Science.gov

Sample records for nanocrystalline zinc substituted

  1. Structural, dielectric and magnetic behavior of nanocrystalline zinc substituted magnesium ferrite

    SciTech Connect

    Jyoti, Parashar, Jyoti; Saxena, V. K.; Dolia, S. N.; Bhatnagar, D.; Kumar, S.; Sharma, K. B.

    2015-06-24

    Zinc substituted magnesium ferrites Zn{sub 0.2}Mg{sub 0.8}Fe{sub 2}O{sub 4} and Zn{sub 0.4}Mg{sub 0.6}Fe{sub 2}O{sub 4} were prepared by sol-gel auto combustion method. Rietveld profile refinement of the XRD patterns confirms the formation of a cubic spinel structure in single phase. The dielectric properties viz. dielectric constant and dielectric loss tangent tanδ increase with increasing temperature. The dielectric behavior is explained by using the mechanism of polarization process, which is correlated to that of electron exchange interaction. The saturation magnetization, coercivity and remanent magnetization decreases appreciably with increase in Zn which could be attributed to change in cation distribution.

  2. Ultrasound assisted additive free synthesis of nanocrystalline zinc oxide.

    PubMed

    Bhatte, Kushal D; Fujita, Shin-Ichiro; Arai, Masahiko; Pandit, Anirudha B; Bhanage, Bhalchandra M

    2011-01-01

    A novel method for the synthesis of nanocrystalline zinc oxide without any additive was developed using zinc acetate and 1,4-butanediol through sonication. The structure and morphology of prepared nanocrystalline zinc oxide was investigated by various techniques like TEM, XRD, EDAX, UV-Vis spectroscopy. The solvent 1,4-butanediol played a dual role of fuel as well as capping agent eliminating addition of any extraneous species. The results showed that using ultrasound sonication is green, cost effective compared to conventional wet chemical method for ZnO nanoparticle synthesis. PMID:20634118

  3. Remediation of arsenic and lead with nanocrystalline zinc sulfide.

    PubMed

    Piquette, Alan; Cannon, Cody; Apblett, Allen W

    2012-07-27

    Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.

  4. Influence of temperature on the electric, dielectric and AC conductivity properties of nano-crystalline zinc substituted cobalt ferrite synthesized by solution combustion technique

    NASA Astrophysics Data System (ADS)

    Rani, Ritu; Kumar, Gagan; Batoo, Khalid M.; Singh, M.

    2014-06-01

    Cobalt-zinc nanoferrites with formulae Co ZnFeO, where x = 0.0, 0.1, 0.2 and 0.3, have been synthesized by solution combustion technique. The variation of DC resistivity with temperature shows the semiconducting behavior of all nanoferrites. The dielectric properties such as dielectric constant (') and dielectric loss tangent (tan are investigated as a function of temperature and frequency. Dielectric constant and loss tangent are found to be increasing with an increase in temperature while with an increase in frequency both, ' and tan , are found to be decreasing. The dielectric properties have been explained on the basis of space charge polarization according to Maxwell-Wagner's two-layer model and the hopping of charge between Fe and Fe. Further, a very high value of dielectric constant and a low value of tan are the prime achievements of the present work. The AC electrical conductivity ( is studied as a function of temperature as well as frequency and is observed to be increasing with the increase in temperature and frequency.

  5. Nanocrystalline zinc oxide: Pyrolytic synthesis and spectroscopic characteristics

    SciTech Connect

    Demyanets, L. N. Li, L. E.; Lavrikov, A. S.; Nikitin, S. V.

    2010-01-15

    Nanocrystalline and microcrystalline ZnO powders are synthesized by the pyrolysis of organic zinc salts in the presence of a reducing catalyst represented by a porous cellulose carrier. The specimens obtained are characterized by X-ray powder diffraction, energy dispersive analysis, scanning electron microscopy, and pulse cathodoluminescence. Lasing characteristics of the specimens are studied. The synthesis conditions, under which specimens with the crystallite morphology optimal for a low-threshold lasing are obtained, are found.

  6. Synthesis and characterization of nanocrystalline Zn ferrites substituted with Ni

    SciTech Connect

    Slatineanu, Tamara; Iordan, Alexandra Raluca; Palamaru, Mircea Nicolae; Caltun, Ovidiu Florin; Gafton, Vasilica; Leontie, Liviu

    2011-09-15

    Highlights: {yields} Ni{sub x}Zn{sub 1-x}Fe{sub 2}O{sub 4} are synthesized by sol-gel auto-combustion method using tartaric acid. {yields} XRD patterns reveal spinel structure and the crystallite size is max. 40 nm. {yields} SEM images for Ni{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4} confirm the nano-scale crystallite size. {yields} The highest value of samples porosity belongs to Ni{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4}. {yields} The maximum value of the magnetization is 63 emu/g for Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4}. -- Abstract: Nanocrystalline powders of nickel substituted zinc ferrite with general formula Ni{sub x}Zn{sub 1-x}Fe{sub 2}O{sub 4} (x = 0, 0.2, 0.4, 0.6, 0.8, 1) have been synthesized via sol-gel auto-combustion method using tartaric acid as combustion-complexing agent. Samples were sintered at 773 K and 973 K in static air atmosphere. The absence of the organic phase and the spinel formation were monitored by using Fourier transform infrared spectroscopy. The structure and crystallite size were analyzed from X-ray diffraction data revealing spinel mono-phase formation in the range of nanometric crystallite size confirmed also through scanning electron microscopy. Mean size of crystallites lay in the range 20-40 nm. The influence of nickel content on the microstructure was investigated considering the crystallite size, distance between adjacent crystal planes, lattice parameter and porosity. The variation of magnetic properties of the samples was studied by using vibrating samples magnetometer and discussed considering the proposed cation distribution, relative bond angles and canting angles. The highest maximum value of the magnetization (63 emu/g) was found for Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4}.

  7. Lattice strain induced magnetism in substituted nanocrystalline cobalt ferrite

    NASA Astrophysics Data System (ADS)

    Kumar, Rajnish; Kar, Manoranjan

    2016-10-01

    Strontium (Sr) substituted cobalt ferrite i.e. Co1-xSrxFe2O4 (x=0.00, 0.01, 0.015, 0.02, 0.05, 0.1) have been synthesized by the citric acid modified sol-gel method. Crystal structure and phase purity have been studied by the X-ray powder diffraction technique. The Rietveld refinement of XRD pattern using the space group Fd 3 bar m shows monotonically increasing of lattice parameter with the increase in Sr concentration. Magnetic hysteresis loops measurement has been carried out at room temperature using a vibrating sample magnetometer (VSM) over a field range of ±1.5 T. Magnetocrystalline anisotropy constant were calculated by employing the Law of Approach (LA) to the saturation. It is observed that magnetocrystalline anisotropy has anomaly for x=0.01 (Co0.99Sr0.01Fe2O4) sample. Strain mediated modification of magnetic properties in Sr substituted cobalt ferrite has been observed. The saturation magnetization for doping concentration i.e. x=0.01 abruptly increase while for x>0.01 decreases with the increase in Sr concentration. A correlation between lattice strain and magnetic behavior in non-magnetic Sr- substituted nano-crystalline cobalt ferrite has been reported.

  8. SUBSTITUTION OF CADMIUM CYANIDE ELECTROPLATING WITH ZINC CHLORIDE ELECTROPLATING

    EPA Science Inventory

    The study evaluated the zinc chloride electroplating process as a substitute for cadmium cyanide electroplating in the manufacture of industrial connectors and fittings at Aeroquip Corporation. The process substitution eliminates certain wastes, specifically cadmium and cyanide, ...

  9. Nanocrystalline zinc indium vanadate: a novel photocatalyst for hydrogen generation.

    PubMed

    Mahapure, Sonali A; Ambekar, Jalindar D; Nikam, Latesh K; Marimuthu, Ramadoss; Kulkarni, Milind V; Kale, Bharat B

    2011-08-01

    Hydrogen is a future fuel and hence production of cheap hydrogen is an important area of research. Recently, the photocatalysts were used to generate hydrogen from water and hydrogen sulfide splitting under solar light. Hence, we designed Zinc Indium Vanadate, a novel visible light active photocatalyst and used for the generation of hydrogen by using solar light. We have demonstrated the synthesis of ZnIn2V2O9 (ZIV) catalyst by sonochemical route using NH4VO3, In (NO3)3 and Zn(CH3COO)2 as a precursors and PVP as a capping agent. The obtained product was further characterized by XRD, UV-DRS and FESEM. The XRD pattern reveals the existence of monoclinic crystal structure and broader peaks indicating the nanocrystalline nature of the material. The particle size was observed in the range of 50-70 nm. The optical study showed the absorption edge cut off at 520 nm with estimated band gap about 2.3 eV. Considering the band gap in visible range, ZnIn2V2O9 was used as a photocatalyst for photodecomposition of H2S under visible light irradiation to produce hydrogen. We observed excellent photocatalytic activity for the hydrogen generation by using this photocatalyst. PMID:22103105

  10. Production of zinc substituted hydroxyapatite using various precipitation routes.

    PubMed

    Shepherd, David; Best, Serena M

    2013-04-01

    Substituted hydroxyapatites have been investigated for use as bone grafts and have been investigated for many years. Zinc is of interest due to its potential to reduce bone resorption and antibacterial properties. However, it has proven problematic to substitute biologically significant levels of zinc into the crystal structure through wet chemical routes, whilst retaining the high temperature phase stability required for processing. The aim of this study is to investigate two different precipitation routes used to synthesize zinc substituted hydroxyapatite and to explore the effects of ammonia used in the reactions on the levels of zinc substituted into the crystal lattice. It was found that considerable amounts of ammonia are required to maintain a pH sufficiently high for the production of stoichiometric hydroxyapatite using a reaction between calcium nitrate, zinc nitrate and ammonium phosphate. X-ray fluorescence analysis showed that a significant proportion of the zinc added did not substitute into the hydroxyapatite lattice. Fourier transform infrared spectroscopy revealed the existence of a zinc-ammonia complex that, it is proposed, inhibits zinc substitution for calcium. It was found that by reacting orthophosphoric acid with calcium nitrate and zinc nitrate, the volume of ammonia required in the reaction was reduced and higher levels of zinc substitution were achieved, with up to 0.58 wt% incorporated into the hydroxyapatite lattice. The resulting products were found to be stoichiometric hydroxyapatite and did not appear to contain any extraneous calcium phosphate phases after heat treatment up to 1100 °C. X-ray diffraction and Rietveld analysis revealed that the effect of substituting zinc into the HA lattice was to decrease the a-lattice parameter whilst increasing the c-lattice. Transmission electron microscopy also showed that the incorporation of zinc reduced both the length and width of the precipitated crystals.

