temperature of pure Zn).

  18. Magnetic ageing study of high and medium permeability nanocrystalline FeSiCuNbB alloys

    NASA Astrophysics Data System (ADS)

    Lekdim, Atef; Morel, Laurent; Raulet, Marie-Ange

    2017-04-01

    increasing the energy efficiency is one of the most important issues in modern power electronic systems. In aircraft applications, the energy efficiency must be associated with a maximum reduction of mass and volume, so a high components compactness. A consequence from this compactness is the increase of operating temperature. Thus, the magnetic materials used in these applications, have to work at high temperature. It raises the question of the thermal ageing problem. The reliability of these components operating at this condition becomes a real problem which deserves serious interest. Our work takes part in this context by studying the magnetic material thermal ageing. The nanocrystalline materials are getting more and more used in power electronic applications. Main advantages of nanocrystalline materials compared to ferrite are: high saturation flux density of almost 1.25 T and low dynamic losses for low and medium frequencies. The nanocrystalline Fe73.5Cu1Nb3Si15.5B7 alloys have been chosen in our aging study. This study is based on monitoring the magnetic characteristics for several continuous thermal ageing (100, 150, 200 and 240 °C). An important experimental work of magnetic characterization is being done following a specific monitoring protocol. Elsewhere, X-Ray Diffraction and magnetostriction measurements were carried out to support the study of the anisotropy energies evolution with ageing. This latter is discussed in this paper to explain and give hypothesis about the ageing phenomena.

  19. 76 FR 3612 - Materials Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Technical Advisory Committee will meet on February 10... materials and related technology. Agenda Open Session 1. Opening Remarks and Introduction. 2. Remarks from...

  20. 75 FR 22553 - Materials Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Technical Advisory Committee will meet on May 13, 2010... applicable to materials and related technology. Agenda Open Session 1. Opening Remarks and Introduction. 2...

  1. 75 FR 67347 - Materials Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Technical Advisory Committee will meet on November 12... materials and related technology. Agenda Open Session 1. Opening remarks by the Chairman and Introduction. 2...

  2. 77 FR 25960 - Materials Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Technical Advisory Committee will meet on May 17, 2012... materials and related technology. Agenda Open Session 1. Opening remarks and introductions. 2. Remarks from...

  3. 75 FR 44227 - Materials Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Technical Advisory Committee will meet on August 12... applicable to materials and related technology. Agenda Open Session 1. Opening Remarks and Introduction. 2...

  4. 77 FR 3440 - Materials Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Technical Advisory Committee will meet on February 9... materials and related technology. Agenda Open Session: 1. Opening Remarks and Introductions. 2. Remarks from...

  5. Thermal desorption spectroscopy of high fluence irradiated ultrafine and nanocrystalline tungsten: helium trapping and desorption correlated with morphology

    NASA Astrophysics Data System (ADS)

    El-Atwani, O.; Taylor, C. N.; Frishkoff, J.; Harlow, W.; Esquivel, E.; Maloy, S. A.; Taheri, M. L.

    2018-01-01

    Microstructural changes due to displacement damage and helium desorption are two phenomena that occur in tungsten plasma facing materials in fusion reactors. Nanocrystalline metals are being investigated as radiation tolerant materials that can mitigate these microstructural changes and better trap helium along their grain boundaries. Here, we investigate the performance of three tungsten grades (nanocrystalline, ultrafine and ITER grade tungsten), exposed to a high fluence of 4 keV helium at both RT and 773 K, during a thermal desorption spectroscopy (TDS) experiment. An investigation of the microstructure in pre-and post-TDS sample sets was performed. The amount of desorbed helium was shown to be highest in the ITER grade tungsten and lowest in the nanocrystalline tungsten. Correlating the desorption spectra and the microstructure (grain boundaries decorated with nanopores and crack formation) and comparing with previous literature on coarse grained tungsten samples at similar irradiation and TDS conditions, revealed the importance of grain boundaries in trapping helium and limiting helium desorption up to a high temperature of 1350 K in agreement with transmission electron microscopy studies on helium irradiated tungsten which showed preferential and large facetted bubble formation along the grain boundaries in the nanocrystalline tungsten grade.

  6. Thermal desorption spectroscopy of high fluence irradiated ultrafine and nanocrystalline tungsten: helium trapping and desorption correlated with morphology

    DOE PAGES

    El-Atwani, Osman; Taylor, Chase N.; Frishkoff, James; ...

    2017-11-09

    Here, microstructural changes due to displacement damage and helium desorption are two phenomena that occur in tungsten plasma facing materials in fusion reactors. Nanocrystalline metals are being investigated as radiation tolerant materials that can mitigate these microstructural changes and better trap helium along their grain boundaries. Here, we investigate the performance of three tungsten grades (nanocrystalline, ultrafine and ITER grade tungsten), exposed to a high fluence of 4 keV helium at both RT and 773 K, during a thermal desorption spectroscopy (TDS) experiment. An investigation of the microstructure in pre-and post-TDS sample sets was performed. The amount of desorbed heliummore » was shown to be highest in the ITER grade tungsten and lowest in the nanocrystalline tungsten. Correlating the desorption spectra and the microstructure (grain boundaries decorated with nanopores and crack formation) and comparing with previous literature on coarse grained tungsten samples at similar irradiation and TDS conditions, revealed the importance of grain boundaries in trapping helium and limiting helium desorption up to a high temperature of 1350 K in agreement with transmission electron microscopy studies on helium irradiated tungsten which showed preferential and large facetted bubble formation along the grain boundaries in the nanocrystalline tungsten grade.« less

  7. TECHNICAL BASIS FOR A CANDIDATE BUILDING MATERIALS RADIUM STANDARD

    EPA Science Inventory

    The report summarizes the technical basis for a candidate building materials radium standard. It contains the standard and a summary of the technical basis for the standard. (NOTE: The Florida Radon Research Program (FRRP), sponsored by the Environmental Protection Agency and the...

  8. 76 FR 21331 - Materials Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Technical Advisory Committee will meet on May 12, 2011... materials and related technology. Agenda Open Session 1. Opening Remarks by the Chairman and Introduction. 2...

  9. The inverse hall-petch relation in nanocrystalline metals: A discrete dislocation dynamics analysis

    NASA Astrophysics Data System (ADS)

    Quek, Siu Sin; Chooi, Zheng Hoe; Wu, Zhaoxuan; Zhang, Yong Wei; Srolovitz, David J.

    2016-03-01

    When the grain size in polycrystalline materials is reduced to the nanometer length scale (nanocrystallinity), observations from experiments and atomistic simulations suggest that the yield strength decreases (softening) as the grain size is decreased. This is in contrast to the Hall-Petch relation observed in larger sized grains. We incorporated grain boundary (GB) sliding and dislocation emission from GB junctions into the classical DDD framework, and recovered the smaller is weaker relationship observed in nanocrystalline materials. This current model shows that the inverse Hall-Petch behavior can be obtained through a relief of stress buildup at GB junctions from GB sliding by emitting dislocations from the junctions. The yield stress is shown to vary with grain size, d, by a d 1 / 2 relationship when grain sizes are very small. However, pure GB sliding alone without further plastic accomodation by dislocation emission is grain size independent.

  10. Nanocrystalline SiC film thermistors for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Mitin, V. F.; Kholevchuk, V. V.; Semenov, A. V.; Kozlovskii, A. A.; Boltovets, N. S.; Krivutsa, V. A.; Slepova, A. S.; Novitskii, S. V.

    2018-02-01

    We developed a heat-sensitive material based on nanocrystalline SiC films obtained by direct deposition of carbon and silicon ions onto sapphire substrates. These SiC films can be used for resistance thermometers operating in the 2 K-300 K temperature range. Having high heat sensitivity, they are relatively low sensitive to the magnetic field. The designs of the sensors are presented together with a discussion of their thermometric characteristics and sensitivity to magnetic fields.

  11. High surface area nanocrystalline hausmannite synthesized by a solvent-free route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera-Miranda, Daniel; Ponrouch, Alexandre; Pons, Josefina

    Highlights: ► High surface area Mn{sub 3}O{sub 4} nanoparticles obtained by a solvent-free low temperature route. ► 3,6,9-Trioxadecanoic acid allows to obtain nanocrystalline hausmannite. ► Tape casted electrodes show up to 300 mAh g{sup −1} capacity after more than 40 cycles at a C/3 rate. ► Upper cut off voltage strongly influences capacity retention upon cycling at high C rates. -- Abstract: Nanocrystalline high surface area Mn{sub 3}O{sub 4} powder was obtained at low temperature by a solvent-free route. The precursor was a mixture of manganese (II) acetate, 3,6,9-trioxadecanoic acid (TODA) and ammonium acetate that were intimately mixed by groundingmore » in an agate mortar. Nanocrystalline Mn{sub 3}O{sub 4} was obtained by thermal treatment at 120 °C. Powder X-ray diffraction, selected area electron diffraction, high resolution transmission electron microscopy, and Fourier transformed infrared characterization confirmed the formation of the hausmannite phase. The as-prepared mesoporous material has high specific surface area (120 m{sup 2} g{sup −1}). The performances of tape casted Mn{sub 3}O{sub 4} nanopowder electrodes were investigated as anode material for lithium ion batteries. High capacity values were achieved at diverse C rates. Capacity fading was found to be dependent on the upper cut off voltage, the presence of a plateau at 2.25 V vs. Li{sup +}/Li being detrimental for long term cyclability.« less

  12. Hazardous Materials Technician. Technical Committee on Occupational Curriculum Development.

    ERIC Educational Resources Information Center

    Northern Montana Coll., Havre. Montana Center for Vocational Education, Research, Curriculum and Personnel Development.

    This document describes Montana's postsecondary curriculum to prepare hazardous materials technicians. Basic general education requirements are described. The technical skills and the knowledge associated with each are listed in the following categories: (1) site assessment; (2) sampling materials; (3) handling materials; (4) recording data; (5)…

  13. Investigating the Thermal and Phase Stability of Nanocrystalline Ni-W Produced by Electrodeposition, Sputtering, and Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Marvel, Christopher Jonathan

    The development of nanocrystalline materials has been increasingly pursued over the last few decades. They have been shown to exhibit superior properties compared to their coarse-grain counterparts, and thus present a tremendous opportunity to revolutionize the performance of nanoscale devices or bulk structural materials. However, nanocrystalline materials are highly prone to grain growth, and if the nanocrystalline grains coarsen, the beneficial properties are lost. There is a strong effort to determine the most effective thermal stability mechanisms to avoid grain growth, but the physical nature of nanocrystalline grain growth is still unclear due to a lack of detailed understanding of nanocrystalline microstructures. Furthermore, the influence of contamination has scarcely been explored with advanced transmission electron microscopy techniques, nor has there been a direct comparison of alloys fabricated with different bulk processes. Therefore, this research has applied aberration-corrected scanning transmission electron microscopy to characterize nanocrystalline Ni-W on the atomic scale and elucidate the physical grain growth behavior. Three primary objectives were pursued: (1) explore the thermal stability mechanisms of nanocrystalline Ni-W, (2) evaluate the phase stability of Ni-W and link any findings to grain growth behavior, and (3) compare the influences of bulk fabrication processing, including electrodeposition, DC magnetron sputtering, and mechanical alloying, on the thermal stability and phase stability of Ni-W. Several thermal stability mechanisms were identified throughout the course of this research. First and foremost, W-segregation was scarcely observed to grain boundaries, and it is unclear if W-segregation improves thermal stability contrary to most reports in the 2 literature. Long-range Ni4W chemical ordering was observed in alloys with more than 20 at.% W, and it is likely Ni4W domains reduce grain boundary mobility. In addition, lattice

  14. Aging of Nanocrystalline Mackinawite (FeS): Mineralogical and Physicochemical Properties

    NASA Astrophysics Data System (ADS)

    Jeong, H. Y.; Lee, H.

    2011-12-01

    Due to the extraordinary physical properties and high surface areas, nanocrystalline minerals have been widely investigated for their potential uses in treating contaminated groundwaters and surface waters. Most previous studies in this field have focused on either preparation of nanocrystalline minerals or measurement of their reactivity with environmental contaminants. Nanocrystalline minerals, due to the inherent thermodynamic instability, tend to change the physicochemical and mineralogical properties over time, usually resulting in the decreased reactivity. Thus, to better assess the long-term effectiveness of nanocrystalline minerals in field applications, such "aging" effects should be clearly delineated. In the present work, we have investigated the aging impact on nanocrystalline mackinawite (FeS), the ubiquitous Fe-bearing mineral in anoxic sulfidic sediments. Mackinawite (FeS) is known to be an effective scavenger for metal pollutants and a strong reducing reagent for chromate and chlorinated organic compounds. Our preliminary results indicate that nanocrystalline FeS ages via Ostwald ripening, particle aggregation, or mineralogical transformation. By X-ray diffraction (XRD) analysis, aging of nanocrystalline FeS via Ostwald ripening is found to be dominant at acidic pH. Cryogenic transmission electron microscopy (TEM) shows that particle aggregation is most evident at neutral pH. Transformation of nanosized FeS into a more thermodynamically stable greigite (Fe3S4) is observed in the presence of folic acid at acidic pH. The pH-dependent aging process may be linked with changes in the apparent solubility and surface charge of FeS with pH. The Ostwald ripening or particle aggregation of nanocrystalline FeS leads to the decrease surface area, thus causing the decreased reactivity. Given the less reactivity of greigite, the transformation of nanocrystalline FeS to greigite is also expected to result in the decreased reactivity.

  15. The effect of patient age on bone formation using a fully synthetic nanocrystalline bone augmentation material in maxillary sinus grafting.

    PubMed

    Wolf, Michael; Wurm, Alexander; Heinemann, Friedhelm; Gerber, Thomas; Reichert, Christoph; Jäger, Andreas; Götz, Werner

    2014-01-01

    Maxillary sinus floor augmentation is a treatment that has been proposed for patients in whom the alveolar bone height is insufficient. This procedure is commonly used in patients aged 40 to 70 years and older. However, little information exists whether the factor of age might influence the outcome of augmentation procedures. The aim of this study was to investigate whether the patient's age has an effect on bone formation and incorporation in maxillary sinus floor augmentation procedures. A fully synthetic nanocrystalline bone augmentation material (NanoBone, Artoss) was used for sinus floor augmentation in patients with a subantral vertical bone height of at least 3 mm and maximum of 7 mm. After 7 months healing time, biopsy specimens were taken and were divided into two groups according to the patient's age. Exclusion criteria were poor general health (eg, severe renal/and or liver disease), history of a radiotherapy in the head region, chemotherapy at the time of surgical procedure, noncompensated diabetes mellitus, symptoms of a maxillary sinus disease, active periodontal or systemic diseases, smoking, and poor oral hygiene. Histologic analyses with hematoxylin-eosin stain were performed. Multinucleated osteoclast-like cells were identified by histochemical staining (tartrate-resistant acid phosphatase [TRAP]). Quantitative and age-dependent assessment of bone formation, residual bone grafting material, and soft tissue formation following sinus augmentation was performed using histomorphometric analysis and the Bonferroni adjustment of the Student t test. Twenty biopsy specimens from 17 patients were taken and divided into two groups according to age (group 1: 41 to 52 years; group 2: 66 to 71 years) containing 10 specimens each, which were analyzed in triplicate resulting in a total of 30 specimens per group. A regeneration process with varying amounts of newly formed bone surrounded by marrow-like tissue was present in all augmented regions. No signs of

  16. Influence of coating on nanocrystalline magnetic properties during high temperature thermal ageing

    NASA Astrophysics Data System (ADS)

    Lekdim, Atef; Morel, Laurent; Raulet, Marie-Ange

    2017-05-01

    Since their birth or mergence the late 1980s, the nanocrystalline ultrasoft magnetic materials are taking a great importance in power electronic systems conception. One of the main advantages that make them more attractive nowadays is their ability to be packaged since the reduction of the magnetostrictive constant to almost zero. In aircraft applications, due to the high component compactness and to their location (for example near the jet engine), the operating temperature increases and may reach easily 200 °C and more. Consequently, the magnetic thermal ageing may occur but is, unfortunately, weakly studied. This paper focuses on the influence of the coating (packaging type) on the magnetic nanocrystalline performances during a thermal ageing. This study is based on monitoring the magnetic characteristics of two types of nanocrystalline cores (naked and coated) during a thermal activated ageing (100, 150 and 200 °C). Based on a dedicated monitoring protocol, a large magnetic characterization has been done and analyzed. Elsewhere, X-Ray Diffraction and magnetostriction measurements were carried out to support the study of the anisotropy energies evolution with ageing. This latter is discussed in this paper to explain and give hypothesis about the ageing phenomena.

  17. Ultra-thin nanocrystalline diamond membranes as pressure sensors for harsh environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssens, S. D., E-mail: stoffel.d.janssens@gmail.com; Haenen, K., E-mail: ken.haenen@uhasselt.be; IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek

    2014-02-17

    Glass and diamond are suitable materials for harsh environments. Here, a procedure for fabricating ultra-thin nanocrystalline diamond membranes on glass, acting as an electrically insulating substrate, is presented. In order to investigate the pressure sensing properties of such membranes, a circular, highly conductive boron-doped nanocrystalline diamond membrane with a resistivity of 38 mΩ cm, a thickness of 150 nm, and a diameter of 555 μm is fabricated in the middle of a Hall bar structure. During the application of a positive differential pressure under the membrane (0–0.7 bar), four point piezoresistive effect measurements are performed. From these measurements, it can be concluded that the resistancemore » response of the membrane, as a function of differential pressure, is highly linear and sensitive.« less

  18. Comparative study on corrosion resistance and in vitro biocompatibility of bulk nanocrystalline and microcrystalline biomedical 304 stainless steel.

    PubMed

    Nie, F L; Wang, S G; Wang, Y B; Wei, S C; Zheng, Y F

    2011-07-01

    SUS 304 stainless steels have been widely used in orthodontics and implants such as archwires, brackets, and screws. The purpose of present study was to investigate the biocompatibility of both the commercial microcrystalline biomedical 304 stainless steel (microcrystalline 304ss) and novel-fabricated nanocrystalline 304 stainless steel (nanocrystalline 304ss). Bulk nanocrystalline 304ss sheets had been successfully prepared by microcrystalline 304ss plates using severe rolling technique. The electrochemical corrosion and ion release behavior immersion in artificial saliva were measured to evaluate the property of biocorrosion in oral environment. The cell lines of murine and human cell lines from oral and endothelial environment were co-cultured with extracts to evaluate the cytotoxicity and provide referential evidence in vivo. The polarization resistance trials indicated that nanocrystalline 304ss is more corrosion resistant than the microcrystalline 304ss in oral-like environment with higher corrosion potential, and the amount of toxic ions released into solution after immersion is lower than that of the microcrystalline 304ss and the daily dietary intake level. The cytotoxicity results also elucidated that nanocrystalline 304ss is biologically compatible in vitro, even better than that of microcrystalline 304ss. Based on the much higher mechanical and physical performances, nanocrystalline 304ss with enhanced biocorrosion property, well-behaved in vitro cytocompatibility can be a promising alternative in orthodontics and fixation fields in oral cavity. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. In situ transmission electron microscopy He + implantation and thermal aging of nanocrystalline iron

    DOE PAGES

    Muntifering, Brittany R.; Fang, Youwu; Leff, Asher C.; ...

    2016-10-04

    Due to their high density of interfaces, nanostructured material are hypothesized to show a higher tolerance to radiation damage compared to conventional coarse-grained materials and are on interest for use in future nuclear reactors. In order to investigate the roles of vacancies, self-interstitials, and helium during defect accumulation, and the thermal evolution of such defects, a complex set of in situ TEM experiments were performed in nanocrystalline iron.

  20. Energy materials coordinating committee (EMACC) Fiscal Year 1982. Annual technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1983-03-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further the effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/ workshops on selected topics involving both DOE and major contractors. In addition, the EMaCC aids in obtaining materials - related inputs for both intra- and interagency compilations. Membership in the EMaCC is open to any Department organizational unit; participants are appointed by Division or Office Directors. The current membership is listed inmore » Table 1. The EMACC reports to the Director of the Office of Energy Research in his capacity as overseer of the technical programs of the Department. This annual technical report is mandated by the EMACC terms of reference. In this report are described 1) EMACC activities for FY 1982; 2) a summary of materials funding in the Department from FY 1978 to the present; and 3) on-going materials programs in the Department.« less

  1. Materials And Processes Technical Information System (MAPTIS) LDEF materials data base

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated from LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux) and author(s) or principal investigator(s). Tne LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which has been computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. The LDEF Materials Data Base is described and step-by-step example searches using the data base are included. Information on how to become an authorized user of the system is included.

  2. Nanocrystalline ZnO as a Visible Active Photocatalyst for the Degradation of Benzene-1,4-diol

    NASA Astrophysics Data System (ADS)

    Ramachandran, Saranya; Sivasamy, A.

    We have synthesized nanocrystalline ZnO by a simple precipitation method. The prepared ZnO was found to be highly phase pure and nanocrystalline hexagonal wurtzite structure. UV-Visible-DRS spectroscopy showed the material to have bandgap energy of 3.22eV. HR-SEM image revealed the material to be made up of distinct hexagonal particles with a highly porous surface. AFM analysis was employed to confirm the high surface roughness and porosity of the material. The photocatalytic activity of the prepared ZnO was evaluated by the degradation of benzene-1,4-diol (hydroquinone), under visible light irradiation. Preliminary experiments showed the catalyst to be effective at neutral pH with an optimum catalyst dosage of 4g/L. Kinetic studies showed the degradation reaction to follow pseudo-first-order kinetics. In the presence of commonly used industrial electrolytes, the catalyst exhibited a decrease in efficiency. Reusability studies showed the catalytic efficiency of ZnO to diminish marginally after the third cycle of reuse.

  3. Fingerprinting of Materials: Technical Supplement

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1992-01-01

    This supplement to the Guidelines for Maintaining a Chemical Fingerprinting Program has been developed to assist NASA personnel, contractors, and sub-contractors in defining the technical aspects and basic concepts which can be used in chemical fingerprinting programs. This material is not meant to be totally inclusive to all chemical fingerprinting programs, but merely to present current concepts. Each program will be tailored to meet the needs of the individual organizations using chemical fingerprinting to improve their quality and reliability in the production of aerospace systems.

  4. Nanocrystalline CuInS2 And CuInSe2 via Low-Temperature Pyrolysis Of Single-Source Molecular Precursors

    NASA Technical Reports Server (NTRS)

    Castro, Stephanie L.; Bailey, Sheila G.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Hepp, Aloysius F.

    2002-01-01

    Single-source precursors are molecules which contain all the necessary elements for synthesis of a desired material. Thermal decomposition of the precursor results in the formation of the material with the correct stoichiometry, as a nanocrystalline powder or a thin film. Nanocrystalline materials hold potential as components of next-generation Photovoltaic (PV) devices. Presented here are the syntheses of CuInS2 and CuInSe2 nanocrystals from the precursors (PPh3)2CuIn(SEt)4 and (PPh3)2CuIn(SePh)4, respectively. The size of the nanocrystals varies with the reaction temperature; a minimum of 200 C is required for the formation of the smallest CuInS2 crystals (approximately 1.6 nm diameter); at 300 C, crystals are approximately 7 nm.

  5. Synthesis and characterization of P-doped amorphous and nanocrystalline Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jialing; Ganguly, Shreyashi; Sen, Sabyasachi

    Intentional impurity doping lies at the heart of the silicon technology. The dopants provide electrons or holes as necessary carriers of the electron current and can significantly modify the electric, optical and magnetic properties of the semiconductors. P-doped amorphous Si (a-Si) was prepared by a solid state and solution metathesis reaction of a P-doped Zintl phase precursor, NaSi 0.99P 0.01, with an excess of NH 4X (X = Br, I). After the salt byproduct was removed from the solid state reaction, the a-Si material was annealed at 600 °C under vacuum for 2 h, resulting in P-doped nanocrystalline Si (nc-Si)more » material embedded in a-Si matrix. The product from the solution reaction also shows a combination of nc-Si embedded in a-Si; however, it was fully converted to nc-Si after annealing under argon at 650 °C for 30 min. Powder X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) show the amorphous nature of the P-doped Si material before the annealing and the nanocrystallinity after the annealing. Fourier Transform Infrared (FTIR) spectroscopy shows that the P-doped Si material surface is partially capped by H and O or with solvent. Finally, electron microprobe wavelength dispersive spectroscopy (WDS) as well as energy dispersive spectroscopy (EDS) confirm the presence of P in the Si material. 29Si and 31P solid state magic-angle-spinning nuclear magnetic resonance (MAS NMR) spectroscopy data provide the evidence of P doping into the Si structure with the P concentration of approximately 0.07 at.%.« less

  6. Investigations of Nanocrystalline Alloy Electrospark Coating Made of Nanocrystalline Alloy Based on 5БДCP Ferrum

    NASA Astrophysics Data System (ADS)

    Kolomeichenko, A. V.; Kuznetsov, I. S.; Izmaylov, A. Yu; Solovyev, R. Yu; Sharifullin, S. N.

    2017-09-01

    The article describes the properties of wear resistant electrospark coating made of nanocrystalline alloy of type 5БДCP (Finemet). It is proved that electrospark coating has nanocrystalline structure which is like amorphous matrix with nanocrystals α - Fe. Coating thickness is 33 μm, micro-hardness is 8461 - 11357 MPa, wear resistance is 0,55×104s/g. Coating ofnanocrystalline alloy of type 5БДCP can be used to increase wear resistance of machinery working surfaces.

  7. Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition

    DTIC Science & Technology

    2014-11-01

    Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition by Tiffany Ngo ARL-TN-0643...November 2014 Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition Tiffany Ngo Weapons and...3. DATES COVERED (From - To) August 2014 4. TITLE AND SUBTITLE Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by

  8. Limitation of biocompatibility of hydrated nanocrystalline hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Minaychev, V. V.; Teleshev, A. T.; Gorshenev, V. N.; Yakovleva, M. A.; Fomichev, V. A.; Pankratov, A. S.; Menshikh, K. A.; Fadeev, R. S.; Fadeeva, I. S.; Senotov, A. S.; Kobyakova, M. I.; Yurasova, Yu B.; Akatov, V. S.

    2018-04-01

    Nanostructured hydroxyapatite (HA) in the form of hydrated paste is considered to be a promising material for a minor-invasive surgical curing of bone tissue injure. However questions about adhesion of cells on this material and its biocompatibility still remain. In this study biocompatibility of paste-formed nanosized HA (nano-HA) by in vitro methods is investigated. Nano-HA (particles sized about 20 nm) was synthesized under conditions of mechano-acoustic activation of an aqueous reaction mixture of ammonium hydrophosphate and calcium nitrate. It was ascertained that nanocrystalline paste was not cytotoxic although limitation of adhesion, spreading and growth of the cells on its surface was revealed. The results obtained point on the need of modification of hydrated nano-HA in the aims of increasing its biocompatibility and osteoplastic potential.

  9. Defect structure in electrodeposited nanocrystalline Ni layers with different Mo concentrations

    NASA Astrophysics Data System (ADS)

    Kapoor, Garima; Péter, László; Fekete, Éva; Gubicza, Jenő

    2018-05-01

    The effect of molybdenum (Mo) alloying on the lattice defect structure in electrodeposited nanocrystalline nickel (Ni) films was studied. The electrodeposited layers were prepared on copper substrate at room temperature, with a constant current density and pH value. The chemical composition of these layers was determined by EDS. In addition, X-ray diffraction line profile analysis was carried out to study the microstructural parameters such as the crystallite size, the dislocation density and the stacking fault probability. It was found that the higher Mo content yielded more than one order of magnitude larger dislocation density while the crystallite size was only slightly smaller. In addition, the twin boundary formation activity during deposition increased with increasing Mo concentration. The results obtained on electrodeposited layers were compared with previous research carried out on bulk nanocrystalline Ni-Mo materials with similar compositions but processed by severe plastic deformation.

  10. 76 FR 20949 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  11. Analysis of a nanocrystalline polymer dispersion of ebselen using solid-state NMR, Raman microscopy, and powder X-ray diffraction.

    PubMed

    Vogt, Frederick G; Williams, Glenn R

    2012-07-01

    Nanocrystalline drug-polymer dispersions are of significant interest in pharmaceutical delivery. The purpose of this work is to demonstrate the applicability of methods based on two-dimensional (2D) and multinuclear solid-state NMR (SSNMR) to a novel nanocrystalline pharmaceutical dispersion of ebselen with polyvinylpyrrolidone-vinyl acetate (PVP-VA), after initial characterization with other techniques. A nanocrystalline dispersion of ebselen with PVP-VA was prepared and characterized by powder X-ray diffraction (PXRD), confocal Raman microscopy and mapping, and differential scanning calorimetry (DSC), and then subjected to detailed 1D and 2D SSNMR analysis involving ¹H, ¹³C, and ⁷⁷Se isotopes and ¹H spin diffusion. PXRD was used to show that dispersion contains nanocrystalline ebselen in the 35-60 nm size range. Confocal Raman microscopy and spectral mapping were able to detect regions where short-range interactions may occur between ebselen and PVP-VA. Spin diffusion effects were analyzed using 2D SSNMR experiments and are able to directly detect interactions between ebselen and the surrounding PVP-VA. The methods used here, particularly the 2D SSNMR methods based on spin diffusion, provided detailed structural information about a nanocrystalline polymer dispersion of ebselen, and should be useful in other studies of these types of materials.

  12. Combining Hard with Soft Materials in Nanoscale Under High-Pressure High-Temperature Conditions

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Gierlotka, S.; Swiderska-Sroda, A.; Fietkiewicz, K.; Kalisz, G.; Grzanka, E.; Stel'makh, S.; Palosz, W.

    2004-01-01

    Nano-composites with a primary nanocrystalline ceramic matrix and a secondary nanocrystalline material (metal or semiconductor) were synthesized by infiltration of an appropriate liquid into ceramic compacts under pressures of up to 8 GPa and temperatures of up to 2000 K. The purpose of our work is to obtain nanocomposites which constitute homoger?ous mixtures of two phases, both forming nano- grains of about 10 nm in size. The high pressure is used to bring the porosity of the compacted powders down to the nano-scale and force a given liquid into the nano-sized pores. The advantage of the infiltration technique is that, in a single, continuous process, we start with a nanocrystalline powder, compress it to form the matrix of the composite, and crystallize and/or synthesize a second nanomaterial in the matrix pores. The key limitation of this technology is, that the pores in the matrix need to stay open during the entire process of infiltration. Thus the initial powder should form a rigid skeleton, otherwise the so-called self-stop process can limit cr block a further flow of the liquid phase and hinder the process of the composite formation. Therefore powders of only very hard ceramic materials like diamond, Sic, or Alz03, which can withstand a substantial external load without undesired deformation, can be used as the primary phase. With this technique, using diamond and S i c ceramic powders infiltrated by liquid metals (AI, Zn, Sn, Ag, Au) and semiconductors (Si, Ge, GaAs, CdTe), we obtained nano-composites with the grain size in the range of 10 - 30 nm. Our work addresses the key problem in manufacturing bulk nanocrystalline materials, i.e. preservation of nano-scale during the fabrication process. In this paper we discuss basic technical and methodological problems associated with nano-infiltration based on the results obtained for Zn-Sic composites.

  13. 75 FR 47546 - Materials Processing Equipment; Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment; Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  14. 75 FR 66356 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  15. 78 FR 13625 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  16. 77 FR 65857 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  17. 77 FR 42483 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  18. 78 FR 24160 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  19. 77 FR 25960 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  20. 78 FR 42754 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  1. 76 FR 42678 - Materials Processing Equipment; Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment; Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  2. 78 FR 63161 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  3. Toughness and strength of nanocrystalline graphene

    DOE PAGES

    Shekhawat, Ashivni; Ritchie, Robert O.

    2016-01-28

    Pristine monocrystalline graphene is claimed to be the strongest material known with remarkable mechanical and electrical properties. However, graphene made with scalable fabrication techniques is polycrystalline and contains inherent nanoscale line and point defects—grain boundaries and grain-boundary triple junctions—that lead to significant statistical fluctuations in toughness and strength. These fluctuations become particularly pronounced for nanocrystalline graphene where the density of defects is high. Here we use large-scale simulation and continuum modelling to show that the statistical variation in toughness and strength can be understood with ‘weakest-link’ statistics. We develop the first statistical theory of toughness in polycrystalline graphene, and elucidatemore » the nanoscale origins of the grain-size dependence of its strength and toughness. Lastly, our results should lead to more reliable graphene device design, and provide a framework to interpret experimental results in a broad class of two-dimensional materials.« less

  4. Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline SiOx layers for application in solar cells

    NASA Astrophysics Data System (ADS)

    Klingsporn, M.; Kirner, S.; Villringer, C.; Abou-Ras, D.; Costina, I.; Lehmann, M.; Stannowski, B.

    2016-06-01

    Nanocrystalline silicon suboxides (nc-SiOx) have attracted attention during the past years for the use in thin-film silicon solar cells. We investigated the relationships between the nanostructure as well as the chemical, electrical, and optical properties of phosphorous, doped, nc-SiO0.8:H fabricated by plasma-enhanced chemical vapor deposition. The nanostructure was varied through the sample series by changing the deposition pressure from 533 to 1067 Pa. The samples were then characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, aberration-corrected high-resolution transmission electron microscopy, selected-area electron diffraction, and a specialized plasmon imaging method. We found that the material changed with increasing pressure from predominantly amorphous silicon monoxide to silicon dioxide containing nanocrystalline silicon. The nanostructure changed from amorphous silicon filaments to nanocrystalline silicon filaments, which were found to cause anisotropic electron transport.

  5. Quantifying the influence of twin boundaries on the deformation of nanocrystalline copper using atomistic simulations

    DOE PAGES

    Tucker, Garritt J.; Foiles, Stephen Martin

    2014-09-22

    Over the past decade, numerous efforts have sought to understand the influence of twin boundaries on the behavior of polycrystalline materials. Early results suggested that twin boundaries within nanocrystalline face-centered cubic metals have a considerable effect on material behavior by altering the activated deformation mechanisms. In this work, we employ molecular dynamics simulations to elucidate the role of twin boundaries on the deformation of <100> columnar nanocrystalline copper at room temperature under uniaxial strain. We leverage non-local kinematic metrics, formulated from continuum mechanics theory, to compute atomically-resolved rotational and strain fields during plastic deformation. These results are then utilized tomore » compute the distribution of various nanoscale mechanisms during straining, and quantitatively resolve their contribution to the total strain accommodation within the microstructure, highlighting the fundamental role of twin boundaries. Our results show that nanoscale twins influence nanocrystalline copper by altering the cooperation of fundamental deformation mechanisms and their contributed role in strain accommodation, and we present new methods for extracting useful information from atomistic simulations. The simulation results suggest a tension–compression asymmetry in the distribution of deformation mechanisms and strain accommodation by either dislocations or twin boundary mechanisms. In highly twinned microstructures, twin boundary migration can become a significant deformation mode, in comparison to lattice dislocation plasticity in non-twinned columnar microstructures, especially during compression.« less

  6. Methods for preparation of nanocrystalline rare earth phosphates for lighting applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comanzo, Holly Ann; Manoharan, Mohan; Martins Loureiro, Sergio Paulo

    Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.

  7. Electronic transport in mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films

    NASA Astrophysics Data System (ADS)

    Wienkes, Lee Raymond

    Interest in mixed-phase silicon thin film materials, composed of an amorphous semiconductor matrix in which nanocrystalline inclusions are embedded, stems in part from potential technological applications, including photovoltaic and thin film transistor technologies. Conventional mixed-phase silicon films are produced in a single plasma reactor, where the conditions of the plasma must be precisely tuned, limiting the ability to adjust the film and nanoparticle parameters independently. The films presented in this thesis are deposited using a novel dual-plasma co-deposition approach in which the nanoparticles are produced separately in an upstream reactor and then injected into a secondary reactor where an amorphous silicon film is being grown. The degree of crystallinity and grain sizes of the films are evaluated using Raman spectroscopy and X-ray diffraction respectively. I describe detailed electronic measurements which reveal three distinct conduction mechanisms in n-type doped mixed-phase amorphous/nanocrystalline silicon thin films over a range of nanocrystallite concentrations and temperatures, covering the transition from fully amorphous to ~30% nanocrystalline. As the temperature is varied from 470 to 10 K, we observe activated conduction, multiphonon hopping (MPH) and Mott variable range hopping (VRH) as the nanocrystal content is increased. The transition from MPH to Mott-VRH hopping around 100K is ascribed to the freeze out of the phonon modes. A conduction model involving the parallel contributions of these three distinct conduction mechanisms is shown to describe both the conductivity and the reduced activation energy data to a high accuracy. Additional support is provided by measurements of thermal equilibration effects and noise spectroscopy, both done above room temperature (>300 K). This thesis provides a clear link between measurement and theory in these complex materials.

  8. Microwave plasma chemical synthesis of nanocrystalline carbon film structures and study their properties

    NASA Astrophysics Data System (ADS)

    Bushuev, N.; Yafarov, R.; Timoshenkov, V.; Orlov, S.; Starykh, D.

    2015-08-01

    The self-organization effect of diamond nanocrystals in polymer-graphite and carbon films is detected. The carbon materials deposition was carried from ethanol vapors out at low pressure using a highly non-equilibrium microwave plasma. Deposition processes of carbon film structures (diamond, graphite, graphene) is defined. Deposition processes of nanocrystalline structures containing diamond and graphite phases in different volume ratios is identified. The solid film was obtained under different conditions of microwave plasma chemical synthesis. We investigated the electrical properties of the nanocrystalline carbon films and identified it's from various factors. Influence of diamond-graphite film deposition mode in non-equilibrium microwave plasma at low pressure on emission characteristics was established. This effect is justified using the cluster model of the structure of amorphous carbon. It was shown that the reduction of bound hydrogen in carbon structures leads to a decrease in the threshold electric field of emission from 20-30 V/m to 5 V/m. Reducing the operating voltage field emission can improve mechanical stability of the synthesized film diamond-graphite emitters. Current density emission at least 20 A/cm2 was obtained. Nanocrystalline carbon film materials can be used to create a variety of functional elements in micro- and nanoelectronics and photonics such as cold electron source for emission in vacuum devices, photonic devices, cathodoluminescent flat display, highly efficient white light sources. The obtained graphene carbon net structure (with a net size about 6 μm) may be used for the manufacture of large-area transparent electrode for solar cells and cathodoluminescent light sources

  9. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries

    DOE PAGES

    Dey, Sanchita; Mardinly, John; Wang, Yongqiang; ...

    2016-05-27

    Grain boundaries are effective sinks for radiation-induced defects, ultimately impacting the radiation tolerance of nanocrystalline materials (dense materials with nanosized grains) against net defect accumulation. However, irradiation-induced grain growth leads to grain boundary area decrease, shortening potential benefits of nanostructures. A possible approach to mitigate this is the introduction of dopants to target a decrease in grain boundary mobility or a reduction in grain boundary energy to eliminate driving forces for grain growth (using similar strategies as to control thermal growth). Here, in this study, we tested this concept in nanocrystalline zirconia doped with lanthanum. Although the dopant is observedmore » to segregate to the grain boundaries, causing grain boundary energy decrease and promoting dragging forces for thermally activated boundary movement, irradiation induced grain growth could not be avoided under heavy ion irradiation, suggesting a different growth mechanism as compared to thermal growth. Furthermore, it is apparent that reducing the grain boundary energy reduced the effectiveness of the grain boundary as sinks, and the number of defects in the doped material is higher than in undoped (La-free) YSZ.« less

  10. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation.

    PubMed

    Yamakov, V; Wolf, D; Phillpot, S R; Mukherjee, A K; Gleiter, H

    2004-01-01

    Molecular-dynamics simulations have recently been used to elucidate the transition with decreasing grain size from a dislocation-based to a grain-boundary-based deformation mechanism in nanocrystalline f.c.c. metals. This transition in the deformation mechanism results in a maximum yield strength at a grain size (the 'strongest size') that depends strongly on the stacking-fault energy, the elastic properties of the metal, and the magnitude of the applied stress. Here, by exploring the role of the stacking-fault energy in this crossover, we elucidate how the size of the extended dislocations nucleated from the grain boundaries affects the mechanical behaviour. Building on the fundamental physics of deformation as exposed by these simulations, we propose a two-dimensional stress-grain size deformation-mechanism map for the mechanical behaviour of nanocrystalline f.c.c. metals at low temperature. The map captures this transition in both the deformation mechanism and the related mechanical behaviour with decreasing grain size, as well as its dependence on the stacking-fault energy, the elastic properties of the material, and the applied stress level.

  11. Some aspects of pulsed laser deposition of Si nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Polyakov, B.; Petruhins, A.; Butikova, J.; Kuzmin, A.; Tale, I.

    2009-11-01

    Nanocrystalline silicon films were deposited by a picosecond laser ablation on different substrates in vacuum at room temperature. A nanocrystalline structure of the films was evidenced by atomic force microscopy (AFM), optical and Raman spectroscopies. A blue shift of the absorption edge was observed in optical absorption spectra, and a decrease of the optical phonon energy at the Brillouin zone centre was detected by Raman scattering. Early stages of nanocrystalline film formation on mica and HOPG substrates were studied by AFM. Mechanism of nanocrystal growth on substrate is discussed. in here

  12. Materials And Processes Technical Information System (MAPTIS) LDEF materials database

    NASA Technical Reports Server (NTRS)

    Davis, John M.; Strickland, John W.

    1992-01-01

    The Materials and Processes Technical Information System (MAPTIS) is a collection of materials data which was computerized and is available to engineers in the aerospace community involved in the design and development of spacecraft and related hardware. Consisting of various database segments, MAPTIS provides the user with information such as material properties, test data derived from tests specifically conducted for qualification of materials for use in space, verification and control, project management, material information, and various administrative requirements. A recent addition to the project management segment consists of materials data derived from the LDEF flight. This tremendous quantity of data consists of both pre-flight and post-flight data in such diverse areas as optical/thermal, mechanical and electrical properties, atomic concentration surface analysis data, as well as general data such as sample placement on the satellite, A-O flux, equivalent sun hours, etc. Each data point is referenced to the primary investigator(s) and the published paper from which the data was taken. The MAPTIS system is envisioned to become the central location for all LDEF materials data. This paper consists of multiple parts, comprising a general overview of the MAPTIS System and the types of data contained within, and the specific LDEF data element and the data contained in that segment.

  13. Structural, optical and magnetic behaviour of nanocrystalline Volborthite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arvind, Hemant K., E-mail: hemantarvind@gmail.com; Kumar, Sudhish, E-mail: skmlsu@gmail.com; Kalal, Sangeeta

    2016-05-06

    Nanocrystalline sample of Volborthite (Copper Pyrovanadate: Cu{sub 3}V{sub 2} (OH){sub 2}O{sub 7}.2H{sub 2}O) has been synthesized using wet chemical route and characterized by XRD, SEM, FTIR, UV-Vis-NIR spectroscopic and magnetization measurements. Room temperature X-ray diffraction analysis confirms the single phase monoclinic structure and nanocrystalline nature of Volborthite. The UV-Visible optical absorption spectrum displays two broad absorption peaks in the range of 200-350 nm and 400-1000 nm. The direct band gap is found to be E{sub g}= ∼2.74 eV. Bulk Volborthite was reported to be a natural frustrated antiferromagnet, however our nanocrystalline Volborthite display week ferromagnetic hysteresis loop with very small coercivity andmore » retentivity at room temperature.« less

  14. Production of hydrogen using nanocrystalline protein-templated catalysts on m13 phage.

    PubMed

    Neltner, Brian; Peddie, Brian; Xu, Alex; Doenlen, William; Durand, Keith; Yun, Dong Soo; Speakman, Scott; Peterson, Andrew; Belcher, Angela

    2010-06-22

    For decades, ethanol has been in use as a fuel for the storage of solar energy in an energy-dense, liquid form. Over the past decade, the ability to reform ethanol into hydrogen gas suitable for a fuel cell has drawn interest as a way to increase the efficiency of both vehicles and stand-alone power generators. Here we report the use of extremely small nanocrystalline materials to enhance the performance of 1% Rh/10% Ni@CeO(2) catalysts in the oxidative steam reforming of ethanol with a ratio of 1.7:1:10:11 (air/EtOH/water/argon) into hydrogen gas, achieving 100% conversion of ethanol at only 300 degrees C with 60% H(2) in the product stream and less than 0.5% CO. Additionally, nanocrystalline 10% Ni@CeO(2) was shown to achieve 100% conversion of ethanol at 400 degrees C with 73% H(2), 2% CO, and 2% CH(4) in the product stream. Finally, we demonstrate the use of biological templating on M13 to improve the resistance of this catalyst to deactivation over 52 h tests at high flow rates (120 000 h(-1) GHSV) at 450 degrees C. This study suggests that the use of highly nanocrystalline, biotemplated catalysts to improve activity and stability is a promising route to significant gains over traditional catalyst manufacture methods.

