Sample records for nanocrystalline metals manufacturing

  1. The role of nanocrystalline binder metallic coating into WC after additive manufacturing

    NASA Astrophysics Data System (ADS)

    Cavaleiro, A. J.; Fernandes, C. M.; Farinha, A. R.; Gestel, C. V.; Jhabvala, J.; Boillat, E.; Senos, A. M. R.; Vieira, M. T.

    2018-01-01

    Tungsten carbide with microsized particle powders are commonly used embedded in a tough binder metal. The application of these composites is not limited to cutting tools, WC based material has been increasingly used in gaskets and other mechanical parts with complex geometries. Consequently, additive manufacturing processes as Selective Laser Sintering (SLS) might be the solution to overcome some of the manufacturing problems. However, the use of SLS leads to resolve the problems resulting from difference of physical properties between tungsten carbide and the metallic binder, such as laser absorbance and thermal conductivity. In this work, an original approach of powder surface modification was considered to prepare WC-metal composite powders and overcome these constraints, consisting on the sputter-coating of the WC particle surfaces with a nanocrystalline thin film of metallic binder material (stainless steel). The coating improves the thermal behavior and rheology of the WC particles and, at the same time, ensures a binder homogenous distribution. The feasibility of the SLS technology as manufacturing process for WC powder sputter-coated with 13 wt% stainless steel AISI 304L was explored with different laser power and scanning speed parameters. The SLS layers were characterized regarding elemental distribution, phase composition and morphology, and the results are discussed emphasizing the role of the coating on the consolidation process.

  2. Micromechanics Modeling of Fracture in Nanocrystalline Metals

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Piascik, R. S.; Raju, I. S.; Harris, C. E.

    2002-01-01

    Nanocrystalline metals have very high theoretical strength, but suffer from a lack of ductility and toughness. Therefore, it is critical to understand the mechanisms of deformation and fracture of these materials before their full potential can be achieved. Because classical fracture mechanics is based on the comparison of computed fracture parameters, such as stress intlmsity factors, to their empirically determined critical values, it does not adequately describe the fundamental physics of fracture required to predict the behavior of nanocrystalline metals. Thus, micromechanics-based techniques must be considered to quanti@ the physical processes of deformation and fracture within nanocrystalline metals. This paper discusses hndamental physicsbased modeling strategies that may be useful for the prediction Iof deformation, crack formation and crack growth within nanocrystalline metals.

  3. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Aaron Christopher; Sarobol, Pylin; Argibay, Nicolas

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. Wemore » demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.« less

  4. Fatigue stress concentration and notch sensitivity in nanocrystalline metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furnish, Timothy A.; Boyce, Brad L.; Sharon, John A.

    Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zonesmore » underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. Furthermore, the onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.« less

  5. Fatigue stress concentration and notch sensitivity in nanocrystalline metals

    DOE PAGES

    Furnish, Timothy A.; Boyce, Brad L.; Sharon, John A.; ...

    2016-03-11

    Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zonesmore » underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. Furthermore, the onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.« less

  6. Production of nanocrystalline metal powders via combustion reaction synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  7. Nanocrystalline ceramic materials

    DOEpatents

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  8. Nanocrystalline ceramic materials

    DOEpatents

    Siegel, R.W.; Nieman, G.W.; Weertman, J.R.

    1994-06-14

    A method is disclosed for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material. 19 figs.

  9. Application of ASTAR(TM)/Precession Electron Diffraction Technique to Quantitatively Study Defects in Nanocrystalline Metallic Materials

    NASA Astrophysics Data System (ADS)

    Ghamarian, Iman

    Nanocrystalline metallic materials have the potential to exhibit outstanding performance which leads to their usage in challenging applications such as coatings and biomedical implant devices. To optimize the performance of nanocrystalline metallic materials according to the desired applications, it is important to have a decent understanding of the structure, processing and properties of these materials. Various efforts have been made to correlate microstructure and properties of nanocrystalline metallic materials. Based on these research activities, it is noticed that microstructure and defects (e.g., dislocations and grain boundaries) play a key role in the behavior of these materials. Therefore, it is of great importance to establish methods to quantitatively study microstructures, defects and their interactions in nanocrystalline metallic materials. Since the mechanisms controlling the properties of nanocrystalline metallic materials occur at a very small length scale, it is fairly difficult to study them. Unfortunately, most of the characterization techniques used to explore these materials do not have the high enough spatial resolution required for the characterization of these materials. For instance, by applying complex profile-fitting algorithms to X-ray diffraction patterns, it is possible to get an estimation of the average grain size and the average dislocation density within a relatively large area. However, these average values are not enough for developing meticulous phenomenological models which are able to correlate microstructure and properties of nanocrystalline metallic materials. As another example, electron backscatter diffraction technique also cannot be used widely in the characterization of these materials due to problems such as relative poor spatial resolution (which is 90 nm) and the degradation of Kikuchi diffraction patterns in severely deformed nano-size grain metallic materials. In this study, ASTAR(TM)/precession electron

  10. Stacking fault energies and slip in nanocrystalline metals.

    PubMed

    Van Swygenhoven, H; Derlet, P M; Frøseth, A G

    2004-06-01

    The search for deformation mechanisms in nanocrystalline metals has profited from the use of molecular dynamics calculations. These simulations have revealed two possible mechanisms; grain boundary accommodation, and intragranular slip involving dislocation emission and absorption at grain boundaries. But the precise nature of the slip mechanism is the subject of considerable debate, and the limitations of the simulation technique need to be taken into consideration. Here we show, using molecular dynamics simulations, that the nature of slip in nanocrystalline metals cannot be described in terms of the absolute value of the stacking fault energy-a correct interpretation requires the generalized stacking fault energy curve, involving both stable and unstable stacking fault energies. The molecular dynamics technique does not at present allow for the determination of rate-limiting processes, so the use of our calculations in the interpretation of experiments has to be undertaken with care.

  11. New twinning route in face-centered cubic nanocrystalline metals.

    PubMed

    Wang, Lihua; Guan, Pengfei; Teng, Jiao; Liu, Pan; Chen, Dengke; Xie, Weiyu; Kong, Deli; Zhang, Shengbai; Zhu, Ting; Zhang, Ze; Ma, Evan; Chen, Mingwei; Han, Xiaodong

    2017-12-15

    Twin nucleation in a face-centered cubic crystal is believed to be accomplished through the formation of twinning partial dislocations on consecutive atomic planes. Twinning should thus be highly unfavorable in face-centered cubic metals with high twin-fault energy barriers, such as Al, Ni, and Pt, but instead is often observed. Here, we report an in situ atomic-scale observation of twin nucleation in nanocrystalline Pt. Unlike the classical twinning route, deformation twinning initiated through the formation of two stacking faults separated by a single atomic layer, and proceeded with the emission of a partial dislocation in between these two stacking faults. Through this route, a three-layer twin was nucleated without a mandatory layer-by-layer twinning process. This route is facilitated by grain boundaries, abundant in nanocrystalline metals, that promote the nucleation of separated but closely spaced partial dislocations, thus enabling an effective bypassing of the high twin-fault energy barrier.

  12. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation.

    PubMed

    Yamakov, V; Wolf, D; Phillpot, S R; Mukherjee, A K; Gleiter, H

    2004-01-01

    Molecular-dynamics simulations have recently been used to elucidate the transition with decreasing grain size from a dislocation-based to a grain-boundary-based deformation mechanism in nanocrystalline f.c.c. metals. This transition in the deformation mechanism results in a maximum yield strength at a grain size (the 'strongest size') that depends strongly on the stacking-fault energy, the elastic properties of the metal, and the magnitude of the applied stress. Here, by exploring the role of the stacking-fault energy in this crossover, we elucidate how the size of the extended dislocations nucleated from the grain boundaries affects the mechanical behaviour. Building on the fundamental physics of deformation as exposed by these simulations, we propose a two-dimensional stress-grain size deformation-mechanism map for the mechanical behaviour of nanocrystalline f.c.c. metals at low temperature. The map captures this transition in both the deformation mechanism and the related mechanical behaviour with decreasing grain size, as well as its dependence on the stacking-fault energy, the elastic properties of the material, and the applied stress level.

  13. Grain growth behavior at absolute zero during nanocrystalline metal indentation

    NASA Astrophysics Data System (ADS)

    Sansoz, F.; Dupont, V.

    2006-09-01

    The authors show using atomistic simulations that stress-driven grain growth can be obtained in the athermal limit during nanocrystalline aluminum indentation. They find that the grain growth results from rotation of nanograins and propagation of shear bands. Together, these mechanisms are shown to lead to the unstable migration of grain boundaries via process of coupled motion. An analytical model is used to explain this behavior based on the atomic-level shear stress acting on the interfaces during the shear band propagation. This study sheds light on the atomic mechanism at play during the abnormal grain coarsening observed at low temperature in nanocrystalline metals.

  14. Grain boundary character distribution in nanocrystalline metals produced by different processing routes

    DOE PAGES

    Bober, David B.; Kumar, Mukal; Rupert, Timothy J.; ...

    2015-12-28

    Nanocrystalline materials are defined by their fine grain size, but details of the grain boundary character distribution should also be important. Grain boundary character distributions are reported for ball-milled, sputter-deposited, and electrodeposited Ni and Ni-based alloys, all with average grain sizes of ~20 nm, to study the influence of processing route. The two deposited materials had nearly identical grain boundary character distributions, both marked by a Σ3 length percentage of 23 to 25 pct. In contrast, the ball-milled material had only 3 pct Σ3-type grain boundaries and a large fraction of low-angle boundaries (16 pct), with the remainder being predominantlymore » random high angle (73 pct). Furthermore, these grain boundary character measurements are connected to the physical events that control their respective processing routes. Consequences for material properties are also discussed with a focus on nanocrystalline corrosion. As a whole, the results presented here show that grain boundary character distribution, which has often been overlooked in nanocrystalline metals, can vary significantly and influence material properties in profound ways.« less

  15. OPERATOR BURDEN IN METAL ADDITIVE MANUFACTURING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Amy M; Love, Lonnie J

    2016-01-01

    Additive manufacturing (AM) is an emerging manufacturing process that creates usable machine parts via layer-by-layer joining of a stock material. With this layer-wise approach, high-performance geometries can be created which are impossible with traditional manufacturing methods. Metal AM technology has the potential to significantly reduce the manufacturing burden of developing custom hardware; however, a major consideration in choosing a metal AM system is the required amount of operator involvement (i.e., operator burden) in the manufacturing process. The operator burden not only determines the amount of operator training and specialization required but also the usability of the system in a facility.more » As operators of several metal AM processes, the Manufacturing Demonstration Facility (MDF) at Oak Ridge National Labs is uniquely poised to provide insight into requirements for operator involvement in each of the three major metal AM processes. The paper covers an overview of each of the three metal AM technologies, focusing on the burden on the operator to complete the build cycle, process the part for final use, and reset the AM equipment for future builds.« less

  16. The chemical and catalytic properties of nanocrystalline metal oxides prepared through modified sol-gel synthesis

    NASA Astrophysics Data System (ADS)

    Carnes, Corrie Leigh

    The goal of this research was to synthesize, characterize and study the chemical properties of nanocrystalline metal oxides. Nanocrystalline (NC) ZnO, CuO, NiO, Al2O3, and the binary Al2O 3/MgO and ZnO/CuO were prepared through modified sol gel methods. These NC metal oxides were studied in comparison to the commercial (CM) metal oxides. The samples were characterized by XRD, TGA, FTIR, BET, and TEM. The NC samples were all accompanied by a significant increase in surface area and decrease in crystallite size. Several chemical reactions were studied to compare the NC samples to the CM samples. One of the reactions involved a high temperature reaction between carbon tetrachloride and the oxide to form carbon dioxide and the corresponding metal chloride. A similar high temperature reaction was conducted between the metal oxide and hydrogen sulfide to form water and the corresponding metal sulfide. A room temperature gas phase adsorption was studied where SO2 was adsorbed onto the oxide. A liquid phase adsorption conducted at room temperature was the destructive adsorption of paraoxon (a toxic insecticide). In all reactions the NC samples exhibited greater activity, destroying or adsorbing a larger amount of the toxins compared to the CM samples. To better study surface area effects catalytic reactions were also studied. The catalysis of methanol was studied over the nanocrystalline ZnO, CuO, NiO, and ZnO/CuO samples in comparison to their commercial counterparts. In most cases the NC samples proved to be more active catalysts, having higher percent conversions and turnover numbers. A second catalytic reaction was also studied, this reaction was investigated to look at the support effects. The catalysis of cyclopropane to propane was studied over Pt and Co catalysts. These catalysts were supported onto NC and CM alumina by impregnation. By observing differences in the catalytic behavior, support effects have become apparent.

  17. Formation of nanocrystalline SiGe in Polycrystalline-Ge/Si thin film without any metal induced crystallization

    NASA Astrophysics Data System (ADS)

    Tah, Twisha; Singh, Ch. Kishan; Madapu, K. K.; Polaki, S. R.; Ilango, S.; David, C.; Dash, S.; Panigrahi, B. K.

    2017-05-01

    The formation of nanocrystalline SiGe without the aid of metal induced crystallization is reported. Re-crystallization of the as-deposited poly-Ge film (deposited at 450 °C) leads to development of regions with depleted Ge concentration upon annealing at 500 °C. Clusters with crystalline facet containing both nanocrystalline SiGe and crystalline Ge phase starts appearing at 600 °C. The structural phase characteristics were investigated by X-ray diffraction (XRD) and Raman spectroscopy. The stoichiometry of the SiGe phase was estimated from the positions of the Raman spectral peaks.

  18. An easy access to nanocrystalline alkaline earth metal fluorides - just by shaking

    NASA Astrophysics Data System (ADS)

    Dreger, M.; Scholz, G.; Kemnitz, E.

    2012-04-01

    High energy ball milling as fast, direct and solvent free method allows an easy access to nanocrystalline alkaline earth metal fluorides MF2 (M: Mg, Ca, Sr, Ba). Comparable metal sources (acetates, carbonates, hydroxides, alkoxides) were used for the reaction with NH4F as fluorinating agent. Even very simple manual shaking experiments between NH4F and the corresponding hydroxides in the stoichiometric ratio (M:F = 1:2, M: Ca, Sr, Ba) give phase pure fluorides. Moreover, comparable classical thermal reactions in closed crucibles at higher temperatures provide phase pure crystalline fluorides in nearly all cases as well.

  19. Metal Additive Manufacturing: A Review

    NASA Astrophysics Data System (ADS)

    Frazier, William E.

    2014-06-01

    This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, or 3D printing, etc. A broad contextual overview of metallic AM is provided. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts-on-demand while offering the potential to reduce cost, energy consumption, and carbon footprint. This paper explores the material science, processes, and business consideration associated with achieving these performance gains. It is concluded that a paradigm shift is required in order to fully exploit AM potential.

  20. Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification.

    PubMed

    Bahl, Sumit; Shreyas, P; Trishul, M A; Suwas, Satyam; Chatterjee, Kaushik

    2015-05-07

    Nanostructured metals are a promising class of biomaterials for application in orthopedics to improve the mechanical performance and biological response for increasing the life of biomedical implants. Surface mechanical attrition treatment (SMAT) is an efficient way of engineering nanocrystalline surfaces on metal substrates. In this work, 316L stainless steel (SS), a widely used orthopedic biomaterial, was subjected to SMAT to generate a nanocrystalline surface. Surface nanocrystallization modified the nature of the oxide layer present on the surface. It increased the corrosion-fatigue strength in saline by 50%. This increase in strength is attributed to a thicker oxide layer, residual compressive stresses, high strength of the surface layer, and lower propensity for intergranular corrosion in the nanocrystalline layer. Nanocrystallization also enhanced osteoblast attachment and proliferation. Intriguingly, wettability and surface roughness, the key parameters widely acknowledged for controlling the cellular response remained unchanged after nanocrystallization. The observed cellular behavior is explained in terms of the changes in electronic properties of the semiconducting passive oxide film present on the surface of 316L SS. Nanocrystallization increased the charge carrier density of the n-type oxide film likely preventing denaturation of the adsorbed cell-adhesive proteins such as fibronectin. In addition, a net positive charge developed on the otherwise neutral oxide layer, which is known to facilitate cellular adhesion. The role of changes in the electronic properties of the oxide films on metal substrates is thus highlighted in this work. This study demonstrates the advantages of nanocrystalline surface modification by SMAT for processing metallic biomaterials used in orthopedic implants.

  1. Workshop Report on Additive Manufacturing for Large-Scale Metal Components - Development and Deployment of Metal Big-Area-Additive-Manufacturing (Large-Scale Metals AM) System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, Sudarsanam Suresh; Love, Lonnie J.; Peter, William H.

    Additive manufacturing (AM) is considered an emerging technology that is expected to transform the way industry can make low-volume, high value complex structures. This disruptive technology promises to replace legacy manufacturing methods for the fabrication of existing components in addition to bringing new innovation for new components with increased functional and mechanical properties. This report outlines the outcome of a workshop on large-scale metal additive manufacturing held at Oak Ridge National Laboratory (ORNL) on March 11, 2016. The charter for the workshop was outlined by the Department of Energy (DOE) Advanced Manufacturing Office program manager. The status and impact ofmore » the Big Area Additive Manufacturing (BAAM) for polymer matrix composites was presented as the background motivation for the workshop. Following, the extension of underlying technology to low-cost metals was proposed with the following goals: (i) High deposition rates (approaching 100 lbs/h); (ii) Low cost (<$10/lbs) for steel, iron, aluminum, nickel, as well as, higher cost titanium, (iii) large components (major axis greater than 6 ft) and (iv) compliance of property requirements. The above concept was discussed in depth by representatives from different industrial sectors including welding, metal fabrication machinery, energy, construction, aerospace and heavy manufacturing. In addition, DOE’s newly launched High Performance Computing for Manufacturing (HPC4MFG) program was reviewed. This program will apply thermo-mechanical models to elucidate deeper understanding of the interactions between design, process, and materials during additive manufacturing. Following these presentations, all the attendees took part in a brainstorming session where everyone identified the top 10 challenges in large-scale metal AM from their own perspective. The feedback was analyzed and grouped in different categories including, (i) CAD to PART software, (ii) selection of energy source, (iii

  2. Method for producing functionally graded nanocrystalline layer on metal surface

    DOEpatents

    Ajayi, Oyelayo O.; Hershberger, Jeffrey G.

    2010-03-23

    An improved process for the creation or formation of nanocrystalline layers on substrates' surfaces is provided. The process involves "prescuffing" the surface of a substrate such as a metal by allowing friction to occur on the surface by a load-bearing entity making rubbing contact and moving along and on the substrate's surface. The "prescuffing" action is terminated when the coefficient of friction between the surface and the noise is rising significantly. Often, the significant rise in the coefficient of friction is signaled by a change in pitch of the scuffing action sound emanating from the buffeted surface. The "prescuffing" gives rise to a harder and smoother surface which withstands better any inadequate lubrication that may take place when the "prescuffed" surface is contacted by other surfaces.

  3. Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative

    DTIC Science & Technology

    2014-11-01

    1 ASETSDefense 2014 Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative Ruben A. Prado, CEF...COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative...coatings as a Hard Chrome (EHC) electroplating alternative for DoD manufacturing and repair. – Fully define deposition parameters and properties

  4. Nanocrystalline High-Entropy Alloys: A New Paradigm in High-Temperature Strength and Stability.

    PubMed

    Zou, Yu; Wheeler, Jeffrey M; Ma, Huan; Okle, Philipp; Spolenak, Ralph

    2017-03-08

    Metals with nanometer-scale grains or nanocrystalline metals exhibit high strengths at ambient conditions, yet their strengths substantially decrease with increasing temperature, rendering them unsuitable for usage at high temperatures. Here, we show that a nanocrystalline high-entropy alloy (HEA) retains an extraordinarily high yield strength over 5 GPa up to 600 °C, 1 order of magnitude higher than that of its coarse-grained form and 5 times higher than that of its single-crystalline equivalent. As a result, such nanostructured HEAs reveal strengthening figures of merit-normalized strength by the shear modulus above 1/50 and strength-to-density ratios above 0.4 MJ/kg, which are substantially higher than any previously reported values for nanocrystalline metals in the same homologous temperature range, as well as low strain-rate sensitivity of ∼0.005. Nanocrystalline HEAs with these properties represent a new class of nanomaterials for high-stress and high-temperature applications in aerospace, civilian infrastructure, and energy sectors.

  5. Deformation-induced localized solid-state amorphization in nanocrystalline nickel.

    PubMed

    Han, Shuang; Zhao, Lei; Jiang, Qing; Lian, Jianshe

    2012-01-01

    Although amorphous structures have been widely obtained in various multi-component metallic alloys, amorphization in pure metals has seldom been observed and remains a long-standing scientific curiosity and technological interest. Here we present experimental evidence of localized solid-state amorphization in bulk nanocrystalline nickel introduced by quasi-static compression at room temperature. High-resolution electron microscope observations illustrate that nano-scale amorphous structures present at the regions where severe deformation occurred, e.g. along crack paths or surrounding nano-voids. These findings have indicated that nanocrystalline structures are highly desirable for promoting solid-state amorphization, which may provide new insights for understanding the nature of the crystalline-to-amorphous transformation and suggested a potential method to produce elemental metallic glasses that have hardly been available hitherto through rapid solidification.

  6. Deformation-induced localized solid-state amorphization in nanocrystalline nickel

    PubMed Central

    Han, Shuang; Zhao, Lei; Jiang, Qing; Lian, Jianshe

    2012-01-01

    Although amorphous structures have been widely obtained in various multi-component metallic alloys, amorphization in pure metals has seldom been observed and remains a long-standing scientific curiosity and technological interest. Here we present experimental evidence of localized solid-state amorphization in bulk nanocrystalline nickel introduced by quasi-static compression at room temperature. High-resolution electron microscope observations illustrate that nano-scale amorphous structures present at the regions where severe deformation occurred, e.g. along crack paths or surrounding nano-voids. These findings have indicated that nanocrystalline structures are highly desirable for promoting solid-state amorphization, which may provide new insights for understanding the nature of the crystalline-to-amorphous transformation and suggested a potential method to produce elemental metallic glasses that have hardly been available hitherto through rapid solidification. PMID:22768383

  7. Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures

    NASA Astrophysics Data System (ADS)

    Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.

    2017-12-01

    Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.

  8. Solidification and solid-state transformation sciences in metals additive manufacturing

    DOE PAGES

    Kirka, Michael M.; Nandwana, Peeyush; Lee, Yousub; ...

    2017-02-11

    Additive manufacturing (AM) of metals is rapidly emerging as an established manufacturing process for metal components. Unlike traditional metals fabrication processes, metals fabricated via AM undergo localized thermal cycles during fabrication. As a result, AM presents the opportunity to control the liquid-solid phase transformation, i.e. material texture. But, thermal cycling presents challenges from the standpoint of solid-solid phase transformations. We will discuss the opportunities and challenges in metals AM in the context of texture control and associated solid-solid phase transformations in Ti-6Al-4V and Inconel 718.

  9. Characterization of Metal Powders Used for Additive Manufacturing.

    PubMed

    Slotwinski, J A; Garboczi, E J; Stutzman, P E; Ferraris, C F; Watson, S S; Peltz, M A

    2014-01-01

    Additive manufacturing (AM) techniques can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process.

  10. Characterization of Metal Powders Used for Additive Manufacturing

    PubMed Central

    Slotwinski, JA; Garboczi, EJ; Stutzman, PE; Ferraris, CF; Watson, SS; Peltz, MA

    2014-01-01

    Additive manufacturing (AM) techniques1 can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process. PMID:26601040

  11. An In-Depth Review on Direct Additive Manufacturing of Metals

    NASA Astrophysics Data System (ADS)

    Azam, Farooq I.; Rani, Ahmad Majdi Abdul; Altaf, Khurram; Rao, T. V. V. L. N.; Aimi Zaharin, Haizum

    2018-03-01

    Additive manufacturing (AM), also known as 3D Printing, is a revolutionary manufacturing technique which has been developing rapidly in the last 30 years. The evolution of this precision manufacturing process from rapid prototyping to ready-to-use parts has significantly alleviated manufacturing constraints and design freedom has been outstandingly widened. AM is a non-conventional manufacturing technique which utilizes a 3D CAD model data to build parts by adding one material layer at a time, rather than removing it and fulfills the demand for manufacturing parts with complex geometric shapes, great dimensional accuracy, and easy to assemble parts. Additive manufacturing of metals has become the area of extensive research, progressing towards the production of final products and replacing conventional manufacturing methods. This paper provides an insight to the available metal additive manufacturing technologies that can be used to produce end user products without using conventional manufacturing methods. The paper also includes the comparison of mechanical and physical properties of parts produced by AM with the parts manufactured using conventional processes.

  12. Towards Production of Additive Manufacturing Grade Metallic Powders on the Battlefield

    DTIC Science & Technology

    2017-10-01

    ARL-RP-0618 ● OCT 2017 US Army Research Laboratory Towards Production of Additive Manufacturing Grade Metallic Powders on the...Research Laboratory Towards Production of Additive Manufacturing Grade Metallic Powders on the Battlefield by Marc Pepi Weapons and...REPORT TYPE Reprint 3. DATES COVERED (From - To) June 2016–June 2017 4. TITLE AND SUBTITLE Towards Production of Additive Manufacturing Grade

  13. Nanocrystalline copper films are never flat

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaopu; Han, Jian; Plombon, John J.; Sutton, Adrian P.; Srolovitz, David J.; Boland, John J.

    2017-07-01

    We used scanning tunneling microscopy to study low-angle grain boundaries at the surface of nearly planar copper nanocrystalline (111) films. The presence of grain boundaries and their emergence at the film surface create valleys composed of dissociated edge dislocations and ridges where partial dislocations have recombined. Geometric analysis and simulations indicated that valleys and ridges were created by an out-of-plane grain rotation driven by reduction of grain boundary energy. These results suggest that in general, it is impossible to form flat two-dimensional nanocrystalline films of copper and other metals exhibiting small stacking fault energies and/or large elastic anisotropy, which induce a large anisotropy in the dislocation-line energy.

  14. Applications of Metal Additive Manufacturing in Veterinary Orthopedic Surgery

    NASA Astrophysics Data System (ADS)

    Harrysson, Ola L. A.; Marcellin-Little, Denis J.; Horn, Timothy J.

    2015-03-01

    Veterinary medicine has undergone a rapid increase in specialization over the last three decades. Veterinarians now routinely perform joint replacement, neurosurgery, limb-sparing surgery, interventional radiology, radiation therapy, and other complex medical procedures. Many procedures involve advanced imaging and surgical planning. Evidence-based medicine has also become part of the modus operandi of veterinary clinicians. Modeling and additive manufacturing can provide individualized or customized therapeutic solutions to support the management of companion animals with complex medical problems. The use of metal additive manufacturing is increasing in veterinary orthopedic surgery. This review describes and discusses current and potential applications of metal additive manufacturing in veterinary orthopedic surgery.

  15. Process Modeling and Validation for Metal Big Area Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simunovic, Srdjan; Nycz, Andrzej; Noakes, Mark W.

    Metal Big Area Additive Manufacturing (mBAAM) is a new additive manufacturing (AM) technology based on the metal arc welding. A continuously fed metal wire is melted by an electric arc that forms between the wire and the substrate, and deposited in the form of a bead of molten metal along the predetermined path. Objects are manufactured one layer at a time starting from the base plate. The final properties of the manufactured object are dependent on its geometry and the metal deposition path, in addition to depending on the basic welding process parameters. Computational modeling can be used to acceleratemore » the development of the mBAAM technology as well as a design and optimization tool for the actual manufacturing process. We have developed a finite element method simulation framework for mBAAM using the new features of software ABAQUS. The computational simulation of material deposition with heat transfer is performed first, followed by the structural analysis based on the temperature history for predicting the final deformation and stress state. In this formulation, we assume that two physics phenomena are coupled in only one direction, i.e. the temperatures are driving the deformation and internal stresses, but their feedback on the temperatures is negligible. The experiment instrumentation (measurement types, sensor types, sensor locations, sensor placements, measurement intervals) and the measurements are presented. The temperatures and distortions from the simulations show good correlation with experimental measurements. Ongoing modeling work is also briefly discussed.« less

  16. Effects of oxide distributed in grain boundaries on microstructure stability of nanocrystalline metals

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Li, Hui; Biao Pang, Jin; Wang, Zhu

    2013-06-01

    Nanocrystalline copper and zinc prepared by high-pressure compaction method have been studied by positron lifetime spectroscopy associated with X-ray diffraction. For nanocrystalline Cu, mean grain sizes of the samples decrease after being annealed at 900 °C and increase during aging at 180 °C, revealing that the atoms exchange between the two regions. The positron lifetime results indicate that the vacancy clusters formed in the annealing process are unstable and decomposed at the aging time below 6 hours. In addition, the partially oxidized surfaces of the nanoparticles hinder the grain growth during the ageing at 180 °C, and the vacancy clusters inside the disorder regions which are related to Cu2O need longer aging time to decompose. In the case of nanocrystalline Zn, the open volume defect (not larger than divacancy) is dominant according to the high relative intensity for the short positron lifetime (τ1). The oxide (ZnO) inside the grain boundaries has been found having an effect to hinder the decrease of average positron lifetime (τav) during the annealing, which probably indicates that the oxide stabilizes the microstructure of the grain boundaries. For both nanocrystalline copper and zinc, the oxides in grain boundaries enhance the thermal stability of the microstucture, in spite of their different crystal structures. This effect is very important for the nanocrystalline materials using as radiation resistant materials.

  17. Thermal Stability of Nanocrystalline Copper for Potential Use in Printed Wiring Board Applications

    NASA Astrophysics Data System (ADS)

    Woo, Patrick Kai Fai

    Copper is a widely used conductor in the manufacture of printed wiring boards (PWB). The trends in miniaturization of electronic devices create increasing challenges to all electronic industries. In particular PWB manufacturers face great challenges because the increasing demands in greater performance and device miniaturization pose enormous difficulties in manufacturing and product reliability. Nanocrystalline and ultra-fine grain copper can potentially offer increased reliability and functionality of the PWB due to the increases in strength and achievable wiring density by reduction in grain size. The first part of this thesis is concerned with the synthesis and characterization of nanocrystalline and ultra-fine grain-sized copper for potential applications in the PWB industry. Nanocrystalline copper with different amounts of sulfur impurities (25-230ppm) and grain sizes (31-49nm) were produced and their hardness, electrical resistivity and etchability were determined. To study the thermal stability of nanocrystalline copper, differential scanning calorimetry and isothermal heat treatments combined with electron microscopy techniques for microstructural analysis were used. Differential scanning calorimetry was chosen to continuously monitor the grain growth process in the temperature range from 40?C to 400?C. During isothermal annealing experiments samples were annealed at 23?C, 100?C and 300?C to study various potential thermal issues for these materials in PWB applications such as the long-term room temperature thermal stability as well as for temperature excursions above the operation temperature and peak temperature exposure during the PWB manufacturing process. From all annealing experiments the various grain growth events and the overall stability of these materials were analyzed in terms of driving and dragging forces. Experimental evidence is presented which shows that the overall thermal stability, grain boundary character and texture evolution of

  18. Nanocrystalline CuNi alloys: improvement of mechanical properties and thermal stability

    NASA Astrophysics Data System (ADS)

    Nogues, Josep; Varea, A.; Pellicer, E.; Sivaraman, K. M.; Pane, S.; Nelson, B. J.; Surinach, S.; Baro, M. D.; Sort, J.

    2014-03-01

    Nanocrystalline metallic films are known to benefit from novel and enhanced physical and chemical properties. In spite of these outstanding properties, nanocrystalline metals typically show relatively poor thermal stability which leads to deterioration of the properties due to grain coarsening. We have studied nanocrystalline Cu1-xNix (0.56 < x < 1) thin films (3 μm-thick) electrodeposited galvanostatically onto Cu/Ti/Si (100) substrates. CuNi thin films exhibit large values of hardness (6.15 < H < 7.21 GPa), which can be tailored by varying the composition. However, pure Ni films (x = 1) suffer deterioration of their mechanical and magnetic properties after annealing during 3 h at relatively low temperatures (TANN > 475 K) due to significant grain growth. Interestingly, alloying Ni with Cu clearly improves the thermal stability of the material because grain coarsening is delayed due to segregation of a Cu-rich phase at grain boundaries, thus preserving both the mechanical and magnetic properties up to higher TANN.

  19. Method and article of manufacture corresponding to a composite comprised of ultra nonacrystalline diamond, metal, and other nanocarbons useful for thermoelectric and other applications

    DOEpatents

    Gruen, Dieter M.

    2010-05-18

    One provides (101) disperse ultra-nanocrystalline diamond powder material that comprises a plurality of substantially ordered crystallites that are each sized no larger than about 10 nanometers. One then reacts (102) these crystallites with a metallic component. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also substantially preserving the thermal conductivity behavior of the disperse ultra-nanocrystalline diamond powder material. The reaction process can comprise combining (201) the crystallites with one or more metal salts in an aqueous solution and then heating (203) that aqueous solution to remove the water. This heating can occur in a reducing atmosphere (comprising, for example, hydrogen and/or methane) to also reduce the salt to metal.

  20. Grain Size Threshold for Enhanced Irradiation Resistance in Nanocrystalline and Ultrafine Tungsten

    DOE PAGES

    El Atwani, Osman; Hinks, Jonathan; Greaves, Graeme; ...

    2017-02-21

    Nanocrystalline metals are considered highly radiation-resistant materials due to their large grain boundary areas. Here, the existence of a grain size threshold for enhanced irradiation resistance in high-temperature helium-irradiated nanocrystalline and ultrafine tungsten is demonstrated. Average bubble density, projected bubble area and the corresponding change in volume were measured via transmission electron microscopy and plotted as a function of grain size for two ion fluences. Nanocrystalline grains of less than 35 nm size possess ~10–20 times lower change in volume than ultrafine grains and this is discussed in terms of the grain boundaries defect sink efficiency.

  1. Feasibility Study on 3-D Printing of Metallic Structural Materials with Robotized Laser-Based Metal Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Ding, Yaoyu; Kovacevic, Radovan

    2016-07-01

    Metallic structural materials continue to open new avenues in achieving exotic mechanical properties that are naturally unavailable. They hold great potential in developing novel products in diverse industries such as the automotive, aerospace, biomedical, oil and gas, and defense. Currently, the use of metallic structural materials in industry is still limited because of difficulties in their manufacturing. This article studied the feasibility of printing metallic structural materials with robotized laser-based metal additive manufacturing (RLMAM). In this study, two metallic structural materials characterized by an enlarged positive Poisson's ratio and a negative Poisson's ratio were designed and simulated, respectively. An RLMAM system developed at the Research Center for Advanced Manufacturing of Southern Methodist University was used to print them. The results of the tensile tests indicated that the printed samples successfully achieved the corresponding mechanical properties.

  2. Bulk Nanocrystalline Metals: Review of the Current State of the Art and Future Opportunities for Copper and Copper Alloys

    DTIC Science & Technology

    2014-05-13

    nanocrystalline materials using mechanical alloying, the alloy development and synthesis process for stabilizing these materials at elevated temperatures, and...the physical and mechanical properties of nanocrystalline materials with a focus throughout on nanocrystalline copper and a nanocrystalline Cu-Ta...approaches as well as experimental results for grain growth, grain boundary processes, and deformation mechanisms in nanocrystalline copper are

  3. Modeling of additive manufacturing processes for metals: Challenges and opportunities

    DOE PAGES

    Francois, Marianne M.; Sun, Amy; King, Wayne E.; ...

    2017-01-09

    Here, with the technology being developed to manufacture metallic parts using increasingly advanced additive manufacturing processes, a new era has opened up for designing novel structural materials, from designing shapes and complex geometries to controlling the microstructure (alloy composition and morphology). The material properties used within specific structural components are also designable in order to meet specific performance requirements that are not imaginable with traditional metal forming and machining (subtractive) techniques.

  4. "Bulk" Nanocrystalline Metals: Review of the Current State of the Art and Future Opportunities for Copper and Copper Alloys

    NASA Astrophysics Data System (ADS)

    Tschopp, M. A.; Murdoch, H. A.; Kecskes, L. J.; Darling, K. A.

    2014-06-01

    It is a new beginning for innovative fundamental and applied science in nanocrystalline materials. Many of the processing and consolidation challenges that have haunted nanocrystalline materials are now more fully understood, opening the doors for bulk nanocrystalline materials and parts to be produced. While challenges remain, recent advances in experimental, computational, and theoretical capability have allowed for bulk specimens that have heretofore been pursued only on a limited basis. This article discusses the methodology for synthesis and consolidation of bulk nanocrystalline materials using mechanical alloying, the alloy development and synthesis process for stabilizing these materials at elevated temperatures, and the physical and mechanical properties of nanocrystalline materials with a focus throughout on nanocrystalline copper and a nanocrystalline Cu-Ta system, consolidated via equal channel angular extrusion, with properties rivaling that of nanocrystalline pure Ta. Moreover, modeling and simulation approaches as well as experimental results for grain growth, grain boundary processes, and deformation mechanisms in nanocrystalline copper are briefly reviewed and discussed. Integrating experiments and computational materials science for synthesizing bulk nanocrystalline materials can bring about the next generation of ultrahigh strength materials for defense and energy applications.

  5. Cleaning Process Development for Metallic Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  6. Additively Manufactured Metals in Oxygen Systems Project

    NASA Technical Reports Server (NTRS)

    Tylka, Jonathan

    2015-01-01

    Metals produced by additive manufacturing methods, such as Powder Bed Fusion Technology, are now mature enough to be considered for qualification in human spaceflight oxygen systems. The mechanical properties of metals produced through AM processes are being systematically studied. However, it is unknown whether AM metals in oxygen applications may present an increased risk of flammability or ignition as compared to wrought metals of the same metallurgical composition due to increased porosity. Per NASA-STD-6001B materials to be used in oxygen system applications shall be based on flammability and combustion test data, followed by a flammability assessment. Without systematic flammability and ignition testing in oxygen there is no credible method for NASA to accurately evaluate the risk of using AM metals in oxygen systems.

  7. Aging of Nanocrystalline Mackinawite (FeS): Mineralogical and Physicochemical Properties

    NASA Astrophysics Data System (ADS)

    Jeong, H. Y.; Lee, H.

    2011-12-01

    Due to the extraordinary physical properties and high surface areas, nanocrystalline minerals have been widely investigated for their potential uses in treating contaminated groundwaters and surface waters. Most previous studies in this field have focused on either preparation of nanocrystalline minerals or measurement of their reactivity with environmental contaminants. Nanocrystalline minerals, due to the inherent thermodynamic instability, tend to change the physicochemical and mineralogical properties over time, usually resulting in the decreased reactivity. Thus, to better assess the long-term effectiveness of nanocrystalline minerals in field applications, such "aging" effects should be clearly delineated. In the present work, we have investigated the aging impact on nanocrystalline mackinawite (FeS), the ubiquitous Fe-bearing mineral in anoxic sulfidic sediments. Mackinawite (FeS) is known to be an effective scavenger for metal pollutants and a strong reducing reagent for chromate and chlorinated organic compounds. Our preliminary results indicate that nanocrystalline FeS ages via Ostwald ripening, particle aggregation, or mineralogical transformation. By X-ray diffraction (XRD) analysis, aging of nanocrystalline FeS via Ostwald ripening is found to be dominant at acidic pH. Cryogenic transmission electron microscopy (TEM) shows that particle aggregation is most evident at neutral pH. Transformation of nanosized FeS into a more thermodynamically stable greigite (Fe3S4) is observed in the presence of folic acid at acidic pH. The pH-dependent aging process may be linked with changes in the apparent solubility and surface charge of FeS with pH. The Ostwald ripening or particle aggregation of nanocrystalline FeS leads to the decrease surface area, thus causing the decreased reactivity. Given the less reactivity of greigite, the transformation of nanocrystalline FeS to greigite is also expected to result in the decreased reactivity.

  8. The metallurgy and processing science of metal additive manufacturing

    DOE PAGES

    Sames, William J.; List, III, Frederick Alyious; Pannala, Sreekanth; ...

    2016-03-07

    Here, additive Manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire, or sheets in a process that proceeds layer-by-layer.Many techniques (using many different names) have been developed to accomplish this via melting or solid - state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid- state precipitation, mechanical properties, and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Few alloys have been developedmore » for commercial production, but recent development efforts are presented as a path for the ongoing development of new materials for AM processes.« less

  9. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties

    NASA Astrophysics Data System (ADS)

    Cheng, Shaoling; Zhang, Yapei; Cha, Ruitao; Yang, Jinliang; Jiang, Xingyu

    2015-12-01

    By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food.By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07647a

  10. Nanocrystalline copper films are never flat.

    PubMed

    Zhang, Xiaopu; Han, Jian; Plombon, John J; Sutton, Adrian P; Srolovitz, David J; Boland, John J

    2017-07-28

    We used scanning tunneling microscopy to study low-angle grain boundaries at the surface of nearly planar copper nanocrystalline (111) films. The presence of grain boundaries and their emergence at the film surface create valleys composed of dissociated edge dislocations and ridges where partial dislocations have recombined. Geometric analysis and simulations indicated that valleys and ridges were created by an out-of-plane grain rotation driven by reduction of grain boundary energy. These results suggest that in general, it is impossible to form flat two-dimensional nanocrystalline films of copper and other metals exhibiting small stacking fault energies and/or large elastic anisotropy, which induce a large anisotropy in the dislocation-line energy. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control.

    PubMed

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented.

  12. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control

    PubMed Central

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part’s porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented. PMID:26601041

  13. Casting technology for manufacturing metal rods from simulated metallic spent fuels

    NASA Astrophysics Data System (ADS)

    Leeand, Y. S.; Lee, D. B.; Kim, C. K.; Shin, Y. J.; Lee, J. H.

    2000-09-01

    A uranium metal rod 13.5 mm in diameter and 1,150 mm long was produced from simulated metallic spent fuels with advanced casting equipment using the directional-solidification method. A vacuum casting furnace equipped with a four-zone heater to prevent surface oxidation and the formation of surface shrinkage holes was designed. By controlling the axial temperature gradient of the casting furnace, deformation by the surface shrinkage phenomena was diminished, and a sound rod was manufactured. The cooling behavior of the molten uranium was analyzed using the computer software package MAGMAsoft.

  14. Developing Gradient Metal Alloys through Radial Deposition Additive Manufacturing

    PubMed Central

    Hofmann, Douglas C.; Roberts, Scott; Otis, Richard; Kolodziejska, Joanna; Dillon, R. Peter; Suh, Jong-ook; Shapiro, Andrew A.; Liu, Zi-Kui; Borgonia, John-Paul

    2014-01-01

    Interest in additive manufacturing (AM) has dramatically expanded in the last several years, owing to the paradigm shift that the process provides over conventional manufacturing. Although the vast majority of recent work in AM has focused on three-dimensional printing in polymers, AM techniques for fabricating metal alloys have been available for more than a decade. Here, laser deposition (LD) is used to fabricate multifunctional metal alloys that have a strategically graded composition to alter their mechanical and physical properties. Using the technique in combination with rotational deposition enables fabrication of compositional gradients radially from the center of a sample. A roadmap for developing gradient alloys is presented that uses multi-component phase diagrams as maps for composition selection so as to avoid unwanted phases. Practical applications for the new technology are demonstrated in low-coefficient of thermal expansion radially graded metal inserts for carbon-fiber spacecraft panels. PMID:24942329

  15. Final Air Toxics Standards for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources Fact Sheet

    EPA Pesticide Factsheets

    This page contains a December 2007 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources

  16. Metal Additive Manufacturing: A Review of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Lewandowski, John J.; Seifi, Mohsen

    2016-07-01

    This article reviews published data on the mechanical properties of additively manufactured metallic materials. The additive manufacturing techniques utilized to generate samples covered in this review include powder bed fusion (e.g., EBM, SLM, DMLS) and directed energy deposition (e.g., LENS, EBF3). Although only a limited number of metallic alloy systems are currently available for additive manufacturing (e.g., Ti-6Al-4V, TiAl, stainless steel, Inconel 625/718, and Al-Si-10Mg), the bulk of the published mechanical properties information has been generated on Ti-6Al-4V. However, summary tables for published mechanical properties and/or key figures are included for each of the alloys listed above, grouped by the additive technique used to generate the data. Published values for mechanical properties obtained from hardness, tension/compression, fracture toughness, fatigue crack growth, and high cycle fatigue are included for as-built, heat-treated, and/or HIP conditions, when available. The effects of test orientation/build direction on properties, when available, are also provided, along with discussion of the potential source(s) (e.g., texture, microstructure changes, defects) of anisotropy in properties. Recommendations for additional work are also provided.

  17. Multiscale modeling of localized resistive heating in nanocrystalline metals subjected to electropulsing

    NASA Astrophysics Data System (ADS)

    Zhao, Jingyi; Wang, G.-X.; Dong, Yalin; Ye, Chang

    2017-08-01

    Many electrically assisted processes have been reported to induce changes in microstructure and metal plasticity. To understand the physics-based mechanisms behind these interesting phenomena, however, requires an understanding of the interaction between the electric current and heterogeneous microstructure. In this work, multiscale modeling of the electric current flow in a nanocrystalline material is reported. The cellular automata method was used to track the nanoscale grain boundaries in the matrix. Maxwell's electromagnetic equations were solved to obtain the electrical potential distribution at the macro scale. Kirchhoff's circuit equation was solved to obtain the electric current flow at the micro/nano scale. The electric current distribution at two representative locations was investigated. A significant electric current concentration was observed near the grain boundaries, particularly near the triple junctions. This higher localized electric current leads to localized resistive heating near the grain boundaries. The electric current distribution could be used to obtain critical information such as localized resistive heating rate and extra system free energy, which are critical for explaining many interesting phenomena, including microstructure evolution and plasticity enhancement in many electrically assisted processes.

  18. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2015-01-01

    The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute, represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies to fabricate polymer matrix composite and ceramic matrix composite turbine engine components. The benefits include: 50 weight reduction compared to metallic parts, reduced manufacturing costs, reduced part count and rapid design iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature polymer filaments. The CMC effort uses a binder jet process to fabricate silicon carbide test coupons and demonstration articles. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The research project includes a multidisciplinary, multiorganization NASA - industry team that includes experts in ceramic materials and CMCs, polymers and PMCs, structural engineering, additive manufacturing, engine design and analysis, and system analysis.

  19. Silver film on nanocrystalline TiO{sub 2} support: Photocatalytic and antimicrobial ability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukoje, Ivana D., E-mail: ivanav@vinca.rs; Tomašević-Ilić, Tijana D., E-mail: tommashev@gmail.com; Zarubica, Aleksandra R., E-mail: zarubica2000@yahoo.com

    Highlights: • Simple photocatalytic rout for deposition of Ag on nanocrystalline TiO{sub 2} films. • High antibactericidal efficiency of deposited Ag on TiO{sub 2} support. • Improved photocatalytic performance of TiO{sub 2} films in the presence of deposited Ag. - Abstract: Nanocrystalline TiO{sub 2} films were prepared on glass slides by the dip coating technique using colloidal solutions consisting of 4.5 nm particles as a precursor. Photoirradiation of nanocrystalline TiO{sub 2} film modified with alanine that covalently binds to the surface of TiO{sub 2} and at the same time chelate silver ions induced formation of metallic silver film. Optical andmore » morphological properties of thin silver films on nanocrystalline TiO{sub 2} support were studied by absorption spectroscopy and atomic force microscopy. Improvement of photocatalytic performance of nanocrystalline TiO{sub 2} films after deposition of silver was observed in degradation reaction of crystal violet. Antimicrobial ability of deposited silver films on nanocrystalline TiO{sub 2} support was tested in dark as a function of time against Escherichia coli, Staphylococcus aureus, and Candida albicans. The silver films ensured maximum cells reduction of both bacteria, while the fungi reduction reached satisfactory 98.45% after 24 h of contact.« less

  20. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tay, Roland Yingjie; Temasek Laboratories@NTU, 50 Nanyang Avenue, Singapore, Singapore 639798; Tsang, Siu Hon

    Atomically thin hexagonal-boron nitride (h-BN) films are primarily synthesized through chemical vapor deposition (CVD) on various catalytic transition metal substrates. In this work, a single-step metal-catalyst-free approach to obtain few- to multi-layer nanocrystalline h-BN (NCBN) directly on amorphous SiO{sub 2}/Si and quartz substrates is demonstrated. The as-grown thin films are continuous and smooth with no observable pinholes or wrinkles across the entire deposited substrate as inspected using optical and atomic force microscopy. The starting layers of NCBN orient itself parallel to the substrate, initiating the growth of the textured thin film. Formation of NCBN is due to the random andmore » uncontrolled nucleation of h-BN on the dielectric substrate surface with no epitaxial relation, unlike on metal surfaces. The crystallite size is ∼25 nm as determined by Raman spectroscopy. Transmission electron microscopy shows that the NCBN formed sheets of multi-stacked layers with controllable thickness from ∼2 to 25 nm. The absence of transfer process in this technique avoids any additional degradation, such as wrinkles, tears or folding and residues on the film which are detrimental to device performance. This work provides a wider perspective of CVD-grown h-BN and presents a viable route towards large-scale manufacturing of h-BN substrates and for coating applications.« less

  1. Understanding the low temperature electrical properties of nanocrystalline tin oxide for gas sensor applications

    NASA Astrophysics Data System (ADS)

    Drake, Christina Hartsell

    Nanocrystalline metal/metal oxide is an important class of transparent and electronic materials due to its potential use in many applications, including gas sensors. At the nanoscale, many of the phenomena observed that give nanocrystalline semiconducting oxide enhanced performance as a gas sensor material over other conventional engineering materials is still poorly understood. This study is aimed at understanding the low temperature electrical and chemical properties of nanocrystalline SnO2 that makes it suitable for room temperature gas detectors. Studies were carried out in order to understand how various synthesis methods affect the surfaces on the nano-oxides, interactions of a target gas (in this study hydrogen) with different surface species, and changes in the electrical properties as a function of dopants and grain size. A correlation between the surface reactions and the electrical response of doped nanocrystalline metal-oxide-semiconductors exposed to a reducing gas is established using Fourier Transform Infrared (FTIR) Spectroscopy attached to a specially built custom designed catalytic cell. First principle calculations of oxygen vacancy concentrations from absorbance spectra are presented. FTIR is used for effectively screening of these nanostructures for gas sensing applications. The effect of processing temperature on the microstructural evolution and on the electronic properties of nanocrystalline trivalent doped-SnO 2 is also presented. This study includes the effect of dopants (In and Ce) on the growth of nano-SnO2, as well as their effects on the electronic properties and gas sensor behavior of the nanomaterial at room temperature. Band bending affects are also investigated for this system and are related to enhanced low temperature gas sensing. The role and importance of oxygen vacancies in the electronic and chemical behavior of surface modified nanocrystalline SnO2 are explored in this study. A generalized explanation for the low temperature

  2. Mechanical properties of nanocrystalline cobalt

    NASA Astrophysics Data System (ADS)

    Karimpoor, Amir A.; Erb, Uwe

    2006-05-01

    Due to their excellent wear and corrosion properties, nanocrystalline cobalt and several cobalt alloys made by electrodeposition are currently being developed as environmentally benign replacement coatings for hard chromium electrodeposits. The focus of this study is on the mechanical properties of nanocrystalline cobalt, which are currently not well understood. A comparison is presented for hardness, tensile properties, Charpy impact properties and fracture surface analysis of both nanocrystalline (grain size: 12 nm) and conventional polycrystalline (grain size: 4.8 m) cobalt. It is shown that the hardness and tensile strength of nanocrystalline cobalt is 2-3 times higher than for polycrystalline cobalt. However, in contrast to other nanocrystalline materials tested previously, nanocrystalline cobalt retains considerable ductility with elongation to fracture values up to 7%.

  3. Measurement of fracture toughness of metallic materials produced by additive manufacturing

    NASA Astrophysics Data System (ADS)

    Quénard, O.; Dorival, O.; Guy, Ph.; Votié, A.; Brethome, K.

    2018-04-01

    This study focuses on the microstructure and mechanical properties of metallic materials produced by additive layer manufacturing (ALM), especially the laser beam melting process. The influence of the specimen orientation during the ALM process and that of two post-build thermal treatments were investigated. The identified metal powder is Ti-6Al-4V (titanium base). Metallographic analysis shows their effects on the microstructure of the metals. Mechanical experiments involving tensile tests as well as toughness tests were performed according to ASTM (American Society for Testing and Materials) norms. The results show that the main influence is that of the thermal treatments; however the manufacturing stacking direction may lead to some anisotropy in the mechanical properties.

  4. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing," evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door, were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  5. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  6. Disorder induced semiconductor to metal transition and modifications of grain boundaries in nanocrystalline zinc oxide thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Fouran; Kumar, Vinod; Chaudhary, Babloo

    2012-10-01

    This paper report on the disorder induced semiconductor to metal transition (SMT) and modifications of grain boundaries in nanocrystalline zinc oxide thin film. Disorder is induced using energetic ion irradiation. It eliminates the possibility of impurities induced transition. However, it is revealed that some critical concentration of defects is needed for inducing such kind of SMT at certain critical temperature. Above room temperature, the current-voltage characteristics in reverse bias attributes some interesting phenomenon, such as electric field induced charge transfer, charge trapping, and diffusion of defects. The transition is explained by the defects induced disorder and strain in ZnO crystallitesmore » created by high density of electronic excitations.« less

  7. Additively manufactured metallic pentamode meta-materials

    NASA Astrophysics Data System (ADS)

    Hedayati, R.; Leeflang, A. M.; Zadpoor, A. A.

    2017-02-01

    Mechanical metamaterials exhibit unusual mechanical properties that originate from their topological design. Pentamode metamaterials are particularly interesting because they could be designed to possess any thermodynamically admissible elasticity tensor. In this study, we additively manufacture the metallic pentamode metamaterials from a biocompatible and mechanically strong titanium alloy (Ti-6Al-4V) using an energy distribution method developed for the powder bed fusion techniques. The mechanical properties of the developed materials were a few orders of magnitude higher than those of the similar topologies fabricated previously from polymers. Moreover, the elastic modulus and yield stress of the presented pentamode metamaterials were decoupled from their relative density, meaning that the metallic meta-biomaterials with independently tailored elastic and mass transport (permeability) properties could be designed for tissue regeneration purposes.

  8. Evaluation of marginal and internal gap of three-unit metal framework according to subtractive manufacturing and additive manufacturing of CAD/CAM systems

    PubMed Central

    Kim, Dong-Yeon; Kim, Eo-Bin; Kim, Hae-Young; Kim, Ji-Hwan

    2017-01-01

    PURPOSE To evaluate the fit of a three-unit metal framework of fixed dental prostheses made by subtractive and additive manufacturing. MATERIALS AND METHODS One master model of metal was fabricated. Twenty silicone impressions were made on the master die, working die of 10 poured with Type 4 stone, and working die of 10 made of scannable stone. Ten three-unit wax frameworks were fabricated by wax-up from Type IV working die. Stereolithography files of 10 three-unit frameworks were obtained using a model scanner and three-dimensional design software on a scannable working die. The three-unit wax framework was fabricated using subtractive manufacturing (SM) by applying the prepared stereolithography file, and the resin framework was fabricated by additive manufacturing (AM); both used metal alloy castings for metal frameworks. Marginal and internal gap were measured using silicone replica technique and digital microscope. Measurement data were analyzed by Kruskal-Wallis H test and Mann-Whitney U-test (α=.05). RESULTS The lowest and highest gaps between premolar and molar margins were in the SM group and the AM group, respectively. There was a statistically significant difference in the marginal gap among the 3 groups (P<.001). In the marginal area where pontic was present, the largest gap was 149.39 ± 42.30 µm in the AM group, and the lowest gap was 24.40 ± 11.92 µm in the SM group. CONCLUSION Three-unit metal frameworks made by subtractive manufacturing are clinically applicable. However, additive manufacturing requires more research to be applied clinically. PMID:29279766

  9. Evaluation of marginal and internal gap of three-unit metal framework according to subtractive manufacturing and additive manufacturing of CAD/CAM systems.

    PubMed

    Kim, Dong-Yeon; Kim, Eo-Bin; Kim, Hae-Young; Kim, Ji-Hwan; Kim, Woong-Chul

    2017-12-01

    To evaluate the fit of a three-unit metal framework of fixed dental prostheses made by subtractive and additive manufacturing. One master model of metal was fabricated. Twenty silicone impressions were made on the master die, working die of 10 poured with Type 4 stone, and working die of 10 made of scannable stone. Ten three-unit wax frameworks were fabricated by wax-up from Type IV working die. Stereolithography files of 10 three-unit frameworks were obtained using a model scanner and three-dimensional design software on a scannable working die. The three-unit wax framework was fabricated using subtractive manufacturing (SM) by applying the prepared stereolithography file, and the resin framework was fabricated by additive manufacturing (AM); both used metal alloy castings for metal frameworks. Marginal and internal gap were measured using silicone replica technique and digital microscope. Measurement data were analyzed by Kruskal-Wallis H test and Mann-Whitney U-test (α=.05). The lowest and highest gaps between premolar and molar margins were in the SM group and the AM group, respectively. There was a statistically significant difference in the marginal gap among the 3 groups ( P <.001). In the marginal area where pontic was present, the largest gap was 149.39 ± 42.30 µm in the AM group, and the lowest gap was 24.40 ± 11.92 µm in the SM group. Three-unit metal frameworks made by subtractive manufacturing are clinically applicable. However, additive manufacturing requires more research to be applied clinically.

  10. Method for the preparation of nanocrystalline diamond thin films

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.

    1998-01-01

    A method and system for manufacturing nanocrystalline diamond film on a substrate such as field emission tips. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrocarbon and possibly hydrogen, and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous vapor and deposition of a diamond film on the field emission tip.

  11. Size effects of nano-spaced basal stacking faults on the strength and deformation mechanisms of nanocrystalline pure hcp metals

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Jiang, Ping; Yuan, Fuping; Wu, Xiaolei

    2018-05-01

    The size effects of nano-spaced basal stacking faults (SFs) on the tensile strength and deformation mechanisms of nanocrystalline pure cobalt and magnesium have been investigated by a series of large-scale 2D columnar and 3D molecular dynamics simulations. Unlike the strengthening effect of basal SFs on Mg alloys, the nano-spaced basal SFs are observed to have no strengthening effect on the nanocrystalline pure cobalt and magnesium from MD simulations. These observations could be attributed to the following two reasons: (i) Lots of new basal SFs are formed before (for cobalt) or simultaneously with (for magnesium) the other deformation mechanisms (i.e. the formation of twins and the < c + a > edge dislocations) during the tensile deformation; (ii) In hcp alloys, the segregation of alloy elements and impurities at typical interfaces, such as SFs, can stablilise them for enhancing the interactions with dislocation and thus elevating the strength. Without such segregation in pure hcp metals, the < c + a > edge dislocations can cut through the basal SFs although the interactions between the < c + a > dislocations and the pre-existing SFs/newly formed SFs are observed. The nano-spaced basal SFs are also found to have no restriction effect on the formation of deformation twins.

  12. Extreme creep resistance in a microstructurally stable nanocrystalline alloy

    NASA Astrophysics Data System (ADS)

    Darling, K. A.; Rajagopalan, M.; Komarasamy, M.; Bhatia, M. A.; Hornbuckle, B. C.; Mishra, R. S.; Solanki, K. N.