  11. Nanocrystalline zinc ferrite films studied by magneto-optical spectroscopy

    SciTech Connect

    Lišková-Jakubisová, E. Višňovský, Š.; Široký, P.; Hrabovský, D.; Pištora, J.; Sahoo, Subasa C.; Prasad, Shiva; Venkataramani, N.; Bohra, Murtaza; Krishnan, R.

    2015-05-07

    Ferrimagnetic Zn-ferrite (ZnFe{sub 2}O{sub 4}) films can be grown with the ferromagnetic resonance linewidth of 40 Oe at 9.5 GHz without going through a high temperature processing. This presents interest for applications. The work deals with laser ablated ZnFe{sub 2}O{sub 4} films deposited at O{sub 2} pressure of 0.16 mbar onto fused quartz substrates. The films about 120 nm thick are nanocrystalline and their spontaneous magnetization, 4πM{sub s}, depends on the nanograin size, which is controlled by the substrate temperature (T{sub s}). At T{sub s} ≈ 350 °C, where the grain distribution peaks around ∼20–30 nm, the room temperature 4πM{sub s} reaches a maximum of ∼2.3 kG. The films were studied by magnetooptical polar Kerr effect (MOKE) spectroscopy at photon energies between 1 and 5 eV. The complementary characteristics were provided by spectral ellipsometry (SE). Both the SE and MOKE spectra confirmed ferrimagnetic ordering. The structural details correspond to those observed in MgFe{sub 2}O{sub 4} and Li{sub 0.5}Fe{sub 2.5}O{sub 4} spinels. SE experiments confirm the insulator behavior. The films display MOKE amplitudes somewhat reduced with respect to those in Li{sub 0.5}Fe{sub 2.5}O{sub 4} and MgFe{sub 2}O{sub 4} due to a lower degree of spinel inversion and nanocrystalline structure. The results indicate that the films are free of oxygen vacancies and Fe{sup 3+}-Fe{sup 2+} exchange.

  12. Electrophoretic deposition of zinc-substituted hydroxyapatite coatings.

    PubMed

    Sun, Guangfei; Ma, Jun; Zhang, Shengmin

    2014-06-01

    Zinc-substituted hydroxyapatite nanoparticles synthesized by the co-precipitation method were used to coat stainless steel plates by electrophoretic deposition in n-butanol with triethanolamine as a dispersant. The effect of zinc concentration in the synthesis on the morphology and microstructure of coatings was investigated. It is found that the deposition current densities significantly increase with the increasing zinc concentration. The zinc-substituted hydroxyapatite coatings were analyzed by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. It is inferred that hydroxyapatite and triethanolamine predominate in the chemical composition of coatings. With the increasing Zn/Ca ratios, the contents of triethanolamine decrease in the final products. The triethanolamine can be burnt out by heat treatment. The tests of adhesive strength have confirmed good adhesion between the coatings and substrates. The formation of new apatite layer on the coatings has been observed after 7days of immersion in a simulated body fluid. In summary, the results show that dense, uniform zinc-substituted hydroxyapatite coatings are obtained by electrophoretic deposition when the Zn/Ca ratio reaches 5%.

  13. Effect of aluminum substitution on structural and electromagnetic properties of nanocrystalline MgCuMn ferrites

    SciTech Connect

    Ramesh, T. E-mail: ramanasarabu@gmail.com; Kumar, S. Senthil; Shinde, R. S.; Murthy, S. R.

    2015-06-24

    The effect of substitution of nonmagnetic Al{sup 3+} ions on the structural and electromagnetic properties were studied in nanocrystalline ferrite series of Mg{sub 0.8}Cu{sub 0.2}Al{sub x}Fe{sub 1.95-x}Mn{sub 0.05}O{sub 4} where x varies 0-0.4 in steps of 0.1. This series was synthesized by using microwave hydrothermal method. The nanocrystalline ferrite phase was observed at temperature 150°C/40 min. Synthesized powders were characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The synthesized powders were densified using microwave sintering method at 950°C/40 min. The sintered samples were characterized using XRD. Surface morphology was observed by using field effective scanning electron microscopy (FESEM). The electrical and magnetic properties were measured at room temperature. These results led us to interfere that the values of d.c resistivity increases and dielectric constant, initial permeability, saturation magnetization and Curie temperature were observed to be decreased with the substitution of Al{sup 3+} ions with those of Fe{sup 3+}. The low dielectric and magnetic losses and low magnetization exhibited by aluminum substituted MgCuMn ferrites makes them find applications in microwave devices.

  14. Dendrite-Free Nanocrystalline Zinc Electrodeposition from an Ionic Liquid Containing Nickel Triflate for Rechargeable Zn-Based Batteries.

    PubMed

    Liu, Zhen; Cui, Tong; Pulletikurthi, Giridhar; Lahiri, Abhishek; Carstens, Timo; Olschewski, Mark; Endres, Frank

    2016-02-18

    Metallic zinc is a promising anode material for rechargeable Zn-based batteries. However, the dendritic growth of zinc has prevented practical applications. Herein it is demonstrated that dendrite-free zinc deposits with a nanocrystalline structure can be obtained by using nickel triflate as an additive in a zinc triflate containing ionic liquid. The formation of a thin layer of Zn-Ni alloy (η- and γ-phases) on the surface and in the initial stages of deposition along with the formation of an interfacial layer on the electrode strongly affect the nucleation and growth of zinc. A well-defined and uniform nanocrystalline zinc deposit with particle sizes of about 25 nm was obtained in the presence of Ni(II) . Further, it is shown that the nanocrystalline Zn exhibits a high cycling stability even after 50 deposition/stripping cycles. This strategy of introducing an inorganic metal salt in ionic liquid electrolytes can be considered as an efficient way to obtain dendrite-free zinc. PMID:26822484

  15. Dendrite-Free Nanocrystalline Zinc Electrodeposition from an Ionic Liquid Containing Nickel Triflate for Rechargeable Zn-Based Batteries.

    PubMed

    Liu, Zhen; Cui, Tong; Pulletikurthi, Giridhar; Lahiri, Abhishek; Carstens, Timo; Olschewski, Mark; Endres, Frank

    2016-02-18

    Metallic zinc is a promising anode material for rechargeable Zn-based batteries. However, the dendritic growth of zinc has prevented practical applications. Herein it is demonstrated that dendrite-free zinc deposits with a nanocrystalline structure can be obtained by using nickel triflate as an additive in a zinc triflate containing ionic liquid. The formation of a thin layer of Zn-Ni alloy (η- and γ-phases) on the surface and in the initial stages of deposition along with the formation of an interfacial layer on the electrode strongly affect the nucleation and growth of zinc. A well-defined and uniform nanocrystalline zinc deposit with particle sizes of about 25 nm was obtained in the presence of Ni(II) . Further, it is shown that the nanocrystalline Zn exhibits a high cycling stability even after 50 deposition/stripping cycles. This strategy of introducing an inorganic metal salt in ionic liquid electrolytes can be considered as an efficient way to obtain dendrite-free zinc.

  16. Magneto-structural studies of sol-gel synthesized nanocrystalline manganese substituted nickel ferrites

    NASA Astrophysics Data System (ADS)

    Pandav, R. S.; Patil, R. P.; Chavan, S. S.; Mulla, I. S.; Hankare, P. P.

    2016-11-01

    Nanocrystalline NiFe2-xMnxO4 (2≥x≥0) ferrites were prepared by sol-gel method. X-ray diffraction patterns reveal that synthesized compounds are in single phase cubic spinel lattice for all the composition. The surface morphology of all the samples were studied by scanning electron microscopy. The particle size measured from transmission electron microscopy and X-ray diffraction patterns confirms the nanosized dimension of the as-prepared powder. The elemental analysis was carried out by energy dispersive X-ray analysis technique. Magnetic properties such as saturation magnetization, coercivity and remanence are studied as a function of increasing Mn concentration at room temperature. The saturation magnetization shows a decreasing trend with increase in Mn content. The substitution of manganese in the nickel ferrite affects the structural and magnetic properties of cubic spinels.

  17. A Solid-State NMR Study of Selenium Substitution into Nanocrystalline Hydroxyapatite

    PubMed Central

    Kolmas, Joanna; Kuras, Marzena; Oledzka, Ewa; Sobczak, Marcin

    2015-01-01

    The substitution of selenium oxyanions in the hydroxyapatite structure was examined using multinuclear solid-state resonance spectroscopy (ssNMR). The study was supported by powder X-ray diffractometry (PXRD) and wavelength dispersion X-ray fluorescence (WD-XRF). Samples of pure hydroxyapatite (HA300) and selenate (HA300-1.2SeO4) or selenite (HA300-1.2SeO3) substituted hydroxyapatites were synthesized using the standard wet method and heated at 300 °C to remove loosely bonded water. PXRD data showed that all samples are single-phase, nanocrystalline hydroxyapatite. The incorporation of selenite and selenate ions affected the lattice constants. In selenium-containing samples the concentration of Se was very similar and amounted to 9.55% and 9.64%, for HA300-1.2SeO4 and HA300-1.2SeO3, respectively. PXRD and ssNMR data showed that the selenite doping significantly decreases the crystallite size and crystallinity degree. 31P and 1H NMR experiments demonstrated the developed surface hydrated layer in all samples, especially in HA300-1.2SeO3. 1H NMR studies showed the dehydroxylation of HA during the selenium oxyanions substitution and the existence of hydrogen bonding in structural hydroxyl group channels. 1H→77Se cross polarization NMR experiments indicated that selenites and selenates are located in the crystal lattice and on the crystal surface. PMID:25997001

  18. Effect of annealing on structural and magnetic properties of Al substituted nanocrystalline Fe-Si-Co alloy powders

    NASA Astrophysics Data System (ADS)

    Shyni, P. C.; Alagarsamy, Perumal

    2016-11-01

    We report effects of annealing and substitution of Al on structural and magnetic properties of nanocrystalline Fe80-xAlxCo5Si15 (x=0-10) alloy powders prepared by mechanical alloying process using a planetary ball mill technique. All the as-milled powders exhibit non-equilibrium solid solution of α-Fe (Si,Co,Al). While the average size of crystals decreases, the lattice constant and dislocation density increase with increasing Al content. On the other hand, the annealing at elevated temperatures increases the size of the crystals and decreases the dislocation density. In addition, the substitution of Al in FeAlCoSi alloy powders controls growth of the crystals during annealing. As a result, coercivity (HC) of the annealed powders decreases considerably. However, the variation in HC is dominated by the dislocation density. Fe70Al10Co5Si15 powder annealed at 900 °C exhibits improved magnetic properties (HC~14 Oe and moderate magnetization of 160 emu/g) due to optimum nanocrystalline microstructure with fine nanocrystals (~18 nm) and reduced dislocation density. Systematic correlations observed between structural and magnetic properties for Fe80-xAlxCo5Si15 powders reveal a promising approach to control the growth of the crystals in the annealed nanocrystalline alloys and to improve the magnetic properties of mechanically alloyed Fe-Si based nanocrystalline alloys by adding suitable substituting elements.