  15. Nano-Scale Characterization of Al-Mg Nanocrystalline Alloys

    NASA Astrophysics Data System (ADS)

    Harvey, Evan; Ladani, Leila

    Materials with nano-scale microstructure have become increasingly popular due to their benefit of substantially increased strengths. The increase in strength as a result of decreasing grain size is defined by the Hall-Petch equation. With increased interest in miniaturization of components, methods of mechanical characterization of small volumes of material are necessary because traditional means such as tensile testing becomes increasingly difficult with such small test specimens. This study seeks to characterize elastic-plastic properties of nanocrystalline Al-5083 through nanoindentation and related data analysis techniques. By using nanoindentation, accurate predictions of the elastic modulus and hardness of the alloy were attained. Also, the employed data analysis model provided reasonable estimates of the plastic properties (strain-hardening exponent and yield stress) lending credibility to this procedure as an accurate, full mechanical characterization method.

  16. Synthesis and characterization of a nanocrystalline diamond aerogel

    PubMed Central

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Joe H.

    2011-01-01

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel’s void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel. PMID:21555550

  17. Synthesis and characterization of a nanocrystalline diamond aerogel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.

    2011-07-06

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel's void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material revealmore » the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel.« less

  18. Magnetic Force Microscopy Study of Zr 2 Co 11 -Based Nanocrystalline Materials: Effect of Mo Addition

    DOE PAGES

    Yue, Lanping; Jin, Yunlong; Zhang, Wenyong; ...

    2015-01-01

    Tmore » he addition of Molybdenum was used to modify the nanostructure and enhance coercivity of rare-earth-free Zr 2Co 11-based nanocrystalline permanent magnets. he effect of Mo addition on magnetic domain structures of melt spun nanocrystalline Zr 16Co 84-xMo x( x = 0 , 0.5, 1, 1.5, and 2.0) ribbons has been investigated. It was found that magnetic properties and local domain structures are strongly influenced by Mo doping. he coercivity of the samples increases with the increase in Mo content ( x ≤ 1.5 ). he maximum energy product ( B H ) max increases with increasing x from 0.5 MGOe for x = 0 to a maximum value of 4.2 MGOe for x = 1.5 . he smallest domain size with a relatively short magnetic correlation length of 128 nm and largest root-mean-square phase shift Φ rms value of 0.66° are observed for the x = 1.5 . he optimal Mo addition promotes magnetic domain structure refinement and thus leads to a significant increase in coercivity and energy product in this sample.« less

  19. Magnetic Force Microscopy Study of Zr 2 Co 11 -Based Nanocrystalline Materials: Effect of Mo Addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Lanping; Jin, Yunlong; Zhang, Wenyong

    Tmore » he addition of Molybdenum was used to modify the nanostructure and enhance coercivity of rare-earth-free Zr 2Co 11-based nanocrystalline permanent magnets. he effect of Mo addition on magnetic domain structures of melt spun nanocrystalline Zr 16Co 84-xMo x( x = 0 , 0.5, 1, 1.5, and 2.0) ribbons has been investigated. It was found that magnetic properties and local domain structures are strongly influenced by Mo doping. he coercivity of the samples increases with the increase in Mo content ( x ≤ 1.5 ). he maximum energy product ( B H ) max increases with increasing x from 0.5 MGOe for x = 0 to a maximum value of 4.2 MGOe for x = 1.5 . he smallest domain size with a relatively short magnetic correlation length of 128 nm and largest root-mean-square phase shift Φ rms value of 0.66° are observed for the x = 1.5 . he optimal Mo addition promotes magnetic domain structure refinement and thus leads to a significant increase in coercivity and energy product in this sample.« less

  20. Analysis of Short and Long Range Atomic Order in Nanocrystalline Diamonds with Application of Powder Diffractometry

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Neuefiend, J.; Weber, H.-P.; Proffen, T.; VonDreele, R.; Palosz, W.; hide

    2002-01-01

    Fundamental limitations, with respect to nanocrystalline materials, of the traditional elaboration of powder diffraction data like the Rietveld method are discussed. A tentative method of the analysis of powder diffraction patterns of nanocrystals is introduced which is based on the examination of the variation of lattice parameters calculated from individual Bragg lines (named the "apparent lattice parameter", alp). We examine the application of our methodology using theoretical diffraction patterns computed for models of nanocrystals with a perfect crystal lattice and for grains with a two-phase, core-shell structure. We use the method for the analysis of X-ray and neutron experimental diffraction data of nanocrystalline diamond powders of 4, 6 and 12 nm in diameter. The effects of an internal pressure and strain at the grain surface is discussed. This is based on the dependence of the alp values oil the diffraction vector Q and on the PDF analysis. It is shown, that the experimental results support well the concept of the two-phase structure of nanocrystalline diamond.

  1. [Raman studies of nanocrystalline BaTiO3 ceramics].

    PubMed

    Xiao, Chang-jiang; Jin, Chang-qing; Wang, Xiao-hui

    2008-12-01

    High pressure can significantly increase the densification. Further, during the high pressure assisted sintering, the nucleation rate is increased due to reduced energy barrier and the growth rate is suppressed due to the decreased diffusivity. Thus high pressure enables the specimen to be fabricated with relatively lower temperature and shorter sintering period that assures to obtain dense nanocrystalline ceramics. Dense nanocrystalline BaTiO3 ceramics with uniform grain sizes of 60 and 30 nm, respectively, were obtained by pressure assisted sintering. The crystal structure and phase transitions were investigated by Raman scattering at temperatures ranging from -190 to 200 degrees C. The Raman results indicated that the evolution of Raman spectrum with grain size is characterized by an intensity decrease, a broadening of the line width, a frequency shift, and the disappearance of the Raman mode. With increasing temperature, similar to 3 mm BaTiO3 normal ceramics, the successive phase transitions from rhombohedral to orthorhombic, orthorhombic to tetragonal, and tetragonal to cubic were also observed in nanocrystalline BaTiO3 ceramics. In addition, when particle size is reduced to the nanoscale, one will find some unusual physical properties in nanocrystalline ceramics, compared with those of coarse-grained BaTiO3 ceramics. The different coexistences of multiphase were found at different temperature. Especially, the ferroelectric tetragonal and orthorhombic phase can coexist at room temperature in nanocrystalline BaTiO3 ceramics. The phenomenon can be explained by the internal stress. The coexistences of different ferroelectric phases at room temperature indicate that the critical grain size for the disappearance of ferroelectricity in nanocrystalline BaTiO3 ceramics fabricated by pressure assisted sintering is below 30 nm.

  2. 10 CFR 4.322 - Written notice, technical assistance, and educational materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Written notice, technical assistance, and educational... the Age Discrimination Act of 1975, as Amended Duties of Nrc Recipients § 4.322 Written notice, technical assistance, and educational materials. (a) NRC will provide written notice to each recipient of...

  3. Ion dynamics in nanocrystalline LiMnPO{sub 4} synthesised by novel template free hydrothermal approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayan, Lakshmi, E-mail: lakshmivijayan@gmail.com; Cheruku, Rajesh; Govindaraj, G.

    A dense core rectangular shaped nanocrystalline LiMnPO{sub 4} material was synthesized by template free sucrose assisted hydrothermal synthesis. The material possess orthorhombic crystal structure with Pnma, space group having four formula units. The structural characterization was accomplished through X-ray diffraction, thermo gravimetry/differential thermal analysis. Morphology was identified by the SEM, VSM was used to verify the magnetic behavior of the material and electrical characterization was done through impedance spectroscopy and the results were reported.

  4. Wear-triggered self-healing behavior on the surface of nanocrystalline nickel aluminum bronze/Ti3SiC2 composites

    NASA Astrophysics Data System (ADS)

    Zhai, Wenzheng; Lu, Wenlong; Zhang, Po; Wang, Jian; Liu, Xiaojun; Zhou, Liping

    2018-04-01

    Self-healing can protect materials from diverse damages, but is intrinsically difficult in metals. This paper demonstrates a potential method through a simultaneous decomposition and oxidation of Ti3SiC2 to achieve healing of stress cracking on the surface of nickel aluminum bronze (NAB)/Ti3SiC2 nanocrystalline composites during fretting wear. At the finest nanocrystalline materials, a crack recovery would be attained at 76.5%. The repetitive fretting wear leads to a modest amount of 'flowability' of Ti3SiC2 toward the crack, facilitating crack recovery. Along with the wear-triggered self-healing, the NAB/Ti3SiC2 shows an improved tribological performance with the stable decreased friction torque due to the formation of lubrication TiO2 oxide.

  5. A Nanocrystalline Fe2O3 Film Anode Prepared by Pulsed Laser Deposition for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Teng, Xiaoling; Qin, Youzhi; Wang, Xia; Li, Hongsen; Shang, Xiantao; Fan, Shuting; Li, Qiang; Xu, Jie; Cao, Derang; Li, Shandong

    2018-02-01

    Nanocrystalline Fe2O3 thin films are deposited directly on the conduct substrates by pulsed laser deposition as anode materials for lithium-ion batteries. We demonstrate the well-designed Fe2O3 film electrodes are capable of excellent high-rate performance (510 mAh g- 1 at high current density of 15,000 mA g- 1) and superior cycling stability (905 mAh g- 1 at 100 mA g- 1 after 200 cycles), which are among the best reported state-of-the-art Fe2O3 anode materials. The outstanding lithium storage performances of the as-synthesized nanocrystalline Fe2O3 film are attributed to the advanced nanostructured architecture, which not only provides fast kinetics by the shortened lithium-ion diffusion lengths but also prolongs cycling life by preventing nanosized Fe2O3 particle agglomeration. The electrochemical performance results suggest that this novel Fe2O3 thin film is a promising anode material for all-solid-state thin film batteries.

  6. THERMALLY STABLE NANOCRYSTALLINE TIO2 PHOTOCATALYSTS SYNTHESIZED VIA SOL-GEL METHODS MODIFIED WITH IONIC LIQUID AND SURFACTANT MOLECULES

    EPA Science Inventory

    Recently, sol-gel methods employing ionic liquids (ILs) have shown significant implications for the synthesis of well-defined nanostructured inorganic materials. Herein, we synthesized nanocrystalline TiO2 particles via an alkoxide sol-gel method employing a water-immi...

  7. Structure and properties of electrodeposited nanocrystalline Ni and Ni-Fe alloy continuous foils

    NASA Astrophysics Data System (ADS)

    Giallonardo, Jason Derek

    This research work presents the first comprehensive study on nanocrystalline materials produced in bulk quantities using a novel continuous electrodeposition process. A series of nanocrystalline Ni and Ni-Fe alloy continuous foils were produced and an intensive investigation into their structure and various properties was carried out. High-resolution transmission electron microscopy (HR-TEM) revealed the presence of local strain at high and low angle, and twin boundaries. The cause for these local strains was explained based on the interpretation of non-equilibrium grain boundary structures that result when conditions of compatibility are not satisfied. HR-TEM also revealed the presence of twin faults of the growth type, or "growth faults", which increased in density with the addition of Fe. This observation was found to be consistent with a corresponding increase in the growth fault probabilities determined quantitatively using X-ray diffraction (XRD) pattern analysis. Hardness and Young's modulus were measured by nanoindentation. Hardness followed the regular Hall-Petch behaviour down to a grain size of 20 nm after which an inverse trend was observed. Young's modulus was slightly reduced at grain sizes less than 20 nm and found to be affected by texture. Microstrain based on XRD line broadening was measured for these materials and found to increase primarily with a decrease in grain size or an increase in intercrystal defect density (i.e., grain boundaries and triple junctions). This microstrain is associated with the local strains observed at grain boundaries in the HR-TEM image analysis. A contribution to microstrain from the presence of growth faults in the nanocrystalline Ni-Fe alloys was also noted. The macrostresses for these materials were determined from strain measurements using a two-dimensional XRD technique. At grain sizes less than 20 nm, there was a sharp increase in compressive macrostresses which was also owed to the corresponding increase in

  8. Design and investigation of properties of nanocrystalline diamond optical planar waveguides.

    PubMed

    Prajzler, Vaclav; Varga, Marian; Nekvindova, Pavla; Remes, Zdenek; Kromka, Alexander

    2013-04-08

    Diamond thin films have remarkable properties comparable with natural diamond. Because of these properties it is a very promising material for many various applications (sensors, heat sink, optical mirrors, chemical and radiation wear, cold cathodes, tissue engineering, etc.) In this paper we report about design, deposition and measurement of properties of optical planar waveguides fabricated from nanocrystalline diamond thin films. The nanocrystalline diamond planar waveguide was deposited by microwave plasma enhanced chemical vapor deposition and the structure of the deposited film was studied by scanning electron microscopy and Raman spectroscopy. The design of the presented planar waveguides was realized on the bases of modified dispersion equation and was schemed for 632.8 nm, 964 nm, 1 310 nm and 1 550 nm wavelengths. Waveguiding properties were examined by prism coupling technique and it was found that the diamond based planar optical element guided one fundamental mode for all measured wavelengths. Values of the refractive indices of our NCD thin film measured at various wavelengths were almost the same as those of natural diamond.

  9. Dendrite-Free Nanocrystalline Zinc Electrodeposition from an Ionic Liquid Containing Nickel Triflate for Rechargeable Zn-Based Batteries.

    PubMed

    Liu, Zhen; Cui, Tong; Pulletikurthi, Giridhar; Lahiri, Abhishek; Carstens, Timo; Olschewski, Mark; Endres, Frank

    2016-02-18

    Metallic zinc is a promising anode material for rechargeable Zn-based batteries. However, the dendritic growth of zinc has prevented practical applications. Herein it is demonstrated that dendrite-free zinc deposits with a nanocrystalline structure can be obtained by using nickel triflate as an additive in a zinc triflate containing ionic liquid. The formation of a thin layer of Zn-Ni alloy (η- and γ-phases) on the surface and in the initial stages of deposition along with the formation of an interfacial layer on the electrode strongly affect the nucleation and growth of zinc. A well-defined and uniform nanocrystalline zinc deposit with particle sizes of about 25 nm was obtained in the presence of Ni(II) . Further, it is shown that the nanocrystalline Zn exhibits a high cycling stability even after 50 deposition/stripping cycles. This strategy of introducing an inorganic metal salt in ionic liquid electrolytes can be considered as an efficient way to obtain dendrite-free zinc. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Mesoporous nanocrystalline film architecture for capacitive storage devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Bruce S.; Tolbert, Sarah H.; Wang, John

    A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoesmore » a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).« less

  11. Ionic liquid-templated preparation of mesoporous silica embedded with nanocrystalline sulfated zirconia

    NASA Astrophysics Data System (ADS)

    Ward, Antony J.; Pujari, Ajit A.; Costanzo, Lorenzo; Masters, Anthony F.; Maschmeyer, Thomas

    2011-12-01

    A series of mesoporous silicas impregnated with nanocrystalline sulphated zirconia was prepared by a sol-gel process using an ionic liquid-templated route. The physicochemical properties of the mesoporous sulphated zirconia materials were studied using characterisation techniques such as inductively coupled optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray microanalysis, elemental analysis and X-ray photoelectron spectroscopy. Analysis of the new silicas indicates isomorphous substitution of silicon with zirconium and reveals the presence of extremely small (< 10 nm) polydispersed zirconia nanoparticles in the materials with zirconium loadings from 27.77 to 41.4 wt.%.

  12. Ionic liquid-templated preparation of mesoporous silica embedded with nanocrystalline sulfated zirconia

    PubMed Central

    2011-01-01

    A series of mesoporous silicas impregnated with nanocrystalline sulphated zirconia was prepared by a sol-gel process using an ionic liquid-templated route. The physicochemical properties of the mesoporous sulphated zirconia materials were studied using characterisation techniques such as inductively coupled optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray microanalysis, elemental analysis and X-ray photoelectron spectroscopy. Analysis of the new silicas indicates isomorphous substitution of silicon with zirconium and reveals the presence of extremely small (< 10 nm) polydispersed zirconia nanoparticles in the materials with zirconium loadings from 27.77 to 41.4 wt.%. PMID:21711725

  13. Nanocrystalline copper films are never flat

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaopu; Han, Jian; Plombon, John J.; Sutton, Adrian P.; Srolovitz, David J.; Boland, John J.

    2017-07-01

    We used scanning tunneling microscopy to study low-angle grain boundaries at the surface of nearly planar copper nanocrystalline (111) films. The presence of grain boundaries and their emergence at the film surface create valleys composed of dissociated edge dislocations and ridges where partial dislocations have recombined. Geometric analysis and simulations indicated that valleys and ridges were created by an out-of-plane grain rotation driven by reduction of grain boundary energy. These results suggest that in general, it is impossible to form flat two-dimensional nanocrystalline films of copper and other metals exhibiting small stacking fault energies and/or large elastic anisotropy, which induce a large anisotropy in the dislocation-line energy.

  14. Syntheses of nanocrystalline BaTiO3 and their optical properties

    NASA Astrophysics Data System (ADS)

    Yu, J.; Chu, J.; Zhang, M.

    Stoichiometric and titanium-excess nanocrystalline barium titanates were synthesized using a hydrothermal process at various hydrothermal temperatures and with further heat treatment at 500 °C and 900 °C. Owing to the different process conditions, the excess titanium exists in different states and configurations within the nanocrystalline BaTiO3 matrix; this was demonstrated by X-ray diffraction, Raman scattering, and photoluminescence. In these nanocrystalline BaTiO3, the 590, 571, 543 and 694 nm light emission bands were observed; mechanisms leading to such emissions were also discussed.

  15. Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline SiO{sub x} layers for application in solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klingsporn, M.; Costina, I.; Kirner, S.

    2016-06-14

    Nanocrystalline silicon suboxides (nc-SiO{sub x}) have attracted attention during the past years for the use in thin-film silicon solar cells. We investigated the relationships between the nanostructure as well as the chemical, electrical, and optical properties of phosphorous, doped, nc-SiO{sub 0.8}:H fabricated by plasma-enhanced chemical vapor deposition. The nanostructure was varied through the sample series by changing the deposition pressure from 533 to 1067 Pa. The samples were then characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, aberration-corrected high-resolution transmission electron microscopy, selected-area electron diffraction, and a specialized plasmon imaging method. We found that the material changed with increasing pressuremore » from predominantly amorphous silicon monoxide to silicon dioxide containing nanocrystalline silicon. The nanostructure changed from amorphous silicon filaments to nanocrystalline silicon filaments, which were found to cause anisotropic electron transport.« less

  16. Materials Testing and Quality Control Soils, 3-28. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This instructional package on material testing and quality control of soils has been adapted from military curriculum materials for use in technical and vocational education programs. This short course presents basic information on soils as well as exploration, field identification, and laboratory procedures that will enable students completing…

  17. Distinctive glial and neuronal interfacing on nanocrystalline diamond.

    PubMed

    Bendali, Amel; Agnès, Charles; Meffert, Simone; Forster, Valérie; Bongrain, Alexandre; Arnault, Jean-Charles; Sahel, José-Alain; Offenhäusser, Andreas; Bergonzo, Philippe; Picaud, Serge

    2014-01-01

    Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth.

  18. Distinctive Glial and Neuronal Interfacing on Nanocrystalline Diamond

    PubMed Central

    Bendali, Amel; Agnès, Charles; Meffert, Simone; Forster, Valérie; Bongrain, Alexandre; Arnault, Jean-Charles; Sahel, José-Alain; Offenhäusser, Andreas; Bergonzo, Philippe; Picaud, Serge

    2014-01-01

    Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth. PMID:24664111

  19. Low-Temperature Synthesis of Superconducting Nanocrystalline MgB 2

    DOE PAGES

    Lu, Jun; Xiao, Zhili; Lin, Qiyin; ...

    2010-01-01

    Magnesium diboride (MgB 2 ) is considered a promising material for practical application in superconducting devices, with a transition temperature near 40 K. In the present paper, nanocrystalline MgB 2 with an average particle size of approximately 70 nm is synthesized by reacting LiBH 4 with MgH 2 at temperatures as low as 450 ° C. This synthesis approach successfully bypasses the usage of either elemental boron or toxic diborane gas. The superconductivity of the nanostructures is confirmed by magnetization measurements, showing a superconducting critical temperature of 38.7 K.

  20. Nanocrystalline hydroxyapatite doped with selenium oxyanions: a new material for potential biomedical applications.

    PubMed

    Kolmas, Joanna; Oledzka, Ewa; Sobczak, Marcin; Nałęcz-Jawecki, Grzegorz

    2014-06-01

    Selenium-substituted hydroxyapatites containing selenate SeO4(2-) or selenite SeO3(2-) ions were synthesized using a wet precipitation method. The selenium content was determined by atomic absorbance spectrometry. The raw, unsintered powders were also characterized using powder X-ray diffraction, middle-range FT-IR spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopic microanalysis. The synthesized apatites were found to be pure and nanocrystalline with a crystal size similar to that in bone mineral. The incorporation of selenium oxyanions into the crystal lattice was confirmed. The toxicity of hydroxyapatites containing selenite or selenate ions was evaluated with a protozoan assay and bacterial luminescence test. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Biomimetic nanocrystalline apatites: Emerging perspectives in cancer diagnosis and treatment.

    PubMed

    Al-Kattan, Ahmed; Girod-Fullana, Sophie; Charvillat, Cédric; Ternet-Fontebasso, Hélène; Dufour, Pascal; Dexpert-Ghys, Jeannette; Santran, Véronique; Bordère, Julie; Pipy, Bernard; Bernad, José; Drouet, Christophe

    2012-02-14

    Nanocrystalline calcium phosphate apatites constitute the mineral part of hard tissues, and the synthesis of biomimetic analogs is now well-mastered at the lab-scale. Recent advances in the fine physico-chemical characterization of these phases enable one to envision original applications in the medical field along with a better understanding of the underlying chemistry and related pharmacological features. In this contribution, we specifically focused on applications of biomimetic apatites in the field of cancer diagnosis or treatment. We first report on the production and first biological evaluations (cytotoxicity, pro-inflammatory potential, internalization by ZR-75-1 breast cancer cells) of individualized luminescent nanoparticles based on Eu-doped apatites, eventually associated with folic acid, for medical imaging purposes. We then detail, in a first approach, the preparation of tridimensional constructs associating nanocrystalline apatite aqueous gels and drug-loaded pectin microspheres. Sustained releases of a fluorescein analog (erythrosin) used as model molecule were obtained over 7 days, in comparison with the ceramic or microsphere reference compounds. Such systems could constitute original bone-filling materials for in situ delivery of anticancer drugs. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Electrical conductivity studies of graphene wrapped nanocrystalline LiMnPO{sub 4} composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheruku, Rajesh; D, Surya Bhaskaram; Govindaraj, G., E-mail: ggraj-7@yahoo.com

    Nanocrystalline LiMnPO{sub 4} material was synthesized by template free sucrose assisted hydrothermal method. The material possesses the orthorhombic crystal structure with Pnma, space group having four formula units. The GO was prepared by the hummer’s method and it was reduced graphene oxide (rGO) with hydrazine hydrate in the presence of nitrogen atmosphere. LiMnPO{sub 4} material was wrapped by the rGO to increase its conductivity. The structural characterization was accomplished through X-ray diffraction, FT-IR and Raman spectroscopy. Morphology was identified by the SEM, Electrical characterization was done through impedance spectroscopy and the results were reported.

  3. Luminescence and related properties of nanocrystalline porous silicon

    NASA Astrophysics Data System (ADS)

    Koshida, N.

    This document is part of subvolume C3 'Optical Properties' of volume 34 'Semiconductor quantum structures' of Landolt-Börnstein, Group III, Condensed Matter, on the optical properties of quantum structures based on group IV semiconductors. It discusses luminescence and related properties of nanocrystalline porous silicon. Topics include an overview of nanostructured silicon, its fabrication technology, and properties of nanocrystalline porous silicon such as confinement effects, photoluminescence, electroluminesce, carrier charging effects, ballistic transport and emission, and thermally induced acoustic emission.

  4. The Natural Hospital Environment: a Socio-Technical-Material perspective.

    PubMed

    Fernando, Juanita; Dawson, Linda

    2014-02-01

    This paper introduces two concepts into analyses of information security and hospital-based information systems-- a Socio-Technical-Material theoretical framework and the Natural Hospital Environment. The research is grounded in a review of pertinent literature with previously published Australian (Victoria) case study data to analyse the way clinicians work with privacy and security in their work. The analysis was sorted into thematic categories, providing the basis for the Natural Hospital Environment and Socio-Technical-Material framework theories discussed here. Natural Hospital Environments feature inadequate yet pervasive computer use, aural privacy shortcomings, shared workspace, meagre budgets, complex regulation that hinders training outcomes and out-dated infrastructure and are highly interruptive. Working collaboratively in many cases, participants found ways to avoid or misuse security tools, such as passwords or screensavers for patient care. Workgroup infrastructure was old, architecturally limited, haphazard in some instances, and was less useful than paper handover sheets to ensure the quality of patient care outcomes. Despite valiant efforts by some participants, they were unable to control factors influencing the privacy of patient health information in public hospital settings. Future improvements to hospital-based organisational frameworks for e-health can only be made when there is an improved understanding of the Socio-Technical-Material theoretical framework and Natural Hospital Environment contexts. Aspects within control of clinicians and administrators can be addressed directly although some others are beyond their control. An understanding and acknowledgement of these issues will benefit the management and planning of improved and secure hospital settings. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Gigacycle fatigue behavior by ultrasonic nanocrystalline surface modification.

    PubMed

    Ahn, D G; Amanov, A; Cho, I S; Shin, K S; Pyoun, Y S; Lee, C S; Park, I G

    2012-07-01

    Nanocrystalline surface layer up to 84 microm in thick is produced on a specimen made of Al6061-T6 alloy by means of surface treatment called ultrasonic nanocrystalline surface modification (UNSM) technique. The refined grain size is produced in the top-layer and it is increased with increasing depth from the top surface. Vickers microhardness measurement for each nanocrystalline surface layer is performed and measurement results showed that the microhardness is increased from 116 HV up to 150 HV, respectively. In this study, fatigue behavior of Al6061-T6 alloy was studied up to 10(7)-10(9) cycles by using a newly developed ultrasonic fatigue testing (UFT) rig. The fatigue results of the UNSM-treated Al6061-T6 alloy specimens were compared with those of the untreated specimens. The microstructure of the untreated and UNSM-treated specimens was characterized by means of scanning electron microscopey (SEM) and transmission electron microscopey (TEM).

  6. Structural characterization, electrical conductivity and open circuit voltage studies of the nanocrystalline La10Si6O27 electrolyte material for SOFCs

    NASA Astrophysics Data System (ADS)

    Jena, Paramananda; Jayasubramaniyan, S.; Patro, P. K.; Lenka, R. K.; Sinha, Amit; Muralidharan, P.; Srinadhu, E. S.; Satyanarayana, N.

    2018-02-01

    Nanocrystalline La10Si6O27 apatite-type sample was synthesized by the co-precipitation method. Thermal behavior, phase, structure, morphology and elemental composition of La, O and Si of the synthesized La10Si6O27 sample were investigated through TG/DTA, XRD, FTIR, Raman spectroscopy and SEM-EDX measurements respectively. Formation of phase purity of the nanocrystalline La10Si6O27 sample was confirmed by analysing the measured X-ray powder diffraction (XRD) pattern using Rietveld refinement and the calculated average crystallite size of the La10Si6O27 sample was found to be 33 nm. The electrical conductivity of the sintered La10Si6O27 pellet was investigated as a function of temperature ranging from 200 to 800 °C under air and it was found to be 1.92 × 10-3 S cm-1 at 800 °C. The chemical stability of La10Si6O27 powder under oxidizing and reducing atmospheres was confirmed from the analysis of the measured XRD pattern and Raman spectral results. Open circuit potential of a button cell, made up of the La10Si6O27 sample, was tested up to 800 °C with both oxygen and hydrogen at opposite sides of the cell and was found to 1 V. Hence, the results demonstrate that La10Si6O27 could be a promising solid electrolyte material for the solid oxide fuel cell (SOFC) applications.

  7. Synthesis of Mesoporous Nanocrystalline Zirconia by Surfactant-Assisted Hydrothermal Approach.

    PubMed

    Nath, Soumav; Biswas, Ashik; Kour, Prachi P; Sarma, Loka S; Sur, Ujjal Kumar; Ankamwar, Balaprasad G

    2018-08-01

    In this paper, we have reported the chemical synthesis of thermally stable mesoporous nanocrystalline zirconia with high surface area using a surfactant-assisted hydrothermal approach. We have employed different type of surfactants such as CTAB, SDS and Triton X-100 in our synthesis. The synthesized nanocrystalline zirconia multistructures exhibit various morphologies such as rod, mortar-pestle with different particle sizes. We have characterized the zirconia multistructures by X-ray diffraction study, Field emission scanning electron microscopy, Attenuated total refection infrared spectroscopy, UV-Vis spectroscopy and photoluminescence spectroscopy. The thermal stability of as synthesized zirconia multistructures was studied by thermo gravimetric analysis, which shows the high thermal stability of nanocrystalline zirconia around 900 °C temperature.

  8. Covalent attachment and growth of nanocrystalline films of photocatalytic TiOF2

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lv, Fujian; Xiao, Shengxiong; Bian, Zhenfeng; Buntkowsky, Gerd; Nuckolls, Colin; Li, Hexing

    2014-11-01

    This manuscript describes a synthesis of nanocrystalline TiOF2 film. The nanocrystalline TiOF2 becomes chemically attached to the surface of the glass slide. These films are robust and can be recycled as photocatalysts for the degradation of organic dyes and solvents. These films also have significant antibacterial properties upon irradiation.This manuscript describes a synthesis of nanocrystalline TiOF2 film. The nanocrystalline TiOF2 becomes chemically attached to the surface of the glass slide. These films are robust and can be recycled as photocatalysts for the degradation of organic dyes and solvents. These films also have significant antibacterial properties upon irradiation. Electronic supplementary information (ESI) available: Methods for sample preparation, characterization and Fig. S1-S8. See DOI: 10.1039/c4nr05598e

  9. Relationship of microstructure properties to oxygen impurities in nanocrystalline silicon photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Xu, H.; Wen, C.; Liu, H.; Li, Z. P.; Shen, W. Z.

    2013-03-01

    We have fully investigated the correlation of microstructure properties and oxygen impurities in hydrogenated nanocrystalline silicon photovoltaic films. The achievement has been realized through a series of different hydrogen dilution ratio treatment by plasma enhanced chemical vapor deposition system. Raman scattering, x-ray diffraction, and ultraviolet-visible transmission techniques have been employed to characterize the physical structural characterization and to elucidate the structure evolution. The bonding configuration of the oxygen impurities was investigated by x-ray photoelectron spectroscopy and the Si-O stretching mode of infrared-transmission, indicating that the films were well oxidized in SiO2 form. Based on the consistence between the proposed structure factor and the oxygen content, we have demonstrated that there are two dominant disordered structure regions closely related to the post-oxidation contamination: plate-like configuration and clustered microvoids.

  10. Electrical impedance spectroscopy of neutron-irradiated nanocrystalline silicon carbide (3C-SiC)

    NASA Astrophysics Data System (ADS)

    Huseynov, Elchin M.

    2018-01-01

    It the present work, impedance spectra of nanocrystalline 3C-SiC particles have been comparatively analyzed before and after neutron irradiation. Resonance states and shifts were observed at the impedance spectra of nanocrystalline 3C-SiC particles after neutron irradiation. Relaxation time has been calculated from interdependence of real and imaginary parts of impedance of nanocrystalline 3C-SiC particles. Calculated relaxation times have been investigated as a function of neutron irradiation period. Neutron transmutation (31P isotopes production) effects on the impedance spectra and relaxation times have been studied. Moreover, influence of agglomeration and amorphous transformation to the impedance spectra and relaxation times of nanocrystalline 3C-SiC particles have been investigated.

  11. Silver film on nanocrystalline TiO{sub 2} support: Photocatalytic and antimicrobial ability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukoje, Ivana D., E-mail: ivanav@vinca.rs; Tomašević-Ilić, Tijana D., E-mail: tommashev@gmail.com; Zarubica, Aleksandra R., E-mail: zarubica2000@yahoo.com

    Highlights: • Simple photocatalytic rout for deposition of Ag on nanocrystalline TiO{sub 2} films. • High antibactericidal efficiency of deposited Ag on TiO{sub 2} support. • Improved photocatalytic performance of TiO{sub 2} films in the presence of deposited Ag. - Abstract: Nanocrystalline TiO{sub 2} films were prepared on glass slides by the dip coating technique using colloidal solutions consisting of 4.5 nm particles as a precursor. Photoirradiation of nanocrystalline TiO{sub 2} film modified with alanine that covalently binds to the surface of TiO{sub 2} and at the same time chelate silver ions induced formation of metallic silver film. Optical andmore » morphological properties of thin silver films on nanocrystalline TiO{sub 2} support were studied by absorption spectroscopy and atomic force microscopy. Improvement of photocatalytic performance of nanocrystalline TiO{sub 2} films after deposition of silver was observed in degradation reaction of crystal violet. Antimicrobial ability of deposited silver films on nanocrystalline TiO{sub 2} support was tested in dark as a function of time against Escherichia coli, Staphylococcus aureus, and Candida albicans. The silver films ensured maximum cells reduction of both bacteria, while the fungi reduction reached satisfactory 98.45% after 24 h of contact.« less

  12. Mechanically induced self-propagating reaction and consequent consolidation for the production of fully dense nanocrystalline Ti{sub 55}C{sub 45} bulk material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherif El-Eskandarany, M., E-mail: msherif@kisr.edu.kw; Al-Hazza, Abdulsalam

    2014-11-15

    We employed a high-energy ball mill for the synthesis of nanograined Ti{sub 55}C{sub 45} powders starting from elemental Ti and C powders. The mechanically induced self-propagating reaction that occurred between the reactant materials was monitored via a gas atmosphere gas-temperature-monitoring system. A single phase of NaCl-type TiC was obtained after 5 h of ball milling. To decrease the powder and grain sizes, the material was subjected to further ball milling time. The powders obtained after 200 h of milling possessed spherical-like morphology with average particle and grain sizes of 45 μm and 4.2 nm, respectively. The end-products obtained after 200more » h of ball milling time, were then consolidated into full dense compacts, using hot pressing and spark plasma sintering at 1500 and 34.5 MPa, with heating rates of 20 °C/min and 500 °C/min, respectively. Whereas hot pressing of the powders led to severe grain growth (∼ 436 nm in diameter), the as-spark plasma sintered powders maintained their nanograined characteristics (∼ 28 nm in diameter). The as-synthesized and as-consolidated powders were characterized, using X-ray diffraction, high-resolution electron microscopy, and scanning electron microscopy. The mechanical properties of the consolidated samples obtained via the hot pressing and spark plasma sintering techniques were characterized, using Vickers microhardness and non-destructive testing techniques. The Vickers hardness, Young's modulus, shear modulus and fracture toughness of as-spark plasma sintered samples were 32 GPa, 358 GPa, 151 GPa and 6.4 MPa·m{sup 1/2}, respectively. The effects of the consolidation approach on the grain size and mechanical properties were investigated and are discussed. - Highlights: • Room-temperature synthesizing of NaCl-type TiC • Dependence on the grain size on the ball milling time • Fabrication of equiaxed nanocrystalline grains with a diameter of 4.2 nm • Fabrication of nanocrystalline bulk Ti

  13. Thermoluminescent properties of nanocrystalline ZnTe thin films: Structural and morphological studies

    NASA Astrophysics Data System (ADS)

    Rajpal, Shashikant; Kumar, S. R.

    2018-04-01

    Zinc Telluride (ZnTe) is a binary II-VI direct band gap semiconducting material with cubic structure and having potential applications in different opto-electronic devices. Here we investigated the effects of annealing on the thermoluminescence (TL) of ZnTe thin films. A nanocrystalline ZnTe thin film was successfully electrodeposited on nickel substrate and the effect of annealing on structural, morphological, and optical properties were studied. The TL emission spectrum of as deposited sample is weakly emissive in UV region at ∼328 nm. The variation in the annealing temperature results into sharp increase in emission intensity at ∼328 nm along with appearance of a new peak at ∼437 nm in visible region. Thus, the deposited nanocrystalline ZnTe thin films exhibited excellent thermoluminescent properties upon annealing. Furthermore, the influence of annealing (annealed at 400 °C) on the solid state of ZnTe were also studied by XRD, SEM, EDS, AFM. It is observed that ZnTe thin film annealed at 400 °C after deposition provide a smooth and flat texture suited for optoelectronic applications.

  14. The Role of Grain Size on Neutron Irradiation Response of Nanocrystalline Copper

    PubMed Central

    Mohamed, Walid; Miller, Brandon; Porter, Douglas; Murty, Korukonda

    2016-01-01

    The role of grain size on the developed microstructure and mechanical properties of neutron irradiated nanocrystalline copper was investigated by comparing the radiation response of material to the conventional micrograined counterpart. Nanocrystalline (nc) and micrograined (MG) copper samples were subjected to a range of neutron exposure levels from 0.0034 to 2 dpa. At all damage levels, the response of MG-copper was governed by radiation hardening manifested by an increase in strength with accompanying ductility loss. Conversely, the response of nc-copper to neutron irradiation exhibited a dependence on the damage level. At low damage levels, grain growth was the primary response, with radiation hardening and embrittlement becoming the dominant responses with increasing damage levels. Annealing experiments revealed that grain growth in nc-copper is composed of both thermally-activated and irradiation-induced components. Tensile tests revealed minimal change in the source hardening component of the yield stress in MG-copper, while the source hardening component was found to decrease with increasing radiation exposure in nc-copper. PMID:28773270

  15. Amorphization of nanocrystalline monoclinic ZrO2 by swift heavy ion irradiation.

    PubMed

    Lu, Fengyuan; Wang, Jianwei; Lang, Maik; Toulemonde, Marcel; Namavar, Fereydoon; Trautmann, Christina; Zhang, Jiaming; Ewing, Rodney C; Lian, Jie

    2012-09-21

    Bulk ZrO(2) polymorphs generally have an extremely high amorphization tolerance upon low energy ion and swift heavy ion irradiation in which ballistic interaction and ionization radiation dominate the ion-solid interaction, respectively. However, under very high-energy irradiation by 1.33 GeV U-238, nanocrystalline (40-50 nm) monoclinic ZrO(2) can be amorphized. A computational simulation based on a thermal spike model reveals that the strong ionizing radiation from swift heavy ions with a very high electronic energy loss of 52.2 keV nm(-1) can induce transient zones with temperatures well above the ZrO(2) melting point. The extreme electronic energy loss, coupled with the high energy state of the nanostructured materials and a high thermal confinement due to the less effective heat transport within the transient hot zone, may eventually be responsible for the ionizing radiation-induced amorphization without transforming to the tetragonal polymorph. The amorphization of nanocrystalline zirconia was also confirmed by 1.69 GeV Au ion irradiation with the electronic energy loss of 40 keV nm(-1). These results suggest that highly radiation tolerant materials in bulk forms, such as ZrO(2), may be radiation sensitive with the reduced length scale down to the nano-metered regime upon irradiation above a threshold value of electronic energy loss.

  16. Synthesis of nanocrystalline ZnO thin films by electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Kondkar, V.; Rukade, D.; Bhattacharyya, V.

    2018-05-01

    Nanocrystalline ZnO thin films have potential for applications in variety of optoelectronic devices. In the present study, nanocrystalline thin films of ZnO are grown on fused silica substrate using electron beam (e-beam) evaporation technique. Phase identification is carried out using Glancing angle X-ray diffraction (GAXRD) and Raman spectroscopy. Ultraviolet-Visible (UV-Vis) spectroscopic analysis is carried out to calculate energy band gap of the ZnO film. Surface morphology of the film is investigated using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). Highly quality nanocrystalline thin films of hexagonal wurtzite ZnO are synthesized using e-beam evaporation technique.

  17. Deposition and characterization of ZnSe nanocrystalline thin films

    NASA Astrophysics Data System (ADS)

    Temel, Sinan; Gökmen, F. Özge; Yaman, Elif; Nebi, Murat

    2018-02-01

    ZnSe nanocrystalline thin films were deposited at different deposition times by using the Chemical Bath Deposition (CBD) technique. Effects of deposition time on structural, morphological and optical properties of the obtained thin films were characterized. X-ray diffraction (XRD) analysis was used to study the structural properties of ZnSe nanocrystalline thin films. It was found that ZnSe thin films have a cubic structure with a preferentially orientation of (111). The calculated average grain size value was about 28-30 nm. The surface morphology of these films was studied by the Field Emission Scanning Electron Microscope (FESEM). The surfaces of the thin films were occurred from small stacks and nano-sized particles. The band gap values of the ZnSe nanocrystalline thin films were determined by UV-Visible absorption spectrum and the band gap values were found to be between 2.65-2.86 eV.

  18. Diffraction Studies of the Atomic Vibrations of Bulk and Surface Atoms in the Reciprocal and Real Spaces of Nanocrystalline SiC

    NASA Technical Reports Server (NTRS)

    Stelmakh, S.; Grzanka, E.; Weber, H.-P.; Vogel, S.; Palosz, B.; Palosz, B.

    2004-01-01

    To describe and evaluate the vibrational properties of nanoparticles it is necessary to distinguish between the surface and the core of the particles. Theoretical calculations show that vibrational density of states of the inner atoms of nanograins is similar to bulk material but shifted to higher energies which can be explained by the fact that the gain core is stressed (hardened) due to the presence of internal pressure. Theoretical calculations also show that there is a difference between vibrational properties of a crystal lattice of the grain interior in isolated particles and in a dense (sintered) nanocrystalline material. This is probably due to a coupling of the modes inside the grains via the grain boundaries in dense nanocrystalline bodies. We examined strains present in the surface shell based on examination of diamond and Sic nanocrystals in reciprocal (Bragg-type scattering) and real (PDF analysis) space analysis of neutron diffraction data. Recently we examined the atomic thermal motions in nanocrystalline Sic based on the assumption of a simple Einstein model for uncorrelated atomic notions. According to this model, the Bragg intensity is attenuated as a function of scattering angle by the Debye-Waller factor. Based on this assumption overall temperature factors were determined from the Wilson plots.

  19. Synthesis of nanocrystalline Ni/Ce-YSZ powder via a polymerization route

    NASA Astrophysics Data System (ADS)

    Abolghasemi, Z.; Tamizifar, M.; Arzani, K.; Nemati, A.; Khanfekr, A.; Bolandi, M.

    2013-08-01

    Pechini process was used for preparation of three kinds of nanocrystalline powders of yttria-stabilized zirconia (YSZ): doped with 1.5 mol% nickel oxide, doped with 15 mol% ceria, and doped with 1.5 mol% nickel oxide plus 15 mol% ceria. Zirconium chloride, yttrium nitrate, cerium nitrate, nickel nitrate, citric acid and ethylene glycol were polymerized at 80 °C to produce a gel. XRD, SEM and TEM analyses were used to investigate the crystalline phases and microstructures of obtained compounds. The results of XRD revealed the formation of nanocrystalline powder at 900 °C. Morphology of the powder calcined at 900 °C, examined with a scanning electron microscope, showed that the presence of nickel and cerium inhibited the grain growth in the system. The average crystallite size of the material doped with nickel oxide (9.33 nm) was bigger than the one doped with cerium oxide (9.29 nm), while the YSZ doping with the two oxides simultaneously promoted the grain growth with crystallite size of 11.37 nm. Yttria-stabilized zirconia powder with a mean crystallite size of 9.997 nm was prepared successfully by this method.

  20. Molecular level energy and electron transfer processes at nanocrystalline titanium dioxide interfaces

    NASA Astrophysics Data System (ADS)

    Farzad, Fereshteh

    This thesis describes photo-induced molecular electron and energy transfer processes occurring at nanocrystalline semiconductor interfaces. The Introductory Chapter provides background and describes how these materials may be useful for solar energy conversion. In Chapter 2, results describing excitation of Ru(deeb)(bpy)2 2+, bis(2,2'-bipyridine)(2,2'-bipyridine-4,4 '-diethylester)ruthenium(II) hexafluorophosphate, bound to nanocrystalline TiO2 thin films, immersed in an acetonitrile bath are presented. The data indicates that light excitation forms predominately long-lived metal-to-ligand charge-transfer, MLCT, excited states under these conditions. Modeling of the data as a function of irradiance has been accomplished assuming parallel unimolecular and bimolecular excited state deactivation processes. The quantum yield for excited state formation depends on the excitation irradiance, consistent with triplet-triplet annihilation processes that occur with k > 1 x 108 s-1. Chapter 3 extends the work described in Chapter 2 to LiClO4 acetonitrile solutions. Li+ addition results in a red shift in the MLCT absorption and photoluminescence, PL, and a concentration dependent quenching of the PL intensity on TiO2. The Li+ induced spectroscopic changes were found to be reversible by varying the electrolyte composition. A second-order kinetic model quantified charge recombination transients. A model is proposed wherein Li+ ion adsorption stabilizes TiO2 acceptor states resulting in energetically more favorable interfacial electron transfer. The photophysical and photoelectrochemical properties of porous nanocrystalline anatase TiO2 electrodes modified with Ru(deeb)(bpy)2 2+, Os(deeb)(bpy)22+, and mixtures of both are described in Chapters 4 and 5. In regenerative solar cells with 0.5 M LiI/0.05 M I2 acetonitrile electrolyte, both compounds efficiently inject electrons into TiO2 producing monochromatic incident photon-to-current efficiencies (IPCE), IPCE (460 nm) = 0.70 + 0

  1. Growth characteristics of nanocrystalline silicon films fabricated by using chlorinated precursors at low temperatures.

