Science.gov

Sample records for nanocrystalline metal hydrides

  1. Hysteresis in Metal Hydrides.

    ERIC Educational Resources Information Center

    Flanagan, Ted B., And Others

    1987-01-01

    This paper describes a reproducible process where the irreversibility can be readily evaluated and provides a thermodynamic description of the important phenomenon of hysteresis. A metal hydride is used because hysteresis is observed during the formation and decomposition of the hydride phase. (RH)

  2. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, Moshe; Gruen, Dieter M.; Mendelsohn, Marshall H.; Sheft, Irving

    1981-01-01

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  3. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  4. Dimensionally stable metallic hydride composition

    DOEpatents

    Heung, Leung K.

    1994-01-01

    A stable, metallic hydride composition and a process for making such a composition. The composition comprises a uniformly blended mixture of a metal hydride, kieselguhr, and a ballast metal, all in the form of particles. The composition is made by subjecting a metal hydride to one or more hydrogen absorption/desorption cycles to disintegrate the hydride particles to less than approximately 100 microns in size. The particles are partly oxidized, then blended with the ballast metal and the kieselguhr to form a uniform mixture. The mixture is compressed into pellets and calcined. Preferably, the mixture includes approximately 10 vol. % or more kieselguhr and approximately 50 vol. % or more ballast. Metal hydrides that can be used in the composition include Zr, Ti, V, Nb, Pd, as well as binary, tertiary, and more complex alloys of La, Al, Cu, Ti, Co, Ni, Fe, Zr, Mg, Ca, Mn, and mixtures and other combinations thereof. Ballast metals include Al, Cu and Ni.

  5. Creating bulk nanocrystalline metal.

    SciTech Connect

    Fredenburg, D. Anthony; Saldana, Christopher J.; Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John; Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  6. Photochemistry of Transition Metal Hydrides.

    PubMed

    Perutz, Robin N; Procacci, Barbara

    2016-08-10

    Photochemical reactivity associated with metal-hydrogen bonds is widespread among metal hydride complexes and has played a critical part in opening up C-H bond activation. It has been exploited to design different types of photocatalytic reactions and to obtain NMR spectra of dilute solutions with a single pulse of an NMR spectrometer. Because photolysis can be performed on fast time scales and at low temperature, metal-hydride photochemistry has enabled determination of the molecular structure and rates of reaction of highly reactive intermediates. We identify five characteristic photoprocesses of metal monohydride complexes associated with the M-H bond, of which the most widespread are M-H homolysis and R-H reductive elimination. For metal dihydride complexes, the dominant photoprocess is reductive elimination of H2. Dihydrogen complexes typically lose H2 photochemically. The majority of photochemical reactions are likely to be dissociative, but hydride complexes may be designed with equilibrated excited states that undergo different photochemical reactions, including proton transfer or hydride transfer. The photochemical mechanisms of a few reactions have been analyzed by computational methods, including quantum dynamics. A section on specialist methods (time-resolved spectroscopy, matrix isolation, NMR, and computational methods) and a survey of transition metal hydride photochemistry organized by transition metal group complete the Review.

  7. Properties of nanoscale metal hydrides.

    PubMed

    Fichtner, Maximilian

    2009-05-20

    Nanoscale hydride particles may exhibit chemical stabilities which differ from those of a macroscopic system. The stabilities are mainly influenced by a surface energy term which contains size-dependent values of the surface tension, the molar volume and an additional term which takes into account a potential reduction of the excess surface energy. Thus, the equilibrium of a nanoparticular hydride system may be shifted to the hydrogenated or to the dehydrogenated side, depending on the size and on the prefix of the surface energy term of the hydrogenated and dehydrogenated material. Additional complexity appears when solid-state reactions of complex hydrides are considered and phase segregation has to be taken into account. In such a case the reversibility of complex hydrides may be reduced if the nanoparticles are free standing on a surface. However, it may be enhanced if the system is enclosed by a nanoscale void which prevents the reaction partners on the dehydrogenated side from diffusing away from each other. Moreover, the generally enhanced diffusivity in nanocrystalline systems may lower the kinetic barriers for the material's transformation and, thus, facilitate hydrogen absorption and desorption.

  8. A new route to metal hydrides

    SciTech Connect

    Murphy, D.W.; Zahurak, S.M.; Vyas, B.; Thomas, M.; Badding, M.E.; Fang, W.C. )

    1993-06-01

    Aqueous borohydride is shown to be an effective reagent for hydriding metals and intermetallics. It is the hydriding equivalent of 20-30 atm of H[sub 2]. The reaction is a convenient way to screen materials for hydride formation and possible utility in applications such as nickel-metal hydride batteries. The reaction is also a convenient alternative to decrepitation for the production of free flowing powders. 16 refs., 1 fig., 1 tab.

  9. Characteristics and Applications of Metal Hydrides

    NASA Technical Reports Server (NTRS)

    Egan, G. J.; Lynch, F. E.

    1987-01-01

    Report discusses engineering principles of uses of metal hydrides in spacecraft. Metal hydrides absorb, store, pump, compress, and expand hydrogen gas. Additionally, they release or absorb sizeable amounts of heat as they form and decompose - property adapted for thermal-energy management or for propulsion. Describes efforts to: Identify heat sources and sinks suitable for driving metal hydride thermal cycles in spacecraft; develop concepts for hydride subsystems employing available heating and cooling methods; and produce data base on estimated sizes, masses, and performances of hydride devices for spacecraft.

  10. Rechargeable metal hydrides for spacecraft application

    NASA Astrophysics Data System (ADS)

    Perry, J. L.

    1988-09-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  11. Rechargeable metal hydrides for spacecraft application

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  12. Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity.

    PubMed

    Jordan, Abraham J; Lalic, Gojko; Sadighi, Joseph P

    2016-08-10

    Hydride complexes of copper, silver, and gold encompass a broad array of structures, and their distinctive reactivity has enabled dramatic recent advances in synthesis and catalysis. This Review summarizes the synthesis, characterization, and key stoichiometric reactions of isolable or observable coinage metal hydrides. It discusses catalytic processes in which coinage metal hydrides are known or probable intermediates, and presents mechanistic studies of selected catalytic reactions. The purpose of this Review is to convey how developments in coinage metal hydride chemistry have led to new organic transformations, and how developments in catalysis have in turn inspired the synthesis of reactive new complexes.

  13. Thermodynamic Hydricity of Transition Metal Hydrides.

    PubMed

    Wiedner, Eric S; Chambers, Matthew B; Pitman, Catherine L; Bullock, R Morris; Miller, Alexander J M; Appel, Aaron M

    2016-08-10

    Transition metal hydrides play a critical role in stoichiometric and catalytic transformations. Knowledge of free energies for cleaving metal hydride bonds enables the prediction of chemical reactivity, such as for the bond-forming and bond-breaking events that occur in a catalytic reaction. Thermodynamic hydricity is the free energy required to cleave an M-H bond to generate a hydride ion (H(-)). Three primary methods have been developed for hydricity determination: the hydride transfer method establishes hydride transfer equilibrium with a hydride donor/acceptor pair of known hydricity, the H2 heterolysis method involves measuring the equilibrium of heterolytic cleavage of H2 in the presence of a base, and the potential-pKa method considers stepwise transfer of a proton and two electrons to give a net hydride transfer. Using these methods, over 100 thermodynamic hydricity values for transition metal hydrides have been determined in acetonitrile or water. In acetonitrile, the hydricity of metal hydrides spans a range of more than 50 kcal/mol. Methods for using hydricity values to predict chemical reactivity are also discussed, including organic transformations, the reduction of CO2, and the production and oxidation of hydrogen.

  14. Thin-film metal hydrides.

    PubMed

    Remhof, Arndt; Borgschulte, Andreas

    2008-12-01

    The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis.

  15. Method of forming metal hydride films

    NASA Technical Reports Server (NTRS)

    Steinberg, R.; Alger, D. L.; Cooper, D. W. (Inventor)

    1977-01-01

    The substrate to be coated (which may be of metal, glass or the like) is cleaned, both chemically and by off-sputtering in a vacuum chamber. In an ultra-high vacuum system, vapor deposition by a sublimator or vaporizer coats a cooled shroud disposed around the substrate with a thin film of hydride forming metal which getters any contaminant gas molecules. A shutter is then opened to allow hydride forming metal to be deposited as a film or coating on the substrate. After the hydride forming metal coating is formed, deuterium or other hydrogen isotopes are bled into the vacuum system and diffused into the metal film or coating to form a hydride of metal film. Higher substrate temperatures and pressures may be used if various parameters are appropriately adjusted.

  16. Sealed aerospace metal-hydride batteries

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine

    1992-01-01

    Nickel metal hydride and silver metal hydride batteries are being developed for aerospace applications. There is a growing market for smaller, lower cost satellites which require higher energy density power sources than aerospace nickel-cadmium at a lower cost than space nickel-hydrogen. These include small LEO satellites, tactical military satellites and satellite constellation programs such as Iridium and Brilliant Pebbles. Small satellites typically do not have the spacecraft volume or the budget required for nickel-hydrogen batteries. NiCd's do not have adequate energy density as well as other problems such as overcharge capability and memory effort. Metal hydride batteries provide the ideal solution for these applications. Metal hydride batteries offer a number of advantages over other aerospace battery systems.

  17. Materials engineering of metal hydrides

    SciTech Connect

    Gruen, D.M.; Mendelsohn, M.H.

    1981-01-01

    Intermetallic hydrides of the AB/sub 5/ type have enthalpies in the range valid for chemical heat pumps. A scheme for manufacturing hydrides with optimal properties for a chemical heat pump is described, using LaNi/sub 5-x/Al/sub x/ and ZrV/sub 2x/Cr/sub x as examples. The Laves-phase ternary hydrides appear to be good candidates for gettering hydrogen in the Tokamak Fusion Test Reactor. (DLC)

  18. Liquid suspensions of reversible metal hydrides

    DOEpatents

    Reilly, J.J.; Grohse, E.W.; Winsche, W.E.

    1983-12-08

    The reversibility of the process M + x/2 H/sub 2/ ..-->.. MH/sub x/, where M is a metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under a liquid, thereby to reduce contamination, provide better temperature control and provide in situ mobility of the reactants. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen (at high pressures) and to release (at low pressures) previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the former is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the H/sub 2/ pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  19. Low density metal hydride foams

    DOEpatents

    Maienschein, Jon L.; Barry, Patrick E.

    1991-01-01

    Disclosed is a low density foam having a porosity of from 0 to 98% and a density less than about 0.67 gm/cc, prepared by heating a mixture of powered lithium hydride and beryllium hydride in an inert atmosphere at a temperature ranging from about 455 to about 490 K for a period of time sufficient to cause foaming of said mixture, and cooling the foam thus produced. Also disclosed is the process of making the foam.

  20. Metastable Metal Hydrides for Hydrogen Storage

    DOE PAGES

    Graetz, Jason

    2012-01-01

    The possibility of using hydrogen as a reliable energy carrier for both stationary and mobile applications has gained renewed interest in recent years due to improvements in high temperature fuel cells and a reduction in hydrogen production costs. However, a number of challenges remain and new media are needed that are capable of safely storing hydrogen with high gravimetric and volumetric densities. Metal hydrides and complex metal hydrides offer some hope of overcoming these challenges; however, many of the high capacity “reversible” hydrides exhibit a large endothermic decomposition enthalpy making it difficult to release the hydrogen at low temperatures. Onmore » the other hand, the metastable hydrides are characterized by a low reaction enthalpy and a decomposition reaction that is thermodynamically favorable under ambient conditions. The rapid, low temperature hydrogen evolution rates that can be achieved with these materials offer much promise for mobile PEM fuel cell applications. However, a critical challenge exists to develop new methods to regenerate these hydrides directly from the reactants and hydrogen gas. This spotlight paper presents an overview of some of the metastable metal hydrides for hydrogen storage and a few new approaches being investigated to address the key challenges associated with these materials.« less

  1. Plastic deformation mechanisms in nanocrystalline metallic materials

    NASA Astrophysics Data System (ADS)

    Ovid'ko, Ilya A.

    2013-11-01

    This article discusses the experiments, computer simulations, and theoretical models addressing the conventional and specific mechanisms of plastic deformation in nanocrystalline metallic materials. Particular attention is devoted to the competition between lattice dislocation slip and specific deformation mechanisms mediated by grain boundaries as well as its sensitivity to grain size and other parameters of nanocrystalline metallic structures.

  2. 49 CFR 173.311 - Metal hydride storage systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage...

  3. 49 CFR 173.311 - Metal hydride storage systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage...

  4. 49 CFR 173.311 - Metal hydride storage systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage...

  5. 49 CFR 173.311 - Metal hydride storage systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage...

  6. Metal Hydride Heat Storage Technology for Directed Energy Weapon Systems

    DTIC Science & Technology

    2007-11-16

    over time after the pulse operation. A compressor -driven metal hydride heat storage system was developed for efficient, compact heat storage and...principle and heat storage performance results of the compressor -driven metal hydride heat storage system through system modeling and prototype testing. The...hyd/m³] Subscripts A Metal hydride reactor B Hydrogen container C Hydrogen compressor s Hydrogen solid phase in hydride f Hydrogen fluid phase

  7. A thermokinetically driven metal-hydride actuator

    NASA Astrophysics Data System (ADS)

    Jung, Kwangmok; Kim, Kwang J.

    2008-03-01

    The purpose of this study is to develop a novel thermokinetically-driven actuator technology based on the physics of metal hydrides (MH's). A metal hydride absorbs and desorbs hydrogen due to the imposed temperature swing(s). The MH can also work as an effective thermally-driven hydrogen compressor producing more than 5,000 psia net pressure swing. The MH actuation system can be built in a simple structure, exhibits high power, produces soft actuating, and is essentially noiseless. Moreover, it is much more powerful and compact than conventional pneumatic systems that require bulky auxiliary systems. It is our belief that the MH actuators are useful for many emerging industrial, biorobotic, and civil structural applications. In this paper, we report the recent preliminary experimental results for a laboratory-prototyped MH actuation system. In particular, the dynamic response characteristics, enhanced controllability, thermodynamic performances, and reliability of the metal hydride actuator were studied in order to estimate the actuation capability of the MH actuator. A unique design of the MH actuator was created. It encases a so-called "porous metal hydride (PMH)" in the reactor to effectively achieve desirable performance by improving overall thermal conductance.

  8. Metal hydride fuel storage and method thereof

    DOEpatents

    Morse, Jeffrey D.; Jankowski, Alan F.; Yu, Conrad

    2006-10-17

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  9. Metal hydride fuel storage and method thereof

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Jankowski, Alan F [Livermore, CA; Yu, Conrad [Antioch, CA

    2009-05-05

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  10. Micromechanics Modeling of Fracture in Nanocrystalline Metals

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Piascik, R. S.; Raju, I. S.; Harris, C. E.

    2002-01-01

    Nanocrystalline metals have very high theoretical strength, but suffer from a lack of ductility and toughness. Therefore, it is critical to understand the mechanisms of deformation and fracture of these materials before their full potential can be achieved. Because classical fracture mechanics is based on the comparison of computed fracture parameters, such as stress intlmsity factors, to their empirically determined critical values, it does not adequately describe the fundamental physics of fracture required to predict the behavior of nanocrystalline metals. Thus, micromechanics-based techniques must be considered to quanti@ the physical processes of deformation and fracture within nanocrystalline metals. This paper discusses hndamental physicsbased modeling strategies that may be useful for the prediction Iof deformation, crack formation and crack growth within nanocrystalline metals.

  11. METAL HYDRIDE HYDROGEN COMPRESSORS: A REVIEW

    SciTech Connect

    Bowman Jr, Robert C; Yartys, Dr. Volodymyr A.; Lototskyy, Dr. Michael V; Pollet, Dr. B.G.

    2014-01-01

    Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine the metal hydride material itself should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal-hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimized to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation. The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal-hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.

  12. Optimizing Misch-Metal Compositions In Metal Hydride Anodes

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Halpert, Gerald

    1995-01-01

    Electrochemical cells based on metal hydride anodes investigated experimentally in effort to find anode compositions maximizing charge/discharge-cycle performances. Experimental anodes contained misch metal alloyed with various proportions of Ni, Co, Mn, and Al, and experiments directed toward optimization of composition of misch metal.

  13. Plasmonic hydrogen sensing with nanostructured metal hydrides.

    PubMed

    Wadell, Carl; Syrenova, Svetlana; Langhammer, Christoph

    2014-12-23

    In this review, we discuss the evolution of localized surface plasmon resonance and surface plasmon resonance hydrogen sensors based on nanostructured metal hydrides, which has accelerated significantly during the past 5 years. We put particular focus on how, conceptually, plasmonic resonances can be used to study metal-hydrogen interactions at the nanoscale, both at the ensemble and at the single-nanoparticle level. Such efforts are motivated by a fundamental interest in understanding the role of nanosizing on metal hydride formation processes in the quest to develop efficient solid-state hydrogen storage materials with fast response times, reasonable thermodynamics, and acceptable long-term stability. Therefore, a brief introduction to the thermodynamics of metal hydride formation is also given. However, plasmonic hydrogen sensors not only are of academic interest as research tool in materials science but also are predicted to find more practical use as all-optical gas detectors in industrial and medical applications, as well as in a future hydrogen economy, where hydrogen is used as a carbon free energy carrier. Therefore, the wide range of different plasmonic hydrogen sensor designs already available is reviewed together with theoretical efforts to understand their fundamentals and optimize their performance in terms of sensitivity. In this context, we also highlight important challenges to be addressed in the future to take plasmonic hydrogen sensors from the laboratory to real applications in devices, including poisoning/deactivation of the active materials, sensor lifetime, and cross-sensitivity toward other gas species.

  14. Nickel metal hydride LEO cycle testing

    NASA Technical Reports Server (NTRS)

    Lowery, Eric

    1995-01-01

    The George C. Marshall Space Flight Center is working to characterize aerospace AB5 Nickel Metal Hydride (NiMH) cells. The cells are being evaluated in terms of storage, low earth orbit (LEO) cycling, and response to parametric testing (high rate charge and discharge, charge retention, pulse current ability, etc.). Cells manufactured by Eagle Picher are the subjects of the evaluation. There is speculation that NiMH cells may become direct replacements for current Nickel Cadmium cells in the near future.

  15. Improving the ductility of nanocrystalline bcc metals.

    PubMed

    Farkas, Diana; Hyde, Brian

    2005-12-01

    Nanocrystalline metals present extremely high yield strengths but limited ductility. Using atomistic simulations, we show that the fracture resistance of bcc nanocrystalline materials increases with decreasing grain size below a critical grain size. There appears to be a "most brittle" grain size corresponding to the "strongest size" that has been postulated. Impurities that strengthen the grain boundaries can improve ductility significantly for the relatively larger grain sizes, whereas ductility decreases for the smallest grain sizes.

  16. Investigation of metal hydride nanoparticles templated in metal organic frameworks.

    SciTech Connect

    Jacobs, Benjamin W.; Herberg, Julie L.; Highley, Aaron M.; Grossman, Jeffrey; Wagner, Lucas; Bhakta, Raghu; Peaslee, D.; Allendorf, Mark D.; Liu, X.; Behrens, Richard, Jr.; Majzoub, Eric H.

    2010-11-01

    Hydrogen is proposed as an ideal carrier for storage, transport, and conversion of energy. However, its storage is a key problem in the development of hydrogen economy. Metal hydrides hold promise in effectively storing hydrogen. For this reason, metal hydrides have been the focus of intensive research. The chemical bonds in light metal hydrides are predominantly covalent, polar covalent or ionic. These bonds are often strong, resulting in high thermodynamic stability and low equilibrium hydrogen pressures. In addition, the directionality of the covalent/ionic bonds in these systems leads to large activation barriers for atomic motion, resulting in slow hydrogen sorption kinetics and limited reversibility. One method for enhancing reaction kinetics is to reduce the size of the metal hydrides to nano scale. This method exploits the short diffusion distances and constrained environment that exist in nanoscale hydride materials. In order to reduce the particle size of metal hydrides, mechanical ball milling is widely used. However, microscopic mechanisms responsible for the changes in kinetics resulting from ball milling are still being investigated. The objective of this work is to use metal organic frameworks (MOFs) as templates for the synthesis of nano-scale NaAlH4 particles, to measure the H2 desorption kinetics and thermodynamics, and to determine quantitative differences from corresponding bulk properties. Metal-organic frameworks (MOFs) offer an attractive alternative to traditional scaffolds because their ordered crystalline lattice provides a highly controlled and understandable environment. The present work demonstrates that MOFs are stable hosts for metal hydrides and their reactive precursors and that they can be used as templates to form metal hydride nanoclusters on the scale of their pores (1-2 nm). We find that using the MOF HKUST-1 as template, NaAlH4 nanoclusters as small as 8 formula units can be synthesized inside the pores. A detailed picture of

  17. A novel plating process for microencapsulating metal hydrides

    SciTech Connect

    Law, H.H.; Vyas, B.; Zahurak, S.M.; Kammlott, G.W.

    1996-08-01

    One approach to increasing the lifetime of the metal hydride electrode has been the use of conventional electroless plating to produce a coating of copper or nickel on the surface of the metal hydride powders. In this paper, a novel method for microencapsulating the active electrode powders is presented. This new plating technique takes advantage of the reducing power of hydrogen already stored inside the metal hydride to plate a variety of metals onto metal hydride materials. This method greatly simplifies electroless plating for these powders, eliminating the need for stabilizers and additives typically required for conventional electroless plating solutions. Metals that can be electrolessly plated with stored hydrogen have been identified based on thermodynamic considerations. Experimentally, micrometers thick coatings of copper, silver, and nickel have been plated on several metal hydrides.

  18. Metal hydride fuel storage and method thereof

    DOEpatents

    Morse, Jeffrey D.; Jankowski, Alan F.; Yu, Conrad

    2010-08-10

    An apparatus having a first substrate having (1) a cavity, (2) one or more resistive heaters, and (3) one or more coatings forming a diffusion barrier to hydrogen; a second substrate having (1) an outlet valve comprising a pressure relief structure and (2) one or more coatings forming a diffusion barrier to hydrogen, wherein said second substrate is coupled to said first substrate forming a sealed volume in said cavity; a metal hydride material contained within said cavity; and a gas distribution system formed by coupling a microfluidic interconnect to said pressure relief structure. Additional apparatuses and methods are also disclosed.

  19. Development of nickel-metal hydride cell

    NASA Technical Reports Server (NTRS)

    Kuwajima, Saburo; Kamimori, Nolimits; Nakatani, Kensuke; Yano, Yoshiaki

    1993-01-01

    National Space Development Agency of Japan (NASDA) has conducted the research and development (R&D) of battery cells for space use. A new R&D program about a Nickel-Metal Hydride (Ni-MH) cell for space use from this year, based on good results in evaluations of commercial Ni-MH cells in Tsukuba Space Center (TKSC), was started. The results of those commercial Ni-MH cell's evaluations and recent status about the development of Ni-MH cells for space use are described.

  20. Metal-hydride energy-technological processing of hydrogen

    NASA Astrophysics Data System (ADS)

    Solovei, V. V.

    1983-03-01

    The external and internal irreversibility of the thermochemical hydrogen compression cycle is analyzed in relation to the efficiency of heat utilization in a metal-hydride energy system. The properties of the working fluid and the design of the metal-hydride elements are shown to have a considerable effect on the thermodynamic performance of a heat-utilizing installation for hydrogen processing.

  1. Metal hydrides for lithium-ion batteries.

    PubMed

    Oumellal, Y; Rougier, A; Nazri, G A; Tarascon, J-M; Aymard, L

    2008-11-01

    Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH(2) with Li that constitutes the first use of a metal-hydride electrode for Li-ion batteries. The MgH(2) electrode shows a large, reversible capacity of 1,480 mAh g(-1) at an average voltage of 0.5 V versus Li(+)/Li(o) which is suitable for the negative electrode. In addition, it shows the lowest polarization for conversion electrodes. The electrochemical reaction results in formation of a composite containing Mg embedded in a LiH matrix, which on charging converts back to MgH(2). Furthermore, the reaction is not specific to MgH(2), as other metal or intermetallic hydrides show similar reactivity towards Li. Equally promising, the reaction produces nanosized Mg and MgH(2), which show enhanced hydrogen sorption/desorption kinetics. We hope that such findings can pave the way for designing nanoscale active metal elements with applications in hydrogen storage and lithium-ion batteries.

  2. Process for production of a metal hydride

    SciTech Connect

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  3. High resolution transmission electron microscopy characterization of fcc --> 9R transformation in nanocrystalline palladium films due to hydriding

    NASA Astrophysics Data System (ADS)

    Amin-Ahmadi, Behnam; Idrissi, Hosni; Delmelle, Renaud; Pardoen, Thomas; Proost, Joris; Schryvers, Dominique

    2013-02-01

    Sputtered nanocrystalline palladium thin films with nanoscale growth twins have been subjected to hydriding cycles. The evolution of the twin boundaries has been investigated using high resolution transmission electron microscopy. Surprisingly, the ∑3{112} incoherent twin boundaries dissociate after hydriding into two phase boundaries bounding a 9R phase. This phase which corresponds to single stacking faults located every three {111} planes in the fcc Pd structure was not expected because of the high stacking fault energy of Pd. This observation is connected to the influence of the Hydrogen on the stacking fault energy of palladium and the high compressive stresses building up during hydriding.

  4. Recent advances in metal hydrides for clean energy applications

    SciTech Connect

    Ronnebro, Ewa; Majzoub, Eric H.

    2013-06-01

    Metal hydrides are a fascinating class of materials that can be utilized for a surprising variety of clean energy applications, including smart solar collectors, smart windows, sensors, thermal energy storage, and batteries, in addition to their traditional application for hydrogen storage. Over the past decade, research on metal hydrides for hydrogen storage increased due to global governmental incentives and an increased focus on hydrogen storage research for polymer electrolyte membrane fuel cell operation. Tremendous progress has been made in so-called complex metal hydrides for hydrogen storage applications with the discovery of many new hydrides containing covalently bound complex anions. Many of these materials have applications beyond hydrogen storage and are being investigated for lithium-ion battery separator and anode materials. In this issue of MRS Bulletin , we present the state of the art of key evolving metal-hydride-based clean energy technologies with an outlook toward future needs.

  5. Laser Compression of Nanocrystalline Metals

    NASA Astrophysics Data System (ADS)

    Meyers, Marc

    2009-06-01

    Laser compression carried out at the Omega and Janus yields new information on the deformation mechanisms of nanocrystalline Ni. Although conventional deformation does not produce hardening, the extreme regime imparted by laser compression generates an increase in hardness, attributed to the residual dislocations observed in the structure by TEM. An analytical model is applied to predict the critical pressures for the cell-stacking-faults transition in single-crystalline nickel and the onset twinning in nanocrystalline nickel. The slip-twinning transition pressure is shifted from 20 GPa, for polycrystalline Ni, to 80 GPa, for Ni with g. s. of 10 nm. Contributions to the net strain from the mechanisms of plastic deformation (partials, perfect dislocations, twinning, and gb shear) were quantified in the nanocrystalline samples through MD calculations. The effect of release, a phenomenon often neglected in MD simulations, on dislocation behavior was established. A large fraction of the dislocations generated at the front are annihilated.[4pt] In collaboration with Hussam Jarmakani, University of California, San Diego; Eduardo Bringa, U. Nacional de Cuyo; Bruce Remington, Lawrence Livermore National Laboratory; V. Nhon, University of Illinois; P. Earhart and Morris Wang, Lawrence Livermore National Laboratory.

  6. Ni/metal hydride secondary element

    DOEpatents

    Bauerlein, Peter

    2005-04-19

    A Ni/metal hydride secondary element having a positive nickel hydroxide electrode, a negative electrode having a hydrogen storage alloy, and an alkaline electrolyte, the positive electrode, provided with a three-dimensional metallic conductive structure, also contains an aluminum compound which is soluble in the electrolyte, in addition to nickel hydroxide and cobalt oxide. The aluminum compound is aluminum hydroxide and/or aluminum oxide, and the mass of the aluminum compound which is present in the positive bulk material mixture is 0.1 to 2% by weight relative to the mass of the nickel hydroxide which is present. In combination with aluminum hydroxide or aluminum oxide, the positive electrode further contains lanthanoid oxidic compounds Y.sub.2 O.sub.3, La.sub.2 O.sub.3 and Ca(OH).sub.2, as well as mixtures of these compounds.

  7. Hot temperatures line lists for metal hydrides

    NASA Astrophysics Data System (ADS)

    Gorman, M.; Lodi, L.; Leyland, P. pC; Hill, C.; Yurchenko, S. N.; Tennyson, J.

    2013-09-01

    The ExoMol project is an ERC funded project set up with the purpose of calculating high quality theoretical molecular line list data to facilitate the emerging field of exoplanet and cool star atmospheric haracterisation [1]. Metal hydrides are important building blocks of interstellar physical chemistry. For molecular identification and characterisation in astrophysical sources, one requires accurate and complete spectroscopic data including transitional frequencies and intensities in the form of a line list. The ab initio methods offer the best opportunity for detailed theoretical studies of free diatomic metal hydrides and other simple hydride molecules. In this contribution we present progress on theoretical line lists for AlH, CrH, MgH, NiH, NaH and TiH obtained from first principles, applicable for a large range of temperatures up to 3500 K. Among the hydrides, AlH is of special interest because of a relatively high cosmic abundance of aluminium. The presence of AlH has been detected in the spectra of M-type and S-type stars as well as in sunspots (See [2] and references therein). CrH is a molecule of astrophysical interest; under the classification scheme developed by Kirkpatrick et al [3], CrH is of importance in distinguishing L type brown dwarfs. It has been proposed that theoretical line-lists of CrH and CrD could be used to facilitate a 'Deuterium test' for use in distinguishing planets, brown dwarfs and stars [5] and also it has been speculated that CrH exists in sunspots [4] but a higherquality hot-temperature line-list is needed to confirm this finding. The presence of MgH in stellar spectra is well documented through observation of the A2 ! X 2+ and B0 2+ ! X 2+ transitions. Different spectral features of MgH have been used as an indicator for the magnesium isotope abundances in the atmospheres of different stars from giants to dwarfs including the Sun, to measure the temperature of stars, surface gravity, stars' metal abundance, gravitational, as

  8. Porous metal hydride composite and preparation and uses thereof

    DOEpatents

    Steyert, William A.; Olsen, Clayton E.

    1982-01-01

    A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.

  9. Porous metal hydride composite and preparation and uses thereof

    DOEpatents

    Steyert, W.A.; Olsen, C.E.

    1980-03-12

    A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.

  10. Metal hydrides for concentrating solar thermal power energy storage

    NASA Astrophysics Data System (ADS)

    Sheppard, D. A.; Paskevicius, M.; Humphries, T. D.; Felderhoff, M.; Capurso, G.; Bellosta von Colbe, J.; Dornheim, M.; Klassen, T.; Ward, P. A.; Teprovich, J. A.; Corgnale, C.; Zidan, R.; Grant, D. M.; Buckley, C. E.

    2016-04-01

    The development of alternative methods for thermal energy storage is important for improving the efficiency and decreasing the cost of concentrating solar thermal power. We focus on the underlying technology that allows metal hydrides to function as thermal energy storage (TES) systems and highlight the current state-of-the-art materials that can operate at temperatures as low as room temperature and as high as 1100 °C. The potential of metal hydrides for thermal storage is explored, while current knowledge gaps about hydride properties, such as hydride thermodynamics, intrinsic kinetics and cyclic stability, are identified. The engineering challenges associated with utilising metal hydrides for high-temperature TES are also addressed.

  11. Magnetic properties of nanocrystalline transition metals

    NASA Astrophysics Data System (ADS)

    Aus, Martin J.

    1999-09-01

    In the past decade, considerable attention has been devoted to the nanoprocessing of magnetic materials to enhance specific magnetic properties. For nanocrystalline materials in which the grain size approaches the dimensions of the domain wall thickness of conventional materials, considerable changes in magnetic behaviour are expected. In the present work, various electrodeposited ferromagnetic nanocrystalline pure metals and alloys were characterized by using a vibrating sample magnetometer. The systems investigated include pure Ni and Co as well as alloys of Ni-P, Ni-Fe and Co-Fe. These studies explored the effect of gram size on coercivity, indicating that the crystallographic texture is more significant than gram size. In addition, these studies reported, for the first time, that saturation magnetization of pore-free electroplated bulk nanocrystalline transition metals and their alloys is relatively little affected by grain size. In contrast, previously reported results for ultra-fine particles and nanomaterials produced from compacted powders showed a strong decrease in saturation magnetization with decreasing grain size. The difference in results for pore-free electrodeposits and ultrafine particles/compacted powders has been attributed to antiferromagnetic surface oxide layers, which is a direct result of large internal porosity in the latter group of materials. Further magnetic studies were completed on nanocrystalline electrodeposits produced by magnetoelectrohydrolysis. The effects of applied magnetic field strength and substrate orientation on saturation magnetization and coercivity of Ni-Fe and Co were explored. The results have shown that both nanoprocessing and electroplating in a magnetic field can improve soft magnetic properties by lowering the coercivity. Thermomagnetic studies examined saturation magnetization as a function of temperature, Curie temperature and coercivity changes during annealing. The Curie temperatures of electrodeposited

  12. Investigation of metal hydride materials as hydrogen reservoirs for metal-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    ONISCHAK

    1976-01-01

    The performance and suitability of various metal hydride materials were examined for use as possible hydrogen storage reservoirs for secondary metal-hydrogen batteries. Lanthanum pentanickel hydride appears as a probable candidate in terms of stable hydrogen supply under feasible thermal conditions. A kinetic model describing the decomposition rate data of the hydride has been developed.

  13. Technical and economic aspects of hydrogen storage in metal hydrides

    NASA Technical Reports Server (NTRS)

    Schmitt, R.

    1981-01-01

    The recovery of hydrogen from such metal hydrides as LiH, MgH2, TiH2, CaH2 and FeTiH compounds is studied, with the aim of evaluating the viability of the technique for the storage of hydrogen fuel. The pressure-temperature dependence of the reactions, enthalpies of formation, the kinetics of the hydrogen absorption and desorption, and the mechanical and chemical stability of the metal hydrides are taken into account in the evaluation. Economic aspects are considered. Development of portable metal hydride hydrogen storage reservoirs is also mentioned.

  14. The development of metal hydrides using as concentrating solar thermal storage materials

    NASA Astrophysics Data System (ADS)

    Qu, Xuanhui; Li, Yang; Li, Ping; Wan, Qi; Zhai, Fuqiang

    2015-12-01

    Metal hydrides high temperature thermal heat storage technique has great promising future prospects in solar power generation, industrial waste heat utilization and peak load regulating of power system. This article introduces basic principle of metal hydrides for thermal storage, and summarizes developments in advanced metal hydrides high-temperature thermal storage materials, numerical simulation and thermodynamic calculation in thermal storage systems, and metal hydrides thermal storage prototypes. Finally, the future metal hydrides high temperature thermal heat storage technique is been looked ahead.

  15. Metal Hydrides for High-Temperature Power Generation

    DOE PAGES

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; ...

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, ormore » during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.« less

  16. Metal Hydrides for High-Temperature Power Generation

    SciTech Connect

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; Westman, Matthew P.; Zheng, Feng; Fang, Zhigang Zak

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, or during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.

  17. Hydridable material for the negative electrode in a nickel-metal hydride storage battery

    DOEpatents

    Knosp, Bernard; Bouet, Jacques; Jordy, Christian; Mimoun, Michel; Gicquel, Daniel

    1997-01-01

    A monophase hydridable material for the negative electrode of a nickel-metal hydride storage battery with a "Lave's phase" structure of hexagonal C14 type (MgZn.sub.2) has the general formula: Zr.sub.1-x Ti.sub.x Ni.sub.a Mn.sub.b Al.sub.c Co.sub.d V.sub.e where ##EQU1##

  18. Metal hydrides as negative electrode materials for Ni- MH batteries

    NASA Astrophysics Data System (ADS)

    Yartys, V.; Noreus, D.; Latroche, M.

    2016-01-01

    Structural, thermodynamical and electrochemical properties of metallic hydrides belonging to the pseudo-binary family A-Mg-Ni ( A: rare earths) are reviewed and compared. Technology aspects of bipolar cells are also discussed.

  19. Artificial exomuscle investigations for applications--metal hydride.

    PubMed

    Crevier, Marie-Charlotte; Richard, Martin; Rittenhouse, D Matheson; Roy, Pierre-Olivier; Bédard, Stéphane

    2007-03-01

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software.

  20. Method for preparing hydride configurations and reactive metal surfaces

    DOEpatents

    Silver, G.L.

    1984-05-18

    A method for preparing reactive metal surfaces, particularly uranium surfaces is disclosed, whereby the metal is immediately reactive to hydrogen gas at room temperature and low pressure. The metal surfaces are first pretreated by exposure to an acid which forms an adherent hydride-bearing composition on the metal surface. Subsequent heating of the pretreated metal at a temperature sufficient to decompose the hydride coating in vacuum or inert gas renders the metal surface instantaneously reactive to hydrogen gas at room temperature and low pressure.

  1. Novel fuel cell stack with coupled metal hydride containers

    NASA Astrophysics Data System (ADS)

    Liu, Zhixiang; Li, Yan; Bu, Qingyuan; Guzy, Christopher J.; Li, Qi; Chen, Weirong; Wang, Cheng

    2016-10-01

    Air-cooled, self-humidifying hydrogen fuel cells are often used for backup and portable power sources, with a metal hydride used as the hydrogen storage material. To provide a stable hydrogen flow to the fuel cell stack, heat must be provided to the metal hydride. Conventionally, the heat released from the exothermic reaction of hydrogen and oxygen in the fuel cell stack to the exhaust air is used to heat a separate metal hydride container. In this case, the heat is only partially used instead of being more closely coupled because of the heat transfer resistances in the system. To achieve better heat integration, a novel scheme is proposed whereby hydrogen storage and single fuel cells are more closely coupled. Based on this idea, metal hydride containers in the form of cooling plates were assembled between each pair of cells in the stack so that the heat could be directly transferred to a metal hydride container of much larger surface-to-volume ratio than conventional separate containers. A heat coupled fuel cell portable power source with 10 cells and 11 metal hydride containers was constructed and the experimental results show that this scheme is beneficial for the heat management of fuel cell stack.

  2. Bipolar Nickel-Metal Hydride Battery Being Developed

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1998-01-01

    The NASA Lewis Research Center has contracted with Electro Energy, Inc., to develop a bipolar nickel-metal hydride battery design for energy storage on low-Earth-orbit satellites. The objective of the bipolar nickel-metal hydride battery development program is to approach advanced battery development from a systems level while incorporating technology advances from the lightweight nickel electrode field, hydride development, and design developments from nickel-hydrogen systems. This will result in a low-volume, simplified, less-expensive battery system that is ideal for small spacecraft applications. The goals of the program are to develop a 1-kilowatt, 28-volt (V), bipolar nickel-metal hydride battery with a specific energy of 100 watt-hours per kilogram (W-hr/kg), an energy density of 250 W-hr/liter and a 5-year life in low Earth orbit at 40-percent depth-of-discharge.

  3. Molecular rare-earth-metal hydrides in non-cyclopentadienyl environments.

    PubMed

    Fegler, Waldemar; Venugopal, Ajay; Kramer, Mathias; Okuda, Jun

    2015-02-02

    Molecular hydrides of the rare-earth metals play an important role as homogeneous catalysts and as counterparts of solid-state interstitial hydrides. Structurally well-characterized non-metallocene-type hydride complexes allow the study of elementary reactions that occur at rare-earth-metal centers and of catalytic reactions involving bonds between rare-earth metals and hydrides. In addition to neutral hydrides, cationic derivatives have now become available.

  4. Twinning in nanocrystalline fcc and bcc metals

    NASA Astrophysics Data System (ADS)

    Boyko, Vladimir S.; Kezerashvili, Roman Ya.

    2013-03-01

    The deformation twinning in nanocrystalline (nc) face-centered cubic (fcc) metals, body-centered cubic (bcc) metals, and in nc Si is analyzed. The phenomenological approach is used to make a bridge between microscopical mechanisms of twin nucleation and macroscopical characteristics of twinning with different crystal structures and to calculate the grain size range of the twinning propensity, the requisite external stress for twinning propagation in nc polycrystals, and the grain size at which the slip begins to prevail over the twinning. The developed approach allows to derive analytical expressions and estimate lower and and upper limits of grain sizes at which a twinning propensity is occurred. Results of calculations for the nc fcc metals Al, Cu, Ni, Pd, Au, nc bcc metals Ta, Fe, Mo, W, Nb, and nc diamond-cubic Si are compared with the experimental data, otherwise predictions are made.

  5. Permeation rates for RTF metal hydride vessels

    SciTech Connect

    Klein, J.E.

    1992-05-21

    Contamination rates have been estimated for the RTF nitrogen heating and cooling system (NH and CS) due to tritium permeation through the walls of metal hydride vessels. Tritium contamination of the NH and CS will be seen shortly after start-up of the RTF with the majority of it coming from the TCAP units. Contamination rates of the NH and CS are estimated to exceed 400 Ci/year after three years of operation and will elevate tritium concentrations in the NH and CS above 6 {times} 10{sup {minus}3} {mu}Ci/cc. To reduce tritium activity in the NH and CS, a stripper or ``getter`` bed may need to be installed in the NH and CS. Increasing the purge rate of nitrogen from the NH and CS is shown to be an impractical method for reducing tritium activity due to the high purge rates required. Stripping of the NH and CS nitrogen in the glove box stripper system will give a temporary lowering of tritium activity in the NH and CS, but tritium activity will return to its previous level in approximately two weeks.

  6. Transition-Metal Hydride Radical Cations.

    PubMed

    Hu, Yue; Shaw, Anthony P; Estes, Deven P; Norton, Jack R

    2016-08-10

    Transition-metal hydride radical cations (TMHRCs) are involved in a variety of chemical and biochemical reactions, making a more thorough understanding of their properties essential for explaining observed reactivity and for the eventual development of new applications. Generally, these species may be treated as the ones formed by one-electron oxidation of diamagnetic analogues that are neutral or cationic. Despite the importance of TMHRCs, the generally sensitive nature of these complexes has hindered their development. However, over the last four decades, many more TMHRCs have been synthesized, characterized, isolated, or hypothesized as reaction intermediates. This comprehensive review focuses on experimental studies of TMHRCs reported through the year 2014, with an emphasis on isolated and observed species. The methods used for the generation or synthesis of TMHRCs are surveyed, followed by a discussion about the stability of these complexes. The fundamental properties of TMHRCs, especially those pertaining to the M-H bond, are described, followed by a detailed treatment of decomposition pathways. Finally, reactions involving TMHRCs as intermediates are described.

  7. Charging efficiency of metal-hydride electrodes

    NASA Astrophysics Data System (ADS)

    Chen, J.; Dou, S. X.; Bradhurst, D.; Liu, H. K.

    The charging efficiencies of MmNi 5, MmNi 4.5Mn 0.5, MmNi 3.8Co 0.7Mn 0.5, ZrV 0.6Ni 1.4, ZrV 0.6Mn 0.4Ni 1.0, ZrV 0.6Mn 0.4Co 0.2Ni 0.8 allay electrodes (Mm = Mischmetal) are investigated in terms of hydrogen evolution. Experiments are conducted to optimize: (i) elemental composition of the MmNi 5 system and Zr-based Laves-phase hydrogen storage alloys; (ii) additive materials, such as cobalt powder, nickel powder, Teflonized carbons, and acetylene black; (iii) the proportion of the additives in the alloy; (iv) the best percentage of the composite additives in the metal-hydride electrodes. The results show that the electrode activation, charging efficiency and high-rate discharge depend greatly on the active materials, as well as the type and the amount of the additives in the electrodes.

  8. Structural Characterization of Metal Hydrides for Energy Applications

    NASA Astrophysics Data System (ADS)

    George, Lyci

    Hydrogen can be an unlimited source of clean energy for future because of its very high energy density compared to the conventional fuels like gasoline. An efficient and safer way of storing hydrogen is in metals and alloys as hydrides. Light metal hydrides, alanates and borohydrides have very good hydrogen storage capacity, but high operation temperatures hinder their application. Improvement of thermodynamic properties of these hydrides is important for their commercial use as a source of energy. Application of pressure on materials can have influence on their properties favoring hydrogen storage. Hydrogen desorption in many complex hydrides occurs above the transition temperature. Therefore, it is important to study the physical properties of the hydride compounds at ambient and high pressure and/or high temperature conditions, which can assist in the design of suitable storage materials with desired thermodynamic properties. The high pressure-temperature phase diagram, thermal expansion and compressibility have only been evaluated for a limited number of hydrides so far. This situation serves as a main motivation for studying such properties of a number of technologically important hydrides. Focus of this dissertation was on X-ray diffraction and Raman spectroscopy studies of Mg2FeH6, Ca(BH4) 2, Mg(BH4)2, NaBH4, NaAlH4, LiAlH4, LiNH2BH3 and mixture of MgH 2 with AlH3 or Si, at different conditions of pressure and temperature, to obtain their bulk modulus and thermal expansion coefficient. These data are potential source of information regarding inter-atomic forces and also serve as a basis for developing theoretical models. Some high pressure phases were identified for the complex hydrides in this study which may have better hydrogen storage properties than the ambient phase. The results showed that the highly compressible B-H or Al-H bonds and the associated bond disordering under pressure is responsible for phase transitions observed in brorohydrides or

  9. Influence of uranium hydride oxidation on uranium metal behaviour

    SciTech Connect

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  10. Heat transfer analysis of metal hydrides in metal-hydrogen secondary batteries

    NASA Technical Reports Server (NTRS)

    Onischak, M.; Dharia, D.; Gidaspow, D.

    1976-01-01

    The heat transfer between a metal-hydrogen secondary battery and a hydrogen-storing metal hydride was studied. Temperature profiles of the endothermic metal hydrides and the metal-hydrogen battery were obtained during discharging of the batteries assuming an adiabatic system. Two hydride materials were considered in two physical arrangements within the battery system. In one case the hydride is positioned in a thin annular region about the battery stack; in the other the hydride is held in a tube down the center of the stack. The results show that for a typical 20 ampere-hour battery system with lanthanum pentanickel hydride as the hydrogen reservoir the system could perform successfully.

  11. High-pressure synthesis of noble metal hydrides

    NASA Astrophysics Data System (ADS)

    Donnerer, Christian; Scheler, Thomas; Gregoryanz, Eugene

    2013-04-01

    The formation of hydride phases in the noble metals copper, silver, and gold was investigated by in situ x-ray diffraction at high hydrogen pressures. In the case of copper, a novel hexagonal hydride phase, Cu2H, was synthesised at pressures above 18.6 GPa. This compound exhibits an anti-CdI2-type structure, where hydrogen atoms occupy every second layer of octahedral interstitial sites. In contrast to chemically produced CuH, this phase does not show a change in compressibility compared to pure copper. Furthermore, repeated compression (after decomposition of Cu2H) led to the formation of cubic copper hydride at 12.5 GPa, a phenomenon attributed to an alteration of the microstructure during dehydrogenation. No hydrides of silver (up to 87 GPa) or gold (up to 113 GPa) were found at both room and high temperatures.

  12. High-pressure synthesis of noble metal hydrides.

    PubMed

    Donnerer, Christian; Scheler, Thomas; Gregoryanz, Eugene

    2013-04-07

    The formation of hydride phases in the noble metals copper, silver, and gold was investigated by in situ x-ray diffraction at high hydrogen pressures. In the case of copper, a novel hexagonal hydride phase, Cu2H, was synthesised at pressures above 18.6 GPa. This compound exhibits an anti-CdI2-type structure, where hydrogen atoms occupy every second layer of octahedral interstitial sites. In contrast to chemically produced CuH, this phase does not show a change in compressibility compared to pure copper. Furthermore, repeated compression (after decomposition of Cu2H) led to the formation of cubic copper hydride at 12.5 GPa, a phenomenon attributed to an alteration of the microstructure during dehydrogenation. No hydrides of silver (up to 87 GPa) or gold (up to 113 GPa) were found at both room and high temperatures.

  13. Metal hydride hydrogen compression: Recent advances and future prospects

    DOE PAGES

    Bowman, Jr., Robert C.; Yartys, Volodymyr A.; Lototskyy, Mykhaylo V.; ...

    2016-03-17

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the metal hydrides. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units are analyzed. The paper includes also a theoretical modeling of a two-stage compressor aimed at both describing the performance of the experimentally studied systems, but, also, on their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS andmore » the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the metal hydride compression in the overall development of the hydrogen driven energy systems. Lastly, the work is based on the analysis of the development of the technology in Europe, USA and South Africa.« less

  14. Metal hydride hydrogen compression: Recent advances and future prospects

    SciTech Connect

    Bowman, Jr., Robert C.; Yartys, Volodymyr A.; Lototskyy, Mykhaylo V.; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman

    2016-03-17

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the metal hydrides. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units are analyzed. The paper includes also a theoretical modeling of a two-stage compressor aimed at both describing the performance of the experimentally studied systems, but, also, on their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS and the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the metal hydride compression in the overall development of the hydrogen driven energy systems. Lastly, the work is based on the analysis of the development of the technology in Europe, USA and South Africa.

  15. A study of hydriding kinetics of metal hydrides using a physically based model

    NASA Astrophysics Data System (ADS)

    Voskuilen, Tyler G.

    The reaction of hydrogen with metals to form metal hydrides has numerous potential energy storage and management applications. The metal hydrogen system has a high volumetric energy density and is often reversible with a high cycle life. The stored hydrogen can be used to produce energy through combustion, reaction in a fuel cell, or electrochemically in metal hydride batteries. The high enthalpy of the metal-hydrogen reaction can also be used for rapid heat removal or delivery. However, improving the often poor gravimetric performance of such systems through the use of lightweight metals usually comes at the cost of reduced reaction rates or the requirement of pressure and temperature conditions far from the desired operating conditions. In this work, a 700 bar Sievert system was developed at the Purdue Hydrogen Systems Laboratory to study the kinetic and thermodynamic behavior of high pressure hydrogen absorption under near-ambient temperatures. This system was used to determine the kinetic and thermodynamic properties of TiCrMn, an intermetallic metal hydride of interest due to its ambient temperature performance for vehicular applications. A commonly studied intermetallic hydride, LaNi5, was also characterized as a base case for the phase field model. The analysis of the data obtained from such a system necessitate the use of specialized techniques to decouple the measured reaction rates from experimental conditions. These techniques were also developed as a part of this work. Finally, a phase field model of metal hydride formation in mass-transport limited interstitial solute reactions based on the regular solution model was developed and compared with measured kinetics of LaNi5 and TiCrMn. This model aided in the identification of key reaction features and was used to verify the proposed technique for the analysis of gas-solid reaction rates determined volumetrically. Additionally, the phase field model provided detailed quantitative predictions of the

  16. Hydride formation in core-shell alloyed metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2016-07-01

    The model and analysis presented are focused on hydride formation in nanoparticles with a Pd shell and a core formed by another metal. The arrangement of metal atoms is assumed to be coherent (no dislocations). The lattice strain distribution, elastic energy, and chemical potential of hydrogen atoms are scrutinized. The slope of the chemical potential (as a function of hydrogen uptake) is demonstrated to decrease with increasing the core volume, and accordingly the critical temperature for hydride formation and the corresponding hysteresis loops are predicted to decrease as well.

  17. Ab-initio study of transition metal hydrides

    SciTech Connect

    Sharma, Ramesh; Shukla, Seema Dwivedi, Shalini Sharma, Yamini

    2014-04-24

    We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.

  18. A nickel metal hydride battery for electric vehicles.

    PubMed

    Ovshinsky, S R; Fetcenko, M A; Ross, J

    1993-04-09

    Widespread use of electric vehicles can have significant impact on urban air quality, national energy independence, and international balance of trade. An efficient battery is the key technological element to the development of practical electric vehicles. The science and technology of a nickel metal hydride battery, which stores hydrogen in the solid hydride phase and has high energy density, high power, long life, tolerance to abuse, a wide range of operating temperature, quick-charge capability, and totally sealed maintenance-free operation, is described. A broad range of multi-element metal hydride materials that use structural and compositional disorder on several scales of length has been engineered for use as the negative electrode in this battery. The battery operates at ambient temperature, is made of nontoxic materials, and is recyclable. Demonstration of the manufacturing technology has been achieved.

  19. KNH2-KH: a metal amide-hydride solid solution.

    PubMed

    Santoru, Antonio; Pistidda, Claudio; Sørby, Magnus H; Chierotti, Michele R; Garroni, Sebastiano; Pinatel, Eugenio; Karimi, Fahim; Cao, Hujun; Bergemann, Nils; Le, Thi T; Puszkiel, Julián; Gobetto, Roberto; Baricco, Marcello; Hauback, Bjørn C; Klassen, Thomas; Dornheim, Martin

    2016-09-27

    We report for the first time the formation of a metal amide-hydride solid solution. The dissolution of KH into KNH2 leads to an anionic substitution, which decreases the interaction among NH2(-) ions. The rotational properties of the high temperature polymorphs of KNH2 are thereby retained down to room temperature.

  20. Process of forming a sol-gel/metal hydride composite

    DOEpatents

    Congdon, James W.

    2009-03-17

    An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

  1. Cascades for hydrogen isotope separation using metal hydrides

    SciTech Connect

    Hill, F.B.; Grzetic, V.

    1982-01-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes.

  2. Hydride encapsulation by molecular alkali-metal clusters.

    PubMed

    Haywood, Joanna; Wheatley, Andrew E H

    2008-07-14

    The sequential treatment of group 12 and 13 Lewis acids with alkali-metal organometallics is well established to yield so-called ''ate' complexes, whereby the Lewis-acid metal undergoes nucleophilic attack to give an anion, at least one group 1 metal acting to counter this charge. However, an alternative, less well recognised, reaction pathway involves the Lewis acid abstracting hydride from the organolithium reagent via a beta-elimination mechanism. It has recently been shown that in the presence of N,N'-bidentate ligands this chemistry can be harnessed to yield a new type of molecular main-group metal cluster in which the abstracted LiH is effectively trapped, with the hydride ion occupying an interstitial site in the cluster core. Discussion focuses on the development of this field, detailing advances in our understanding of the roles of Lewis acid, organolithium, and amine substrates in the syntheses of these compounds. Structure-types are discussed, as are efforts to manipulate cluster geometry and composition as well as hydride-coordination. Embryonic mechanistic studies are reported, as well as attempts to generate hydride-encapsulation clusters under catalytic control.

  3. Well-defined transition metal hydrides in catalytic isomerizations.

    PubMed

    Larionov, Evgeny; Li, Houhua; Mazet, Clément

    2014-09-07

    This Feature Article intends to provide an overview of a variety of catalytic isomerization reactions that have been performed using well-defined transition metal hydride precatalysts. A particular emphasis is placed on the underlying mechanistic features of the transformations discussed. These have been categorized depending upon the nature of the substrate and in most cases discussed following a chronological order.

  4. METHOD OF PREPARING SINTERED ZIRCONIUM METAL FROM ITS HYDRIDES

    DOEpatents

    Angier, R.P.

    1958-02-11

    The invention relates to the preparation of metal shapes from zirconium hydride by powder metallurgical techniques. The zirconium hydride powder which is to be used for this purpose can be prepared by rendering massive pieces of crystal bar zirconium friable by heat treatment in purified hydrogen. This any then be ground into powder and powder can be handled in the air without danger of it igniting. It may then be compacted in the normal manner by being piaced in a die. The compact is sintered under vacuum conditions preferably at a temperature ranging from 1200 to 1300 deg C and for periods of one to three hours.

  5. CO2 hydrogenation on a metal hydride surface.

    PubMed

    Kato, Shunsuke; Borgschulte, Andreas; Ferri, Davide; Bielmann, Michael; Crivello, Jean-Claude; Wiedenmann, Daniel; Parlinska-Wojtan, Magdalena; Rossbach, Peggy; Lu, Ye; Remhof, Arndt; Züttel, Andreas

    2012-04-28

    The catalytic hydrogenation of CO(2) at the surface of a metal hydride and the corresponding surface segregation were investigated. The surface processes on Mg(2)NiH(4) were analyzed by in situ X-ray photoelectron spectroscopy (XPS) combined with thermal desorption spectroscopy (TDS) and mass spectrometry (MS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). CO(2) hydrogenation on the hydride surface during hydrogen desorption was analyzed by catalytic activity measurement with a flow reactor, a gas chromatograph (GC) and MS. We conclude that for the CO(2) methanation reaction, the dissociation of H(2) molecules at the surface is not the rate controlling step but the dissociative adsorption of CO(2) molecules on the hydride surface.

  6. Hydrogen and dihydrogen bonding of transition metal hydrides

    NASA Astrophysics Data System (ADS)

    Jacobsen, Heiko

    2008-04-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2NO(PH 3) 2 and a small proton donor H 2O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H⋯H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  7. Designing metal hydride complexes for water splitting reactions: a molecular electrostatic potential approach.

    PubMed

    Sandhya, K S; Suresh, Cherumuttathu H

    2014-08-28

    The hydridic character of octahedral metal hydride complexes of groups VI, VII and VIII has been systematically studied using molecular electrostatic potential (MESP) topography. The absolute minimum of MESP at the hydride ligand (Vmin) and the MESP value at the hydride nucleus (VH) are found to be very good measures of the hydridic character of the hydride ligand. The increasing/decreasing electron donating feature of the ligand environment is clearly reflected in the increasing/decreasing negative character of Vmin and VH. The formation of an outer sphere metal hydride-water complex showing the HH dihydrogen interaction is supported by the location and the value of Vmin near the hydride ligand. A higher negative MESP suggested lower activation energy for H2 elimination. Thus, MESP features provided a way to fine-tune the ligand environment of a metal-hydride complex to achieve high hydridicity for the hydride ligand. The applicability of an MESP based hydridic descriptor in designing water splitting reactions is tested for group VI metal hydride model complexes of tungsten.

  8. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    SciTech Connect

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested

  9. Electronic Principles of Some Trends in Properties of Metallic Hydrides

    NASA Astrophysics Data System (ADS)

    Ivanović, Nenad; Novaković, Nikola; Colognesi, Daniele; Radisavljević, Ivana; Ostojić, Stanko

    Due to their extensive present, important and versatile potential applications, metal hydrides (MH) are among the most investigated solid-state systems. Theoretical, numerical and experimental studies have provided a considerable knowledge about their structure and properties, but in spite of that, the basic electronic principles of various interactions present in MH have not yet been completely resolved. Even in the simplest MH, i.e. alkali hydrides (Alk-H), some trends in physical properties, and especially their deviations, are not well understood. Similar doubts exist for the alkaline-earth hydride (AlkE-H) series, and are even more pronounced for complex systems, like transition metal-doped AlkE-H, alanates and borohydrides. This work is an attempt of explaining some trends in the physical properties of Alk-H and AlkE-H, employing the Bader analysis of the charge distribution topology evaluated by first-principle all-electron calculations. These results are related to some variables commonly used in the explanation of experimental and calculated results, and are also accompanied by simple tight-binding estimations. Such an approach provides a valuable insight in the characteristics of M-H and H-H interactions in these hydrides, and their possible changes along with external parameters, like temperature, pressure, defect or impurity introduction. The knowledge of these basic interactions and processes taking place in simple MH are essential for the design and optimisation of complex MH-systems interesting for practical hydrogen storage applications.

  10. Fatigue stress concentration and notch sensitivity in nanocrystalline metals

    SciTech Connect

    Furnish, Timothy A.; Boyce, Brad L.; Sharon, John A.; O’Brien, Christopher J.; Clark, Blythe G.; Arrington, Christian L.; Pillars, Jamin R.

    2016-03-11

    Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zones underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. Furthermore, the onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.

  11. Molecular early main group metal hydrides: synthetic challenge, structures and applications.

    PubMed

    Harder, Sjoerd

    2012-11-25

    Within the general area of early main group metal chemistry, the controlled synthesis of well-defined metal hydride complexes is a rapidly developing research field. As group 1 and 2 metal complexes are generally highly dynamic and lattice energies for their [MH](∞) and [MH(2)](∞) salts are high, the synthesis of well-defined soluble hydride complexes is an obvious challenge. Access to molecular early main group metal hydrides, however, is rewarding: these hydrocarbon-soluble metal hydrides are highly reactive, have found use in early main group metal catalysis and are potentially also valuable molecular model systems for polar metal hydrides as a hydrogen storage material. The article focusses specifically on alkali and alkaline-earth metal hydride complexes and discusses the synthetic challenge, molecular structures, reactivity and applications.

  12. Trialkylborane-Assisted CO(2) Reduction by Late Transition Metal Hydrides.

    PubMed

    Miller, Alexander J M; Labinger, Jay A; Bercaw, John E

    2011-01-01

    Trialkylborane additives promote reduction of CO(2) to formate by bis(diphosphine) Ni(II) and Rh(III) hydride complexes. The late transition metal hydrides, which can be formed from dihydrogen, transfer hydride to CO(2) to give a formate-borane adduct. The borane must be of appropriate Lewis acidity: weaker acids do not show significant hydride transfer enhancement, while stronger acids abstract hydride without CO(2) reduction. The mechanism likely involves a pre-equilibrium hydride transfer followed by formation of a stabilizing formate-borane adduct.

  13. 5-year review of Metal Hydride Center of Excellence.

    SciTech Connect

    Keller, Jay O.; Klebanoff, Leonard E.

    2010-05-01

    The purpose of the DOE Metal Hydride Center of Excellence (MHCoE) is to develop hydrogen storage materials with engineering properties that allow the use of these materials in a way that satisfies the DOE/FreedomCAR Program system requirements for automotive hydrogen storage. The Center is a multidisciplinary and collaborative effort with technical interactions divided into two broad areas: (1) mechanisms and modeling (which provide a theoretically driven basis for pursuing new materials) and (2) materials development (in which new materials are synthesized and characterized). Driving all of this work are the hydrogen storage system specifications outlined by the FreedomCAR Program for 2010 and 2015. The organization of the MHCoE during the past year is show in Figure 1. During the past year, the technical work was divided into four project areas. The purpose of the project areas is to organize the MHCoE technical work along appropriate and flexible technical lines. The four areas summarized are: (1) Project A - Destabilized Hydrides, The objective of this project is to controllably modify the thermodynamics of hydrogen sorption reactions in light metal hydrides using hydride destabilization strategies; (2) Project B - Complex Anionic Materials, The objective is to predict and synthesize highly promising new anionic hydride materials; (3) Project C - Amides/Imides Storage Materials, The objective of Project C is to assess the viability of amides and imides (inorganic materials containing NH{sub 2} and NH moieties, respectively) for onboard hydrogen storage; and (4) Project D - Alane, AlH{sub 3}, The objective of Project D is to understand the sorption and regeneration properties of AlH{sub 3} for hydrogen storage.