    2016-09-01

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10-6 per second—six to eight orders of magnitude lower than most nanocrystalline metals—at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  13. Targeted Structural Optimization with Additive Manufacturing of Metals

    NASA Technical Reports Server (NTRS)

    Burt, Adam; Hull, Patrick

    2015-01-01

    The recent advances in additive manufacturing (AM) of metals have now improved the state-of-the-art such that traditionally non-producible parts can be readily produced in a cost-effective way. Because of these advances in manufacturing technology, structural optimization techniques are well positioned to supplement and advance this new technology. The goal of this project is to develop a structural design, analysis, and optimization framework combined with AM to significantly light-weight the interior of metallic structures while maintaining the selected structural properties of the original solid. This is a new state-of-the-art capability to significantly reduce mass, while maintaining the structural integrity of the original design, something that can only be done with AM. In addition, this framework will couple the design, analysis, and fabrication process, meaning that what has been designed directly represents the produced part, thus closing the loop on the design cycle and removing human iteration between design and fabrication. This fundamental concept has applications from light-weighting launch vehicle components to in situ resource fabrication.

  14. Method for the preparation of nanocrystalline diamond thin films

    DOEpatents

    Gruen, D.M.; Krauss, A.R.

    1998-06-30

    A method and system are disclosed for manufacturing nanocrystalline diamond film on a substrate such as field emission tips. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrocarbon and possibly hydrogen, and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous vapor and deposition of a diamond film on the field emission tip. 40 figs.

  15. Pulsed photonic fabrication of nanostructured metal oxide thin films

    NASA Astrophysics Data System (ADS)

    Bourgeois, Briley B.; Luo, Sijun; Riggs, Brian C.; Adireddy, Shiva; Chrisey, Douglas B.

    2017-09-01

    Nanostructured metal oxide thin films with a large specific surface area are preferable for practical device applications in energy conversion and storage. Herein, we report instantaneous (milliseconds) photonic synthesis of three-dimensional (3-D) nanostructured metal oxide thin films through the pulsed photoinitiated pyrolysis of organometallic precursor films made by chemical solution deposition. High wall-plug efficiency-pulsed photonic irradiation (xenon flash lamp, pulse width of 1.93 ms, fluence of 7.7 J/cm2 and frequency of 1.2 Hz) is used for scalable photonic processing. The photothermal effect of subsequent pulses rapidly improves the crystalline quality of nanocrystalline metal oxide thin films in minutes. The following paper highlights pulsed photonic fabrication of 3-D nanostructured TiO2, Co3O4, and Fe2O3 thin films, exemplifying a promising new method for the low-cost and high-throughput manufacturing of nanostructured metal oxide thin films for energy applications.

  16. Properties of nanocrystalline Si layers embedded in structure of solar cell

    NASA Astrophysics Data System (ADS)

    Jurečka, Stanislav; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru

    2017-12-01

    Suppression of spectral reflectance from the surface of solar cell is necessary for achieving a high energy conversion efficiency. We developed a simple method for forming nanocrystalline layers with ultralow reflectance in a broad range of wavelengths. The method is based on metal assisted etching of the silicon surface. In this work, we prepared Si solar cell structures with embedded nanocrystalline layers. The microstructure of embedded layer depends on the etching conditions. We examined the microstructure of the etched layers by a transmission electron microscope and analysed the experimental images by statistical and Fourier methods. The obtained results provide information on the applied treatment operations and can be used to optimize the solar cell forming procedure.

  17. Method for producing nanocrystalline multicomponent and multiphase materials

    DOEpatents

    Eastman, Jeffrey A.; Rittner, Mindy N.; Youngdahl, Carl J.; Weertman, Julia R.

    1998-01-01

    A process for producing multi-component and multiphase nanophase materials is provided wherein a plurality of elements are vaporized in a controlled atmosphere, so as to facilitate thorough mixing, and then condensing and consolidating the elements. The invention also provides for a multicomponent and multiphase nanocrystalline material of specified elemental and phase composition having component grain sizes of between approximately 1 nm and 100 nm. This material is a single element in combination with a binary compound. In more specific embodiments, the single element in this material can be a transition metal element, a non-transition metal element, a semiconductor, or a semi-metal, and the binary compound in this material can be an intermetallic, an oxide, a nitride, a hydride, a chloride, or other compound.

  18. Evidence that abnormal grain growth precedes fatigue crack initiation in nanocrystalline Ni-Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furnish, Timothy A.; Bufford, Daniel C.; Ren, Fang

    Prior studies on the high-cycle fatigue behavior of nanocrystalline metals have shown that fatigue fracture is associated with abnormal grain growth (AGG). However, those previous studies have been unable to determine if AGG precedes fatigue crack initiation, or vice-versa. The present study shows that AGG indeed occurs prior to crack formation in nanocrystalline Ni-Fe by using a recently developed synchrotron X-ray diffraction modality that has been adapted for in-situ analysis. The technique allows fatigue tests to be interrupted at the initial signs of the AGG process, and subsequent microscopy reveals the precursor damage state preceding crack initiation.

  19. Evidence that abnormal grain growth precedes fatigue crack initiation in nanocrystalline Ni-Fe

    DOE PAGES

    Furnish, Timothy A.; Bufford, Daniel C.; Ren, Fang; ...

    2018-09-06

    Prior studies on the high-cycle fatigue behavior of nanocrystalline metals have shown that fatigue fracture is associated with abnormal grain growth (AGG). However, those previous studies have been unable to determine if AGG precedes fatigue crack initiation, or vice-versa. The present study shows that AGG indeed occurs prior to crack formation in nanocrystalline Ni-Fe by using a recently developed synchrotron X-ray diffraction modality that has been adapted for in-situ analysis. The technique allows fatigue tests to be interrupted at the initial signs of the AGG process, and subsequent microscopy reveals the precursor damage state preceding crack initiation.

  20. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties.

    PubMed

    Cheng, Shaoling; Zhang, Yapei; Cha, Ruitao; Yang, Jinliang; Jiang, Xingyu

    2016-01-14

    By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food.

  1. Additive Manufacturing of Functional Elements on Sheet Metal

    NASA Astrophysics Data System (ADS)

    Schaub, Adam; Ahuja, Bhrigu; Butzhammer, Lorenz; Osterziel, Johannes; Schmidt, Michael; Merklein, Marion

    Laser Beam Melting (LBM) process with its advantages of high design flexibility and free form manufacturing methodology is often applied limitedly due to its low productivity and unsuitability for mass production compared to conventional manufacturing processes. In order to overcome these limitations, a hybrid manufacturing methodology is developed combining the additive manufacturing process of laser beam melting with sheet forming processes. With an interest towards aerospace and medical industry, the material in focus is Ti-6Al-4V. Although Ti-6Al-4V is a commercially established material and its application for LBM process has been extensively investigated, the combination of LBM of Ti-6Al-4V with sheet metal still needs to be researched. Process dynamics such as high temperature gradients and thermally induced stresses lead to complex stress states at the interaction zone between the sheet and LBM structure. Within the presented paper mechanical characterization of hybrid parts will be performed by shear testing. The association of shear strength with process parameters is further investigated by analyzing the internal structure of the hybrid geometry at varying energy inputs during the LBM process. In order to compare the hybrid manufacturing methodology with conventional fabrication, the conventional methodologies subtractive machining and state of the art Laser Beam Melting is evaluated within this work. These processes will be analyzed for their mechanical characteristics and productivity by determining the build time and raw material consumption for each case. The paper is concluded by presenting the characteristics of the hybrid manufacturing methodology compared to alternative manufacturing technologies.

  2. A Fully Non-metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2014-01-01

    The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute (NARI), represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies for fabricating polymer matrix composite (PMC) and ceramic matrix composite (CMC) gas turbine engine components. The benefits of the proposed effort include: 50 weight reduction compared to metallic parts, reduced manufacturing costs due to less machining and no tooling requirements, reduced part count due to net shape single component fabrication, and rapid design change and production iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature capable polymer filaments. The first component is an acoustic panel treatment with a honeycomb structure with an integrated back sheet and perforated front sheet. The second component is a compressor inlet guide vane. The CMC effort, which is starting at a lower technology readiness level, will use a binder jet process to fabricate silicon carbide test coupons and demonstration articles. The polymer and ceramic additive manufacturing efforts will advance from monolithic materials toward silicon carbide and carbon fiber reinforced composites for improved properties. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The proposed effort will be focused on a small 7000 lbf gas turbine engine. However, the concepts are equally applicable to large gas turbine engines. The proposed effort includes a multidisciplinary, multiorganization NASA - industry team that includes experts in

  3. Grain Structure Control of Additively Manufactured Metallic Materials

    PubMed Central

    Faierson, Eric J.

    2017-01-01

    Grain structure control is challenging for metal additive manufacturing (AM). Grain structure optimization requires the control of grain morphology with grain size refinement, which can improve the mechanical properties of additive manufactured components. This work summarizes methods to promote fine equiaxed grains in both the additive manufacturing process and subsequent heat treatment. Influences of temperature gradient, solidification velocity and alloy composition on grain morphology are discussed. Equiaxed solidification is greatly promoted by introducing a high density of heterogeneous nucleation sites via powder rate control in the direct energy deposition (DED) technique or powder surface treatment for powder-bed techniques. Grain growth/coarsening during post-processing heat treatment can be restricted by presence of nano-scale oxide particles formed in-situ during AM. Grain refinement of martensitic steels can also be achieved by cyclic austenitizing in post-processing heat treatment. Evidently, new alloy powder design is another sustainable method enhancing the capability of AM for high-performance components with desirable microstructures.

  4. Diode-based additive manufacturing of metals using an optically-addressable light valve.

    PubMed

    Matthews, Manyalibo J; Guss, Gabe; Drachenberg, Derrek R; Demuth, James A; Heebner, John E; Duoss, Eric B; Kuntz, Joshua D; Spadaccini, Christopher M

    2017-05-15

    Selective Laser Melting (SLM) of metal powder bed layers, whereby 3D metal objects can be printed from a digital file with unprecedented design flexibility, is spurring manufacturing innovations in medical, automotive, aerospace and textile industries. Because SLM is based on raster-scanning a laser beam over each layer, the process is relatively slow compared to most traditional manufacturing methods (hours to days), thus limiting wider spread use. Here we demonstrate the use of a large area, photolithographic method for 3D metal printing, using an optically-addressable light valve (OALV) as the photomask, to print entire layers of metal powder at once. An optical sheet of multiplexed ~5 kW, 20 ms laser diode and ~1 MW, 7 ns Q-switched laser pulses are used to selectively melt each layer. The patterning of near infrared light is accomplished by imaging 470 nm light onto the transmissive OALV, which consists of polarization-selective nematic liquid crystal sandwiched between a photoconductor and transparent conductor for switching.

  5. Nanocrystalline films for gas-reactive applications

    DOEpatents

    Eastman, Jeffrey A.; Thompson, Loren J.

    2004-02-17

    A gas sensor for detection of oxidizing and reducing gases, including O.sub.2, CO.sub.2, CO, and H.sub.2, monitors the partial pressure of a gas to be detected by measuring the temperature rise of an oxide-thin-film-coated metallic line in response to an applied electrical current. For a fixed input power, the temperature rise of the metallic line is inversely proportional to the thermal conductivity of the oxide coating. The oxide coating contains multi-valent cation species that change their valence, and hence the oxygen stoichiometry of the coating, in response to changes in the partial pressure of the detected gas. Since the thermal conductivity of the coating is dependent on its oxygen stoichiometry, the temperature rise of the metallic line depends on the partial pressure of the detected gas. Nanocrystalline (<100 nm grain size) oxide coatings yield faster sensor response times than conventional larger-grained coatings due to faster oxygen diffusion along grain boundaries rather than through grain interiors.

  6. Design and manufacture of high absorption metal dielectric coatings for the reduction of straylight

    NASA Astrophysics Data System (ADS)

    Cathelinaud, Michel; Lemarquis, Frédéric; Torchio, Philippe; Amra, Claude

    2017-11-01

    This paper describes the design and manufacture of broadband metal dielectric absorbers. First, we give some design principles to obtain achromatic absorption properties. Then, we describe a new method to determine the complex refractive index of metallic layers. A graded index model is developed to take account of the evolution of the film packing density. Manufacturing is detailed in the last section. Absorption levels higher than 99.9% have been measured over the visible range.

  7. Dendrite-Free Nanocrystalline Zinc Electrodeposition from an Ionic Liquid Containing Nickel Triflate for Rechargeable Zn-Based Batteries.

    PubMed

    Liu, Zhen; Cui, Tong; Pulletikurthi, Giridhar; Lahiri, Abhishek; Carstens, Timo; Olschewski, Mark; Endres, Frank

    2016-02-18

    Metallic zinc is a promising anode material for rechargeable Zn-based batteries. However, the dendritic growth of zinc has prevented practical applications. Herein it is demonstrated that dendrite-free zinc deposits with a nanocrystalline structure can be obtained by using nickel triflate as an additive in a zinc triflate containing ionic liquid. The formation of a thin layer of Zn-Ni alloy (η- and γ-phases) on the surface and in the initial stages of deposition along with the formation of an interfacial layer on the electrode strongly affect the nucleation and growth of zinc. A well-defined and uniform nanocrystalline zinc deposit with particle sizes of about 25 nm was obtained in the presence of Ni(II) . Further, it is shown that the nanocrystalline Zn exhibits a high cycling stability even after 50 deposition/stripping cycles. This strategy of introducing an inorganic metal salt in ionic liquid electrolytes can be considered as an efficient way to obtain dendrite-free zinc. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Thermally Stable Nanocrystalline Steel

    NASA Astrophysics Data System (ADS)

    Hulme-Smith, Christopher Neil; Ooi, Shgh Woei; Bhadeshia, Harshad K. D. H.

    2017-10-01

    Two novel nanocrystalline steels were designed to withstand elevated temperatures without catastrophic microstructural changes. In the most successful alloy, a large quantity of nickel was added to stabilize austenite and allow a reduction in the carbon content. A 50 kg cast of the novel alloy was produced and used to verify the formation of nanocrystalline bainite. Synchrotron X-ray diffractometry using in situ heating showed that austenite was able to survive more than 1 hour at 773 K (500 °C) and subsequent cooling to ambient temperature. This is the first reported nanocrystalline steel with high-temperature capability.

  9. Method for producing nanocrystalline multicomponent and multiphase materials

    DOEpatents

    Eastman, J.A.; Rittner, M.N.; Youngdahl, C.J.; Weertman, J.R.

    1998-03-17

    A process for producing multi-component and multiphase nanophase materials is provided wherein a plurality of elements are vaporized in a controlled atmosphere, so as to facilitate thorough mixing, and then condensing and consolidating the elements. The invention also provides for a multicomponent and multiphase nanocrystalline material of specified elemental and phase composition having component grain sizes of between approximately 1 nm and 100 nm. This material is a single element in combination with a binary compound. In more specific embodiments, the single element in this material can be a transition metal element, a non-transition metal element, a semiconductor, or a semi-metal, and the binary compound in this material can be an intermetallic, an oxide, a nitride, a hydride, a chloride, or other compound. 6 figs.

  10. Metal Big Area Additive Manufacturing: Process Modeling and Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simunovic, Srdjan; Nycz, Andrzej; Noakes, Mark W

    Metal Big Area Additive Manufacturing (mBAAM) is a new additive manufacturing (AM) technology for printing large-scale 3D objects. mBAAM is based on the gas metal arc welding process and uses a continuous feed of welding wire to manufacture an object. An electric arc forms between the wire and the substrate, which melts the wire and deposits a bead of molten metal along the predetermined path. In general, the welding process parameters and local conditions determine the shape of the deposited bead. The sequence of the bead deposition and the corresponding thermal history of the manufactured object determine the long rangemore » effects, such as thermal-induced distortions and residual stresses. Therefore, the resulting performance or final properties of the manufactured object are dependent on its geometry and the deposition path, in addition to depending on the basic welding process parameters. Physical testing is critical for gaining the necessary knowledge for quality prints, but traversing the process parameter space in order to develop an optimized build strategy for each new design is impractical by pure experimental means. Computational modeling and optimization may accelerate development of a build process strategy and saves time and resources. Because computational modeling provides these opportunities, we have developed a physics-based Finite Element Method (FEM) simulation framework and numerical models to support the mBAAM process s development and design. In this paper, we performed a sequentially coupled heat transfer and stress analysis for predicting the final deformation of a small rectangular structure printed using the mild steel welding wire. Using the new simulation technologies, material was progressively added into the FEM simulation as the arc weld traversed the build path. In the sequentially coupled heat transfer and stress analysis, the heat transfer was performed to calculate the temperature evolution, which was used in a stress

  11. Localized Pulsed Electrodeposition Process for Three-Dimensional Printing of Nanotwinned Metallic Nanostructures.

    PubMed

    Daryadel, Soheil; Behroozfar, Ali; Morsali, S Reza; Moreno, Salvador; Baniasadi, Mahmoud; Bykova, Julia; Bernal, Rodrigo A; Minary-Jolandan, Majid

    2018-01-10

    Nanotwinned-metals (nt-metals) offer superior mechanical (high ductility and strength) and electrical (low electromigration) properties compared to their nanocrystalline (nc) counterparts. These properties are advantageous in particular for applications in nanoscale devices. However, fabrication of nt-metals has been limited to films (two-dimensional) or template-based (one-dimensional) geometries, using various chemical and physical processes. In this Letter, we demonstrate the ambient environment localized pulsed electrodeposition process for direct printing of three-dimensional (3D) freestanding nanotwinned-Copper (nt-Cu) nanostructures. 3D nt-Cu structures were additively manufactured using pulsed electrodeposition at the tip of an electrolyte-containing nozzle. Focused ion beam (FIB) and transmission electron microscopy (TEM) analysis revealed that the printed metal was fully dense, and was mostly devoid of impurities and microstructural defects. FIB and TEM images also revealed nanocrystalline-nanotwinned-microstructure (nc-nt-microstructure), and confirmed the formation of coherent twin boundaries in the 3D-printed Cu. Mechanical properties of the 3D-printed nc-nt-Cu were characterized by direct printing (FIB-less) of micropillars for in situ SEM microcompression experiments. The 3D-printed nc-nt-Cu exhibited a flow stress of over 960 MPa, among the highest ever reported, which is remarkable for a 3D-printed material. The microstructure and mechanical properties of the nc-nt-Cu were compared to those of nc-Cu printed using the same process under direct current (DC) voltage.

  12. General predictive model of friction behavior regimes for metal contacts based on the formation stability and evolution of nanocrystalline surface films.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argibay, Nicolas; Cheng, Shengfeng; Sawyer, W. G.

    2015-09-01

    The prediction of macro-scale friction and wear behavior based on first principles and material properties has remained an elusive but highly desirable target for tribologists and material scientists alike. Stochastic processes (e.g. wear), statistically described parameters (e.g. surface topography) and their evolution tend to defeat attempts to establish practical general correlations between fundamental nanoscale processes and macro-scale behaviors. We present a model based on microstructural stability and evolution for the prediction of metal friction regimes, founded on recently established microstructural deformation mechanisms of nanocrystalline metals, that relies exclusively on material properties and contact stress models. We show through complementary experimentalmore » and simulation results that this model overcomes longstanding practical challenges and successfully makes accurate and consistent predictions of friction transitions for a wide range of contact conditions. This framework not only challenges the assumptions of conventional causal relationships between hardness and friction, and between friction and wear, but also suggests a pathway for the design of higher performance metal alloys.« less

  13. Accelerating Industrial Adoption of Metal Additive Manufacturing Technology

    NASA Astrophysics Data System (ADS)

    Vartanian, Kenneth; McDonald, Tom

    2016-03-01

    While metal additive manufacturing (AM) technology has clear benefits, there are still factors preventing its adoption by industry. These factors include the high cost of metal AM systems, the difficulty for machinists to learn and operate metal AM machines, the long approval process for part qualification/certification, and the need for better process controls; however, the high AM system cost is the main barrier deterring adoption. In this paper, we will discuss an America Makes-funded program to reduce AM system cost by combining metal AM technology with conventional computerized numerical controlled (CNC) machine tools. Information will be provided on how an Optomec-led team retrofitted a legacy CNC vertical mill with laser engineered net shaping (LENS®—LENS is a registered trademark of Sandia National Labs) AM technology, dramatically lowering deployment cost. The upgraded system, dubbed LENS Hybrid Vertical Mill, enables metal additive and subtractive operations to be performed on the same machine tool and even on the same part. Information on the LENS Hybrid system architecture, learnings from initial system deployment and continuing development work will also be provided to help guide further development activities within the materials community.

  14. Coexistence of colossal stress and texture gradients in sputter deposited nanocrystalline ultra-thin metal films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuru, Yener; Welzel, Udo; Mittemeijer, Eric J.

    2014-12-01

    This paper demonstrates experimentally that ultra-thin, nanocrystalline films can exhibit coexisting colossal stress and texture depth gradients. Their quantitative determination is possible by X-ray diffraction experiments. Whereas a uniform texture by itself is known to generally cause curvature in so-called sin{sup 2}ψ plots, it is shown that the combined action of texture and stress gradients provides a separate source of curvature in sin{sup 2}ψ plots (i.e., even in cases where a uniform texture does not induce such curvature). On this basis, the texture and stress depth profiles of a nanocrystalline, ultra-thin (50 nm) tungsten film could be determined.

  15. Frequency-dependent failure mechanisms of nanocrystalline gold interconnect lines under general alternating current

    NASA Astrophysics Data System (ADS)

    Luo, X. M.; Zhang, B.; Zhang, G. P.

    2014-09-01

    Thermal fatigue failure of metallization interconnect lines subjected to alternating currents (AC) is becoming a severe threat to the long-term reliability of micro/nanodevices with increasing electrical current density/power. Here, thermal fatigue failure behaviors and damage mechanisms of nanocrystalline Au interconnect lines on the silicon glass substrate have been investigated by applying general alternating currents (the pure alternating current coupled with a direct current (DC) component) with different frequencies ranging from 0.05 Hz to 5 kHz. We observed both thermal fatigue damages caused by Joule heating-induced cyclic strain/stress and electromigration (EM) damages caused by the DC component. Besides, the damage formation showed a strong electrically-thermally-mechanically coupled effect and frequency dependence. At lower frequencies, thermal fatigue damages were dominant and the main damage forms were grain coarsening with grain boundary (GB) cracking/voiding and grain thinning. At higher frequencies, EM damages took over and the main damage forms were GB cracking/voiding of smaller grains and hillocks. Furthermore, the healing effect of the reversing current was considered to elucidate damage mechanisms of the nanocrystalline Au lines generated by the general AC. Lastly, a modified model was proposed to predict the lifetime of the nanocrystalline metal interconnect lines, i.e., that was a competing drift velocity-based approach based on the threshold time required for reverse diffusion/healing to occur.

  16. The inverse hall-petch relation in nanocrystalline metals: A discrete dislocation dynamics analysis

    NASA Astrophysics Data System (ADS)

    Quek, Siu Sin; Chooi, Zheng Hoe; Wu, Zhaoxuan; Zhang, Yong Wei; Srolovitz, David J.

    2016-03-01

    When the grain size in polycrystalline materials is reduced to the nanometer length scale (nanocrystallinity), observations from experiments and atomistic simulations suggest that the yield strength decreases (softening) as the grain size is decreased. This is in contrast to the Hall-Petch relation observed in larger sized grains. We incorporated grain boundary (GB) sliding and dislocation emission from GB junctions into the classical DDD framework, and recovered the smaller is weaker relationship observed in nanocrystalline materials. This current model shows that the inverse Hall-Petch behavior can be obtained through a relief of stress buildup at GB junctions from GB sliding by emitting dislocations from the junctions. The yield stress is shown to vary with grain size, d, by a d 1 / 2 relationship when grain sizes are very small. However, pure GB sliding alone without further plastic accomodation by dislocation emission is grain size independent.

  17. Photocatalytic degradation of Orange G dye under solar light using nanocrystalline semiconductor metal oxide.

    PubMed

    Thennarasu, G; Kavithaa, S; Sivasamy, A

    2011-08-01

    The photocatalytic degradation of Orange G (OG) dye has been investigated using synthesised nanocrystalline ZnO as a photocatalyst and sunlight as the irradiation source. The formation of ZnO prepared from its precursor was confirmed through FT-IR and powder X-ray diffraction analyses. Surface morphology was characterised by scanning electron microscope and transmission electron microscope analysis. Band gap energy of synthesised nanocrystalline ZnO was calculated using diffuse reflectance spectroscopy (DRS). Different experimental parameters such as effects of pH, dye concentrations and mass of catalyst were standardised in order to achieve complete degradation of the dye molecules under solar light irradiation. The kinetics of oxidation of OG was also studied. The complete degradation of OG was evident after 90 min of irradiation at an initial pH of 6.86. The degradation of OG was confirmed by UV-Visible spectrophotometer, high-pressure liquid chromatography, ESI-Mass and chemical oxygen demand analyses. The adsorption of dye onto catalytic surface was analysed employing model equations such as Langmuir and Freundlich isotherms, and it was found that the Langmuir isotherm model best fitted the adsorption data. The solar photodegradation of OG followed pseudo-first-order kinetics. HPLC and ESI-Mass analyses of the degraded samples suggested that the dye molecules were readily degraded under solar irradiation with nanocrystalline ZnO.

  18. Diode-based additive manufacturing of metals using an optically-addressable light valve

    DOE PAGES

    Matthews, Manyalibo J.; Guss, Gabe; Drachenberg, Derrek R.; ...

    2017-05-10

    We present that Selective Laser Melting (SLM) of metal powder bed layers, whereby 3D metal objects can be printed from a digital file with unprecedented design flexibility, is spurring manufacturing innovations in medical, automotive, aerospace and textile industries. Because SLM is based on raster-scanning a laser beam over each layer, the process is relatively slow compared to most traditional manufacturing methods (hours to days), thus limiting wider spread use. Here we demonstrate the use of a large area, photolithographic method for 3D metal printing, using an optically-addressable light valve (OALV) as the photomask, to print entire layers of metal powdermore » at once. An optical sheet of multiplexed ~5 kW, 20 ms laser diode and ~1 MW, 7 ns Q-switched laser pulses are used to selectively melt each layer. Finally, the patterning of near infrared light is accomplished by imaging 470 nm light onto the transmissive OALV, which consists of polarization-selective nematic liquid crystal sandwiched between a photoconductor and transparent conductor for switching.« less

  19. A Process for Manufacturing Metal-Ceramic Cellular Materials with Designed Mesostructure

    NASA Astrophysics Data System (ADS)

    Snelling, Dean Andrew, Jr.

    The goal of this work is to develop and characterize a manufacturing process that is able to create metal matrix composites with complex cellular geometries. The novel manufacturing method uses two distinct additive manufacturing processes: i) fabrication of patternless molds for cellular metal castings and ii) printing an advanced cellular ceramic for embedding in a metal matrix. However, while the use of AM greatly improves the freedom in the design of MMCs, it is important to identify the constraints imposed by the process and its process relationships. First, the author investigates potential differences in material properties (microstructure, porosity, mechanical strength) of A356 - T6 castings resulting from two different commercially available Binder Jetting media and traditional "no-bake" silica sand. It was determined that they yielded statistically equivalent results in four of the seven tests performed: dendrite arm spacing, porosity, surface roughness, and tensile strength. They differed in sand tensile strength, hardness, and density. Additionally, two critical sources of process constraints on part geometry are examined: (i) depowdering unbound material from intricate casting channels and (ii) metal flow and solidification distances through complex mold geometries. A Taguchi Design of Experiments is used to determine the relationships of important independent variables of each constraint. For depowdering, a minimum cleaning diameter of 3 mm was determined along with an equation relating cleaning distance as a function of channel diameter. Furthermore, for metal flow, choke diameter was found to be significantly significant variable. Finally, the author presents methods to process complex ceramic structure from precursor powders via Binder Jetting AM technology to incorporate into a bonded sand mold and the subsequently casted metal matrix. Through sintering experiments, a sintering temperature of 1375°C was established for the ceramic insert (78

  20. Mechanically strong nanocrystalline Fe-Si-B-P-Cu soft magnetic powder cores utilizing magnetic metallic glass as a binder

    NASA Astrophysics Data System (ADS)

    Luan, Jian; Sharma, Parmanand; Yodoshi, Noriharu; Zhang, Yan; Makino, Akihiro

    2016-05-01

    We report on the fabrication and properties of soft magnetic powder cores with superior mechanical strength as well as low core loss (W). Development of such cores is important for applications in automobiles/devices operating in motion. High saturation magnetic flux density (Bs) Fe-Si-B-P-Cu powder was sintered with Fe55C10B5P10Ni15Mo5 metallic glass (MG) powder in its supercooled liquid state by spark plasma sintering. The sintered cores are made from the nanocrystalline powder particles of Fe-Si-B-P-Cu alloy, which are separated through a magnetic Fe55C10B5P10Ni15Mo5 MG alloy. Low W of ˜ 2.2 W/kg (at 1T and 50 Hz), and high fracture strength (yielding stress ˜500 MPa), which is an order of magnitude higher than the conventional powder cores, were obtained. Stronger metal-metal bonding and magnetic nature of MG binder (which is very different than the conventional polymer based binders) are responsible for the superior mechanical and magnetic properties. The MG binder not only helps in improving the mechanical properties but it also enhances the overall Bs of the core.

  1. Fluid mechanics of additive manufacturing of metal objects by accretion of droplets - a survey

    NASA Astrophysics Data System (ADS)

    Tesař, Václav

    2016-03-01

    Paper presents a survey of principles of additive manufacturing of metal objects by accretion of molten metal droplets, focusing on fluid-mechanical problems that deserve being investigated. The main problem is slowness of manufacturing due to necessarily small size of added droplets. Increase of droplet repetition rate calls for basic research of the phenomena that take place inside and around the droplets: ballistics of their flight, internal flowfield with heat and mass transfer, oscillation of surfaces, and the ways to elimination of satellite droplets.

  2. Novel Structured Metal Bipolar Plates for Low Cost Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Conghua

    2013-08-15

    Bipolar plates are an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume, and 20% of the stack cost. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is to protect metal plate from corrosion at low cost for the broad commercial applications. While most of today’s PEM fuel cell metallic bipolar plate technologies use some precious metal, the focus of this SBIR project is to develop a low cost, novel nano-structured metal bipolar plate technology without using any preciousmore » metal. The technology will meet the performance and cost requirements for automobile applications. Through the Phase I project, TreadStone has identified the corrosion resistant and electrically conductive titanium oxide for the metal bipolar plate surface protection for automotive PEM fuel cell applications. TreadStone has overcome the manufacturing issues to apply the coating on metal substrate surface, and has demonstrated the feasibility of the coated stainless steel plates by ex-situ evaluation tests and the in-situ fuel cell long term durability test. The test results show the feasibility of the proposed nano-structured coating as the low cost metal bipolar plates of PEM fuel cells. The plan for further technology optimization is also outlined for the Phase II project.« less

  3. Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    PubMed Central

    Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.

    2013-01-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics. PMID:23884324

  4. Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    NASA Astrophysics Data System (ADS)

    Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.

    2013-07-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics.

  5. Ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon.

    PubMed

    Lang, S B; Tofail, S A M; Kholkin, A L; Wojtaś, M; Gregor, M; Gandhi, A A; Wang, Y; Bauer, S; Krause, M; Plecenik, A

    2013-01-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone--a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics.

  6. The association of occupational metals exposure and oxidative damage, telomere shortening in fitness equipments manufacturing workers

    PubMed Central

    KO, Jiunn-Liang; CHENG, Yu-Jung; LIU, Guan-Cen; HSIN, I-Lun; CHEN, Hsiu-Ling

    2017-01-01

    The welding is the major working process in fitness equipment manufacturing industry, and International Agency for Research on Cancer has classified welding fumes as possibly carcinogenic to humans (Group 2B). The present study aimed to evaluate associations between the occupational exposure of metals and oxidative damage and telomere length shortening in workers involved in the manufacture of fitness equipment. The blood metal concentrations were monitored and malondialdehyde (MDA), alkaline Comet assay was determined as oxidative damage in 117 workers from two representative fitness equipment manufacturing plants. MDA levels varied according to workers’ roles at the manufacturing plants, and showed a trend as cutting>painting>welding>administration workers. Welders had marginally shorter average telomere lengths than the administrative workers (p=0.058). Cr and Mn levels were significantly greater in welders than they were in administrative workers. There were significantly positive correlations between MDA and Cr and Mn levels, the major components of welding fume. However, the association would be eliminated if co-metals exposure were considered simultaneously. In future, telomere length and MDA might be potential biomarkers for predicting cardiovascular disease in co-metals exposed workers. PMID:28420806

  7. Ultrasonic Emission from Nanocrystalline Porous Silicon

    NASA Astrophysics Data System (ADS)

    Shinoda, Hiroyuki; Koshida, Nobuyoshi

    A simple layer structure composed of a metal thin film and a porous silicon layer on a silicon substrate generates intense and wide-band airborne ultrasounds. The large-bandwidth and the fidelity of the sound reproduction are leveraged in applications varying from sound-based measurement to a scientific study of animal ecology. This chapter describes the basic principle of the ultrasound generation. The macroscopic properties of the low thermal conductivity and the small heat capacity of nanocrystalline porous silicon thermally induce ultrasonic emission. The state-of-the-art of the achievable sound pressure and sound signal properties is introduced, with the technological and scientific applications of the devices.

  8. Mechanical properties of sheet metal components with local reinforcement produced by additive manufacturing

    NASA Astrophysics Data System (ADS)

    Ünsal, Ismail; Hama-Saleh, R.; Sviridov, Alexander; Bambach, Markus; Weisheit, A.; Schleifenbaum, J. H.

    2018-05-01

    New technological challenges like electro-mobility pose an increasing demand for cost-efficient processes for the production of product variants. This demand opens the possibility to combine established die-based manufacturing methods and innovative, dieless technologies like additive manufacturing [1, 2]. In this context, additive manufacturing technologies allow for the weight-efficient local reinforcement of parts before and after forming, enabling manufacturers to produce product variants from series parts [3]. Previous work by the authors shows that the optimal shape of the reinforcing structure can be determined using sizing optimization. Sheet metal parts can then be reinforced using laser metal deposition. The material used is a pearlite-reduced, micro-alloyed steel (ZE 630). The aim of this paper is to determine the effect of the additive manufacturing process on the material behavior and the mechanical properties of the base material and the resulting composite material. The parameters of the AM process are optimized to reach similar material properties in the base material and the build-up volume. A metallographic analysis of the parts is presented, where the additive layers, the base material and also the bonding between the additive layers and the base material are analyzed. The paper shows the feasibility of the approach and details the resulting mechanical properties and performance.

  9. Probing nanocrystalline grain dynamics in nanodevices

    PubMed Central

    Yeh, Sheng-Shiuan; Chang, Wen-Yao; Lin, Juhn-Jong

    2017-01-01

    Dynamical structural defects exist naturally in a wide variety of solids. They fluctuate temporally and hence can deteriorate the performance of many electronic devices. Thus far, the entities of these dynamic objects have been identified to be individual atoms. On the other hand, it is a long-standing question whether a nanocrystalline grain constituted of a large number of atoms can switch, as a whole, reversibly like a dynamical atomic defect (that is, a two-level system). This is an emergent issue considering the current development of nanodevices with ultralow electrical noise, qubits with long quantum coherence time, and nanoelectromechanical system sensors with ultrahigh resolution. We demonstrate experimental observations of dynamic nanocrystalline grains that repeatedly switch between two or more metastable coordinate states. We study temporal resistance fluctuations in thin ruthenium dioxide (RuO2) metal nanowires and extract microscopic parameters, including relaxation time scales, mobile grain sizes, and the bonding strengths of nanograin boundaries. These material parameters are not obtainable by other experimental approaches. When combined with previous in situ high-resolution transmission electron microscopy, our electrical method can be used to infer rich information about the structural dynamics of a wide variety of nanodevices and new two-dimensional materials. PMID:28691094

  10. Additive Manufacturing of Metal Structures at the Micrometer Scale.

    PubMed

    Hirt, Luca; Reiser, Alain; Spolenak, Ralph; Zambelli, Tomaso

    2017-05-01

    Currently, the focus of additive manufacturing (AM) is shifting from simple prototyping to actual production. One driving factor of this process is the ability of AM to build geometries that are not accessible by subtractive fabrication techniques. While these techniques often call for a geometry that is easiest to manufacture, AM enables the geometry required for best performance to be built by freeing the design process from restrictions imposed by traditional machining. At the micrometer scale, the design limitations of standard fabrication techniques are even more severe. Microscale AM thus holds great potential, as confirmed by the rapid success of commercial micro-stereolithography tools as an enabling technology for a broad range of scientific applications. For metals, however, there is still no established AM solution at small scales. To tackle the limited resolution of standard metal AM methods (a few tens of micrometers at best), various new techniques aimed at the micrometer scale and below are presently under development. Here, we review these recent efforts. Specifically, we feature the techniques of direct ink writing, electrohydrodynamic printing, laser-assisted electrophoretic deposition, laser-induced forward transfer, local electroplating methods, laser-induced photoreduction and focused electron or ion beam induced deposition. Although these methods have proven to facilitate the AM of metals with feature sizes in the range of 0.1-10 µm, they are still in a prototype stage and their potential is not fully explored yet. For instance, comprehensive studies of material availability and material properties are often lacking, yet compulsory for actual applications. We address these items while critically discussing and comparing the potential of current microscale metal AM techniques. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Acanthite–argentite transformation in nanocrystalline silver sulfide and the Ag{sub 2}S/Ag nanoheterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusev, A. I., E-mail: gusev@ihim.uran.ru; Sadovnikov, S. I.

    Nanocrystalline acanthite-structured silver sulfide of the monoclinic structure and a Ag{sub 2}S/Ag nanoheterostructure are produced. The high-temperature X-ray diffraction technique is applied to the in situ study of the (acanthite α-Ag{sub 2}S)–(argentite β-Ag{sub 2}S) phase transformation in nanocrystalline silver sulfide. The crystal structure of argentite is refined, and it is found that the content of vacant sites in the metal sublattice of argentite exceeds 92%. A model of a resistive switch, whose operation is based on the reversible acanthite–argentite transformation in a Ag{sub 2}S/Ag heterostructure, is considered.

  12. Comparative study of material loss at the taper interface in retrieved metal-on-polyethylene and metal-on-metal femoral components from a single manufacturer.

    PubMed

    Bills, Paul; Racasan, Radu; Bhattacharya, Saugatta; Blunt, Liam; Isaac, Graham

    2017-08-01

    There have been a number of reports on the occurrence of taper corrosion and/or fretting and some have speculated on a link to the occurrence of adverse local tissue reaction specifically in relation to total hip replacement which have a metal-on-metal bearing. As such a study was carried out to compare the magnitude of material loss at the taper in a series of retrieved femoral heads used in metal-on-polyethylene bearings with that in a series of retrieved heads used in metal-on-metal bearings. A total of 36 metal-on-polyethylene and 21 metal-on-metal femoral components were included in the study all of which were received from a customer complaint database. Furthermore, a total of nine as-manufactured femoral components were included to provide a baseline for characterisation. All taper surfaces were assessed using an established corrosion scoring method and measurements were taken of the female taper surface using a contact profilometry. In the case of metal-on-metal components, the bearing wear was also assessed using coordinate metrology to determine whether or not there was a relationship between bearing and taper material loss in these cases. The study found that in this cohort the median value of metal-on-polyethylene taper loss was 1.25 mm 3 with the consequent median value for metal-on-metal taper loss being 1.75 mm 3 . This study also suggests that manufacturing form can result in an apparent loss of material from the taper surface determined to have a median value of 0.59 mm 3 . Therefore, it is clear that form variability is a significant confounding factor in the measurement of material loss from the tapers of femoral heads retrieved following revision surgery.

  13. Manufacturing and Application of Metalized Ore-Coal Pellets in Synthetic Pig Iron Smelting

    NASA Astrophysics Data System (ADS)

    Nokhrina, O. I.; Rozhikhina, I. D.; Khodosov, I. E.

    2016-08-01

    The article presents research data on manufacturing and application of metalized ore-coal pellets in synthetic pig iron smelting. A technology of pellets metallization by means of solid-phase reduction of iron from oxides using hematite-magnetite iron ore and low-caking coal as raw materials is described. Industrial testing of replacing 10, 15, and 20% of waste metal by the metalized ore-coal pellets in the coreless induction furnace IST-1 is described. Optimal temperature and time conditions of feeding the metalized pellets into the furnace in smelting pig iron of SCh-40-60 grade are determined.

  14. Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo

    DOE PAGES

    Rodgers, Theron M.; Madison, Jonathan D.; Tikare, Veena

    2017-04-19

    Additive manufacturing (AM) is of tremendous interest given its ability to realize complex, non-traditional geometries in engineered structural materials. But, microstructures generated from AM processes can be equally, if not more, complex than their conventionally processed counterparts. While some microstructural features observed in AM may also occur in more traditional solidification processes, the introduction of spatially and temporally mobile heat sources can result in significant microstructural heterogeneity. While grain size and shape in metal AM structures are understood to be highly dependent on both local and global temperature profiles, the exact form of this relation is not well understood. Wemore » implement an idealized molten zone and temperature-dependent grain boundary mobility in a kinetic Monte Carlo model to predict three-dimensional grain structure in additively manufactured metals. In order to demonstrate the flexibility of the model, synthetic microstructures are generated under conditions mimicking relatively diverse experimental results present in the literature. Simulated microstructures are then qualitatively and quantitatively compared to their experimental complements and are shown to be in good agreement.« less

  15. A Novel Method for Fabricating Additive Manufactured Lightweight, Optical Quality Metallic Mirrors

    DTIC Science & Technology

    2016-01-04

    lighter  mirrors  can  lead to great reductions of mass in full systems [3,4].    The state of the art in this industry is ULE™,  Zerodur ™, or beryllium...1    A Novel Method for Fabricating Additive Manufactured  Lightweight, Optical Quality Metallic  Mirrors   Michael Stern, Joseph Bari  Distribution A...metallic  mirrors  fabricated by growing an additive manufactured blank, post  processing the faces, coating with electroless nickel, and diamond turning

  16. A reliable method of manufacturing metallic hierarchical superhydrophobic surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogreb, Roman; Whyman, Gene; Barayev, Reuven

    2009-06-01

    A method of manufacturing hierarchical metallic surfaces demonstrating superhydrophobic properties is presented. The surfaces showed apparent contact angles as high as 153 deg. and sliding angles of 10 deg. for 50-100 {mu}l droplets. The Cassie-like model [A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546 (1944)], considering the hierarchical topography of the relief, predicts apparent contact angles in a satisfactory agreement with the measured values.

  17. Metal oxide nanostructures for gas detection

    NASA Astrophysics Data System (ADS)

    Maziarz, Wojciech; Pisarkiewicz, Tadeusz; Rydosz, Artur; Wysocka, Kinga; Czyrnek, Grzegorz

    2013-07-01

    Currently, most of gas sensors on the market are produced in thin or thick film technologies with the use of ceramic substrates. It is expected that the miniature sensors needed in portable applications will be based on one-dimensional structures due to their low power consumption, fast and stable time response, small dimensions and possibility of embedding in integrated circuit together with signal conditioning electronics. The authors manufactured resistance type gas sensors based on ZnO and WO3 nanostructures. ZnO:Al nanorods with good cristallinity were obtained with electrodeposition method, while ZnO:Al nanofibres with varying diameters were obtained by electrospinning method. The sensors were built as a nanowire network. WO3 films with nanocrystalline surface were manufactured by deposition of a three layer WO3/W/WO3 structure by RF sputtering and successive annealing of the structure in appropriate temperature range. In effect a uniform nanostructurized metal oxide layer was formed. Investigation of sensors characteristics revealed good sensitivity to nitrogen dioxide at temperatures lower than these for conventional conductometric type sensors.

  18. TSCA Chemical Data Reporting Fact Sheet: Reporting Manufactured Chemical Substances from Metal Mining and Related Activities

    EPA Pesticide Factsheets

    This fact sheet provides guidance on the Chemical Data Reporting (CDR) rule requirements related to the reporting of mined metals, intermediates, and byproducts manufactured during metal mining and related activities.

  19. Production of hydrogen using nanocrystalline protein-templated catalysts on m13 phage.

    PubMed

    Neltner, Brian; Peddie, Brian; Xu, Alex; Doenlen, William; Durand, Keith; Yun, Dong Soo; Speakman, Scott; Peterson, Andrew; Belcher, Angela

    2010-06-22

    For decades, ethanol has been in use as a fuel for the storage of solar energy in an energy-dense, liquid form. Over the past decade, the ability to reform ethanol into hydrogen gas suitable for a fuel cell has drawn interest as a way to increase the efficiency of both vehicles and stand-alone power generators. Here we report the use of extremely small nanocrystalline materials to enhance the performance of 1% Rh/10% Ni@CeO(2) catalysts in the oxidative steam reforming of ethanol with a ratio of 1.7:1:10:11 (air/EtOH/water/argon) into hydrogen gas, achieving 100% conversion of ethanol at only 300 degrees C with 60% H(2) in the product stream and less than 0.5% CO. Additionally, nanocrystalline 10% Ni@CeO(2) was shown to achieve 100% conversion of ethanol at 400 degrees C with 73% H(2), 2% CO, and 2% CH(4) in the product stream. Finally, we demonstrate the use of biological templating on M13 to improve the resistance of this catalyst to deactivation over 52 h tests at high flow rates (120 000 h(-1) GHSV) at 450 degrees C. This study suggests that the use of highly nanocrystalline, biotemplated catalysts to improve activity and stability is a promising route to significant gains over traditional catalyst manufacture methods.

  20. Electric field-assisted sintering of nanocrystalline hydroxyapatite for biomedical applications

    NASA Astrophysics Data System (ADS)

    Tran, Tien Bich

    As the main inorganic component of bone, hydroxyapatite (HA, Ca 10(PO4)6(OH)2) should be an ideal candidate in biomaterials selection. When grain sizes are in the nanometric regime, protein adsorption and cell adhesion are enhanced, while strength, hardness, and wear resistance are improved. Unfortunately, low phase stability, poor sinterability, and a tendency towards exaggerated grain coarsening challenge full densification of nanocrystalline hydroxyapatite by conventional sintering methods. The field-assisted sintering technique (FAST) has successfully consolidated a variety of nanocrystalline metals and ceramics in dramatically reduced times. The sintering enhancements observed during FAST can be attributed to thermal and athermal effects. The rapid heating rates (up to ˜1000ºC/min) afforded by FAST contribute a significant thermal effect. Since fast heating rates reduce powder exposure to sub-sintering temperatures, non-densifying surface diffusion is limited. The athermal effects of FAST are less well understood and can include plasma generation, dielectric breakdown, particle surface cleaning, grain boundary pinning, and space charge effects. Applying the field-assisted sintering technique to nanocrystalline hydroxyapatite yielded surprising results. Deviations from conventional densification behavior were observed, with dehydroxylation identified as the most deleterious process to densification as well as mechanical and biological performance. Since hydroxyapatite is not a stable phase at high temperatures and low water partial pressure atmospheres, desintering due to dehydroxylation-related pore formation became apparent during Stage III sintering. In fact, the degree of desintering and pore formation increased with the extent of Stage III sintering and grain growth. The atomic rearrangements taking place during grain boundary migration are believed to favor the formation of more-stable oxyapatite through hydroxyapatite dehydroxylation. This behavior was

  1. Alkali-metal silicate binders and methods of manufacture

    NASA Technical Reports Server (NTRS)

    Schutt, J. B. (Inventor)

    1979-01-01

    A paint binder is described which uses a potassium or sodium silicate dispersion having a silicon dioxide to alkali-metal oxide mol ratio of from 4.8:1 to 6.0:1. The binder exhibits stability during both manufacture and storage. The process of making the binder is predictable and repeatable and the binder may be made with inexpensive components. The high mol ratio is achieved with the inclusion of a silicon dioxide hydrogel. The binder, which also employs a silicone, is in the final form of a hydrogel sol.

  2. Comparison of high pressure homogenization and stirred bead milling for the production of nano-crystalline suspensions.

    PubMed

    Nakach, Mostafa; Authelin, Jean-René; Perrin, Marc-Antoine; Lakkireddy, Harivardhan Reddy

    2018-05-19

    Currently, the two technologies primarily used for the manufacturing of nano-crystalline suspensions using top down process (i.e. wet milling) are high pressure homogenization (HPH) and stirred bead milling (SBM). These two technologies are based upon different mechanisms, i.e., cavitation forces for HPH and shear forces for stirred bead milling. In this article, the HPH and SBM technologies are compared in terms of the impact of the suspension composition the process parameters and the technological configuration on milling performances and physical quality of the suspensions produced. The data suggested that both HPH and SBM are suitable for producing nano-crystalline suspensions, although SBM appeared more efficient than HPH, since the limit of milling (d 50 ) for SBM was found to be lower than that obtained with HPH (100 nm vs 200 nm). For both these technologies, regardless of the process parameters used for milling and the scale of manufacturing, the relationship of d 90 versus d 50 could be described by a unique master curve (technology signature of milling pathway) outlining that the HPH leads to more uniform particle size distribution as compared to SBM. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review.

    PubMed

    Wang, Xiaojian; Xu, Shanqing; Zhou, Shiwei; Xu, Wei; Leary, Martin; Choong, Peter; Qian, M; Brandt, Milan; Xie, Yi Min

    2016-03-01

    One of the critical issues in orthopaedic regenerative medicine is the design of bone scaffolds and implants that replicate the biomechanical properties of the host bones. Porous metals have found themselves to be suitable candidates for repairing or replacing the damaged bones since their stiffness and porosity can be adjusted on demands. Another advantage of porous metals lies in their open space for the in-growth of bone tissue, hence accelerating the osseointegration process. The fabrication of porous metals has been extensively explored over decades, however only limited controls over the internal architecture can be achieved by the conventional processes. Recent advances in additive manufacturing have provided unprecedented opportunities for producing complex structures to meet the increasing demands for implants with customized mechanical performance. At the same time, topology optimization techniques have been developed to enable the internal architecture of porous metals to be designed to achieve specified mechanical properties at will. Thus implants designed via the topology optimization approach and produced by additive manufacturing are of great interest. This paper reviews the state-of-the-art of topological design and manufacturing processes of various types of porous metals, in particular for titanium alloys, biodegradable metals and shape memory alloys. This review also identifies the limitations of current techniques and addresses the directions for future investigations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom

    DOEpatents

    Gupta, Sandhya; Tuttle, Gary L.; Sigalas, Mihail; McCalmont, Jonathan S.; Ho, Kai-Ming

    2001-08-14

    A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

  5. Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates

    NASA Astrophysics Data System (ADS)

    Dur, Ender; Cora, Ömer Necati; Koç, Muammer

    2014-01-01

    Metallic bipolar plate (BPP) with high corrosion and low contact resistance, durability, strength, low cost, volume, and weight requirements is one of the critical parts of the PEMFC. This study is dedicated to understand the effect of the process sequence (manufacturing then coating vs. coating then manufacturing) on the corrosion resistance of coated metallic bipolar plates. To this goal, three different PVD coatings (titanium nitride (TiN), chromium nitride (CrN), zirconium nitride (ZrN)), with three thicknesses, (0.1, 0.5, 1 μm) were applied on BPPs made of 316L stainless steel alloy before and after two types of manufacturing (i.e., stamping or hydroforming). Corrosion test results indicated that ZrN coating exhibited the best corrosion protection while the performance of TiN coating was the lowest among the tested coatings and thicknesses. For most of the cases tested, in which coating was applied before manufacturing, occurrence of corrosion was found to be more profound than the case where coating was applied after manufacturing. Increasing the coating thickness was found to improve the corrosion resistance. It was also revealed that hydroformed BPPs performed slightly better than stamped BPPs in terms of the corrosion behavior.

  6. A Method for Fabricating Additive Manufactured Lightweight Metallic Mirrors

    DTIC Science & Technology

    2015-06-14

    systems [3, 4].    The state of the art in this industry is the ULE™,  Zerodur ™, or beryllium isogrid  mirrors .  The isogrid design is a standard in...1    A Method for Fabricating Additive Manufactured Lightweight  Metallic  Mirrors   Michael Stern, Joseph Bari  This work  is  sponsored  by  the...methods for fabricating  low‐weight optics are in use today. We present a novel methodology for generating lightweight  metallic  mirrors  fabricated by

  7. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength.

    PubMed

    Ekren, Orhun; Ozkomur, Ahmet; Ucar, Yurdanur

    2018-03-01

    Direct metal laser sintering (DMLS) and direct metal laser melting (DMLM) have become popular for fabricating the metal frameworks of metal-ceramic restorations. How the type of layered manufacturing device, layer thickness, and alloy powder may affect the bond strength of ceramic to metal substructure is unclear. The purpose of this in vitro study was to evaluate the bond strength of dental porcelain to metal frameworks fabricated using different layered manufacturing techniques (DMLS and DMLM), Co-Cr alloy powders, and layer thicknesses and to evaluate whether a correlation exists between the bond strength and the number of ceramic remnants on the metal surface. A total of 75 bar-shaped metal specimens (n=15) were fabricated using either DMLS or DMLM. The powder alloys used were Keramit NP-S and EOS-Cobalt-Chrome SP-2 with layer thicknesses of 20 μm and 30 μm. After ceramic application, the metal-ceramic bond strength was evaluated with a 3-point-bend test. Three-way ANOVA followed by the Tukey honest significance difference test were used for statistical analysis (α=.05). De-bonding surface microstructure was observed with scanning electron microscopy. Energy dispersive spectroscopy analysis was conducted to evaluate the correlation between ceramic remnants on the metal surface and bond strength values. The mean bond strength value of DMLS was significantly higher than that of DMLM. While no statistically significant difference was found between layer thicknesses, alloy powders closely affected bond strength. Statistical comparisons revealed that the highest bond strength could be achieved with DMLS-Cobalt-Chrome SP2-20μm, and the lowest bond strength was observed in DMLS-Keramit NP-S-20μm (P≤.05). No correlation was found between porcelain remnants on the metal surface and bond strength values. The layered manufacturing device and the alloy powders evaluated in the current study closely affected the bond strength of dental porcelain to a metal framework

  8. Cavity evolution at grain boundaries as a function of radiation damage and thermal conditions in nanocrystalline nickel

    DOE PAGES

    Muntifering, Brittany; Blair, Sarah Jane; Gong, Cajer; ...

    2015-12-30

    Enhanced radiation tolerance of nanostructured metals is attributed to the high density of interfaces that can absorb radiation-induced defects. Here, cavity evolution mechanisms during cascade damage, helium implantation, and annealing of nanocrystalline nickel are characterized via in situ transmission electron microscopy (TEM). Films subjected to self-ion irradiation followed by helium implantation developed evenly distributed cavity structures, whereas films exposed in the reversed order developed cavities preferentially distributed along grain boundaries. Post-irradiation annealing and orientation mapping demonstrated uniform cavity growth in the nanocrystalline structure, and cavities spanning multiple grains. Furthermore, these mechanisms suggest limited ability to reduce swelling, despite the stabilitymore » of the nanostructure.« less

  9. Synthesis, characterization, and photocatalytic properties of nanocrystalline NZO thin films

    NASA Astrophysics Data System (ADS)

    Aryanto, D.; Hastuti, E.; Husniya, N.; Sudiro, T.; Nuryadin, B. W.

    2018-03-01

    Nanocrystalline Ni-doped ZnO (NZO) thin films were synthesized on glass substrate using sol-gel spin coating methods. The effect of annealing on the structural and optical properties of nanocrystalline thin film was studied using X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), UV-VIS spectrophotometry, and photoluminescence (PL). The results showed that the annealing temperature strongly influenced the physical properties of nanocrystalline NZO thin films. The photocatalytic properties of nanocrystalline NZO thin films were evaluated using an aqueous solution of Rhodamine-B. The photocatalytic activity of nanocrystalline NZO thin films increased with the increase of annealing temperature. The results indicated that the structure, morphology, and band gap energy of nanocrystalline NZO thin films played an important role in photocatalytic activity.

  10. Nanocrystalline SnO2 formation by oxygen ion implantation in tin thin films

    NASA Astrophysics Data System (ADS)

    Kondkar, Vidya; Rukade, Deepti; Kanjilal, Dinakar; Bhattacharyya, Varsha

    2018-03-01

    Metallic tin thin films of thickness 100 nm are deposited on fused silica substrates by thermal evaporation technique. These films are implanted with 45 keV oxygen ions at fluences ranging from 5 × 1015 to 5 × 1016 ions cm-2. The energy of the oxygen ions is calculated using SRIM in order to form embedded phases at the film-substrate interface. Post-implantation, films are annealed using a tube furnace for nanocrystalline tin oxide formation. These films are characterized using x-ray diffraction, Raman spectroscopy, UV-vis spectroscopy and photoluminescence spectroscopy. XRD and Raman spectroscopy studies reveal the formation of single rutile phase of SnO2. The size of the nanocrystallites formed decreases with an increase in the ion fluence. The nanocrystalline SnO2 formation is also confirmed by UV-vis and photoluminescence spectroscopy.

  11. Water as probe molecule for midgap states in nanocrystalline strontium titanate by conventional and synchronous luminescence spectroscopy under ambient conditions

    NASA Astrophysics Data System (ADS)

    Taylor, Sean; Samokhvalov, Alexander

    2017-03-01

    Alkaline earth metal titanates are broad bandgap semiconductors with applications in electronic devices, as catalysts, photocatalysts, sorbents, and sensors. Strontium titanate SrTiO3 is of interest in electronic devices, sensors, in the photocatalytic hydrogen generation, as catalyst and sorbent. Both photocatalysis and operation of electronic devices rely upon the pathways of relaxation of excited charge in the semiconductor, including relaxation through the midgap states. We report characterization of nanocrystalline SrTiO3 at room temperature by "conventional" vs. synchronous luminescence spectroscopy and complementary methods. We determined energies of radiative transitions in the visible range through the two midgap states in the nanocrystalline SrTiO3. Further, adsorption and desorption of vapor of water as "probe molecule" for midgap states in the nanocrystalline SrTiO3 was studied, for the first time, by luminescence spectroscopy under ambient conditions. Emission of visible light from the nanocrystalline SrTiO3 is significantly increased upon desorption of water and decreased (quenched) upon adsorption of water vapor, due to interactions with the surface midgap states.

  12. Evaluation of Additively Manufactured Metals for Use in Oxygen Systems Project

    NASA Technical Reports Server (NTRS)

    Tylka, Jonathan; Cooper, Ken; Peralta, Stephen; Wilcutt, Terrence; Hughitt, Brian; Generazio, Edward

    2016-01-01

    Space Launch System, Commercial Resupply, and Commercial Crew programs have published intent to use additively manufactured (AM) components in propulsion systems and are likely to include various life support systems in the future. Parts produced by these types of additive manufacturing techniques have not been fully evaluated for use in oxygen systems and the inherent risks have not been fully identified. Some areas of primary concern in the SLS process with respect to oxygen compatibility may be the porosity of the printed parts, fundamental differences in microstructure of an AM part as compared to traditional materials, or increased risk of shed metal particulate into an oxygen system. If an ignition were to occur the printed material could be more flammable than components manufactured from a traditional billet of raw material and/or present a significant hazards if not identified and rigorously studied in advance of implementation into an oxygen system.

  13. Manufacturing and Machining Challenges of Hybrid Aluminium Metal Matix Composites

    NASA Astrophysics Data System (ADS)

    Baburaja, Kammuluri; Sainadh Teja, S.; Karthik Sri, D.; Kuldeep, J.; Gowtham, V.