    PubMed

    Huang, Rui; Ding, Honglin; Song, Jie; Guo, Yanqing; Wang, Xiang; Lin, Xuanying

    2010-11-01

    We employed plasma enhanced chemical vapor deposition technique to fabricate nanocrystalline Si films at a low temperature of 250 degrees C by using SiCl4 and H2 as source gases. The evolution of microstructure of the films with deposition periods shows that nanocrystalline Si can be directly grown on amorphous substrate at the initial growth process, which is in contrast to the growth behavior observed in the SiH4/H2 system. Furthermore, it is interesting to find that the area density of nanocrystalline Si as well as grain size can be controlled by modulating the concentration of SiCl4. By decreasing the SiCl4 concentration, the area density of nanocrystalline Si can be enhanced up to 10(11) cm(-2), while the grain size is shown to decrease down to 10 nm. It is suggested that Cl plays an important role in the low-temperature growth of nanocrystalline Si.

  2. Template-assisted formation of microsized nanocrystalline CeO2 tubes and their catalytic performance in the carboxylation of methanol

    PubMed Central

    Naumann, Meike; Schäfer, Christian; Brandner, Armin; Hofmann, Heiko J; Claus, Peter

    2011-01-01

    Summary Polymethylmethacrylate (PMMA)/ceria composite fibres were synthesized by using a sequential combination of polymer electrospinning, spray-coating with a sol, and a final calcination step to yield microstructured ceria tubes, which are composed of nanocrystalline ceria particles. The PMMA template is removed from the organic/inorganic hybrid material by radio frequency (rf) plasma etching followed by calcination of the ceramic green-body fibres. Microsized ceria (CeO2) tubes, with a diameter of ca. 0.75 µm, composed of nanocrystalline agglomerated ceria particles were thus obtained. The 1-D ceramic ceria material was characterized by X-ray diffraction, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV–vis and photoluminescence spectroscopy (PL), as well as thermogravimetric analysis (TGA). Its catalytic performance was studied in the direct carboxylation of methanol with carbon dioxide leading to dimethyl carbonate [(CH3O)2CO, DMC], which is widely employed as a phosgene and dimethyl sulfate substitute, and as well as a fuel additive. PMID:22259761

  3. Preparation of high-quality ultrathin transmission electron microscopy specimens of a nanocrystalline metallic powder.

    PubMed

    Riedl, Thomas; Gemming, Thomas; Mickel, Christine; Eymann, Konrad; Kirchner, Alexander; Kieback, Bernd

    2012-06-01

    This article explores the achievable transmission electron microscopy specimen thickness and quality by using three different preparation methods in the case of a high-strength nanocrystalline Cu-Nb powder alloy. Low specimen thickness is essential for spatially resolved analyses of the grains in nanocrystalline materials. We have found that single-sided as well as double-sided low-angle Ar ion milling of the Cu-Nb powders embedded into epoxy resin produced wedge-shaped particles of very low thickness (<10 nm) near the edge. By means of a modified focused ion beam lift-out technique generating holes in the lamella interior large micrometer-sized electron-transparent regions were obtained. However, this lamella displayed a higher thickness at the rim of ≥30 nm. Limiting factors for the observed thicknesses are discussed including ion damage depths, backscattering, and surface roughness, which depend on ion type, energy, current density, and specimen motion. Finally, sections cut by ultramicrotomy at low stroke rate and low set thickness offered vast, several tens of square micrometers uniformly thin regions of ∼10-nm minimum thickness. As major drawbacks, we have detected a thin coating on the sections consisting of epoxy deployed as the embedding material and considerable nanoscale thickness variations. Copyright © 2011 Wiley Periodicals, Inc.

  4. Nanocrystalline copper films are never flat.

    PubMed

    Zhang, Xiaopu; Han, Jian; Plombon, John J; Sutton, Adrian P; Srolovitz, David J; Boland, John J

    2017-07-28

    We used scanning tunneling microscopy to study low-angle grain boundaries at the surface of nearly planar copper nanocrystalline (111) films. The presence of grain boundaries and their emergence at the film surface create valleys composed of dissociated edge dislocations and ridges where partial dislocations have recombined. Geometric analysis and simulations indicated that valleys and ridges were created by an out-of-plane grain rotation driven by reduction of grain boundary energy. These results suggest that in general, it is impossible to form flat two-dimensional nanocrystalline films of copper and other metals exhibiting small stacking fault energies and/or large elastic anisotropy, which induce a large anisotropy in the dislocation-line energy. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Nanocrystalline zirconia: a novel sorbent for the preparation of (188)W/(188)Re generator.

    PubMed

    Chakravarty, Rubel; Shukla, Rakesh; Tyagi, A K; Dash, Ashutosh; Venkatesh, Meera

    2010-02-01

    Nanocrystalline zirconia, a novel high capacity sorbent material was synthesized and tested for its utility in the preparation of (188)W/(188)Re generators. The structural investigation of the material was carried out using X-ray diffraction, surface area determination, FTIR and TEM micrograph analysis. Various experimental parameters were optimized to separate (188)Re from (188)W. The capacity of the material was found to be approximately 325mgW/g at the optimum pH. A chromatographic (188)W/(188)Re generator was developed using this material from which >80% of (188)Re generated could be eluted with 0.9% saline solution, with high radionuclidic, radiochemical and chemical purity and appreciably high radioactive concentration suitable for radiopharmaceutical applications. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  6. Synthesis of Nanocrystalline CaWO4 as Low-Temperature Co-fired Ceramic Material: Processing, Structural and Physical Properties

    NASA Astrophysics Data System (ADS)

    Vidya, S.; Solomon, Sam; Thomas, J. K.

    2013-01-01

    Nanocrystalline scheelite CaWO4, a promising material for low-temperature co-fired ceramic (LTCC) applications, has been successfully synthesized through a single-step autoignition combustion route. Structural analysis of the sample was performed by powder x-ray diffraction (XRD), Fourier-transform infrared spectroscopy, and Raman spectroscopy. The XRD analysis revealed that the as-prepared sample was single phase with scheelite tetragonal structure. The basic optical properties and optical constants of the CaWO4 nanopowder were studied using ultraviolet (UV)-visible absorption spectroscopy, which showed that the material was a wide-bandgap semiconductor with bandgap of 4.7 eV at room temperature. The sample showed poor transmittance in the ultraviolet region but maximum transmission in the visible/near-infrared regions. The photoluminescence spectra recorded at different temperatures showed intense emission in the green region. The particle size estimated from transmission electron microscopy was 23 nm. The feasibility of CaWO4 for LTCC applications was studied from its sintering behavior. The sample was sintered at a relatively low temperature of 810°C to high density, without using any sintering aid. The surface morphology of the sintered sample was analyzed by scanning electron microscopy. The dielectric constant and loss factor of the sample measured at 5 MHz were found to be 10.50 and 1.56 × 10-3 at room temperature. The temperature coefficient of the dielectric constant was -88.71 ppm/°C. The experimental results obtained in this work demonstrate the potential of nano-CaWO4 as a low-temperature co-fired ceramic as well as an excellent luminescent material.

  7. Significance of size dependent and material structure coupling on the characteristics and performance of nanocrystalline micro/nano gyroscopes

    NASA Astrophysics Data System (ADS)

    Larkin, K.; Ghommem, M.; Abdelkefi, A.

    2018-05-01

    Capacitive-based sensing microelectromechanical (MEMS) and nanoelectromechanical (NEMS) gyroscopes have significant advantages over conventional gyroscopes, such as low power consumption, batch fabrication, and possible integration with electronic circuits. However, inadequacies in the modeling of these inertial sensors have presented issues of reliability and functionality of micro-/nano-scale gyroscopes. In this work, a micromechanical model is developed to represent the unique microstructure of nanocrystalline materials and simulate the response of micro-/nano-gyroscope comprising an electrostatically-actuated cantilever beam with a tip mass at the free end. Couple stress and surface elasticity theories are integrated into the classical Euler-Bernoulli beam model in order to derive a size-dependent model. This model is then used to investigate the influence of size-dependent effects on the static pull-in instability, the natural frequencies and the performance output of gyroscopes as the scale decreases from micro-to nano-scale. The simulation results show significant changes in the static pull-in voltage and the natural frequency as the scale of the system is decreased. However, the differential frequency between the two vibration modes of the gyroscope is observed to drastically decrease as the size of the gyroscope is reduced. As such, the frequency-based operation mode may not be an efficient strategy for nano-gyroscopes. The results show that a strong coupling between the surface elasticity and material structure takes place when smaller grain sizes and higher void percentages are considered.

  8. Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative

    DTIC Science & Technology

    2014-11-01

    1 ASETSDefense 2014 Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative Ruben A. Prado, CEF...COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative...coatings as a Hard Chrome (EHC) electroplating alternative for DoD manufacturing and repair. – Fully define deposition parameters and properties

  9. Characterization of nanocrystalline ZnO:Al films by sol-gel spin coating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gareso, P. L., E-mail: pgareso@gmail.com; Rauf, N., E-mail: pgareso@gmail.com; Juarlin, E., E-mail: pgareso@gmail.com

    2014-09-25

    Nanocrystalline ZnO films doped with aluminium by sol-gel spin coating method have been investigated using optical transmittance UV-Vis and X-ray diffraction (X-RD) measurements. ZnO films were prepared using zinc acetate dehydrate (Zn(CH{sub 3}COO){sub 2}@@‡2H{sub 2}O), ethanol, and diethanolamine (DEA) as a starting material, solvent, and stabilizer, respectively. For doped films, AlCl{sub 3} was added to the mixture. The ZnO:Al films were deposited on a transparent conductive oxide (TCO) substrate using spin coating technique at room temperature with a rate of 3000 rpm in 30 sec. The deposited films were annealed at various temperatures from 400°C to 600°C during 60 minutes.more » The transmittance UV-Vis measurement results showed that after annealing at 400°C, the energy band gap profile of nanocrystalline ZnO:Al film was a blue shift. This indicated that the band gap of ZnO:Al increased after annealing due to the increase of crystalline size. As the annealing temperature increased the bandgap energy was a constant. In addition to this, there was a small oscillation occurring after annealing compared to the as–grown samples. In the case of X-RD measurements, the crystalinity of the films were amorphous before annealing, and after annealing the crystalinity became enhance. Also, X-RD results showed that structure of nanocrystalline ZnO:Al films were hexagonal polycrystalline with lattice parameters are a = 3.290 Å and c = 5.2531 Å.« less

  10. Energy Materials Coordinating Committee (EMaCC). Annual technical report, Fiscal Year 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2002-08-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations.

  11. Host-Sensitized and Tunable Luminescence of GdNbO4:Ln3+ (Ln3+ = Eu3+/Tb3+/Tm3+) Nanocrystalline Phosphors with Abundant Color.

    PubMed

    Liu, Xiaoming; Chen, Chen; Li, Shuailong; Dai, Yuhua; Guo, Huiqin; Tang, Xinghua; Xie, Yu; Yan, Liushui

    2016-10-17

    Up to now, GdNbO 4 has always been regarded as an essentially inert material in the visible region with excitation of UV light and electron beams. Nevertheless, here we demonstrate a new recreating blue emission of GdNbO 4 nanocrystalline phosphors with a quantum efficiency of 41.6% and host sensitized luminescence in GdNbO 4 :Ln 3+ (Ln 3+ = Eu 3+ /Tb 3+ /Tm 3+ ) nanocrystalline phosphors with abundant color in response to UV light and electron beams. The GdNbO 4 and GdNbO 4 :Ln 3+ (Ln 3+ = Eu 3+ /Tb 3+ /Tm 3+ ) nanocrystalline phosphors were synthesized by a Pechini-type sol-gel process. With excitation of UV light and low-voltage electron beams, the obtained GdNbO 4 nanocrystalline phosphor presents a strong blue luminescence from 280 to 650 nm centered around 440 nm, and the GdNbO 4 :Ln 3+ nanocrystalline phosphors show both host emission and respective emission lines derived from the characterize f-f transitions of the doping Eu 3+ , Tb 3+ , and Tm 3+ ions. The luminescence color of GdNbO 4 :Ln 3+ nanocrystalline phosphors can be tuned from blue to green, red, blue-green, orange, pinkish, white, etc. by varying the doping species, concentration, and relative ratio of the codoping rare earth ions in GdNbO 4 host lattice. A single-phase white-light-emission has been realized in Eu 3+ /Tb 3+ /Tm 3+ triply doped GdNbO 4 nanocrystalline phosphors. The luminescence properties and mechanisms of GdNbO 4 and GdNbO 4 :Ln 3+ (Ln 3+ = Eu 3+ /Tb 3+ /Tm 3+ ) are updated.

  12. [Effect of temperature on the structure of CaO-MgO-Al2O3-SiO2 nanocrystalline glass-ceramics studied by Raman spectroscopy].

    PubMed

    Li, Bao-Wei; Ouyang, Shun-Li; Zhang, Xue-Feng; Jia, Xiao-Lin; Deng, Lei-Bo; Liu, Fang

    2014-07-01

    In the present paper, nanocrystalline glass-ceramic of CaO-MgO-Al2O3-SiO2 system was produced by melting method. The CaO-MgO-Al2O3-SiO2 nanocrystalline glass-ceramic was measured by Raman spectroscopy in the temperature range from -190 to 310 degrees C in order to study the effect of temperature on the structure of this system nanocrystalline glass-ceramics. The results showed that different non-bridge oxygen bond silicon-oxygen tetrahedron structural unit changes are not consistent with rising temperature. Further analyses indicated that: the SiO4 tetrahedron with 2 non-bridged oxygen (Q2), the SiO4 tetrahedron with 3 non-bridged oxygen (Q(1)), which are situated at the edge of the 3-D SiO4 tetrahedrons network, and the SiO4 tetrahedron with 4 non-bridged oxygen (Q(0)), which is situated outside the 3-D network all suffered a significant influence by the temperature change, which has been expressed as: shifts towards the high wave-number, increased bond force constants, and shortened bond lengths. This paper studied the influence of temperature on CMAS system nanocrystalline glass-ceramics using variable temperature Raman technology. It provides experiment basis to the research on external environment influence on CMAS system nanocrystalline glass-ceramics materials in terms of structure and performance. In addition, the research provides experimental basis for controlling the expansion coefficient of nanocrystalline glass-ceramic of CaO-MgO-Al2O3-SiO2 system.

  13. Multifunctionality of nanocrystalline lanthanum ferrite

    NASA Astrophysics Data System (ADS)

    Rai, Atma; Thakur, Awalendra K.

    2016-05-01

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ˜42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ˜3.45 m2/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanum ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO3.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.

  14. Multifunctionality of nanocrystalline lanthanum ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Atma, E-mail: atma@iitp.ac.in; Thakur, Awalendra K.; Centre for Energy and Environment, Indian Institute of Technology Patna 800013 India

    2016-05-06

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ∼42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ∼3.45 m{sup 2}/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanummore » ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO{sub 3}.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.« less

  15. Carrier mobility enhancement of nano-crystalline semiconductor films: Incorporation of redox -relay species into the grain boundary interface

    NASA Astrophysics Data System (ADS)

    Desilva, L. A.; Bandara, T. M. W. J.; Hettiarachchi, B. H.; Kumara, G. R. A.; Perera, A. G. U.; Rajapaksa, R. M. G.; Tennakone, K.

    Dye-sensitized and perovskite solar cells and other nanostructured heterojunction electronic devices require securing intimate electronic contact between nanostructured surfaces. Generally, the strategy is solution phase coating of a hole -collector over a nano-crystalline high-band gap n-type oxide semiconductor film painted with a thin layer of the light harvesting material. The nano-crystallites of the hole - collector fills the pores of the painted oxide surface. Most ills of these devices are associated with imperfect contact and high resistance of the hole conducting layer constituted of nano-crystallites. Denaturing of the delicate light harvesting material forbid sintering at elevated temperatures to reduce the grain boundary resistance. It is found that the interfacial and grain boundary resistance can be significantly reduced via incorporation of redox species into the interfaces to form ultra-thin layers. Suitable redox moieties, preferably bonded to the surface, act as electron transfer relays greatly reducing the film resistance offerring a promising method of enhancing the effective hole mobility of nano-crystalline hole-collectors and developing hole conductor paints for application in nanostructured devices.

  16. Effect of ultrasonic treatment and temperature on nanocrystalline TiO 2

    NASA Astrophysics Data System (ADS)

    Kim, D. H.; Ryu, H. W.; Moon, J. H.; Kim, J.

    Nanocrystalline TiO 2 particles were precipitated from the ethanol solution of titanium isopropoxide (Ti(O- iPr) 4) and H 2O 2 by refluxing at 80 °C for 48 h. The obtained particles were filtered and dried at 100 °C for 12 h. The dried powder itself, the sample with heating at 400 °C, and the sample with ultrasonically treating were prepared to investigate the effects of post treatments on materials characteristics and electrochemical properties of nanocrystalline TiO 2. The X-ray diffraction patterns of all of the samples were fitted well to the anatase phase. The field emission-TEM image of as-prepared sample shows a uniform spherical morphology with 5 nm particle size and the sample heated at 400 °C shows slightly increased particle size of about 10 nm while maintaining spherical shape. The sample treated with ultrasonic for 5 h or more at room temperature shows high aspect ratio particle shape with an average diameter of 5 nm and a length of 20 nm. According to the results of the electrochemical testing, as-prepared sample, the sample heated at 400 °C for 3 h, and the sample treated with ultrasonic show initial capacities of 270, 310 and 340 mAh g -1, respectively.

  17. Lower pressure synthesis of diamond material

    DOEpatents

    Lueking, Angela; Gutierrez, Humberto; Narayanan, Deepa; Burgess Clifford, Caroline E.; Jain, Puja

    2010-07-13

    Methods of synthesizing a diamond material, particularly nanocrystalline diamond, diamond-like carbon and bucky diamond are provided. In particular embodiments, a composition including a carbon source, such as coal, is subjected to addition of energy, such as high energy reactive milling, producing a milling product enriched in hydrogenated tetrahedral amorphous diamond-like carbon compared to the coal. A milling product is treated with heat, acid and/or base to produce nanocrystalline diamond and/or crystalline diamond-like carbon. Energy is added to produced crystalline diamond-like carbon in particular embodiments to produce bucky diamonds.

  18. Nanocrystalline High-Entropy Alloys: A New Paradigm in High-Temperature Strength and Stability.

    PubMed

    Zou, Yu; Wheeler, Jeffrey M; Ma, Huan; Okle, Philipp; Spolenak, Ralph

    2017-03-08

    Metals with nanometer-scale grains or nanocrystalline metals exhibit high strengths at ambient conditions, yet their strengths substantially decrease with increasing temperature, rendering them unsuitable for usage at high temperatures. Here, we show that a nanocrystalline high-entropy alloy (HEA) retains an extraordinarily high yield strength over 5 GPa up to 600 °C, 1 order of magnitude higher than that of its coarse-grained form and 5 times higher than that of its single-crystalline equivalent. As a result, such nanostructured HEAs reveal strengthening figures of merit-normalized strength by the shear modulus above 1/50 and strength-to-density ratios above 0.4 MJ/kg, which are substantially higher than any previously reported values for nanocrystalline metals in the same homologous temperature range, as well as low strain-rate sensitivity of ∼0.005. Nanocrystalline HEAs with these properties represent a new class of nanomaterials for high-stress and high-temperature applications in aerospace, civilian infrastructure, and energy sectors.

  19. Surface Properties of a Nanocrystalline Fe-Ni-Nb-B Alloy After Neutron Irradiation

    NASA Astrophysics Data System (ADS)

    Pavùk, Milan; Sitek, Jozef; Sedlačková, Katarína

    2014-09-01

    The effect of neutron radiation on the surface properties of the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy was studied. Firstly, amorphous (Fe0.25Ni0.75)81Nb7B12 ribbon was brought by controlled annealing to the nanocrystalline state. After annealing, the samples of the nanocrystalline ribbon were irradiated in a nuclear reactor with neutron fluences of 1×1016cm-2 and 1 × 1017cm-2 . By utilizing the magnetic force microscopy (MFM), topography and a magnetic domain structure were recorded at the surface of the ribbon-shaped samples before and after irradiation with neutrons. The results indicate that in terms of surface the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy is radiation-resistant up to a neutron fluence of 1 × 1017cm-2 . The changes in topography observed for both irradiated samples are discussed

  20. Production of nanocrystalline metal powders via combustion reaction synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  1. Grain growth in nanocrystalline iron and Fe-Al alloys

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Hamed; Zomorodian, Amir

    2010-02-01

    The effects of the annealing temperature and time, cryomilling in liquid nitrogen, and the addition of aluminum powder on the thermal stability and grain growth behavior of nanocrystalline iron were modeled using the Artificial Neural Network (ANN) technique. The developed model can be used as a guide for the quantification of the grain growth by considering the effects of annealing temperature and time. The model also quantified the effect of Al on the thermal stability of cryomilled nanocrystalline Fe. The model results showed that the cryomilling of Fe has a tangible effect on the stabilization of the nanostructure.

  2. Clinical and radiographic evaluation of intrabony periodontal defect treatment by open flap debridement alone or in combination with nanocrystalline hydroxyapatite bone substitute.

    PubMed

    Pietruska, Małgorzata; Skurska, Anna; Pietruski, Jan; Dolińska, Ewa; Arweiler, Nicole; Milewski, Robert; Duraj, Ewa; Sculean, Anton

    2012-11-01

    The aim of this study has been to compare the clinical and radiographic outcome of periodontal intrabony defect treatment by open flap debridement alone or in combination with nanocrystalline hydroxyapatite bone substitute application. Thirty patients diagnosed with advanced periodontits were divided into two groups: the control group (OFD), in which an open flap debridement procedure was performed and the test group (OFD+NHA), in which defects were additionally filled with nanocrystalline hydroxyapatite bone substitute material. Plaque index (PI), gingival index (GI), bleeding on probing (BOP), pocket depth (PD), gingival recession (GR) and clinical attachment level (CAL) were measured prior to, then 6 and 12months following treatment. Radiographic depth and width of defects were also evaluated. There were no differences in any clinical and radiographic parameters between the examined groups prior to treatment. After treatment, BOP, GI, PD, CAL, radiographic depth and width parameter values improved statistically significantly in both groups. The PI value did not change, but the GR value increased significantly after treatment. There were no statistical differences in evaluated parameters between OFD and OFD+NHA groups 6 and 12months after treatment. Within the limits of the study, it can be concluded that the additional use of nanocrystalline hydroxyapatite bone substitute material after open flap procedure does not improve clinical and radiographic treatment outcome. Copyright © 2012 Elsevier GmbH. All rights reserved.

  3. Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD

    NASA Astrophysics Data System (ADS)

    Pedersen, Joachim D.; Esposito, Heather J.; Teh, Kwok Siong

    2011-10-01

    We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm). Pure solid zinc is inductively heated and melted, followed by ionization by thermal induction argon/oxygen plasma to produce conformal, nonporous nanocrystalline ZnO films at a growth rate of up to 50 nm/min on amorphous and crystalline substrates including Si (100), fused quartz, glass, muscovite, c- and a-plane sapphire (Al2O3), gold, titanium, and polyimide. X-ray diffraction indicates the grains of as-deposited ZnO to be highly textured, with the fastest growth occurring along the c-axis. The individual grains are observed to be faceted by (103) planes which are the slowest growth planes. ZnO nanocrystalline films of nominal thicknesses of 200 nm are deposited at substrate temperatures of 330°C and 160°C on metal/ceramic substrates and polymer substrates, respectively. In addition, 20-nm- and 200-nm-thick films are also deposited on quartz substrates for optical characterization. At optical spectra above 375 nm, the measured optical transmittance of a 200-nm-thick ZnO film is greater than 80%, while that of a 20-nm-thick film is close to 100%. For a 200-nm-thick ZnO film with an average grain size of 100 nm, a four-point probe measurement shows electrical conductivity of up to 910 S/m. Annealing of 200-nm-thick ZnO films in 300 sccm pure argon at temperatures ranging from 750°C to 950°C (at homologous temperatures between 0.46 and 0.54) alters the textures and morphologies of the thin film. Based on scanning electron microscope images, higher annealing temperatures appear to restructure the ZnO nanocrystalline films to form nanorods of ZnO due to a combination of grain boundary diffusion and bulk diffusion. PACS: films and coatings, 81.15.-z; nanocrystalline materials, 81.07.Bc; II-VI semiconductors, 81.05.Dz.

  4. Enhanced luminescence in Eu-doped ZnO nanocrystalline films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Keigo, E-mail: ksuzuki@murata.com; Murayama, Koji; Tanaka, Nobuhiko

    We found an enhancement of Eu{sup 3+} emissions in Eu-doped ZnO nanocrystalline films fabricated by microemulsion method. The Eu{sup 3+} emission intensities were increased by reducing annealing temperatures from 633 K to 533 K. One possible explanation for this phenomenon is that the size reduction enhances the energy transfer from ZnO nanoparticles to Eu{sup 3+} ions. Also, the shift of the charge-transfer band into the low-energy side of the absorption edge is found to be crucial, which seems to expedite the energy transfer from O atoms to Eu{sup 3+} ions. These findings will be useful for the material design of Eu-doped ZnOmore » phosphors.« less

  5. Microscale mechanical characterization of materials for extreme environments

    NASA Astrophysics Data System (ADS)

    Ozerinc, Sezer

    Nanocrystalline metals are promising materials for applications that require outstanding strength and stability in extreme environments. Further improvements in the desirable mechanical properties of these materials require a better understanding of the relationship between their microstructure and grain boundary deformation behavior. Previous molecular dynamics simulations suggested that solute additions to grain boundaries can enhance the strength of nanocrystalline metals, but there has been a lack of experimental studies investigating this prediction. This dissertation presents mechanical and microstructural characterization of nanocrystalline Cu alloys and demonstrate that addition of Nb solutes to grain boundaries greatly enhances the strength of Cu. The measured hardness of Cu90Nb10 alloy is 5.6 GPa which is more than double the hardness of nanocrystalline pure Cu. Microstructural characterization through transmission electron microscopy and energy-dispersive X-ray spectroscopy on these alloys indicates a strong correlation between the grain boundary composition and the hardness. Variation of measured hardness with measured grain boundary composition is in very good agreement with previous molecular dynamics simulation predictions. The results of this work provide experimental evidence that grain boundary doping enhances the strength of nanocrystalline Cu far beyond that predicted by classical Hall-Petch strengthening and decreasing grain boundary energy through solute additions is the key to reaching theoretical strength in nanocrystalline metals. Irradiation induced creep is a deformation mechanism that takes place under combined stress and particle bombardment. Effective characterization of this phenomenon on nanostructured materials is crucial for the assessment of their potential use in next generation nuclear power plants. Direct measurements of irradiation induced creep under MeV-heavy ion bombardment have not been feasible until recently due to the

  6. Nanocrystalline SnO2:F thin films for liquid petroleum gas sensors.

    PubMed

    Chaisitsak, Sutichai

    2011-01-01

    This paper reports the improvement in the sensing performance of nanocrystalline SnO(2)-based liquid petroleum gas (LPG) sensors by doping with fluorine (F). Un-doped and F-doped tin oxide films were prepared on glass substrates by the dip-coating technique using a layer-by-layer deposition cycle (alternating between dip-coating a thin layer followed by a drying in air after each new layer). The results showed that this technique is superior to the conventional technique for both improving the film thickness uniformity and film transparency. The effect of F concentration on the structural, surface morphological and LPG sensing properties of the SnO(2) films was investigated. Atomic Force Microscopy (AFM) and X-ray diffraction pattern measurements showed that the obtained thin films are nanocrystalline SnO(2) with nanoscale-textured surfaces. Gas sensing characteristics (sensor response and response/recovery time) of the SnO(2):F sensors based on a planar interdigital structure were investigated at different operating temperatures and at different LPG concentrations. The addition of fluorine to SnO(2) was found to be advantageous for efficient detection of LPG gases, e.g., F-doped sensors are more stable at a low operating temperature (300 °C) with higher sensor response and faster response/recovery time, compared to un-doped sensor materials. The sensors based on SnO(2):F films could detect LPG even at a low level of 25% LEL, showing the possibility of using this transparent material for LPG leak detection.

  7. Nanocrystalline SnO2:F Thin Films for Liquid Petroleum Gas Sensors

    PubMed Central

    Chaisitsak, Sutichai

    2011-01-01

    This paper reports the improvement in the sensing performance of nanocrystalline SnO2-based liquid petroleum gas (LPG) sensors by doping with fluorine (F). Un-doped and F-doped tin oxide films were prepared on glass substrates by the dip-coating technique using a layer-by-layer deposition cycle (alternating between dip-coating a thin layer followed by a drying in air after each new layer). The results showed that this technique is superior to the conventional technique for both improving the film thickness uniformity and film transparency. The effect of F concentration on the structural, surface morphological and LPG sensing properties of the SnO2 films was investigated. Atomic Force Microscopy (AFM) and X-ray diffraction pattern measurements showed that the obtained thin films are nanocrystalline SnO2 with nanoscale-textured surfaces. Gas sensing characteristics (sensor response and response/recovery time) of the SnO2:F sensors based on a planar interdigital structure were investigated at different operating temperatures and at different LPG concentrations. The addition of fluorine to SnO2 was found to be advantageous for efficient detection of LPG gases, e.g., F-doped sensors are more stable at a low operating temperature (300 °C) with higher sensor response and faster response/recovery time, compared to un-doped sensor materials. The sensors based on SnO2:F films could detect LPG even at a low level of 25% LEL, showing the possibility of using this transparent material for LPG leak detection. PMID:22164007

  8. Magnetorheological materials, method for making, and applications thereof

    DOEpatents

    Shen, Rui; Yang, Hong; Shafrir, Shai N.; Miao, Chunlin; Wang, Mimi; Mici, Joni; Lambropoulos, John C.; Jacobs, Stephen D.

    2014-08-19

    A magnetorheological material comprises a magnetic particle and a ceramic material, wherein the magnetorheological material is in a dried form and further wherein a portion of the ceramic material is in the form of a nanocrystalline coating over the entire exterior surface of the magnetic particle and another portion of the ceramic material is in the form of a free nanocrystal. A magnetorheological material comprises a magnetic particle having a ceramic material coating over an external surface thereof as a result of a coating process, and a free nanocrystal of the ceramic material in the form of a residual by-product of the coating process. A sol-gel process for making a magnetorheological product comprises providing a sol of a desired ceramic coating material; combining a desired quantity of carbonyl iron (CI) particles with the sol to coat the CI particles with the ceramic coating material; creating a resulting quantity of nanocrystalline ceramic material-coated CI particles and a quantity of free nanocrystals of the ceramic material; and, drying the resulting quantity of coated CI particles and free nanocrystals to a moisture content equal to or less than 2 wt %.

  9. Construction demolition wastes, Waelz slag and MSWI bottom ash: a comparative technical analysis as material for road construction.

    PubMed

    Vegas, I; Ibañez, J A; San José, J T; Urzelai, A

    2008-01-01

    The objective of the study is to analyze the technical suitability of using secondary materials from three waste flows (construction and demolition waste (CDW), Waelz slag and municipal solid waste incineration (MSWI) bottom ash), under the regulations and standards governing the use of materials for road construction. A detailed technical characterization of the materials was carried out according to Spanish General Technical Specifications for Road Construction (PG3). The results show that Waelz slag can be adequate for using in granular structural layers, while CDW fits better as granular material in roadbeds. Likewise, fresh MSWI bottom ash can be used as roadbed material as long as it does not contain a high concentration of soluble salts. This paper also discusses the adequacy of using certain traditional test methods for natural soils when characterizing secondary materials for use as aggregates in road construction.

  10. 9 CFR 351.11 - Identification and separation of technical animal fats for certification and materials for use...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... technical animal fats for certification and materials for use therein; removal of wrappers, etc.; cleaning... AND VOLUNTARY INSPECTION AND CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.11 Identification and separation of technical animal fats for certification...

  11. 9 CFR 351.11 - Identification and separation of technical animal fats for certification and materials for use...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... technical animal fats for certification and materials for use therein; removal of wrappers, etc.; cleaning... AND VOLUNTARY INSPECTION AND CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.11 Identification and separation of technical animal fats for certification...

  12. 9 CFR 351.11 - Identification and separation of technical animal fats for certification and materials for use...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... technical animal fats for certification and materials for use therein; removal of wrappers, etc.; cleaning... AND VOLUNTARY INSPECTION AND CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.11 Identification and separation of technical animal fats for certification...

  13. 9 CFR 351.11 - Identification and separation of technical animal fats for certification and materials for use...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... technical animal fats for certification and materials for use therein; removal of wrappers, etc.; cleaning... AND VOLUNTARY INSPECTION AND CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.11 Identification and separation of technical animal fats for certification...

  14. 9 CFR 351.11 - Identification and separation of technical animal fats for certification and materials for use...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... technical animal fats for certification and materials for use therein; removal of wrappers, etc.; cleaning... AND VOLUNTARY INSPECTION AND CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.11 Identification and separation of technical animal fats for certification...

  15. Improve oxidation resistance at high temperature by nanocrystalline surface layer

    NASA Astrophysics Data System (ADS)

    Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.

    2015-08-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content.

  16. Synthesis and characterization of nanocrystalline mesoporous zirconia using supercritical drying.

    PubMed

    Tyagi, Beena; Sidhpuria, Kalpesh; Shaik, Basha; Jasra, Raksh Vir

    2006-06-01

    Synthesis of nano-crystalline zirconia aerogel was done by sol-gel technique and supercritical drying using n-propanol solvent at and above supercritical temperature (235-280 degrees C) and pressure (48-52 bar) of n-propanol. Zirconia xerogel samples have also been prepared by conventional thermal drying method to compare with the super critically dried samples. Crystalline phase, crystallite size, surface area, pore volume, and pore size distribution were determined for all the samples in detail to understand the effect of gel drying methods on these properties. Supercritical drying of zirconia gel was observed to give thermally stable, nano-crystalline, tetragonal zirconia aerogels having high specific surface area and porosity with narrow and uniform pore size distribution as compared to thermally dried zirconia. With supercritical drying, zirconia samples show the formation of only mesopores whereas in thermally dried samples, substantial amount of micropores are observed along with mesopores. The samples prepared using supercritical drying yield nano-crystalline zirconia with smaller crystallite size (4-6 nm) as compared to higher crystallite size (13-20 nm) observed with thermally dried zirconia.

  17. Crystallographic and magnetic properties of nanocrystalline perovskite structure SmFeO3 orthoferrite

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwini; Shen, Jingdong; Zhao, Huihui; Zhengjian, Qi; Li, Qi

    2018-05-01

    In this article, we present the structural and magnetic studies of pristine SmFeO3 nanocrystalline ceramic samples as sintered at temperature 850 °C and 1000 °C. X-ray powder diffraction data confirm the existence of single-phase nature with orthorhombic (Pbnm) structure of the samples. The SEM image reveals spherical particles with a size range of 60-130 nm for SFO-850 and SFO-1000 samples. X-ray absorption spectroscopy studies on Fe L3,2 and O K-edges of SmFeO3 sample revealed the homo-valence state of Fe in these materials. From magnetization studies it has been observed the materials exhibit ferromagnetic and antiferromagnetic (canted spin structure) sub-lattices, which results strong magnetic anisotropy in the system.

  18. Technical Education and Resource Material.

    ERIC Educational Resources Information Center

    Mills, Marie T.

    New approaches and many technical innovations will be required by the junior college to meet the increasing educational needs of technical occupations. A first is information on which the prospective student can base an intelligent choice of occupation. For this he must have a precise job description to determine whether the career fits his…

  19. Using Video Materials in English for Technical Sciences: A Case Study

    ERIC Educational Resources Information Center

    Milosevic, Danica

    2017-01-01

    In the digital era, university instructors working in English for Technical Sciences (ETS) have opportunities, some might say obligations, to use audio-visual resources to motivate students. Such materials also call on cognitive and constructivist mechanisms thought to improve uptake of the target language (Tarnopolsky, 2012). This chapter reports…

  20. An ecotoxicological characterization of nanocrystalline cellulose (NCC).

    PubMed

    Kovacs, Tibor; Naish, Valerie; O'Connor, Brian; Blaise, Christian; Gagné, Francois; Hall, Lauren; Trudeau, Vance; Martel, Pierre

    2010-09-01

    The pulp and paper industry in Canada is developing technology for the production and use of nanocrystalline cellulose (NCC). A key component of the developmental work is an assessment of potential environmental risks. Towards this goal, NCC samples as well as carboxyl methyl cellulose (CMC), a surrogate of the parent cellulosic material, were subjected to an ecotoxicological evaluation. This involved toxicity tests with rainbow trout hepatocytes and nine aquatic species. The hepatocytes were most sensitive (EC20s between 10 and 200 mg/l) to NCC, although neither NCC nor CMC caused genotoxicity. In tests with the nine species, NCC affected the reproduction of the fathead minnow at (IC25) 0.29 g/l, but no other effects on endpoints such as survival and growth occurred in the other species at concentrations below 1 g/l, which was comparable to CMC. Based on this ecotoxicological characterization, NCC was found to have low toxicity potential and environmental risk.

  1. Fourth Collaborative Materials Exercise of the Nuclear Forensics International Technical Working Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwantes, J. M.; Marsden, O.; Reilly, D.

    Abstract The Nuclear Forensics International Technical Working Group is a community of nuclear forensic practitioners who respond to incidents involving nuclear and other radioactive material out of regulatory control. The Group is dedicated to advancing nuclear forensic science in part through periodic participation in materials exercises. The Group completed its fourth Collaborative Materials Exercise in 2015 in which laboratories from 15 countries and one multinational organization analyzed three samples of special nuclear material in support of a mock nuclear forensic investigation. This special section of the Journal for Radioanalytical and Nuclear Chemistry is devoted to summarizing highlights from this exercise.

  2. Nanocrystalline ZnON; High mobility and low band gap semiconductor material for high performance switch transistor and image sensor application

    PubMed Central

    Lee, Eunha; Benayad, Anass; Shin, Taeho; Lee, HyungIk; Ko, Dong-Su; Kim, Tae Sang; Son, Kyoung Seok; Ryu, Myungkwan; Jeon, Sanghun; Park, Gyeong-Su

    2014-01-01

    Interest in oxide semiconductors stems from benefits, primarily their ease of process, relatively high mobility (0.3–10 cm2/vs), and wide-bandgap. However, for practical future electronic devices, the channel mobility should be further increased over 50 cm2/vs and wide-bandgap is not suitable for photo/image sensor applications. The incorporation of nitrogen into ZnO semiconductor can be tailored to increase channel mobility, enhance the optical absorption for whole visible light and form uniform micro-structure, satisfying the desirable attributes essential for high performance transistor and visible light photo-sensors on large area platform. Here, we present electronic, optical and microstructural properties of ZnON, a composite of Zn3N2 and ZnO. Well-optimized ZnON material presents high mobility exceeding 100 cm2V−1s−1, the band-gap of 1.3 eV and nanocrystalline structure with multiphase. We found that mobility, microstructure, electronic structure, band-gap and trap properties of ZnON are varied with nitrogen concentration in ZnO. Accordingly, the performance of ZnON-based device can be adjustable to meet the requisite of both switch device and image-sensor potentials. These results demonstrate how device and material attributes of ZnON can be optimized for new device strategies in display technology and we expect the ZnON will be applicable to a wide range of imaging/display devices. PMID:24824778

  3. The effect of ultrasonic nanocrystalline surface modification on the high-frequency fretting wear behavior of AISI304 steel.

    PubMed

    Cho, In-Shik; Lee, Chang-Soon; Amanov, Auezhan; Pyoun, Young-Shik; Park, In-Gyu

    2011-01-01

    The fact that one of fundamental characteristics of fretting is the very small sliding amplitude dictates the unique feature of wear mechanism. Ultrasonic Nanocrystalline Surface Modification (UNSM) technology was applied in order to investigate its effect on the high-frequency fretting wear behavior of AISI304 steel. Its influence on the fretting wear is also reported in this paper with these treated and untreated samples. UNSM delivers force onto the workpiece surface 20,000 times per second with 1,000 to 4,000 contact counts per square millimeter. UNSM creates homogenous nanocrystalline structures as well on the surface. UNSM process is expected to eliminate or significantly retard the formation of fretting wear. Nanocrystalline structure generation after UNSM has been reported to produce its unique structure and to offer a variety of beneficial properties compared to conventionally treated materials. A deformed layer of 220 microm exhibits high dislocation density, where top layer transformed to a nanostructure of the grain size in 23 nm and mechanical twins were observed. Deformation-induced martensite was observed to form at the intersections of mechanical twins, whose volume fraction has increased up to 38.4% and wear loss rate at 800,000 cycles has decreased by 40%. In this paper, experimental results are discussed to elucidate potential mechanism of high-frequency fretting wear.

  4. Cook, 9-5. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, which was adapted from military curriculum materials for use in vocational and technical education, provides training in both the theoretical and practical phases of cooking for students who want to become semiskilled (apprentice) cooks. The theory portion of the course is intended for the classroom, not the laboratory. The course is…

  5. Bandgap engineering through nanocrystalline magnetic alloy grafting on reduced graphene oxide.

    PubMed

    De, D; Chakraborty, M; Majumdar, S; Giri, S

    2014-09-28

    High conductivity and the absence of ferromagnetism in pristine graphene fail to satisfy primary criteria for possible technological application in spintronics. Opening of the bandgap in graphene is primarily desirable for such applications. We report a simplified and novel approach of controlled grafting of a magnetic alloy on reduced graphene oxide. This eventually leads to ferromagnetism of the stable hybrid material at room temperature, with a large moment (∼1.2 μB) and a remarkable decrease in conductivity (∼10 times) compared to highly ordered pyrolytic graphite. Our model band-structure calculation indicates that the combined effect of controlled vacancies and impurities attributed to the nanocrystalline alloy grafting leads to a promising step toward band gap engineering.

  6. Method to grow pure nanocrystalline diamond films at low temperatures and high deposition rates

    DOEpatents

    Carlisle, John A [Plainfield, IL; Gruen, Dieter M [Downers Grove, IL; Auciello, Orlando [Bolingbrook, IL; Xiao, Xingcheng [Woodridge, IL

    2009-07-07

    A method of depositing nanocrystalline diamond film on a substrate at a rate of not less than about 0.2 microns/hour at a substrate temperature less than about 500.degree. C. The method includes seeding the substrate surface with nanocrystalline diamond powder to an areal density of not less than about 10.sup.10sites/cm.sup.2, and contacting the seeded substrate surface with a gas of about 99% by volume of an inert gas other than helium and about 1% by volume of methane or hydrogen and one or more of acetylene, fullerene and anthracene in the presence of a microwave induced plasma while maintaining the substrate temperature less than about 500.degree. C. to deposit nanocrystalline diamond on the seeded substrate surface at a rate not less than about 0.2 microns/hour. Coatings of nanocrystalline diamond with average particle diameters of less than about 20 nanometers can be deposited with thermal budgets of 500.degree. C.-4 hours or less onto a variety of substrates such as MEMS devices.

  7. Characterisation of capacitive field-effect sensors with a nanocrystalline-diamond film as transducer material for multi-parameter sensing.

    PubMed

    Abouzar, M H; Poghossian, A; Razavi, A; Williams, O A; Bijnens, N; Wagner, P; Schöning, M J

    2009-01-01

    The feasibility of a capacitive field-effect EDIS (electrolyte-diamond-insulator-semiconductor) platform for multi-parameter sensing is demonstrated by realising EDIS sensors with an O-terminated nanocrystalline-diamond (NCD) film as transducer material for the detection of pH and penicillin concentration as well as for the label-free electrical monitoring of adsorption and binding of charged macromolecules, like polyelectrolytes. The NCD films were grown on p-Si-SiO(2) substrates by microwave plasma-enhanced chemical vapour deposition. To obtain O-terminated surfaces, the NCD films were treated in an oxidising medium. The NCD-based field-effect sensors have been characterised by means of constant-capacitance method. The average pH sensitivity of the O-terminated NCD film was 40 mV/pH. A low detection limit of 5 microM and a high penicillin G sensitivity of 65-70 mV/decade has been obtained for an EDIS penicillin biosensor with the adsorptively immobilised enzyme penicillinase. Alternating potential changes, having tendency to decrease with increasing the number of adsorbed polyelectrolyte layers, have been observed after the layer-by-layer deposition of polyelectrolyte multilayers, using positively charged PAH (poly (allylamine hydrochloride)) and a negatively charged PSS (poly (sodium 4-styrene sulfonate)) as a model system. The response mechanism of the developed EDIS sensors is discussed.

  8. Grain growth behavior at absolute zero during nanocrystalline metal indentation

    NASA Astrophysics Data System (ADS)

    Sansoz, F.; Dupont, V.

    2006-09-01

    The authors show using atomistic simulations that stress-driven grain growth can be obtained in the athermal limit during nanocrystalline aluminum indentation. They find that the grain growth results from rotation of nanograins and propagation of shear bands. Together, these mechanisms are shown to lead to the unstable migration of grain boundaries via process of coupled motion. An analytical model is used to explain this behavior based on the atomic-level shear stress acting on the interfaces during the shear band propagation. This study sheds light on the atomic mechanism at play during the abnormal grain coarsening observed at low temperature in nanocrystalline metals.