  14. Reversible metal-hydride phase transformation in epitaxial films.

    PubMed

    Roytburd, Alexander L; Boyerinas, Brad M; Bruck, Hugh A

    2015-03-11

    Metal-hydride phase transformations in solids commonly proceed with hysteresis. The extrinsic component of hysteresis is the result of the dissipation of energy of internal stress due to plastic deformation and fracture. It can be mitigated on the nanoscale, where plastic deformation and fracture are suppressed and the transformation proceeds through formation and evolution of coherent phases. However, the phase coherency introduces intrinsic thermodynamic hysteresis, preventing reversible transformation. In this paper, it is shown that thermodynamic hysteresis of coherent metal-hydride transformation can be eliminated in epitaxial film due to substrate constraint. Film-substrate interaction leads to formation of heterophase polydomain nanostructure with variable phase fraction which can change reversibly by varying temperature in a closed system or chemical potential in an open system.

  15. Reversible metal-hydride phase transformation in epitaxial films

    NASA Astrophysics Data System (ADS)

    Roytburd, Alexander L.; Boyerinas, Brad M.; Bruck, Hugh A.

    2015-03-01

    Metal-hydride phase transformations in solids commonly proceed with hysteresis. The extrinsic component of hysteresis is the result of the dissipation of energy of internal stress due to plastic deformation and fracture. It can be mitigated on the nanoscale, where plastic deformation and fracture are suppressed and the transformation proceeds through formation and evolution of coherent phases. However, the phase coherency introduces intrinsic thermodynamic hysteresis, preventing reversible transformation. In this paper, it is shown that thermodynamic hysteresis of coherent metal-hydride transformation can be eliminated in epitaxial film due to substrate constraint. Film-substrate interaction leads to formation of heterophase polydomain nanostructure with variable phase fraction which can change reversibly by varying temperature in a closed system or chemical potential in an open system.

  16. Microscopic calculation of the compressibility of hydrides of alkaline metals

    NASA Astrophysics Data System (ADS)

    Krymov, V. A.; Fuks, D. L.

    1987-09-01

    Isotherms have been constructed and compressibilities and sound velocities have been calculated for the hydrides of alkaline metals on the basis of the functional theory of the local electron density, within the framework of the pseudopotential method. The expression obtained for the electron density distribution allows one to perform the analysis of the character of the binding forces and to determine the dependence of the degree of ionization on pressure in these compounds.

  17. Gas chromatographic separation of hydrogen isotopes using metal hydrides

    SciTech Connect

    Aldridge, F.T.

    1984-05-09

    A study was made of the properties of metal hydrides which may be suitable for use in chromatographic separation of hydrogen isotopes. Sixty-five alloys were measured, with the best having a hydrogen-deuterium separation factor of 1.35 at 60/sup 0/C. Chromatographic columns using these alloys produced deuterium enrichments of up to 3.6 in a single pass, using natural abundance hydrogen as starting material. 25 references, 16 figures, 4 tables.

  18. Metal Hydrides as hot carrier cell absorber materials

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Wen, Xiaoming; Shrestha, Santosh; Conibeer, Gavin; Aguey-Zinsou, Kondo-Francois

    2016-09-01

    The hot Carrier Solar Cell (HCSC) allows the photon-induced hot carriers (the carriers with energy larger than the band gap) to be collected before they completely thermalise. The absorber of the HCSC should have a large phononic band gap to supress Klemens Decay, which results in a slow carrier cooling speed. In fact, a large phononic band gap likely exists in a binary compound whose constituent elements have a large mass ratio between each other. Binary hydrides with their overwhelming mass ratio of the constituent elements are important absorber candidates. Study on different types of binary hydrides as potential absorber candidates is presented in this paper. Many binary transition metal hydrides have reported theoretical or experimental phonon dispersion charts which show large phononic band gaps. Among these hydrides, the titanium hydride (TiHX) is outstanding because of its low cost, easy fabrication process and is relatively inert to air and water. A TiHX thin film is fabricated by directly hydrogenating an evaporated titanium thin film. Characterisation shows good crystal quality and the hydrogenation process is believed to be successful. Ultrafast transient absorption (TA) spectroscopy is used to study the electron cooling time of TiHX. The result is very noisy due to the low absorption and transmission of the sample. The evolution of the TA curves has been explained by band to band transition using the calculated band structure of TiH2. Though not reliable due to the high noise, decay time fitting at 700nm and 600nm shows a considerably slow carrier cooling speed of the sample.

  19. Orbital-like motion of hydride ligands around low-coordinate metal centers.

    PubMed

    Ortuño, Manuel A; Vidossich, Pietro; Conejero, Salvador; Lledós, Agustí

    2014-12-15

    Hydrogen atoms in the coordination sphere of a transition metal are highly mobile ligands. Here, a new type of dynamic process involving hydrides has been characterized by computational means. This dynamic event consists of an orbital-like motion of hydride ligands around low-coordinate metal centers containing N-heterocyclic carbenes. The hydride movement around the carbene-metal-carbene axis is the lowest energy mode connecting energy equivalent isomers. This understanding provides crucial information for the interpretation of NMR spectra.

  20. Diffusional exchange of isotopes in a metal hydride sphere.

    SciTech Connect

    Wolfer, Wilhelm G.; Hamilton, John C.; James, Scott Carlton

    2011-04-01

    This report describes the Spherical Particle Exchange Model (SPEM), which simulates exchange of one hydrogen isotope by another hydrogen isotope in a spherical metal hydride particle. This is one of the fundamental physical processes during isotope exchange in a bed of spherical metal particles and is thus one of the key components in any comprehensive physics-based model of exchange. There are two important physical processes in the model. One is the entropy of mixing between the two isotopes; the entropy of mixing is increased by having both isotopes randomly placed at interstitial sites on the lattice and thus impedes the exchange process. The other physical process is the elastic interaction between isotope atoms on the lattice. The elastic interaction is the cause for {beta}-phase formation and is independent of the isotope species. In this report the coupled diffusion equations for two isotopes in the {beta}-phase hydride are solved. A key concept is that the diffusion of one isotope depends not only on its concentration gradient, but also on the concentration gradient of the other isotope. Diffusion rate constants and the chemical potentials for deuterium and hydrogen in the {beta}-phase hydride are reviewed because these quantities are essential for an accurate model of the diffusion process. Finally, a summary of some of the predictions from the SPEM model are provided.

  1. Structural isotope effects in metal hydrides and deuterides.

    PubMed

    Ting, Valeska P; Henry, Paul F; Kohlmann, Holger; Wilson, Chick C; Weller, Mark T

    2010-03-07

    Historically the extraction of high-quality crystallographic information from inorganic samples having high hydrogen contents, such as metal hydrides, has involved preparing deuterated samples prior to study using neutron powder diffraction. We demonstrate, through direct comparison of the crystal structure refinements of the binary hydrides SrH(2) and BaH(2) with their deuteride analogues at 2 K and as a function of temperature, that precise and accurate structural information can be obtained from rapid data collections from samples containing in excess of 60 at.% hydrogen using modern high-flux, medium resolution, continuous wavelength neutron powder diffraction instruments. Furthermore, observed isotope-effects in the extracted lattice parameters and atomic positions illustrate the importance of investigating compounds in their natural hydrogenous form whenever possible.

  2. Metal hydrides studied in gas discharge tube

    NASA Astrophysics Data System (ADS)

    Bozhinova, I.; Kolev, S.; Popov, Tsv.; Pashov, A.; Dimitrova, M.

    2016-05-01

    A novel construction of gas discharge tube has been tested for production of high densities of metal hydrydes. Its performance turned out to be comparable with the existing sources of the same type and even better. First results of the tests on NiH are reported and critically analysed. Plans for future modifiaction of the construction and application of the tube are discussed.

  3. A study of advanced magnesium-based hydride and development of a metal hydride thermal battery system

    NASA Astrophysics Data System (ADS)

    Zhou, Chengshang

    Metal hydrides are a group of important materials known as energy carriers for renewable energy and thermal energy storage. A concept of thermal battery based on advanced metal hydrides is studied for heating and cooling of cabins in electric vehicles. The system utilizes a pair of thermodynamically matched metal hydrides as energy storage media. The hot hydride that is identified and developed is catalyzed MgH2 due to its high energy density and enhanced kinetics. TiV0.62Mn1.5, TiMn2, and LaNi5 alloys are selected as the matching cold hydride. A systematic experimental survey is carried out in this study to compare a wide range of additives including transitions metals, transition metal oxides, hydrides, intermetallic compounds, and carbon materials, with respect to their effects on dehydrogenation properties of MgH2. The results show that additives such as Ti and V-based metals, hydride, and certain intermetallic compounds have strong catalytic effects. Solid solution alloys of magnesium are exploited as a way to destabilize magnesium hydride thermodynamically. Various elements are alloyed with magnesium to form solid solutions, including indium and aluminum. Thermodynamic properties of the reactions between the magnesium solid solution alloys and hydrogen are investigated, showing that all the solid solution alloys that are investigated in this work have higher equilibrium hydrogen pressures than that of pure magnesium. Cyclic stability of catalyzed MgH2 is characterized and analyzed using a PCT Sievert-type apparatus. Three systems, including MgH2-TiH 2, MgH2-TiMn2, and MgH2-VTiCr, are examined. The hydrogenating and dehydrogenating kinetics at 300°C are stable after 100 cycles. However, the low temperature (25°C to 150°C) hydrogenation kinetics suffer a severe degradation during hydrogen cycling. Further experiments confirm that the low temperature kinetic degradation can be mainly related the extended hydrogenation-dehydrogenation reactions. Proof

  4. Performance study of a hydrogen powered metal hydride actuator

    NASA Astrophysics Data System (ADS)

    Mainul Hossain Bhuiya, Md; Kim, Kwang J.

    2016-04-01

    A thermally driven hydrogen powered actuator integrating metal hydride hydrogen storage reactor, which is compact, noiseless, and able to generate smooth actuation, is presented in this article. To test the plausibility of a thermally driven actuator, a conventional piston type actuator was integrated with LaNi5 based hydrogen storage system. Copper encapsulation followed by compaction of particles into pellets, were adopted to improve overall thermal conductivity of the reactor. The operation of the actuator was thoroughly investigated for an array of operating temperature ranges. Temperature swing of the hydride reactor triggering smooth and noiseless actuation over several operating temperature ranges were monitored for quantification of actuator efficiency. Overall, the actuator generated smooth and consistent strokes during repeated cycles of operation. The efficiency of the actuator was found to be as high as 13.36% for operating a temperature range of 20 °C-50 °C. Stress-strain characteristics, actuation hysteresis etc were studied experimentally. Comparison of stress-strain characteristics of the proposed actuator with traditional actuators, artificial muscles and so on was made. The study suggests that design modification and use of high pressure hydride may enhance the performance and broaden the application horizon of the proposed actuator in future.

  5. Hydrogen storage and generation using light metal hydrides

    SciTech Connect

    Lynch, F.; Mork, B.J.; Wilkes, J.S.

    1998-07-01

    The storage of hydrogen for use in fuel cells employed as portable electric power sources is important. For many applications pressurized gas or cryogenic liquid storage is not acceptable from weight or safety standpoints. This is particularly true for moderate power systems in the 50--200 watt range. A potentially attractive technology for providing hydrogen for moderately sized fuel cell-based electric power supplies is chemical hydrides. In general, chemical hydrides are materials that store hydrogen that may be released by chemical reactions. The authors report here the use of light metal hydrides, such as lithium aluminum tetrahydride and trilithium aluminum hexahydride to store hydrogen in a very dense form; about four times the density of liquid hydrogen. The hydrogen can be released by reaction with simple chemical reagents, such as water or ammonia, at approximately atmospheric pressure and at modest temperatures. The reaction rate may be controlled to provide hydrogen at a rate appropriate to that needed by a fuel cell operating at the power levels mentioned above. Usually hydrogen is the sole gaseous product, along with several solid products.

  6. Investigation of long term stability in metal hydrides

    NASA Technical Reports Server (NTRS)

    Marmaro, Roger W.; Lynch, Franklin E.; Chandra, Dhanesh; Lambert, Steve; Sharma, Archana

    1991-01-01

    It is apparent from the literature and the results of this study that cyclic degradation of AB(5) type metal hydrides varies widely according to the details of how the specimens are cycled. The Rapid Cycle Apparatus (RCA) used produced less degradation in 5000 to 10000 cycles than earlier work with a Slow Cycle Apparatus (SCA) produced in 1500 cycles. Evidence is presented that the 453 K (356 F) Thermal Aging (TA) time spent in the saturated condition causes hydride degradation. But increasing the cooling (saturation) period in the RCA did not greatly increase the rate of degradation. It appears that TA type degradation is secondary at low temperatures to another degradation mechanism. If rapid cycles are less damaging than slow cycles when the saturation time is equal, the rate of hydriding/dehydriding may be an important factor. The peak temperatures in the RCA were about 30 C lower than the SCA. The difference in peak cycle temperatures (125 C in the SCA, 95 C in RCA) cannot explain the differences in degradation. TA type degradation is similar to cyclic degradation in that nickel peaks and line broadening are observed in X ray diffraction patterns after either form of degradation.

  7. Metal hydride/chemical heat pump development project

    NASA Astrophysics Data System (ADS)

    Madariaga, H. A.; Rohy, D. A.

    1982-02-01

    A mental hydride heat pump (MHHP) is a chemical heat pump containing two different hydrides and using hydrogen as a working fluid for the storage and/or recovery of thermal energy. It utilizes the heat of reaction of hydrogen with specific metal alloys. The MHHP design can be tailored to provide heating and cooling or temperature upgrading over a wide range of input and ambient temperatures. This system can be used with a variety of heat sources including industrial waste heat, solar energy or a fossil fuel. Temperature as low as 130 F can drive the MHHP when a suitable sink is provided. A project is currently underway to develop this unique heat pump for a specific application. The goals of the project include the development of cost effective hydride containers with high heat transfer and low mass; design and fabrication of a laboratory evaluation model; and design and fabrication of a demonstration unit. Extensive component and system test will provide the data for the design processes.

  8. Comparison of the interactions in the rare gas hydride and Group 2 metal hydride anions.

    PubMed

    Harris, Joe P; Manship, Daniel R; Breckenridge, W H; Wright, Timothy G

    2014-02-28

    We study both the rare gas hydride anions, RG-H(-) (RG = He-Rn) and Group 2 (Group IIa) metal hydride anions, MIIaH(-) (MIIa = Be-Ra), calculating potential energy curves at the CCSD(T) level with augmented quadruple and quintuple basis sets, and extrapolating the results to the basis set limit. We report spectroscopic parameters obtained from these curves; additionally, we study the Be-He complex. While the RG-H(-) and Be-He species are weakly bound, we show that, as with the previously studied BeH(-) and MgH(-) species, the other MIIaH(-) species are strongly bound, despite the interactions nominally also being between two closed shell species: M(ns(2)) and H(-)(1s(2)). We gain insight into the interactions using contour plots of the electron density changes and population analyses. For both series, the calculated dissociation energy is significantly less than the ion/induced-dipole attraction term, confirming that electron repulsion is important in these species; this effect is more dramatic for the MIIaH(-) species than for RG-H(-). Our analyses lead us to conclude that the stronger interaction in the case of the MIIaH(-) species arises from sp and spd hybridization, which allows electron density on the MIIa atom to move away from the incoming H(-).

  9. Low-Cost Metal Hydride Thermal Energy Storage System for Concentrating Solar Power Systems

    SciTech Connect

    Zidan, Ragaiy; Hardy, B. J.; Corgnale, C.; Teprovich, J. A.; Ward, P.; Motyka, Ted

    2016-01-31

    The objective of this research was to evaluate and demonstrate a metal hydride-based TES system for use with a CSP system. A unique approach has been applied to this project that combines our modeling experience with the extensive material knowledge and expertise at both SRNL and Curtin University (CU). Because of their high energy capacity and reasonable kinetics many metal hydride systems can be charged rapidly. Metal hydrides for vehicle applications have demonstrated charging rates in minutes and tens of minutes as opposed to hours. This coupled with high heat of reaction allows metal hydride TES systems to produce very high thermal power rates (approx. 1kW per 6-8 kg of material). A major objective of this work is to evaluate some of the new metal hydride materials that have recently become available. A problem with metal hydride TES systems in the past has been selecting a suitable high capacity low temperature metal hydride material to pair with the high temperature material. A unique aspect of metal hydride TES systems is that many of these systems can be located on or near dish/engine collectors due to their high thermal capacity and small size. The primary objective of this work is to develop a high enthalpy metal hydride that is capable of reversibly storing hydrogen at high temperatures (> 650 °C) and that can be paired with a suitable low enthalpy metal hydride with low cost materials. Furthermore, a demonstration of hydrogen cycling between the two hydride beds is desired.

  10. Mathematical modeling of the nickel/metal hydride battery system

    SciTech Connect

    Paxton, Blaine Kermit

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  11. A compact hydrogen recycling system using metal hydrides

    NASA Astrophysics Data System (ADS)

    Bertl, W.; Healey, D.; Zmeskal, J.; Hasinoff, M. D.; Blecher, M.; Wright, D. H.

    1995-02-01

    A gas recycling system to prevent losses of isotopically enriched hydrogen gas has been developed for the operation of a liquid target (2.7 l) used by the Radiative Muon Capture group at TRIUMF. The experimental requirements for high gas purity (chemical impurities below 10 -9), low operating pressure (below 1 bar abs) and high loading pressure (about 10 bar needed for a palladium purifier) together with the usual hydrogen safety requirements were satisfied with a metal hydride storage device in combination with a small pump/compressor system. A description of the complete system together with its characteristic operational data are given in this paper.

  12. Bipolar Nickel-Metal Hydride Battery Development Project

    NASA Technical Reports Server (NTRS)

    Cole, John H.

    1999-01-01

    This paper reviews the development of the Electro Energy, Inc.'s bipolar nickel metal hydride battery. The advantages of the design are that each cell is individually sealed, and that there are no external cell terminals, no electrode current collectors, it is compatible with plastic bonded electrodes, adaptable to heat transfer fins, scalable to large area, capacity and high voltage. The design will allow for automated flexible manufacturing, improved energy and power density and lower cost. The development and testing of the battery's component are described. Graphic presentation of the results of many of the tests are included.

  13. Carbene-metal hydrides can be much less acidic than phosphine-metal hydrides: significance in hydrogenations.

    PubMed

    Zhu, Ye; Fan, Yubo; Burgess, Kevin

    2010-05-05

    Acidities of iridium hydride intermediates were shown to be critical in some transformations mediated by the chiral analogues of Crabtree's catalyst, 1-3. To do this, several experiments were undertaken to investigate the acidities of hydrogenation mixtures formed using these iridium-oxazoline complexes. DFT calculations indicated that the acidity difference for Ir-H intermediates in these hydrogenations were astounding; iridium hydride from the N-heterocyclic carbene catalyst 1 was calculated to be around seven pK(a) units less acidic than those from the P-based complexes 2 and 3. Consistent with this, the carbene complex 1 was shown to be more effective for hydrogenations of acid-sensitive substrates. In deuteration experiments, less "abnormal" deuteration was observed, corresponding to fewer complications from acid-mediated alkene isomerization preceding the D(2)-addition step. Finally, simple tests with pH indicators provided visual evidence that phosphine-based catalyst precursors give significantly more acidic reaction mixtures than the corresponding N-heterocyclic carbene ones. These observations indicate carbene-for-phosphine (and similar) ligand substitutions may impact the outcome of catalytic reactions by modifying the acidities of the metal hydrides formed.

  14. Complex transition metal hydrides: linear correlation of countercation electronegativity versus T-D bond lengths.

    PubMed

    Humphries, T D; Sheppard, D A; Buckley, C E

    2015-06-30

    For homoleptic 18-electron complex hydrides, an inverse linear correlation has been established between the T-deuterium bond length (T = Fe, Co, Ni) and the average electronegativity of the metal countercations. This relationship can be further employed towards aiding structural solutions and predicting physical properties of novel complex transition metal hydrides.

  15. Heat-mass flow enhancement system for a metal hydride assembly

    NASA Astrophysics Data System (ADS)

    Argabright, T. A.

    1985-02-01

    Southern California Gas Company and Solar Turbines Incorporated are cooperating in the development and demonstration of a metal hydride/chemical heat pump (MHHP). In the design of the MHHP, heat transfer was considered to be the key technical study area. The goal of this effort is improved heat transfer and reduced thermal mass in a hydride heat exchanger/containment assembly. Phase 1 resulted in the detailed design of an advanced hydride heat exchanger. Phase 2 consisted of the experimental verification of the hydride alloy design data, fabrication of the hydride heat exchanger module components, heat transfer testing of the single heat exchanger element and preliminary performance testing of the entire module. Phase 3 was devoted to the complete characterization of the hydride heat exchanger modules through further operation and testing. A review of other possible hydride heat transfer concepts was also conducted in Phase 2.

  16. Hydriding process

    DOEpatents

    Raymond, J.W.; Taketani, H.

    1973-12-01

    BS>A method is described for hydriding a body of a Group IV-B metal, preferably zirconium, to produce a crack-free metal-hydride bedy of high hydrogen content by cooling the body at the beta to beta + delta boundary, without further addition of hydrogen, to precipitate a fine-grained delta-phase metal hydride in the beta + delta phase region and then resuming the hydriding, preferably preceded by a reheating step. (Official Gazette)

  17. Hydrogen storage and evolution catalysed by metal hydride complexes.

    PubMed

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  18. Optical properties of metal-hydride switchable films

    NASA Astrophysics Data System (ADS)

    Griessen, Ronald

    2001-03-01

    In 1996 we discovered that yttrium-, lanthanum-, and rare-earth-hydride (REHx) films [1] protected by a thin palladium layer, exhibit spectacular changes in their optical properties when the hydrogen concentration x is increased from 2 to 3. For example, a 500 nm thick YH2 film is metallic and shiny while YH3 is yellowish and transparent. The transition is reversible, fast [2, 3], and can simply be induced by adding or removing hydrogen from the gas phase, an electrolyte or from an H containing liquid. The optical switching that occurs near the metal-insulator transition of these hydrides is remarkably robust as it is not affected by structural or compositional disorder. It occurs in polycrystalline and epitaxial films, in alloys with cubic or hexagonal crystal structures,and deuterides [4] switch as well as hydrides. At small length scales epitaxial YHx films exhibit surprising structural properties which open the way to pixel-by-pixel optical switching [5]. Colour-neutral switchable mirrors based on RE-Mg alloys [6] can be used in all-solid-state switchable devices. Newest results for Rare-Earth free switchable mirrors will be presented. [1] J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G. de Groot and N. J. Koeman, Nature 380 (1996) 231; [2] S. J. van der Molen, J. W. J. Kerssemakers, J. H. Rector, N. J. Koeman, B. Dam, R. Griessen, J. Appl. Phys. 86 (1999) 6107; [3] F. J. A. den Broeder, S. J. van der Molen, et al., Nature 394 (1998)656; [4] A. T. M. van Gogh, E. S. Kooij, R. Griessen, Phys. Rev. Lett. 83 (1999) 4614; [5] J. W. J. Kerssemakers, S. J. van der Molen and R. Griessen, Nature 406 (2000) 489; [6] P. van der Sluis, M. Ouwerkerk and P. A. Duine, Appl. Phys. Lett. 70 (1997) 3356.

  19. Rules and trends of metal cation driven hydride-transfer mechanisms in metal amidoboranes.

    PubMed

    Kim, Dong Young; Lee, Han Myoung; Seo, Jongcheol; Shin, Seung Koo; Kim, Kwang S

    2010-01-01

    Group I and II metal amidoboranes have been identified as one of the promising families of materials for efficient H(2) storage. However, the underlying mechanism of the dehydrogenation of these materials is not well understood. Thus, the mechanisms and kinetics of H(2) release in metal amidoboranes are investigated using high level ab initio calculations and kinetic simulations. The metal plays the role of catalyst for the hydride transfer with formation of a metal hydride intermediate towards the dehydrogenation. In this process, with increasing ionic character of the metal hydride bond in the intermediate, the stability of the intermediate decreases, while the dehydrogenation process involving ionic recombination of the hydridic H with the protic H proceeds with a reduced barrier. Such correlations lead directly to a U-shaped relationship between the activation energy barrier for H(2) elimination and the ionicity of metal hydride bond. Oligomerized intermediates are formed by the chain reaction of the size-driven catalytic effects of metals, competing with the non-oligomerization pathway. The kinetic rates at low temperatures are determined by the maximum barrier height in the pathway (a Lambda-shaped relation), while those at moderately high temperatures are determined by most of multiple-barriers. This requires kinetic simulations. At the operating temperatures of proton exchange membrane fuel cells, the metal amidoboranes with lithium and sodium release H(2) along both oligomerization and non-oligomerization paths. The sodium amidoboranes show the most accelerated rates, while others release H(2) at similar rates. In addition, we predict that the novel metal amidoborane-based adducts and mixtures would release H(2) with accelerated rates as well as with enhanced reversibility. This comprehensive study is useful for further developments of active metal-based better hydrogen storage materials.

  20. ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS

    SciTech Connect

    Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

    2011-07-18

    The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

  1. Fatigue stress concentration and notch sensitivity in nanocrystalline metals

    DOE PAGES

    Furnish, Timothy A.; Boyce, Brad L.; Sharon, John A.; ...

    2016-03-11

    Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zonesmore » underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. Furthermore, the onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.« less

  2. Neutral binuclear rare-earth metal complexes with four μ₂-bridging hydrides.

    PubMed

    Rong, Weifeng; He, Dongliang; Wang, Meiyan; Mou, Zehuai; Cheng, Jianhua; Yao, Changguang; Li, Shihui; Trifonov, Alexander A; Lyubov, Dmitrii M; Cui, Dongmei

    2015-03-25

    The first neutral rare-earth metal dinuclear dihydrido complexes [(NPNPN)LnH2]2 (2-Ln; Ln = Y, Lu; NPNPN: N[Ph2PNC6H3((i)Pr)2]2) bearing μ2-bridging hydride ligands have been synthesized. In the presence of THF, 2-Y undergoes intramolecular activation of the sp(2) C-H bond to form dinuclear aryl-hydride complex 3-Y containing three μ2-bridging hydride ligands.

  3. High temperature metal hydrides as heat storage materials for solar and related applications.

    PubMed

    Felderhoff, Michael; Bogdanović, Borislav

    2009-01-01

    For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 degrees C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.

  4. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications

    PubMed Central

    Felderhoff, Michael; Bogdanović, Borislav

    2009-01-01

    For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described. PMID:19333448

  5. Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction.

    PubMed

    Kim, Ki Chul; Dai, Bing; Karl Johnson, J; Sholl, David S

    2009-05-20

    The reaction thermodynamics of metal hydrides are crucial to the use of these materials for reversible hydrogen storage. In addition to altering the kinetics of metal hydride reactions, the use of nanoparticles can also change the overall reaction thermodynamics. We use density functional theory to predict the equilibrium crystal shapes of seven metals and their hydrides via the Wulff construction. These calculations allow the impact of nanoparticle size on the thermodynamics of hydrogen release from these metal hydrides to be predicted. Specifically, we study the temperature required for the hydride to generate a H(2) pressure of 1 bar as a function of the radius of the nanoparticle. In most, but not all, cases the hydrogen release temperature increases slightly as the particle size is reduced.

  6. A simple approach to metal hydride alloy optimization

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Miller, C. G.; Landel, R. F.

    1976-01-01

    Hildebrand-Scott (1950) solubility parameters can be obtained for metals and alloys by calculating the cohesive energy density (CED), equal to the square of the solubility parameter, and a function of the heat of sublimation and the atomic volume. It is suggested that the solubility parameter permits estimation of the hydrogen storage capacity of an alloy and that alloys with a solubility parameter approximately equal to the parameter for hydrogen will have greater hydrogen storage capacity than other alloys. Equilibrium pressure - temperature relationships for some metal hydrides are presented in conjunction with the calculated solubility parameter and correlated with characteristics which would be useful in hydrogen-powered vehicles. Alloy properties which increase the amount of nonstoichiometric reversible hydrogen absorption are discussed.

  7. First-principles study of superabundant vacancy formation in metal hydrides.

    PubMed

    Zhang, Changjun; Alavi, Ali

    2005-07-13

    Recent experiments have established the generality of superabundant vacancies (SAV) formation in metal hydrides. Aiming to elucidate this intriguing phenomenon and to clarify previous interpretations, we employ density-functional theory to investigate atomic mechanisms of SAV formation in fcc hydrides of Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au. We have found that upon H insertion, vacancy formation energies reduce substantially. This is consistent with experimental suggestions. We demonstrate that the entropy effect, which has been proposed to explain SAV formation, is not the main cause. Instead, it is the drastic change of electronic structure induced by the H in the SAV hydrides, which is to a large extent responsible. Interesting trends in systems investigated are also found: ideal hydrides of 5d metals and noble metals are unstable compared to the corresponding pure metals, but the SAV hydrides are more stable than the corresponding ideal hydrides, whereas opposite results exist in the cases of Ni, Rh, and Pd. These trends of stabilities of the SAV hydrides are discussed in detail and a general understanding for SAV formation is provided. Finally, we propose an alternative reaction pathway to generate a SAV hydride from a metal alloy.

  8. Development of a component design tool for metal hydride heat pumps

    NASA Astrophysics Data System (ADS)

    Waters, Essene L.

    Given current demands for more efficient and environmentally friendly energy sources, hydrogen based energy systems are an increasingly popular field of interest. Within the field, metal hydrides have become a prominent focus of research due to their large hydrogen storage capacity and relative system simplicity and safety. Metal hydride heat pumps constitute one such application, in which heat and hydrogen are transferred to and from metal hydrides. While a significant amount of work has been done to study such systems, the scope of materials selection has been quite limited. Typical studies compare only a few metal hydride materials and provide limited justification for the choice of those few. In this work, a metal hydride component design tool has been developed to enable the targeted down-selection of an extensive database of metal hydrides to identify the most promising materials for use in metal hydride thermal systems. The material database contains over 300 metal hydrides with various physical and thermodynamic properties included for each material. Sub-models for equilibrium pressure, thermophysical data, and default properties are used to predict the behavior of each material within the given system. For a given thermal system, this tool can be used to identify optimal materials out of over 100,000 possible hydride combinations. The selection tool described herein has been applied to a stationary combined heat and power system containing a high-temperature proton exchange membrane (PEM) fuel cell, a hot water tank, and two metal hydride beds used as a heat pump. A variety of factors can be used to select materials including efficiency, maximum and minimum system pressures, pressure difference, coefficient of performance (COP), and COP sensitivity. The targeted down-selection of metal hydrides for this system focuses on the system's COP for each potential pair. The values of COP and COP sensitivity have been used to identify pairs of highest interest for

  9. Exploring "aerogen-hydride" interactions between ZOF2 (Z = Kr, Xe) and metal hydrides: An ab initio study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Mohammadian-Sabet, Fariba

    2016-06-01

    In this work, a new σ-hole interaction formed between ZOF2 (Z = Kr and Xe) as the Lewis acid and a series of metal-hydrides HMX (M = Be, Mg, Zn and X = H, F, CN, CH3) is reported. The nature of this interaction, called "aerogen-hydride" interaction, is unveiled by molecular electrostatic potential, non-covalent interaction, quantum theory of atoms in molecules and natural bond orbital analyses. Our results indicate that the aerogen-hydride interactions are quite strong and can be comparable in strength to other σ-hole bonds. An important charge-transfer interaction is also associated with the formation of OF2Z⋯HMX complexes.

  10. Hydrogen Storage Engineering Center of Excellence Metal Hydride Final Report

    SciTech Connect

    Motyka, T.

    2014-05-31

    The Hydrogen Storage Engineering Center of Excellence (HSECoE) was established in 2009 by the U.S. Department of Energy (DOE) to advance the development of materials-based hydrogen storage systems for hydrogen-fueled light-duty vehicles. The overall objective of the HSECoE is to develop complete, integrated system concepts that utilize reversible metal hydrides, adsorbents, and chemical hydrogen storage materials through the use of advanced engineering concepts and designs that can simultaneously meet or exceed all the DOE targets. This report describes the activities and accomplishments during Phase 1 of the reversible metal hydride portion of the HSECoE, which lasted 30 months from February 2009 to August 2011. A complete list of all the HSECoE partners can be found later in this report but for the reversible metal hydride portion of the HSECoE work the major contributing organizations to this effort were the United Technology Research Center (UTRC), General Motors (GM), Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL) and the Savannah River National Laboratory (SRNL). Specific individuals from these and other institutions that supported this effort and the writing of this report are included in the list of contributors and in the acknowledgement sections of this report. The efforts of the HSECoE are organized into three phases each approximately 2 years in duration. In Phase I, comprehensive system engineering analyses and assessments were made of the three classes of storage media that included development of system level transport and thermal models of alternative conceptual storage configurations to permit detailed comparisons against the DOE performance targets for light-duty vehicles. Phase 1 tasks also included identification and technical justifications for candidate storage media and configurations that should be capable of reaching or exceeding the DOE targets. Phase 2 involved bench-level testing and

  11. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    DOEpatents

    Zidan, Ragaiy; Ritter, James A.; Ebner, Armin D.; Wang, Jun; Holland, Charles E.

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  12. Tension/Compression Strength Asymmetry in a Simulated Nanocrystalline Metal

    DTIC Science & Technology

    2007-11-02

    PHYSICAL REVIEW B 69, 012101 ~2004!TensionÕcompression strength asymmetry in a simulated nanocrystalline metal A. C. Lund,1 T. G. Nieh,2 and C. A...nanoscale range plastic flow occurs by shear shuffling of atoms located at intercrystalline boundaries,4,6 ultimately leading to cooperative, large-scale...the fraction of intercrystal- line atoms becomes appreciable. Thus it is natural to con- sider the amorphous state as being the ultimate limit for

  13. Main Group Lewis Acid-Mediated Transformations of Transition-Metal Hydride Complexes.

    PubMed

    Maity, Ayan; Teets, Thomas S

    2016-08-10

    This Review highlights stoichiometric reactions and elementary steps of catalytic reactions involving cooperative participation of transition-metal hydrides and main group Lewis acids. Included are reactions where the transition-metal hydride acts as a reactant as well as transformations that form the metal hydride as a product. This Review is divided by reaction type, illustrating the diverse roles that Lewis acids can play in mediating transformations involving transition-metal hydrides as either reactants or products. We begin with a discussion of reactions where metal hydrides form direct adducts with Lewis acids, elaborating the structure and dynamics of the products of these reactions. The bulk of this Review focuses on reactions where the transition metal and Lewis acid act in cooperation, and includes sections on carbonyl reduction, H2 activation, and hydride elimination reactions, all of which can be promoted by Lewis acids. Also included is a section on Lewis acid-base secondary coordination sphere interactions, which can influence the reactivity of hydrides. Work from the past 50 years is included, but the majority of this Review focuses on research from the past decade, with the intent of showcasing the rapid emergence of this field and the potential for further development into the future.

  14. Final report for the DOE Metal Hydride Center of Excellence.

    SciTech Connect

    Keller, Jay O.; Klebanoff, Leonard E.

    2012-01-01

    This report summarizes the R&D activities within the U.S. Department of Energy Metal Hydride Center of Excellence (MHCoE) from March 2005 to June 2010. The purpose of the MHCoE has been to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE 2010 and 2015 system goals for hydrogen storage materials. The MHCoE combines three broad areas: mechanisms and modeling (which provide a theoretically driven basis for pursuing new materials), materials development (in which new materials are synthesized and characterized) and system design and engineering (which allow these new materials to be realized as practical automotive hydrogen storage systems). This Final Report summarizes the organization and execution of the 5-year research program to develop practical hydrogen storage materials for light duty vehicles. Major results from the MHCoE are summarized, along with suggestions for future research areas.

  15. Capture of liquid hydrogen boiloff with metal hydride absorbers

    NASA Technical Reports Server (NTRS)

    Rosso, M. J.; Golben, P. M.

    1984-01-01

    A procedure which uses metal hydrides to capture some of this low pressure (,1 psig) hydrogen for subsequent reliquefaction is described. Of the five normally occurring sources of boil-off vapor the stream associated with the off-loading of liquid tankers during dewar refill was identified as the most cost effective and readily recoverable. The design, fabrication and testing of a proof-of-concept capture device, operating at a rate that is commensurate with the evolution of vapor by the target stream, is described. Liberation of the captured hydrogen gas at pressure .15 psig at normal temperatures (typical liquefier compressor suction pressure) are also demonstrated. A payback time of less than three years is projected.

  16. Metal hydride hydrogen compression: recent advances and future prospects

    NASA Astrophysics Data System (ADS)

    Yartys, Volodymyr A.; Lototskyy, Mykhaylo; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman; Bowman, Robert C.

    2016-04-01

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the MHs. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units, are analyzed. The paper includes also a theoretical modelling of a two-stage compressor aimed at describing the performance of the experimentally studied systems, their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS and the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the MH compression in the overall development of the hydrogen-driven energy systems. The work is based on the analysis of the development of the technology in Europe, USA and South Africa.

  17. Ovonic nickel metal hydride batteries for space applications

    NASA Technical Reports Server (NTRS)

    Venkatesan, S.; Corrigan, D. A.; Fetcenko, M. A.; Gifford, P. R.; Dhar, S. K.; Ovshinsky, S. R.

    1993-01-01

    Ovonic nickel-metal hydride (NiMH) rechargeable batteries are easily adaptable to a variety of applications. Small consumer NiMH cells were developed and are now being manufactured by licensees throughout the world. This technology was successfully scaled up in larger prismatic cells aimed at electric vehicle applications. Sealed cells aimed at satellite power applications were also built and cycle tested by OBC and other outside agencies. Prototype batteries with high specific energy (over 80 Wh/kg), high energy density (245 Wh/L), and excellent power capability (400 W/kg) were produced. Ovonic NiMH batteries demonstrated an excellent cycle life of over 10,000 cycles at 30 percent DOD. Presently, Ovonic Battery Company is working on an advanced version of this battery for space applications as part of an SBIR contract from NASA.

  18. Ovonic nickel metal hydride batteries for space applications

    NASA Astrophysics Data System (ADS)

    Venkatesan, S.; Corrigan, D. A.; Fetcenko, M. A.; Gifford, P. R.; Dhar, S. K.; Ovshinsky, S. R.

    1993-11-01

    Ovonic nickel-metal hydride (NiMH) rechargeable batteries are easily adaptable to a variety of applications. Small consumer NiMH cells were developed and are now being manufactured by licensees throughout the world. This technology was successfully scaled up in larger prismatic cells aimed at electric vehicle applications. Sealed cells aimed at satellite power applications were also built and cycle tested by OBC and other outside agencies. Prototype batteries with high specific energy (over 80 Wh/kg), high energy density (245 Wh/L), and excellent power capability (400 W/kg) were produced. Ovonic NiMH batteries demonstrated an excellent cycle life of over 10,000 cycles at 30 percent DOD. Presently, Ovonic Battery Company is working on an advanced version of this battery for space applications as part of an SBIR contract from NASA.

  19. Enhancement of Strength and Ductility in Bulk Nanocrystalline Metals

    SciTech Connect

    Nieh, T; Schuh, C A; Caturla, M J; Hodge, A M

    2004-02-17

    The purpose of this project is to develop a robust scientific and technological framework for the design of high-strength and -ductility nanocrystalline materials for applications of technical importance to the Laboratory. The project couples theory and experiments with an emphasis on materials of macroscopic dimensions (mm to cm) that are composed of nanoscale (<100 nm) grains. There are four major tasks: (1) synthesize nanocrystalline materials with grain size in the 5- to 100-nm range; (2) conduct experimental studies to probe mechanisms of mechanical deformation and failure; (3) use large-scale simulation modeling technologies to provide insight to deformation mechanisms that may not be observable experimentally; and (4) check the results obtained from modeling, comparing experimental observations with results obtained from atomistic and dislocation-based simulations. This project supports efforts within the Stockpile Stewardship Program (SSP) to understand and predict properties of metals such as strength and ductility.

  20. Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides

    SciTech Connect

    2011-12-01

    HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.

  1. On the thermodynamics of phase transitions in metal hydrides

    NASA Astrophysics Data System (ADS)

    Vita, Andrea

    2012-02-01

    Metal hydrides are solutions of hydrogen in a metal, where phase transitions may occur depending on temperature, pressure etc. We apply Le Chatelier's principle of thermodynamics to a particular phase transition in TiHx, which can approximately be described as a second-order phase transition. We show that the fluctuations of the order parameter correspond to fluctuations both of the density of H+ ions and of the distance between adjacent H+ ions. Moreover, as the system approaches the transition and the correlation radius increases, we show -with the help of statistical mechanics-that the statistical weight of modes involving a large number of H+ ions (`collective modes') increases sharply, in spite of the fact that the Boltzmann factor of each collective mode is exponentially small. As a result, the interaction of the H+ ions with collective modes makes a tiny suprathermal fraction of the H+ population appear. Our results hold for similar transitions in metal deuterides, too. A violation of an -insofar undisputed-upper bound on hydrogen loading follows.

  2. On the thermodynamics of phase transitions in metal hydrides

    NASA Astrophysics Data System (ADS)

    di Vita, Andrea

    2012-02-01

    Metal hydrides are solutions of hydrogen in a metal, where phase transitions may occur depending on temperature, pressure etc. We apply Le Chatelier's principle of thermodynamics to a particular phase transition in TiH x , which can approximately be described as a second-order phase transition. We show that the fluctuations of the order parameter correspond to fluctuations both of the density of H+ ions and of the distance between adjacent H+ ions. Moreover, as the system approaches the transition and the correlation radius increases, we show -with the help of statistical mechanics-that the statistical weight of modes involving a large number of H+ ions (`collective modes') increases sharply, in spite of the fact that the Boltzmann factor of each collective mode is exponentially small. As a result, the interaction of the H+ ions with collective modes makes a tiny suprathermal fraction of the H+ population appear. Our results hold for similar transitions in metal deuterides, too. A violation of an -insofar undisputed-upper bound on hydrogen loading follows.

  3. The diastereoselective synthesis of octahedral cationic iridium hydride complexes with a stereogenic metal centre.

    PubMed

    Humbert, Nicolas; Mazet, Clément

    2016-08-23

    We report herein the highly diastereoselective synthesis of octahedral cationic Ir(iii) hydride complexes with a stereogenic metal centre following various strategies. The configurational stability of these compounds has also been investigated.

  4. Studies on hydride-forming alloys as the active material of a metal hydride electrode for a nickel metal hydride cell

    SciTech Connect

    Lim, H.S.; Zelter, G.R.; Allison, D.U.; Reilly, J.J.; Srinivasan, S.; Stockel, J.F.

    1997-12-01

    Multi-component AB{sub 5} hydrides are attractive replacements for the cadmium electrode in nickel-cadmium batteries. The archetype compound of the AB{sub 5} alloy class is LaNi{sub 5}, but in a typical battery electrode mischmetal is substituted for La and Ni is substituted in part by variety of metals. This paper deals with the effect on cycle life upon the partial substitution of various lanthanides for La and Sn, In, Al, Co, and Mn for Ni. The presence of Ce was shown to enhance cycle life as did Sn in some cases. An electrode of La{sub 0.67}Ce{sub 0.33}B{sub 5} alloy gave over 3,500 cycles (to specific capacity of 200 mAh/g), indicating that it is a very attractive alloy for a practical Ni/MH{sub x} cell.

  5. Quantification of Grain Boundary Mediated Plasticity Mechanisms in Nanocrystalline Metals

    NASA Astrophysics Data System (ADS)

    Panzarino, Jason F.

    Nanocrystalline metals have been a topic of great discussion over recent years due to their exceptional strengths and novel grain boundary-mediated deformation mechanisms. Their microstructures are known to evolve through dynamic processes such as grain boundary migration and grain rotation, but how the collective interaction of these mechanisms alter the microstructure on a larger scale is not completely understood. In this thesis, we present coupled atomistic modeling and experimental tasks that aim to understand how the grain structure, grain boundaries, and associated grain boundary network change during nanocrystalline plasticity. Due to the complex three-dimensional nature of these mechanisms and the limited spatial and temporal resolution of current in-situ experimental techniques, we turn to atomistic modeling to help understand the dynamics by which these mechanisms unfold. In order to provide a quantitative analysis of this behavior, we develop a tool which fully characterizes nanocrystalline microstructures in atomistic models and subsequently tracks their evolution during molecular dynamics simulations. We then use this algorithm to quantitatively track grain structure and boundary network evolution in plastically deformed nanocrystalline Al, finding that higher testing temperature and smaller average grain size results in increased evolution of grain structure with evidence of larger scale changes to the grain boundary network also taking place. This prompts us to extend our analysis technique to include full characterization of grain boundary networks and rigorous topographical feature identification. We then employ this tool on simulations of Al subject to monotonic tension, cycling loading, and simple annealing, and find that each case results in different evolution of the grain boundary network. Finally, our computational work is complemented synergistically by experimental analyses which track surface microstructure evolution during sliding wear

  6. Understanding atomistic phenomenon for hydrogen storage in complex metal hydrides

    NASA Astrophysics Data System (ADS)

    Chopra, Irinder Singh

    The storage of hydrogen into metals in the form of complex metal hydrides is one of the most promising methods. However, the incorporation and release of hydrogen requires very high temperatures. The discovery that the addition of Ti compounds lowers NaAlH4 decomposition barriers closer to ambient conditions, has re-ignited the field, and it is believed that surface processes are responsible for H2 dissociation and mass transport required to form the hydrogenated materials. Such surface reactions mechanisms are however difficult to study with typical spectroscopic and imaging surface science tools. Alanes lack contrast under electron microscopes and can modify the Scanning Tunneling Microscopy (STM) tips. Infrared spectroscopy would be a sensitive probe to investigate the adsorption of hydrogen providing, but has so far failed to detect chemisorbed hydrogen on Ti-doped Al surfaces due to the weak Al-H dynamic dipole moment. Thus despite extensive investigations, the fundamental mechanisms of the role of Ti and alane formation have remained elusive. In this study combining surface infrared (IR) spectroscopy and density functional theory (DFT), we provide atomistic details about the role of Ti as a catalyst for hydrogen uptake and alane formation and evolution on single crystal Al(111) and Al(100) surfaces. We are able to detect H indirectly by using CO as a probe molecule of the weak Al-H species. We demonstrate that aluminum doped with very small amounts of titanium (in a specific configuration) can activate molecular hydrogen at temperatures as low as 90K. Once dissociated, hydrogen spills over from these catalytic sites on to the Al surface and protects the surface from further reactions. We also show that, on Ti-doped Al surfaces, the diffusion dynamics are severely altered by Ti doping (Atomic hydrogen and AlH3 are trapped at the Ti sites) as indicated by a marked decrease of higher alane concentrations, which is deleterious for hydrogen storage for which mass

  7. Metal hydrides reactors with improved dynamic characteristics for a fast cycling hydrogen compressor

    NASA Astrophysics Data System (ADS)

    Popeneciu, G.; Coldea, I.; Lupu, D.; Misan, I.; Ardelean, O.

    2009-08-01

    This paper presents an investigation of coupled heat and mass transfer process in metal hydrides hydrogen storage reactors. Hydrogen storage and compression performance of our designed and developed reactors are studied by varying the operating parameters and analyzing the effects of metal hydride bed parameters. The metal alloy selected to characterize the cycling behaviour of reactors is LaNi5, material synthesized and characterized by us in the range 20-80°C. Four types of metal hydride reactors were tested with the aim to provide a fast hydrogen absorption-desorption cycle, able to be thermally cycled at rapid rates. Some new technical solutions have been studied to make a step forward in reducing the duration of the reactors cycle, which combines the effective increase of the thermal conductivity and good permeability to hydrogen gas. Dynamic characteristic of developed fast metal hydride reactors is improved using our novel mixture metal hydride-CA conductive additive due to the increased effective thermal conductivity of the alloy bed. The advanced hydride bed design with high heat transfer capabilities can be thermally cycled at a rapid rate, under 120 seconds, in order to process high hydrogen flow rates.

  8. Brønsted-Lowry Acid Strength of Metal Hydride and Dihydrogen Complexes.

    PubMed

    Morris, Robert H

    2016-08-10

    Transition metal hydride complexes are usually amphoteric, not only acting as hydride donors, but also as Brønsted-Lowry acids. A simple additive ligand acidity constant equation (LAC for short) allows the estimation of the acid dissociation constant Ka(LAC) of diamagnetic transition metal hydride and dihydrogen complexes. It is remarkably successful in systematizing diverse reports of over 450 reactions of acids with metal complexes and bases with metal hydrides and dihydrogen complexes, including catalytic cycles where these reactions are proposed or observed. There are links between pKa(LAC) and pKa(THF), pKa(DCM), pKa(MeCN) for neutral and cationic acids. For the groups from chromium to nickel, tables are provided that order the acidity of metal hydride and dihydrogen complexes from most acidic (pKa(LAC) -18) to least acidic (pKa(LAC) 50). Figures are constructed showing metal acids above the solvent pKa scales and organic acids below to summarize a large amount of information. Acid-base features are analyzed for catalysts from chromium to gold for ionic hydrogenations, bifunctional catalysts for hydrogen oxidation and evolution electrocatalysis, H/D exchange, olefin hydrogenation and isomerization, hydrogenation of ketones, aldehydes, imines, and carbon dioxide, hydrogenases and their model complexes, and palladium catalysts with hydride intermediates.

  9. Concerted proton-coupled electron transfer from a metal-hydride complex.

    PubMed

    Bourrez, Marc; Steinmetz, Romain; Ott, Sascha; Gloaguen, Frederic; Hammarström, Leif

    2014-02-01

    Metal hydrides are key intermediates in the catalytic reduction of protons and CO2 as well as in the oxidation of H2. In these reactions, electrons and protons are transferred to or from separate acceptors or donors in bidirectional protoncoupled electron transfer (PCET) steps. The mechanistic interpretation of PCET reactions of metal hydrides has focused on the stepwise transfer of electrons and protons. A concerted transfer may, however, occur with a lower reaction barrier and therefore proceed at higher catalytic rates. Here we investigate the feasibility of such a reaction by studying the oxidation–deprotonation reactions of a tungsten hydride complex. The rate dependence on the driving force for both electron transfer and proton transfer—employing different combinations of oxidants and bases—was used to establish experimentally the concerted, bidirectional PCET of a metal-hydride species. Consideration of the findings presented here in future catalyst designs may lead to more-efficient catalysts.

  10. Hydrogen storage in the form of metal hydrides

    NASA Technical Reports Server (NTRS)

    Zwanziger, M. G.; Santana, C. C.; Santos, S. C.

    1984-01-01

    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.

  11. Metal Chalcogenide Nanocrystalline Solid Thin Films

    NASA Astrophysics Data System (ADS)

    Deo, Soumya R.; Singh, Ajaya K.; Deshmukh, Lata; Abu Bin Hasan Susan, Md.

    2015-11-01

    Over the past decades, chemical bath deposition (CBD) has proven its suitability and has established itself as one of the prominent techniques for depositing different metal chalcogenide semiconductor thin films via ion-by-ion or by adsorption of colloidal particles from the chemical bath on the substrate. It is a simple, cost-effective and convenient method for large-scale deposition and has recently received a surge of interest. This article reviews the research progress in various methods or techniques including CBD for the preparation and study of the properties of metal chalcogenides. Various parameters for efficient preparation and variation in structural, morphological, compositional, optical properties, etc. are also briefly discussed.

  12. Dissociation potential curves of low-lying states in transition metal hydrides. 3. Hydrides of groups 6 and 7.

    PubMed

    Koseki, Shiro; Matsushita, Takeshi; Gordon, Mark S

    2006-02-23

    The dissociation curves of low-lying spin-mixed states in monohydrides of groups 6 and 7 were calculated by using an effective core potential (ECP) approach. This approach is based on the multiconfiguration self-consistent field (MCSCF) method, followed by first-order configuration interaction (FOCI) calculations, in which the method employs an ECP basis set proposed by Stevens and co-workers (SBKJC) augmented by a set of polarization functions. Spin-orbit coupling (SOC) effects are estimated within the one-electron approximation by using effective nuclear charges, since SOC splittings obtained with the full Breit-Pauli Hamitonian are underestimated when ECP basis sets are used. The ground states of group 6 hydrides have Omega = (1)/(2)(X(6)Sigma(+)(1/2)), where Omega is the z component of the total angular momentum quantum number. Although the ground states of group 7 hydrides have Omega = 0(+), their main adiabatic components are different; the ground state in MnH originates from the lowest (7)Sigma(+), while in TcH and ReH the main component of the ground state is the lowest (5)Sigma(+). The present paper reports a comprehensive set of theoretical results including the dissociation energies, equilibrium distances, electronic transition energies, harmonic frequencies, anharmonicities, and rotational constants for several low-lying spin-mixed states in these hydrides. Transition dipole moments were also computed among the spin-mixed states and large peak positions of electronic transitions are suggested theoretically for these hydrides. The periodic trends of physical properties of metal hydrides are discussed, based on the results reported in this and other recent studies.

  13. Experimental study of a metal hydride driven braided artificial pneumatic muscle

    NASA Astrophysics Data System (ADS)

    Vanderhoff, Alexandra; Kim, Kwang J.

    2009-12-01

    This paper reports the experimental study of a new actuation system that couples a braided artificial pneumatic muscle (BAPM) with a metal hydride driven hydrogen compressor to create a compact, lightweight, noiseless system capable of high forces and smooth actuation. The results indicate that the metal hydride-BAPM system has relatively good second law efficiency average of 30% over the desorption cycle. The thermal efficiency is low, due mainly to the highly endothermic chemical reaction that releases the stored hydrogen gas from the metal hydride. The force to metal hydride weight is very high (~14 000 NForce/kgMH) considering that this system has not been optimized to use the minimum amount of metal hydride required for a full actuation stroke of the fluidic muscle. Also, a thermodynamic model for the complete system is developed. The analysis is restricted in some aspects concerning the complexity of the hydriding/dehydriding chemical process of the system and the three-dimensional geometry of the reactor, but it provides a useful comparison to other actuation devices and clearly reveals the parameters necessary for optimization of the actuation system in future work. The system shows comparable work output and has the benefits of biological muscle-like properties for potential use in robotic systems.

  14. Multi-component AB2 metal hydride alloys for nickel metal hydride battery applications

    NASA Astrophysics Data System (ADS)

    Nei, Jean

    Compared to the mish metal-based AB5 MH alloy commonly used in Ni/MH batteries, the transition metal-based AB2 MH alloy not only reduces the rare earth dependency, it also has higher specific energy. In order to further improve the performance of AB2 MH alloy, it's crucial to full understand its multi-phase nature, which includes the main C14/C15 Laves phases and the secondary non-Laves phases. In order to optimize the gaseous phase and electrochemical advantages of both the C14 and C15 Laves phases, a study was established to recognize the factors that affect the C14/C15 phase abundance. Average electron density (e/a) was proven to be an influential parameter in determining the C14/C15 phase abundance: as e/a increased, C14/C15 became less/more dominant, respectively. However, with different A-site composition, a shift in e/a was observed in the C14/C15 phase abundance vs. e/a relationship. The average chemical potential for electronic charge of A atoms (φ*A) was found to show a nearly perfect linear correlation to the C14/C15 threshold with various selections of A-site elements. The combination of e/a and φ*A can be used to predict the C14/C15 phase abundance and assist future AB2 MH alloy design process. Four non-Laves phase alloys, Zr8Ni21, Zr7 Ni10, Zr9Ni11, and ZrNi, commonly seen in AB2 MH alloys were studied. Annealing treatment was adopted on each alloy to change the abundances of various phases. Annealing suppressed secondary phases except for the case of Zr9Ni11, where its secondary ZrNi phase increased. As the Zr/Ni ratio increased, the maximum gaseous phase hydrogen storage capacity increased but maximized at Zr : Ni = 9 : 11. Comparing the properties before and after annealing, it was clear that the natures of constituent phases influenced the gaseous phase storage. The highest full discharge capacity was obtained at Zr : Ni = 7 : 10, which is a compromise between the hydrogen desorption rate and the theoretical maximum gaseous phase hydrogen

  15. Investigation of Lithium Metal Hydride Materials for Mitigation of Deep Space Radiation

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Atwell, William

    2016-01-01

    Radiation exposure to crew, electronics, and non-metallic materials is one of many concerns with long-term, deep space travel. Mitigating this exposure is approached via a multi-faceted methodology focusing on multi-functional materials, vehicle configuration, and operational or mission constraints. In this set of research, we are focusing on new multi-functional materials that may have advantages over traditional shielding materials, such as polyethylene. Metal hydride materials are of particular interest for deep space radiation shielding due to their ability to store hydrogen, a low-Z material known to be an excellent radiation mitigator and a potential fuel source. We have previously investigated 41 different metal hydrides for their radiation mitigation potential. Of these metal hydrides, we found a set of lithium hydrides to be of particular interest due to their excellent shielding of galactic cosmic radiation. Given these results, we will continue our investigation of lithium hydrides by expanding our data set to include dose equivalent and to further understand why these materials outperformed polyethylene in a heavy ion environment. For this study, we used HZETRN 2010, a one-dimensional transport code developed by NASA Langley Research Center, to simulate radiation transport through the lithium hydrides. We focused on the 1977 solar minimum Galactic Cosmic Radiation environment and thicknesses of 1, 5, 10, 20, 30, 50, and 100 g/cm2 to stay consistent with our previous studies. The details of this work and the subsequent results will be discussed in this paper.

  16. Metal borohydride formation from aluminium boride and metal hydrides.

    PubMed

    Møller, Kasper T; Fogh, Alexander S; Paskevicius, Mark; Skibsted, Jørgen; Jensen, Torben R

    2016-10-05

    Metal borides are often decomposition products from metal borohydrides and thus play a role in the reverse reaction where hydrogen is absorbed. In this work, aluminium boride, AlB2, has been investigated as a boron source for the formation of borohydrides under hydrogen pressures of p(H2) = 100 or 600 bar at elevated temperatures (350 or 400 °C). The systems AlB2-MHx (M = Li, Na, Mg, Ca) have been investigated, producing LiBH4, NaBH4 and Ca(BH4)2, whereas the formation of Mg(BH4)2 was not observed at T = 400 °C and p(H2) = 600 bar. The formation of the metal borohydrides is confirmed by powder X-ray diffraction and infrared spectroscopy and the fraction of boron in AlB2 and M(BH4)x is determined quantitatively by (11)B MAS NMR. Hydrogenation for 12 h at T = 350-400 °C and p(H2) = 600 bar leads to the formation of substantial amounts of LiBH4 (38.6 mol%), NaBH4 (83.0 mol%) and Ca(BH4)2 (43.6 mol%).

  17. Development of nickel-metal hydride cell: An update

    NASA Technical Reports Server (NTRS)

    Kuwajima, S.; Kusawake, Hiroaki; Nakatani, Kensuke; Yano, Y.

    1994-01-01

    This paper presents in viewgraph format an overview of NASDA's evaluation of commercial nickel metal-hydride (Ni-MH) cells and the development and testing of Ni-MH cells for use in space. The commercial cells are concluded to be feasible and suitable for use in LEO; for GEO, the durability for overcharge is needed because long-term charge retention is required. For the aerospace Ni-MH cell design, two activation procedures are applied to evaluate the effect of the difference in the amount of overcharge protection and precharge. Specific energy of the Ni-MH cell is nearly accomplished at 50 Wh/kg. Initial characteristics indicate the effect derived from precharge. Thirty-five amp-hour class Ni-MH cells have good performance for LEO cycle of 25 and 40 percent DOD up to 3000 cycles as similar to commercial cells. The effect of the difference in the amount of overcharge protection will appear in life test.

  18. Microscopy Techniques for Analysis of Nickel Metal Hydride Batteries Constituents.

    PubMed

    Carpenter, Graham J C; Wronski, Zbigniew

    2015-12-01

    With the need for improvements in the performance of rechargeable batteries has come the necessity to better characterize cell electrodes and their component materials. Electron microscopy has been shown to reveal many important features of microstructure that are becoming increasingly important for understanding the behavior of the components during the many charge/discharge cycles required in modern applications. The aim of this paper is to present an overview of how the full suite of techniques available using transmission electron microscopy (TEM) and scanning transmission electron microscopy was applied to the case of materials for the positive electrode in nickel metal hydride rechargeable battery electrodes. Embedding and sectioning of battery-grade powders with an ultramicrotome was used to produce specimens that could be readily characterized by TEM. Complete electrodes were embedded after drying, and also after dehydration from the original wet state, for examination by optical microscopy and using focused ion beam techniques. Results of these studies are summarized to illustrate the significance of the microstructural information obtained.

  19. Metal hydrides form halogen bonds: measurement of energetics of binding.

    PubMed

    Smith, Dan A; Brammer, Lee; Hunter, Christopher A; Perutz, Robin N

    2014-01-29

    The formation of halogen bonds from iodopentafluorobenzene and 1-iodoperfluorohexane to a series of bis(η(5)-cyclopentadienyl)metal hydrides (Cp2TaH3, 1; Cp2MH2, M = Mo, 2, M = W, 3; Cp2ReH, 4; Cp2Ta(H)CO, 5; Cp = η(5)-cyclopentadienyl) is demonstrated by (1)H NMR spectroscopy. Interaction enthalpies and entropies for complex 1 with C6F5I and C6F13I are reported (ΔH° = -10.9 ± 0.4 and -11.8 ± 0.3 kJ/mol; ΔS° = -38 ± 2 and -34 ± 2 J/(mol·K), respectively) and found to be stronger than those for 1 with the hydrogen-bond donor indole (ΔH° = -7.3 ± 0.1 kJ/mol, ΔS° = -24 ± 1 J/(mol·K)). For the more reactive complexes 2-5, measurements are limited to determination of their low-temperature (212 K) association constants with C6F5I as 2.9 ± 0.2, 2.5 ± 0.1, <1.5, and 12.5 ± 0.3 M(-1), respectively.