    2017-08-01

    Manufacturing which involves material removal processes or material addition processes or material transformation processes. One or all the processes to obtain the final desired properties for a material with desired shape which meets the required precision and accuracy values for the expected service life of a material in working conditions. Researchers found the utility of aluminium to be the second largest after steel. Aluminium and its metal matrix composite possess wide applications in various applications in aerospace industry, automobile industry, Constructions and even in kitchen utensils. Hybrid Al-MMCconsist of two different materials, and one will be from organic origin along with the base material. In this paper an attempt is made to bring out the importance of utilization of aluminium and the challenges concerned in manufacturing and machining of hybrid aluminium MMC.

  14. Method of making nanocrystalline alpha alumina

    DOEpatents

    Siegel, Richard W.; Hahn, Horst; Eastman, Jeffrey A.

    1992-01-01

    Method of making selected phases of nanocrystalline ceramic materials. Various methods of controlling the production of nanocrystalline alpha alumina and titanium oxygen phases are described. Control of the gas atmosphere and use of particular oxidation treatments give rise to the ability to control the particular phases provided in the aluminum/oxygen and titanium/oxygen system.

  15. Integrating Fiber Optic Strain Sensors into Metal Using Ultrasonic Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Hehr, Adam; Norfolk, Mark; Wenning, Justin; Sheridan, John; Leser, Paul; Leser, Patrick; Newman, John A.

    2018-03-01

    Ultrasonic additive manufacturing, a rather new three-dimensional (3D) printing technology, uses ultrasonic energy to produce metallurgical bonds between layers of metal foils near room temperature. This low temperature attribute of the process enables integration of temperature sensitive components, such as fiber optic strain sensors, directly into metal structures. This may be an enabling technology for Digital Twin applications, i.e., virtual model interaction and feedback with live load data. This study evaluates the consolidation quality, interface robustness, and load sensing limits of commercially available fiber optic strain sensors embedded into aluminum alloy 6061. Lastly, an outlook on the technology and its applications is described.

  16. The Bulk Nanocrystalline zn Produced by Mechanical Attrition

    NASA Astrophysics Data System (ADS)

    Zhu, X. K.; Zhao, K. Y.; Li, C. J.; Tao, J. M.; Chan, T. L.; Koch, C. C.

    The purpose of experiment was to produce bulk nanocrystalline Zn by mechanical attrition. The bulk nanocrystalline Zn produced by mechanical attrition was studied. The microstructural evolution during cryomilling and subsequent room temperature milling was characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). In this paper, Nanocrystalline Zn was produced by insitu consolidation of Zn elemental powder using mechanical attrition at liquid nitrogen and room temperature. For the samples studied, the longest elongation of 65% and highest stress of 200 MPa is obtained in nanocrystalline Zn during tensile testing at the condition of strain rate (10-3 sec-1) and 20°C which is equal to 0.43 Tm (Tm is the melting temperature of pure Zn).

  17. Non-Noble Metal Oxide Catalysts for Methane Catalytic Combustion: Sonochemical Synthesis and Characterisation

    PubMed Central

    Jędrzejczyk, Roman J.; Dziedzicka, Anna; Kuterasiński, Łukasz; Sitarz, Maciej

    2017-01-01

    The aim of this study was to obtain nanocrystalline mixed metal-oxide–ZrO2 catalysts via a sonochemically-induced preparation method. The effect of a stabiliser’s addition on the catalyst parameters was investigated by several characterisation methods including X-ray Diffraction (XRD), nitrogen adsorption, X-ray fluorescence (XRF), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and µRaman. The sonochemical preparation method allowed us to manufacture the catalysts with uniformly dispersed metal-oxide nanoparticles at the support surface. The catalytic activity was tested in a methane combustion reaction. The activity of the catalysts prepared by the sonochemical method was higher than that of the reference catalysts prepared by the incipient wetness method without ultrasonic irradiation. The cobalt and chromium mixed zirconia catalysts revealed their high activities, which are comparable with those presented in the literature. PMID:28686190

  18. Supercapacitors of nanocrystalline metal-organic frameworks.

    PubMed

    Choi, Kyung Min; Jeong, Hyung Mo; Park, Jung Hyo; Zhang, Yue-Biao; Kang, Jeung Ku; Yaghi, Omar M

    2014-07-22

    The high porosity of metal-organic frameworks (MOFs) has been used to achieve exceptional gas adsorptive properties but as yet remains largely unexplored for electrochemical energy storage devices. This study shows that MOFs made as nanocrystals (nMOFs) can be doped with graphene and successfully incorporated into devices to function as supercapacitors. A series of 23 different nMOFs with multiple organic functionalities and metal ions, differing pore sizes and shapes, discrete and infinite metal oxide backbones, large and small nanocrystals, and a variety of structure types have been prepared and examined. Several members of this series give high capacitance; in particular, a zirconium MOF exhibits exceptionally high capacitance. It has the stack and areal capacitance of 0.64 and 5.09 mF cm(-2), about 6 times that of the supercapacitors made from the benchmark commercial activated carbon materials and a performance that is preserved over at least 10000 charge/discharge cycles.

  19. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  20. Thermal desorption spectroscopy of high fluence irradiated ultrafine and nanocrystalline tungsten: helium trapping and desorption correlated with morphology

    NASA Astrophysics Data System (ADS)

    El-Atwani, O.; Taylor, C. N.; Frishkoff, J.; Harlow, W.; Esquivel, E.; Maloy, S. A.; Taheri, M. L.

    2018-01-01

    Microstructural changes due to displacement damage and helium desorption are two phenomena that occur in tungsten plasma facing materials in fusion reactors. Nanocrystalline metals are being investigated as radiation tolerant materials that can mitigate these microstructural changes and better trap helium along their grain boundaries. Here, we investigate the performance of three tungsten grades (nanocrystalline, ultrafine and ITER grade tungsten), exposed to a high fluence of 4 keV helium at both RT and 773 K, during a thermal desorption spectroscopy (TDS) experiment. An investigation of the microstructure in pre-and post-TDS sample sets was performed. The amount of desorbed helium was shown to be highest in the ITER grade tungsten and lowest in the nanocrystalline tungsten. Correlating the desorption spectra and the microstructure (grain boundaries decorated with nanopores and crack formation) and comparing with previous literature on coarse grained tungsten samples at similar irradiation and TDS conditions, revealed the importance of grain boundaries in trapping helium and limiting helium desorption up to a high temperature of 1350 K in agreement with transmission electron microscopy studies on helium irradiated tungsten which showed preferential and large facetted bubble formation along the grain boundaries in the nanocrystalline tungsten grade.

  1. Thermal desorption spectroscopy of high fluence irradiated ultrafine and nanocrystalline tungsten: helium trapping and desorption correlated with morphology

    DOE PAGES

    El-Atwani, Osman; Taylor, Chase N.; Frishkoff, James; ...

    2017-11-09

    Here, microstructural changes due to displacement damage and helium desorption are two phenomena that occur in tungsten plasma facing materials in fusion reactors. Nanocrystalline metals are being investigated as radiation tolerant materials that can mitigate these microstructural changes and better trap helium along their grain boundaries. Here, we investigate the performance of three tungsten grades (nanocrystalline, ultrafine and ITER grade tungsten), exposed to a high fluence of 4 keV helium at both RT and 773 K, during a thermal desorption spectroscopy (TDS) experiment. An investigation of the microstructure in pre-and post-TDS sample sets was performed. The amount of desorbed heliummore » was shown to be highest in the ITER grade tungsten and lowest in the nanocrystalline tungsten. Correlating the desorption spectra and the microstructure (grain boundaries decorated with nanopores and crack formation) and comparing with previous literature on coarse grained tungsten samples at similar irradiation and TDS conditions, revealed the importance of grain boundaries in trapping helium and limiting helium desorption up to a high temperature of 1350 K in agreement with transmission electron microscopy studies on helium irradiated tungsten which showed preferential and large facetted bubble formation along the grain boundaries in the nanocrystalline tungsten grade.« less

  2. Process combinations for the manufacturing of metal-plastic hybrid parts

    NASA Astrophysics Data System (ADS)

    Drossel, W.-G.; Lies, C.; Albert, A.; Haase, R.; Müller, R.; Scholz, P.

    2016-03-01

    The usage of innovative lightweight materials and processing technologies gains importance in manifold industrial scopes. Especially for moving parts and mobility products the weight is decisively. The aerospace and automotive industries use light and high-strength materials to reduce weight and energy consumption and thereby improve the performance of their products. Composites with reinforced plastics are of particular importance. They offer a low density in combination with high specific stiffness and strength. A pure material substitution through reinforced plastics is still not economical. The approach of using hybrid metal-plastic structures with the principle of “using the right material at the right place” is a promising solution for the economical realization of lightweight structures with a high achievement potential. The article shows four innovative manufacturing possibilities for the realization of metal-plastic-hybrid parts.

  3. Systems and Methods for Fabricating Objects Including Amorphous Metal Using Techniques Akin to Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas (Inventor)

    2017-01-01

    Systems and methods in accordance with embodiments of the invention fabricate objects including amorphous metals using techniques akin to additive manufacturing. In one embodiment, a method of fabricating an object that includes an amorphous metal includes: applying a first layer of molten metallic alloy to a surface; cooling the first layer of molten metallic alloy such that it solidifies and thereby forms a first layer including amorphous metal; subsequently applying at least one layer of molten metallic alloy onto a layer including amorphous metal; cooling each subsequently applied layer of molten metallic alloy such that it solidifies and thereby forms a layer including amorphous metal prior to the application of any adjacent layer of molten metallic alloy; where the aggregate of the solidified layers including amorphous metal forms a desired shape in the object to be fabricated; and removing at least the first layer including amorphous metal from the surface.

  4. Grain boundary phase transformations in PtAu and relevance to thermal stabilization of bulk nanocrystalline metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Brien, C. J.; Barr, C. M.; Price, P. M.

    There has recently been a great deal of interest in employing immiscible solutes to stabilize nanocrystalline microstructures. Existing modeling efforts largely rely on mesoscale Monte Carlo approaches that employ a simplified model of the microstructure and result in highly homogeneous segregation to grain boundaries. However, there is ample evidence from experimental and modeling studies that demonstrates segregation to grain boundaries is highly non-uniform and sensitive to boundary character. This work employs a realistic nanocrystalline microstructure with experimentally relevant global solute concentrations to illustrate inhomogeneous boundary segregation. Furthermore, experiments quantifying segregation in thin films are reported that corroborate the prediction thatmore » grain boundary segregation is highly inhomogeneous. In addition to grain boundary structure modifying the degree of segregation, the existence of a phase transformation between low and high solute content grain boundaries is predicted. In order to conduct this study, new embedded atom method interatomic potentials are developed for Pt, Au, and the PtAu binary alloy.« less

  5. Grain boundary phase transformations in PtAu and relevance to thermal stabilization of bulk nanocrystalline metals

    DOE PAGES

    O’Brien, C. J.; Barr, C. M.; Price, P. M.; ...

    2017-10-31

    There has recently been a great deal of interest in employing immiscible solutes to stabilize nanocrystalline microstructures. Existing modeling efforts largely rely on mesoscale Monte Carlo approaches that employ a simplified model of the microstructure and result in highly homogeneous segregation to grain boundaries. However, there is ample evidence from experimental and modeling studies that demonstrates segregation to grain boundaries is highly non-uniform and sensitive to boundary character. This work employs a realistic nanocrystalline microstructure with experimentally relevant global solute concentrations to illustrate inhomogeneous boundary segregation. Furthermore, experiments quantifying segregation in thin films are reported that corroborate the prediction thatmore » grain boundary segregation is highly inhomogeneous. In addition to grain boundary structure modifying the degree of segregation, the existence of a phase transformation between low and high solute content grain boundaries is predicted. In order to conduct this study, new embedded atom method interatomic potentials are developed for Pt, Au, and the PtAu binary alloy.« less

  6. Manufacturing Techniques for Titanium Aluminide Based Alloys and Metal Matrix Composites

    DTIC Science & Technology

    2010-01-01

    aluminides are being used in the low pressure turbine (LPT) blades . In addition, titanium aluminides were also investigated for use in High Speed Civil... Titanium aluminides are also being used in General Electric’s GEnex gas turbine engine for the 6th and the 7th stage of the low pressure turbine blades ...ABSTRACT Title of Dissertation: MANUFACTURING TECHNIQUES FOR TITANIUM ALUMINIDE BASED ALLOYS AND METAL MATRIX COMPOSITES

  7. Preparation of high-quality ultrathin transmission electron microscopy specimens of a nanocrystalline metallic powder.

    PubMed

    Riedl, Thomas; Gemming, Thomas; Mickel, Christine; Eymann, Konrad; Kirchner, Alexander; Kieback, Bernd

    2012-06-01

    This article explores the achievable transmission electron microscopy specimen thickness and quality by using three different preparation methods in the case of a high-strength nanocrystalline Cu-Nb powder alloy. Low specimen thickness is essential for spatially resolved analyses of the grains in nanocrystalline materials. We have found that single-sided as well as double-sided low-angle Ar ion milling of the Cu-Nb powders embedded into epoxy resin produced wedge-shaped particles of very low thickness (<10 nm) near the edge. By means of a modified focused ion beam lift-out technique generating holes in the lamella interior large micrometer-sized electron-transparent regions were obtained. However, this lamella displayed a higher thickness at the rim of ≥30 nm. Limiting factors for the observed thicknesses are discussed including ion damage depths, backscattering, and surface roughness, which depend on ion type, energy, current density, and specimen motion. Finally, sections cut by ultramicrotomy at low stroke rate and low set thickness offered vast, several tens of square micrometers uniformly thin regions of ∼10-nm minimum thickness. As major drawbacks, we have detected a thin coating on the sections consisting of epoxy deployed as the embedding material and considerable nanoscale thickness variations. Copyright © 2011 Wiley Periodicals, Inc.

  8. Quasi-static strength and fractography analysis of two dental implants manufactured by direct metal laser sintering.

    PubMed

    Gehrke, Sergio Alexandre; Pérez-Díaz, Leticia; Dedavid, Berenice Anina

    2018-06-01

    New manufacturing methods was developed to improve the tissues integration with the titanium alloy pieces. The present in vitro study was to assess the resistance and fracture mode after applied a quasi-static compressive force on the two dental implants manufactured by direct metal laser sintering. Twenty dental implants manufactured by direct metal laser sintering, using titanium alloy (Ti-6Al-4V) granules in two designs (n = 10 per group): Conventional dental implant (group Imp1) two-piece implant design, where the surgical implant and prosthetic abutment are two separate components and, the one-piece implant (group Imp2), where the surgical implant and prosthetic abutment are one integral piece. All samples were subjected to quasi-static loading at a 30° angle to the implant axis in a universal testing machine. The mean fracture strengths were 1269.2 ± 128.8 N for the group Imp1 and, 1259.5 ± 115.1 N for the group Imp2, without statistical differences (P = .8722). In both groups, the fracture surface does not present crack between the compact core and the superficial (less dense and porous) part of the implants. Based on the measured resistance data for the two implant models manufactured by direct metal laser sintering tested in the present study, we can suggest that they have adequate capacity to withstand the masticatory loads. © 2018 Wiley Periodicals, Inc.

  9. Lead detection using micro/nanocrystalline boron-doped diamond by square-wave anodic stripping voltammetry.

    PubMed

    Arantes, Tatiane M; Sardinha, André; Baldan, Mauricio R; Cristovan, Fernando H; Ferreira, Neidenei G

    2014-10-01

    Monitoring heavy metal ion levels in water is essential for human health and safety. Electroanalytical techniques have presented important features to detect toxic trace heavy metals in the environment due to their high sensitivity associated with their easy operational procedures. Square-wave voltammetry is a powerful electrochemical technique that may be applied to both electrokinetic and analytical measurements, and the analysis of the characteristic parameters of this technique also enables the mechanism and kinetic evaluation of the electrochemical process under study. In this work, we present a complete optimized study on the heavy metal detection using diamond electrodes. It was analyzed the influence of the morphology characteristics as well as the doping level on micro/nanocrystalline boron-doped diamond films by means of square-wave anodic stripping voltammetry (SWASV) technique. The SWASV parameters were optimized for all films, considering that their kinetic response is dependent on the morphology and/or doping level. The films presented reversible results for the Lead [Pb (II)] system studied. The Pb (II) analysis was performed in ammonium acetate buffer at pH 4.5, varying the lead concentration in the range from 1 to 10 μg L(-1). The analytical responses were obtained for the four electrodes. However, the best low limit detection and reproducibility was found for boron doped nanocrystalline diamond electrodes (BDND) doped with 2000 mg L(-1) in B/C ratio. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. 3D Metal Printing - Additive Manufacturing Technologies for Frameworks of Implant-Borne Fixed Dental Prosthesis.

    PubMed

    Revilla León, M; Klemm, I M; García-Arranz, J; Özcan, M

    2017-09-01

    An edentulous patient was rehabilitated with maxillary metal-ceramic and mandibular metal-resin implant-supported fixed dental prosthesis (FDP). Metal frameworks of the FDPs were fabricated using 3D additive manufacturing technologies utilizing selective laser melting (SLM) and electron beam melting (EBM) processes. Both SLM and EBM technologies were employed in combination with computer numerical control (CNC) post-machining at the implant interface. This report highlights the technical and clinical protocol for fabrication of FDPs using SLM and EBM additive technologies. Copyright© 2017 Dennis Barber Ltd.

  11. Effects of Computer-Aided Manufacturing Technology on Precision of Clinical Metal-Free Restorations.

    PubMed

    Lee, Ki-Hong; Yeo, In-Sung; Wu, Benjamin M; Yang, Jae-Ho; Han, Jung-Suk; Kim, Sung-Hun; Yi, Yang-Jin; Kwon, Taek-Ka

    2015-01-01

    The purpose of this study was to investigate the marginal fit of metal-free crowns made by three different computer-aided design/computer-aided manufacturing (CAD/CAM) systems. The maxillary left first premolar of a dentiform was prepared for all-ceramic crown restoration. Thirty all-ceramic premolar crowns were made, ten each manufactured by the Lava system, Cercon, and Cerec. Ten metal ceramic gold (MCG) crowns served as control. The marginal gap of each sample was measured under a stereoscopic microscope at 75x magnification after cementation. One-way ANOVA and the Duncan's post hoc test were used for data analysis at the significance level of 0.05. The mean (standard deviation) marginal gaps were 70.5 (34.4) μm for the MCG crowns, 87.2 (22.8) μm for Lava, 58.5 (17.6) μm for Cercon, and 72.3 (30.8) μm for Cerec. There were no significant differences in the marginal fit among the groups except that the Cercon crowns had significantly smaller marginal gaps than the Lava crowns (P < 0.001). Within the limitation of this study, all the metal-free restorations made by the digital CAD/CAM systems had clinically acceptable marginal accuracy.

  12. The onset and evolution of fatigue-induced abnormal grain growth in nanocrystalline Ni–Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furnish, T. A.; Mehta, A.; Van Campen, D.

    Conventional structural metals suffer from fatigue-crack initiation through dislocation activity which forms persistent slip bands leading to notch-like extrusions and intrusions. Ultrafine-grained and nanocrystalline metals can potentially exhibit superior fatigue-crack initiation resistance by suppressing these cumulative dislocation activities. Prior studies on these metals have confirmed improved high-cycle fatigue performance. In the case of nano-grained metals, analyses of subsurface crack initiation sites have indicated that the crack nucleation is associated with abnormally large grains. But, these post-mortem analyses have led to only speculation about when abnormal grain growth occurs (e.g., during fatigue, after crack initiation, or during crack growth). In thismore » study, a recently developed synchrotron X-ray diffraction technique was used to detect the onset and progression of abnormal grain growth during stress-controlled fatigue loading. Our study provides the first direct evidence that the grain coarsening is cyclically induced and occurs well before final fatigue failure—our results indicate that the first half of the fatigue life was spent prior to the detectable onset of abnormal grain growth, while the second half was spent coarsening the nanocrystalline structure and cyclically deforming the abnormally large grains until crack initiation. Post-mortem fractography, coupled with cycle-dependent diffraction data, provides the first details regarding the kinetics of this abnormal grain growth process during high-cycle fatigue testing. Finally, precession electron diffraction images collected in a transmission electron microscope after the in situ fatigue experiment also confirm the X-ray evidence that the abnormally large grains contain substantial misorientation gradients and sub-grain boundaries.« less

  13. The onset and evolution of fatigue-induced abnormal grain growth in nanocrystalline Ni–Fe

    DOE PAGES

    Furnish, T. A.; Mehta, A.; Van Campen, D.; ...

    2016-10-11

    Conventional structural metals suffer from fatigue-crack initiation through dislocation activity which forms persistent slip bands leading to notch-like extrusions and intrusions. Ultrafine-grained and nanocrystalline metals can potentially exhibit superior fatigue-crack initiation resistance by suppressing these cumulative dislocation activities. Prior studies on these metals have confirmed improved high-cycle fatigue performance. In the case of nano-grained metals, analyses of subsurface crack initiation sites have indicated that the crack nucleation is associated with abnormally large grains. But, these post-mortem analyses have led to only speculation about when abnormal grain growth occurs (e.g., during fatigue, after crack initiation, or during crack growth). In thismore » study, a recently developed synchrotron X-ray diffraction technique was used to detect the onset and progression of abnormal grain growth during stress-controlled fatigue loading. Our study provides the first direct evidence that the grain coarsening is cyclically induced and occurs well before final fatigue failure—our results indicate that the first half of the fatigue life was spent prior to the detectable onset of abnormal grain growth, while the second half was spent coarsening the nanocrystalline structure and cyclically deforming the abnormally large grains until crack initiation. Post-mortem fractography, coupled with cycle-dependent diffraction data, provides the first details regarding the kinetics of this abnormal grain growth process during high-cycle fatigue testing. Finally, precession electron diffraction images collected in a transmission electron microscope after the in situ fatigue experiment also confirm the X-ray evidence that the abnormally large grains contain substantial misorientation gradients and sub-grain boundaries.« less

  14. Microwave plasma chemical synthesis of nanocrystalline carbon film structures and study their properties

    NASA Astrophysics Data System (ADS)

    Bushuev, N.; Yafarov, R.; Timoshenkov, V.; Orlov, S.; Starykh, D.

    2015-08-01

    The self-organization effect of diamond nanocrystals in polymer-graphite and carbon films is detected. The carbon materials deposition was carried from ethanol vapors out at low pressure using a highly non-equilibrium microwave plasma. Deposition processes of carbon film structures (diamond, graphite, graphene) is defined. Deposition processes of nanocrystalline structures containing diamond and graphite phases in different volume ratios is identified. The solid film was obtained under different conditions of microwave plasma chemical synthesis. We investigated the electrical properties of the nanocrystalline carbon films and identified it's from various factors. Influence of diamond-graphite film deposition mode in non-equilibrium microwave plasma at low pressure on emission characteristics was established. This effect is justified using the cluster model of the structure of amorphous carbon. It was shown that the reduction of bound hydrogen in carbon structures leads to a decrease in the threshold electric field of emission from 20-30 V/m to 5 V/m. Reducing the operating voltage field emission can improve mechanical stability of the synthesized film diamond-graphite emitters. Current density emission at least 20 A/cm2 was obtained. Nanocrystalline carbon film materials can be used to create a variety of functional elements in micro- and nanoelectronics and photonics such as cold electron source for emission in vacuum devices, photonic devices, cathodoluminescent flat display, highly efficient white light sources. The obtained graphene carbon net structure (with a net size about 6 μm) may be used for the manufacture of large-area transparent electrode for solar cells and cathodoluminescent light sources

  15. Multiple electron injection dynamics in linearly-linked two dye co-sensitized nanocrystalline metal oxide electrodes for dye-sensitized solar cells.

    PubMed

    Shen, Qing; Ogomi, Yuhei; Park, Byung-wook; Inoue, Takafumi; Pandey, Shyam S; Miyamoto, Akari; Fujita, Shinsuke; Katayama, Kenji; Toyoda, Taro; Hayase, Shuzi

    2012-04-07

    Understanding the electron transfer dynamics at the interface between dye sensitizer and semiconductor nanoparticle is very important for both a fundamental study and development of dye-sensitized solar cells (DSCs), which are a potential candidate for next generation solar cells. In this study, we have characterized the ultrafast photoexcited electron dynamics in a newly produced linearly-linked two dye co-sensitized solar cell using both a transient absorption (TA) and an improved transient grating (TG) technique, in which tin(IV) 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (NcSn) and cis-diisothiocyanato-bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II) bis(tetrabutylammonium) (N719) are molecularly and linearly linked and are bonded to the surface of a nanocrystalline tin dioxide (SnO(2)) electrode by a metal-O-metal linkage (i.e. SnO(2)-NcSn-N719). By comparing the TA and TG kinetics of NcSn, N719, and hybrid NcSn-N719 molecules adsorbed onto both of the SnO(2) and zirconium dioxide (ZrO(2)) nanocrystalline films, the forward and backward electron transfer dynamics in SnO(2)-NcSn-N719 were clarified. We found that there are two pathways for electron injection from the linearly-linked two dye molecules (NcSn-N719) to SnO(2). The first is a stepwise electron injection, in which photoexcited electrons first transfer from N719 to NcSn with a transfer time of 0.95 ps and then transfer from NcSn to the conduction band (CB) of SnO(2) with two timescales of 1.6 ps and 4.2 ps. The second is direct photoexcited electron transfer from N719 to the CB of SnO(2) with a timescale of 20-30 ps. On the other hand, back electron transfer from SnO(2) to NcSn is on a timescale of about 2 ns, which is about three orders of magnitude slower compared to the forward electron transfer from NcSn to SnO(2). The back electron transfer from NcSn to N719 is on a timescale of about 40 ps, which is about one order slower compared to the forward electron transfer from N719 to Nc

  16. Mechanical and Fatigue Properties of Additively Manufactured Metallic Materials

    NASA Astrophysics Data System (ADS)

    Yadollahi, Aref

    This study aims to investigate the mechanical and fatigue behavior of additively manufactured metallic materials. Several challenges associated with different metal additive manufacturing (AM) techniques (i.e. laser-powder bed fusion and direct laser deposition) have been addressed experimentally and numerically. Experiments have been carried out to study the effects of process inter-layer time interval--i.e. either building the samples one-at-a-time or multi-at-a-time (in-parallel)--on the microstructural features and mechanical properties of 316L stainless steel samples, fabricated via a direct laser deposition (DLD). Next, the effect of building orientation--i.e. the orientation in which AM parts are built--on microstructure, tensile, and fatigue behaviors of 17-4 PH stainless steel, fabricated via a laser-powder bed fusion (L-PBF) method was investigated. Afterwards, the effect of surface finishing--here, as-built versus machined--on uniaxial fatigue behavior and failure mechanisms of Inconel 718 fabricated via a laser-powder bed fusion technique was sought. The numerical studies, as part of this dissertation, aimed to model the mechanical behavior of AM materials, under monotonic and cyclic loading, based on the observations and findings from the experiments. Despite significant research efforts for optimizing process parameters, achieving a homogenous, defect-free AM product--immediately after fabrication--has not yet been fully demonstrated. Thus, one solution for ensuring the adoption of AM materials for application should center on predicting the variations in mechanical behavior of AM parts based on their resultant microstructure. In this regard, an internal state variable (ISV) plasticity-damage model was employed to quantify the damage evolution in DLD 316L SS, under tensile loading, using the microstructural features associated with the manufacturing process. Finally, fatigue behavior of AM parts has been modeled based on the crack-growth concept

  17. Nanocrystalline heterojunction materials

    DOEpatents

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2003-07-15

    Mesoporous nanocrystalline titanium dioxide heterojunction materials are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  18. Synthesis of Nano-Crystalline Gamma-TiAl Materials

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Vasquez, Peter

    2003-01-01

    One of the principal problems with nano-crystalline materials is producing them in quantities and sizes large enough for valid mechanical property evaluation. The purpose of this study was to explore an innovative method for producing nano-crystalline gamma-TiAl bulk materials using high energy ball milling and brief secondary processes. Nano-crystalline powder feedstock was produced using a Fritsch P4(TM) vario-planetary ball mill recently installed at NASA-LaRC. The high energy ball milling process employed tungsten carbide tooling (vials and balls) and no process control agents to minimize contamination. In a collaborative effort, two approaches were investigated, namely mechanical alloying of elemental powders and attrition milling of pre-alloyed powders. The objective was to subsequently use RF plasma spray deposition and short cycle vacuum hot pressing in order to effect consolidation while retaining nano-crystalline structure in bulk material. Results and discussion of the work performed to date are presented.

  19. Initial stage corrosion of nanocrystalline copper particles and thin films

    NASA Astrophysics Data System (ADS)

    Tao, Weimin

    1997-12-01

    Corrosion behavior is an important issue in nanocrystalline materials research and development. A very fine grain size is expected to have significant effects on the corrosion resistance of these novel materials. However, both the macroscopic corrosion properties and the corresponding structure evolution during corrosion have not been fully studied. Under such circumstances, conducting fundamental research in this area is important and necessary. In this study, high purity nanocrystalline and coarse-grained copper were selected as our sample material, sodium nitrite aqueous solution at room temperature and air at a high temperature were employed as corrosive environments. The weight loss testing and electrochemical methods were used to obtain the macroscopic corrosion properties, whereas the high resolution transmission electron microscope was employed for the structure analysis. The weight loss tests indicate that the corrosion rate of nanocrystalline copper is about 5 times higher than that of coarse-grained copper at the initial stage of corrosion. The electrochemical measurements show that the corrosion potential of the nanocrystalline copper has a 230 mV negative shift in comparison with that of the coarse-grained copper. The nanocrystalline copper also exhibits a significantly higher exchange current density than the coarse-grained copper. High resolution TEM revealed that the surface structure changes at the initial stage of corrosion. It was found that the first copper oxide layer formed on the surface of nanocrystalline copper thin film contains a large density of high angle grain boundaries, whereas that formed on the surface of coarse-grained copper shows highly oriented oxide nuclei and appears to show a strong tendency for forming low angle grain boundaries. A correlation between the macroscopic corrosion properties and the structure characteristics is proposed for the nanocrystalline copper based on the concept of the "apparent" exchange current

  20. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  1. Application of micro- and nanocrystalline cellulose

    NASA Astrophysics Data System (ADS)

    Sotnikova, Yu S.; Demina, T. S.; Istomin, A. V.; Goncharuk, G. P.; Grandfils, Ch; Akopova, T. A.; Zelenetskii, A. N.; Babayevsky, P. G.

    2018-04-01

    Micro- and nanocrystalline forms of cellulose were extracted from flax stalks and evaluated in terms of their applicability for various materials science tasks. It was revealed that both form of cellulose had anisometric morphology with length of 27.1 μm and 159 nm; diameter of 8.7 μm and 85 nm, respectively. They were used as reinforcing fillers for fabrication of composite films based on hydroxyethylcellulose. Film-forming and mechanical properties of the composite materials were significantly varied in dependence on filler content (0–10 wt.%) and size. As a second option of micro- and nanocrystalline cellulose application, a study of their effectiveness as stabilizing agents for oil/water Pickering emulsions was carried out. In contrast to micron-sized cellulose the nanocrystalline form appeared to be successful in the process of CH2Cl2/water interface stabilization and fabrication of polylactide microparticles via oil/water Pickering emulsion solvent evaporation technique.

  2. Investigations of Nanocrystalline Alloy Electrospark Coating Made of Nanocrystalline Alloy Based on 5БДCP Ferrum

    NASA Astrophysics Data System (ADS)

    Kolomeichenko, A. V.; Kuznetsov, I. S.; Izmaylov, A. Yu; Solovyev, R. Yu; Sharifullin, S. N.

    2017-09-01

    The article describes the properties of wear resistant electrospark coating made of nanocrystalline alloy of type 5БДCP (Finemet). It is proved that electrospark coating has nanocrystalline structure which is like amorphous matrix with nanocrystals α - Fe. Coating thickness is 33 μm, micro-hardness is 8461 - 11357 MPa, wear resistance is 0,55×104s/g. Coating ofnanocrystalline alloy of type 5БДCP can be used to increase wear resistance of machinery working surfaces.

  3. Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition

    DTIC Science & Technology

    2014-11-01

    Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition by Tiffany Ngo ARL-TN-0643...November 2014 Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition Tiffany Ngo Weapons and...3. DATES COVERED (From - To) August 2014 4. TITLE AND SUBTITLE Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by

  4. Nanocrystalline cellulose from coir fiber: preparation, properties, and applications

    USDA-ARS?s Scientific Manuscript database

    Nanocrystalline cellulose derived from various botanical sources offers unique and potentially useful characteristics. In principle, any cellulosic material can be considered as a potential source of a nanocrystalline material, including crops, crop residues, and agroindustrial wastes. Because of t...

  5. Self-ion irradiation effects on mechanical properties of nanocrystalline zirconium films

    DOE PAGES

    Wang, Baoming; Haque, M. A.; Tomar, Vikas; ...

    2017-07-13

    Zirconium thin films were irradiated at room temperature with an 800 keV Zr + beam using a 6 MV HVE Tandem accelerator to 1.36 displacement per atom damage. Freestanding tensile specimens, 100 nm thick and 10 nm grain size, were tested in-situ inside a transmission electron microscope. Significant grain growth (>300%), texture evolution, and displacement damage defects were observed. Here, stress-strain profiles were mostly linear elastic below 20 nm grain size, but above this limit the samples demonstrated yielding and strain hardening. Experimental results support the hypothesis that grain boundaries in nanocrystalline metals act as very effective defect sinks.

  6. Design and development of a layer-based additive manufacturing process for the realization of metal parts of designed mesostructure

    NASA Astrophysics Data System (ADS)

    Williams, Christopher Bryant

    Low-density cellular materials, metallic bodies with gaseous voids, are a unique class of materials that are characterized by their high strength, low mass, good energy absorption characteristics, and good thermal and acoustic insulation properties. In an effort to take advantage of this entire suite of positive mechanical traits, designers are tailoring the cellular mesostructure for multiple design objectives. Unfortunately, existing cellular material manufacturing technologies limit the design space as they are limited to certain part mesostructure, material type, and macrostructure. The opportunity that exists to improve the design of existing products, and the ability to reap the benefits of cellular materials in new applications is the driving force behind this research. As such, the primary research goal of this work is to design, embody, and analyze a manufacturing process that provides a designer the ability to specify the material type, material composition, void morphology, and mesostructure topology for any conceivable part geometry. The accomplishment of this goal is achieved in three phases of research: (1) Design---Following a systematic design process and a rigorous selection exercise, a layer-based additive manufacturing process is designed that is capable of meeting the unique requirements of fabricating cellular material geometry. Specifically, metal parts of designed mesostructure are fabricated via three-dimensional printing of metal oxide ceramic powder followed by post-processing in a reducing atmosphere. (2) Embodiment ---The primary research hypothesis is verified through the use of the designed manufacturing process chain to successfully realize metal parts of designed mesostructure. (3) Modeling & Evaluation ---The designed manufacturing process is modeled in this final research phase so as to increase understanding of experimental results and to establish a foundation for future analytical modeling research. In addition to an analysis of

  7. Nanocrystalline Heterojunction Materials

    DOEpatents

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2004-02-03

    Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  8. Methods for preparation of nanocrystalline rare earth phosphates for lighting applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comanzo, Holly Ann; Manoharan, Mohan; Martins Loureiro, Sergio Paulo

    Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.

  9. Nanocrystalline cerium oxide materials for solid fuel cell systems

    DOEpatents

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  10. Applications for Gradient Metal Alloys Fabricated Using Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C.; Borgonia, John Paul C.; Dillon, Robert P.; Suh, Eric J.; Mulder, jerry L.; Gardner, Paul B.

    2013-01-01

    Recently, additive manufacturing (AM) techniques have been developed that may shift the paradigm of traditional metal production by allowing complex net-shaped hardware to be built up layer-by-layer, rather than being machined from a billet. The AM process is ubiquitous with polymers due to their low melting temperatures, fast curing, and controllable viscosity, and 3D printers are widely available as commercial or consumer products. 3D printing with metals is inherently more complicated than with polymers due to their higher melting temperatures and reactivity with air, particularly when heated or molten. The process generally requires a high-power laser or other focused heat source, like an electron beam, for precise melting and deposition. Several promising metal AM techniques have been developed, including laser deposition (also called laser engineered net shaping or LENS® and laser deposition technology (LDT)), direct metal laser sintering (DMLS), and electron beam free-form (EBF). These machines typically use powders or wire feedstock that are melted and deposited using a laser or electron beam. Complex net-shape parts have been widely demonstrated using these (and other) AM techniques and the process appears to be a promising alternative to machining in some cases. Rather than simply competing with traditional machining for cost and time savings, the true advantage of AM involves the fabrication of hardware that cannot be produced using other techniques. This could include parts with "blind" features (like foams or trusses), parts that are difficult to machine conventionally, or parts made from materials that do not exist in bulk forms. In this work, the inventors identify that several AM techniques can be used to develop metal parts that change composition from one location in the part to another, allowing for complete control over the mechanical or physical properties. This changes the paradigm for conventional metal fabrication, which relies on an

  11. Embedding Carbon Fibre Structures in Metal Matrixes for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Frostevarg, Jan; Robertson, Stephanie; Benavides, Vicente; Soldatov, Alexander

    It is possible to reinforce structures and components using carbon fibres for applications in electronics and medicine, but most commonly used in reinforcing resin fibre composites for personal protection equipment and light weight constructions. Carbon fibres act as stress redistributors while having increased electrical and thermal conductivities. These properties could also be utilized in metal matrixes, if the fibres are properly fused to the metal and the structure remains intact. Another recently developed high potential carbon structure, carbon nanotube- (CNT) yarns, has similar but even greater mechanical properties than common carbon fibres. Via laser cladding, these reinforcing materials could be used in a plethora of applications, either locally (or globally) as surface treatments or as structural reinforcements using multi-layer laser cladding (additive manufacturing). The challenges of embedding carbon fibres or CNT-yarns in a CuAl mixture and SnPb solder wire using lasers are here investigated using high speed imaging and SEM. It is revealed that the carbon fibres have very high buoyancy in the molten metal and quickly degrades when irradiated by the laser. Wetting of the fibres is shown to be improved by a Tungsten coating and embedding of the structures after processing are evaluated using SEM and Raman spectroscopy.

  12. Quantifying the influence of twin boundaries on the deformation of nanocrystalline copper using atomistic simulations

    DOE PAGES

    Tucker, Garritt J.; Foiles, Stephen Martin

    2014-09-22

    Over the past decade, numerous efforts have sought to understand the influence of twin boundaries on the behavior of polycrystalline materials. Early results suggested that twin boundaries within nanocrystalline face-centered cubic metals have a considerable effect on material behavior by altering the activated deformation mechanisms. In this work, we employ molecular dynamics simulations to elucidate the role of twin boundaries on the deformation of <100> columnar nanocrystalline copper at room temperature under uniaxial strain. We leverage non-local kinematic metrics, formulated from continuum mechanics theory, to compute atomically-resolved rotational and strain fields during plastic deformation. These results are then utilized tomore » compute the distribution of various nanoscale mechanisms during straining, and quantitatively resolve their contribution to the total strain accommodation within the microstructure, highlighting the fundamental role of twin boundaries. Our results show that nanoscale twins influence nanocrystalline copper by altering the cooperation of fundamental deformation mechanisms and their contributed role in strain accommodation, and we present new methods for extracting useful information from atomistic simulations. The simulation results suggest a tension–compression asymmetry in the distribution of deformation mechanisms and strain accommodation by either dislocations or twin boundary mechanisms. In highly twinned microstructures, twin boundary migration can become a significant deformation mode, in comparison to lattice dislocation plasticity in non-twinned columnar microstructures, especially during compression.« less

  13. Production of fiberglass/metal composite material suitable for building habitat and manufacturing facilities

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The production of a fiberglass/metal composite material suitable for building habitats and manufacturing facilities was the project for Clemson. The concept and development of the knowledge necessary to produce glass fibers originated in the spring semester. During the summer, while at Johnson Space Center, fiberglass from a rock composition similar to ones found at the Apollo 16 site on the moon was successfully produced. The project this year was a continuation of last year's studies. We addressed the following problems which emerged as the work progressed: (1) Methods for coating the fibers with a metal were explored. We manufactured composites in two stages: Glass fibers without any coating on them; and fibers coated with metals as they were made. This proved to be a difficult process. Future activities include using a chemical vapor deposition process on fibers which have been made. (2) A glass furnace was developed which relies primarily on solar energy for melting the glass. The temperature of the melted glass is maintained by electrical means. The design is for 250 kg of glass per day. An electrical engineering student developed a scheme for controlling the melting and manufacturing process from the earth. This was done to minimize the human risk. Graphite refractories are relied on to contain the melt. (3) The glass composition chosen for the project is a relatively pure anorthite which is available in the highland regions of the lunar surface. A major problems with this material is that it melts at a comparatively high temperature. This problem will be solved by using graphite refractory materials for the furnace. The advantage of this glass composition is that it is very stable and does not tend to crystallize. (4) We have also refined the experimental furnace and fiber making machinery which we will be using at Johnson Space Center this summer. We believe that we will be able to draw and coat glass fibers in a vacuum for use in composites. We intend to

  14. Compressed Air System Overhaul Improves Production at a Powdered Metal Manufacturing Plant (GKN Sinter Metals in Salem, IN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In 1998, GKN Sinter Metals completed a successful compressed air system improvement project at its Salem, Indiana manufacturing facility. The project was performed after GKN undertook a survey of its system in order to solve air quality problems and to evaluate whether the capacity of their compressed air system would meet their anticipated plant expansion. Once the project was implemented, the plant was able to increase production by 31% without having to add any additional compressor capacity.

  15. Wear-triggered self-healing behavior on the surface of nanocrystalline nickel aluminum bronze/Ti3SiC2 composites

    NASA Astrophysics Data System (ADS)

    Zhai, Wenzheng; Lu, Wenlong; Zhang, Po; Wang, Jian; Liu, Xiaojun; Zhou, Liping

    2018-04-01

    Self-healing can protect materials from diverse damages, but is intrinsically difficult in metals. This paper demonstrates a potential method through a simultaneous decomposition and oxidation of Ti3SiC2 to achieve healing of stress cracking on the surface of nickel aluminum bronze (NAB)/Ti3SiC2 nanocrystalline composites during fretting wear. At the finest nanocrystalline materials, a crack recovery would be attained at 76.5%. The repetitive fretting wear leads to a modest amount of 'flowability' of Ti3SiC2 toward the crack, facilitating crack recovery. Along with the wear-triggered self-healing, the NAB/Ti3SiC2 shows an improved tribological performance with the stable decreased friction torque due to the formation of lubrication TiO2 oxide.

  16. Treatment of Wastewater from Electroplating, Metal Finishing and Printed Circuit Board Manufacturing. Operation of Wastewater Treatment Plants Volume 4.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. Dept. of Civil Engineering.

    One of four manuals dealing with the operation of wastewater plants, this document was designed to address the treatment of wastewater from electroplating, metal finishing, and printed circuit board manufacturing. It emphasizes how to operate and maintain facilities which neutralize acidic and basic waters; treat waters containing metals; destroy…

  17. Some aspects of pulsed laser deposition of Si nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Polyakov, B.; Petruhins, A.; Butikova, J.; Kuzmin, A.; Tale, I.

    2009-11-01

    Nanocrystalline silicon films were deposited by a picosecond laser ablation on different substrates in vacuum at room temperature. A nanocrystalline structure of the films was evidenced by atomic force microscopy (AFM), optical and Raman spectroscopies. A blue shift of the absorption edge was observed in optical absorption spectra, and a decrease of the optical phonon energy at the Brillouin zone centre was detected by Raman scattering. Early stages of nanocrystalline film formation on mica and HOPG substrates were studied by AFM. Mechanism of nanocrystal growth on substrate is discussed. in here

  18. Electrodeposition of Nanocrystalline Co-P Coatings as a Hard Chrome Alternative

    DTIC Science & Technology

    2009-09-02

    Electrodeposition  of Nanocrystalline Co‐P  Coatings as a Hard Chrome Alternative Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden...AND SUBTITLE Electrodeposition of Nanocrystalline Co‐P Coatings as a Hard Chrome Alternative 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...Defense Conference – 2 September 2009 Conventional  Electrodeposits Polycrystalline (10‐100 µm) Electrodeposited Nanocrystalline Materials Pulsed

  19. Structural, optical and magnetic behaviour of nanocrystalline Volborthite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arvind, Hemant K., E-mail: hemantarvind@gmail.com; Kumar, Sudhish, E-mail: skmlsu@gmail.com; Kalal, Sangeeta

    2016-05-06

    Nanocrystalline sample of Volborthite (Copper Pyrovanadate: Cu{sub 3}V{sub 2} (OH){sub 2}O{sub 7}.2H{sub 2}O) has been synthesized using wet chemical route and characterized by XRD, SEM, FTIR, UV-Vis-NIR spectroscopic and magnetization measurements. Room temperature X-ray diffraction analysis confirms the single phase monoclinic structure and nanocrystalline nature of Volborthite. The UV-Visible optical absorption spectrum displays two broad absorption peaks in the range of 200-350 nm and 400-1000 nm. The direct band gap is found to be E{sub g}= ∼2.74 eV. Bulk Volborthite was reported to be a natural frustrated antiferromagnet, however our nanocrystalline Volborthite display week ferromagnetic hysteresis loop with very small coercivity andmore » retentivity at room temperature.« less

  20. Mechanical characterization of hybrid and functionally-graded aluminum open-cell foams with nanocrystalline-copper coatings

    NASA Astrophysics Data System (ADS)

    Sun, Yi

    Cellular/foam materials found in nature such as bone, wood, and bamboo are usually functionally graded by having a non-uniform density distribution and inhomogenous composition that optimizes their global mechanical performance. Inspired by such naturally engineered products, the current study was conducted towards the development of functionally graded hybrid metal foams (FGHMF) with electrodeposited (ED) nanocrystalline coatings. First, the deformation and failure mechanisms of aluminum/copper (Al/Cu) hybrid foams were investigated using finite element analyses at different scales. The micro-scale behavior was studied based on single ligament models discretized using continuum elements and the macro-scale behavior was investigated using beam-element based finite element models of representative unit volumes consisting of multiple foam cells. With a detailed constitutive material behavior and material failure considered for both the aluminum ligament and the nano-copper coating, the numerical models were able to capture the unique behavior of Al/Cu hybrid foams, such as the typically observed sudden load drop after yielding. The numerical models indicate that such load drop is caused by the fracture of foam ligaments initiated from the rupture of the ED nano-copper coating due to its low ductility. This failure mode jeopardizes the global energy absorption capacity of hybrid foams, especially when a thick coating is applied. With the purpose of enhancing the performance of Al/Cu hybrid foams, an annealing process, which increased the ductility of the nanocrystalline copper coating by causing recovery, recrystallination and grain growth, was introduced in the manufacturing of Al/Cu hybrid foams. Quasi-static experimental results indicate that when a proper amount of annealing is applied, the ductility of the ED copper can be effectively improved and the compressive and tensile behavior of Al/Cu hybrid foams can be significantly enhanced, including better energy

  1. Depositing laser-generated nanoparticles on powders for additive manufacturing of oxide dispersed strengthened alloy parts via laser metal deposition

    NASA Astrophysics Data System (ADS)

    Streubel, René; Wilms, Markus B.; Doñate-Buendía, Carlos; Weisheit, Andreas; Barcikowski, Stephan; Henrich Schleifenbaum, Johannes; Gökce, Bilal

    2018-04-01

    We present a novel route for the adsorption of pulsed laser-dispersed nanoparticles onto metal powders in aqueous solution without using any binders or surfactants. By electrostatic interaction, we deposit Y2O3 nanoparticles onto iron-chromium based powders and obtain a high dispersion of nano-sized particles on the metallic powders. Within the additively manufactured component, we show that the particle spacing of the oxide inclusion can be adjusted by the initial mass fraction of the adsorbed Y2O3 particles on the micropowder. Thus, our procedure constitutes a robust route for additive manufacturing of oxide dispersion-strengthened alloys via oxide nanoparticles supported on steel micropowders.

  2. Amorphous and nanocrystalline luminescent Si and Ge obtained via a solid-state chemical metathesis synthesis route

    NASA Astrophysics Data System (ADS)

    McMillan, Paul F.; Gryko, Jan; Bull, Craig; Arledge, Richard; Kenyon, Anthony J.; Cressey, Barbara A.

    2005-03-01

    A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr 2) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300 °C. Syntheses at higher temperatures gave rise to microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.

  3. [Raman studies of nanocrystalline BaTiO3 ceramics].

    PubMed

    Xiao, Chang-jiang; Jin, Chang-qing; Wang, Xiao-hui

    2008-12-01

    High pressure can significantly increase the densification. Further, during the high pressure assisted sintering, the nucleation rate is increased due to reduced energy barrier and the growth rate is suppressed due to the decreased diffusivity. Thus high pressure enables the specimen to be fabricated with relatively lower temperature and shorter sintering period that assures to obtain dense nanocrystalline ceramics. Dense nanocrystalline BaTiO3 ceramics with uniform grain sizes of 60 and 30 nm, respectively, were obtained by pressure assisted sintering. The crystal structure and phase transitions were investigated by Raman scattering at temperatures ranging from -190 to 200 degrees C. The Raman results indicated that the evolution of Raman spectrum with grain size is characterized by an intensity decrease, a broadening of the line width, a frequency shift, and the disappearance of the Raman mode. With increasing temperature, similar to 3 mm BaTiO3 normal ceramics, the successive phase transitions from rhombohedral to orthorhombic, orthorhombic to tetragonal, and tetragonal to cubic were also observed in nanocrystalline BaTiO3 ceramics. In addition, when particle size is reduced to the nanoscale, one will find some unusual physical properties in nanocrystalline ceramics, compared with those of coarse-grained BaTiO3 ceramics. The different coexistences of multiphase were found at different temperature. Especially, the ferroelectric tetragonal and orthorhombic phase can coexist at room temperature in nanocrystalline BaTiO3 ceramics. The phenomenon can be explained by the internal stress. The coexistences of different ferroelectric phases at room temperature indicate that the critical grain size for the disappearance of ferroelectricity in nanocrystalline BaTiO3 ceramics fabricated by pressure assisted sintering is below 30 nm.

  4. Mesoporous nanocrystalline film architecture for capacitive storage devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Bruce S.; Tolbert, Sarah H.; Wang, John

    A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoesmore » a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).« less

  5. Interaction of Light with Metallized Ultrathin Silicon Membrane

    NASA Astrophysics Data System (ADS)

    Shome, Krishanu

    Freestanding metallized structures, a few tens of nanometer thick, show promise in creating flow-through sensors, single molecule detectors and novel solar cells. In this thesis we study test structures that are a step towards creating such devices. Finite- difference time-domain simulations have been used to understand and predict the interaction of light with such devices. Porous nanocrystalline silicon membrane is a novel freestanding layer structure that has been used as a platform to fabricate and study sensors and novel slot nanohole devices. Optical mode studies of the sensing structures, together with the method of fabrication inspired the creation of ultrathin freestanding hydrogenated amorphous silicon p-i-n junctions solar cells. All the freestanding structures used in this thesis are just a few tens of nanometers in thicknesses. In the first part of the thesis the sensing properties of the metallized porous nanocrystalline structure are studied. The surprising blueshift associated with the sensing peak is observed experimentally and predicted theoretically with the help of simulations. Polarization dependence of the membranes is predicted and confirmed for angled deposition of metal on the membranes. In the next part, a novel slot structure is fabricated and modeled to study the slot effect in nanohole metal-insulator-metal structures. Atomic layer deposition of alumina is used to conformally deposit alumina within the nanohole to create the slot structure. Simulation models were used to calculate the lowest modal volume of 4x10-5 mum3 for an optimized structure. In the last part of the thesis, freestanding solar cells are fabricated by effectively replacing the porous nanocrystalline silicon layer of the membranes with a hydrogenated amorphous silicon p-i-n junction with metal layers on both sides of the p-i-n junction. The metal layers act both as electrical contacts as well as mirrors for a Fabry Perot cavity resonator. This helps in tuning the

  6. Innovations in Advanced Materials and Metals Manufacturing Project (IAM2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Elizabeth

    This project, under the Jobs and Innovation Accelerator Challenge, Innovations in Advanced Materials and Metals Manufacturing Project, contracted with Cascade Energy to provide a shared energy project manager engineer to work with five different companies throughout the Portland metro grant region to implement ten energy efficiency projects and develop a case study to analyze the project model. As a part of the project, the energy project manager also looked into specific new technologies and methodologies that could change the way energy is consumed by manufacturers—from game-changing equipment and technology to monitor energy use to methodologies that change the way companiesmore » interact and use their machines to reduce energy consumption.« less

  7. Method to produce nanocrystalline powders of oxide-based phosphors for lighting applications

    DOEpatents

    Loureiro, Sergio Paulo Martins; Setlur, Anant Achyut; Williams, Darryl Stephen; Manoharan, Mohan; Srivastava, Alok Mani

    2007-12-25

    Some embodiments of the present invention are directed toward nanocrystalline oxide-based phosphor materials, and methods for making same. Typically, such methods comprise a steric entrapment route for converting precursors into such phosphor material. In some embodiments, the nanocrystalline oxide-based phosphor materials are quantum splitting phosphors. In some or other embodiments, such nanocrystalline oxide based phosphor materials provide reduced scattering, leading to greater efficiency, when used in lighting applications.

  8. Manufacturing information system

    NASA Astrophysics Data System (ADS)

    Allen, D. K.; Smith, P. R.; Smart, M. J.

    1983-12-01

    The size and cost of manufacturing equipment has made it extremely difficult to perform realistic modeling and simulation of the manufacturing process in university research laboratories. Likewise the size and cost factors, coupled with many uncontrolled variables of the production situation has even made it difficult to perform adequate manufacturing research in the industrial setting. Only the largest companies can afford manufacturing research laboratories; research results are often held proprietary and seldom find their way into the university classroom to aid in education and training of new manufacturing engineers. It is the purpose for this research to continue the development of miniature prototype equipment suitable for use in an integrated CAD/CAM Laboratory. The equipment being developed is capable of actually performing production operations (e.g. drilling, milling, turning, punching, etc.) on metallic and non-metallic workpieces. The integrated CAD/CAM Mini-Lab is integrating high resolution, computer graphics, parametric design, parametric N/C parts programmings, CNC machine control, automated storage and retrieval, with robotics materials handling. The availability of miniature CAD/CAM laboratory equipment will provide the basis for intensive laboratory research on manufacturing information systems.

  9. Manufacturing of GLARE Parts and Structures

    NASA Astrophysics Data System (ADS)

    Sinke, J.

    2003-07-01

    GLARE is a hybrid material consisting of alternating layers of metal sheets and composite layers, requiring special attention when manufacturing of parts and structures is concerned. On one hand the applicable manufacturing processes for GLARE are limited, on the other hand, due to the constituents and composition of the laminate, it offers new opportunities for production. One of the opportunities is the manufacture of very large skin panels by lay-up techniques. Lay-up techniques are common for full composites, but uncommon for metallic structures. Nevertheless, large GLARE skin panels are made by lay-up processes. In addition, the sequences of forming and laminating processes, that can be selected, offer manufacturing options that are not applicable to metals or full composites. With respect to conventional manufacturing processes, the possibilities for Fibre Metal Laminates in general, are limited. The limits are partly due to the different failure modes, partly due to the properties of the constituents in the laminate. For machining processes: the wear of the cutting tools during machining operations of GLARE stems from the abrasive nature of the glass fibres. For the forming processes: the limited formability, expressed by a small failure strain, is related to the glass fibres. However, although these manufacturing issues may restrict the use of manufacturing processes for FMLs, application of these laminates in aircraft is not hindered.

  10. A Sensory Material Approach for Reducing Variability in Additively Manufactured Metal Parts.

    PubMed

    Franco, B E; Ma, J; Loveall, B; Tapia, G A; Karayagiz, K; Liu, J; Elwany, A; Arroyave, R; Karaman, I

    2017-06-15

    Despite the recent growth in interest for metal additive manufacturing (AM) in the biomedical and aerospace industries, variability in the performance, composition, and microstructure of AM parts remains a major impediment to its widespread adoption. The underlying physical mechanisms, which cause variability, as well as the scale and nature of variability are not well understood, and current methods are ineffective at capturing these details. Here, a Nickel-Titanium alloy is used as a sensory material in order to quantitatively, and rather rapidly, observe compositional and/or microstructural variability in selective laser melting manufactured parts; thereby providing a means to evaluate the role of process parameters on the variability. We perform detailed microstructural investigations using transmission electron microscopy at various locations to reveal the origins of microstructural variability in this sensory material. This approach helped reveal how reducing the distance between adjacent laser scans below a critical value greatly reduces both the in-sample and sample-to-sample variability. Microstructural investigations revealed that when the laser scan distance is wide, there is an inhomogeneity in subgrain size, precipitate distribution, and dislocation density in the microstructure, responsible for the observed variability. These results provide an important first step towards understanding the nature of variability in additively manufactured parts.

  11. Local crystal/chemical structures at iron sites in amorphous, magnetic, and nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Clark, Ted Michael

    Order-disorder phenomena have been examined by means of Mossbauer spectroscopy in a variety of materials, including (a) tektites and other silicate glasses, (b) magnetic materials such as natural and synthetic magnetoplumbite, M-type hexagonal ferrites and magnetite, and (c) nanocrystalline zinc ferrite. A methodology has been established for the analysis of the local crystal/chemical structures of iron in tektites and its application has reconfirmed a low ferric/ferrous ratio of approximately 0.10 for tektites. Additionally, a greater degree of submirocscopic heterogeneity has been established for Muong Nong tektites in comparison with splash form tektites. The dynamics of the 2b site in hexagonal ferrites has been studied above and below the Curie temperature for magnetoplumbite and its synthetic analogs, and also for polycrystalline and oriented single-crystals of MeFesb{12}Osb{19} (Me=Ba, Sr, Pb). Cation ordering on this site is shown to be dependent on the thermal history of the material, while the dynamic disorder of the 2b site for the end-member hexagonal ferrites is shown to be influenced by the divalent heavy metal species, Me. The influence of chemical composition on the morphology of magnetite has been shown to depend on the site preference of impurity cations: Substitutional impurities with tetrahedral site preferences are postulated to result in the seldom-observed cubic habit. Based on the cation distributions of bulk and nanocrystalline material it is held that the enhanced magnetic moments and susceptibilities of nanocrystalline zinc ferrite are shown to be consistent with surface phenomena, independent of synthesis methodology, and contrary to claims of special effects resulting from a particular synthesis methodology.

  12. Three-dimensional analysis by electron diffraction methods of nanocrystalline materials.

    PubMed

    Gammer, Christoph; Mangler, Clemens; Karnthaler, Hans-Peter; Rentenberger, Christian

    2011-12-01

    To analyze nanocrystalline structures quantitatively in 3D, a novel method is presented based on electron diffraction. It allows determination of the average size and morphology of the coherently scattering domains (CSD) in a straightforward way without the need to prepare multiple sections. The method is applicable to all kinds of bulk nanocrystalline materials. As an example, the average size of the CSD in nanocrystalline FeAl made by severe plastic deformation is determined in 3D. Assuming ellipsoidal CSD, it is deduced that the CSD have a width of 19 ± 2 nm, a length of 18 ± 1 nm, and a height of 10 ± 1 nm.