  9. Analysis of Distribution of Polyvinyl Alcohol Hydrogel Nanocrystalline by using SAXS Synchrotron

    NASA Astrophysics Data System (ADS)

    Sunaryono; Taufiq, A.; Mufti, N.; Hidayat, N.; Rugmai, S.; Soontaranon, S.; Putra, E. G. R.; Darminto

    2017-05-01

    Polyvinyl alcohol (PVA) hydrogel has been successfully synthesized through freezing-thawing (F-T) process by using time-variation. This work is aimed to investigate the distribution of nanocrystalline from the hydrogel. Fourier Transform Infrared (FTIR) Spectroscopy, Differential Thermal Analysis/Thermogravimetric (DTA/TG), and Synchrotron Small-Angle X-ray Scattering (SAXS) were used as the instruments in characterizing the PVA hydrogel, respectively to observe the frequency of absorption, thermal degradation, and structural dimensions. The functional groups which represent the PVA polymer chains were verified on the wavenumber of 1450-1480 cm-1 and 850-870 cm-1 which is in accordance with the stretching of -CH2 vibration mode. The absorption band of PVA polymer chains was also found on the wavenumber of 1090-1150 cm-1 which is in accordance with the stretching of carboxyl vibration mode (CO), and this wavenumber gave a contribution towards the crystallinity of PVA polymer. Furthermore, the PVA polymer only interacted with the distilled water in the sample of PVA hydrogel without experiencing any chemical interactions between the PVA polymer and other substances. Meanwhile, the graphic of PVA hydrogel thermal degradation shows three thermal decompositions which are indicated by three areas in which there was sample weight loss. The second decomposition with sample weight loss was equivalent to 61.62%-73.04% occurred at the temperature of 282-376 °C which became the highest sample weight loss due to polymer chain degradation. Teubner-Strey and Beaucage models were used to analyze the characterization of structural dimension and distribution of PVA Hydrogel nanocrystalline with SAXS Synchrotron. With a high compatibility between the model data and the experiment, the average structural dimension of PVA hydrogel nanocrystalline is the equivalent of 3.96 nm, with an inter-crystalline average distance of 16.9 nm. These results indicate that PVA hydrogel is very

  10. Fabrication of GaN doped ZnO nanocrystallines by laser ablation.

    PubMed

    Gopalakrishnan, N; Shin, B C; Bhuvana, K P; Elanchezhiyan, J; Balasubramanian, T

    2008-08-01

    Here, we present the fabrication of pure and GaN doped ZnO nanocrystallines on Si(111) substrates by KrF excimer laser. The targets for the ablation have been prepared by conventional ceramic method. The fabricated nanocrystallines have been investigated by X-ray diffraction, photoluminescence and atomic force microscopy. The X-ray diffraction analysis shows that the crystalline size of pure ZnO is 36 nm and it is 41 nm while doped with 0.8 mol% of GaN due to best stoichiometry between Zn and O. Photoluminescence studies reveal that intense deep level emissions have been observed for pure ZnO and it has been suppressed for the GaN doped ZnO structures. The images of atomic force microscope show that the rms surface roughness is 27 nm for pure ZnO and the morphology is improved with decrease in rms roughness, 18 nm with fine crystallines while doped with 1 mol% GaN. The improved structural, optical and morphological properties of ZnO nanocrystalline due to GaN dopant have been discussed in detail.

  11. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KOZLOWSKI, S.D.

    2007-05-30

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditionsmore » for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.« less

  12. Low temperature biosynthesis of Li2O-MgO-P2O5-TiO2 nanocrystalline glass with mesoporous structure exhibiting fast lithium ion conduction.

    PubMed

    Du, Xiaoyong; He, Wen; Zhang, Xudong; Ma, Jinyun; Wang, Chonghai; Li, Chuanshan; Yue, Yuanzheng

    2013-04-01

    We demonstrate a biomimetic synthesis methodology that allows us to create Li2O-MgO-P2O5-TiO2 nanocrystalline glass with mesoporous structure at lower temperature. We design a 'nanocrystal-glass' configuration to build a nanoarchitecture by means of yeast cell templates self-assembly followed by the controlled in-situ biomineralization of materials on the cell wall. Electrochemically active nanocrystals are used as the lamellar building blocks of mesopores, and the semiconductive glass phase can act both as the 'glue' between nanocrystals and functionalized component. The Li2O-MgO-P2O5-TiO2 nanocrystalline glass exhibits outstanding thermal stability, high conductivity and wide potential window. This approach could be applied to many other multicomponent glass-ceramics to fabricate mesoporous conducting materials for solid-state lithium batteries. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Entomology Specialist 1-1. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Jones, Jimmie L.

    This individualized, self-paced course for training an entomology specialist was adapted from military curriculum materials for use in vocational and technical education. Completion of the course should provide students with basic information needed to accomplish the following duties of an entomology specialist: perform entomological work, apply…

  14. FAST TRACK COMMUNICATION: Nanocrystalline silicon film growth morphology control through RF waveform tailoring

    NASA Astrophysics Data System (ADS)

    Johnson, Erik V.; Verbeke, Thomas; Vanel, Jean-Charles; Booth, Jean-Paul

    2010-10-01

    We demonstrate the application of RF waveform tailoring to generate an electrical asymmetry in a capacitively coupled plasma-enhanced chemical vapour deposition system, and its use to control the growth mode of hydrogenated amorphous and nanocrystalline silicon thin films deposited at low temperature (150 °C). A dramatic shift in the dc bias potential at the powered electrode is observed when simply inverting the voltage waveform from 'peaks' to 'troughs', indicating an asymmetric distribution of the sheath voltage. By enhancing or suppressing the ion bombardment energy at the substrate (situated on the grounded electrode), the growth of thin silicon films can be switched between amorphous and nanocrystalline modes, as observed using in situ spectroscopic ellipsometry. The effect is observed at pressures sufficiently low that the collisional reduction in average ion bombardment energy is not sufficient to allow nanocrystalline growth (<100 mTorr).

  15. Materials science and engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesuer, D.R.

    1997-02-01

    During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliancemore » of Bulk Kel-E.« less

  16. Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths.

    PubMed

    Wang, Zhaojie; Alaniz, Joseph E; Jang, Wanyoung; Garay, Javier E; Dames, Chris

    2011-06-08

    The thermal conductivity reduction due to grain boundary scattering is widely interpreted using a scattering length assumed equal to the grain size and independent of the phonon frequency (gray). To assess these assumptions and decouple the contributions of porosity and grain size, five samples of undoped nanocrystalline silicon have been measured with average grain sizes ranging from 550 to 64 nm and porosities from 17% to less than 1%, at temperatures from 310 to 16 K. The samples were prepared using current activated, pressure assisted densification (CAPAD). At low temperature the thermal conductivities of all samples show a T(2) dependence which cannot be explained by any traditional gray model. The measurements are explained over the entire temperature range by a new frequency-dependent model in which the mean free path for grain boundary scattering is inversely proportional to the phonon frequency, which is shown to be consistent with asymptotic analysis of atomistic simulations from the literature. In all cases the recommended boundary scattering length is smaller than the average grain size. These results should prove useful for the integration of nanocrystalline materials in devices such as advanced thermoelectrics.

  17. Stacking fault energies and slip in nanocrystalline metals.

    PubMed

    Van Swygenhoven, H; Derlet, P M; Frøseth, A G

    2004-06-01

    The search for deformation mechanisms in nanocrystalline metals has profited from the use of molecular dynamics calculations. These simulations have revealed two possible mechanisms; grain boundary accommodation, and intragranular slip involving dislocation emission and absorption at grain boundaries. But the precise nature of the slip mechanism is the subject of considerable debate, and the limitations of the simulation technique need to be taken into consideration. Here we show, using molecular dynamics simulations, that the nature of slip in nanocrystalline metals cannot be described in terms of the absolute value of the stacking fault energy-a correct interpretation requires the generalized stacking fault energy curve, involving both stable and unstable stacking fault energies. The molecular dynamics technique does not at present allow for the determination of rate-limiting processes, so the use of our calculations in the interpretation of experiments has to be undertaken with care.

  18. Thermal Stability of Nanocrystalline Alloys by Solute Additions and A Thermodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Saber, Mostafa

    Nanocrystalline alloys show superior properties due to their exceptional microstructure. Thermal stability of these materials is a critical aspect. It is well known that grain boundaries in nanocrystalline microstructures cause a significant increase in the total free energy of the system. A driving force provided to reduce this excess free energy can cause grain growth. The presence of a solute addition within a nanocrystalline alloy can lead to the thermal stability. Kinetic and thermodynamic stabilization are the two basic mechanisms with which stability of a nanoscale grain size can be achieved at high temperatures. The basis of this thesis is to study the effect of solute addition on thermal stability of nanocrystalline alloys. The objective is to determine the effect of Zr addition on the thermal stability of mechanically alloyed nanocrysatillne Fe-Cr and Fe-Ni alloys. In Fe-Cr-Zr alloy system, nanoscale grain size stabilization was maintained up to 900 °C by adding 2 at% Zr. Kinetic pinning by intermetallic particles in the nanoscale range was identified as a primary mechanism of thermal stabilization. In addition to the grain size strengthening, intermetallic particles also contribute to strengthening mechanisms. The analysis of microhardness, XRD data, and measured grain sizes from TEM micrographs suggested that both thermodynamic and kinetic mechanisms are possible mechanisms. It was found that alpha → gamma phase transformation in Fe-Cr-Zr system does not influence the grain size stabilization. In the Fe-Ni-Zr alloy system, it was shown that the grain growth in Fe-8Ni-1Zr alloy is much less than that of pure Fe and Fe-8Ni alloy at elevated temperatures. The microstructure of the ternary Fe-8Ni-1Zr alloy remains in the nanoscale range up to 700 °C. Using an in-situ TEM study, it was determined that drastic grain growth occurs when the alpha → gamma phase transformation occurs. Accordingly, there can be a synergistic relationship between grain growth

  19. Deformation-induced localized solid-state amorphization in nanocrystalline nickel.

    PubMed

    Han, Shuang; Zhao, Lei; Jiang, Qing; Lian, Jianshe

    2012-01-01

    Although amorphous structures have been widely obtained in various multi-component metallic alloys, amorphization in pure metals has seldom been observed and remains a long-standing scientific curiosity and technological interest. Here we present experimental evidence of localized solid-state amorphization in bulk nanocrystalline nickel introduced by quasi-static compression at room temperature. High-resolution electron microscope observations illustrate that nano-scale amorphous structures present at the regions where severe deformation occurred, e.g. along crack paths or surrounding nano-voids. These findings have indicated that nanocrystalline structures are highly desirable for promoting solid-state amorphization, which may provide new insights for understanding the nature of the crystalline-to-amorphous transformation and suggested a potential method to produce elemental metallic glasses that have hardly been available hitherto through rapid solidification.

  20. Deformation-induced localized solid-state amorphization in nanocrystalline nickel

    PubMed Central

    Han, Shuang; Zhao, Lei; Jiang, Qing; Lian, Jianshe

    2012-01-01

    Although amorphous structures have been widely obtained in various multi-component metallic alloys, amorphization in pure metals has seldom been observed and remains a long-standing scientific curiosity and technological interest. Here we present experimental evidence of localized solid-state amorphization in bulk nanocrystalline nickel introduced by quasi-static compression at room temperature. High-resolution electron microscope observations illustrate that nano-scale amorphous structures present at the regions where severe deformation occurred, e.g. along crack paths or surrounding nano-voids. These findings have indicated that nanocrystalline structures are highly desirable for promoting solid-state amorphization, which may provide new insights for understanding the nature of the crystalline-to-amorphous transformation and suggested a potential method to produce elemental metallic glasses that have hardly been available hitherto through rapid solidification. PMID:22768383

  1. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mecartnery, Martha; Graeve, Olivia; Patel, Maulik

    2017-05-25

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  2. Anti-inflammatory activity of nanocrystalline silver-derived solutions in porcine contact dermatitis

    PubMed Central

    2010-01-01

    Background Nanocrystalline silver dressings have anti-inflammatory activity, unlike solutions containing Ag+ only, which may be due to dissolution of multiple silver species. These dressings can only be used to treat surfaces. Thus, silver-containing solutions with nanocrystalline silver properties could be valuable for treating hard-to-dress surfaces and inflammatory conditions of the lungs and bowels. This study tested nanocrystalline silver-derived solutions for anti-inflammatory activity. Methods Inflammation was induced on porcine backs using dinitrochlorobenzene. Negative and positive controls were treated with distilled water. Experimental groups were treated with solutions generated by dissolving nanocrystalline silver in distilled water adjusted to starting pHs of 4 (using CO2), 5.6 (as is), 7, and 9 (using Ca(OH)2). Solution samples were analyzed for total silver. Daily imaging, biopsying, erythema and oedema scoring, and treatments were performed for three days. Biopsies were processed for histology, immunohistochemistry (for IL-4, IL-8, IL-10, TNF-α, EGF, KGF, KGF-2, and apoptotic cells), and zymography (MMP-2 and -9). One-way ANOVAs with Tukey-Kramer post tests were used for statistical analyses. Results Animals treated with pH 7 and 9 solutions showed clear visual improvements. pH 9 solutions resulted in the most significant reductions in erythema and oedema scores. pH 4 and 7 solutions also reduced oedema scores. Histologically, all treatment groups demonstrated enhanced re-epithelialisation, with decreased inflammation. At 24 h, pMMP-2 expression was significantly lowered with pH 5.6 and 9 treatments, as was aMMP-2 expression with pH 9 treatments. In general, treatment with silver-containing solutions resulted in decreased TNF-α and IL-8 expression, with increased IL-4, EGF, KGF, and KGF-2 expression. At 24 h, apoptotic cells were detected mostly in the dermis with pH 4 and 9 treatments, nowhere with pH 5.6, and in both the epidermis and dermis

  3. Effect of Annealing Treatment on Mechanical Properties of Nanocrystalline α-iron: an Atomistic Study

    PubMed Central

    Tong, Xuhang; Zhang, Hao; Li, D. Y.

    2015-01-01

    Claims are often found in the literature that metallic materials can be nanocrystallized by severe plastic deformation (SPD). However, SPD does not generate a well-defined nanocrystalline (NC) material, which can be achieved by subsequent annealing/recovery treatment. In this study, molecular dynamics (MD) simulation is employed to study the effect of annealing on structure and mechanical properties of cyclic deformed NC α-iron, which simulates SPD-processed α-iron. It is demonstrated that grain boundaries in the deformed NC α-iron evolve to a more equilibrium state during annealing, eliminating or minimizing the residual stress. The annealing treatment increases the system's strength by reducing dislocation emission sources, and improves material ductility through strengthening grain boundaries' resistance to intergranular cracks. The results indicate that the annealing treatment is an essential process for obtaining a well-defined NC structure with superior mechanical properties. PMID:25675978

  4. Evidence of nanocrystalline semiconducting graphene monoxide during thermal reduction of graphene oxide in vacuum.

    PubMed

    Mattson, Eric C; Pu, Haihui; Cui, Shumao; Schofield, Marvin A; Rhim, Sonny; Lu, Ganhua; Nasse, Michael J; Ruoff, Rodney S; Weinert, Michael; Gajdardziska-Josifovska, Marija; Chen, Junhong; Hirschmugl, Carol J

    2011-12-27

    As silicon-based electronics are reaching the nanosize limits of the semiconductor roadmap, carbon-based nanoelectronics has become a rapidly growing field, with great interest in tuning the properties of carbon-based materials. Chemical functionalization is a proposed route, but syntheses of graphene oxide (G-O) produce disordered, nonstoichiometric materials with poor electronic properties. We report synthesis of an ordered, stoichiometric, solid-state carbon oxide that has never been observed in nature and coexists with graphene. Formation of this material, graphene monoxide (GMO), is achieved by annealing multilayered G-O. Our results indicate that the resulting thermally reduced G-O (TRG-O) consists of a two-dimensional nanocrystalline phase segregation: unoxidized graphitic regions are separated from highly oxidized regions of GMO. GMO has a quasi-hexagonal unit cell, an unusually high 1:1 O:C ratio, and a calculated direct band gap of ∼0.9 eV.

  5. Electric field-assisted sintering of nanocrystalline hydroxyapatite for biomedical applications

    NASA Astrophysics Data System (ADS)

    Tran, Tien Bich

    consistent during varied heating rate (50--400ºC/min) and varied pressure application (25--90 MPa) studies. While in vitro cytocompatibility studies using MG63 osteoblast-like cells demonstrated the biocompatibility of the FAST-processed specimens, bioactivity was sensitive to processing parameters. Since extensive dehydroxylation reduces the surface charge of the sintered materials, apatite deposition during simulated body fluid immersion only occurred when dehydroxylation was mild---i.e., on specimens sintered at low temperatures (800--900ºC) or for short periods. Microstructural investigations revealed that HA sintered at temperatures above 900ºC under an applied electric field contained nanometric residual pores in grain interiors, as well as micron-sized dehydroxylation-related pores at grain boundaries and grain boundary junctions. These larger pores were responsible for the increasing embrittlement of specimens sintered at higher temperatures. Although grain size dependence could not be found in the 60--100 nm grain size range, fracture toughness (KIC = 1.92 MPa√m, maximum) increased with decreasing sintering temperature. Results from the suite of investigations conducted demonstrate that biocompatible and bioactive nanocrystalline hydroxyapatite with enhanced mechanical properties can be efficiently manufactured by field-assisted sintering under controlled processing conditions.

  6. Weather Observer, 15-1. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, adapted from military curriculum materials for use in vocational and technical education, was designed to upgrade an apprentice weather observer to the weather observer specialist level. Intended to be used in a laboratory or on-the-job learning situation, it contains both basic information needed for review and supervisory…

  7. Construction Surveying, 3-27. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This short course on construction surveying was developed from military curriculum materials for use in technical and vocational education programs. Students completing the course should be able to perform engineering surveys related to area and route surveying (knowledge of basic survey techniques is a prerequisite). The course is divided into…

  8. Aviation Structural Mechanic, Second Class, 2-13. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This self-paced, individualized course, adapted from military curriculum materials for use in vocational and technical education, teaches students the skills needed to become aviation structural mechanics (second class). The course materials consist of five pamphlets covering the structural maintenance and repair of aircraft. The first pamphlet…

  9. Gas response properties of citrate gel synthesized nanocrystalline MgFe{sub 2}O{sub 4}: Effect of sintering temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, J.Y.; Mulla, I.S.; Suryavanshi, S.S., E-mail: sssuryavanshi@rediffmail.com

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Synthesis of nanocrystalline MgFe{sub 2}O{sub 4} by economical citrate gel combustion method. ► Structural, morphological, and gas response properties of MgFe{sub 2}O{sub 4}. ► Enhancement in selectivity of MgFe{sub 2}O{sub 4} towards LPG with sintering temperature. ► Use of MgFe{sub 2}O{sub 4} to detect different gases at different operating temperatures. -- Abstract: Spinel type MgFe{sub 2}O{sub 4} material was synthesized by citrate gel combustion method. The effect of sintering temperature on structural, morphological, and gas response properties was studied. The powder X-ray diffraction pattern and transmission electron microscope study confirms nanocrystalline spinel structure ofmore » the synthesized powder. The material was tested for response properties to various reducing gases like liquid petroleum gas (LPG), acetone, ethanol, and ammonia. The results demonstrated n-type semiconducting behavior of MgFe{sub 2}O{sub 4} material. It was revealed that MgFe{sub 2}O{sub 4} sintered at 973 K was most sensitive to LPG at 648 K and to acetone at 498 K. However MgFe{sub 2}O{sub 4} sintered at 1173 K exhibited higher response and selectivity to LPG with marginal increase in the operating temperature. Furthermore, the sensor exhibited a fast response and a good recovery. It was observed that the particles size, porosity, and surface activity of the sensor material is affected by the sintering temperature.« less

  10. Pharmacy Specialist, 10-8. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These teacher and student materials for a postsecondary-level course in pharmacy comprise one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. The purpose stated for the 256-hour course is to train students in the basic technical phases of…

  11. Photoluminescent spectroscopy measurements in nanocrystalline praseodymium doped zirconia powders

    NASA Astrophysics Data System (ADS)

    Ramos-Brito, F.; Murrieta S, H.; Hernández A, J.; Camarillo, E.; García-Hipólito, M.; Martínez-Martínez, R.; Álvarez-Fragoso, O.; Falcony, C.

    2006-05-01

    Praseodymium doped zirconia powder (ZrO2: (0.53 at%) Pr3+) was prepared by a co-precipitation technique and annealed in air at a temperature Ta = 950 °C. The x-ray diffraction pattern shows a nanocrystalline structure composed of 29.6% monoclinic and 70.4% cubic-tetragonal phases. Medium infrared and Raman analysis confirms the monoclinic/cubic-tetragonal crystalline structure and proves the absence of praseodymium aggregates in the material. Photoluminescent spectroscopy over excitations of 457.9 and 514.9 nm (at 20 K), shows two emission spectra composed of many narrow peaks in the visible-near infrared region (VIS-NIR) of the electromagnetic spectrum, associated with 4f inter-level electronic transitions in praseodymium ions incorporated in the zirconia. Excitation and emission spectra show the different mechanisms of the direct and non-direct excitation of the dopant ion (Pr3+), and the preferential relaxation of the material by charge transfer from the host (zirconia) to the 4f5d band and the 4f inter-level of the dopant ion (Pr3+). No evidence of energy transfer from the host to the dopant was observed.

  12. Influence of Weak External Magnetic Field on Amorphous and Nanocrystalline Fe-based Alloys

    NASA Astrophysics Data System (ADS)

    Degmová, J.; Sitek, J.

    2010-07-01

    Nanoperm, Hitperm and Finamet amorphous and nanocrystalline alloys were measured by Mössbauer spectrometry in a weak external magnetic field of 0.5 T. It was shown that the most sensitive parameters of Mössbauer spectra are the intensities of the 2nd and the 5th lines. Rather small changes were observed also in the case of internal magnetic field values. The spectrum of nanocrystalline Nanoperm showed the increase in A23 parameter (ratio of line intensities) from 2.4 to 3.7 and decrease of internal magnetic field from 20 to 19 T for amorphous subspectrum under the influence of magnetic field. Spectrum of nanocrystalline Finemet shown decrease in A23 parameter from 3.5 to 2.6 almost without a change in the internal magnetic field value. In the case of amorphous Nanoperm and Finemet samples, the changes are almost negligible. Hitperm alloy showed the highest sensitivity to the weak magnetic field, when the A23 parameter increased from 0.4 to 2.5 in the external magnetic fields. The A23 parameter of crystalline subspectrum increased from 2.7 to 3.8 and the value of internal magnetic field corresponding to amorphous subspectrum increased from 22 to 24 T. The behavior of nanocrystalline alloys under weak external magnetic field was analyzed within the three-level relaxation model of magnetic dynamics in an assembly of single-domain particles.

  13. EDC-mediated DNA attachment to nanocrystalline CVD diamond films.

    PubMed

    Christiaens, P; Vermeeren, V; Wenmackers, S; Daenen, M; Haenen, K; Nesládek, M; vandeVen, M; Ameloot, M; Michiels, L; Wagner, P

    2006-08-15

    Chemical vapour deposited (CVD) diamond is a very promising material for biosensor fabrication owing both to its chemical inertness and the ability to make it electrical semiconducting that allows for connection with integrated circuits. For biosensor construction, a biochemical method to immobilize nucleic acids to a diamond surface has been developed. Nanocrystalline diamond is grown using microwave plasma-enhanced chemical vapour deposition (MPECVD). After hydrogenation of the surface, 10-undecenoic acid, an omega-unsaturated fatty acid, is tethered by 254 nm photochemical attachment. This is followed by 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC)-mediated attachment of amino (NH(2))-modified dsDNA. The functionality of the covalently bound dsDNA molecules is confirmed by fluorescence measurements, PCR and gel electrophoresis during 35 denaturation and rehybridisation steps. The linking method after the fatty acid attachment can easily be applied to other biomolecules like antibodies and enzymes.

  14. Remediation of arsenic and lead with nanocrystalline zinc sulfide.

    PubMed

    Piquette, Alan; Cannon, Cody; Apblett, Allen W

    2012-07-27

    Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.

  15. Subtractive Plasma-Assisted-Etch Process for Developing High Performance Nanocrystalline Zinc-Oxide Thin-Film-Transistors

    DTIC Science & Technology

    2015-03-26

    THIN - FILM - TRANSISTORS THESIS Thomas M. Donigan, First Lieutenant, USAF AFIT-ENG-MS-15-M-027 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR...DEVELOPING HIGH PERFORMANCE NANOCRYSTALLINE ZINC-OXIDE THIN - FILM - TRANSISTORS THESIS Presented to the Faculty Department of Electrical and...15-M-027 SUBTRACTIVE PLASMA-ASSISTED-ETCH PROCESS FOR DEVELOPING HIGH PERFORMANCE NANOCRYSTALLINE ZINC-OXIDE THIN - FILM - TRANSISTORS

  16. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings.

    PubMed

    Wang, Yuxin; Cheng, Guang; Tay, See Leng; Guo, Yunxia; Sun, Xin; Gao, Wei

    2017-08-10

    In this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM). The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomic percent (at%) Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.

  17. MISSE in the Materials and Processes Technical Information System (MAPTIS )

    NASA Technical Reports Server (NTRS)

    Burns, DeWitt; Finckenor, Miria; Henrie, Ben

    2013-01-01

    Materials International Space Station Experiment (MISSE) data is now being collected and distributed through the Materials and Processes Technical Information System (MAPTIS) at Marshall Space Flight Center in Huntsville, Alabama. MISSE data has been instrumental in many programs and continues to be an important source of data for the space community. To facilitate great access to the MISSE data the International Space Station (ISS) program office and MAPTIS are working to gather this data into a central location. The MISSE database contains information about materials, samples, and flights along with pictures, pdfs, excel files, word documents, and other files types. Major capabilities of the system are: access control, browsing, searching, reports, and record comparison. The search capabilities will search within any searchable files so even if the desired meta-data has not been associated data can still be retrieved. Other functionality will continue to be added to the MISSE database as the Athena Platform is expanded

  18. Solution-processed nanocrystalline PbS on paper substrate with pencil traced electrodes as visible photodetector

    NASA Astrophysics Data System (ADS)

    Vankhade, Dhaval; Chaudhuri, Tapas K.

    2018-04-01

    Paper-based PbS photodetector sensitive in the visible spectrum is reported. Nanocrystalline PbS-on-paper devices are fabricated by a spin coating method on white paper (300 GSM) from a methanolic precursor solution. Photodetector cells of gap 0.2 cm and length 0.5 cm are prepared by drawing contacts by monolithic cretacolor 8B pencil. X-ray diffractometer confirmed the deposition of nanocrystalline PbS films with 14 nm crystallites. The SEM illustrated the uniform coating of nanocrystalline PbS thin films on cellulose fibres of papers having an average thickness of fibres are 10 µm. The linear J-V characteristics in dark and under illumination of light using graphite trace on nanocrystalline PbS-on-paper shows good ohmic contact. The resistivity of pencil trace is 30 Ω.cm. Spectral response measurements of photodetector reveal the excellent sensitivity from 400 to 700 nm with a peak at 550 nm. The best responsivity anddetectivity are 0.7 A/W and 1.4 × 1012 Jones respectively. These paper-based low-cost photodetectors devices have fast photoresponse and recovery without baseline deviation.

  19. Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films

    NASA Astrophysics Data System (ADS)

    Valentini, L.; Cardinali, M.; Fortunati, E.; Kenny, J. M.

    2014-10-01

    With the continuous advance of modern electronics, the demand for nonvolatile memory cells rapidly grows. In order to develop post-silicon electronic devices, it is necessary to find innovative solutions to the eco-sustainability problem of materials for nonvolatile memory cells. In this work, we realized a resistive memory device based on graphene oxide (GO) and GO/cellulose nanocrystals (CNC) thin films. Aqueous solutions of GO and GO with CNC have been prepared and drop cast between two metal electrodes. Such thin-film based devices showed a transition between low and high conductivity states upon the forward and backward sweeping of an external electric field. This reversible current density transition behavior demonstrates a typical memory characteristic. The obtained results open an easy route for electronic information storage based on the integration of nanocrystalline cellulose onto graphene based devices.

  20. Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentini, L., E-mail: luca.valentini@unipg.it; Cardinali, M.; Fortunati, E.

    2014-10-13

    With the continuous advance of modern electronics, the demand for nonvolatile memory cells rapidly grows. In order to develop post-silicon electronic devices, it is necessary to find innovative solutions to the eco-sustainability problem of materials for nonvolatile memory cells. In this work, we realized a resistive memory device based on graphene oxide (GO) and GO/cellulose nanocrystals (CNC) thin films. Aqueous solutions of GO and GO with CNC have been prepared and drop cast between two metal electrodes. Such thin-film based devices showed a transition between low and high conductivity states upon the forward and backward sweeping of an external electricmore » field. This reversible current density transition behavior demonstrates a typical memory characteristic. The obtained results open an easy route for electronic information storage based on the integration of nanocrystalline cellulose onto graphene based devices.« less

  1. Boron-Doped Nanocrystalline Diamond Electrodes for Neural Interfaces: In vivo Biocompatibility Evaluation

    PubMed Central

    Alcaide, María; Taylor, Andrew; Fjorback, Morten; Zachar, Vladimir; Pennisi, Cristian P.

    2016-01-01

    Boron-doped nanocrystalline diamond (BDD) electrodes have recently attracted attention as materials for neural electrodes due to their superior physical and electrochemical properties, however their biocompatibility remains largely unexplored. In this work, we aim to investigate the in vivo biocompatibility of BDD electrodes in relation to conventional titanium nitride (TiN) electrodes using a rat subcutaneous implantation model. High quality BDD films were synthesized on electrodes intended for use as an implantable neurostimulation device. After implantation for 2 and 4 weeks, tissue sections adjacent to the electrodes were obtained for histological analysis. Both types of implants were contained in a thin fibrous encapsulation layer, the thickness of which decreased with time. Although the level of neovascularization around the implants was similar, BDD electrodes elicited significantly thinner fibrous capsules and a milder inflammatory reaction at both time points. These results suggest that BDD films may constitute an appropriate material to support stable performance of implantable neural electrodes over time. PMID:27013949

  2. Study of lattice strain and optical properties of nanocrystalline SnO2

    NASA Astrophysics Data System (ADS)

    Ahmad, Naseem; Khan, Shakeel; Bhargava, Richa; Ansari, Mohd Mohsin Nizam

    2018-05-01

    Nanocrystalline SnO2 has been synthesized by co-precipitation method by using two solvents (water and ethylene glycol). The structure and surface morphology were investigated using XRD and scanning electron microscope (SEM). The optical properties were studied using diffused reflectance spectroscopy (DRS). From the XRD analysis, the prepared materials are found to be pure crystalline with tetragonal rutile structure. The lattice strain and crystallite size, were calculated using Williamson-Hall method, are found to be 0.00413 & 16.3 nm in water assisted SnO2 and 0.00495 & 35.6 nm for EG assisted SnO2. Study of surface morphology of the samples was carried out using SEM. It has been seen that the solvents which are used in synthesis can also alter the optical properties of the materials. The optical band gap of the water based SnO2 and EG based SnO2 are found to be 3.92eV and 3.86eV respectively.

  3. Mechanical spectroscopy of nanocrystalline aluminum films: effects of frequency and grain size on internal friction.

    PubMed

    Sosale, Guruprasad; Almecija, Dorothée; Das, Kaushik; Vengallatore, Srikar

    2012-04-20

    Energy dissipation by internal friction is a property of fundamental interest for probing the effects of scale on mechanical behavior in nanocrystalline metallic films and for guiding the use of these materials in the design of high-Q micro/nanomechanical resonators. This paper describes an experimental study to measure the effects of frequency, annealing and grain size on internal friction at room temperature in sputter-deposited nanocrystalline aluminum films with thicknesses ranging from 60 to 120 nm. Internal friction was measured using a single-crystal silicon microcantilever platform that calibrates dissipation against the fundamental limits of thermoelastic damping. Internal friction was a weak function of frequency, reducing only by a factor of two over three decades of frequency (70 Hz to 44 kHz). Annealing led to significant grain growth and the average grain size of 100 nm thick films increased from 90 to 390 nm after annealing for 1 h at 450 (∘)C. This increase in grain size was accompanied by a decrease in internal friction from 0.05 to 0.02. Taken together, these results suggest that grain-boundary sliding, characterized by a spectrum of relaxation times, contributes to internal friction in these films. © 2012 IOP Publishing Ltd

  4. Final Report: Hot Carrier Collection in Thin Film Silicon with Tailored Nanocrystalline/Amorphous Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Reuben T.

    This project developed, characterized, and perfected a new type of highly tunable nanocrystalline silicon (nc-Si:H) incorporating quantum confined silicon nanoparticles (SiNPs). A dual zone deposition process and system were developed and demonstrated. The depositions of SiNPs, the amorphous phase, and co-deposited material were characterized and optimized. Material design and interpretation of results were guided by new theoretical tools that examined both the electronic structure and carrier dynamics of this hybrid material. Heterojunction and p-i-n solar cells were demonstrated and characterized. Photo-thin-film-transistors allowed mobility to be studied as a function SiNP density in the films. Rapid (hot) transfer of carriers frommore » the amorphous matrix to the quantum confined SiNPs was observed and connected to reduced photo-degradation. The results carry quantum confined Si dots from a novelty to materials that can be harnessed for PV and optoelectronic applications. The growth process is broadly extendable with alternative amorphous matrices, novel layered structures, and alternative NPs easily accessible. The hot carrier effects hold the potential for third generation photovoltaics.« less

  5. Properties of nanocrystalline Si layers embedded in structure of solar cell

    NASA Astrophysics Data System (ADS)

    Jurečka, Stanislav; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru

    2017-12-01

    Suppression of spectral reflectance from the surface of solar cell is necessary for achieving a high energy conversion efficiency. We developed a simple method for forming nanocrystalline layers with ultralow reflectance in a broad range of wavelengths. The method is based on metal assisted etching of the silicon surface. In this work, we prepared Si solar cell structures with embedded nanocrystalline layers. The microstructure of embedded layer depends on the etching conditions. We examined the microstructure of the etched layers by a transmission electron microscope and analysed the experimental images by statistical and Fourier methods. The obtained results provide information on the applied treatment operations and can be used to optimize the solar cell forming procedure.

  6. Solvothermal synthesis of nanocrystalline TiO 2 in toluene with surfactant

    NASA Astrophysics Data System (ADS)

    Kim, Chung-Sik; Moon, Byung Kee; Park, Jong-Ho; Choi, Byung-Chun; Seo, Hyo-Jin

    2003-10-01

    Synthesis of narrow-dispersed nanocrystalline TiO 2 was investigated by surfactant-aided solvothermal synthetic method in toluene solutions. Titanium isopropoxide (TIP) was used as precursor, which was decomposed at high temperature in the surfactant-dissolved solution. After the solution was thermally treated at 250°C for 20 h in an autoclave, low-dispersed TiO 2 nanocrystalline particles with average size of <6 nm were synthesized. When sufficient amount of TIP or surfactant was added in the solution, long dumbbell-shaped nanorods were formed, which may be due to the oriented growth of particles along [0 0 1] axis. Characterization of products was investigated by X-ray diffraction and transmission electron microscopy.

  7. Microwave assisted combustion synthesis of nanocrystalline CoFe2O4 for LPG sensing

    NASA Astrophysics Data System (ADS)

    Chaudhari, Prashant; Acharya, S. A.; Darunkar, S. S.; Gaikwad, V. M.

    2015-08-01

    A microwave-assisted citrate precursor method has been utilized for synthesis of nanocrystalline powders of CoFe2O4. The process takes only a few minutes to obtain as-synthesized CoFe2O4. Structural properties of the synthesized material were investigated by X-ray diffraction; scanning electron microscopy, Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy. The gas sensing properties of thick film of CoFe2O4 prepared by screen printing towards Liquid Petroleum Gas (LPG) revealed that CoFe2O4 thick films are sensitive and shows maximum sensitivity at 350°C for 2500 ppm of LPG.

  8. Predicting Grain Growth in Nanocrystalline Materials: A Thermodynamic and Kinetic-Based Model Informed by High Temperature X-ray Diffraction Experiments

    DTIC Science & Technology

    2014-10-01

    and d) Γb0. The scatter of the data points is due to the variation in the other parameters at 1 h. The line represents a best fit linear regression...parameters: a) Hseg, b) QL, c) γ0, and d) Γb0. The scatter of the data points is due to the variation in the other parameters at 1 h. The line represents...concentration x0 for the nanocrystalline Fe–Zr system. The white square data point shows the location of the experimental data used for fitting the

  9. Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin.

    PubMed

    Zainuddin, Norhidayu; Ahmad, Ishak; Kargarzadeh, Hanieh; Ramli, Suria

    2017-05-01

    Nanocrystalline cellulose (NCC) extracted from lignocellulosic materials has been actively investigated as a drug delivery excipients due to its large surface area, high aspect ratio, and biodegradability. In this study, the hydrophobically modified NCC was used as a drug delivery excipient of hydrophobic drug curcumin. The modification of NCC with a cationic surfactant, cetyl trimethylammonium bromide (CTAB) was used to modulate the loading of hydrophobic drugs that would not normally bind to NCC. The FTIR, Elemental analysis, XRD, TGA, and TEM were used to confirm the modification of NCC with CTAB. The effect of concentration of CTAB on the binding efficiency of hydrophobic drug curcumin was investigated. The amounts of curcumin bound onto the CTAB-NCC nanoparticles were analyzed by UV-vis Spectrophotometric. The result showed that the modified CTAB-NCC bound a significant amount of curcumin, in a range from 80% to 96% curcumin added. Nevertheless, at higher concentration of CTAB resulted in lower binding efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuxin; Cheng, Guang; Tay, See Leng

    Here in this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM). The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomicmore » percent (at%) Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Lastly, results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.« less

  11. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings

    DOE PAGES

    Wang, Yuxin; Cheng, Guang; Tay, See Leng; ...

    2017-08-10

    Here in this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM). The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomicmore » percent (at%) Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Lastly, results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.« less

  12. Psychiatry Ward Specialist, 10-12. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, adapted from military curriculum materials for use in vocational and technical education, is designed to train students to perform as assistants to professional personnel in the care and treatment of patients in mental health units. It includes basic concepts of human behavior, the aspects of atypical adjustive reactions, the…

  13. Sheet Metal Specialist 13-1. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Chanute AFB Technical Training Center, IL.

    This course, adapted from military curriculum materials for use in vocational and technical education, provides training in the theory and practice of sheet metal work. Designed for student self-instruction (such as a correspondence course), the text consists of four volumes. Volume 1 discusses shop mathematics, measurement and layout tools,…

  14. Magnetoelectric coupling characteristics in multiferroic heterostructures with different thickness of nanocrystalline soft magnetic alloy

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Wang, Yao

    2016-05-01

    Magnetoelectric(ME) coupling characteristics in multiferroic heterostructures with different thickness of nanocrystalline soft magnetic alloy has been investigated at low frequency. The ME response with obvious hysteresis, self-biased and dual-peak phenomenon is observed for multiferroic heterostructures, which results from strong magnetic interactions between two ferromagnetic materials with different magnetic properties, magnetostrictions and optimum bias magnetic fields Hdc,opti. The proposed multiferroic heterostructures not only enhance ME coupling significantly, but also broaden dc magnetic bias operating range and overcomes the limitations of narrow bias range. By optimizing the thickness of nanocrystalline soft magnetic alloy Tf, a significantly zero-biased ME voltage coefficient(MEVC) of 14.8mV/Oe (185 mV/cmṡ Oe) at Tf = 0.09 mm can be obtained, which is about 10.8 times as large as that of traditional PZT/Terfenol-D composite with a weak ME coupling at zero bias Hdc,zero. Furthermore, when Tf increases from 0.03 mm to 0.18 mm, the maximum MEVC increases nearly linearly with the increased Tf at Hdc,opti. Additionally, the experimental results demonstrate the ME response for multiferroic heterostructures spreads over a wide magnetic dc bias operating range. The excellent ME performance provides a promising and practicable application for both highly sensitive magnetic field sensors without bias and ME energy harvesters.

  15. Effect of rapid thermal annealing on nanocrystalline TiO2 thin films synthesized by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Thakurdesai, Madhavi; Kanjilal, D.; Bhattacharyya, Varsha

    2012-08-01

    Irradiation by swift heavy ions (SHI) is unique tool to synthesize nanocrystalline thin films. We have reported transformation of 100 nm thick amorphous films into nanocrystalline film due to irradiation by 100 MeV Ag ion beam. Oblate shaped nanoparticles having anatase phase of TiO2 were formed on the surface of the irradiated films. In the present investigation, these films are annealed at 350 °C for 2 min in oxygen atmosphere by Rapid Thermal Annealing (RTA) method. During RTA processing, the temperature rises abruptly and this thermal instability is expected to alter surface morphology, structural and optical properties of nanocrystalline TiO2 thin films. Thus in the present work, effect of RTA on SHI induced nanocrystalline thin films of TiO2 is studied. The effect of RTA processing on the shape and size of TiO2 nanoparticles is studied by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Glancing Angle X-ray Diffraction (GAXRD) studies are carried to investigate structural changes induced by RTA processing. Optical characterization is carried out by UV-vis spectroscopy and photoluminescence (PL) spectroscopy. The changes observed in structural and optical properties of nanocrystalline TiO2 thin films after RTA processing are attributed to the annihilation of SHI induced defects.

  16. CO2 Sensors Based on Nanocrystalline SnO2 Doped with CuO

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Liu, Chung Chiun; Ward, Benjamin J.

    2008-01-01

    Nanocrystalline tin oxide (SnO2) doped with copper oxide (CuO) has been found to be useful as an electrical-resistance sensory material for measuring the concentration of carbon dioxide in air. SnO2 is an n-type semiconductor that has been widely used as a sensing material for detecting such reducing gases as carbon monoxide, some of the nitrogen oxides, and hydrocarbons. Without doping, SnO2 usually does not respond to carbon dioxide and other stable gases. The discovery that the electrical resistance of CuO-doped SnO2 varies significantly with the concentration of CO2 creates opportunities for the development of relatively inexpensive CO2 sensors for detecting fires and monitoring atmospheric conditions. This discovery could also lead to research that could alter fundamental knowledge of SnO2 as a sensing material, perhaps leading to the development of SnO2-based sensing materials for measuring concentrations of oxidizing gases. Prototype CO2 sensors based on CuO-doped SnO2 have been fabricated by means of semiconductor-microfabrication and sol-gel nanomaterial-synthesis batch processes that are amendable to inexpensive implementation in mass production.

  17. Molten salt synthesis of nanocrystalline phase of high dielectric constant material CaCu3Ti4O12.

    PubMed

    Prakash, B Shri; Varma, K B R

    2008-11-01

    Nanocrystalline powders of giant dielectric constant material, CaCu3Ti4O12 (CCTO), have been prepared successfully by the molten salt synthesis (MSS) using KCl at 750 degrees C/10 h, which is significantly lower than the calcination temperature (approximately 1000 degrees C) that is employed to obtain phase pure CCTO in the conventional solid-state reaction route. The water washed molten salt synthesized powder, characterized by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) confirmed to be a phase pure CCTO associated with approximately 150 nm sized crystallites of nearly spherical shape. The decrease in the formation temperature/duration of CCTO in MSS method was attributed to an increase in the diffusion rate or a decrease in the diffusion length of reacting ions in the molten salt medium. As a consequence of liquid phase sintering, pellets of as-synthesized KCl containing CCTO powder exhibited higher sinterability and grain size than that of KCl free CCTO samples prepared by both MSS method and conventional solid-state reaction route. The grain size and the dielectric constant of KCl containing CCTO ceramics increased with increasing sintering temperature (900 degrees C-1050 degrees C). Indeed the dielectric constants of these ceramics were higher than that of KCl free CCTO samples prepared by both MSS method and those obtained via the solid-state reaction route and sintered at the same temperature. Internal barrier layer capacitance (IBLC) model was invoked to correlate the observed dielectric constant with the grain size in these samples.

  18. Study on the corrosion properties of nanocrystalline nickel electrodepositied by reverse pulse current

    NASA Astrophysics Data System (ADS)

    Cheng, Wen; Ge, Wen; Yang, Qian; Qu, Xinxin

    2013-07-01

    Nanocrystalline nickel coatings were produced by the method of reverse pulse electrodepositing on the surface of steel sheets. The crystallite size of nanocrystalline nickel coatings was determined by X-ray diffraction (XRD). The effect of saccharin concentration on the crystallite size of the coatings was studied. The average crystallite sizes were diminished as a result of increasing saccharin concentration. CHI660C electrochemical workstation was used to determine the Tafel polarization curves and electrochemical impedance spectroscopy (EIS) of the coatings. The value of corrosion potential, natural corrosion current density, polarizaiton resistance and impedance was calculated, the results suggested that smaller grain size led to higher polarization resistance. EIS gave the charge transfer resistance Rct and pore resistance Rpo variation trend from beginning to 30 min. Scanning electron microscopy (SEM) examination showed the surface morphology of the nickel coatings after the neutral salt spray (NSS) test or bathing in 10% HCl. The images indicated that the corrosion behavior of nanocrystalline nickel coatings was pitting corrosion, the mechanism was also discussed.