  20. Fluorine substituent effects on dihydrogen bonding of transition metal hydrides.

    PubMed

    Jacobsen, Heiko

    2009-09-07

    Hydrogen and dihydrogen bonding of the fluorinated alcohol (CF(3))(2)CHOH with the transition metal complex WH(CO)(2)(NO)(PMe(3))(2) has been explored by a set of four exemplary density functional theory methods that comprises the BP86, PBE, B3LYP and TPSS functionals. The hydride, nitrosyl and carbonyl ligands of the tungsten complex have been considered as sites of protonation. The main effect of fluorination is an increased dihydrogen bond strength by about 15 kJ mol(-1). The [see equation in text] dihydrogen bond is about 10 kJ mol(-1) stronger than the [W]-NOH-OR hydrogen bond. Of the four DFT methods investigated, the BP86 functional provides the most satisfying quantitative as well as qualitative agreement with experiment. The geometry of the [see equation in text] linkage is significantly influenced by secondary dispersive intermolecular bonding. Linear and bent dihydrogen bonds are separated in energy only by about 1 kJ mol(-1), and represent local minima on the corresponding energy hypersurface.

  1. Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides.

    PubMed

    Belkova, Natalia V; Epstein, Lina M; Filippov, Oleg A; Shubina, Elena S

    2016-08-10

    The dihydrogen bond-an interaction between a transition-metal or main-group hydride (M-H) and a protic hydrogen moiety (H-X)-is arguably the most intriguing type of hydrogen bond. It was discovered in the mid-1990s and has been intensively explored since then. Herein, we collate up-to-date experimental and computational studies of the structural, energetic, and spectroscopic parameters and natures of dihydrogen-bonded complexes of the form M-H···H-X, as such species are now known for a wide variety of hydrido compounds. Being a weak interaction, dihydrogen bonding entails the lengthening of the participating bonds as well as their polarization (repolarization) as a result of electron density redistribution. Thus, the formation of a dihydrogen bond allows for the activation of both the MH and XH bonds in one step, facilitating proton transfer and preparing these bonds for further transformations. The implications of dihydrogen bonding in different stoichiometric and catalytic reactions, such as hydrogen exchange, alcoholysis and aminolysis, hydrogen evolution, hydrogenation, and dehydrogenation, are discussed.

  2. The storage of hydrogen in the form of metal hydrides: An application to thermal engines

    NASA Technical Reports Server (NTRS)

    Gales, C.; Perroud, P.

    1981-01-01

    The possibility of using LaNi56, FeTiH2, or MgH2 as metal hydride storage sytems for hydrogen fueled automobile engines is discussed. Magnesium copper and magnesium nickel hydrides studies indicate that they provide more stable storage systems than pure magnesium hydrides. Several test engines employing hydrogen fuel have been developed: a single cylinder motor originally designed for use with air gasoline mixture; a four-cylinder engine modified to run on an air hydrogen mixture; and a gas turbine.

  3. Interaction of electrons with light metal hydrides in the transmission electron microscope.

    PubMed

    Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei

    2014-12-01

    Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage.

  4. Synthesis and characterization of metal hydride electrodes. Interim report

    SciTech Connect

    McBreen, J.; Reilly, J.J.

    1995-10-01

    The objective of this project is to elucidate the compositional and structural parameters that affect the thermodynamics, kinetics and stability of alloy hydride electrodes and to use this information in the development of new high capacity long life hydride electrodes for rechargeable batteries. The work focuses on the development of AB{sub 5} alloys and the application of in situ methods, at NSLS, such as x-ray absorption (XAS), to elucidate the role of the alloying elements in hydrogen storage and corrosion inhibition. The most significant results to date are: The decay of electrode capacity on cycling was directly related to alloy corrosion. The rate of corrosion depended in part on both the alloy composition and the partial molar volume of hydrogen, V{sub H}. The corrosion rate depended on the composition of the A component in AB{sub 5} (LaNi{sub 5} type) alloys. Partial substitution of La with Ce in AB{sub 5} alloys substantially inhibits electrode corrosion on cycling. Recent results indicate that Co also greatly inhibits electrode corrosion, possibly by minimizing V{sub H}. The AB{sub 5} alloys investigated included LaNi{sub 5}, ternary alloys (e.g. LaN{sub 4.8}Sn{sub 0.2} and La{sub 0.8}Ce{sub 0.2}Ni{sub 5}), alloys with various substitutions for both La and Ni (e.g. La{sub 0.8}Ce{sub 0.2}Ni{sub 4.8}Sn{sub 0.2}) and mischmetal (Mm) alloys of the type normally used in batteries, such as MmB{sub 5} (B = Ni{sub 3.55}Mn{sub 0.4}A1{sub 0.3}Co{sub 0.75}). A major effort was devoted to the effects of La substitution in the A component. Both in situ and ex situ XAS measurements are used to study the electronic effects that occur on the addition of various metal substitutions and on the ingress of hydrogen.

  5. (abstract) Studies on AB(sub 5) Metal Hydride Alloys with Sn Additives

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Surampudi, S.; Stefano, S. Di; Halpert, G.; Witham, C.; Fultz, B.

    1994-01-01

    The use of metal hydrides as negative electrodes in alkaline rechargeable cells is becoming increasingly popular, due to several advantages offered by the metal hydrides over conventional anode materials (such as Zn, Cd) in terms of specific energy environmental cycle life and compatibility. Besides, the similarities in the cell voltage pressure characteristics, and charge control methods of the Ni-MH cells to the commonly used Ni-Cd point to a projected take over of 25% of the Ni-Cd market for consumer electronics by the Ni-MH cells in the next couple of years. Two classes of metal hydrides alloys based on rare earth metals (AB(sub 5)) and titanium (AB(sub 2)) are being currently developed at various laboratories. AB(sub 2) alloys exhibit higher specific energy than the AB(sub 5) alloys but the state of the art commercial Ni-MH cells are predominately manufactured using AB(sub 5) alloys.

  6. The Origin of the Catalytic Activity of a Metal Hydride in CO2 Reduction.

    PubMed

    Kato, Shunsuke; Matam, Santhosh Kumar; Kerger, Philipp; Bernard, Laetitia; Battaglia, Corsin; Vogel, Dirk; Rohwerder, Michael; Züttel, Andreas

    2016-05-10

    Atomic hydrogen on the surface of a metal with high hydrogen solubility is of particular interest for the hydrogenation of carbon dioxide. In a mixture of hydrogen and carbon dioxide, methane was markedly formed on the metal hydride ZrCoHx in the course of the hydrogen desorption and not on the pristine intermetallic. The surface analysis was performed by means of time-of-flight secondary ion mass spectroscopy and near-ambient pressure X-ray photoelectron spectroscopy, for the in situ analysis. The aim was to elucidate the origin of the catalytic activity of the metal hydride. Since at the initial stage the dissociation of impinging hydrogen molecules is hindered by a high activation barrier of the oxidised surface, the atomic hydrogen flux from the metal hydride is crucial for the reduction of carbon dioxide and surface oxides at interfacial sites.

  7. Characterization of nano-scaled metal-hydrides confined in nano-porous carbon frameworks

    NASA Astrophysics Data System (ADS)

    Peaslee, David Edward

    Metal hydrides are currently being studied to provide hydrogen for use in fuel cells and for transportation applications. Hydrogen can be stored in chemical compounds at higher density and lower volume than liquid H2 or compressed gas. Thermodynamic properties of metal hydrides differ between bulk and nano-sized particles. Many metal hydrides with useful volumetric and gravimetric capacities have high decomposition temperatures, but when placed in nano-sized frameworks (or templates) desorption and adsorption temperatures can be fine-tuned to meet engineering requirements for real-world systems. Additionally, some metal hydrides have shown a change in the decomposition pathway when infiltrated into these frameworks, thereby reducing the amount of unwanted byproducts, and potentially improving the cyclability of the material. The Temperature Programmed Decomposition Mass Spectrum Residual Gas Analyzer can be used to characterize gas desorption, decomposition temperatures, picogram changes in mass, and ionization energies for a variety of materials and gasses. The goal of the system is to characterize desorption of the hydrogen (including byproduct gasses) and the decomposition of the metal hydrides. The experimental apparatus is composed of four main components: the residual gas analyzer (RGA), the low temperature stage quartz crystal microbalance (QCM), the high temperature heating stage, and two vacuum chambers separated by a small flow hole which allows a direct line-of-site to the RGA.

  8. Modulation of hydride formation energies in transition metal doped Mg by alteration of spin state

    NASA Astrophysics Data System (ADS)

    Ozkanlar, Abdullah; Samuels, Alex; Clark, Aurora E.

    2013-02-01

    Coupled cluster and density functional theory calculations have been used to assess the role of the transition metal spin state upon the energetic favorability of hydride formation within small, transition metal doped, magnesium clusters. The spin state is found to modulate the occupation of bonding and anti-bonding orbitals, thus having a large effect upon both geometric and energetic parameters. This chemical description provides a potential theoretical basis for unexplained experimental observations, and indicates a mechanism for using an external magnetic field to control the thermodynamics of H2 sorption and desorption in metal hydrides.

  9. Growth and Stability of Nanocrystalline Metal Domains within Nanoporous Carbon Nanotube Aerogels

    NASA Astrophysics Data System (ADS)

    Jeong, Yeon Joo

    This thesis focuses on how to grow and stabilize nanocrystalline metal domains within nanoporous carbon nanotube aerogels. It describes the growth of isolated metal nanocrystals within carbon nanotube aerogel networks and the growth of nanocrystalline metals within 2D and 3D carbon nanotube aerogel networks. It also discusses electrochemical stability for generating electricity from fuel cells and thermal stability for reinforcing structural materials. (Abstract shortened by UMI.).

  10. Metal hydride heat pump engineering demonstration and evaluation model

    NASA Technical Reports Server (NTRS)

    Lynch, Franklin E.

    1993-01-01

    Future generations of portable life support systems (PLSS's) for space suites (extravehicular mobility units or EMU's) may require regenerable nonventing thermal sinks (RNTS's). For purposes of mobility, a PLSS must be as light and compact as possible. Previous venting PLSS's have employed water sublimators to reject metabolic and equipment heat from EMU's. It is desirable for long-duration future space missions to minimize the use of water and other consumables that need to be periodically resupplied. The emission of water vapor also interferes with some types of instrumentation that might be used in future space exploration. The test article is a type of RNTS based on a metal hydride heat pump (MHHP). The task of reservicing EMU's after use must be made less demanding in terms of time, procedures, and equipment. The capability for quick turnaround post-EVA servicing (30 minutes) is a challenging requirement for many of the RNTS options. The MHHP is a very simple option that can be regenerated in the airlock within the 30 minute limit by the application of a heating source and a cooling sink. In addition, advanced PLSS's must provide a greater degree of automatic control, relieving astronauts of the need to manually adjust temperatures in their liquid cooled ventilation garments (LCVG's). The MHHP includes automatic coolant controls with the ability to follow thermal load swings from minimum to maximum in seconds. The MHHP includes a coolant loop subsystem with pump and controls, regeneration equipment for post-EVA servicing, and a PC-based data acquisition and control system (DACS).

  11. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    NASA Astrophysics Data System (ADS)

    Patki, Gauri Dilip

    mole of Si. We compare our silicon nanoparticles (˜10nm diameter) with commercial silicon nanopowder (<100nm diameter) and ball-milled silicon powder (325 mesh). The increase in rate upon decreasing the particle size to 10 nm was even greater than would be expected based upon the increase in surface area. While specific surface area increased by a factor of 6 in going from <100 nm to ˜10 nm particles, the hydrogen production rate increased by a factor of 150. However, in all cases, silicon requires a base (e.g. NaOH, KOH, hydrazine) to catalyze its reaction with water. Metal hydrides are also promising hydrogen storage materials. The optimum metal hydride would possess high hydrogen storage density at moderate temperature and pressure, release hydrogen safely and controllably, and be stable in air. Alkali metal hydrides have high hydrogen storage density, but exhibit high uncontrollable reactivity with water. In an attempt to control this explosive nature while maintaining high storage capacity, we mixed our silicon nanoparticles with the hydrides. This has dual benefits: (1) the hydride- water reaction produces the alkali hydroxide needed for base-catalyzed silicon oxidation, and (2) dilution with 10nm coating by, the silicon may temper the reactivity of the hydride, making the process more controllable. Initially, we analyzed hydrolysis of pure alkali metal hydrides and alkaline earth metal hydrides. Lithium hydride has particularly high hydrogen gravimetric density, along with faster reaction kinetics than sodium hydride or magnesium hydride. On analysis of hydrogen production we found higher hydrogen yield from the silicon nanoparticle—metal hydride mixture than from pure hydride hydrolysis. The silicon-hydride mixtures using our 10nm silicon nanoparticles produced high hydrogen yield, exceeding the theoretical yield. Some evidence of slowing of the hydride reaction rate upon addition of silicon nanoparticles was observed.

  12. Computationally efficient determination of hydrogen isotope effects on the thermodynamic stability of metal hydrides

    NASA Astrophysics Data System (ADS)

    Nicholson, Kelly M.; Sholl, David S.

    2012-10-01

    Although the thermodynamics of metal hydrides at low to moderate temperatures has been successfully described with density functional theory (DFT) calculations using 0 K total energies and simple harmonic models, it is unclear if this approach is valid for hydrides that are stable at high temperatures. To aid development of computationally efficient methods, this paper uses DFT to explore the predicted stabilities of ZrH2, HfH2, TiH2, LiH, and NaH with four levels of theory. We also investigate isotope effects to understand if these should be accounted for in screening of deuterated or tritiated materials. We show that calculations that account for vibrational corrections to the crystal lattice are not necessary to get an accurate description of relative stabilities of metal hydrides. The shifts in dissociation temperatures due to isotope substitutions are <50 K for all materials, with larger shifts for lighter materials, as expected. We show that accounting for vibrational effects due to isotope substitution in metal hydrides is unnecessary to accurately predict the relative stabilities of metal hydrides at high temperatures.

  13. Impedance and self-discharge mechanism studies of nickel metal hydride batteries for energy storage applications

    NASA Astrophysics Data System (ADS)

    Zhu, Wenhua; Zhu, Ying; Tatarchuk, Bruce

    2013-04-01

    Nickel metal hydride battery packs have been found wide applications in the HEVs (hybrid electric vehicles) through the on-board rapid energy conservation and efficient storage to decrease the fossil fuel consumption rate and reduce CO2 emissions as well as other harmful exhaust gases. In comparison to the conventional Ni-Cd battery, the Ni-MH battery exhibits a relatively higher self-discharge rate. In general, there are quite a few factors that speed up the self-discharge of the electrodes in the sealed nickel metal hydride batteries. This disadvantage eventually reduces the overall efficiency of the energy conversion and storage system. In this work, ac impedance data were collected from the nickel metal hydride batteries. The self-discharge mechanism and battery capacity degradation were analyzed and discussed for further performance improvement.

  14. Method for producing functionally graded nanocrystalline layer on metal surface

    DOEpatents

    Ajayi, Oyelayo O.; Hershberger, Jeffrey G.

    2010-03-23

    An improved process for the creation or formation of nanocrystalline layers on substrates' surfaces is provided. The process involves "prescuffing" the surface of a substrate such as a metal by allowing friction to occur on the surface by a load-bearing entity making rubbing contact and moving along and on the substrate's surface. The "prescuffing" action is terminated when the coefficient of friction between the surface and the noise is rising significantly. Often, the significant rise in the coefficient of friction is signaled by a change in pitch of the scuffing action sound emanating from the buffeted surface. The "prescuffing" gives rise to a harder and smoother surface which withstands better any inadequate lubrication that may take place when the "prescuffed" surface is contacted by other surfaces.

  15. Science at the interface : grain boundaries in nanocrystalline metals.

    SciTech Connect

    Rodriguez, Mark Andrew; Follstaedt, David Martin; Knapp, James Arthur; Brewer, Luke N.; Holm, Elizabeth Ann; Foiles, Stephen Martin; Hattar, Khalid M.; Clark, Blythe B.; Olmsted, David L.; Medlin, Douglas L.

    2009-09-01

    Interfaces are a critical determinant of the full range of materials properties, especially at the nanoscale. Computational and experimental methods developed a comprehensive understanding of nanograin evolution based on a fundamental understanding of internal interfaces in nanocrystalline nickel. It has recently been shown that nanocrystals with a bi-modal grain-size distribution possess a unique combination of high-strength, ductility and wear-resistance. We performed a combined experimental and theoretical investigation of the structure and motion of internal interfaces in nanograined metal and the resulting grain evolution. The properties of grain boundaries are computed for an unprecedented range of boundaries. The presence of roughening transitions in grain boundaries is explored and related to dramatic changes in boundary mobility. Experimental observations show that abnormal grain growth in nanograined materials is unlike conventional scale material in both the level of defects and the formation of unfavored phases. Molecular dynamics simulations address the origins of some of these phenomena.

  16. Method and composition in which metal hydride particles are embedded in a silica network

    SciTech Connect

    Heung, L.K.

    1999-09-28

    A silica embedded metal hydride composition and a method for making such a composition are disclosed. The composition is made via the following process: A quantity of fumed silica is blended with water to make a paste. After adding metal hydride particles, the paste is dried to form a solid. According to one embodiment of the invention, the solid is ground into granules for use of the product in hydrogen storage. Alternatively, the paste can be molded into plates or cylinders and then dried for use of the product as a hydrogen filter. Where mechanical strength is required, the paste can be impregnated in a porous substrate or wire network.

  17. Method and composition in which metal hydride particles are embedded in a silica network

    DOEpatents

    Heung, Leung K.

    1999-01-01

    A silica embedded metal hydride composition and a method for making such a composition. The composition is made via the following process: A quantity of fumed silica is blended with water to make a paste. After adding metal hydride particles, the paste is dried to form a solid. According to one embodiment of the invention, the solid is ground into granules for use of the product in hydrogen storage. Alternatively, the paste can be molded into plates or cylinders and then dried for use of the product as a hydrogen filter. Where mechanical strength is required, the paste can be impregnated in a porous substrate or wire network.

  18. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

    PubMed Central

    Oumellal, Yassine; Bonnet, Jean-Pierre

    2015-01-01

    Summary The state of the art of conversion reactions of metal hydrides (MH) with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g−1 at a suitable potential (0.5 V vs Li+/Li0) and the lowest electrode polarization (<0.2 V) for conversion materials. Conversion process reaction mechanisms with lithium are subsequently detailed for MgH2, TiH2, complex hydrides Mg2MHx and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MHx + xLi+ + xe− in equilibrium with M + xLiH. Other reaction paths—involving solid solutions, metastable distorted phases, and phases with low hydrogen content—were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to

  19. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries.

    PubMed

    Aymard, Luc; Oumellal, Yassine; Bonnet, Jean-Pierre

    2015-01-01

    The state of the art of conversion reactions of metal hydrides (MH) with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g(-1) at a suitable potential (0.5 V vs Li(+)/Li(0)) and the lowest electrode polarization (<0.2 V) for conversion materials. Conversion process reaction mechanisms with lithium are subsequently detailed for MgH2, TiH2, complex hydrides Mg2MH x and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MH x + xLi(+) + xe(-) in equilibrium with M + xLiH. Other reaction paths-involving solid solutions, metastable distorted phases, and phases with low hydrogen content-were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to

  20. Effects of electron doping on the stability of the metal hydride NaH

    NASA Astrophysics Data System (ADS)

    Olea-Amezcua, M. A.; Rivas-Silva, J. F.; de la Peña-Seaman, O.; Heid, R.; Bohnen, K. P.

    2017-04-01

    Alkali and alkali-earth metal hydrides have high volumetric and gravimetric hydrogen densities, but due to their high thermodynamic stability, they possess high dehydrogenation temperatures which may be reduced by transforming these compounds into less stable states/configurations. We present a systematic computational study of the electron doping effects on the stability of the alkali metal hydride NaH substituted with Mg, using the self-consistent version of the virtual crystal approximation to model the alloy Na1‑x Mg x H. The phonon dispersions were studied paying special attention to the crystal stability and the correlations with the electronic structure taking into account the zero point energy contribution. We found that substitution of Na by Mg in the hydride invokes a reduction of the frequencies, leading to dynamical instabilities for Mg content of 25%. The microscopic origin of these instabilities could be related to the formation of ellipsoidal Fermi surfaces centered at the L point due to the metallization of the hydride by the Mg substitution. Applying the quasiharmonic approximation, thermodynamic properties like heat capacities, vibrational entropies and vibrational free energies as a function of temperature at zero pressure are obtained. These properties determine an upper temperature for the thermodynamic stability of the hydride, which decreases from 600 K for NaH to 300 K at 20% Mg concentration. This significant reduction of the stability range indicates that dehydrogenation could be favoured by electron doping of NaH.

  1. Effects of electron doping on the stability of the metal hydride NaH.

    PubMed

    Olea-Amezcua, M A; Rivas-Silva, J F; de la Peña-Seaman, O; Heid, R; Bohnen, K P

    2017-04-12

    Alkali and alkali-earth metal hydrides have high volumetric and gravimetric hydrogen densities, but due to their high thermodynamic stability, they possess high dehydrogenation temperatures which may be reduced by transforming these compounds into less stable states/configurations. We present a systematic computational study of the electron doping effects on the stability of the alkali metal hydride NaH substituted with Mg, using the self-consistent version of the virtual crystal approximation to model the alloy Na1-x Mg x H. The phonon dispersions were studied paying special attention to the crystal stability and the correlations with the electronic structure taking into account the zero point energy contribution. We found that substitution of Na by Mg in the hydride invokes a reduction of the frequencies, leading to dynamical instabilities for Mg content of 25%. The microscopic origin of these instabilities could be related to the formation of ellipsoidal Fermi surfaces centered at the L point due to the metallization of the hydride by the Mg substitution. Applying the quasiharmonic approximation, thermodynamic properties like heat capacities, vibrational entropies and vibrational free energies as a function of temperature at zero pressure are obtained. These properties determine an upper temperature for the thermodynamic stability of the hydride, which decreases from 600 K for NaH to 300 K at 20% Mg concentration. This significant reduction of the stability range indicates that dehydrogenation could be favoured by electron doping of NaH.

  2. DEVELOPMENT OF A FABRICATION PROCESS FOR SOL-GEL/METAL HYDRIDE COMPOSITE GRANULES

    SciTech Connect

    Hansen, E; Eric Frickey, E; Leung Heung, L

    2004-02-23

    An external gelation process was developed to produce spherical granules that contain metal hydride particles in a sol-gel matrix. Dimensionally stable granules containing metal hydrides are needed for applications such as hydrogen separation and hydrogen purification that require columns containing metal hydrides. Gases must readily flow through the metal hydride beds in the columns. Metal hydrides reversibly absorb and desorb hydrogen and hydrogen isotopes. This is accompanied by significant volume changes that cause the metal hydride to break apart or decrepitate. Repeated cycling results in very fine metal hydride particles that are difficult to handle and contain. Fine particles tend to settle and pack making it more difficult to flow gases through a metal hydride bed. Furthermore, the metal hydrides can exert a significant force on the containment vessel as they expand. These problems associated with metal hydrides can be eliminated with the granulation process described in this report. Small agglomerates of metal hydride particles and abietic acid (a pore former) were produced and dispersed in a colloidal silica/water suspension to form the feed slurry. Fumed silica was added to increase the viscosity of the feed slurry which helped to keep the agglomerates in suspension. Drops of the feed slurry were injected into a 27-foot tall column of hot ({approx}70 C), medium viscosity ({approx}3000 centistokes) silicone oil. Water was slowly evaporated from the drops as they settled. The drops gelled and eventually solidified to form spherical granules. This process is referred to as external gelation. Testing was completed to optimize the design of the column, the feed system, the feed slurry composition, and the operating parameters of the column. The critical process parameters can be controlled resulting in a reproducible fabrication technique. The residual silicone oil on the surface of the granules was removed by washing in mineral spirits. The granules were

  3. Investigation on a three-stage hydrogen thermal compressor based on metal hydrides

    NASA Astrophysics Data System (ADS)

    Popeneciu, G.; Almasan, V.; Coldea, I.; Lupu, D.; Misan, I.; Ardelean, O.

    2009-08-01

    In this paper we report our recent investigation about a there-stage hydrogen thermal compressor based on metal hydrides (HTC) in order to reach an overall compression ratio 28:1. The research was focused to: (i) elaborate hydride alloys with good storage capacity and higher thermodynamic characteristics acquired by tailoring of their properties; (ii) develop new technical solutions based on advanced materials, and fast mass and heat transfer for a hydrogen storage-compression reactor; (iii) built up a prototype of the HTC. Cyclic performance of the hydrogen compressor is studied following up the operating parameters: supply pressure, storage volumes, cold and hot fluid temperatures, cycle duration. The experiments show that the HTC can attain a high overall compression ratio 28:1, it will raise the hydrogen pressure from 2 bars to 56 bars, using three hydride compression stages working between 20 and 80°C. Cycling the compressor at a short absorption-desorption cycle, about 2 minutes, a satisfactory hydrogen flow rate was obtain 10 l/cycle, which ensures a hydrogen flow rate about 300l/hour using a small quantity of hydride alloy, about 360 g. To improve the efficiency and economics of compression process, HTC prototype based on metal hydrides must operate in conjunction with advanced hydrogen production technologies from renewable resources.

  4. Investigation of the hydrogen neutrals in a discharge source used for production of metal hydrides

    NASA Astrophysics Data System (ADS)

    Bozhinova, I.; Iordanova, S.; Pashov, A.

    2016-03-01

    The paper discusses the possible mechanisms for production of metal hydrides (MH) in a DC discharge source. The results of different experiments suggest that the molecules are sputtered directly from the surface of the cathode, where they are formed after adsorption of atomic hydrogen. This hypothesis allows one to understand the operation of the source studied and to optimize its working conditions.

  5. First Principles Studies of Phase Stability and Reaction Dynamics in Complex Metal Hydrides

    SciTech Connect

    Chou, Mei-Yin

    2014-09-29

    Complex metal hydrides are believed to be one of the most promising materials for developing hydrogen storage systems that can operate under desirable conditions. At the same time, these are also a class of materials that exhibit intriguing properties. We have used state-of-the-art computational techniques to study the fundamental properties of these materials.

  6. First-principles screening of complex transition metal hydrides for high temperature applications.

    PubMed

    Nicholson, Kelly M; Sholl, David S

    2014-11-17

    Metal hydrides with enhanced thermodynamic stability with respect to the associated binary hydrides are useful for high temperature applications in which highly stable materials with low hydrogen overpressures are desired. Though several examples of complex transition metal hydrides (CTMHs) with such enhanced stability are known, little thermodynamic or phase stability information is available for this materials class. In this work, we use semiautomated thermodynamic and phase diagram calculations based on density functional theory (DFT) and grand canonical linear programming (GCLP) methods to screen 102 ternary and quaternary CTMHs and 26 ternary saline hydrides in a library of over 260 metals, intermetallics, binary, and higher hydrides to identify materials that release hydrogen at higher temperatures than the associated binary hydrides and at elevated temperatures, T > 1000 K, for 1 bar H2 overpressure. For computational efficiency, we employ a tiered screening approach based first on solid phase ground state energies with temperature effects controlled via H2 gas alone and second on the inclusion of phonon calculations that correct solid phase free energies for temperature-dependent vibrational contributions. We successfully identified 13 candidate CTMHs including Eu2RuH6, Yb2RuH6, Ca2RuH6, Ca2OsH6, Ba2RuH6, Ba3Ir2H12, Li4RhH4, NaPd3H2, Cs2PtH4, K2PtH4, Cs3PtH5, Cs3PdH3, and Rb2PtH4. The most stable CTMHs tend to crystallize in the Sr2RuH6 cubic prototype structure and decompose to the pure elements and hydrogen rather than to intermetallic phases.

  7. Mechanical properties for irradiated face-centred cubic nanocrystalline metals.

    PubMed

    Xiao, X Z; Song, D K; Chu, H J; Xue, J M; Duan, H L

    2015-05-08

    In this paper, a self-consistent plasticity theory is proposed to model the mechanical behaviours of irradiated face-centred cubic nanocrystalline metals. At the grain level, a tensorial crystal model with both irradiation and grain size effects is applied for the grain interior (GI), whereas both grain boundary (GB) sliding with irradiation effect and GB diffusion are considered in modelling the behaviours of GBs. The elastic-viscoplastic self-consistent method with considering grain size distribution is developed to transit the microscopic behaviour of individual grains to the macroscopic properties of nanocrystals (NCs). The proposed theory is applied to model the mechanical properties of irradiated NC copper, and the feasibility and efficiency have been validated by comparing with experimental data. Numerical results show that: (i) irradiation-induced defects can lead to irradiation hardening in the GIs, but the hardening effect decreases with the grain size due to the increasing absorption of defects by GBs. Meanwhile, the absorbed defects would make the GBs softer than the unirradiated case. (ii) There exists a critical grain size for irradiated NC metals, which separates the grain size into the irradiation hardening dominant region (above the critical size) and irradiation softening dominant region (below the critical size). (iii) The distribution of grain size has a significant influence on the mechanical behaviours of both irradiated and unirradiated NCs. The proposed model can offer a valid theoretical foundation to study the irradiation effect on NC materials.

  8. INVESTIGATION OF THE THERMODYNAMICS GOVERNING METAL HYDRIDE SYNTHESIS IN THE MOLTEN STATE PROCESS.

    SciTech Connect

    Stowe, A; Polly Berseth, P; Ragaiy Zidan, R; Donald Anton, D

    2007-08-23

    Complex metal hydrides have been synthesized for hydrogen storage through a new synthetic technique utilizing high hydrogen overpressure at elevated temperatures (molten state processing). This synthesis technique holds the potential of fusing different complex hydrides at elevated temperatures and pressures to form new species with enhanced hydrogen storage properties. Formation of these compounds is driven by thermodynamic and kinetic considerations. We report on investigations of the thermodynamics. Novel synthetic complexes were formed, structurally characterized, and their hydrogen desorption properties investigated. The effectiveness of the molten state process is compared with mechanicosynthetic ball milling.

  9. Investigations and computer simulations of the intergrain diffusion in submicro-and nanocrystalline metals

    NASA Astrophysics Data System (ADS)

    Kolobov, Yu. R.; Lipnitskii, A. G.; Nelasov, I. V.; Grabovetskaya, G. P.

    2008-04-01

    Investigations of the features of the diffusion along grain boundaries and of the diffusion-controlled processes in submicroscopic and nanocrystalline materials produced by methods of intense plastic deformation are reviewed. To determine the parameters of the diffusion along grain boundaries and triple junctions in metals, which are independent of the results of processing of diffusion experiments based on diffusion models, results of a molecular dynamic investigation of the diffusion in nanocrystalline copper considered as an example are presented. Comparison of the features of grain boundary diffusion in submicroscopic and nanocrystalline materials produced by various methods is performed.

  10. Evaluation of metal hydride compressors for applications in Joule-Thomson cryocoolers

    NASA Astrophysics Data System (ADS)

    Bowman, R. C., Jr.; Freeman, B. D.; Phillips, J. R.

    The Joule-Thomson expansion of hydrogen gas offers the potential for efficient and reliable cryocoolers to produce temperatures between 10 and 50 K. A critical component of the development of these devices is the metal-hydride storage bed that provides a nonmechanical method to compress the hydrogen gas via the reversible absorption by the appropriate metals or alloys. The influences of the thermophysical properties of these metal hydrides as well as compressor design constraints on the performance potentials of hydrogen sorption refrigerators are examined. A thermodynamics model is used to calculate the impact of operational parameters such as input/output pressure ratios and bed temperature on system efficiency. Detailed comparisons are reported for a compressor which utilizes vanadium metal as the sorbent for either hydrogen or deuterium where the unusually large isotope differences between VH(x) and VD(x) are considered.

  11. Stabilization and highly metallic properties of heavy group-V hydrides at high pressures

    NASA Astrophysics Data System (ADS)

    Abe, Kazutaka; Ashcroft, N. W.

    2015-12-01

    Compressed hydrides of the heavy group-15 elements Bi and Sb are investigated using ab initio methods. While the hydrides of Bi and Sb are known to be quite unstable at one atmosphere, our calculations predict that they can be stabilized at high pressures. Thus, at the composition of XH 3 (X =Bi or Sb), possible Bi hydrides are BiH2(P n m a ) + H beyond 105 GPa and BiH3(I 41/a m d ) beyond 250 GPa; for Sb hydrides, SbH2 + H hardly appears, and SbH3(P n m a ) is stabilized beyond 150 GPa. All of these hydrides are metallic with very dispersive electronic structures, this being in accordance with the predictions of the Goldhammer-Herzfeld criterion. Superconducting transition temperatures have also been estimated from the extended McMillan equation, and they turn out to be 39 K for BiH2 at 125 GPa, 65 K for BiH3 at 270 GPa, and 68 K for SbH3 at 170 GPa.

  12. In situ observation of deformation processes in nanocrystalline face-centered cubic metals

    PubMed Central

    Kobler, Aaron; Brandl, Christian; Hahn, Horst

    2016-01-01

    Summary The atomistic mechanisms active during plastic deformation of nanocrystalline metals are still a subject of controversy. The recently developed approach of combining automated crystal orientation mapping (ACOM) and in situ straining inside a transmission electron microscope was applied to study the deformation of nanocrystalline PdxAu1− x thin films. This combination enables direct imaging of simultaneously occurring plastic deformation processes in one experiment, such as grain boundary motion, twin activity and grain rotation. Large-angle grain rotations with ≈39° and ≈60° occur and can be related to twin formation, twin migration and twin–twin interaction as a result of partial dislocation activity. Furthermore, plastic deformation in nanocrystalline thin films was found to be partially reversible upon rupture of the film. In conclusion, conventional deformation mechanisms are still active in nanocrystalline metals but with different weighting as compared with conventional materials with coarser grains. PMID:27335747

  13. In situ observation of deformation processes in nanocrystalline face-centered cubic metals.

    PubMed

    Kobler, Aaron; Brandl, Christian; Hahn, Horst; Kübel, Christian

    2016-01-01

    The atomistic mechanisms active during plastic deformation of nanocrystalline metals are still a subject of controversy. The recently developed approach of combining automated crystal orientation mapping (ACOM) and in situ straining inside a transmission electron microscope was applied to study the deformation of nanocrystalline Pd x Au1- x thin films. This combination enables direct imaging of simultaneously occurring plastic deformation processes in one experiment, such as grain boundary motion, twin activity and grain rotation. Large-angle grain rotations with ≈39° and ≈60° occur and can be related to twin formation, twin migration and twin-twin interaction as a result of partial dislocation activity. Furthermore, plastic deformation in nanocrystalline thin films was found to be partially reversible upon rupture of the film. In conclusion, conventional deformation mechanisms are still active in nanocrystalline metals but with different weighting as compared with conventional materials with coarser grains.

  14. First principles computations to predict and understand H storage in metals and complex hydrides

    NASA Astrophysics Data System (ADS)

    Ceder, Gerbrand

    2004-03-01

    Hydrogen is expected to play an important role in the future distribution of energy. While hydrogen fuel cells have seen significant improvements, the problem of hydrogen storage remains. A key property of any potential H-storage material is its reaction enthalpy with hydrogen. This quantity can directly be calculated with standard first principles total energy methods. We find that hydriding behavior can be almost completely explained by electronic structure of the metal and the electron transfer reactions between the metal and hydrogen. These observations explain the observed trends in the hydride formation energy and gives a theoretical basis for the empirically established rule of reverse stability. We discuss the potential for making hydrides with higher energy density than MgH2. In complex hydrides, such as alanates we find that substitution of the alkali metal can be used to modify the overall affinity for hydrogen while substitution on the Al site modifies the ration between the two plateau pressures at which H is absorbed.

  15. The development of nickel-metal hydride technology for use in aerospace applications

    NASA Astrophysics Data System (ADS)

    Rampel, Guy; Johnson, Herschel; dell, Dan; Wu, Tony; Puglisi, Vince

    1992-02-01

    The nickel metal hydride technology for battery application is relatively immature even though this technology was made widely known by Philips' scientists as long ago as 1970. Recently, because of the international environmental regulatory pressures being placed on cadmium in the workplace and in disposal practices, battery companies have initiated extensive development programs to make this technology a viable commercial operation. These hydrides do not pose a toxilogical threat as does cadmium. Also, they provide a higher energy density and specific energy when compared to the other nickel based battery technologies. For these reasons, the nickel metal hydride electrochemisty is being evaluated as the next power source for varied applications such as laptop computers, cellular telephones, electric vehicles, and satellites. A parallel development effort is under way to look at aerospace applications for nickel metal hydride cells. This effort is focused on life testing of small wound cells of the commercial type to validate design options and development of prismatic design cells for aerospace applications.

  16. First-principles prediction of new complex transition metal hydrides for high temperature applications.

    PubMed

    Nicholson, Kelly M; Sholl, David S

    2014-11-17

    Metal hydrides with high thermodynamic stability are desirable for high-temperature applications, such as those that require high hydrogen release temperatures or low hydrogen overpressures. First-principles calculations have been used previously to identify complex transition metal hydrides (CTMHs) for high temperature use by screening materials with experimentally known structures. Here, we extend our previous screening of CTMHs with a library of 149 proposed materials based on known prototype structures and charge balancing rules. These proposed materials are typically related to known materials by cation substitution. Our semiautomated, high-throughput screening uses density functional theory (DFT) and grand canonical linear programming (GCLP) methods to compute thermodynamic properties and phase diagrams: 81 of the 149 materials are found to be thermodynamically stable. We identified seven proposed materials that release hydrogen at higher temperatures than the associated binary hydrides and at high temperature, T > 1000 K, for 1 bar H2 overpressure. Our results indicate that there are many novel CTMH compounds that are thermodynamically stable, and the computed thermodynamic data and phase diagrams should be useful for selecting materials and operating parameters for high temperature metal hydride applications.

  17. The development of nickel-metal hydride technology for use in aerospace applications

    NASA Technical Reports Server (NTRS)

    Rampel, Guy; Johnson, Herschel; Dell, Dan; Wu, Tony; Puglisi, Vince

    1992-01-01

    The nickel metal hydride technology for battery application is relatively immature even though this technology was made widely known by Philips' scientists as long ago as 1970. Recently, because of the international environmental regulatory pressures being placed on cadmium in the workplace and in disposal practices, battery companies have initiated extensive development programs to make this technology a viable commercial operation. These hydrides do not pose a toxilogical threat as does cadmium. Also, they provide a higher energy density and specific energy when compared to the other nickel based battery technologies. For these reasons, the nickel metal hydride electrochemisty is being evaluated as the next power source for varied applications such as laptop computers, cellular telephones, electric vehicles, and satellites. A parallel development effort is under way to look at aerospace applications for nickel metal hydride cells. This effort is focused on life testing of small wound cells of the commercial type to validate design options and development of prismatic design cells for aerospace applications.

  18. Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage.

    PubMed

    Alapati, Sudhakar V; Karl Johnson, J; Sholl, David S

    2007-03-28

    Hydrides of period 2 and 3 elements are promising candidates for hydrogen storage, but typically have heats of reaction that are too high to be of use for fuel cell vehicles. Recent experimental work has focused on destabilizing metal hydrides through mixing metal hydrides with other compounds. A very large number of possible destabilized metal hydride reaction schemes exist, but the thermodynamic data required to assess the enthalpies of these reactions are not available in many cases. We have used density functional theory calculations to predict the reaction enthalpies for more than 300 destabilization reactions that have not previously been reported. The large majority of these reactions are predicted not to be useful for reversible hydrogen storage, having calculated reaction enthalpies that are either too high or too low, and hence these reactions need not be investigated experimentally. Our calculations also identify multiple promising reactions that have large enough hydrogen storage capacities to be useful in practical applications and have reaction thermodynamics that appear to be suitable for use in fuel cell vehicles and are therefore promising candidates for experimental work.

  19. Matrix infrared spectra and density functional calculations of transition metal hydrides and dihydrogen complexes.

    PubMed

    Andrews, Lester

    2004-02-20

    Metal hydrides are of considerable importance in chemical synthesis as intermediates in catalytic hydrogenation reactions. Transition metal atoms react with dihydrogen to produce metal dihydrides or dihydrogen complexes and these may be trapped in solid matrix samples for infrared spectroscopic study. The MH(2) or M(H(2)) molecules so formed react further to form higher MH(4), (H(2))MH(2), or M(H(2))(2), and MH(6), (H(2))(2)MH(2), or M(H(2))(3) hydrides or complexes depending on the metal. In this critical review these transition metal and dihydrogen reaction products are surveyed for Groups 3 though 12 and the contrasting behaviour in Groups 6 and 10 is discussed. Minimum energy structures and vibrational frequencies predicted by Density Functional Theory agree with the experimental results, strongly supporting the identification of novel binary transition metal hydride species, which the matrix-isolation method is well-suited to investigate. 104 references are cited.

  20. Achieving large uniform tensile ductility in nanocrystalline metals.

    PubMed

    Wang, Y M; Ott, R T; Hamza, A V; Besser, M F; Almer, J; Kramer, M J

    2010-11-19

    Synchrotron x-ray diffraction and high-resolution electron microscopy revealed the origin of different strain hardening behaviors (and dissimilar tensile ductility) in nanocrystalline Ni and nanocrystalline Co. Planar defect accumulations and texture evolution were observed in Co but not in Ni, suggesting that interfacial defects are an effective passage to promote strain hardening in truly nanograins. Twinning becomes less significant in Co when grain sizes reduce to below ~15 nm. This study offers insights into achieving excellent mechanical properties in nanocrystalline materials.

  1. Computational study of alkynes insertion into metal-hydride bonds catalyzed by bimetallic complexes.

    PubMed

    Di Tommaso, Stefania; Tognetti, Vincent; Sicilia, Emilia; Adamo, Carlo; Russo, Nino

    2010-11-01

    Density Functional Theory investigations on the insertion mechanism of phenylacetylene into metal-hydride bonds in bimetallic (Pt,Os) catalysts have been carried out. The results obtained have been also compared with the non-reactive monometallic (Os-based) system, to elucidate the cooperative effects and to explain the observed absence of reactivity. The identified reaction path involves phenylacetylene coordination followed by the insertion into the metal-hydride bond, leading to the formation of the experimentally observed products. Both steps do not require large energies compatible with the experimental conditions. The comparison with the reaction path for the monometallic species gives some hints on the cooperative effects due to the presence of the second metal which is related to its role in the CO release for creating a coordination site for phenylacetylene and not in the insertion energetics. The calculations provide a detailed analysis of the reaction complexity and provide a rationale for the efficiency of the process.

  2. Formation of novel transition metal hydride complexes with ninefold hydrogen coordination

    PubMed Central

    Takagi, Shigeyuki; Iijima, Yuki; Sato, Toyoto; Saitoh, Hiroyuki; Ikeda, Kazutaka; Otomo, Toshiya; Miwa, Kazutoshi; Ikeshoji, Tamio; Orimo, Shin-ichi

    2017-01-01

    Ninefold coordination of hydrogen is very rare, and has been observed in two different hydride complexes comprising rhenium and technetium. Herein, based on a theoretical/experimental approach, we present evidence for the formation of ninefold H- coordination hydride complexes of molybdenum ([MoH9]3−), tungsten ([WH9]3−), niobium ([NbH9]4−) and tantalum ([TaH9]4−) in novel complex transition-metal hydrides, Li5MoH11, Li5WH11, Li6NbH11 and Li6TaH11, respectively. All of the synthesized materials are insulated with band gaps of approximately 4 eV, but contain a sufficient amount of hydrogen to cause the H 1s-derived states to reach the Fermi level. Such hydrogen-rich materials might be of interest for high-critical-temperature superconductivity if the gaps close under compression. Furthermore, the hydride complexes exhibit significant rotational motions associated with anharmonic librations at room temperature, which are often discussed in relation to the translational diffusion of cations in alkali-metal dodecahydro-closo-dodecaborates and strongly point to the emergence of a fast lithium conduction even at room temperature. PMID:28287143

  3. Formation of novel transition metal hydride complexes with ninefold hydrogen coordination

    NASA Astrophysics Data System (ADS)

    Takagi, Shigeyuki; Iijima, Yuki; Sato, Toyoto; Saitoh, Hiroyuki; Ikeda, Kazutaka; Otomo, Toshiya; Miwa, Kazutoshi; Ikeshoji, Tamio; Orimo, Shin-Ichi

    2017-03-01

    Ninefold coordination of hydrogen is very rare, and has been observed in two different hydride complexes comprising rhenium and technetium. Herein, based on a theoretical/experimental approach, we present evidence for the formation of ninefold H- coordination hydride complexes of molybdenum ([MoH9]3‑), tungsten ([WH9]3‑), niobium ([NbH9]4‑) and tantalum ([TaH9]4‑) in novel complex transition-metal hydrides, Li5MoH11, Li5WH11, Li6NbH11 and Li6TaH11, respectively. All of the synthesized materials are insulated with band gaps of approximately 4 eV, but contain a sufficient amount of hydrogen to cause the H 1s-derived states to reach the Fermi level. Such hydrogen-rich materials might be of interest for high-critical-temperature superconductivity if the gaps close under compression. Furthermore, the hydride complexes exhibit significant rotational motions associated with anharmonic librations at room temperature, which are often discussed in relation to the translational diffusion of cations in alkali-metal dodecahydro-closo-dodecaborates and strongly point to the emergence of a fast lithium conduction even at room temperature.

  4. Formation of novel transition metal hydride complexes with ninefold hydrogen coordination.

    PubMed

    Takagi, Shigeyuki; Iijima, Yuki; Sato, Toyoto; Saitoh, Hiroyuki; Ikeda, Kazutaka; Otomo, Toshiya; Miwa, Kazutoshi; Ikeshoji, Tamio; Orimo, Shin-Ichi

    2017-03-13

    Ninefold coordination of hydrogen is very rare, and has been observed in two different hydride complexes comprising rhenium and technetium. Herein, based on a theoretical/experimental approach, we present evidence for the formation of ninefold H- coordination hydride complexes of molybdenum ([MoH9](3-)), tungsten ([WH9](3-)), niobium ([NbH9](4-)) and tantalum ([TaH9](4-)) in novel complex transition-metal hydrides, Li5MoH11, Li5WH11, Li6NbH11 and Li6TaH11, respectively. All of the synthesized materials are insulated with band gaps of approximately 4 eV, but contain a sufficient amount of hydrogen to cause the H 1s-derived states to reach the Fermi level. Such hydrogen-rich materials might be of interest for high-critical-temperature superconductivity if the gaps close under compression. Furthermore, the hydride complexes exhibit significant rotational motions associated with anharmonic librations at room temperature, which are often discussed in relation to the translational diffusion of cations in alkali-metal dodecahydro-closo-dodecaborates and strongly point to the emergence of a fast lithium conduction even at room temperature.

  5. Metal hydrides as electrode/catalyst materials for oxygen evolution/reduction in electrochemical devices

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); Halpert, Gerald (Inventor); Fultz, Brent (Inventor); Witham, Charles K. (Inventor); Bowman, Robert C. (Inventor); Hightower, Adrian (Inventor)

    1997-01-01

    An at least ternary metal alloy of the formula, AB.sub.(5-Y)X(.sub.y), is claimed. In this formula, A is selected from the rare earth elements, B is selected from the elements of groups 8, 9, and 10 of the periodic table of the elements, and X includes at least one of the following: antimony, arsenic, and bismuth. Ternary or higher-order substitutions, to the base AB.sub.5 alloys, that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

  6. True boundary for the formation of homoleptic transition-metal hydride complexes.

    PubMed

    Takagi, Shigeyuki; Iijima, Yuki; Sato, Toyoto; Saitoh, Hiroyuki; Ikeda, Kazutaka; Otomo, Toshiya; Miwa, Kazutoshi; Ikeshoji, Tamio; Aoki, Katsutoshi; Orimo, Shin-ichi

    2015-05-04

    Despite many exploratory studies over the past several decades, the presently known transition metals that form homoleptic transition-metal hydride complexes are limited to the Groups 7-12. Here we present evidence for the formation of Mg3 CrH8 , containing the first Group 6 hydride complex [CrH7 ](5-) . Our theoretical calculations reveal that pentagonal-bipyramidal H coordination allows the formation of σ-bonds between H and Cr. The results are strongly supported by neutron diffraction and IR spectroscopic measurements. Given that the Group 3-5 elements favor ionic/metallic bonding with H, along with the current results, the true boundary for the formation of homoleptic transition-metal hydride complexes should be between Group 5 and 6. As the H coordination number generally tends to increase with decreasing atomic number of transition metals, the revised boundary suggests high potential for further discovery of hydrogen-rich materials that are of both technological and fundamental interest.

  7. Effect of delivery condition on desorption rate of ZrCo metal hydride bed for fusion fuel cycle

    SciTech Connect

    Kang, H.G.; Yun, S.H.; Chung, D.; Oh, Y.H.; Chang, M.H.; Cho, S.; Chung, H.; Song, K.M.

    2015-03-15

    For the safety of fusion fuel cycle, hydrogen isotope gases including tritium are stored as metal hydride form. To satisfy fueling requirement of fusion machine, rapid delivery from metal hydride bed is one of major factors for the development of tritium storage and delivery system. Desorption from metal hydride depends on the operation scenario by pressure and temperature control of the bed. The effect of operation scenario and pump performance on desorption rate of metal hydride bed was experimentally investigated using ZrCo bed. The results showed that the condition of pre-heating scenario before actual delivery of gas affected the delivery performance. Different pumps were connected to desorption line from bed and the effect of pump capacity on desorption rate were also found to be significant. (authors)

  8. Metal hydrides used as negative electrode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Sartori, Sabrina; Cuevas, Fermin; Latroche, Michel

    2016-02-01

    Energy is a key issue for future generation. Researches are conducted worldwide to develop new efficient means for energy conversion and storage. Electrochemical storage is foreseen as an efficient way to handle intermittent renewable energy production. The most advanced batteries are nowadays based on lithium-ion technology though their specific capacities should be significantly increased to bring solution to mass storage. Conversion reactions are one way to step forward larger capacities at the anode. We here review the possibility to use metallic or complex hydrides as negative electrode using conversion reaction of hydride with lithium. Moreover, promising alloying of lithium with the metallic species might provide additional reversible capacities. Both binary and ternary systems are reviewed and results are compared in the frame of the electrochemical application.

  9. Positive ions of the first- and second-row transition metal hydrides

    NASA Technical Reports Server (NTRS)

    Pettersson, Lars G. M.; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1987-01-01

    Theoretical dissociation energies for the first- and second-row transition metal hydride positive ions are critically compared against recent experimental values obtained from ion beam reactive scattering methods. Theoretical spectroscopic parameters and dipole moments are presented for the ground and several low-lying excited states. The calculations employ large Gaussian basis sets and account for electron correlation using the single-reference single- and double-excitation configuration interaction and coupled-pair-functional methods. The Darwin and mass-velocity contributions to the relativistic energy are included in the all-electron calculations on the first-row systems using first-order perturbation theory, and in the second-row systems using the Hay and Wadt relativistic effective core potentials. The theoretical D(0) values for the second-row transition metal hydride positive ions should provide a critical measure of the experimental values, which are not as refined as many of those in the first transition row.

  10. Technical challenges and future direction for high-efficiency metal hydride thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Ward, Patrick A.; Corgnale, Claudio; Teprovich, Joseph A.; Motyka, Theodore; Hardy, Bruce; Sheppard, Drew; Buckley, Craig; Zidan, Ragaiy

    2016-04-01

    Recently, there has been increasing interest in thermal energy storage (TES) systems for concentrated solar power (CSP) plants, which allow for continuous operation when sunlight is unavailable. Thermochemical energy storage materials have the advantage of much higher energy densities than latent or sensible heat materials. Furthermore, thermochemical energy storage systems based on metal hydrides have been gaining great interest for having the advantage of higher energy densities, better reversibility, and high enthalpies. However, in order to achieve higher efficiencies desired of a thermal storage system by the US Department of Energy, the system is required to operate at temperatures >600 °C. Operation at temperatures >600 °C presents challenges including material selection, hydrogen embrittlement and permeation of containment vessels, appropriate selection of heat transfer fluids, and cost. Herein, the technical difficulties and proposed solutions associated with the use of metal hydrides as TES materials in CSP applications are discussed and evaluated.

  11. Transition-metal-free coupling reaction of vinylcyclopropanes with aldehydes catalyzed by tin hydride.

    PubMed

    Ieki, Ryosuke; Kani, Yuria; Tsunoi, Shinji; Shibata, Ikuya

    2015-04-13

    Donor-acceptor cyclopropanes are useful building blocks for catalytic cycloaddition reactions with a range of electrophiles to give various cyclic products. In contrast, relatively few methods are available for the synthesis of homoallylic alcohols through coupling of vinylcyclopropanes (VCPs) with aldehydes, even with transition-metal catalysts. Here, we report that the hydrostannation of vinylcyclopropanes (VCPs) was effectively promoted by dibutyliodotin hydride (Bu2 SnIH). The resultant allylic tin compounds reacted easily with aldehydes. Furthermore, the use of Bu2 SnIH was effectively catalytic in the presence of hydrosilane as a hydride source, which established a coupling reaction of VCPs with aldehydes for the synthesis of homoallylic alcohols without the use of transition-metal catalysts. In contrast to conventional catalytic reactions of VCPs, the presented method allowed the use of several VCPs in addition to conventional donor-acceptor cyclopropanes.

  12. A dehydrogenation mechanism of metal hydrides based on interactions between Hdelta+ and H-.

    PubMed

    Lu, Jun; Fang, Zhigang Zak; Sohn, Hong Yong

    2006-10-16

    This paper describes a reaction mechanism that explains the dehydrogenation reactions of alkali and alkaline-earth metal hydrides. These light metal hydrides, e.g., lithium-based compounds such as LiH, LiAlH4, and LiNH2, are the focus of intense research recently as the most promising candidate materials for on-board hydrogen storage applications. Although several interesting and promising reactions and materials have been reported, most of these reported reactions and materials have been discovered by empirical means because of a general lack of understanding of any underlying principles. This paper describes an understanding of the dehydrogenation reactions on the basis of the interaction between negatively charged hydrogen (H-, electron donor) and positively charged hydrogen (Hdelta+, electron acceptor) and experimental evidence that captures and explains many observations that have been reported to date. This reaction mechanism can be used as a guidance for screening new material systems for hydrogen storage.

  13. Superhalogens: A Bridge between Complex Metal Hydrides and Li Ion Batteries.

    PubMed

    Jena, Puru

    2015-04-02

    Complex metal hydrides and Li ion batteries play an integral role in the pursuit of clean and sustainable energy. The former stores hydrogen and can provide a clean energy solution for the transportation industry, while the latter can store energy harnessed from the sun and the wind. However, considerable materials challenges remain in both cases, and research for finding solutions has traditionally followed parallel paths. In this Perspective, I show that there is a common link between these two seemingly disparate fields that can be unveiled by studying the electronic structure of the anions in complex metal hydrides and in electrolytes of Li ion batteries; they are both superhalogens. I demonstrate that considerable progress made in our understanding of superhalogens in the past decade can provide solutions to some of the materials challenges in both of these areas.

  14. Compensation effect in the hydrogenation/dehydrogenation kinetics of metal hydrides.

    PubMed

    Andreasen, Anders; Vegge, Tejs; Pedersen, Allan S

    2005-03-03

    The possible existence of a compensation effect, i.e. concurrent changes in activation energy and prefactor, is investigated for the hydrogenation and dehydrogenation kinetics of metal hydrides, by analyzing a series of reported kinetic studies on Mg and LaNi(5) based hydrides. For these systems, we find a clear linear relation between apparent prefactors and apparent activation energies, as obtained from an Arrhenius analysis, indicating the existence of a compensation effect. Large changes in apparent activation energies in the case of Mg based hydrides are rationalized in terms of a dependency of observed apparent activation energy on the degree of surface oxidation, i.e., a physical effect. On the other hand, we find the large concurrent changes in apparent prefactors to be a direct result of the Arrhenius analysis. Thus, we find the observed compensation effect to be an artifact of the data analysis rather than a physical phenomenon. In the case of LaNi(5) based hydrides, observed scatter in reported apparent activation energies is less pronounced supporting the general experience that LaNi(5) is less sensitive toward surface contamination.

  15. Sub-millimeter Spectroscopy of Astrophysically Important Molecules and Ions: Metal Hydrides, Halides, and Cyanides

    NASA Technical Reports Server (NTRS)

    Ziurys, L. M.; Flory, M. A.; Halfen, D. T.

    2006-01-01

    With the advent of SOFIA, Herschel, and SAFIR, new wavelength regions will become routinely accessible for astronomical spectroscopy, particularly at submm frequencies (0.5-1.1 THz). Molecular emission dominates the spectra of dense interstellar gas at these wavelengths. Because heterodyne detectors are major instruments of these missions, accurate knowledge of transition frequencies is crucial for their success. The Ziurys spectroscopy laboratory has been focusing on the measurement of the pure rotational transitions of astrophysically important molecules in the sub-mm regime. Of particular interest have been metal hydride species and their ions, as well as metal halides and cyanides. A new avenue of study has included metal bearing molecular ions.

  16. Formation and physical properties of uranium hydride under conditions relevant to metallic fuel and nuclear waste storage

    NASA Astrophysics Data System (ADS)

    Orr, Robin; Godfrey, Hugh; Broan, Chris; Goddard, Dave; Woodhouse, Guy; Durham, Peter; Diggle, Andrew; Bradshaw, John

    2016-08-01

    The formation of uranium hydride is recognised as a hazard during the storage of uranium metal owing to its potentially pyrophoric properties. This study has assessed the influence of water vapour on the potential for uranium hydride to form at low temperatures and shows that it increases the duration of the induction period but does not necessarily prevent uranium hydride formation and also does not significantly change the reaction rate with hydrogen. It is further shown that the α-UH3 fraction in the uranium hydride gradually increases at decreasing temperatures and is likely to be the dominant phase formed under typical storage conditions. Particle morphology and specific surface area of uranium hydride prepared between 30 °C and 200 °C have also been characterised but show only modest variation compared with the phase composition.

  17. Develop improved metal hydride technology for the storage of hydrogen. Final technical report

    SciTech Connect

    Sapru, K.

    1998-12-04

    The overall objective was to develop commercially viable metal hydrides capable of reversibly storing at least 3 wt.% hydrogen for use with PEM fuel cells and hydrogen fueled internal combustion engine (HICE) applications. Such alloys are expected to result in system capacities of greater than 2 wt.%, making metal hydride storage systems (MHSS`s) a practical means of supplying hydrogen for many consumer applications. ECD`s (Energy Conversion Devices, Inc.) past work on sputtered thin films of transition metal-based alloys led to the commercialization of it`s nickel/metal hydride batteries, and similar work on thin film Mg-based alloys demonstrated potential to achieve very high gravimetric and volumetric energy densities approaching 2,500 Wh/Kg and 2,500 Wh/M{sup 3} respectively. Under this 2-year cost shared project with the DOE, the authors have successfully demonstrated the feasibility of scaling up the Mg-based hydrides from thin film to bulk production without substantial loss of storage capacity. ECD made progress in alloy development by means of compositional and process modification. Processes used include Mechanical Alloying, Melt spinning and novel Gas Phase Condensation. It was showed that the same composition when prepared by melt-spinning resulted in a more homogeneous material having a higher PCT plateau pressure as compared to mechanical alloying. It was also shown that mechanically alloyed Mg-Al-Zn results in much higher plateau pressures, which is an important step towards reducing the desorption temperature. While significant progress has been made during the past two years in alloy development and understanding the relationship between composition, structure, morphology, and processing parameters, additional R and D needs to be performed to achieve the goals of this work.

  18. Nickel-metal hydride electric vehicle batteries through materials science advances

    SciTech Connect

    Venkatesan, S.; Fetcenko, M.A.; Corrigan, D.A.; Gifford, P.R.; Dhar, S.K.; Ovshinsky, S.R.

    1995-12-31

    Proprietary, multicomponent hydrogen storage materials have been developed making use of the principles of disorder by atomic engineering of the short-range and intermediate-range order. These materials form the basis for Ovonic Nickel-Metal Hydride batteries which have emerged as the leading battery technology for electric vehicle applications. Ovonic Batteries have the highest volumetric energy density available extending the practical range of electric vehicles from under 100 miles to over 200 miles.

  19. Direct generation of oxygen-stabilized radicals by H• transfer from transition metal hydrides.

    PubMed

    Kuo, Jonathan L; Hartung, John; Han, Arthur; Norton, Jack R

    2015-01-28

    Transition-metal hydrides generate α-alkoxy radicals by H• transfer to enol ethers. We have measured the rate constant for transfer from CpCr(CO)3H to n-butyl vinyl ether and have examined the chemistry of radicals generated by such transfers. Radicals from appropriate substrates undergo 5-exo cyclization, with higher diastereoselectivity than the analogous all-carbon radicals. From such radicals it is straightforward to make substituted tetrahydrofurans.

  20. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    PubMed Central

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-01-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g−1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles. PMID:27270184

  1. Dihydrogen bonding vs metal-σ interaction in complexes between H2 and metal hydride.

    PubMed

    Alkorta, Ibon; Elguero, Jose; Solimannejad, Mohammad; Grabowski, Sławomir J

    2011-01-20

    The complexes formed by hydrogen with metal hydrides (LiH, NaH, BeH(2), MgH(2), BH(3), AlH(3), Li(2)H(2), Na(2)H(2), Be(2)H(4), and Mg(2)H(4)) have been theoretically studied at the MP2/aug-cc-pVTZ, MP2/aug-cc-pVQZ and CCSD(T)/aug-cc-pVTZ//CCSD/aug-cc-pVTZ levels of theory. The hydrogen molecule can act as a Lewis acid or base. In the first case, a dihydrogen bonded complex is obtained and in the second an interaction between the σ-bond of the hydrogen molecule and an empty orbital of the metal atoms is found. Quantum theory of atoms in molecules and natural bond orbitals methods have been applied to analyze the intermolecular interactions. Additionally, the cooperativity effects are analyzed for selected complexes with two H(2) molecules where both kinds of interactions exist simultaneously.