  13. Characterization of Ultra-fine Grained and Nanocrystalline Materials Using Transmission Kikuchi Diffraction

    PubMed Central

    Proust, Gwénaëlle; Trimby, Patrick; Piazolo, Sandra; Retraint, Delphine

    2017-01-01

    One of the challenges in microstructure analysis nowadays resides in the reliable and accurate characterization of ultra-fine grained (UFG) and nanocrystalline materials. The traditional techniques associated with scanning electron microscopy (SEM), such as electron backscatter diffraction (EBSD), do not possess the required spatial resolution due to the large interaction volume between the electrons from the beam and the atoms of the material. Transmission electron microscopy (TEM) has the required spatial resolution. However, due to a lack of automation in the analysis system, the rate of data acquisition is slow which limits the area of the specimen that can be characterized. This paper presents a new characterization technique, Transmission Kikuchi Diffraction (TKD), which enables the analysis of the microstructure of UFG and nanocrystalline materials using an SEM equipped with a standard EBSD system. The spatial resolution of this technique can reach 2 nm. This technique can be applied to a large range of materials that would be difficult to analyze using traditional EBSD. After presenting the experimental set up and describing the different steps necessary to realize a TKD analysis, examples of its use on metal alloys and minerals are shown to illustrate the resolution of the technique and its flexibility in term of material to be characterized. PMID:28447998

  14. Characterization of Ultra-fine Grained and Nanocrystalline Materials Using Transmission Kikuchi Diffraction.

    PubMed

    Proust, Gwénaëlle; Trimby, Patrick; Piazolo, Sandra; Retraint, Delphine

    2017-04-01

    One of the challenges in microstructure analysis nowadays resides in the reliable and accurate characterization of ultra-fine grained (UFG) and nanocrystalline materials. The traditional techniques associated with scanning electron microscopy (SEM), such as electron backscatter diffraction (EBSD), do not possess the required spatial resolution due to the large interaction volume between the electrons from the beam and the atoms of the material. Transmission electron microscopy (TEM) has the required spatial resolution. However, due to a lack of automation in the analysis system, the rate of data acquisition is slow which limits the area of the specimen that can be characterized. This paper presents a new characterization technique, Transmission Kikuchi Diffraction (TKD), which enables the analysis of the microstructure of UFG and nanocrystalline materials using an SEM equipped with a standard EBSD system. The spatial resolution of this technique can reach 2 nm. This technique can be applied to a large range of materials that would be difficult to analyze using traditional EBSD. After presenting the experimental set up and describing the different steps necessary to realize a TKD analysis, examples of its use on metal alloys and minerals are shown to illustrate the resolution of the technique and its flexibility in term of material to be characterized.

  15. Amorphous and nanocrystalline luminescent Si and Ge obtained via a solid-state chemical metathesis synthesis route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, Paul F.; Gryko, Jan; Bull, Craig

    A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr{sub 2}) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300{sup o}C. Syntheses at higher temperatures gave rise tomore » microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.« less

  16. Five-Axis Ultrasonic Additive Manufacturing for Nuclear Component Manufacture

    NASA Astrophysics Data System (ADS)

    Hehr, Adam; Wenning, Justin; Terrani, Kurt; Babu, Sudarsanam Suresh; Norfolk, Mark

    2017-03-01

    Ultrasonic additive manufacturing (UAM) is a three-dimensional metal printing technology which uses high-frequency vibrations to scrub and weld together both similar and dissimilar metal foils. There is no melting in the process and no special atmosphere requirements are needed. Consequently, dissimilar metals can be joined with little to no intermetallic compound formation, and large components can be manufactured. These attributes have the potential to transform manufacturing of nuclear reactor core components such as control elements for the High Flux Isotope Reactor at Oak Ridge National Laboratory. These components are hybrid structures consisting of an outer cladding layer in contact with the coolant with neutron-absorbing materials inside, such as neutron poisons for reactor control purposes. UAM systems are built into a computer numerical control (CNC) framework to utilize intermittent subtractive processes. These subtractive processes are used to introduce internal features as the component is being built and for net shaping. The CNC framework is also used for controlling the motion of the welding operation. It is demonstrated here that curved components with embedded features can be produced using a five-axis code for the welder for the first time.

  17. Five-axis ultrasonic additive manufacturing for nuclear component manufacture

    DOE PAGES

    Hehr, Adam; Wenning, Justin; Terrani, Kurt A.; ...

    2016-01-01

    Ultrasonic additive manufacturing (UAM) is a three-dimensional metal printing technology which uses high-frequency vibrations to scrub and weld together both similar and dissimilar metal foils. There is no melting in the process and no special atmosphere requirements are needed. Consequently, dissimilar metals can be joined with little to no intermetallic compound formation, and large components can be manufactured. These attributes have the potential to transform manufacturing of nuclear reactor core components such as control elements for the High Flux Isotope Reactor at Oak Ridge National Laboratory. These components are hybrid structures consisting of an outer cladding layer in contact withmore » the coolant with neutron-absorbing materials inside, such as neutron poisons for reactor control purposes. UAM systems are built into a computer numerical control (CNC) framework to utilize intermittent subtractive processes. These subtractive processes are used to introduce internal features as the component is being built and for net shaping. The CNC framework is also used for controlling the motion of the welding operation. Lastly, it is demonstrated here that curved components with embedded features can be produced using a five-axis code for the welder for the first time.« less

  18. Syntheses of nanocrystalline BaTiO3 and their optical properties

    NASA Astrophysics Data System (ADS)

    Yu, J.; Chu, J.; Zhang, M.

    Stoichiometric and titanium-excess nanocrystalline barium titanates were synthesized using a hydrothermal process at various hydrothermal temperatures and with further heat treatment at 500 °C and 900 °C. Owing to the different process conditions, the excess titanium exists in different states and configurations within the nanocrystalline BaTiO3 matrix; this was demonstrated by X-ray diffraction, Raman scattering, and photoluminescence. In these nanocrystalline BaTiO3, the 590, 571, 543 and 694 nm light emission bands were observed; mechanisms leading to such emissions were also discussed.

  19. Distinctive glial and neuronal interfacing on nanocrystalline diamond.

    PubMed

    Bendali, Amel; Agnès, Charles; Meffert, Simone; Forster, Valérie; Bongrain, Alexandre; Arnault, Jean-Charles; Sahel, José-Alain; Offenhäusser, Andreas; Bergonzo, Philippe; Picaud, Serge

    2014-01-01

    Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth.

  20. Distinctive Glial and Neuronal Interfacing on Nanocrystalline Diamond

    PubMed Central

    Bendali, Amel; Agnès, Charles; Meffert, Simone; Forster, Valérie; Bongrain, Alexandre; Arnault, Jean-Charles; Sahel, José-Alain; Offenhäusser, Andreas; Bergonzo, Philippe; Picaud, Serge

    2014-01-01

    Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth. PMID:24664111

  1. Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD

    NASA Astrophysics Data System (ADS)

    Pedersen, Joachim D.; Esposito, Heather J.; Teh, Kwok Siong

    2011-10-01

    We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm). Pure solid zinc is inductively heated and melted, followed by ionization by thermal induction argon/oxygen plasma to produce conformal, nonporous nanocrystalline ZnO films at a growth rate of up to 50 nm/min on amorphous and crystalline substrates including Si (100), fused quartz, glass, muscovite, c- and a-plane sapphire (Al2O3), gold, titanium, and polyimide. X-ray diffraction indicates the grains of as-deposited ZnO to be highly textured, with the fastest growth occurring along the c-axis. The individual grains are observed to be faceted by (103) planes which are the slowest growth planes. ZnO nanocrystalline films of nominal thicknesses of 200 nm are deposited at substrate temperatures of 330°C and 160°C on metal/ceramic substrates and polymer substrates, respectively. In addition, 20-nm- and 200-nm-thick films are also deposited on quartz substrates for optical characterization. At optical spectra above 375 nm, the measured optical transmittance of a 200-nm-thick ZnO film is greater than 80%, while that of a 20-nm-thick film is close to 100%. For a 200-nm-thick ZnO film with an average grain size of 100 nm, a four-point probe measurement shows electrical conductivity of up to 910 S/m. Annealing of 200-nm-thick ZnO films in 300 sccm pure argon at temperatures ranging from 750°C to 950°C (at homologous temperatures between 0.46 and 0.54) alters the textures and morphologies of the thin film. Based on scanning electron microscope images, higher annealing temperatures appear to restructure the ZnO nanocrystalline films to form nanorods of ZnO due to a combination of grain boundary diffusion and bulk diffusion. PACS: films and coatings, 81.15.-z; nanocrystalline materials, 81.07.Bc; II-VI semiconductors, 81.05.Dz.

  2. Feasibility study of custom manufacturing methods of ionic polymer-metal composite sensors

    NASA Astrophysics Data System (ADS)

    Nelson, Shelby E.

    The ability to create an ion exchange membrane with any shape or thickness through custom manufacturing techniques is highly desirable in ionic polymer-metal composite (IPMC) research. This is caused by the poor selection and limited availability of certain thicknesses of commercial ion exchange membranes. The objective of this study is to determine the feasibility of manufacturing custom ion exchange membranes for IPMC sensors. The manufacturing methods used in this study are extrusion, injection molding, and hot pressing. A commercial membrane from Golden Energy Fuel Cells (GEFC) is used as a comparison. After the membranes are fabricated, certain properties of the membranes are tested throughout each processing stage to determine if they are suitable to be developed into IPMCs. The three processing stages are pre-activation, activation (hydrated and dehydrated), and IPMC. It was observed that the stiffness of the membranes increased from pre-activation to activation and decreased from activation to IPMC. A more flexible membrane in an IPMC allows for larger cation displacement within the membrane. The extruded and injection molded membranes showed the most potential with having the lowest stiffness of all the samples; however, they were not able to be made into IPMCs due to repeated membrane failures in the primary plating process. Gas accumulated between the layers that formed in the membranes due to the extrusion and injection molding cooling process during manufacturing. The hot pressed membrane was the only custom manufactured membrane to be fully processed into an IPMC. The hot pressed and GEFC IPMC sensors were operated at 1 Hz, 5 Hz, and 10 Hz frequencies with the GEFC IPMC producing the strongest output voltage signal. While the extruded and injection molded membranes showed potential to become IPMCs with their high water uptake percentage, high ion exchange capacity, and low stiffness, more development is needed within the manufacturing process to make

  3. Luminescence and related properties of nanocrystalline porous silicon

    NASA Astrophysics Data System (ADS)

    Koshida, N.

    This document is part of subvolume C3 'Optical Properties' of volume 34 'Semiconductor quantum structures' of Landolt-Börnstein, Group III, Condensed Matter, on the optical properties of quantum structures based on group IV semiconductors. It discusses luminescence and related properties of nanocrystalline porous silicon. Topics include an overview of nanostructured silicon, its fabrication technology, and properties of nanocrystalline porous silicon such as confinement effects, photoluminescence, electroluminesce, carrier charging effects, ballistic transport and emission, and thermally induced acoustic emission.

  4. Metallic coatings on silicon substrates, and methods of forming metallic coatings on silicon substrates

    DOEpatents

    Branagan, Daniel J [Idaho Falls, ID; Hyde, Timothy A [Idaho Falls, ID; Fincke, James R [Los Alamos, NM

    2008-03-11

    The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.

  5. Gigacycle fatigue behavior by ultrasonic nanocrystalline surface modification.

    PubMed

    Ahn, D G; Amanov, A; Cho, I S; Shin, K S; Pyoun, Y S; Lee, C S; Park, I G

    2012-07-01

    Nanocrystalline surface layer up to 84 microm in thick is produced on a specimen made of Al6061-T6 alloy by means of surface treatment called ultrasonic nanocrystalline surface modification (UNSM) technique. The refined grain size is produced in the top-layer and it is increased with increasing depth from the top surface. Vickers microhardness measurement for each nanocrystalline surface layer is performed and measurement results showed that the microhardness is increased from 116 HV up to 150 HV, respectively. In this study, fatigue behavior of Al6061-T6 alloy was studied up to 10(7)-10(9) cycles by using a newly developed ultrasonic fatigue testing (UFT) rig. The fatigue results of the UNSM-treated Al6061-T6 alloy specimens were compared with those of the untreated specimens. The microstructure of the untreated and UNSM-treated specimens was characterized by means of scanning electron microscopey (SEM) and transmission electron microscopey (TEM).

  6. Synthesis of Mesoporous Nanocrystalline Zirconia by Surfactant-Assisted Hydrothermal Approach.

    PubMed

    Nath, Soumav; Biswas, Ashik; Kour, Prachi P; Sarma, Loka S; Sur, Ujjal Kumar; Ankamwar, Balaprasad G

    2018-08-01

    In this paper, we have reported the chemical synthesis of thermally stable mesoporous nanocrystalline zirconia with high surface area using a surfactant-assisted hydrothermal approach. We have employed different type of surfactants such as CTAB, SDS and Triton X-100 in our synthesis. The synthesized nanocrystalline zirconia multistructures exhibit various morphologies such as rod, mortar-pestle with different particle sizes. We have characterized the zirconia multistructures by X-ray diffraction study, Field emission scanning electron microscopy, Attenuated total refection infrared spectroscopy, UV-Vis spectroscopy and photoluminescence spectroscopy. The thermal stability of as synthesized zirconia multistructures was studied by thermo gravimetric analysis, which shows the high thermal stability of nanocrystalline zirconia around 900 °C temperature.

  7. Covalent attachment and growth of nanocrystalline films of photocatalytic TiOF2

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lv, Fujian; Xiao, Shengxiong; Bian, Zhenfeng; Buntkowsky, Gerd; Nuckolls, Colin; Li, Hexing

    2014-11-01

    This manuscript describes a synthesis of nanocrystalline TiOF2 film. The nanocrystalline TiOF2 becomes chemically attached to the surface of the glass slide. These films are robust and can be recycled as photocatalysts for the degradation of organic dyes and solvents. These films also have significant antibacterial properties upon irradiation.This manuscript describes a synthesis of nanocrystalline TiOF2 film. The nanocrystalline TiOF2 becomes chemically attached to the surface of the glass slide. These films are robust and can be recycled as photocatalysts for the degradation of organic dyes and solvents. These films also have significant antibacterial properties upon irradiation. Electronic supplementary information (ESI) available: Methods for sample preparation, characterization and Fig. S1-S8. See DOI: 10.1039/c4nr05598e

  8. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes

    NASA Astrophysics Data System (ADS)

    Zhang, Lijie; Rodriguez, Jose; Raez, Jose; Myles, Andrew J.; Fenniri, Hicham; Webster, Thomas J.

    2009-04-01

    Today, bone diseases such as bone fractures, osteoporosis and bone cancer represent a common and significant public health problem. The design of biomimetic bone tissue engineering materials that could restore and improve damaged bone tissues provides exciting opportunities to solve the numerous problems associated with traditional orthopedic implants. Therefore, the objective of this in vitro study was to create a biomimetic orthopedic hydrogel nanocomposite based on the self-assembly properties of helical rosette nanotubes (HRNs), the osteoconductive properties of nanocrystalline hydroxyapatite (HA), and the biocompatible properties of hydrogels (specifically, poly(2-hydroxyethyl methacrylate), pHEMA). HRNs are self-assembled nanomaterials that are formed from synthetic DNA base analogs in water to mimic the helical nanostructure of collagen in bone. In this study, different geometries of nanocrystalline HA were controlled by either hydrothermal or sintering methods. 2 and 10 wt% nanocrystalline HA particles were well dispersed into HRN hydrogels using ultrasonication. The nanocrystalline HA and nanocrystalline HA/HRN hydrogels were characterized by x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Mechanical testing studies revealed that the well dispersed nanocrystalline HA in HRN hydrogels possessed improved mechanical properties compared to hydrogel controls. In addition, the results of this study provided the first evidence that the combination of either 2 or 10 wt% nanocrystalline HA and 0.01 mg ml-1 HRNs in hydrogels greatly increased osteoblast (bone-forming cell) adhesion up to 236% compared to hydrogel controls. Moreover, this study showed that HRNs stimulated HA nucleation and mineralization along their main axis in a way that is very reminiscent of the HA/collagen assembly pattern in natural bone. In summary, the presently observed excellent properties of the biomimetic nanocrystalline HA/HRN hydrogel composites

  9. Tribochemistry of contact interfaces of nanocrystalline molybdenum carbide films

    NASA Astrophysics Data System (ADS)

    Kumar, D. Dinesh; Kumar, N.; Panda, Kalpataru; Kamalan Kirubaharan, A. M.; Kuppusami, P.

    2018-07-01

    Transition metal carbides (TMC) are known for their improved tribological properties and are sensitive to the tribo-atmospheric environment. Nanocrystalline molybdenum carbide (MoC) thin films were deposited by DC magnetron sputtering technique using reactive CH4 gas. The friction and wear resistance properties of MoC thin films were significantly improved in humid-atmospheric condition as compared to high-vacuum tribo-condition. A comprehensive chemical analysis of deformed contact interfaces was carried out by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX) and Raman spectroscopy. XPS and Raman spectroscopy showed the formation of stable molybdenum-oxide (MoO), molybdenum carbide (MoC) and amorphous carbon (a-C) tribo-phases. Moreover, during the sliding in humid-atmospheric condition, these phases were extensively deposited on the sliding steel ball counter body which significantly protected against undesirable friction and wear.

  10. Microchannel neural interface manufacture by stacking silicone and metal foil laminae

    NASA Astrophysics Data System (ADS)

    Lancashire, Henry T.; Vanhoestenberghe, Anne; Pendegrass, Catherine J.; Ajam, Yazan Al; Magee, Elliot; Donaldson, Nick; Blunn, Gordon W.

    2016-06-01

    Objective. Microchannel neural interfaces (MNIs) overcome problems with recording from peripheral nerves by amplifying signals independent of node of Ranvier position. Selective recording and stimulation using an MNI requires good insulation between microchannels and a high electrode density. We propose that stacking microchannel laminae will improve selectivity over single layer MNI designs due to the increase in electrode number and an improvement in microchannel sealing. Approach. This paper describes a manufacturing method for creating MNIs which overcomes limitations on electrode connectivity and microchannel sealing. Laser cut silicone—metal foil laminae were stacked using plasma bonding to create an array of microchannels containing tripolar electrodes. Electrodes were DC etched and electrode impedance and cyclic voltammetry were tested. Main results. MNIs with 100 μm and 200 μm diameter microchannels were manufactured. High electrode density MNIs are achievable with electrodes present in every microchannel. Electrode impedances of 27.2 ± 19.8 kΩ at 1 kHz were achieved. Following two months of implantation in Lewis rat sciatic nerve, micro-fascicles were observed regenerating through the MNI microchannels. Significance. Selective MNIs with the peripheral nervous system may allow upper limb amputees to control prostheses intuitively.

  11. Electrical impedance spectroscopy of neutron-irradiated nanocrystalline silicon carbide (3C-SiC)

    NASA Astrophysics Data System (ADS)

    Huseynov, Elchin M.

    2018-01-01

    It the present work, impedance spectra of nanocrystalline 3C-SiC particles have been comparatively analyzed before and after neutron irradiation. Resonance states and shifts were observed at the impedance spectra of nanocrystalline 3C-SiC particles after neutron irradiation. Relaxation time has been calculated from interdependence of real and imaginary parts of impedance of nanocrystalline 3C-SiC particles. Calculated relaxation times have been investigated as a function of neutron irradiation period. Neutron transmutation (31P isotopes production) effects on the impedance spectra and relaxation times have been studied. Moreover, influence of agglomeration and amorphous transformation to the impedance spectra and relaxation times of nanocrystalline 3C-SiC particles have been investigated.

  12. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing.

    PubMed

    Ly, Sonny; Rubenchik, Alexander M; Khairallah, Saad A; Guss, Gabe; Matthews, Manyalibo J

    2017-06-22

    The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results. Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.

  13. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ly, Sonny; Rubenchik, Alexander M.; Khairallah, Saad A.

    The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results.more » Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.« less

  14. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing

    DOE PAGES

    Ly, Sonny; Rubenchik, Alexander M.; Khairallah, Saad A.; ...

    2017-06-22

    The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results.more » Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.« less

  15. Direct Coating of Nanocrystalline Diamond on Steel

    NASA Astrophysics Data System (ADS)

    Tsugawa, Kazuo; Kawaki, Shyunsuke; Ishihara, Masatou; Hasegawa, Masataka

    2012-09-01

    Nanocrystalline diamond films have been successfully deposited on stainless steel substrates without any substrate pretreatments to promote diamond nucleation, including the formation of interlayers. A low-temperature growth technique, 400 °C or lower, in microwave plasma chemical vapor deposition using a surface-wave plasma has cleared up problems in diamond growth on ferrous materials, such as the surface graphitization, long incubation time, substrate softening, and poor adhesion. The deposited nanocrystalline diamond films on stainless steel exhibit good adhesion and tribological properties, such as a high wear resistance, a low friction coefficient, and a low aggression strength, at room temperature in air without lubrication.

  16. Structural characterization of nanocrystalline cadmium sulphide powder prepared by solvent evaporation technique

    NASA Astrophysics Data System (ADS)

    Pandya, Samir; Tandel, Digisha; Chodavadiya, Nisarg

    2018-05-01

    CdS is one of the most important compounds in the II-VI group of semiconductor. There are numerous applications of CdS in the form of nanoparticles and nanocrystalline. Semiconductors nanoparticles (also known as quantum dots), belong to state of matter in the transition region between molecules and solids, have attracted a great deal of attention because of their unique electrical and optical properties, compared to bulk materials. In the field of optoelectronic, nanocrystalline form utilizes mostly in the field of catalysis and fluid technology. Considering these observations, presented work had been carried out, i.e. based on the nanocrystalline material preparation. In the present work CdS nano-crystalline powder was synthesized by a simple and cost effective chemical technique to grow cadmium sulphide (CdS) nanoparticles at 200 °C with different concentrations of cadmium. The synthesis parameters were optimized. The synthesized powder was structurally characterized by X-ray diffraction and particle size analyzer. In the XRD analysis, Micro-structural parameters such as lattice strain, dislocation density and crystallite size were analysed. The broadened diffraction peaks indicated nanocrystalline particles of the film material. In addition to that the size of the prepared particles was analyzed by particle size analyzer. The results show the average size of CdS particles ranging from 80 to 100 nm. The overall conclusion of the work can be very useful in the synthesis of nanocrystalline CdS powder.

  17. Electrode characteristics of nanocrystalline AB{sub 5} compounds prepared by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Chen, Z.; Zhou, D.

    1998-10-01

    Nanocrystalline LaNi{sub 5} and LaNi{sub 4.5}Si{sub 0.5} synthesized by mechanical alloying were used as negative materials for Ni-MH batteries. It was found that the electrodes prepared with the nanocrystalline powders had similar discharge capacities, better activation behaviors, and longer cycle lifetimes, compared with the negative electrode prepared with polycrystalline coarse-grained LaNi{sub 5} alloy. The properties of the electrodes prepared with these nanocrystalline materials were attributed to the structural characteristics of the compounds caused by mechanical alloying.

  18. Synthesis of nanocrystalline ZnO thin films by electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Kondkar, V.; Rukade, D.; Bhattacharyya, V.

    2018-05-01

    Nanocrystalline ZnO thin films have potential for applications in variety of optoelectronic devices. In the present study, nanocrystalline thin films of ZnO are grown on fused silica substrate using electron beam (e-beam) evaporation technique. Phase identification is carried out using Glancing angle X-ray diffraction (GAXRD) and Raman spectroscopy. Ultraviolet-Visible (UV-Vis) spectroscopic analysis is carried out to calculate energy band gap of the ZnO film. Surface morphology of the film is investigated using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). Highly quality nanocrystalline thin films of hexagonal wurtzite ZnO are synthesized using e-beam evaporation technique.

  19. Deposition and characterization of ZnSe nanocrystalline thin films

    NASA Astrophysics Data System (ADS)

    Temel, Sinan; Gökmen, F. Özge; Yaman, Elif; Nebi, Murat

    2018-02-01

    ZnSe nanocrystalline thin films were deposited at different deposition times by using the Chemical Bath Deposition (CBD) technique. Effects of deposition time on structural, morphological and optical properties of the obtained thin films were characterized. X-ray diffraction (XRD) analysis was used to study the structural properties of ZnSe nanocrystalline thin films. It was found that ZnSe thin films have a cubic structure with a preferentially orientation of (111). The calculated average grain size value was about 28-30 nm. The surface morphology of these films was studied by the Field Emission Scanning Electron Microscope (FESEM). The surfaces of the thin films were occurred from small stacks and nano-sized particles. The band gap values of the ZnSe nanocrystalline thin films were determined by UV-Visible absorption spectrum and the band gap values were found to be between 2.65-2.86 eV.

  20. Additive Manufacturing and Characterization of Polylactic Acid (PLA) Composites Containing Metal Reinforcements

    NASA Technical Reports Server (NTRS)

    Kuentz, Lily; Salem, Anton; Singh, M.; Halbig, M. C.; Salem, J. A.

    2016-01-01

    Additive manufacturing of polymeric systems using 3D printing has become quite popular recently due to rapid growth and availability of low cost and open source 3D printers. Two widely used 3D printing filaments are based on polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) systems. PLA is much more environmentally friendly in comparison to ABS since it is made from renewable resources such as corn, sugarcane, and other starches as precursors. Recently, polylactic acid-based metal powder containing composite filaments have emerged which could be utilized for multifunctional applications. The composite filaments have higher density than pure PLA, and the majority of the materials volume is made up of polylactic acid. In order to utilize functionalities of composite filaments, printing behavior and properties of 3-D printed composites need to be characterized and compared with the pure PLA materials. In this study, pure PLA and composite specimens with different metallic reinforcements (Copper, Bronze, Tungsten, Iron, etc) were 3D printed at various layer heights and resulting microstructures and properties were characterized. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) behavior of filaments with different reinforcements were studied. The microscopy results show an increase in porosity between 3-D printed regular PLA and the metal composite PLA samples, which could produce weaker mechanical properties in the metal composite materials. Tensile strength and fracture toughness behavior of specimens as a function of print layer height will be presented.

  1. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mousa, Sahar, E-mail: dollyriri@yahoo.com; King Abdulaziz University, Science and Art College, Chemistry Department, Rabigh Campus, P.O. Box:344, Postal code: 21911 Rabigh; Hanna, Adly

    2013-02-15

    Graphical abstract: TEM micrograph of dried HAP at 800 °C. -- Abstract: Phosphogypsum (PG) waste which is derived from phosphoric acid manufacture by using wet method was converted into hydroxyapatite (HAP) and ammonium sulfate. Very simple method was applied by reacting PG with phosphoric acid in alkaline medium with adjusting pH using ammonia solution. The obtained nano-HAP was dried at 80 °C and calcined at 600 °C and 900 °C for 2 h. Both of HAP and ammonium sulfate were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR) to study the structural evolution. The thermal behavior of nano-HAP wasmore » studied; the particle size and morphology were estimated by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). All the results showed that HAP nano-crystalline and ammonium sulfate can successfully be produced from phosphogypsum waste.« less

  2. Reduction of Surface Roughness by Means of Laser Processing over Additive Manufacturing Metal Parts.

    PubMed

    Alfieri, Vittorio; Argenio, Paolo; Caiazzo, Fabrizia; Sergi, Vincenzo

    2016-12-31

    Optimization of processing parameters and exposure strategies is usually performed in additive manufacturing to set up the process; nevertheless, standards for roughness may not be evenly matched on a single complex part, since surface features depend on the building direction of the part. This paper aims to evaluate post processing treating via laser surface modification by means of scanning optics and beam wobbling to process metal parts resulting from selective laser melting of stainless steel in order to improve surface topography. The results are discussed in terms of roughness, geometry of the fusion zone in the cross-section, microstructural modification, and microhardness so as to assess the effects of laser post processing. The benefits of beam wobbling over linear scanning processing are shown, as heat effects in the base metal are proven to be lower.

  3. Development of manufacturing systems for nanocrystalline and ultra-fine grain materials employing indexing equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Hester, Michael Wayne

    Nanotechnology offers significant opportunities in providing solutions to existing engineering problems as well as breakthroughs in new fields of science and technology. In order to fully realize benefits from such initiatives, nanomanufacturing methods must be developed to integrate enabling constructs into commercial mainstream. Even though significant advances have been made, widespread industrialization in many areas remains limited. Manufacturing methods, therefore, must continually be developed to bridge gaps between nanoscience discovery and commercialization. A promising technology for integration of top-down nanomanufacturing yet to receive full industrialization is equal channel angular pressing, a process transforming metallic materials into nanostructured or ultra-fine grained materials with significantly improved performance characteristics. To bridge the gap between process potential and actual manufacturing output, a prototype top-down nanomanufacturing system identified as indexing equal channel angular pressing (IX-ECAP) was developed. The unit was designed to capitalize on opportunities of transforming spent or scrap engineering elements into key engineering commodities. A manufacturing system was constructed to impose severe plastic deformation via simple shear in an equal channel angular pressing die on 1100 and 4043 aluminum welding rods. 1/4 fraction factorial split-plot experiments assessed significance of five predictors on the response, microhardness, for the 4043 alloy. Predictor variables included temperature, number of passes, pressing speed, back pressure, and vibration. Main effects were studied employing a resolution III design. Multiple linear regression was used for model development. Initial studies were performed using continuous processing followed by contingency designs involving discrete variable length work pieces. IX-ECAP offered a viable solution in severe plastic deformation processing. Discrete variable length work piece

  4. Growth characteristics of nanocrystalline silicon films fabricated by using chlorinated precursors at low temperatures.

    PubMed

    Huang, Rui; Ding, Honglin; Song, Jie; Guo, Yanqing; Wang, Xiang; Lin, Xuanying

    2010-11-01

    We employed plasma enhanced chemical vapor deposition technique to fabricate nanocrystalline Si films at a low temperature of 250 degrees C by using SiCl4 and H2 as source gases. The evolution of microstructure of the films with deposition periods shows that nanocrystalline Si can be directly grown on amorphous substrate at the initial growth process, which is in contrast to the growth behavior observed in the SiH4/H2 system. Furthermore, it is interesting to find that the area density of nanocrystalline Si as well as grain size can be controlled by modulating the concentration of SiCl4. By decreasing the SiCl4 concentration, the area density of nanocrystalline Si can be enhanced up to 10(11) cm(-2), while the grain size is shown to decrease down to 10 nm. It is suggested that Cl plays an important role in the low-temperature growth of nanocrystalline Si.

  5. Nanocrystalline Iron-Ore-Based Catalysts for Fischer-Tropsch Synthesis.

    PubMed

    Yong, Seok; Park, Ji Chan; Lee, Ho-Tae; Yang, Jung-Il; Hong, SungJun; Jung, Heon; Chun, Dong Hyun

    2016-02-01

    Nanocrystalline iron ore particles were fabricated by a wet-milling process using an Ultra Apex Mill, after which they were used as raw materials of iron-based catalysts for low-temperature Fischer-Tropsch synthesis (FTS) below 280 degrees C, which usually requires catalysts with a high surface area, a large pore volume, and a small crystallite size. The wet-milling process using the Ultra Apex Mill effectively destroyed the initial crystallite structure of the natural iron ores of several tens to hundreds of nanometers in size, resulting in the generation of nanocrystalline iron ore particles with a high surface area and a large pore volume. The iron-ore-based catalysts prepared from the nanocrystalline iron ore particles effectively catalyzed the low-temperature FTS, displaying a high CO conversion (about 90%) and good C5+ hydrocarbon productivity (about 0.22 g/g(cat)(-h)). This demonstrates the feasibility of using the iron-ore-based catalysts as inexpensive and disposable catalysts for the low-temperature FTS.

  6. Hot pressing of nanocrystalline tantalum using high frequency induction heating and pulse plasma sintering

    NASA Astrophysics Data System (ADS)

    Jakubowicz, J.; Adamek, G.; Sopata, M.; Koper, J. K.; Siwak, P.

    2017-12-01

    The paper presents the results of nanocrystalline powder tantalum consolidation using hot pressing. The authors used two different heating techniques during hot pressing: high-frequency induction heating (HFIH) and pulse plasma sintering (PPS). A comparison of the structure, microstructure, mechanical properties and corrosion resistance of the bulk nanocrystalline tantalum obtained in both techniques was performed. The nanocrystalline powder was made to start from the microcrystalline one using the high-energy ball milling process. The nanocrystalline powder was hot-pressed at 1000 °C, whereas, for comparison, the microcrystalline powder was hot pressed up to 1500 °C for proper consolidation. The authors found that during hot pressing, the powder partially reacts with the graphite die covered by boron nitride, which facilitated punches and powder displacement in the die during densification. Tantalum carbide and boride in the nanocrystalline material was found, which can improve the mechanical properties. The hardness of the HFIH and PPS nanocrystalline tantalum was as high as 625 and 615 HV, respectively. The microstructure was more uniform in the PPS nanomaterial. The corrosion resistance in both cases deteriorated, in comparison to the microcrystalline material, while the PPS material corrosion resistance was slightly better than that of the HFIH one.

  7. Microstructures and mechanical properties of nanocrystalline NiTi intermetallics formed by mechanosynthesis

    NASA Astrophysics Data System (ADS)

    Arunkumar, S.; Kumaravel, P.; Velmurugan, C.; Senthilkumar, V.

    2018-01-01

    The formulation of nanocrystalline NiTi shape memory alloys has potential effects in mechanical stimulation and medical implantology. The present work elucidates the effect of milling time on the product's structural characteristics, chemical composition, and microhardness for NiTi synthesized by mechanical alloying for different milling durations. Increasing the milling duration led to the formation of a nanocrystalline NiTi intermetallic at a higher level. The formation of nanocrystalline materials was directed through cold fusion, fracturing, and the development of a steady state, which were influenced by the accumulation of strain energy. In the morphological study, uninterrupted cold diffusion and fracturing were visualized using transmission electron microscopy. Particle size analysis revealed that the mean particle size was reduced to 93 μm after 20 h of milling. The mechanical strength was enhanced by the formation of a nanocrystalline intermetallic phase at longer milling time, which was confirmed by the results of Vickers hardness analyses.

  8. ADVANCED MANUFACTURING TEAM

    NASA Image and Video Library

    2016-03-17

    JOHNNIE CLARK, BRIAN WEST, AND ZACK JONES OF MSFC’S ADVANCED MANUFACTURING TEAM, WITH MSFC’S XLINE SELECTIVE LASER MELTING SYSTEM. CURRENTLY ONE OF THE LARGEST METAL 3D PRINTERS, THE XLINE AT MARSHALL IS BEING USED TO DEVELOP AND CERTIFY NICKEL ALLOY 718 MATERIAL PROPERTIES AND LARGE MANUFACTURING TECH DEMOS FOR THE RS25 ENGINE AND THE COMMERCIAL CREWED VEHICLE PROJECTS.

  9. Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films

    NASA Astrophysics Data System (ADS)

    Valentini, L.; Cardinali, M.; Fortunati, E.; Kenny, J. M.

    2014-10-01

    With the continuous advance of modern electronics, the demand for nonvolatile memory cells rapidly grows. In order to develop post-silicon electronic devices, it is necessary to find innovative solutions to the eco-sustainability problem of materials for nonvolatile memory cells. In this work, we realized a resistive memory device based on graphene oxide (GO) and GO/cellulose nanocrystals (CNC) thin films. Aqueous solutions of GO and GO with CNC have been prepared and drop cast between two metal electrodes. Such thin-film based devices showed a transition between low and high conductivity states upon the forward and backward sweeping of an external electric field. This reversible current density transition behavior demonstrates a typical memory characteristic. The obtained results open an easy route for electronic information storage based on the integration of nanocrystalline cellulose onto graphene based devices.

  10. Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentini, L., E-mail: luca.valentini@unipg.it; Cardinali, M.; Fortunati, E.

    2014-10-13

    With the continuous advance of modern electronics, the demand for nonvolatile memory cells rapidly grows. In order to develop post-silicon electronic devices, it is necessary to find innovative solutions to the eco-sustainability problem of materials for nonvolatile memory cells. In this work, we realized a resistive memory device based on graphene oxide (GO) and GO/cellulose nanocrystals (CNC) thin films. Aqueous solutions of GO and GO with CNC have been prepared and drop cast between two metal electrodes. Such thin-film based devices showed a transition between low and high conductivity states upon the forward and backward sweeping of an external electricmore » field. This reversible current density transition behavior demonstrates a typical memory characteristic. The obtained results open an easy route for electronic information storage based on the integration of nanocrystalline cellulose onto graphene based devices.« less

  11. Polymer blend of PLA/PHBV based bionanocomposites reinforced with nanocrystalline cellulose for potential application as packaging material.

    PubMed

    Dasan, Y K; Bhat, A H; Ahmad, Faiz

    2017-02-10

    The current research discusses the development of poly (lactic acid) (PLA) and poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced nanocrystalline cellulose bionanocomposites. The nanocrystalline cellulose was derived from waste oil palm empty fruit bunch fiber by acid hydrolysis process. The resulting nanocrystalline cellulose suspension was then surface functionalized by TEMPO-mediated oxidation and solvent exchange process. Furthermore, the PLA/PHBV/nanocrystalline cellulose bionanocomposites were produced by solvent casting method. The effect of the addition of nanocrystalline cellulose on structural, morphology, mechanical and barrier properties of bionanocomposites was investigated. The results revealed that the developed bionanocomposites showed improved mechanical properties and decrease in oxygen permeability rate. Therefore, the developed bio-based composite incorporated with an optimal composition of nanocrystalline cellulose exhibits properties as compared to the polymer blend. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Plasma Processing Systems for the Manufacture of Refractory Metals and their Alloys for Military Needs

    DTIC Science & Technology

    1978-10-09

    melting point is around 4000*K. An exceedingly interesting feature of these solidification composites is the formation of fibrous MC type carbide ...the matrix could be refractory metal binary alloys with copper or uranium and the eutectic phase could be carbide of tungsten, * molybdenum, tantalum or...42 Accs -n or - *DTTI Tf Avn ! -7ll ’ i CrDi t , l’’*i,;. LIST OF FIGURES FIG. 1 Flow Diagram of Cemented Carbide Manufacture

  13. Measurement of Heavy Ion Irradiation Induced In-Plane Strain in Patterned Face-Centered-Cubic Metal Films: An in Situ Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, K. Y.; Chen, Y.; Li, J.

    Nanocrystalline Ag, Cu, and Ni thin films and their coarse grained counterparts are patterned in this paper using focused ion beam and then irradiated by Kr ions within an electron microscope at room temperature. Irradiation induced in-plane strain of the films is measured by tracking the location of nanosized holes. The magnitude of the strain in all specimens is linearly dose-dependent and the strain rates of nanocrystalline metals are significantly greater as compared to that of the coarse grained metals. Finally, real-time microscopic observation suggests that substantial grain boundary migration and grain rotation are responsible for the significant in-plane strain.

  14. Measurement of Heavy Ion Irradiation Induced In-Plane Strain in Patterned Face-Centered-Cubic Metal Films: An in Situ Study

    DOE PAGES

    Yu, K. Y.; Chen, Y.; Li, J.; ...

    2016-11-28

    Nanocrystalline Ag, Cu, and Ni thin films and their coarse grained counterparts are patterned in this paper using focused ion beam and then irradiated by Kr ions within an electron microscope at room temperature. Irradiation induced in-plane strain of the films is measured by tracking the location of nanosized holes. The magnitude of the strain in all specimens is linearly dose-dependent and the strain rates of nanocrystalline metals are significantly greater as compared to that of the coarse grained metals. Finally, real-time microscopic observation suggests that substantial grain boundary migration and grain rotation are responsible for the significant in-plane strain.

  15. Framework Stability of Nanocrystalline NaY in Aqueous Solution at Varying pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petushkov, Anton; Freeman, Jasmine; Larsen, Sarah C.

    Nanocrystalline zeolites (with crystal sizes of less than 50 nm) are versatile, porous nanomaterials with potential applications in a broad range of areas including bifunctional catalysis, drug delivery, environmental protection, and sensing, to name a few. The characterization of the properties of nanocrystalline zeolites on a fundamental level is critical to the realization of these innovative applications. Nanocrystalline zeolites have unique surface chemistry that is distinct from conventional microcrystalline zeolite materials and that will result in novel applications. In the proposed work, magnetic resonance techniques (solid state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR)) will be used tomore » elucidate the structure and reactivity of nanocrystalline zeolites and to motivate bifunctional applications. Density functional theory (DFT) calculations will enhance data interpretation through chemical shift, quadrupole coupling constant, g-value and hyperfine calculations.« less

  16. Wear Resistance of Steels with Surface Nanocrystalline Structure Generated by Mechanical-Pulse Treatment.

    PubMed

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha

    2017-12-01

    The influence of the surface mechanical-pulse treatment based on high-speed friction with a rapid cooling by the technological environment on the wear resistance of medium- and high-carbon steels was considered. The treatment due to a severe plastic deformation enabled obtaining the nanocrystalline structure with a grain size of 14-40 nm. A high positive effect of this treatment was obtained not only because of metal nanocrystallization but also thanks to other factors, namely, structural-phase transformations, carbon saturation of the surface due to decomposition of the coolant and the friction coefficient decrease. Higher carbon content leads to better strengthening of the surface, and its microhardness can reach 12 GPa.

  17. Revealing Grain Boundary Sliding from Textures of a Deformed Nanocrystalline Pd–Au Alloy

    PubMed Central

    Skrotzki, Werner; Zhao, Yajun; Pukenas, Aurimas; Birringer, Rainer

    2018-01-01

    Employing a recent modeling scheme for grain boundary sliding [Zhao et al. Adv. Eng. Mater. 2017, doi:10.1002/adem.201700212], crystallographic textures were simulated for nanocrystalline fcc metals deformed in shear compression. It is shown that, as grain boundary sliding increases, the texture strength decreases while the signature of the texture type remains the same. Grain boundary sliding affects the texture components differently with respect to intensity and angular position. A comparison of a simulation and an experiment on a Pd–10 atom % Au alloy with a 15 nm grain size reveals that, at room temperature, the predominant deformation mode is grain boundary sliding contributing to strain by about 60%. PMID:29370130

  18. Metal/ceramic interface structures and segregation behavior in aluminum-based composites

    DOE PAGES

    Zhang, Xinming; Hu, Tao; Rufner, Jorgen F.; ...

    2015-06-14

    Trimodal Al alloy (AA) matrix composites consisting of ultrafine-­grained (UFG) and coarse-­ grained (CG) Al phases and micron-­sized B 4C ceramic reinforcement particles exhibit combinations of strength and ductility that render them useful for potential applications in the aerospace, defense and automotive industries. Tailoring of microstructures with specific mechanical properties requires a detailed understanding of interfacial structures to enable strong interface bonding between ceramic reinforcement and metal matrix, and thereby allow for effective load transfer. Trimodal AA metal matrix composites typically show three characteristics that are noteworthy: nanocrystalline grains in the vicinity of the B4C reinforcement particles; Mg segregation atmore » AA/B 4C interfaces; and the presence of amorphous interfacial layers separating nanocrystalline grains from B 4C particles. Interestingly, however, fundamental information related to the mechanisms responsible for these characteristics as well as information on local compositions and phases are absent in the current literature. Here in this study, we use high-­resolution transmission electron microscopy, energy-­dispersive X-­ray spectroscopy, electron energy-­loss spectroscopy, and precession assisted electron diffraction to gain fundamental insight into the mechanisms that affect the characteristics of AA/B 4C interfaces. Specifically, we determined interfacial structures, local composition and spatial distribution of the interfacial constituents. Near atomic resolution characterization revealed amorphous multilayers and a nanocrystalline region between Al phase and B 4C reinforcement particles. The amorphous multilayers consist of nonstoichiometric Al xO y, while the nanocrystalline region is comprised of MgO nanograins. The experimental results are discussed in terms of the possible underlying mechanisms at AA/B 4C interfaces.« less

  19. Model for temperature-dependent magnetization of nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2015-01-01

    A magnetization model of nanocrystalline materials incorporating intragrain anisotropies, intergrain interactions, and texture effects has been extended to include the thermal fluctuations. The method relies on the stochastic Landau-Lifshitz-Gilbert theory of magnetization dynamics and permits to study the magnetic properties of nanocrystalline materials at arbitrary temperature below the Currie temperature. The model has been used to determine the intergrain exchange constant and grain boundary anisotropy constant of nanocrystalline Ni at 100 K and 298 K. It is found that the thermal fluctuations suppress the strength of the intergrain exchange coupling and also reduce the grain boundary anisotropy. In comparison with its value at 2 K, the interparticle exchange constant decreases by 16% and 42% and the grain boundary anisotropy constant decreases by 28% and 40% at 100 K and 298 K, respectively. An application of the model to study the grain size-dependent magnetization indicates that when the thermal activation energy is comparable to the free energy of grains, the decrease in the grain size leads to the decrease in the magnetic permeability and saturation magnetization. The mechanism by which the grain size influences the magnetic properties of nc-Ni is discussed.

  20. Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roehling, Tien T.; Wu, Sheldon S. Q.; Khairallah, Saad A.

    Additively manufactured (AM) metals are often highly textured, containing large columnar grains that initiate epitaxially under steep temperature gradients and rapid solidification conditions. These unique microstructures partially account for the massive property disparity existing between AM and conventionally processed alloys. Although equiaxed grains are desirable for isotropic mechanical behavior, the columnar-to-equiaxed transition remains difficult to predict for conventional solidification processes, and much more so for AM. In this study, the effects of laser intensity profile ellipticity on melt track macrostructures and microstructures were studied in 316L stainless steel. Experimental results were supported by temperature gradients and melt velocities simulated usingmore » the ALE3D multi-physics code. As a general trend, columnar grains preferentially formed with increasing laser power and scan speed for all beam profiles. However, when conduction mode laser heating occurs, scan parameters that result in coarse columnar microstructures using Gaussian profiles produce equiaxed or mixed equiaxed-columnar microstructures using elliptical profiles. Furthermore, by modulating spatial laser intensity profiles on the fly, site-specific microstructures and properties can be directly engineered into additively manufactured parts.« less

  1. Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing

    DOE PAGES

    Roehling, Tien T.; Wu, Sheldon S. Q.; Khairallah, Saad A.; ...

    2017-02-12

    Additively manufactured (AM) metals are often highly textured, containing large columnar grains that initiate epitaxially under steep temperature gradients and rapid solidification conditions. These unique microstructures partially account for the massive property disparity existing between AM and conventionally processed alloys. Although equiaxed grains are desirable for isotropic mechanical behavior, the columnar-to-equiaxed transition remains difficult to predict for conventional solidification processes, and much more so for AM. In this study, the effects of laser intensity profile ellipticity on melt track macrostructures and microstructures were studied in 316L stainless steel. Experimental results were supported by temperature gradients and melt velocities simulated usingmore » the ALE3D multi-physics code. As a general trend, columnar grains preferentially formed with increasing laser power and scan speed for all beam profiles. However, when conduction mode laser heating occurs, scan parameters that result in coarse columnar microstructures using Gaussian profiles produce equiaxed or mixed equiaxed-columnar microstructures using elliptical profiles. Furthermore, by modulating spatial laser intensity profiles on the fly, site-specific microstructures and properties can be directly engineered into additively manufactured parts.« less

  2. Reduction of Surface Roughness by Means of Laser Processing over Additive Manufacturing Metal Parts

    PubMed Central

    Alfieri, Vittorio; Argenio, Paolo; Caiazzo, Fabrizia; Sergi, Vincenzo

    2016-01-01

    Optimization of processing parameters and exposure strategies is usually performed in additive manufacturing to set up the process; nevertheless, standards for roughness may not be evenly matched on a single complex part, since surface features depend on the building direction of the part. This paper aims to evaluate post processing treating via laser surface modification by means of scanning optics and beam wobbling to process metal parts resulting from selective laser melting of stainless steel in order to improve surface topography. The results are discussed in terms of roughness, geometry of the fusion zone in the cross-section, microstructural modification, and microhardness so as to assess the effects of laser post processing. The benefits of beam wobbling over linear scanning processing are shown, as heat effects in the base metal are proven to be lower. PMID:28772380

  3. Correlation between the sub-structure parameters and the manufacturing technologies of metal threads in historical textiles using X-ray line profile analysis

    NASA Astrophysics Data System (ADS)

    Csiszár, Gábor; Ungár, Tamás; Járó, Márta

    2013-06-01

    Micro-structure can talk when documentation is missing. In ancient Roman or medieval periods, kings, queens, or just rich people decorated their clothes or even their horse covers richly with miniature jewels or metal threads. The origin or the fabrication techniques of these ancient threads is often unknown. Thirteen thread samples made of gold or gilt silver manufactured during the last sixteen hundred years are investigated for the micro-structure in terms of dislocation density, crystallite size, and planar defects. In a few cases, these features are compared with sub-structure of similar metallic threads prepared in modern, twentieth century workshops. The sub-structure is determined by X-ray line profile analysis, using high resolution diffractograms with negligible instrumental broadening. On the basis of the sub-structure parameters, we attempt to assess the metal-threads manufacturing procedures on samples stemming from the fourth century A.D. until now.

  4. Multifunctionality of nanocrystalline lanthanum ferrite

    NASA Astrophysics Data System (ADS)

    Rai, Atma; Thakur, Awalendra K.

    2016-05-01

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ˜42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ˜3.45 m2/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanum ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO3.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.

  5. Multifunctionality of nanocrystalline lanthanum ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Atma, E-mail: atma@iitp.ac.in; Thakur, Awalendra K.; Centre for Energy and Environment, Indian Institute of Technology Patna 800013 India

    2016-05-06

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ∼42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ∼3.45 m{sup 2}/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanummore » ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO{sub 3}.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.« less

  6. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives

    PubMed Central

    Cano, Santiago

    2018-01-01

    Additive manufacturing (AM) is the fabrication of real three-dimensional objects from metals, ceramics, or plastics by adding material, usually as layers. There are several variants of AM; among them material extrusion (ME) is one of the most versatile and widely used. In MEAM, molten or viscous materials are pushed through an orifice and are selectively deposited as strands to form stacked layers and subsequently a three-dimensional object. The commonly used materials for MEAM are thermoplastic polymers and particulate composites; however, recently innovative formulations of highly-filled polymers (HP) with metals or ceramics have also been made available. MEAM with HP is an indirect process, which uses sacrificial polymeric binders to shape metallic and ceramic components. After removing the binder, the powder particles are fused together in a conventional sintering step. In this review the different types of MEAM techniques and relevant industrial approaches for the fabrication of metallic and ceramic components are described. The composition of certain HP binder systems and powders are presented; the methods of compounding and filament making HP are explained; the stages of shaping, debinding, and sintering are discussed; and finally a comparison of the parts produced via MEAM-HP with those produced via other manufacturing techniques is presented. PMID:29783705

  7. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives.

    PubMed

    Gonzalez-Gutierrez, Joamin; Cano, Santiago; Schuschnigg, Stephan; Kukla, Christian; Sapkota, Janak; Holzer, Clemens

    2018-05-18

    Additive manufacturing (AM) is the fabrication of real three-dimensional objects from metals, ceramics, or plastics by adding material, usually as layers. There are several variants of AM; among them material extrusion (ME) is one of the most versatile and widely used. In MEAM, molten or viscous materials are pushed through an orifice and are selectively deposited as strands to form stacked layers and subsequently a three-dimensional object. The commonly used materials for MEAM are thermoplastic polymers and particulate composites; however, recently innovative formulations of highly-filled polymers (HP) with metals or ceramics have also been made available. MEAM with HP is an indirect process, which uses sacrificial polymeric binders to shape metallic and ceramic components. After removing the binder, the powder particles are fused together in a conventional sintering step. In this review the different types of MEAM techniques and relevant industrial approaches for the fabrication of metallic and ceramic components are described. The composition of certain HP binder systems and powders are presented; the methods of compounding and filament making HP are explained; the stages of shaping, debinding, and sintering are discussed; and finally a comparison of the parts produced via MEAM-HP with those produced via other manufacturing techniques is presented.

  8. Copper removal using electrosterically stabilized nanocrystalline cellulose.

    PubMed

    Sheikhi, Amir; Safari, Salman; Yang, Han; van de Ven, Theo G M

    2015-06-03

    Removal of heavy metal ions such as copper using an efficient and low-cost method with low ecological footprint is a critical process in wastewater treatment, which can be achieved in a liquid phase using nanoadsorbents such as inorganic nanoparticles. Recently, attention has turned toward developing sustainable and environmentally friendly nanoadsorbents to remove heavy metal ions from aqueous media. Electrosterically stabilized nanocrystalline cellulose (ENCC), which can be prepared from wood fibers through periodate/chlorite oxidation, has been shown to have a high charge content and colloidal stability. Here, we show that ENCC scavenges copper ions by different mechanisms depending on the ion concentration. When the Cu(II) concentration is low (C0≲200 ppm), agglomerates of starlike ENCC particles appear, which are broken into individual starlike entities by shear and Brownian motion, as evidenced by photometric dispersion analysis, dynamic light scattering, and transmission electron microscopy. On the other hand, at higher copper concentrations, the aggregate morphology changes from starlike to raftlike, which is probably due to the collapse of protruding dicarboxylic cellulose (DCC) chains and ENCC charge neutralization by copper adsorption. Such raftlike structures result from head-to-head and lateral aggregation of neutralized ENCCs as confirmed by transmission electron microscopy. As opposed to starlike aggregates, the raftlike structures grow gradually and are prone to sedimentation at copper concentrations C0≳500 ppm, which eliminates a costly separation step in wastewater treatment processes. Moreover, a copper removal capacity of ∼185 mg g(-1) was achieved thanks to the highly charged DCC polyanions protruding from ENCC. These properties along with the biorenewability make ENCC a promising candidate for wastewater treatment, in which fast, facile, and low-cost removal of heavy metal ions is desired most.

  9. 3D FE simulation of semi-finishing machining of Ti6Al4V additively manufactured by direct metal laser sintering

    NASA Astrophysics Data System (ADS)

    Imbrogno, Stano; Rinaldi, Sergio; Raso, Antonio; Bordin, Alberto; Bruschi, Stefania; Umbrello, Domenico

    2018-05-01

    The Additive Manufacturing techniques are gaining more and more interest in various industrial fields due to the possibility of drastically reduce the material waste during the production processes, revolutionizing the standard scheme and strategies of the manufacturing processes. However, the metal parts shape produced, frequently do not satisfy the tolerances as well as the surface quality requirements. During the design phase, the finite element simulation results a fundamental tool to help the engineers in the correct decision of the most suitable process parameters, especially in manufacturing processes, in order to produce products of high quality. The aim of this work is to develop a 3D finite element model of semi-finishing turning operation of Ti6Al4V, produced via Direct Metal Laser Sintering (DMLS). A customized user sub-routine was built-up in order to model the mechanical behavior of the material under machining operations to predict the main fundamental variables as cutting forces and temperature. Moreover, the machining induced alterations are also studied by the finite element model developed.

  10. Nanocarbon Allotropes-Graphene and Nanocrystalline Diamond-Promote Cell Proliferation.

    PubMed

    Verdanova, Martina; Rezek, Bohuslav; Broz, Antonin; Ukraintsev, Egor; Babchenko, Oleg; Artemenko, Anna; Izak, Tibor; Kromka, Alexander; Kalbac, Martin; Hubalek Kalbacova, Marie

    2016-05-01

    Two profoundly different carbon allotropes - nanocrystalline diamond and graphene - are of considerable interest from the viewpoint of a wide range of biomedical applications including implant coating, drug and gene delivery, cancer therapy, and biosensing. Osteoblast adhesion and proliferation on nanocrystalline diamond and graphene are compared under various conditions such as differences in wettability, topography, and the presence or absence of protein interlayers between cells and the substrate. The materials are characterized in detail by means of scanning electron microscopy, atomic force microscopy, photoelectron spectroscopy, Raman spectroscopy, and contact angle measurements. In vitro experiments have revealed a significantly higher degree of cell proliferation on graphene than on nanocrystalline diamond and a tissue culture polystyrene control material. Proliferation is promoted, in particular, by hydrophobic graphene with a large number of nanoscale wrinkles independent of the presence of a protein interlayer, i.e., substrate fouling is not a problematic issue in this respect. Nanowrinkled hydrophobic graphene, thus, exhibits superior characteristics for those biomedical applications where high cell proliferation is required under differing conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Influence of voids distribution on the deformation behavior of nanocrystalline palladium

    NASA Astrophysics Data System (ADS)

    Bachurin, D. V.

    2018-07-01

    Uniaxial deformation of three-dimensional nanocrystalline palladium containing porosity in the form of voids was investigated by means of molecular dynamics method. Simulations were performed at temperature of 300 K and at a constant strain rate of 108s-1. Two cases of voids distribution were considered: random and at triple or quadrupole junctions. It has been revealed that both the voids distribution and subsequent annealing at elevated temperature influence the deformation behavior of nanocrystalline palladium. In particular, the presence of voids at grain junctions results in a reduction of the Young's modulus and more pronounced softening effect during plastic deformation. The subsequent annealing evokes shrinkage of voids and strengthening effect. Contribution of grain boundary accommodation processes into both elastic and plastic deformation of nanocrystalline materials is discussed.

  12. Electrode characteristics of nanocrystalline (Zr, Ti)(V, Cr, Ni) 2.41 compound

    NASA Astrophysics Data System (ADS)

    Majchrzycki, W.; Jurczyk, M.

    The electrochemical properties of nanocrystalline Zr 0.35Ti 0.65V 0.85Cr 0.26Ni 1.30 alloy, which has the hexagonal C14 type structure, have been investigated. This material has been prepared using mechanical alloying (MA) followed by annealing. The amorphous phase forms directly from the starting mixture of the elements, without other phase formation. Heating the MA samples at 1070 K for 0.5 h resulted in the creation of ordered alloy. This alloy was used as negative electrode for Ni-MH x battery. The electrochemical results show very little difference between the nanocrystalline and polycrystalline powders, as compared with the substantial difference between these and the amorphous powder. In the annealed nanocrystalline Zr 0.35Ti 0.65V 0.85Cr 0.26Ni 1.30 powders discharging capacities up to 150 mA h g -1 (at 160 mA g -1 discharging current) have been measured. The properties of nanocrystalline electrode were attributed to the structural characteristics of the compound caused by mechanical alloying.

  13. Measurement of electromagnetic properties of powder and solid metal materials for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Todorov, Evgueni Iordanov

    2017-04-01

    The lack of validated nondestructive evaluation (NDE) techniques for examination during and after additive manufacturing (AM) component fabrication is one of the obstacles in the way of broadening use of AM for critical applications. Knowledge of electromagnetic properties of powder (e.g. feedstock) and solid AM metal components is necessary to evaluate and deploy electromagnetic NDE modalities for examination of AM components. The objective of this research study was to develop and implement techniques for measurement of powder and solid metal electromagnetic properties. Three materials were selected - Inconel 625, duplex stainless steel 2205, and carbon steel 4140. The powder properties were measured with alternate current (AC) model based eddy current technique and direct current (DC) resistivity measurements. The solid metal properties were measured with DC resistivity measurements, DC magnetic techniques, and AC model based eddy current technique. Initial magnetic permeability and electrical conductivity were acquired for both powder and solid metal. Additional magnetic properties such as maximum permeability, coercivity, retentivity, and others were acquired for 2205 and 4140. Two groups of specimens were tested along the build length and width respectively to investigate for possible anisotropy. There was no significant difference or anisotropy when comparing measurements acquired along build length to those along the width. A trend in AC measurements might be associated with build geometry. Powder electrical conductivity was very low and difficult to estimate reliably with techniques used in the study. The agreement between various techniques was very good where adequate comparison was possible.