  19. Enhanced violet photoemission of nanocrystalline fluorine doped zinc oxide (FZO) thin films

    NASA Astrophysics Data System (ADS)

    Anusha, Muthukumar; Arivuoli, D.; Manikandan, E.; Jayachandran, M.

    2015-09-01

    Highly stable fluorine doped nanocrystalline zinc oxide thin films were prepared on corning glass substrates by aerosol assisted chemical vapor deposition (AACVD) at variable deposition temperature of 360 °C, 380 °C and 420 °C. Especially, the optimum deposition temperature was investigated for high intense violet emission. The film crystallinity improved with the increasing deposition temperature and highly textured film was obtained at 420 °C. The films exhibited surface morphology variation from spherical to platelets due to deposition temperature effect, analyzed by field emission scanning electron microscope (FE-SEM). Higher growth rate observed at 420 °C which leads larger grains and lowest resistivity of ∼5.77 Ω cm among the deposited films which may be due to reduction in zinc vacancies and grain boundary area. Zinc vacancies are acts as electron killer centres. UV-visible spectra indicated higher transmittance (83-90%) in the visible region. Red shift of optical absorption edges associated with the increase in particle size consistent well with the XRD results. Reduced E2(high) intensity was observed in Raman spectra, for the film deposited at 380 °C which indicates decreased oxygen incorporation confirmed by PL spectra. Especially, enhanced violet emission observed at 3.06 eV for the films deposited at 380 °C due to electronic transition from the defect level of zinc vacancies to the conduction band, probably attributed to enhanced incorporation of 'F' into 'O' sites associated with increased Zn vacancies and also decreased oxygen incorporation consistent with the electrical and Raman analyses.

  20. Electromagnetic properties of manganese-zinc ferrite with lithium substitution

    NASA Astrophysics Data System (ADS)

    De Fazio, E.; Bercoff, P. G.; Jacobo, S. E.

    2011-11-01

    Polycrystalline manganese-zinc ferrite with lithium substitution of composition Li 0.5 xMn 0.4Zn 0.6- xFe 2+0.5 xO 4 (0.0≤ x≤0.4) was prepared by the usual ceramic method. X-ray diffraction analysis confirmed that the samples have a spinel structure and are of single phase for some values of Li content. Lithium doping considerably modifies saturation magnetization since its value increases from 57.5 emu/g for x=0.0 to 82.9 emu/g for x=0.4. Lithium inclusion increases the real permeability (over 1 MHz) while the natural resonance frequency shifts to lower values as the fraction of Li increases. These ferrites show good electromagnetic properties as absorbers in the microwave range of 1 MHz - 1 GHz.

  1. First preparation of nanocrystalline zinc silicate by chemical vapor synthesis using an organometallic single-source precursor.

    PubMed

    Roy, A; Polarz, S; Rabe, S; Rellinghaus, B; Zähres, H; Kruis, F E; Driess, Matthias

    2004-03-19

    A method is presented to prepare nanocrystalline alpha-Zn(2)SiO(4) with the smallest crystal size reported so far for this system. Our approach combines the advantages of organometallic single-source precursor routes with aerosol processing techniques. The chemical design of the precursor enables the preferential formation of pure zinc silicates. Since gas-phase synthesis reduces intermolecular processes, and keeps the particles small, zinc silicate was synthesized from the volatile organometallic precursor [[MeZnOSiMe(3)](4)], possessing a Zn-methyl- and O-silyl-substituted Zn(4)O(4)-heterocubane framework (cubane), under oxidizing conditions, using the chemical vapor synthesis (CVS) method. The products obtained under different process conditions and their structural evolution after sintering were investigated by using various analytical techniques (powder X-ray diffraction, transmission electron microscopy, EDX analysis, solid-state NMR, IR, Raman, and UV/Vis spectroscopy). The deposited aerosol obtained first (processing temperature 750 degrees C) was amorphous, and contained agglomerates with primary particles of 12 nm in size. These primary particles can be described by a [Zn-O-Si] phase without long-range order. The deposit obtained at 900 degrees C contained particles with embedded nanocrystallites (3-5 nm) of beta-Zn(2)SiO(4), Zn(1.7)SiO(4), and ZnO in an amorphous matrix. On further ageing, the as-deposited particles obtained at 900 degrees C form alpha-Zn(2)SiO(4) imbedded in amorphous SiO(2). The crystallite sizes and primary particle sizes in the formed alpha-Zn(2)SiO(4) were found to be below approximately 50 nm and mainly spherical in morphology. A gas-phase mechanism for the particle formation is proposed. In addition, the solid-state reactions of the same precursor were studied in detail to investigate the fundamental differences between a gas-phase and a solid-state synthesis route.

  2. Anti-wear properties of Cr C and Ni Co alloy coatings as substitutes for conventional nanocrystalline Cr coatings

    NASA Astrophysics Data System (ADS)

    Zeng, Zhixiang; Zhang, Junyan

    2008-09-01

    Nanocrystalline Ni-Co, amorphous Cr-C alloy and nanocrystalline Cr-C coatings were electrodeposited from 'environmentally acceptable' electrolytes as potential substitutes for conventional nanocrystalline Cr coatings electrodeposited from noxious hexavalent chromium. The structure, morphology and hardness of coatings are investigated using a transmission electron microscope, a scanning electronic microscope and a Vickers hardness tester, respectively. Anti-wear properties are tested on a pin-on-plate vibrant wear tester. The correlation between the wear resistance, hardness, brittleness and the lubricated state is investigated. The results show that the wear behaviour of specimens significantly depends on their lubricated state, hardness and brittleness. Under the lubricated sliding condition, abrasive wear is the primary wear mechanism for all specimens. With respect to the abrasive wear mechanism, both the elastic and plastic deformations play important roles during the lubricated sliding process. Thus, the amorphous and nanocrystalline Cr-C alloy coatings, with both high brittleness and high hardness, exhibit a lower wear rate than the conventional Cr and Ni-Co coatings. On the other hand, under the dry sliding condition, the annealed Ni-Co coating, with an excellent compromise between high hardness and toughness, exhibits an abrasive wear mechanism and a relatively low wear rate; in contrast, the brittle Cr-matrix coatings exhibit a severe fatigue/delamination wear mechanism and high wear rate.

  3. Surfactant-Assisted Nanocrystalline Zinc Coordination Polymers: Controlled Particle Sizes and Synergistic Effects in Catalysis.

    PubMed

    Huang, Chao; Wang, Huarui; Wang, Xiaolu; Gao, Kuan; Wu, Jie; Hou, Hongwei; Fan, Yaoting

    2016-04-25

    Different morphologies and particle sizes of two crystalline zinc-based coordination polymers (CPs), [Zn(pytz)H2 O]n (1; H2 pytz=2,6-bis(tetrazole)pyridine) and [Zn2 (pytz)2 4 H2 O] (2), from the bulk scale to the nanoscale, could be obtained under solvothermal conditions with different surfactants (polyvinylpyrrolidone (PVP) or polyethylene glycol (PEG) 2000) as templates. PVP and PEG 2000 could act as capping and structure-directing agents, respectively, to influence the growth of crystalline particles and control their sizes. CP 1 exhibits a two-dimensional framework with window-like units and 2 shows a bimetallic structure. Nanocrystalline 1 and 2 were used as heterogeneous catalysts to study how adjacent catalytic active sites synergistically effected their catalytic reactivities in the direct catalytic conversion of aromatic dinitriles into oxazolines. The results showed that 1 produced bis-oxazolines as the sole products, whereas 2 gave the mono-oxazolines as the major products under the same reaction conditions. PMID:26997347

  4. Influence of Sn-substitution on temperature dependence and magnetic disaccommodation of manganese-zinc ferrites

    NASA Astrophysics Data System (ADS)

    Ji, Haining; Lan, Zhongwen; Yu, Zhong; Sun, Ke; Li, Lezhong

    2009-07-01

    In this paper, the effects of Sn-substitution on temperature dependence and magnetic disaccommodation of manganese-zinc ferrites were investigated. Toroidal cores were prepared by the conventional ceramic process and sintered at 1360 °C for 4 h in atmosphere controlled by using the equation for equilibrium oxygen partial pressure. The experimental results show that the substitution of Sn 4+ in manganese-zinc ferrites can influence the thermal stability and disaccommodation remarkably. Secondly, the temperature dependence of the initial permeability μi and disaccommodation of Sn-substitution manganese-zinc ferrites have an internal relationship. The experimental results are explained and compared with those of Ti-substitution manganese-zinc ferrite.

  5. An in vitro study into the effect of zinc substituted hydroxyapatite on osteoclast number and activity.

    PubMed

    Shepherd, David V; Kauppinen, Kyösti; Brooks, Roger A; Best, Serena M

    2014-11-01

    Zinc ions have been shown to inhibit osteoclast development and proliferation both in vitro and in vivo. The same inhibiting effect has been observed in vitro when zinc was substituted into tri-calcium phosphate (TCP). Because of the solubility of TCP it is not an ideal candidate for a material to inhibit osteoclast activity in the long term. Hydroxyapatite (HA) is less soluble and so potentially offers a more long-term, sustainable effect. Previous work has shown that zinc can successfully be substituted into HA and still retain phase purity after heat treatment. The study reported here presents the effects of zinc substituted HA on the development and activity of osteoclast-like cells. It was found that increasing zinc substitution levels led to a decrease in the number of these cells present after 21 days. When resorption activity was investigated it was found that an increase in the amount of zinc present in the discs led to a significant decrease in the amount of resorption taking place on the discs. These results provide evidence for the potential of zinc substituted HA as a material to reduce resorptive activity to provide long-term bonding of implant to bone.