  2. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries.

    PubMed

    Li, M M; Yang, C C; Wang, C C; Wen, Z; Zhu, Y F; Zhao, M; Li, J C; Zheng, W T; Lian, J S; Jiang, Q

    2016-06-07

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world's dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials-hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g(-1), which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  3. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    NASA Astrophysics Data System (ADS)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-06-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g‑1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  4. Molecular heterometallic hydride clusters composed of rare-earth and d-transition metals.

    PubMed

    Shima, Takanori; Luo, Yi; Stewart, Timothy; Bau, Robert; McIntyre, Garry J; Mason, Sax A; Hou, Zhaomin

    2011-09-18

    Heteromultimetallic hydride clusters containing both rare-earth and d-transition metals are of interest in terms of both their structure and reactivity. However, such heterometallic complexes have not yet been investigated to a great extent because of difficulties in their synthesis and structural characterization. Here, we report the synthesis, X-ray and neutron diffraction studies, and hydrogen addition and release properties of a family of rare-earth/d-transition-metal heteromultimetallic polyhydride complexes of the core structure type 'Ln(4)MH(n)' (Ln = Y, Dy, Ho; M = Mo, W; n = 9, 11, 13). Monitoring of hydrogen addition to a hydride cluster such as [{(C(5)Me(4)SiMe(3))Y}(4)(μ-H)(9)Mo(C(5)Me(5))] in a single-crystal to single-crystal process by X-ray diffraction has been achieved for the first time. Density functional theory studies reveal that the hydrogen addition process is cooperatively assisted by the Y/Mo heteromultimetallic sites, thus offering unprecedented insight into the hydrogen addition and release process of a metal hydride cluster.

  5. Method for preparing hydride configurations and reactive metal surfaces

    DOEpatents

    Silver, Gary L.

    1988-08-16

    A method for preparing highly hydrogen-reactive surfaces on metals which normally require substantial heating, high pressures, or an extended induction period, which involves pretreatment of said surfaces with either a non-oxidizing acid or hydrogen gas to form a hydrogen-bearing coating on said surfaces, and subsequently heating said coated metal in the absence of moisture and oxygen for a period sufficient to decompose said coating and cooling said metal to room temperature. Surfaces so treated will react almost instantaneously with hydrogen gas at room temperature and low pressure. The method is particularly applicable to uranium, thorium, and lanthanide metals.

  6. Topotactic Solid-State Metal Hydride Reductions of Sr2MnO4.

    PubMed

    Hernden, Bradley C; Lussier, Joey A; Bieringer, Mario

    2015-05-04

    We report novel details regarding the reactivity and mechanism of the solid-state topotactic reduction of Sr2MnO4 using a series of solid-state metal hydrides. Comprehensive details describing the active reducing species are reported and comments on the reductive mechanism are provided, where it is shown that more than one electron is being donated by H(-). Commonly used solid-state hydrides LiH, NaH, and CaH2, were characterized in terms of reducing power. In addition the unexplored solid-state hydrides MgH2, SrH2, and BaH2 are evaluated as potential solid-state reductants and characterized in terms of their reductive reactivities. These 6 group I and II metal hydrides show the following trend in terms of reactivity: MgH2 < SrH2 < LiH ≈ CaH2 ≈ BaH2 < NaH. The order of the reductants are discussed in terms of metal electronegativity and bond strengths. NaH and the novel use of SrH2 allowed for targeted synthesis of reduced Sr2MnO(4-x) (0 ≤ x ≤ 0.37) phases. The enhanced control during synthesis demonstrated by this soft chemistry approach has allowed for a more comprehensive and systematic evaluation of Sr2MnO(4-x) phases than previously reported phases prepared by high temperature methods. Sr2MnO3.63(1) has for the first time been shown to be monoclinic by powder X-ray diffraction and the oxidative monoclinic to tetragonal transition occurs at 450 °C.

  7. In search of metal hydrides: an X-ray absorption and emission study of [NiFe] hydrogenase model complexes.

    PubMed

    Hugenbruch, Stefan; Shafaat, Hannah S; Krämer, Tobias; Delgado-Jaime, Mario Ulises; Weber, Katharina; Neese, Frank; Lubitz, Wolfgang; DeBeer, Serena

    2016-04-28

    Metal hydrides are invoked as important intermediates in both chemical and biological H2 production. In the [NiFe] hydrogenase enzymes, pulsed EPR and high-resolution crystallography have argued that the hydride interacts primarily at the Ni site. In contrast, in [NiFe] hydrogenase model complexes, it is observed that the bridging hydride interacts primarily with the Fe. Herein, we utilize a combination of Ni and Fe X-ray absorption (XAS) and emission (XES) spectroscopies to examine the contribution of the bridging hydride to the observed spectral features in [(dppe)Ni(μ-pdt)(μ-H)Fe(CO)3](+). The corresponding data on (dppe)Ni(μ-pdt)Fe(CO)3 are used as a reference for the changes that occur in the absence of a hydride bridge. For further interpretation of the observed spectral features, all experimental spectra were calculated using a density functional theory (DFT) approach, with excellent agreement between theory and experiment. It is found that the iron valence-to-core (VtC) XES spectra reveal clear signatures for the presence of a Fe-H interaction in the hydride bridged model complex. In contrast, the Ni VtC XES spectrum largely reflects changes in the local Ni geometry and shows little contribution from a Ni-H interaction. A stepwise theoretical analysis of the hydride contribution and the Ni site symmetry provides insights into the factors, which govern the different metal-hydride interactions in both the model complexes and the enzyme. Furthermore, these results establish the utility of two-color XES to reveal important insights into the electronic structure of various metal-hydride species.

  8. Influence of surface contaminations on the hydrogen storage behaviour of metal hydride alloys.

    PubMed

    Schülke, Mark; Paulus, Hubert; Lammers, Martin; Kiss, Gábor; Réti, Ferenc; Müller, Karl-Heinz

    2008-03-01

    Hydrogen storage in metal hydrides is a promising alternative to common storage methods. The surface of a metal hydride plays an important part in the absorption of hydrogen, since important partial reaction steps take place here. The development of surface contaminations and their influence on hydrogen absorption is examined by means of absorption experiments and surface analysis, using X-ray photoelectron spectroscopy (XPS), thermal desorption mass spectrometry (TDMS) and secondary neutral mass spectrometry (SNMS), in this work. All investigations were carried out on a modern AB(2) metal hydride alloy, namely Ti(0.96)Zr(0.04)Mn(1.43)V(0.45)Fe(0.08). Surface analysis (SNMS, XPS) shows that long-term air storage (several months) leads to oxide layers about 15 nm thick, with complete oxidation of all main alloy components. By means of in situ oxygen exposure at room temperature and XPS analysis, it can be shown that an oxygen dose of about 100 Langmuirs produces an oxide layer comparable to that after air storage. Manganese enrichment (segregation) is also clearly observed and is theoretically described here. This oxide layer hinders hydrogen absorption, so an activation procedure is necessary in order to use the full capacity of the metal hydride. This procedure consists of heating (T = 120 degrees C) in vacuum and hydrogen flushing at pressures like p = 18 bar. During the activation process the alloy is pulverized to particles of approximately 20 microm through lattice stretches. It is shown that this pulverization of the metal hydride (creating clean surface) during hydrogen flushing is essential for complete activation of the material. Re-activation of powder contaminated by small doses of air (p approximately 0.1 bar) does not lead to full absorption capacity. In ultrahigh vacuum, hydrogen is only taken up by the alloy after sputtering of the surface (which is done in order to remove oxide layers from it), thus creating adsorption sites for the hydrogen. This

  9. Estimating the acidity of transition metal hydride and dihydrogen complexes by adding ligand acidity constants.

    PubMed

    Morris, Robert H

    2014-02-05

    A simple equation (pKa(THF) = ∑AL + Ccharge + Cnd + Cd6) can be used to obtain an estimate of the pKa of diamagnetic transition metal hydride and dihydrogen complexes in tetrahydrofuran, and, by use of conversion equations, in other solvents. It involves adding acidity constants AL for each of the ligands in the 5-, 6-, 7-, or 8-coordinate conjugate base complex of the hydride or dihydrogen complex along with a correction for the charge (Ccharge = -15, 0 or 30 for x = +1, 0 or -1 charge, respectively) and the periodic row of the transition metal (Cnd = 0 for 3d or 4d metal, 2 for 5d metal) as well as a correction for d(6) octahedral acids (Cd6 = 6 for d(6) metal ion in the acid, 0 for others) that are not dihydrogen complexes. Constants AL are provided for 13 commonly occurring ligand types; of these, nine neutral ligands are correlated with Lever's electrochemical ligand parameters EL. This method gives good estimates of the over 170 literature pKa values that range from less than zero to 50 with a standard deviation of 3 pKa units for complexes of the metals chromium to nickel, molybdenum, ruthenium to palladium, and tungsten to platinum in the periodic table. This approach allows a quick assessment of the acidity of hydride complexes found in nature (e.g., hydrogenases) and in industry (e.g., catalysis and hydrogen energy applications). The pKa values calculated for acids that have bulky or large bite angle chelating ligands deviate the most from this correlation. The method also provides an estimate of the base strength of the deprotonated form of the complex.

  10. Stability of alkali-metal hydrides: effects of n-type doping

    NASA Astrophysics Data System (ADS)

    Olea Amezcua, Monica Araceli; de La Peña Seaman, Omar; Rivas Silva, Juan Francisco; Heid, Rolf; Bohnen, Klaus-Peter

    Metal hydrides could be considered ideal solid-state hydrogen storage systems, they have light weight and high hydrogen volumetric densities, but the hydrogen desorption process requires excessively high temperatures due to their high stability. Efforts have been performed to improve their dehydrogenation properties, based on the introduction of defects, impurities and doping. We present a systematic study of the n-type (electronic) doping effects on the stability of two alkali-metal hydrides: Na1-xMgxH and Li1-xBexH. These systems have been studied within the framework of density functional perturbation theory, using a mixed-basis pseudopotential method and the self-consistent version of the virtual crystal approximation to model the doping. The full-phonon dispersions are analyzed for several doping content, paying special attention to the crystal stability. It is found a doping content threshold for each system, where they are close to dynamical instabilities, which are related to charge redistribution in interstitial zones. Applying the quasiharmonic approximation, the vibrational free energy, the linear thermal expansion and heat capacities are obtained for both hydrides systems and are analyzed as a function of the doping content. This work is partially supported by the VIEP-BUAP 2016 and CONACYT-México (No.221807) projects.

  11. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations.

    PubMed

    Alapati, Sudhakar V; Johnson, J Karl; Sholl, David S

    2006-05-04

    Hydrides of period 2 and 3 elements are promising candidates for hydrogen storage but typically have heats of reaction that are too high to be of use for fuel cell vehicles. Recent experimental work has focused on destabilizing metal hydrides through alloying with other elements. A very large number of possible destabilized metal hydride reaction schemes exist. The thermodynamic data required to assess the enthalpies of these reactions, however, are not available in many cases. We have used first principles density functional theory calculations to predict the reaction enthalpies for more than 100 destabilization reactions that have not previously been reported. Many of these reactions are predicted not be useful for reversible hydrogen storage, having calculated reaction enthalpies that are either too high or too low. More importantly, our calculations identify five promising reaction schemes that merit experimental study: 3LiNH(2) + 2LiH + Si --> Li(5)N(3)Si + 4H(2), 4LiBH(4) + MgH(2) --> 4LiH + MgB(4) + 7H(2), 7LiBH(4) + MgH(2) --> 7LiH + MgB(7) + 11.5H(2), CaH(2) + 6LiBH(4) --> CaB(6) + 6LiH + 10H(2), and LiNH(2) + MgH(2) --> LiMgN + 2H(2).

  12. Standardized hydrogen storage module with high utilization factor based on metal hydride-graphite composites

    NASA Astrophysics Data System (ADS)

    Bürger, Inga; Dieterich, Mila; Pohlmann, Carsten; Röntzsch, Lars; Linder, Marc

    2017-02-01

    In view of hydrogen based backup power systems or small-scale power2gas units, hydrogen storages based on metal hydrides offer a safe and reliable solution. By using Hydralloy C5 as suitable hydride forming alloy, the present tank design guarantees very simple operating conditions: pressures between 4 bar and 30 bar, temperatures between 15 °C and 40 °C and minimal efforts for thermal management in combination with fast and constant charging and discharging capabilities. The modular tank consists of 4 layers with 5 reactor tubes each that are filled with metal hydride-graphite composites of a diameter of 21 mm. Experiments show that each layer of this tank is able to desorb the desired amount of hydrogen for a fuel cell operation at electrical power of 160 Wel for 100 min reaching a utilization factor of 93% of the stored hydrogen at RC. Furthermore, the experimental results of modularity, increasing loads and the electric air ventilation are presented.

  13. Evaluation of the performance and applications of a metal hydride hydrogen compressor

    NASA Astrophysics Data System (ADS)

    Klausner, M.; McMillan, J.; Wickham, D.

    1984-09-01

    Low-grade energy from geothermal, solar or industrial process heat sources may be utilized to power a metal hydride compressor. A four-stage compressor, containing rare-earth metal alloys, compressed 35 standard liters per minute (SLPM) of hydrogen from 0.35 MPa (45 psia) to 3.5 MPa (480 psia), using 680 kg/h (3 GPM) of 80 C water. A computer model was written to simulate compressor performance. The application of the compressor in power cycles (Brayton gas cycles), and the economics of compressor operation were examined.

  14. Protonation of transition-metal hydrides: a not so simple process.

    PubMed

    Besora, Maria; Lledós, Agustí; Maseras, Feliu

    2009-04-01

    The protonation of a transition-metal hydride is a formally simple process between a proton donor and a proton acceptor with several potential basic centres. The detailed mechanism is however quite subtle, with multistep reactions and involvement of different intermediates. The process is furthermore very sensitive to the nature of both the proton donor and the transition-metal complex, as well as to the solvent and to the presence and identity of eventual counteranions. This tutorial review summarizes the recent progress in the understanding of the reaction, obtained through the joint application of a number of computational and experimental techniques.

  15. Development of high catalytic activity disordered hydrogen-storage alloys for electrochemical application in nickel-metal hydride batterie

    NASA Astrophysics Data System (ADS)

    Ovshinsky, S. R.; Fetcenko, M. A.

    2001-04-01

    Multi-element, multiphase disordered metal hydride alloys have enabled the widespread commercialization of nickel-metal hydride (NiMH) batteries by allowing high capacity and good kinetics while overcoming the crucial barrier of unstable oxidation/corrosion behavior to obtain long cycle life. Alloy-formula optimization and advanced materials processing have been used to promote a high concentration of active hydrogen-storage sites vital for raising NiMH specific energy. New commercial applications demand fundamentally higher specific power and discharge-rate kinetics. Disorder at the metal/electrolyte interface has enabled a surface oxide with less than 70 Å metallic nickel alloy inclusions suspended within the oxide, which provide exceptional catalytic activity to the metal hydride electrode surface.

  16. Alkaline-earth metal hydrides as novel host lattices for Eu(II) luminescence.

    PubMed

    Kunkel, Nathalie; Kohlmann, Holger; Sayede, Adlane; Springborg, Michael

    2011-07-04

    Luminescence of divalent europium has been investigated for the first time in metal hydrides. A complete solid-solution series was found for the pseudobinary system Eu(x)Sr(1-x)H(2) [a = 637.6(1) pm -12.1(3)x pm, b = 387.0(1)-6.5(2)x pm, c = 732.2(2)-10.1(4)x pm]. Europium-doped alkaline-earth hydrides Eu(x)M(1-x)H(2) (M = Ca, Sr, Ba) with a small europium concentration (x = 0.005) exhibit luminescence with maximum emission wavelengths of 764 nm (M = Ca), 728 nm (M = Sr), and 750 nm (M = Ba); i.e., the emission energy of divalent europium shows an extremely large red shift compared to the emission energies of fluorides or oxides. Theoretical calculations (LDA+U) confirm decreasing band gaps with increasing europium content of the solid solutions.

  17. A study of H+ production using metal hydride and other compounds by means of laser ion source.

    PubMed

    Sekine, M; Kondo, K; Okamura, M; Hayashizaki, N

    2012-02-01

    A laser ion source can provide wide variety of ion beams from solid target materials, however, it has been difficult to create proton beam efficiently. We examined capability of proton production using beeswax, polyethylene, and metal hydrides (MgH(2) and ZrH(2)) as target materials. The results showed that beeswax and polyethylene could not be used to produce protons because these targets are transparent to the laser wavelength of 1064 nm. On the other hand, the metal hydrides could supply protons. Although the obtained particle numbers of protons were less than those of the metal ions, the metal hydrides could be used as a target for proton laser ion source.

  18. Quantitative tracking of grain structure evolution in a nanocrystalline metal during cyclic loading

    NASA Astrophysics Data System (ADS)

    Panzarino, Jason F.; Ramos, Jesus J.; Rupert, Timothy J.

    2015-02-01

    Molecular dynamics simulations were used to quantify mechanically induced structural evolution in nanocrystalline Al with an average grain size of 5 nm. A polycrystalline sample was cyclically strained at different temperatures, while a recently developed grain tracking algorithm was used to measure the relative contributions of novel deformation mechanisms such as grain rotation and grain sliding. Sample texture and grain size were also tracked during cycling, to show how nanocrystalline plasticity rearranges overall grain structure and alters the grain boundary network. While no obvious texture is developing during cycling, the processes responsible for plasticity act collectively to alter the interfacial network. Cyclic loading led to the formation of many twin boundaries throughout the sample as well as the occasional coalescence of neighboring grains, with higher temperatures causing more evolution. A temperature-dependent cyclic strengthening effect was observed, demonstrating that both the structure and properties of nanocrystalline metals can be dynamic during loading.

  19. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery- Part 2: Cells with Metal Hydride Storage.

    PubMed

    Purushothaman, B K; Wainright, J S

    2012-05-15

    A sub-atmospheric pressure nickel hydrogen (Ni-H(2)) battery with metal hydride for hydrogen storage is developed for implantable neuroprosthetic devices. Pressure variations during charge and discharge of the cell are analyzed at different states of charge and are found to follow the desorption curve of the pressure composition isotherm (PCI) of the metal hydride. The measured pressure agreed well with the calculated theoretical pressure based on the PCI and is used to predict the state of charge of the battery. Hydrogen equilibration with the metal hydride during charge/discharge cycling is fast when the pressure is in the range from 8 to 13 psia and slower in the range from 6 to 8 psia. The time constant for the slower hydrogen equilibration, 1.37h, is similar to the time constant for oxygen recombination and therefore pressure changes due to different mechanisms are difficult to estimate. The self-discharge rate of the cell with metal hydride is two times lower in comparison to the cell with gaseous hydrogen storage alone and is a result of the lower pressure in the cell when the metal hydride is used.

  20. Pore distributions in nanocrystalline metals from small-angle neutron scattering

    SciTech Connect

    Sanders, P.G.; Weertman, J.R.; Eastman, J.A.

    1998-07-24

    Recent upgrades in inert-gas condensation processing equipment have produced nanocrystalline metal samples with high densities and low-impurity levels. Typical Cu and Pd samples have densities {ge}98% of theoretical and oxygen and hydrogen impurity concentrations {le}0.5 at. %. Lower porosity and impurity levels may make it difficult to produce and maintain samples with the smallest nanocrystalline grain sizes. These improved samples were studied by small-angle neutron scattering (SANS) to determine the volume fraction and size distribution of pores. Excellent correlation was obtained between the total volume fraction of pores and the Archimedes density for Pd, signifying that most of the pores were relatively small and in the detectability range of SANS ({approx}1--100 nm). Nanocrystalline Cu is shown to exhibit a wider pore size distribution. For Pd, the average pore sizes were slightly smaller than the average grain size, while for Cu the pore size and grain size were about the same. Both materials exhibited a trend of increasing pore size with increasing grain size. In terms of processing prerequisites, the principal condition for the production of high-density nanocrystalline Cu is an exceptionally clean synthesis environment, while nanocrystalline Pd requires compaction at elevated temperatures. These differences are the result of Cu having both a lower melting point and a greater susceptibility to contamination by gaseous impurities such as oxygen.

  1. The Planck Sorption Cooler: Using Metal Hydrides to Produce 20 K

    NASA Technical Reports Server (NTRS)

    Pearson, David P.; Bowman, R.; Prina, M.; Wilson, P.

    2006-01-01

    The Jet Propulsion Laboratory has built and delivered two continuous closed cycle hydrogen Joule-Thomson (JT) cryocoolers for the ESA Planck mission, which will measure the anisotropy in the cosmic microwave background. The metal hydride compressor consists of six sorbent beds containing LaNi4.78Sn0.22 alloy and a low pressure storage bed of the same material. Each sorbent bed contains a separate gas-gap heat switch that couples or isolates the bed with radiators during the compressor operating cycle. ZrNiHx hydride is used in this heat switch. The Planck compressor produces hydrogen gas at a pressure of 48 Bar by heating the hydride to approx.450 K. This gas passes through a cryogenic cold end consisting of a tube-in-tube heat exchanger, three pre-cooling stages to bring the gas to nominally 52 K, a JT value to expand the gas into the two-phase regime at approx.20 K, and two liquid - vapor heat exchangers that must remove 190 and 646 mW of heat respectively.

  2. OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES

    SciTech Connect

    Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

    2011-07-14

    Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

  3. A simple approach to metal hydride alloy optimization

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Miller, C.; Landel, R. F.

    1976-01-01

    Certain metals and related alloys can combine with hydrogen in a reversible fashion, so that on being heated, they release a portion of the gas. Such materials may find application in the large scale storage of hydrogen. Metal and alloys which show high dissociation pressure at low temperatures, and low endothermic heat of dissociation, and are therefore desirable for hydrogen storage, give values of the Hildebrand-Scott solubility parameter that lie between 100-118 Hildebrands, (Ref. 1), close to that of dissociated hydrogen. All of the less practical storage systems give much lower values of the solubility parameter. By using the Hildebrand solubility parameter as a criterion, and applying the mixing rule to combinations of known alloys and solid solutions, correlations are made to optimize alloy compositions and maximize hydrogen storage capacity.

  4. LaNi{sub 5}-based metal hydride electrode in Ni-MH rechargeable cells

    DOEpatents

    Bugga, R.V.; Fultz, B.; Bowman, R.; Surampudi, S.R.; Witham, C.K.; Hightower, A.

    1999-03-30

    An at least ternary metal alloy of the formula AB{sub (Z-Y)}X{sub (Y)} is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB{sub 5} alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption. 16 figs.

  5. SYNTHESIS OF METAL HYDRIDES BY MECHANICAL ALLOYING IN AN ATTRITOR MILL: FY06 STATUS REPORT

    SciTech Connect

    Fox, K

    2006-11-30

    Hydridable metal alloys are used at the Savannah River Site to process tritium. The goal of this work was to develop a mechanical alloying process as a low-cost option to produce these alloys on-site. High-speed milling at elevated temperatures has the potential to significantly reduce the time and cost of the mechanical alloying process. It was demonstrated that elemental metal powders can be alloyed in an attritor mill under argon. In order to form LaNi{sub 4.25}Al{sub 0.75} from elemental metals it was found that lanthanum and nickel must be alloyed prior to adding aluminum. It was also demonstrated that metal powders could be alloyed in the high-speed attritor with the temperature in the mill equilibrating at {approx}220 C. Optimization of the process parameters will require additional testing.

  6. Hydrogen release reactions of Al-based complex hydrides enhanced by vibrational dynamics and valences of metal cations.

    PubMed

    Sato, T; Ramirez-Cuesta, A J; Daemen, L; Cheng, Y-Q; Tomiyasu, K; Takagi, S; Orimo, S

    2016-09-27

    Hydrogen release from Al-based complex hydrides composed of metal cation(s) and [AlH4](-) was investigated using inelastic neutron scattering viewed from vibrational dynamics. The hydrogen release followed the softening of translational and [AlH4](-) librational modes, which was enhanced by vibrational dynamics and the valence(s) of the metal cation(s).

  7. Hydrogen release reactions of Al-based complex hydrides enhanced by vibrational dynamics and valences of metal cations

    DOE PAGES

    Sato, T.; Ramirez-Cuesta, Anibal J.; Daemen, Luke L.; ...

    2016-08-31

    Hydrogen release from Al-based complex hydrides composed of metal cation(s) and [AlH4]– was investigated using inelastic neutron scattering viewed from vibrational dynamics. Here, the hydrogen release followed the softening of translational and [AlH4]– librational modes, which was enhanced by vibrational dynamics and the valence(s) of the metal cation(s).

  8. Improved metal hydride technology for the storage of hydrogen

    SciTech Connect

    Sapru, K.; Ming, L.; Ramachandran, S.

    1995-09-01

    Low cost, high density storage of hydrogen will remove the most serious barrier to large-scale utilization of hydrogen as a non-polluting, zero-emission fuel. An important challenge for the practical use of Mg-based, high capacity hydrogen storage alloys has been the development of a low-cost, bulk production technique. Two difficulties in preparation of Mg-based alloys are the immiscibility of Mg with many transition metals and the relatively high volatility of Mg compared to many transition metals. These factors preclude the use of conventional induction melting techniques for the Mg-based alloy preparation. A mechanical alloying technique, in which Mg immiscibility and volatility do not present a problem, was developed and shows great promise for production of Mg-based alloys. A number of Mg-based alloys were prepared via modified induction melting and mechanical alloying methods. The alloys were tested for gas phase hydrogen storage properties, composition, structure and morphology. The mechanically alloyed samples are multi-component, multi-phase, highly disordered materials in their as-prepared state. These unoptimized alloys have shown reversible H-storage capacity of more than 5 wt.% hydrogen. After 2000 absorption/desorption cycles, the alloys show no decline in storage capacity or desorption kinetics. The alloys have also demonstrated resistance to CH{sub 4} and CO poisoning in preliminary testing. Upon annealing, with an increase in crystallinity, the H-storage capacity decreases, indicating the importance of disorder.

  9. Feasibility study for the recycling of nickel metal hydride electric vehicle batteries. Final report

    SciTech Connect

    Sabatini, J.C.; Field, E.L.; Wu, I.C.; Cox, M.R.; Barnett, B.M.; Coleman, J.T.

    1994-01-01

    This feasibility study examined three possible recycling processes for two compositions (AB{sub 2} and AB{sub 5}) of nickel metal hydride electric vehicle batteries to determine possible rotes for recovering battery materials. Analysts examined the processes, estimated the costs for capital equipment and operation, and estimated the value of the reclaimed material. They examined the following three processes: (1) a chemical process that leached battery powders using hydrochloric acid, (2) a pyrometallurical process, and (3) a physical separation/chemical process. The economic analysis revealed that the physical separation/chemical process generated the most revenue.

  10. Pressure-induced hydrogen-dominant metallic state in aluminum hydride.

    PubMed

    Goncharenko, Igor; Eremets, M I; Hanfland, M; Tse, J S; Amboage, M; Yao, Y; Trojan, I A

    2008-02-01

    Two structural transitions in covalent aluminum hydride AlH3 were characterized at high pressure. A metallic phase stable above 100 GPa is found to have a remarkably simple cubic structure with shortest first-neighbor H-H distances ever measured except in H2 molecule. Although the high-pressure phase is predicted to be superconductive, this was not observed experimentally down to 4 K over the pressure range 120-164 GPa. The results indicate that the superconducting behavior may be more complex than anticipated.

  11. A modified coupled pair functional approach. [for dipole moment calculation of metal hydride ground states

    NASA Technical Reports Server (NTRS)

    Chong, D. P.; Langhoff, S. R.

    1986-01-01

    A modified coupled pair functional (CPF) method is presented for the configuration interaction problem that dramatically improves properties for cases where the Hartree-Fock reference configuration is not a good zeroth-order wave function description. It is shown that the tendency for CPF to overestimate the effect of higher excitations arises from the choice of the geometric mean for the partial normalization denominator. The modified method is demonstrated for ground state dipole moment calculations of the NiH, CuH, and ZnH transition metal hydrides, and compared to singles-plus-doubles configuration interaction and the Ahlrichs et al. (1984) CPF method.

  12. Rotational frequencies of transition metal hydrides for astrophysical searches in the far-infrared

    NASA Technical Reports Server (NTRS)

    Brown, John M.; Beaton, Stuart P.; Evenson, Kenneth M.

    1993-01-01

    Accurate frequencies for the lowest rotational transitions of five transition metal hydrides (CrH, FeH, CoH, NiH, and CuH) in their ground electronic states are reported to help the identification of these species in astrophysical sources from their far-infrared spectra. Accurate frequencies are determined in two ways: for CuH, by calculation from rotational constants determined from higher J transitions with an accuracy of 190 kHz; for the other species, by extrapolation to zero magnetic field from laser magnetic resonance spectra with an accuracy of 0.7 MHz.

  13. Experimental Hydrogen Plant with Metal Hydrides to Store and Generate Electrical Power

    NASA Astrophysics Data System (ADS)

    Gonzatti, Frank; Nizolli, Vinícius; Ferrigolo, Fredi Zancan; Farret, Felix Alberto; de Mello, Marcos Augusto Silva

    2016-02-01

    Generation of electrical energy with renewable sources is interruptible due to the primary energy characteristics (sun, wind, hydro, etc.). In these cases, it is necessary to use energy storage so increasing penetrability of these sources connected to the distribution system. This paper discusses in details some equipment and accessories of an integrated power plant using fuel cell stack, electrolyzer and metal hydrides. During the plant operation were collected the power consumption data and established the efficiency of each plant component. These data demonstrated an overall efficiency of about 11% due to the low efficiencies of the commercial electrolyzers and power inverters used in the experiments.

  14. High cycle life, cobalt free, AB{5} metal hydride electrodes [Revised 11/10/98

    SciTech Connect

    Vogt, Tom; Reilly, J.J.; Johnson, J.R.; Adzic, G.D.; Ticianelli, E.A.; Mukerjee, S.; McBreen, J.

    1998-11-10

    Cobalt-free La(Ni,Sn)5+x alloys have been identified as low cost, corrosion resistant electrodes for nickel-metal-hydride batteries. The structure of theses alloys are similar to non-stoichiometric La(Ni,Cu)5+x compounds; i.e., they retain the P6/mmm space group while Ni dumbbells occupy La sites. Electrodes fabricated from some of these novel alloys have capacities and cycle lives equivalent to those made from commercial, battery grade, AB5 alloys with cobalt.

  15. Ammonia-Borane and Amine-Borane Dehydrogenation Mediated by Complex Metal Hydrides.

    PubMed

    Rossin, Andrea; Peruzzini, Maurizio

    2016-08-10

    This review is a comprehensive survey of the last 10 years of research on ammonia-borane and amine-borane dehydrogenation mediated by complex metal hydrides (CMHs), within the broader context of chemical hydrogen storage. The review also collects those cases where CMHs are the catalyst spent form or its resting state. Highlights on the reaction mechanism (strictly dependent on the CMH of choice) and the catalysts efficiency (in terms of equivalents of H2 produced and relative reaction rates) are provided throughout the discussion.

  16. Positron binding to alkali-metal hydrides: The role of molecular vibrations

    SciTech Connect

    Gianturco, Franco A.; Franz, Jan; Buenker, Robert J.; Liebermann, Heinz-Peter; Pichl, Lukas; Rost, Jan-Michael; Tachikawa, Masanori; Kimura, Mineo

    2006-02-15

    The bound vibrational levels for J=0 have been computed for the series of alkali-metal hydride molecules from LiH to RbH, including NaH and KH. For all four molecules the corresponding potential-energy curves have been obtained for each isolated species and for its positron-bound complex (e{sup +}XH). It is found that the calculated positron affinity values strongly depend on the molecular vibrational state for which they are obtained and invariably increase as the molecular vibrational energy content increases. The consequences of our findings on the likelihood of possibly detecting such weakly bound species are briefly discussed.

  17. Thermodynamic and Kinetic Properties of Metal Hydrides from First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Michel, Kyle Jay

    In an effort to minimize the worldwide dependence on fossil fuels, much research has focused on the development of hydrogen fuel cell vehicles. Among the many challenges currently facing the transition to such an alternative energy economy is the storage of hydrogen in an economical and practical way. One class of materials that has presented itself as a possible candidate is solid metal hydrides. These materials chemically bind hydrogen and on heating, release the gas which can then be used to generate power as needed for the vehicle. In order to meet guidelines that have been set for such a storage system, hydrogen must be released rapidly in a narrow temperature range of -40 to 80°C with all reactions being reversible. This sets both thermodynamic and kinetic requirements for the design of candidate metal hydrides. First-principles calculations are well-suited for the task of exploring reactions involving metal hydrides. Here, density-functional theory is used to calculate properties of these materials at the quantum mechanical level of accuracy. In particular, three systems have been investigated: 1. Li-Mg-N-H. Reactions between all known compounds in this system are systematically investigated in order to predict thermodynamically allowed reactions that release hydrogen. The properties of these reactions are compared to the requirements set for hydrogen storage systems. Additionally, ground-state structures are predicted for Li2Mg(NH)2 and Li 4Mg(NH)3. 2. Na-Al-H. The kinetics of mass transport during the (de)hydrogenation of the well-known metal hydride NaAlH4 are investigated. A model is developed to study the flux of native defects through phases involved in these reactions. Since it is also known that titanium is an effective catalyst for both dehydrogenation and rehydrogenation, the effect of Ti substitution in bulk lattices on the kinetics of mass transport is investigated. Results are compared to experiments in order to determine if mass transport

  18. Metal Hydride and Alkali Halide Opacities in Extrasolar Giant Planets and Cool Stellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Weck, Philippe F.; Stancil, Phillip C.; Kirby, Kate; Schweitzer, Andreas; Hauschildt, Peter H.

    2006-01-01

    The lack of accurate and complete molecular line and continuum opacity data has been a serious limitation to developing atmospheric models of cool stars and Extrasolar Giant Planets (EGPs). We report our recent calculations of molecular opacities resulting from the presence of metal hydrides and alkali halides. The resulting data have been included in the PHOENIX stellar atmosphere code (Hauschildt & Baron 1999). The new models, calculated using spherical geometry for all gravities considered, also incorporate our latest database of nearly 670 million molecular lines, and updated equations of state.

  19. Accelerated cycle life performance for ovonic nickel-metal hydride cells

    NASA Technical Reports Server (NTRS)

    Otzinger, Burton M.

    1991-01-01

    Nickel-Metal Hydride (Ni-MH) rechargeable batteries have emerged as the leading candidate for commercial replacement of nickel-cadmium (Ni-Cd) batteries. An important incentive is that the Ni-MH cell provides approximately twice the capacity of a Ni-Cd cell for a given size. A six-cell battery was committed to an accelerated cycle life test to determine the effect of separation type on performance. Results of the test may also show the Ni-MH battery to be a replacement candidate for the aerospace Ni-Cd battery.

  20. Mathematical model of a NiOOH/metal hydride cell. Final report, September 15, 1993--November 14, 1996

    SciTech Connect

    White, R.E.; Popov, B.N.

    1996-12-31

    One of the objectives of work on the nickel/metal hydride cell has been to develop a mathematical model of the performance of the cell. This is a summary of work to date and is meant to be a Final Report of the BES project. Mathematical model of the nickel/metal hydride cell depends on the kinetics, thermodynamics, and transport properties of the metal hydride electrode. Consequently, investigations were carried out to determine: (1) the exchange current density and the equilibrium potential as a function of hydrogen content in the electrode; (2) the hydrogen diffusion coefficient in the bulk of the alloy; (3) the hydrogen reaction rate order; (4) the symmetry factor for hydrogen evolution reaction and (5) to determine the reaction mechanisms of the hydrogen charge and discharge processes including overcharge and overdischarge mechanism.

  1. First-principles studies of complex hydride YMn2H6 and its synthesis from metal hydride YMn2H4.5

    NASA Astrophysics Data System (ADS)

    Matsuo, Motoaki; Miwa, Kazutoshi; Semboshi, Satoshi; Li, Hai-Wen; Kano, Mika; Orimo, Shin-ichi

    2011-05-01

    First-principles calculations were performed for a complex hydride YMn2H6 to investigate its electronic structure and thermodynamic stability. The results indicated that an Y atom and one of two Mn atoms were ionized as Y3+ and Mn2+, respectively, and another Mn atom bound covalently to H atoms to form a [MnH6]5- complex anion. Based on the enthalpy change of -65 kJ/mol estimated from the calculation, we experimentally verified a possible low-pressure synthesis of YMn2H6 from a metal hydride YMn2H4.5. X-ray diffractometry confirmed the formation of YMn2H6 after hydrogenation below 5 MPa, much lower than the previously reported value of 170 MPa.

  2. Non-stoichiometric AB5 alloys for metal hydride electrodes

    DOEpatents

    Reilly, James J.; Adzic, Gordana D.; Johnson, John R.; Vogt, Thomas; McBreen, James

    2001-01-01

    The present invention provides a non-stoichiometric alloy comprising a composition having the formula AB.sub.5+X an atomic ratio wherein A is selected from the group consisting of the rare earth metals, yttrium, mischmetal, or a combination thereof; B is nickel and tin, or nickel and tin and at least a third element selected from the group consisting of the elements in group IVA of the periodic table, aluminum, manganese, iron, cobalt, copper, antimony or a combination thereof; X is greater than 0 and less than or equal to about 2.0; and wherein at least one substituted A site is occupied by at least one of the B elements. An electrode incorporating said alloy and an electrochemical cell incorporating said electrode are also described.

  3. Synthetic, structural, and theoretical investigations of alkali metal germanium hydrides--contact molecules and separated ions.

    PubMed

    Teng, Weijie; Allis, Damian G; Ruhlandt-Senge, Karin

    2007-01-01

    The preparation of a series of crown ether ligated alkali metal (M=K, Rb, Cs) germyl derivatives M(crown ether)nGeH3 through the hydrolysis of the respective tris(trimethylsilyl)germanides is reported. Depending on the alkali metal and the crown ether diameter, the hydrides display either contact molecules or separated ions in the solid state, providing a unique structural insight into the geometry of the obscure GeH3- ion. Germyl derivatives displaying M--Ge bonds in the solid state are of the general formula [M([18]crown-6)(thf)GeH3] with M=K (1) and M=Rb (4). The compounds display an unexpected geometry with two of the GeH3 hydrogen atoms closely approaching the metal center, resulting in a partially inverted structure. Interestingly, the lone pair at germanium is not pointed towards the alkali metal, rather two of the three hydrides are approaching the alkali metal center to display M--H interactions. Separated ions display alkali metal cations bound to two crown ethers in a sandwich-type arrangement and non-coordinated GeH3- ions to afford complexes of the type [M(crown ether)2][GeH3] with M=K, crown ether=[15]crown-5 (2); M=K, crown ether=[12]crown-4 (3); and M=Cs, crown ether=[18]crown-6 (5). The highly reactive germyl derivatives were characterized by using X-ray crystallography, 1H and 13C NMR, and IR spectroscopy. Density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2) calculations were performed to analyze the geometry of the GeH3- ion in the contact molecules 1 and 4.

  4. Predicted energy densitites for nickel-hydrogen and silver-hydrogen cells embodying metallic hydrides for hydrogen storage

    NASA Technical Reports Server (NTRS)

    Easter, R. W.

    1974-01-01

    Simplified design concepts were used to estimate gravimetric and volumetric energy densities for metal hydrogen battery cells for assessing the characteristics of cells containing metal hydrides as compared to gaseous storage cells, and for comparing nickel cathode and silver cathode systems. The silver cathode was found to yield superior energy densities in all cases considered. The inclusion of hydride forming materials yields cells with very high volumetric energy densities that also retain gravimetric energy densities nearly as high as those of gaseous storage cells.

  5. Design and fabricate a metallic hydride heat pump with a cooling capacity of 9000 BTU/H

    NASA Astrophysics Data System (ADS)

    Golben, P. M.; Huston, E. L.

    1989-02-01

    Existing Environmental Control Equipment (ECE) for truck mounted electronic communication shelters are powered by Army generator sets. Fully 50 percent of the generated power is consumed by the ECE. Innovative ECE technology was sought to reduce this electrical load. The heat content of the diesel generator exhaust gas was viewed as a potential waste heat source for thermally driven ECE systems. Metal hydride heat pumps were proposed as for this application. The purpose of this contract was to produce a prototype metal hydride air conditioner of 9000 BTU/H capacity and compare system size, weight, electric power requirements and performance with a standard Army air conditioner of the same capacity.

  6. Nickel/metal hydride technology for consumer and electric vehicle batteries—a review and up-date

    NASA Astrophysics Data System (ADS)

    Dhar, S. K.; Ovshínsky, S. R.; Gifford, P. R.; Corrigan, D. A.; Fetcenko, M. A.; Venkatesan, S.

    Nickel/metal hydride batteries today represent the fastest growing market segment for rechargeable batteries due to the high energy density and more environmentally acceptable chemistry offered by this technology. The high energy density of nickel/metal hydride batteries coupled with high power density and long cycle life make this battery chemistry a key enabling technology for practical electric vehicles, including cars, vans, trucks, and other forms of transportation such as scooters, bicycles, and three-wheelers. This paper provides a review of Ovonic technology and up-dates recent developments in materials and cell development for both consumer electronic and EV applications, and highlights areas for future development.

  7. Metal hydride/chemical heat-pump development project. Phase I. Final report

    SciTech Connect

    Argabright, T.A.

    1982-02-01

    The metal hydride/chemical heat pump (MHHP) is a chemical heat pump containing two hydrides for the storage and/or recovery of thermal energy. It utilizes the heat of reaction of hydrogen with specific metal alloys. The MHHP design can be tailored to provide heating and/or cooling or temperature upgrading over a wide range of input and ambient temperatures. The system can thus be used with a variety of heat sources including waste heat, solar energy or a fossil fuel. The conceptual design of the MHHP was developed. A national market survey including a study of applications and market sectors was conducted. The technical tasks including conceptual development, thermal and mechanical design, laboratory verification of design and material performance, cost analysis and the detailed design of the Engineering Development Test Unit (EDTU) were performed. As a result of the market study, the temperature upgrade cycle of the MHHP was chosen for development. Operating temperature ranges for the upgrader were selected to be from 70 to 110/sup 0/C (160 to 230/sup 0/F) for the source heat and 140 to 190/sup 0/C (280 to 375/sup 0/F) for the product heat. These ranges are applicable to many processes in industries such as food, textile, paper and pulp, and chemical. The hydride pair well suited for these temperatures is LaNi/sub 5//LaNi/sub 4/ /sub 5/Al/sub 0/ /sub 5/. The EDTU was designed for the upgrade cycle. It is a compact finned tube arrangement enclosed in a pressure vessel. This design incorporates high heat transfer and low thermal mass in a system which maximizes the coefficient of performance (COP). It will be constructed in Phase II. Continuation of this effort is recommended.

  8. Evaluation of a nickel/metal hydride battery for a load conditioner

    NASA Astrophysics Data System (ADS)

    Kumai, K.; Ikeya, T.; Iwahori, T.; Sakai, S.

    1992-04-01

    An evaluation was given on applicability of Ni/metal hydride battery (AA-size, 1 Wh) to a load conditioning application. Unit cells and multicell batteries (series and parallel connections) were tested of their basic characteristics under charge and discharge conditions. The volumetric energy density of the Ni/metal hydride battery is 175 Wh/l, 2.5 times that of lead-acid batteries. The battery has an energy efficiency of 88 to 90 percent and superior output characteristics satisfying the development targets. On the other hand, it was found that the battery has optimal conditions in specific charging methods (potential regulating method, time regulating method, and constant voltage and constant current method). To operate the battery at a high efficiency and for a long life, the constant current and constant voltage charge would be most advantageous, but the charge method requires further improvements and discussions. In five-cell series and parallel operation tests, difference in the capacity and the internal resistance was the factor to vary the charge/discharge characteristics, but the efficiency was about the same as that of unit cells.

  9. Effects of the Electronic Doping In the Stability of the Metal Hydride NaH

    NASA Astrophysics Data System (ADS)

    Olea-Amezcua, Monica-Araceli; Rivas-Silva, Juan-Francisco; de La Peña-Seaman, Omar; Heid, Rolf; Bohnen, Klaus-Peter

    2015-03-01

    Despite metal hydrides light weight and high hydrogen volumetric densities, the Hydrogen desorption process requires excessively high temperatures due to their high stability. Attempts for improvement the hydrogenation properties have been focus on the introduction of defects, impurities and doping on the metal hydride. We present a systematic study of the electronic doping effects on the stability of a model system, NaH doped with magnesium, forming the alloying system Na1-xMgxH. We use the density functional theory (DFT) and the self-consistent version of the virtual crystal approximation (VCA) to model the doping of NaH with Mg. The evolution of the ground state structural and electronic properties is analyzed as a function of Mg-content. The full-phonon dispersion, calculated by the linear response theory (LRT) and density functional perturbation theory (DFPT), is analyzed for several Mg-concentrations, paying special attention to the crystal stability and the correlations with the electronic structure. Applying the quasiharmonic approximation (QHA), the free energy from zero-point motion is obtained, and its influence on the properties under study is analyzed. This work is partially supported by the VIEP-BUAP (OMPS-EXC14-I) and CONACYT-Mexico (No. 221807) projects.

  10. Integrating hydrogen generation and storage in a novel compact electrochemical system based on metal hydrides

    NASA Astrophysics Data System (ADS)

    Rangel, C. M.; Fernandes, V. R.; Slavkov, Y.; Bozukov, L.

    The development of efficient and reliable energy storage systems based on hydrogen technology represents a challenge to seasonal storage based on renewable hydrogen. State of the art renewable energy generation systems include separate units such as electrolyzer, hydrogen storage vessel and a fuel cell system for the conversion of H 2 back into electricity, when required. In this work, a novel electrochemical system has been developed which integrates hydrogen production, storage and compression in only one device, at relatively low cost and high efficiency. The developed prototype comprises a six-electrode cell assembly using an AB 5-type metal hydride and Ni plates as counter electrodes, in a 35-wt% KOH solution. Metal hydride electrodes with chemical composition LaNi 4.3Co 0.4Al 0.3 were prepared by high frequency vacuum melting followed by high temperature annealing. X-ray phase analysis showed typical hexagonal structure and no traces of other intermetallic compounds belonging to the La-Ni phase diagram. Thermodynamic study has been performed in a Sieverts type of apparatus produced by Labtech Int. During cycling, the charging/discharging process was studied in situ using a gas chromatograph from Agilent. It is anticipated that the device will be integrated as a combined hydrogen generator and storage unit in a stand-alone system associated to a 1-kW fuel cell.

  11. Development of a model of on-board PEMFC powered locomotive with a metal hydride cylinder

    SciTech Connect

    Hasegawa, H.; Ohki, Y.

    1995-12-31

    This paper presents a phase-zero evaluation case of installing on-off-board hybrid powered Electric Motor Vehicle (EMV) in existing and new local line and reports development of a model fuel cell powered locomotive. EMV such as electric car and locomotive are a new conceptual EMV using hybrid power between off-board substation and on-board Regenerative Fuel Cell (RFC) power system with Metal Hydride (MH) stored hydrogen generated with water electrolyzer by off-board surplus power. In this study, it is estimated a possibility to close power gap over 30% in placing the new conceptual vehicle. The Locomotive is a 110 cm long locomotive powered by a 20 W PEMFC configured with 20 cells and supplies with about 2 g hydrogen, from a cylinder of 100 g metal hydride, and natural convection air (O{sub 2}). Measuring 50 cm (W), 50 cm (H), and weighting 25.8 kgf, the locomotive has a permanent magnet motor with a rated power 38 W (12 V, 3 A) and ran on railway that has a gauge of 126 mm (3 feet 6 inches/8.5 = 4.94 inches), a length of 100 m. The performance of this train was acceleration of 0.5 m/s, cruising speed of 4.1 m/s at traction force of 15.8 N (1.6 kgf), average rolling friction of 5 N (460 gf).

  12. Determination of reaction resistances for metal-hydride electrodes during anodic polarization

    NASA Astrophysics Data System (ADS)

    Wang, Chunsheng; Soriaga, Manuel P.; Srinivasan, Supramaniam

    The anodic polarization process in metal-hydride electrodes occurs via the following consecutive steps: (i) diffusion of absorbed hydrogen from the bulk to the surface of the electrode, (ii) hydrogen transfer from absorbed state to adsorbed state at the electrode surface, and (iii) electrochemical oxidation of the adsorbed hydrogen on the electrode surface. A theoretical treatment is presented to account for the dependencies on these three consecutive steps, of the reaction resistances, anodic limiting current, cathodic limiting current, and exchange current. The theoretical analysis predicts that the total resistances measured from linear micropolarization is the sum of the charge-transfer, hydrogen-transfer, and hydrogen-diffusion resistances, which is in contradiction with the generally accepted idea that the resistance measured from linear micropolarization is only the charge-transfer resistance. For a metal-hydride electrode with a flat pressure plateau at a low state of discharge (SOD), the resistance measured from linear micropolarization is approximately equal to the sum of three resistances measured from AC impedance, namely, charge-transfer, hydrogen-transfer and hydrogen-diffusion resistances; however, when the SOD is high, the resistance measured from linear micropolarization is higher than total resistances measured from AC impedance.

  13. First-Principles Modeling of Hydrogen Storage in Metal Hydride Systems

    SciTech Connect

    J. Karl Johnson

    2011-05-20

    The objective of this project is to complement experimental efforts of MHoCE partners by using state-of-the-art theory and modeling to study the structure, thermodynamics, and kinetics of hydrogen storage materials. Specific goals include prediction of the heats of formation and other thermodynamic properties of alloys from first principles methods, identification of new alloys that can be tested experimentally, calculation of surface and energetic properties of nanoparticles, and calculation of kinetics involved with hydrogenation and dehydrogenation processes. Discovery of new metal hydrides with enhanced properties compared with existing materials is a critical need for the Metal Hydride Center of Excellence. New materials discovery can be aided by the use of first principles (ab initio) computational modeling in two ways: (1) The properties, including mechanisms, of existing materials can be better elucidated through a combined modeling/experimental approach. (2) The thermodynamic properties of novel materials that have not been made can, in many cases, be quickly screened with ab initio methods. We have used state-of-the-art computational techniques to explore millions of possible reaction conditions consisting of different element spaces, compositions, and temperatures. We have identified potentially promising single- and multi-step reactions that can be explored experimentally.

  14. Theoretical dipole moments for the first-row transition metal hydrides

    NASA Technical Reports Server (NTRS)

    Chong, D. P.; Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.; Walch, S. P.

    1986-01-01

    Spectroscopic parameters (D sub e, r sub e, mu) are determined for the first-row transition metal hydrides using better than DZP basis sets at the modified coupled pair functional (MCPF) level. Extensive comparisons between MCPF and complete-active space self-consistent field (CASSCF)/MRCI calculations with natural orbital iterations, and studies with more extensive basis sets, show this level of treatment to supply an accurate and cost-effective treatment of these systems. For the transition metal hydrides, the bonding can arise from either the 3d(n)4s(2) or 3d(n + 1)4s(1) atomic asymptotes, or a mixture of both. Since the dipole moment arising from these two bonding mechanisms is very different, the dipole moment is found to be directly related to the 3d population. Thus, the magnitude of the dipole moments provides a sensitive test of the wave function, and gives insight into the nature of the bonding.

  15. Mechanical properties of nanocrystalline metals, intermetalics and multiphase materials determined by tension, compression and disk-bend techniques

    SciTech Connect

    Eastman, J.A.; Thompson, L.J.; DiMelfi, R.J.; Choudry, M. Dollar, M.; Weertman, J.R.; Rittner, M.N.; Youngdahl, C.J. /

    1997-02-01

    The mechanical behavior of nanocrystalline metallic, intermetallic, and multiphase materials was investigated using tension, compression, and disk-bend techniques. Nanocrystalline NiAl, Al-Al{sub 3}Zr, and Cu were synthesized by gas condensation and either resistive or electron beam heating followed by high temperature vacuum compaction. Disk- bend tests of nanocrystalline NiAl show evidence of improved ductility at room temperature in this normally extremely brittle material. In contrast, tension tests of multiphase nanocrystalline Al- Al{sub 3}Zr samples show significant increases in strength by substantial reductions in ductility with decreasing grain size. Compression tests of nanocrystalline copper result in substantially higher yield stress and total elongation values than those measured in tensile tests. Implications for operative deformation mechanisms in these materials are discussed.

  16. Bio-inspired transition metal-organic hydride conjugates for catalysis of transfer hydrogenation: experiment and theory.

    PubMed

    McSkimming, Alex; Chan, Bun; Bhadbhade, Mohan M; Ball, Graham E; Colbran, Stephen B

    2015-02-09

    Taking inspiration from yeast alcohol dehydrogenase (yADH), a benzimidazolium (BI(+) ) organic hydride-acceptor domain has been coupled with a 1,10-phenanthroline (phen) metal-binding domain to afford a novel multifunctional ligand (L(BI+) ) with hydride-carrier capacity (L(BI+) +H(-) ⇌L(BI) H). Complexes of the type [Cp*M(L(BI) )Cl][PF6 ]2 (M=Rh, Ir) have been made and fully characterised by cyclic voltammetry, UV/Vis spectroelectrochemistry, and, for the Ir(III) congener, X-ray crystallography. [Cp*Rh(L(BI) )Cl][PF6 ]2 catalyses the transfer hydrogenation of imines by formate ion in very goods yield under conditions where the corresponding [Cp*Ir(L(BI) )Cl][PF6 ] and [Cp*M(phen)Cl][PF6 ] (M=Rh, Ir) complexes are almost inert as catalysts. Possible alternatives for the catalysis pathway are canvassed, and the free energies of intermediates and transition states determined by DFT calculations. The DFT study supports a mechanism involving formate-driven RhH formation (90 kJ mol(-1) free-energy barrier), transfer of hydride between the Rh and BI(+) centres to generate a tethered benzimidazoline (BIH) hydride donor, binding of imine substrate at Rh, back-transfer of hydride from the BIH organic hydride donor to the Rh-activated imine substrate (89 kJ mol(-1) barrier), and exergonic protonation of the metal-bound amide by formic acid with release of amine product to close the catalytic cycle. Parallels with the mechanism of biological hydride transfer in yADH are discussed.

  17. Tristate electrochemical metallization memory based in the hydrogenated nanocrystalline silicon films

    SciTech Connect

    Yan, X. B.; Chen, Y. F.; Hao, H.; Zhang, E. P.; Shi, S. S.; Lou, J. Z.; Liu, Q.

    2014-08-18

    The hydrogenated nanocrystalline silicon (nc-Si:H) films have been fabricated as resistive switching medium by radio frequency plasma enhanced chemical vapor deposition technology. The constructed Ag/nc-Si:H/Pt structure exhibits stable three nonvolatile resistance states. Tristate resistive states with large ratio 10{sup 2} and 10{sup 5}, less variation of resistance, and long retention exceeding 2.3 × 10{sup 5 }s are observed in Ag/nc-Si:H/Pt stack. The temperature dependence of high resistance state (HRS) and intermediate resistance state (IRS) both show semiconductor behavior, and the temperature dependence of low resistance state (LRS) represents metallic property. Fitting results demonstrated that the conduction mechanism of HRS, IRS, and LRS showed space charge limited conduction (SCLC), tunneling, and ohmic characteristics, respectively. The discrete Ag filament with Si nanocrystalline and complete Ag filament is proposed to be responsible for the performance IRS and LRS. We supposed that the Ag{sup +} ions prefer to be reduced to Ag atoms near the Si nanocrystalline location. Si nanocrystalline between Ag nanoparticles contribute to the current transport at IRS.

  18. Scratching of nanocrystalline metals: A molecular dynamics study of Fe

    NASA Astrophysics Data System (ADS)

    Gao, Yu; Urbassek, Herbert M.

    2016-12-01

    Using molecular dynamics simulation we study the influence of grain boundaries on the indentation and scratching of Fe crystals by a hard repulsive tip. By comparing the results for nanocrystalline Fe with those for single crystals, the effect of grain boundaries on the normal and tangential forces, the hardness and the friction coefficient can be determined. We use nanocrystals of various grain sizes, and also vary the tip diameter. This allows us to determine the influence of these parameters on the scratching process. We find that with increasing size of the grains relative to the indenter the normal force needed for indentation or in scratch increases, and the friction coefficient is reduced. However, grain orientation has a dominant effect on the pile-up shape, and also influences the friction coefficient strongly.

  19. Healing mechanism of nanocrack in nanocrystalline metals during creep process

    NASA Astrophysics Data System (ADS)

    Meraj, Md.; Pal, Snehanshu

    2017-02-01

    Molecular dynamics (MD) simulation has been performed to demonstrate the fate of cracks present inside ultrafine-grained (grain size 7 nm) nanocrystalline Ni specimen during creep deformation process. It is observed that internal nanocracks are healed within a few pico-seconds of initial part of creep process even if the constant applied load on the specimen is tensile in nature and acting normal to crack surface in the outward direction. This kind of crack-healing phenomenon can be accounted by the facts such as stress-driven grain boundary migration, grain boundary diffusion and amorphization of specimen as per results obtained from this MD simulation. This MD study also reveals that the presence of nanocrack inside ultrafine-grained NC Ni in fact slightly improves creep properties and such enhancement of the creep properties is intensified as the size of internal crack increases.

  20. Metal Hydrides, MOFs, and Carbon Composites as Space Radiation Shielding Mitigators

    NASA Technical Reports Server (NTRS)

    Atwell, William; Rojdev, Kristina; Liang, Daniel; Hill, Matthew

    2014-01-01

    Recently, metal hydrides and MOFs (Metal-Organic Framework/microporous organic polymer composites - for their hydrogen and methane storage capabilities) have been studied with applications in fuel cell technology. We have investigated a dual-use of these materials and carbon composites (CNT-HDPE) to include space radiation shielding mitigation. In this paper we present the results of a detailed study where we have analyzed 64 materials. We used the Band fit spectra for the combined 19-24 October 1989 solar proton events as the input source term radiation environment. These computational analyses were performed with the NASA high energy particle transport/dose code HZETRN. Through this analysis we have identified several of the materials that have excellent radiation shielding properties and the details of this analysis will be discussed further in the paper.

  1. Doping of AlH3 with alkali metal hydrides for enhanced decomposition kinetics

    NASA Astrophysics Data System (ADS)

    Sandrock, Gary; Reilly, James

    2005-03-01

    Aluminum hydride, AlH3, has inherently high gravimetric and volumetric properties for onboard vehiclular hydrogen storage (10 wt% H2 and 0.148 kg H2/L). Yet it has been widely neglected because of its kinetic limitations for low-temperature H2 desorption and the thermodynamic difficulties associated with recharging. This paper considers a scenario whereby doped AlH3 is decomposed onboard and recharged offboard. In particular, we show that particle size control and doping with small levels of alkali metal hydrides (e.g., LiH) results in accelerated H2 desorption rates nearly high enough to supply fuel-cell and ICE vehicles. The mechanism of enhanced H2 desorption is associated with the formation of alanate windows (e.g., LiAlH4) between the AlH3 particles and the external gas phase. These alanate windows can be doped with Ti to further enhance transparency, even to the point of accomplishing slow decomposition of AlH3 at room temperature. It is highly likely 2010 gravimetric and volumetric vehicular system targets (6 wt% H2 and 0.045 kg/L) can be met with AlH3. But a new, low-cost method of offboard regeneration of spent Al back to AlH3 is yet needed.

  2. Heat exchanger selection and design analyses for metal hydride heat pump systems

    SciTech Connect

    Mazzucco, Andrea; Voskuilen, Tyler G.; Waters, Essene L.; Pourpoint, Timothee L.; Rokni, Masoud

    2016-01-01

    This paper presents a design analysis for the development of highly efficient heat exchangers within stationary metal hydride heat pumps. The design constraints and selected performance criteria are applied to three representative heat exchangers. The proposed thermal model can be applied to select the most efficient heat exchanger design and provides outcomes generally valid in a pre-design stage. Heat transfer effectiveness is the principal performance parameter guiding the selection analysis, the results of which appear to be mildly (up to 13%) affected by the specific Nusselt correlation used. The thermo-physical properties of the heat transfer medium and geometrical parameters are varied in the sensitivity analysis, suggesting that the length of independent tubes is the physical parameter that influences the performance of the heat exchangers the most. The practical operative regions for each heat exchanger are identified by finding the conditions over which the heat removal from the solid bed enables a complete and continuous hydriding reaction. The most efficient solution is a design example that achieves the target effectiveness of 95%.

  3. Heat exchanger selection and design analyses for metal hydride heat pump systems

    DOE PAGES

    Mazzucco, Andrea; Voskuilen, Tyler G.; Waters, Essene L.; ...

    2016-01-01

    This paper presents a design analysis for the development of highly efficient heat exchangers within stationary metal hydride heat pumps. The design constraints and selected performance criteria are applied to three representative heat exchangers. The proposed thermal model can be applied to select the most efficient heat exchanger design and provides outcomes generally valid in a pre-design stage. Heat transfer effectiveness is the principal performance parameter guiding the selection analysis, the results of which appear to be mildly (up to 13%) affected by the specific Nusselt correlation used. The thermo-physical properties of the heat transfer medium and geometrical parameters aremore » varied in the sensitivity analysis, suggesting that the length of independent tubes is the physical parameter that influences the performance of the heat exchangers the most. The practical operative regions for each heat exchanger are identified by finding the conditions over which the heat removal from the solid bed enables a complete and continuous hydriding reaction. The most efficient solution is a design example that achieves the target effectiveness of 95%.« less

  4. Nanocrystalline ceramic materials

    DOEpatents

    Siegel, R.W.; Nieman, G.W.; Weertman, J.R.

    1994-06-14

    A method is disclosed for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material. 19 figs.