  14. Molecular level energy and electron transfer processes at nanocrystalline titanium dioxide interfaces

    NASA Astrophysics Data System (ADS)

    Farzad, Fereshteh

    This thesis describes photo-induced molecular electron and energy transfer processes occurring at nanocrystalline semiconductor interfaces. The Introductory Chapter provides background and describes how these materials may be useful for solar energy conversion. In Chapter 2, results describing excitation of Ru(deeb)(bpy)2 2+, bis(2,2'-bipyridine)(2,2'-bipyridine-4,4 '-diethylester)ruthenium(II) hexafluorophosphate, bound to nanocrystalline TiO2 thin films, immersed in an acetonitrile bath are presented. The data indicates that light excitation forms predominately long-lived metal-to-ligand charge-transfer, MLCT, excited states under these conditions. Modeling of the data as a function of irradiance has been accomplished assuming parallel unimolecular and bimolecular excited state deactivation processes. The quantum yield for excited state formation depends on the excitation irradiance, consistent with triplet-triplet annihilation processes that occur with k > 1 x 108 s-1. Chapter 3 extends the work described in Chapter 2 to LiClO4 acetonitrile solutions. Li+ addition results in a red shift in the MLCT absorption and photoluminescence, PL, and a concentration dependent quenching of the PL intensity on TiO2. The Li+ induced spectroscopic changes were found to be reversible by varying the electrolyte composition. A second-order kinetic model quantified charge recombination transients. A model is proposed wherein Li+ ion adsorption stabilizes TiO2 acceptor states resulting in energetically more favorable interfacial electron transfer. The photophysical and photoelectrochemical properties of porous nanocrystalline anatase TiO2 electrodes modified with Ru(deeb)(bpy)2 2+, Os(deeb)(bpy)22+, and mixtures of both are described in Chapters 4 and 5. In regenerative solar cells with 0.5 M LiI/0.05 M I2 acetonitrile electrolyte, both compounds efficiently inject electrons into TiO2 producing monochromatic incident photon-to-current efficiencies (IPCE), IPCE (460 nm) = 0.70 + 0

  15. Biocompatibility of Advanced Manufactured Titanium Implants-A Review.

    PubMed

    Sidambe, Alfred T

    2014-12-19

    Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy.

  16. Biocompatibility of Advanced Manufactured Titanium Implants—A Review

    PubMed Central

    Sidambe, Alfred T.

    2014-01-01

    Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy. PMID:28788296

  17. Mechanical spectroscopy of nanocrystalline aluminum films: effects of frequency and grain size on internal friction.

    PubMed

    Sosale, Guruprasad; Almecija, Dorothée; Das, Kaushik; Vengallatore, Srikar

    2012-04-20

    Energy dissipation by internal friction is a property of fundamental interest for probing the effects of scale on mechanical behavior in nanocrystalline metallic films and for guiding the use of these materials in the design of high-Q micro/nanomechanical resonators. This paper describes an experimental study to measure the effects of frequency, annealing and grain size on internal friction at room temperature in sputter-deposited nanocrystalline aluminum films with thicknesses ranging from 60 to 120 nm. Internal friction was measured using a single-crystal silicon microcantilever platform that calibrates dissipation against the fundamental limits of thermoelastic damping. Internal friction was a weak function of frequency, reducing only by a factor of two over three decades of frequency (70 Hz to 44 kHz). Annealing led to significant grain growth and the average grain size of 100 nm thick films increased from 90 to 390 nm after annealing for 1 h at 450 (∘)C. This increase in grain size was accompanied by a decrease in internal friction from 0.05 to 0.02. Taken together, these results suggest that grain-boundary sliding, characterized by a spectrum of relaxation times, contributes to internal friction in these films. © 2012 IOP Publishing Ltd

  18. Surface Properties of a Nanocrystalline Fe-Ni-Nb-B Alloy After Neutron Irradiation

    NASA Astrophysics Data System (ADS)

    Pavùk, Milan; Sitek, Jozef; Sedlačková, Katarína

    2014-09-01

    The effect of neutron radiation on the surface properties of the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy was studied. Firstly, amorphous (Fe0.25Ni0.75)81Nb7B12 ribbon was brought by controlled annealing to the nanocrystalline state. After annealing, the samples of the nanocrystalline ribbon were irradiated in a nuclear reactor with neutron fluences of 1×1016cm-2 and 1 × 1017cm-2 . By utilizing the magnetic force microscopy (MFM), topography and a magnetic domain structure were recorded at the surface of the ribbon-shaped samples before and after irradiation with neutrons. The results indicate that in terms of surface the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy is radiation-resistant up to a neutron fluence of 1 × 1017cm-2 . The changes in topography observed for both irradiated samples are discussed

  19. Manufacturing techniques for titanium aluminide based alloys and metal matrix composites

    NASA Astrophysics Data System (ADS)

    Kothari, Kunal B.

    Dual phase titanium aluminides composed vastly of gamma phase (TiAl) with moderate amount of alpha2 phase (Ti3Al) have been considered for several high temperature aerospace and automobile applications. High specific strength coupled with good high temperature performance in the areas of creep and oxidation resistance makes titanium aluminides "materials of choice" for next generation propulsion systems. Titanium alumnides are primarily being considered as potential replacements for Ni-based superalloys in gas turbine engine components with aim of developing more efficient and leaner engines exhibiting high thrust-to-weight ratio. Thermo-mechanical treatments have shown to enhance the mechanical performance of titanium aluminides. Additionally, small additions of interstitial elements have shown further and significant improvement in the mechanical performance of titanium alumnide alloys. However, titanium aluminides lack considerably in room temperature ductility and as a result manufacturing processes of these aluminides have greatly suffered. Traditional ingot metallurgy and investment casting based methods to produce titanium aluminide parts in addition to being expensive, have also been unsuccessful in producing titanium aluminides with the desired mechanical properties. Hence, the manufacturing costs associated with these methods have completely outweighed the benefits offered by titanium aluminides. Over the last two decades, several powder metallurgy based manufacturing techniques have been studied to produce titanium aluminide parts. These techniques have been successful in producing titanium aluminide parts with a homogeneous and refined microstructure. These powder metallurgy techniques also hold the potential of significant cost reduction depending on the wide market acceptance of titanium aluminides. In the present study, a powder metallurgy based rapid consolidation technique has been used to produce near-net shape parts of titanium aluminides. Micron

  20. Grain growth in nanocrystalline iron and Fe-Al alloys

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Hamed; Zomorodian, Amir

    2010-02-01

    The effects of the annealing temperature and time, cryomilling in liquid nitrogen, and the addition of aluminum powder on the thermal stability and grain growth behavior of nanocrystalline iron were modeled using the Artificial Neural Network (ANN) technique. The developed model can be used as a guide for the quantification of the grain growth by considering the effects of annealing temperature and time. The model also quantified the effect of Al on the thermal stability of cryomilled nanocrystalline Fe. The model results showed that the cryomilling of Fe has a tangible effect on the stabilization of the nanostructure.

  1. Building a Competitive Edge with Additive Manufacturing

    DTIC Science & Technology

    2013-02-14

    construct ceramic molds for complex metal parts using a 3D printing technique. They estimate the new 6 technique could eliminate all of the...processes. They include 3D printing and Additive Beam Techniques.15 Most Additive Manufacturing techniques are specific to certain classes of materials...9 Example Additive Manufacturing Techniques16 3D Printing Additive Beam Stereolithography (SLA) Direct Metal Laser Sintering (DMLS

  2. Impact of biogenic nanoscale metals Fe, Cu, Zn and Se on reproductive LV chickens

    NASA Astrophysics Data System (ADS)

    Khiem Nguyen, Quy; Dieu Nguyen, Duy; Kien Nguyen, Van; Thinh Nguyen, Khac; Chau Nguyen, Hoai; Tin Tran, Xuan; Nguyen, Huu Cuong; Tien Phung, Duc

    2015-09-01

    Using biogenic nanoscale metals (Fe, Cu, ZnO, Se) to supplement into diet premix of reproductive LV (a Vietnamese Luong Phuong chicken breed) chickens resulted in certain improvement of poultry farming. The experimental data obtained showed that the farming indices depend mainly on the quantity of nanocrystalline metals which replaced the inorganic mineral component in the feed premix. All four experimental groups with different quantities of the replacement nano component grew and developed normally with livability reaching 91 to 94%, hen’s bodyweight at 38 weeks of age and egg weight ranged from 2.53-2.60 kg/hen and 50.86-51.55 g/egg, respectively. All these farming indices together with laying rate, egg productivity and chick hatchability peaked at group 5 with 25% of nanoscale metals compared to the standard inorganic mineral supplement, while feed consumption was lowest. The results also confirmed that nanocrystalline metals Fe, Cu, ZnO and Se supplemented to chicken feed were able to decrease inorganic minerals in the diet premixes at least four times, allowing animals to more effectively absorb feed minerals, consequently decreasing environmental pollution risks.

  3. Thermal conductivity of amorphous and nanocrystalline silicon films prepared by hot-wire chemical-vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jugdersuren, B.; Kearney, B. T.; Queen, D. R.

    We report 3..omega.. thermal conductivity measurements of amorphous and nanocrystalline silicon thin films from 85 to 300 K prepared by hot-wire chemical-vapor deposition, where the crystallinity of the films is controlled by the hydrogen dilution during growth. The thermal conductivity of the amorphous silicon film is in agreement with several previous reports of amorphous silicon prepared by a variety of deposition techniques. The thermal conductivity of the as-grown nanocrystalline silicon film is 70% higher and increases 35% more after an anneal at 600 degrees C. They all have similarly weak temperature dependence. Structural analysis shows that the as-grown nanocrystalline siliconmore » is approximately 60% crystalline, nanograins and grain boundaries included. The nanograins, averaging 9.1 nm in diameter in the as-grown film, are embedded in an amorphous matrix. The grain size increases to 9.7 nm upon annealing, accompanied by the disappearance of the amorphous phase. We extend the models of grain boundary scattering of phonons with two different non-Debye dispersion relations to explain our result of nanocrystalline silicon, confirming the strong grain size dependence of heat transport for nanocrystalline materials. However, the similarity in thermal conductivity between amorphous and nanocrystalline silicon suggests the heat transport mechanisms in both structures may not be as dissimilar as we currently understand.« less

  4. Surface modification of additive manufactured metal products by an intense electron beam

    NASA Astrophysics Data System (ADS)

    Teresov, A. D.; Koval, N. N.; Ivanov, Yu F.; Petrikova, E. A.; Krysina, O. V.

    2017-11-01

    On the example of VT6 titanium alloy it is shown that successive surface modification of additive manufactured metal specimens in vacuum at an argon pressure of 3.5·10-2 by ten pulses with 200 μs, 45 J/cm2 and then by three pulses with 50 μm, 20 J/cm2 provides a considerable decrease in their porosity and surface roughness (20 times for Ra) while their surface microhardness, friction coefficient, and wear level remain almost unchanged. After electron beam irradiation, the ultimate tensile strength of the material increases 1.33 times, and its tensile strain 1.18 times. For specimens obtained by conventional metallurgy and irradiated in the same modes, no such effects are observed.

  5. Study of Degradation Kinetics of Parathion Methyl On Mixed Nanocrystalline Titania-Zirconium and Titania-Cerium Oxides

    NASA Astrophysics Data System (ADS)

    Kuráň, Pavel; Pšenička, Martin; Šťastný, Martin; Benkocká, Monika; Janoš, Pavel

    2016-10-01

    The unique surface properties of some nanocrystalline metal oxides and their application for removal of various toxic compounds were reported in early 1990s. Recently, a reliable method for the preparation of reactive cerium dioxide sorbent and its application for degradation of the organophosphate pesticides, such as parathion methyl, chlorpyrifos, dichlofenthion, fenchlorphos, and prothiofos, as well as of some chemical warfare agents-nerve gases soman and O-ethyl S-[2-(diisopropylamino) ethyl] methylphosphonothioate (VX) was published. This paper reports on the kinetics study of degradation of parathion methyl as a representative organophosphate on nanocrystalline metal oxides TiO2, ZrO2, CeO2 and their mixtures in different molar ratios of particular elements. The tested sorbents except of CeO2 were prepared by different methods (e.g. sol-gel, precipitation) in cooperation with Institute of Inorganic Chemistry (Rez, Czech Republic). The degradation kinetics of parathion methyl on tested sorbents was followed by HPLC equipped with diode array detector. The basic kinetics parameters (half-lives of parathion methyl degradation, rate constants of degradation product formation) were calculated for each sorbent from Weber-Morris equation of 1st order diffusion kinetic model. The results proved the ability of prepared sorbents to degrade parathion methyl under formation of 4-nitrophenol as the main degradation product. The most efficient sorbents were TiCe (2:8), TiCe (1:1), TiCe (0:1) (50-70 %) followed by TiZr (1:1), TiCe (8:2), TiZr (8:2), TiZr (2:8) (20-30%) and TiO2, ZrO2 (less than 5 %).

  6. Characterization of an Aluminum Alloy Hemispherical Shell Fabricated via Direct Metal Laser Melting

    NASA Astrophysics Data System (ADS)

    Holesinger, T. G.; Carpenter, J. S.; Lienert, T. J.; Patterson, B. M.; Papin, P. A.; Swenson, H.; Cordes, N. L.

    2016-03-01

    The ability of additive manufacturing to directly fabricate complex shapes provides characterization challenges for part qualification. The orientation of the microstructures produced by these processes will change relative to the surface normal of a complex part. In this work, the microscopy and x-ray tomography of an AlSi10Mg alloy hemispherical shell fabricated using powder bed metal additive manufacturing are used to illustrate some of these challenges. The shell was manufactured using an EOS M280 system in combination with EOS-specified powder and process parameters. The layer-by-layer process of building the shell with the powder bed additive manufacturing approach results in a position-dependent microstructure that continuously changes its orientation relative to the shell surface normal. X-ray tomography was utilized to examine the position-dependent size and distribution of porosity and surface roughness in the 98.6% dense part. Optical and electron microscopy were used to identify global and local position-dependent structures, grain morphologies, chemistry, and precipitate sizes and distributions. The rapid solidification processes within the fusion zone (FZ) after the laser transit results in a small dendrite size. Cell spacings taken from the structure in the middle of the FZ were used with published relationships to estimate a cooling rate of ~9 × 105 K/s. Uniformly-distributed, nanoscale Si precipitates were found within the primary α-Al grains. A thin, distinct boundary layer containing larger α-Al grains and extended regions of the nanocrystalline divorced eutectic material surrounds the FZ. Subtle differences in the composition between the latter layer and the interior of the FZ were noted with scanning transmission electron microscopy (STEM) spectral imaging.

  7. Ionic Conduction in Nanocrystalline Materials

    DTIC Science & Technology

    2000-02-10

    In the following, we review studies performed films prepared by a polymer precursor process on on stabilized zirconia ceramics with grain sizes alumina ... titania , is reviewed. While it remains too early to make firm conclusions, the following observations are made. Additives which contribute to ion blocking...Keywords: Ionic conductivity; Nanocrystalline; Zirconia; Ceria; Titania ; Defects 1. Introduction tivity by nearly two orders of magnitude [6]. Given the

  8. Determination of pollutants in foundry during the manufacture of metal constructions for high buildings

    NASA Astrophysics Data System (ADS)

    Ivanova, Irina; Sushko, Elena; Lyshnikova, Anna; Prykina, Larisa

    2018-03-01

    Current developments are devoted to the environmental safety of the foundry. There is a significant amount of pollutants, according to dust, which is released in the working area, during the manufacture of metal structures for high buildings. From the point of dust extraction, the most unfavorable areas are shot blasting, sand-blasting chambers and knockout grills. The weight fraction of dust composition with diameters up to 20 μm reaches 43,8% by mass, according to experimental analysis. This kind of dust is the most dangerous to employees and also it creates problems for dust-cleaning in the air.

  9. Solid-State Additive Manufacturing for Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Norfolk, Mark; Johnson, Hilary

    2015-03-01

    Energy densities in devices are increasing across many industries including power generation, high power electronics, manufacturing, and automotive. Increasingly, there is a need for very high efficiency thermal management devices that can pull heat out of a small area at higher and higher rates. Metal additive manufacturing (AM) technologies have the promise of creating parts with complex internal geometries required for integral thermal management. However, this goal has not been met due to constraints in fusion-based metal 3D printers. This work presents a new strategy for metal AM of heat exchangers using an ultrasonic sheet lamination approach.

  10. Characteristics of W Doped Nanocrystalline Carbon Films Prepared by Unbalanced Magnetron Sputtering.

    PubMed

    Park, Yong Seob; Park, Chul Min; Kim, Nam-Hoon; Kim, Jae-Moon

    2016-05-01

    Nanocrystalline tungsten doped carbon (WC) films were prepared by unbalanced magnetron sputtering. Tungsten was used as the doping material in carbon thin films with the aim of application as a contact strip in an electric railway. The structural, physical, and electrical properties of the fabricated WC films with various DC bias voltages were investigated. The films had a uniform and smooth surface. Hardness and frication characteristics of the films were improved, and the resistivity and sheet resistance decreased with increasing negative DC bias voltage. These results are associated with the nanocrystalline WC phase and sp(2) clusters in carbon networks increased by ion bombardment enhanced with increasing DC bias voltage. Consequently, the increase of sp(2) clusters containing WC nanocrystalline in the carbon films is attributed to the improvement in the physical and electrical properties.

  11. Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method

    NASA Astrophysics Data System (ADS)

    Anwar, Budiman; Rosyid, Nurul Huda; Effendi, Devi Bentia; Nandiyanto, Asep Bayu Dani; Mudzakir, Ahmad; Hidayat, Topik

    2016-02-01

    Isolation of needle-shaped bacterial cellulose nanocrystalline with a diameter of 16-64 nm, a fiber length of 258-806 nm, and a degree of crystallinity of 64% from pineapple peel waste using an acid hydrolysis process was investigated. Experimental showed that selective concentration of acid played important roles in isolating the bacterial cellulose nanocrystalline from the cellulose source. To achieve the successful isolation of bacterial cellulose nanocrystalline, various acid concentrations were tested. To confirm the effect of acid concentration on the successful isolation process, the reaction conditions were fixed at a temperature of 50°C, a hydrolysis time of 30 minutes, and a bacterial cellulose-to-acid ratio of 1:50. Pineapple peel waste was used as a model for a cellulose source because to the best of our knowledge, there is no report on the use of this raw material for producing bacterial cellulose nanocrystalline. In fact, this material can be used as an alternative for ecofriendly and cost-free cellulose sources. Therefore, understanding in how to isolate bacterial cellulose nanocrystalline from pineapple peel waste has the potential for large-scale production of inexpensive cellulose nanocrystalline.

  12. Improve oxidation resistance at high temperature by nanocrystalline surface layer

    NASA Astrophysics Data System (ADS)

    Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.

    2015-08-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content.

  13. Synthesis and characterization of nanocrystalline mesoporous zirconia using supercritical drying.

    PubMed

    Tyagi, Beena; Sidhpuria, Kalpesh; Shaik, Basha; Jasra, Raksh Vir

    2006-06-01

    Synthesis of nano-crystalline zirconia aerogel was done by sol-gel technique and supercritical drying using n-propanol solvent at and above supercritical temperature (235-280 degrees C) and pressure (48-52 bar) of n-propanol. Zirconia xerogel samples have also been prepared by conventional thermal drying method to compare with the super critically dried samples. Crystalline phase, crystallite size, surface area, pore volume, and pore size distribution were determined for all the samples in detail to understand the effect of gel drying methods on these properties. Supercritical drying of zirconia gel was observed to give thermally stable, nano-crystalline, tetragonal zirconia aerogels having high specific surface area and porosity with narrow and uniform pore size distribution as compared to thermally dried zirconia. With supercritical drying, zirconia samples show the formation of only mesopores whereas in thermally dried samples, substantial amount of micropores are observed along with mesopores. The samples prepared using supercritical drying yield nano-crystalline zirconia with smaller crystallite size (4-6 nm) as compared to higher crystallite size (13-20 nm) observed with thermally dried zirconia.

  14. TRANSFORMATION AND FATE OF MANUFACTURED METAL OXIDE AND METAL NANOPARTICLES IN AQUEOUS ENVIRONMENTS

    EPA Science Inventory

    As commercial manufactured nanomaterials become more commonplace, we can expect that these manufactured materials have the potential to get into the environment sometime during production, distribution, use or disposal, i.e. sometime during the lifecycle of these materials. In...

  15. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    DOEpatents

    Gruen, Dieter M.

    2012-09-04

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  16. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    DOEpatents

    Gruen, Dieter M [Downers Grove, IL

    2009-08-11

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  17. Identification of Nanocrystalline Inclusions in Bismuth-Doped Silica Fibers and Preforms.

    PubMed

    Iskhakova, Liudmila D; Milovich, Filipp O; Mashinsky, Valery M; Zlenko, Alexander S; Borisovsky, Sergey E; Dianov, Evgeny M

    2016-10-01

    The nature of nanocrystalline inclusions and dopant distribution in bismuth-doped silicate fibers and preforms are studied by scanning and transmission electron microscopy, and energy and wavelength-dispersive X-ray microanalysis. The core compositions are Bi:SiO2, Bi:Al2O3-SiO2, Bi:GeO2-SiO2, Bi:Al2O3-GeO2-SiO2, and Bi:P2O5-Al2O3-GeO2-SiO2. Nanocrystals of metallic Bi, Bi2O3, SiO2, GeO2, and Bi4(GeO4)3 are observed in these glasses. These inclusions can be the reason for the background optical loss in bismuth-doped optical fibers. The bismuth concentration of 0.0048±0.0006 at% is directly measured in aluminosilicate optical fibers with effective laser generation (slope efficiency of 27% at room temperature).

  18. Transition from Irradiation-Induced Amorphization to Crystallization in Nanocrystalline Silicon Carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weilin; Jiao, Liang; Wang, Haiyan

    2011-12-01

    Response to irradiation of nanocrystalline 3C-SiC is studied using 2 MeV Au+ ions near the critical temperature for amorphization and is compared to the behavior of its monocrystalline counterpart under the identical irradiation conditions. The irradiated samples have been characterized using in-situ ion channeling, ex-situ x-ray diffraction, and helium ion microscopy. Compared to monocrystalline 3C-SiC, a faster amorphization process in the nanocrystalline material (average grain size = 3.3 nm) is observed at 500 K. However, the nanograin grows with increasing ion fluence at 550 K and the grain size tends to saturate at high fluences. The striking contrast demonstrates amore » sharp transition from irradiation-induced interface-driven amorphization at 500 K to crystallization at 550 K. The results could show potential impacts of nanocrystalline SiC on nuclear fuel cladding and structural components of next-generation nuclear energy systems.« less

  19. Study of metal whiskers growth and mitigation technique using additive manufacturing

    NASA Astrophysics Data System (ADS)

    Gullapalli, Vikranth

    For years, the alloy of choice for electroplating electronic components has been tin-lead (Sn-Pb) alloy. However, the legislation established in Europe on July 1, 2006, required significant lead (Pb) content reductions from electronic hardware due to its toxic nature. A popular alternative for coating electronic components is pure tin (Sn). However, pure tin has the tendency to spontaneously grow electrically conductive Sn whisker during storage. Sn whisker is usually a pure single crystal tin with filament or hair-like structures grown directly from the electroplated surfaces. Sn whisker is highly conductive, and can cause short circuits in electronic components, which is a very significant reliability problem. The damages caused by Sn whisker growth are reported in very critical applications such as aircraft, spacecraft, satellites, and military weapons systems. They are also naturally very strong and are believed to grow from compressive stresses developed in the Sn coating during deposition or over time. The new directive, even though environmentally friendly, has placed all lead-free electronic devices at risk because of whisker growth in pure tin. Additionally, interest has occurred about studying the nature of other metal whiskers such as zinc (Zn) whiskers and comparing their behavior to that of Sn whiskers. Zn whiskers can be found in flooring of data centers which can get inside electronic systems during equipment reorganization and movement and can also cause systems failure. Even though the topic of metal whiskers as reliability failure has been around for several decades to date, there is no successful method that can eliminate their growth. This thesis will give further insights towards the nature and behavior of Sn and Zn whiskers growth, and recommend a novel manufacturing technique that has potential to mitigate metal whiskers growth and extend life of many electronic devices.

  20. High Temperature Stable Nanocrystalline SiGe Thermoelectric Material

    NASA Technical Reports Server (NTRS)

    Yang, Sherwin (Inventor); Matejczyk, Daniel Edward (Inventor); Determan, William (Inventor)

    2013-01-01

    A method of forming a nanocomposite thermoelectric material having microstructural stability at temperatures greater than 1000 C. The method includes creating nanocrystalline powder by cryomilling. The method is particularly useful in forming SiGe alloy powder.

  1. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments

    PubMed Central

    El-Atwani, O.; Hinks, J. A.; Greaves, G.; Gonderman, S.; Qiu, T.; Efe, M.; Allain, J. P.

    2014-01-01

    The accumulation of defects, and in particular He bubbles, can have significant implications for the performance of materials exposed to the plasma in magnetic-confinement nuclear fusion reactors. Some of the most promising candidates for deployment into such environments are nanocrystalline materials as the engineering of grain boundary density offers the possibility of tailoring their radiation resistance properties. In order to investigate the microstructural evolution of ultrafine- and nanocrystalline-grained tungsten under conditions similar to those in a reactor, a transmission electron microscopy study with in situ 2 keV He+ ion irradiation at 950°C has been completed. A dynamic and complex evolution in the microstructure was observed including the formation of defect clusters, dislocations and bubbles. Nanocrystalline grains with dimensions less than around 60 nm demonstrated lower bubble density and greater bubble size than larger nanocrystalline (60–100 nm) and ultrafine (100–500 nm) grains. In grains over 100 nm, uniform distributions of bubbles and defects were formed. At higher fluences, large faceted bubbles were observed on the grain boundaries, especially on those of nanocrystalline grains, indicating the important role grain boundaries can play in trapping He and thus in giving rise to the enhanced radiation tolerance of nanocrystalline materials. PMID:24796578

  2. Lead, mercury, and arsenic in US- and Indian-manufactured Ayurvedic medicines sold via the Internet.

    PubMed

    Saper, Robert B; Phillips, Russell S; Sehgal, Anusha; Khouri, Nadia; Davis, Roger B; Paquin, Janet; Thuppil, Venkatesh; Kales, Stefanos N

    2008-08-27

    Lead, mercury, and arsenic have been detected in a substantial proportion of Indian-manufactured traditional Ayurvedic medicines. Metals may be present due to the practice of rasa shastra (combining herbs with metals, minerals, and gems). Whether toxic metals are present in both US- and Indian-manufactured Ayurvedic medicines is unknown. To determine the prevalence of Ayurvedic medicines available via the Internet containing detectable lead, mercury, or arsenic and to compare the prevalence of toxic metals in US- vs Indian-manufactured medicines and between rasa shastra and non-rasa shastra medicines. A search using 5 Internet search engines and the search terms Ayurveda and Ayurvedic medicine identified 25 Web sites offering traditional Ayurvedic herbs, formulas, or ingredients commonly used in Ayurveda, indicated for oral use, and available for sale. From 673 identified products, 230 Ayurvedic medicines were randomly selected for purchase in August-October 2005. Country of manufacturer/Web site supplier, rasa shastra status, and claims of Good Manufacturing Practices were recorded. Metal concentrations were measured using x-ray fluorescence spectroscopy. Prevalence of medicines with detectable toxic metals in the entire sample and stratified by country of manufacture and rasa shastra status. One hundred ninety-three of the 230 requested medicines were received and analyzed. The prevalence of metal-containing products was 20.7% (95% confidence interval [CI], 15.2%-27.1%). The prevalence of metals in US-manufactured products was 21.7% (95% CI, 14.6%-30.4%) compared with 19.5% (95% CI, 11.3%-30.1%) in Indian products (P = .86). Rasa shastra compared with non-rasa shastra medicines had a greater prevalence of metals (40.6% vs 17.1%; P = .007) and higher median concentrations of lead (11.5 microg/g vs 7.0 microg/g; P = .03) and mercury (20,800 microg/g vs 34.5 microg/g; P = .04). Among the metal-containing products, 95% were sold by US Web sites and 75% claimed Good

  3. Stabilizing Nanocrystalline Oxide Nanofibers at Elevated Temperatures by Coating Nanoscale Surface Amorphous Films.

    PubMed

    Yao, Lei; Pan, Wei; Luo, Jian; Zhao, Xiaohui; Cheng, Jing; Nishijima, Hiroki

    2018-01-10

    Nanocrystalline materials often exhibit extraordinary mechanical and physical properties but their applications at elevated temperatures are impaired by the rapid grain growth. Moreover, the grain growth in nanocrystalline oxide nanofibers at high temperatures can occur at hundreds of degrees lower than that would occur in corresponding bulk nanocrystalline materials, which would eventually break the fibers. Herein, by characterizing a model system of scandia-stabilized zirconia using hot-stage in situ scanning transmission electron microscopy, we discover that the enhanced grain growth in nanofibers is initiated at the surface. Subsequently, we demonstrate that coating the fibers with nanometer-thick amorphous alumina layer can enhance their temperature stability by nearly 400 °C via suppressing the surface-initiated grain growth. Such a strategy can be effectively applied to other oxide nanofibers, such as samarium-doped ceria, yttrium-stabilized zirconia, and lanthanum molybdate. The nanocoatings also increase the flexibility of the oxide nanofibers and stabilize the high-temperature phases that have 10 times higher ionic conductivity. This study provides new insights into the surface-initiated grain growth in nanocrystalline oxide nanofibers and develops a facile yet innovative strategy to improve the high-temperature stability of nanofibers for a broad range of applications.

  4. Quasi-static Tensile and Compressive Behavior of Nanocrystalline Tantalum based on Miniature Specimen Testing—Part I: Materials Processing and Microstructure

    NASA Astrophysics Data System (ADS)

    Ligda, J.; Scotto D'Antuono, D.; Taheri, M. L.; Schuster, B. E.; Wei, Q.

    2016-11-01

    Grain size reduction of metals into ultrafine-grained (UFG, grain size 100 nm < d < 1000 nm) and nanocrystalline (NC, d < 100 nm) regimes results in considerable increase in strength along with other changes in mechanical behavior such as vanishing strain hardening and limited ductility. Severe plastic deformation (SPD) has been among the favored technologies for the fabrication of UFG/NC metals. Primary past research efforts on SPD UFG/NC metals have been focused on easy-to-work metals, especially face-centered cubic metals such as copper, nickel, etc., and the limited efforts on body-centered cubic metals have mainly focused on high strain rate behavior where these metals are shown to deform via adiabatic shear bands. Except for the work on Fe, only a few papers can be found associated with UFG/NC refractory metals. In the first part of the present work (Part I), high-pressure torsion (HPT) is used to process UFG/NC tantalum, a typical refractory metal. The microstructure of the HPT disk as a function of radial location as well as orientation will be examined. In the subsequent part (Part II), the location-specific mechanical behavior will be presented and discussed. It is suggested that refractory metals such as Ta are ideal to employ SPD technology for microstructure refinement because of the extremely high melting point and relatively good workability.

  5. Separation of metallic residues from the dissolution of a high-burnup BWR fuel using nitrogen trifluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNamara, Bruce K.; Buck, Edgar C.; Soderquist, Chuck Z.

    2014-03-23

    Nitrogen trifluoride (NF 3) was used to fluorinate the metallic residue from the dissolution of a high burnup, boiling water reactor fuel (~70 MWd/kgU). The metallic residue included the noble metal phase (containing ruthenium, rhodium, palladium, technetium, and molybdenum), and smaller amounts of zirconium, selenium, tellurium, and silver. Exposing the noble metal phase to 10% NF 3 in argon between 400 and 550°C, removed molybdenum and technetium near 400°C as their volatile fluorides, and ruthenium near 500C as its volatile fluoride. The events were thermally and temporally distinct and the conditions specified are a recipe to separate these transition metalsmore » from each other and from the noble metal phase nonvolatile residue. Depletion of the volatile fluorides resulted in substantial exothermicity. Thermal excursion behavior was recorded under non-adiabatic, isothermal conditions that typically minimize heat release. Physical characterization of the metallic noble phase and its thermal behavior are consistent with high kinetic velocity reactions encouraged by the nanoparticulate phase or perhaps catalytic influences of the mixed platinum metals with nearly pure phase structure. Post-fluorination, only two phases were present in the residual nonvolatile fraction. These were identified as a nano-crystalline, metallic palladium cubic phase and a hexagonal rhodium trifluoride (RhF 3) phase. The two phases were distinct as the sub-µm crystallites of metallic palladium were in contrast to the RhF 3 phase, which grew from the parent nano-crystalline noble-metal phase during fluorination, to acicular crystals exceeding 20-µm in length.« less

  6. Additive Manufacturing/Diagnostics via the High Frequency Induction Heating of Metal Powders: The Determination of the Power Transfer Factor for Fine Metallic Spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios, Orlando; Radhakrishnan, Balasubramaniam; Caravias, George

    2015-03-11

    Grid Logic Inc. is developing a method for sintering and melting fine metallic powders for additive manufacturing using spatially-compact, high-frequency magnetic fields called Micro-Induction Sintering (MIS). One of the challenges in advancing MIS technology for additive manufacturing is in understanding the power transfer to the particles in a powder bed. This knowledge is important to achieving efficient power transfer, control, and selective particle heating during the MIS process needed for commercialization of the technology. The project s work provided a rigorous physics-based model for induction heating of fine spherical particles as a function of frequency and particle size. This simulationmore » improved upon Grid Logic s earlier models and provides guidance that will make the MIS technology more effective. The project model will be incorporated into Grid Logic s power control circuit of the MIS 3D printer product and its diagnostics technology to optimize the sintering process for part quality and energy efficiency.« less

  7. Evidence of a temperature transition for denuded zone formation in nanocrystalline Fe under He irradiation

    DOE PAGES

    El-Atwani, Osman; Nathaniel II, James E.; Leff, Asher C.; ...

    2016-10-18

    Nanocrystalline materials are radiation-tolerant materials’ candidates due to their high defect sink density. Here, nanocrystalline iron films were irradiated with 10 keV helium ions in situ in a transmission electron microscope at elevated temperatures. Grain-size-dependent bubble density changes and denuded zone occurrence were observed at 700 K, but not at 573 K. This transition, attributed to increased helium–vacancy migration at elevated temperatures, suggests that nanocrystalline microstructures are more resistant to swelling at 700 K due to decreased bubble density. Finally, denuded zone formation had no correlation with grain size and misorientation angle under the conditions studied.

  8. Atomic simulation of mechanical behavior of Mg in a super-lattice of nanocrystalline Mg and amorphous Mg-Al alloy

    NASA Astrophysics Data System (ADS)

    Song, H. Y.; An, M. R.; Li, Y. L.; Deng, Q.

    2014-12-01

    The mechanical properties of a super-lattice architecture composed of nanocrystalline Mg and Mg-Al amorphous alloy are investigated using molecular dynamics simulation. The results indicate that deformation mechanism of nanocrystalline Mg is obviously affected by the amorphous boundary spacing and temperature. The strength of the material increases with the decrease of amorphous boundary spacing, presenting a Hall-Petch effect at both 10 K and 300 K. A stress platform and following stiffness softening, as well as a linear strengthening in the plastic stage, are observed when the amorphous boundary spacing below 8.792 nm at 10 K. The implying reason may be that the amorphous boundary acts as the dislocations emission and absorption source. However, the second stress peak is not observed for the models at 300 K. Instead, the flow stress in plastic stage is a nearly constant value. The simulation demonstrates the emergence of the new grain, accompanied by the deformation twins and stacking faults associated with the plastic behaviors at 300 K. The general conclusions derived from this work may provide a guideline for the design of high-performance hexagonal close-packed metals.

  9. Method to grow pure nanocrystalline diamond films at low temperatures and high deposition rates

    DOEpatents

    Carlisle, John A [Plainfield, IL; Gruen, Dieter M [Downers Grove, IL; Auciello, Orlando [Bolingbrook, IL; Xiao, Xingcheng [Woodridge, IL

    2009-07-07

    A method of depositing nanocrystalline diamond film on a substrate at a rate of not less than about 0.2 microns/hour at a substrate temperature less than about 500.degree. C. The method includes seeding the substrate surface with nanocrystalline diamond powder to an areal density of not less than about 10.sup.10sites/cm.sup.2, and contacting the seeded substrate surface with a gas of about 99% by volume of an inert gas other than helium and about 1% by volume of methane or hydrogen and one or more of acetylene, fullerene and anthracene in the presence of a microwave induced plasma while maintaining the substrate temperature less than about 500.degree. C. to deposit nanocrystalline diamond on the seeded substrate surface at a rate not less than about 0.2 microns/hour. Coatings of nanocrystalline diamond with average particle diameters of less than about 20 nanometers can be deposited with thermal budgets of 500.degree. C.-4 hours or less onto a variety of substrates such as MEMS devices.

  10. "Designer" Metals as a Manufacturing Unit.

    ERIC Educational Resources Information Center

    Stier, Kenneth W.

    1996-01-01

    Technology educators have an obligation to keep pace with the changes taking place in materials science by changing their instructional content to provide students with the knowledge and skills in materials and processing methods that will be used in manufacturing for the 21st century. (JOW)

  11. Grain Growth in Nanocrystalline Mg-Al Thin Films

    DOE PAGES

    Kruska, Karen; Rohatgi, Aashish; Vemuri, Rama S.; ...

    2017-10-05

    We report that an improved understanding of grain growth kinetics in nanocrystalline materials, and in metals and alloys in general, is of continuing interest to the scientific community. In this study, Mg-Al thin films containing ~10 wt pct Al and with 14.5 nm average grain size were produced by magnetron sputtering and subjected to heat treatments. The grain growth evolution in the early stages of heat treatment at 423 K, 473 K, and 573 K (150 °C, 200 °C, and 300 °C) was observed with transmission electron microscopy and analyzed based upon the classical equation developed by Burke and Turnbull.more » The grain growth exponent was found to be 7 ± 2 and the activation energy for grain growth was 31.1 ± 13.4 kJ/mol, the latter being significantly lower than in bulk Mg-Al alloys. The observed grain growth kinetics are explained by the Al supersaturation in the matrix and the pinning effects of the rapidly forming beta precipitates and possibly shallow grain boundary grooves. In conclusion, the low activation energy is attributed to the rapid surface diffusion which is dominant in thin film systems.« less

  12. Grain Growth in Nanocrystalline Mg-Al Thin Films

    NASA Astrophysics Data System (ADS)

    Kruska, Karen; Rohatgi, Aashish; Vemuri, Rama S.; Kovarik, Libor; Moser, Trevor H.; Evans, James E.; Browning, Nigel D.

    2017-12-01

    An improved understanding of grain growth kinetics in nanocrystalline materials, and in metals and alloys in general, is of continuing interest to the scientific community. In this study, Mg-Al thin films containing 10 wt pct Al and with 14.5 nm average grain size were produced by magnetron sputtering and subjected to heat treatments. The grain growth evolution in the early stages of heat treatment at 423 K, 473 K, and 573 K (150 °C, 200 °C, and 300 °C) was observed with transmission electron microscopy and analyzed based upon the classical equation developed by Burke and Turnbull. The grain growth exponent was found to be 7 ± 2 and the activation energy for grain growth was 31.1 ± 13.4 kJ/mol, the latter being significantly lower than in bulk Mg-Al alloys. The observed grain growth kinetics are explained by the Al supersaturation in the matrix and the pinning effects of the rapidly forming beta precipitates and possibly shallow grain boundary grooves. The low activation energy is attributed to the rapid surface diffusion which is dominant in thin film systems.

  13. Rapid manufacturing of metallic Molds for parts in Automobile

    NASA Astrophysics Data System (ADS)

    Zhang, Renji; Xu, Da; Liu, Yuan; Yan, Xudong; Yan, Yongnian

    1998-03-01

    The recent research of RPM (Rapid Prototyping Manufacturing) in our lab has been focused on the rapid creation of alloyed cast iron (ACI) molds. There are a lot of machinery parts in an automobile, so a lot of mettallic molds are needed in automobile industry. A new mold manufacturing technology has been proposed. A new large scale RP machine has been set up in our lab now. Then rapid prototypes could be manufactured by means of laminated object manufacturing (LOM) technology. The molds for parts in automobile have been produced by ceramic shell precision casting. An example is a drawing mold for cover parts in automobile. Sufficient precision and surface roughness have been obtained. Itis proved that this is a vew kind of technology. Work supported by the Mational Science Foundation of China.

  14. Development of Nanocrystalline Zeolite Materials for the Decontamination of Chemical Warfare Agents

    DTIC Science & Technology

    2008-11-17

    phosphite (CH3O)2P(O)H or DMP. There is -40-20020406080100 In te ns ity ppm a) b) c) d) * ** ** ** * * 33 37 1225 9 Figure 6. 31P MAS NMR spectra...The main objective of this research is to use novel nanocrystalline zeolite materials synthesized in our laboratories for the decontamination of...nanocrystalline zeolite materials. In these studies, we have focused our attention on the decontamination of 2-CEES and DMMP, two simulants for mustard gas

  15. Functionalization of nanocrystalline diamond films with phthalocyanines

    NASA Astrophysics Data System (ADS)

    Petkov, Christo; Reintanz, Philipp M.; Kulisch, Wilhelm; Degenhardt, Anna Katharina; Weidner, Tobias; Baio, Joe E.; Merz, Rolf; Kopnarski, Michael; Siemeling, Ulrich; Reithmaier, Johann Peter; Popov, Cyril

    2016-08-01

    Phthalocyanine (Pc) derivatives containing different central metal atoms (Mn, Cu, Ti) and different peripheral chains were synthesized and comprehensively characterized. Their interaction with nanocrystalline diamond (NCD) films, as-grown by hot-filament chemical vapor deposition or after their modification with oxygen plasma to exchange the hydrogen termination with oxygen-containing groups, was studied by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The elemental composition as determined by XPS showed that the Pc were grafted on both as-grown and O-terminated NCD. Mn, Cu and Ti were detected together with N stemming from the Pc ring and S in case of the Ti-Pc from the peripheral ligands. The results for the elemental surface composition and the detailed study of the N 1s, S 2p and O 1s core spectra revealed that Ti-Pc grafted better on as-grown NCD but Cu-Pc and Mn-Pc on O-terminated films. Samples of Mn-Pc on as-grown and O-terminated NCD were further investigated by NEXAFS spectroscopy. The results showed ordering of the grafted molecules, laying flat on the H-terminated NCD surface while only the macrocycles were oriented parallel to the O-terminated surface with the peripheral chains perpendicular to it.

  16. Formation of fivefold deformation twins in nanocrystalline face-centered-cubic copper based on molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, A. J.; Wei, Y. G.

    2006-07-24

    Fivefold deformation twins were reported recently to be observed in the experiment of the nanocrystalline face-centered-cubic metals and alloys. However, they were not predicted previously based on the molecular dynamics (MD) simulations and the reason was thought to be a uniaxial tension considered in the simulations. In the present investigation, through introducing pretwins in grain regions, using the MD simulations, the authors predict out the fivefold deformation twins in the grain regions of the nanocrystal grain cell, which undergoes a uniaxial tension. It is shown in their simulation results that series of Shockley partial dislocations emitted from grain boundaries providemore » sequential twining mechanism, which results in fivefold deformation twins.« less

  17. Nanocrystalline diamond micro-anvil grown on single crystal diamond as a generator of ultra-high pressures

    DOE PAGES

    Samudrala, Gopi K.; Moore, Samuel L.; Velisavljevic, Nenad; ...

    2016-09-29

    By combining mask-less lithography and chemical vapor deposition (CVD) techniques, a novel two-stage diamond anvil has been fabricated. A nanocrystalline diamond (NCD) micro-anvil 30 μm in diameter was grown at the center of a [100]-oriented, diamond anvil by utilizing microwave plasma CVD method. The NCD micro-anvil has a diamond grain size of 115 nm and micro-focused Raman and X-ray Photoelectron spectroscopy analysis indicate sp3-bonded diamond content of 72%. Lastly, these CVD grown NCD micro-anvils were tested in an opposed anvil configuration and the transition metals osmium and tungsten were compressed to high pressures of 264 GPa in a diamond anvilmore » cell.« less

  18. Photon Doppler Velocimeter to Measure Entrained Additive Manufactured Bulk Metal Powders in Hot Subsonic and Supersonic Oxygen Gas

    NASA Technical Reports Server (NTRS)

    Tylka, Jonathan

    2016-01-01

    Parts produced by additive manufacturing, particularly selective laser melting (SLM), have been shown to silt metal particulate even after undergoing stringent precision aerospace cleaning processes (Lowrey 2016). As printed parts are used in oxygen systems with increased pressures, temperatures, and gas velocity, the risk of ignition by particle impact, the most common direct ignition source of metals in oxygen, substantially increases. The White Sands Test Facility (WSTF), in collaboration with Marshall Space Flight Center (MSFC), desires to test the ignitability of SLM metals by particle impact in heated oxygen. The existing test systems rely on gas velocity calculations to infer particle velocity in both subsonic and supersonic particle impact systems. Until now, it was not possible to directly measure particle velocity. To increase the fidelity of planned SLM ignition studies, it is necessary to validate that the Photon Doppler Velocimetry(PDV) test system can accurately measure particle velocity.

  19. Incremental electrohydraulic forming - A new approach for the manufacture of structured multifunctional sheet metal blanks

    NASA Astrophysics Data System (ADS)

    Djakow, Eugen; Springer, Robert; Homberg, Werner; Piper, Mark; Tran, Julian; Zibart, Alexander; Kenig, Eugeny

    2017-10-01

    Electrohydraulic Forming (EHF) processes permit the production of complex, sharp-edged geometries even when high-strength materials are used. Unfortunately, the forming zone is often limited as compared to other sheet metal forming processes. The use of a special industrial-robot-based tool setup and an incremental process strategy could provide a promising solution for this problem. This paper describes such an innovative approach using an electrohydraulic incremental forming machine, which can be employed to manufacture the large multifunctional and complex part geometries in steel, aluminium, magnesium and reinforced plastic that are employed in lightweight constructions or heating elements.

  20. Nanocrystalline sp{sup 2} and sp{sup 3} carbons: CVD synthesis and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terranova, M. L.; Rossi, M.; Tamburri, E., E-mail: emanuela.tamburri@uniroma2.it

    The design and production of innovative materials based on nanocrystalline sp{sup 2}- and sp{sup 3}-coordinated carbons is presently a focus of the scientific community. We present a review of the nanostructures obtained in our labs using a series of synthetic routes, which make use of chemical vapor deposition (CVD) techniques for the selective production of non-planar graphitic nanostructures, nanocrystalline diamonds, and hybrid two-phase nanostructures.

  1. Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components

    NASA Astrophysics Data System (ADS)

    Thivillon, L.; Bertrand, Ph.; Laget, B.; Smurov, I.

    2009-03-01

    Direct metal deposition (DMD) is an automated 3D deposition process arising from laser cladding technology with co-axial powder injection to refine or refurbish parts. Recently DMD has been extended to manufacture large-size near-net-shape components. When applied for manufacturing new parts (or their refinement), DMD can provide tailored thermal properties, high corrosion resistance, tailored tribology, multifunctional performance and cost savings due to smart material combinations. In repair (refurbishment) operations, DMD can be applied for parts with a wide variety of geometries and sizes. In contrast to the current tool repair techniques such as tungsten inert gas (TIG), metal inert gas (MIG) and plasma welding, laser cladding technology by DMD offers a well-controlled heat-treated zone due to the high energy density of the laser beam. In addition, this technology may be used for preventative maintenance and design changes/up-grading. One of the advantages of DMD is the possibility to build functionally graded coatings (from 1 mm thickness and higher) and 3D multi-material objects (for example, 100 mm-sized monolithic rectangular) in a single-step manufacturing cycle by using up to 4-channel powder feeder. Approved materials are: Fe (including stainless steel), Ni and Co alloys, (Cu,Ni 10%), WC compounds, TiC compounds. The developed coatings/parts are characterized by low porosity (<1%), fine microstructure, and their microhardness is close to the benchmark value of wrought alloys after thermal treatment (Co-based alloy Stellite, Inox 316L, stainless steel 17-4PH). The intended applications concern cooling elements with complex geometry, friction joints under high temperature and load, light-weight mechanical support structures, hermetic joints, tubes with complex geometry, and tailored inside and outside surface properties, etc.

  2. Fabrication of GaN doped ZnO nanocrystallines by laser ablation.

    PubMed

    Gopalakrishnan, N; Shin, B C; Bhuvana, K P; Elanchezhiyan, J; Balasubramanian, T

    2008-08-01

    Here, we present the fabrication of pure and GaN doped ZnO nanocrystallines on Si(111) substrates by KrF excimer laser. The targets for the ablation have been prepared by conventional ceramic method. The fabricated nanocrystallines have been investigated by X-ray diffraction, photoluminescence and atomic force microscopy. The X-ray diffraction analysis shows that the crystalline size of pure ZnO is 36 nm and it is 41 nm while doped with 0.8 mol% of GaN due to best stoichiometry between Zn and O. Photoluminescence studies reveal that intense deep level emissions have been observed for pure ZnO and it has been suppressed for the GaN doped ZnO structures. The images of atomic force microscope show that the rms surface roughness is 27 nm for pure ZnO and the morphology is improved with decrease in rms roughness, 18 nm with fine crystallines while doped with 1 mol% GaN. The improved structural, optical and morphological properties of ZnO nanocrystalline due to GaN dopant have been discussed in detail.

  3. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts.

    PubMed

    Cheng, Fangyi; Shen, Jian; Peng, Bo; Pan, Yuede; Tao, Zhanliang; Chen, Jun

    2011-01-01

    Spinels can serve as alternative low-cost bifunctional electrocatalysts for oxygen reduction/evolution reactions (ORR/OER), which are the key barriers in various electrochemical devices such as metal-air batteries, fuel cells and electrolysers. However, conventional ceramic synthesis of crystalline spinels requires an elevated temperature, complicated procedures and prolonged heating time, and the resulting product exhibits limited electrocatalytic performance. It has been challenging to develop energy-saving, facile and rapid synthetic methodologies for highly active spinels. In this Article, we report the synthesis of nanocrystalline M(x)Mn(3-x)O(4) (M = divalent metals) spinels under ambient conditions and their electrocatalytic application. We show rapid and selective formation of tetragonal or cubic M(x)Mn(3-x)O(4) from the reduction of amorphous MnO(2) in aqueous M(2+) solution. The prepared Co(x)Mn(3-x)O(4) nanoparticles manifest considerable catalytic activity towards the ORR/OER as a result of their high surface areas and abundant defects. The newly discovered phase-dependent electrocatalytic ORR/OER characteristics of Co-Mn-O spinels are also interpreted by experiment and first-principle theoretical studies.

  4. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility.

    PubMed

    Tan, X P; Tan, Y J; Chow, C S L; Tor, S B; Yeong, W Y

    2017-07-01

    Metallic cellular scaffold is one of the best choices for orthopaedic implants as a replacement of human body parts, which could improve life quality and increase longevity for the people needed. Unlike conventional methods of making cellular scaffolds, three-dimensional (3D) printing or additive manufacturing opens up new possibilities to fabricate those customisable intricate designs with highly interconnected pores. In the past decade, metallic powder-bed based 3D printing methods emerged and the techniques are becoming increasingly mature recently, where selective laser melting (SLM) and selective electron beam melting (SEBM) are the two representatives. Due to the advantages of good dimensional accuracy, high build resolution, clean build environment, saving materials, high customisability, etc., SLM and SEBM show huge potential in direct customisable manufacturing of metallic cellular scaffolds for orthopaedic implants. Ti-6Al-4V to date is still considered to be the optimal materials for producing orthopaedic implants due to its best combination of biocompatibility, corrosion resistance and mechanical properties. This paper presents a state-of-the-art overview mainly on manufacturing, topological design, mechanical properties and biocompatibility of cellular Ti-6Al-4V scaffolds via SLM and SEBM methods. Current manufacturing limitations, topological shortcomings, uncertainty of biocompatible test were sufficiently discussed herein. Future perspectives and recommendations were given at the end. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Characterization of an aluminum alloy hemispherical shell fabricated via direct metal laser melting

    DOE PAGES

    Holesinger, T. G.; Carpenter, J. S.; Lienert, T. J.; ...

    2016-01-11

    The ability of additive manufacturing to directly fabricate complex shapes provides characterization challenges for part qualification. The orientation of the microstructures produced by these processes will change relative to the surface normal of a complex part. In this work, the microscopy and x-ray tomography of an AlSi10Mg alloy hemispherical shell fabricated using powder bed metal additive manufacturing are used to illustrate some of these challenges. The shell was manufactured using an EOS M280 system in combination with EOS-specified powder and process parameters. The layer-by-layer process of building the shell with the powder bed additive manufacturing approach results in a position-dependentmore » microstructure that continuously changes its orientation relative to the shell surface normal. X-ray tomography was utilized to examine the position-dependent size and distribution of porosity and surface roughness in the 98.6% dense part. Optical and electron microscopy were used to identify global and local position-dependent structures, grain morphologies, chemistry, and precipitate sizes and distributions. The rapid solidification processes within the fusion zone (FZ) after the laser transit results in a small dendrite size. Cell spacings taken from the structure in the middle of the FZ were used with published relationships to estimate a cooling rate of ~9 × 10 5 K/s. Uniformly-distributed, nanoscale Si precipitates were found within the primary α-Al grains. A thin, distinct boundary layer containing larger α-Al grains and extended regions of the nanocrystalline divorced eutectic material surrounds the FZ. Moreover, subtle differences in the composition between the latter layer and the interior of the FZ were noted with scanning transmission electron microscopy (STEM) spectral imaging.« less

  6. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  7. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  8. Multivariate analysis of mixed contaminants (PAHs and heavy metals) at manufactured gas plant site soils.

    PubMed

    Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2012-06-01

    Principal component analysis (PCA) was used to provide an overview of the distribution pattern of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in former manufactured gas plant (MGP) site soils. PCA is the powerful multivariate method to identify the patterns in data and expressing their similarities and differences. Ten PAHs (naphthalene, acenapthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benzo[a]pyrene) and four toxic heavy metals - lead (Pb), cadmium (Cd), chromium (Cr) and zinc (Zn) - were detected in the site soils. PAH contamination was contributed equally by both low and high molecular weight PAHs. PCA was performed using the varimax rotation method in SPSS, 17.0. Two principal components accounting for 91.7% of the total variance was retained using scree test. Principle component 1 (PC1) substantially explained the dominance of PAH contamination in the MGP site soils. All PAHs, except anthracene, were positively correlated in PC1. There was a common thread in high molecular weight PAHs loadings, where the loadings were inversely proportional to the hydrophobicity and molecular weight of individual PAHs. Anthracene, which was less correlated with other individual PAHs, deviated well from the origin which can be ascribed to its lower toxicity and different origin than its isomer phenanthrene. Among the four major heavy metals studied in MGP sites, Pb, Cd and Cr were negatively correlated in PC1 but showed strong positive correlation in principle component 2 (PC2). Although metals may not have originated directly from gaswork processes, the correlation between PAHs and metals suggests that the materials used in these sites may have contributed to high concentrations of Pb, Cd, Cr and Zn. Thus, multivariate analysis helped to identify the sources of PAHs, heavy metals and their association in MGP site, and thereby better characterise the site risk, which would not be possible if one uses chemical analysis

  9. Lead, Mercury, and Arsenic in US- and Indian-Manufactured Ayurvedic Medicines Sold via the Internet

    PubMed Central

    Saper, Robert B.; Phillips, Russell S.; Sehgal, Anusha; Khouri, Nadia; Davis, Roger B.; Paquin, Janet; Thuppil, Venkatesh; Kales, Stefanos N.

    2009-01-01

    Context Lead, mercury, and arsenic have been detected in a substantial proportion of Indian-manufactured traditional Ayurvedic medicines. Metals may be present due to the practice of rasa shastra (combining herbs with metals, minerals, and gems). Whether toxic metals are present in both US- and Indian-manufactured Ayurvedic medicines is unknown. Objectives To determine the prevalence of Ayurvedic medicines available via the Internet containing detectable lead, mercury, or arsenic and to compare the prevalence of toxic metals in US- vs Indian-manufactured medicines and between rasa shastra and non–rasa shastra medicines. Design A search using 5 Internet search engines and the search terms Ayurveda and Ayurvedic medicine identified 25 Web sites offering traditional Ayurvedic herbs, formulas, or ingredients commonly used in Ayurveda, indicated for oral use, and available for sale. From 673 identified products, 230 Ayurvedic medicines were randomly selected for purchase in August–October 2005. Country of manufacturer/Web site supplier, rasa shastra status, and claims of Good Manufacturing Practices were recorded. Metal concentrations were measured using x-ray fluorescence spectroscopy. Main Outcome Measures Prevalence of medicines with detectable toxic metals in the entire sample and stratified by country of manufacture and rasa shastra status. Results One hundred ninety-three of the 230 requested medicines were received and analyzed. The prevalence of metal-containing products was 20.7% (95% confidence interval [CI], 15.2%–27.1%). The prevalence of metals in US-manufactured products was 21.7% (95% CI, 14.6%–30.4%) compared with 19.5% (95% CI, 11.3%–30.1%) in Indian products (P=.86). Rasa shastra compared with non–rasa shastra medicines had a greater prevalence of metals (40.6% vs 17.1%; P=.007) and higher median concentrations of lead (11.5 μg/g vs 7.0 μg/g; P=.03) and mercury (20 800 μg/g vs 34.5 μg/g; P=.04). Among the metal-containing products, 95

  10. Stability of nanocrystalline Ni-based alloys: coupling Monte Carlo and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Waseda, O.; Goldenstein, H.; Silva, G. F. B. Lenz e.; Neiva, A.; Chantrenne, P.; Morthomas, J.; Perez, M.; Becquart, C. S.; Veiga, R. G. A.

    2017-10-01

    The thermal stability of nanocrystalline Ni due to small additions of Mo or W (up to 1 at%) was investigated in computer simulations by means of a combined Monte Carlo (MC)/molecular dynamics (MD) two-steps approach. In the first step, energy-biased on-lattice MC revealed segregation of the alloying elements to grain boundaries. However, the condition for the thermodynamic stability of these nanocrystalline Ni alloys (zero grain boundary energy) was not fulfilled. Subsequently, MD simulations were carried out for up to 0.5 μs at 1000 K. At this temperature, grain growth was hindered for minimum global concentrations of 0.5 at% W and 0.7 at% Mo, thus preserving most of the nanocrystalline structure. This is in clear contrast to a pure Ni model system, for which the transformation into a monocrystal was observed in MD simulations within 0.2 μs at the same temperature. These results suggest that grain boundary segregation of low-soluble alloying elements in low-alloyed systems can produce high-temperature metastable nanocrystalline materials. MD simulations carried out at 1200 K for 1 at% Mo/W showed significant grain boundary migration accompanied by some degree of solute diffusion, thus providing additional evidence that solute drag mostly contributed to the nanostructure stability observed at lower temperature.

  11. FAST TRACK COMMUNICATION: Nanocrystalline silicon film growth morphology control through RF waveform tailoring

    NASA Astrophysics Data System (ADS)

    Johnson, Erik V.; Verbeke, Thomas; Vanel, Jean-Charles; Booth, Jean-Paul

    2010-10-01

    We demonstrate the application of RF waveform tailoring to generate an electrical asymmetry in a capacitively coupled plasma-enhanced chemical vapour deposition system, and its use to control the growth mode of hydrogenated amorphous and nanocrystalline silicon thin films deposited at low temperature (150 °C). A dramatic shift in the dc bias potential at the powered electrode is observed when simply inverting the voltage waveform from 'peaks' to 'troughs', indicating an asymmetric distribution of the sheath voltage. By enhancing or suppressing the ion bombardment energy at the substrate (situated on the grounded electrode), the growth of thin silicon films can be switched between amorphous and nanocrystalline modes, as observed using in situ spectroscopic ellipsometry. The effect is observed at pressures sufficiently low that the collisional reduction in average ion bombardment energy is not sufficient to allow nanocrystalline growth (<100 mTorr).