  6. Disorder induced semiconductor to metal transition and modifications of grain boundaries in nanocrystalline zinc oxide thin film

    SciTech Connect

    Singh, Fouran; Kumar, Vinod; Chaudhary, Babloo; Singh, R. G.; Kumar, Sanjeev; Kapoor, A.

    2012-10-01

    This paper report on the disorder induced semiconductor to metal transition (SMT) and modifications of grain boundaries in nanocrystalline zinc oxide thin film. Disorder is induced using energetic ion irradiation. It eliminates the possibility of impurities induced transition. However, it is revealed that some critical concentration of defects is needed for inducing such kind of SMT at certain critical temperature. Above room temperature, the current-voltage characteristics in reverse bias attributes some interesting phenomenon, such as electric field induced charge transfer, charge trapping, and diffusion of defects. The transition is explained by the defects induced disorder and strain in ZnO crystallites created by high density of electronic excitations.

  7. Tetra-triethyleneoxysulfonyl substituted zinc phthalocyanine for photodynamic cancer therapy.

    PubMed

    Kuzyniak, Weronika; Ermilov, Eugeny A; Atilla, Devrim; Gürek, Ayşe Gül; Nitzsche, Bianca; Derkow, Katja; Hoffmann, Björn; Steinemann, Gustav; Ahsen, Vefa; Höpfner, Michael

    2016-03-01

    Photodynamic therapy (PDT) has emerged as an effective and minimally invasive treatment option for several diseases, including some forms of cancer. However, several drawbacks of the approved photosensitizers (PS), such as insufficient light absorption at therapeutically relevant wavelengths hampered the clinical effectiveness of PDT. Phthalocyanines (Pc) are interesting PS-candidates with a strong light absorption in the favourable red spectral region and a high quantum yield of cancer cell destroying singlet oxygen generation. Here, we evaluated the suitability of tetra-triethyleneoxysulfonyl substituted zinc phthalocyanine (ZnPc) as novel PS for PDT. ZnPc-induced phototoxicity, induction of apoptosis as well as cell cycle arresting effects was studied in the human gastrointestinal cancer cell lines of different origin. Photoactivation of ZnPc-pretreated (1-10 μM) cancer cells was achieved by illumination with a broad band white light source (400-700 nm) at a power density of 10 J/cm(2). Photoactivation of ZnPc-loaded cells revealed strong phototoxic effects, leading to a dose-dependent decrease of cancer cell proliferation of up to almost 100%, the induction of apoptosis and a G1-phase arrest of the cell cycle, which was associated with decrease in cyclin D1 expression. By contrast, ZnPc-treatment without illumination did not induce any cytotoxicity, apoptosis, cell cycle arrest or decreased cell growth. Antiangiogenic effects of ZnPc-PDT were investigated in vivo by performing CAM assays, which revealed a marked degradation of blood vessels and the capillary plexus of the chorioallantoic membrane of fertilized chicken eggs. Based on our data we think that ZnPc may be a promising novel photosensitizer for innovative PDT.

  8. Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD

    PubMed Central

    2011-01-01

    We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm). Pure solid zinc is inductively heated and melted, followed by ionization by thermal induction argon/oxygen plasma to produce conformal, nonporous nanocrystalline ZnO films at a growth rate of up to 50 nm/min on amorphous and crystalline substrates including Si (100), fused quartz, glass, muscovite, c- and a-plane sapphire (Al2O3), gold, titanium, and polyimide. X-ray diffraction indicates the grains of as-deposited ZnO to be highly textured, with the fastest growth occurring along the c-axis. The individual grains are observed to be faceted by (103) planes which are the slowest growth planes. ZnO nanocrystalline films of nominal thicknesses of 200 nm are deposited at substrate temperatures of 330°C and 160°C on metal/ceramic substrates and polymer substrates, respectively. In addition, 20-nm- and 200-nm-thick films are also deposited on quartz substrates for optical characterization. At optical spectra above 375 nm, the measured optical transmittance of a 200-nm-thick ZnO film is greater than 80%, while that of a 20-nm-thick film is close to 100%. For a 200-nm-thick ZnO film with an average grain size of 100 nm, a four-point probe measurement shows electrical conductivity of up to 910 S/m. Annealing of 200-nm-thick ZnO films in 300 sccm pure argon at temperatures ranging from 750°C to 950°C (at homologous temperatures between 0.46 and 0.54) alters the textures and morphologies of the thin film. Based on scanning electron microscope images, higher annealing temperatures appear to restructure the ZnO nanocrystalline films to form nanorods of ZnO due to a combination of grain boundary diffusion and bulk diffusion. PACS: films and coatings, 81.15.-z; nanocrystalline materials, 81.07.Bc; II-VI semiconductors, 81.05.Dz. PMID:22040295

  9. Microwave-assisted synthesis of layered basic zinc acetate nanosheets and their thermal decomposition into nanocrystalline ZnO

    PubMed Central

    2014-01-01

    We have developed a low-cost technique using a conventional microwave oven to grow layered basic zinc acetate (LBZA) nanosheets (NSs) from a zinc acetate, zinc nitrate and HMTA solution in only 2 min. The as-grown crystals and their pyrolytic decomposition into ZnO nanocrystalline NSs are characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), X-ray diffraction (XRD) and photoluminescence (PL). SEM and AFM measurements show that the LBZA NSs have typical lateral dimensions of 1 to 5 μm and thickness of 20 to 100 nm. Annealing in air from 200°C to 1,000°C results in the formation of ZnO nanocrystalline NSs, with a nanocrystallite size ranging from 16 nm at 200°C to 104 nm at 1,000°C, as determined by SEM. SEM shows evidence of sintering at 600°C. PL shows that the shape of the visible band is greatly affected by the annealing temperature and that the exciton band to defect band intensity ratio is maximum at 400°C and decreases by a factor of 15 after annealing at 600°C. The shape and thickness of the ZnO nanocrystalline NSs are the same as LBZA NSs. This structure provides a high surface-to-volume ratio of interconnected nanoparticles that is favorable for applications requiring high specific area and low resistivity such as gas sensing and dye-sensitized solar cells (DSCs). We show that resistive gas sensors fabricated with the ZnO NSs showed a response of 1.12 and 1.65 to 12.5 ppm and 200 ppm of CO at 350°C in dry air, respectively, and that DSCs also fabricated from the material had an overall efficiency of 1.3%. PACS 81.07.-b; 62.23.Kn; 61.82.Fk PMID:24397935

  10. Microwave-assisted synthesis of layered basic zinc acetate nanosheets and their thermal decomposition into nanocrystalline ZnO.

    PubMed

    Tarat, Afshin; Nettle, Chris J; Bryant, Daniel T J; Jones, Daniel R; Penny, Mark W; Brown, Richard A; Majitha, Ravish; Meissner, Kenith E; Maffeis, Thierry G G

    2014-01-08

    We have developed a low-cost technique using a conventional microwave oven to grow layered basic zinc acetate (LBZA) nanosheets (NSs) from a zinc acetate, zinc nitrate and HMTA solution in only 2 min. The as-grown crystals and their pyrolytic decomposition into ZnO nanocrystalline NSs are characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), X-ray diffraction (XRD) and photoluminescence (PL). SEM and AFM measurements show that the LBZA NSs have typical lateral dimensions of 1 to 5 μm and thickness of 20 to 100 nm. Annealing in air from 200°C to 1,000°C results in the formation of ZnO nanocrystalline NSs, with a nanocrystallite size ranging from 16 nm at 200°C to 104 nm at 1,000°C, as determined by SEM. SEM shows evidence of sintering at 600°C. PL shows that the shape of the visible band is greatly affected by the annealing temperature and that the exciton band to defect band intensity ratio is maximum at 400°C and decreases by a factor of 15 after annealing at 600°C. The shape and thickness of the ZnO nanocrystalline NSs are the same as LBZA NSs. This structure provides a high surface-to-volume ratio of interconnected nanoparticles that is favorable for applications requiring high specific area and low resistivity such as gas sensing and dye-sensitized solar cells (DSCs). We show that resistive gas sensors fabricated with the ZnO NSs showed a response of 1.12 and 1.65 to 12.5 ppm and 200 ppm of CO at 350°C in dry air, respectively, and that DSCs also fabricated from the material had an overall efficiency of 1.3%. PACS: 81.07.-b; 62.23.Kn; 61.82.Fk.

  11. Microwave-assisted synthesis of layered basic zinc acetate nanosheets and their thermal decomposition into nanocrystalline ZnO.

    PubMed

    Tarat, Afshin; Nettle, Chris J; Bryant, Daniel T J; Jones, Daniel R; Penny, Mark W; Brown, Richard A; Majitha, Ravish; Meissner, Kenith E; Maffeis, Thierry G G

    2014-01-01

    We have developed a low-cost technique using a conventional microwave oven to grow layered basic zinc acetate (LBZA) nanosheets (NSs) from a zinc acetate, zinc nitrate and HMTA solution in only 2 min. The as-grown crystals and their pyrolytic decomposition into ZnO nanocrystalline NSs are characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), X-ray diffraction (XRD) and photoluminescence (PL). SEM and AFM measurements show that the LBZA NSs have typical lateral dimensions of 1 to 5 μm and thickness of 20 to 100 nm. Annealing in air from 200°C to 1,000°C results in the formation of ZnO nanocrystalline NSs, with a nanocrystallite size ranging from 16 nm at 200°C to 104 nm at 1,000°C, as determined by SEM. SEM shows evidence of sintering at 600°C. PL shows that the shape of the visible band is greatly affected by the annealing temperature and that the exciton band to defect band intensity ratio is maximum at 400°C and decreases by a factor of 15 after annealing at 600°C. The shape and thickness of the ZnO nanocrystalline NSs are the same as LBZA NSs. This structure provides a high surface-to-volume ratio of interconnected nanoparticles that is favorable for applications requiring high specific area and low resistivity such as gas sensing and dye-sensitized solar cells (DSCs). We show that resistive gas sensors fabricated with the ZnO NSs showed a response of 1.12 and 1.65 to 12.5 ppm and 200 ppm of CO at 350°C in dry air, respectively, and that DSCs also fabricated from the material had an overall efficiency of 1.3%. PACS: 81.07.-b; 62.23.Kn; 61.82.Fk. PMID:24397935

  12. The effect of induced strains on the optical band gaps in lanthanum-doped zinc ferrite nanocrystalline powders

    NASA Astrophysics Data System (ADS)

    Hamed, Fathalla; Ramachandran, Tholkappiyan; Kurapati, Vishista

    2016-07-01

    ZnFe1.96La0.04O4 nanocrystalline powders were synthesized by auto-combustion with the aid of glycine as fuel. The synthesized powders were subjected to heat treatment in air at constant temperatures (600-970∘C) for a period of 2 h. The annealed powders were characterized by X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and UV-Vis-NIR spectroscopy. The as-synthesized and annealed powders formed spongy porous network structure with voids and pores. All the powders were found to be single phase nanomaterial with cubic spinel crystal structure and the desired composition; however, they contained strains, dislocations and lattice distortions. Some of these strains and dislocations are relaxed as a function of annealing temperature. The powders displayed direct and indirect optical band gaps. The energies of these band gaps were found to vary as a function of the induced strains and dislocations. It is suggested that the energy of the optical band gap in lanthanum-doped zinc ferrite nanocrystalline powders can be varied as a function of induced strains if the initial preparation conditions and the following heat treatments are controlled.