  5. Reduced enthalpy of metal hydride formation for Mg-Ti nanocomposites produced by spark discharge generation.

    PubMed

    Anastasopol, Anca; Pfeiffer, Tobias V; Middelkoop, Joost; Lafont, Ugo; Canales-Perez, Roger J; Schmidt-Ott, Andreas; Mulder, Fokko M; Eijt, Stephan W H

    2013-05-29

    Spark discharge generation was used to synthesize Mg-Ti nanocomposites consisting primarily of a metastable body-centered-cubic (bcc) alloy of Mg and Ti. The bcc Mg-Ti alloy transformed upon hydrogenation into the face-centered-cubic fluorite Mg1-yTiyHx phase with favorable hydrogen storage properties. Both metal and metal hydride nanocomposites showed a fractal-like porous morphology, with a primary particle size of 10-20 nm. The metal content of 70 atom % (at %) Mg and 30 at % Ti, consistently determined by XRD, TEM-EDS, and ICP-OES, was distributed uniformly across the as-prepared sample. Pressure-composition isotherms for the Mg-Ti-H nanocomposites revealed large differences in the thermodynamics relative to bulk MgH2, with a much less negative enthalpy of formation of the hydride as small as -45 ± 3 kJ/molH2 as deduced from van't Hoff plots. The plateau pressures of hydrogenation were substantially higher than those for bulk MgH2 in the low temperature range from 150 to 250 °C. The reaction entropy was simultaneously reduced to values down to 84 ± 5 J/K mol H2, following a linear relationship between the enthalpy and entropy. Plausible mechanisms for the modified thermodynamics are discussed, including the effect of lattice strains, the presence of interfaces and hydrogen vacancies, and the formation of excess free volume due to local deformations. These mechanisms all rely on the finely interdispersed nanocomposite character of the samples which is maintained by grain refinement.

  6. The chemical and catalytic properties of nanocrystalline metal oxides prepared through modified sol-gel synthesis

    NASA Astrophysics Data System (ADS)

    Carnes, Corrie Leigh

    The goal of this research was to synthesize, characterize and study the chemical properties of nanocrystalline metal oxides. Nanocrystalline (NC) ZnO, CuO, NiO, Al2O3, and the binary Al2O 3/MgO and ZnO/CuO were prepared through modified sol gel methods. These NC metal oxides were studied in comparison to the commercial (CM) metal oxides. The samples were characterized by XRD, TGA, FTIR, BET, and TEM. The NC samples were all accompanied by a significant increase in surface area and decrease in crystallite size. Several chemical reactions were studied to compare the NC samples to the CM samples. One of the reactions involved a high temperature reaction between carbon tetrachloride and the oxide to form carbon dioxide and the corresponding metal chloride. A similar high temperature reaction was conducted between the metal oxide and hydrogen sulfide to form water and the corresponding metal sulfide. A room temperature gas phase adsorption was studied where SO2 was adsorbed onto the oxide. A liquid phase adsorption conducted at room temperature was the destructive adsorption of paraoxon (a toxic insecticide). In all reactions the NC samples exhibited greater activity, destroying or adsorbing a larger amount of the toxins compared to the CM samples. To better study surface area effects catalytic reactions were also studied. The catalysis of methanol was studied over the nanocrystalline ZnO, CuO, NiO, and ZnO/CuO samples in comparison to their commercial counterparts. In most cases the NC samples proved to be more active catalysts, having higher percent conversions and turnover numbers. A second catalytic reaction was also studied, this reaction was investigated to look at the support effects. The catalysis of cyclopropane to propane was studied over Pt and Co catalysts. These catalysts were supported onto NC and CM alumina by impregnation. By observing differences in the catalytic behavior, support effects have become apparent.

  7. Theoretical spectroscopic parameters for the low-lying states of the second-row transition metal hydrides

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Pettersson, Lars G. M.; Bauschlicher, Charles W., Jr.; Partridge, Harry

    1987-01-01

    A systematic analysis of the low-lying states of all of the second-row transition metal (TM) hydrides except CdH is reported. The calculations included the dominant relativistic contributions through the use of the relativistic effective core potentials of Hay and Wadt (1985). Electron correlation was incorporated, using single-plus-double configuration interaction, the coupled pair functional (CPF) formalism of Ahlrichs et al. (1985), and the Chong and Langhoff (1986) modified version of the CPF method. The spectroscopic parameters D(e), r(e), and mu(e) determined for the low-lying states are compared with the available experimental data and previous theoretical results. In contrast to the first-row TM hydrides studied earlier (Chong et al., 1986), the spectroscopic constants for the second-row TM hydrides were found to be much less sensitive to the level of correlation treatment.

  8. New synthesis route for ternary transition metal amides as well as ultrafast amide-hydride hydrogen storage materials.

    PubMed

    Cao, Hujun; Santoru, Antonio; Pistidda, Claudio; Richter, Theresia M M; Chaudhary, Anna-Lisa; Gizer, Gökhan; Niewa, Rainer; Chen, Ping; Klassen, Thomas; Dornheim, Martin

    2016-04-14

    K2[Mn(NH2)4] and K2[Zn(NH2)4] were successfully synthesized via a mechanochemical method. The mixture of K2[Mn(NH2)4] and LiH showed excellent rehydrogenation properties. In fact, after dehydrogenation K2[Mn(NH2)4]-8LiH fully rehydrogenates within 60 seconds at ca. 230 °C and 5 MPa of H2. This is one of the fastest rehydrogenation rates in amide-hydride systems known to date. This work also shows a strategy for the synthesis of transition metal nitrides by decomposition of the mixtures of M[M'(NH2)n] (where M is an alkali or alkaline earth metal and M' is a transition metal) and metal hydrides.

  9. Nanocrystalline Domain Formation as a Strain Relaxation Mechanism in Ultra-Thin Metallic Films

    NASA Astrophysics Data System (ADS)

    Gungor, M. Rauf; Maroudas, Dimitrios

    2006-03-01

    In this presentation, we report results for the atomistic mechanisms of strain relaxation over a wide range of applied biaxial tensile strain (up to 17%) in free standing Cu thin films based on isothermal-isostrain molecular-dynamics simulations. After an elastic response at low strain (< 2%), plastic deformation occurs through ductile void growth accompanied by emission of screw dislocations from the void surface, as well as emission of threading dislocation loops from the film's surface. At strain levels below 8%, expansion of the plastic zone around the void during void growth is the major strain relaxation mechanism. At higher levels of applied strain (> 8%), a practically uniform distribution of dislocations is generated in the metallic thin film, which mediates the transformation of the initially single-crystalline film structure to a nanocrystalline one. Furthermore, void growth is inhibited as the dislocations emitted from the void surface are pinned by the simultaneously generated network of defects in the nanocrystalline material.

  10. Hydrogen release reactions of Al-based complex hydrides enhanced by vibrational dynamics and valences of metal cations

    SciTech Connect

    Sato, T.; Ramirez-Cuesta, Anibal J.; Daemen, Luke L.; Cheng, Yong -Qiang; Tomiyasu, Keisuke; Takagi, Shigeyuki; Orimo, Shin-ichi

    2016-08-31

    Hydrogen release from Al-based complex hydrides composed of metal cation(s) and [AlH4] was investigated using inelastic neutron scattering viewed from vibrational dynamics. Here, the hydrogen release followed the softening of translational and [AlH4] librational modes, which was enhanced by vibrational dynamics and the valence(s) of the metal cation(s).

  11. Nickel/metal hydride batteries using rate-earth hydrogen storage alloy

    NASA Astrophysics Data System (ADS)

    Chen, J.; Zhang, Y. S.

    1994-07-01

    Fine particles of a hydrogen storage alloy (LaNi3.8Co0.5Mn0.4Al0.3) were microencapsulated with a thin film of nickel of about 0.6 micron thickness. The microencapsulated alloy powders were used as an anode material in a sealed nickel/metal hydride battery. The battery characteristics were compared with those of a battery with a bare (uncoated) alloy anode. The battery using the bare alloy was less stable compared to the coated alloy due to the role of the coated nickel as an oxygen barrier for protecting the alloy surface from oxidation. In addition, charge- discharge characteristics were improved greatly by the nickel coating, especially at high rates and at low temperatures due to the role of nickel as a microcurrent collector. So the microencapsulation of the alloy powders improves the performances of the alloy electrode.

  12. Different failure modes for V-containing and V-free AB2 metal hydride alloys

    NASA Astrophysics Data System (ADS)

    Young, K.; Wong, D. F.; Yasuoka, S.; Ishida, J.; Nei, J.; Koch, J.

    2014-04-01

    Failure modes of a V-containing and a V-free AB2 Laves phase-based metal hydride alloy were studied by the combination of X-ray diffractometer, scanning electron microscope, X-ray energy dispersive spectroscopy, inductively coupled plasma, Soxhlet extraction, and magnetic susceptibility measurement. Cells with the V-containing alloy exhibited less capacity degradation up until venting occurred in the cells, after which the capacity rapidly degraded. Cells with the V-free alloy remained linear in capacity degradation throughout the cycle life test. The failure mechanism for the V-containing alloy is related to the formation of an oxide layer that penetrates deeper into the alloy particles due to high V leaching and impedes gas recombination, while the failure mechanism for the V-free alloy is related to the continuous pulverization of the main AB2 phase.

  13. Electrochemical Studies on LaNi(sub 5-x)Sn(sub x) Metal Hydride Alloys

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Witham, C.; Bowman, R. C., Jr.; Hightower, A.; Fultz, B.

    1996-01-01

    Electrochemical studies were performed on LaNi(sub 5-x)Sn(sub x) with 0(less than or equal to)x(less than or equal to)0.5. We measured the effect of the Sn substituent on the kinetics of charge transfer and diffusion during hydrogen absorption and desorption, and the cyclic lifetimes of LaNi(sub 5-x)Sn(sub x) electrodes in 250 mAh laboratory test cells. We report beneficial effects of making small substitutions of Sn for Ni in LaNi(sub 5) on the performance of metal hydride alloy anode in terms of cyclic lifetime, capacity and kinetics. The optimal concentration of Sn in LaNi(sub 5-x)Sn(sub x) alloys for negative electrodes in alkaline rechargable secondary cells was found to lie in the range 0.25(less than or equal to)x(less than or equal to)0.3.

  14. Transition-metal-doped aluminum hydrides as building blocks for supramolecular assemblies.

    PubMed

    Liu, Jianjun; Yu, Jiamei; Ge, Qingfeng

    2010-11-25

    Density functional theory calculations were carried out to characterize a series of transition-metal-doped aluminum hydrides, forming TMAl(n)H(2n) and TMAl(n)H(2n+1) (TM = Sc, Ti, V; n = 3,4), in either charged or neutral form. A new electron-counting rule for these clusters was formulated as PSEN (paired skeleton electron number) = 4n, which can characterize both closed-shell and open-shell clusters. On the basis of this electron-counting rule, the superatomic clusters such as TiAl(4)H(9) and TiAl(3)H(6) were identified and can be used to assemble supramolecular structures. Electronic structure analysis showed that three-centered TM-H-Al bonds largely contributed to the structural stability. Also, the spin state of a wide range of clusters in their ground state can be predicted by the electron-counting rule.

  15. Discharge tube with coaxial geometry for efficient production of metal hydrides.

    PubMed

    Bozhinova, I; Kolev, St; Dimitrova, M; Popov, Tsv; Pashov, A

    2013-09-01

    The production of metal hydrides in vapour phase is one of the problems which makes their spectroscopic investigation at high resolution difficult. The molecular densities are usually low and the absorption is often increased by the use of multipass cells or intracavity setups. In this contribution a discharge tube with coaxial geometry is investigated, which is able to produce relatively high densities of NiH (≈10(12) cm(-3)). Additional advantage of the present geometry is that the densities are very homogeneous along the discharge length, 250 mm in our case, which can be made in principle arbitrary long. As a result, reliable absorption was detected even in a single pass experiment. We also present the results of a numerical model which explains the general properties of the plasma in the tube. Based on this understanding, we discuss possible improvements and other applications of this discharge geometry.

  16. In situ Raman cell for high pressure and temperature studies of metal and complex hydrides.

    PubMed

    Domènech-Ferrer, Roger; Ziegs, Frank; Klod, Sabrina; Lindemann, Inge; Voigtländer, Ralf; Dunsch, Lothar; Gutfleisch, Oliver

    2011-04-15

    A novel cell for in situ Raman studies at hydrogen pressures up to 200 bar and at temperatures as high as 400 °C is presented. This device permits in situ monitoring of the formation and decomposition of chemical structures under high pressure via Raman scattering. The performance of the cell under extreme conditions is stable as the design of this device compensates much of the thermal expansion during heating which avoids defocusing of the laser beam. Several complex and metal hydrides were analyzed to demonstrate the advantageous use of this in situ cell. Temperature calibration was performed by monitoring the structural phase transformation and melting point of LiBH(4). The feasibility of the cell in hydrogen atmosphere was confirmed by in situ studies of the decomposition of NaAlH(4) with added TiCl(3) at different hydrogen pressures and the decomposition and rehydrogenation of MgH(2) and LiNH(2).

  17. Analytical assessment of the thermal behavior of nickel-metal hydride batteries during fast charging

    NASA Astrophysics Data System (ADS)

    Taheri, Peyman; Yazdanpour, Maryam; Bahrami, Majid

    2014-01-01

    A novel distributed transient thermal model is proposed to investigate the thermal behavior of nickel-metal hydride (NiMH) batteries under fast-charging processes at constant currents. Based on the method of integral transformation, a series-form solution for the temperature field inside the battery core is obtained that takes account for orthotropic heat conduction, transient heat generation, and convective heat dissipation at surfaces of the battery. The accuracy of the developed theoretical model is confirmed through comparisons with numerical and experimental data for a sample 30 ampere-hour NiMH battery. The comparisons show that even the first term of the series solution fairly predicts the temperature field with the modest numerical cost. The thermal model is also employed to define an efficiency for charging processes. Our calculations confirm that the charging efficiency decreases as the charging current increases.

  18. Performance of a metal hydride store on the "Ross Barlow" hydrogen powered canal boat.

    PubMed

    Bevan, A I; Züttel, A; Book, D; Harris, I R

    2011-01-01

    This project involved the conversion of a British Waterways maintenance craft to a canal boat, powered by a combination of a solid-state hydrogen store, Proton Exchange Membrane (PEM) fuel cell, lead-acid battery pack and a high-efficiency, permanent magnet (NdFeB) electric motor. These replaced the conventional diesel engine thus eliminating water, noise, local and general atmospheric pollution. The "Protium" project applies modern technologies to a traditional mode of transportation. The TiMn2-based metal hydride store exhibited excellent performance as an effective means of storing 4 kg of hydrogen with a suitable desorption flow rate and temperature adequate for the operation of a 1 kW PEM fuel cell in a water-based environment.

  19. A high-efficiency power cycle in which hydrogen is compressed by absorption in metal hydrides.

    PubMed

    Powell, J R; Salzano, F J; Yu, W S; Milau, J S

    1976-07-23

    A high-efficiency power cycle is proposed in which molecular hydrogen gas is used as a working fluid in a regenerative closed Brayton cycle. The hydrogen gas is compressed by an absorption-desorption cycle on metal hydride (FeTiH(x)) beds. Low-temperature solar or geothermal heat (temperature about 100 degrees C) is used for the compression process, and high-temperature fossil fuel or nuclear heat (temperature about 700 degrees C) supplies the expansion work in the turbine. Typically, about 90 percent of the high-temperature heat input is converted to electricity, while about 3 kilowatts of low-temperature heat is required per kilowatt of electrical output.

  20. Characterization and high throughput analysis of metal hydrides for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Barcelo, Steven James

    Efficient hydrogen storage is required for fuel cell vehicles to be competitive with those driven by internal combustion engines. Current methods of storage such as compressed gas and liquid hydrogen cannot meet this standard, so novel hydrogen storage materials such as metal hydrides are required. No simple metal hydride meets the required specifications. Research is required to find new materials or improve existing materials. This thesis describes the research practices necessary to achieve legitimate and repeatable results in laboratories across the world. Examples of experiments using these techniques are presented, such as a high throughput technique to optimize materials systems with up to three components such as calcium borohydride with titanium catalyst and magnesium hydride with nickel and aluminum as destabilizing elements and catalysts. Thin films composed of gradients of each material were deposited by sputtering, creating a single thin film sample covering all potential material combinations. Optical properties of the samples under hydrogen pressure were monitored to identify the regions with largest and fastest hydrogen uptake. In the Ca-B-Ti system, titanium did not sufficiently catalyze the borohydride formation reaction at low temperature. Substantial hydrogen uptake was shown in the Mg-Ni region of the Mg-Ni-Al films. Al did not participate in the reaction at low temperature. Further investigation of the role of catalysts and destabilizing elements in improving hydrogen storage performance through X-ray Absorption and Emission Spectroscopy measurements of the Mg-Ni system during hydrogenation is presented. Typical X-ray spectroscopy measurements use a synchrotron radiation source and require ultra high vacuum conditions. For these experiments we designed a chamber which can be inserted into a vacuum chamber allowing in situ measurements of a sample under hydrogen pressure, providing information on the role of Ni in hydrogen absorption of Mg

  1. A continuum model of nanocrystalline metals under shock loading

    NASA Astrophysics Data System (ADS)

    Jérusalem, Antoine; Radovitzky, Raúl

    2009-03-01

    Recent atomistic simulations have shown that grain boundary sliding in nanocrystals is altered under shock loading conditions. It is found that the high state of compression inhibits grain boundary sliding and reactivates intragrain dislocation activity. This leads to higher material strength and postpones the transition between these two deformation mechanisms to smaller grain size. We present here a continuum model aimed at extending the model proposed by Jérusalem et al for quasi-static and high rates (2007 Phil. Mag. 87 2541-59) to shock loading. To this end, the shock response of nanocrystals is investigated by accounting specifically for additional frictional deformation-inhibiting effects. The model is based on a numerical finite element discretization of the polycrystal, considered as a continuum, with embedded surfaces of discontinuity accounting for the grain boundary response. Interface elements are formulated to account for the special kinematics of grain boundaries, i.e. to describe grain boundary frictional sliding and other accommodation mechanisms. The response of grain interiors is modeled with a high rate equation of state for the volumetric response and a simple plasticity model to describe their deviatoric response. A large-scale parallel computing framework is finally developed to calibrate and investigate the specificities of the deformation mechanisms under shock loading conditions, and the results are compared in detail with atomistic results. As a conclusion, this extended three-dimensional continuum model constitutes a promising first step for the characterization of large-scale nanocrystalline deformation under the most complete range of loading rates yet proposed in continuum simulations, namely, from quasi-static to shock loading.

  2. Encapsulation of hydride by molecular main group metal clusters: manipulating the source and coordination sphere of the interstitial ion.

    PubMed

    Boss, Sally R; Coles, Martyn P; Eyre-Brook, Vicki; García, Felipe; Haigh, Robert; Hitchcock, Peter B; McPartlin, Mary; Morey, James V; Naka, Hiroshi; Raithby, Paul R; Sparkes, Hazel A; Tate, Christopher W; Wheatley, Andrew E H

    2006-12-21

    The sequential treatment of Lewis acids with N,N'-bidentate ligands and thereafter with ButLi has afforded a series of hydride-encapsulating alkali metal polyhedra. While the use of Me3Al in conjunction with Ph(2-C5H4N)NH gives Ph(2-C5H4N)NAlMe2 and this reacts with MeLi in thf to yield the simple 'ate complex Ph(2-C5H4N)NAlMe3Li.thf, the employment of an organolithium substrate capable of beta-hydride elimination redirects the reaction significantly. Whereas the use of ButLi has previously yielded a main group interstitial hydride in which H- exhibits micro6-coordination, it is shown here that variability in the coordination sphere of the encapsulated hydride may be induced by manipulation of the organic ligand. Reaction of (c-C6H11)(2-C5H4N)NH with Me3Al/ButLi yields [{(c-C6H11)(2-C5H4N)N}6HLi8]+[(But2AlMe2)2Li]-, which is best viewed as incorporating only linear di-coordination of the hydride ion. The guanidine 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine (hppH) in conjunction with Me2Zn/ButLi yields the micro8-hydride [(hpp)6HLi8]+[But3Zn]-.0.5PhMe. Formation of the micro8-hydride [(hpp)6HLi8]+[ButBEt3]- is revealed by employment of the system Et3B/ButLi. A new and potentially versatile route to interstitial hydrides of this class is revealed by synthesis of the mixed borohydride-lithium hydride species [(hpp)6HLi8]+[Et3BH]- and [(hpp)6HLi8]+[(Et3B)2H]- through the direct combination of hppLi with Et3BHLi.

  3. Process optimization and kinetics for leaching of rare earth metals from the spent Ni-metal hydride batteries.

    PubMed

    Meshram, Pratima; Pandey, B D; Mankhand, T R

    2016-05-01

    Nickel-metal hydride batteries (Ni-MH) contain not only the base metals, but valuable rare earth metals (REMs) viz. La, Sm, Nd, Pr and Ce as well. In view of the importance of resource recycling and assured supply of the contained metals in such wastes, the present study has focussed on the leaching of the rare earth metals from the spent Ni-MH batteries. The conditions for the leaching of REMs from the spent batteries were optimized as: 2M H2SO4, 348K temperature and 120min of time at a pulp density (PD) of 100g/L. Under this condition, the leaching of 98.1% Nd, 98.4% Sm, 95.5% Pr and 89.4% Ce was achieved. Besides the rare earth metals, more than 90% of base metals (Ni, Co, Mn and Zn) were also leached out in this condition. Kinetic data for the dissolution of all the rare earth metals showed the best fit to the chemical control shrinking core model. The leaching of metals followed the mechanism involving the chemical reaction proceeding on the surface of particles by the lixiviant, which was corroborated by the XRD phase analysis and SEM-EDS studies. The activation energy of 7.6, 6.3, 11.3 and 13.5kJ/mol was acquired for the leaching of neodymium, samarium, praseodymium and cerium, respectively in the temperature range 305-348K. From the leach liquor, the mixed rare earth metals were precipitated at pH∼1.8 and the precipitated REMs was analyzed by XRD and SEM studies to determine the phases and the morphological features.

  4. Materials considerations in the design of a metal-hydride heat pump for an advanced extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    Liebert, B. E.

    1986-01-01

    A metal-hydride heat pump (HHP) has been proposed to provide an advanced regenerable nonventing thermal sink for the liquid-cooled garment worn during an extravehicular activity (EVA). The conceptual design indicates that there is a potential for significant advantages over the one presently being used by shuttle crew personnel as well as those that have been proposed for future use with the space station. Compared to other heat pump designs, a HHP offers the potential for extended use with no electrical power requirements during the EVA. In addition, a reliable, compact design is possible due to the absence of moving parts other than high-reliability check valves. Because there are many subtleties in the properties of metal hydrides for heat pump applications, it is essential that a prototype hydride heat pump be constructed with the selected materials before a committment is made for the final design. Particular care must be given to the evaporator heat exchanger worn by the astronaut since the performance of hydride heat pumps is generally heat transfer limited.

  5. Hydriding and dehydriding characteristics of LiBH{sub 4} and transition metals-added magnesium hydride

    SciTech Connect

    Song, Myoung Youp; Kwak, Young Jun; Lee, Seong Ho; Park, Hye Ryoung

    2013-07-15

    Graphical abstract: Hydriding reaction curves under 12 bar H{sub 2}, and dehydriding reaction curves under 1.0 bar H{sub 2}, at 593 K at the 1st cycle for MgH{sub 2}–10Ni–2LiBH{sub 4}–2Ti and MgH{sub 2}. Highlights: ► Addition of Ni, LiBH{sub 4}, and Ti to MgH{sub 2} to increase reaction rates. ► Sample preparation by reactive mechanical grinding. ► At n = 2, the sample absorbed 4.05 wt% H for 60 min at 593 K under 12 bar H{sub 2}. ► Analysis of rate-controlling step for dehydriding of the sample at n = 3. - Abstract: In this study, MgH{sub 2} was used as a starting material instead of Mg. Ni, Ti, and LiBH{sub 4} with a high hydrogen-storage capacity of 18.4 wt% were added. A sample with a composition of MgH{sub 2}–10Ni–2LiBH{sub 4}–2Ti was prepared by reactive mechanical grinding. The activation of MgH{sub 2}–10Ni–2LiBH{sub 4}–2Ti was completed after the first hydriding–dehydrding cycle. The hydriding rate decreases as the temperature increases due to the decrease in the driving force for the hydriding reaction. At the 1st cycle, the sample desorbs 1.45 wt% H for 10 min, 2.54 wt% H for 20 min, 3.13 wt% H for 30 min, and 3.40 wt% H for 60 min at 593 K under 1.0 bar H{sub 2}. At the 2nd cycle, the sample absorbs 3.84 wt% H for 5 min, 3.96 wt% H for 10 min, and 4.05 wt% H for 60 min at 593 K under 12 bar H{sub 2}. MgH{sub 2}–10Ni–2LiBH{sub 4}–2Ti after reactive mechanical grinding contained MgH{sub 2}, Mg, Ni, TiH{sub 1.924}, and MgO phases. The reactive mechanical grinding of Mg with Ni, LiBH{sub 4}, and Ti is considered to create defects on the surface and in the interior of Mg (to facilitate nucleation), and to reduce the particle size of Mg (to shorten diffusion distances of hydrogen atoms). The formation of Mg{sub 2}Ni during hydriding–dehydriding cycling increases the hydriding and dehydriding rates of the sample.

  6. Grain boundary character distribution in nanocrystalline metals produced by different processing routes

    SciTech Connect

    Bober, David B.; Kumar, Mukal; Rupert, Timothy J.; Khalajhedayati, Amirhossein

    2015-12-28

    Nanocrystalline materials are defined by their fine grain size, but details of the grain boundary character distribution should also be important. Grain boundary character distributions are reported for ball-milled, sputter-deposited, and electrodeposited Ni and Ni-based alloys, all with average grain sizes of ~20 nm, to study the influence of processing route. The two deposited materials had nearly identical grain boundary character distributions, both marked by a Σ3 length percentage of 23 to 25 pct. In contrast, the ball-milled material had only 3 pct Σ3-type grain boundaries and a large fraction of low-angle boundaries (16 pct), with the remainder being predominantly random high angle (73 pct). Furthermore, these grain boundary character measurements are connected to the physical events that control their respective processing routes. Consequences for material properties are also discussed with a focus on nanocrystalline corrosion. As a whole, the results presented here show that grain boundary character distribution, which has often been overlooked in nanocrystalline metals, can vary significantly and influence material properties in profound ways.

  7. Grain boundary character distribution in nanocrystalline metals produced by different processing routes

    DOE PAGES

    Bober, David B.; Kumar, Mukal; Rupert, Timothy J.; ...

    2015-12-28

    Nanocrystalline materials are defined by their fine grain size, but details of the grain boundary character distribution should also be important. Grain boundary character distributions are reported for ball-milled, sputter-deposited, and electrodeposited Ni and Ni-based alloys, all with average grain sizes of ~20 nm, to study the influence of processing route. The two deposited materials had nearly identical grain boundary character distributions, both marked by a Σ3 length percentage of 23 to 25 pct. In contrast, the ball-milled material had only 3 pct Σ3-type grain boundaries and a large fraction of low-angle boundaries (16 pct), with the remainder being predominantlymore » random high angle (73 pct). Furthermore, these grain boundary character measurements are connected to the physical events that control their respective processing routes. Consequences for material properties are also discussed with a focus on nanocrystalline corrosion. As a whole, the results presented here show that grain boundary character distribution, which has often been overlooked in nanocrystalline metals, can vary significantly and influence material properties in profound ways.« less

  8. Dissolution of Uranium Metal Without Hydride Formation or Hydrogen Gas Generation

    SciTech Connect

    Soderquist, Chuck Z.; Oliver, Brian M.; McNamara, Bruce K.

    2008-09-01

    This study shows that metallic uranium will cleanly dissolve in carbonate-peroxide solution without generation of hydrogen gas or uranium hydride. Metallic uranium shot, 0.5 to 1 mm diameter, were reacted with ammonium carbonate - hydrogen peroxide solution ranging in concentration from 0.13M to 1.0M carbonate and 0.50M to 2.0M peroxide. The uranium beads were weighed before and after reacting with the etch solution, and from the weights of the beads, their diameters were calculated, before and after the etch. The etch rate on the beads was then calculated from the reduction in bead diameter, and independently by uranium analysis of the solution. The calculated etch rate ranged from about 4 x 10-4 to 8 x 10-4 cm per hour, dependent primarily on the peroxide concentration. A hydrogen analysis of the etched beads showed that no detectable hydrogen was introduced into the uranium metal by the etching process.

  9. Comparison between alkalimetal and group 11 transition metal halide and hydride tetramers: molecular structure and bonding.

    PubMed

    El-Hamdi, Majid; Solà, Miquel; Frenking, Gernot; Poater, Jordi

    2013-08-22

    A comparison between alkalimetal (M = Li, Na, K, and Rb) and group 11 transition metal (M = Cu, Ag, and Au) (MX)4 tetramers with X = H, F, Cl, Br, and I has been carried out by means of the Amsterdam Density Functional software using density functional theory at the BP86/QZ4P level of theory and including relativistic effects through the ZORA approximation. We have obtained that, in the case of alkalimetals, the cubic isomer of Td geometry is more stable than the ring structure with D4h symmetry, whereas in the case of group 11 transition metal tetramers, the isomer with D4h symmetry (or D2d symmetry) is more stable than the Td form. To better understand the results obtained we have made energy decomposition analyses of the tetramerization energies. The results show that in alkalimetal halide and hydride tetramers, the cubic geometry is the most stable because the larger Pauli repulsion energies are compensated by the attractive electrostatic and orbital interaction terms. In the case of group 11 transition metal tetramers, the D4h/D2d geometry is more stable than the Td one due to the reduction of electrostatic stabilization and the dominant effect of the Pauli repulsion.

  10. Chemistry of guanidinate-stabilised diboranes: transition-metal-catalysed dehydrocoupling and hydride abstraction.

    PubMed

    Wagner, Arne; Litters, Sebastian; Elias, Jana; Kaifer, Elisabeth; Himmel, Hans-Jörg

    2014-09-22

    Herein, we analyse the catalytic boron-boron dehydrocoupling reaction that leads from the base-stabilised diborane(6) [H2 B(hpp)]2 (hpp=1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidinate) to the base-stabilised diborane(4) [H2 B(hpp)]2 . A number of potential transition-metal precatalysts was studied, including transition-metal complexes of the product diborane(4). The synthesis and structural characterisation of two further examples of such complexes is presented. The best results for the dehydrocoupling reactions were obtained with precatalysts of Group 9 metals in the oxidation state of +I. The active catalyst is formed in situ through a multistep process that involves reduction of the precatalyst by the substrate [H2 B(hpp)]2 , and mechanistic investigations indicate that both heterogeneous and (slower) homogeneous reaction pathways play a role in the dehydrocoupling reaction. In addition, hydride abstraction from [H2 B(hpp)]2 and related diboranes is analysed and the possibility for subsequent deprotonation is discussed by probing the protic character of the cationic boron-hydrogen compounds with NMR spectroscopic analysis.

  11. Half-metallic ferromagnetism in TM-doped MgH2 hydride

    NASA Astrophysics Data System (ADS)

    Lakhal, M.; Bhihi, M.; Naji, S.; Mounkachi, O.; Benyoussef, A.; Loulidi, M.; El Kenz, A.

    2015-06-01

    We show that, in addition to its thermodynamic properties that make it a good candidate for hydrogen storage, the MgH2 hydride exhibits interesting magnetic properties when doped with some transition metals (TM). Using the Korringa-Kohn-Rostoker method (KKR) combined with the coherent potential approximation in the framework of first-principle calculations, we study the half-metallic ferromagnetic properties of the MgH2 doped with TM: Co, V, Cr, Ti; Mg0.95TM0.05H2. The ferromagnetic state energy is computed and compared with the disordered local moment state energy. We show, from the electronic structure, that doping MgH2 with TM elements can convert the material to a half-metallic with a high wide impurity band and high magnetic moment. We have found that the corresponding Curie temperature is bigger than the room temperature, which is considered as a relevant parameter for spintronic applications. Moreover, the mechanism of the hybridization and the interaction between the magnetic ions are also investigated showing that the double exchange is the underlying mechanism responsible for the magnetism of such materials.

  12. Potential energy curves and electronic structure of 3d transition metal hydrides and their cations.

    PubMed

    Goel, Satyender; Masunov, Artëm E

    2008-12-07

    We investigate gas-phase neutral and cationic hydrides formed by 3d transition metals from Sc to Cu with density functional theory (DFT) methods. The performance of two exchange-correlation functionals, Boese-Martin for kinetics (BMK) and Tao-Perdew-Staroverov-Scuseria (TPSS), in predicting bond lengths and energetics, electronic structures, dipole moments, and ionization potentials is evaluated in comparison with available experimental data. To ensure a unique self-consistent field (SCF) solution, we use stability analysis, Fermi smearing, and continuity analysis of the potential energy curves. Broken-symmetry approach was adapted in order to get the qualitatively correct description of the bond dissociation. We found that on average BMK predicted values of dissociation energies and ionization potentials are closer to experiment than those obtained with high level wave function theory methods. This agreement deteriorates quickly when the fraction of the Hartree-Fock exchange in DFT functional is decreased. Natural bond orbital (NBO) population analysis was used to describe the details of chemical bonding in the systems studied. The multireference character in the wave function description of the hydrides is reproduced in broken-symmetry DFT description, as evidenced by NBO analysis. We also propose a new scheme to correct for spin contamination arising in broken-symmetry DFT approach. Unlike conventional schemes, our spin correction is introduced for each spin-polarized electron pair individually and therefore is expected to yield more accurate energy values. We derive an expression to extract the energy of the pure singlet state from the energy of the broken-symmetry DFT description of the low spin state and the energies of the high spin states (pentuplet and two spin-contaminated triplets in the case of two spin-polarized electron pairs). The high spin states are build with canonical natural orbitals and do not require SCF convergence.

  13. Reactive plasma synthesis of nanocrystalline ceramic oxides

    NASA Astrophysics Data System (ADS)

    Sreekumar, K. P.; Vijay, M.; Thiyagarajan, T. K.; Krishnan, K.; Ananthapadmanabhan, P. V.

    2010-02-01

    Reactive plasma synthesis is an attractive route to synthesize nanocrystalline materials. A 40 kW DC non-transferred arc plasma reactor has been designed and developed in our laboratory for synthesis of nanocrystalline materials. The main components of the plasma reactor include a 40 kW DC plasma generator or plasma torch, water-cooled reactor segment, product collection facility, DC power supply, cooling-water system and exhaust gas vent. The system has been used to synthesize nano-crystalline oxides of aluminium, titanium and zirconium. Aluminium metal powder was used as the starting material to synthesize alumina. The hydrides of Ti and Zr were used as the precursor for synthesis of nanocrystalline titania and zirconia respectively. The precursor powders were injected into the thermal plasma jet and were allowed to react with oxygen injected downstream the jet. The precursor powder particles were oxidized 'in-flight' to form nano-sized powder of the respective metal, which deposited on the walls of the reactor and collector assembly. Various analytical tools were used to characterized the products.

  14. DFT calculations of 1H and 13C NMR chemical shifts in transition metal hydrides.

    PubMed

    del Rosal, I; Maron, L; Poteau, R; Jolibois, F

    2008-08-14

    Transition metal hydrides are of great interest in chemistry because of their reactivity and their potential use as catalysts for hydrogenation. Among other available techniques, structural properties in transition metal (TM) complexes are often probed by NMR spectroscopy. In this paper we will show that it is possible to establish a viable methodological strategy in the context of density functional theory, that allows the determination of 1H NMR chemical shifts of hydride ligands attached to transition metal atoms in mononuclear systems and clusters with good accuracy with respect to experiment. 13C chemical shifts have also been considered in some cases. We have studied mononuclear ruthenium complexes such as Ru(L)(H)(dppm)2 with L = H or Cl, cationic complex [Ru(H)(H2O)(dppm)2]+ and Ru(H)2(dppm)(PPh3)2, in which hydride ligands are characterized by a negative 1H NMR chemical shift. For these complexes all calculations are in relatively good agreement compared to experimental data with errors not exceeding 20% except for the hydrogen atom in Ru(H)2(dppm)(PPh3)2. For this last complex, the relative error increases to 30%, probably owing to the necessity to take into account dynamical effects of phenyl groups. Carbonyl ligands are often encountered in coordination chemistry. Specific issues arise when calculating 1H or 13C NMR chemical shifts in TM carbonyl complexes. Indeed, while errors of 10 to 20% with respect to experiment are often considered good in the framework of density functional theory, this difference in the case of mononuclear carbonyl complexes culminates to 80%: results obtained with all-electron calculations are overall in very satisfactory agreement with experiment, the error in this case does not exceed 11% contrary to effective core potentials (ECPs) calculations which yield errors always larger than 20%. We conclude that for carbonyl groups the use of ECPs is not recommended, although their use could save time for very large systems, for

  15. Synthesis of ruthenium hydride

    NASA Astrophysics Data System (ADS)

    Kuzovnikov, M. A.; Tkacz, M.

    2016-02-01

    Ruthenium hydride was synthesized at a hydrogen pressure of about 14 GPa in a diamond-anvil cell. Energy-dispersive x-ray diffraction was used to monitor the ruthenium crystal structure as a function of hydrogen pressure up to 30 GPa. The hydride formation was accompanied by phase transition from the original hcp structure of the pristine metal to the fcc structure. Our results confirmed the theoretical prediction of ruthenium hydride formation under hydrogen pressure. The standard Gibbs free energy of the ruthenium hydride formation reaction was calculated assuming the pressure of decomposition as the equilibrium pressure.

  16. Hydrogen, lithium, and lithium hydride production

    DOEpatents

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  17. Prototype design of a wearable metal hydride actuator using a soft bellows for motor rehabilitation.

    PubMed

    Ino, Shuichi; Sato, Mitsuru; Hosono, Minako; Nakajima, Sawako; Yamashita, Kazuhiko; Tanaka, Toshiaki; Izumi, Takashi

    2008-01-01

    A bedside and home rehabilitation system for people with motor disabilities due to stroke or the aging process requires a human-compatible actuator with softness, low noise and a high power-to-weight ratio. To achieve these types of joint motor rehabilitation systems, we designed a wearable metal hydride (MH) actuator using a soft bellows. The purpose of the current study is the development the soft and light bellows made of a polymer laminate film for the MH actuator. As a result of experimental tests, this soft bellows weighs 20 times less and stretches 30 times longer than the metal bellows used in a conventional MH actuator, and it has hydrogen impermeability, flex durability and adequate compliance for human joints. The MH actuator using the soft bellows can drive at a slow and safe enough speed for motor rehabilitation of patients' limbs. These preliminary findings support the efficacy of an MH actuator with a soft bellows for the purpose of developing a system for motor rehabilitation or human power assist.

  18. Ab initio quantum Monte Carlo study of the binding of a positron to alkali-metal hydrides.

    PubMed

    Kita, Yukiumi; Maezono, Ryo; Tachikawa, Masanori; Towler, Mike D; Needs, Richard J

    2011-08-07

    Quantum Monte Carlo methods are used to investigate the binding of a positron to the alkali-metal hydrides, XH (X = Na and K). We obtain positron affinities for the NaH and KH molecules of 1.422(10) eV and 2.051(39) eV, respectively. These are considerably larger than the previous results of 1.035 eV and 1.273 eV obtained from multireference single- and double-excitation configuration interaction calculations. Together with our previous results for [LiH;e(+)] [Y. Kita et al., J. Chem. Phys. 131, 134310 (2009)], our study confirms the strong correlation between the positron affinity and dipole moment of alkali-metal hydrides.

  19. In situ electrochemical investigations of the kinetic and thermodynamic properties of nickel-metal hydride traction batteries

    NASA Astrophysics Data System (ADS)

    Yang, Xiao Guang; Liaw, Bor Yann

    Although large ampere hour nickel-metal hydride (Ni-MH) traction batteries are in the stage of being commercialized for electric and hybrid vehicle applications, little is known about their performance characteristics. By using a standard Hg/HgO reference electrode in a commercial Ni-MH battery, we were able to conduct in situ measurements to determine both kinetic and thermodynamic properties of the system, including the characteristics of individual electrodes. Using the galvanostatic intermittent titration technique (GITT), we simultaneously and effectively determined the open-circuit voltage of the battery, the equilibrium electrode potentials, and the diffusion coefficient of proton and hydrogen in the nickel and metal hydride electrode, respectively, as a function of the states of charge (SOC). Using the current-step excitation technique, we found that the internal resistance of the battery primarily comes from the metal hydride electrode, which is greater by one order of magnitude than that of the Ni electrode. The cyclic linear micro-polarization experiments, on the other hand, showed that the charge-transfer resistance of the electrochemical reaction at the metal hydride electrode is about twice larger than that of the Ni counterpart above 20% SOC. In comparison, the internal resistance is an order of magnitude smaller than those of the electrochemical charge-transfer reactions. The micro-polarization technique also allowed us to calculate the exchange current densities of the respective electrode electrochemical reactions and the associated specific exchange current densities. These in situ, simple but detailed, characterizations of the thermodynamic and kinetic properties of the Ni-MH system provided valuable information for better understanding of the battery performance.

  20. Desorption of hydrogen from light metal hydrides: concerted electronic rearrangement and role of H···H interactions.

    PubMed

    Wolstenholme, David J; Roy, Matthew M D; Thomas, Michael E; McGrady, G Sean

    2014-04-14

    A theoretical study of the desorption of hydrogen from rhombic Group 1 metal hydride dimers reveals a concerted reorganisation of the electron density for the M-H and H-H moieties as the reaction coordinate is traversed and a closed-shell H···H interaction evolves into a covalent H2 bond. The central role played by homopolar dihydrogen bonding in this process is revealed and analysed.

  1. Getting metal-hydrides to do what you want them to

    SciTech Connect

    Gruen, D.M.

    1981-01-01

    With the discovery of AB/sub 5/ compounds, intermetallic hydrides with unusual properties began to be developed (H dissociation pressures of one to several atmospheres, extremely rapid and reversible adsorption/desorption very large amounts of H adsorbed). This paper reviews the factors that must be controlled in order to modify these hydrides to make them useful. The system LaNi/sub 5/ + H/sub 2/ is used as example. Use of AB/sub 5/ hydrides to construct a chemical heat pumps is discussed. Results of a systematic study substituting Al for Ni are reported; the HYCSOS pump is described briefly. Use of hydrides as hydrogen getters (substituted ZrV/sub 2/) is also discussed. Finally, possible developments in intermetallic hydride research in the 1980's and the hydrogen economy are discussed. 10 figures. (DLC)

  2. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides.

    PubMed

    Schilter, David; Camara, James M; Huynh, Mioy T; Hammes-Schiffer, Sharon; Rauchfuss, Thomas B

    2016-08-10

    Hydrogenase enzymes efficiently process H2 and protons at organometallic FeFe, NiFe, or Fe active sites. Synthetic modeling of the many H2ase states has provided insight into H2ase structure and mechanism, as well as afforded catalysts for the H2 energy vector. Particularly important are hydride-bearing states, with synthetic hydride analogues now known for each hydrogenase class. These hydrides are typically prepared by protonation of low-valent cores. Examples of FeFe and NiFe hydrides derived from H2 have also been prepared. Such chemistry is more developed than mimicry of the redox-inactive monoFe enzyme, although functional models of the latter are now emerging. Advances in physical and theoretical characterization of H2ase enzymes and synthetic models have proven key to the study of hydrides in particular, and will guide modeling efforts toward more robust and active species optimized for practical applications.

  3. Optimization and comprehensive characterization of metal hydride based hydrogen storage systems using in-situ Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Börries, S.; Metz, O.; Pranzas, P. K.; Bellosta von Colbe, J. M.; Bücherl, T.; Dornheim, M.; Klassen, T.; Schreyer, A.

    2016-10-01

    For the storage of hydrogen, complex metal hydrides are considered as highly promising with respect to capacity, reversibility and safety. The optimization of corresponding storage tanks demands a precise and time-resolved investigation of the hydrogen distribution in scaled-up metal hydride beds. In this study it is shown that in situ fission Neutron Radiography provides unique insights into the spatial distribution of hydrogen even for scaled-up compacts and therewith enables a direct study of hydrogen storage tanks. A technique is introduced for the precise quantification of both time-resolved data and a priori material distribution, allowing inter alia for an optimization of compacts manufacturing process. For the first time, several macroscopic fields are combined which elucidates the great potential of Neutron Imaging for investigations of metal hydrides by going further than solely 'imaging' the system: A combination of in-situ Neutron Radiography, IR-Thermography and thermodynamic quantities can reveal the interdependency of different driving forces for a scaled-up sodium alanate pellet by means of a multi-correlation analysis. A decisive and time-resolved, complex influence of material packing density is derived. The results of this study enable a variety of new investigation possibilities that provide essential information on the optimization of future hydrogen storage tanks.

  4. Highly diastereo- and regioselective transition metal-catalyzed additions of metal hydrides and bimetallic species to cyclopropenes: easy access to multisubstituted cyclopropanes.

    PubMed

    Trofimov, Alexander; Rubina, Marina; Rubin, Michael; Gevorgyan, Vladimir

    2007-11-09

    The first highly efficient, diastereo- and regioselective transition metal-catalyzed addition of metal hydrides (stannanes, silanes, and germanes) and bimetallic species (ditins and silyltins) to cyclopropenes has been developed. It was shown that the addition across the double bond of cyclopropenes is generally controlled by steric factors and proceeds from the least hindered face. This methodology represents a powerful and atom-economic approach toward a wide variety of highly substituted stereodefined cyclopropylmetals, useful building blocks unavailable by other methods.

  5. Beyond Metal-Hydrides: Non-Transition-Metal and Metal-Free Ligand-Centered Electrocatalytic Hydrogen Evolution and Hydrogen Oxidation.

    PubMed

    Haddad, Andrew Z; Garabato, Brady D; Kozlowski, Pawel M; Buchanan, Robert M; Grapperhaus, Craig A

    2016-06-29

    A new pathway for homogeneous electrocatalytic H2 evolution and H2 oxidation has been developed using a redox active thiosemicarbazone and its zinc complex as seminal metal-free and transition-metal-free examples. Diacetyl-bis(N-4-methyl-3-thiosemicarbazone) and zinc diacetyl-bis(N-4-methyl-3-thiosemicarbazide) display the highest reported TOFs of any homogeneous ligand-centered H2 evolution catalyst, 1320 and 1170 s(-1), respectively, while the zinc complex also displays one of the highest reported TOF values for H2 oxidation, 72 s(-1), of any homogeneous catalyst. Catalysis proceeds via ligand-centered proton-transfer and electron-transfer events while avoiding traditional metal-hydride intermediates. The unique mechanism is consistent with electrochemical results and is further supported by density functional theory. The results identify a new direction for the design of electrocatalysts for H2 evolution and H2 oxidation that are not reliant on metal-hydride intermediates.

  6. In operando neutron diffraction study of LaNdMgNi9H13 as a metal hydride battery anode

    NASA Astrophysics Data System (ADS)

    Nazer, N. S.; Denys, R. V.; Yartys, V. A.; Hu, Wei-Kang; Latroche, M.; Cuevas, F.; Hauback, B. C.; Henry, P. F.; Arnberg, L.

    2017-03-01

    La2MgNi9-related alloys are superior metal hydride battery anodes as compared to the commercial AB5 alloys. Nd-substituted La2-yNdyMgNi9 intermetallics are of particular interest because of increased diffusion rate of hydrogen and thus improved performance at high discharge currents. The present work presents in operando characterization of the LaNdMgNi9 intermetallic as anode for the nickel metal hydride (Ni-MH) battery. We have studied the structural evolution of LaNdMgNi9 during its charge and discharge using in situ neutron powder diffraction. The work included experiments using deuterium gas and electrochemical charge-discharge measurements. The alloy exhibited a high electrochemical discharge capacity (373 mAh/g) which is 20% higher than the AB5 type alloys. A saturated β-deuteride synthesized by solid-gas reaction at PD2 = 1.6 MPa contained 12.9 deuterium atoms per formula unit (D/f.u.) which resulted in a volume expansion of 26.1%. During the electrochemical charging, the volume expansion (23.4%) and D-contents were found to be slightly reduced. The reversible electrochemical cycling is performed through the formation of a two-phase mixture of the α-solid solution and β-hydride phases. Nd substitution contributes to the high-rate dischargeability, while maintaining a good cyclic stability. Electrochemical Impedance Spectroscopy (EIS) was used to characterize the anode electrode on cycling. A mathematical model for the impedance response of a porous electrode was utilized. The EIS showed a decreased hydrogen transport rate during the long-term cycling, which indicated a corresponding slowing down of the electrochemical processes at the surface of the metal hydride anode.

  7. Fatigue behavior and encrustation characteristics of nanocrystalline metals

    NASA Astrophysics Data System (ADS)

    Lai, Li-Chung

    The nanocrstalline (NC) metals have been reported to have high mechanical performance owing to it's small grain interior and a large volume fraction of grain boundary (GB) atoms. Small grain leads to the forbidden dislocation activities in grain interior while GB activities become dominant due to a higher volume fraction of GB atoms. Regarding the fatigue response to nanocrstalline metals, it has been reported that decreasing grain led to both significantly improvement on the fatigue-endurance limit and deleterious effect on the resistance to subcritical fatigue crack propagation. The increases endurance limit has been attributed to the greater resistance to fatigue crack initiation at near-surface regions. On the other hand, the less resistance to fatigue crack growth were resulted from less tortuous fatigue crack profiles supported by the deflection/closure theory. However, it has never been studied the influence of proceeding and pre-existing defects on the fatigue performance considering the difference response of NC structure from than coarse grain (CG) structure. In the present work, the influence of electrical discharge machining (EDM) and surface defects on the fatigue behavior of both conventional cold-rolled CG and electro-deposited (ED) NC Ni were investigated. The experimental results revealed considerable influence by EDM on the fatigue strength of NC Ni, while it has little or no affect on that for CG Ni. Specifically, EDM led to a 50 to 75% reduction in fatigue strength for NC Ni despite a relatively small depth of EDM affected material (˜ 1% of width). Rationale for this effect can be attributed to grain growth, microcracks, and a higher sulfur content at the GBs in the EDM affected zone. In addition, the pre-existing surface defects that appear to be due to impurity segregation near the electro-deposition substrate significantly reduced the fatigue resistance of ED NC Ni. In order to understand the fatigued behavior in NC Ni, crack tip grain

  8. [Investigation of enhancing effect for hydride generation-atomic fluorescence of transition metal elements].

    PubMed

    Sun, Han-Wen; Suo, Ran

    2008-11-01

    A mechanism of hydride generation based on disassembly reaction of hydrogen-transferred interim state [M(BH4)m]* was developed by investigating the effect of reaction medium acidity on hydride generation. The effects of Co2+ and Ni2+, phenanthroline and 8-hydroxyquinoline on hydride generation-atomic fluorescence signals of Zn, Cd, Cu and Ni were studied, respectively, and their enhancing mechnism was discussed. The enhancing effect Co2+ and Ni2+ on the fluorescence signals of Zn and Cd was due to the increase in transmission efficiency of hydride of Zn and Cd. There was a synergic enhancing effect between phenanthroline or 8-hydroxyquinoline and Co2+ on the fluorescence signals of Zn and Cd, however no synergic enhancing effect between phenanthroline and 8-hydroxyquinoline on the fluorescence signals of Zn and Cd. The simulative action of cationic surfactant, anion surfactant and non-ionic surfactant surfactant to hydride generation was investigated. It is shown that both cationic surfactant and non-ionic surfactant have obvious enhancing effect on the fluorescence signals of analytes because of the decrease in surface tension of reaction solution. The release characteristics of hydride from the absorption solution containing surfactant was ulteriorly examined by using graphite furnace atomic absorption spectrometry, and the mechanism of enhancing effect of surfactant on hydride generation and transmission was proposed.

  9. Probing the chemistry of nickel/metal hydride battery cells using electrochemical impedance spectroscopy

    NASA Technical Reports Server (NTRS)

    Isaac, Bryan J.

    1994-01-01

    Electrochemical Impedance Spectroscopy (EIS) is a valuable tool for investigating the chemical and physical processes occurring at electrode surfaces. It offers information about electron transfer at interfaces, kinetics of reactions, and diffusion characteristics of the bulk phase between the electrodes. For battery cells, this technique offers another advantage in that it can be done without taking the battery apart. This non-destructive analysis technique can thus be used to gain a better understanding of the processes occurring within a battery cell. This also raises the possibility of improvements in battery design and identification or prediction of battery characteristics useful in industry and aerospace applications. EIS as a technique is powerful and capable of yielding significant information about the cell, but it also requires that the many parameters under investigation can be resolved. This implies an understanding of the processes occurring in a battery cell. Many battery types were surveyed in this work, but the main emphasis was on nickel/metal hydride batteries.

  10. Development of battery management system for nickel-metal hydride batteries in electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Jung, Do Yang; Lee, Baek Haeng; Kim, Sun Wook

    Electric vehicle (EV) performance is very dependent on traction batteries. For developing electric vehicles with high performance and good reliability, the traction batteries have to be managed to obtain maximum performance under various operating conditions. Enhancement of battery performance can be accomplished by implementing a battery management system (BMS) that plays an important role in optimizing the control mechanism of charge and discharge of the batteries as well as monitoring the battery status. In this study, a BMS has been developed for maximizing the use of Ni-MH batteries in electric vehicles. This system performs several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state-of-charge (SOC), safety, and thermal management. The BMS is installed in and tested in a DEV5-5 electric vehicle developed by Daewoo Motor Co. and the Institute for Advanced Engineering in Korea. Eighteen modules of a Panasonic nickel-metal hydride (Ni-MH) battery, 12 V, 95 A h, are used in the DEV5-5. High accuracy within a range of 3% and good reliability are obtained. The BMS can also improve the performance and cycle-life of the Ni-MH battery peak, as well as the reliability and the safety of the electric vehicles.

  11. Pyrometallurgical Extraction of Valuable Elements in Ni-Metal Hydride Battery Electrode Materials

    NASA Astrophysics Data System (ADS)

    Jiang, Yin-ju; Deng, Yong-chun; Bu, Wen-gang

    2015-10-01

    Gas selective reduction-oxidation (redox) and melting separation were consecutively applied to electrode materials of AB5-type Ni-metal hydride batteries leading to the production of a Ni-Co alloy and slag enriched with rare earth oxides (REO). In the selective redox process, electrode materials were treated with H2/H2O at 1073 K and 1173 K (800 °C and 900 °C). Active elements such as REs, Al, and Mn were oxidized whereas relatively inert elements such as Ni and Co were transformed into their elemental states in the treated materials. SiO2 and Al2O3 powders were added into the treated materials as fluxes which were then melted at 1823 K (1550 °C) to yield a Ni-Co alloy and a REO-SiO2-Al2O3-MnO slag. The high-purity Ni-Co alloy produced can be used as a raw material for AB5-type hydrogen-storage alloy. The REO content in slag was very high, i.e., 48.51 pct, therefore it can be used to recycle rare earth oxides.

  12. Solar photovoltaic charging of high voltage nickel metal hydride batteries using DC power conversion

    NASA Astrophysics Data System (ADS)

    Kelly, Nelson A.; Gibson, Thomas L.

    There are an increasing number of vehicle choices available that utilize batteries and electric motors to reduce tailpipe emissions and increase fuel economy. The eventual production of electricity and hydrogen in a renewable fashion, such as using solar energy, can achieve the long-term vision of having no tailpipe environmental impact, as well as eliminating the dependence of the transportation sector on dwindling supplies of petroleum for its energy. In this report we will demonstrate the solar-powered charging of the high-voltage nickel-metal hydride (NiMH) battery used in the GM 2-mode hybrid system. In previous studies we have used low-voltage solar modules to produce hydrogen via the electrolysis of water and to directly charge lithium-ion battery modules. Our strategy in the present work was to boost low-voltage PV voltage to over 300 V using DC-DC converters in order to charge the high-voltage NiMH battery, and to regulate the battery charging using software to program the electronic control unit supplied with the battery pack. A protocol for high-voltage battery charging was developed, and the solar to battery charging efficiency was measured under a variety of conditions. We believe this is the first time such high-voltage batteries have been charged using solar energy in order to prove the concept of efficient, solar-powered charging for battery-electric vehicles.

  13. Increased Oxygen Recovery from Sabatier Systems Using Plasma Pyrolysis Technology and Metal Hydride Separation

    NASA Technical Reports Server (NTRS)

    Greenwood, Zachary W.; Abney, Morgan B.; Perry, Jay L.; Miller, Lee A.; Dahl, Roger W.; Hadley, Neal M.; Wambolt, Spencer R.; Wheeler, Richard R.

    2015-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology is based on the Sabatier reaction where less than 50% of the oxygen required for the crew is recovered from metabolic CO2. The reaction produces water as the primary product and methane as a byproduct. Oxygen recovery is constrained by the limited availability of reactant hydrogen. This is further exacerbated when Sabatier methane (CH4) is vented as a waste product resulting in a continuous loss of reactant hydrogen. Post-processing methane with the Plasma Pyrolysis Assembly (PPA) to recover hydrogen has the potential to dramatically increase oxygen recovery and thus drastically reduce the logistical challenges associated with oxygen resupply. The PPA decomposes methane into predominantly hydrogen and acetylene. Due to the highly unstable nature of acetylene, a separation system is necessary to purify hydrogen before it is recycled back to the Sabatier reactor. Testing and evaluation of a full-scale Third Generation PPA is reported and investigations into metal hydride hydrogen separation technology is discussed.

  14. Rare earth element recycling from waste nickel-metal hydride batteries.

    PubMed

    Yang, Xiuli; Zhang, Junwei; Fang, Xihui

    2014-08-30

    With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70°C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, -74μm particle size, and 100min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1-(1-x)(1/3)=A/ρr0[HCl](0.64)exp-439,8008.314Tt. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810°C, a final product of 99% pure rare earth oxides was obtained.

  15. Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods

    SciTech Connect

    Lesch, David A; Adriaan Sachtler, J.W. J.; Low, John J; Jensen, Craig M; Ozolins, Vidvuds; Siegel, Don; Harmon, Laurel

    2011-02-14

    UOP LLC, a Honeywell Company, Ford Motor Company, and Striatus, Inc., collaborated with Professor Craig Jensen of the University of Hawaii and Professor Vidvuds Ozolins of University of California, Los Angeles on a multi-year cost-shared program to discover novel complex metal hydrides for hydrogen storage. This innovative program combined sophisticated molecular modeling with high throughput combinatorial experiments to maximize the probability of identifying commercially relevant, economical hydrogen storage materials with broad application. A set of tools was developed to pursue the medium throughput (MT) and high throughput (HT) combinatorial exploratory investigation of novel complex metal hydrides for hydrogen storage. The assay programs consisted of monitoring hydrogen evolution as a function of temperature. This project also incorporated theoretical methods to help select candidate materials families for testing. The Virtual High Throughput Screening served as a virtual laboratory, calculating structures and their properties. First Principles calculations were applied to various systems to examine hydrogen storage reaction pathways and the associated thermodynamics. The experimental program began with the validation of the MT assay tool with NaAlH4/0.02 mole Ti, the state of the art hydrogen storage system given by decomposition of sodium alanate to sodium hydride, aluminum metal, and hydrogen. Once certified, a combinatorial 21-point study of the NaAlH4 LiAlH4Mg(AlH4)2 phase diagram was investigated with the MT assay. Stability proved to be a problem as many of the materials decomposed during synthesis, altering the expected assay results. This resulted in repeating the entire experiment with a mild milling approach, which only temporarily increased capacity. NaAlH4 was the best performer in both studies and no new mixed alanates were observed, a result consistent with the VHTS. Powder XRD suggested that the reverse reaction, the regeneration of the

  16. Pulse power 350 V nickel-metal hydride battery power-D-005-00181

    NASA Astrophysics Data System (ADS)

    Eskra, Michael D.; Ralston, Paula; Salkind, Alvin; Plivelich, Robert F.

    Energy-storage devices are needed for applications requiring very high-power over short periods of time. Such devices have various military (rail guns, electromagnetic launchers, and DEW) and commercial applications, such as hybrid electric vehicles, vehicle starting (SLI), and utility peak shaving. The storage and delivery of high levels of burst power can be achieved with a capacitor, flywheel, or rechargeable battery. In order to reduce the weight and volume of many systems they must contain advanced state-of-the-art electrochemical or electromechanical power sources. There is an opportunity and a need to develop energy-storage devices that have improved high-power characteristics compared to existing ultra capacitors, flywheels or rechargeable batteries. Electro Energy, Inc. has been engaged in the development of bipolar nickel-metal hydride batteries, which may fulfil the requirements of some of these applications. This paper describes a module rated at 300 V (255 cells) (6 Ah). The volume of the module is 23 L and the mass is 56 kg. The module is designed to deliver 50 kW pulses of 10 s duration at 50% state-of-charge. Details of the mechanical design of the module, safety considerations, along with the results of initial electrical characterization testing by the customer will be discussed. Some discussion of the possibilities for design optimization is also included.

  17. Metal hydride and pyrophoric fuel additives for dicyclopentadiene based hybrid propellants

    NASA Astrophysics Data System (ADS)

    Shark, Steven C.

    The purpose of this study is to investigate the use of reactive energetic fuel additives that have the potential to increase the combustion performance of hybrid rocket propellants in terms of solid fuel regression rate and combustion efficiency. Additives that can augment the combustion flame zone in a hybrid rocket motor by means of increased energy feedback to the fuel grain surface are of great interest. Metal hydrides have large volumetric hydrogen densities, which gives these materials high performance potential as fuel additives in terms of specifc impulse. The excess hydrogen and corresponding base metal may also cause an increase in the hybrid rocket solid fuel regression rate. Pyrophoric additives also have potential to increase the solid fuel regression rate by reacting more readily near the burning fuel surface providing rapid energy feedback. An experimental performance evaluation of metal hydride fuel additives for hybrid rocket motor propulsion systems is examined in this study. Hypergolic ignition droplet tests and an accelerated aging study revealed the protection capabilities of Dicyclopentadiene (DCPD) as a fuel binder, and the ability for unaided ignition. Static hybrid rocket motor experiments were conducted using DCPD as the fuel. Sodium borohydride (NabH4) and aluminum hydride (AlH3) were examined as fuel additives. Ninety percent rocket grade hydrogen peroxide (RGHP) was used as the oxidizer. In this study, the sensitivity of solid fuel regression rate and characteristic velocity (C*) efficiency to total fuel grain port mass flux and particle loading is examined. These results were compared to HTPB combustion performance as a baseline. Chamber pressure histories revealed steady motor operation in most tests, with reduced ignition delays when using NabH4 as a fuel additive. The addition of NabH4 and AlH3 produced up to a 47% and 85% increase in regression rate over neat DCPD, respectively. For all test conditions examined C* efficiency ranges

  18. Application of metal hydride paper to simple pressure generator for use in soft actuator systems.

    PubMed

    Ino, Shuichi; Sakaki, Kouji; Hosono, Minako; Doi, Kouki; Shimada, Shigenobu; Chikai, Manabu

    2015-01-01

    Metal hydride (MH) actuators have a simple structure and a number of features that make them attractive for use in rehabilitation engineering and assistive technology. The MH actuator provides a high power-to-weight ratio, high-strain actuation, human-compatible softness, and noiseless operation, while being environmentally benign. On the other hand, there remain technical challenges to be overcome to improve the MH actuator regarding its speed of operation and energy efficiency, given the low heat conductivity of the MH powder that is used as the pressure generator for soft actuation. To overcome the issues of low heat conductivity and the handling of MH powder, we developed an MH paper, which is a special paper incorporating MH powder and carbon fiber, for use as a new pressure-generating element for a soft MH actuator system. In addition, the basic properties and structure of the proposed MH paper were investigated through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and several thermodynamic experiments. The results of these experiments showed that the hydrogen absorption and desorption rates of the MH paper were significantly higher than those of the MH powder around room temperature.