  19. Thermal conductivity of self-ion irradiated nanocrystalline zirconium thin films

    DOE PAGES

    Pulavarthy, Raghu; Wang, Baoming; Hattar, Khalid; ...

    2017-07-15

    Thermomechanical stability and high thermal conductivity are important for nuclear cladding material performance and reliability, which degrade over time under irradiation. The literature suggests nanocrystalline materials as radiation tolerant, but little or no evidence is present from thermal transport perspective. In this study, we irradiated 10 nm grain size zirconium thin films with 800 keV Zr + beam from a 6 MV HVE Tandem accelerator to achieve various doses of 3 × 10 10 to 3.26 × 10 14 ions/cm 2, corresponding to displacement per atom (dpa) of 2.1 × 10 –4 to 2.28. Transmission electron microscopy showed significant grainmore » growth, texture evolution and oxidation in addition to the creation of displacement defects due to the irradiation. The specimens were co-fabricated with micro-heaters to establish thermal gradients that were mapped using infrared thermometry. An energy balance approach was used to estimate the thermal conductivity of the specimens, as function of irradiation dosage. As a result, up to 32% reduction of thermal conductivity was measured for the sample exposed to a dose of 2.1 dpa (3 × 10 14 ions/cm 2).« less

  20. Thermal conductivity of self-ion irradiated nanocrystalline zirconium thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pulavarthy, Raghu; Wang, Baoming; Hattar, Khalid

    Thermomechanical stability and high thermal conductivity are important for nuclear cladding material performance and reliability, which degrade over time under irradiation. The literature suggests nanocrystalline materials as radiation tolerant, but little or no evidence is present from thermal transport perspective. In this study, we irradiated 10 nm grain size zirconium thin films with 800 keV Zr + beam from a 6 MV HVE Tandem accelerator to achieve various doses of 3 × 10 10 to 3.26 × 10 14 ions/cm 2, corresponding to displacement per atom (dpa) of 2.1 × 10 –4 to 2.28. Transmission electron microscopy showed significant grainmore » growth, texture evolution and oxidation in addition to the creation of displacement defects due to the irradiation. The specimens were co-fabricated with micro-heaters to establish thermal gradients that were mapped using infrared thermometry. An energy balance approach was used to estimate the thermal conductivity of the specimens, as function of irradiation dosage. As a result, up to 32% reduction of thermal conductivity was measured for the sample exposed to a dose of 2.1 dpa (3 × 10 14 ions/cm 2).« less

  1. New twinning route in face-centered cubic nanocrystalline metals.

    PubMed

    Wang, Lihua; Guan, Pengfei; Teng, Jiao; Liu, Pan; Chen, Dengke; Xie, Weiyu; Kong, Deli; Zhang, Shengbai; Zhu, Ting; Zhang, Ze; Ma, Evan; Chen, Mingwei; Han, Xiaodong

    2017-12-15

    Twin nucleation in a face-centered cubic crystal is believed to be accomplished through the formation of twinning partial dislocations on consecutive atomic planes. Twinning should thus be highly unfavorable in face-centered cubic metals with high twin-fault energy barriers, such as Al, Ni, and Pt, but instead is often observed. Here, we report an in situ atomic-scale observation of twin nucleation in nanocrystalline Pt. Unlike the classical twinning route, deformation twinning initiated through the formation of two stacking faults separated by a single atomic layer, and proceeded with the emission of a partial dislocation in between these two stacking faults. Through this route, a three-layer twin was nucleated without a mandatory layer-by-layer twinning process. This route is facilitated by grain boundaries, abundant in nanocrystalline metals, that promote the nucleation of separated but closely spaced partial dislocations, thus enabling an effective bypassing of the high twin-fault energy barrier.

  2. Visualizing decoupling in nanocrystalline alloys: A FORC-temperature analysis

    NASA Astrophysics Data System (ADS)

    Rivas, M.; Martínez-García, J. C.; Gorria, P.

    2016-02-01

    Devitrifying ferromagnetic amorphous precursors in the adequate conditions may give rise to disordered assemblies of densely packed nanocrystals with extraordinary magnetic softness well explained by the exchange coupling among multiple crystallites. Whether the magnetic exchange interaction is produced by direct contact or mediated by the intergranular amorphous matrix has a strong influence on the behaviour of the system above room temperature. Multi-phase amorphous-nanocrystalline systems dramatically harden when approaching the amorphous Curie temperature (TC) due to the hard grains decoupling. The study of the thermally induced decoupling of nanosized crystallites embedded in an amorphous matrix has been performed in this work by the first-order reversal curves (FORCs) analysis. We selected a Fe-rich amorphous alloy with TC = 330 K, in order to follow the evolution of the FORC diagrams obtained below and above such temperature in samples with different percentages of nanocrystalline phase. The existence of up to four regions exhibiting unlike magnetic behaviours is unambiguously determined from the temperature evolution of the FORC.

  3. Thermal stability comparison of nanocrystalline Fe-based binary alloy pairs

    DOE PAGES

    Clark, Blythe G.; Hattar, Khalid Mikhiel; Marshall, Michael Thomas; ...

    2016-03-24

    Here, the widely recognized property improvements of nanocrystalline (NC) materials have generated significant interest, yet have been difficult to realize in engineering applications due to the propensity for grain growth in these interface-dense systems. While traditional pathways to thermal stabilization can slow the mobility of grain boundaries, recent theories suggest that solute segregation in NC alloy can reduce the grain boundary energy such that thermodynamic stabilization is achieved. Following the predictions of Murdock et al., here we compare for the first time the thermal stability of a predicted NC stable alloy (Fe-10at.% Mg) with a predicted non-NC stable alloy (Fe-10at.%more » Cu) using the same processing and characterization methodologies. Results indicate improved thermal stability of the Fe-Mg alloy in comparison to the Fe-Cu, and observed microstructures are consistent with those predicted by Monte Carlo simulations.« less

  4. Carpentry I, 3-8A. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Army Engineer School, Fort Belvoir, VA.

    This individualized, self-paced correspondence course in carpentry has been adapted from military curriculum materials for use in vocational and technical education programs. This first volume of a two-volume set is designed to present the theory portion of carpentry and basic skills. The Carpentry I course contains four lessons. Lesson l, Job…

  5. Biological evaluation of ultrananocrystalline and nanocrystalline diamond coatings.

    PubMed

    Skoog, Shelby A; Kumar, Girish; Zheng, Jiwen; Sumant, Anirudha V; Goering, Peter L; Narayan, Roger J

    2016-12-01

    Nanostructured biomaterials have been investigated for achieving desirable tissue-material interactions in medical implants. Ultrananocrystalline diamond (UNCD) and nanocrystalline diamond (NCD) coatings are the two most studied classes of synthetic diamond coatings; these materials are grown using chemical vapor deposition and are classified based on their nanostructure, grain size, and sp 3 content. UNCD and NCD are mechanically robust, chemically inert, biocompatible, and wear resistant, making them ideal implant coatings. UNCD and NCD have been recently investigated for ophthalmic, cardiovascular, dental, and orthopaedic device applications. The aim of this study was (a) to evaluate the in vitro biocompatibility of UNCD and NCD coatings and (b) to determine if variations in surface topography and sp 3 content affect cellular response. Diamond coatings with various nanoscale topographies (grain sizes 5-400 nm) were deposited on silicon substrates using microwave plasma chemical vapor deposition. Scanning electron microscopy and atomic force microscopy revealed uniform coatings with different scales of surface topography; Raman spectroscopy confirmed the presence of carbon bonding typical of diamond coatings. Cell viability, proliferation, and morphology responses of human bone marrow-derived mesenchymal stem cells (hBMSCs) to UNCD and NCD surfaces were evaluated. The hBMSCs on UNCD and NCD coatings exhibited similar cell viability, proliferation, and morphology as those on the control material, tissue culture polystyrene. No significant differences in cellular response were observed on UNCD and NCD coatings with different nanoscale topographies. Our data shows that both UNCD and NCD coatings demonstrate in vitro biocompatibility irrespective of surface topography.

  6. Medical Laboratory Technician--Chemical Chemistry & Urinalysis, 10-2. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This publication, the last of three course materials in the medical laboratory technician field adapted from the Military Curriculum Materials for Use in Technical and Vocational Education series, was designed as a refresher course for student self-study and evaluation. It can be used by advanced students or beginning students participating in a…

  7. Evidence that abnormal grain growth precedes fatigue crack initiation in nanocrystalline Ni-Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furnish, Timothy A.; Bufford, Daniel C.; Ren, Fang

    Prior studies on the high-cycle fatigue behavior of nanocrystalline metals have shown that fatigue fracture is associated with abnormal grain growth (AGG). However, those previous studies have been unable to determine if AGG precedes fatigue crack initiation, or vice-versa. The present study shows that AGG indeed occurs prior to crack formation in nanocrystalline Ni-Fe by using a recently developed synchrotron X-ray diffraction modality that has been adapted for in-situ analysis. The technique allows fatigue tests to be interrupted at the initial signs of the AGG process, and subsequent microscopy reveals the precursor damage state preceding crack initiation.

  8. Evidence that abnormal grain growth precedes fatigue crack initiation in nanocrystalline Ni-Fe

    DOE PAGES

    Furnish, Timothy A.; Bufford, Daniel C.; Ren, Fang; ...

    2018-09-06

    Prior studies on the high-cycle fatigue behavior of nanocrystalline metals have shown that fatigue fracture is associated with abnormal grain growth (AGG). However, those previous studies have been unable to determine if AGG precedes fatigue crack initiation, or vice-versa. The present study shows that AGG indeed occurs prior to crack formation in nanocrystalline Ni-Fe by using a recently developed synchrotron X-ray diffraction modality that has been adapted for in-situ analysis. The technique allows fatigue tests to be interrupted at the initial signs of the AGG process, and subsequent microscopy reveals the precursor damage state preceding crack initiation.

  9. Thermal Stabilization and Mechanical Properties of Nanocrystalline Iron-Nickel-Zirconium Alloys

    NASA Astrophysics Data System (ADS)

    Kotan, Hasan

    Ultrafine grained and nanostructured materials are promising for structural applications because of the high strength compared to coarse grained counterparts. However, their widespread application is limited by an inherently high driving force for thermally induced grain growth, even at low temperatures. Accordingly, the understanding of and control over grain growth in nanoscale materials is of great technological and scientific importance as many physical properties (i.e. mechanical properties) are functions of the average grain size and the grain size distribution within the microstructure. Here, we investigate the microstructural evolution and grain growth in Fe-Ni alloys with Zr addition and differentiate the stabilization mechanisms acting on grain boundaries. Fe-Ni alloys are chosen for stability investigations since they are important for understanding the behavior of many steels and other ferrous alloys. Zirconium is proven to be an effective grain size stabilizer in pure Fe and Fe-base systems. In this study, nanocrystalline alloys were prepared by high energy ball milling. In situ and ex situ experiments were utilized to directly follow grain growth and microstructural evolution as a function of temperature and composition. The information obtained from these experiments enables the real time observation of microstructural evolution and phase transformation and provides a unique view of dynamic reactions as they occur. The knowledge of the thermal stability will exploit the potential high temperature applications and the consolidation conditions (i.e. temperature and pressure) to obtain high dense materials for advanced mechanical tests. Our investigations reveal that the grain growth of Fe-Ni alloys is not affected by Ni content but strongly inhibited by the addition of 1 at% Zr up to about 700 °C. The microstructural stability is lost due to the bcc-to-fcc transformation (occurring at 700°C) by the sudden appearance of abnormally grown fcc grains

  10. Low-temperature synthesis of nanocrystalline ZrC coatings on flake graphite by molten salts

    NASA Astrophysics Data System (ADS)

    Ding, Jun; Guo, Ding; Deng, Chengji; Zhu, Hongxi; Yu, Chao

    2017-06-01

    A novel molten salt synthetic route has been developed to prepare nanocrystalline zirconium carbide (ZrC) coatings on flake graphite at 900 °C, using Zr powder and flake graphite as the source materials in a static argon atmosphere, along with molten salts as the media. The effects of different molten salt media, the sintered temperature, and the heat preservation time on the phase and microstructure of the synthetic materials were investigated. The ZrC coatings formed on the flake graphite were uniform and composed of nanosized particles (30-50 nm). With an increase in the reaction temperature, the ZrC nanosized particles were more denser, and the heat preservation time and thickness of the ZrC coating also increased accordingly. Electron microscopy was used to observe the ZrC coatings on the flake graphite, indicating that a "template mechanism" played an important role during the molten salt synthesis.

  11. Amorphous and nanocrystalline luminescent Si and Ge obtained via a solid-state chemical metathesis synthesis route

    NASA Astrophysics Data System (ADS)

    McMillan, Paul F.; Gryko, Jan; Bull, Craig; Arledge, Richard; Kenyon, Anthony J.; Cressey, Barbara A.

    2005-03-01

    A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr 2) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300 °C. Syntheses at higher temperatures gave rise to microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.

  12. Study of the temperature dependent transport properties in nanocrystalline lithium lanthanum titanate for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Abhilash, K. P.; Christopher Selvin, P.; Nalini, B.; Somasundaram, K.; Sivaraj, P.; Chandra Bose, A.

    2016-04-01

    The nano-crystalline Li0.5La0.5TiO3 (LLTO) was prepared as an electrolyte material for lithium-ion batteries by the sol-gel method. The prepared LLTO material is characterized by structural, morphological and electrical characterizations. The LLTO shows the cubic perovskite structure with superlattice formation. The uniform distribution of LLTO particles has been analyzed by the SEM and TEM analysis of the sample. Impedance measurements at various temperatures were carried out and the temperature dependent conductivity of as prepared LLTO nanopowders at different temperatures from room temperature to 448 K has been analyzed. The transport mechanism has been analyzed using the dielectric and modulus analysis of the sample. Maximum grain conductivity of the order of 10-3 S cm-1 has been obtained for the sample at higher temperatures.

  13. Nanocrystallinity effects on osteoblast and osteoclast response to silicon substituted hydroxyapatite.

    PubMed

    Casarrubios, Laura; Matesanz, María Concepción; Sánchez-Salcedo, Sandra; Arcos, Daniel; Vallet-Regí, María; Portolés, María Teresa

    2016-11-15

    Silicon substituted hydroxyapatites (SiHA) are highly crystalline bioceramics treated at high temperatures (about 1200°C) which have been approved for clinical use with spinal, orthopedic, periodontal, oral and craniomaxillofacial applications. The preparation of SiHA with lower temperature methods (about 700°C) provides nanocrystalline SiHA (nano-SiHA) with enhanced bioreactivity due to higher surface area and smaller crystal size. The aim of this study has been to know the nanocrystallinity effects on the response of both osteoblasts and osteoclasts (the two main cell types involved in bone remodelling) to silicon substituted hydroxyapatite. Saos-2 osteoblasts and osteoclast-like cells (differentiated from RAW-264.7 macrophages) have been cultured on the surface of nano-SiHA and SiHA disks and different cell parameters have been evaluated: cell adhesion, proliferation, viability, intracellular content of reactive oxygen species, cell cycle phases, apoptosis, cell morphology, osteoclast-like cell differentiation and resorptive activity. This comparative in vitro study evidences that nanocrystallinity of SiHA affects the cell/biomaterial interface inducing bone cell apoptosis by loss of cell anchorage (anoikis), delaying osteoclast-like cell differentiation and decreasing the resorptive activity of this cell type. These results suggest the potential use of nano-SiHA biomaterial for preventing bone resorption in treatment of osteoporotic bone. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Wear behavior of Cu-Zn alloy by ultrasonic nanocrystalline surface modification.

    PubMed

    Cho, In Shik; Amanov, Auezhan; Ahn, Deok Gi; Shin, Keesam; Lee, Chang Soon; Pyoun, Young-Shik; Park, In-Gyu

    2011-07-01

    The ultrasonic nanocrystalline surface modification (UNSM) was applied to disk specimens made of Cu-Zn alloy in order to investigate the UNSM effects under five various conditions on wear of deformation twinning. In this paper, ball-on-disk test was conducted, and the results of UNSM-treated specimens showed that surface layer dislocation density and multi-directional twins were abruptly increased, and the grain size was altered into nano scale. UNSM delivers force onto the workpiece surface 20,000 times per second with 1,000 to 4,000 contact counts per square millimeter. The UNSM technology creates nanocrystalline and deformation twinning on the workpiece surface. One of the main concepts of this study is that defined phenomena of the UNSM technology, and the results revealed that nanocrystalline and deformation twinning depth might be controlled by means of impact energy of UNSM technology. EBSD and TEM analyses showed that deformation layer was increased up to 268 microm, and initial twin density was 0.001 x 10(6) cm(-2) and increased up to 0.343 x 10(6) cm(-2). Wear volume loss was also decreased from 703 x 10(3) mm3 to 387 x 10(3) mm3. Wear behavior according to deformation depth was observed under three different combinations. This is related to deformation depth which was created by UNSM technology.

  15. Structure and magnetic properties of amorphous and nanocrystalline Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloys

    NASA Astrophysics Data System (ADS)

    Mitra, A.; Kim, H.-Y.; Louzguine, D. V.; Nishiyama, N.; Shen, B.; Inoue, A.

    2004-07-01

    Crystallisation behaviour and magnetic properties of as-spun and annealed Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloy have been studied. The annealing was performed at 873 K for 15 min. XRD and TEM studies shows the formation of nanocrystalline α-(Fe,Co)(SiAl) particles with 7.5±2 nm in diameter dispersed in an amorphous matrix. The Curie temperature of the as-spun amorphous ribbon is 736 K. Saturation magnetisation of the annealed sample decreases at a rate of 0.5 emu/g/K in the measured temperature range of 300-1000 K. Excellent room temperature AC magnetic properties are achieved for the nanocrystalline sample. The low value of the imaginary part of the permeability and the high cut-off frequency (20 kHz) suggest that the eddy current contribution in the annealed materials is low. The coercivity of the annealed sample remains almost constant at 95 A/m up to the frequency of 20 kHz. High saturation magnetisation, high Curie temperature and excellent soft magnetic properties in the nanocrystalline state suggests that Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloy is a strong candidate for high temperature magnetic application.

  16. Intrinsic ferromagnetism in nanocrystalline Mn-doped ZnO depending on Mn concentration.

    PubMed

    Subramanian, Munisamy; Tanemura, Masaki; Hihara, Takehiko; Soga, Tetsuo; Jimbo, Takashi

    2011-04-01

    The physical properties of Zn(1-x)Mn(x)O nanoparticles synthesized by thermal decomposition are extensively investigated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman light scattering and Hysteresis measurements. XRD and XPS spectra reveal the absence of secondary phase in nanocrystalline ZnO doped with 5% or less Mn; and, later confirms that the valance state of Mn to be 2+ for all the samples. Raman spectra exhibit a peak at 660 cm(-1) which we attribute to the intrinsic lattice defects of ZnO with increasing Mn concentration. Overall, our results demonstrate that ferromagnetic properties can be realized while Mn-doped ZnO obtained in the nanocrystalline form.

  17. FIELD DEPENDENCE OF THE SPIN REORIENTATION TEMPERATURE IN MICRO AND NANOCRYSTALLINE FORMS OF Nd{sub 2}Fe{sub 14}B.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LEWIS,L.H.; HARLAND,C.L.

    2002-08-18

    Insight into the anisotropy behavior of Nd{sub 2}Fe{sub 14}B may be obtained by measurements of the spin reorientation temperature T{sub S} where the overall magnetocrystalline anisotropy changes to allow the magnetic moment to relax from an easy axis to an easy cone configuration. DC magnetization measurements made at various applied fields on sintered and nanocrystalline forms of Nd{sub 2}Fe{sub 14}B indicate a T{sub S} that remains constant for the sintered sample but is strongly field-dependent for the nanocrystalline forms of the material. Specifically, T{sub S} decreases with decreasing applied fields of strengths 5 T, 1 T and 0.01 T. Amore » simple model that minimizes the total energy of the system leads to the conclusion that the spin reorientation temperature is insensitive to applied field. Therefore it is concluded that the apparent decrease in the system's spin reorientation temperatures with decrease in measuring field can be attributed to the nanoscale structure of the system and a difference in the anisotropy constants compared to their bulk values.« less

  18. Measurement of host-to-activator transfer efficiency in nano-crystalline Y{sub 2}O{sub 3}:Eu{sup 3+} under VUV excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waite, Christopher; Mann, Rusty; Diaz, Anthony L., E-mail: DiazA@cwu.edu

    2013-02-15

    We have conducted a systematic study of the excitation and reflectance spectra of nano-crystalline Y{sub 2}O{sub 3}:Eu prepared by combustion synthesis. Excitation through the host lattice becomes relatively more efficient as the firing temperature of the precursor is increased, while reflectance properties remain essentially unchanged. Using these data, host-to-activator transfer efficiencies were calculated for excitation at the band edge of Y{sub 2}O{sub 3}, and evaluated using a competition kinetics model. From this analysis we conclude that the relatively low luminous efficiency of these materials is due more to poor bulk crystallinity than to surface loss effects. - Graphical abstract: Themore » low luminous efficiency of nano-crystalline Y{sub 2}O{sub 3}:Eu{sup 3+} prepared by combustion synthesis is due to poor bulk crystallinity rather than surface loss effects. Highlights: Black-Right-Pointing-Pointer We report on the optical properties of Y{sub 2}O{sub 3}:Eu{sup 3+} prepared by combustion synthesis. Black-Right-Pointing-Pointer Host-to-activator transfer efficiencies under VUV excitation were calculated. Black-Right-Pointing-Pointer The low luminous efficiency of these materials is due to poor bulk crystallinity.« less

  19. Influence of Dispersant and Heat Treatment on the Morphology of Nanocrystalline Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Pan, Yusong; Xiong, Dangsheng

    2010-10-01

    Natural biological hard tissues are biocomposites of proteins and hydroxyapatite (HA) with superior strength. Nanometer scale HAp is the key material to manufacture bone substitute. In this work, nano-sized HA particles were synthesized by a wet method using orthophosphoric acid and calcium hydroxide as raw materials. The prepared nanocrystalline HAp was characterized for its phase purity and nano-scale morphological structure by XRD, TEM, and FTIR. The influences of heat treatment temperature and dispersant on the properties of HAp were also investigated. The results indicated that nano-particles were pure single-phase HAp with a diameter of 25-70 nm and length of 50-180 nm depending on heat treatment temperature. The morphology and crystallite size of HAp change with heat treatment temperature. After heat treating, the crystallinity of these nano-particles increased and its morphology transformed from needle-like to sphere-like structure. The dispersant is beneficial to prevent the growth of HA particles and provide a uniform particle size distribution. Moreover, the HAp tends to form small agglomerates in the absence of dispersant.

  20. Subsistence Specialist First Class, 9-11. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This self-paced, individualized course, adapted from military curriculum materials for use in vocational and technical education, teaches students about the basic training and supervisory techniques required for proper sanitation of food service personnel and kitchen and dining facility equipment. This student workbook, one of three parts of the…

  1. Fabrication of photonic band gap materials

    DOEpatents

    Constant, Kristen; Subramania, Ganapathi S.; Biswas, Rana; Ho, Kai-Ming

    2002-01-15

    A method for forming a periodic dielectric structure exhibiting photonic band gap effects includes forming a slurry of a nano-crystalline ceramic dielectric or semiconductor material and monodisperse polymer microspheres, depositing a film of the slurry on a substrate, drying the film, and calcining the film to remove the polymer microspheres therefrom. The film may be cold-pressed after drying and prior to calcining. The ceramic dielectric or semiconductor material may be titania, and the polymer microspheres may be polystyrene microspheres.

  2. Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report)

    USGS Publications Warehouse

    Brand, Willi A.; Coplen, Tyler B.; Vogl, Jochen; Rosner, Martin; Prohaska, Thomas

    2014-01-01

    Since the early 1950s, the number of international measurement standards for anchoring stable isotope delta scales has mushroomed from 3 to more than 30, expanding to more than 25 chemical elements. With the development of new instrumentation, along with new and improved measurement procedures for studying naturally occurring isotopic abundance variations in natural and technical samples, the number of internationally distributed, secondary isotopic reference materials with a specified delta value has blossomed in the last six decades to more than 150 materials. More than half of these isotopic reference materials were produced for isotope-delta measurements of seven elements: H, Li, B, C, N, O, and S. The number of isotopic reference materials for other, heavier elements has grown considerably over the last decade. Nevertheless, even primary international measurement standards for isotope-delta measurements are still needed for some elements, including Mg, Fe, Te, Sb, Mo, and Ge. It is recommended that authors publish the delta values of internationally distributed, secondary isotopic reference materials that were used for anchoring their measurement results to the respective primary stable isotope scale.

  3. Construction Mechanic Part I, 8-5. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, adapted from military curriculum materials for use in vocational and technical education, is the first of a two-course series that teaches students to maintain and repair automotive and construction equipment using either gasoline or diesel engines. It covers basic combustion engine principles and electrical system principles as well…

  4. Laundry and Drycleaning Supervisor, 18-4. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This instructional package for laundry/dry cleaning supervisor training has been adapted from military curriculum materials for use in vocational and technical education programs. The course is designed to train personnel to perform duties in the supervision and operation of a laundry/dry cleaning facility. This instructional package contains both…

  5. Nutrition and Menu Planning 9-3. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Army Quartermaster School, Ft. Lee, VA.

    This course, adapted from military curriculum materials for use in technical and vocational education, is of interest to food service personnel and to some food service supply personnel. Designed for independent study, the course includes the principles of nutrition, including nutrients and the effects of digestive processes on each individual's…

  6. Construction Mechanic Part II, 8-6. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, adapted from military curriculum materials for use in vocational and technical education, is the second of a two-course series that teaches students to maintain and repair automotive and construction equipment using either gasoline or diesel engines. It covers basic chassis and power train troubleshooting, diagnosis, and adjustment…

  7. High-resolution neutron diffraction study of microstructural changes in nanocrystalline ball-milled niobium carbide NbC{sub 0.93}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balagurov, Anatoly M.; Bobrikov, Ivan A.; Bokuchava, Gizo D.

    2015-11-15

    High resolution neutron diffraction was applied for elucidating of the microstructural evolution of nanocrystalline niobium carbide NbC{sub 0.93} powders subjected to high-energy ball milling. The diffraction patterns were collected with the high resolution Fourier diffractometer HRFD by using the reverse time-of-flight (RTOF) mode of data acquisition. The traditional single diffraction line analysis, the Rietveld method and more advanced Whole Powder Pattern Modeling technique were applied for the data analysis. The comparison of these techniques was performed. It is established that short-time milling produces a non-uniform powder, in which two distinct fractions with differing microstructure can be identified. Part of themore » material is in fact milled efficiently, with a reduction in grain size, an increase in the quantity of defects, and a corresponding tendency to decarburize reaching a composition NbC{sub 0.80} after 15 h of milling. The rest of the powder is less efficiently processed and preserves its composition and lower defect content. Larger milling times should have homogenized the system by increasing the efficiently milled fraction, but the material is unable to reach a uniform and homogeneous state. It is definitely shown that RTOF neutron diffraction patterns can provide the very accurate data for microstructure analysis of nanocrystalline powders. - Highlights: • The NbC{sub 0.93} powder was processed by high-energy ball milling. • The microstrain and dislocation density increase with milling time increase. • The corresponding decrease in crystallite size with milling time was observed. • The material exhibits the presence of two fractions after ball milling. • The RTOF neutron diffraction data are suitable for accurate microstructure analysis.« less

  8. Structural morphology, upconversion luminescence and optical thermometric sensing behavior of Y2O3:Er(3+)/Yb(3+) nano-crystalline phosphor.

    PubMed

    Joshi, C; Dwivedi, A; Rai, S B

    2014-08-14

    Infrared-to-visible upconverting rare earths Er(3+)/Yb(3+) co-doped Y2O3 nano-crystalline phosphor samples have been prepared by solution combustion method followed by post-heat treatment at higher temperatures. A slight increase in average crystallite size has been found on calcinations verified by X-ray analysis. Transmission electron microscopy (TEM) confirms the nano-crystalline nature of the as-prepared and calcinated samples. Fourier transform infrared (FTIR) analysis shows the structural changes in as-prepared and calcinated samples. Upconversion and downconversion emission recorded using 976 and 532 nm laser sources clearly demonstrates a better luminescence properties in the calcinated samples as compared to as-prepared sample. Upconversion emission has been quantified in terms of standard chromaticity diagram (CIE) showing a shift in overall upconversion emission of as-prepared and calcinated samples. Temperature sensing behaviour of this material has also been investigated by measurement of fluorescence intensity ratio (FIR) of various signals in green emission in the temperature range of 315 to 555 K under 976 nm laser excitation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Nanocrystalline NiNd0.01Fe1.99O4 as a gas sensor

    NASA Astrophysics Data System (ADS)

    Shinde, Tukaram J.; Gadkari, Ashok B.; Jadhav, Sarjerao R.; Kumar, Surender; Dalawai, Sanjeev P.; Vasambekar, Pramod N.

    2015-06-01

    Nanocrystalline NiNd0.01Fe1.99O4 has been synthesized by oxalate co-precipitation method and was characterized by X-ray diffraction technique. X-ray diffraction analysis confirms the formation of single phase cubic spinel structure. Crystallite size of the ferrite lies in the nano-particle range. The gas sensing properties of nanocrystalline ferrite were studied for gases like Cl2, LPG and C2H5OH. It was observed that NiNd0.01Fe1.99O4 is more sensitive towards chlorine followed by LPG at an operating temperature 277 °C compared to ethanol.

  10. Medical Laboratory Technician--Microbiology, 10-3. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, the second of three courses in the medical laboratory technician field adapted from military curriculum materials for use in vocational and technical education, was designed as a refresher course for student self-study and evaluation. It is suitable for use by advanced students or beginning students participating in a supervised…

  11. Anisotropic nanocrystalline MnBi with high coercivity at high temperature

    NASA Astrophysics Data System (ADS)

    Yang, J. B.; Yang, Y. B.; Chen, X. G.; Ma, X. B.; Han, J. Z.; Yang, Y. C.; Guo, S.; Yan, A. R.; Huang, Q. Z.; Wu, M. M.; Chen, D. F.

    2011-08-01

    Magnetic hard nanocrystalline MnBi has been prepared by melt spinning and subsequent low temperature annealing. A coercivity of 2.5 T can be achieved at 540 K for MnBi with an average grain size of about 20-30 nm. The coercivity iHc, mainly controlled by the coherent magnetization rotation, shows a strong dependence on the time of grinding and exhibits a positive temperature coefficient from 100 up to 540 K. The unique temperature dependent behavior of the coercivity (magnetocrystalline anisotropy) has a relationship with the variations in the crystal lattice ratio of c/a with temperatures. In addition, discontinuity can not be found in the lattice parameters of a, c, and c/a ratio at the magnetostructural transition temperature. The nanocrystalline MnBi powder fixed in an epoxy resin and under an applied magnetic field of 24 kOe shows a maximum energy product of 7.1 MGOe at room temperature and shows anisotropic characteristics with high Mr/Ms ratio up to 560 K.

  12. Performance characteristics of nanocrystalline diamond vacuum field emission transistor array

    NASA Astrophysics Data System (ADS)

    Hsu, S. H.; Kang, W. P.; Davidson, J. L.; Huang, J. H.; Kerns, D. V.

    2012-06-01

    Nitrogen-incorporated nanocrystalline diamond (ND) vacuum field emission transistor (VFET) with self-aligned gate is fabricated by mold transfer microfabrication technique in conjunction with chemical vapor deposition (CVD) of nanocrystalline diamond on emitter cavity patterned on silicon-on-insulator (SOI) substrate. The fabricated ND-VFET demonstrates gate-controlled emission current with good signal amplification characteristics. The dc characteristics of the ND-VFET show well-defined cutoff, linear, and saturation regions with low gate turn-on voltage, high anode current, negligible gate intercepted current, and large dc voltage gain. The ac performance of the ND-VFET is measured, and the experimental data are analyzed using a modified small signal circuit model. The experimental results obtained for the ac voltage gain are found to agree with the theoretical model. A higher ac voltage gain is attainable by using a better test setup to eliminate the associated parasitic capacitances. The paper reveals the amplifier characteristics of the ND-VFET for potential applications in vacuum microelectronics.

  13. Performance characteristics of nanocrystalline diamond vacuum field emission transistor array

    NASA Astrophysics Data System (ADS)

    Hsu, S. H.; Kang, W. P.; Davidson, J. L.; Huang, J. H.; Kerns, D. V.

    2012-05-01

    Nitrogen-incorporated nanocrystalline diamond (ND) vacuum field emission transistor (VFET) with self-aligned gate is fabricated by mold transfer microfabrication technique in conjunction with chemical vapor deposition (CVD) of nanocrystalline diamond on emitter cavity patterned on silicon-on-insulator (SOI) substrate. The fabricated ND-VFET demonstrates gate-controlled emission current with good signal amplification characteristics. The dc characteristics of the ND-VFET show well-defined cutoff, linear, and saturation regions with low gate turn-on voltage, high anode current, negligible gate intercepted current, and large dc voltage gain. The ac performance of the ND-VFET is measured, and the experimental data are analyzed using a modified small signal circuit model. The experimental results obtained for the ac voltage gain are found to agree with the theoretical model. A higher ac voltage gain is attainable by using a better test setup to eliminate the associated parasitic capacitances. The paper reveals the amplifier characteristics of the ND-VFET for potential applications in vacuum microelectronics.

  14. Atomic simulation of mechanical behavior of Mg in a super-lattice of nanocrystalline Mg and amorphous Mg-Al alloy

    NASA Astrophysics Data System (ADS)

    Song, H. Y.; An, M. R.; Li, Y. L.; Deng, Q.

    2014-12-01

    The mechanical properties of a super-lattice architecture composed of nanocrystalline Mg and Mg-Al amorphous alloy are investigated using molecular dynamics simulation. The results indicate that deformation mechanism of nanocrystalline Mg is obviously affected by the amorphous boundary spacing and temperature. The strength of the material increases with the decrease of amorphous boundary spacing, presenting a Hall-Petch effect at both 10 K and 300 K. A stress platform and following stiffness softening, as well as a linear strengthening in the plastic stage, are observed when the amorphous boundary spacing below 8.792 nm at 10 K. The implying reason may be that the amorphous boundary acts as the dislocations emission and absorption source. However, the second stress peak is not observed for the models at 300 K. Instead, the flow stress in plastic stage is a nearly constant value. The simulation demonstrates the emergence of the new grain, accompanied by the deformation twins and stacking faults associated with the plastic behaviors at 300 K. The general conclusions derived from this work may provide a guideline for the design of high-performance hexagonal close-packed metals.

  15. Amorphous and nanocrystalline luminescent Si and Ge obtained via a solid-state chemical metathesis synthesis route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, Paul F.; Gryko, Jan; Bull, Craig

    A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr{sub 2}) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300{sup o}C. Syntheses at higher temperatures gave rise tomore » microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.« less

  16. Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam.

    PubMed

    Alaie, Seyedhamidreza; Goettler, Drew F; Jiang, Ying-Bing; Abbas, Khawar; Baboly, Mohammadhosein Ghasemi; Anjum, D H; Chaieb, S; Leseman, Zayd C

    2015-02-27

    Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties. In this work, Pt deposited by FIB is characterized thermally, structurally, and chemically. Its thermal conductivity is found to be substantially lower than the bulk value of Pt, 7.2 W m(-1) K(-1) versus 71.6 W m(-1) K(-1) at room temperature. The low thermal conductivity is attributed to the nanostructure of the material and its chemical composition. Pt deposited by FIB is shown, via aberration corrected TEM, to be a segregated mix of nanocrystalline Pt and amorphous C with Ga and O impurities. Ga impurities mainly reside in the Pt while O is homogeneously distributed throughout. The Ga impurity, small grain size of the Pt, and the amorphous carbon between grains are the cause for the low thermal conductivity of this material. Since Pt deposited by FIB is a common material for affixing samples, this information can be used to assess systematic errors in thermal characterization of different nanosamples. This application is also demonstrated by thermal characterization of two carbon nanofibers and a correction using the reported thermal properties of the Pt deposited by FIB.

  17. Nanocrystalline hexagonal diamond formed from glassy carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiell, Thomas. B.; McCulloch, Dougal G.; Bradby, Jodie E.

    Carbon exhibits a large number of allotropes and its phase behaviour is still subject to signifcant uncertainty and intensive research. The hexagonal form of diamond, also known as lonsdaleite, was discovered in the Canyon Diablo meteorite where its formation was attributed to the extreme conditions experienced during the impact. However, it has recently been claimed that lonsdaleite does not exist as a well-defned material but is instead defective cubic diamond formed under high pressure and high temperature conditions. Here we report the synthesis of almost pure lonsdaleite in a diamond anvil cell at 100GPa and 400 C. The nanocrystalline materialmore » was recovered at ambient and analysed using difraction and high resolution electron microscopy. We propose that the transformation is the result of intense radial plastic fow under compression in the diamond anvil cell, which lowers the energy barrier by locking in favourable stackings of graphene sheets. This strain induced transformation of the graphitic planes of the precursor to hexagonal diamond is supported by frst principles calculations of transformation pathways and explains why the new phase is found in an annular region. Furthermore, our findings establish that high purity lonsdaleite is readily formed under strain and hence does not require meteoritic impacts.« less

  18. Nanocrystalline hexagonal diamond formed from glassy carbon

    DOE PAGES

    Shiell, Thomas. B.; McCulloch, Dougal G.; Bradby, Jodie E.; ...

    2016-11-29

    Carbon exhibits a large number of allotropes and its phase behaviour is still subject to signifcant uncertainty and intensive research. The hexagonal form of diamond, also known as lonsdaleite, was discovered in the Canyon Diablo meteorite where its formation was attributed to the extreme conditions experienced during the impact. However, it has recently been claimed that lonsdaleite does not exist as a well-defned material but is instead defective cubic diamond formed under high pressure and high temperature conditions. Here we report the synthesis of almost pure lonsdaleite in a diamond anvil cell at 100GPa and 400 C. The nanocrystalline materialmore » was recovered at ambient and analysed using difraction and high resolution electron microscopy. We propose that the transformation is the result of intense radial plastic fow under compression in the diamond anvil cell, which lowers the energy barrier by locking in favourable stackings of graphene sheets. This strain induced transformation of the graphitic planes of the precursor to hexagonal diamond is supported by frst principles calculations of transformation pathways and explains why the new phase is found in an annular region. Furthermore, our findings establish that high purity lonsdaleite is readily formed under strain and hence does not require meteoritic impacts.« less

  19. Radiation tolerance of nanocrystalline ceramics: insights from Yttria Stabilized Zirconia.

    PubMed

    Dey, Sanchita; Drazin, John W; Wang, Yongqiang; Valdez, James A; Holesinger, Terry G; Uberuaga, Blas P; Castro, Ricardo H R

    2015-01-13

    Materials for applications in hostile environments, such as nuclear reactors or radioactive waste immobilization, require extremely high resistance to radiation damage, such as resistance to amorphization or volume swelling. Nanocrystalline materials have been reported to present exceptionally high radiation-tolerance to amorphization. In principle, grain boundaries that are prevalent in nanomaterials could act as sinks for point-defects, enhancing defect recombination. In this paper we present evidence for this mechanism in nanograined Yttria Stabilized Zirconia (YSZ), associated with the observation that the concentration of defects after irradiation using heavy ions (Kr(+), 400 keV) is inversely proportional to the grain size. HAADF images suggest the short migration distances in nanograined YSZ allow radiation induced interstitials to reach the grain boundaries on the irradiation time scale, leaving behind only vacancy clusters distributed within the grain. Because of the relatively low temperature of the irradiations and the fact that interstitials diffuse thermally more slowly than vacancies, this result indicates that the interstitials must reach the boundaries directly in the collision cascade, consistent with previous simulation results. Concomitant radiation-induced grain growth was observed which, as a consequence of the non-uniform implantation, caused cracking of the nano-samples induced by local stresses at the irradiated/non-irradiated interfaces.

  20. Radiation Tolerance of Nanocrystalline Ceramics: Insights from Yttria Stabilized Zirconia

    PubMed Central

    Dey, Sanchita; Drazin, John W.; Wang, Yongqiang; Valdez, James A.; Holesinger, Terry G.; Uberuaga, Blas P.; Castro, Ricardo H. R.

    2015-01-01

    Materials for applications in hostile environments, such as nuclear reactors or radioactive waste immobilization, require extremely high resistance to radiation damage, such as resistance to amorphization or volume swelling. Nanocrystalline materials have been reported to present exceptionally high radiation-tolerance to amorphization. In principle, grain boundaries that are prevalent in nanomaterials could act as sinks for point-defects, enhancing defect recombination. In this paper we present evidence for this mechanism in nanograined Yttria Stabilized Zirconia (YSZ), associated with the observation that the concentration of defects after irradiation using heavy ions (Kr+, 400 keV) is inversely proportional to the grain size. HAADF images suggest the short migration distances in nanograined YSZ allow radiation induced interstitials to reach the grain boundaries on the irradiation time scale, leaving behind only vacancy clusters distributed within the grain. Because of the relatively low temperature of the irradiations and the fact that interstitials diffuse thermally more slowly than vacancies, this result indicates that the interstitials must reach the boundaries directly in the collision cascade, consistent with previous simulation results. Concomitant radiation-induced grain growth was observed which, as a consequence of the non-uniform implantation, caused cracking of the nano-samples induced by local stresses at the irradiated/non-irradiated interfaces. PMID:25582769

  1. Radiation tolerance of nanocrystalline ceramics: Insights from yttria stabilized zirconia

    DOE PAGES

    Dey, Sanchita; Drazin, John W.; Wang, Yongqiang; ...

    2015-01-13

    Materials for applications in hostile environments, such as nuclear reactors or radioactive waste immobilization, require extremely high resistance to radiation damage, such as resistance to amorphization or volume swelling. Nanocrystalline materials have been reported to present exceptionally high radiation-tolerance to amorphization. In principle, grain boundaries that are prevalent in nanomaterials could act as sinks for point-defects, enhancing defect recombination. In this paper we present evidence for this mechanism in nanograined Yttria Stabilized Zirconia (YSZ), associated with the observation that the concentration of defects after irradiation using heavy ions (Kr⁺, 400 keV) is inversely proportional to the grain size. HAADF imagesmore » suggest the short migration distances in nanograined YSZ allow radiation induced interstitials to reach the grain boundaries on the irradiation time scale, leaving behind only vacancy clusters distributed within the grain. Because of the relatively low temperature of the irradiations and the fact that interstitials diffuse thermally more slowly than vacancies, this result indicates that the interstitials must reach the boundaries directly in the collision cascade, consistent with previous simulation results. Concomitant radiation-induced grain growth was observed which, as a consequence of the non-uniform implantation, caused cracking of the nano-samples induced by local stresses at the irradiated/non-irradiated interfaces.« less

  2. Grain Growth in Nanocrystalline Mg-Al Thin Films

    DOE PAGES

    Kruska, Karen; Rohatgi, Aashish; Vemuri, Rama S.; ...

    2017-10-05

    We report that an improved understanding of grain growth kinetics in nanocrystalline materials, and in metals and alloys in general, is of continuing interest to the scientific community. In this study, Mg-Al thin films containing ~10 wt pct Al and with 14.5 nm average grain size were produced by magnetron sputtering and subjected to heat treatments. The grain growth evolution in the early stages of heat treatment at 423 K, 473 K, and 573 K (150 °C, 200 °C, and 300 °C) was observed with transmission electron microscopy and analyzed based upon the classical equation developed by Burke and Turnbull.more » The grain growth exponent was found to be 7 ± 2 and the activation energy for grain growth was 31.1 ± 13.4 kJ/mol, the latter being significantly lower than in bulk Mg-Al alloys. The observed grain growth kinetics are explained by the Al supersaturation in the matrix and the pinning effects of the rapidly forming beta precipitates and possibly shallow grain boundary grooves. In conclusion, the low activation energy is attributed to the rapid surface diffusion which is dominant in thin film systems.« less

  3. Grain Growth in Nanocrystalline Mg-Al Thin Films

    NASA Astrophysics Data System (ADS)

    Kruska, Karen; Rohatgi, Aashish; Vemuri, Rama S.; Kovarik, Libor; Moser, Trevor H.; Evans, James E.; Browning, Nigel D.

    2017-12-01

    An improved understanding of grain growth kinetics in nanocrystalline materials, and in metals and alloys in general, is of continuing interest to the scientific community. In this study, Mg-Al thin films containing 10 wt pct Al and with 14.5 nm average grain size were produced by magnetron sputtering and subjected to heat treatments. The grain growth evolution in the early stages of heat treatment at 423 K, 473 K, and 573 K (150 °C, 200 °C, and 300 °C) was observed with transmission electron microscopy and analyzed based upon the classical equation developed by Burke and Turnbull. The grain growth exponent was found to be 7 ± 2 and the activation energy for grain growth was 31.1 ± 13.4 kJ/mol, the latter being significantly lower than in bulk Mg-Al alloys. The observed grain growth kinetics are explained by the Al supersaturation in the matrix and the pinning effects of the rapidly forming beta precipitates and possibly shallow grain boundary grooves. The low activation energy is attributed to the rapid surface diffusion which is dominant in thin film systems.