  13. The effect of induced strains on the optical band gaps in lanthanum-doped zinc ferrite nanocrystalline powders

    NASA Astrophysics Data System (ADS)

    Hamed, Fathalla; Ramachandran, Tholkappiyan; Kurapati, Vishista

    2016-07-01

    ZnFe1.96La0.04O4 nanocrystalline powders were synthesized by auto-combustion with the aid of glycine as fuel. The synthesized powders were subjected to heat treatment in air at constant temperatures (600-970∘C) for a period of 2 h. The annealed powders were characterized by X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and UV-Vis-NIR spectroscopy. The as-synthesized and annealed powders formed spongy porous network structure with voids and pores. All the powders were found to be single phase nanomaterial with cubic spinel crystal structure and the desired composition; however, they contained strains, dislocations and lattice distortions. Some of these strains and dislocations are relaxed as a function of annealing temperature. The powders displayed direct and indirect optical band gaps. The energies of these band gaps were found to vary as a function of the induced strains and dislocations. It is suggested that the energy of the optical band gap in lanthanum-doped zinc ferrite nanocrystalline powders can be varied as a function of induced strains if the initial preparation conditions and the following heat treatments are controlled.

  14. Tuning of magnetic ordering by Y substitution onto Tb site in the nanocrystalline TbMnO3

    NASA Astrophysics Data System (ADS)

    Chakraborty, Keka R.; Shukla, Rakesh; Kaushik, S. D.; Mukadam, M. D.; Siruguri, V.; Tyagi, A. K.; Yusuf, S. M.

    2015-10-01

    We report the magnetic properties, of nano-crystalline powders Tb1-xYxMnO3 (x = 0, 0.1, 0.2, 0.3 and 0.4), as perceived by neutron diffraction, and elucidate the effect of Tb site substitution on the magnetic structure of TbMnO3. All samples crystallized in the orthorhombic structure conforming to space group Pnma, and exhibited an incommensurate collinear antiferromagnetic ordering of the Mn ions below ˜40 K. Furthermore, at T ≤ 20 K, all these samples showed a change in magnetic structure (of Mn moments) to a spiral ordering down to 2 K, the lowest measured temperature. For the samples with x = 0, 0.1, and 0.2, a short-ranged two dimensional (2D) ordering of Tb moments was also observed at 2 K. However, for the other samples (x = 0.3 and 0.4), no magnetic ordering of Tb moments was found down to 2 K. So with Y substitution, a crossover from 2D ordering to a disordering of Tb moments was observed. The moments at the Mn site were found to be lower than the full Mn3+ (4μB) moment for all the samples below 40 K. The magnetic properties of all the samples studied by us in nano form are more pronounced than those of the reported single crystals of same compositions [V. Yu. Ivanov et al., JETP Lett. 91, 392-397 (2010)].

  15. Charge carrier dynamics in nanocrystalline Dy substituted ceria based oxygen ion conductors

    NASA Astrophysics Data System (ADS)

    Anirban, Sk.; Dutta, A.

    2016-05-01

    Nano-crystalline Ce1-xDyxO2-δ (x = 0.1-0.5) materials were prepared using the low temperature citrate auto-ignition method. The Rietveld analysis of the XRD data confirmed the single phase cubic fluorite structure. The particle sizes of the sintered samples are in nano range and lattice parameter increases with Dy concentration. Polydispersed and agglomerated particles are observed by SEM. The EDAX spectra show good stoichiometry of the different atoms in the samples. The conductivity is found to have both grain and grain boundary contribution and shows highest value at x= 0.2. The frequency dependence of dielectric permittivity has been analyzed using Havrilliak-Negami formalism. The variation in different electrical properties has been explained by formation defect associates and their interaction with charge carriers.

  16. Structural, electrical and magnetic study of nanocrystalline Ti-substituted Zn-Mn ferrospinels

    NASA Astrophysics Data System (ADS)

    Pandav, R. S.; Patil, D. R.; Patil, R. P.; Hankare, P. P.

    2016-05-01

    Titanium substituted Zn-Mn ferrites were prepared by sol-gel route. Formation of single phase cubic spinel structure for all the compositions was confirmed from their X-ray diffraction studies. These ferrite samples existed as uniform and homogenous grain size as observed from scanning electron microscopy technique (SEM). The magnetic studies indicated that, the ferrimagnetic behavior increases with titanium substitution. Dielectric constant and complex impedance were measured as a function of frequency in the range 20 Hz-1 MHz. Frequency dependence of dielectric constant shows dielectric dispersion due to the Maxwell-Wagner type of interfacial polarization and impedance study reveals that the electrical conduction in the ferrites is by the interior of the grain boundaries. In general, the substitution of titanium plays an important role in changing the structural, magnetic and electrical properties of these ferrites.

  17. Quantum Monte Carlo models of substitutional point defects in zinc oxide and zinc selenide

    NASA Astrophysics Data System (ADS)

    Yu, Jaehyung; Ertekin, Elif

    2015-03-01

    Introducing dopants into semiconductors allows manipulation of electrical and optical properties, useful for applications such as optoelectronics and photovoltaics. While first principles quantitative descriptions of the defects properties in semiconductors are critical to understanding and engineering dopants in semiconductors, obtaining accurate descriptions has proven challenging in the past. Here we demonstrate the use of quantum Monte Carlo (QMC) methods to describing the properties of point defects in zinc oxide and zinc selenide. Due to its direct treatment of electron correlation, the QMC method is capable of accurate calculation of band gaps and defect behaviors. We describe the energetics and potential barrier to forming gallium DX-center defects according to QMC in zinc selenide, and compare the description to those of conventional and hybrid DFT. We also use QMC to determine the defect transition levels for nitrogen defects in zinc oxide, and show that QMC obtains descriptions that are in good agreement with GW and beyond-DFT approaches. Our results demonstrate the importance of accurate descriptions of electron correlation in the calculation of defect properties of semiconductors.

  18. Structural transition, subgap states, and carrier transport in anion-engineered zinc oxynitride nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Xian, Fenglin; Ye, Jiandong; Gu, Shulin; Tan, Hark Hoe; Jagadish, Chennupati

    2016-07-01

    In this work, anion alloying is engineered in ZnON nanocrystalline films, and the resultant evolution of the structural transition, subgap states, and carrier transport is investigated. A broad distribution of sub-gap states above the valence band maximum is introduced by nitrogen due to the hybridization of N 2p and O 2p orbitals. The phase transition from partially amorphous states to full crystallinity occurs above a characteristic growth temperature of 100 °C, and the localized states are suppressed greatly due to the reduction of nitrogen composition. The electronic properties are dominated by grain boundary scattering and electron transport across boundary barriers through thermal activation at band edge states at high temperatures. The conductivity below 130 K exhibits a weak temperature dependence, which is a signature of variable-range hopping conduction between localized states introduced by nitrogen incorporation.

  19. Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite

    PubMed Central

    Friederichs, Robert J.; Chappell, Helen F.; Shepherd, David V.; Best, Serena M.

    2015-01-01

    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100°C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute. PMID:26040597

  20. Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite.

    PubMed

    Friederichs, Robert J; Chappell, Helen F; Shepherd, David V; Best, Serena M

    2015-07-01

    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100 °C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute.

  1. Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite.

    PubMed

    Friederichs, Robert J; Chappell, Helen F; Shepherd, David V; Best, Serena M

    2015-07-01

    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100 °C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute. PMID:26040597

  2. Tuning of magnetic ordering by Y substitution onto Tb site in the nanocrystalline TbMnO{sub 3}

    SciTech Connect

    Chakraborty, Keka R. E-mail: smyusuf@barc.gov.in; Mukadam, M. D.; Yusuf, S. M. E-mail: smyusuf@barc.gov.in; Shukla, Rakesh; Tyagi, A. K.; Kaushik, S. D.; Siruguri, V.

    2015-10-28

    We report the magnetic properties, of nano-crystalline powders Tb{sub 1−x}Y{sub x}MnO{sub 3} (x = 0, 0.1, 0.2, 0.3 and 0.4), as perceived by neutron diffraction, and elucidate the effect of Tb site substitution on the magnetic structure of TbMnO{sub 3}. All samples crystallized in the orthorhombic structure conforming to space group Pnma, and exhibited an incommensurate collinear antiferromagnetic ordering of the Mn ions below ∼40 K. Furthermore, at T ≤ 20 K, all these samples showed a change in magnetic structure (of Mn moments) to a spiral ordering down to 2 K, the lowest measured temperature. For the samples with x = 0, 0.1, and 0.2, a short-ranged two dimensional (2D) ordering of Tb moments was also observed at 2 K. However, for the other samples (x = 0.3 and 0.4), no magnetic ordering of Tb moments was found down to 2 K. So with Y substitution, a crossover from 2D ordering to a disordering of Tb moments was observed. The moments at the Mn site were found to be lower than the full Mn{sup 3+} (4μ{sub B}) moment for all the samples below 40 K. The magnetic properties of all the samples studied by us in nano form are more pronounced than those of the reported single crystals of same compositions [V. Yu. Ivanov et al., JETP Lett. 91, 392–397 (2010)].