  19. Intermolecular hydrogen bonding between neutral transition metal hydrides (eta(5)-C5H5)M(CO)3H (M = Mo, W) and bases.

    PubMed

    Belkova, Natalia V; Gutsul, Evgenii I; Filippov, Oleg A; Levina, Vladislava A; Valyaev, Dmitriy A; Epstein, Lina M; Lledos, Agusti; Shubina, Elena S

    2006-03-22

    The interaction of CpM(CO)3H (M = Mo, W) hydrides as proton donors with different bases (B = pyridine, (n-Oc)3PO, ((CH3)2N)3PO, H3BNEt3) was studied by variable temperature IR spectroscopy and theoretically by DFT/B3LYP calculations. The data obtained show for the first time the formation of intermolecular hydrogen bonds between the neutral transition metal hydrides and bases in solutions of low polarity. These M-H...B hydrogen bonds are shown to precede the hydrides' deprotonation.

  20. Room-temperature metal-hydride discharge source, with observations on NiH and FeH.

    PubMed

    Vallon, Raphaël; Ashworth, Stephen H; Crozet, Patrick; Field, Robert W; Forthomme, Damien; Harker, Heather; Richard, Cyril; Ross, Amanda J

    2009-11-26

    A metal sputtering source suitable for laboratory production of metal hydrides is described. Sputtering from pure nickel or iron in an Ar/H(2) discharge is analyzed at low resolution. High resolution laser excitation and dispersed fluorescence spectra of NiH have also been recorded. The source has been designed to operate with a ferromagnetic circuit for Zeeman spectroscopy. Signals from the source are strong enough to record dispersed fluorescence from NiH by Fourier transform interferometry in magnetic fields up to 1 T. We establish that FeH can also be formed in this source.

  1. Cesium Platinide Hydride 4Cs2 Pt⋅CsH: An Intermetallic Double Salt Featuring Metal Anions.

    PubMed

    Smetana, Volodymyr; Mudring, Anja-Verena

    2016-11-14

    With Cs9 Pt4 H a new representative of ionic compounds featuring metal anions can be added to this rare-membered family. Cs9 Pt4 H exhibits a complex crystal structure containing Cs(+) cations, Pt(2-) and H(-) anions. Being a red, transparent compound its band gap is in the visible range of the electromagnetic spectrum and the ionic type of bonding is confirmed by quantum chemical calculations. This cesium platinide hydride can formally be considered as a double salt of the "alloy" cesium-platinum, or better cesium platinide, Cs2 Pt, and the salt cesium hydride CsH according to Cs9 Pt4 H≡4 Cs2 Pt⋅CsH.

  2. Cesium Platinide Hydride 4Cs 2 Pt-CsH: An Intermetallic Double Salt Featuring Metal Anions

    SciTech Connect

    Smetana, Volodymyr; Mudring, Anja-Verena

    2016-10-24

    With Cs9Pt4H a new representative of ionic compounds featuring metal anions can be added to this rare-membered family. Cs9Pt4H exhibits a complex crystal structure containing Cs+ cations, Pt2- and H- anions. Being a red, transparent compound its band gap is in the visible range of the electromagnetic spectrum and the ionic type of bonding is confirmed by quantum chemical calculations. This cesium platinide hydride can formally be considered as a double salt of the “alloy” cesium–platinum, or better cesium platinide, Cs2Pt, and the salt cesium hydride CsH according to Cs9Pt4H≡4 Cs2Pt∙CsH.

  3. Free volumes in bulk nanocrystalline metals studied by the complementary techniques of positron annihilation and dilatometry

    NASA Astrophysics Data System (ADS)

    Würschum, Roland; Oberdorfer, Bernd; Steyskal, Eva-Maria; Sprengel, Wolfgang; Puff, Werner; Pikart, Philip; Hugenschmidt, Christoph; Pippan, Reinhard

    2012-07-01

    Free-volume type defects, such as vacancies, vacancy-agglomerates, dislocations, and grain boundaries represent a key parameter in the properties of ultrafine-grained and nanocrystalline materials. Such free-volume type defects are introduced in high excess concentration during the processes of structural refinement by severe plastic deformation. The direct method of time-differential dilatometry is applied in the present work to determine the total amount and the kinetics of free volume by measuring the irreversible length change upon annealing of bulk nanocrystalline metals (Fe, Cu, Ni) prepared by high-pressure torsion (HPT). In the case of HPT-deformed Ni and Cu, distinct substages of the length change upon linear heating occur due to the loss of grain boundaries in the wake of crystallite growth. The data on dilatometric length change can be directly related to the fast annealing of free-volume type defects studied by in situ Doppler broadening measurements performed at the high-intensity positron beam of the FRM II (Garching, Munich, Germany).

  4. Free volumes in bulk nanocrystalline metals studied by the complementary techniques of positron annihilation and dilatometry.

    PubMed

    Würschum, Roland; Oberdorfer, Bernd; Steyskal, Eva-Maria; Sprengel, Wolfgang; Puff, Werner; Pikart, Philip; Hugenschmidt, Christoph; Pippan, Reinhard

    2012-07-15

    Free-volume type defects, such as vacancies, vacancy-agglomerates, dislocations, and grain boundaries represent a key parameter in the properties of ultrafine-grained and nanocrystalline materials. Such free-volume type defects are introduced in high excess concentration during the processes of structural refinement by severe plastic deformation. The direct method of time-differential dilatometry is applied in the present work to determine the total amount and the kinetics of free volume by measuring the irreversible length change upon annealing of bulk nanocrystalline metals (Fe, Cu, Ni) prepared by high-pressure torsion (HPT). In the case of HPT-deformed Ni and Cu, distinct substages of the length change upon linear heating occur due to the loss of grain boundaries in the wake of crystallite growth. The data on dilatometric length change can be directly related to the fast annealing of free-volume type defects studied by in situ Doppler broadening measurements performed at the high-intensity positron beam of the FRM II (Garching, Munich, Germany).

  5. Investigation of heat and mass transfer process in metal hydride hydrogen storage reactors, suitable for a solar powered water pump system

    NASA Astrophysics Data System (ADS)

    Coldea, I.; Popeneciu, G.; Lupu, D.; Misan, I.; Blanita, G.; Ardelean, O.

    2012-02-01

    The paper analyzes heat and mass transfer process in metal hydride hydrogen storage systems as key element in the development of a solar powered pump system. Hydrogen storage and compression performance of the developed reactors are investigated according to the type of metal alloys, the metal hydride bed parameters and system operating conditions. To reach the desired goal, some metal hydride from groups AB5 and AB2 were synthesized and characterized using elements substitution for tailoring their properties: reversible hydrogen absorption capacity between the hydrogen absorption and desorption pressures at equilibrium at small temperature differences. For the designed hydrogen storage reactors, a new technical solution which combines the effective increase of the thermal conductivity of MH bed and good permeability to hydrogen gas circulation, was implemented and tested. The results permitted us to develop a heat engine with metal hydride, the main element of the functional model of a heat operated metal hydride based water pumping system using solar energy. This is a free energy system able to deliver water, at a convenience flow and pressure, in remote places without conventional energy access.

  6. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen.

    PubMed

    Jia, Hong-Peng; Quadrelli, Elsje Alessandra

    2014-01-21

    Dinitrogen cleavage and hydrogenation by transition-metal centers to produce ammonia is central in industry and in Nature. After an introductory section on the thermodynamic and kinetic challenges linked to N2 splitting, this tutorial review discusses three major classes of transition-metal systems (homogeneous, heterogeneous and biological) capable of achieving dissociation and hydrogenation of dinitrogen. Molecular complexes, solid-state Haber-Bosch catalytic systems, silica-supported tantalum hydrides and nitrogenase will be discussed. Emphasis is focused on the reaction mechanisms operating in the process of dissociation and hydrogenation of dinitrogen, and in particular on the key role played by metal hydride bonds and by dihydrogen in such reactions.

  7. LaNi.sub.5 is-based metal hydride electrode in Ni-MH rechargeable cells

    DOEpatents

    Bugga, Ratnakumar V.; Fultz, Brent; Bowman, Robert; Surampudi, Subra Rao; Witham, Charles K.; Hightower, Adrian

    1999-01-01

    An at least ternary metal alloy of the formula AB.sub.(Z-Y) X.sub.(Y) is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB.sub.5 alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

  8. Proton spin-lattice relaxation mechanisms and the metal-insulator transition in cerium hydrides

    NASA Astrophysics Data System (ADS)

    Zamir, D.; Barnes, R. G.; Salibi, N.; Cotts, R. M.; Phua, T.-T.; Torgeson, D. R.; Peterson, D. T.

    1984-01-01

    Nuclear-magnetic-resonance (NMR) experiments have been done on cerium hydride (CeHx) samples to search for correlations between NMR properties and known electrical conductivity changes as a function of hydrogen concentration and temperature. Data are presented for the 1H spin-lattice relaxation rate R1 (=1T1) and some line shapes for 2.10<=x<=2.92 for temperatures from about 100 to 375 K. Although two 1H resonances are observed at some temperatures, proton spin-lattice relaxation is characterized by a single relaxation time at each x and T. To a good approximation R1=AT+R, where AT is attributed to direct dipolar coupling between protons and the electronic magnetic dipole moment of Ce3+, and R is an essentially temperature-independent term attributed to indirect [Ruderman-Kittel-Kasuya-Yosida (RKKY)] coupling to the Ce3+ moment. The AT term is so large that for most experiments the proton-proton dipolar and proton-conduction-electron couplings are negligible. The x dependence of the constant A is consistent with the dipolar coupling. The constant R decreases in a steep manner as x is increased above x~2.65 just below the regime 2.75metal-semiconductor transition occurs in CeHx. It is proposed that R~Nd(EF) and that the RKKY interaction includes coupling through the d-band density of states. The marked decreases in R1 and in the electrical conductivity that are associated with the concentration-dependent transition are thus attributed to the vanishing electron density of states at the Fermi surface. No temperature-dependent transition in R1 is found. Results are consistent with a Mott transition model in which the electron donors are hydrogen vacancies.

  9. Development of nickel/metal-hydride batteries for EVs and HEVs

    NASA Astrophysics Data System (ADS)

    Taniguchi, Akihiro; Fujioka, Noriyuki; Ikoma, Munehisa; Ohta, Akira

    This paper is to introduce the nickel/metal-hydride (Ni/MH) batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs) developed and mass-produced by our company. EV-95 for EVs enables a vehicle to drive approximately 200 km per charge. As the specific power is extremely high, more than 200 W/kg at 80% depth of discharge (DOD), the acceleration performance is equivalent to that of gasoline fuel automobiles. The life characteristic is also superior. This battery gives the satisfactory result of more than 1000 cycles in bench tests and approximately 4-year on-board driving. EV-28 developed for small EVs comprises of a compact and light battery module with high specific power of 300 W/kg at 80% DOD by introducing a new technology for internal cell connection. Meanwhile, our cylindrical battery for the HEV was adopted into the first generation Toyota Prius in 1997 which is the world's first mass-product HEV, and has a high specific power of 600 W/kg. Its life characteristic was found to be equivalent to more than 100,000 km driving. Furthermore, a new prismatic module in which six cells are connected internally was used for the second generation Prius in 2000. The prismatic battery comprises of a compact and light battery pack with a high specific power of 1000 W/kg, which is approximately 1.7 times that of conventional cylindrical batteries, as a consequence of the development of a new internal cell connection and a new current collection structure.

  10. Are cyclopentadienylberyllium, magnesium and calcium hydrides carbon or metal acids in the gas phase?

    PubMed

    Hurtado, Marcela; Lamsabhi, Al-Mokhtar; Mó, Otilia; Yáñez, Manuel; Guillemin, Jean-Claude

    2010-05-21

    The structure and bonding of cyclopentadienylberyllium (CpBeH), magnesium (CpMgH), and calcium (CpCaH) hydrides as well as those of their deprotonated species have been investigated by means of B3LYP/6-311+G(3df,2p)//B3LYP/6-311+G(d,p) and B3LYP/6-311+G(3df,2p)//QCISD/6-311+G(d,p) density functional theory (DFT) calculations. The three compounds exhibit C(5v) equilibrium conformations in their ground states. For CpBeH the agreement between the calculated geometry and that determined by MW spectroscopy is excellent. CpMgH and CpCaH can be viewed almost as the result of the interaction between a C₅H₅⁻ anion and a XH(+) (X = Mg, Ca) cation. Conversely, for CpBeH the interaction between the C₅H₅ and the BeH subunits is significantly covalent. These compounds exhibit a significant aromaticity, usually named three-dimension aromaticity, in contrast with the unsubstituted cyclopentadiene compound. The CpBeH derivative behaves as a C acid in the gas phase and is less acidic than cyclopentadiene. More importantly, CpMgH and CpCaH, in spite of the X(+δ)H(-δ) polarity exhibited by the X-H bond in the neutral systems, are predicted to be metal acids in the gas phase. Also surprisingly, both the Mg and the Ca derivatives are stronger acids than the Be analogue, and only slightly weaker acids than cyclopentadiene. This somewhat unexpected result is the consequence of two concomitant facts: the lower dissociation energy of the X-H (X = Mg, Ca) bonds with respect to the C-H bonds, and the significantly high electron affinity of the C₅H₅X* (X = Mg, Ca) radicals.

  11. Hydrogen transmission/storage with a metal hydride/organic slurry

    SciTech Connect

    Breault, R.W.; Rolfe, J.; McClaine, A.

    1998-08-01

    Thermo Power Corporation has developed a new approach for the production, transmission, and storage of hydrogen. In this approach, a chemical hydride slurry is used as the hydrogen carrier and storage media. The slurry protects the hydride from unanticipated contact with moisture in the air and makes the hydride pumpable. At the point of storage and use, a chemical hydride/water reaction is used to produce high-purity hydrogen. An essential feature of this approach is the recovery and recycle of the spent hydride at centralized processing plants, resulting in an overall low cost for hydrogen. This approach has two clear benefits: it greatly improves energy transmission and storage characteristics of hydrogen as a fuel, and it produces the hydrogen carrier efficiently and economically from a low cost carbon source. The preliminary economic analysis of the process indicates that hydrogen can be produced for $3.85 per million Btu based on a carbon cost of $1.42 per million Btu and a plant sized to serve a million cars per day. This compares to current costs of approximately $9.00 per million Btu to produce hydrogen from $3.00 per million Btu natural gas, and $25 per million Btu to produce hydrogen by electrolysis from $0.05 per Kwh electricity. The present standard for production of hydrogen from renewable energy is photovoltaic-electrolysis at $100 to $150 per million Btu.

  12. Current status of environmental, health, and safety issues of nickel metal-hydride batteries for electric vehicles

    SciTech Connect

    Corbus, D; Hammel, C J; Mark, J

    1993-08-01

    This report identifies important environment, health, and safety issues associated with nickel metal-hydride (Ni-MH) batteries and assesses the need for further testing and analysis. Among the issues discussed are cell and battery safety, workplace health and safety, shipping requirements, and in-vehicle safety. The manufacture and recycling of Ni-MH batteries are also examined. This report also overviews the ``FH&S`` issues associated with other nickel-based electric vehicle batteries; it examines venting characteristics, toxicity of battery materials, and the status of spent batteries as a hazardous waste.

  13. Infrared spectra of the ethynyl metal hydrides produced in reactions of laser-ablated Mn and Re atoms with acetylene.

    PubMed

    Cho, Han-Gook; Andrews, Lester

    2011-05-19

    The ethynyl metal hydride molecules (HM-C≡CH) are identified in the matrix infrared spectra from reactions of laser-ablated Mn and Re atoms with acetylene using D and (13)C isotopic substitution and density functional computed frequencies. The assignment of strong M-H as well as C≡C bond stretching product absorptions suggests oxidative C-H insertion during reagent codeposition and subsequent photolysis. The unique linear structure calculated for HMn-C≡CH is parallel to C(3v) structures found recently for Mn complexes including CH(3)-MnF.

  14. Metal furnace heated by flame as a hydride atomizer for atomic absorption spectrometry: Sb determination in environmental and pharmaceutical samples.

    PubMed

    Figueiredo, Eduardo Costa; Dĕdina, Jirí; Arruda, Marco Aurélio Zezzi

    2007-10-15

    The present work describes a metallic hydride atomizer for atomic absorption spectrometry, by evaluating the performance of the Inconel 600((R)) tube. For this purpose, stibine was used as the model volatile compound and antimony determination in river and lake sediments and in pharmaceutical samples was carried out to assess the metal furnace performance. Some parameters are evaluated such as those referring to the generation and transport of the hydride (such as KBH(4) and acid concentrations, carrier gas flow rate, injected volume, etc.), as well as those referring to the metal furnace (such as tube hole area, flame composition, long-term stability, etc.). The method presents linear Sb concentration from 2 to 80mugL(-1) range (r>0.998; n=3) and the analytical frequency of ca. 140h(-1). The limit of detection (LOD) is 0.23mugL(-1) and the precision, expressed as R.S.D., is less than 5% (40mugL(-1); n=10). The accuracy is evaluated through the reference materials, and the results are similar at 95% confidence level according to the t-test.

  15. Hydrogen bonding and proton transfer to ruthenium hydride complex CpRuH(dppe): metal and hydride dichotomy.

    PubMed

    Silantyev, Gleb A; Filippov, Oleg A; Tolstoy, Peter M; Belkova, Natalia V; Epstein, Lina M; Weisz, Klaus; Shubina, Elena S

    2013-02-18

    The combination of variable temperature (190-297 K) IR and NMR spectroscopy studies with quantum-chemical calculations at the DFT/B3PW91 and AIM level had the aim to determine the mechanism of proton transfer to CpRuH(dppe) (1, dppe = Ph(2)P(CH(2))(2)PPh(2)) and the structures of intermediates. Dihydrogen bond (DHB) formation was established in the case of interaction with weak proton donors like CF(3)CH(2)OH. Low-temperature protonation (at about 200 K) by stronger proton donors leads via DHB complex to the cationic nonclassical complex [CpRu(η(2)-H(2))(dppe)](+) (2). Thermodynamic parameters of DHB formation (for CF(3)CH(2)OH: ΔH°(HB) = -4.9 ± 0.2 kcal·mol(-1), ΔS°(HB) = -17.8 ± 0.7 cal·mol(-1)·K(-1)) and proton transfer (for (CF(3))(2)CHOH: ΔH°(PT) = -5.2 ± 0.3 kcal·mol(-1), ΔS°(PT) = -23 ± 1 cal·mol(-1)·K(-1)) were determined. Above 240 K 2 transforms into trans-[CpRu(H)(2)(dppe)](+) (3) yielding a mixture of 2 and 3 in 1:2 ratio. Kinetic analysis and activation parameters for the "[Ru(η(2)-H(2))](+) → trans-[Ru(H)(2)](+)" transformation indicate reversibility of this process in contrast to irreversible intramolecular isomerization of the Cp* analogue. Calculations show that the driving force of this process is greater stability (by 1.5 kcal·mol(-1) in ΔE scale) of the dihydride cation in comparison with the dihydrogen complex. The calculations of the potential energy profile indicate the low barrier for deprotonation of 2 suggesting that the formation of trans-[CpRu(H)(2)(dppe)](+) proceeds via deprotonation of [Ru(η(2)-H(2))](+) to DHB complex, formation of hydrogen bond with Ru atom and subsequent proton transfer to the metal site.

  16. Xylose isomerase in substrate and inhibitor michaelis states: atomic resolution studies of a metal-mediated hydride shift.

    PubMed

    Fenn, Timothy D; Ringe, Dagmar; Petsko, Gregory A

    2004-06-01

    Xylose isomerase (E.C. 5.3.1.5) catalyzes the interconversion of aldose and ketose sugars and has an absolute requirement for two divalent cations at its active site to drive the hydride transfer rates of sugar isomerization. Evidence suggests some degree of metal movement at the second metal site, although how this movement may affect catalysis is unknown. The 0.95 A resolution structure of the xylitol-inhibited enzyme presented here suggests three alternative positions for the second metal ion, only one of which appears positioned in a catalytically competent manner. To complete the reaction, an active site hydroxyl species appears appropriately positioned for hydrogen transfer, as evidenced by precise bonding distances. Conversely, the 0.98 A resolution structure of the enzyme with glucose bound in the alpha-pyranose state only shows one of the metal ion conformations at the second metal ion binding site, suggesting that the linear form of the sugar is required to promote the second and third metal ion conformations. The two structures suggest a strong degree of conformational flexibility at the active site, which seems required for catalysis and may explain the poor rate of turnover for this enzyme. Further, the pyranose structure implies that His53 may act as the initial acid responsible for ring opening of the sugar to the aldose form, an observation that has been difficult to establish in previous studies. The glucose ring also appears to display significant segmented disorder in a manner suggestive of ring opening, perhaps lending insight into means of enzyme destabilization of the ground state to promote catalysis. On the basis of these results, we propose a modified version of the bridged bimetallic mechanism for hydride transfer in the case of Streptomyces olivochromogenes xylose isomerase.

  17. Hydride heat pump

    DOEpatents

    Cottingham, James G.

    1977-01-01

    Method and apparatus for the use of hydrides to exhaust heat from one temperature source and deliver the thermal energy extracted for use at a higher temperature, thereby acting as a heat pump. For this purpose there are employed a pair of hydridable metal compounds having different characteristics working together in a closed pressure system employing a high temperature source to upgrade the heat supplied from a low temperature source.

  18. Activated aluminum hydride hydrogen storage compositions and uses thereof

    DOEpatents

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  19. Large-scale screening of metal hydrides for hydrogen storage from first-principles calculations based on equilibrium reaction thermodynamics.

    PubMed

    Kim, Ki Chul; Kulkarni, Anant D; Johnson, J Karl; Sholl, David S

    2011-04-21

    Systematic thermodynamics calculations based on density functional theory-calculated energies for crystalline solids have been a useful complement to experimental studies of hydrogen storage in metal hydrides. We report the most comprehensive set of thermodynamics calculations for mixtures of light metal hydrides to date by performing grand canonical linear programming screening on a database of 359 compounds, including 147 compounds not previously examined by us. This database is used to categorize the reaction thermodynamics of all mixtures containing any four non-H elements among Al, B, C, Ca, K, Li, Mg, N, Na, Sc, Si, Ti, and V. Reactions are categorized according to the amount of H(2) that is released and the reaction's enthalpy. This approach identifies 74 distinct single step reactions having that a storage capacity >6 wt.% and zero temperature heats of reaction 15 ≤ΔU(0)≤ 75 kJ mol(-1) H(2). Many of these reactions, however, are likely to be problematic experimentally because of the role of refractory compounds, B(12)H(12)-containing compounds, or carbon. The single most promising reaction identified in this way involves LiNH(2)/LiH/KBH(4), storing 7.48 wt.% H(2) and having ΔU(0) = 43.6 kJ mol(-1) H(2). We also examined the complete range of reaction mixtures to identify multi-step reactions with useful properties; this yielded 23 multi-step reactions of potential interest.

  20. Examining the robustness of first-principles calculations for metal hydride reaction thermodynamics by detection of metastable reaction pathways.

    PubMed

    Kim, Ki Chul; Kulkarni, Anant D; Johnson, J Karl; Sholl, David S

    2011-12-28

    First principles calculations have played a useful role in screening mixtures of complex metal hydrides to find systems suitable for H(2) storage applications. Standard methods for this task efficiently identify the lowest energy reaction mechanisms among all possible reactions involving collections of materials for which DFT calculations have been performed. The resulting mechanism can potentially differ from physical reality due to inaccuracies in the DFT functionals used, or due to other approximations made in estimating reaction free energies. We introduce an efficient method to probe the robustness of DFT-based predictions that relies on identifying reactions that are metastable relative to the lowest energy reaction path predicted with DFT. An important conclusion of our calculations is that in many examples DFT cannot unambiguously predict a single reaction mechanism for a well defined metal hydride mixture because two or more mechanisms have reaction energies that differ by a small amount. Our approach is illustrated by analyzing a series of single step reactions identified in our recent work that examined reactions with a large database of solids [Kim et al., Phys. Chem. Chem. Phys. 2011, 13, 7218].

  1. "Long-range" metal-ligand cooperation in H2 activation and ammonia-promoted hydride transfer with a ruthenium-acridine pincer complex.

    PubMed

    Gunanathan, Chidambaram; Gnanaprakasam, Boopathy; Iron, Mark A; Shimon, Linda J W; Milstein, David

    2010-10-27

    The acridine-based pincer complex 1 exhibits an unprecedented mode of metal-ligand cooperation involving a "long-range" interaction between the distal acridine C9 position and the metal center. Reaction of 1 with H(2)/KOH results in H(2) splitting between the Ru center and C9 with concomitant dearomatization of the acridine moiety. DFT calculations show that this process involves the formation of a Ru dihydride intermediate bearing a bent acridine ligand in which C9 is in close proximity to a hydride ligand followed by through-space hydride transfer. Ammonia induces transfer of a hydride from the Ru center of 1 to C9 of the flexible acridine pincer ligand, forming an unusual dearomatized fac-acridine PNP complex.

  2. DFT study on the mechanism of water-assisted dihydrogen elimination in group 6 octahedral metal hydride complexes.

    PubMed

    Sandhya, K S; Suresh, Cherumuttathu H

    2012-08-28

    The reaction of water with octahedral bis-, tris- and tetrakis-(phosphine)tungsten, (phosphine)molybdenum and (phosphine)chromium complexes has been studied using B3LYP/def2-TZVPP level of DFT to elucidate dissociative, associative and hydride migratory insertion mechanisms for hydrogen elimination. In the dissociative mechanism, phosphine dissociation requires 19.3-28.5 kcal mol(-1) of energy. The phosphine-water ligand exchange is endergonic due to poor coordination ability of water to group 6 metals (binding energy 8.8-15.5 kcal mol(-1)). The ligand exchange leads to intermolecular M-H···H(2)O dihydrogen interaction and facilitates dihydrogen elimination (G(act) = 6.8-15.5 kcal mol(-1)). In the associative mechanism, a water molecule in the first solvation shell interacts with the M-H bond through a dihydrogen bond (interaction energy 2.7-4.0 kcal mol(-1)) and leads to the elimination of H(2) by forming a hydroxide complex. Compared to the dissociative mechanism, G(act) of associative mechanisms are ~22 kcal mol(-1) higher. In the hydride migratory insertion mechanism, the hydride ligand shifts to the CO ligand (G(act) = 25.4-30.4 kcal mol(-1)) to afford a formyl complex and subsequently the H-H bond coupling occurs between formyl and water ligand (G(act) = 2.8-4.4 kcal mol(-1)). In many cases, the migratory insertion mechanism can simultaneously operate with the dissociative mechanism as a minor pathway, whereas owing to high G(act) value, the associative mechanism can be described as inactive in the reaction. The general argument that dihydrogen elimination is preceded by the formation of a dihydrogen intermediate is not applicable for the systems studied herein as the most favoured dissociative mechanism does not pass through such an intermediate. On the other hand, irrespective of the mechanisms, dihydrogen elimination invariably occurs with the formation of a dihydrogen bonded transition state. Our results also suggest that group 6 octahedral metal

  3. Preparation and hydriding behavior of magnesium metal clusters formed in low-temperature cocondensation: application of magnesium for hydrogen storage

    SciTech Connect

    Imamura, H.; Nobunaga, T.; Kawahigashi, M.; Tsuchiya, S.

    1984-08-01

    Magnesium metal clusters formed in low-temperature matrices were investigated with a view to forming the metal hydride. In practice, magnesium readily absorbed large amounts of hydrogen under more moderate conditions (P/sub H/sub 2// = 460 torr, T = 200-250/sup 0/C) when it had been transformed into tetrahydrofuran- (THF-) solvated small particles formed by the cocondensation reaction of magnesium atoms with THF molecules at -196/sup 0/C. To elucidate the characteristics of hydrogen sorption of Mg-THF, a comparative study with pure magnesium powder was carried out. It is believed from the H/sub 2/-D/sub 2/ isotope scrambling measurements that the high activity of the present Mg-THF system for hydrogen absorption is due to a rapid surface process in comparison with the case of the pure magnesium. This identification is reinforced by the employment of surface modification. 19 references, 2 figures, 1 table.

  4. Cerium-Hydride Secondary Building Units in a Porous Metal-Organic Framework for Catalytic Hydroboration and Hydrophosphination.

    PubMed

    Ji, Pengfei; Sawano, Takahiro; Lin, Zekai; Urban, Ania; Boures, Dean; Lin, Wenbin

    2016-11-16

    We report the stepwise, quantitative transformation of Ce(IV)6(μ3-O)4(μ3-OH)4(OH)6(OH2)6 nodes in a new Ce-BTC (BTC = trimesic acid) metal-organic framework (MOF) into the first Ce(III)6(μ3-O)4(μ3-OLi)4(H)6(THF)6Li6 metal-hydride nodes that effectively catalyze hydroboration and hydrophosphination reactions. CeH-BTC displays low steric hindrance and electron density compared to homogeneous organolanthanide catalysts, which likely accounts for the unique 1,4-regioselectivity for the hydroboration of pyridine derivatives. MOF nodes can thus be directly transformed into novel single-site solid catalysts without homogeneous counterparts for sustainable chemical synthesis.

  5. Optimization of a hydride generation metallic furnace atomic absorption spectrometry (HG-MF-AAS) method for tin determination: analytical and morphological parameters of a metallic atomizer.

    PubMed

    Moretto Galazzi, Rodrigo; Arruda, Marco Aurélio Zezzi

    2013-12-15

    The present work describes a metallic tube as hydride atomizer for atomic absorption spectrometry. Its performance is evaluated through tin determination, and the accuracy of the method assessed through the analysis of sediment and water samples. Some chemical parameters (referring to the generation of the hydride) such as acid, NaOH and THB concentrations, as well as physical parameters (referring to the transport of the hydride) such as carrier, acetylene, air flow-rates, flame composition, coil length, tube hole area, among others, are evaluated for optimization of the method. Scanning electron microscopy is used for evaluating morphological parameters in both new and used (after 150 h) tube atomizers. The method presents linear Sn concentration from 50 to 1000 µg L(-1) (r>0.9995; n=3) and the analytical frequency of ca. 40 h(-1). The limit of detection (LOD) is 7.1 µg L(-1) and the precision, expressed as RSD is less than 4% (200 µg L(-1); n=10). The accuracy is evaluated through reference materials, and the results are similar at 95% confidence level according to the t-test.

  6. SYNTHESIS OF METAL HYDRIDES BY MECHANICAL ALLOYING IN AN ATTRITOR MILL: FY07 STATUS REPORT

    SciTech Connect

    Fox, K

    2007-11-08

    The objective of this task was to demonstrate that metal hydrides could be produced by mechanical alloying in the quantities needed to support the tritium production facilities at the Savannah River Site. The objective for the FY07 portion of this task was to demonstrate the production of Zr-Fe getter materials by mechanical alloying and begin to optimize the milling parameters. Three starting compositions (ratios of elemental Zr and Fe powders) were selected and attritor milled under argon for times of 8 to 60 hours. Hexane and liquid nitrogen were used as process control agents. In general, milling times of at least 24 hours were required to form the desired Zr{sub 2}Fe and Zr{sub 3}Fe phases, although a considerable amount of unalloyed Zr and Fe remained. Milling in liquid nitrogen does not appear to provide any advantages over milling in hexane, particularly due to the formation of ZrN after longer milling times. Carbides of Zr formed during some of the milling experiments in hexane. Formation of carbides during milling appears to be much less of an issue than formation of nitrides, although some of the phases that were not able to be identified in the XRD results may also be carbides. Additional XRD experiments should be designed to improve signal to noise ratio (i.e., longer count times) and use a wider scan range to better identify phases that were not clear in the original data. Elemental Zr was present in the as-milled material but not detected after annealing for milling times of 48 and 60 hours. It may be that after intimate mixing of the powders in the attritor mill the annealing temperature was sufficient to allow for the formation of a Zr-Fe alloy. The phase diagram for the binary Zr-Fe system agrees with this proposition. If this is the case, then the annealing conditions should also be investigated and optimized to form as much of the Zr-Fe alloy as possible in the milled powder. Also, this finding would mean that milling times of more than 48 hours

  7. Interaction between a transition-metal fluoride and a transition-metal hydride: water-mediated hydrofluoric acid evolution following fluoride solvation.

    PubMed

    Chierotti, Michele R; Rossin, Andrea; Gobetto, Roberto; Peruzzini, Maurizio

    2013-11-04

    The reaction between the nickel(II) PCP pincer fluoride complex ((tBu)PCP)Ni(F) [(tBu)PCP = 2,6-C6H3(CH2P(t)Bu2)2] and the tungsten(II) carbonyl hydride CpW(H)(CO)3 (Cp = η(5)-C5H5(-)) leads to hydrofluoric acid evolution and formation of the bimetallic isocarbonylic species [CpW(CO)2(μ-κ,C:κ,O-CO)···Ni((tBu)PCP)]. The process has been monitored through multinuclear ((19)F, (31)P{(1)H}, (1)H) variable-temperature NMR spectroscopy, collecting (19)F T1 data values for a fluoride ligand bound to a transition metal. The extremely short relaxation time (minimum value of 13 ms at 193 K) is ascribed to the large chemical shift anisotropy of the Ni-F bond (688 ppm). The in-depth NMR analysis has revealed that the fluoride-hydride interaction is not direct but water-mediated, at odds with what was previously observed for the "hydride-hydride" case ((tBu)PCP)Ni(H)/CpW(H)(CO)3. Kinetic measurements have unveiled that the first step of the overall mechanism is thought to be solvation of the fluoride ligand (as a result of Ni-F···H2O hydrogen bonding), while further reaction of the solvated fluoride with CpW(H)(CO)3 is extremely slow and competes with the side reaction of fluoride replacement by a water molecule on the nickel center to form the [((tBu)PCP)Ni(H2O)](+) aquo species. Finally, density functional theory analysis of the solvation process through a discrete + continuum model has been accomplished, at the M06//6-31+G(d,p) level of theory, to support the mechanistic hypothesis.

  8. Using magnetization measurements to detect small amounts of plutonium hydride formation in plutonium metal

    SciTech Connect

    Kim, Jae Wook; Mielke, Charles H.; Zapf, Vivien; Baiardo, Joseph P.; Mitchell, Jeremy N.; Richmond, Scott; Schwartz, Daniel S.; Mun, Eun D.; Smith, Alice Iulia

    2014-10-20

    We report the formation of plutonium hydride in 2 at % Ga-stabilized δ-Pu, with 1 atomic % H charging. We show that magnetization measurements are a sensitive, quantitative measure of ferromagnetic plutonium hydride against the nonmagnetic background of plutonium. It was previously shown that at low hydrogen concentrations, hydrogen forms super-abundant vacancy complexes with plutonium, resulting in a bulk lattice contraction. Here we use magnetization, X-ray and neutron diffraction measurements to show that in addition to forming vacancy complexes, at least 30% of the H atoms bond with Pu to precipitate PuHx, largely on the surface of the sample with x ~ 1.9. We observe magnetic hysteresis loops below 40 K with magnetic remanence, consistent with precipitates of ferromagnetic PuH1.9.

  9. Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries

    NASA Technical Reports Server (NTRS)

    Anani, Anaba; Visintin, Arnaldo; Petrov, Konstantin; Srinivasan, Supramaniam; Reilly, James J.; Johnson, John R.; Schwarz, Ricardo B.; Desch, Paul B.

    1993-01-01

    Since 1990, there has been an ongoing collaboration among the authors in the three laboratories to (1) prepare alloys of the AB(sub 5) and AB(sub 2) types, using arc-melting/annealing and mechanical alloying/annealing techniques; (2) examine their physico-chemical characteristics (morphology, composition); (3) determine the hydrogen absorption/desorption behavior (pressure-composition isotherms as a function of temperature); and (4) evaluate their performance characteristics as hydride electrodes (charge/discharge, capacity retention, cycle life, high rate capability). The work carried out on representative AB(sub 5) and AB(sub 2) type modified alloys (by partial substitution or with small additives of other elements) is presented. The purpose of the modification was to optimize the thermodynamics and kinetics of the hydriding/dehydriding reactions and enhance the stabilities of the alloys for the desired battery applications. The results of our collaboration, to date, demonstrate that (1) alloys prepared by arc melting/annealing and mechanical alloying/annealing techniques exhibit similar morphology, composition and hydriding/dehydriding characteristics; (2) alloys with the appropriate small amounts of substituent or additive elements: (1) retain the single phase structure, (2) improve the hydriding/dehydriding reactions for the battery applications, and (3) enhance the stability in the battery environment; and (3) the AB(sub 2) type alloys exhibit higher energy densities than the AB(sub 5) type alloys but the state-of-the-art, commercialized batteries are predominantly manufactured using Ab(sub 5) type alloys.

  10. Hydride compressor

    DOEpatents

    Powell, James R.; Salzano, Francis J.

    1978-01-01

    Method of producing high energy pressurized gas working fluid power from a low energy, low temperature heat source, wherein the compression energy is gained by using the low energy heat source to desorb hydrogen gas from a metal hydride bed and the desorbed hydrogen for producing power is recycled to the bed, where it is re-adsorbed, with the recycling being powered by the low energy heat source. In one embodiment, the adsorption-desorption cycle provides a chemical compressor that is powered by the low energy heat source, and the compressor is connected to a regenerative gas turbine having a high energy, high temperature heat source with the recycling being powered by the low energy heat source.

  11. Phosphenium Hydride Reduction of [(cod)MX2] (M = Pd, Pt; X = Cl, Br): Snapshots on the Way to Phosphenium Metal(0) Halides and Synthesis of Metal Nanoparticles.

    PubMed

    Nickolaus, Jan; Imbrich, Dominik A; Schlindwein, Simon H; Geyer, Adrian H; Nieger, Martin; Gudat, Dietrich

    2017-03-06

    The outcome of the reduction of [(cod)PtX2] (X = Cl, Br; cod = 1,5-cyclooctadiene) with N-heterocyclic phosphenium hydrides (R)NHP-H depends strongly on the steric demand of the N-aryl group R and the nature of X. Reaction of [(cod)PtCl2] with (Dipp)NHP-H featuring bulky N-Dipp groups produced an unprecedented monomeric phosphenium metal(0) halide [((Dipp)NHP)((Dipp)NHP-H)PtCl] stabilized by a single phosphine ligand. The phosphenium unit exhibits a pyramidal coordination geometry at the phosphorus atom and may according to DFT calculations be classified as a Z-type ligand. In contrast, reaction of [(cod)PtBr2] with the sterically less protected (Mes)NHP-H afforded a mixture of donor-ligand free oligonuclear complexes [{((Mes)NHP)PtBr}n] (n = 2, 3), which are structural analogues of known palladium complexes with μ2-bridging phosphenium units. All reductions studied proceed via spectroscopically detectable intermediates, several of which could be unambiguously identified by means of multinuclear ((1)H, (31)P, (195)Pt) NMR spectroscopy and computational studies. The experimental findings reveal that the phosphenium hydrides in these multistep processes adopt a dual function as ligands and hydride transfer reagents. The preference for the observed intricate pathways over seemingly simpler ligand exchange processes is presumably due to kinetic reasons. The attempt to exchange the bulky phosphine ligand in [((Dipp)NHP)((Dipp)NHP-H)PtCl] by Me3P resulted in an unexpected isomerization to a platinum(0) chlorophosphine complex via a formal chloride migration from platinum to phosphorus, which accentuates the electrophilic nature of the phosphenium ligand. Phosphenium metal(0) halides of platinum further show a surprising thermal stability, whereas the palladium complexes easily disintegrate upon gentle heating in dimethyl sulfoxide to yield metal nanoparticles, which were characterized by TEM and XRD studies.

  12. Preparation of nanocrystalline metal oxides and intermetallic phases by controlled thermolysis of organometallic coordination polymers

    NASA Astrophysics Data System (ADS)

    Rehbein, Marcus; Epple, Matthias; Fischer, R. Dieter

    2000-06-01

    Organometallic coordination polymers of the super-Prussian blue type [(Me 3Sn) nM(CN) 6] (Me=CH 3; n=3, 4; M=Fe, Co, Ru) were subjected to thermolysis in different atmospheres (air, argon, hydrogen/nitrogen). In air, oxides were found: Fe 2O 3/SnO 2 (crystalline and nanocrystalline), Co 2SnO 4 and RuO 2. In argon and in hydrogen, the intermetallic phases FeSn 2, CoSn 2, Ru 3Sn 7 and Fe 3SnC were obtained. A detailed mechanistic study was carried out using thermogravimetry (TG), X-ray diffraction (XRD), X-ray absorption spectroscopy (EXAFS) at Fe, Co, Ru and Sn K-edges, infrared spectroscopy (IR) and elemental analysis. Below 250°C, Me 3SnCN and (CN) 2 are released, whereas above 250°C oxidation or pyrolysis leads to the corresponding oxides or intermetallic phases. Polymeric cyanides containing at least two metals have turned out to be suitable precursors to prepare well-defined oxides and intermetallic phases at comparatively low temperature.

  13. Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals

    NASA Astrophysics Data System (ADS)

    Borovikov, Valery; Mendelev, Mikhail I.; King, Alexander H.

    2016-12-01

    Dislocation nucleation from grain boundaries (GB) can control plastic deformation in nano-crystalline metals under certain conditions, but little is known about what controls dislocation nucleation, because when data from different materials are compared, the variations of many interacting properties tend to obscure the effects of any single property. In this study, we seek clarification by applying a unique capability of semi-empirical potentials in molecular dynamics simulations: the potentials can be modified such that all significant material properties but one, are kept constant. Using a set of potentials developed to isolate the effects of stacking fault energy, we show that for a given grain boundary, loading orientation and strain rate, the yield stress depends linearly on both the stable and unstable stacking fault energies. The coefficients of proportionality depend on the GB structure and the value of the yield stress is related to the density of the E structural units in the GB. While the impact of the stable stacking fault energy is easy to understand, the unstable stacking fault energy requires more elucidation and we provide a framework for understanding how it affects the nucleation and propagation process.

  14. Hydrogenation using hydrides and acid

    DOEpatents

    Bullock, R. Morris

    1990-10-30

    A process for the non-catalytic hydrogenation of organic compounds, which contain at least one reducible functional group, which comprises reacting the organic compound, a hydride complex, preferably a transition metal hydride complex or an organosilane, and a strong acid in a liquid phase.

  15. A Ti-V-based bcc phase alloy for use as metal hydride electrode with high discharge capacity.

    PubMed

    Yu, X B; Wu, Z; Xia, B J; Xu, N X

    2004-07-08

    The electrochemical characteristics of single bcc phase Ti-30V-15Cr-15Mn alloy were investigated. It was demonstrated that the single bcc phase alloy has high electrochemical discharge performance at high temperature. Its discharge capacity is closely related with temperature and discharge current. The first discharge capacities of 580-814 mAh g(-1) of the alloy powder were obtained at discharge current of 45-10 mA g(-1) in 6 M KOH solution at 353 K. Although the electrochemical cycle life of the alloy is unsatisfactory at present, it opens up prospects for developing a new hydrogen storage alloy with high hydrogen capacity for use as high performance metal hydride electrodes in rechargeable Ni-MH battery.

  16. Thermal ammonia activation by cationic transition-metal hydrides of the first row--small but mighty.

    PubMed

    Kretschmer, Robert; Schlangen, Maria; Schwarz, Helmut

    2012-06-01

    The thermal reactions of cationic 3d transition-metal hydrides MH(+) (M=Sc-Zn, except V and Cu) with ammonia have been studied by gas-phase experiments and computational methods. There are three primary reaction channels: 1) H(2) elimination by N-H bond activation, 2) ligand exchange under the formation of M(NH(3))(+), and 3) proton transfer to yield NH(4)(+). Computational studies of these three reaction channels have been performed for the couples MH(+)/NH(3) (M=Sc-Zn) to elucidate mechanistic aspects and characteristic reaction patterns of the first row. For N-H activation, σ-bond metathesis was found to be operative.

  17. Analysis of Hazards Associated with a Process Involving Uranium Metal and Uranium Hydride Powders

    SciTech Connect

    Bullock, J.S.

    2000-05-01

    An analysis of the reaction chemistry and operational factors associated with processing uranium and uranium hydride powders is presented, focusing on a specific operation in the Development Division which was subjected to the Job Hazard Analysis (JHA) process. Primary emphasis is on the thermodynamic factors leading to pyrophoricity in common atmospheres. The discussion covers feed powders, cold-pressed and hot-pressed materials, and stray material resulting from the operations. The sensitivity of the various forms of material to pyrophoricity in common atmospheres is discussed. Operational recommendations for performing the work described are given.

  18. Analysis of metals in marine sediments by microwave extraction and flame, hydride generation and cold vapor atomic-absorption spectrometry

    SciTech Connect

    Martinez-Garcia, M.L.; Zubieta, A.C.; Lorenzo, S.M.; Lopez-Mahia, P.; Rodriguez, D.P.

    1999-01-01

    A simple and fast metal extraction method that combines closed vessels and microwave heating for the simultaneous extraction of ten selected heavy metals (As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Zn) from marine sediments is proposed. Digestion conditions, i.e., power and times microwave irradiation, reagent extractant, sample amount, were optimized to recover the potentially available metallic fraction not bound in silicates. A nitric acid and two step microwave program was established. The resulting solutions were analyzed by flame (FAAS), hydride generation (HG-AAS) and cold vapor (CV-AAS) atomic absorption spectrometry. Quantifications were made using direct calibration with aqueous standards. The recoveries of the spiked samples investigated ranged from 89 to 113%. The results obtained from analyzing the BCR certified reference sediment CRM 277 Estuarine Sediment were in good agreement with the certified values (93--105%), except for low values for chromium (79%). The relative standard deviations for the determination of metals were less than 4%. Finally, the technique designed herein was applied to sediment samples from La Coruna estuary, NW Spain.

  19. Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals.

    PubMed

    Kobler, A; Kashiwar, A; Hahn, H; Kübel, C

    2013-05-01

    Nanocrystalline metals are expected to exhibit different deformation mechanisms when compared to their coarse grained counterparts because the dislocation storage capacity decreases and the grain boundary mediated processes become more pronounced with decreasing grain size. As a new approach to directly image and quantify the plastic deformation processes in nanocrystalline thin films, a combination of automated crystal orientation mapping in microprobe STEM mode with in situ straining inside a TEM was developed. ACOM-TEM closes the gap between EBSD and BF/DFTEM by providing full orientation maps with nanometer resolution. The novel combination with in situ straining provided for the first time the possibility to directly image and quantify the structural changes of all crystallites in the ensemble of a thin film at the nanometer scale during mechanical deformation. It was used to characterize the metallographic changes during tensile deformation of a nanocrystalline Au thin film prepared by magnetron sputtering. The investigation of the grain size, grain orientation and twinning on a global (grain average over a micron sized area) and local (assembly of selected grains) scale allowed for the development of an in depth picture of the deformation processes. Grain boundary motion and local grain rotation were two of the processes acting to dissipate the applied stress. Additionally, twinning/detwinning occurred simultaneously during straining. These processes, which occurred locally already in the micro-plastic regime, led to global grain growth starting at the transition to the macro-plastic deformation regime.

  20. Microstructure evolution of metallic nanocrystalline thin-films under ion-beam irradiation

    NASA Astrophysics Data System (ADS)

    Kaoumi, Djamel

    The microstructural evolution of nanocrystalline metallic thin-films under ion irradiation, especially grain growth and second-phase precipitation, was studied with detailed in situ experiments, and a theoretical model was developed to explain the results of grain-growth. Free-standing Zr, Pt, Cu and Au, Cu-Fe, and Zr-Fe nanocrystalline thin films prepared by sputter deposition were irradiated in-situ at the Intermediate Voltage Electron Microscope (IVEM) at Argonne National Laboratory with Ar and Kr ions to fluences in excess of 1016 ion/cm2 at temperatures ranging from 20 to 773 K. The microstructural evolution of the thin-films was followed in situ by systematically recording bright field images and diffraction patterns at successive ion-irradiation doses. Grain growth was observed as a result of irradiation in all samples at all irradiation temperatures. The results suggest the existence of three regimes with increasing irradiating temperature: a low temperature regime (below about 0.15 to 0.22 Tm) where grain-growth does not depend on the irradiation temperature, a thermally assisted regime where both the grain-growth rate and the final grain size increase with increasing irradiation temperature, and a thermal regime where thermal effects dominate ion beam effects. Similarly to thermal grain growth, the ion-irradiation induced grain growth curves could be best fitted with curves of the type: Dn-Dn0=KF with n˜3 in the low temperature regime. The effect of solute addition on grain-growth was investigated using Zr(Fe) and Cu(Fe) supersaturated solid-solutions. In the case of Zr-Fe, Zr2Fe precipitates formed during irradiation (with the dose-to-precipitation of Zr2Fe decreasing with increasing irradiation temperature), whereas Cu-Fe remained as a solid-solution. The grain-growth rate and final size decreased in both alloys with respect to the pure metallic films as a result of second-phase particle pinning (Zener drag) (Zr-Fe), and solute drag (Cu-Fe). The grain

  1. Hydrogen Outgassing from Lithium Hydride

    SciTech Connect

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  2. In-situ Hydrogen Sorption 2D-ACAR Facility for the Study of Metal Hydrides for Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    Legerstee, W. J.; de Roode, J.; Anastasopol, A.; Falub, C. V.; Eijt, S. W. H.

    We developed a dedicated hydrogen sorption setup coupled to a positron 2D-ACAR (two-dimensional Angular Correlation of Annihilation Radiation) setup employing a 22Na-source, which will enable to collect 2D-ACAR momentum distributions in-situ as a function of temperature, hydrogen pressure and hydrogen content. In parallel, a dedicated glovebox was constructed for handling air-sensitive metal and metal hydride samples, with a special entrance for the 2D-ACAR sample insert. The 2D-ACAR setup was tested in first measurements on a Pd0.75Ag0.25 foil and on a ball-milled MgH2 powder in both the hydrogen loaded and desorbed states. The hydrogen loaded Pd0.75Ag0.25Hx sample was kept under a 1 bar hydrogen pressure to prevent partial desorption during measurements at room temperature. The collected 2D-ACAR distributions of Pd0.75Ag0.25 and Pd0.75Ag0.25Hx showed similar features as observed in previous studies. The broadening of the ACAR distributions observed for the Mg to MgH2 metal-insulator transition was compared in a quantitative manner to ab-initio calculations reported in the literature.

  3. Effects of oxide distributed in grain boundaries on microstructure stability of nanocrystalline metals

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Li, Hui; Biao Pang, Jin; Wang, Zhu

    2013-06-01

    Nanocrystalline copper and zinc prepared by high-pressure compaction method have been studied by positron lifetime spectroscopy associated with X-ray diffraction. For nanocrystalline Cu, mean grain sizes of the samples decrease after being annealed at 900 °C and increase during aging at 180 °C, revealing that the atoms exchange between the two regions. The positron lifetime results indicate that the vacancy clusters formed in the annealing process are unstable and decomposed at the aging time below 6 hours. In addition, the partially oxidized surfaces of the nanoparticles hinder the grain growth during the ageing at 180 °C, and the vacancy clusters inside the disorder regions which are related to Cu2O need longer aging time to decompose. In the case of nanocrystalline Zn, the open volume defect (not larger than divacancy) is dominant according to the high relative intensity for the short positron lifetime (τ1). The oxide (ZnO) inside the grain boundaries has been found having an effect to hinder the decrease of average positron lifetime (τav) during the annealing, which probably indicates that the oxide stabilizes the microstructure of the grain boundaries. For both nanocrystalline copper and zinc, the oxides in grain boundaries enhance the thermal stability of the microstucture, in spite of their different crystal structures. This effect is very important for the nanocrystalline materials using as radiation resistant materials.

  4. Hydride reactivity of Ni(II)-X-Ni(II) entities: mixed-valent hydrido complexes and reversible metal reduction.

    PubMed

    Gehring, Henrike; Metzinger, Ramona; Herwig, Christian; Intemann, Julia; Harder, Sjoerd; Limberg, Christian

    2013-01-28

    After the lithiation of PYR-H(2) (PYR(2-) =[{NC(Me)C(H)C(Me)NC(6)H(3)(iPr)(2)}(2)(C(5)H(3)N)](2-)), which is the precursor of an expanded β-diketiminato ligand system with two binding pockets, its reaction with [NiBr(2) (dme)] led to a dinuclear nickel(II)-bromide complex, [(PYR)Ni(μ-Br)NiBr] (1). The bridging bromide ligand could be selectively exchanged for a thiolate ligand to yield [(PYR)Ni(μ-SEt)NiBr] (3). In an attempt to introduce hydride ligands, both compounds were treated with KHBEt(3). This treatment afforded [(PYR)Ni(μ-H)Ni] (2), which is a mixed valent Ni(I)-μ-H-Ni(II) complex, and [(PYR-H)Ni(μ-SEt)Ni] (4), in which two tricoordinated Ni(I) moieties are strongly antiferromagnetically coupled. Compound 4 is the product of an initial salt metathesis, followed by an intramolecular redox process that separates the original hydride ligand into two electrons, which reduce the metal centres, and a proton, which is trapped by one of the binding pockets, thereby converting it into an olefin ligand on one of the Ni(I) centres. The addition of a mild acid to complex 4 leads to the elimination of H(2) and the formation of a Ni(II)Ni(II) compound, [(PYR)Ni(μ-SEt)NiOTf] (5), so that the original Ni(II) (μ-SEt)Ni(II) X core of compound 3 is restored. All of these compounds were fully characterized, including by X-ray diffraction, and their molecular structures, as well as their formation processes, are discussed.

  5. Use of the liquid-liquid interface for generating ultrathin nanocrystalline films of metals, chalcogenides, and oxides.

    PubMed

    Rao, C N R; Kulkarni, G U; Agrawal, Ved Varun; Gautam, Ujjal K; Ghosh, Moumita; Tumkurkar, Usha

    2005-09-15

    The air-water interface has traditionally been employed to prepare particle assemblies and films of metals and semiconductors. The interface between water and an organic liquid, however, has not been investigated sufficiently for possible use in preparing nanocrystals and thin films of materials. In this article, we demonstrate the use of the liquid-liquid interface as a medium for preparing ultrathin films of metals, chalcogenides and oxides. The method involves the reaction at the interface between a metal-organic compound in the organic layer and an appropriate reagent for reduction, sulfidation, etc. in the aqueous layer. Some of the materials discussed are nanocrystalline films of gold, CuS, CuSe, CuO, and Cu(OH)2 formed at the liquid-liquid interface. The results reported in this article should demonstrate the versatility and potential of the liquid-liquid interface for preparing nanomaterials and ultrathin films and encourage further research in this area.

  6. Final Report: DE- FC36-05GO15063, Fundamental Studies of Advanced High-Capacity, Reversible Metal Hydrides

    SciTech Connect

    Jensen, Craig; McGrady, Sean; Severa, Godwin; Eliseo, Jennifer; Chong, Marina

    2013-05-31

    The project was component of the US DOE, Metal Hydride Center of Excellence (MHCoE). The Sandia National Laboratory led center was established to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE/FreedomCAR 2010 and 2015 system targets for hydrogen storage materials. Our approach entailed a wide variety of activities ranging from synthesis, characterization, and evaluation of new candidate hydrogen storage materials; screening of catalysts for high capacity materials requiring kinetics enhancement; development of low temperature methods for nano-confinement of hydrides and determining its effects on the kinetics and thermodynamics of hydrides; and development of novel processes for the direct re-hydrogenation of materials. These efforts have resulted in several advancements the development of hydrogen storage materials. We have greatly extended the fundamental knowledge about the highly promising hydrogen storage carrier, alane (AlH3), by carrying out the first crystal structure determinations and the first determination of the heats of dehydrogenation of β–AlH3 and γ-AlD3. A low-temperature homogenous organometallic approach to incorporation of Al and Mg based hydrides into carbon aerogels has been developed that that allows high loadings without degradation of the nano-porous scaffold. Nano-confinement was found to significantly improve the dehydrogenation kinetics but not effect the enthalpy of dehydrogenation. We conceived, characterized, and synthesized a novel class of potential hydrogen storage materials, bimetallic borohydrides. These novel compounds were found to have many favorable properties including release of significant amounts of hydrogen at moderate temperatures (75-190 º C). However, in situ IR studies in tandem with thermal gravimetric analysis have shown that about 0.5 equivalents of diborane are released during the

  7. Method for producing nanocrystalline multicomponent and multiphase materials

    DOEpatents

    Eastman, J.A.; Rittner, M.N.; Youngdahl, C.J.; Weertman, J.R.

    1998-03-17

    A process for producing multi-component and multiphase nanophase materials is provided wherein a plurality of elements are vaporized in a controlled atmosphere, so as to facilitate thorough mixing, and then condensing and consolidating the elements. The invention also provides for a multicomponent and multiphase nanocrystalline material of specified elemental and phase composition having component grain sizes of between approximately 1 nm and 100 nm. This material is a single element in combination with a binary compound. In more specific embodiments, the single element in this material can be a transition metal element, a non-transition metal element, a semiconductor, or a semi-metal, and the binary compound in this material can be an intermetallic, an oxide, a nitride, a hydride, a chloride, or other compound. 6 figs.

  8. Method for producing nanocrystalline multicomponent and multiphase materials

    DOEpatents

    Eastman, Jeffrey A.; Rittner, Mindy N.; Youngdahl, Carl J.; Weertman, Julia R.

    1998-01-01

    A process for producing multi-component and multiphase nanophase materials is provided wherein a plurality of elements are vaporized in a controlled atmosphere, so as to facilitate thorough mixing, and then condensing and consolidating the elements. The invention also provides for a multicomponent and multiphase nanocrystalline material of specified elemental and phase composition having component grain sizes of between approximately 1 nm and 100 nm. This material is a single element in combination with a binary compound. In more specific embodiments, the single element in this material can be a transition metal element, a non-transition metal element, a semiconductor, or a semi-metal, and the binary compound in this material can be an intermetallic, an oxide, a nitride, a hydride, a chloride, or other compound.

  9. Hydride-induced anionic cyclization: an efficient method for the synthesis of 6-H-phenanthridines via a transition-metal-free process.

    PubMed

    Chen, Wei-Lin; Chen, Chun-Yuan; Chen, Yan-Fu; Hsieh, Jen-Chieh

    2015-03-20

    A novel procedure for hydride-induced anionic cyclization has been developed. It includes the reduction of a biaryl bromo-nitrile with a nucleophilic aromatic substitution (S(N)Ar). A range of polysubstituted 6-H-phenanthridines were so obtained in moderate to good yield with good substrate tolerance. This method involves a concise transition-metal-free process and was applied to synthesize natural alkaloids.

  10. Structural phase stability, electronic structure and mechanical properties of alkali metal hydrides AMH4 (A=Li, Na; M=B, AL)

    NASA Astrophysics Data System (ADS)

    Santhosh, M.; Rajeswarapalanichamy, R.

    2016-01-01

    The structural stability of Alkali metal hydrides AMH4 (A=Li, Na; M=B, Al) is analyzed among the various crystal structures, namely hexagonal (P63mc), tetragonal (P42/nmc), tetragonal (P-421c), tetragonal (I41/a), orthorhombic (Pnma) and monoclinic (P21/c). It is observed that, orthorhombic (Pnma) phase is the most stable structure for LiBH4, monoclinic (P21/c) for LiAlH4, tetragonal (P42/nmc) for NaBH4 and tetragonal (I41/a) for NaAlH4 at normal pressure. Pressure induced structural phase transitions are observed in LiBH4, LiAlH4, NaBH4 and NaAlH4 at the pressures of 4 GPa, 36.1 GPa, 26.5 GPa and 46 GPa respectively. The electronic structure reveals that these metal hydrides are wide band gap insulators. The calculated elastic constants indicate that these metal hydrides are mechanically stable at normal pressure.

  11. Development of novel low-temperature selective hydrogen gas sensors made of palladium/oxide or nitride capped Magnesium-transition metal hydride films

    NASA Astrophysics Data System (ADS)

    Tang, Yu Ming

    Palladium capped Mg-based transition metal alloy film (Pd/Mg-TM) is a potentially useful hydrogen gas (H2) sensing material, which can operate at low temperature for detection of H2 leakage in an environment to ensure safe use and storage of the gas. The Pd layer catalytically dissociates hydrogen molecules, and the hydrogen atoms produced can enter (hydridation) or be detached (dehydridation) from the alloy layer. These processes are reversible, such that the film is switchable between a metal state and a hydride state, giving rise to substantial changes in its optical transmittance/reflectance and electrical resistivity. Unlike a conventional metal-oxide (MOx) H2 sensor, hydridation of an Mg-TM film is associated with relatively low enthalpy, and hence can perform at temperature much lower than the operation temperature of an MOx sensor (typically around 500°C or above). As such, an Mg-TM based sensor does not experience undesired annealing effect during operation, and hence is much more stable and durable. Furthermore, the detection selectivity of a Pd/Mg-TM film versus other reducing gases is superior to most conventional MOx-type hydrogen sensors. In this project, we systematically investigated the H2 sensing properties of Pd/Mg-TM films.