  4. Analysis and Evaluation of Technical Data on the Photochromic and Non- Linear Optical Properties of Materials

    DTIC Science & Technology

    1989-03-01

    relatively small contractural effort is to provide technical assistance to Dr. Frank Patten (DARPA) in evaluating data on materials, especially... Musikant , S. (ed.), Advances in Materials for Active Optics, Proceedings of SPIE, Volume 567, SPIE:Washington, 1985. [22] Lewis, Aaron, Del Priore...polysilane," J. Appl. Phys. 60 (1986) 3040-3044. [146] Hache, F., Ricard, D., Flytzanis, C., "Optical nonlinearities of small metal particles: surface

  5. [Prospects of material and technical development of the department of anaesthesia and intensive care].

    PubMed

    Shchegolev, A V

    2013-07-01

    The author of the article came to conclusion that in view of electronics breakthrough, nanotechnology and genetic engineering development it is necessary to reconsider the system of emergency care, anesthesia and intensive care service on the battlefield, reduction of the influence of pathologic factors and secure evacuation to special treatment department. One of the main criteria is constant improvement of material and technical equipment for heavy rescue. Necessity of dislocation, problems with communications infrastructure, poor medical gas supply are the main problems which cause the necessity of development of special equipment which must be equal characteristics and security level of analogues, used in peace time. The last equipment can not be used by troops for various reasons. Probably, due to the absence mass sanitary loss, reduction of medical service in consequence of material and technical equipment must be proven. It is necessary to emphasize, that the department of anaesthesia and intensive care of the Ministry of Defence of the Russian Federation copes with the tasks of war and peacetime throughout the history.

  6. Improvement of technical purpose materials performance characteristics with the radio frequency low pressure plasma

    NASA Astrophysics Data System (ADS)

    Makhotkina, L. Yu; Khristoliubova, V. I.

    2017-11-01

    The main aim of the work is to solve the actual problem of increasing the competitiveness of tanning products by reducing the prime cost and improving the quality of finished products due to the increased durability of the working elements of tanneries. The impact of the low pressure radio frequency (RF) plasma in the processes of treating for modification of the materials for special purposes is considered in the article. The results of working elements of tanneries and the materials for special purposes sample processing by a RF low pressure plasma are described. As a result of leather materials nano structuring and nano modifying physical, mechanical and hygienic characteristics were increased. Processing of the technical purpose materials allows to increase operational performance of products and extend their lifespan.

  7. The impact of diamond nanocrystallinity on osteoblast functions.

    PubMed

    Yang, Lei; Sheldon, Brian W; Webster, Thomas J

    2009-07-01

    Nanocrystalline diamond has been proposed as an anti-abrasive film on orthopedic implants. In this study, osteoblast (bone forming cells) functions including adhesion (up to 4h), proliferation (up to 5 days) and differentiation (up to 21 days) on different diamond film topographies were systematically investigated. In order to exclude interferences from changes in surface chemistry and wettability (energy), diamond films with nanometer and micron scale topographies were fabricated through microwave plasma enhanced chemical-vapor-deposition and hydrogen plasma treatment. Scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy and water contact angle measurements verified the similar surface chemistry and wettability but varied topographies for all of the diamond films prepared on silicon in this study. Cytocompatibility assays demonstrated enhanced osteoblast functions (including adhesion, proliferation, intracellular protein synthesis, alkaline phosphatase activity and extracellular calcium deposition) on nanocrystalline diamond compared to submicron diamond grain size films for all time periods tested up to 21 days. An SEM study of osteoblast attachment helped to explain the topographical impact diamond had on osteoblast functions by showing altered filopodia extensions on the different diamond topographies. In summary, these results provided insights into understanding the role diamond nanotopography had on osteoblast interactions and more importantly, the application of diamond films to improve orthopedic implant lifetimes.

  8. Change of magnetic properties of nanocrystalline alloys under influence of external factors

    NASA Astrophysics Data System (ADS)

    Sitek, Jozef; Holková, Dominika; Dekan, Julius; Novák, Patrik

    2016-10-01

    Nanocrystalline (Fe3Ni1)81Nb7B12 alloys were irradiated using different types of radiation and subsequently studied by Mössbauer spectroscopy. External magnetic field of 0.5 T, electron-beam irradiation up to 4 MGy, neutron irradiation up to 1017 neutrons/cm2 and irradiation with Cu ions were applied on the samples. All types of external factors had an influence on the magnetic microstructure manifested as a change in the direction of the net magnetic moment, intensity of the internal magnetic field and volumetric fraction of the constituent phases. The direction of the net magnetic moment was the most sensitive parameter. Changes of the microscopic magnetic parameters were compared after different external influence and results of nanocrystalline samples were compared with their amorphous precursors.

  9. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films

    NASA Astrophysics Data System (ADS)

    Huo, Wenyi; Liu, Xiaodong; Tan, Shuyong; Fang, Feng; Xie, Zonghan; Shang, Jianku; Jiang, Jianqing

    2018-05-01

    Nano-twinned, nanocrystalline CoCrFeNi high-entropy alloy films were produced by magnetron sputtering. The films exhibit a high hardness of 8.5 GPa, the elastic modulus of 161.9 GPa and the resistivity as high as 135.1 μΩ·cm. The outstanding mechanical properties were found to result from the resistance of deformation created by nanocrystalline grains and nano-twins, while the electrical resistivity was attributed to the strong blockage effect induced by grain boundaries and lattice distortions. The results lay a solid foundation for the development of advanced films with structural and functional properties combined in micro-/nano-electronic devices.

  10. Multiple magnetic scattering in small-angle neutron scattering of Nd-Fe-B nanocrystalline magnet.

    PubMed

    Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P; Keiderling, Uwe; Ono, Kanta

    2016-06-20

    We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd-Fe-B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd-Fe-B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd-Fe-B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters.

  11. Multiple magnetic scattering in small-angle neutron scattering of Nd–Fe–B nanocrystalline magnet

    PubMed Central

    Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P.; Keiderling, Uwe; Ono, Kanta

    2016-01-01

    We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd–Fe–B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd–Fe–B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd–Fe–B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters. PMID:27321149

  12. From amorphous to nanocrystalline: the effect of nanograins in amorphous matrix on the thermal conductivity of hot-wire chemical-vapor deposited silicon films

    DOE PAGES

    Kearney, B. T.; Jugdersuren, B.; Queen, D. R.; ...

    2017-12-28

    Here, we have measured the thermal conductivity of amorphous and nanocrystalline silicon films with varying crystalline content from 85K to room temperature. The films were prepared by the hot-wire chemical-vapor deposition, where the crystalline volume fraction is determined by the hydrogen (H2) dilution ratio to the processing silane gas (SiH4), R=H2/SiH4. We varied R from 1 to 10, where the films transform from amorphous for R < 3 to mostly nanocrystalline for larger R. Structural analyses show that the nanograins, averaging from 2 to 9nm in sizes with increasing R, are dispersed in the amorphous matrix. The crystalline volume fractionmore » increases from 0 to 65% as R increases from 1 to 10. The thermal conductivities of the two amorphous silicon films are similar and consistent with the most previous reports with thicknesses no larger than a few um deposited by a variety of techniques. The thermal conductivities of the three nanocrystalline silicon films are also similar, but are about 50-70% higher than those of their amorphous counterparts. The heat conduction in nanocrystalline silicon films can be understood as the combined contribution in both amorphous and nanocrystalline phases, where increased conduction through improved nanocrystalline percolation path outweighs increased interface scattering between silicon nanocrystals and the amorphous matrix.« less

  13. From amorphous to nanocrystalline: the effect of nanograins in amorphous matrix on the thermal conductivity of hot-wire chemical-vapor deposited silicon films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kearney, B. T.; Jugdersuren, B.; Queen, D. R.

    Here, we have measured the thermal conductivity of amorphous and nanocrystalline silicon films with varying crystalline content from 85K to room temperature. The films were prepared by the hot-wire chemical-vapor deposition, where the crystalline volume fraction is determined by the hydrogen (H2) dilution ratio to the processing silane gas (SiH4), R=H2/SiH4. We varied R from 1 to 10, where the films transform from amorphous for R < 3 to mostly nanocrystalline for larger R. Structural analyses show that the nanograins, averaging from 2 to 9nm in sizes with increasing R, are dispersed in the amorphous matrix. The crystalline volume fractionmore » increases from 0 to 65% as R increases from 1 to 10. The thermal conductivities of the two amorphous silicon films are similar and consistent with the most previous reports with thicknesses no larger than a few um deposited by a variety of techniques. The thermal conductivities of the three nanocrystalline silicon films are also similar, but are about 50-70% higher than those of their amorphous counterparts. The heat conduction in nanocrystalline silicon films can be understood as the combined contribution in both amorphous and nanocrystalline phases, where increased conduction through improved nanocrystalline percolation path outweighs increased interface scattering between silicon nanocrystals and the amorphous matrix.« less

  14. Shock-induced microstructural response of mono- and nanocrystalline SiC ceramics

    NASA Astrophysics Data System (ADS)

    Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya

    2018-04-01

    The dynamic behavior of mono- and nanocrystalline SiC ceramics under plane shock loading is revealed using molecular-dynamics simulations. The generation of shock-induced elastic compression, plastic deformation, and structural phase transformation is characterized at different crystallographic directions as well as on a 5-nm grain size nanostructure at 10 K and 300 K. Shock profiles are calculated in a wide range of particle velocities 0.1-6.0 km/s. The predicted Hugoniot agree well with experimental data. Results indicate the generation of elastic waves for particle velocities below 0.8-1.9 km/s, depending on the crystallographic direction. In the intermediate range of particle velocities between 2 and 5 km/s, the shock wave splits into an elastic precursor and a zinc blende-to-rock salt structural transformation wave, which is triggered by shock pressure over the ˜90 GPa threshold value. A plastic wave, with a strong deformation twinning component, is generated ahead of the transformation wave for shocks in the velocity range between 1.5 and 3 km/s. For particle velocities greater than 5-6 km/s, a single overdriven transformation wave is generated. Surprisingly, shocks on the nanocrystalline sample reveal the absence of wave splitting, and elastic, plastic, and transformation wave components are seamlessly connected as the shock strength is continuously increased. The calculated strengths 15.2, 31.4, and 30.9 GPa for ⟨001⟩, ⟨111⟩, and ⟨110⟩ directions and 12.3 GPa for the nanocrystalline sample at the Hugoniot elastic limit are in excellent agreement with experimental data.

  15. Potential of nanocrystalline cellulose-fibrin nanocomposites for artificial vascular graft applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Elvie; Hu, Dehong; Abu-Lail, Nehal

    2013-02-19

    Nanocrystalline cellulose, a new bio-nanomaterial is utilized as a reinforcing material for biocompatible fibrin matrix to form into a nanocomposite for small-diameter replacement vascular graft application (SDRVG). The periodate oxidation of NCC, which provided it with a reactive carbonyl group, allowed molecular interaction between NCC and fibrin. Such interaction resulted into an effective mechanical reinforcement indicated by the improvement of max. force, elongation at break and modulus when oxidized NCC (ONCC) was incorporated into fibrin. The nanocomposite’s mechanical properties can be manipulated to conform to the native blood vessel by varying the ONCC to fibrin ratio and/or by controlling themore » degree of oxidation of NCC. Using atomic force microscopy had provided fundamental information on the effects of molecular interactions to the nanolevel mechanical properties of NCC/fibrin nanocomposites. This fundamental information established the positive feasibility and commenced continuing investigation for the practical SDRVG application of NCC/fibrin nanocomposite.« less

  16. Advanced materials for the 21st century: The 1999 Julia R. Weertman symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Y.W.; Dunand, D.C.; Liaw, P.K.

    1999-07-01

    This book is divided into the following sections: (1) Dislocations and Cavitation; (2) High-Temperature Deformation; (3) Physical Metallurgy; (4) Mechanical Metallurgy; and (5) Nanocrystalline Materials. Separate abstracts were prepared for most of the papers in this book.

  17. Influence of surface and finite size effects on the structural and magnetic properties of nanocrystalline lanthanum strontium perovskite manganites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Žvátora, Pavel; Veverka, Miroslav; Veverka, Pavel

    2013-08-15

    Syntheses of nanocrystalline perovskite phases of the general formula La{sub 1−x}Sr{sub x}MnO{sub 3+δ} were carried out employing sol–gel technique followed by thermal treatment at 700–900 °C under oxygen flow. The prepared samples exhibit a rhombohedral structure with space group R3{sup ¯}c in the whole investigated range of composition 0.20≤x≤0.45. The studies were aimed at the chemical composition including oxygen stoichiometry and extrinsic properties, i.e. size of the particles, both influencing the resulting structural and magnetic properties. The oxygen stoichiometry was determined by chemical analysis revealing oxygen excess in most of the studied phases. The excess was particularly high for themore » samples with the smallest crystallites (12–28 nm) while comparative bulk materials showed moderate non-stoichiometry. These differences are tentatively attributed to the surface effects in view of the volume fraction occupied by the upper layer whose atomic composition does not comply with the ideal bulk stoichiometry. - Graphical abstract: Evolution of the particle size with annealing temperature in the nanocrystalline La{sub 0.70}Sr{sub 0.30}MnO{sub 3+δ} phase. Display Omitted - Highlights: • The magnetic behaviour of nanocrystalline La{sub 1−x}Sr{sub x}MnO{sub 3+δ} phases was analyzed on the basis of their crystal structure, chemical composition and size of the particles. • Their Curie temperature and magnetization are markedly affected by finite size and surface effects. • The oxygen excess observed in the La{sub 1−x}Sr{sub x}MnO{sub 3+δ} nanoparticles might be generated by the surface layer with deviated oxygen stoichiometry.« less

  18. Exploring biosensor applications with cotton cellulose nanocrystalline protein and peptide conjugates

    USDA-ARS?s Scientific Manuscript database

    Sensor I: Nano-crystalline preparations were produced through acid hydrolysis and mechanical breakage of the cotton fibers from a scoured and bleached cotton fabric and a scoured and bleached, mercerized fabric, which was shown to produce cellulose I (NCI) and cellulose II (NCII) crystals respective...

  19. CP/MAS ¹³C NMR study of pulp hornification using nanocrystalline cellulose as a model system.

    PubMed

    Idström, Alexander; Brelid, Harald; Nydén, Magnus; Nordstierna, Lars

    2013-01-30

    The hornification process of paper pulp was investigated using solid-state (13)C NMR spectroscopy. Nanocrystalline cellulose was used to serve as a model system of the crystalline parts of the fibrils in pulp fibers. Characterization of the nanocrystalline cellulose dimensions was carried out using scanning electron microscopy. The samples were treated by drying and wetting cycles prior to NMR analysis where the hornification phenomenon was recorded by spectral changes of the cellulose C-4 carbon signals. An increase of the crystalline signal and a decrease of the signals corresponding to the accessible amorphous domains were found for both paper pulp and nanocrystalline cellulose. These spectral changes grew stronger with repeating drying and wetting cycles. The results show that cellulose co-crystallization contribute to hornification. Another conclusion is that the surfaces of higher hydrophobicity in cellulose fibrils have an increased preference for aggregation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Biomineralization of hydroxyapatite in silver ion-exchanged nanocrystalline ZSM-5 zeolite using simulated body fluid.

    PubMed

    Kaur, Balwinder; Srivastava, Rajendra; Satpati, Biswarup; Kondepudi, Kanthi Kiran; Bishnoi, Mahendra

    2015-11-01

    Silver ion-exchanged nanocrystalline zeolite (Ag-Nano-ZSM-5) and silver ion-exchanged conventional zeolite (Ag-ZSM-5) were synthesized. Zeolites were incubated in simulated body fluid at 310K for different time periods to grow hydroxyapatite in their matrixes. Significant large amount of hydroxyapatite was grown in Ag-Nano-ZSM-5 matrix after incubation in simulated body fluid when compared to Ag-ZSM-5. The resultant material was characterized using X-ray diffraction, N2-adsorption, scanning/transmission electron microscopy, energy dispersive X-ray, and inductively coupled plasma analysis. Mechanical properties such as compressive modulus, compressive strength, and strain at failure of the parent materials were evaluated. Biocompatibility assays suggested that Ag-Nano-ZSM-5 and hydroxyapatite grown in Ag-Nano-ZSM-5 were compatible and did not impose any toxicity to RAW 264.7 cells macrophase and Caco2 cells suggesting considerable potential for biomedical applications such as bone implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Marine Science Technician Second Class, 15-2. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, adapted from military curriculum materials for use in vocational and technical education, was designed to provide the theory portion of the Marine Science Technician Program. It includes a review of basic subjects, marine biology, oceanography, as well as meteorologic observations and recording. The course consists of a lesson book…

  2. Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Films

    PubMed Central

    Loisel, Loïc; Florea, Ileana; Cojocaru, Costel-Sorin; Tay, Beng Kang; Lebental, Bérengère

    2016-01-01

    Nano and femtosecond laser writing are becoming very popular techniques for patterning carbon-based materials, as they are single-step processes enabling the drawing of complex shapes without photoresist. However, pulsed laser writing requires costly laser sources and is known to cause damages to the surrounding material. By comparison, continuous-wave lasers are cheap, stable and provide energy at a more moderate rate. Here, we show that a continuous-wave laser may be used to pattern vertical nano-crystalline graphite thin films with very few macroscale defects. Moreover, a spatially resolved study of the impact of the annealing to the crystalline structure and to the oxygen ingress in the film is provided: amorphization, matter removal and high oxygen content at the center of the beam; sp2 clustering and low oxygen content at its periphery. These data strongly suggest that amorphization and matter removal are controlled by carbon oxidation. The simultaneous occurrence of oxidation and amorphization results in a unique evolution of the Raman spectra as a function of annealing time, with a decrease of the I(D)/I(G) values but an upshift of the G peak frequency. PMID:27194181

  3. An investigation on the preparation of nanocrystalline hydrous zirconia from zirconium tungstate

    NASA Astrophysics Data System (ADS)

    Antunes, M.; Perottoni, C. A.; Gouvêa, D.; Machado, G.; Zorzi, J. E.

    2018-02-01

    Hydrous nanocrystalline zirconia was prepared from an unusual precursor—the bimetallic oxide zirconium tungstate (ZrW2O8)—in alkaline medium. Different experimental conditions (NaOH concentration, time and temperature) were used to investigate the effects on crystallographic, morphological, chemical and thermal characteristics of the products. The resulting materials are composed of particles with a crystal structure similar to that of cubic ZrO2 (or a mixture of tetragonal and cubic phases, depending on the synthesis conditions), with particle size around 5 nm and crystallites around 3 nm in diameter. These particles form high surface area agglomerates, exhibiting mesoporosity and capacity for adsorption of water and carbon dioxide. The synthesis mechanism appears to be constituted, first, by a chemical substitution reaction between the WO4 tetrahedra and hydroxyl ions, with subsequent solubilization of the structure. Indeed, excess hydroxyls in the medium form colloidal zirconium ions which polymerize/condense, generating crystalline nuclei in a process facilitated by heterogeneous nucleation and supersaturation. The presence of residual tungsten in all samples appears to be a key element for stabilizing the size and crystalline structure of the materials produced.

  4. Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Films

    NASA Astrophysics Data System (ADS)

    Loisel, Loïc; Florea, Ileana; Cojocaru, Costel-Sorin; Tay, Beng Kang; Lebental, Bérengère

    2016-05-01

    Nano and femtosecond laser writing are becoming very popular techniques for patterning carbon-based materials, as they are single-step processes enabling the drawing of complex shapes without photoresist. However, pulsed laser writing requires costly laser sources and is known to cause damages to the surrounding material. By comparison, continuous-wave lasers are cheap, stable and provide energy at a more moderate rate. Here, we show that a continuous-wave laser may be used to pattern vertical nano-crystalline graphite thin films with very few macroscale defects. Moreover, a spatially resolved study of the impact of the annealing to the crystalline structure and to the oxygen ingress in the film is provided: amorphization, matter removal and high oxygen content at the center of the beam; sp2 clustering and low oxygen content at its periphery. These data strongly suggest that amorphization and matter removal are controlled by carbon oxidation. The simultaneous occurrence of oxidation and amorphization results in a unique evolution of the Raman spectra as a function of annealing time, with a decrease of the I(D)/I(G) values but an upshift of the G peak frequency.

  5. Water as probe molecule for midgap states in nanocrystalline strontium titanate by conventional and synchronous luminescence spectroscopy under ambient conditions

    NASA Astrophysics Data System (ADS)

    Taylor, Sean; Samokhvalov, Alexander

    2017-03-01

    Alkaline earth metal titanates are broad bandgap semiconductors with applications in electronic devices, as catalysts, photocatalysts, sorbents, and sensors. Strontium titanate SrTiO3 is of interest in electronic devices, sensors, in the photocatalytic hydrogen generation, as catalyst and sorbent. Both photocatalysis and operation of electronic devices rely upon the pathways of relaxation of excited charge in the semiconductor, including relaxation through the midgap states. We report characterization of nanocrystalline SrTiO3 at room temperature by "conventional" vs. synchronous luminescence spectroscopy and complementary methods. We determined energies of radiative transitions in the visible range through the two midgap states in the nanocrystalline SrTiO3. Further, adsorption and desorption of vapor of water as "probe molecule" for midgap states in the nanocrystalline SrTiO3 was studied, for the first time, by luminescence spectroscopy under ambient conditions. Emission of visible light from the nanocrystalline SrTiO3 is significantly increased upon desorption of water and decreased (quenched) upon adsorption of water vapor, due to interactions with the surface midgap states.

  6. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouro, J.; Gualdino, A.; Chu, V.

    2013-11-14

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three differentmore » types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.« less

  7. Search and Rescue Aircrewman/HH3F Avionics, 2-11. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This self-paced, individualized course, adapted from military curriculum materials for use in vocational and technical education, teaches students the skills needed to become a qualified avionics worker and aircrew rescuer on the HH-3F helicopter. The course materials consist of four pamphlets: two student workbooks and two student syllabuses. The…

  8. Atomistic modeling of La 3+ doping segregation effect on nanocrystalline yttria-stabilized zirconia

    DOE PAGES

    Zhang, Shenli; Sha, Haoyan; Castro, Ricardo H. R.; ...

    2018-01-01

    The effect of La 3+ doping on the structure and ionic conductivity change in nanocrystalline yttria-stabilized zirconia (YSZ) was studied using a combination of Monte Carlo and molecular dynamics simulations.

  9. Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration

    PubMed Central

    Im, Owen; Li, Jian; Wang, Mian; Zhang, Lijie Grace; Keidar, Michael

    2012-01-01

    Background Many shortcomings exist in the traditional methods of treating bone defects, such as donor tissue shortages for autografts and disease transmission for allografts. The objective of this study was to design a novel three-dimensional nanostructured bone substitute based on magnetically synthesized single-walled carbon nanotubes (SWCNT), biomimetic hydrothermally treated nanocrystalline hydroxyapatite, and a biocompatible hydrogel (chitosan). Both nanocrystalline hydroxyapatite and SWCNT have a biomimetic nanostructure, excellent osteoconductivity, and high potential to improve the load-bearing capacity of hydrogels. Methods Specifically, three-dimensional porous chitosan scaffolds with different concentrations of nanocrystalline hydroxyapatite and SWCNT were created to support the growth of human osteoblasts (bone-forming cells) using a lyophilization procedure. Two types of SWCNT were synthesized in an arc discharge with a magnetic field (B-SWCNT) and without a magnetic field (N-SWCNT) for improving bone regeneration. Results Nanocomposites containing magnetically synthesized B-SWCNT had superior cytocompatibility properties when compared with nonmagnetically synthesized N-SWCNT. B-SWCNT have much smaller diameters and are twice as long as their nonmagnetically prepared counterparts, indicating that the dimensions of carbon nanotubes can have a substantial effect on osteoblast attachment. Conclusion This study demonstrated that a chitosan nanocomposite with both B-SWCNT and 20% nanocrystalline hydroxyapatite could achieve a higher osteoblast density when compared with the other experimental groups, thus making this nanocomposite promising for further exploration for bone regeneration. PMID:22619545

  10. Study of magnetic and electrical properties of nanocrystalline Mn doped NiO.

    PubMed

    Raja, S Philip; Venkateswaran, C

    2011-03-01

    Diluted Magnetic Semiconductors (DMS) are intensively explored in recent years for its applications in spintronics, which is expected to revolutionize the present day information technology. Nanocrystalline Mn doped NiO samples were prepared using chemical co-precipitation method with an aim to realize room temperature ferromagnetism. Phase formation of the samples was studied using X-ray diffraction-Rietveld analysis. Scanning electron microscopy and Energy dispersive X-ray analysis results reveal the nanocrystalline nature of the samples, agglomeration of the particles, considerable particle size distribution and the near stoichiometry. Thermomagnetic curves confirm the single-phase formation of the samples up to 1% doping of Mn. Vibrating Sample Magnetometer measurements indicate the absence of ferromagnetism at room temperature. This may be due to the low concentration of Mn2+ ions having weak indirect coupling with Ni2+ ions. The lack of free carriers is also expected to be the reason for the absence of ferromagnetism, which is in agreement with the results of resistivity measurements using impedance spectroscopy. Arrhenius plot shows the presence of two thermally activated regions and the activation energy for the nanocrystalline Mn doped sample was found to be greater than that of undoped NiO. This is attributed to the doping effect of Mn. However, the dielectric constant of the samples was found to be of the same order of magnitude very much comparable with that of undoped NiO.

  11. Formation of nanocrystalline SiGe in Polycrystalline-Ge/Si thin film without any metal induced crystallization

    NASA Astrophysics Data System (ADS)

    Tah, Twisha; Singh, Ch. Kishan; Madapu, K. K.; Polaki, S. R.; Ilango, S.; David, C.; Dash, S.; Panigrahi, B. K.

    2017-05-01

    The formation of nanocrystalline SiGe without the aid of metal induced crystallization is reported. Re-crystallization of the as-deposited poly-Ge film (deposited at 450 °C) leads to development of regions with depleted Ge concentration upon annealing at 500 °C. Clusters with crystalline facet containing both nanocrystalline SiGe and crystalline Ge phase starts appearing at 600 °C. The structural phase characteristics were investigated by X-ray diffraction (XRD) and Raman spectroscopy. The stoichiometry of the SiGe phase was estimated from the positions of the Raman spectral peaks.

  12. Alternating current transport and dielectric relaxation of nanocrystalline graphene oxide

    NASA Astrophysics Data System (ADS)

    Zedan, I. T.; El-Menyawy, E. M.

    2018-07-01

    Graphene oxide (GO) has been synthesized from natural graphite using modified Hummer's method and is subjected to sonication for 1 h. X-ray diffraction (XRD) showed that the prepared GO has nanocrystalline structure with particle size of about 5 nm and high-resolution transmission electron microscope showed that it had a layered structure. The nanocrystalline GO powder was pressed as a disk and the alternating current (AC) electrical conductivity, σAC, and dielectric properties have been investigated in the frequency range 50Hz-5 MHz and temperature range 298-523K using parallel plate spectroscopic technique. Analysis of σ AC as a function of frequency shows that the relation follows Jonscher's universal law with frequency exponent decreases with increasing temperature in which the correlated barrier hopping model is applicable to describe the behavior. The dielectric constant and dielectric loss are studied as functions of frequency and temperature. The dielectric modulus formalism is used for describing the relaxation process in which the relaxation time and its activation energy were evaluated.

  13. Voltammetric and impedance behaviours of surface-treated nano-crystalline diamond film electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, F. B.; Jing, B.; Cui, Y.

    2015-04-15

    The electrochemical performances of hydrogen- and oxygen-terminated nano-crystalline diamond film electrodes were investigated by cyclic voltammetry and AC impedance spectroscopy. In addition, the surface morphologies, phase structures, and chemical states of the two diamond films were analysed by scanning probe microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The results indicated that the potential window is narrower for the hydrogen-terminated nano-crystalline diamond film than for the oxygen-terminated one. The diamond film resistance and capacitance of oxygen-terminated diamond film are much larger than those of the hydrogen-terminated diamond film, and the polarization resistances and double-layer capacitance corresponding to oxygen-terminated diamond filmmore » are both one order of magnitude larger than those corresponding to the hydrogen-terminated diamond film. The electrochemical behaviours of the two diamond film electrodes are discussed.« less

  14. Structural analysis of nanocrystalline ZnTe alloys synthesized by melt quenching technique

    NASA Astrophysics Data System (ADS)

    Singh, Harinder; Singh, Tejbir; Thakur, Anup; Sharma, Jeewan

    2018-05-01

    Nanocrystalline ZnxTe100-x (x=0, 5, 20, 30, 40, 50) alloys have been synthesized using melt quenching technique. Energy-dispersive X-Ray spectroscopy (EDS) has been used to verify the elemental composition of samples. Various absorption modes are recorded from Fourier transform infrared spectroscopy (FTIR) confirming the formation of ZnTe. The structural study has been performed using X-Ray Diffraction (XRD) method. All synthesized samples have been found to be nanocrystalline in nature with average crystallite size in the range from 49.3 nm to 77.1 nm. Results have shown that Zn0Te100 exhibits hexagonal phase that transforms into a cubic ZnTe phase as the amount of zinc is increased. Pure ZnTe phase has been obtained for x = 50. The texture coefficient (Tc) has been calculated to find the prominent orientations of different planes.

  15. Multiferroic properties of nanocrystalline BaTiO 3

    NASA Astrophysics Data System (ADS)

    Mangalam, R. V. K.; Ray, Nirat; Waghmare, Umesh V.; Sundaresan, A.; Rao, C. N. R.

    2009-01-01

    Some of the Multiferroics [H. Schmid, Ferroelectrics 162 (1994) 317] form a rare class of materials that exhibit magneto-electric coupling arising from the coexistence of ferromagnetism and ferroelectricity, with potential for many technological applications [J.F. Scott, Nat. Mater. 6 (2007) 256; N.A. Spaldin, M. Fiebig, Science 309 (2005) 391]. Over the last decade, an active research on multiferroics has resulted in the identification of a few routes that lead to multiferroicity in bulk materials [C. Ederer, N.A. Spaldin, Nat. Mater. 3 (2004) 849; D.V. Efremov, J. van den Brink, D.I. Khomskii, Nat. Mater. 3 (2004) 853; N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.W. Cheong, Nature 429 (2004) 392]. While ferroelectricity in a classic ferroelectric such as BaTiO 3 is expected to diminish with the reducing particle size, [C.H. Ahn, K.M. Rabe, J.M. Triscone, Science 303 (2004) 488; J. Junquera, P. Ghosez, Nature 422 (2003) 506] ferromagnetism cannot occur in its bulk form [N.A. Hill, J. Phys. Chem. B 104 (2000) 6694]. Here, we use a combination of experiment and first-principles simulations to demonstrate that multiferroic nature emerges in intermediate size nanocrystalline BaTiO 3, ferromagnetism arising from the oxygen vacancies at the surface and ferroelectricity from the core. A strong coupling between a surface polar phonon and spin is shown to result in a magnetocapacitance effect observed at room temperature, which can open up possibilities of new electro-magneto-mechanical devices at the nano-scale.

  16. Hardfacing material

    DOEpatents

    Branagan, Daniel J [Iona, ID

    2012-01-17

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  17. Controllable nonlinear refraction characteristics in hydrogenated nanocrystalline silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, D. Q.; Ye, Q. H.; Shen, W. Z., E-mail: wzshen@sjtu.edu.cn

    2014-02-07

    Nonlinear refraction (NLR) of hydrogenated nanocrystalline silicon (nc-Si:H) has been investigated through the close aperture Z-scan method. We demonstrate a significant NLR and a unique feature of controllable NLR characteristics between saturable and Kerr NLR with the incident photon energy. We numerically evaluate the proportion of these two mechanisms in different wavelengths by a modified NLR equation. The band tail of nc-Si:H appears to play a crucial role in such NLR responses.

  18. Ultrasonic Emission from Nanocrystalline Porous Silicon

    NASA Astrophysics Data System (ADS)

    Shinoda, Hiroyuki; Koshida, Nobuyoshi

    A simple layer structure composed of a metal thin film and a porous silicon layer on a silicon substrate generates intense and wide-band airborne ultrasounds. The large-bandwidth and the fidelity of the sound reproduction are leveraged in applications varying from sound-based measurement to a scientific study of animal ecology. This chapter describes the basic principle of the ultrasound generation. The macroscopic properties of the low thermal conductivity and the small heat capacity of nanocrystalline porous silicon thermally induce ultrasonic emission. The state-of-the-art of the achievable sound pressure and sound signal properties is introduced, with the technological and scientific applications of the devices.

  19. Structure and mechanical properties of foils made of nanocrystalline beryllium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhigalina, O. M., E-mail: zhigal@ns.crys.ras.ru; Semenov, A. A.; Zabrodin, A. V.

    2016-07-15

    The phase composition and structural features of (45–90)-μm-thick foils obtained from nanocrystalline beryllium during multistep thermomechanical treatment have been established using electron microscopy, electron diffraction, electron backscattering diffraction, and energy-dispersive analysis. This treatment is shown to lead to the formation of a structure with micrometer- and submicrometer-sized grains. The minimum average size of beryllium grains is 352 nm. The inclusions of beryllium oxide (BeO) of different modifications with tetragonal (sp. gr. P4{sub 2}/mnm) and hexagonal (sp. gr. P6{sub 3}/mmc) lattices are partly ground during deformation to a size smaller than 100 nm and are located along beryllium grain boundaries inmore » their volume, significantly hindering migration during treatment. The revealed structural features of foils with submicrometer-sized crystallites provide the thermal stability of their structural state. Beryllium with this structure is a promising material for X-ray instrument engineering and for the production of ultrathin (less than 10 μm) vacuum-dense foils with very high physicomechanical characteristics.« less

  20. Frequency-dependent failure mechanisms of nanocrystalline gold interconnect lines under general alternating current

    NASA Astrophysics Data System (ADS)

    Luo, X. M.; Zhang, B.; Zhang, G. P.

    2014-09-01

    Thermal fatigue failure of metallization interconnect lines subjected to alternating currents (AC) is becoming a severe threat to the long-term reliability of micro/nanodevices with increasing electrical current density/power. Here, thermal fatigue failure behaviors and damage mechanisms of nanocrystalline Au interconnect lines on the silicon glass substrate have been investigated by applying general alternating currents (the pure alternating current coupled with a direct current (DC) component) with different frequencies ranging from 0.05 Hz to 5 kHz. We observed both thermal fatigue damages caused by Joule heating-induced cyclic strain/stress and electromigration (EM) damages caused by the DC component. Besides, the damage formation showed a strong electrically-thermally-mechanically coupled effect and frequency dependence. At lower frequencies, thermal fatigue damages were dominant and the main damage forms were grain coarsening with grain boundary (GB) cracking/voiding and grain thinning. At higher frequencies, EM damages took over and the main damage forms were GB cracking/voiding of smaller grains and hillocks. Furthermore, the healing effect of the reversing current was considered to elucidate damage mechanisms of the nanocrystalline Au lines generated by the general AC. Lastly, a modified model was proposed to predict the lifetime of the nanocrystalline metal interconnect lines, i.e., that was a competing drift velocity-based approach based on the threshold time required for reverse diffusion/healing to occur.

  1. Synthesis, characterization, and photocatalytic properties of core/shell mesoporous silica nanospheres supporting nanocrystalline titania

    NASA Astrophysics Data System (ADS)

    Cendrowski, K.; Chen, X.; Zielinska, B.; Kalenczuk, R. J.; Rümmeli, M. H.; Büchner, B.; Klingeler, R.; Borowiak-Palen, E.

    2011-11-01

    The facile bulk synthesis of silica nanospheres makes them an attractive support for the transport of chemical compounds such as nanocrystalline titanium dioxide. In this contribution we present a promising route for the synthesis of mesoporous silica nanospheres (m-SiO2) with diameter in range 200 nm, which are ideal supports for nanocrystalline titanium dioxide (TiO2). The detailed microscopic and spectroscopic characterizations of core/shell structure (m-SiO2/TiO2) were conducted. Moreover, the photocatalytic potential of the nanostructures was investigated via phenol decomposition and hydrogen generation. A clear enhancement of photoactivity in both reactions as compared to commercial TiO2-Degussa P25 catalyst is detected.

  2. Field electron emission enhancement in lithium implanted and annealed nitrogen-incorporated nanocrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Sankaran, K. J.; Srinivasu, K.; Yeh, C. J.; Thomas, J. P.; Drijkoningen, S.; Pobedinskas, P.; Sundaravel, B.; Leou, K. C.; Leung, K. T.; Van Bael, M. K.; Schreck, M.; Lin, I. N.; Haenen, K.

    2017-06-01

    The field electron emission (FEE) properties of nitrogen-incorporated nanocrystalline diamond films were enhanced due to Li-ion implantation/annealing processes. Li-ion implantation mainly induced the formation of electron trap centers inside diamond grains, whereas post-annealing healed the defects and converted the a-C phase into nanographite, forming conduction channels for effective transport of electrons. This resulted in a high electrical conductivity of 11.0 S/cm and enhanced FEE performance with a low turn-on field of 10.6 V/μm, a high current density of 25.5 mA/cm2 (at 23.2 V/μm), and a high lifetime stability of 1,090 min for nitrogen incorporated nanocrystalline diamond films.

  3. Production of biofuel from waste cooking palm oil using nanocrystalline zeolite as catalyst: process optimization studies.

    PubMed

    Taufiqurrahmi, Niken; Mohamed, Abdul Rahman; Bhatia, Subhash

    2011-11-01

    The catalytic cracking of waste cooking palm oil to biofuel was studied over different types of nano-crystalline zeolite catalysts in a fixed bed reactor. The effect of reaction temperature (400-500 °C), catalyst-to-oil ratio (6-14) and catalyst pore size of different nanocrystalline zeolites (0.54-0.80 nm) were studied over the conversion of waste cooking palm oil, yields of Organic Liquid Product (OLP) and gasoline fraction in the OLP following central composite design (CCD). The response surface methodology was used to determine the optimum value of the operating variables for maximum conversion as well as maximum yield of OLP and gasoline fraction, respectively. The optimum reaction temperature of 458 °C with oil/catalyst ratio=6 over the nanocrystalline zeolite Y with pore size of 0.67 nm gave 86.4 wt% oil conversion, 46.5 wt% OLP yield and 33.5 wt% gasoline fraction yield, respectively. The experimental results were in agreement with the simulated values within an experimental error of less than 5%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. SUPERFUND TECHNICAL SUPPORT

    EPA Science Inventory

    Under this task, technical support is provided to Regional Remedial Project Managers (RPMs)/On-Scene Coordinators (OSCs) at Superfund, RCRA, and Brownfields sites contaminated with hazardous materials by the Technical Support Center (TSC) for Monitoring and Site Characterization....

  5. 3D surface topography study of the biofunctionalized nanocrystalline Ti-6Zr-4Nb/Ca-P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakubowicz, J., E-mail: jaroslaw.jakubowicz@put.poznan.pl; Adamek, G.; Jurczyk, M.U.

    2012-08-15

    In this work surface of the sintered Ti-6Zr-4Nb nanocrystalline alloy was electrochemically biofunctionalized. The porous surface was produced by anodic oxidation in 1 M H{sub 3}PO{sub 4} + 2%HF electrolyte at 10 V for 30 min. Next the calcium-phosphate (Ca-P) layer was deposited, onto the formed porous surface, using cathodic potential - 5 V kept for 60 min in 0.042 M Ca(NO{sub 3}){sub 2} + 0.025 M (NH{sub 4}){sub 2}HPO{sub 4} + 0.1 M HCl electrolyte. The deposited Ca-P layer anchored in the pores. The biofunctionalized surface was studied by XRD, SEM and EDS. In vitro tests culture of normalmore » human osteoblast (NHOst) cells showed very good cells proliferation, colonization and multilayering. Using optical profiler, roughness and hybrid 3D surface topography parameters were estimated. Correlation between surface composition, morphology, roughness and biocompatibility results was done. It has been shown by us that surface with appropriate chemical composition and topography, after combined electrochemical anodic and cathodic surface treatment, supports osteoblast adhesion and proliferation. 3D topography measurements using optical profiler play a key role in the biomaterials surface analysis. - Highlights: Black-Right-Pointing-Pointer Nanocrystalline Ti-6Zr-4Nb/Ca-P material was produced for hard tissue implant applications. Black-Right-Pointing-Pointer Calcium-phosphate results in surface biofunctionalization. Black-Right-Pointing-Pointer The biofunctionalized surface shows good in-vitro behavior.« less

  6. Coexistence of colossal stress and texture gradients in sputter deposited nanocrystalline ultra-thin metal films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuru, Yener; Welzel, Udo; Mittemeijer, Eric J.

    2014-12-01

    This paper demonstrates experimentally that ultra-thin, nanocrystalline films can exhibit coexisting colossal stress and texture depth gradients. Their quantitative determination is possible by X-ray diffraction experiments. Whereas a uniform texture by itself is known to generally cause curvature in so-called sin{sup 2}ψ plots, it is shown that the combined action of texture and stress gradients provides a separate source of curvature in sin{sup 2}ψ plots (i.e., even in cases where a uniform texture does not induce such curvature). On this basis, the texture and stress depth profiles of a nanocrystalline, ultra-thin (50 nm) tungsten film could be determined.

  7. Acanthite–argentite transformation in nanocrystalline silver sulfide and the Ag{sub 2}S/Ag nanoheterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusev, A. I., E-mail: gusev@ihim.uran.ru; Sadovnikov, S. I.

    Nanocrystalline acanthite-structured silver sulfide of the monoclinic structure and a Ag{sub 2}S/Ag nanoheterostructure are produced. The high-temperature X-ray diffraction technique is applied to the in situ study of the (acanthite α-Ag{sub 2}S)–(argentite β-Ag{sub 2}S) phase transformation in nanocrystalline silver sulfide. The crystal structure of argentite is refined, and it is found that the content of vacant sites in the metal sublattice of argentite exceeds 92%. A model of a resistive switch, whose operation is based on the reversible acanthite–argentite transformation in a Ag{sub 2}S/Ag heterostructure, is considered.

  8. Oxidation resistant nanocrystalline MCrAl(Y) coatings and methods of forming such coatings

    DOEpatents

    Cheruvu, Narayana S.; Wei, Ronghua

    2014-07-29

    The present disclosure relates to an oxidation resistant nanocrystalline coating and a method of forming an oxidation resistant nanocrystalline coating. An oxidation resistant coating comprising an MCrAl(Y) alloy may be deposited on a substrate, wherein M, includes iron, nickel, cobalt, or combinations thereof present greater than 50 wt % of the MCrAl(Y) alloy, chromium is present in the range of 15 wt % to 30 wt % of the MCrAl(Y) alloy, aluminum is present in the range of 6 wt % to 12 wt % of the MCrAl(Y) alloy and yttrium, is optionally present in the range of 0.1 wt % to 0.5 wt % of the MCrAl(Y) alloy. In addition, the coating may exhibit a grain size of 200 nm or less as deposited.

  9. Introduction to the special issue on the technical status of materials for a fusion reactor

    NASA Astrophysics Data System (ADS)

    Stork, D.; Zinkle, S. J.

    2017-09-01

    Materials determine in a fundamental way the performance and environmental attractiveness of a fusion reactor: through the size (power fluxes to the divertor, neutron fluxes to the first wall); economics (replacement lifetime of critical in-vessel components, thermodynamic efficiency through operating temperature etc); plasma performance (erosion by plasma fluxes to the divertor surfaces); robustness against off-normal accidents (safety); and the effects of post-operation radioactivity on waste disposal and maintenance. The major philosophies and methodologies used to formulate programmes for the development of fusion materials are outlined, as the basis for other articles in this special issue, which deal with the fundamental understanding of the issues regarding these materials and their technical status and prospects for development.

  10. Surface grafting of reduced graphene oxide using nanocrystalline cellulose via click reaction

    NASA Astrophysics Data System (ADS)

    Kabiri, Roya; Namazi, Hassan

    2014-07-01

    Reduced graphene oxide (RGO) sheet was functionalized with nanocrystalline cellulose (NCC) via click coupling between azide-functionalized graphene oxide (GO-N3) and terminal propargyl-functionalized nanocrystalline cellulose (PG-NCC). First, the reactive azide groups were introduced on the surface of GO with azidation of 2-chloroethyl isocyanate-treated graphene oxide (GO-Cl). Then, the resulted compounds were reacted with PG-NCC utilizing copper-catalyzed azide-alkyne cycloaddition. During the click reaction, GO was simultaneously reduced to graphene. The coupling was confirmed by Fourier transform infrared, Raman, DEPT135, and 13C NMR spectroscopy, and the complete exfoliation of graphene in the NCC matrix was confirmed with X-ray diffraction measurement. The degree of functionalization from the gradual mass loss of RGO-NCC suggests that around 23 mass % has been functionalized covalently. The size of both NCC and GO was found to be in nanometric range, which decreased after click reaction.

  11. Correlation study of nanocrystalline carbon doped thin films prepared by a thermionic vacuum arc deposition technique

    NASA Astrophysics Data System (ADS)

    Dinca-Balan, Virginia; Vladoiu, Rodica; Mandes, Aurelia; Prodan, Gabriel

    2017-11-01

    The synthesis of Ag, Mg and Si nanocrystalline, embedded in a hydrogen-free amorphous carbon (a-C) matrix, deposited by a high vacuum and free buffer gas technique, were investigated. The films with compact structures and extremely smooth surfaces were prepared using the thermionic vacuum arc method in one electron gun configuration, on glass and silicon substrates. The surface morphology and wettability of the obtained multifunctional thin films were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and free surface energy (FSE) by See System. The results from the TEM measurements show how the Ag, Mg and Si interacted with carbon and the influence these materials have on the thin film structure formation and the grain size distribution. SEM correlated with EDX results reveal a very precise comparative study, regarding the quantity of the elements that morphed into carbides nanostructures. Also, the FSE results prove how different materials in combination with carbon can make changes to the surface properties.