  3. Dielectric, electrical transport and magnetic properties of Er3+substituted nanocrystalline cobalt ferrite

    NASA Astrophysics Data System (ADS)

    Kakade, S. G.; Kambale, R. C.; Kolekar, Y. D.; Ramana, C. V.

    2016-11-01

    Erbium substituted cobalt ferrite (CoFe2-xErxO4; x=0.0-0.2, referred to CFEO) materials were synthesized by sol-gel auto-combustion method. The effect of erbium (Er3+) substitution on the crystal structure, dielectric, electrical transport and magnetic properties of cobalt ferrite is evaluated. CoFe2-xErxO4 ceramics exhibit the spinel cubic structure without any impurity phase for x≤0.10 whereas formation of the ErFeO3 orthoferrite secondary phase was observed for x≥0.15. All the CFEO samples demonstrate the typical hysteresis (M-H) behavior with a decrease in magnetization as a function of Er content due to weak superexchange interaction. The frequency (f) dependent dielectric constant (ε‧) revealed the usual dielectric dispersion. The ε‧-f dispersion (f=20 Hz to 1 MHz) fits to the modified Debye's function with more than one ion contributing to the relaxation. The relaxation time and spread factor derived are ∼10-4 s and ∼0.61(±0.04), respectively. Electrical and dielectric studies indicate that ε‧ increases and the dc electrical resistivity decreases as a function of Er content (x≤0.15). Complex impedance analyses confirm only the grain interior contribution to the conduction process. Temperature dependent electrical transport and room temperature ac conductivity (σac) analyses indicate the semiconducting nature and small polaron hopping.

  4. Structural evolution and magnetic properties of nanocrystalline magnesium-zinc soft ferrites synthesized by glycine-nitrate combustion process

    NASA Astrophysics Data System (ADS)

    Hajarpour, S.; Honarbakhsh Raouf, A.; Gheisari, Kh.

    2014-08-01

    In this study, nanocrystalline Mg1-xZnxFe2O4 soft magnetic ferrites are synthesized by varying x from 0.0 to 0.6 with a step size of 0.1. A new combustion synthesis approach is taken using glycine as fuel and metal (Fe, Mg and Zn) nitrates as reactants. The effect of varying chemical composition, i.e. changing the parameter x, on the structural and magnetic properties is evaluated. X-ray diffraction results confirm that all samples crystallize in a spinel-type structure. Lattice parameter (a) is found to increase with the substitution of Zn2+ ions. The field emission scanning electron microscopy (FESEM) is used for morphological investigations. Magnetic properties of Mg1-xZnxFe2O4 ferrites are also evaluated by a vibrating sample magnetometer (VSM). It is found that the saturation magnetization increases as the Zn content goes up to x===0.4 and decreases afterwards. The change in saturation magnetization with Zn content is attributed to the variation of cation distribution in the spinel structure as chemical composition is modified.

  5. Yttrium-substituted nanocrystalline TiO2 photoanodes for perovskite based heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Qin, Peng; Domanski, Anna L.; Chandiran, Aravind Kumar; Berger, Rüdiger; Butt, Hans-Jürgen; Dar, M. Ibrahim; Moehl, Thomas; Tetreault, Nicolas; Gao, Peng; Ahmad, Shahzada; Nazeeruddin, Mohammad K.; Grätzel, Michael

    2014-01-01

    We report the use of Y3+-substituted TiO2 (0.5%Y-TiO2) in solid-state mesoscopic solar cells, consisting of CH3NH3PbI3 as the light harvester and spiro-OMeTAD as the hole transport material. A power conversion efficiency of 11.2% under simulated AM 1.5 full sun illumination was measured. A 15% improvement in the short-circuit current density was obtained compared with pure TiO2, due to the effect of Y3+ on the dimensions of perovskite nanoparticles formed on the semiconductor surface, showing that the surface modification of the semiconductor is an effective way to improve the light harvesters' morphology and electron transfer properties in the solid-state mesoscopic solar cells.We report the use of Y3+-substituted TiO2 (0.5%Y-TiO2) in solid-state mesoscopic solar cells, consisting of CH3NH3PbI3 as the light harvester and spiro-OMeTAD as the hole transport material. A power conversion efficiency of 11.2% under simulated AM 1.5 full sun illumination was measured. A 15% improvement in the short-circuit current density was obtained compared with pure TiO2, due to the effect of Y3+ on the dimensions of perovskite nanoparticles formed on the semiconductor surface, showing that the surface modification of the semiconductor is an effective way to improve the light harvesters' morphology and electron transfer properties in the solid-state mesoscopic solar cells. Electronic supplementary information (ESI) available: Paste preparation; the HRTEM micrograph of dark coloured individual nanoparticles deposited on TiO2; histogram plots of solar cell performance parameters for 15 cells based on TiO2; the Nyquist plot of the device without Y at 500 mV forward bias. See DOI: 10.1039/c3nr05884k

  6. Zinc-substituted pseudoazurin solved by S/Zn-SAD phasing.

    PubMed

    Gessmann, Renate; Papadovasilaki, Maria; Drougkas, Evangelos; Petratos, Kyriacos

    2015-01-01

    The copper(II) centre of the blue copper protein pseudoazurin from Alcaligenes faecalis has been substituted by zinc(II) via denaturing the protein, chelation and removal of copper and refolding the apoprotein, followed by the addition of an aqueous solution of ZnCl2. Vapour-diffusion experiments produced colourless hexagonal crystals (space group P65), which when cryocooled had unit-cell parameters a=b=49.01, c=98.08 Å. Diffraction data collected at 100 K using a copper sealed tube were phased by the weak anomalous signal of five S atoms and one Zn atom. The structure was fitted manually and refined to 1.6 Å resolution. The zinc-substituted protein exhibits similar overall geometry to the native structure with copper. Zn2+ binds more strongly to its four ligand atoms (His40 Nδ1, Cys78 Sγ, His81 Nδ1 and Met86 Sδ) and retains the tetrahedral arrangement, although the structure is less distorted than the native copper protein.

  7. Yeast and Mammalian Metallothioneins Functionally Substitute for Yeast Copper-Zinc Superoxide Dismutase

    NASA Astrophysics Data System (ADS)

    Tamai, Katherine T.; Gralla, Edith B.; Ellerby, Lisa M.; Valentine, Joan S.; Thiele, Dennis J.

    1993-09-01

    Copper-zinc superoxide dismutase catalyzes the disproportionation of superoxide anion to hydrogen peroxide and dioxygen and is thought to play an important role in protecting cells from oxygen toxicity. Saccharomyces cerevisiae strains lacking copper-zinc superoxide dismutase, which is encoded by the SOD1 gene, are sensitive to oxidative stress and exhibit a variety of growth defects including hypersensitivity to dioxygen and to superoxide-generating drugs such as paraquat. We have found that in addition to these known phenotypes, SOD1-deletion strains fail to grow on agar containing the respiratory carbon source lactate. We demonstrate here that expression of the yeast or monkey metallothionein proteins in the presence of copper suppresses the lactate growth defect and some other phenotypes associated with SOD1-deletion strains, indicating that copper metallothioneins substitute for copper-zinc superoxide dismutase in vivo to protect cells from oxygen toxicity. Consistent with these results, we show that yeast metallothionein mRNA levels are dramatically elevated under conditions of oxidative stress. Furthermore, in vitro assays demonstrate that yeast metallothionein, purified or from whole-cell extracts, exhibits copper-dependent antioxidant activity. Taken together, these data suggest that both yeast and mammalian metallothioneins may play a direct role in the cellular defense against oxidative stress by functioning as antioxidants.

  8. Effects of dietary substitution of zinc-methionine for inorganic zinc sources on growth performance, tissue zinc accumulation and some blood parameters in broiler chicks.

    PubMed

    Jahanian, R; Rasouli, E

    2015-02-01

    This study was designed to evaluate the effects of dietary inclusion of zinc-methionine (ZnMet) as a replacement for conventional inorganic zinc sources on performance, tissue zinc accumulation and some plasma indices in broiler chicks. A total of 450-day-old Ross male broiler chicks were randomly assigned to five pen replicates of nine experimental diets. Dietary treatments consisted of two basal diets supplemented with 40 mg/kg added Zn as feed-grade Zn sulphate or Zn oxide in which, Zn was replaced with that supplied from ZnMet complex by 25, 50, 75 or 100%. At 42 days of age, three randomly selected birds from each pen were bled to measure plasma metabolites; then, the chicks were slaughtered to evaluate carcass characteristics. Results showed that dietary treatments affected (p < 0.05) feed intake during the starter period, and chicks on Zn oxide diets consumed more feed than sulphate counterparts. Furthermore, dietary substitution of inorganic Zn sources by ZnMet caused improvements (p < 0.01) in body weight gain during all experimental periods. Dietary supplementation of ZnMet improved feed conversion efficiency during 1-21 and 1-42, but not in 21-42 days of age. Complete replacement of inorganic Zn by that supplied from ZnMet caused an increase (p < 0.05) in relative liver weight. Similarly, dietary inclusion of ZnMet increased breast meat and carcass yields and reduced abdominal fat percentage (p < 0.05). Incremental levels of ZnMet increased (p < 0.05) zinc concentrations in liver and thymus, and the highest zinc accumulations were seen in 100% ZnMet-supplemented birds. Interestingly, introduction of ZnMet into the diets partially in place of inorganic sources resulted in decreases (p < 0.01) in plasma uric acid and triglycerides concentrations. The present findings indicated that dietary ZnMet inclusion in replacement of inorganic sources in addition to improving growth performance, reduced plasma uric acid and triglycerides concentrations, consequently

  9. Saccharide substituted zinc phthalocyanines: optical properties, interaction with bovine serum albumin and near infrared fluorescence imaging for sentinel lymph nodes.