  12. The reactivity of sodium alanates with O[2], H[2]O, and CO[2] : an investigation of complex metal hydride contamination in the context of automotive systems.

    SciTech Connect

    Dedrick, Daniel E.; Bradshaw, Robert W.; Behrens, Richard, Jr.

    2007-08-01

    Safe and efficient hydrogen storage is a significant challenge inhibiting the use of hydrogen as a primary energy carrier. Although energy storage performance properties are critical to the success of solid-state hydrogen storage systems, operator and user safety is of highest importance when designing and implementing consumer products. As researchers are now integrating high energy density solid materials into hydrogen storage systems, quantification of the hazards associated with the operation and handling of these materials becomes imperative. The experimental effort presented in this paper focuses on identifying the hazards associated with producing, storing, and handling sodium alanates, and thus allowing for the development and implementation of hazard mitigation procedures. The chemical changes of sodium alanates associated with exposure to oxygen and water vapor have been characterized by thermal decomposition analysis using simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) and X-ray diffraction methods. Partial oxidation of sodium alanates, an alkali metal complex hydride, results in destabilization of the remaining hydrogen-containing material. At temperatures below 70 C, reaction of sodium alanate with water generates potentially combustible mixtures of H{sub 2} and O{sub 2}. In addition to identifying the reaction hazards associated with the oxidation of alkali-metal containing complex hydrides, potential treatment methods are identified that chemically stabilize the oxidized material and reduce the hazard associated with handling the contaminated metal hydrides.

  13. Rare-earth metal hydrides supported by silicon-bridged boratabenzene fluorenyl ligands: synthesis, structure and reactivity.

    PubMed

    Wang, Chunhong; Xiang, Li; Leng, Xuebing; Chen, Yaofeng

    2017-01-24

    The reactions of rare-earth metal benzyl complexes supported by silicon-bridged boratabenzene fluorenyl ligands with PhSiH3 in toluene gave the corresponding dinuclear hydrides [{μ-[Me2Si(C13H8)(C5H4BNEt2)]}Ln(μ-H)(THF)]2 (3-Ln; Ln = La, Nd, Gd), wherein the rare-earth metal ions are linked by both silicon-bridged boratabenzene fluorenyl ligands and hydrido ligands. The reactivity of these hydrides toward unsaturated substrates was studied. Among these, alkynides [{μ-[Me2Si(C13H8)(C5H4BNEt2)]}Ln(μ-CCPh)]2 (4-Ln; Ln = La, Nd) were obtained via the σ-bond metathesis reaction, when 3-Ln (Ln = La, Nd) was treated with phenylacetylene. While reacting with 3-hexyne, the mono-addition product [{μ-[Me2Si(C13H8)(C5H4BNEt2)]}Ln]2(μ-H)[μ-C(Et)[double bond, length as m-dash]C(H)Et] (5-Ln; Ln = La, Nd) was formed. Further investigations on the reactivity of 3-La displayed that benzonitrile and tert-butyl isonitrile readily inserted into the La-H bonds, affording an azomethine complex [{μ-[Me2Si(C13H8)(C5H4BNEt2)]}La{μ-N[double bond, length as m-dash]C(H)Ph}]2 (6-La) and an N-tert-butylformimidoyl complex [{μ-[Me2Si(C13H8)(C5H4BNEt2)]}La{μ,η(2)-C(H)[double bond, length as m-dash]N(t)Bu}]2 (7-La), respectively. The reaction with N,N'-diisopropylcarbodiimide at room temperature or at 75 °C gave a dimeric complex [{μ-[Me2Si(C13H8)(C5H4BNEt2)]}La]2(μ-H)[μ-N((i)Pr)CHN((i)Pr)] (8-La) or a monomeric complex [Me2Si(C13H8)(C5H4BNEt2)]La[N((i)Pr)CHN((i)Pr)] (9-La), respectively.

  14. Hydride compositions

    DOEpatents

    Lee, Myung, W.

    1994-01-01

    Disclosed are a composition for use in storing hydrogen and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the H equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to H, and then heating below the softening temperature of any of the constituents. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P{sub H}{sub 2} and determining H/M from the isothermic function of the composition.

  15. Hydride compositions

    DOEpatents

    Lee, Myung W.

    1995-01-01

    A composition for use in storing hydrogen, and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the hydrogen equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to hydrogen and then heating at a temperature below the softening temperature of any of the. constituents so that their chemical and structural integrity is preserved. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P.sub.H.sbsb.2 and determining H/M from the isothermic function of the composition.

  16. On the structure and bonding of first row transition metal ozone carbonyl hydrides.

    PubMed

    Venter, Gerhard A; Raubenheimer, Helgard G; Dillen, Jan

    2007-08-23

    Model complexes of the general form M(CO)m(H)n(O3) (m = 1-5, n = 0 or 1) between ozone and the transition metals Ti to Cu were studied by density functional theory (DFT) calculations. The CDA charge decomposition method was used to analyze the interaction between the metal atom and the ozone ligand in terms of the traditional donation-back-donation mechanisms. Information about bond strengths was extracted from an analysis of the electron density in terms of the theory of atoms in molecules (AIM). The bonding in the ozone-metal complex was also studied within the NBO paradigm. Bond dissociation energies were calculated to be positive for all the complexes studied. Considering all the criteria employed in this study to analyze the interaction between the ozone and the transition metal, the Fe-complex is predicted to be the most stable, whereas the copper complex has the weakest metal-ozone interaction.

  17. Investigation of cracks in GaN films grown by combined hydride and metal organic vapor-phase epitaxial method

    NASA Astrophysics Data System (ADS)

    Liu, Jianming; Liu, Xianlin; Li, Chengming; Wei, Hongyuan; Guo, Yan; Jiao, Chunmei; Li, Zhiwei; Xu, Xiaoqing; Song, Huaping; Yang, Shaoyan; Zhu, Qinsen; Wang, Zhanguo; Yang, Anli; Yang, Tieying; Wang, Huanhua

    2011-12-01

    Cracks appeared in GaN epitaxial layers which were grown by a novel method combining metal organic vapor-phase epitaxy (MOCVD) and hydride vapor-phase epitaxy (HVPE) in one chamber. The origin of cracks in a 22-μm thick GaN film was fully investigated by high-resolution X-ray diffraction (XRD), micro-Raman spectra, and scanning electron microscopy (SEM). Many cracks under the surface were first observed by SEM after etching for 10 min. By investigating the cross section of the sample with high-resolution micro-Raman spectra, the distribution of the stress along the depth was determined. From the interface of the film/substrate to the top surface of the film, several turnings were found. A large compressive stress existed at the interface. The stress went down as the detecting area was moved up from the interface to the overlayer, and it was maintained at a large value for a long depth area. Then it went down again, and it finally increased near the top surface. The cross-section of the film was observed after cleaving and etching for 2 min. It was found that the crystal quality of the healed part was nearly the same as the uncracked region. This indicated that cracking occurred in the growth, when the tensile stress accumulated and reached the critical value. Moreover, the cracks would heal because of high lateral growth rate.

  18. Thermochemical Energy Storage through De/Hydrogenation of Organic Liquids: Reactions of Organic Liquids on Metal Hydrides.

    PubMed

    Ulmer, Ulrich; Cholewa, Martin; Diemant, Thomas; Bonatto Minella, Christian; Dittmeyer, Roland; Behm, R Jürgen; Fichtner, Maximilian

    2016-06-08

    A study of the reactions of liquid acetone and toluene on transition metal hydrides, which can be used in thermal energy or hydrogen storage applications, is presented. Hydrogen is confined in TiFe, Ti0.95Zr0.05Mn1.49V0.45Fe0.06 ("Hydralloy C5"), and V40Fe8Ti26Cr26 after contact with acetone. Toluene passivates V40Fe8Ti26Cr26 completely for hydrogen desorption while TiFe is only mildly deactivated and desorption is not blocked at all in the case of Hydralloy C5. LaNi5 is inert toward both organic liquids. Gas chromatography (GC) investigations reveal that CO, propane, and propene are formed during hydrogen desorption from V40Fe8Ti26Cr26 in liquid acetone, and methylcyclohexane is formed in the case of liquid toluene. These reactions do not occur if dehydrogenated samples are used, which indicates an enhanced surface reactivity during hydrogen desorption. Significant amounts of carbon-containing species are detected at the surface and subsurface of acetone- and toluene-treated V40Fe8Ti26Cr26 by X-ray photoelectron spectroscopy (XPS). The modification of the surface and subsurface chemistry and the resulting blocking of catalytic sites is believed to be responsible for the containment of hydrogen in the bulk. The surface passivation reactions occur only during hydrogen desorption of the samples.

  19. Thermal coupling potential of Solid Oxide Fuel Cells with metal hydride tanks: Thermodynamic and design considerations towards integrated systems

    NASA Astrophysics Data System (ADS)

    Yiotis, Andreas G.; Kainourgiakis, Michael E.; Kosmidis, Lefteris I.; Charalambopoulou, Georgia C.; Stubos, Athanassios K.

    2014-12-01

    We study the thermal coupling potential between a high temperature metal hydride (MH) tank and a Solid Oxide Fuel Cell (SOFC) aiming towards the design of an efficient integrated system, where the thermal power produced during normal SOFC operation is redirected towards the MH tank in order to maintain H2 desorption without the use of external heating sources. Based on principles of thermodynamics, we calculate the energy balance in the SOFC/MH system and derive analytical expressions for both the thermal power produced during SOFC operation and the corresponding thermal power required for H2 desorption, as a function of the operating temperature, efficiency and fuel utilization ratio in the SOFC, and the MH enthalpy of desorption in the tank. Based on these calculations, we propose an integrated SOFC/MH design where heat is transferred primarily by radiation to the tank in order to maintain steady-state desorption conditions. We develop a mathematical model for this particular design that accounts for heat/mass transfer and desorption kinetics in the tank, and solve for the dynamics of the system assuming MgH2 as a storage material. Our results focus primarily on tank operating conditions, such as pressure, temperature and H2 saturation profiles vs operation time.

  20. Coexistence of colossal stress and texture gradients in sputter deposited nanocrystalline ultra-thin metal films

    SciTech Connect

    Kuru, Yener; Welzel, Udo; Mittemeijer, Eric J.

    2014-12-01

    This paper demonstrates experimentally that ultra-thin, nanocrystalline films can exhibit coexisting colossal stress and texture depth gradients. Their quantitative determination is possible by X-ray diffraction experiments. Whereas a uniform texture by itself is known to generally cause curvature in so-called sin{sup 2}ψ plots, it is shown that the combined action of texture and stress gradients provides a separate source of curvature in sin{sup 2}ψ plots (i.e., even in cases where a uniform texture does not induce such curvature). On this basis, the texture and stress depth profiles of a nanocrystalline, ultra-thin (50 nm) tungsten film could be determined.

  1. A computational study on novel carbon-based lithium materials for hydrogen storage and the role of carbon in destabilizing complex metal hydrides

    NASA Astrophysics Data System (ADS)

    Ghouri, Mohammed Minhaj

    One of the major impediments in the way of the realization of hydrogen economy is the storage of hydrogen gas. This involves both the storage for stationary applications as well as that of storage onboard vehicles for transportation applications. For obvious reasons, the system targets for the automotive applications are more stringent. There are many approaches which are still being researched for the storage of hydrogen for vehicular applications. Among them are the high pressure storage of hydrogen gas and the storing of liquid hydrogen in super insulated cryogenic cylinders. While both of them have been demonstrated practically, the high stakes of their respective shortcomings is hindering the wide spread application of these methods. Thus different solid state storage materials are being looked upon as promising solutions. Metal hydrides are a class of solid state hydrogen storage materials which are formed by the reaction of metals or their alloys with hydrogen. These materials have very good gravimetric storage densities, but are very stable thermodynamically to desorp hydrogen at room temperatures. Research is going on to improve the thermodynamics and the reaction kinetics of different metal hydrides. This dissertation tries to address the problem of high thermodynamic stability of the existing metal hydrides in two ways. First, a novel carbon based lithium material is proposed as a viable storage option based on its promising thermodynamic heat of formation. Pure beryllium (Be) clusters and the carbon-beryllium (C-Be) clusters are studied in detail using the Density Functional Theory (DFT) computational methods. Their interactions with hydrogen molecule are further studied. The results of these calculations indicate that hydrogen is more strongly physisorbed to the beryllium atom in the C-Be cluster, rather than to a carbon atom. After these initial studies, we calculated the geometries and the energies of more than 100 different carbon based lithium

  2. Predicting impurity gases and phases during hydrogen evolution from complex metal hydrides using free energy minimization enabled by first-principles calculations.

    PubMed

    Kim, Ki Chul; Allendorf, Mark D; Stavila, Vitalie; Sholl, David S

    2010-09-07

    First-principles calculations represent a potent tool for screening metal hydride mixtures that can reversibly store hydrogen. A number of promising new hydride systems with high hydrogen capacity and favorable thermodynamics have been predicted this way. An important limitation of these studies, however, is the assumption that H(2) is the only gas-phase product of the reaction, which is not always the case. This paper summarizes new theoretical and numerical approaches that can be used to predict thermodynamic equilibria in complex metal hydride systems with competing reaction pathways. We report thermochemical equilibrium calculations using data obtained from density functional theory (DFT) computations to describe the possible occurrence of gas-phase products other than H(2) in three complex hydrides, LiNH(2), LiBH(4), and Mg(BH(4))(2), and mixtures of these with the destabilizing compounds LiH, MgH(2), and C. The systems under investigation contain N, C, and/or B and thus have the potential to evolve N(2), NH(3), hydrocarbons, and/or boranes as well as H(2). Equilibria as a function of both temperature and total pressure are predicted. The results indicate that significant amounts of these species can form under some conditions. In particular, the thermodynamic model predicts formation of N(2) and NH(3) as products of LiNH(2) decomposition. Comparison with published experimental data indicates that N(2) formation must be kinetically limited. Our examination of C-containing systems indicates that methane is the stable gas-phase species at low temperatures, not H(2). On the other hand, very low amounts of boranes (primarily BH(3)) are predicted to form in B-containing systems.

  3. Effect of hydrogen atoms on the structures of trinuclear metal carbonyl clusters: trinuclear manganese carbonyl hydrides.

    PubMed

    Liu, Xian-mei; Wang, Chao-yang; Li, Qian-shu; Xie, Yaoming; King, R Bruce; Schaefer, Henry F

    2009-05-18

    The structures of the trinuclear manganese carbonyl hydrides H(3)Mn(3)(CO)(n) (n = 12, 11, 10, 9) have been investigated by density functional theory (DFT). Optimization of H(3)Mn(3)(CO)(12) gives the experimentally known structure in which all carbonyl groups are terminal and each edge of a central Mn(3) equilateral triangle is bridged by a single hydrogen atom. This structure establishes the canonical distance 3.11 A for the Mn-Mn single bond satisfying the 18-electron rule. The central triangular (mu-H)(3)Mn(3) unit is retained in the lowest energy structure of H(3)Mn(3)(CO)(11), which may thus be derived from the H(3)Mn(3)(CO)(12) structure by removal of a carbonyl group with concurrent conversion of one of the remaining carbonyl groups into a semibridging carbonyl group to fill the resulting hole. The potential energy surface of H(3)Mn(3)(CO)(10) is relatively complicated with six singlet and five triplet structures. One of the lower energy H(3)Mn(3)(CO)(10) structures has one of the hydrogen atoms bridging the entire Mn(3) triangle and the other two hydrogen atoms bridging Mn-Mn edges. This H(3)Mn(3)(CO)(10) structure achieves the favored 18-electron configuration with a very short MnMn triple bond of 2.36 A. The other low energy H(3)Mn(3)(CO)(10) structure retains the (mu-H)(3)Mn(3) core of H(3)Mn(3)(CO)(12) but has a unique six-electron donor eta(2)-mu(3) carbonyl group bridging the entire Mn(3) triangle similar to the unique carbonyl group in the known compound Cp(3)Nb(3)(CO)(6)(eta(2)-mu(3)-CO). For H(3)Mn(3)(CO)(9) a structure with a central (mu(3)-H)(2)Mn(3) trigonal bipyramid lies >20 kcal/mol below any of the other structures. Triplet structures were found for the unsaturated H(3)Mn(3)(CO)(n) (n = 11, 10, 9) systems but at significantly higher energies than the lowest lying singlet structures.

  4. Over or under: hydride attack at the metal versus the coordinated nitrosyl ligand in ferric nitrosyl porphyrins.

    PubMed

    Abucayon, E G; Khade, R L; Powell, D R; Shaw, M J; Zhang, Y; Richter-Addo, G B

    2016-11-15

    Hydride attack at a ferric heme-NO to give an Fe-HNO intermediate is a key step in the global N-cycle. We demonstrate differential reactivity when six- and five-coordinate ferric heme-NO models react with hydride. Although Fe-HNO formation is thermodynamically favored from this reaction, Fe-H formation is kinetically favored for the 5C case.

  5. Mechanism of decrease in the strength of submicron-sized specimens of FCC metals with a nanocrystalline structure

    NASA Astrophysics Data System (ADS)

    Malygin, G. A.

    2017-02-01

    The effect of decrease in the strength of submicron-sized specimens of face-centered cubic (fcc) metals with a nanocrystalline structure and a cross-sectional size D < 5 d, as compared to the strength of the specimens with D ≫ 5 d (where d is the grain size), has been considered theoretically on the basis of the dislocation-kinetic equations and relationships. Previously, it has been found that this decrease is caused by the escape of a part of the dislocations through the surface of the specimen under the action of single-pole dislocation sources in grains adjacent to the surface. In this study, it has been shown that the absorption of lattice dislocations by grain boundaries and its accompanying grain boundary sliding lead to a further decrease in the flow stress of specimens, which is equally related to both thin ( D < 5 d) and thick ( D ≫ 5 d) specimens.

  6. Use of reversible hydrides for hydrogen storage

    NASA Technical Reports Server (NTRS)

    Darriet, B.; Pezat, M.; Hagenmuller, P.

    1980-01-01

    The addition of metals or alloys whose hydrides have a high dissociation pressure allows a considerable increase in the hydrogenation rate of magnesium. The influence of temperature and hydrogen pressure on the reaction rate were studied. Results concerning the hydriding of magnesium rich alloys such as Mg2Ca, La2Mg17 and CeMg12 are presented. The hydriding mechanism of La2Mg17 and CeMg12 alloys is given.

  7. Hydrogen /Hydride/-air secondary battery

    NASA Technical Reports Server (NTRS)

    Sarradin, J.; Bronoel, G.; Percheron-Guegan, A.; Achard, J. C.

    1979-01-01

    The use of metal hydrides as negative electrodes in a hydrogen-air secondary battery seems promising. However, in an unpressurized cell, more stable hydrides that LaNi5H6 must be selected. Partial substitutions of nickel by aluminium or manganese increase the stability of hydrides. Combined with an air reversible electrode, a specific energy close to 100 Wh/kg can be expected.

  8. Multi-stage hydride-hydrogen compressor

    NASA Astrophysics Data System (ADS)

    Golben, P. M.

    A 4-stage metal hydride/hydrogen compressor that uses low temperature hot water (75 C) as its energy source has been built and tested. The compressor utilizes a new hydride heat exchanger technique that has achieved fast cycling time (with 20 C cooling water) on the order of 1 min. This refinement substantially decreases the size, weight and cost of the unit when compared to previous hydride compressors or even conventional mechanical diaphragm compressors.

  9. Novel polymerization catalysts and hydride clusters from rare-earth metal dialkyls.

    PubMed

    Nishiura, Masayoshi; Hou, Zhaomin

    2010-04-01

    This Review gives an overview on recent progress in the synthesis and chemistry of rare-earth metal dialkyl complexes bearing monoanionic ancillary ligands, with an emphasis on novel polymerization catalysts. These structurally well-defined and highly reactive compounds are prepared either by alkane elimination reactions between trialkyl rare-earth complexes and acidic neutral ligands, or by the metathetical reactions of rare-earth trihalides with the alkali metal salts of the corresponding ligands. On treatment with an appropriate borate compound, the dialkyl complexes are converted into the corresponding cationic monoalkyl species, which serve as excellent catalysts for the polymerization and copolymerization of a variety of olefins to yield a series of new polymer materials that exhibit novel properties. Alternatively, hydrogenation of the dialkyl rare-earth complexes with H(2) affords a new class of rare-earth polyhydride complexes with unique features in terms of both their structure and reactivity.

  10. "Bulk" Nanocrystalline Metals: Review of the Current State of the Art and Future Opportunities for Copper and Copper Alloys

    NASA Astrophysics Data System (ADS)

    Tschopp, M. A.; Murdoch, H. A.; Kecskes, L. J.; Darling, K. A.

    2014-06-01

    It is a new beginning for innovative fundamental and applied science in nanocrystalline materials. Many of the processing and consolidation challenges that have haunted nanocrystalline materials are now more fully understood, opening the doors for bulk nanocrystalline materials and parts to be produced. While challenges remain, recent advances in experimental, computational, and theoretical capability have allowed for bulk specimens that have heretofore been pursued only on a limited basis. This article discusses the methodology for synthesis and consolidation of bulk nanocrystalline materials using mechanical alloying, the alloy development and synthesis process for stabilizing these materials at elevated temperatures, and the physical and mechanical properties of nanocrystalline materials with a focus throughout on nanocrystalline copper and a nanocrystalline Cu-Ta system, consolidated via equal channel angular extrusion, with properties rivaling that of nanocrystalline pure Ta. Moreover, modeling and simulation approaches as well as experimental results for grain growth, grain boundary processes, and deformation mechanisms in nanocrystalline copper are briefly reviewed and discussed. Integrating experiments and computational materials science for synthesizing bulk nanocrystalline materials can bring about the next generation of ultrahigh strength materials for defense and energy applications.

  11. Metal hydride differential scanning calorimetry as an approach to compositional determination of mixtures of hydrogen isotopologues and helium

    SciTech Connect

    Robinson, David B.; Luo, Weifang; Cai, Trevor Y.; Stewart, Kenneth D.

    2015-09-26

    Gaseous mixtures of diatomic hydrogen isotopologues and helium are often encountered in the nuclear energy industry and in analytical chemistry. Compositions of stored mixtures can vary due to interactions with storage and handling materials. When tritium is present, it decays to form ions and helium-3, both of which can lead to further compositional variation. Monitoring of composition is typically achieved by mass spectrometry, a method that is bulky and energy-intensive. Mass spectrometers disperse sample material through vacuum pumps, which is especially troublesome if tritium is present. Moreover, our ultimate goal is to create a compact, fast, low-power sensor that can determine composition with minimal gas consumption and waste generation, as a complement to mass spectrometry that can be instantiated more widely. We propose calorimetry of metal hydrides as an approach to this, due to the strong isotope effect on gas absorption, and demonstrate the sensitivity of measured heat flow to atomic composition of the gas. Peak shifts are discernible when mole fractions change by at least 1%. A mass flow restriction results in a unique dependence of the measurement on helium concentration. We present a mathematical model as a first step toward prediction of the peak shapes and positions. The model includes a useful method to compute estimates of phase diagrams for palladium in the presence of arbitrary mixtures of hydrogen isotopologues. As a result, we expect that this approach can be used to deduce unknown atomic compositions from measured calorimetric data over a useful range of partial pressures of each component.

  12. Metal hydride differential scanning calorimetry as an approach to compositional determination of mixtures of hydrogen isotopologues and helium

    DOE PAGES

    Robinson, David B.; Luo, Weifang; Cai, Trevor Y.; ...

    2015-09-26

    Gaseous mixtures of diatomic hydrogen isotopologues and helium are often encountered in the nuclear energy industry and in analytical chemistry. Compositions of stored mixtures can vary due to interactions with storage and handling materials. When tritium is present, it decays to form ions and helium-3, both of which can lead to further compositional variation. Monitoring of composition is typically achieved by mass spectrometry, a method that is bulky and energy-intensive. Mass spectrometers disperse sample material through vacuum pumps, which is especially troublesome if tritium is present. Moreover, our ultimate goal is to create a compact, fast, low-power sensor that canmore » determine composition with minimal gas consumption and waste generation, as a complement to mass spectrometry that can be instantiated more widely. We propose calorimetry of metal hydrides as an approach to this, due to the strong isotope effect on gas absorption, and demonstrate the sensitivity of measured heat flow to atomic composition of the gas. Peak shifts are discernible when mole fractions change by at least 1%. A mass flow restriction results in a unique dependence of the measurement on helium concentration. We present a mathematical model as a first step toward prediction of the peak shapes and positions. The model includes a useful method to compute estimates of phase diagrams for palladium in the presence of arbitrary mixtures of hydrogen isotopologues. As a result, we expect that this approach can be used to deduce unknown atomic compositions from measured calorimetric data over a useful range of partial pressures of each component.« less

  13. Hydride development for hydrogen storage

    SciTech Connect

    Thomas, G.J.; Guthrie, S.E.; Bauer, W.; Yang, N.Y.C.; Sandrock, G.

    1996-10-01

    The purpose of this project is to develop and demonstrate improved hydride materials for hydrogen storage. The work currently is organized into four tasks: hydride development, bed fabrication, materials support for engineering systems, and IEA Annex 12 activities. At the present time, hydride development is focused on Mg alloys. These materials generally have higher weight densities for storing hydrogen than rare earth or transition metal alloys, but suffer from high operating temperatures, slow kinetic behavior and material stability. The authors approach is to study bulk alloy additions which increase equilibrium overpressure, in combination with stable surface alloy modification and particle size control to improve kinetic properties. This work attempts to build on the considerable previous research in this area, but examines specific alloy systems in greater detail, with attention to known phase properties and structures. The authors have found that specific phases can be produced which have significantly improved hydride properties compared to previous studies.

  14. Gas atomization processing of tin and silicon modified LaNi5 for nickel-metal hydride battery applications

    SciTech Connect

    Ting, Jason

    1999-02-12

    Numerous researchers have studied the relevant material properties of so-called AB5 alloys for battery applications. These studies involved LaNi5 substituted alloys which were prepared using conventional cast and crush alloying techniques. While valuable to the understanding of metal hydride effects, the previous work nearly ignored the potential for alternative direct powder production methods, like high pressure gas atomization (HPGA). Thus, there is a need to understand the relationship between gas atomization processes, powder particle solidification phases, and hydrogen absorption properties of ultra fine (< 25 μm) atomized powders with high surface area for enhanced battery performance. Concurrently, development of a gas atomization nozzle that is more efficient than all current designs is needed to increase the yield of ultrafine AB5 alloy powder for further processing advantage. Gas atomization processing of the AB5 alloys was demonstrated to be effective in producing ultrafine spherical powders that were resilient to hydrogen cycling for the benefit of improving corrosion resistance in battery application. These ultrafine powders benefited from the rapid solidification process by having refined solute segregation in the microstructure of the gas atomized powders which enabled a rapid anneal treatment of the powders. The author has demonstrated the ability to produce high yields of ultrafine powder efficiently and cost effectively, using the new HPGA-III technology. Thus, the potential benefits of processing AB5 alloys using the new HPGA technology could reduce manufacturing cost of nickel-metal hydride powder. In the near future, the manufacture of AB5 alloy powders could become a continuous and rapid production process. The economic benefit of an improved AB5 production process may thereby encourage the use of nickel-metal hydride rechargeable batteries in electrical vehicle

  15. Density-functional study of perovskite-type hydride LiNiH3 and its synthesis: Mechanism for formation of metallic perovskite

    NASA Astrophysics Data System (ADS)

    Takagi, Shigeyuki; Saitoh, Hiroyuki; Endo, Naruki; Sato, Ryutaro; Ikeshoji, Tamio; Matsuo, Motoaki; Miwa, Kazutoshi; Aoki, Katsutoshi; Orimo, Shin-ichi

    2013-03-01

    A metallic perovskite-type hydride LiNiH3 was synthesized based on first-principles prediction. We theoretically examined its electronic structure and found that half of the Ni-H derived antibonding states are occupied and that the modest thermodynamic stability depends on a delicate balance between (i) destabilization and (ii) alleviation of compression frustration in corner-sharing octahedra, both of which arise from occupation of antibonding states. Through density-functional analyses of the electronic structure and lattice instability extending over LiTH3 series (T = Fe, Co, Ni, and Cu), we showed that the balance is in fact reflected in their thermodynamic stability.

  16. Microstructure of surface cerium hydride growth sites

    SciTech Connect

    Brierley, Martin; Knowles, John; Montgomery, Neil; Preuss, Michael

    2014-05-15

    Samples of cerium were exposed to hydrogen under controlled conditions causing cerium hydride sites to nucleate and grow on the surface. The hydriding rate was measured in situ, and the hydrides were characterised using secondary ion mass spectrometry, scanning electron microscopy, and optical microscopy. The results show that the hydriding rate proceeded more quickly than earlier studies. Characterisation confirmed that the hydrogen is confined to the sites. The morphology of the hydrides was confirmed to be oblate, and stressed material was observed surrounding the hydride, in a number of cases lathlike features were observed surrounding the hydride sites laterally with cracking in the surface oxide above them. It is proposed that during growth the increased lattice parameter of the CeH{sub 2} induces a lateral compressive stress around the hydride, which relieves by the ca. 16% volume collapse of the γ-Ce to α-Ce pressure induced phase transition. Cracking of the surface oxide above the laths reduces the diffusion barrier to hydrogen reaching the metal/oxide interface surrounding the hydride site and contributes to the anisotropic growth of the hydrides.

  17. Direct synthesis of catalyzed hydride compounds

    DOEpatents

    Gross, Karl J.; Majzoub, Eric

    2004-09-21

    A method is disclosed for directly preparing alkali metal aluminum hydrides such as NaAlH.sub.4 and Na.sub.3 AlH.sub.6 from either the alkali metal or its hydride, and aluminum. The hydride thus prepared is doped with a small portion of a transition metal catalyst compound, such as TiCl.sub.3, TiF.sub.3, or a mixture of these materials, in order to render them reversibly hydridable. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen while heating the mixture to about 125.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.

  18. Insights into dehydrogenative coupling of alcohols and amines catalyzed by a (PNN)-Ru(II) hydride complex: unusual metal-ligand cooperation.

    PubMed

    Zeng, Guixiang; Li, Shuhua

    2011-11-07

    Density functional theory calculations were performed to elucidate the mechanism of dehydrogenative coupling of primary alcohols and amines mediated by a PNN-Ru(II) hydride complex (PNN = (2-(di-tert-butylphosphinomethyl)-6-(diethylaminomethyl)pyridine)). A plausible reaction pathway was proposed which contains three stages: (1) The alcohol dehydrogenation reaction to generate the aldehyde and H(2); (2) The aldehyde-amine condensation reaction to form the hemiaminal intermediate; (3) The dehydrogenation process of the hemiaminal intermediate to yield the final amide product with the liberation of H(2). The first and third stages occur via a similar pathway: (a) Proton transfer from the substrate to the PNN ligand; (b) Intramolecular rearrangement of the deprotonated substrate to form an anagostic complex; (c) Hydride transfer from the deprotonated substrate to the Ru center to yield the trans-dihydride intermediate and the aldehyde (or amide); (d) Benzylic proton migration from the PNN ligand to the metal center forming a dihydrogen complex and subsequent H(2) liberation to regenerate the catalyst. In all these steps, the metal-ligand cooperation plays an essential role. In proton transfer steps (a) and (d), the metal-ligand cooperation is achieved through the aromatization/dearomatization processes of the PNN ligand. While in steps (b) and (c), their collaboration are demonstrated by the formation of an anagostic interaction between Ru and the C-H bond and two ionic hydrogen bonds supported by the PNN ligand.

  19. Recovery of rare metal compounds from nickel-metal hydride battery waste and their application to CH4 dry reforming catalyst.

    PubMed

    Kanamori, Tomohiro; Matsuda, Motohide; Miyake, Michihiro

    2009-09-30

    The recovery of valuable components such as nickel from nickel-metal hydride (Ni-MH) battery waste by chemical processes and their applications to CH(4) dry reforming catalysts were investigated. Three types of compound, identified by XRD analysis as NiO, CeO(2) and LaCoO(3) phases, were successfully separated from the waste by a series of chemical processes at room temperature using aqueous solutions of HCl, NaOH and NH(3), and Ni component of approximately 70% in Ni-MH battery waste was recovered. The separated NiO, CeO(2) and LaCoO(3) showed catalytic activities for CH(4) dry reforming. In particular, the separated NiO easily reduced to Ni(0) at an initial stage, and exhibited excellent catalytic activity in terms of CH(4) conversion and stability. Furthermore, it was found that the resulting Ni from separated NiO exhibited an anomalous catalysis from the comparison with that from regent NiO.

  20. The renaissance of hydrides as energy materials

    NASA Astrophysics Data System (ADS)

    Mohtadi, Rana; Orimo, Shin-Ichi

    2016-12-01

    Materials based on hydrides have been the linchpin in the development of several practical energy storage technologies, of which the most prominent example is nickel-metal hydride batteries. Motivated by the need to meet the future's energy demand, the past decade has witnessed substantial advancements in the research and development of hydrides as media for hydrogen energy storage. More recently, new and rapidly evolving discoveries have positioned hydrides as highly promising materials for future electrochemical energy storage, such as electrolytes for mono- and divalent batteries, and anodes for lithium-ion batteries. In addition, the potential of hydrides in efficient power transmission has been recently revealed. In this Review, we highlight key advances and illustrate how the versatility of hydrides has not only yielded a meaningful past, but also ensures a very bright future.

  1. Method for controlled hydrogen charging of metals

    DOEpatents

    Cheng, Bo-Ching; Adamson, Ronald B.

    1984-05-29

    A method for controlling hydrogen charging of hydride forming metals through a window of a superimposed layer of a non-hydriding metal overlying the portion of the hydride forming metals to be charged.

  2. Dihydrogen addition in a dinuclear rare-earth metal hydride complex supported by a metalated TREN ligand.

    PubMed

    Venugopal, Ajay; Fegler, Waldemar; Spaniol, Thomas P; Maron, Laurent; Okuda, Jun

    2011-11-09

    The dinuclear lutetium dihydride dication supported by metalated tripodal ligands undergoes facile hydrogenolysis with H(2) to form a trihydride dication. Molecular orbital analysis shows that the LUMO is a bonding Lu···Lu orbital that is poised to activate dihydrogen.

  3. Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification.

    PubMed

    Bahl, Sumit; Shreyas, P; Trishul, M A; Suwas, Satyam; Chatterjee, Kaushik

    2015-05-07

    Nanostructured metals are a promising class of biomaterials for application in orthopedics to improve the mechanical performance and biological response for increasing the life of biomedical implants. Surface mechanical attrition treatment (SMAT) is an efficient way of engineering nanocrystalline surfaces on metal substrates. In this work, 316L stainless steel (SS), a widely used orthopedic biomaterial, was subjected to SMAT to generate a nanocrystalline surface. Surface nanocrystallization modified the nature of the oxide layer present on the surface. It increased the corrosion-fatigue strength in saline by 50%. This increase in strength is attributed to a thicker oxide layer, residual compressive stresses, high strength of the surface layer, and lower propensity for intergranular corrosion in the nanocrystalline layer. Nanocrystallization also enhanced osteoblast attachment and proliferation. Intriguingly, wettability and surface roughness, the key parameters widely acknowledged for controlling the cellular response remained unchanged after nanocrystallization. The observed cellular behavior is explained in terms of the changes in electronic properties of the semiconducting passive oxide film present on the surface of 316L SS. Nanocrystallization increased the charge carrier density of the n-type oxide film likely preventing denaturation of the adsorbed cell-adhesive proteins such as fibronectin. In addition, a net positive charge developed on the otherwise neutral oxide layer, which is known to facilitate cellular adhesion. The role of changes in the electronic properties of the oxide films on metal substrates is thus highlighted in this work. This study demonstrates the advantages of nanocrystalline surface modification by SMAT for processing metallic biomaterials used in orthopedic implants.

  4. Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification

    NASA Astrophysics Data System (ADS)

    Bahl, Sumit; Shreyas, P.; Trishul, M. A.; Suwas, Satyam; Chatterjee, Kaushik

    2015-04-01

    Nanostructured metals are a promising class of biomaterials for application in orthopedics to improve the mechanical performance and biological response for increasing the life of biomedical implants. Surface mechanical attrition treatment (SMAT) is an efficient way of engineering nanocrystalline surfaces on metal substrates. In this work, 316L stainless steel (SS), a widely used orthopedic biomaterial, was subjected to SMAT to generate a nanocrystalline surface. Surface nanocrystallization modified the nature of the oxide layer present on the surface. It increased the corrosion-fatigue strength in saline by 50%. This increase in strength is attributed to a thicker oxide layer, residual compressive stresses, high strength of the surface layer, and lower propensity for intergranular corrosion in the nanocrystalline layer. Nanocrystallization also enhanced osteoblast attachment and proliferation. Intriguingly, wettability and surface roughness, the key parameters widely acknowledged for controlling the cellular response remained unchanged after nanocrystallization. The observed cellular behavior is explained in terms of the changes in electronic properties of the semiconducting passive oxide film present on the surface of 316L SS. Nanocrystallization increased the charge carrier density of the n-type oxide film likely preventing denaturation of the adsorbed cell-adhesive proteins such as fibronectin. In addition, a net positive charge developed on the otherwise neutral oxide layer, which is known to facilitate cellular adhesion. The role of changes in the electronic properties of the oxide films on metal substrates is thus highlighted in this work. This study demonstrates the advantages of nanocrystalline surface modification by SMAT for processing metallic biomaterials used in orthopedic implants.

  5. Metallization of aluminum hydride AlH3 at high multiple-shock pressures

    NASA Astrophysics Data System (ADS)

    Molodets, A. M.; Shakhray, D. V.; Khrapak, A. G.; Fortov, V. E.

    2009-05-01

    A study of electrophysical and thermodynamic properties of alane AlH3 under multishock compression has been carried out. The increase in specific electroconductivity of alane at shock compression up to pressure 100 GPa has been measured. High pressures and temperatures were obtained with an explosive device, which accelerates the stainless impactor up to 3 km/s. A strong shock wave is generated on impact with a holder containing alane. The impact shock is split into a shock wave reverberating in alane between two stiff metal anvils. This compression loads the alane sample by a multishock manner up to pressure 80-90 GPa, heats alane to the temperature of about 1500-2000 K, and lasts 1μs . The conductivity of shocked alane increases in the range up to 60-75 GPa and is about 30(Ωcm)-1 . In this region the semiconductor regime is true for shocked alane. The conductivity of alane achieves approximately 500(Ωcm)-1 at 80-90 GPa. In this region, conductivity is interpreted in frames of the conception of the “dielectric catastrophe,” taking into consideration significant differences between the electronic states of isolated molecule AlH3 and condensed alane.

  6. Direct-Liquid-Evaporation Chemical Vapor Deposition of Nanocrystalline Cobalt Metal for Nanoscale Copper Interconnect Encapsulation.

    PubMed

    Feng, Jun; Gong, Xian; Lou, Xiabing; Gordon, Roy G

    2017-03-29

    In advanced microelectronics, precise design of liner and capping layers become critical, especially when it comes to the fabrication of Cu interconnects with dimensions lower than its mean free path. Herein, we demonstrate that direct-liquid-evaporation chemical vapor deposition (DLE-CVD) of Co is a promising method to make liner and capping layers for nanoscale Cu interconnects. DLE-CVD makes pure, smooth, nanocrystalline, and highly conformal Co films with highly controllable growth characteristics. This process allows full Co encapsulation of nanoscale Cu interconnects, thus stabilizing Cu against diffusion and electromigration. Electrical measurements and high-resolution elemental imaging studies show that the DLE-CVD Co encapsulation layer can improve the reliability and thermal stability of Cu interconnects. Also, with the high conductivity of Co, the DLE-CVD Co encapsulation layer have the potential to further decrease the power consumption of nanoscale Cu interconnects, paving the way for Cu interconnects with higher efficiency in future high-end microelectronics.

  7. Photoinduced charge, ion & energy transfer processes at transition-metal coordination compounds anchored to mesoporous, nanocrystalline metal-oxide thin films

    NASA Astrophysics Data System (ADS)

    Ardo, Shane

    Photovoltaics provide a direct means of converting photons into useful, electric power; however traditional silicon-based technologies are too expensive for global commercialization. Dye-sensitized mesoporous semiconducting thin films, when utilized in regenerative photoelectrochemical cells, are one category of next generation photovoltaics that could eventually circumvent this issue. In fact, their architecture also affords a clear platform for implementation of a direct, solar fuel-forming system. The mechanisms involved in the myriad of molecular processes that occur in these molecular--solid-state hybrid materials are poorly understood. Thus, the overriding goal of this dissertation was to evaluate sensitized mesoporous, nanocrystalline metal-oxide thin films critically so as to elucidate mechanistic phenomena. Using transient and steady-state absorption and emission spectroscopies as well as (photo)electrochemistry, various previously unobserved processes have been identified. Chapter 2 demonstrates for the first time that the electric fields emanating from these charged thin films affect surface-anchored molecular sensitizers via a Stark effect. In most cases, further, but incomplete, ionic screening of the charged nanoparticles from the sensitizers, as non-Faradaic electrolyte redistribution, was spectroscopically inferred after rapid semiconductor charging. Chapter 3 highlights the reactivity of Co(I) coordination-compound catalysts anchored to anatase TiO2 thin-film electrodes. Visible-light excitation resulted in prompt excited-state electron injection into TiO2 while introduction of benzylbromide into the fluid solution surrounding the thin film led to a 2e--transfer, oxidative-addition reaction to Co1 forming a stable Co--benzyl product. Subsequent visible-light excitation initiated a photocatalytic cycle for C--C bond formation. Unique to the nanocrystalline thin films employed here, Chapter 4 demonstrates that traditional time-resolved polarization

  8. C(sp₃)-H bond activation with triel metals: indium and gallium zwitterions through internal hydride abstraction in rigid salan ligands.

    PubMed

    Maudoux, Nicolas; Fang, Jian; Roisnel, Thierry; Dorcet, Vincent; Maron, Laurent; Carpentier, Jean-François; Sarazin, Yann

    2014-06-16

    The hydropyrimidine salan (salan=N,N'-dimethyl-N,N'-bis[(2-hydroxyphenyl)methylene]-1,2-diaminoethane) proteo-ligands with a rigid backbone {ON^(CH2)^NO}H2 react with M(CH2SiMe3)3 (M=Ga, In) to yield the zwitterions {ON^(CH(+))^NO}M(-)(CH2SiMe3)2 (M=Ga, 2; In, 3) by abstraction of a hydride from the ligand backbone followed by elimination of dihydrogen. By contrast, with Al2Me6, the neutral-at-metal bimetallic complex [{ON^(CH2)^NO}AlMe]2 ([1]2) is obtained quantitatively. The formation of indium zwitterions is also observed with sterically more encumbered ligands containing o-Me substituents on the phenolic rings, or an N (CHPh) N moiety in the heterocyclic core. Overall, the ease of C(sp3)-H bond activation follows the order Al≪Gametal-hydride species. DFT calculations indicate that the systems {ON^(CH2)^NO}H2+M(CH2SiMe3)3 (M=Al, Ga, In) all initially lead to the formation of the neutral monophenolate dihydrocarbyl species through a single protonolysis. From here, the thermodynamic product, the model neutral-at-metal complex 1, is formed in the case of aluminum after a second protonolysis. On the other hand, lower activation energy pathways lead to the generation of zwitterionic complexes 2 and 3 in the cases of gallium and indium, and the formation of these zwitterions obeys a strict kinetic control; the computations suggest that, as inferred from the experimental data, the reaction proceeds through an instable metal-hydride species, which could not be isolated synthetically.

  9. An anti CuO2-type metal hydride square net structure in Ln2M2As2H(x) (Ln=La or Sm, M=Ti, V, Cr, or Mn).

    PubMed

    Mizoguchi, Hiroshi; Park, SangWon; Hiraka, Haruhiro; Ikeda, Kazutaka; Otomo, Toshiya; Hosono, Hideo

    2015-03-02

    Using a high pressure technique and the strong donating nature of H(-), a new series of tetragonal La2Fe2Se2O3-type layered mixed-anion arsenides, Ln2M2As2H(x), was synthesized (Ln=La or Sm, M=Ti, V, Cr, or Mn; x≈3). In these compounds, an unusual M2H square net, which has anti CuO2 square net structures accompanying two As(3-) ions, is sandwiched by (LaH)2 fluorite layers. Notably, strong metal-metal bonding with a distance of 2.80 Å was confirmed in La2Ti2As2H2.3, which has metallic properties. In fact, these compounds are situated near the boundary between salt-like ionic hydrides and transition-metal hydrides with metallic characters.

  10. Gas Diffusion in Metals: Fundamental Study of Helium-Point Defect Interactions in Iron and Kinetics of Hydrogen Desorption from Zirconium Hydride

    NASA Astrophysics Data System (ADS)

    Hu, Xunxiang

    The behavior of gaseous foreign species (e.g., helium and hydrogen), which are either generated, adsorbed or implanted within the structural materials (e.g., iron and zirconium) exposed to irradiation environments, is an important and largely unsolved topic, as they intensively interact with the irradiation-induced defects, or bond with the lattice atoms to form new compounds, and impose significant effects on their microstructural and mechanical properties in fission and fusion reactors. This research investigates two cases of gas diffusion in metals (i.e., the helium-point defect interactions in iron and kinetics of hydrogen desorption from zirconium hydride) through extensive experimental and modeling studies, with the objective of improving the understanding of helium effects on the microstructures of iron under irradiation and demonstrating the kinetics of hydrogen diffusion and precipitation behavior in zirconium that are crucial to predict cladding failures and hydride fuel performance. The study of helium effects in structural materials aims to develop a self-consistent, experimentally validated model of helium---point defect, defect cluster and intrinsic defects through detailed inter-comparisons between experimental measurements on helium ion implanted iron single crystals and computational models. The combination of thermal helium desorption spectrometry (THDS) experiment with the cluster dynamic model helps to reveal the influence of impurities on the energetics and kinetics of the He-defect interactions and to realize the identification of possible mechanisms governing helium desorption peaks. Positron annihilation spectroscopy is employed to acquire additional information on He-vacancy cluster evolution, which provides an opportunity to validate the model qualitatively. The inclusion of He---self-interstitial clusters extends the cluster dynamic model while MD simulations explore the effects of dislocation loops on helium clustering. In addition, the

  11. O2 insertion into group 9 metal-hydride bonds: evidence for oxygen activation through the hydrogen-atom-abstraction mechanism.

    PubMed

    Keith, Jason M; Teets, Thomas S; Nocera, Daniel G

    2012-09-03

    A detailed density functional study was performed to examine the reaction of mixed-valence dirhodium and diiridium species [M(2)(0,II)(tfepma)(2)(CN(t)Bu)(2)(Cl)(2) (1, tfepma = MeN[P(OCH(2)CF(3))(2)](2), CN(t)Bu = tert-butyl isocyaninde)] with HCl and oxygen with an interest in examining the pathways for oxygen insertion into the intermediate metal hydride to form hydroperoxo species. The O(2) hydrogen atom abstraction mechanism for both the Rh and Ir was found to be feasible. This is the first time this mechanism has been applied to a Rh system and only the second time it has been examined for a system other than Pd. The competing trans HCl reductive elimination pathway was also examined and found to be greatly dependent on the stereochemistry of the starting hydride primarily due to the intermediate formed upon the loss of Cl(-). As a result, the reductive elimination pathway was more favorable by 11.5 kcal/mol for the experimentally observed Ir stereoisomer, while the two pathways were isoenergetic for the other stereoisomer of the Rh complex. All findings are consistent with the kinetics study previously performed.

  12. Local structure at interfaces between hydride-forming metals: A case study of Mg-Pd nanoparticles by x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Pasquini, L.; Boscherini, F.; Callini, E.; Maurizio, C.; Pasquali, L.; Montecchi, M.; Bonetti, E.

    2011-05-01

    The structure at the interface between elements or phases that exhibit different hydrogen (H) binding energies exerts a profound influence on the thermodynamics of H in nanophase materials. In this paper, we study the local structure at the Mg/Pd interface in Mg nanoparticles with partial Pd coating, and we map its evolution in response to annealing and H sorption. This task is accomplished by x-ray photoelectron spectroscopy and x-ray absorption spectroscopy, also including in situ experiments, with the support of crystallographic information from x-ray diffraction. It is shown that the initial Pd surface layer reacts with Mg at relatively low temperatures, leading to irreversible formation of a Mg-rich intermetallic phase Mg6Pd. Due to the high Mg-H binding energy, this phase reversibly transforms, upon H absorption, into a nanophase mixture of magnesium hydride and a Pd-rich intermetallic with H in solid solution, MgPdHδ. These reversible structural changes are discussed with reference to recent calculations that highlight their relevance to the thermodynamics of the metal-hydride transition. The picture drawn here might be relevant to other multiphase materials presently investigated in the field of hydrogen-related science and technology.

  13. Research Update: A hafnium-based metal-organic framework as a catalyst for regioselective ring-opening of epoxides with a mild hydride source

    SciTech Connect

    Stephenson, Casey J.; Hassan Beyzavi, M.; Klet, Rachel C.; Hupp, Joseph T. E-mail: o-farha@northwestern.edu; Farha, Omar K. E-mail: o-farha@northwestern.edu

    2014-12-01

    Reaction of styrene oxide with sodium cyanoborohydride and a catalytic amount of Hf-NU-1000 yields the anti-Markovnikov product, 2-phenylethanol, with over 98% regioselectivity. On the other hand, propylene oxide is ring opened in a Markovnikov fashion to form 2-propanol with 95% regioselectivity. Both styrene oxide and propylene oxide failed to react with sodium cyanoborohydride without the addition of Hf-NU-1000 indicative of the crucial role of Hf-NU-1000 as a catalyst in this reaction. To the best of our knowledge, this is the first report of the use of a metal-organic framework material as a catalyst for ring-opening of epoxides with hydrides.

  14. Neutral transition metal hydrides as acids in hydrogen bonding and proton transfer: media polarity and specific solvation effects.

    PubMed

    Levina, Vladislava A; Filippov, Oleg A; Gutsul, Evgenii I; Belkova, Natalia V; Epstein, Lina M; Lledos, Agusti; Shubina, Elena S

    2010-08-18

    Structural, spectroscopic, and electronic features of weak hydrogen-bonded complexes of CpM(CO)(3)H (M = Mo (1a), W (1b)) hydrides with organic bases (phosphine oxides R(3)PO (R = n-C(8)H(17), NMe(2)), amines NMe(3), NEt(3), and pyridine) are determined experimentally (variable temperature IR) and computationally (DFT/M05). The intermediacy of these complexes in reversible proton transfer is shown, and the thermodynamic parameters (DeltaH degrees , DeltaS degrees ) of each reaction step are determined in hexane. Assignment of the product ion pair structure is made with the help of the frequency calculations. The solvent effects were studied experimentally using IR spectroscopy in CH(2)Cl(2), THF, and CH(3)CN and computationally using conductor-like polarizable continuum model (CPCM) calculations. This complementary approach reveals the particular importance of specific solvation for the hydrogen-bond formation step. The strength of the hydrogen bond between hydrides 1 and the model bases is similar to that of the M-H...X hydrogen bond between 1 and THF (X = O) or CH(3)CN (X = N) or between CH(2)Cl(2) and the same bases. The latter competitive weak interactions lower the activities of both the hydrides and the bases in the proton transfer reaction. In this way, these secondary effects shift the proton transfer equilibrium and lead to the counterintuitive hampering of proton transfer upon solvent change from hexane to moderately polar CH(2)Cl(2) or THF.

  15. METHOD OF FABRICATING A URANIUM-ZIRCONIUM HYDRIDE REACTOR CORE

    DOEpatents

    Weeks, I.F.; Goeddel, W.V.

    1960-03-22

    A method is described of evenly dispersing uranlum metal in a zirconium hydride moderator to produce a fuel element for nuclear reactors. According to the invention enriched uranium hydride and zirconium hydride powders of 200 mesh particle size are thoroughly admixed to form a mixture containing 0.1 to 3% by weight of U/sup 235/ hydride. The mixed powders are placed in a die and pressed at 100 tons per square inch at room temperature. The resultant compacts are heated in a vacuum to 300 deg C, whereby the uranium hydride deoomposes into uranium metal and hydrogen gas. The escaping hydrogen gas forms a porous matrix of zirconium hydride, with uramum metal evenly dispersed therethrough. The advantage of the invention is that the porosity and uranium distribution of the final fuel element can be more closely determined and controlled than was possible using prior methods of producing such fuel ele- ments.

  16. Research into processes of production of hydrides of materials containing rare-earth metals and their corrosion

    NASA Astrophysics Data System (ADS)

    Sofronov, V. L.; Kartashov, E. Y.; Molokov, P. B.; Zhiganov, A. N.; Kalaev, M. E.

    2017-01-01

    Production of permanent magnets on basis of rare earth elements (REE) is implemented by means of powder metallurgy, therefore a technologically important operation is the multistage mechanical crushing of materials to the extent of domains. The promising technique of crushing of magnetic materials is their consistent hydrogenation-dehydrogenation that allows obtaining nano-dispersed powders which are stable enough in air. Hydrogenation apparatuses, as opposed to conventional grinding machines, do not comprise motion works and their producing capacity is much higher. Hydrogenation process does not require any additional preparation of materials and it excludes undermilling and overmilling as well as material oxidation. The paper presents the results of investigation on the temperature effect on the hydrogenation process of Nd-Fe alloys. The study results on the corrosion stability of ligature hydrides under various conditions are also given. Kinetic parameters of the hydrogenation process of ligatures are determined. The phase composition of corrosion products is detected. Guidelines on hydride powder storage are given.

  17. Relativistic four-component DFT calculations of 1H NMR chemical shifts in transition-metal hydride complexes: unusual high-field shifts beyond the Buckingham-Stephens model.

    PubMed

    Hrobárik, Peter; Hrobáriková, Veronika; Meier, Florian; Repiský, Michal; Komorovský, Stanislav; Kaupp, Martin

    2011-06-09

    State-of-the-art relativistic four-component DFT-GIAO-based calculations of (1)H NMR chemical shifts of a series of 3d, 4d, and 5d transition-metal hydrides have revealed significant spin-orbit-induced heavy atom effects on the hydride shifts, in particular for several 4d and 5d complexes. The spin-orbit (SO) effects provide substantial, in some cases even the dominant, contributions to the well-known characteristic high-field hydride shifts of complexes with a partially filled d-shell, and thereby augment the Buckingham-Stephens model of off-center paramagnetic ring currents. In contrast, complexes with a 4d(10) and 5d(10) configuration exhibit large deshielding SO effects on their hydride (1)H NMR shifts. The differences between the two classes of complexes are attributed to the dominance of π-type d-orbitals for the true transition-metal systems compared to σ-type orbitals for the d(10) systems.

  18. Metal interferences and their removal prior to the determination of As(T) and As(III) in acid mine waters by hydride generation atomic absorption spectrometry

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ball, James W.

    2003-01-01

    Hydride generation atomic absorption spectrometry (HGAAS) is a sensitive and selective method for the determination of total arsenic (arsenic(III) plus arsenic(V)) and arsenic(III); however, it is subject to metal interferences for acid mine waters. Sodium borohydride is used to produce arsine gas, but high metal concentrations can suppress arsine production. This report investigates interferences of sixteen metal species including aluminum, antimony(III), antimony(V), cadmium, chromium(III), chromium(IV), cobalt, copper(II), iron(III), iron(II), lead, manganese, nickel, selenium(IV), selenium(VI), and zinc ranging in concentration from 0 to 1,000 milligrams per liter and offers a method for removing interfering metal cations with cation exchange resin. The degree of interference for each metal without cation-exchange on the determination of total arsenic and arsenic(III) was evaluated by spiking synthetic samples containing arsenic(III) and arsenic(V) with the potential interfering metal. Total arsenic recoveries ranged from 92 to 102 percent for all metals tested except antimony(III) and antimony(V) which suppressed arsine formation when the antimony(III)/total arsenic molar ratio exceeded 4 or the antimony(V)/total arsenic molar ratio exceeded 2. Arsenic(III) recoveries for samples spiked with aluminum, chromium(III), cobalt, iron(II), lead, manganese, nickel, selenium(VI), and zinc ranged from 84 to 107 percent over the entire concentration range tested. Low arsenic(III) recoveries occurred when the molar ratios of metals to arsenic(III) were copper greater than 120, iron(III) greater than 70, chromium(VI) greater than 2, cadmium greater than 800, antimony(III) greater than 3, antimony(V) greater than 12, or selenium(IV) greater than 1. Low recoveries result when interfering metals compete for available sodium borohydride, causing incomplete arsine production, or when the interfering metal oxidizes arsenic(III). Separation of interfering metal cations using

  19. Hydride formation on deformation twin in zirconium alloy

    NASA Astrophysics Data System (ADS)

    Kim, Ju-Seong; Kim, Sung-Dae; Yoon, Jonghun

    2016-12-01

    Hydrides deteriorate the mechanical properties of zirconium (Zr) alloys used in nuclear reactors. Intergranular hydrides that form along grain boundaries have been extensively studied due to their detrimental effects on cracking. However, it has been little concerns on formation of Zr hydrides correlated with deformation twins which is distinctive heterogeneous nucleation site in hexagonal close-packed metals. In this paper, the heterogeneous precipitation of Zr hydrides at the twin boundaries was visualized using transmission electron microscopy. It demonstrates that intragranular hydrides in the twinned region precipitates on the rotated habit plane by the twinning and intergranular hydrides precipitate along the coherent low energy twin boundaries independent of the conventional habit planes. Interestingly, dislocations around the twin boundaries play a substantial role in the nucleation of Zr hydrides by reducing the misfit strain energy.

  20. High-pressure synthesis of lithium hydride

    NASA Astrophysics Data System (ADS)

    Howie, Ross T.; Narygina, Olga; Guillaume, Christophe L.; Evans, Shaun; Gregoryanz, Eugene

    2012-08-01

    By compressing elemental lithium and hydrogen in a diamond anvil cell, we have synthesized lithium hydride (LiH) at pressures as low as 50 MPa at room temperature. Combined Raman spectroscopy and synchrotron x-ray diffraction measurements reveal that, once synthesized, LiH remains stable at 300 K up to 160 GPa in the presence of molecular hydrogen. The mixture of lithium hydride and molecular hydrogen and application of pressure alone cannot form a higher H2 content hydride (LiHx, x>1) as was suggested from the theoretical ab initio calculations and therefore, cannot be considered as a route to low-pressure hydrogen rich material metallization.

  1. Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Zollars, G. F.

    1980-01-01

    These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.

  2. Catalytic Proton Coupled Electron Transfer from Metal Hydrides to Titanocene Amides, Hydrazides and Imides: Determination of Thermodynamic Parameters Relevant to Nitrogen Fixation.

    PubMed

    Pappas, Iraklis; Chirik, Paul J

    2016-10-03

    The hydrogenolysis of titanium-nitrogen bonds in a series of bis(cyclopentadienyl) titanium amides, hydrazides and imides by proton coupled electron transfer (PCET) is described. Twelve different N-H bond dissociation free energies (BDFEs) among the various nitrogen-containing ligands were measured or calculated, and effects of metal oxidation state and N-ligand substituent were determined. Two metal hydride complexes, (η(5)-C5Me5)(py-Ph)Rh-H (py-Ph = 2-pyridylphenyl, [Rh]-H) and (η(5)-C5R5)(CO)3Cr-H ([Cr](R)-H, R= H, Me) were evaluated for formal H atom transfer reactivity and were selected due to their relatively weak M-H bond strengths yet ability to activate and cleave molecular hydrogen. Despite comparable M-H BDFEs, disparate reactivity between the two compounds was observed and was traced to the vastly different acidities of the M-H bonds and overall redox potentials of the molecules. With [Rh]-H, catalytic syntheses of ammonia, silylamine and N,N-dimethylhydrazine have been accomplished from the corresponding titanium(IV) complex using H2 as the stoichiometric H atom source. The data presented in this study provides the thermochemical foundation for the synthesis of NH3 by proton coupled electron transfer at a well-defined transition metal center.

  3. Hydride mobility in trinuclear sulfido clusters with the core [Rh3(μ-H)(μ3-S)2]: molecular models for hydrogen migration on metal sulfide hydrotreating catalysts.

    PubMed

    Jiménez, M Victoria; Lahoz, Fernando J; Lukešová, Lenka; Miranda, José R; Modrego, Francisco J; Nguyen, Duc H; Oro, Luis A; Pérez-Torrente, Jesús J

    2011-07-11

    The treatment of [{Rh(μ-SH){P(OPh)(3)}(2)}(2)] with [{M(μ-Cl)(diolef)}(2)] (diolef=diolefin) in the presence of NEt(3) affords the hydrido-sulfido clusters [Rh(3)(μ-H)(μ(3)-S)(2)(diolef){P(OPh)(3)}(4)] (diolef=1,5-cyclooctadiene (cod) for 1, 2,5-norbornadiene (nbd) for 2, and tetrafluorobenzo[5,6]bicyclo[2.2.2]octa-2,5,7-triene (tfb) for 3) and [Rh(2)Ir(μ-H)(μ(3)-S)(2)(cod){P(OPh)(3)}(4)] (4). Cluster 1 can be also obtained by treating [{Rh(μ-SH){P(OPh)(3)}(2)}(2)] with [{Rh(μ-OMe)(cod)}(2)], although the main product of the reaction with [{Ir(μ-OMe)(cod)}(2)] was [RhIr(2)(μ-H)(μ(3)-S)(2)(cod)(2){P(OPh)(3)}(2)] (5). The molecular structures of clusters 1 and 4 have been determined by X-ray diffraction methods. The deprotonation of a hydrosulfido ligand in [{Rh(μ-SH)(CO)(PPh(3))}(2)] by [M(acac)(diolef)] (acac=acetylacetonate) results in the formation of hydrido-sulfido clusters [Rh(3)(μ-H)(μ(3)-S)(2)(CO)(2) (diolef)(PPh(3))(2)] (diolef=cod for 6, nbd for 7) and [Rh(2)Ir(μ-H)(μ(3)-S)(2)(CO)(2)(cod)(PPh(3))(2)] (8). Clusters 1-3 and 5 exist in solution as two interconverting isomers with the bridging hydride ligand at different edges. Cluster 8 exists as three isomers that arise from the disposition of the PPh(3) ligands in the cluster (cis and trans) and the location of the hydride ligand. The dynamic behaviour of clusters with bulky triphenylphosphite ligands, which involves hydrogen migration from rhodium to sulfur with a switch from hydride to proton character, is significant to understand hydrogen diffusion on the surface of metal sulfide hydrotreating catalysts.