  12. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs.

    PubMed

    Sing, Swee Leong; An, Jia; Yeong, Wai Yee; Wiria, Florencia Edith

    2016-03-01

    Additive manufacturing (AM), also commonly known as 3D printing, allows the direct fabrication of functional parts with complex shapes from digital models. In this review, the current progress of two AM processes suitable for metallic orthopaedic implant applications, namely selective laser melting (SLM) and electron beam melting (EBM) are presented. Several critical design factors such as the need for data acquisition for patient-specific design, design dependent porosity for osteo-inductive implants, surface topology of the implants and design for reduction of stress-shielding in implants are discussed. Additive manufactured biomaterials such as 316L stainless steel, titanium-6aluminium-4vanadium (Ti6Al4V) and cobalt-chromium (CoCr) are highlighted. Limitations and future potential of such technologies are also explored. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Influence of Dispersant and Heat Treatment on the Morphology of Nanocrystalline Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Pan, Yusong; Xiong, Dangsheng

    2010-10-01

    Natural biological hard tissues are biocomposites of proteins and hydroxyapatite (HA) with superior strength. Nanometer scale HAp is the key material to manufacture bone substitute. In this work, nano-sized HA particles were synthesized by a wet method using orthophosphoric acid and calcium hydroxide as raw materials. The prepared nanocrystalline HAp was characterized for its phase purity and nano-scale morphological structure by XRD, TEM, and FTIR. The influences of heat treatment temperature and dispersant on the properties of HAp were also investigated. The results indicated that nano-particles were pure single-phase HAp with a diameter of 25-70 nm and length of 50-180 nm depending on heat treatment temperature. The morphology and crystallite size of HAp change with heat treatment temperature. After heat treating, the crystallinity of these nano-particles increased and its morphology transformed from needle-like to sphere-like structure. The dispersant is beneficial to prevent the growth of HA particles and provide a uniform particle size distribution. Moreover, the HAp tends to form small agglomerates in the absence of dispersant.

  14. Computed Tomography Inspection and Analysis for Additive Manufacturing Components

    NASA Technical Reports Server (NTRS)

    Beshears, Ronald D.

    2017-01-01

    Computed tomography (CT) inspection was performed on test articles additively manufactured from metallic materials. Metallic AM and machined wrought alloy test articles with programmed flaws and geometric features were inspected using a 2-megavolt linear accelerator based CT system. Performance of CT inspection on identically configured wrought and AM components and programmed flaws was assessed to determine the impact of additive manufacturing on inspectability of objects with complex geometries.

  15. Grain boundary and triple junction diffusion in nanocrystalline copper

    NASA Astrophysics Data System (ADS)

    Wegner, M.; Leuthold, J.; Peterlechner, M.; Song, X.; Divinski, S. V.; Wilde, G.

    2014-09-01

    Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes, , of ˜35 and ˜44 nm produced by spark plasma sintering were investigated by the radiotracer method using the 63Ni isotope. The measured diffusivities, Deff, are comparable with those determined previously for Ni grain boundary diffusion in well-annealed, high purity, coarse grained, polycrystalline copper, substantiating the absence of a grain size effect on the kinetic properties of grain boundaries in a nanocrystalline material at grain sizes d ≥ 35 nm. Simultaneously, the analysis predicts that if triple junction diffusion of Ni in Cu is enhanced with respect to the corresponding grain boundary diffusion rate, it is still less than 500ṡDgb within the temperature interval from 420 K to 470 K.

  16. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mecartnery, Martha; Graeve, Olivia; Patel, Maulik

    2017-05-25

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  17. Method for manufacturing magnetohydrodynamic electrodes

    DOEpatents

    Killpatrick, D.H.; Thresh, H.R.

    1980-06-24

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.

  18. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    NASA Astrophysics Data System (ADS)

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubenchik, A. M.

    2015-12-01

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this paper, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  19. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    DOE PAGES

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; ...

    2015-12-29

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In thismore » study, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.« less

  20. Manufacturing and actuation characterization of ionic polymer metal composites with silver as electrodes

    NASA Astrophysics Data System (ADS)

    Pandita, Surya D.; Lim, Hyoung Tae; Yoo, Youngtai; Park, Hoon Cheol

    2006-03-01

    Manufacturing and characterization of ionic polymer metal composites (IPMCs) with silver as electrodes have been investigated. Tollen's reagent that contains ion Ag(NH 3) II + was used as a raw material for silver deposition on the surfaces of the polymer membrane Nafion"R". Two types of inner solvents, namely common water based electrolyte solution (LiOH 1N) and ionic liquid were used and investigated. Compared to IPMCs with platinum electrodes, silver-plated IPMCs with water electrolyte showed higher conductivity. The actuation response of silver-plated IPMCs with the water based electrolyte was faster than that of platinum IPMCs. However, the silver electrode was too brittle and severely damaged during the solvent exchange process from water to ionic liquid, resulted in high resistance and hence very low actuation behavior.

  1. The Role of Laser Additive Manufacturing Methods of Metals in Repair, Refurbishment and Remanufacturing - Enabling Circular Economy

    NASA Astrophysics Data System (ADS)

    Leino, Maija; Pekkarinen, Joonas; Soukka, Risto

    Circular economy is an economy model where products, components, and materials are aimed to be kept at their highest utility and value at all times. Repair, refurbishment and remanufacturing processes are procedures aiming at returning the value of the product during its life cycle. Additive manufacturing (AM) is expected to be an enabling technology in circular economy based business models. One of AM process that enables repair, refurbishment and remanufacturing is Directed Energy Deposition. Respectively Powder Bed Fusion enables manufacturing of replacement components on demand. The aim of this study is to identify the current research findings and state of art of utilizing AM in repair, refurbishment and remanufacturing processes of metallic products. The focus is in identifying possibilities of AM in promotion of circular economy and expected environmental benefits based on the found literature. Results of the study indicate significant potential in utilizing AM in repair, refurbishment and remanufacturing activities.

  2. Anti-inflammatory activity of nanocrystalline silver-derived solutions in porcine contact dermatitis

    PubMed Central

    2010-01-01

    Background Nanocrystalline silver dressings have anti-inflammatory activity, unlike solutions containing Ag+ only, which may be due to dissolution of multiple silver species. These dressings can only be used to treat surfaces. Thus, silver-containing solutions with nanocrystalline silver properties could be valuable for treating hard-to-dress surfaces and inflammatory conditions of the lungs and bowels. This study tested nanocrystalline silver-derived solutions for anti-inflammatory activity. Methods Inflammation was induced on porcine backs using dinitrochlorobenzene. Negative and positive controls were treated with distilled water. Experimental groups were treated with solutions generated by dissolving nanocrystalline silver in distilled water adjusted to starting pHs of 4 (using CO2), 5.6 (as is), 7, and 9 (using Ca(OH)2). Solution samples were analyzed for total silver. Daily imaging, biopsying, erythema and oedema scoring, and treatments were performed for three days. Biopsies were processed for histology, immunohistochemistry (for IL-4, IL-8, IL-10, TNF-α, EGF, KGF, KGF-2, and apoptotic cells), and zymography (MMP-2 and -9). One-way ANOVAs with Tukey-Kramer post tests were used for statistical analyses. Results Animals treated with pH 7 and 9 solutions showed clear visual improvements. pH 9 solutions resulted in the most significant reductions in erythema and oedema scores. pH 4 and 7 solutions also reduced oedema scores. Histologically, all treatment groups demonstrated enhanced re-epithelialisation, with decreased inflammation. At 24 h, pMMP-2 expression was significantly lowered with pH 5.6 and 9 treatments, as was aMMP-2 expression with pH 9 treatments. In general, treatment with silver-containing solutions resulted in decreased TNF-α and IL-8 expression, with increased IL-4, EGF, KGF, and KGF-2 expression. At 24 h, apoptotic cells were detected mostly in the dermis with pH 4 and 9 treatments, nowhere with pH 5.6, and in both the epidermis and dermis

  3. A general higher-order nonlocal couple stress based beam model for vibration analysis of porous nanocrystalline nanobeams

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2017-12-01

    This paper develops a higher order refined beam model with a parabolic shear strain function for vibration analysis of porous nanocrystalline nanobeams based on nonlocal couple stress theory. Nanocrystalline nanobeam is composed from three phases which are nano-grains, nano-voids and interface. Nano-voids or porosities inside the material have a stiffness-softening impact on the nanobeam. Nonlocal elasticity theory of Eringen is applied in analysis of nanocrystalline nanobeams for the first time. Also, modified couple stress theory is employed to capture grains rigid rotations. The governing equations obtained from Hamilton's principle are solved applying an analytical approach which satisfies various boundary conditions. The reliability of present approach is verified by comparing obtained results with those provided in literature. Finally the influences of nonlocal parameter, couple stress, grain size, porosities and shear deformation on the vibration characteristics of nanocrystalline nanobeams are explored.

  4. Mechanical properties and rapid low-temperature consolidation of nanocrystalline Cu-ZrO2 composites by pulsed current activated heating

    NASA Astrophysics Data System (ADS)

    Kang, Bo-Ram; Yoon, Jin-kook; Hong, Kyung-Tae; Shon, In-Jin

    2015-07-01

    Metal-ceramic compositr can be obtained with an optimum combination of low density, high oxidation resistance, and high hardness of the ceramic and toughness of the metal. Therefore, metal matrix composites are recognized as candidates for aerospace, automotive, biomaterials, and defense applications. Despite its many attractive properties, the low fracture toughness of ZrO2 limits its wide application. One of the most obvious tactics to improve the mechanical properties has been to fabricate a nanostructured material and composite material. Nano-powders of Cu and ZrO2 were synthesized from 2CuO and Zr powders by high-energy ball milling. Nanocrystalline 2Cu-ZrO2 composite was consolidated within 5 minutes from mechanically synthesized powders of ZrO2 and 2Cu at low temperature, by a pulsed current activated sintering method. The relative density of the composite was 98.5%. The fracture toughness of 2Cu-ZrO2 composite in this study is higher than that of monolithic ZrO2, without great decrease of hardness.

  5. Additive Manufacturing of Fuel Injectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadek Tadros, Dr. Alber Alphonse; Ritter, Dr. George W.; Drews, Charles Donald

    Additive manufacturing (AM), also known as 3D-printing, has been shifting from a novelty prototyping paradigm to a legitimate manufacturing tool capable of creating components for highly complex engineered products. An emerging AM technology for producing metal parts is the laser powder bed fusion (L-PBF) process; however, industry manufacturing specifications and component design practices for L-PBF have not yet been established. Solar Turbines Incorporated (Solar), an industrial gas turbine manufacturer, has been evaluating AM technology for development and production applications with the desire to enable accelerated product development cycle times, overall turbine efficiency improvements, and supply chain flexibility relative to conventionalmore » manufacturing processes (casting, brazing, welding). Accordingly, Solar teamed with EWI on a joint two-and-a-half-year project with the goal of developing a production L-PBF AM process capable of consistently producing high-nickel alloy material suitable for high temperature gas turbine engine fuel injector components. The project plan tasks were designed to understand the interaction of the process variables and their combined impact on the resultant AM material quality. The composition of the high-nickel alloy powders selected for this program met the conventional cast Hastelloy X compositional limits and were commercially available in different particle size distributions (PSD) from two suppliers. Solar produced all the test articles and both EWI and Solar shared responsibility for analyzing them. The effects of powder metal input stock, laser parameters, heat treatments, and post-finishing methods were evaluated. This process knowledge was then used to generate tensile, fatigue, and creep material properties data curves suitable for component design activities. The key process controls for ensuring consistent material properties were documented in AM powder and process specifications. The basic components of the

  6. Functional materials based on nanocrystalline cellulose

    NASA Astrophysics Data System (ADS)

    Surov, O. V.; Voronova, M. I.; Zakharov, A. G.

    2017-10-01

    The data on the synthesis of functional materials based on nanocrystalline cellulose (NCC) published over the past 10 years are analyzed. The liquid-crystal properties of NCC suspensions, methods of investigation of NCC suspensions and films, conditions for preserving chiral nematic structure in the NCC films after removal of the solvent and features of templated sol-gel synthesis of functional materials based on NCC are considered. The bibliography includes 106 references.

  7. Optimization of Design and Manufacturing Process of Metal Foam Filled Anti-Intrusion Bars

    NASA Astrophysics Data System (ADS)

    Villa, Andrea; Strano, Matteo; Mussi, Valerio

    2011-05-01

    The role of an anti-intrusion bar for automotive use is to absorb the kinetic energy of the colliding bodies that is partially converted into internal work of the bodies involved in the crash. The aim of this paper is to investigate the performances of a new kind of anti-intrusion bars for automotive use, filled with metallic foams. The reason for using a cellular material as a filler deals with its capacity to absorb energy during plastic deformation, while being lightweight. The study is the evolution of a previous paper presented by the authors at Esaform 2010 and will present new results and findings. It is conducted by evaluating some key technical issues of the manufacturing problem and by conducting experimental and numerical analyses. The evaluation of materials and shapes of the closed sections to be filled is made in the perspective of a car manufacturer (production costs, weight reduction, space availability in a car door, etc.). Experimentally, foams are produced starting from an industrial aluminium precursor with a TiH2 blowing agent. Bars are tested in three point bending, in order to evaluate their performances in terms of force-displacement response and other specific performance parameters. In order to understand the role of interface between the inner surface of the tube and the external surface of the foam, different kinds of interface are tested.

  8. In-situ acoustic signature monitoring in additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Koester, Lucas W.; Taheri, Hossein; Bigelow, Timothy A.; Bond, Leonard J.; Faierson, Eric J.

    2018-04-01

    Additive manufacturing is a rapidly maturing process for the production of complex metallic, ceramic, polymeric, and composite components. The processes used are numerous, and with the complex geometries involved this can make quality control and standardization of the process and inspection difficult. Acoustic emission measurements have been used previously to monitor a number of processes including machining and welding. The authors have identified acoustic signature measurement as a potential means of monitoring metal additive manufacturing processes using process noise characteristics and those discrete acoustic emission events characteristic of defect growth, including cracks and delamination. Results of acoustic monitoring for a metal additive manufacturing process (directed energy deposition) are reported. The work investigated correlations between acoustic emissions and process noise with variations in machine state and deposition parameters, and provided proof of concept data that such correlations do exist.

  9. Copper Disk Manufactured at the Space Optics Manufacturing and Technology Center

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This photograph shows Wes Brown, Marshall Space Flight Center's (MSFC's) lead diamond tuner, an expert in the science of using diamond-tipped tools to cut metal, inspecting the mold's physical characteristics to ensure the uniformity of its more than 6,000 grooves. This king-size copper disk, manufactured at the Space Optics Manufacturing and Technology Center (SOMTC) at MSFC, is a special mold for making high resolution monitor screens. This master mold will be used to make several other molds, each capable of forming hundreds of screens that have a type of lens called a fresnel lens. Weighing much less than conventional optics, fresnel lenses have multiple concentric grooves, each formed to a precise angle, that together create the curvature needed to focus and project images. The MSFC leads NASA's space optics manufacturing technology development as a technology leader for diamond turning. The machine used to manufacture this mold is among many one-of-a-kind pieces of equipment of MSFC's SOMTC.

  10. Computed Tomography Inspection and Analysis for Additive Manufacturing Components

    NASA Technical Reports Server (NTRS)

    Beshears, Ronald D.

    2016-01-01

    Computed tomography (CT) inspection was performed on test articles additively manufactured from metallic materials. Metallic AM and machined wrought alloy test articles with programmed flaws were inspected using a 2MeV linear accelerator based CT system. Performance of CT inspection on identically configured wrought and AM components and programmed flaws was assessed using standard image analysis techniques to determine the impact of additive manufacturing on inspectability of objects with complex geometries.

  11. Efficient Second-Harmonic Generation in Nanocrystalline Silicon Nanoparticles.

    PubMed

    Makarov, Sergey V; Petrov, Mihail I; Zywietz, Urs; Milichko, Valentin; Zuev, Dmitry; Lopanitsyna, Natalia; Kuksin, Alexey; Mukhin, Ivan; Zograf, George; Ubyivovk, Evgeniy; Smirnova, Daria A; Starikov, Sergey; Chichkov, Boris N; Kivshar, Yuri S

    2017-05-10

    Recent trends to employ high-index dielectric particles in nanophotonics are motivated by their reduced dissipative losses and large resonant enhancement of nonlinear effects at the nanoscale. Because silicon is a centrosymmetric material, the studies of nonlinear optical properties of silicon nanoparticles have been targeting primarily the third-harmonic generation effects. Here we demonstrate, both experimentally and theoretically, that resonantly excited nanocrystalline silicon nanoparticles fabricated by an optimized laser printing technique can exhibit strong second-harmonic generation (SHG) effects. We attribute an unexpectedly high yield of the nonlinear conversion to a nanocrystalline structure of nanoparticles supporting the Mie resonances. The demonstrated efficient SHG at green light from a single silicon nanoparticle is 2 orders of magnitude higher than that from unstructured silicon films. This efficiency is significantly higher than that of many plasmonic nanostructures and small silicon nanoparticles in the visible range, and it can be useful for a design of nonlinear nanoantennas and silicon-based integrated light sources.

  12. The use of Ni-Cr-Si-Be filler metals for brazing of stainless steels

    NASA Astrophysics Data System (ADS)

    Ivannikov, A.; Fedotov, V.; Suchkov, A.; Penyaz, M.; Fedotov, I.; Tarasov, B.

    2016-04-01

    Nanocrystalline ribbon filler metal-alloys of system Ni-Cr-Si-Be are produced by the rapidly quenching of the melt method. By these filler metals carried out hight temperature vacuum brazing of austenitic steels (12Kh18N10T and Kh18N8G2) and austenitic-ferritic class EI-811 (12Kh21N5T). The basic laws of structure-phase state foundation of brazed joints are determined, features of the interaction of the molten filler metal to the brazed materials are identified, the optimal temperature and time parameters of the brazing process are determined.

  13. Influence of Weak External Magnetic Field on Amorphous and Nanocrystalline Fe-based Alloys

    NASA Astrophysics Data System (ADS)

    Degmová, J.; Sitek, J.

    2010-07-01

    Nanoperm, Hitperm and Finamet amorphous and nanocrystalline alloys were measured by Mössbauer spectrometry in a weak external magnetic field of 0.5 T. It was shown that the most sensitive parameters of Mössbauer spectra are the intensities of the 2nd and the 5th lines. Rather small changes were observed also in the case of internal magnetic field values. The spectrum of nanocrystalline Nanoperm showed the increase in A23 parameter (ratio of line intensities) from 2.4 to 3.7 and decrease of internal magnetic field from 20 to 19 T for amorphous subspectrum under the influence of magnetic field. Spectrum of nanocrystalline Finemet shown decrease in A23 parameter from 3.5 to 2.6 almost without a change in the internal magnetic field value. In the case of amorphous Nanoperm and Finemet samples, the changes are almost negligible. Hitperm alloy showed the highest sensitivity to the weak magnetic field, when the A23 parameter increased from 0.4 to 2.5 in the external magnetic fields. The A23 parameter of crystalline subspectrum increased from 2.7 to 3.8 and the value of internal magnetic field corresponding to amorphous subspectrum increased from 22 to 24 T. The behavior of nanocrystalline alloys under weak external magnetic field was analyzed within the three-level relaxation model of magnetic dynamics in an assembly of single-domain particles.

  14. Structural phase stability in nanocrystalline titanium to 161 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velisavljevic, Nenad; Jacobsen, Matthew K.; Vohra, Yogesh K.

    2014-09-16

    Nanocrystalline titanium (nc-Ti) metal was investigated up to 161 GPa at room temperature using a diamond anvil cell. X-ray diffraction and electrical resistance techniques were used to investigate the compressibility and structural phase stability. nc-Ti is observed to undergo three structural phase transitions at high pressures, starting with α → ω at 10GPa and followed by ω → γ at 127GPa and γ → δ at 140GPa. The observed structural phase transitions, as well as compressibility, are consistent with previously reported values for coarse grained Ti (c-Ti). The high pressure experiments on nc-Ti samples do no show any significant variationmore » of the α → ω transition pressure under varying nonhydrostatic conditions. This is in sharp contrast to c-Ti, where a significant decrease in the α → ω transition pressure is observed under increasing nonhydrostatic conditions. As a result, this would indicate that the decrease in grain size in nano grained titanium makes the α → ω phase transition less sensitive to shear stresses as compared to bulk or c-Ti.« less

  15. Remediation of arsenic and lead with nanocrystalline zinc sulfide.

    PubMed

    Piquette, Alan; Cannon, Cody; Apblett, Allen W

    2012-07-27

    Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.

  16. Solid state amorphization of nanocrystalline nickel by cryogenic laser shock peening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Chang, E-mail: cye@uakron.edu; Ren, Zhencheng; Zhao, Jingyi

    2015-10-07

    In this study, complete solid state amorphization in nanocrystalline nickel has been achieved through cryogenic laser shock peening (CLSP). High resolution transmission electron microscopy has revealed the complete amorphous structure of the sample after CLSP processing. A molecular dynamic model has been used to investigate material behavior during the shock loading and the effects of nanoscale grain boundaries on the amorphization process. It has been found that the initial nanoscale grain boundaries increase the initial Gibbs free energy before plastic deformation and also serve as dislocation emission sources during plastic deformation to contribute to defect density increase, leading to themore » amorphization of pure nanocrystalline nickel.« less

  17. Optical fibre sensing in metals by embedment in 3D printed metallic structures

    NASA Astrophysics Data System (ADS)

    Maier, R. R. J.; Havermann, D.; Schneller, O.; Mathew, J.; Polyzos, D.; MacPherson, W. N.; Hand, D. P.

    2014-05-01

    Additive manufacturing or 3D printing of structural components in metals has potential to revolutionise the manufacturing industry. Embedded sensing in such structures opens a route towards SMART metals, providing added functionality, intelligence and enhanced performance in many components. Such embedded sensors would be capable of operating at extremely high temperatures by utilizing regenerated fibre Bragg gratings and in-fibre Fabry-Perot cavities.

  18. Laser polishing of additive manufactured Ti alloys

    NASA Astrophysics Data System (ADS)

    Ma, C. P.; Guan, Y. C.; Zhou, W.

    2017-06-01

    Laser-based additive manufacturing has attracted much attention as a promising 3D printing method for metallic components in recent years. However, surface roughness of additive manufactured components has been considered as a challenge to achieve high performance. In this work, we demonstrate the capability of fiber laser in polishing rough surface of additive manufactured Ti-based alloys as Ti-6Al-4V and TC11. Both as-received surface and laser-polished surfaces as well as cross-section subsurfaces were analyzed carefully by White-Light Interference, Confocal Microscope, Focus Ion Beam, Scanning Electron Microscopy, Energy Dispersive Spectrometer, and X-ray Diffraction. Results revealed that as-received Ti-based alloys with surface roughness more than 5 μm could be reduce to less than 1 μm through laser polishing process. Moreover, microstructure, microhardness and wear resistance of laser-polished zone was investigated in order to examine the thermal effect of laser polishing processing on the substrate of additive manufactured Ti alloys. This proof-of-concept process has the potential to effectively improve the surface roughness of additive manufactured metallic alloy by local polishing method without damage to the substrate.

  19. Subtractive Plasma-Assisted-Etch Process for Developing High Performance Nanocrystalline Zinc-Oxide Thin-Film-Transistors

    DTIC Science & Technology

    2015-03-26

    THIN - FILM - TRANSISTORS THESIS Thomas M. Donigan, First Lieutenant, USAF AFIT-ENG-MS-15-M-027 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR...DEVELOPING HIGH PERFORMANCE NANOCRYSTALLINE ZINC-OXIDE THIN - FILM - TRANSISTORS THESIS Presented to the Faculty Department of Electrical and...15-M-027 SUBTRACTIVE PLASMA-ASSISTED-ETCH PROCESS FOR DEVELOPING HIGH PERFORMANCE NANOCRYSTALLINE ZINC-OXIDE THIN - FILM - TRANSISTORS

  20. Precision replenishable grinding tool and manufacturing process

    DOEpatents

    Makowiecki, D.M.; Kerns, J.A.; Blaedel, K.L.; Colella, N.J.; Davis, P.J.; Juntz, R.S.

    1998-06-09

    A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool are disclosed. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools. 11 figs.

  1. Precision replenishable grinding tool and manufacturing process

    DOEpatents

    Makowiecki, Daniel M.; Kerns, John A.; Blaedel, Kenneth L.; Colella, Nicholas J.; Davis, Pete J.; Juntz, Robert S.

    1998-01-01

    A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools.

  2. Method for manufacturing magnetohydrodynamic electrodes

    DOEpatents

    Killpatrick, Don H.; Thresh, Henry R.

    1982-01-01

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator comprising the steps of preparing a billet having a core 10 of a first metal, a tubular sleeve 12 of a second metal, and an outer sheath 14, 16, 18 of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket 14. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MDH channel frame. The method forms a bond between the first metal of the core 10 and the second metal of the sleeve 12 strong enough to withstand a hot and corrosive environment.

  3. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings.

    PubMed

    Wang, Yuxin; Cheng, Guang; Tay, See Leng; Guo, Yunxia; Sun, Xin; Gao, Wei

    2017-08-10

    In this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM). The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomic percent (at%) Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.

  4. Optical, dielectric and morphological studies of sol-gel derived nanocrystalline TiO2 films.

    PubMed

    Vishwas, M; Sharma, Sudhir Kumar; Narasimha Rao, K; Mohan, S; Gowda, K V Arjuna; Chakradhar, R P S

    2009-10-15

    Nanocrystalline TiO(2) films have been synthesized on glass and silicon substrates by sol-gel technique. The films have been characterized with optical reflectance/transmittance in the wavelength range 300-1000 nm and the optical constants (n, k) were estimated by using envelope technique as well as spectroscopic ellipsometry. Morphological studies have been carried out using atomic force microscope (AFM). Metal-Oxide-Silicon (MOS) capacitor was fabricated using conducting coating on TiO(2) film deposited on silicon. The C-V measurements show that the film annealed at 300 degrees C has a dielectric constant of 19.80. The high percentage of transmittance, low surface roughness and high dielectric constant suggests that it can be used as an efficient anti-reflection coating on silicon and other optical coating applications and also as a MOS capacitor.

  5. Additive Manufacturing of Porous Metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehoff, Ryan R.; Kirka, Michael M.

    2017-06-01

    Currently, helium is obtained through separation from natural gas. The current industrial process incurs significant costs and requires large energy resources to successfully achieve separation. Through utilizing Additive Manufacturing (AM) technologies it is possible to reduce both of these burdens when refining helium gas. The ability to engineer porosity levels within Inconel 718 discs for controlled separation of helium from natural gas was investigated. Arrays of samples fabricated using the electron beam melting process were analyzed for their relative porosity density. Based upon the measurements, full scale discs were fabricated, and subsequently tested to determine their effectiveness in separating heliummore » from liquefied natural gas.« less

  6. Comparative study on corrosion resistance and in vitro biocompatibility of bulk nanocrystalline and microcrystalline biomedical 304 stainless steel.

    PubMed

    Nie, F L; Wang, S G; Wang, Y B; Wei, S C; Zheng, Y F

    2011-07-01

    SUS 304 stainless steels have been widely used in orthodontics and implants such as archwires, brackets, and screws. The purpose of present study was to investigate the biocompatibility of both the commercial microcrystalline biomedical 304 stainless steel (microcrystalline 304ss) and novel-fabricated nanocrystalline 304 stainless steel (nanocrystalline 304ss). Bulk nanocrystalline 304ss sheets had been successfully prepared by microcrystalline 304ss plates using severe rolling technique. The electrochemical corrosion and ion release behavior immersion in artificial saliva were measured to evaluate the property of biocorrosion in oral environment. The cell lines of murine and human cell lines from oral and endothelial environment were co-cultured with extracts to evaluate the cytotoxicity and provide referential evidence in vivo. The polarization resistance trials indicated that nanocrystalline 304ss is more corrosion resistant than the microcrystalline 304ss in oral-like environment with higher corrosion potential, and the amount of toxic ions released into solution after immersion is lower than that of the microcrystalline 304ss and the daily dietary intake level. The cytotoxicity results also elucidated that nanocrystalline 304ss is biologically compatible in vitro, even better than that of microcrystalline 304ss. Based on the much higher mechanical and physical performances, nanocrystalline 304ss with enhanced biocorrosion property, well-behaved in vitro cytocompatibility can be a promising alternative in orthodontics and fixation fields in oral cavity. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Solution-processed nanocrystalline PbS on paper substrate with pencil traced electrodes as visible photodetector

    NASA Astrophysics Data System (ADS)

    Vankhade, Dhaval; Chaudhuri, Tapas K.

    2018-04-01

    Paper-based PbS photodetector sensitive in the visible spectrum is reported. Nanocrystalline PbS-on-paper devices are fabricated by a spin coating method on white paper (300 GSM) from a methanolic precursor solution. Photodetector cells of gap 0.2 cm and length 0.5 cm are prepared by drawing contacts by monolithic cretacolor 8B pencil. X-ray diffractometer confirmed the deposition of nanocrystalline PbS films with 14 nm crystallites. The SEM illustrated the uniform coating of nanocrystalline PbS thin films on cellulose fibres of papers having an average thickness of fibres are 10 µm. The linear J-V characteristics in dark and under illumination of light using graphite trace on nanocrystalline PbS-on-paper shows good ohmic contact. The resistivity of pencil trace is 30 Ω.cm. Spectral response measurements of photodetector reveal the excellent sensitivity from 400 to 700 nm with a peak at 550 nm. The best responsivity anddetectivity are 0.7 A/W and 1.4 × 1012 Jones respectively. These paper-based low-cost photodetectors devices have fast photoresponse and recovery without baseline deviation.

  8. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.

    PubMed

    Yang, Lina; Minnich, Austin J

    2017-03-14

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.

  9. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation

    PubMed Central

    Yang, Lina; Minnich, Austin J.

    2017-01-01

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials. PMID:28290484

  10. Collaborative Manufacturing for Small-Medium Enterprises

    NASA Astrophysics Data System (ADS)

    Irianto, D.

    2016-02-01

    Manufacturing systems involve decisions concerning production processes, capacity, planning, and control. In a MTO manufacturing systems, strategic decisions concerning fulfilment of customer requirement, manufacturing cost, and due date of delivery are the most important. In order to accelerate the decision making process, research on decision making structure when receiving order and sequencing activities under limited capacity is required. An effective decision making process is typically required by small-medium components and tools maker as supporting industries to large industries. On one side, metal small-medium enterprises are expected to produce parts, components or tools (i.e. jigs, fixture, mold, and dies) with high precision, low cost, and exact delivery time. On the other side, a metal small- medium enterprise may have weak bargaining position due to aspects such as low production capacity, limited budget for material procurement, and limited high precision machine and equipment. Instead of receiving order exclusively, a small-medium enterprise can collaborate with other small-medium enterprise in order to fulfill requirements high quality, low manufacturing cost, and just in time delivery. Small-medium enterprises can share their best capabilities to form effective supporting industries. Independent body such as community service at university can take a role as a collaboration manager. The Laboratory of Production Systems at Bandung Institute of Technology has implemented shared manufacturing systems for small-medium enterprise collaboration.

  11. Solvothermal synthesis of nanocrystalline TiO 2 in toluene with surfactant

    NASA Astrophysics Data System (ADS)

    Kim, Chung-Sik; Moon, Byung Kee; Park, Jong-Ho; Choi, Byung-Chun; Seo, Hyo-Jin

    2003-10-01

    Synthesis of narrow-dispersed nanocrystalline TiO 2 was investigated by surfactant-aided solvothermal synthetic method in toluene solutions. Titanium isopropoxide (TIP) was used as precursor, which was decomposed at high temperature in the surfactant-dissolved solution. After the solution was thermally treated at 250°C for 20 h in an autoclave, low-dispersed TiO 2 nanocrystalline particles with average size of <6 nm were synthesized. When sufficient amount of TIP or surfactant was added in the solution, long dumbbell-shaped nanorods were formed, which may be due to the oriented growth of particles along [0 0 1] axis. Characterization of products was investigated by X-ray diffraction and transmission electron microscopy.

  12. Producing Hybrid Metal Composites by Combining Additive Manufacturing and Casting

    DOE PAGES

    Pawlowski, Alex E.; Splitter, Derek A.; Muth, Thomas R.; ...

    2017-10-01

    Additive manufacturing by itself provides many benefits, but by combining different materials processing techniques like traditional casting with additive manufacturing to create hybrid processes, custom materials can be tailor-made and mass produced for applications with specific performance needs.

  13. Nanocrystalline-to-amorphous transition in nanolaminates grown by low temperature atomic layer deposition and related mechanical properties

    NASA Astrophysics Data System (ADS)

    Raghavan, R.; Bechelany, M.; Parlinska, M.; Frey, D.; Mook, W. M.; Beyer, A.; Michler, J.; Utke, I.

    2012-05-01

    We report on a comprehensive structural and nanoindentation study of nanolaminates of Al2O3 and ZnO synthesized by atomic layer deposition (ALD). By reducing the bilayer thickness from 50 nm to below 1 nm, the nanocrystal size could be controlled in the nanolaminate structure. The softer and more compliant response of the multilayers as compared to the single layers of Al2O3 and ZnO is attributed to the structural change from nanocrystalline to amorphous at smaller bilayer thicknesses. It is also shown that ALD is a unique technique for studying the inverse Hall-Petch softening mechanism (E. Voce and D. Tabor, J. Inst. Metals 79(12), 465 (1951)) related to grain size effects in nanomaterials.

  14. Temperature dependence of the radiation tolerance of nanocrystalline pyrochlores A 2Ti 2O 7 (A = Gd, Ho and Lu)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, J.; Sun, C.; Dholabhai, P. P.

    A potentially enhanced radiation resistance of nanocrystalline materials, as a consequence of the high density of interfaces and surfaces, has attracted much attention both to understand the fundamental role of these defect sinks and to develop them for high-radiation environments. Here, irradiation response of nanocrystalline A 2Ti 2O 7 (A = Gd, Ho and Lu) pyrochlore powders with grain sizes of 20–30 nm was investigated by 1-MeV Kr 2+ ion bombardment. In situ transmission electron microscopy (TEM) revealed that the critical amorphization fluence for each nanocrystalline compound at room temperature was greater than that for their coarse-grained counterparts, indicating anmore » enhanced amorphization resistance. The effect of temperature on the irradiation response of one of these compounds, nanocrystalline Lu 2Ti 2O 7, was further examined by performing ion irradiation at an elevated temperature range of 480–600 K. The critical amorphization temperature (T c) was found to be noticeably higher in nanocrystalline Lu 2Ti 2O 7 (610 K) than its coarse-grained counterpart (480 K), revealing that nanocrystalline Lu 2Ti 2O 7 is less resistant to amorphization compared to its coarse-grained phase under high temperatures. We interpret these results with the aid of atomistic simulations. Molecular statics calculations find that cation antisite defects are less energetically costly to form near surfaces than in the bulk, suggesting that the nanocrystalline form of these materials is generally less susceptible to amorphization than coarse-grained counterparts at low temperatures where defect kinetics are negligible. In contrast, at high temperatures, the annealing efficiency of antisite defects by cation interstitials is significantly reduced due to the sink properties of the surfaces in the nanocrystalline pyrochlore, which contributes to the observed higher amorphization temperature in the nano-grained phase than in coarse-grained counterpart. Altogether, these

  15. Temperature dependence of the radiation tolerance of nanocrystalline pyrochlores A 2Ti 2O 7 (A = Gd, Ho and Lu)

    DOE PAGES

    Wen, J.; Sun, C.; Dholabhai, P. P.; ...

    2016-03-21

    A potentially enhanced radiation resistance of nanocrystalline materials, as a consequence of the high density of interfaces and surfaces, has attracted much attention both to understand the fundamental role of these defect sinks and to develop them for high-radiation environments. Here, irradiation response of nanocrystalline A 2Ti 2O 7 (A = Gd, Ho and Lu) pyrochlore powders with grain sizes of 20–30 nm was investigated by 1-MeV Kr 2+ ion bombardment. In situ transmission electron microscopy (TEM) revealed that the critical amorphization fluence for each nanocrystalline compound at room temperature was greater than that for their coarse-grained counterparts, indicating anmore » enhanced amorphization resistance. The effect of temperature on the irradiation response of one of these compounds, nanocrystalline Lu 2Ti 2O 7, was further examined by performing ion irradiation at an elevated temperature range of 480–600 K. The critical amorphization temperature (T c) was found to be noticeably higher in nanocrystalline Lu 2Ti 2O 7 (610 K) than its coarse-grained counterpart (480 K), revealing that nanocrystalline Lu 2Ti 2O 7 is less resistant to amorphization compared to its coarse-grained phase under high temperatures. We interpret these results with the aid of atomistic simulations. Molecular statics calculations find that cation antisite defects are less energetically costly to form near surfaces than in the bulk, suggesting that the nanocrystalline form of these materials is generally less susceptible to amorphization than coarse-grained counterparts at low temperatures where defect kinetics are negligible. In contrast, at high temperatures, the annealing efficiency of antisite defects by cation interstitials is significantly reduced due to the sink properties of the surfaces in the nanocrystalline pyrochlore, which contributes to the observed higher amorphization temperature in the nano-grained phase than in coarse-grained counterpart. Altogether, these

  16. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuxin; Cheng, Guang; Tay, See Leng

    Here in this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM). The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomicmore » percent (at%) Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Lastly, results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.« less

  17. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings

    DOE PAGES

    Wang, Yuxin; Cheng, Guang; Tay, See Leng; ...

    2017-08-10

    Here in this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM). The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomicmore » percent (at%) Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Lastly, results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.« less

  18. Numerical simulation of metallic wire arc additive manufacturing (WAAM)

    NASA Astrophysics Data System (ADS)

    Graf, M.; Pradjadhiana, K. P.; Hälsig, A.; Manurung, Y. H. P.; Awiszus, B.

    2018-05-01

    Additive-manufacturing technologies have been gaining tremendously in popularity for some years in the production of single-part series with complex, close-to-final-contour geometries and the processing of special or hybrid materials. In principle, the processes can be subdivided into wire-based and powder-based processes in accordance with the Association of German Engineers (VDI) Guideline 3405. A further subdivision is made with respect to the smelting technology. In all of the processes, the base material is applied in layers at the points where it is needed in accordance with the final contour. The process that was investigated was wire-based, multi-pass welding by means of gas-metal arc welding. This was accomplished in the present study by determining the material parameters (thermo-mechanical and thermo-physical characteristics) of the welding filler G3Si1 (material number: 1.5125) that were necessary for the numerical simulation and implementing them in a commercial FE program (MSC Marc Mentat). The focus of this paper was on simulation and validation with respect to geometry and microstructural development in the welding passes. The resulting minimal deviation between reality and simulation was a result of the measurement inertia of the thermocouples. In general, however, the FE model can be used to make a very good predetermination of the cooling behaviour, which affects the microstructural development and thus the mechanical properties of the joining zone, as well as the geometric design of the component (distortion, etc.).

  19. Effect of rapid thermal annealing on nanocrystalline TiO2 thin films synthesized by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Thakurdesai, Madhavi; Kanjilal, D.; Bhattacharyya, Varsha

    2012-08-01

    Irradiation by swift heavy ions (SHI) is unique tool to synthesize nanocrystalline thin films. We have reported transformation of 100 nm thick amorphous films into nanocrystalline film due to irradiation by 100 MeV Ag ion beam. Oblate shaped nanoparticles having anatase phase of TiO2 were formed on the surface of the irradiated films. In the present investigation, these films are annealed at 350 °C for 2 min in oxygen atmosphere by Rapid Thermal Annealing (RTA) method. During RTA processing, the temperature rises abruptly and this thermal instability is expected to alter surface morphology, structural and optical properties of nanocrystalline TiO2 thin films. Thus in the present work, effect of RTA on SHI induced nanocrystalline thin films of TiO2 is studied. The effect of RTA processing on the shape and size of TiO2 nanoparticles is studied by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Glancing Angle X-ray Diffraction (GAXRD) studies are carried to investigate structural changes induced by RTA processing. Optical characterization is carried out by UV-vis spectroscopy and photoluminescence (PL) spectroscopy. The changes observed in structural and optical properties of nanocrystalline TiO2 thin films after RTA processing are attributed to the annihilation of SHI induced defects.

  20. Influence of coating on nanocrystalline magnetic properties during high temperature thermal ageing

    NASA Astrophysics Data System (ADS)

    Lekdim, Atef; Morel, Laurent; Raulet, Marie-Ange

    2017-05-01

    Since their birth or mergence the late 1980s, the nanocrystalline ultrasoft magnetic materials are taking a great importance in power electronic systems conception. One of the main advantages that make them more attractive nowadays is their ability to be packaged since the reduction of the magnetostrictive constant to almost zero. In aircraft applications, due to the high component compactness and to their location (for example near the jet engine), the operating temperature increases and may reach easily 200 °C and more. Consequently, the magnetic thermal ageing may occur but is, unfortunately, weakly studied. This paper focuses on the influence of the coating (packaging type) on the magnetic nanocrystalline performances during a thermal ageing. This study is based on monitoring the magnetic characteristics of two types of nanocrystalline cores (naked and coated) during a thermal activated ageing (100, 150 and 200 °C). Based on a dedicated monitoring protocol, a large magnetic characterization has been done and analyzed. Elsewhere, X-Ray Diffraction and magnetostriction measurements were carried out to support the study of the anisotropy energies evolution with ageing. This latter is discussed in this paper to explain and give hypothesis about the ageing phenomena.

  1. Using Innovative Techniques for Manufacturing Rocket Engine Hardware

    NASA Technical Reports Server (NTRS)

    Betts, Erin M.; Reynolds, David C.; Eddleman, David E.; Hardin, Andy

    2011-01-01

    Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using the Workhorse Gas Generator (WHGG) test setup at MSFC?s East Test Area test stand 116, the duct was subject to extreme J-2X gas generator environments and endured a total of 538 seconds of hot-fire time. The duct survived the testing and was inspected after the test. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.

  2. WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF SHEET METAL COMPONENTS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. n an effort to assist these manufacturers Waste Minimization ssessment Cente...

  3. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition.

    DOE PAGES

    Craciun, D.; Socol, G.; Lambers, E.; ...

    2015-01-17

    Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH 4 pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH 4 pressures exhibited slightly higher nanohardness and Young modulus values than filmsmore » deposited under higher pressures. As a result, tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.« less

  4. Space Manufacturing: The Next Great Challenge

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Curreri, Peter; Sharpe, Jonathan B.; Colberg, Wendell R.; Vickers, John H.

    1998-01-01

    Space manufacturing encompasses the research, development and manufacture necessary for the production of any product to be used in near zero gravity, and the production of spacecraft required for transporting research or production devices to space. Manufacturing for space, and manufacturing in space will require significant breakthroughs in materials and manufacturing technology, as well as in equipment designs. This report reviews some of the current initiatives in achieving space manufacturing. The first initiative deals with materials processing in space, e.g., processing non-terrestrial and terrestrial materials, especially metals. Some of the ramifications of the United States Microgravity Payloads fourth (USMP-4) mission are discussed. Some problems in non-terrestrial materials processing are mentioned. The second initiative is structures processing in space. In order to accomplish this, the International Space Welding Experiment was designed to demonstrate welding technology in near-zero gravity. The third initiative is advancements in earth-based manufacturing technologies necessary to achieve low cost access to space. The advancements discussed include development of lightweight material having high specific strength, and automated fabrication and manufacturing methods for these materials.

  5. The mechanical properties measurement of multiwall carbon nanotube reinforced nanocrystalline aluminum matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Manjula, E-mail: manjula.physics@gmail.com; Pal, Hemant; Sharma, Vimal

    Nanocrystalline aluminum matrix composite containing carbon nanotubes were fabricated using physical mixing method followed by cold pressing. The microstructure of the composite has been investigated using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy techniques. These studies revealed that the carbon nanotubes were homogeneously dispersed throughout the metal matrix. The consolidated samples were pressureless sintered in inert atmosphere to further actuate a strong interface between carbon nanotubes and aluminum matrix. The nanoindentation tests carried out on considered samples showed that with the addition of 0.5 wt% carbon nanotubes, the hardness and elastic modulus of the aluminum matrix increased bymore » 21.2 % and 2 % repectively. The scratch tests revealed a decrease in the friction coefficient of the carbon nanotubes reinforced composite due to the presence of lubricating interfacial layer. The prepared composites were promising entities to be used in the field of sporting goods, construction materials and automobile industries.« less

  6. Electro-optic product design for manufacture: where next?

    NASA Astrophysics Data System (ADS)

    Barr, John R. M.; MacDonald, M.; Jeffery, G.; Troughton, M.

    2016-10-01

    Manufacturing of electro-optic products for military environments poses a large number of apparently intractable and mutually contradictory problems. The ability to successfully engage in this area presents an intellectual challenge of a high order. The Advanced Targeting Sector of Leonardo's Airborne and Space Systems Division, based in Edinburgh, has developed a successful range of electro-optic products and transitioned these into a volume, and high value, manufacturing environment. As products cycle through the design process, there has been strong feedback from users, suppliers, and most importantly from our manufacturing organization, that has driven evolution of our design practices. It is fair to say that recent pointer trackers and lasers bear little resemblance to those designed and built 10 years ago. Looking ahead, this process will only continue. There are interesting technologies that will drive improvements in manufacturability, reliability and usability of electro-optic products. Examples might include freeform optics, additive manufacture of metal components, and laser welding of optics to metals, to name but a few. These have uses across our product portfolio and, when sufficiently matured, will have a major impact on the product quality and reliability

  7. Study on the corrosion properties of nanocrystalline nickel electrodepositied by reverse pulse current

    NASA Astrophysics Data System (ADS)

    Cheng, Wen; Ge, Wen; Yang, Qian; Qu, Xinxin

    2013-07-01

    Nanocrystalline nickel coatings were produced by the method of reverse pulse electrodepositing on the surface of steel sheets. The crystallite size of nanocrystalline nickel coatings was determined by X-ray diffraction (XRD). The effect of saccharin concentration on the crystallite size of the coatings was studied. The average crystallite sizes were diminished as a result of increasing saccharin concentration. CHI660C electrochemical workstation was used to determine the Tafel polarization curves and electrochemical impedance spectroscopy (EIS) of the coatings. The value of corrosion potential, natural corrosion current density, polarizaiton resistance and impedance was calculated, the results suggested that smaller grain size led to higher polarization resistance. EIS gave the charge transfer resistance Rct and pore resistance Rpo variation trend from beginning to 30 min. Scanning electron microscopy (SEM) examination showed the surface morphology of the nickel coatings after the neutral salt spray (NSS) test or bathing in 10% HCl. The images indicated that the corrosion behavior of nanocrystalline nickel coatings was pitting corrosion, the mechanism was also discussed.

  8. Effect of Annealing Treatment on Mechanical Properties of Nanocrystalline α-iron: an Atomistic Study

    PubMed Central

    Tong, Xuhang; Zhang, Hao; Li, D. Y.

    2015-01-01

    Claims are often found in the literature that metallic materials can be nanocrystallized by severe plastic deformation (SPD). However, SPD does not generate a well-defined nanocrystalline (NC) material, which can be achieved by subsequent annealing/recovery treatment. In this study, molecular dynamics (MD) simulation is employed to study the effect of annealing on structure and mechanical properties of cyclic deformed NC α-iron, which simulates SPD-processed α-iron. It is demonstrated that grain boundaries in the deformed NC α-iron evolve to a more equilibrium state during annealing, eliminating or minimizing the residual stress. The annealing treatment increases the system's strength by reducing dislocation emission sources, and improves material ductility through strengthening grain boundaries' resistance to intergranular cracks. The results indicate that the annealing treatment is an essential process for obtaining a well-defined NC structure with superior mechanical properties. PMID:25675978

  9. Microstructure and High Temperature Oxidation Property of Fe-Cr-B Based Metal/Ceramic Composite Manufactured by Powder Injection Molding Process

    NASA Astrophysics Data System (ADS)

    Joo, Yeun-Ah; Kim, Young-Kyun; Yoon, Tae-Sik; Lee, Kee-Ahn

    2018-03-01

    This study investigated the microstructure and high temperature oxidation property of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding process. Observations of initial microstructure showed a unique structure where α-Fe and (Cr, Fe)2B form a continuous three-dimensional network. High temperature oxidation tests were performed at 900, 1000 and 1100 °C, for 24 h, and the oxidation weight gain according to each temperature condition was 0.13, 0.84 and 6.4 mg/cm2, respectively. The oxidation results according to time at 900 and 1000 °C conditions represented parabolic curves, and at 1100 °C condition formed a rectilinear curve. Observation and phase analysis results of the oxides identified Cr2O3 and SiO2 at 900 and 1000 °C. In addition to Cr2O3 and SiO2, CrBO3 and FeCr2O4 formed due to phase decomposition of boride were identified at 1100 °C. Based on the findings above, this study suggested the high temperature oxidation mechanism of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding, and the possibility of its application as a high temperature component material was also discussed.

  10. Development of High-Strength Nanostructured Magnesium Alloys for Light-Weight Weapon Systems and Vehicles

    DTIC Science & Technology

    2014-01-13

    strength nanocrystalline Mg-alloys via cryomilling and spark - plasma - sintering , 2) demonstrate the unveil evidence of nanotwins in nanocrystalline...Christopher Melnyk, Wei H. Kao, Jenn-Ming Yang. Cryomilling and spark plasma sintering of nanocrystalline magnesium-based alloy, Journal of Materials...accomplished several important milestones: 1) manufacture of high strength nanocrystalline Mg-alloys via cryomilling and spark plasma sintering (SPS

  11. Novel Structured Metal Bipolar Plates for Low Cost Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Conghua

    Bipolar plates are an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume, and 20% of the stack cost. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is to protect metal plate from corrosion at low cost for the broad commercial applications. While most of today’s PEM fuel cell metallic bipolar plate technologies use some precious metal, the focus of this SBIR project is to develop a low cost, novel nano-structured metal bipolar plate coating technology without using anymore » precious metal. The technology must meet the performance and cost requirements for automobile applications.« less

  12. Visualizing decoupling in nanocrystalline alloys: A FORC-temperature analysis

    NASA Astrophysics Data System (ADS)

    Rivas, M.; Martínez-García, J. C.; Gorria, P.

    2016-02-01

    Devitrifying ferromagnetic amorphous precursors in the adequate conditions may give rise to disordered assemblies of densely packed nanocrystals with extraordinary magnetic softness well explained by the exchange coupling among multiple crystallites. Whether the magnetic exchange interaction is produced by direct contact or mediated by the intergranular amorphous matrix has a strong influence on the behaviour of the system above room temperature. Multi-phase amorphous-nanocrystalline systems dramatically harden when approaching the amorphous Curie temperature (TC) due to the hard grains decoupling. The study of the thermally induced decoupling of nanosized crystallites embedded in an amorphous matrix has been performed in this work by the first-order reversal curves (FORCs) analysis. We selected a Fe-rich amorphous alloy with TC = 330 K, in order to follow the evolution of the FORC diagrams obtained below and above such temperature in samples with different percentages of nanocrystalline phase. The existence of up to four regions exhibiting unlike magnetic behaviours is unambiguously determined from the temperature evolution of the FORC.

  13. Technique for microswitch manufacture

    NASA Technical Reports Server (NTRS)

    Kitamura, T.; Kiyoyama, S.

    1983-01-01

    A five-step technique for microswitch manufacture is described: (1) A clad board is inlaid with a precious metal and the board is pressed. (2) One end of the fixed contact containing a precious metal inlay section is curved, and this edge of the precious metal inlay section becomes a fixed contact. (3) Inserts are formed in the unit body and terminal strips are placed through the top and bottom of the base and held. (4) The unit body is held by the base and the sequential contact strips are cut off. (5) Movable stripes are attached to the support of the terminal strips on the movable side and movable contacts are placed opposite the fixed contacts.

  14. New Nomenclatures for Heat Treatments of Additively Manufactured Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Baker, Andrew H.; Collins, Peter C.; Williams, James C.

    2017-07-01

    The heat-treatment designations and microstructure nomenclatures for many structural metallic alloys were established for traditional metals processing, such as casting, hot rolling or forging. These terms do not necessarily apply for additively manufactured (i.e., three-dimensionally printed or "3D printed") metallic structures. The heat-treatment terminology for titanium alloys generally implies the heat-treatment temperatures and their sequence relative to a thermomechanical processing step (e.g., forging, rolling). These designations include: β-processing, α + β-processing, β-annealing, duplex annealing and mill annealing. Owing to the absence of a thermomechanical processing step, these traditional designations can pose a problem when titanium alloys are first produced via additive manufacturing, and then heat-treated. This communication proposes new nomenclatures for heat treatments of additively manufactured titanium alloys, and uses the distinct microstructural features to provide a correlation between traditional nomenclature and the proposed nomenclature.

  15. Properties of Resistive Hydrogen Sensors as a Function of Additives of 3 D-Metals Introduced in the Volume of Thin Nanocrystalline SnO2 Films

    NASA Astrophysics Data System (ADS)

    Sevast'yanov, E. Yu.; Maksimova, N. K.; Potekaev, A. I.; Sergeichenko, N. V.; Chernikov, E. V.; Almaev, A. V.; Kushnarev, B. O.

    2017-11-01

    Analysis of the results of studying electrical and gas sensitive characteristics of the molecular hydrogen sensors based on thin nanocrystalline SnO2 films coated with dispersed Au layers and containing Au+Ni and Au+Co impurities in the bulk showed that the characteristics of these sensors are more stable under the prolonged exposure to hydrogen in comparison with Au/SnO2:Sb, Au films modified only with gold. It has been found that introduction of the nickel and cobalt additives increases the band bending at the grain boundaries of tin dioxide already in freshly prepared samples, which indicates an increase in the density Ni of the chemisorbed oxygen. It is important that during testing, the band bending eφs at the grain boundaries of tin dioxide additionally slightly increases. It can be assumed that during crystallization of films under thermal annealing, the 3d-metal atoms in the SnO2 volume partially segregate on the surface of microcrystals and form bonds with lattice oxygen, the superstoichiometric tin atoms are formed, and the density Ni increases. If the bonds of oxygen with nickel and cobalt are stronger than those with tin, then, under the prolonged tests, atomic hydrogen will be oxidized not by lattice oxygen, but mainly by the chemisorbed one. In this case, stability of the sensors' characteristics increases.

  16. A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Jiang, B.; Weng, G. J.

    2004-05-01

    Inspired by recent molecular dynamic simulations of nanocrystalline solids, a generalized self-consistent polycrystal model is proposed to study the transition of yield strength of polycrystalline metals as the grain size decreases from the traditional coarse grain to the nanometer scale. These atomic simulations revealed that a significant portion of atoms resides in the grain boundaries and the plastic flow of the grain-boundary region is responsible for the unique characteristics displayed by such materials. The proposed model takes each oriented grain and its immediate grain boundary to form a pair, which in turn is embedded in the infinite effective medium with a property representing the orientational average of all these pairs. We make use of the linear comparison composite to determine the nonlinear behavior of the nanocrystalline polycrystal through the concept of secant moduli. To this end an auxiliary problem of Christensen and Lo (J. Mech. Phys. Solids 27 (1979) 315) superimposed on the eigenstrain field of Luo and Weng (Mech. Mater. 6 (1987) 347) is first considered, and then the nonlinear elastoplastic polycrystal problem is addressed. The plastic flow of each grain is calculated from its crystallographic slips, but the plastic behavior of the grain-boundary phase is modeled as that of an amorphous material. The calculated yield stress for Cu is found to follow the classic Hall-Petch relation initially, but as the gain size decreases it begins to depart from it. The yield strength eventually attains a maximum at a critical grain size and then the Hall-Petch slope turns negative in the nano-range. It is also found that, when the Hall-Petch relation is observed, the plastic behavior of the polycrystal is governed by crystallographic slips in the grains, but when the slope is negative it is governed by the grain boundaries. During the transition both grains and grain boundaries contribute competitively.

  17. Current use and potential of additive manufacturing for optical applications

    NASA Astrophysics Data System (ADS)

    Brunelle, Matthew; Ferralli, Ian; Whitsitt, Rebecca; Medicus, Kate

    2017-10-01

    Additive manufacturing, or 3D printing, has become widely used in recent years for the creation of both prototype and end-use parts. Because the parts are created in a layer-by-layer manner, the flexibility of additive manufacturing is unparalleled and has opened the design space to enable features like undercuts and internal channels which cannot exist on traditional, subtractively manufactured parts. This flexibility can also be leveraged for optical applications. This paper outlines some of the current uses of 3D printing in the optical manufacturing process at Optimax. Several materials and additive technologies are utilized, including polymer printing through fused deposition modeling, which creates parts by depositing a softened thermoplastic filament in a layerwise fashion. Stereolithography, which uses light to cure layers of a photopolymer resin, will also be discussed. These technologies are used to manufacture functional prototypes, fixtures, sealed housings, and other components. Additionally, metal printing through selective laser melting, which uses a laser to melt metal powder layers into a dense solid, will be discussed due to the potential to manufacture thermally stable opticalmechanical assembly frameworks and functional optics. Examples of several additively manufactured optical components will be shown.

  18. Investigations on the corrosion resistance of metallic bipolar plates (BPP) in proton exchange membrane fuel cells (PEMFC) - understanding the effects of material, coating and manufacturing

    NASA Astrophysics Data System (ADS)

    Dur, Ender

    Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems are promising technology for contributing to meet the deficiency of world`s clean and sustainable energy requirements in the near future. Metallic bipolar plate (BPP) as one of the most significant components of PEMFC device accounts for the largest part of the fuel cell`s stack. Corrosion for metallic bipolar plates is a critical issue, which influences the performance and durability of PEMFC. Corrosion causes adverse impacts on the PEMFC`s performance jeopardizing commercialization. This research is aimed at determining the corrosion resistance of metallic BPPs, particularly stainless steels, used in PEMFC from different aspects. Material selection, coating selection, manufacturing process development and cost considerations need to be addressed in terms of the corrosion behavior to justify the use of stainless steels as a BPP material in PEMFC and to make them commercially feasible in industrial applications. In this study, Ti, Ni, SS304, SS316L, and SS 430 blanks, and BPPs comprised of SS304 and SS316L were examined in terms of the corrosion behavior. SS316L plates were coated to investigate the effect of coatings on the corrosion resistance performance. Stamping and hydroforming as manufacturing processes, and three different coatings (TiN, CrN, ZrN) applied via the Physical Vapor Deposition (PVD) method in three different thicknesses were selected to observe the effects of manufacturing processes, coating types and coating thicknesses on the corrosion resistance of BPP, respectively. Uncoated-coated blank and formed BPP were subjected to two different corrosion tests: potentiostatic and potentiodynamic. Some of the substantial results: 1- Manufacturing processes have an adverse impact on the corrosion resistance. 2- Hydroformed plates have slightly higher corrosion resistance than stamped samples. 3- BPPs with higher channel size showed better corrosion resistance. 4- Since none of the uncoated samples

  19. Manufacturing Process Simulation of Large-Scale Cryotanks

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Phillips, Steven; Griffin, Brian

    2003-01-01

    NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA.s Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aide in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI. As part of the SLI, The Boeing Company was awarded a basic period contract to research and propose options for both a metallic and a composite cryotank. Boeing then entered into a task agreement with the Marshall Space Flight Center to provide manufacturing

  20. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOEpatents

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2011-06-07

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  1. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOEpatents

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2010-09-28

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  2. Superparamagnetic nanocrystalline ZnFe2O4 with a very high Curie temperature.