  12. Search and Rescue Aircrewman/HH3F Flight Mechanic, 2-10. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This self-paced, individualized course, adapted from military curriculum materials for use in vocational and technical education, teaches students the skills needed to become a qualified avionics worker on the HH-3F helicopter. The course materials consist of three pamphlets: two student workbooks and a composite ground/flight syllabus. Each…

  13. 76 FR 43743 - Pipeline Safety: Meetings of the Technical Pipeline Safety Standards Committee and the Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2011-0127] Pipeline Safety: Meetings of the Technical Pipeline Safety Standards Committee and the Technical Hazardous Liquid Pipeline Safety Standards Committee AGENCY: Pipeline and Hazardous Materials...

  14. Construction Mechanic, Engine Tune-Up I, 8-7. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, adapted from military curriculum materials for use in vocational and technical education, teaches students to perform a complete engine tune-up using appropriate hand tools, special tools, and testing equipment. Students completing the course will be able to diagnose gasoline-engine performance and perform corrective measures to…

  15. Magnetic behaviour studies on nanocrystalline cobalt ferrite by employing the Arrott plot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajnish, E-mail: rajnishiitr15@gmail.com; Kar, Manoranjan, E-mail: mano@iitp.ac.in

    Vibrating Sample Magnetometer (VSM) has been used to analyze the magnetic behavior of ferrimagnetic material (CoFe{sub 2}O{sub 4}) synthesized by the citric acid modified sol-gel method. X-ray diffraction (XRD) pattern confirms the phase purity of the sample. Its magnetic measurement has been carried out at room temperature in the field range ±1.5T. The magnetocrystalline anisotropy and saturation magnetization of CoFe{sub 2}O{sub 4} are two important parameters which need to be studied for exploring its technological applications like memory device, magnetic sensors etc. Law of Approach (LA) to saturation and the Arrott plot analysis have been carried out to obtain themore » saturation magnetization. The difference in the saturation magnetization obtained from the two methods gives the qualitative understanding of magnetocrystalline anisotropy and lattice strain present in the sample. The present study explores a new way of analyzing magnetic hysteresis loop of nanocrystalline cobalt ferrite.« less

  16. Transparent nanocrystalline diamond coatings and devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumant, Anirudha V.; Khan, Adam

    2017-08-22

    A method for coating a substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The plasma ball has a diameter. The plasma ball is disposed at a first distance from the substrate and the substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the substrate, and a diamond coating is deposited on the substrate. The diamond coating has a thickness. Furthermore, the diamond coating has an optical transparency of greater than about 80%. The diamond coating can include nanocrystalline diamond. The microwavemore » plasma source can have a frequency of about 915 MHz.« less

  17. Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose.

    PubMed

    He, Xiaoyun; Male, Keith B; Nesterenko, Pavel N; Brabazon, Dermot; Paull, Brett; Luong, John H T

    2013-09-11

    The dynamic batch adsorption of methylene blue (MB), a widely used and toxic dye, onto nanocrystalline cellulose (NCC) and crushed powder of carbon monolith (CM) was investigated using the pseudo-first- and -second-order kinetics. CM outperformed NCC with a maximum capacity of 127 mg/g compared to 101 mg/g for NCC. The Langmuir isotherm model was applicable for describing the binding data for MB on CM and NCC, indicating the homogeneous surface of these two materials. The Gibbs free energy of -15.22 kJ/mol estimated for CM unravelled the spontaneous nature of this adsorbent for MB, appreciably faster than the use of NCC (-4.47 kJ/mol). Both pH and temperature exhibited only a modest effect on the adsorption of MB onto CM. The desorption of MB from CM using acetonitrile was very effective with more than 94 % of MB desorbed from CM within 10 min to allow the reusability of this porous carbon material. In contrast, acetonitrile was less effective than ethanol in desorbing MB from NCC. The two solvents were incapable of completely desorbing MB on commercial granular coal-derived activated carbon.

  18. Energy materials coordinating committee (EMaCC). Annual technical report, fiscal year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2005-08-31

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. Topical subcommittees of the EMaCC are responsible for conducting seminars and otherwise facilitating information flow between DOE organizational units in materials areas of particular importance to the Department. The EMaCCmore » Terms of Reference were recently modified and developed into a Charter that was approved on June 5, 2003. As a result of this reorganization, the existing subcommittees were disbanded and new subcommittees are being formed. The FY 2004 budget summary for DOE Materials Activities is presented on page 8. The distribution of these funds between DOE laboratories, private industry, academia and other organizations is presented in tabular form on page 10. Following the budget summary is a set of detailed program descriptions for the FY 2004 DOE Materials activities. These descriptions are presented according to the organizational structure of the Department. A mission statement, a budget summary listing the project titles and FY 2004 funding, and detailed project summaries are presented for each Assistant Secretary office, the Office of Science, and the National Nuclear Security Administration. The project summaries also provide DOE, laboratory, academic and industrial contacts for each project, as appropriate.« less

  19. Energy materials coordinating committee (EMaCC). Annual technical report, fiscal year 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2006-09-29

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. Topical subcommittees of the EMaCC are responsible for conducting seminars and otherwise facilitating information flow between DOE organizational units in materials areas of particular importance to the Department. The EMaCCmore » Terms of Reference were recently modified and developed into a Charter that was approved on June 5, 2003. As a result of this reorganization, the existing subcommittees were disbanded and new subcommittees are being formed. The FY 2004 budget summary for DOE Materials Activities is presented on page 8. The distribution of these funds between DOE laboratories, private industry, academia and other organizations is presented in tabular form on page 10. Following the budget summary is a set of detailed program descriptions for the FY 2004 DOE Materials activities. These descriptions are presented according to the organizational structure of the Department. A mission statement, a budget summary listing the project titles and FY 2004 funding, and detailed project summaries are presented for each Assistant Secretary office, the Office of Science, and the National Nuclear Security Administration. The project summaries also provide DOE, laboratory, academic and industrial contacts for each project, as appropriate.« less

  20. Compression deformation of WC: atomistic description of hard ceramic material

    NASA Astrophysics Data System (ADS)

    Feng, Qing; Song, Xiaoyan; Liu, Xuemei; Liang, Shuhua; Wang, Haibin; Nie, Zuoren

    2017-11-01

    The deformation characteristics of WC, as a typical hard ceramic material, were studied on the nanoscale using atomistic simulations for both the single-crystal and polycrystalline forms under uniaxial compression. In particular, the effects of crystallographic orientation, grain boundary coordination and grain size on the origin of deformation were investigated. The deformation behavior of the single-crystal and polycrystalline WC both depend strongly on the orientation towards the loading direction. The grain boundaries play a significant role in the deformation coordination and the potential high fracture toughness of the nanocrystalline WC. In contrast to conventional knowledge of ceramics, maximum strength was obtained at a critical grain size corresponding to the turning point from a Hall-Petch to an inverse Hall-Petch relationship. For this the mechanism of the combined effect of dislocation motion within grains and the coordination of stress concentration at the grain boundaries were proposed. The present work has moved forward our understanding of plastic deformability and the possibility of achieving a high strength of nanocrystalline ceramic materials.

  1. Compression deformation of WC: atomistic description of hard ceramic material.

    PubMed

    Feng, Qing; Song, Xiaoyan; Liu, Xuemei; Liang, Shuhua; Wang, Haibin; Nie, Zuoren

    2017-11-24

    The deformation characteristics of WC, as a typical hard ceramic material, were studied on the nanoscale using atomistic simulations for both the single-crystal and polycrystalline forms under uniaxial compression. In particular, the effects of crystallographic orientation, grain boundary coordination and grain size on the origin of deformation were investigated. The deformation behavior of the single-crystal and polycrystalline WC both depend strongly on the orientation towards the loading direction. The grain boundaries play a significant role in the deformation coordination and the potential high fracture toughness of the nanocrystalline WC. In contrast to conventional knowledge of ceramics, maximum strength was obtained at a critical grain size corresponding to the turning point from a Hall-Petch to an inverse Hall-Petch relationship. For this the mechanism of the combined effect of dislocation motion within grains and the coordination of stress concentration at the grain boundaries were proposed. The present work has moved forward our understanding of plastic deformability and the possibility of achieving a high strength of nanocrystalline ceramic materials.

  2. Impedance spectroscopy study on graphene wrapped nanocrystalline V{sub 2}O{sub 5}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaskaram, D. Surya, E-mail: dsurya.b@gmail.com; Govindaraj, G.; Cheruku, Rajesh

    2016-05-23

    Nanocrystalline V{sub 2}O{sub 5} was synthesized by solvothermal technique, which has potential application as electrode material in supercapacitors. The graphene oxide (GO) was prepared by modified Hummer’s method. The V{sub 2}O{sub 5}/ reduced graphene oxide (RGO) composite was synthesized using surfactant free hydrothermal technique to enhance the functionality in terms of conductivity and surface area of V{sub 2}O{sub 5}. The structural characterization was accomplished through X-ray diffraction and Raman spectroscopy. Morphology was identified by SEM and surface area of VRGO was enhanced by 8 times in comparison with V{sub 2}O{sub 5} nano particles, as confirmed through BET surface area analysis.more » Electrical characterization was done through impedance spectroscopy and the results showed decrease in sample resistance after wrapping V{sub 2}O{sub 5} with RGO.« less

  3. Technical Assistance to Developers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockward, Tommy; Borup, Rodney L.; Garzon, Fernando H.

    2012-07-17

    This task supports the allowance of technical assistance to fuel-cell component and system developers as directed by the DOE. This task includes testing of novel materials and participation in the further development and validation of single cell test protocols. This task also covers technical assistance to DOE Working Groups, the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Driving Research and Innovation for Vehicle efficiency and Energy sustainability (U.S. Drive) Fuel Cell Technology Team. Assistance includes technical validation of new fuel cell materials and methods, single cell fuel cell testing to support the development of targets and test protocols,more » and regular advisory participation in other working groups and reviews. This assistance is made available to PEM fuel cell developers by request and DOE Approval. The objectives are to: (1) Support technically, as directed by DOE, fuel cell component and system developers; (2) Assess fuel cell materials and components and give feedback to developers; (3) Assist the DOE Durability Working Group with the development of various new material durability Testing protocols; and (4) Provide support to the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Fuel Cell Technology Team. FY2012 specific technical objectives are: (1) Evaluate novel MPL materials; (2) Develop of startup/ shutdown protocol; (3) Test the impact of hydrophobic treatment on graphite bi-polar plates; (4) Perform complete diagnostics on metal bi-polar plates for corrosion; and (5) Participate and lead efforts in the DOE Working Groups.« less

  4. High-Temperature Stability and Grain Boundary Complexion Formation in a Nanocrystalline Cu-Zr Alloy

    NASA Astrophysics Data System (ADS)

    Khalajhedayati, Amirhossein; Rupert, Timothy J.

    2015-12-01

    Nanocrystalline Cu-3 at.% Zr powders with ~20 nm average grain size were created with mechanical alloying and their thermal stability was studied from 550-950°C. Annealing drove Zr segregation to the grain boundaries, which led to the formation of amorphous intergranular complexions at higher temperatures. Grain growth was retarded significantly, with 1 week of annealing at 950°C, or 98% of the solidus temperature, only leading to coarsening of the average grain size to 54 nm. The enhanced thermal stability can be connected to both a reduction in grain boundary energy with doping as well as the precipitation of ZrC particles. High mechanical strength is retained even after these aggressive heat treatments, showing that complexion engineering may be a viable path toward the fabrication of bulk nanostructured materials with excellent properties.

  5. Nanocrystalline SnO2 formation by oxygen ion implantation in tin thin films

    NASA Astrophysics Data System (ADS)

    Kondkar, Vidya; Rukade, Deepti; Kanjilal, Dinakar; Bhattacharyya, Varsha

    2018-03-01

    Metallic tin thin films of thickness 100 nm are deposited on fused silica substrates by thermal evaporation technique. These films are implanted with 45 keV oxygen ions at fluences ranging from 5 × 1015 to 5 × 1016 ions cm-2. The energy of the oxygen ions is calculated using SRIM in order to form embedded phases at the film-substrate interface. Post-implantation, films are annealed using a tube furnace for nanocrystalline tin oxide formation. These films are characterized using x-ray diffraction, Raman spectroscopy, UV-vis spectroscopy and photoluminescence spectroscopy. XRD and Raman spectroscopy studies reveal the formation of single rutile phase of SnO2. The size of the nanocrystallites formed decreases with an increase in the ion fluence. The nanocrystalline SnO2 formation is also confirmed by UV-vis and photoluminescence spectroscopy.

  6. High oxygen nanocomposite barrier films based on xylan and nanocrystalline cellulose

    Treesearch

    Amit Saxena; Thomas J. Elder; Jeffrey Kenvin; Arthur J. Ragauskas

    2010-01-01

    The goal of this work is to produce nanocomposite film with low oxygen permeability by casting an aqueous solution containing xylan, sorbitol and nanocrystalline cellulose. The morphology of the resulting nanocomposite films was examined by scanning electron microscopy and atomic force microscopy which showed that control films containing xylan and sorbitol had a more...

  7. Nanodimensional and Nanocrystalline Apatites and Other Calcium Orthophosphates in Biomedical Engineering, Biology and Medicine

    PubMed Central

    Dorozhkin, Sergey V.

    2009-01-01

    Recent developments in biomineralization have already demonstrated that nanosized particles play an important role in the formation of hard tissues of animals. Namely, the basic inorganic building blocks of bones and teeth of mammals are nanodimensional and nanocrystalline calcium orthophosphates (in the form of apatites) of a biological origin. In mammals, tens to hundreds nanocrystals of a biological apatite were found to be combined into self-assembled structures under the control of various bioorganic matrixes. In addition, the structures of both dental enamel and bones could be mimicked by an oriented aggregation of nanosized calcium orthophosphates, determined by the biomolecules. The application and prospective use of nanodimensional and nanocrystalline calcium orthophosphates for a clinical repair of damaged bones and teeth are also known. For example, a greater viability and a better proliferation of various types of cells were detected on smaller crystals of calcium orthophosphates. Thus, the nanodimensional and nanocrystalline forms of calcium orthophosphates have a great potential to revolutionize the field of hard tissue engineering starting from bone repair and augmentation to the controlled drug delivery devices. This paper reviews current state of knowledge and recent developments of this subject starting from the synthesis and characterization to biomedical and clinical applications. More to the point, this review provides possible directions of future research and development.

  8. Photocatalytic degradation of Orange G dye under solar light using nanocrystalline semiconductor metal oxide.

    PubMed

    Thennarasu, G; Kavithaa, S; Sivasamy, A

    2011-08-01

    The photocatalytic degradation of Orange G (OG) dye has been investigated using synthesised nanocrystalline ZnO as a photocatalyst and sunlight as the irradiation source. The formation of ZnO prepared from its precursor was confirmed through FT-IR and powder X-ray diffraction analyses. Surface morphology was characterised by scanning electron microscope and transmission electron microscope analysis. Band gap energy of synthesised nanocrystalline ZnO was calculated using diffuse reflectance spectroscopy (DRS). Different experimental parameters such as effects of pH, dye concentrations and mass of catalyst were standardised in order to achieve complete degradation of the dye molecules under solar light irradiation. The kinetics of oxidation of OG was also studied. The complete degradation of OG was evident after 90 min of irradiation at an initial pH of 6.86. The degradation of OG was confirmed by UV-Visible spectrophotometer, high-pressure liquid chromatography, ESI-Mass and chemical oxygen demand analyses. The adsorption of dye onto catalytic surface was analysed employing model equations such as Langmuir and Freundlich isotherms, and it was found that the Langmuir isotherm model best fitted the adsorption data. The solar photodegradation of OG followed pseudo-first-order kinetics. HPLC and ESI-Mass analyses of the degraded samples suggested that the dye molecules were readily degraded under solar irradiation with nanocrystalline ZnO.

  9. Influence of temperature on AC conductivity of nanocrystalline CuAlO2

    NASA Astrophysics Data System (ADS)

    Prakash, T.

    2012-07-01

    Nanocrystalline CuAlO2 was synthesized by mechanical alloying of Cu2O and α-Al2O3 powders in the molar ratio of 1:1 for 20 h in toluene medium with tungsten carbide balls and vials using planetary ball mill. The ball milling was carried out at 300 rpm with a ball to powder weight ratio of 10:1 and then annealed at 1373 K in a platinum crucible for 20 h to get CuAlO2 phase with average crystallite size 45 nm. Complex impedance spectroscopic measurement in the frequency region 1 Hz to 10 MHz between the temperatures 333 to 473 K was carried out for nanocrystalline CuAlO2 sample. The obtained complex impedance data was analyzed for AC conductivities, DC and AC conductivities correlations and crossover frequencies ( f co ). The BNN (Barton, Nakajima and Namikawa) relation was applied to understand the correlation between DC and AC conductivities. The observed experimental results were discussed in the paper.

  10. Synthesis of nanocrystalline TiO 2 in toluene by a solvothermal route

    NASA Astrophysics Data System (ADS)

    Kim, Chung-Sik; Moon, Byung Kee; Park, Jong-Ho; Tae Chung, Su; Son, Se-Mo

    2003-07-01

    A solvothermal synthetic method to TiO 2 nanoparticles has been investigated in toluene solutions with titanium isopropoxide (TIP) as precursor. Weight ratios of precursor to solvent prepared in the mixture are 5/100, 10/100, 20/100, 30/100 and 40/100. At the weight ratio of 10/100, 20/100 and 30/100, TiO 2 nanocrystalline particles were obtained after synthesis at 250°C for 3 h in an autoclave. X-ray diffraction and tranmission electron microscopy shows that the product has uniform anatase structure with average particle size below 20 nm. As the composition of TIP in the solution increases, the particle size of TiO 2 powder tends to increase. At 5/100 and 40/100, however, pale yellow colloidal solution is obtained after synthesis and crystalline phase of TiO 2 is not produced. The specific surface area of the TiO 2 nanocrystalline powder was also investigated using BET surface area analyzer.

  11. Effect Of Chromium Underlayer On The Properties Of Nano-Crystalline Diamond Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garratt, Elias; AlFaify, Salem; Yoshitake, T.

    2013-01-11

    This paper investigated the effect of chromium underlayer on the structure, microstructure and composition of the nano-crystalline diamond films. Nano-crystalline diamond thin films were deposited at high temperature in microwave-induced plasma diluted with nitrogen, on silicon substrate with a thin film of chromium as an underlayer. The composition, structure and microstructure of the deposited layers were analyzed using non-Rutherford Backscattering Spectrometry, Raman Spectroscopy, Near-Edge X-Ray Absorption Fine Structure, X-ray Diffraction and Atomic Force Microscopy. Nanoindentation studies showed that the films deposited on chromium underlayer have higher hardness values compared to those deposited on silicon without an underlayer. Diamond and graphiticmore » phases of the films evaluated by x-ray and optical spectroscopic analysis determined consistency between sp2 and sp3 phases of carbon in chromium sample to that of diamond grown on silicon. Diffusion of chromium was observed using ion beam analysis which was correlated with the formation of chromium complexes by x-ray diffraction.« less

  12. Effect of chromium underlayer on the properties of nano-crystalline diamond films

    NASA Astrophysics Data System (ADS)

    Garratt, E.; AlFaify, S.; Yoshitake, T.; Katamune, Y.; Bowden, M.; Nandasiri, M.; Ghantasala, M.; Mancini, D. C.; Thevuthasan, S.; Kayani, A.

    2013-01-01

    This paper investigated the effect of chromium underlayer on the structure, microstructure, and composition of the nano-crystalline diamond films. Nano-crystalline diamond thin films were deposited at high temperature in microwave-induced plasma diluted with nitrogen, on single crystal silicon substrate with a thin film of chromium as an underlayer. Characterization of the film was implemented using non-Rutherford backscattering spectrometry, Raman spectroscopy, near-edge x-ray absorption fine structure, x-ray diffraction, and atomic force microscopy. Nanoindentation studies showed that the films deposited on chromium underlayer have higher hardness values compared to those deposited on silicon without an underlayer. Diamond and graphitic phases of the films evaluated by x-ray and optical spectroscopic analyses determined consistency between the sp2 and sp3 phases of carbon in chromium sample to that of diamond grown on silicon. Diffusion of chromium was observed using ion beam analysis which was correlated with the formation of chromium complexes by x-ray diffraction.

  13. Construction Mechanic, Engine Tune-Up II (Diesel), 8-8. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, adapted from military curriculum materials for vocational and technical education, teaches students to restore diesel engine performance to the manufacturer's specifications through troubleshooting and analyzing diesel engine fuel systems and to make minor and major adjustments to those components that directly affect engine…

  14. Method for the preparation of nanocrystalline diamond thin films

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.

    1998-01-01

    A method and system for manufacturing nanocrystalline diamond film on a substrate such as field emission tips. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrocarbon and possibly hydrogen, and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous vapor and deposition of a diamond film on the field emission tip.

  15. Nanocrystalline Si pathway induced unipolar resistive switching behavior from annealed Si-rich SiNx/SiNy multilayers

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaofan; Ma, Zhongyuan; Yang, Huafeng; Yu, Jie; Wang, Wen; Zhang, Wenping; Li, Wei; Xu, Jun; Xu, Ling; Chen, Kunji; Huang, Xinfan; Feng, Duan

    2014-09-01

    Adding a resistive switching functionality to a silicon microelectronic chip is a new challenge in materials research. Here, we demonstrate that unipolar and electrode-independent resistive switching effects can be realized in the annealed Si-rich SiNx/SiNy multilayers with high on/off ratio of 109. High resolution transmission electron microscopy reveals that for the high resistance state broken pathways composed of discrete nanocrystalline silicon (nc-Si) exist in the Si nitride multilayers. While for the low resistance state the discrete nc-Si regions is connected, forming continuous nc-Si pathways. Based on the analysis of the temperature dependent I-V characteristics and HRTEM photos, we found that the break-and-bridge evolution of nc-Si pathway is the origin of resistive switching memory behavior. Our findings provide insights into the mechanism of the resistive switching behavior in nc-Si films, opening a way for it to be utilized as a material in Si-based memories.

  16. Effects of grain size on the properties of bulk nanocrystalline Co-Ni alloys

    NASA Astrophysics Data System (ADS)

    Qiao, Gui-Ying; Xiao, Fu-Ren

    2017-08-01

    Bulk nanocrystalline Co78Ni22 alloys with grain size ranging from 5 nm to 35 nm were prepared by high-speed jet electrodeposition (HSJED) and annealing. Microhardness and magnetic properties of these alloys were investigated by microhardness tester and vibrating sample magnetometer. Effects of grain size on these characteristics were also discussed. Results show that the microhardness of nanocrystalline Co78Ni22 alloys increases following a d -1/2-power law with decreasing grain size d. This phenomenon fits the Hall-Petch law when the grain size ranges from 5 nm to 35 nm. However, coercivity H c increases following a 1/d-power law with increasing grain size when the grain size ranges from 5 nm to 15.9 nm. Coercivity H c decreases again for grain sizes above 16.6 nm according to the d 6-power law.

  17. Investigation of the optical property and photocatalytic activity of mixed phase nanocrystalline titania

    NASA Astrophysics Data System (ADS)

    Paul, Susmita; Choudhury, Amarjyoti

    2014-10-01

    Mixed phase nanocrystalline titania are prepared by simple sol-gel method. The physico-chemical characteristics of the prepared nanoparticles are studied with X-ray diffraction, high-resolution transmission electron microscopy, RAMAN, BET, UV-Vis, steady state and time resolved photoluminescence. X-ray diffraction and Raman spectra clearly demarcate the anatase and rutile phase as both the phases give different diffraction patterns and Raman peaks. A comparison in the band gap indicates that pure anatase and rutile phase have band gap in the UV region, whereas a mixture of these phases has lower band gap and corresponds to the visible region. Steady state and time resolved photoluminescence are employed to understand the emissivity and carrier lifetime. The photocatalytic activity is evaluated by monitoring the degradation of phenol under visible light illumination. Due to the synergistic effect of mixed anatase and rutile phases, mixed phase nanocrystalline titania exhibit superior photocatalytic activity.

  18. Optical Properties of ZnO-Alloyed Nanocrystalline Films

    DOE PAGES

    Che, Hui; Huso, Jesse; Morrison, John L.; ...

    2012-01-01

    ZnO is emore » merging as one of the materials of choice for UV applications. It has a deep excitonic energy level and a direct bandgap of ~3.4 eV. Alloying ZnO with certain atomic constituents adds new optical and electronic functionalities to ZnO. This paper presents research on M g x Z n 1 − x O and Z n S 1 − x O x nanocrystalline flexible films, which enable tunable optical properties in the deep-UV and in the visible range. The ZnO and Mg 0 .3 Zn 0 .7 O films were found to have bandgaps at 3.35 and 4.02 eV, respectively. The photoluminescence of the Mg 0 .3 Zn 0 .7 O exhibited a bandedge emission at 3.95 eV, and at lower energy 3.38 eV due to the limited solubility inherent to these alloys. ZnS 0 .76 O 0 .24 and ZnS 0 .16 O 0 .84 were found to have bandgaps at 3.21 and 2.65 eV, respectively. The effect of nitrogen doping on ZnS 0 .16 O 0 .84 is discussed in terms of the highly lattice mismatched nature of these alloys and the resulting valence-band modification.« less

  19. Electroformed Nanocrystalline Coatings: An Advanced Alternative to Hard Chrome Electroplating

    DTIC Science & Technology

    2003-11-21

    hypo/ phosphorous acid was included in the estimate. The cost analysis is given in Table 2-3. The relative consumable cost for the nanocrystalline...concentrations and phosphorous acid concentrations. While the internal stress of the Co- P deposit was affected by changes in the above-mentioned...may be occurring which consumes the phosphorous acid in solution (see Section 2.2). Table 5-1 Hardness at distance from deposit/substrate

  20. Silicon heterojunction solar cells with novel fluorinated n-type nanocrystalline silicon oxide emitters on p-type crystalline silicon

    NASA Astrophysics Data System (ADS)

    Dhar, Sukanta; Mandal, Sourav; Das, Gourab; Mukhopadhyay, Sumita; Pratim Ray, Partha; Banerjee, Chandan; Barua, Asok Kumar

    2015-08-01

    A novel fluorinated phosphorus doped silicon oxide based nanocrystalline material have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) Czochralski (CZ) wafers. The n-type nc-SiO:F:H material were deposited by radio frequency plasma enhanced chemical vapor deposition. Deposited films were characterized in detail by using atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM), Raman, fourier transform infrared spectroscopy (FTIR) and optoelectronics properties have been studied using temperature dependent conductivity measurement, Ellipsometry, UV-vis spectrum analysis etc. It is observed that the cell fabricated with fluorinated silicon oxide emitter showing higher initial efficiency (η = 15.64%, Jsc = 32.10 mA/cm2, Voc = 0.630 V, FF = 0.77) for 1 cm2 cell area compare to conventional n-a-Si:H emitter (14.73%) on flat c-Si wafer. These results indicate that n type nc-SiO:F:H material is a promising candidate for heterojunction solar cell on p-type crystalline wafers. The high Jsc value is associated with excellent quantum efficiencies at short wavelengths (<500 nm).

  1. Microstructure and physical properties of laser Zn modified amorphous-nanocrystalline coating on a titanium alloy

    NASA Astrophysics Data System (ADS)

    Li, Jia-Ning; Gong, Shui-Li; Shi, Yi-Ning; Suo, Hong-Bo; Wang, Xi-Chang; Deng, Yun-Hua; Shan, Fei-Hu; Li, Jian-Quan

    2014-02-01

    A Zn modified amorphous-nanocrystalline coating was fabricated on a Ti-6Al-4V alloy by laser cladding of the Co-Ti-B4C-Zn-Y2O3 mixed powders. Such coating was researched by means of a scanning electron microscope (SEM) and a high resolution transmission electron microscope (HRTEM), etc. Experimental results indicated that the Co5Zn21 and TiB2 nanocrystalline phases were produced through in situ metallurgical reactions, which blocked the motion of dislocation, and TiB2 grew along (010), (111) and (024). The Co5Zn21 nanocrystals were produced attached to the ceramics, which mainly consisted of the Co nanoparticles embedded in a heterogeneous zinc, and had varied crystalline orientations.

  2. Studies on the sensing behaviour of nanocrystalline CuGa(2)O(4) towards hydrogen, liquefied petroleum gas and ammonia.

    PubMed

    Biswas, Soumya Kanti; Sarkar, Arpita; Pathak, Amita; Pramanik, Panchanan

    2010-06-15

    In the present article, the gas sensing behaviour of nanocrystalline CuGa(2)O(4) towards H(2), liquefied petroleum gas (LPG) and NH(3) has been reported for the first time. Nanocrystalline powders of CuGa(2)O(4) having average particle sizes in the range of 30-60nm have been prepared through thermal decomposition of an aqueous precursor solution comprising copper nitrate, gallium nitrate and triethanol amine (TEA), followed by calcination at 750 degrees C for 2h. The synthesized nanocrystalline CuGa(2)O(4) powders have been characterised through X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM) study, energy dispersive X-ray (EDX) analysis and BET (Brunauer-Emmett-Teller) surface area measurement. The synthesized CuGa(2)O(4) having spinel structure with specific surface area of 40m(2)/g exhibits maximum sensitivity towards H(2), LPG, and NH(3) at 350 degrees C.

  3. 49 CFR 552.6 - Technical review.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... § 552.6 Technical review. The appropriate Associate Administrator conducts a technical review of the petition. The technical review may consist of an analysis of the material submitted, together with... 49 Transportation 6 2010-10-01 2010-10-01 false Technical review. 552.6 Section 552.6...

  4. 49 CFR 552.6 - Technical review.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... § 552.6 Technical review. The appropriate Associate Administrator conducts a technical review of the petition. The technical review may consist of an analysis of the material submitted, together with... 49 Transportation 6 2011-10-01 2011-10-01 false Technical review. 552.6 Section 552.6...

  5. Microwave sintering of nanophase ceramics without concomitant grain growth

    DOEpatents

    Eastman, Jeffrey A.; Sickafus, Kurt E.; Katz, Joel D.

    1993-01-01

    A method of sintering nanocrystalline material is disclosed wherein the nanocrystalline material is microwaved to heat the material to a temperature less than about 70% of the melting point of the nanocrystalline material expressed in degrees K. This method produces sintered nanocrystalline material having a density greater than about 95% of theoretical and an average grain size not more than about 3 times the average grain size of the nanocrystalline material before sintering. Rutile TiO.sub.2 as well as various other ceramics have been prepared. Grain growth of as little as 1.67 times has resulted with densities of about 90% of theoretical.

  6. The effect of nanocrystalline cellulose on flow properties of fiber crop aqueous suspension.

    PubMed

    Gharehkhani, Samira; Seyed Shirazi, Seyed Farid; Yarmand, Hooman; Montazer, Elham; Kazi, Salim Newaz; Ibrahim, Rushdan; Ashjaei, Mehdi; Zulkifli, Nurin Wahidah Binti Mohd; Rahmati, Sadegh

    2018-03-15

    Nanocrystalline cellulose (NCC) a nature-based material, has gained significant attentions for its unique properties. The present study aims to investigate the flow behavior of cellulosic suspension containing non-wood pulp fibers and NCC, by means of rheological and pressure drop measurements. The NCC sample was prepared by sulfuric acid hydrolysis from Acacia mangium fibers. The rheological properties of kenaf/NCC suspensions were studied using viscosity and yield stress measurements. The pressure drop properties of the suspension flow were studied with respect to variation in flow velocity (0.4 m/s-3.6 m/s) and the NCC concentration (70 mg/l and 150 mg/l). The pressure drop results showed that the pulp suspension containing 150 mg/l NCC had higher drag reduction than kenaf suspension alone. The present insights into the flow of pulp/NCC suspension provide a new data and promote the application of NCC in industries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The mechanical properties measurement of multiwall carbon nanotube reinforced nanocrystalline aluminum matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Manjula, E-mail: manjula.physics@gmail.com; Pal, Hemant; Sharma, Vimal

    Nanocrystalline aluminum matrix composite containing carbon nanotubes were fabricated using physical mixing method followed by cold pressing. The microstructure of the composite has been investigated using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy techniques. These studies revealed that the carbon nanotubes were homogeneously dispersed throughout the metal matrix. The consolidated samples were pressureless sintered in inert atmosphere to further actuate a strong interface between carbon nanotubes and aluminum matrix. The nanoindentation tests carried out on considered samples showed that with the addition of 0.5 wt% carbon nanotubes, the hardness and elastic modulus of the aluminum matrix increased bymore » 21.2 % and 2 % repectively. The scratch tests revealed a decrease in the friction coefficient of the carbon nanotubes reinforced composite due to the presence of lubricating interfacial layer. The prepared composites were promising entities to be used in the field of sporting goods, construction materials and automobile industries.« less

  8. DOE-DARPA High-Performance Corrosion-Resistant Materials (HPCRM), Annual HPCRM Team Meeting & Technical Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J; Brown, B; Bayles, B

    The overall goal is to develop high-performance corrosion-resistant iron-based amorphous-metal coatings for prolonged trouble-free use in very aggressive environments: seawater & hot geothermal brines. The specific technical objectives are: (1) Synthesize Fe-based amorphous-metal coating with corrosion resistance comparable/superior to Ni-based Alloy C-22; (2) Establish processing parameter windows for applying and controlling coating attributes (porosity, density, bonding); (3) Assess possible cost savings through substitution of Fe-based material for more expensive Ni-based Alloy C-22; (4) Demonstrate practical fabrication processes; (5) Produce quality materials and data with complete traceability for nuclear applications; and (6) Develop, validate and calibrate computational models to enable lifemore » prediction and process design.« less

  9. Method for the preparation of nanocrystalline diamond thin films

    DOEpatents

    Gruen, D.M.; Krauss, A.R.

    1998-06-30

    A method and system are disclosed for manufacturing nanocrystalline diamond film on a substrate such as field emission tips. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrocarbon and possibly hydrogen, and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous vapor and deposition of a diamond film on the field emission tip. 40 figs.

  10. Vacancy-like defects in nanocrystalline SnO2: influence of the annealing treatment under different atmospheres

    NASA Astrophysics Data System (ADS)

    Macchi, C.; Ponce, M. A.; Desimone, P. M.; Aldao, C. M.; Somoza, A.

    2018-03-01

    The study of electronic and chemical properties of semiconductor oxides is motivated by their several applications. In particular, tin oxide is widely used as a solid state gas sensor material. In this regard, the defect structure has been proposed to be crucial in determining the resulting film conductivity and then its sensitivity. Here, the characteristics of vacancy-like defects in nanocrystalline commercial high-purity tin oxide powders and the influence of the annealing treatment under different atmospheres are presented. Specifically, SnO2 nanopowders were annealed at 330 °C under three different types of atmospheres: inert (vacuum), oxidative (oxygen) and reductive (hydrogen). The obtained experimental results are discussed in terms of the vacancy-like defects detected, shedding light to the basic conduction mechanisms, which are responsible for gas detection.

  11. Ultraviolet emission enhancement in ZnO thin films modified by nanocrystalline TiO2

    NASA Astrophysics Data System (ADS)

    Zheng, Gaige; Lu, Xi; Qian, Liming; Xian, Fenglin

    2017-05-01

    In this study, nanocrystalline TiO2 modified ZnO thin films were prepared by electron beam evaporation. The structural, morphological and optical properties of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV-visible spectroscopy, fluorescence spectroscopy, respectively. The composition of the films was examined by energy dispersive X-ray spectroscopy (EDX). The photoluminescent spectrum shows that the pure ZnO thin film exhibits an ultraviolet (UV) emission peak and a strong green emission band. Surface analysis indicates that the ZnO thin film contains many oxygen vacancy defects on the surface. After the ZnO thin film is modified by the nanocrystalline TiO2 layer, the UV emission of ZnO is largely enhanced and the green emission is greatly suppressed, which suggests that the surface defects such as oxygen vacancies are passivated by the TiO2 capping layer. As for the UV emission enhancement of the ZnO thin film, the optimized thickness of the TiO2 capping layer is ∼16 nm. When the thickness is larger than 16 nm, the UV emission of the ZnO thin film will decrease because the TiO2 capping layer absorbs most of the excitation energy. The UV emission enhancement in the nanocrystalline TiO2 modified ZnO thin film can be attributed to surface passivation and flat band effect.

  12. Nano-Crystalline Diamond Films with Pineapple-Like Morphology Grown by the DC Arcjet vapor Deposition Method

    NASA Astrophysics Data System (ADS)

    Li, Bin; Zhang, Qin-Jian; Shi, Yan-Chao; Li, Jia-Jun; Li, Hong; Lu, Fan-Xiu; Chen, Guang-Chao

    2014-08-01

    A nano-crystlline diamond film is grown by the dc arcjet chemical vapor deposition method. The film is characterized by scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), x-ray diffraction (XRD) and Raman spectra, respectively. The nanocrystalline grains are averagely with 80 nm in the size measured by XRD, and further proven by Raman and HRTEM. The observed novel morphology of the growth surface, pineapple-like morphology, is constructed by cubo-octahedral growth zones with a smooth faceted top surface and coarse side surfaces. The as-grown film possesses (100) dominant surface containing a little amorphous sp2 component, which is far different from the nano-crystalline film with the usual cauliflower-like morphology.

  13. Characterization of doped hydrogenated nanocrystalline silicon films prepared by plasma enhanced chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Liang; Wu, Er-Xing

    2007-03-01

    The B- and P-doped hydrogenated nanocrystalline silicon films (nc-Si:H) are prepared by plasma-enhanced chemical vapour deposition (PECVD). The microstructures of doped nc-Si:H films are carefully and systematically characterized by using high resolution electron microscopy (HREM), Raman scattering, x-ray diffraction (XRD), Auger electron spectroscopy (AES), and resonant nucleus reaction (RNR). The results show that as the doping concentration of PH3 increases, the average grain size (d) tends to decrease and the crystalline volume percentage (Xc) increases simultaneously. For the B-doped samples, as the doping concentration of B2H6 increases, no obvious change in the value of d is observed, but the value of Xc is found to decrease. This is especially apparent in the case of heavy B2H6 doped samples, where the films change from nanocrystalline to amorphous.

  14. Nanocrystalline (U0.5Ce0.5)O2±x solid solutions through citrate gel-combustion

    NASA Astrophysics Data System (ADS)

    Maji, D.; Ananthasivan, K.; Venkata Krishnan, R.; Balakrishnan, S.; Amirthapandian, S.; Joseph, Kitheri; Dasgupta, Arup

    2018-04-01

    Nanocrystalline powders of (U0.5Ce0.5)O2±x solid solutions were synthesized in bulk (100-200 g) through the citrate gel combustion. The fuel (citric acid) to oxidant (nitrate) mole ratio (R) was varied from 0.1 to 1.0. Two independent lots of the products obtained through the gel-combustion were calcined at 973 K in air and in a mixture of argon containing 8% H2 respectively. All these powders were characterized for their bulk density, X-ray crystallite size, specific surface area, size distribution of the particles, porosity as well as residual carbon. The morphology and microstructures of these powders were studied by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. Nanocrystalline single phase fluorite solid solutions having a typical crystallite size of about (7-15 nm) were obtained. These powders were highly porous comprising cuboidal flaky agglomerates. The combustion mixture with an 'R' value of 0.25 was found to undergo volume combustion and was found to yield a product that was distinctly different. The systematic investigation on synthesis and characterization of nanocrystalline UCeO2 is reported for the first time.

  15. Physical properties of sago starch biocomposite filled with Nanocrystalline Cellulose (NCC) from rattan biomass: the effect of filler loading and co-plasticizer addition

    NASA Astrophysics Data System (ADS)

    Nasution, H.; Harahap, H.; Fath, M. T. Al; Afandy, Y.

    2018-02-01

    Rattan biomass is an abundant bioresources from processing industry of rattan which contains 37.6% cellulose. The high cellulose contents of rattan biomass make it a source of nanocrystalline cellulose as a filler in biocomposites. Isolation of alpha cellulose from rattan biomass was being prepared by using three stages: delignification, alkalization, and bleaching. It was delignificated with 3.5% HNO3 and NaNO2, precipitated with 17.5% NaOH, bleaching process with 10% H2O2. Nanocrystal obtained through the hydrolysis of alpha cellulose using 45% H2SO4 and followed by mechanical steps of ultrasonication, centrifugation, and filtration with a dialysis membrane. Biocomposite was being prepared by using a solution casting method, which includes 1-4 wt% nanocrystalline cellulose from rattan biomass as fillers, 10-40 wt% acetic acid as co-plasticizer and 30 wt% glycerol as plasticizer. The biocomposite characteristic consists of density, water absorption, and water vapors transmission rate. The results showed the highest density values was 0.266 gram/cm3 obtained at an additional of 3 wt% nanocrystalline cellulose from rattan biomass and 30 wt% acetic acid. The lowest water absorption was 9.37% at an additional of 3 wt% nanocrystalline cellulose from rattan biomass and 10 wt% acetic acid. It was observed by the addition of nanocrystalline cellulose might also decrease the rate of water vapor transmission that compared to the non-filler biocomposite.

  16. Nanocrystalline NiNd{sub 0.01}Fe{sub 1.99}O{sub 4} as a gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinde, Tukaram J., E-mail: pshindetj@yahoo.co.in; Gadkari, Ashok B.; Jadhav, Sarjerao R.

    2015-06-24

    Nanocrystalline NiNd{sub 0.01}Fe{sub 1.99}O{sub 4} has been synthesized by oxalate co-precipitation method and was characterized by X-ray diffraction technique. X-ray diffraction analysis confirms the formation of single phase cubic spinel structure. Crystallite size of the ferrite lies in the nano-particle range. The gas sensing properties of nanocrystalline ferrite were studied for gases like Cl{sub 2}, LPG and C{sub 2}H{sub 5}OH. It was observed that NiNd{sub 0.01}Fe{sub 1.99}O{sub 4} is more sensitive towards chlorine followed by LPG at an operating temperature 277 °C compared to ethanol.

  17. Cavity evolution at grain boundaries as a function of radiation damage and thermal conditions in nanocrystalline nickel

    DOE PAGES

    Muntifering, Brittany; Blair, Sarah Jane; Gong, Cajer; ...

    2015-12-30

    Enhanced radiation tolerance of nanostructured metals is attributed to the high density of interfaces that can absorb radiation-induced defects. Here, cavity evolution mechanisms during cascade damage, helium implantation, and annealing of nanocrystalline nickel are characterized via in situ transmission electron microscopy (TEM). Films subjected to self-ion irradiation followed by helium implantation developed evenly distributed cavity structures, whereas films exposed in the reversed order developed cavities preferentially distributed along grain boundaries. Post-irradiation annealing and orientation mapping demonstrated uniform cavity growth in the nanocrystalline structure, and cavities spanning multiple grains. Furthermore, these mechanisms suggest limited ability to reduce swelling, despite the stabilitymore » of the nanostructure.« less

  18. A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste.

    PubMed

    Siva Rama Krishna, D; Siddharthan, A; Seshadri, S K; Sampath Kumar, T S

    2007-09-01

    The eggshell waste has been value engineered to a nanocrystalline hydroxyapatite (HA) by microwave processing. To highlight the advantages of eggshell as calcium precursor in the synthesis of HA (OHA), synthetic calcium hydroxide was also used to form HA (SHA) following similar procedure and were compared with a commercially available pure HA (CHA). All the HAs were characterized by X-ray powder diffraction (XRD) method, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and specific surface area measurements. Nanocrystalline nature of OHA is revealed through characteristic broad peaks in XRD patterns, platelets of length 33-50 nm and width 8-14 nm in TEM micrograph and size calculations from specific surface area measurements. FT-IR spectra showed characteristic bands of HA and additionally peaks of carbonate ions. The cell parameter calculations suggest the formation of carbonated HA of B-type. The OHA exhibits superior sinterability in terms of hardness and density than both SHA and CHA may be due to larger surface area of its spherulite structure. The in vitro dissolution study shows longer stability in phosphate buffer and cell culture test using osteoblast cells establishes biocompatibility of OHA.

  19. Size effect on the deformation mechanisms of nanocrystalline platinum thin films.

    PubMed

    Shu, Xinyu; Kong, Deli; Lu, Yan; Long, Haibo; Sun, Shiduo; Sha, Xuechao; Zhou, Hao; Chen, Yanhui; Mao, Shengcheng; Liu, Yinong

    2017-10-16

    This paper reports a study of time-resolved deformation process at the atomic scale of a nanocrystalline Pt thin film captured in situ under a transmission electron microscope. The main mechanism of plastic deformation was found to evolve from full dislocation activity-enabled plasticity in large grains (with grain size d > 10 nm), to partial dislocation plasticity in smaller grains (with grain size 10 nm < d < 6 nm), and grain boundary-mediated plasticity in the matrix with grain sizes d < 6 nm. The critical grain size for the transition from full dislocation activity to partial dislocation activity was estimated based on consideration of stacking fault energy. For grain boundary-mediated plasticity, the possible contributions to strain rate of grain creep, grain sliding and grain rotation to plastic deformation were estimated using established models. The contribution of grain creep is found to be negligible, the contribution of grain rotation is effective but limited in magnitude, and grain sliding is suggested to be the dominant deformation mechanism in nanocrystalline Pt thin films. This study provided the direct evidence of these deformation processes at the atomic scale.