  4. Novel Nanocrystalline Intermetallic Coatings for Metal Alloys in Coal-fired Environments

    SciTech Connect

    Z. Zak Fang; H. Y. Sohn

    2009-08-31

    Intermetallic coatings (iron aluminide and nickel aluminide) were prepared by a novel reaction process. In the process, the aluminide coating is formed by an in-situ reaction between the aluminum powder fed through a plasma transferred arc (PTA) torch and the metal substrate (steel or Ni-base alloy). Subjected to the high temperature within an argon plasma zone, aluminum powder and the surface of the substrate melt and react to form the aluminide coatings. The prepared coatings were found to be aluminide phases that are porosity-free and metallurgically bonded to the substrate. The coatings also exhibit excellent high-temperature corrosion resistance under the conditions which simulate the steam-side and fire-side environments in coal-fired boilers. It is expected that the principle demonstrated in this process can be applied to the preparation of other intermetallic and alloy coatings.

  5. Transition metal (Co, Ni) nanoparticles wrapped with carbon and their superior catalytic activities for the reversible hydrogen storage of magnesium hydride.

    PubMed

    Huang, Xu; Xiao, Xuezhang; Zhang, Wei; Fan, Xiulin; Zhang, Liuting; Cheng, Changjun; Li, Shouquan; Ge, Hongwei; Wang, Qidong; Chen, Lixin

    2017-02-01

    Magnesium hydride (MgH2) exhibits long-term stability and has recently been developed as a safe alternative to store hydrogen in the solid state, due to its high capacity of 7.6 wt% H2 and low cost compared to other metal hydrides. However, the high activation energy and poor kinetics of MgH2 lead to inadequate hydrogen storage properties, resulting in low energy efficiency. Nano-catalysis is deemed to be the most effective strategy in improving the kinetics performance of hydrogen storage materials. In this work, robust and efficient architectures of carbon-wrapped transition metal (Co/C, Ni/C) nanoparticles (8-16 nm) were prepared and used as catalysts in the MgH2 system via ball milling to improve its de/rehydrogenation kinetics. Between the two kinds of nano-catalysts, the Ni/C nanoparticles exhibit a better catalytic efficiency. MgH2 doped with 6% Ni/C (MgH2-6%Ni/C) exhibits a peak dehydrogenation temperature of 275.7 °C, which is 142.7, 54.2 and 32.5 °C lower than that of commercial MgH2, milled MgH2 and MgH2 doped with 6% Co/C (MgH2-6%Co/C), respectively. MgH2 doped with 6% Ni/C can release about 6.1 wt% H2 at 250 °C. More importantly, the dehydrogenated MgH2-6%Ni/C is even able to uptake 5.0 wt% H2 at 100 °C within 20 s. Moreover, a cycling test of MgH2 doped with 8% Ni/C demonstrates its excellent hydrogen absorption/desorption stability with respect to both capacity (up to 6.5 wt%) and kinetics (within 8 min at 275 °C for dehydrogenation and within 10 s at 200 °C for rehydrogenation). Mechanistic research reveals that the in situ formed Mg2Ni and Mg2NiH4 nanoparticles can be regarded as advanced catalytically active species in the MgH2-Ni/C system. Meanwhile, the carbon attached around the surface of transition metal nanoparticles can successfully inhibit the aggregation of the catalysts and achieve the steadily, prompting de/rehydrogenation during the subsequent cycling process. The intrinsic catalytic effects and the uniform distributions of Mg2Ni

  6. Characterization of hydrides and delayed hydride cracking in zirconium alloys

    NASA Astrophysics Data System (ADS)

    Fang, Qiang

    This thesis tries to fill some of the missing gaps in the study of zirconium hydrides with state-of-art experiments, cutting edge tomographical technique, and a novel numerical algorithm. A new hydriding procedure is proposed. The new anode material and solution combination overcomes many drawbacks of the AECLRTM hydriding method and leads to superior hydriding result compared to the AECL RTM hydriding procedure. The DHC crack growth velocity of as-received Excel alloy and Zr-2.5Nb alloy together with several different heat treated Excel alloy samples are measured. While it already known that the DHC crack growth velocity increases with the increase of base metal strength, the finding that the transverse plane is the weaker plane for fatigue crack growth despite having higher resistance to DHC crack growth was unexpected. The morphologies of hydrides in a coarse grained Zircally-2 sample have been studied using synchrotron x-rays at ESRF with a new technique called Diffraction Contrast Tomography that uses simultaneous collection of tomographic data and diffraction data to determine the crystallographic orientation of crystallites (grains) in 3D. It has been previously limited to light metals such as Al or Mg (due to the use of low energy x-rays). Here we show the first DCT measurements using high energy x-rays (60 keV), allowing measurements in zirconium. A new algorithm of a computationally effcient way to characterize distributions of hydrides - in particular their orientation and/or connectivity - has been proposed. It is a modification of the standard Hough transform, which is an extension of the Hough transform widely used in the line detection of EBSD patterns. Finally, a basic model of hydrogen migration is built using ABAQUS RTM, which is a mature finite element package with tested modeling modules of a variety of physical laws. The coupling of hydrogen diffusion, lattice expansion, matrix deformation and phase transformation is investigated under

  7. Prediction and characterization of a chalcogen-hydride interaction with metal hybrids as an electron donor in F2CS-HM and F2CSe-HM (M = Li, Na, BeH, MgH, MgCH3) complexes.

    PubMed

    Li, Qing-Zhong; Qi, Hui; Li, Ran; Liu, Xiao-Feng; Li, Wen-Zuo; Cheng, Jian-Bo

    2012-03-07

    A novel type of σ-hole bonding has been predicted and characterized in F(2)CS-HM and F(2)CSe-HM (M = Li, Na, BeH, MgH) complexes at the MP2/aug-cc-pVTZ level. This interaction, termed a chalcogen-hydride interaction, was analyzed in terms of geometric, energetic and spectroscopic features of the complexes. It exhibits similar properties to hydrogen bonding and halogen bonding. The methyl group in metal hydrides makes a positive contribution to the formation of chalcogen-hydride bonded complexes. In the F(2)CSe-HLi-OH(2) complex, the chalcogen-hydride bonding shows synergetic effects with lithium bonding. These complexes have been analyzed with the atoms in molecules (AIM) theory and symmetry adapted perturbation theory (SAPT) method. The results show that the chalcogen-hydride bonding is dominated with an electrostatic interaction.

  8. A comparative study of optical absorption and photocatalytic properties of nanocrystalline single-phase anatase and rutile TiO{sub 2} doped with transition metal cations

    SciTech Connect

    Kernazhitsky, L.; Shymanovska, V.; Gavrilko, T.; Naumov, V.; Kshnyakin, V.; Khalyavka, T.

    2013-02-15

    The effect of nanocrystalline TiO{sub 2} doping with transition metal cations (Cu{sup 2+}, Fe{sup 3+}, Co{sup 2+}, Cr{sup 3+}) on their optical absorption and photocatalytic properties was investigated. The obtained metal-doped TiO{sub 2} samples were characterized by X-ray diffraction, scanning electron microscopy, and UV-vis absorption spectroscopy. It is shown that doping effect on anatase (A) and rutile (R) properties is quite different, being much stronger and complicated on A than on R. Contrary to doped R, doped A revealed a significant red shift of the absorption edge along with the band gap narrowing. Photocatalytic activity of anatase increases upon doping in the order: AR/Co>R/Cu>R/Fe>R/Cr, indicating the inhibitory effect of impurity cations. This fact correlates with the decrease in the UV absorption of the doped rutile in the region of the Hg-lamp irradiation at 4.88 eV. - Graphical abstract: A red shift of the absorption edge of nanocrystalline single-phase anatase after doping with transition metal cations. Highlights: Black-Right-Pointing-Pointer Single-phase anatase and rutile powders surface-doped with transition metal cations. Black-Right-Pointing-Pointer Absorption edge and band gap of rutile do not change with surface doping. Black-Right-Pointing-Pointer Band gap of surface-doped anatase reduces being the lowest for A/Fe. Black-Right-Pointing-Pointer The surface-doping improves photocatalytic activity of anatase. Black-Right-Pointing-Pointer The surface-doping inhibits photocatalytic activity of rutile.

  9. Complex hydrides for hydrogen storage

    DOEpatents

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  10. The coordination chemistry of organo-hydride donors: new prospects for efficient multi-electron reduction.

    PubMed

    McSkimming, Alex; Colbran, Stephen B

    2013-06-21

    In biological reduction processes the dihydronicotinamides NAD(P)H often transfer hydride to an unsaturated substrate bound within an enzyme active site. In many cases, metal ions in the active site bind, polarize and thereby activate the substrate to direct attack by hydride from NAD(P)H cofactor. This review looks more widely at the metal coordination chemistry of organic donors of hydride ion--organo-hydrides--such as dihydronicotinamides, other dihydropyridines including Hantzsch's ester and dihydroacridine derivatives, those derived from five-membered heterocycles including the benzimidazolines and benzoxazolines, and all-aliphatic hydride donors such as hexadiene and hexadienyl anion derivatives. The hydride donor properties--hydricities--of organo-hydrides and how these are affected by metal ions are discussed. The coordination chemistry of organo-hydrides is critically surveyed and the use of metal-organo-hydride systems in electrochemically-, photochemically- and chemically-driven reductions of unsaturated organic and inorganic (e.g. carbon dioxide) substrates is highlighted. The sustainable electrocatalytic, photochemical or chemical regeneration of organo-hydrides such as NAD(P)H, including for driving enzyme-catalysed reactions, is summarised and opportunities for development are indicated. Finally, new prospects are identified for metal-organo-hydride systems as catalysts for organic transformations involving 'hydride-borrowing' and for sustainable multi-electron reductions of unsaturated organic and inorganic substrates directly driven by electricity or light or by renewable reductants such as formate/formic acid.

  11. METHOD AND APPARATUS FOR MAKING URANIUM-HYDRIDE COMPACTS

    DOEpatents

    Wellborn, W.; Armstrong, J.R.

    1959-03-10

    A method and apparatus are presented for making compacts of pyrophoric hydrides in a continuous operation out of contact with air. It is particularly useful for the preparation of a canned compact of uranium hydride possessing high density and purity. The metallic uranium is enclosed in a container, positioned in a die body evacuated and nvert the uranium to the hydride is admitted and the container sealed. Heat is applied to bring about the formation of the hydride, following which compression is used to form the compact sealed in a container ready for use.

  12. System and process for production of magnesium metal and magnesium hydride from magnesium-containing salts and brines

    DOEpatents

    McGrail, Peter B.; Nune, Satish K.; Motkuri, Radha K.; Glezakou, Vassiliki-Alexandra; Koech, Phillip K.; Adint, Tyler T.; Fifield, Leonard S.; Fernandez, Carlos A.; Liu, Jian

    2016-11-22

    A system and process are disclosed for production of consolidated magnesium metal products and alloys with selected densities from magnesium-containing salts and feedstocks. The system and process employ a dialkyl magnesium compound that decomposes to produce the Mg metal product. Energy requirements and production costs are lower than for conventional processing.

  13. High energy density battery based on complex hydrides

    DOEpatents

    Zidan, Ragaiy

    2016-04-26

    A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.

  14. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles.

    PubMed

    Majeau-Bettez, Guillaume; Hawkins, Troy R; Strømman, Anders Hammer

    2011-05-15

    This study presents the life cycle assessment (LCA) of three batteries for plug-in hybrid and full performance battery electric vehicles. A transparent life cycle inventory (LCI) was compiled in a component-wise manner for nickel metal hydride (NiMH), nickel cobalt manganese lithium-ion (NCM), and iron phosphate lithium-ion (LFP) batteries. The battery systems were investigated with a functional unit based on energy storage, and environmental impacts were analyzed using midpoint indicators. On a per-storage basis, the NiMH technology was found to have the highest environmental impact, followed by NCM and then LFP, for all categories considered except ozone depletion potential. We found higher life cycle global warming emissions than have been previously reported. Detailed contribution and structural path analyses allowed for the identification of the different processes and value-chains most directly responsible for these emissions. This article contributes a public and detailed inventory, which can be easily be adapted to any powertrain, along with readily usable environmental performance assessments.

  15. Facile preparation of an immobilized surfactant-free palladium nanocatalyst for metal hydride trapping: a novel sensing platform for TXRF analysis.

    PubMed

    Romero, V; Costas-Mora, I; Lavilla, I; Bendicho, C

    2015-02-07

    In this work, a simple route for the synthesis of surfactant-free immobilized palladium nanoparticles (Pd NPs) and their use as effective nanocatalysts for metal hydride decomposition is described. A mixture of ethanol : water was used as the reducing agent. Ethanol was added in a large excess to reduce the ionic Pd and stabilize the obtained Pd NPs. Ethanol is adsorbed on the surface of Pd allowing steric stabilization. Freshly prepared Pd NPs were immobilized onto quartz substrates modified with 3-mercaptopropyltrimethoxysilane. Pd interacts with the thiol group of the alkoxysilane that is adsorbed on the surface of NPs without the dissociation of the S-H bond. Different parameters affecting the synthesis of Pd NPs and their immobilization onto quartz substrates were evaluated. A comprehensive characterization of the synthesized Pd NPs was carried out by transmission electron microscopy (TEM), whereas total reflection X-ray fluorescence (TXRF) spectrometry was applied in order to evaluate their catalytic activity for solid-gas reactions. Immobilized Pd NPs were applied as nanocatalysts for the dissociative chemisorption of arsine at room temperature, yielding the formation of As-Pd bonds. Quartz substrates coated with nanosized Pd could be used as novel sensing platforms for total reflection X-ray fluorescence analysis. Arsenic can be detected in situ in natural water with a limit of detection of 0.08 μg L(-1).

  16. Complex transition metal hydrides incorporating ionic hydrogen: thermal decomposition pathway of Na2Mg2FeH8 and Na2Mg2RuH8.

    PubMed

    Humphries, Terry D; Matsuo, Motoaki; Li, Guanqiao; Orimo, Shin-Ichi

    2015-03-28

    Complex transition metal hydrides have potential technological application as hydrogen storage materials, smart windows and sensors. Recent exploration of these materials has revealed that the incorporation of anionic hydrogen into these systems expands the potential number of viable complexes, while varying the countercation allows for optimisation of their thermodynamic stability. In this study, the optimised synthesis of Na2Mg2TH8 (T = Fe, Ru) has been achieved and their thermal decomposition properties studied by ex situ Powder X-ray Diffraction, Gas Chromatography and Pressure-Composition Isotherm measurements. The temperature and pathway of decomposition of these isostructural compounds differs considerably, with Na2Mg2FeH8 proceeding via NaMgH3 in a three-step process, while Na2Mg2RuH8 decomposes via Mg2RuH4 in a two-step process. The first desorption maxima of Na2Mg2FeH8 occurs at ca. 400 °C, while Na2Mg2RuH8 has its first maxima at 420 °C. The enthalpy and entropy of desorption for Na2Mg2TH8 (T = Fe, Ru) has been established by PCI measurements, with the ΔHdes for Na2Mg2FeH8 being 94.5 kJ mol(-1) H2 and 125 kJ mol(-1) H2 for Na2Mg2RuH8.

  17. Structures and heats of formation of simple alkali metal compounds: hydrides, chlorides, fluorides, hydroxides, and oxides for Li, Na, and K.

    PubMed

    Vasiliu, Monica; Li, Shenggang; Peterson, Kirk A; Feller, David; Gole, James L; Dixon, David A

    2010-04-01

    Geometry parameters, frequencies, heats of formation, and bond dissociation energies are predicted for simple alkali metal compounds (hydrides, chlorides, fluorides, hydroxides and oxides) of Li, Na, and K from coupled cluster theory [CCSD(T)] calculations including core-valence correlation with the aug-cc-pwCVnZ basis set (n = D, T, Q, and 5). To accurately calculate the heats of formation, the following additional correction were included: scalar relativistic effects, atomic spin-orbit effects, and vibrational zero-point energies. For calibration purposes, the properties of some of the lithium compounds were predicted with iterative triple and quadruple excitations via CCSDT and CCSDTQ. The calculated geometry parameters, frequencies, heats of formation, and bond dissociation energies were compared with all available experimental measurements and are in excellent agreement with high-quality experimental data. High-level calculations are required to correctly predict that K(2)O is linear and that the ground state of KO is (2)Sigma(+), not (2)Pi, as in LiO and NaO. This reliable and consistent set of calculated thermodynamic data is appropriate for use in combustion and atmospheric simulations.

  18. Comprehensive thermochemistry of W-H bonding in the metal hydrides CpW(CO)2(IMes)H, [CpW(CO)2(IMes)H](•+), and [CpW(CO)2(IMes)(H)2]+. Influence of an N-heterocyclic carbene ligand on metal hydride bond energies.

    PubMed

    Roberts, John A S; Appel, Aaron M; DuBois, Daniel L; Bullock, R Morris

    2011-09-21

    The free energies interconnecting nine tungsten complexes have been determined from chemical equilibria and electrochemical data in MeCN solution (T = 22 °C). Homolytic W-H bond dissociation free energies are 59.3(3) kcal mol(-1) for CpW(CO)(2)(IMes)H and 59(1) kcal mol(-1) for the dihydride [CpW(CO)(2)(IMes)(H)(2)](+) (where IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene), indicating that the bonds are the same within experimental uncertainty for the neutral hydride and the cationic dihydride. For the radical cation, [CpW(CO)(2)(IMes)H](•+), W-H bond homolysis to generate the 16-electron cation [CpW(CO)(2)(IMes)](+) is followed by MeCN uptake, with free energies for these steps being 51(1) and -16.9(5) kcal mol(-1), respectively. Based on these two steps, the free energy change for the net conversion of [CpW(CO)(2)(IMes)H](•+) to [CpW(CO)(2)(IMes)(MeCN)](+) in MeCN is 34(1) kcal mol(-1), indicating a much lower bond strength for the 17-electron radical cation of the metal hydride compared to the 18-electron hydride or dihydride. The pK(a) of CpW(CO)(2)(IMes)H in MeCN was determined to be 31.9(1), significantly higher than the 26.6 reported for the related phosphine complex, CpW(CO)(2)(PMe(3))H. This difference is attributed to the electron donor strength of IMes greatly exceeding that of PMe(3). The pK(a) values for [CpW(CO)(2)(IMes)H](•+) and [CpW(CO)(2)(IMes)(H)(2)](+) were determined to be 6.3(5) and 6.3(8), much closer to the pK(a) values reported for the PMe(3) analogues. The free energy of hydride abstraction from CpW(CO)(2)(IMes)H is 74(1) kcal mol(-1), and the resultant [CpW(CO)(2)(IMes)](+) cation is significantly stabilized by binding MeCN to form [CpW(CO)(2)(IMes)(MeCN)](+), giving an effective hydride donor ability of 57(1) kcal mol(-1) in MeCN. Electrochemical oxidation of [CpW(CO)(2)(IMes)](-) is fully reversible at all observed scan rates in cyclic voltammetry experiments (E° = -1.65 V vs Cp(2)Fe(+/0) in MeCN), whereas CpW(CO)(2

  19. Computational Modeling of Uranium Hydriding and Complexes

    SciTech Connect

    Balasubramanian, K; Siekhaus, W J; McLean, W

    2003-02-03

    Uranium hydriding is one of the most important processes that has received considerable attention over many years. Although many experimental and modeling studies have been carried out concerning thermochemistry, diffusion kinetics and mechanisms of U-hydriding, very little is known about the electronic structure and electronic features that govern the U-hydriding process. Yet it is the electronic feature that controls the activation barrier and thus the rate of hydriding. Moreover the role of impurities and the role of the product UH{sub 3} on hydriding rating are not fully understood. An early study by Condon and Larson concerns with the kinetics of U-hydrogen system and a mathematical model for the U-hydriding process. They proposed that diffusion in the reactant phase by hydrogen before nucleation to form hydride phase and that the reaction is first order for hydriding and zero order for dehydriding. Condon has also calculated and measures the reaction rates of U-hydriding and proposed a diffusion model for the U-hydriding. This model was found to be in excellent agreement with the experimental reaction rates. From the slopes of the Arrhenius plot the activation energy was calculated as 6.35 kcal/mole. In a subsequent study Kirkpatrick formulated a close-form for approximate solution to Condon's equation. Bloch and Mintz have proposed the kinetics and mechanism for the U-H reaction over a wide range of pressures and temperatures. They have discussed their results through two models, one, which considers hydrogen diffusion through a protective UH{sub 3} product layer, and the second where hydride growth occurs at the hydride-metal interface. These authors obtained two-dimensional fits of experimental data to the pressure-temperature reactions. Kirkpatrick and Condon have obtained a linear solution to hydriding of uranium. These authors showed that the calculated reaction rates compared quite well with the experimental data at a hydrogen pressure of 1 atm. Powell

  20. Formation of nanocrystalline h-AlN during mechanochemical decomposition of melamine in the presence of metallic aluminum

    SciTech Connect

    Rounaghi, S.A.; Kiani Rashid, A.R.; Eshghi, H.; Vahdati Khaki, J.

    2012-06-15

    Decomposition of melamine was studied by solid state reaction of melamine and aluminum powders during high energy ball-milling. The milling procedure performed for both pure melamine and melamine/Al mixed powders as the starting materials for various times up to 48 h under ambient atmosphere. The products were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results revealed that Al causes melamine deammoniation at the first stages of milling and further milling process leads to the s-triazine ring degradation while nano-crystallite hexagonal aluminum nitride (h-AlN) was the main solid product. Comparison to milling process, the possibility of the reaction of melamine with Al was also investigated by thermal treatment method using differential scanning calorimeter (DSC) and thermo gravimetric analyzer (TGA). Melamine decomposition occurred by thermal treatment in the range of 270-370 Degree-Sign C, but no reaction between melamine and aluminum was observed. - Graphical Abstract: Mechanochemical reaction of melamine with Al resulted in the formation of nanocrystalline AlN after 7 h milling time Highlights: Black-Right-Pointing-Pointer High energy ball milling of melamine and aluminum results decomposition of melamine with elimination of ammonia. Black-Right-Pointing-Pointer Nano-crystalline AlN was synthesized by the mechanochemical route. Black-Right-Pointing-Pointer Milling process has no conspicuous effect on pure melamine degradation. Black-Right-Pointing-Pointer No reaction takes place by heating melamine and aluminum powder mixture in argon.

  1. Facile preparation of an immobilized surfactant-free palladium nanocatalyst for metal hydride trapping: a novel sensing platform for TXRF analysis

    NASA Astrophysics Data System (ADS)

    Romero, V.; Costas-Mora, I.; Lavilla, I.; Bendicho, C.

    2015-01-01

    In this work, a simple route for the synthesis of surfactant-free immobilized palladium nanoparticles (Pd NPs) and their use as effective nanocatalysts for metal hydride decomposition is described. A mixture of ethanol : water was used as the reducing agent. Ethanol was added in a large excess to reduce the ionic Pd and stabilize the obtained Pd NPs. Ethanol is adsorbed on the surface of Pd allowing steric stabilization. Freshly prepared Pd NPs were immobilized onto quartz substrates modified with 3-mercaptopropyltrimethoxysilane. Pd interacts with the thiol group of the alkoxysilane that is adsorbed on the surface of NPs without the dissociation of the S-H bond. Different parameters affecting the synthesis of Pd NPs and their immobilization onto quartz substrates were evaluated. A comprehensive characterization of the synthesized Pd NPs was carried out by transmission electron microscopy (TEM), whereas total reflection X-ray fluorescence (TXRF) spectrometry was applied in order to evaluate their catalytic activity for solid-gas reactions. Immobilized Pd NPs were applied as nanocatalysts for the dissociative chemisorption of arsine at room temperature, yielding the formation of As-Pd bonds. Quartz substrates coated with nanosized Pd could be used as novel sensing platforms for total reflection X-ray fluorescence analysis. Arsenic can be detected in situ in natural water with a limit of detection of 0.08 μg L-1.In this work, a simple route for the synthesis of surfactant-free immobilized palladium nanoparticles (Pd NPs) and their use as effective nanocatalysts for metal hydride decomposition is described. A mixture of ethanol : water was used as the reducing agent. Ethanol was added in a large excess to reduce the ionic Pd and stabilize the obtained Pd NPs. Ethanol is adsorbed on the surface of Pd allowing steric stabilization. Freshly prepared Pd NPs were immobilized onto quartz substrates modified with 3-mercaptopropyltrimethoxysilane. Pd interacts with the thiol

  2. Development of Novel Metal Hydride-Carbon Nanomaterial Based Nanocomposites as Anode Electrode Materials for Lithium Ion Battery

    DTIC Science & Technology

    2014-06-30

    and pG-f-MWNT after the first cycle. These may be attributed to the lithium ion consumption during the electrolyte decomposition and formation of... solid electrolyte interface film around the electrodes with large surface areas.25 After the 30th and the 100th cycle SEG yielded a reversible discharge...anode electrode materials for Lithium ion battery Objectives:- The aim of this study is to develop metal hydride–carbon nanomaterial based

  3. Zero-point corrections and temperature dependence of HD spin-spin coupling constants of heavy metal hydride and dihydrogen complexes calculated by vibrational averaging.

    PubMed

    Mort, Brendan C; Autschbach, Jochen

    2006-08-09

    Vibrational corrections (zero-point and temperature dependent) of the H-D spin-spin coupling constant J(HD) for six transition metal hydride and dihydrogen complexes have been computed from a vibrational average of J(HD) as a function of temperature. Effective (vibrationally averaged) H-D distances have also been determined. The very strong temperature dependence of J(HD) for one of the complexes, [Ir(dmpm)Cp*H2]2 + (dmpm = bis(dimethylphosphino)methane) can be modeled simply by the Boltzmann average of the zero-point vibrationally averaged JHD of two isomers. For this complex and four others, the vibrational corrections to JHD are shown to be highly significant and lead to improved agreement between theory and experiment in most cases. The zero-point vibrational correction is important for all complexes. Depending on the shape of the potential energy and J-coupling surfaces, for some of the complexes higher vibrationally excited states can also contribute to the vibrational corrections at temperatures above 0 K and lead to a temperature dependence. We identify different classes of complexes where a significant temperature dependence of J(HD) may or may not occur for different reasons. A method is outlined by which the temperature dependence of the HD spin-spin coupling constant can be determined with standard quantum chemistry software. Comparisons are made with experimental data and previously calculated values where applicable. We also discuss an example where a low-order expansion around the minimum of a complicated potential energy surface appears not to be sufficient for reproducing the experimentally observed temperature dependence.

  4. Trimethylsilyl-Substituted Hydroxycyclopentadienyl Ruthenium Hydrides as Benchmarks to Probe Ligand and Metal Effects on the Reactivity of Shvo Type Complexes.

    PubMed

    Casey, Charles P; Guan, Hairong

    2012-01-01

    The bis(trimethylsilyl)-substituted hydroxycyclopentadienyl ruthenium hydride [2,5-(SiMe(3))(2)-3,4-(CH(2)OCH(2))(η(5)-C(4)COH)]Ru(CO)(2)H (10) is an efficient catalyst for hydrogenation of aldehydes and ketones. Because 10 transfers hydrogen rapidly to aldehydes and ketones and because it does not form an inactive bridging hydride during reaction, hydrogenation of aldehydes and ketones can be performed at room temperature under relatively low hydrogen pressure (3 atm); this is a significant improvement compared with previously developed Shvo type catalysts. Kinetic and (2)H NMR spectroscopic studies of the stoichiometric reduction of aldehydes and ketones by 10 established a two-step process for the hydrogen transfer: (1) rapid and reversible hydrogen bond formation between OH of 10 and the oxygen of the aldehyde or ketone, (2) followed by slow transfer of both proton and hydride from 10 to the aldehyde or ketone. The stoichiometric and catalytic activities of complex 10 are compared to those of other Shvo type ruthenium hydrides and related iron hydrides.

  5. LaNi{sub 5{minus}x}M{sub x} metal hydride alloys for alkaline rechargeable cells

    SciTech Connect

    Witham, C.K.; Hightower, A.; Bowman, R.C. Jr.; Fultz, B.; Ratnakumar, B.V.

    1997-12-01

    This work centers on making alloy modifications to LaNi{sub 5} by replacing Ni with various metal elements. The primary goal of the alloy modifications is to stabilize the alloy during electrochemical cycling in an alkaline medium. The reasons that some elements promote cyclic stability are explored, and the relative magnitude of their effect is Ge > Sn > Si > Ga > Al > In > Ni. Other properties are determined for each alloy, such as maximum capacity, charge transfer kinetics, hydrogen diffusion, charge overpotentials, and charge efficiency. Alloy microstructural information is measured by X-ray diffraction, and gas-phase.

  6. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    SciTech Connect

    Hall, Aaron Christopher; Sarobol, Pylin; Argibay, Nicolas; Clark, Blythe; Diantonio, Christopher

    2015-09-01

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. We demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.

  7. A comparative study of optical absorption and photocatalytic properties of nanocrystalline single-phase anatase and rutile TiO2 doped with transition metal cations

    NASA Astrophysics Data System (ADS)

    Kernazhitsky, L.; Shymanovska, V.; Gavrilko, T.; Naumov, V.; Kshnyakin, V.; Khalyavka, T.

    2013-02-01

    The effect of nanocrystalline TiO2 doping with transition metal cations (Cu2+, Fe3+, Co2+, Cr3+) on their optical absorption and photocatalytic properties was investigated. The obtained metal-doped TiO2 samples were characterized by X-ray diffraction, scanning electron microscopy, and UV-vis absorption spectroscopy. It is shown that doping effect on anatase (A) and rutile (R) properties is quite different, being much stronger and complicated on A than on R. Contrary to doped R, doped A revealed a significant red shift of the absorption edge along with the band gap narrowing. Photocatalytic activity of anatase increases upon doping in the order: AR/Co>R/Cu>R/Fe>R/Cr, indicating the inhibitory effect of impurity cations. This fact correlates with the decrease in the UV absorption of the doped rutile in the region of the Hg-lamp irradiation at 4.88 eV.

  8. Formulations and processing of nanocrystalline TiO2 films for the different requirements of plastic, metal and glass dye solar cell applications.

    PubMed

    Zardetto, Valerio; De Angelis, Gabriele; Vesce, Luigi; Caratto, Valentina; Mazzuca, Claudia; Gasiorowski, Jacek; Reale, Andrea; Di Carlo, Aldo; Brown, Thomas M

    2013-06-28

    We carried out a systematic study on the effect of nanocrystalline TiO2 paste formulations and temperature treatment on the performance of dye solar cells (DSCs) over a large temperature range, to provide useful information for the fabrication of both plastic and metal flexible devices. We compared conventional screen-printable and binder-free TiO2 pastes with a new formulation which includes hydroxylethyl cellulose (HEC), enabling the study of the effect of organic materials in the TiO2 layer in the whole 25-600 °C temperature range. Differently from the binder-free formulations where the device efficiency rose monotonically with temperature, the use of cellulose binders led to remarkably different trends depending on their pyrolysis and decomposition thresholds and solubility, especially at those temperatures compatible with plastic foils. Above 325 °C, where metal foil can be used as substrates, the efficiencies become similar to those of the binder-free paste due to effective binder decomposition and inter-nanoparticle bonding. Finally, we demonstrated, for the first time, that the simultaneous application of both temperature (110-150 °C) and pressure (100 MPa) can lead to a large improvement (33%) compared to the same mechanical compression method carried out at room temperature only.

  9. Zirconium hydride containing explosive composition

    DOEpatents

    Walker, Franklin E.; Wasley, Richard J.

    1981-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising a non-explosive compound or mixture of non-explosive compounds which when subjected to an energy fluence of 1000 calories/cm.sup.2 or less is capable of releasing free radicals each having a molecular weight between 1 and 120. Exemplary donor additives are dibasic acids, polyamines and metal hydrides.

  10. Short-range order of low-coverage Ti /Al(111): Implications for hydrogen storage in complex metal hydrides

    NASA Astrophysics Data System (ADS)

    Muller, E.; Sutter, E.; Zahl, P.; Ciobanu, C. V.; Sutter, P.

    2007-04-01

    Using scanning tunneling microscopy and density functional theory, we characterize the population of low-coverage Ti atoms on Al(111) as a model surface system for transition metal doped alanate hydrogen storage compounds, such as NaAlH4. When deposited at room temperature, Ti is kinetically trapped in first-layer substitutional sites, avoids nearest-neighbor locations, and preferentially forms next-nearest-neighbor pairs, similar to a structure that has been predicted to dissociate H2 with no energy barrier. The results on this well-defined system suggest the presence of a large population of Ti-pair complexes that may catalyze the dissociative chemisorption of hydrogen in Ti-doped alanate storage materials.

  11. Iron Group Hydrides in Noyori Bifunctional Catalysis.

    PubMed

    Morris, Robert H

    2016-12-01

    This is an overview of the hydride-containing catalysts prepared in the Morris group for the efficient hydrogenation of simple ketones, imines, nitriles and esters and the asymmetric hydrogenation and transfer hydrogenation of prochiral ketones and imines. The work was inspired by and makes use of Noyori metal-ligand bifunctional concepts involving the hydride-ruthenium amine-hydrogen HRuNH design. It describes the synthesis and some catalytic properties of hydridochloro, dihydride and amide complexes of ruthenium and in one case, osmium, with monodentate, bidentate and tetradentate phosphorus and nitrogen donor ligands. The iron hydride that has been identified in a very effective asymmetric transfer hydrogenation process is also mentioned. The link between the HMNH structure and the sense of enantioinduction is demonstrated by use of simple transition state models.

  12. Chemistry of intermetallic hydrides

    SciTech Connect

    Reilly, J.J.

    1991-01-01

    Certain intermetallic hydrides are safe, convenient and inexpensive hydrogen storage compounds. A particular advantage of such compounds is the ease with which their properties can be modified by small changes in alloy composition or preparation. This quality can be exploited to optimize their storage properties for particular applications, e.g. as intermetallic hydride electrodes in batteries. We will be concerned herein with the more important aspects of the thermodynamic and structural principles which regulate the behavior of intermetallic hydrogen systems and then illustrate their application using the archetype hydrides of LaNi5, FeTi and Mg alloys. The practical utility of these classes of materials will be briefly noted.

  13. Metal/graphene nanocomposites synthesized with the aid of supercritical fluid for promoting hydrogen release from complex hydrides.

    PubMed

    Jiang, De-Hao; Yang, Cheng-Hsien; Tseng, Chuan-Ming; Lee, Sheng-Long; Chang, Jeng-Kuei

    2014-11-07

    With the aid of supercritical CO2, Fe-, Ni-, Pd-, and Au-nanoparticle-decorated nanostructured carbon materials (graphene, activated carbon, carbon black, and carbon nanotubes) are synthesized for catalyzing the dehydrogenation of LiAlH4. The effects of the metal nanoparticle size and distribution, and the type of carbon structure on the hydrogen release properties are investigated. The Fe/graphene nanocomposite, which consists of ∼2 nm Fe particles highly dispersed on graphene nanosheets, exhibits the highest catalytic performance. With this nanocomposite, the initial dehydrogenation temperature can be lowered (from ∼135 °C for pristine LiAlH4) to ∼40 °C without altering the reaction route (confirmed by in situ X-ray diffraction), and 4.5 wt% H2 can be released at 100 °C within 6 min, which is faster by more than 135-fold than the time required to release the same amount of H2 from pristine LiAlH4.

  14. Reactivity of yttrium carboxylates toward alkylaluminum hydrides.

    PubMed

    Schädle, Christoph; Fischbach, Andreas; Herdtweck, Eberhardt; Törnroos, Karl W; Anwander, Reiner

    2013-11-25

    Yttrocene-carboxylate complex [Cp*2Y(OOCAr(Me))] (Cp*=C5Me5, Ar(Me) =C6H2Me3-2,4,6) was synthesized as a spectroscopically versatile model system for investigating the reactivity of alkylaluminum hydrides towards rare-earth-metal carboxylates. Equimolar reactions with bis-neosilylaluminum hydride and dimethylaluminum hydride gave adduct complexes of the general formula [Cp*2Y(μ-OOCAr(Me))(μ-H)AlR2] (R=CH2SiMe3, Me). The use of an excess of the respective aluminum hydride led to the formation of product mixtures, from which the yttrium-aluminum-hydride complex [{Cp*2Y(μ-H)AlMe2(μ-H)AlMe2(μ-CH3)}2] could be isolated, which features a 12-membered-ring structure. The adduct complexes [Cp*2Y(μ-OOCAr(Me))(μ-H)AlR2] display identical (1)J(Y,H) coupling constants of 24.5 Hz for the bridging hydrido ligands and similar (89)Y NMR shifts of δ=-88.1 ppm (R=CH2SiMe3) and δ=-86.3 ppm (R=Me) in the (89)Y DEPT45 NMR experiments.

  15. Regenerative Hydride Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  16. First principles static and dynamic calculations for the transition metal hydride series MH4L3 (M = Fe, Ru and Os; L = NH3, PH3 and PF3).

    PubMed

    Sieffert, Nicolas; Kendrick, Thomas; Tiana, Davide; Morrison, Carole A

    2015-03-07

    We present a first principles static and dynamical study of the transition metal hydride series MH4L3 (M = Fe, Ru and Os; L = NH3, PH3 and PF3), with a view to arriving at an understanding of how the variation in the electronic properties of the metal sites and ligands can influence the dynamics of the resulting complexes. A broad range of behaviour was observed, encompassing stable classical minima (M = Os, L = NH3 and M = Ru, L = PH3) to stable η(2)-H2 non-classical minima (M = Fe, L = PF3 and M = Ru, L = PH3 or PF3), with the other structures exhibiting dynamical behaviour that spontaneously converted between the classical and non-classical states during the molecular dynamics simulations. The importance of a small L(axial)-M-L(axial) angle in stabilising the non-classical state is highlighted, as is a short η(2)-H2···H(cis) distance in non-classical complexes that spontaneously convert to the classical form. We also investigated the changes in the electronic structure of the complex FeH4(PH3)3 during a η(2)-H2 bond breaking/bond making reaction and observed direct evidence of the 'cis effect', whereby a neighbouring hydride ligand acts to stabilise the intermediate classical state.

  17. Chiral [Mo3S4H3(diphosphine)3]+ hydrido clusters and study of the effect of the metal atom on the kinetics of the acid-assisted substitution of the coordinated hydride: Mo vs W.

    PubMed

    Algarra, Andrés G; Basallote, Manuel G; Fernández-Trujillo, M Jesús; Feliz, Marta; Guillamón, Eva; Llusar, Rosa; Sorribes, Ivan; Vicent, Cristian

    2010-07-05

    The molybdenum(IV) cluster hydrides of formula [Mo(3)S(4)H(3)(diphosphine)(3)](+) with diphosphine = 1,2-(bis)dimethylphosphinoethane (dmpe) or (+)-1,2-bis-(2R,5R)-2,5-(dimethylphospholan-1-yl)ethane ((R,R)-Me-BPE) have been isolated in moderate to high yields by reacting their halide precursors with borohydride. Complex [Mo(3)S(4)H(3)((R,R)-Me-BPE)(3)](+) as well as its tungsten analogue are obtained in optically pure forms. Reaction of the incomplete cuboidal [M(3)S(4)H(3)((R,R)-Me-BPE)(3)](+) (M = Mo, W) complex with acids in CH(2)Cl(2) solution shows kinetic features similar to those observed for the related incomplete cuboidal [W(3)S(4)H(3)(dmpe)(3)](+) cluster. However, there is a decrease in the value of the rate constants that is explained as a result of the higher steric effect of the diphosphine. The rate constants for the reaction of both clusters [M(3)S(4)H(3)((R,R)-Me-BPE)(3)](+) (M = Mo, W) with HCl have similar values, thus indicating a negligible effect of the metal center on the kinetics of reaction of the hydrides coordinated to any of both transition metals.

  18. The Nature of Metal-Metal Interactions in Dimeric Hydrides and Halides of Group 11 Elements in the Light of High Level Relativistic Calculations.

    PubMed

    Dem'yanov, Piotr I; Polestshuk, Pavel M; Kostin, Vladimir V

    2017-03-08

    The titular calculations show that charges at metal atoms M are apparently the main factor governing the nature of M⋅⋅⋅M interactions in two-nuclear coinage-metal complexes, and there are certain critical values of positive charges on M atoms, on exceeding which the pair-wise M⋅⋅⋅M interactions and/or the binding between M atoms in such complexes become repulsive despite negative formation energies of such complexes, short M-M internuclear distances, and the existence of a bond critical point (BCP) between M atoms.

  19. The metal-insulator transition in nanocrystalline Pr0.67Ca0.33MnO3: the correlation between supercooling and kinetic arrest.

    PubMed

    Rawat, R; Chaddah, P; Bag, Pallab; Das, Kalipada; Das, I

    2012-10-17

    The transition and hysteresis widths of a disorder broadened first order magnetic transition vary in H-T space which influences the co-existing phase fraction at low temperature arising due to kinetic arrest of the first order transition. We explored the role of change in the relative width of the supercooling/superheating band and kinetic arrest band for a ferromagnetic metallic to antiferromagnetic insulating transition. It is shown that for a correlated kinetic arrest and supercooling bands, the topology of the devitrification curves (or transformation across the (H(K),T(K)) band during warming) changes with the change in the relative width of these two bands. In addition to this, for a broader kinetic arrest band, the transformation temperature across the superheating band under constant H now depends on the arrested phase fraction. These predictions have been tested on nanocrystalline Pr(0.67)Ca(0.33)MnO(3), which is known to show a large variation in hysteresis width in H-T space. This is the first report where correlation between the kinetic arrest band and the supercooling band has been shown experimentally, in contrast to the universal observation of anticorrelation reported so far.

  20. Mechanically Driven Grain Boundary Relaxation: A Mechanism for Cyclic Hardening in Nanocrystalline Ni

    DTIC Science & Technology

    2012-01-01

    nanocrystalline metals by dissipating energy and reducing the average atomic energy of the system, leading to higher strengths. The GB processes that...can relax the non-equilibrium grain boundary (GB) structures of nanocrystalline metals by dissipating energy and reducing the average atomic energy...simulations are used to show that cyclic mechanical loading can relax the non-equilibrium grain boundary (GB) structures of nanocrystalline metals by

  1. Phase I. Lanthanum-based Start Materials for Hydride Batteries

    SciTech Connect

    Gschneidner, K. A.; Schmidt, F. A.; Frerichs, A. E.; Ament, K. A.

    2013-08-20

    The purpose of Phase I of this work is to focus on developing a La-based start material for making nickel-metal (lanthanum)-hydride batteries based on our carbothermic-silicon process. The goal is to develop a protocol for the manufacture of (La1-xRx)(Ni1-yMy)(Siz), where R is a rare earth metal and M is a non-rare earth metal, to be utilized as the negative electrode in nickel-metal hydride (NiMH) rechargeable batteries.

  2. Computational Design, Theoretical and Experimental Investigation of Carbon Nanotube (CNT) - Metal Oxide/Metal Hydride Composite - A Practicable Hydrogen Storage Medium for Fuel Cell - 3

    DTIC Science & Technology

    2012-08-29

    unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The results of hydrogenation of single walled carbon nanotubes (SWCNTs)- SnO2 composite, SWCNTs-WO3...18 2 Theoretical Investigation First Principles Study of Hydrogen Storage in SWCNT Functionalized with metal complexes (MgH2, TiO2 & SnO2 ...and Tin dioxide ( SnO2 )) has been investigated theoretically. METHOD OF CALCULATION All the calculations are carried out using density functional

  3. Lightweight hydride storage materials

    SciTech Connect

    Thomas, G.J.; Guthrie, S.E.; Bauer, W.

    1995-09-01

    The need for lightweight hydrides in vehicular applications has prompted considerable research into the use of magnesium and its alloys. Although this earlier work has provided some improved performance in operating temperature and pressure, substantial improvements are needed before these materials will significantly enhance the performance of an engineered system on a vehicle. We are extending the work of previous investigators on Mg alloys to reduce the operating temperature and hydride heat of formation in light weight materials. Two important results will be discussed in this paper: (1) a promising new alloy hydride was found which has better pressure-temperature characteristics than any previous Mg alloy and, (2) a new fabrication process for existing Mg alloys was developed and demonstrated. The new alloy hydride is composed of magnesium, aluminum and nickel. It has an equilibrium hydrogen overpressure of 1.3 atm. at 200{degrees}C and a storage capacity between 3 and 4 wt.% hydrogen. A hydrogen release rate of approximately 5 x 10{sup -4} moles-H{sub 2}/gm-min was measured at 200{degrees}C. The hydride heat of formation was found to be 13.5 - 14 kcal/mole-H{sub 2}, somewhat lower than Mg{sub 2}Ni. The new fabrication method takes advantage of the high vapor transport of magnesium. It was found that Mg{sub 2}Ni produced by our low temperature process was better than conventional materials because it was single phase (no Mg phase) and could be fabricated with very small particle sizes. Hydride measurements on this material showed faster kinetic response than conventional material. The technique could potentially be applied to in-situ hydride bed fabrication with improved packing density, release kinetics, thermal properties and mechanical stability.

  4. Development of the Low-Pressure Hydride/Dehydride Process

    SciTech Connect

    Rueben L. Gutierrez

    2001-04-01

    The low-pressure hydride/dehydride process was developed from the need to recover thin-film coatings of plutonium metal from the inner walls of an isotope separation chamber located at Los Alamos and to improve the safety operation of a hydride recovery process using hydrogen at a pressure of 0.7 atm at Rocky Flats. This process is now the heart of the Advanced Recovery and Integrated Extraction System (ARIES) project.

  5. The effective method based on IR annealing for manufacturing novel carbon nanocrystalline material and multifunctional metal-polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Kozhitov, L. V.; Kozlov, V. V.; Kostishyn, V. G.; Morchenko, A. T.; Muratov, D. G.

    2009-09-01

    Metal-containing polymeric nanomaterials were prepared by the two methods: infrared-irradiation pyrolysis and metals reduction from their salts in hydrazine on substrates. The composite consist of polymer matrix with 3d-metal nanoparticles. The structure and morphology of nanocomposites were investigated for the powder samples using X-ray diffraction, scanning and transmission electron microscopy, and Mössbauer spectroscopy (MS). It is shown that technology of preparing the nanocomposite under IR-irradiation is more effective than a thermal treatment under resistance-type heating, as the synergetic effect of influencing IR-radiation and heat leads to faster polymer transformations. The results of MS data comparison for the samples prepared by IR-radiation-stimulated pyrolysis and by means of salt reduction in hydrazine are discussed.

  6. A metal-mediated hydride shift mechanism for xylose isomerase based on the 1.6 A Streptomyces rubiginosus structures with xylitol and D-xylose.

    PubMed

    Whitlow, M; Howard, A J; Finzel, B C; Poulos, T L; Winborne, E; Gilliland, G L

    1991-01-01

    The crystal structure of recombinant Streptomyces rubiginosus D-xylose isomerase (D-xylose keto-isomerase, EC 5.3.1.5) solved by the multiple isomorphous replacement technique has been refined to R = 0.16 at 1.64 A resolution. As observed in an earlier study at 4.0 A (Carrell et al., J. Biol. Chem. 259: 3230-3236, 1984), xylose isomerase is a tetramer composed of four identical subunits. The monomer consists of an eight-stranded parallel beta-barrel surrounded by eight helices with an extended C-terminal tail that provides extensive contacts with a neighboring monomer. The active site pocket is defined by an opening in the barrel whose entrance is lined with hydrophobic residues while the bottom of the pocket consists mainly of glutamate, aspartate, and histidine residues coordinated to two manganese ions. The structures of the enzyme in the presence of MnCl2, the inhibitor xylitol, and the substrate D-xylose in the presence and absence of MnCl2 have also been refined to R = 0.14 at 1.60 A, R = 0.15 at 1.71 A, R = 0.15 at 1.60 A, and R = 0.14 at 1.60 A, respectively. Both the ring oxygen of the cyclic alpha-D-xylose and its C1 hydroxyl are within hydrogen bonding distance of NE2 of His-54 in the structure crystallized in the presence of D-xylose. Both the inhibitor, xylitol, and the extended form of the substrate, D-xylose, bind such that the C2 and C4 OH groups interact with one of the two divalent cations found in the active site and the C1 OH with the other cation. The remainder of the OH groups hydrogen bond with neighboring amino acid side chains. A detailed mechanism for D-xylose isomerase is proposed. Upon binding of cyclic alpha-D-xylose to xylose isomerase, His-54 acts as the catalytic base in a ring opening reaction. The ring opening step is followed by binding of D-xylose, involving two divalent cations, in an extended conformation. The isomerization of D-xylose to D-xylulose involves a metal-mediated 1,2-hydride shift. The final step in the mechanism is

  7. Hydrated hydride anion clusters

    NASA Astrophysics Data System (ADS)

    Lee, Han Myoung; Kim, Dongwook; Singh, N. Jiten; Kołaski, Maciej; Kim, Kwang S.

    2007-10-01

    On the basis of density functional theory (DFT) and high level ab initio theory, we report the structures, binding energies, thermodynamic quantities, IR spectra, and electronic properties of the hydride anion hydrated by up to six water molecules. Ground state DFT molecular dynamics simulations (based on the Born-Oppenheimer potential surface) show that as the temperature increases, the surface-bound hydride anion changes to the internally bound structure. Car-Parrinello molecular dynamics simulations are also carried out for the spectral analysis of the monohydrated hydride. Excited-state ab initio molecular dynamics simulations show that the photoinduced charge-transfer-to-solvent phenomena are accompanied by the formation of the excess electron-water clusters and the detachment of the H radical from the clusters. The dynamics of the detachment process of a hydrogen radical upon the excitation is discussed.

  8. Thermodynamic studies and hydride transfer reactions from a rhodium complex to BX3 compounds.

    PubMed

    Mock, Michael T; Potter, Robert G; Camaioni, Donald M; Li, Jun; Dougherty, William G; Kassel, W Scott; Twamley, Brendan; DuBois, Daniel L

    2009-10-14

    This study examines the use of transition-metal hydride complexes that can be generated by the heterolytic cleavage of H(2) gas to form B-H bonds. Specifically, these studies are focused on providing a reliable and quantitative method for determining when hydride transfer from transition-metal hydrides to three-coordinate BX(3) (X = OR, SPh, F, H; R = Ph, p-C(6)H(4)OMe, C(6)F(5), (t)Bu, Si(Me)(3)) compounds will be favorable. This involves both experimental and theoretical determinations of hydride transfer abilities. Thermodynamic hydride donor abilities (DeltaG(o)(H(-))) were determined for HRh(dmpe)(2) and HRh(depe)(2), where dmpe = 1,2-bis(dimethylphosphinoethane) and depe = 1,2-bis(diethylphosphinoethane), on a previously established scale in acetonitrile. This hydride donor ability was used to determine the hydride donor ability of [HBEt(3)](-) on this scale. Isodesmic reactions between [HBEt(3)](-) and selected BX(3) compounds to form BEt(3) and [HBX(3)](-) were examined computationally to determine their relative hydride affinities. The use of these scales of hydride donor abilities and hydride affinities for transition-metal hydrides and BX(3) compounds is illustrated with a few selected reactions relevant to the regeneration of ammonia borane. Our findings indicate that it is possible to form B-H bonds from B-X bonds, and the extent to which BX(3) compounds are reduced by transition-metal hydride complexes forming species containing multiple B-H bonds depends on the heterolytic B-X bond energy. An example is the reduction of B(SPh)(3) using HRh(dmpe)(2) in the presence of triethylamine to form Et(3)N-BH(3) in high yields.

  9. Bulk Nanocrystalline Metals: Review of the Current State of the Art and Future Opportunities for Copper and Copper Alloys

    DTIC Science & Technology

    2014-05-13

    powder into bulk form uses various powder metallurgy consoli- dation processes: spark - plasma sintering , equal- channel angular extrusion, flash... sintering , hot iso- static pressing, etc. These processes use high pres- sures, elevated temperatures (typically above 50% Tm), and time to compact and sinter ...Thermal Stability The most convenient way to deal with consolidation of metal particles is through powder metallurgy techniques such as sintering

  10. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    NASA Astrophysics Data System (ADS)

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  11. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, R.K.; Bystroff, R.I.; Miller, D.E.

    1986-08-27

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  12. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, Richard K.; Bystroff, Roman I.; Miller, Dale E.

    1987-01-01

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  13. Separation of intra- and intergranular magnetotransport properties in nanocrystalline diamond films on the metallic side of the metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Janssens, S. D.; Pobedinskas, P.; Vacik, J.; Petráková, V.; Ruttens, B.; D'Haen, J.; Nesládek, M.; Haenen, K.; Wagner, P.

    2011-08-01

    A systematic study on the morphology and electronic properties of thin heavily boron-doped nanocrystalline diamond (NCD) films is presented. The films have nominally the same thickness (≈150 nm) and are grown with a fixed B/C ratio (5000 ppm) but with different C/H ratios (0.5-5%) in the gas phase. The morphology of the films is investigated by x-ray diffraction and atomic force microscopy measurements, which confirm that lower C/H ratios lead to a larger average grain size. Magnetotransport measurements reveal a decrease in resistivity and a large increase in mobility, approaching the values obtained for single-crystal diamond as the average grain size of the films increases. In all films, the temperature dependence of resistivity decreases with larger grains and the charge carrier density and mobility are thermally activated. It is possible to separate the intra- and intergrain contributions for resistivity and mobility, which indicates that in these complex systems Matthiessen's rule is followed. The concentration of active charge carriers is reduced when the boron-doped NCD is grown with a lower C/H ratio. This is due to lower boron incorporation, which is confirmed by neutron depth profiling.

  14. Application of multivariate techniques in the optimization of a procedure for the determination of bioavailable concentrations of Se and As in estuarine sediments by ICP OES using a concomitant metals analyzer as a hydride generator.

    PubMed

    Lopes, Watson da Luz; Santelli, Ricardo Erthal; Oliveira, Eliane Padua; de Carvalho, Maria de Fátima Batista; Bezerra, Marcos Almeida

    2009-10-15

    A procedure has been developed for the determination of bioavailable concentrations of selenium and arsenic in estuarine sediments employing inductively coupled plasma optical emission spectrometry (ICP OES) using a concomitant metals analyzer device to perform hydride generation. The optimization of hydride generation was done in two steps: using a two-level factorial design for preliminary evaluation of studied factors and a Doehlert design to assess the optimal experimental conditions for analysis. Interferences of transition metallic ions (Cd(2+), Co(2+), Cu(2+), Fe(3+) and Ni(2+)) to selenium and arsenic signals were minimized by using higher hydrochloric acid concentrations. In this way, the procedure allowed the determination of selenium and arsenic in sediments with a detection limit of 25 and 30 microg kg(-1), respectively, assuming a 50-fold sample dilution (0.5 g sample extraction to 25 mL sample final volume). The precision, expressed as a relative standard deviation (% RSD, n=10), was 0.2% for both selenium and arsenic in 200 microg L(-1) solutions, which corresponds to 10 microg g(-1) in sediment samples after acid extraction. Applying the proposed procedure, a linear range of 0.08-10 and 0.10-10 microg g(-1) was obtained for selenium and arsenic, respectively. The developed procedure was validated by the analysis of two certified reference materials: industrial sludge (NIST 2782) and river sediment (NIST 8704). The results were in agreement with the certified values. The developed procedure was applied to evaluate the bioavailability of both elements in four sediment certified reference materials, in which there are not certified values for bioavailable fractions, and also in estuarine sediment samples collected in several sites of Guanabara Bay, an impacted environment in Rio de Janeiro, Brazil.

  15. Sodium-based hydrides for thermal energy applications

    NASA Astrophysics Data System (ADS)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  16. LiCa₃As₂H and Ca₁₄As₆X₇ (X = C, H, N): two new arsenide hydride phases grown from Ca/Li metal flux.

    PubMed

    Blankenship, Trevor V; Wang, Xiaoping; Hoffmann, Christina; Latturner, Susan E

    2014-10-06

    The reaction of arsenic with sources of light elements in a Ca/Li melt leads to the formation of two new arsenide hydride phases. The predominant phase Ca14As6X7 (X = C(4-), N(3-), H(-)) exhibits a new tetragonal structure type in the space group P4/mbm (a = 15.749(1) Å, c = 9.1062(9) Å, Z = 4, R1 = 0.0150). The minor phase LiCa3As2H also has a new structure type in the orthorhombic space group Pnma (a = 11.4064(7) Å, b = 4.2702(3) Å, c = 11.8762(8)Å, Z = 4, R1 = 0.0135). Both phases feature hydride and arsenide anions separated by calcium cations. The red color of these compounds indicates they should be charge-balanced. DOS calculations on LiCa3As2H confirm a band gap of 1.4 eV; UV-vis spectroscopy on Ca14As6X7 shows a band gap of 1.6 eV. Single-crystal neutron diffraction studies were necessary to determine the mixed occupancy of carbon, nitrogen, and hydrogen anions on the six light-element sites in Ca14As6X7; these data indicated an overall stoichiometry of Ca14As6C(0.445)N(1.135)H(4.915).

  17. Rapid phase synthesis of nanocrystalline cobalt ferrite

    SciTech Connect

    Shanmugavel, T.; Raj, S. Gokul; Rajarajan, G.; Kumar, G. Ramesh

    2014-04-24

    Synthesis of single phase nanocrystalline Cobalt Ferrite (CoFe{sub 2}O{sub 4}) was achieved by single step autocombustion technique with the use of citric acid as a chelating agent in mono proportion with metal. Specimens prepared with this method showed significantly higher initial permeability's than with the conventional process. Single phase nanocrystalline cobalt ferrites were formed at very low temperature. Surface morphology identification were carried out by transmission electron microscopy (TEM) analysis. The average grain size and density at low temperature increased gradually with increasing the temperature. The single phase formation is confirmed through powder X-ray diffraction analysis. Magnetization measurements were obtained at room temperature by using a vibrating sample magnetometer (VSM), which showed that the calcined samples exhibited typical magnetic behaviors. Temperature dependent magnetization results showed improved behavior for the nanocrystalline form of cobalt ferrite when compared to the bulk nature of materials synthesized by other methods.

  18. Nanocrystalline high performance permanent magnets

    NASA Astrophysics Data System (ADS)

    Gutfleisch, O.; Bollero, A.; Handstein, A.; Hinz, D.; Kirchner, A.; Yan, A.; Müller, K.-H.; Schultz, L.

    2002-04-01

    Recent developments in nanocrystalline rare earth-transition metal magnets are reviewed and emphasis is placed on research work at IFW Dresden. Principal synthesis methods include high energy ball milling, melt spinning and hydrogen assisted methods such as reactive milling and hydrogenation-disproportionation-desorption-recombination. These techniques are applied to NdFeB-, PrFeB- and SmCo-type systems with the aim to produce high remanence magnets with high coercivity. Concepts of maximizing the energy density in nanostructured magnets by either inducing a texture via anisotropic HDDR or hot deformation or enhancing the remanence via magnetic exchange coupling are evaluated.

  19. Synthesis and properties of platinum hydride

    NASA Astrophysics Data System (ADS)

    Scheler, Thomas; Degtyareva, Olga; Marqués, Miriam; Guillaume, Christophe L.; Proctor, John E.; Evans, Shaun; Gregoryanz, Eugene

    2011-06-01

    Synchrotron x-ray diffraction experiments on compressed platinum-hydrogen mixtures reveal the formation of platinum hydride at a pressure of 27(1) GPa at room temperature. This compound exhibits two phases, PtH-I and PtH-II, coexisting up to the pressure of 42 GPa, above which the single phase of PtH-II is observed. Pt atoms in the PtH-II phase are shown to form a hexagonal closed-packed structure. This phase exhibits a high bulk modulus of 310 (10) GPa and is stable up to at least 53 GPa. Ab initio calculations show that PtH-II is superconducting with Tc = 12 K at 90 GPa, the highest temperature of superconducting transition among any known metal hydride.

  20. Complexation of divalent metal ions with diols in the presence of anion auxiliary ligands: zinc-induced oxidation of ethylene glycol to glycolaldehyde by consecutive hydride ion and proton shifts.

    PubMed

    Ruttink, Paul J A; Dekker, Lennard J M; Luider, Theo M; Burgers, Peter C

    2012-07-01

    Ternary complexes of the type AH•••M(2+)•••L(-) (AH = diol, including diethylene and triethylene glycol, M = Ca, Mn, Fe, Co, Ni, Cu and Zn and auxiliary anion ligand L(-)  = CH(3)COO(-), HCOO(-) and Cl(-)) have been generated in the gas phase by MALDI and ESI, and their dissociation characteristics have been obtained. Use of the auxiliary ligands enables the complexation of AH with the divalent metal ion without AH becoming deprotonated, although A(-)•••M(2+) is often also generated in the ion source or after MS/MS. For M = Ca, dissociation occurs to AH + M(2+)•••L(-) and/or to A(-)•••M(2+) + LH, the latter being produced from the H-shifted isomer A(-) •••M(2+)•••LH. For a given ligand L(-), the intensity ratio of these processes can be interpreted (barring reverse energy barriers) in terms of the quantity PA(A(-)) - Ca(aff) (A(-)), where PA is the proton affinity and Ca(aff) is the calcium ion affinity. Deuterium labeling shows that the complex ion HOCH(2)CH(2) OH•••Zn(2+)•••(-)OOCCH(3), in addition to losing acetic acid (60 Da), also eliminates glycolaldehyde (HOCH(2)CH=O, also 60 Da); it is proposed that these reactions commence with a hydride ion shift to produce the ion-dipole complex HOCH(2)CHOH(+)••• HZnOOCCH(3), which then undergoes proton transfer and dissociation to HOCH(2)CH=O + HZn(+)•••O = C(OH)CH(3). In this reaction, ethylene glycol is oxidized by consecutive hydride ion and proton shifts. A minor process leads to loss of the isomeric species HOCH=CHOH.