    PubMed

    Lu, Li; Lv, Feng; Cao, Bo; He, Xujun; Liu, Tianjun

    2014-01-03

    Saccharide-substituted zinc phthalocyanines, [2,9(10),16(17),23(24)-tetrakis((1-(β-D-glucose-2-yl)-1H-1,2,3-triazol-4-yl)methoxy)phthalocyaninato]zinc(II) and [2,9(10), 16(17),23(24)-tetrakis((1-(β-D-lactose-2-yl)-1H-1,2,3-triazol-4-yl)methoxy)phthalocyaninato] zinc(II), were evaluated as novel near infrared fluorescence agents. Their interaction with bovine serum albumin was investigated by fluorescence and circular dichroism spectroscopy and isothermal titration calorimetry. Near infrared imaging for sentinel lymph nodes in vivo was performed using nude mice as models. Results show that saccharide- substituted zinc phthalocyanines have favourable water solubility, good optical stability and high emission ability in the near infrared region. The interaction of lactose-substituted phthalocyanine with bovine serum albumin displays obvious differences to that of glucose- substituted phthalocyanine. Moreover, lactose-substituted phthalocyanine possesses obvious imaging effects for sentinel lymph nodes in vivo.

  10. Micro Raman, Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: Role of Mn

    NASA Astrophysics Data System (ADS)

    Thota, Suneetha; Kashyap, Subhash C.; Sharma, Shiv K.; Reddy, V. R.

    2016-04-01

    A series of Mn-Zn Ferrite nanoparticles (<15 nm) with formula MnxZn1-xFe2O4 (where x=0.00, 0.35, 0.50, 0.65) were successfully prepared by citrate-gel method at low temperature (400 °C). X-ray diffraction analysis confirmed the formation of single cubic spinel phase in these nanoparticles. The FESEM and TEM micrographs revealed the nanoparticles to be nearly spherical in shape and of fairly uniform size. The fractions of Mn2+, Zn2+ and Fe3+ cations occupying tetrahedral sites along with Fe occupying octahedral sites within the unit cell of different ferrite samples are estimated by room temperature micro-Raman spectroscopy. Low temperature Mossbauer measurement on Mn0.5Zn0.5Fe2O4 has reconfirmed the mixed spinel phase of these nanoparticles. Room temperature magnetization studies (PPMS) of Mn substituted samples showed superparamagnetic behavior. Manganese substitution for Zn in the ferrite caused the magnetization to increase from 04 to18 emu/g and Lande's g factor (estimated from ferromagnetic resonance measurement) from 2.02 to 2.12 when x was increased up to 0.50. The FMR has shown that higher Mn cationic substitution leads to increase in dipolar interaction and decrease in super exchange interaction. Thermomagnetic (M-T) and magnetization (M-H) measurements have shown that the increase in Mn concentration (up to x=0.50) enhances the spin ordering temperature up to 150 K (blocking temperature). Magnetocrystalline anisotropy in the nanoparticles was established by Mossbauer, ferromagnetic resonance and thermomagnetic measurements. The optimized substitution of manganese for zinc improves the magnetic properties and makes these nanoparticles a potential candidate for their applications in microwave region and biomedical field.

  11. Magnetic and microwave absorbing properties of Co2+ substituted nickel-zinc ferrites with the emphasis on initial permeability studies

    NASA Astrophysics Data System (ADS)

    Ghodake, J. S.; Kambale, Rahul C.; Shinde, T. J.; Maskar, P. K.; Suryavanshi, S. S.

    2016-03-01

    Nanocrystalline Co2+ substituted Zn0.35Ni0.60-xCoxFe2.05O4 (Where x=0.0, 0.1, 0.2, 0.3 and 0.4) system have been synthesized by citrate-nitrate combustion route. X-ray diffraction study shows the formation of single phase cubic spinel structure without any impurity phases. Morphological observation shows agglomerated grains with different shapes and sizes which is the typical characteristics of magnetic nanoparticles prepared by combustion route. The saturation magnetization of cobalt substituted Ni-Zn ferrites is found to be higher than that of pure Ni-Zn ferrite. The coercivity and retentivity of cobalt substituted Ni-Zn ferrite increases with the increasing cobalt content. Initial permeability and loss factor have been studied as the function of composition and frequency. The real (μ‧) and imaginary (μ‧‧) part of initial permeability of cobalt substituted Ni-Zn ferrites decreases while its loss factor increases with the increasing cobalt content. In the lower frequency region the imaginary part of initial permeability (μ‧‧) of all samples is found to be decreasing rapidly with increasing frequency. The microwave absorption properties of cobalt substituted Ni-Zn ferrites were also investigated; all samples exhibit the absorption in the frequency range 2.3-2.5 GHz. Thus, the prepared materials can be used as a rubber composite microwave absorber and may be useful in RADAR application.

  12. The impact of the RGD peptide on osteoblast adhesion and spreading on zinc-substituted hydroxyapatite surface.

    PubMed

    Mavropoulos, Elena; Hausen, Moema; Costa, Andrea M; Alves, Gutemberg; Mello, Alexandre; Ospina, C A; Mir, M; Granjeiro, José M; Rossi, Alexandre M

    2013-05-01

    The incorporation of zinc into the hydroxyapatite structure (ZnHA) has been proposed to stimulate osteoblast proliferation and differentiation. Another approach to improve cell adhesion and hydroxyapatite (HA) performance is coating HA with adhesive proteins or peptides such as RGD (arginine-glycine-aspartic acid). The present study investigated the adhesion of murine osteoblastic cells to non-sintered zinc-substituted HA disks before and after the adsorption of RGD. The incorporation of zinc into the HA structure simultaneously changed the topography of disk's surface on the nanoscale and the disk's surface chemistry. Fluorescence microscopy analyses using RGD conjugated to a fluorescein derivative demonstrated that ZnHA adsorbed higher amounts of RGD than non-substituted HA. Zinc incorporation into HA promoted cell adhesion and spreading, but no differences in the cell density, adhesion and spreading were detected when RGD was adsorbed onto ZnHA. The pre-treatment of disks with fetal bovine serum (FBS) greatly increased the cell density and cell surface area for all RGD-free groups, overcoming the positive contribution of zinc to cell adhesion. The presence of RGD on the ZnHA surface impaired the effects of FBS pre-treatment possibly due to competition between FBS proteins and RGD for surface binding sites.

  13. Zinc

    MedlinePlus

    ... ulcers and promoting weight gain in people with eating disorders such as anorexia nervosa. Some people use zinc ... is abnormal): 25-100 mg zinc. For the eating disorder anorexia nervosa: 100 mg of zinc gluconate daily. ...

  14. Effects of zinc-substituted nano-hydroxyapatite coatings on bone integration with implant surfaces*

    PubMed Central

    Zhao, Shi-fang; Dong, Wen-jing; Jiang, Qiao-hong; He, Fu-ming; Wang, Xiao-xiang; Yang, Guo-li

    2013-01-01

    Objective: The purpose of this study was to investigate the effects of a zinc-substituted nano-hydroxyapatite (Zn-HA) coating, applied by an electrochemical process, on implant osseointegraton in a rabbit model. Methods: A Zn-HA coating or an HA coating was deposited using an electrochemical process. Surface morphology was examined using field-emission scanning electron microscopy. The crystal structure and chemical composition of the coatings were examined using an X-ray diffractometer (XRD) and Fourier transform infrared spectroscopy (FTIR). A total of 78 implants were inserted into femurs and tibias of rabbits. After two, four, and eight weeks, femurs and tibias were retrieved and prepared for histomorphometric evaluation and removal torque (RTQ) tests. Results: Rod-like HA crystals appeared on both implant surfaces. The dimensions of the Zn-HA crystals seemed to be smaller than those of HA. XRD patterns showed that the peaks of both coatings matched well with standard HA patterns. FTIR spectra showed that both coatings consisted of HA crystals. The Zn-HA coating significantly improved the bone area within all threads after four and eight weeks (P<0.05), the bone to implant contact (BIC) at four weeks (P<0.05), and RTQ values after four and eight weeks (P<0.05). Conclusions: The study showed that an electrochemically deposited Zn-HA coating has potential for improving bone integration with an implant surface. PMID:23733429

  15. Temperature-dependent dielectric properties and line profile analysis of zinc-substituted copper ferrites

    NASA Astrophysics Data System (ADS)

    Lamani, A. R.; Jayanna, H. S.; Naveen, C. S.; Rajeeva, M. P.; Prasanna, G. D.; Chaturmukha, V. S.; Harish, B. M.; Suresh, S.; Avinash, B. S.

    2016-05-01

    Temperature dependence of dielectric constant and loss has been investigated for different compositions of Zinc substituted copper ferrites with general formula Cu1-xZnxFe2O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) prepared by ceramic method. XRD analysis confirms all the samples exhibit single phase cubic spinel structure. The dielectric constant and loss of the sample were studied in the temperature ranges from RT to 1000K at different constant frequency. Samples of the composition with x = 0.8 show low dielectric loss up to a measured temperature around 770 °C at higher frequencies as compared to samples of other compositions. A plot of dielectric constant versus temperature shows a transition near the Curie temperature, an attempt is made to explain the possible mechanism for this observation. The dielectric constant increases slowly from 309°C to 770°C with temperature in the beginning and sharply decreases with increase in frequency for all the samples. The variation of tanδ with frequency shows cusps for all the samples except for x = 0.6. These variations have been explained on the basis of Koop's phenomenological theory. The variation of dielectric loss tangent with frequency showed maxima for the 1 KHz. These maxima are also found to shift towards low-frequency region as the content of Zn increases.