    PubMed

    Deka, Sasanka; Joy, P A

    2008-08-01

    Studies on the magnetic properties of nanocrystalline ZnFe2O4 synthesized by an autocombustion method are reported. Superparamagnetic behavior is observed for the nanocrystalline materials with particle sizes of 8 nm and 17 nm, with superparamagnetic blocking temperatures of 65 K and 75 K, respectively. Magnetic hysteresis with very large coercivities of 533 Oe and 325 Oe, respectively, are observed at 12 K. Studies on the temperature variation of the magnetization above room temperature indicate that the Curie temperature is as high as approximately 800 K when compared to the paramagnetic nature of bulk zinc ferrite at room temperature.

  3. Origin of tension-compression asymmetry in ultrafine-grained fcc metals

    NASA Astrophysics Data System (ADS)

    Tsuru, T.

    2017-08-01

    A mechanism of anomalous tension-compression (T-C) asymmetry in ultrafine-grained (UFG) metals is proposed using large-scale atomistic simulations and dislocation theory. Unlike coarse-grained metals, UFG Al exhibits remarkable T-C asymmetry of the yield stress. The atomistic simulations reveal that the yield event is not related to intragranular dislocations but caused by dislocation nucleation from the grain boundaries (GBs). The dislocation core structure associated with the stacking fault energy in Al is strongly affected by the external stress compared with Cu; specifically, high tensile stress stabilizes the dissociation into partial dislocations. These dislocations are more likely to be nucleated from GBs and form deformation twins from an energetic viewpoint. The mechanism, which is different from well-known mechanisms for nanocrystalline and amorphous metals, is unique to high-strength UFG metals and can explain the difference in T-C asymmetry between UFG Cu and Al.

  4. Nanocrystallinity effects on osteoblast and osteoclast response to silicon substituted hydroxyapatite.

    PubMed

    Casarrubios, Laura; Matesanz, María Concepción; Sánchez-Salcedo, Sandra; Arcos, Daniel; Vallet-Regí, María; Portolés, María Teresa

    2016-11-15

    Silicon substituted hydroxyapatites (SiHA) are highly crystalline bioceramics treated at high temperatures (about 1200°C) which have been approved for clinical use with spinal, orthopedic, periodontal, oral and craniomaxillofacial applications. The preparation of SiHA with lower temperature methods (about 700°C) provides nanocrystalline SiHA (nano-SiHA) with enhanced bioreactivity due to higher surface area and smaller crystal size. The aim of this study has been to know the nanocrystallinity effects on the response of both osteoblasts and osteoclasts (the two main cell types involved in bone remodelling) to silicon substituted hydroxyapatite. Saos-2 osteoblasts and osteoclast-like cells (differentiated from RAW-264.7 macrophages) have been cultured on the surface of nano-SiHA and SiHA disks and different cell parameters have been evaluated: cell adhesion, proliferation, viability, intracellular content of reactive oxygen species, cell cycle phases, apoptosis, cell morphology, osteoclast-like cell differentiation and resorptive activity. This comparative in vitro study evidences that nanocrystallinity of SiHA affects the cell/biomaterial interface inducing bone cell apoptosis by loss of cell anchorage (anoikis), delaying osteoclast-like cell differentiation and decreasing the resorptive activity of this cell type. These results suggest the potential use of nano-SiHA biomaterial for preventing bone resorption in treatment of osteoporotic bone. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Wear behavior of Cu-Zn alloy by ultrasonic nanocrystalline surface modification.

    PubMed

    Cho, In Shik; Amanov, Auezhan; Ahn, Deok Gi; Shin, Keesam; Lee, Chang Soon; Pyoun, Young-Shik; Park, In-Gyu

    2011-07-01

    The ultrasonic nanocrystalline surface modification (UNSM) was applied to disk specimens made of Cu-Zn alloy in order to investigate the UNSM effects under five various conditions on wear of deformation twinning. In this paper, ball-on-disk test was conducted, and the results of UNSM-treated specimens showed that surface layer dislocation density and multi-directional twins were abruptly increased, and the grain size was altered into nano scale. UNSM delivers force onto the workpiece surface 20,000 times per second with 1,000 to 4,000 contact counts per square millimeter. The UNSM technology creates nanocrystalline and deformation twinning on the workpiece surface. One of the main concepts of this study is that defined phenomena of the UNSM technology, and the results revealed that nanocrystalline and deformation twinning depth might be controlled by means of impact energy of UNSM technology. EBSD and TEM analyses showed that deformation layer was increased up to 268 microm, and initial twin density was 0.001 x 10(6) cm(-2) and increased up to 0.343 x 10(6) cm(-2). Wear volume loss was also decreased from 703 x 10(3) mm3 to 387 x 10(3) mm3. Wear behavior according to deformation depth was observed under three different combinations. This is related to deformation depth which was created by UNSM technology.

  6. Using Innovative Technologies for Manufacturing Rocket Engine Hardware

    NASA Technical Reports Server (NTRS)

    Betts, E. M.; Eddleman, D. E.; Reynolds, D. C.; Hardin, N. A.

    2011-01-01

    Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As the United States enters into the next space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, rapid manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on NASA s Space Launch System (SLS) upper stage engine, J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator (GG) discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using a workhorse gas generator (WHGG) test fixture at MSFC's East Test Area, the duct was subjected to extreme J-2X hot gas environments during 7 tests for a total of 537 seconds of hot-fire time. The duct underwent extensive post-test evaluation and showed no signs of degradation. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.

  7. Intrinsic ferromagnetism in nanocrystalline Mn-doped ZnO depending on Mn concentration.

    PubMed

    Subramanian, Munisamy; Tanemura, Masaki; Hihara, Takehiko; Soga, Tetsuo; Jimbo, Takashi

    2011-04-01

    The physical properties of Zn(1-x)Mn(x)O nanoparticles synthesized by thermal decomposition are extensively investigated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman light scattering and Hysteresis measurements. XRD and XPS spectra reveal the absence of secondary phase in nanocrystalline ZnO doped with 5% or less Mn; and, later confirms that the valance state of Mn to be 2+ for all the samples. Raman spectra exhibit a peak at 660 cm(-1) which we attribute to the intrinsic lattice defects of ZnO with increasing Mn concentration. Overall, our results demonstrate that ferromagnetic properties can be realized while Mn-doped ZnO obtained in the nanocrystalline form.

  8. Analysis of a nanocrystalline polymer dispersion of ebselen using solid-state NMR, Raman microscopy, and powder X-ray diffraction.

    PubMed

    Vogt, Frederick G; Williams, Glenn R

    2012-07-01

    Nanocrystalline drug-polymer dispersions are of significant interest in pharmaceutical delivery. The purpose of this work is to demonstrate the applicability of methods based on two-dimensional (2D) and multinuclear solid-state NMR (SSNMR) to a novel nanocrystalline pharmaceutical dispersion of ebselen with polyvinylpyrrolidone-vinyl acetate (PVP-VA), after initial characterization with other techniques. A nanocrystalline dispersion of ebselen with PVP-VA was prepared and characterized by powder X-ray diffraction (PXRD), confocal Raman microscopy and mapping, and differential scanning calorimetry (DSC), and then subjected to detailed 1D and 2D SSNMR analysis involving ¹H, ¹³C, and ⁷⁷Se isotopes and ¹H spin diffusion. PXRD was used to show that dispersion contains nanocrystalline ebselen in the 35-60 nm size range. Confocal Raman microscopy and spectral mapping were able to detect regions where short-range interactions may occur between ebselen and PVP-VA. Spin diffusion effects were analyzed using 2D SSNMR experiments and are able to directly detect interactions between ebselen and the surrounding PVP-VA. The methods used here, particularly the 2D SSNMR methods based on spin diffusion, provided detailed structural information about a nanocrystalline polymer dispersion of ebselen, and should be useful in other studies of these types of materials.

  9. Investigating the Thermal and Phase Stability of Nanocrystalline Ni-W Produced by Electrodeposition, Sputtering, and Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Marvel, Christopher Jonathan

    The development of nanocrystalline materials has been increasingly pursued over the last few decades. They have been shown to exhibit superior properties compared to their coarse-grain counterparts, and thus present a tremendous opportunity to revolutionize the performance of nanoscale devices or bulk structural materials. However, nanocrystalline materials are highly prone to grain growth, and if the nanocrystalline grains coarsen, the beneficial properties are lost. There is a strong effort to determine the most effective thermal stability mechanisms to avoid grain growth, but the physical nature of nanocrystalline grain growth is still unclear due to a lack of detailed understanding of nanocrystalline microstructures. Furthermore, the influence of contamination has scarcely been explored with advanced transmission electron microscopy techniques, nor has there been a direct comparison of alloys fabricated with different bulk processes. Therefore, this research has applied aberration-corrected scanning transmission electron microscopy to characterize nanocrystalline Ni-W on the atomic scale and elucidate the physical grain growth behavior. Three primary objectives were pursued: (1) explore the thermal stability mechanisms of nanocrystalline Ni-W, (2) evaluate the phase stability of Ni-W and link any findings to grain growth behavior, and (3) compare the influences of bulk fabrication processing, including electrodeposition, DC magnetron sputtering, and mechanical alloying, on the thermal stability and phase stability of Ni-W. Several thermal stability mechanisms were identified throughout the course of this research. First and foremost, W-segregation was scarcely observed to grain boundaries, and it is unclear if W-segregation improves thermal stability contrary to most reports in the 2 literature. Long-range Ni4W chemical ordering was observed in alloys with more than 20 at.% W, and it is likely Ni4W domains reduce grain boundary mobility. In addition, lattice

  10. Direct Observation of Sink-Dependent Defect Evolution in Nanocrystalline Iron under Irradiation

    DOE PAGES

    El Atwani, Osman; Nathaniel, James; Leff, Asher C.; ...

    2017-05-12

    Crystal defects generated during irradiation can result in severe changes in morphology and an overall degradation of mechanical properties in a given material. Nanomaterials have been proposed as radiation damage tolerant materials, due to the hypothesis that defect density decreases with grain size refinement due to the increase in grain boundary surface area. The lower defect density should arise from grain boundary-point defect absorption and enhancement of interstitial-vacancy annihilation. In this study, low energy helium ion irradiation on free-standing iron thin films were performed at 573 K. Interstitial loops of a 0 /2 [111] Burgers vector were directly observed asmore » a result of the displacement damage. Loop density trends with grain size demonstrated an increase in the nanocrystalline (<100 nm) regime, but scattered behavior in the transition from the nanocrystalline to the ultra-fine regime (100–500 nm). To examine the validity of such trends, loop density and area for different grains at various irradiation doses were compared and revealed efficient defect absorption in the nanocrystalline grain size regime, but loop coalescence in the ultra-fine grain size regime. Lastly, a relationship between the denuded zone formation, a measure of grain boundary absorption efficiency, grain size, grain boundary type and misorientation angle is determined.« less

  11. Direct Observation of Sink-Dependent Defect Evolution in Nanocrystalline Iron under Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Atwani, Osman; Nathaniel, James; Leff, Asher C.

    Crystal defects generated during irradiation can result in severe changes in morphology and an overall degradation of mechanical properties in a given material. Nanomaterials have been proposed as radiation damage tolerant materials, due to the hypothesis that defect density decreases with grain size refinement due to the increase in grain boundary surface area. The lower defect density should arise from grain boundary-point defect absorption and enhancement of interstitial-vacancy annihilation. In this study, low energy helium ion irradiation on free-standing iron thin films were performed at 573 K. Interstitial loops of a 0 /2 [111] Burgers vector were directly observed asmore » a result of the displacement damage. Loop density trends with grain size demonstrated an increase in the nanocrystalline (<100 nm) regime, but scattered behavior in the transition from the nanocrystalline to the ultra-fine regime (100–500 nm). To examine the validity of such trends, loop density and area for different grains at various irradiation doses were compared and revealed efficient defect absorption in the nanocrystalline grain size regime, but loop coalescence in the ultra-fine grain size regime. Lastly, a relationship between the denuded zone formation, a measure of grain boundary absorption efficiency, grain size, grain boundary type and misorientation angle is determined.« less

  12. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites.

    PubMed

    Dusoe, Keith J; Vijayan, Sriram; Bissell, Thomas R; Chen, Jie; Morley, Jack E; Valencia, Leopolodo; Dongare, Avinash M; Aindow, Mark; Lee, Seok-Woo

    2017-01-09

    Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu 5 Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed.

  13. Nanocrystalline silicon: Lattice dynamics and enhanced thermoelectric properties

    DOE PAGES

    Claudio, Tania; Stein, Niklas; Stroppa, Daniel G.; ...

    2014-12-21

    In this study, silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K -1 m -1 at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phonon scattering has been a subject of many studies. In this work we have evaluated the effects of nanostructuration on the lattice dynamics of bulk nanocrystalline doped silicon. The samples were prepared by gas phase synthesis, followed by current and pressure assisted sintering. The heat capacity, density of phonons states, and elastic constantsmore » were measured, which all reveal a significant, ≈25%, reduction in the speed of sound. The samples present a significantly decreased lattice thermal conductivity, ≈25 W K -1 m -1, which, combined with a very high carrier mobility, results in a dimensionless figure of merit with a competitive value that peaks at ZT ≈ 0.57 at 973 °C. Due to its easily scalable and extremely low-cost production process, nanocrystalline Si prepared by gas phase synthesis followed by sintering could become the material of choice for high temperature thermoelectric generators.« less

  14. Tribological and mechanical performance evaluation of metal prosthesis components manufactured via metal injection molding.

    PubMed

    Melli, Virginia; Juszczyk, Mateusz; Sandrini, Enrico; Bolelli, Giovanni; Bonferroni, Benedetta; Lusvarghi, Luca; Cigada, Alberto; Manfredini, Tiziano; De Nardo, Luigi

    2015-01-01

    The increasing number of total joint replacements, in particular for the knee joint, has a growing impact on the healthcare system costs. New cost-saving manufacturing technologies are being explored nowadays. Metal injection molding (MIM) has already demonstrated its suitability for the production of CoCrMo alloy tibial trays, with a significant reduction in production costs, by holding both corrosion resistance and biocompatibility. In this work, mechanical and tribological properties were evaluated on tibial trays obtained via MIM and conventional investment casting. Surface hardness and wear properties were evaluated through Vickers hardness, scratch and pin on disk tests. The MIM and cast finished tibial trays were then subjected to a fatigue test campaign in order to obtain their fatigue load limit at 5 millions cycles following ISO 14879-1 directions. CoCrMo cast alloy exhibited 514 HV hardness compared to 335 HV of MIM alloy, furthermore it developed narrower scratches with a higher tendency towards microploughing than microcutting, in comparison to MIM CoCrMo. The observed fatigue limits were (1,766 ± 52) N for cast tibial trays and (1,625 ± 44) N for MIM ones. Fracture morphologies pointed out to a more brittle behavior of MIM microstructure. These aspects were attributed to the absence of a fine toughening and surface hardening carbide dispersion in MIM grains. Nevertheless, MIM tibial trays exhibited a fatigue limit far beyond the 900 N of maximum load prescribed by ISO and ASTM standards for the clinical application of these devices.

  15. Direct Numerical Simulations of Microstructure Effects During High-Rate Loading of Additively Manufactured Metals

    NASA Astrophysics Data System (ADS)

    Battaile, Corbett; Owen, Steven; Moore, Nathan

    2017-06-01

    The properties of most engineering materials depend on the characteristics of internal microstructures and defects. In additively manufactured (AM) metals, these can include polycrystalline grains, impurities, phases, and significant porosity that qualitatively differ from conventional engineering materials. The microscopic details of the interactions between these internal defects, and the propagation of applied loads through the body, act in concert to dictate macro-observable properties like strength and compressibility. In this work, we used Sandia's ALEGRA finite element software to simulate the high-strain-rate loading of AM metals from laser engineered net shaping (LENS) and thermal spraying. The microstructural details of the material were represented explicitly, such that internal features like second phases and pores are captured and meshed as individual entities in the computational domain. We will discuss the dependence of the high-strain-rate mechanical properties on microstructural characteristics such as the shapes, sizes, and volume fractions of second phases and pores. In addition, we will examine how the details of the microstructural representation affect the microscopic material response to dynamic loads, and the effects of using ``stair-step'' versus conformal interfaces smoothed via the SCULPT tool in Sandia's CUBIT software. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US DOE NNSA under contract DE-AC04-94AL85000.

  16. Method of manufacturing metallic products such as sheet by cold working and flash anealing

    DOEpatents

    Hajaligol, Mohammad R.; Sikka, Vinod K.

    2001-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  17. Method of manufacturing metallic products such as sheet by cold working and flash annealing

    DOEpatents

    Hajaligol, Mohammad R.; Sikka, Vinod K.

    2000-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  18. Superhard Nanocrystalline Homometallic Stainless Steel on Steel for Seamless Coatings

    NASA Technical Reports Server (NTRS)

    Tobin, Eric J.; Hafley, R. (Technical Monitor)

    2002-01-01

    The objective of this work is to deposit nanocrystalline stainless steel onto steel substrates (homometallic) for enhanced wear and corrosion resistance. Homometallic coatings provide superior adhesion, and it has been shown that ultrafine-grained materials exhibit the increased hardness and decreased permeability desired for protective coatings. Nanocrystals will be produced by controlling nucleation and growth and use of an ion beam during deposition by e-beam evaporation or sputtering. Phase I is depositing 31 6L nanocrystalline stainless steel onto 31 6L stainless steel substrates. These coatings exhibit hardnesses comparable to those normally obtained for ceramic coatings such ZrO2, and possess the superior adhesion of seamless, homometallic coatings. Hardening the surface with a similar material also enhances adhesion, by avoiding problems associated with thermal and lattice mismatch. So far we have deposited nanocrystalline homometallic 316L stainless steel coatings by varying the ions and the current density of the ion beams. For all deposition conditions we have produced smooth, uniform, superhard coatings. All coatings exhibit hardness of at least 200% harder than that of bulk materials. Our measurements indicate that there is a direct relationship between nanohardness and the current density of the ion beam. Stress measurements indicate that stress in the films is increasingly proportional to current density of the ion beam. TEM, XPS, and XRD results indicate that the coated layers consist of FCC structure nanocrystallites with a dimension of about 10 to 20 nm. The Ni and Mo concentration of these coating are lower than those of bulk 316L but the concentration of Cr is higher.

  19. Nanocrystalline Nb-Al-Ge mixtures fabricated using wet mechanical milling

    NASA Astrophysics Data System (ADS)

    Pusceddu, E.; Charlton, S.; Hampshire, D. P.

    2008-02-01

    An investigation into Nb-Al-Ge mixtures is presented with special attention to the superconducting compounds Nb3(Al1-xGex) with x = 0, 0.3 and 1, which are reported to provide the highest upper critical field values for Nb-based compounds. Wet mechanical milling using copper milling media and distilled water as a process control agent (PCA) was used with the intention of improving the yield, properties and the performance of these materials. Very high yields of nanocrystalline material were achieved but significant copper contamination occurred - confirmed using inductively-coupled-plasma atomic-emission-spectroscopy. Simultaneous thermogravimetric measurements and differential scanning calorimetry were performed on powders milled for up to 20 h with different PCA content, to quantify the work done on the powders. A typical grain size of a few nm was obtained for the Nb-Al-Ge mixtures after several hours milling. Powder ground for 20 h with 5% PCA was processed using a hot isostatic press (HIP) operating at 2000 atm and temperatures up to 750 °C. The room temperature resistivity decreased as the temperature of the HIPing increased. Unfortunately, despite the nanocrystalline microstructure of the powders and the high HIP temperatures, if superconducting material was formed it was below the detection level of resistivity, Ac. susceptibility and SQUID measurements. We conclude that during milling there was widespread contamination of the powders by the PCA so that milling with distilled water as a PCA is not to be recommended for fabricating nanocrystalline Nb3(Al1-xGex) A15 superconducting compounds.

  20. Using Innovative Technologies for Manufacturing and Evaluating Rocket Engine Hardware

    NASA Technical Reports Server (NTRS)

    Betts, Erin M.; Hardin, Andy

    2011-01-01

    Many of the manufacturing and evaluation techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing and evaluating hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) and white light scanning are being adopted and evaluated for their use on J-2X, with hopes of employing both technologies on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powdered metal manufacturing process in order to produce complex part geometries. The white light technique is a non-invasive method that can be used to inspect for geometric feature alignment. Both the DMLS manufacturing method and the white light scanning technique have proven to be viable options for manufacturing and evaluating rocket engine hardware, and further development and use of these techniques is recommended.

  1. Additively manufactured porous tantalum implants.

    PubMed

    Wauthle, Ruben; van der Stok, Johan; Amin Yavari, Saber; Van Humbeeck, Jan; Kruth, Jean-Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan

    2015-03-01

    The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of its good biocompatibility. In this study selective laser melting technology was used for the first time to manufacture highly porous pure tantalum implants with fully interconnected open pores. The architecture of the porous structure in combination with the material properties of tantalum result in mechanical properties close to those of human bone and allow for bone ingrowth. The bone regeneration performance of the porous tantalum was evaluated in vivo using an orthotopic load-bearing bone defect model in the rat femur. After 12 weeks, substantial bone ingrowth, good quality of the regenerated bone and a strong, functional implant-bone interface connection were observed. Compared to identical porous Ti-6Al-4V structures, laser-melted tantalum shows excellent osteoconductive properties, has a higher normalized fatigue strength and allows for more plastic deformation due to its high ductility. It is therefore concluded that this is a first step towards a new generation of open porous tantalum implants manufactured using selective laser melting. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Manufacturing Methods and Technology Project Summary Reports

    DTIC Science & Technology

    1985-06-01

    Computer -Aided Design (CAD)/ Computer -Aided Manufacturing (CAM) Process for the Production of Cold Forged Gears Project 483 6121 - Robotic Welding and...Caliber Projectile Bodies Project 682 8370 - Automatic Inspection and 1-I1 Process Control of Weapons Parts Manufacturing METALS Project 181 7285 - Cast...designed for use on each project. Experience suggested that a general purpose computer interface might be designed that could be used on any project

  3. Hollow microspheres of silica glass and method of manufacture

    DOEpatents

    Downs, Raymond L.; Miller, Wayne J.

    1982-01-01

    A method of manufacturing gel powder suitable for use as a starting material in the manufacture of hollow glass microspheres having a high concentration of silica. The powder is manufactured from a gel containing boron in the amount of about 1% to 20% (oxide equivalent mole percent), alkali metals, specifically potassium and sodium, in an amount exceeding 8% total, and the remainder silicon. Preferably, the ratio of potassium to sodium is greater than 1.5.

  4. Microstructure and High Temperature Mechanical Property of Fe-Cr-B Based Metal/Ceramic Composite Manufactured by Metal Injection Molding Process

    NASA Astrophysics Data System (ADS)

    Lee, Kee-Ahn; Gwon, Jin-Han; Yoon, Tae-Sik

    2018-03-01

    This study investigated the microstructure and the room and high temperature mechanical properties of Fe-Cr-B alloy manufactured by metal injection molding. In addition, hot isostatic pressing was performed to increase the density of the material, and a comparison of properties was made. Microstructural observation confirmed a bi-continuous structure composed of a three-dimensional network of α-Fe phase and (Cr,Fe)2B phase. The HIPed specimen featured a well-formed adhesion between the α-Fe phase and boride, and the number of fine pores was significantly reduced. The tensile results confirmed that the HIPed specimen (RT to 900 °C) had higher strengths compared to the as-sintered specimen, and the change of elongation starting from 700 °C was significantly greater in the HIPed specimen. Fractography suggested that cracks propagated mostly along the interface between the α-Fe matrix and boride in the as-sintered specimen, while direct fracture of boride was observed in addition to interface separation in the HIPed specimen.

  5. Additive manufacturing of hybrid circuits

    DOE PAGES

    Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; ...

    2016-03-26

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less

  6. Economic manufacturing of bulk metallic glass compositions by microalloying

    DOEpatents

    Liu, Chain T.

    2003-05-13

    A method of making a bulk metallic glass composition includes the steps of:a. providing a starting material suitable for making a bulk metallic glass composition, for example, BAM-11; b. adding at least one impurity-mitigating dopant, for example, Pb, Si, B, Sn, P, to the starting material to form a doped starting material; and c. converting the doped starting material to a bulk metallic glass composition so that the impurity-mitigating dopant reacts with impurities in the starting material to neutralize deleterious effects of the impurities on the formation of the bulk metallic glass composition.

  7. Rubber pad forming - Efficient approach for the manufacturing of complex structured sheet metal blanks for food industry

    NASA Astrophysics Data System (ADS)

    Spoelstra, Paul; Djakow, Eugen; Homberg, Werner

    2017-10-01

    The production of complex organic shapes in sheet metals is gaining more importance in the food industry due to increasing functional and hygienic demands. Hence it is necessary to produce parts with complex geometries promoting cleanability and general sanitation leading to improvement of food safety. In this context, and especially when stainless steel has to be formed into highly complex geometries while maintaining desired surface properties, it is inevitable that alternative manufacturing processes will need to be used which meet these requirements. Rubber pad forming offers high potential when it comes to shaping complex parts with excellent surface quality, with virtually no tool marks and scratches. Especially in cases where only small series are to be produced, rubber pad forming processes offers both technological and economic advantages. Due to the flexible punch, variation in metal thickness can be used with the same forming tool. The investments to set-up Rubber pad forming is low in comparison to conventional sheet metal forming processes. The process facilitates production of shallow sheet metal parts with complex contours and bends. Different bending sequences in a multiple tool set-up can also be conducted. The planned contribution thus describes a brief overview of the rubber pad technology. It shows the prototype rubber pad forming machine which can be used to perform complex part geometries made from stainless steel (1.4301). Based on an analysis of the already existing systems and new machines for rubber pad forming processes, together with their process properties, influencing variables and areas of application, some relevant parts for the food industry are presented.

  8. Nanocrystalline NiNd0.01Fe1.99O4 as a gas sensor

    NASA Astrophysics Data System (ADS)

    Shinde, Tukaram J.; Gadkari, Ashok B.; Jadhav, Sarjerao R.; Kumar, Surender; Dalawai, Sanjeev P.; Vasambekar, Pramod N.

    2015-06-01

    Nanocrystalline NiNd0.01Fe1.99O4 has been synthesized by oxalate co-precipitation method and was characterized by X-ray diffraction technique. X-ray diffraction analysis confirms the formation of single phase cubic spinel structure. Crystallite size of the ferrite lies in the nano-particle range. The gas sensing properties of nanocrystalline ferrite were studied for gases like Cl2, LPG and C2H5OH. It was observed that NiNd0.01Fe1.99O4 is more sensitive towards chlorine followed by LPG at an operating temperature 277 °C compared to ethanol.

  9. Anisotropic nanocrystalline MnBi with high coercivity at high temperature

    NASA Astrophysics Data System (ADS)

    Yang, J. B.; Yang, Y. B.; Chen, X. G.; Ma, X. B.; Han, J. Z.; Yang, Y. C.; Guo, S.; Yan, A. R.; Huang, Q. Z.; Wu, M. M.; Chen, D. F.

    2011-08-01

    Magnetic hard nanocrystalline MnBi has been prepared by melt spinning and subsequent low temperature annealing. A coercivity of 2.5 T can be achieved at 540 K for MnBi with an average grain size of about 20-30 nm. The coercivity iHc, mainly controlled by the coherent magnetization rotation, shows a strong dependence on the time of grinding and exhibits a positive temperature coefficient from 100 up to 540 K. The unique temperature dependent behavior of the coercivity (magnetocrystalline anisotropy) has a relationship with the variations in the crystal lattice ratio of c/a with temperatures. In addition, discontinuity can not be found in the lattice parameters of a, c, and c/a ratio at the magnetostructural transition temperature. The nanocrystalline MnBi powder fixed in an epoxy resin and under an applied magnetic field of 24 kOe shows a maximum energy product of 7.1 MGOe at room temperature and shows anisotropic characteristics with high Mr/Ms ratio up to 560 K.

  10. Performance characteristics of nanocrystalline diamond vacuum field emission transistor array

    NASA Astrophysics Data System (ADS)

    Hsu, S. H.; Kang, W. P.; Davidson, J. L.; Huang, J. H.; Kerns, D. V.

    2012-06-01

    Nitrogen-incorporated nanocrystalline diamond (ND) vacuum field emission transistor (VFET) with self-aligned gate is fabricated by mold transfer microfabrication technique in conjunction with chemical vapor deposition (CVD) of nanocrystalline diamond on emitter cavity patterned on silicon-on-insulator (SOI) substrate. The fabricated ND-VFET demonstrates gate-controlled emission current with good signal amplification characteristics. The dc characteristics of the ND-VFET show well-defined cutoff, linear, and saturation regions with low gate turn-on voltage, high anode current, negligible gate intercepted current, and large dc voltage gain. The ac performance of the ND-VFET is measured, and the experimental data are analyzed using a modified small signal circuit model. The experimental results obtained for the ac voltage gain are found to agree with the theoretical model. A higher ac voltage gain is attainable by using a better test setup to eliminate the associated parasitic capacitances. The paper reveals the amplifier characteristics of the ND-VFET for potential applications in vacuum microelectronics.

  11. Performance characteristics of nanocrystalline diamond vacuum field emission transistor array

    NASA Astrophysics Data System (ADS)

    Hsu, S. H.; Kang, W. P.; Davidson, J. L.; Huang, J. H.; Kerns, D. V.

    2012-05-01

    Nitrogen-incorporated nanocrystalline diamond (ND) vacuum field emission transistor (VFET) with self-aligned gate is fabricated by mold transfer microfabrication technique in conjunction with chemical vapor deposition (CVD) of nanocrystalline diamond on emitter cavity patterned on silicon-on-insulator (SOI) substrate. The fabricated ND-VFET demonstrates gate-controlled emission current with good signal amplification characteristics. The dc characteristics of the ND-VFET show well-defined cutoff, linear, and saturation regions with low gate turn-on voltage, high anode current, negligible gate intercepted current, and large dc voltage gain. The ac performance of the ND-VFET is measured, and the experimental data are analyzed using a modified small signal circuit model. The experimental results obtained for the ac voltage gain are found to agree with the theoretical model. A higher ac voltage gain is attainable by using a better test setup to eliminate the associated parasitic capacitances. The paper reveals the amplifier characteristics of the ND-VFET for potential applications in vacuum microelectronics.

  12. Ultra-thin nanocrystalline diamond membranes as pressure sensors for harsh environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssens, S. D., E-mail: stoffel.d.janssens@gmail.com; Haenen, K., E-mail: ken.haenen@uhasselt.be; IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek

    2014-02-17

    Glass and diamond are suitable materials for harsh environments. Here, a procedure for fabricating ultra-thin nanocrystalline diamond membranes on glass, acting as an electrically insulating substrate, is presented. In order to investigate the pressure sensing properties of such membranes, a circular, highly conductive boron-doped nanocrystalline diamond membrane with a resistivity of 38 mΩ cm, a thickness of 150 nm, and a diameter of 555 μm is fabricated in the middle of a Hall bar structure. During the application of a positive differential pressure under the membrane (0–0.7 bar), four point piezoresistive effect measurements are performed. From these measurements, it can be concluded that the resistancemore » response of the membrane, as a function of differential pressure, is highly linear and sensitive.« less

  13. Thermoplastic composite parts manufacture at Du Pont

    NASA Astrophysics Data System (ADS)

    Medwin, Steven J.; Coyle, Edward J.

    1993-01-01

    Low-cost routes to the manufacture of complex shaped composite parts have been defined using metal forming techniques and Du Pont's long discontinuous fiber (LDF) Technology. These manufacturing techniques include roll forming, stretch forming, and press forming. Near equivalence between the static, dynamic, and damage tolerance properties of LDF and continuous fiber composites have been demonstrated. Several examples are cited which demonstrate the potential for this technology to significantly reduce the cost of aerospace components.

  14. Beating Homogeneous Nucleation and Tuning Atomic Ordering in Glass-Forming Metals by Nanocalorimetry.

    PubMed

    Zhao, Bingge; Yang, Bin; Abyzov, Alexander S; Schmelzer, Jürn W P; Rodríguez-Viejo, Javier; Zhai, Qijie; Schick, Christoph; Gao, Yulai

    2017-12-13

    In this paper, the amorphous Ce 68 Al 10 Cu 20 Co 2 (atom %) alloy was in situ prepared by nanocalorimetry. The high cooling and heating rates accessible with this technique facilitate the suppression of crystallization on cooling and the identification of homogeneous nucleation. Different from the generally accepted notion that metallic glasses form just by avoiding crystallization, the role of nucleation and growth in the crystallization behavior of amorphous alloys is specified, allowing an access to the ideal metallic glass free of nuclei. Local atomic configurations are fundamentally significant to unravel the glass forming ability (GFA) and phase transitions in metallic glasses. For this reason, isothermal annealing near T g from 0.001 s to 25,000 s following quenching becomes the strategy to tune local atomic configurations and facilitate an amorphous alloy, a mixed glassy-nanocrystalline state, and a crystalline sample successively. On the basis of the evolution of crystallization enthalpy and overall latent heat on reheating, we quantify the underlying mechanism for the isothermal nucleation and crystallization of amorphous alloys. With Johnson-Mehl-Avrami method, it is demonstrated that the coexistence of homogeneous and heterogeneous nucleation contributes to the isothermal crystallization of glass. Heterogeneous rather than homogeneous nucleation dominates the isothermal crystallization of the undercooled liquid. For the mixed glassy-nanocrystalline structure, an extraordinary kinetic stability of the residual glass is validated, which is ascribed to the denser packed interface between amorphous phase and ordered nanocrystals. Tailoring the amorphous structure by nanocalorimetry permits new insights into unraveling GFA and the mechanism that correlates local atomic configurations and phase transitions in metallic glasses.

  15. ENVIRONMENTAL RESEARCH BRIEF: POLLUTION PREVENTION FOR A MANUFACTURER OF METAL FASTENERS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. n an effort to assist these manufacturers Waste Minimization Assessment Cent...

  16. Formation of high electrical-resistivity thin surface layer on carbonyl-iron powder (CIP) and thermal stability of nanocrystalline structure and vortex magnetic structure of CIP

    NASA Astrophysics Data System (ADS)

    Sugimura, K.; Miyajima, Y.; Sonehara, M.; Sato, T.; Hayashi, F.; Zettsu, N.; Teshima, K.; Mizusaki, H.

    2016-05-01

    This study focuses on the carbonyl-iron powder (CIP) used in the metal composite bulk magnetic core for high-efficient/light-weight SiC/GaN power device MHz switching dc-dc converter, where the fine CIP with a mean diameter of 1.1 μm is used to suppress the MHz band eddy current inside the CIP body. When applying the CIP to composite core together with the resin matrix, high electrical resistivity layer must be formed on the CIP-surface in order to suppress the overlapped eddy current between adjacent CIPs. In this study, tens nm thick silica (SiO2) was successfully deposited on the CIP-surface by using hydrolysis of TEOS (Si(OC2H5)4). Also tens nm thick oxidized layer of the CIP-surface was successfully formed by using CIP annealing in dry air. The SiC/GaN power device can operate at ambient temperature over 200 degree-C, and the composite magnetic core is required to operate at such ambient temperature. The as-made CIP had small coercivity below 800 A/m (10 Oe) due to its nanocrystalline-structure and had a single vortex magnetic structure. From the experimental results, both nanocrystalline and single vortex magnetic structure were maintained after heat-exposure of 250 degree-C, and the powder coercivity after same heat-exposure was nearly same as that of the as-made CIP. Therefore, the CIP with thermally stable nanocrystalline-structure and vortex magnetic state was considered to be heat-resistant magnetic powder used in the iron-based composite core for SiC/GaN power electronics.

  17. Formation of high electrical-resistivity thin surface layer on carbonyl-iron powder (CIP) and thermal stability of nanocrystalline structure and vortex magnetic structure of CIP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimura, K.; Miyajima, Y.; Sonehara, M.

    2016-05-15

    This study focuses on the carbonyl-iron powder (CIP) used in the metal composite bulk magnetic core for high-efficient/light-weight SiC/GaN power device MHz switching dc-dc converter, where the fine CIP with a mean diameter of 1.1 μm is used to suppress the MHz band eddy current inside the CIP body. When applying the CIP to composite core together with the resin matrix, high electrical resistivity layer must be formed on the CIP-surface in order to suppress the overlapped eddy current between adjacent CIPs. In this study, tens nm thick silica (SiO{sub 2}) was successfully deposited on the CIP-surface by using hydrolysismore » of TEOS (Si(OC{sub 2}H{sub 5}){sub 4}). Also tens nm thick oxidized layer of the CIP-surface was successfully formed by using CIP annealing in dry air. The SiC/GaN power device can operate at ambient temperature over 200 degree-C, and the composite magnetic core is required to operate at such ambient temperature. The as-made CIP had small coercivity below 800 A/m (10 Oe) due to its nanocrystalline-structure and had a single vortex magnetic structure. From the experimental results, both nanocrystalline and single vortex magnetic structure were maintained after heat-exposure of 250 degree-C, and the powder coercivity after same heat-exposure was nearly same as that of the as-made CIP. Therefore, the CIP with thermally stable nanocrystalline-structure and vortex magnetic state was considered to be heat-resistant magnetic powder used in the iron-based composite core for SiC/GaN power electronics.« less

  18. Refractory metals for ARPS AMTEC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svedberg, R.C.; Sievers, R.C.

    1998-07-01

    Alkali Metal Thermal-to-Electric Converter (AMTEC) cells for the Advanced Radioisotope Power Systems (ARPS) program are being developed with refractory metals and alloys as the basic structural materials. AMTEC cell efficiency increases with cell operating temperature. For space applications, long term reliability and high efficiency are essential and refractory metals were selected because of their high temperature strength, low vapor pressure, and compatibility with sodium. However, refractory metals are sensitive to oxygen, nitrogen and hydrogen contamination and refractory metal cells cannot be processed in air. Because of this sensitivity, new manufacturing and processing techniques are being developed. In addition to structuralmore » elements, development of other refractory metal components for the AMTEC cells, such as the artery and evaporator wicks, pinchoff tubes and feedthroughs are required. Changes in cell fabrication techniques and processing procedures being implemented to manufacture refractory metal cells are discussed.« less

  19. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    NASA Astrophysics Data System (ADS)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup

    2016-01-01

    Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O2 or C3F8 gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  20. Printability of alloys for additive manufacturing

    DOE PAGES

    Mukherjee, T.; Zuback, J. S.; De, A.; ...

    2016-01-22

    Although additive manufacturing (AM), or three dimensional (3D) printing, provides significant advantages over existing manufacturing techniques, metallic parts produced by AM are susceptible to distortion, lack of fusion defects and compositional changes. Here we show that the printability, or the ability of an alloy to avoid these defects, can be examined by developing and testing appropriate theories. A theoretical scaling analysis is used to test vulnerability of various alloys to thermal distortion. A theoretical kinetic model is used to examine predisposition of different alloys to AM induced compositional changes. A well-tested numerical heat transfer and fluid flow model is usedmore » to compare susceptibilities of various alloys to lack of fusion defects. These results are tested and validated with independent experimental data. Here, the findings presented in this paper are aimed at achieving distortion free, compositionally sound and well bonded metallic parts.« less

  1. Printability of alloys for additive manufacturing

    PubMed Central

    Mukherjee, T.; Zuback, J. S.; De, A.; DebRoy, T.

    2016-01-01

    Although additive manufacturing (AM), or three dimensional (3D) printing, provides significant advantages over existing manufacturing techniques, metallic parts produced by AM are susceptible to distortion, lack of fusion defects and compositional changes. Here we show that the printability, or the ability of an alloy to avoid these defects, can be examined by developing and testing appropriate theories. A theoretical scaling analysis is used to test vulnerability of various alloys to thermal distortion. A theoretical kinetic model is used to examine predisposition of different alloys to AM induced compositional changes. A well-tested numerical heat transfer and fluid flow model is used to compare susceptibilities of various alloys to lack of fusion defects. These results are tested and validated with independent experimental data. The findings presented in this paper are aimed at achieving distortion free, compositionally sound and well bonded metallic parts. PMID:26796864

  2. Examining the influence of grain size on radiation tolerance in the nanocrystalline regime

    DOE PAGES

    Barr, Christopher M.; Li, Nan; Boyce, Brad L.; ...

    2018-05-01

    Here, nanocrystalline materials have been proposed as superior radiation tolerant materials in comparison to coarse grain counterparts. However, there is still a limited understanding whether a particular nanocrystalline grain size is required to obtain significant improvements in key deleterious effects resulting from energetic irradiation. This work employs the use of in-situ heavy ion irradiation transmission electron microscopy experiments coupled with quantitative defect characterization and precession electron diffraction to explore the sensitivity of defect size and density within the nanocrystalline regime in platinum. Under the explored experimental conditions, no significant change in either the defect size or density between grain sizesmore » of 20 and 100 nm was observed. Furthermore, the in-situ transmission electron microscopy irradiations illustrate stable sessile defect clusters of 1–3 nm adjacent to most grain boundaries, which are traditionally treated as strong defect sinks. The stability of these sessile defects observed in-situ in small, 20–40 nm, grains is the proposed primary mechanism for a lack of defect density trends. Lastly, this scaling breakdown in radiation improvement with decreasing grain size has practical importance on nanoscale grain boundary engineering approaches for proposed radiation tolerant alloys.« less

  3. Examining the influence of grain size on radiation tolerance in the nanocrystalline regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, Christopher M.; Li, Nan; Boyce, Brad L.

    Here, nanocrystalline materials have been proposed as superior radiation tolerant materials in comparison to coarse grain counterparts. However, there is still a limited understanding whether a particular nanocrystalline grain size is required to obtain significant improvements in key deleterious effects resulting from energetic irradiation. This work employs the use of in-situ heavy ion irradiation transmission electron microscopy experiments coupled with quantitative defect characterization and precession electron diffraction to explore the sensitivity of defect size and density within the nanocrystalline regime in platinum. Under the explored experimental conditions, no significant change in either the defect size or density between grain sizesmore » of 20 and 100 nm was observed. Furthermore, the in-situ transmission electron microscopy irradiations illustrate stable sessile defect clusters of 1–3 nm adjacent to most grain boundaries, which are traditionally treated as strong defect sinks. The stability of these sessile defects observed in-situ in small, 20–40 nm, grains is the proposed primary mechanism for a lack of defect density trends. Lastly, this scaling breakdown in radiation improvement with decreasing grain size has practical importance on nanoscale grain boundary engineering approaches for proposed radiation tolerant alloys.« less

  4. Tailoring nanocrystalline diamond coated on titanium for osteoblast adhesion.

    PubMed

    Pareta, Rajesh; Yang, Lei; Kothari, Abhishek; Sirinrath, Sirivisoot; Xiao, Xingcheng; Sheldon, Brian W; Webster, Thomas J

    2010-10-01

    Diamond coatings with superior chemical stability, antiwear, and cytocompatibility properties have been considered for lengthening the lifetime of metallic orthopedic implants for over a decade. In this study, an attempt to tailor the surface properties of diamond films on titanium to promote osteoblast (bone forming cell) adhesion was reported. The surface properties investigated here included the size of diamond surface features, topography, wettability, and surface chemistry, all of which were controlled during microwave plasma enhanced chemical-vapor-deposition (MPCVD) processes using CH4-Ar-H2 gas mixtures. The hardness and elastic modulus of the diamond films were also determined. H2 concentration in the plasma was altered to control the crystallinity, grain size, and topography of the diamond coatings, and specific plasma gases (O2 and NH3) were introduced to change the surface chemistry of the diamond coatings. To understand the impact of the altered surface properties on osteoblast responses, cell adhesion tests were performed on the various diamond-coated titanium. The results revealed that nanocrystalline diamond (grain sizes <100 nm) coated titanium dramatically increased surface hardness, and the introduction of O2 and NH3 during the MPCVD process promoted osteoblast adhesion on diamond and, thus, should be further studied for improving orthopedic applications. Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  5. Effect of Various Catalysts on the Stability of Characteristics of Acetone Sensors Based on Thin Nanocrystalline SnO2 Films

    NASA Astrophysics Data System (ADS)

    Sevastyanov, E. Yu.; Maksimova, N. K.; Potekaev, A. I.; Khludkova, L. S.; Chernikov, E. V.; Davydova, T. A.

    2018-02-01

    The results of studies of electrical and gas sensitive characteristics of acetone sensors based on thin nanocrystalline SnO2 films with various catalysts deposited on the surface (Pt/Pd, Au) and introduced into the volume (Au, Ni, Co) are presented. Films containing impurities of gold and 3d-metals were obtained by the method of magnetron sputtering of mosaic targets. Particular attention was paid to the influence of the longterm tests and humidity level on the properties of sensors. It is shown that the sensors with the deposited dispersed gold layers with Au+Ni and, especially, Au+Co additives introduced into the volume are characterized by the increased stability in the process of testing under prolonged exposure to acetone and also under conditions of varying humidity.

  6. High-rate production of micro- and nanostructured surfaces: Injection molding and novel process for metal tooling manufacturing

    NASA Astrophysics Data System (ADS)

    De Jesus Vega, Marisely

    rapidly processed via liquid injection molding. LSR with its excellent mechanical properties, transparency, non-toxicity and rapid molding capabilities can bring the production of micro and nanostructured surfaces from laboratory research facilities to high-rate manufacturing. However, previous research on microstructured surfaces made off LSR does not focus on the processing aspect of this material. Therefore, there is a lack of understanding of how different processing conditions affect the replication of microstructures. Additionally, there are no reports molding nanostructures of LSR. Features between 115 microm and 0.250 microm were molded in this work and the effect of different processing conditions and features sizes were studied. For the last part of this work, a novel metal additive manufacturing technique was used for the production of microstructured surfaces to be used as tooling for injection molding. The printing method consists of metal pastes printed through a tip onto a steel substrate. Prior work has shown spreading and swelling of features when metal pastes extrude out of the printing tip. PDMS was studied as a binder material to minimize spreading and swelling of the features by curing right after printing. In addition, prior work has shown durability of this metal printed tool up to 5000 injection molding cycles. This work compares this durability to durability of commercially available selective laser sintering metal tools. Furthermore, surface roughness was studied as this is one of the most important things to consider when molding microchannels for certain applications.

  7. Driving forces of heavy metal changes in agricultural soils in a typical manufacturing center.

    PubMed

    Qiu, Menglong; Li, Fangbai; Wang, Qi; Chen, Junjian; Yang, Guoyi; Liu, Liming

    2015-05-01

    Heavy metal concentrations in 2002 and 2012 in agricultural soils in Dongguan, a manufacturing center in southern China, were analyzed to determine the impact of rapid economic development on soil pollution. The level of pollution was assessed using the Nemerow synthetic pollution index (NPI), and its changing characteristics and driving forces were analyzed using multivariate statistical and geostatistical methods. The results indicate that the mean NPI was 0.79 in 2002 and 0.84 in 2012, which indicates aggravated heavy metal contamination in the agricultural soils. The concentrations of Cd and Zn increased 54.7 and 20.8 %, respectively, whereas Hg and Pb decreased 35.3 and 24.5 %, respectively. Cr, As, Cu, and Ni remained relatively stable. The Hg and Cd concentrations were highly correlated with soil types (P < 0.01), the secondary industrial output per unit of land (P < 0.01), proportion of cereal fields (P < 0.01), proportion of vegetable fields (P < 0.01), population density (P < 0.05), and road density (P < 0.05). The Pb and As concentrations were greatly influenced by soil types (P < 0.01), river density (P < 0.01), fertilizer rate (P < 0.01), and road density (P < 0.05). Cr, Zn, Cu, and Ni concentrations were primarily driven by soil types (P < 0.01), river density (P < 0.01), and fertilizer rate (P < 0.05).

  8. The impact of diamond nanocrystallinity on osteoblast functions.

    PubMed

    Yang, Lei; Sheldon, Brian W; Webster, Thomas J

    2009-07-01

    Nanocrystalline diamond has been proposed as an anti-abrasive film on orthopedic implants. In this study, osteoblast (bone forming cells) functions including adhesion (up to 4h), proliferation (up to 5 days) and differentiation (up to 21 days) on different diamond film topographies were systematically investigated. In order to exclude interferences from changes in surface chemistry and wettability (energy), diamond films with nanometer and micron scale topographies were fabricated through microwave plasma enhanced chemical-vapor-deposition and hydrogen plasma treatment. Scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy and water contact angle measurements verified the similar surface chemistry and wettability but varied topographies for all of the diamond films prepared on silicon in this study. Cytocompatibility assays demonstrated enhanced osteoblast functions (including adhesion, proliferation, intracellular protein synthesis, alkaline phosphatase activity and extracellular calcium deposition) on nanocrystalline diamond compared to submicron diamond grain size films for all time periods tested up to 21 days. An SEM study of osteoblast attachment helped to explain the topographical impact diamond had on osteoblast functions by showing altered filopodia extensions on the different diamond topographies. In summary, these results provided insights into understanding the role diamond nanotopography had on osteoblast interactions and more importantly, the application of diamond films to improve orthopedic implant lifetimes.

  9. Change of magnetic properties of nanocrystalline alloys under influence of external factors

    NASA Astrophysics Data System (ADS)

    Sitek, Jozef; Holková, Dominika; Dekan, Julius; Novák, Patrik

    2016-10-01

    Nanocrystalline (Fe3Ni1)81Nb7B12 alloys were irradiated using different types of radiation and subsequently studied by Mössbauer spectroscopy. External magnetic field of 0.5 T, electron-beam irradiation up to 4 MGy, neutron irradiation up to 1017 neutrons/cm2 and irradiation with Cu ions were applied on the samples. All types of external factors had an influence on the magnetic microstructure manifested as a change in the direction of the net magnetic moment, intensity of the internal magnetic field and volumetric fraction of the constituent phases. The direction of the net magnetic moment was the most sensitive parameter. Changes of the microscopic magnetic parameters were compared after different external influence and results of nanocrystalline samples were compared with their amorphous precursors.

  10. Scale-up of 2G wire manufacturing at American Superconductor Corporation

    NASA Astrophysics Data System (ADS)

    Fleshler, S.; Buczek, D.; Carter, B.; Cedrone, P.; DeMoranville, K.; Gannon, J.; Inch, J.; Li, X.; Lynch, J.; Otto, A.; Podtburg, E.; Roy, D.; Rupich, M.; Sathyamurthy, S.; Schreiber, J.; Thieme, C.; Thompson, E.; Tucker, D.; Nagashima, K.; Ogata, M.

    2009-10-01

    American Superconductor Corporation (AMSC) has developed the base technology and a manufacturing line for initial volume production of low-cost second generation high temperature superconductor (2G HTS) wire for commercial and military applications. The manufacturing line is based on reel-to-reel processing of wide HTS strips using rolling assisted bi-axially textured substrate (RABiTS™) for the template and Metal Organic Deposition (MOD) for the HTS layer. AMSC’s wide strip process is a low cost manufacturing technology since multiple wires are produced in a single manufacturing pass by slitting the wide strip to narrower width in the last stage of the manufacturing process. Industry standard 4.4 mm wide wires are produced by laminating metallic foils, such as copper, stainless steel or any other material, to the HTS insert wire, and are chosen to tailor the electrical, thermal and mechanical properties of the wire for specific applications. The laminated, 4.4 mm wide wires are known as “344 superconductors.” In this paper, we summarize the status of AMSC’s manufacturing capability, the performance of the wire presently being produced, as well as the cost and technical advantages of AMSC’s manufacturing approach. In addition, future direction for research and development to improve electrical performance is presented.

  11. Al xGa 1-xN (0⩽ x⩽1) nanocrystalline powder by pyrolysis route

    NASA Astrophysics Data System (ADS)

    Garcia, R.; Srinivasan, S.; Contreras, O. E.; Thomas, A. C.; Ponce, F. A.

    2007-10-01

    A novel method to synthesize nanocrystalline Al xGa 1-xN (0⩽ x⩽1) powders is presented in this work. AlGaN nanocrystallites with the wurtzite structure were produced by thermal decomposition of a gallium-aluminum complex compound at 1000 °C in a three-zone horizontal quartz tube reactor under high-purity ammonia atmosphere. The crystallites showed a hexagonal structure, high homogeneity, and a narrow particle-size distribution at around 50 nm. A continuous composition range from 0 to 1 mol fraction can be reached by this method, allowing high control on the gallium and aluminum composition by monitoring the stoichiometry of the reaction between the metal nitrates and carbohydrazide. Low-temperature photoluminescence and cathodoluminescence studies showed that some impurities, such as carbon and oxygen, are unintentionally present in the final product and affect the optical properties. Subsequent thermal treatments between 900 and 1100 °C under an ammonia atmosphere significantly improved the quality of these materials.

  12. Defect structure in electrodeposited nanocrystalline Ni layers with different Mo concentrations

    NASA Astrophysics Data System (ADS)

    Kapoor, Garima; Péter, László; Fekete, Éva; Gubicza, Jenő

    2018-05-01

    The effect of molybdenum (Mo) alloying on the lattice defect structure in electrodeposited nanocrystalline nickel (Ni) films was studied. The electrodeposited layers were prepared on copper substrate at room temperature, with a constant current density and pH value. The chemical composition of these layers was determined by EDS. In addition, X-ray diffraction line profile analysis was carried out to study the microstructural parameters such as the crystallite size, the dislocation density and the stacking fault probability. It was found that the higher Mo content yielded more than one order of magnitude larger dislocation density while the crystallite size was only slightly smaller. In addition, the twin boundary formation activity during deposition increased with increasing Mo concentration. The results obtained on electrodeposited layers were compared with previous research carried out on bulk nanocrystalline Ni-Mo materials with similar compositions but processed by severe plastic deformation.

  13. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films

    NASA Astrophysics Data System (ADS)

    Huo, Wenyi; Liu, Xiaodong; Tan, Shuyong; Fang, Feng; Xie, Zonghan; Shang, Jianku; Jiang, Jianqing

    2018-05-01

    Nano-twinned, nanocrystalline CoCrFeNi high-entropy alloy films were produced by magnetron sputtering. The films exhibit a high hardness of 8.5 GPa, the elastic modulus of 161.9 GPa and the resistivity as high as 135.1 μΩ·cm. The outstanding mechanical properties were found to result from the resistance of deformation created by nanocrystalline grains and nano-twins, while the electrical resistivity was attributed to the strong blockage effect induced by grain boundaries and lattice distortions. The results lay a solid foundation for the development of advanced films with structural and functional properties combined in micro-/nano-electronic devices.

  14. Multiple magnetic scattering in small-angle neutron scattering of Nd-Fe-B nanocrystalline magnet.

    PubMed

    Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P; Keiderling, Uwe; Ono, Kanta

    2016-06-20

    We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd-Fe-B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd-Fe-B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd-Fe-B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters.

  15. Multiple magnetic scattering in small-angle neutron scattering of Nd–Fe–B nanocrystalline magnet

    PubMed Central

    Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P.; Keiderling, Uwe; Ono, Kanta

    2016-01-01

    We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd–Fe–B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd–Fe–B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd–Fe–B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters. PMID:27321149

  16. From amorphous to nanocrystalline: the effect of nanograins in amorphous matrix on the thermal conductivity of hot-wire chemical-vapor deposited silicon films

    DOE PAGES

    Kearney, B. T.; Jugdersuren, B.; Queen, D. R.; ...

    2017-12-28

    Here, we have measured the thermal conductivity of amorphous and nanocrystalline silicon films with varying crystalline content from 85K to room temperature. The films were prepared by the hot-wire chemical-vapor deposition, where the crystalline volume fraction is determined by the hydrogen (H2) dilution ratio to the processing silane gas (SiH4), R=H2/SiH4. We varied R from 1 to 10, where the films transform from amorphous for R < 3 to mostly nanocrystalline for larger R. Structural analyses show that the nanograins, averaging from 2 to 9nm in sizes with increasing R, are dispersed in the amorphous matrix. The crystalline volume fractionmore » increases from 0 to 65% as R increases from 1 to 10. The thermal conductivities of the two amorphous silicon films are similar and consistent with the most previous reports with thicknesses no larger than a few um deposited by a variety of techniques. The thermal conductivities of the three nanocrystalline silicon films are also similar, but are about 50-70% higher than those of their amorphous counterparts. The heat conduction in nanocrystalline silicon films can be understood as the combined contribution in both amorphous and nanocrystalline phases, where increased conduction through improved nanocrystalline percolation path outweighs increased interface scattering between silicon nanocrystals and the amorphous matrix.« less

  17. From amorphous to nanocrystalline: the effect of nanograins in amorphous matrix on the thermal conductivity of hot-wire chemical-vapor deposited silicon films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kearney, B. T.; Jugdersuren, B.; Queen, D. R.

    Here, we have measured the thermal conductivity of amorphous and nanocrystalline silicon films with varying crystalline content from 85K to room temperature. The films were prepared by the hot-wire chemical-vapor deposition, where the crystalline volume fraction is determined by the hydrogen (H2) dilution ratio to the processing silane gas (SiH4), R=H2/SiH4. We varied R from 1 to 10, where the films transform from amorphous for R < 3 to mostly nanocrystalline for larger R. Structural analyses show that the nanograins, averaging from 2 to 9nm in sizes with increasing R, are dispersed in the amorphous matrix. The crystalline volume fractionmore » increases from 0 to 65% as R increases from 1 to 10. The thermal conductivities of the two amorphous silicon films are similar and consistent with the most previous reports with thicknesses no larger than a few um deposited by a variety of techniques. The thermal conductivities of the three nanocrystalline silicon films are also similar, but are about 50-70% higher than those of their amorphous counterparts. The heat conduction in nanocrystalline silicon films can be understood as the combined contribution in both amorphous and nanocrystalline phases, where increased conduction through improved nanocrystalline percolation path outweighs increased interface scattering between silicon nanocrystals and the amorphous matrix.« less

  18. Shock-induced microstructural response of mono- and nanocrystalline SiC ceramics

    NASA Astrophysics Data System (ADS)

    Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya

    2018-04-01

    The dynamic behavior of mono- and nanocrystalline SiC ceramics under plane shock loading is revealed using molecular-dynamics simulations. The generation of shock-induced elastic compression, plastic deformation, and structural phase transformation is characterized at different crystallographic directions as well as on a 5-nm grain size nanostructure at 10 K and 300 K. Shock profiles are calculated in a wide range of particle velocities 0.1-6.0 km/s. The predicted Hugoniot agree well with experimental data. Results indicate the generation of elastic waves for particle velocities below 0.8-1.9 km/s, depending on the crystallographic direction. In the intermediate range of particle velocities between 2 and 5 km/s, the shock wave splits into an elastic precursor and a zinc blende-to-rock salt structural transformation wave, which is triggered by shock pressure over the ˜90 GPa threshold value. A plastic wave, with a strong deformation twinning component, is generated ahead of the transformation wave for shocks in the velocity range between 1.5 and 3 km/s. For particle velocities greater than 5-6 km/s, a single overdriven transformation wave is generated. Surprisingly, shocks on the nanocrystalline sample reveal the absence of wave splitting, and elastic, plastic, and transformation wave components are seamlessly connected as the shock strength is continuously increased. The calculated strengths 15.2, 31.4, and 30.9 GPa for ⟨001⟩, ⟨111⟩, and ⟨110⟩ directions and 12.3 GPa for the nanocrystalline sample at the Hugoniot elastic limit are in excellent agreement with experimental data.