  20. Physical Characterization of Orthorhombic AgInS2 Nanocrystalline Thin Films

    NASA Astrophysics Data System (ADS)

    El Zawawi, I. K.; Mahdy, Manal A.

    2017-11-01

    Nanocrystalline thin films of AgInS2 were synthesized using an inert gas condensation technique. The grazing incident in-plane x-ray diffraction technique was used to detect the crystal structure of the deposited and annealed thin films. The results confirmed that the as-deposited film shows an amorphous behavior and that the annealed film has a single phase crystallized in an orthorhombic structure. The orthorhombic structure and particle size were detected using high-resolution transmission electron microscopy. The particle size ( P_{{s}}) estimated from micrograph images of the nanocrystalline films were increased from 6 nm to 12 nm as the film thickness increased from 11 nm to 110 nm. Accordingly, increasing the film thickness up to 110 nm reflects varying the optical band gap from 2.75 eV to 2.1 eV. The photocurrent measurements were studied where the fast rise and decay of the photocurrent are governed by the recombination mechanism. The electrical conductivity behavior was demonstrated by two transition mechanisms: extrinsic transition for a low-temperature range (300-400 K) and intrinsic transition for the high-temperature region above 400 K.

  1. Hyperfine Fields in Nanocrystalline Fe0.48Al0.52

    NASA Astrophysics Data System (ADS)

    Szymański, K.; Satuła, D.; Dobrzyński, L.; Voronina, E.; Yelsukov, E. P.

    2004-12-01

    Mössbauer measurements with circularly polarized radiation were performed on a nanocrystalline, disordered Fe48Al52 alloy. The analysis of the data for various polarization states resulted in the characterization of the hyperfine magnetic field distribution and the dependence of the average z-component of hyperfine field on the chemical environment. An increasing number of Al in the first coordination shell causes not only a decrease of magnetic moments but also introduces noncollinearity.

  2. OSH technical reference manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    In an evaluation of the Department of Energy (DOE) Occupational Safety and Health programs for government-owned contractor-operated (GOCO) activities, the Department of Labor`s Occupational Safety and Health Administration (OSHA) recommended a technical information exchange program. The intent was to share written safety and health programs, plans, training manuals, and materials within the entire DOE community. The OSH Technical Reference (OTR) helps support the secretary`s response to the OSHA finding by providing a one-stop resource and referral for technical information that relates to safe operations and practice. It also serves as a technical information exchange tool to reference DOE-wide materials pertinentmore » to specific safety topics and, with some modification, as a training aid. The OTR bridges the gap between general safety documents and very specific requirements documents. It is tailored to the DOE community and incorporates DOE field experience.« less

  3. Stacking fault-mediated ultrastrong nanocrystalline Ti thin films

    NASA Astrophysics Data System (ADS)

    Wu, K.; Zhang, J. Y.; Li, G.; Wang, Y. Q.; Cui, J. C.; Liu, G.; Sun, J.

    2017-11-01

    In this work, we prepared nanocrystalline (NC) Ti thin films with abundant stacking faults (SFs), which were created via partial dislocations emitted from grain boundaries and which were insensitive to grain sizes. By employing the nanoindentation test, we investigated the effects of SFs and grain sizes on the strength of NC Ti films at room temperature. The high density of SFs significantly strengthens NC Ti films, via dislocation-SF interactions associated with the reported highest Hall-Petch slope of ˜20 GPa nm1/2, to an ultrahigh strength of ˜4.4 GPa, approaching ˜50% of its ideal strength.

  4. Nanocrystalline semiconductor doped rare earth oxide for the photocatalytic degradation studies on Acid Blue 113: A di-azo compound under UV slurry photoreactor.

    PubMed

    Suganya Josephine, G A; Mary Nisha, U; Meenakshi, G; Sivasamy, A

    2015-11-01

    Preventive measures for the control of environmental pollution and its remediation has received much interest in recent years due to the world-wide increase in the contamination of water bodies. Contributions of these harmful effluents are caused by the leather processing, pharmaceutical, cosmetic, textile, agricultural and other chemical industries. Nowadays, advanced oxidation processes considered to be better option for the complete destruction of organic contaminants in water and wastewater. Acid Blue 113 is a most widely used di-azo compound in leather, textile, dying and food industry as a color rending compound. In the present study, we have reported the photo catalytic degradation of Acid Blue 113 using a nanocrystalline semiconductor doped rare earth oxide as a photo catalyst under UV light irradiation. The photocatalyst was prepared by a simple precipitation technique and were characterized by XRD, FT-IR, UV-DRS and FE-SEM analysis. The experimental results proved that the prepared photo catalyst was nanocrystalline and highly active in the UV region. The UV-DRS results showed the band gap energy was 3.15eV for the prepared photo catalyst. The photodegradation efficiency was analyzed by various experimental parameters such as pH, catalyst dosage, variation of substrate concentration and effect of electrolyte addition. The photo degradation process followed a pseudo first order kinetics and was continuously monitored by UV-visible spectrophotometer. The experimental results proved the efficacy of the nanocrystalline zinc oxide doped dysprosium oxide which are highly active under UV light irradiations. It is also suggested that the prepared material would find wider applications in environmental remediation technologies to remove the carcinogenic and toxic moieties present in the industrial effluents. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. YBa2Cu3O7 thin films on nanocrystalline diamond films for HTSC bolometer

    NASA Technical Reports Server (NTRS)

    Cui, G.; Beetz, C. P., Jr.; Boerstler, R.; Steinbeck, J.

    1993-01-01

    Superconducting YBa2Cu3O(7-x) films on nanocrystalline diamond thin films have been fabricated. A composite buffer layer system consisting of diamond/Si3N4/YSZ/YBCO was explored for this purpose. The as-deposited YBCO films were superconducting with Tc of about 84 K and a relatively narrow transition width of about 8 K. SEM cross sections of the films showed very sharp interfaces between diamond/Si3N4 and between Si3N4/YSZ. The deposited YBCO film had a surface roughness of about 1000 A, which is suitable for high-temperature superconductive (HTSC) bolometer fabrication. It was also found that preannealing of the nanocrystalline diamond thin films at high temperature was very important for obtaining high-quality YBCO films.

  6. Synthesis of porous nanocrystalline NiO with hexagonal sheet-like morphology by homogeneous precipitation method

    NASA Astrophysics Data System (ADS)

    Sharma, Ravi Kant; Ghose, Ranjana

    2015-04-01

    Porous nanocrystalline NiO has been synthesized by a simple homogeneous precipitation method in short time at low calcination temperature without using any surfactant, chelating or gelating agents. The porous nanocrystalline NiO with a hexagonal sheet-like morphology were obtained by calcination of Ni(OH)2 nanoflakes at 500 °C. The calcination temperature strongly influences the morphology, crystallite size, specific surface area, pore volume and optical band gap of the samples. The samples were characterized using powder X-ray diffraction, thermal gravimetric analysis, FT-IR spectroscopy, UV-Visible diffuse reflectance spectroscopy, surface area measurements, field emission scanning electron microscopy coupled with energy dispersive X-ray analysis and transmission electron microscopy. The chemical activity of the samples was tested by catalytic reduction of 4-nitrophenol with NaBH4.

  7. Influence of Annealing on Microstructure and Mechanical Properties of a Nanocrystalline CrCoNi Medium-Entropy Alloy

    PubMed Central

    Schuh, Benjamin; Völker, Bernhard; Todt, Juraj; Kormout, Karoline S.; Schell, Norbert; Hohenwarter, Anton

    2018-01-01

    An equiatomic CrCoNi medium-entropy alloy was subjected to high-pressure torsion. This process led to a refinement of the microstructure to a grain size of about 50 nm, combined with a strong increase in the materials hardness. Subsequently, the thermodynamic stability of the medium entropy alloy was evaluated by isothermal and isochronal heat treatments. Annealed samples were investigated by scanning and transmission electron microscopy as well as X-ray diffraction, and were subjected to tensile tests to establish microstructure-property relationships. Furthermore, a comparison of mechanical properties with a grade 316L stainless steel was performed in order to evaluate if the CrCoNi alloy is competitive with commercially available structural materials in the nanocrystalline state. A minority phase embedded in the face-centered cubic matrix of the CrCoNi alloy could be observed in multiple annealed states, as well as the as-received and high-pressure torsion processed material. For 200 h of annealing at 500 °C, it was determined that the minority phase has a hexagonal-closed-packed crystal structure. A possible explanation for the formation of the phase is a preferential segregation of Co to stacking faults. PMID:29695142

  8. Multiscale modeling of localized resistive heating in nanocrystalline metals subjected to electropulsing

    NASA Astrophysics Data System (ADS)

    Zhao, Jingyi; Wang, G.-X.; Dong, Yalin; Ye, Chang

    2017-08-01

    Many electrically assisted processes have been reported to induce changes in microstructure and metal plasticity. To understand the physics-based mechanisms behind these interesting phenomena, however, requires an understanding of the interaction between the electric current and heterogeneous microstructure. In this work, multiscale modeling of the electric current flow in a nanocrystalline material is reported. The cellular automata method was used to track the nanoscale grain boundaries in the matrix. Maxwell's electromagnetic equations were solved to obtain the electrical potential distribution at the macro scale. Kirchhoff's circuit equation was solved to obtain the electric current flow at the micro/nano scale. The electric current distribution at two representative locations was investigated. A significant electric current concentration was observed near the grain boundaries, particularly near the triple junctions. This higher localized electric current leads to localized resistive heating near the grain boundaries. The electric current distribution could be used to obtain critical information such as localized resistive heating rate and extra system free energy, which are critical for explaining many interesting phenomena, including microstructure evolution and plasticity enhancement in many electrically assisted processes.

  9. PREFACE: International Scientific and Technical Conference ''Innovative Mechanical Engineering Technologies, Equipment and Materials-2014''

    NASA Astrophysics Data System (ADS)

    Nail, K.

    2015-06-01

    In the period from 3 to 5 December 2014 the city of Kazan hosted the International Scientific Conference ''Innovative mechanical engineering technologies, equipment and materials - 2014'' (ISC ''vIMETEM - 2014''). The event was followed by the 14th International specialized exhibition ''Engineering. Metalworking. Kazan'' The main objective of the annual conference was for participants to discuss scientific and technical achievements in the design and manufacture of engineering products, the expansion of cooperation between scientific organizations and enterprises of machine-building complex and the definition of perspective ways of creation and development of new techniques, technologies and materials. The conference ''IMETEM'' was devoted to the 90th anniversary of Fayzrahman Salahovich Yunusov, who made a great contribution in the field of aviation technology. Kashapov Nail, D.Sc., professor (Kazan Federal University)

  10. Characterization of synthetic nanocrystalline mackinawite: crystal structure, particle size, and specific surface area

    PubMed Central

    Jeong, Hoon Y.; Lee, Jun H.; Hayes, Kim F.

    2010-01-01

    Iron sulfide was synthesized by reacting aqueous solutions of sodium sulfide and ferrous chloride for 3 days. By X-ray powder diffraction (XRPD), the resultant phase was determined to be primarily nanocrystalline mackinawite (space group: P4/nmm) with unit cell parameters a = b = 3.67 Å and c = 5.20 Å. Iron K-edge XAS analysis also indicated the dominance of mackinawite. Lattice expansion of synthetic mackinawite was observed along the c-axis relative to well-crystalline mackinawite. Compared with relatively short-aged phase, the mackinawite prepared here was composed of larger crystallites with less elongated lattice spacings. The direct observation of lattice fringes by HR-TEM verified the applicability of Bragg diffraction in determining the lattice parameters of nanocrystalline mackinawite from XRPD patterns. Estimated particle size and external specific surface area (SSAext) of nanocrystalline mackinawite varied significantly with the methods used. The use of Scherrer equation for measuring crystallite size based on XRPD patterns is limited by uncertainty of the Scherrer constant (K) due to the presence of polydisperse particles. The presence of polycrystalline particles may also lead to inaccurate particle size estimation by Scherrer equation, given that crystallite and particle sizes are not equivalent. The TEM observation yielded the smallest SSAext of 103 m2/g. This measurement was not representative of dispersed particles due to particle aggregation from drying during sample preparation. In contrast, EGME method and PCS measurement yielded higher SSAext (276–345 m2/g by EGME and 424 ± 130 m2/g by PCS). These were in reasonable agreement with those previously measured by the methods insensitive to particle aggregation. PMID:21085620

  11. Mechanochemical stabilization and sintering of nanocrystalline the (ZrO2)0.97 (Y2O3)0.03 solid solution from pure oxides

    NASA Astrophysics Data System (ADS)

    Rendtorff, N. M.; Suárez, G.; Sakka, Y.; Aglietti, E. F.

    2011-10-01

    The mechanochemical activation processing has proved to be an effective technique to enhance a solid-state reaction at relatively low temperatures. In such a process, the mechanical effects of milling, such as reduction of particle size and mixture homogenization, are accompanied by chemical effects, such as partial decomposition of salts or hydroxides resulting in very active reactants. The objective of the present work is to obtain (ZrO2)0.97(Y2O3)0.03 nanocrystalline tetragonal solid solution powders directly using a high energy milling on a mixture of the pure oxides. A second objective is to evaluate the efficiency of the processing proposed and to characterize both textural and structural evolution of the mixtures during the milling processes and throughout posterior low temperature treatments. The Textural and structural evolution were studied by XRD analysis, specific area measurements (BET) and SEM. Firstly a decrease of the crystallinity of the reactants was observed, followed by the disappearance of Y2O3 diffraction peaks and the partial appearance of the tetragonal phase at room temperature. The solid solution proportion was increased with the high energy milling time, obtaining complete stabilization of the tetragonal solid solution with long milling treatments (60 min).The obtained powders were uniaxially pressed and sintered at different temperatures (600-1400°C) the influence of the milling time was correlated with the sinterization degree and final crystalline composition of the materials. Finally, fully stabilized nanocrystalline zirconia materials were obtained satisfactorily by the proposed method.

  12. The role of nanocrystalline binder metallic coating into WC after additive manufacturing

    NASA Astrophysics Data System (ADS)

    Cavaleiro, A. J.; Fernandes, C. M.; Farinha, A. R.; Gestel, C. V.; Jhabvala, J.; Boillat, E.; Senos, A. M. R.; Vieira, M. T.

    2018-01-01

    Tungsten carbide with microsized particle powders are commonly used embedded in a tough binder metal. The application of these composites is not limited to cutting tools, WC based material has been increasingly used in gaskets and other mechanical parts with complex geometries. Consequently, additive manufacturing processes as Selective Laser Sintering (SLS) might be the solution to overcome some of the manufacturing problems. However, the use of SLS leads to resolve the problems resulting from difference of physical properties between tungsten carbide and the metallic binder, such as laser absorbance and thermal conductivity. In this work, an original approach of powder surface modification was considered to prepare WC-metal composite powders and overcome these constraints, consisting on the sputter-coating of the WC particle surfaces with a nanocrystalline thin film of metallic binder material (stainless steel). The coating improves the thermal behavior and rheology of the WC particles and, at the same time, ensures a binder homogenous distribution. The feasibility of the SLS technology as manufacturing process for WC powder sputter-coated with 13 wt% stainless steel AISI 304L was explored with different laser power and scanning speed parameters. The SLS layers were characterized regarding elemental distribution, phase composition and morphology, and the results are discussed emphasizing the role of the coating on the consolidation process.

  13. Structural Inheritance and Redox Performance of Nanoporous Electrodes from Nanocrystalline Fe85.2B10-14P0-4Cu0.8 Alloys

    PubMed Central

    Fu, Chaoqun; Xu, Lijun; Dan, Zhenhua; Makino, Akihiro; Hara, Nobuyoshi; Qin, Fengxiang; Chang, Hui

    2017-01-01

    Nanoporous electrodes have been fabricated by selectively dissolving the less noble α-Fe crystalline phase from nanocrystalline Fe85.2B14–xPxCu0.8 alloys (x= 0, 2, 4 at.%). The preferential dissolution is triggered by the weaker electrochemical stability of α-Fe nanocrystals than amorphous phase. The final nanoporous structure is mainly composed of amorphous residual phase and minor undissolved α-Fe crystals and can be predicted from initial microstructure of nanocrystalline precursor alloys. The structural inheritance is proved by the similarity of the size and outlines between nanopores formed after dealloying in 0.1 M H2SO4 and α-Fe nanocrystals precipitated after annealing of amorphous Fe85.2B14−xPxCu0.8 (x = 0, 2, 4 at.%) alloys. The Redox peak current density of the nanoporous electrodes obtained from nanocrystalline Fe85.2B10P4Cu0.8 alloys is more than one order higher than those of Fe plate electrode and its counterpart nanocrystalline alloys due to the large surface area and nearly-amorphous nature of ligaments. PMID:28594378

  14. Synthesis of nanocrystalline rare earth oxides by glycothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosokawa, Saburo; Iwamoto, Shinji; Inoue, Masashi

    2008-11-03

    The reaction of yttrium acetate hydrate in 1,2-propanediol at 300 deg. C yielded a product containing acetate groups and glycol moieties. From this product, Y{sub 2}O{sub 3} was directly crystallized at 400 deg. C without the formation of a carbonate oxide phase. The thus-obtained Y{sub 2}O{sub 3} samples had a small crystallite size (2.2 nm) and significantly large surface area (280 m{sup 2}/g). Other nanocrystalline rare earth (Gd-Yb) oxides were also obtained by this method.

  15. Anomalous compression behavior of ˜12 nm nanocrystalline TiO2

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Li, Shourui; Peng, Fang; Lei, Li; Hu, Qiwei; Wang, Pei; Nan, Xiaolong; Liu, Jing; Zhu, Wenjun; He, Duanwei

    2017-06-01

    When the grain size decreases, there inevitably exists a critical size (dc) where the contribution of surface atoms to the physical properties is competitive with that of the interior atoms, giving rise to a wide variety of new phenomena. The behavior of granular materials near dc is particularly interesting because of the crossover, a continuous transition from one type of mechanism to another. In situ high-pressure x-ray diffraction experiments showed that the compression curve of nanocrystalline anatase TiO2 with grain size near dc reached a platform after about 5%-6% of deformation under hydrostatic compression. Eventually, the unit cell volume of anatase expanded at ˜14-16 GPa. We propose that the anomalous compression behavior is attributed to the formation and thickening of the stiff high density amorphous shell under high pressure, giving rise to a great arching effect at the grain boundary at the nanolevel. This process results in a remarkable difference in stress between inside and outside of the shell, generating the illusions of the hardening and the negative compressibility. This study offers a new insight into the mechanical properties of nanomaterials under extreme conditions.

  16. Preparation of Cu2ZnSnS4 nano-crystalline powder by mechano-chemical method

    NASA Astrophysics Data System (ADS)

    Alirezazadeh, Farzaneh; Sheibani, Saeed; Rashchi, Fereshteh

    2018-01-01

    Copper zinc tin sulfide (Cu2ZnSnS4, CZTS) is one of the most promising ceramic materials as an absorber layer in solar cells due to its suitable band gap, high absorption coefficient and non-toxic and environmental friendly constituent elements. In this work, nano-crystalline CZTS powder was synthesized by mechanical milling. Elemental powders of Cu, Zn, Sn and were mixed in atomic ratio of 2:1:1:4 according to the stoichiometry of Cu2ZnSnS4 and then milled in a planetary high energy ball mill under argon atmosphere. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffusion reflectance spectroscopy (DRS). XRD results confirm the formation of single-phase CZTS with kesterite structure after 20 h of milling. Also, the mean crystallite size was about 35 nm. SEM results show that after 20 h of milling, the product has a relatively uniform particle size distribution. Optical properties of the product indicate that the band gap of prepared CZTS is 1.6 eV which is near to the optimum value for photovoltaic solar cells showing as a light absorber material in solar energy applications.

  17. Preparation of Nanocrystalline Powders of ZrO2, Stabilized by Y2O3 Dobs for Ceramics

    NASA Astrophysics Data System (ADS)

    Petrunin, V. F.; Korovin, S. A.

    The purpose of this study was to develop a synthesis conditions and produce samples of nanocrystalline zirconia powder in a high-temperature phase state. To increase the stability of this state at room temperature, Y2O3 was used as a dop in the two-stages chemical method including coprecipitation mixture of the corresponding hydroxides and air drying. To reduce agglomeration of nanoparticles during heat treatment of precursors the microwave oven instead of a muffle was used. Different characterisation methods have been used to determine that the obtained powders are nano-scale corresponds to a high-temperature tetragonal phase of ZrO2. It is shown that such nanocrystalline powders may be used to produce highly-dense nanoceramics.

  18. Accumulated destructive effect of nanosecond repetitive voltage pulses on the insulated coatings of Fe-based nanocrystalline ribbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Liu, Jinliang

    2013-03-11

    Fe-based nanocrystalline ribbon is widely employed in pulsed power devices and accelerators. A temperature accumulation model is put forward to explain the accumulated destructive effect of discharge plasma bombardment on the TiO{sub 2} coatings of nanocrystalline ribbon under 50 Hz/100 ns voltage pulses. Experimental results revealed that the plasma channel expansion caused by air breakdown in the coating crack heated the coating repetitively, and the coating temperature was increased and accumulated around the crack. The fact that repetitive voltage pulses were more destructive than a single pulse with the same amplitude was caused by the intensified coating ablation under themore » temperature accumulation effect.« less

  19. Magnetic and transport properties of Fe-based nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Barandiarán, J. M.

    1994-01-01

    Fe-rich amorphous alloys containing late transition metals like Nb, V, Zr,..., sometimes with the addition of Cu, can crystallize in ultrafine grains of a crystalline phase, a few nanometers in diameter, embedded in a disordered matrix. In such state they have shown excellent soft magnetic properties for technical applications, rising the interest for deep studies. In this paper, recent work on some Fe-Nb and Fe-Zr based alloys both in amorphous state and after several degrees of nanocrystallization is presented. The nanocrystallization process has been achieved by conventional heat treatments (about 1 h at temperatures around 400-500 °C in a controlled atmosphere furnance) as well as by Joule heating using an electrical current flowing through the sample. Magnetic measurements, electrical resistivity, x-rays diffraction and 57Fe Mössbauer spectroscopy were used in the study of the crystalline phases appearing after the thermal treatments. The basic magnetic and transport properties of the nanocrystals do not differ appreciably from their bulk values. The magnetic anisotropy, however, is very sensitive to grain size and to the intergranular magnetic coupling. The effect of such coupling is deduced from the coercivity changes at the Curie Temperature of the amorphous matrix remaining after nanocrystallization.

  20. Synthesis, characterization, and cytotoxicity in human erythrocytes of multifunctional, magnetic, and luminescent nanocrystalline rare earth fluorides

    NASA Astrophysics Data System (ADS)

    Grzyb, Tomasz; Mrówczyńska, Lucyna; Szczeszak, Agata; Śniadecki, Zbigniew; Runowski, Marcin; Idzikowski, Bogdan; Lis, Stefan

    2015-10-01

    Multifunctional nanoparticles exhibiting red or green luminescence properties and magnetism were synthesized and thoroughly analyzed. The hydrothermal method was used for the synthesis of Eu3+- or Tb3+-doped GdF3-, NaGdF4-, and BaGdF5-based nanocrystalline materials. The X-ray diffraction patterns of the samples confirmed the desired compositions of the materials. Transmission electron microscope images revealed the different morphologies of the products, including the nanocrystal sizes, which varied from 12 nm in the case of BaGdF5-based nanoparticles to larger structures with dimensions exceeding 300 nm. All of the samples presented luminescence under ultraviolet irradiation, as well as when the samples were in the form of water colloids. The highest luminescence was observed for BaGdF5-based materials. The obtained nanoparticles exhibited paramagnetism along with probable evidence of superparamagnetic behavior at low temperatures. The particles' magnetic characteristics were also preserved for samples in the form of a suspension in distilled water. The cytotoxicity studies against the human erythrocytes indicated that the synthesized nanoparticles are non-toxic because they did not cause the red blood cells shape changes nor did they alter their membrane structure and permeabilization.

  1. Ferromagnetism appears in nitrogen implanted nanocrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Remes, Zdenek; Sun, Shih-Jye; Varga, Marian; Chou, Hsiung; Hsu, Hua-Shu; Kromka, Alexander; Horak, Pavel

    2015-11-01

    The nanocrystalline diamond films turn to be ferromagnetic after implanting various nitrogen doses on them. Through this research, we confirm that the room-temperature ferromagnetism of the implanted samples is derived from the measurements of magnetic circular dichroism (MCD) and superconducting quantum interference device (SQUID). Samples with larger crystalline grains as well as higher implanted doses present more robust ferromagnetic signals at room temperature. Raman spectra indicate that the small grain-sized samples are much more disordered than the large grain-sized ones. We propose that a slightly large saturated ferromagnetism could be observed at low temperature, because the increased localization effects have a significant impact on more disordered structure.

  2. Plasma metallurgical production of nanocrystalline borides and carbides

    NASA Astrophysics Data System (ADS)

    Galevsky, G. V.; Rudneva, V. V.; Cherepanov, A. N.; Galevsky, S. G.; Efimova, K. A.

    2016-09-01

    he experience in production and study of properties of nanocrystalline borides and chromium carbides, titanium, silicon was summarized. The design and features of the vertical three-jet once-through reactor with power 150 kW, used in the plasma metallurgical production, was described. The technological, thermotechnical and resource characteristics of the reactor were identified. The parameters of borides and carbides synthesis, their main characteristics in the nanodispersed state and equipment-technological scheme of production were provided. Evaluation of engineering-and-economical performance of the laboratory and industrial levels of borides and carbides production and the state corresponding to the segment of the world market was carried out.

  3. On the Formation of Lightweight Nanocrystalline Aluminum Alloys by Electrodeposition

    DOE PAGES

    Hilty, Robert D.; Masur, Lawrence J.

    2017-08-08

    New nanocrystalline aluminum alloys have been fabricated by electrodeposition. These are thermodynamically stable alloys of Al-Mn and Al-Zr with grain sizes < 100nm. Al-Mn and Al-Zr alloys are characterized here showing high strength (up to 1350 MPa) and hardness (up to 450 HVN) while maintaining the specific gravity of Al. Smooth and dense deposits plated from ionic liquids, such as EMIM:Cl (1-Ethyl-3-methylimidazolium chloride), can develop to thicknesses of 1mm or more.

  4. Immobilization of lysozyme-cellulose amide-linked conjugates on cellulose I and II cotton nanocrystalline preparations

    USDA-ARS?s Scientific Manuscript database

    Lysozyme was attached through an amide linkage between protein aspartate and glutamate residues to amino-glycine-cellulose (AGC), which was prepared by esterification of glycine to preparations of cotton nanocrystals (CNC). The nanocrystalline preparations were produced through acid hydrolysis and ...

  5. Effect of phase composition on crystal texture formation in hot deformed nanocrystalline SmCo5 magnets

    NASA Astrophysics Data System (ADS)

    Ma, Qiang; Yue, Ming; Xu, Xiaochang; Zhang, Hongguo; Zhang, Dongtao; Zhang, Xuefeng; Zhang, Jiuxing

    2018-05-01

    In the present study, bulk anisotropic nanocrystalline SmCo5 magnets were prepared by hot press and subsequent hot deformation method. Effect of phase composition on texture and magnetic properties are presented, based on which the mechanism of plastic deformation and texture formation during the hot deformation process is discussed. The SmCo5 magnets were prepared by hot deformation, excessive Sm of 2.5 wt% and 10 wt% was added to compensate the weight loss due to Sm evaporation. Our analyses reveal that the phase composition is one of the most important parameters that determine the texture of SmCo5 magnets. It is therefore suggested that the existence of 2:17 phase and its phase transformation undermined the crystal texture formation as well as the magnetic properties of nanocrystalline SmCo5 magnets.

  6. Structural Evolution during Milling, Annealing, and Rapid Consolidation of Nanocrystalline Fe–10Cr–3Al Powder

    PubMed Central

    Kumar, Rajiv; Bakshi, S. R.; Joardar, Joydip; Parida, S.; Raja, V. S.; Singh Raman, R. K.

    2017-01-01

    Structural changes during the deformation-induced synthesis of nanocrystalline Fe–10Cr–3Al alloy powder via high-energy ball milling followed by annealing and rapid consolidation by spark plasma sintering were investigated. Reduction in crystallite size was observed during the synthesis, which was associated with the lattice expansion and rise in dislocation density, reflecting the generation of the excess grain boundary interfacial energy and the excess free volume. Subsequent annealing led to the exponential growth of the crystallites with a concomitant drop in the dislocation density. The rapid consolidation of the as-synthesized nanocrystalline alloy powder by the spark plasma sintering, on the other hand, showed only a limited grain growth due to the reduction of processing time for the consolidation by about 95% when compared to annealing at the same temperature. PMID:28772633

  7. Magnetic properties of FeCuNbSiB nanocrystalline alloy powder cores using ball-milled powder

    NASA Astrophysics Data System (ADS)

    Kim, G. H.; Noh, T. H.; Choi, G. B.; Kim, K. Y.

    2003-05-01

    Cold-pressed nanocrystalline powder cores were fabricated using powders of nanocrystalline ribbons which were ball milled for short time. Their magnetic properties at high frequency were measured. The powder size ranges from 20 to 850 μm and the contents of the glass binder are between 1 and 8 wt %. For cores composed of large particles of 300-850 μm with 5 wt % glass binder, we obtained a stable permeability of 100 up to 800 kHz, a maximum level 31 of quality factor at frequency of 50 kHz, and 320 mW/cm3 core loss at f=50 kHz and Bm=0.1 T. This is mainly due to the good soft magnetic properties of the powders and the higher insulation of powder cores which cause low eddy current losses.

  8. Medical Laboratory Technician--Hematology, Serology, Blood Banking & Immunohematology, 10-4. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, the third of three courses in the medical laboratory technician field adapted from military curriculum materials for use in vocational and technical education, was designed as a refresher course for student self-study and evaluation. It is suitable for use by advanced students or beginning students participating in a supervised…

  9. Doping of vanadium to nanocrystalline diamond films by hot filament chemical vapor deposition

    PubMed Central

    2012-01-01

    Doping an impure element with a larger atomic volume into crystalline structure of buck crystals is normally blocked because the rigid crystalline structure could not tolerate a larger distortion. However, this difficulty may be weakened for nanocrystalline structures. Diamonds, as well as many semiconductors, have a difficulty in effective doping. Theoretical calculations carried out by DFT indicate that vanadium (V) is a dopant element for the n-type diamond semiconductor, and their several donor state levels are distributed between the conduction band and middle bandgap position in the V-doped band structure of diamond. Experimental investigation of doping vanadium into nanocrystalline diamond films (NDFs) was first attempted by hot filament chemical vapor deposition technique. Acetone/H2 gas mixtures and vanadium oxytripropoxide (VO(OCH2CH2CH3)3) solutions of acetone with V and C elemental ratios of 1:5,000, 1:2,000, and 1:1,000 were used as carbon and vanadium sources, respectively. The resistivity of the V-doped NDFs decreased two orders with the increasing V/C ratios. PMID:22873631

  10. Phase fields of nickel silicides obtained by mechanical alloying in the nanocrystalline state

    NASA Astrophysics Data System (ADS)

    Datta, M. K.; Pabi, S. K.; Murty, B. S.

    2000-06-01

    Solid state reactions induced by mechanical alloying (MA) of elemental blends of Ni and Si have been studied over the entire composition range of the Ni-Si system. A monotonous increase of the lattice parameter of the Ni rich solid solution, Ni(Si), is observed with refinement of crystallite size. Nanocrystalline phase/phase mixtures of Ni(Si), Ni(Si)+Ni31Si12, Ni31Si12+Ni2Si, Ni2Si+NiSi and NiSi+Si, have been obtained during MA, over the composition ranges of 0-10, 10-28, 28-33, 33-50, and >50 at. % Si, respectively. The results clearly suggest that only congruent melting phases, Ni31Si12, Ni2Si, and NiSi form, while the formation of noncongruent melting phases, Ni3Si, Ni3Si2, and NiSi2, is bypassed in the nanocrystalline state. The phase formation during MA has been discussed based on thermodynamic arguments. The predicted phase fields obtained from effective free energy calculations are quite consistent with those obtained during MA.

  11. Transport, electronic, and structural properties of nanocrystalline CuAlO2 delafossites

    NASA Astrophysics Data System (ADS)

    Durá, O. J.; Boada, R.; Rivera-Calzada, A.; León, C.; Bauer, E.; de la Torre, M. A. López; Chaboy, J.

    2011-01-01

    This work reports on the effect of grain size on the electrical, thermal, and structural properties of CuAlO2 samples obtained by solid-state reaction combined with ball milling. Electrical characterization made in microcrystalline and nanocrystalline samples shows that the electrical conductivity decreases several orders of magnitude for the nanocrystalline samples, and, in addition, there is a large discrepancy between the activation energies associated to thermoelectric power ES. The study of the Cu K-edge x-ray absorption spectra of the CuAlO2 samples shows that the local structure around Cu is preserved after the sintering process, indicating that the observed behavior of the electrical conductivity is of intrinsic origin. Complex conductivity measurements as a function of frequency allow us to discard grain-boundaries effects on the electrical transport. Thus, the changes in σ(T) and S(T) are interpreted in terms of charge localization in the framework of small polarons. This is in agreement with the analysis of the near-edge region of the absorption spectra, which indicates that sintering favors the Cu-O hybridization. As a consequence, oxygen atoms progressively lose their capability of trapping holes, and the electrical conductivity is also enhanced.

  12. Ion dynamics in a new class of materials: nanoglassy lithium alumosilicates

    NASA Astrophysics Data System (ADS)

    Stanje, B.; Bottke, P.; Breuer, S.; Hanzu, I.; Heitjans, P.; Wilkening, M.

    2018-03-01

    In many cases nanocrystalline materials, prepared through high-energy ball milling, reveal enhanced ion dynamics when compared to the situation in the coarse-grained analogues. This effect, which has particularly been seen for lithium alumosilicates, has been ascribed to structural disorder, i.e., the introduction of defect sites during mechanical treatment. Much less is, however, known about ion transport in nanostructured amorphous materials, e.g., nanoglassy compounds, which are regarded as a new class of functional materials. Following earlier studies on nanoglassy lithium alumosilicates and borates, here we studied ion dynamics in nanoglassy petalite LiAlSi4O10. While conductivity spectroscopy unequivocally reveals that long-range ion dynamics in nanoglassy LiAlSi4O10 decreases upon milling, local dynamics, sensed by 7Li nuclear magnetic resonance (NMR) spin-lattice relaxation, points to enhanced Li ion mobility compared to the non-treated glass. Most likely, as for nanocrystalline ceramics also for nanoglassy samples a heterogeneous structure, consisting of bulk and interfacial regions, is formed. For LiAlSi4O10 these interfacial regions, characterized by a higher degree of free volume, might act as hosts for spins experiencing fast longitudinal NMR relaxation. Obviously, these regions do not form a through-going network, which would allow the ions to move over long distances as quickly as in the unmilled glass.

  13. Immobilization of lysozyme-cellulose amide-linked conjugates on cellulose i and ii cotton nanocrystalline preparations

    USDA-ARS?s Scientific Manuscript database

    Lysozyme was attached through an amide linkage between some of the protein’s aspartate and glutamate residues to amino-glycine-cellulose (AGC), which was prepared by esterification of glycine to preparations of cotton nanocrystals (CNC). The nanocrystalline preparations were produced through acid h...

  14. Room temperature aerobic oxidation of amines by a nanocrystalline ruthenium oxide pyrochlore nafion composite catalyst.

    PubMed

    Venkatesan, Shanmuganathan; Kumar, Annamalai Senthil; Lee, Jyh-Fu; Chan, Ting-Shan; Zen, Jyh-Myng

    2012-05-14

    The aerobic oxidation of primary amines to their respective nitriles has been carried out at room temperature using a highly reusable nanocrystalline ruthenium oxide pyrochlore Nafion composite catalyst (see figure). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Mechanically Enhanced Liquid Interfaces at Human Body Temperature Using Thermosensitive Methylated Nanocrystalline Cellulose.

    PubMed

    Scheuble, N; Geue, T; Kuster, S; Adamcik, J; Mezzenga, R; Windhab, E J; Fischer, P

    2016-02-09

    The mechanical performance of materials at oil/water interfaces after consumption is a key factor affecting hydrophobic drug release. In this study, we methylated the surface of nanocrystalline cellulose (NCC) by mercerization and dimethyl sulfate exposure to produce thermosensitive biopolymers. These methylated NCC (metNCC) were used to investigate interfacial thermogelation at air/water and medium-chain triglyceride (MCT)/water interfaces at body temperature. In contrast to bulk fluid dynamics, elastic layers were formed at room temperature, and elasticity increased significantly at body temperature, which was measured by interfacial shear and dilatational rheology in situ. This unique phenomenon depends on solvent quality, temperature, and polymer concentration at interfaces. Thus, by adjusting the degree of hydrophobicity of metNCC, the interfacial elasticity and thermogelation of the interfaces could be varied. In general, these new materials (metNCC) formed more brittle interfacial layers compared to commercial methylcellulose (MC A15). Thermogelation of methylcellulose promotes attractive intermolecular forces, which were reflected in a change in self-assembly of metNCC at the interface. As a consequence, layer thickness and density increased as a function of temperature. These effects were measured by atomic force microscopy (AFM) images of the displaced interface and confirmed by neutron reflection. The substantial structural and mechanical change of methylcellulose interfaces at body temperature represents a controllable encapsulation parameter allowing optimization of lipid-based drug formulations.

  16. Electron-beam irradiation induced transformation of Cu2(OH)3NO3 nanoflakes into nanocrystalline CuO

    NASA Astrophysics Data System (ADS)

    Padhi, S. K.; Gottapu, S. N.; Krishna, M. Ghanashyam

    2016-05-01

    The transmission electron microscope electron-beam (TEM e-beam) as a material modification tool has been demonstrated. The material modification is realised in the high-resolution TEM mode (largest condenser aperture, 150 μm, and 200 nm spot size) at a 200 keV beam energy. The Cu2(OH)3NO3 (CHN) nanoflakes used in this study were microwave solution processed that were layered single crystals and radiation sensitive. The single domain CHN flakes disintegrate into a large number of individual CuO crystallites within a 90 s span of time. The sequential bright-field, dark-field, and selected area electron diffraction modes were employed to record the evolved morphology, microstructural changes, and structural transformation that validate CHN modification. High-resolution transmission electron microscopy imaging of e-beam irradiated regions unambiguously supports the growth of CuO nanoparticles (11.8(3.2) nm in diameter). This study demonstrates e-beam irradiation induced CHN depletion, subsequent nucleation and growth of nanocrystalline CuO regions well embedded in the parent burnt porous matrix which can be useful for miniaturized sensing applications. NaBH4 induced room temperature reduction of CHN to elemental Cu and its printability on paper was also demonstrated.The transmission electron microscope electron-beam (TEM e-beam) as a material modification tool has been demonstrated. The material modification is realised in the high-resolution TEM mode (largest condenser aperture, 150 μm, and 200 nm spot size) at a 200 keV beam energy. The Cu2(OH)3NO3 (CHN) nanoflakes used in this study were microwave solution processed that were layered single crystals and radiation sensitive. The single domain CHN flakes disintegrate into a large number of individual CuO crystallites within a 90 s span of time. The sequential bright-field, dark-field, and selected area electron diffraction modes were employed to record the evolved morphology, microstructural changes, and structural

  17. Characterization of Different Cable Ferrite Materials to Reduce the Electromagnetic Noise in the 2-150 kHz Frequency Range.

    PubMed

    Suarez, Adrian; Victoria, Jorge; Alcarria, Antonio; Torres, Jose; Martinez, Pedro A; Martos, Julio; Soret, Jesus; Garcia-Olcina, Raimundo; Muetsch, Steffen

    2018-01-23

    The gap of standardization for conducted and field coupled electromagnetic interferences (EMI) in the 2-150 kHz frequency range can lead to Electromagnetic Compatibility (EMC) problems. This is caused by power systems such as Pulse Width Modulation (PWM) controlled rectifiers, photovoltaic inverters or charging battery units in electric vehicles. This is a very important frequency spectral due to interferences generated in a wide range of devices and, specifically, communication problems in the new technologies and devices incorporated to the traditional grid to convert it into a Smart Grid. Consequently, it is necessary to provide new solutions to attenuate this kind of interference, which involves finding new materials that are able to filter the electromagnetic noise. This contribution is focused on characterizing the performance of a novel material based on nanocrystalline and comparing it to most common material compositions such as MnZn and NiZn. This research is carried out from the point of view of the manufacturing process, magnetic properties and EMI suppression ability. This last item is carried out through two analysis procedures: a theoretical method by determining the attenuation ratio by measuring impedance parameter and proposing a new empirical technique based on measuring directly the insertion loss parameter. Therefore, the main aim of this characterization process is to determine the performance of nanocrystalline compared to traditional cable ferrite compositions to reduce the interferences in this controversial frequency range. From the results obtained, it is possible to deduce that nanocrystalline cable ferrite provides the best performance to filter the electromagnetic noise in the 2-150 kHz frequency range.

  18. Controlling Directional Liquid Motion on Micro- and Nanocrystalline Diamond/β-SiC Composite Gradient Films.

    PubMed

    Wang, Tao; Handschuh-Wang, Stephan; Huang, Lei; Zhang, Lei; Jiang, Xin; Kong, Tiantian; Zhang, Wenjun; Lee, Chun-Sing; Zhou, Xuechang; Tang, Yongbing

    2018-01-30

    In this Article, we report the synthesis of micro- and nanocrystalline diamond/β-SiC composite gradient films, using a hot filament chemical vapor deposition (HFCVD) technique and its application as a robust and chemically inert means to actuate water and hazardous liquids. As revealed by scanning electron microscopy, the composition of the surface changed gradually from pure nanocrystalline diamond (hydrophobic) to a nanocrystalline β-SiC surface (hydrophilic). Transmission electron microscopy and Raman spectroscopy were employed to determine the presence of diamond, graphite, and β-SiC phases. The as-prepared gradient films were evaluated for their ability to actuate water. Indeed, water was transported via the gradient from the hydrophobic (hydrogen-terminated diamond) to the hydrophilic side (hydroxyl-terminated β-SiC) of the gradient surface. The driving distance and velocity of water is pivotally influenced by the surface roughness. The nanogradient surface showed significant promise as the lower roughness combined with the longer gradient yields in transport distances of up to 3.7 mm, with a maximum droplet velocity of nearly 250 mm/s measured by a high-speed camera. As diamond and β-SiC are chemically inert, the gradient surfaces can be used to drive hazardous liquids and reactive mixtures, which was signified by the actuation of hydrochloric acid and sodium hydroxide solution. We envision that the diamond/β-SiC gradient surface has high potential as an actuator for water transport in microfluidic devices, DNA sensors, and implants, which induce guided cell growth.

  19. Examination of Short- and Long-Range Atomic Order Nanocrystalline SiC and Diamond by Powder Diffraction Methods

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Stelmakh, S.; Gierlotka, S.; Weber, H.-P.; Proffen, T.; Palosz, W.

    2002-01-01

    The real atomic structure of nanocrystals determines unique, key properties of the materials. Determination of the structure presents a challenge due to inherent limitations of standard powder diffraction techniques when applied to nanocrystals. Alternate methodology of the structural analysis of nanocrystals (several nanometers in size) based on Bragg-like scattering and called the "apparent lattice parameter" (alp) is proposed. Application of the alp methodology to examination of the core-shell model of nanocrystals will be presented. The results of application of the alp method to structural analysis of several nanopowders were complemented by those obtained by determination of the Atomic Pair Distribution Function, PDF. Based on synchrotron and neutron diffraction data measured in a large diffraction vector of up to Q = 25 Angstroms(exp -1), the surface stresses in nanocrystalline diamond and SiC were evaluated.

  20. Grain size effects on stability of nonlinear vibration with nanocrystalline NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Xia, Minglu; Sun, Qingping

    2017-10-01

    Grain size effects on stability of thermomechanical responses for a nonlinear torsional vibration system with nanocrystalline superelastic NiTi bar are investigated in the frequency and amplitude domains. NiTi bars with average grain size from 10 nm to 100 nm are fabricated through cold-rolling and subsequent annealing. Thermomechanical responses of the NiTi bar as a softening nonlinear damping spring in the torsional vibration system are obtained by synchronised acquisition of rotational angle and temperature under external sinusoidal excitation. It is shown that nonlinearity and damping capacity of the NiTi bar decrease as average grain size of the material is reduced below 100 nm. Therefore jump phenomena of thermomechanical responses become less significant or even vanish and the vibration system becomes more stable. The work in this paper provides a solid experimental base for manipulating the undesired jump phenomena of thermomechanical responses and stabilising the mechanical vibration system through grain refinement of NiTi SMA.