  19. High surface area nanocrystalline hausmannite synthesized by a solvent-free route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera-Miranda, Daniel; Ponrouch, Alexandre; Pons, Josefina

    Highlights: ► High surface area Mn{sub 3}O{sub 4} nanoparticles obtained by a solvent-free low temperature route. ► 3,6,9-Trioxadecanoic acid allows to obtain nanocrystalline hausmannite. ► Tape casted electrodes show up to 300 mAh g{sup −1} capacity after more than 40 cycles at a C/3 rate. ► Upper cut off voltage strongly influences capacity retention upon cycling at high C rates. -- Abstract: Nanocrystalline high surface area Mn{sub 3}O{sub 4} powder was obtained at low temperature by a solvent-free route. The precursor was a mixture of manganese (II) acetate, 3,6,9-trioxadecanoic acid (TODA) and ammonium acetate that were intimately mixed by groundingmore » in an agate mortar. Nanocrystalline Mn{sub 3}O{sub 4} was obtained by thermal treatment at 120 °C. Powder X-ray diffraction, selected area electron diffraction, high resolution transmission electron microscopy, and Fourier transformed infrared characterization confirmed the formation of the hausmannite phase. The as-prepared mesoporous material has high specific surface area (120 m{sup 2} g{sup −1}). The performances of tape casted Mn{sub 3}O{sub 4} nanopowder electrodes were investigated as anode material for lithium ion batteries. High capacity values were achieved at diverse C rates. Capacity fading was found to be dependent on the upper cut off voltage, the presence of a plateau at 2.25 V vs. Li{sup +}/Li being detrimental for long term cyclability.« less

  20. Method for forming metal contacts

    DOEpatents

    Reddington, Erik; Sutter, Thomas C; Bu, Lujia; Cannon, Alexandra; Habas, Susan E; Curtis, Calvin J; Miedaner, Alexander; Ginley, David S; Van Hest, Marinus Franciscus Antonius Maria

    2013-09-17

    Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.

  1. Systems and Methods for Designing and Fabricating Contact-Free Support Structures for Overhang Geometries of Parts in Powder-Bed Metal Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Cooper, Kenneth (Inventor); Chou, Yuag-Shan (Inventor)

    2017-01-01

    Systems and methods are provided for designing and fabricating contact-free support structures for overhang geometries of parts fabricated using electron beam additive manufacturing. One or more layers of un-melted metallic powder are disposed in an elongate gap between an upper horizontal surface of the support structure and a lower surface of the overhang geometry. The powder conducts heat from the overhang geometry to the support structure. The support structure acts as a heat sink to enhance heat transfer and reduce the temperature and severe thermal gradients due to poor thermal conductivity of metallic powders underneath the overhang. Because the support structure is not connected to the part, the support structure can be removed freely without any post-processing step.

  2. Exploring biosensor applications with cotton cellulose nanocrystalline protein and peptide conjugates

    USDA-ARS?s Scientific Manuscript database

    Sensor I: Nano-crystalline preparations were produced through acid hydrolysis and mechanical breakage of the cotton fibers from a scoured and bleached cotton fabric and a scoured and bleached, mercerized fabric, which was shown to produce cellulose I (NCI) and cellulose II (NCII) crystals respective...

  3. Softening due to Grain Boundary Cavity Formation and its Competition with Hardening in Helium Implanted Nanocrystalline Tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, W. Streit; Gentile, Jonathan M.; El-Atwani, Osman

    The unique ability of grain boundaries to act as effective sinks for radiation damage plays a significant role in nanocrystalline materials due to their large interfacial area per unit volume. Leveraging this mechanism in the design of tungsten as a plasma-facing material provides a potential pathway for enhancing its radiation tolerance under fusion-relevant conditions. In this study, we explore the impact of defect microstructures on the mechanical behavior of helium ion implanted nanocrystalline tungsten through nanoindentation. Softening was apparent across all implantation temperatures and attributed to bubble/cavity loaded grain boundaries suppressing the activation barrier for the onset of plasticity viamore » grain boundary mediated dislocation nucleation. An increase in fluence placed cavity induced grain boundary softening in competition with hardening from intragranular defect loop damage, thus signaling a new transition in the mechanical behavior of helium implanted nanocrystalline tungsten.« less

  4. Softening due to Grain Boundary Cavity Formation and its Competition with Hardening in Helium Implanted Nanocrystalline Tungsten

    DOE PAGES

    Cunningham, W. Streit; Gentile, Jonathan M.; El-Atwani, Osman; ...

    2018-02-13

    The unique ability of grain boundaries to act as effective sinks for radiation damage plays a significant role in nanocrystalline materials due to their large interfacial area per unit volume. Leveraging this mechanism in the design of tungsten as a plasma-facing material provides a potential pathway for enhancing its radiation tolerance under fusion-relevant conditions. In this study, we explore the impact of defect microstructures on the mechanical behavior of helium ion implanted nanocrystalline tungsten through nanoindentation. Softening was apparent across all implantation temperatures and attributed to bubble/cavity loaded grain boundaries suppressing the activation barrier for the onset of plasticity viamore » grain boundary mediated dislocation nucleation. An increase in fluence placed cavity induced grain boundary softening in competition with hardening from intragranular defect loop damage, thus signaling a new transition in the mechanical behavior of helium implanted nanocrystalline tungsten.« less

  5. CP/MAS ¹³C NMR study of pulp hornification using nanocrystalline cellulose as a model system.

    PubMed

    Idström, Alexander; Brelid, Harald; Nydén, Magnus; Nordstierna, Lars

    2013-01-30

    The hornification process of paper pulp was investigated using solid-state (13)C NMR spectroscopy. Nanocrystalline cellulose was used to serve as a model system of the crystalline parts of the fibrils in pulp fibers. Characterization of the nanocrystalline cellulose dimensions was carried out using scanning electron microscopy. The samples were treated by drying and wetting cycles prior to NMR analysis where the hornification phenomenon was recorded by spectral changes of the cellulose C-4 carbon signals. An increase of the crystalline signal and a decrease of the signals corresponding to the accessible amorphous domains were found for both paper pulp and nanocrystalline cellulose. These spectral changes grew stronger with repeating drying and wetting cycles. The results show that cellulose co-crystallization contribute to hornification. Another conclusion is that the surfaces of higher hydrophobicity in cellulose fibrils have an increased preference for aggregation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Methods of forming hardened surfaces

    DOEpatents

    Branagan, Daniel J [Iona, ID

    2004-07-27

    The invention encompasses a method of forming a metallic coating. A metallic glass coating is formed over a metallic substrate. After formation of the coating, at least a portion of the metallic glass can be converted into a crystalline material having a nanocrystalline grain size. The invention also encompasses metallic coatings comprising metallic glass. Additionally, the invention encompasses metallic coatings comprising crystalline metallic material, with at least some of the crystalline metallic material having a nanocrystalline grain size.

  7. Method for forming a hardened surface on a substrate

    DOEpatents

    Branagan, Daniel J [Iona, ID

    2008-01-29

    The invention encompasses a method of forming a metallic coating. A metallic glass coating is formed over a metallic substrate. After formation of the coating, at least a portion of the metallic glass can be converted into a crystalline material having a nanocrystalline grain size. The invention also encompasses metallic coatings comprising metallic glass. Additionally, the invention encompasses metallic coatings comprising crystalline metallic material, with at least some of the crystalline metallic material having a nanocrystalline grain size.

  8. Advances in Additive Manufacturing

    DTIC Science & Technology

    2016-07-14

    of 3D - printed structures. Analysis examples will include quantification of tolerance differences between the designed and manufactured parts, void...15. SUBJECT TERMS 3-D printing , validation and verification, nondestructive inspection, print -on-the-move, prototyping 16. SECURITY CLASSIFICATION...researching the formation of AM-grade metal powder from battlefield scrap and operating base waste, 2) potential of 3-D printing with sand to make

  9. Internal fit of three-unit fixed dental prostheses produced by computer-aided design/computer-aided manufacturing and the lost-wax metal casting technique assessed using the triple-scan protocol.

    PubMed

    Dahl, Bjørn E; Dahl, Jon E; Rønold, Hans J

    2018-02-01

    Suboptimal adaptation of fixed dental prostheses (FDPs) can lead to technical and biological complications. It is unclear if the computer-aided design/computer-aided manufacturing (CAD/CAM) technique improves adaptation of FDPs compared with FDPs made using the lost-wax and metal casting technique. Three-unit FDPs were manufactured by CAD/CAM based on digital impression of a typodont model. The FDPs were made from one of five materials: pre-sintered zirconium dioxide; hot isostatic pressed zirconium dioxide; lithium disilicate glass-ceramic; milled cobalt-chromium; and laser-sintered cobalt-chromium. The FDPs made using the lost-wax and metal casting technique were used as reference. The fit of the FDPs was analysed using the triple-scan method. The fit was evaluated for both single abutments and three-unit FDPs. The average cement space varied between 50 μm and 300 μm. Insignificant differences in internal fit were observed between the CAD/CAM-manufactured FDPs, and none of the FPDs had cement spaces that were statistically significantly different from those of the reference FDP. For all FDPs, the cement space at a marginal band 0.5-1.0 mm from the preparation margin was less than 100 μm. The milled cobalt-chromium FDP had the closest fit. The cement space of FDPs produced using the CAD/CAM technique was similar to that of FDPs produced using the conventional lost-wax and metal casting technique. © 2017 Eur J Oral Sci.

  10. The dehydrogenation mechanism during the incubation period in nanocrystalline MgH2.

    PubMed

    Shantilal Gangrade, Apurva; Aditya Varma, Akhil; Kishor Gor, Nikhil; Shriniwasan, Sweta; Tatiparti, Sankara Sarma V

    2017-03-01

    The dehydrogenation mechanism during the incubation period in nanocrystalline MgH 2 (low α: converted metal fraction and dα/dt) and the reasons for the occurrence of the incubation period at 320, 350, and 400 °C were investigated. Pre-existing Mg crystallites can enhance Mg nucleation during the incubation period, as suggested by the estimated activation energy for nucleation (12 ± 2 kJ per mol H). The released H-atoms enter MgH 2 as interstitials, as indicated by the MgH 2 unit-cell contraction, resulting in increased equatorial Mg-H bond length, decreased charge-density distribution in the interstitial region, as observed from the charge-density maps, and decreased H-H distance in the {001} plane up to the midway of the incubation period. Eventually, hydrogen vacancies are created, as indicated by the red shift in the E g and A 1g peaks of Raman spectra. The high estimated activation energy for the growth of Mg (209 ± 8 kJ per mol H) renders it difficult and explains the reason for the presence of an incubation period.

  11. Atomistic modeling of La 3+ doping segregation effect on nanocrystalline yttria-stabilized zirconia

    DOE PAGES

    Zhang, Shenli; Sha, Haoyan; Castro, Ricardo H. R.; ...

    2018-01-01

    The effect of La 3+ doping on the structure and ionic conductivity change in nanocrystalline yttria-stabilized zirconia (YSZ) was studied using a combination of Monte Carlo and molecular dynamics simulations.

  12. Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration

    PubMed Central

    Im, Owen; Li, Jian; Wang, Mian; Zhang, Lijie Grace; Keidar, Michael

    2012-01-01

    Background Many shortcomings exist in the traditional methods of treating bone defects, such as donor tissue shortages for autografts and disease transmission for allografts. The objective of this study was to design a novel three-dimensional nanostructured bone substitute based on magnetically synthesized single-walled carbon nanotubes (SWCNT), biomimetic hydrothermally treated nanocrystalline hydroxyapatite, and a biocompatible hydrogel (chitosan). Both nanocrystalline hydroxyapatite and SWCNT have a biomimetic nanostructure, excellent osteoconductivity, and high potential to improve the load-bearing capacity of hydrogels. Methods Specifically, three-dimensional porous chitosan scaffolds with different concentrations of nanocrystalline hydroxyapatite and SWCNT were created to support the growth of human osteoblasts (bone-forming cells) using a lyophilization procedure. Two types of SWCNT were synthesized in an arc discharge with a magnetic field (B-SWCNT) and without a magnetic field (N-SWCNT) for improving bone regeneration. Results Nanocomposites containing magnetically synthesized B-SWCNT had superior cytocompatibility properties when compared with nonmagnetically synthesized N-SWCNT. B-SWCNT have much smaller diameters and are twice as long as their nonmagnetically prepared counterparts, indicating that the dimensions of carbon nanotubes can have a substantial effect on osteoblast attachment. Conclusion This study demonstrated that a chitosan nanocomposite with both B-SWCNT and 20% nanocrystalline hydroxyapatite could achieve a higher osteoblast density when compared with the other experimental groups, thus making this nanocomposite promising for further exploration for bone regeneration. PMID:22619545

  13. Study of magnetic and electrical properties of nanocrystalline Mn doped NiO.

    PubMed

    Raja, S Philip; Venkateswaran, C

    2011-03-01

    Diluted Magnetic Semiconductors (DMS) are intensively explored in recent years for its applications in spintronics, which is expected to revolutionize the present day information technology. Nanocrystalline Mn doped NiO samples were prepared using chemical co-precipitation method with an aim to realize room temperature ferromagnetism. Phase formation of the samples was studied using X-ray diffraction-Rietveld analysis. Scanning electron microscopy and Energy dispersive X-ray analysis results reveal the nanocrystalline nature of the samples, agglomeration of the particles, considerable particle size distribution and the near stoichiometry. Thermomagnetic curves confirm the single-phase formation of the samples up to 1% doping of Mn. Vibrating Sample Magnetometer measurements indicate the absence of ferromagnetism at room temperature. This may be due to the low concentration of Mn2+ ions having weak indirect coupling with Ni2+ ions. The lack of free carriers is also expected to be the reason for the absence of ferromagnetism, which is in agreement with the results of resistivity measurements using impedance spectroscopy. Arrhenius plot shows the presence of two thermally activated regions and the activation energy for the nanocrystalline Mn doped sample was found to be greater than that of undoped NiO. This is attributed to the doping effect of Mn. However, the dielectric constant of the samples was found to be of the same order of magnitude very much comparable with that of undoped NiO.

  14. Alternating current transport and dielectric relaxation of nanocrystalline graphene oxide

    NASA Astrophysics Data System (ADS)

    Zedan, I. T.; El-Menyawy, E. M.

    2018-07-01

    Graphene oxide (GO) has been synthesized from natural graphite using modified Hummer's method and is subjected to sonication for 1 h. X-ray diffraction (XRD) showed that the prepared GO has nanocrystalline structure with particle size of about 5 nm and high-resolution transmission electron microscope showed that it had a layered structure. The nanocrystalline GO powder was pressed as a disk and the alternating current (AC) electrical conductivity, σAC, and dielectric properties have been investigated in the frequency range 50Hz-5 MHz and temperature range 298-523K using parallel plate spectroscopic technique. Analysis of σ AC as a function of frequency shows that the relation follows Jonscher's universal law with frequency exponent decreases with increasing temperature in which the correlated barrier hopping model is applicable to describe the behavior. The dielectric constant and dielectric loss are studied as functions of frequency and temperature. The dielectric modulus formalism is used for describing the relaxation process in which the relaxation time and its activation energy were evaluated.

  15. New atom probe approaches to studying segregation in nanocrystalline materials.

    PubMed

    Samudrala, S K; Felfer, P J; Araullo-Peters, V J; Cao, Y; Liao, X Z; Cairney, J M

    2013-09-01

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Water-gas-shift over metal-free nanocrystalline ceria: An experimental and theoretical study

    DOE PAGES

    Guild, Curtis J.; Vovchok, Dimitriy; Kriz, David A.; ...

    2017-01-23

    A tandem experimental and theoretical investigation of a mesoporous ceria catalyst reveals the properties of the metal oxide are conducive for activity typically ascribed to metals, suggesting reduced Ce 3+ and oxygen vacancies are responsible for the inherent bi-functionality of CO oxidation and dissociation of water required for facilitating the production of H 2. The degree of reduction of the ceria, specifically the (1 0 0) face, is found to significantly influence the binding of reagents, suggesting reduced surfaces harbor the necessary reactive sites. The metal-free catalysis of the reaction is significant for catalyst design considerations, and the suite ofmore » in situ analyses provides a comprehensive study of the dynamic nature of the high surface area catalyst system. Finally, this study postulates feasible improvements in catalytic activity may redirect the purpose of the water-gas shift reaction from CO purification to primary hydrogen production.« less

  17. Water-gas-shift over metal-free nanocrystalline ceria: An experimental and theoretical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guild, Curtis J.; Vovchok, Dimitriy; Kriz, David A.

    A tandem experimental and theoretical investigation of a mesoporous ceria catalyst reveals the properties of the metal oxide are conducive for activity typically ascribed to metals, suggesting reduced Ce 3+ and oxygen vacancies are responsible for the inherent bi-functionality of CO oxidation and dissociation of water required for facilitating the production of H 2. The degree of reduction of the ceria, specifically the (1 0 0) face, is found to significantly influence the binding of reagents, suggesting reduced surfaces harbor the necessary reactive sites. The metal-free catalysis of the reaction is significant for catalyst design considerations, and the suite ofmore » in situ analyses provides a comprehensive study of the dynamic nature of the high surface area catalyst system. Finally, this study postulates feasible improvements in catalytic activity may redirect the purpose of the water-gas shift reaction from CO purification to primary hydrogen production.« less

  18. Voltammetric and impedance behaviours of surface-treated nano-crystalline diamond film electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, F. B.; Jing, B.; Cui, Y.

    2015-04-15

    The electrochemical performances of hydrogen- and oxygen-terminated nano-crystalline diamond film electrodes were investigated by cyclic voltammetry and AC impedance spectroscopy. In addition, the surface morphologies, phase structures, and chemical states of the two diamond films were analysed by scanning probe microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The results indicated that the potential window is narrower for the hydrogen-terminated nano-crystalline diamond film than for the oxygen-terminated one. The diamond film resistance and capacitance of oxygen-terminated diamond film are much larger than those of the hydrogen-terminated diamond film, and the polarization resistances and double-layer capacitance corresponding to oxygen-terminated diamond filmmore » are both one order of magnitude larger than those corresponding to the hydrogen-terminated diamond film. The electrochemical behaviours of the two diamond film electrodes are discussed.« less

  19. Structural analysis of nanocrystalline ZnTe alloys synthesized by melt quenching technique

    NASA Astrophysics Data System (ADS)

    Singh, Harinder; Singh, Tejbir; Thakur, Anup; Sharma, Jeewan

    2018-05-01

    Nanocrystalline ZnxTe100-x (x=0, 5, 20, 30, 40, 50) alloys have been synthesized using melt quenching technique. Energy-dispersive X-Ray spectroscopy (EDS) has been used to verify the elemental composition of samples. Various absorption modes are recorded from Fourier transform infrared spectroscopy (FTIR) confirming the formation of ZnTe. The structural study has been performed using X-Ray Diffraction (XRD) method. All synthesized samples have been found to be nanocrystalline in nature with average crystallite size in the range from 49.3 nm to 77.1 nm. Results have shown that Zn0Te100 exhibits hexagonal phase that transforms into a cubic ZnTe phase as the amount of zinc is increased. Pure ZnTe phase has been obtained for x = 50. The texture coefficient (Tc) has been calculated to find the prominent orientations of different planes.

  20. Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline SiOx layers for application in solar cells

    NASA Astrophysics Data System (ADS)

    Klingsporn, M.; Kirner, S.; Villringer, C.; Abou-Ras, D.; Costina, I.; Lehmann, M.; Stannowski, B.

    2016-06-01

    Nanocrystalline silicon suboxides (nc-SiOx) have attracted attention during the past years for the use in thin-film silicon solar cells. We investigated the relationships between the nanostructure as well as the chemical, electrical, and optical properties of phosphorous, doped, nc-SiO0.8:H fabricated by plasma-enhanced chemical vapor deposition. The nanostructure was varied through the sample series by changing the deposition pressure from 533 to 1067 Pa. The samples were then characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, aberration-corrected high-resolution transmission electron microscopy, selected-area electron diffraction, and a specialized plasmon imaging method. We found that the material changed with increasing pressure from predominantly amorphous silicon monoxide to silicon dioxide containing nanocrystalline silicon. The nanostructure changed from amorphous silicon filaments to nanocrystalline silicon filaments, which were found to cause anisotropic electron transport.

  1. Computer Modeling of Direct Metal Laser Sintering

    NASA Technical Reports Server (NTRS)

    Cross, Matthew

    2014-01-01

    A computational approach to modeling direct metal laser sintering (DMLS) additive manufacturing process is presented. The primary application of the model is for determining the temperature history of parts fabricated using DMLS to evaluate residual stresses found in finished pieces and to assess manufacturing process strategies to reduce part slumping. The model utilizes MSC SINDA as a heat transfer solver with imbedded FORTRAN computer code to direct laser motion, apply laser heating as a boundary condition, and simulate the addition of metal powder layers during part fabrication. Model results are compared to available data collected during in situ DMLS part manufacture.

  2. Controllable nonlinear refraction characteristics in hydrogenated nanocrystalline silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, D. Q.; Ye, Q. H.; Shen, W. Z., E-mail: wzshen@sjtu.edu.cn

    2014-02-07

    Nonlinear refraction (NLR) of hydrogenated nanocrystalline silicon (nc-Si:H) has been investigated through the close aperture Z-scan method. We demonstrate a significant NLR and a unique feature of controllable NLR characteristics between saturable and Kerr NLR with the incident photon energy. We numerically evaluate the proportion of these two mechanisms in different wavelengths by a modified NLR equation. The band tail of nc-Si:H appears to play a crucial role in such NLR responses.

  3. Nanocrystalline SiC film thermistors for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Mitin, V. F.; Kholevchuk, V. V.; Semenov, A. V.; Kozlovskii, A. A.; Boltovets, N. S.; Krivutsa, V. A.; Slepova, A. S.; Novitskii, S. V.

    2018-02-01

    We developed a heat-sensitive material based on nanocrystalline SiC films obtained by direct deposition of carbon and silicon ions onto sapphire substrates. These SiC films can be used for resistance thermometers operating in the 2 K-300 K temperature range. Having high heat sensitivity, they are relatively low sensitive to the magnetic field. The designs of the sensors are presented together with a discussion of their thermometric characteristics and sensitivity to magnetic fields.

  4. Scalable Manufacturing of Metal Micro/Nanowires and Applications by Thermal Fiber Drawing Method

    NASA Astrophysics Data System (ADS)

    Hwang, Injoo

    The objective of this study is to better understand the fundamental principal of the thermal fiber drawing process with metal-core preforms. This would enable us to overcome the fundamental limits of current thermal drawing techniques by tuning material properties of core metals and interactions between core and cladding materials using nanoparticles. Metal micro/nanowires with controlled size, aspect ratio and spatial configurations of core and cladding materials exhibit extraordinary mechanical, thermal, electrical and optical properties. These metal micro/nanowires can be utilized for widespread applications such as: thermoelectric, conductive electrode and plasmonic photonic crystal fibers. Thermal fiber drawing method has emerged as an advanced scalable manufacturing technique for micro/nanowires production due to its unique characteristics that allow mass production of continuous and arbitrary designed wires. It is of tremendous scientific and technical interests to conduct a fundamental study on thermal fiber drawing methods and to break the current limits of the crystalline metal core thermal fiber drawing process. In this study, metal core was fabricated by cold compaction of the Zinc (Zn)-Tungsten Carbide (WC) nanopowders. Our characterizations through scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) showed that WC nanoparticle are uniformly dispersed in Zn matrix. The effects of WC nanoparticles on the mechanical properties and degradation rate in Zn-WC nanocomposites were carefully analyzed by tensile, compressive, hardness, degradation and viscosity tests. Metallic stents are commonly used to expand blood vessels that have been narrowed by plaque buildup (atherosclerosis). Fabrication difficulty and other constrains of metallic stents result in high cost. Zn-WC nanocomposite microwires were controllably drawn for stent struts with a diameter of 200 ?m. Characterizations by the tensile and degradation tests of Zn

  5. Ceramic TBS/porous metal compliant layer

    NASA Technical Reports Server (NTRS)

    Tolokan, Robert P.; Jarrabet, G. P.

    1992-01-01

    Technetics Corporation manufactures metal fiber materials and components used in aerospace applications. Our technology base is fiber metal porous sheet material made from sinter bonded metal fibers. Fiber metals have percent densities (metal content by volume) from 10 to 65 percent. Various topics are covered and include the following: fiber metal materials, compliant layer thermal bayer coatings (TBC's), pad properties, ceramic/pad TBC design, thermal shock rig, fabrication, and applications.

  6. A framework for development of an intelligent system for design and manufacturing of stamping dies

    NASA Astrophysics Data System (ADS)

    Hussein, H. M. A.; Kumar, S.

    2014-07-01

    An integration of computer aided design (CAD), computer aided process planning (CAPP) and computer aided manufacturing (CAM) is required for development of an intelligent system to design and manufacture stamping dies in sheet metal industries. In this paper, a framework for development of an intelligent system for design and manufacturing of stamping dies is proposed. In the proposed framework, the intelligent system is structured in form of various expert system modules for different activities of design and manufacturing of dies. All system modules are integrated with each other. The proposed system takes its input in form of a CAD file of sheet metal part, and then system modules automate all tasks related to design and manufacturing of stamping dies. Modules are coded using Visual Basic (VB) and developed on the platform of AutoCAD software.

  7. Manufacturing, Marketing and Distribution, Business and Office Occupations: Grade 8. Cluster III.

    ERIC Educational Resources Information Center

    Calhoun, Olivia H.

    A curriculum guide for grade 8, the document is divided into eleven units: marketing and distribution; food manufacturing; data processing and automation; administration, management, and labor; secretarial and clerical services; office machines; equipment; metal manufacturing and processing; prefabrication and prepackaging; textile and clothing…

  8. The MSFC complementary metal oxide semiconductor (including multilevel interconnect metallization) process handbook

    NASA Technical Reports Server (NTRS)

    Bouldin, D. L.; Eastes, R. W.; Feltner, W. R.; Hollis, B. R.; Routh, D. E.

    1979-01-01

    The fabrication techniques for creation of complementary metal oxide semiconductor integrated circuits at George C. Marshall Space Flight Center are described. Examples of C-MOS integrated circuits manufactured at MSFC are presented with functional descriptions of each. Typical electrical characteristics of both p-channel metal oxide semiconductor and n-channel metal oxide semiconductor discrete devices under given conditions are provided. Procedures design, mask making, packaging, and testing are included.

  9. Simulation of the infiltration process of a ceramic open-pore body with a metal alloy in semi-solid state to design the manufacturing of interpenetrating phase composites

    NASA Astrophysics Data System (ADS)

    Schomer, Laura; Liewald, Mathias; Riedmüller, Kim Rouven

    2018-05-01

    Metal-ceramic Interpenetrating Phase Composites (IPC) belong to a special subcategory of composite materials and reveal enhanced properties compared to conventional composite materials. Currently, IPC are produced by infiltration of a ceramic open-pore body with liquid metal applying high pressure and I or high temperature to avoid residual porosity. However, these IPC are not able to gain their complete potential, because of structural damages and interface reactions occurring during the manufacturing process. Compared to this, the manufacturing of IPC using the semi-solid forming technology offers great perspectives due to relative low processing temperatures and reduced mechanical pressure. In this context, this paper is focusing on numerical investigations conducted by using the FLOW-3D software for gaining a deeper understanding of the infiltration of open-pore bodies with semi-solid materials. For flow simulation analysis, a geometric model and different porous media drag models have been used. They have been adjusted and compared to get a precise description of the infiltration process. Based on these fundamental numerical investigations, this paper also shows numerical investigations that were used for basically designing a semi-solid forming tool. Thereby, the development of the flow front and the pressure during the infiltration represent the basis of the evaluation. The use of an open and closed tool cavity combined with various geometries of the upper die shows different results relating to these evaluation arguments. Furthermore, different overflows were designed and its effects on the pressure at the end of the infiltration process were investigated. Thus, this paper provides a general guideline for a tool design for manufacturing of metal-ceramic IPC using semi-solid forming.

  10. Synthesis, characterization, and photocatalytic properties of core/shell mesoporous silica nanospheres supporting nanocrystalline titania

    NASA Astrophysics Data System (ADS)

    Cendrowski, K.; Chen, X.; Zielinska, B.; Kalenczuk, R. J.; Rümmeli, M. H.; Büchner, B.; Klingeler, R.; Borowiak-Palen, E.

    2011-11-01

    The facile bulk synthesis of silica nanospheres makes them an attractive support for the transport of chemical compounds such as nanocrystalline titanium dioxide. In this contribution we present a promising route for the synthesis of mesoporous silica nanospheres (m-SiO2) with diameter in range 200 nm, which are ideal supports for nanocrystalline titanium dioxide (TiO2). The detailed microscopic and spectroscopic characterizations of core/shell structure (m-SiO2/TiO2) were conducted. Moreover, the photocatalytic potential of the nanostructures was investigated via phenol decomposition and hydrogen generation. A clear enhancement of photoactivity in both reactions as compared to commercial TiO2-Degussa P25 catalyst is detected.

  11. Field electron emission enhancement in lithium implanted and annealed nitrogen-incorporated nanocrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Sankaran, K. J.; Srinivasu, K.; Yeh, C. J.; Thomas, J. P.; Drijkoningen, S.; Pobedinskas, P.; Sundaravel, B.; Leou, K. C.; Leung, K. T.; Van Bael, M. K.; Schreck, M.; Lin, I. N.; Haenen, K.

    2017-06-01

    The field electron emission (FEE) properties of nitrogen-incorporated nanocrystalline diamond films were enhanced due to Li-ion implantation/annealing processes. Li-ion implantation mainly induced the formation of electron trap centers inside diamond grains, whereas post-annealing healed the defects and converted the a-C phase into nanographite, forming conduction channels for effective transport of electrons. This resulted in a high electrical conductivity of 11.0 S/cm and enhanced FEE performance with a low turn-on field of 10.6 V/μm, a high current density of 25.5 mA/cm2 (at 23.2 V/μm), and a high lifetime stability of 1,090 min for nitrogen incorporated nanocrystalline diamond films.

  12. Biorefining of precious metals from wastes: an answer to manufacturing of cheap nanocatalysts for fuel cells and power generation via an integrated biorefinery?

    PubMed

    Yong, Ping; Mikheenko, Iryna P; Deplanche, Kevin; Redwood, Mark D; Macaskie, Lynne E

    2010-12-01

    Bio-manufacturing of nano-scale palladium was achieved via enzymatically-mediated deposition of Pd from solution using Desulfovibrio desulfuricans, Escherichia coli and Cupriavidus metallidurans. Dried 'Bio-Pd' materials were sintered, applied onto carbon papers and tested as anodes in a proton exchange membrane (PEM) fuel cell for power production. At a Pd(0) loading of 25% by mass the fuel cell power using Bio-Pd( D. desulfuricans ) (positive control) and Bio-Pd( E. coli ) (negative control) was ~140 and ~30 mW respectively. Bio-Pd( C. metallidurans ) was intermediate between these with a power output of ~60 mW. An engineered strain of E. coli (IC007) was previously reported to give a Bio-Pd that was >3-fold more active than Bio-Pd of the parent E. coli MC4100 (i.e. a power output of >110 mW). Using this strain, a mixed metallic catalyst was manufactured from an industrial processing waste. This 'Bio-precious metal' ('Bio-PM') gave ~68% of the power output as commercial Pd(0) and ~50% of that of Bio-Pd( D. desulfuricans ) when used as fuel cell anodic material. The results are discussed in relation to integrated bioprocessing for clean energy.

  13. Lightweight Metal Matrix Composite Segmented for Manufacturing High-Precision Mirrors

    NASA Technical Reports Server (NTRS)

    Vudler, Vladimir

    2012-01-01

    High-precision mirrors for space applications are traditionally manufactured from one piece of material, such as lightweight glass sandwich or beryllium. The purpose of this project was to develop and test the feasibility of a manufacturing process capable of producing mirrors out of welded segments of AlBeMet(Registered Trademark) (AM162H). AlBeMet(Registered Trademark) is a HIP'd (hot isostatic pressed) material containing approximately 62% beryllium and 38% aluminum. As a result, AlBeMet shares many of the benefits of both of those materials for use in high performance mirrors, while minimizing many of their weaknesses.

  14. Nanocrystalline composites of transition metal molybdate (Ni1-xCoxMoO4; x = 0, 0.3, 0.5, 0.7, 1) synthesized by a co-precipitation method as humidity sensors and their photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Jeseentharani, V.; Dayalan, A.; Nagaraja, K. S.

    2018-04-01

    In this study, nanocrystalline transition metal nickel-cobalt molybdate (Ni1-xCoxMoO4, NiCM; x = 0, 0.3, 0.5, 0.7, 1) composites were prepared using a simple co-precipitation method. The composites were characterized by thermogravimetric/differential thermal analysis, Fourier transform-infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The NiCM composites were studied to determine their possible use as humidity sensors, and photoluminescence (PL) measurements were obtained. The sensing study was performed in environments with different relative humidity levels (5-98%). The maximum sensitivity of 18624 ± 168 was observed with the Ni0.7Co0.3MoO4 composite where the humidity could be calculated according to the relationship: Sf = R5%/R98%, where R5% and R98% are the dc resistances at 5 and 98% RH, respectively. The photoluminescence measurements acquired at room temperature for the NiCMs included green and red emission peaks when excited at a wavelength (λex) of 520 nm.

  15. In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trapp, Johannes; Rubenchik, Alexander M.; Guss, Gabe

    Here, the effective absorptivity of continuous wave 1070 nm laser light has been studied for bare and metal powder-coated discs of 316L stainless steel as well as for aluminum alloy 1100 and tungsten by use of direct calorimetric measurements. After carefully validating the applicability of the method, the effective absorptivity is plotted as a function of incident laser power from 30 up to ≈540 W for scanning speeds of 100, 500 and 1500 mm s –1. The effective absorptivity versus power curves of the bulk materials typically show a slight change in effective absorptivity from 30 W until the onsetmore » of the formation of a recoil pressure-induced surface depression. As observed using high-speed video, this change in surface morphology leads to an increase in absorption of the laser light. At the higher powers beyond the keyhole transition, a saturation value is reached for both bare discs and powder-coated disks. For ≈100 μm thick powder layers, the measured absorptivity was found to be two times that of the bare polished discs for low-laser power. There is a sharp decrease when full melting of the powder tracks is achieved, followed by a keyhole-driven increase at higher powers, similar to the bare disc case. It is shown that, under conditions associated with laser powder-bed fusion additive manufacturing, absorptivity values can vary greatly, and differ from both powder-layer measurements and liquid metal estimates from the literature.« less

  16. In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing

    DOE PAGES

    Trapp, Johannes; Rubenchik, Alexander M.; Guss, Gabe; ...

    2017-09-17

    Here, the effective absorptivity of continuous wave 1070 nm laser light has been studied for bare and metal powder-coated discs of 316L stainless steel as well as for aluminum alloy 1100 and tungsten by use of direct calorimetric measurements. After carefully validating the applicability of the method, the effective absorptivity is plotted as a function of incident laser power from 30 up to ≈540 W for scanning speeds of 100, 500 and 1500 mm s –1. The effective absorptivity versus power curves of the bulk materials typically show a slight change in effective absorptivity from 30 W until the onsetmore » of the formation of a recoil pressure-induced surface depression. As observed using high-speed video, this change in surface morphology leads to an increase in absorption of the laser light. At the higher powers beyond the keyhole transition, a saturation value is reached for both bare discs and powder-coated disks. For ≈100 μm thick powder layers, the measured absorptivity was found to be two times that of the bare polished discs for low-laser power. There is a sharp decrease when full melting of the powder tracks is achieved, followed by a keyhole-driven increase at higher powers, similar to the bare disc case. It is shown that, under conditions associated with laser powder-bed fusion additive manufacturing, absorptivity values can vary greatly, and differ from both powder-layer measurements and liquid metal estimates from the literature.« less

  17. Additive and Photochemical Manufacturing of Copper

    PubMed Central

    Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-01-01

    In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics. PMID:28000733

  18. Additive and Photochemical Manufacturing of Copper

    NASA Astrophysics Data System (ADS)

    Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-12-01

    In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics.

  19. Analysis of Short and Long Range Atomic Order in Nanocrystalline Diamonds with Application of Powder Diffractometry

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Neuefiend, J.; Weber, H.-P.; Proffen, T.; VonDreele, R.; Palosz, W.; hide

    2002-01-01

    Fundamental limitations, with respect to nanocrystalline materials, of the traditional elaboration of powder diffraction data like the Rietveld method are discussed. A tentative method of the analysis of powder diffraction patterns of nanocrystals is introduced which is based on the examination of the variation of lattice parameters calculated from individual Bragg lines (named the "apparent lattice parameter", alp). We examine the application of our methodology using theoretical diffraction patterns computed for models of nanocrystals with a perfect crystal lattice and for grains with a two-phase, core-shell structure. We use the method for the analysis of X-ray and neutron experimental diffraction data of nanocrystalline diamond powders of 4, 6 and 12 nm in diameter. The effects of an internal pressure and strain at the grain surface is discussed. This is based on the dependence of the alp values oil the diffraction vector Q and on the PDF analysis. It is shown, that the experimental results support well the concept of the two-phase structure of nanocrystalline diamond.

  20. Production of biofuel from waste cooking palm oil using nanocrystalline zeolite as catalyst: process optimization studies.

    PubMed

    Taufiqurrahmi, Niken; Mohamed, Abdul Rahman; Bhatia, Subhash

    2011-11-01

    The catalytic cracking of waste cooking palm oil to biofuel was studied over different types of nano-crystalline zeolite catalysts in a fixed bed reactor. The effect of reaction temperature (400-500 °C), catalyst-to-oil ratio (6-14) and catalyst pore size of different nanocrystalline zeolites (0.54-0.80 nm) were studied over the conversion of waste cooking palm oil, yields of Organic Liquid Product (OLP) and gasoline fraction in the OLP following central composite design (CCD). The response surface methodology was used to determine the optimum value of the operating variables for maximum conversion as well as maximum yield of OLP and gasoline fraction, respectively. The optimum reaction temperature of 458 °C with oil/catalyst ratio=6 over the nanocrystalline zeolite Y with pore size of 0.67 nm gave 86.4 wt% oil conversion, 46.5 wt% OLP yield and 33.5 wt% gasoline fraction yield, respectively. The experimental results were in agreement with the simulated values within an experimental error of less than 5%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. NASA's In-Space Manufacturing Project: Materials and Manufacturing Process Development Update

    NASA Technical Reports Server (NTRS)

    Prater, Tracie; Bean, Quincy; Werkheiser, Niki; Ledbetter, Frank

    2017-01-01

    The mission of NASA's In-Space Manufacturing (ISM) project is to identify, design, and implement on-demand, sustainable manufacturing solutions for fabrication, maintenance and repair during exploration missions. ISM has undertaken a phased strategy of incrementally increasing manufacturing capabilities to achieve this goal. The ISM project began with the development of the first 3D printer for the International Space Station. To date, the printer has completed two phases of flight operations. Results from phase I specimens indicated some differences in material properties between ground-processed and ISS-processed specimens, but results of follow-on analyses of these parts and a ground-based study with an equivalent printer strongly indicate that this variability is likely attributable to differences in manufacturing process settings between the ground and flight prints rather than microgravity effects on the fused deposition modeling (FDM) process. Analysis of phase II specimens from the 3D Printing in Zero G tech demo, which shed further light on the sources of material variability, will be presented. The ISM project has also developed a materials characterization plan for the Additive Manufacturing Facility, the follow-on commercial multimaterial 3D printing facility developed for ISS by Made in Space. This work will yield a suite of characteristic property values that can inform use of AMF by space system designers. Other project activities include development of an integrated 3D printer and recycler, known as the Refabricator, by Tethers Unlimited, which will be operational on ISS in 2018. The project also recently issued a broad area announcement for a multimaterial fabrication laboratory, which may include in-space manufacturing capabilities for metals, electronics, and polymeric materials, to be deployed on ISS in the 2022 timeframe.

  2. Linking Microstructural Evolution and Tribology in Metallic Contacts

    NASA Astrophysics Data System (ADS)

    Chandross, Michael; Cheng, Shengfeng; Argibay, Nicolas

    Tribologists rely on phenomenological models to describe the seemingly disjointed steady-state regimes of metal wear. Pure metals such as gold - frequently used in electrical contacts - exhibit high friction and wear. In contrast, nanocrystalline metals often show much lower friction and wear. The engineering community has generally used a phenomenological connection between hardness and friction/wear to explain this macroscale response and guide designs. We present results of recent simulations and experiments that demonstrate a general framework for connecting materials properties (i.e. microstructural evolution) to tribological response. We present evidence that competition between grain refinement (from cold working), grain coarsening (from stress-induced grain growth), and wear (delamination and plowing) can be used to describe transient and steady state tribological behavior of metals, alloys and composites. We explore the seemingly disjointed steady-state friction regimes of metals and alloys, with a goal of elucidating the structure-property relationships, allowing for the engineering of tribological materials and contacts based on the kinetics of grain boundary motion. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Oxidation resistant nanocrystalline MCrAl(Y) coatings and methods of forming such coatings

    DOEpatents

    Cheruvu, Narayana S.; Wei, Ronghua

    2014-07-29

    The present disclosure relates to an oxidation resistant nanocrystalline coating and a method of forming an oxidation resistant nanocrystalline coating. An oxidation resistant coating comprising an MCrAl(Y) alloy may be deposited on a substrate, wherein M, includes iron, nickel, cobalt, or combinations thereof present greater than 50 wt % of the MCrAl(Y) alloy, chromium is present in the range of 15 wt % to 30 wt % of the MCrAl(Y) alloy, aluminum is present in the range of 6 wt % to 12 wt % of the MCrAl(Y) alloy and yttrium, is optionally present in the range of 0.1 wt % to 0.5 wt % of the MCrAl(Y) alloy. In addition, the coating may exhibit a grain size of 200 nm or less as deposited.

  4. Surface grafting of reduced graphene oxide using nanocrystalline cellulose via click reaction

    NASA Astrophysics Data System (ADS)

    Kabiri, Roya; Namazi, Hassan

    2014-07-01

    Reduced graphene oxide (RGO) sheet was functionalized with nanocrystalline cellulose (NCC) via click coupling between azide-functionalized graphene oxide (GO-N3) and terminal propargyl-functionalized nanocrystalline cellulose (PG-NCC). First, the reactive azide groups were introduced on the surface of GO with azidation of 2-chloroethyl isocyanate-treated graphene oxide (GO-Cl). Then, the resulted compounds were reacted with PG-NCC utilizing copper-catalyzed azide-alkyne cycloaddition. During the click reaction, GO was simultaneously reduced to graphene. The coupling was confirmed by Fourier transform infrared, Raman, DEPT135, and 13C NMR spectroscopy, and the complete exfoliation of graphene in the NCC matrix was confirmed with X-ray diffraction measurement. The degree of functionalization from the gradual mass loss of RGO-NCC suggests that around 23 mass % has been functionalized covalently. The size of both NCC and GO was found to be in nanometric range, which decreased after click reaction.

  5. Process Control and Development for Ultrasonic Additive Manufacturing with Embedded Fibers

    NASA Astrophysics Data System (ADS)

    Hehr, Adam J.

    Ultrasonic additive manufacturing (UAM) is a recent additive manufacturing technology which combines ultrasonic metal welding, CNC machining, and mechanized foil layering to create large gapless near net-shape metallic parts. The process has been attracting much attention lately due to its low formation temperature, the capability to join dissimilar metals, and the ability to create complex design features not possible with traditional subtractive processes alone. These process attributes enable light-weighting of structures and components in an unprecedented way. However, UAM is currently limited to niche areas due to the lack of quality tracking and inadequate scientific understanding of the process. As a result, this thesis work is focused on improving both component quality tracking and process understanding through the use of average electrical power input to the welder. Additionally, the understanding and application space of embedding fibers into metals using UAM is investigated, with particular focus on NiTi shape memory alloy fibers.

  6. Research on width control of Metal Fused-coating Additive Manufacturing based on active control

    NASA Astrophysics Data System (ADS)

    Ren, Chuan qi; Wei, Zheng ying; Wang, Xin; Du, Jun; Zhang, Shan; Zhang, Zhitong; Bai, Hao

    2017-12-01

    Given the stability of the shape of the forming layer is one of the key problems that affect the final quality of the sample morphology, taking a study on the forming process and the control method of morphology make a significant difference to metal fused-coating additive manufacturing (MFCAM) in achieving the efficient and stable forming. To improve the quality and precision of the samples of single-layer single pass, a control method of morphology based on active control was established by this paper. The real-time acquisition of image was realized by CCD and the characteristics of morphology of the forming process were simultaneously extracted. Making analysis of the characteristics of the width during the process, the relationship between the relative difference of different frames and moving speed was given. A large number of experiments are used to verify the response speed and accuracy of the system. The results show that the active system can improve the morphology of the sample and the smoothness of the width of the single channel, and increase the uniformity of width by 55.16%.

  7. Environmentally friendly preparation of metal nanoparticles

    EPA Science Inventory

    The book chapter summarizes the “state of the art” in the exploitation of various environmentally-friendly synthesis approaches, reaction precursors and conditions to manufacture metal and metal oxide nanoparticles for a vast variety of purposes.

  8. Thermal Stability of Nanocrystalline Alloys by Solute Additions and A Thermodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Saber, Mostafa

    Nanocrystalline alloys show superior properties due to their exceptional microstructure. Thermal stability of these materials is a critical aspect. It is well known that grain boundaries in nanocrystalline microstructures cause a significant increase in the total free energy of the system. A driving force provided to reduce this excess free energy can cause grain growth. The presence of a solute addition within a nanocrystalline alloy can lead to the thermal stability. Kinetic and thermodynamic stabilization are the two basic mechanisms with which stability of a nanoscale grain size can be achieved at high temperatures. The basis of this thesis is to study the effect of solute addition on thermal stability of nanocrystalline alloys. The objective is to determine the effect of Zr addition on the thermal stability of mechanically alloyed nanocrysatillne Fe-Cr and Fe-Ni alloys. In Fe-Cr-Zr alloy system, nanoscale grain size stabilization was maintained up to 900 °C by adding 2 at% Zr. Kinetic pinning by intermetallic particles in the nanoscale range was identified as a primary mechanism of thermal stabilization. In addition to the grain size strengthening, intermetallic particles also contribute to strengthening mechanisms. The analysis of microhardness, XRD data, and measured grain sizes from TEM micrographs suggested that both thermodynamic and kinetic mechanisms are possible mechanisms. It was found that alpha → gamma phase transformation in Fe-Cr-Zr system does not influence the grain size stabilization. In the Fe-Ni-Zr alloy system, it was shown that the grain growth in Fe-8Ni-1Zr alloy is much less than that of pure Fe and Fe-8Ni alloy at elevated temperatures. The microstructure of the ternary Fe-8Ni-1Zr alloy remains in the nanoscale range up to 700 °C. Using an in-situ TEM study, it was determined that drastic grain growth occurs when the alpha → gamma phase transformation occurs. Accordingly, there can be a synergistic relationship between grain growth

  9. Transparent nanocrystalline diamond coatings and devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumant, Anirudha V.; Khan, Adam

    2017-08-22

    A method for coating a substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The plasma ball has a diameter. The plasma ball is disposed at a first distance from the substrate and the substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the substrate, and a diamond coating is deposited on the substrate. The diamond coating has a thickness. Furthermore, the diamond coating has an optical transparency of greater than about 80%. The diamond coating can include nanocrystalline diamond. The microwavemore » plasma source can have a frequency of about 915 MHz.« less

  10. Manufacture and application of RuO2 solid-state metal-oxide pH sensor to common beverages.

    PubMed

    Lonsdale, W; Wajrak, M; Alameh, K

    2018-04-01

    A new reproducible solid-state metal-oxide pH sensor for beverage quality monitoring is developed and characterised. The working electrode of the developed pH sensor is based on the use of laser-etched sputter-deposited RuO 2 on Al 2 O 3 substrate, modified with thin layers of sputter-deposited Ta 2 O 5 and drop-cast Nafion for minimisation of redox interference. The reference electrode is manufactured by further modifying a working electrode with a porous polyvinyl butyral layer loaded with fumed SiO 2 . The developed pH sensor shows excellent performance when applied to a selection of beverage samples, with a measured accuracy within 0.08 pH of a commercial glass pH sensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Additive Manufacturing of Reactive In Situ Zr Based Ultra-High Temperature Ceramic Composites

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Himanshu; Bandyopadhyay, Amit

    2016-03-01

    Reactive in situ multi-material additive manufacturing of ZrB2-based ultra-high-temperature ceramics in a Zr metal matrix was demonstrated using LENS™. Sound metallurgical bonding was achieved between the Zr metal and Zr-BN composites with Ti6Al4V substrate. Though the feedstock Zr power had α phase, LENS™ processing of the Zr powder and Zr-BN premix powder mixture led to the formation of some β phase of Zr. Microstructure of the Zr-BN composite showed primary grains of zirconium diboride phase in zirconium metal matrix. The presence of ZrB2 ceramic phase was confirmed by X-ray diffraction (XRD) analysis. Hardness of pure Zr was measured as 280 ± 12 HV and, by increasing the BN content in the feedstock, the hardness was found to increase. In Zr-5%BN composite, the hardness was 421 ± 10 HV and the same for Zr-10%BN composite was 562 ± 10 HV. It is envisioned that such multi-materials additive manufacturing will enable products in the future that cannot be manufactured using traditional approaches particularly in the areas of high-temperature metal-ceramic composites with compositional and functional gradation.

  12. Mechanics of additively manufactured biomaterials.

    PubMed

    Zadpoor, Amir A

    2017-06-01

    Additive manufacturing (3D printing) has found many applications in healthcare including fabrication of biomaterials as well as bioprinting of tissues and organs. Additively manufactured (AM) biomaterials may possess arbitrarily complex micro-architectures that give rise to novel mechanical, physical, and biological properties. The mechanical behavior of such porous biomaterials including their quasi-static mechanical properties and fatigue resistance is not yet well understood. It is particularly important to understand the relationship between the designed micro-architecture (topology) and the resulting mechanical properties. The current special issue is dedicated to understanding the mechanical behavior of AM biomaterials. Although various types of AM biomaterials are represented in the special issue, the primary focus is on AM porous metallic biomaterials. As a prelude to this special issue, this editorial reviews some of the latest findings in the mechanical behavior of AM porous metallic biomaterials so as to describe the current state-of-the-art and set the stage for the other studies appearing in the issue. Some areas that are important for future research are also briefly mentioned. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Composite materials with metal oxide attached to lead chalcogenide nanocrystal quantum dots with linkers

    DOEpatents

    Fuke, Nobuhiro; Koposov, Alexey Y; Sykora, Milan; Hoch, Laura

    2014-12-16

    Composite materials useful for devices such as photoelectrochemical solar cells include a substrate, a metal oxide film on the substrate, nanocrystalline quantum dots (NQDs) of lead sulfide, lead selenide, and lead telluride, and linkers that attach the NQDs to the metal oxide film. Suitable linkers preserve the 1s absorption peak of the NQDs. A suitable linker has a general structure A-B-C where A is a chemical group adapted for binding to a MO.sub.x and C is a chemical group adapted for binding to a NQD and B is a divalent, rigid, or semi-rigid organic spacer moiety. Other linkers that preserve the 1s absorption peak may also be used.

  14. Modelling of Mechanical Behavior at High Strain Rate of Ti-6al-4v Manufactured By Means of Direct Metal Laser Sintering Technique

    NASA Astrophysics Data System (ADS)

    Iannitti, Gianluca; Bonora, Nicola; Gentile, Domenico; Ruggiero, Andrew; Testa, Gabriel; Gubbioni, Simone

    2017-06-01

    In this work, the mechanical behavior of Ti-6Al-4V obtained by additive manufacturing technique was investigated, also considering the build direction. Dog-bone shaped specimens and Taylor cylinders were machined from rods manufactured by means of the EOSSINT M2 80 machine, based on Direct Metal Laser Sintering technique. Tensile tests were performed at strain rate ranging from 5E-4 s-1 to 1000 s-1 using an Instron electromechanical machine for quasistatic tests and a Direct-Tension Split Hopkinson Bar for dynamic tests. The mechanical strength of the material was described by a Johnson-Cook model modified to account for stress saturation occurring at high strain. Taylor cylinder tests and their corresponding numerical simulations were carried out in order to validate the constitutive model under a complex deformation path, high strain rates, and high temperatures.

  15. Novel p-Type Conductive Semiconductor Nanocrystalline Film as the Back Electrode for High-Performance Thin Film Solar Cells.

    PubMed

    Zhang, Ming-Jian; Lin, Qinxian; Yang, Xiaoyang; Mei, Zongwei; Liang, Jun; Lin, Yuan; Pan, Feng

    2016-02-10

    Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement.

  16. [Computer aided design and rapid manufacturing of removable partial denture frameworks].

    PubMed

    Han, Jing; Lü, Pei-jun; Wang, Yong

    2010-08-01

    To introduce a method of digital modeling and fabricating removable partial denture (RPD) frameworks using self-developed software for RPD design and rapid manufacturing system. The three-dimensional data of two partially dentate dental casts were obtained using a three-dimensional crossing section scanner. Self-developed software package for RPD design was used to decide the path of insertion and to design different components of RPD frameworks. The components included occlusal rest, clasp, lingual bar, polymeric retention framework and maxillary major connector. The design procedure for the components was as following: first, determine the outline of the component. Second, build the tissue surface of the component using the scanned data within the outline. Third, preset cross section was used to produce the polished surface. Finally, different RPD components were modeled respectively and connected by minor connectors to form an integrated RPD framework. The finished data were imported into a self-developed selective laser melting (SLM) machine and metal frameworks were fabricated directly. RPD frameworks for the two scanned dental casts were modeled with this self-developed program and metal RPD frameworks were successfully fabricated using SLM method. The finished metal frameworks fit well on the plaster models. The self-developed computer aided design and computer aided manufacture (CAD-CAM) system for RPD design and fabrication has completely independent intellectual property rights. It provides a new method of manufacturing metal RPD frameworks.

  17. Biomimetic nanocrystalline apatites: Emerging perspectives in cancer diagnosis and treatment.

    PubMed

    Al-Kattan, Ahmed; Girod-Fullana, Sophie; Charvillat, Cédric; Ternet-Fontebasso, Hélène; Dufour, Pascal; Dexpert-Ghys, Jeannette; Santran, Véronique; Bordère, Julie; Pipy, Bernard; Bernad, José; Drouet, Christophe

    2012-02-14

    Nanocrystalline calcium phosphate apatites constitute the mineral part of hard tissues, and the synthesis of biomimetic analogs is now well-mastered at the lab-scale. Recent advances in the fine physico-chemical characterization of these phases enable one to envision original applications in the medical field along with a better understanding of the underlying chemistry and related pharmacological features. In this contribution, we specifically focused on applications of biomimetic apatites in the field of cancer diagnosis or treatment. We first report on the production and first biological evaluations (cytotoxicity, pro-inflammatory potential, internalization by ZR-75-1 breast cancer cells) of individualized luminescent nanoparticles based on Eu-doped apatites, eventually associated with folic acid, for medical imaging purposes. We then detail, in a first approach, the preparation of tridimensional constructs associating nanocrystalline apatite aqueous gels and drug-loaded pectin microspheres. Sustained releases of a fluorescein analog (erythrosin) used as model molecule were obtained over 7 days, in comparison with the ceramic or microsphere reference compounds. Such systems could constitute original bone-filling materials for in situ delivery of anticancer drugs. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Metal Transport, Heavy Metal Speciation and Microbial Fixation Through Fluvial Subenvironments, Lower Coeur D'Alene River Valley, Idaho

    NASA Astrophysics Data System (ADS)

    Hooper, R. L.; Mahoney, J. B.

    2001-12-01

    and authigenic carbonate and sulfide phases. Marshes subjected to periodic subaerial exposure/flooding are even more complex and dominated by authigenic and biogenic mineralization. Lacustrine environments are dominated by nanocrystalline inorganic and biogenic sulfide minerals in the upper third of the contaminated sediment column with increasing amounts of silt sized detrital sulfides (especially sphalerite) closer to the premining surface. In pH-neutral subenvironments within the wetlands and lateral lakes of the lower Coeur d'Alene River Valley, microbial fixation plays a critical role in sequestering metals. Complex metal oxyhydroxide phases provided via flood recharge to river edge, marsh and lacustrine environments rapidly dissolve upon encountering anoxic conditions. Microbial activity is extremely effective in removing heavy metals from the water column, producing a nanocrystalline biofilm substrate characterized by ZnS (sphalerite) and non-stoichiometric PbS, FeS, and mixed metal sulfides. These solid phases are inherently unstable, and the sequestered metals become readily available through changes in redox or pH conditions, particularly dam-controlled annual fluctuations in base level, or during removal by bottom-feeding aquatic water fowl. The recognition of the inherent complexity and instability of microbially produced sulfidic material in a pH-neutral environment has important implications for remediation efforts utilizing wetland filtration methods.

  19. Electronic transport in mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films

    NASA Astrophysics Data System (ADS)

    Wienkes, Lee Raymond

    Interest in mixed-phase silicon thin film materials, composed of an amorphous semiconductor matrix in which nanocrystalline inclusions are embedded, stems in part from potential technological applications, including photovoltaic and thin film transistor technologies. Conventional mixed-phase silicon films are produced in a single plasma reactor, where the conditions of the plasma must be precisely tuned, limiting the ability to adjust the film and nanoparticle parameters independently. The films presented in this thesis are deposited using a novel dual-plasma co-deposition approach in which the nanoparticles are produced separately in an upstream reactor and then injected into a secondary reactor where an amorphous silicon film is being grown. The degree of crystallinity and grain sizes of the films are evaluated using Raman spectroscopy and X-ray diffraction respectively. I describe detailed electronic measurements which reveal three distinct conduction mechanisms in n-type doped mixed-phase amorphous/nanocrystalline silicon thin films over a range of nanocrystallite concentrations and temperatures, covering the transition from fully amorphous to ~30% nanocrystalline. As the temperature is varied from 470 to 10 K, we observe activated conduction, multiphonon hopping (MPH) and Mott variable range hopping (VRH) as the nanocrystal content is increased. The transition from MPH to Mott-VRH hopping around 100K is ascribed to the freeze out of the phonon modes. A conduction model involving the parallel contributions of these three distinct conduction mechanisms is shown to describe both the conductivity and the reduced activation energy data to a high accuracy. Additional support is provided by measurements of thermal equilibration effects and noise spectroscopy, both done above room temperature (>300 K). This thesis provides a clear link between measurement and theory in these complex materials.

  20. Feedstock powder processing research needs for additive manufacturing development

    DOE PAGES

    Anderson, Iver E.; White, Emma M. H.; Dehoff, Ryan

    2018-02-01

    Additive manufacturing (AM) promises to redesign traditional manufacturing by enabling the ultimate in agility for rapid component design changes in commercial products and for fabricating complex integrated parts. Here, by significantly increasing quality and yield of metallic alloy powders, the pace for design, development, and deployment of the most promising AM approaches can be greatly accelerated, resulting in rapid commercialization of these advanced manufacturing methods. By successful completion of a critical suite of processing research tasks that are intended to greatly enhance gas atomized powder quality and the precision and efficiency of powder production, researchers can help promote continued rapidmore » growth of AM. Finally, other powder-based or spray-based advanced manufacturing methods could also benefit from these research outcomes, promoting the next wave of sustainable manufacturing technologies for conventional and advanced materials.« less