  16. Effects of Zinc and Strontium Substitution in Tricalcium Phosphate on Osteoclast Differentiation and Resorption

    PubMed Central

    Roy, Mangal; Fielding, Gary; Bandyopadhyay, Amit; Bose, Susmita

    2013-01-01

    Bone replacement materials must be able to regulate both osteoblastic synthesis of new bone and osteoclastic resorption process in order to maintain the balance of bone remodeling. Osteoclasts generate from differentiation of mononuclear cells. In the present study, we have studied the osteoclast-like-cells responses (differentiation from mononuclear cells and resorption) to beta tricalcium phosphate (β-TCP) doped with zinc (Zn) and strontium (Sr). Osteoclast-like-cells differentiation and resorption was studied in vitro using osteoclast-like-cells precursor RAW 264.7 cell, supplemented with receptor activator of nuclear factor κβ ligand (RANKL). Morphological and immunohistochemical analysis confirmed successful differentiation of osteoclast-like-cells on the doped and undoped β-TCP substrates after 8 days of culture. Cells on the substrate surface expressed specific osteoclast markers such as; actin ring, multiple nucleus, tartrate-resistant acid phosphatase (TRAP) synthesis, and vitronectin receptor. However, quantitative TRAP assay indicated the inhibiting effect of Zn on osteoclast differentiation. Although, Zn doped β-TCP restricted osteoclast-like-cells differentiation, the samples were resorbed much faster. An increased resorption pit volume was noticed on Zn doped β-TCP samples after 28 days of culture compared to pure and Sr doped β-TCP. In this work, we demonstrated that β-TCP bone substitute materials can be successfully resorbed by osteoclast-like-cells, where both osteoclast-like-cells differentiation and resorption were modulated by Zn and/or Sr doping- a much needed property for successful bone remodeling. PMID:24244866

  17. Zinc.

    PubMed

    Barceloux, D G

    1999-01-01

    The use of zinc in metal alloys and medicinal lotions dates back before the time of Christ. Currently, most of the commercial production of zinc involves the galvanizing of iron and the manufacture of brass. Some studies support the use of zinc gluconate lozenges to treat the common cold, but there are insufficient data at this time to recommend the routine use of these lozenges. Zinc is an essential co-factor in a variety of cellular processes including DNA synthesis, behavioral responses, reproduction, bone formation, growth, and wound healing. Zinc is a relatively common metal with an average concentration of 50 mg/kg soil and a range of 10-300 mg/kg soil. Meat, seafood, dairy products, nuts, legumes, and whole grains contain relatively high concentrations of zinc. The mobility of zinc in anaerobic environments is poor and therefore severe zinc contamination occurs primarily near points sources of zinc release. The recommended daily allowance for adults is 15 mg zinc. The ingestion of 1-2 g zinc sulfate produces emesis. Zinc compounds can produce irritation and corrosion of the gastrointestinal tract, along with acute renal tubular necrosis and interstitial nephritis. Inhalation of high concentrations of zinc chloride from smoke bombs detonated in closed spaces may cause chemical pneumonitis and adult respiratory distress syndrome. In the occupational setting inhalation of fumes from zinc oxide is the most common cause of metal fume fever (fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste, salivation). Zinc compounds are not suspected carcinogens. Treatment of zinc toxicity is supportive. Calcium disodium ethylenediaminetetraacetate (CaNa2EDTA) is the chelator of choice based on case reports that demonstrate normalization of zinc concentrations, but there are few clinical data to confirm the efficacy of this agent. PMID:10382562

  18. Influence of Mn substitution on crystal structure and magnetocrystalline anisotropy of nanocrystalline Co1- x Mn x Fe2-2 x Mn2 x O4

    NASA Astrophysics Data System (ADS)

    Kumar, Lawrence; Kumar, Pawan; Kar, Manoranjan

    2013-02-01

    Nanocrystalline Mn substituted cobalt ferrite Co1- x Mn x Fe2-2 x Mn2 x O4 ( x = 0.0-0.4) has been synthesized by the standard citrate-gel method. The structural and magnetic characteristics of all samples have been studied using powder X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FE-SEM) and VSM techniques. Distributions of cations between the two interstitial sites (tetrahedral and octahedral site) have been estimated qualitatively by analyzing the powder X-ray diffraction patterns by employing the Rietveld refinement technique. All samples are found to be mixed spinel with cubic structure ( Fdmathop 3limits^{ - } m space group). The FT-IR study shows the presence of absorption bands in the range of 390-750 cm-1, which confirm the spinel structure of the sample. The stoichiometry of Co, Fe, Mn and O ions in the sample has been obtained by using energy-dispersive spectrum with help of an FE-SEM. The magnetizations in saturation have been analyzed by employing the "law of approach" technique. The saturation magnetization, coercivity and magnetocrystalline anisotropy constant depend upon Mn ion concentration and crystallite size.

  19. Development and molecular characterization of wheat--Aegilops kotschyi addition and substitution lines with high grain protein, iron, and zinc.

    PubMed

    Rawat, Nidhi; Neelam, Kumari; Tiwari, Vijay K; Randhawa, Gursharn S; Friebe, Bernd; Gill, Bikram S; Dhaliwal, Harcharan S

    2011-11-01

    Over two billion people, depending largely on staple foods, suffer from deficiencies in protein and some micronutrients such as iron and zinc. Among various approaches to overcome protein and micronutrient deficiencies, biofortification through a combination of conventional and molecular breeding methods is the most feasible, cheapest, and sustainable approach. An interspecific cross was made between the wheat cultivar 'Chinese Spring' and Aegilops kotschyi Boiss. accession 396, which has a threefold higher grain iron and zinc concentrations and about 33% higher protein concentration than wheat cultivars. Recurrent backcrossing and selection for the micronutrient content was performed at each generation. Thirteen derivatives with high grain iron and zinc concentrations and contents, ash and ash micronutrients, and protein were analyzed for alien introgression. Morphological markers, high molecular weight glutenin subunit profiles, anchored wheat microsatellite markers, and GISH showed that addition and substitution of homoeologous groups 1, 2, and 7 chromosomes of Ae. kotschyi possess gene(s) for high grain micronutrients. The addition of 1U/1S had high molecular weight glutenin subunits with higher molecular weight than those of wheat, and the addition of 2S in most of the derivatives also enhanced grain protein content by over 20%. Low grain protein content in a derivative with a 2S-wheat translocation, waxy leaves, and absence of the gdm148 marker strongly suggests that the gene for higher grain protein content on chromosome 2S is orthologous to the grain protein QTL on the short arm of group 2 chromosomes.

  20. Zinc

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zinc was recognized as an essential trace metal for humans during the studies of Iranian adolescent dwarfs in the early 1960s. Zinc metal existing as Zn2+ is a strong electron acceptor in biological systems without risks of oxidant damage to cells. Zn2+ functions in the structure of proteins and is ...

  1. A simple and fast preparation of neodymium-substituted nanocrystalline Mn{sub 2}O{sub 3}

    SciTech Connect

    Cheney, Marcos A.; Hanifehpour, Younes; Joo, Sang Woo; Min, Bong-Ki

    2013-02-15

    Graphical abstract: Synthesis of Mn{sub 2−x}Nd{sub x}O{sub 3} with mixed morphology -- Abstract: Neodymium (Nd) ions were substituted for manganese in the crystal lattice of synthetic Mn{sub 2}O{sub 3}, via oxidation of Mn(NO{sub 3}){sub 2} in basic solution at room temperature. Doping of Nd into the lattice structure of Mn{sub 2}O{sub 3} has been reported for the first time, which resulted in materials with new composition, morphology and optical properties. The synthesized materials were characterized by XRD, SEM, TEM, HRTEM, XPS and TOF-SIMS. Light (2.6%) Nd doping resulted in a mixture of rods, plates and small sheets, while heavy (8.9%) Nd doping resulted in rods, large sheets and large single crystals. The effect of structural doping of Nd ions into Mn{sub 2}O{sub 3} resulted in a red shift in the absorbance.

  2. Zinc

    MedlinePlus

    ... deficiency also causes hair loss, diarrhea, eye and skin sores and loss of appetite. Weight loss, problems ... pneumonia and other infections. Zinc also helps the skin stay healthy. Some people who have skin ulcers ...

  3. The Oxygen Isotope Effect in Praseodymium, Calcium, and Zinc Substituted Yttrium Barium Copper Oxide.

    NASA Astrophysics Data System (ADS)

    Soerensen, Georg Johannes

    The oxygen isotope effect in Pr, Ca, and Zn doped superconducting YBa_2Cu_3O_ {7-delta} was investigated. Pr and Ca substitute predominantly at the Y site while Zn goes into the Cu plane site. The shift in critical temperature (Delta T_{c}) between samples oxygenated in ^{18}O and ^{16}O was obtained via dc resistance measurements, and low field dc magnetization and ac susceptibility measurements in a SQUID magnetometer. Confirmation of the substitution of the oxygen was achieved with Raman and SIMS measurements. The Pr, Ca, and Zn substitutions change T _{c} of the superconductor in different ways. Increasing Pr concentration lowers T_ {c} and increases Delta T_{c} with the isotope coefficient, alpha , approaching 1/2. The addition of Ca reduces the size of both Delta T_ {c} and alpha . Both exhibit a small parabolic effect with increasing Ca substitution. An increase in Zn substitution lowers T _{c} but Delta T _{c} remains nearly constant, or perhaps gets slightly smaller, with alpha increasing to approximately 1/3. We find that there is a linear relationship between the width of the normal to superconducting transition and the size of Delta T_{c}. We believe that this dependency may be related to the sample quality. There does not appear to be a universal correlation between T_{c} and alpha , however, both are dependent on the number of mobile holes and our values do follow closely a universal relationship that has been proposed between these two quantities. We find that a modification to the BCS theory, involving a logarithmic Van Hove singularity in the density of states, does qualitatively fit the general trend of our data. More success is achieved with the use of Eliashberg type calculations in which the change in alpha and T_{c} can be made to resemble our data provided we use a pair-breaking mechanism as well as a modification of the Coulomb pseudopotential which includes an attractive electronic pairing interaction. Both models predict alpha to be a

  4. Iron Deficiency, Zinc, Magnesium, Vitamin Deficiencies in Crohn's Disease: Substitute or Not?

    PubMed

    Kruis, Wolfgang; Phuong Nguyen, G

    2016-01-01

    Inflammatory bowel disease (IBD) is characterized by inflammatory reactions, complications, extraintestinal manifestations and a loss of intestinal functions, for example, failures of absorption and secretion. According to intestinal dysfunction, a wide array of pathogenetic pathways is existing leading to iron deficiency and numerous vitamins as well as trace element deficiencies. Complications, symptoms and signs of those deficiencies are common in IBD with varying degrees of clinical significance. This review focuses on selected micronutrients including iron, zinc, magnesium and some vitamins. Epidemiology with respect to IBD, pathophysiology, diagnosis and clinical aspects are addressed. Finally, some suggestions for treatment of deficient situations are discussed. In conclusion, some micronutrients have significant impact on complications and quality of life in IBD. Deficiencies may even influence the course of the disease. Those deficiencies should be thoroughly supplemented.

  5. Mono- and tetra-substituted zinc(II) phthalocyanines containing morpholinyl moieties: Synthesis, antifungal photodynamic activities, and structure-activity relationships.

    PubMed

    Zheng, Bi-Yuan; Ke, Mei-Rong; Lan, Wen-Liang; Hou, Lu; Guo, Jun; Wan, Dong-Hua; Cheong, Ling-Zhi; Huang, Jian-Dong

    2016-05-23

    A series of zinc(II) phthalocyanines (ZnPcs) mono-substituted and tetra-substituted with morpholinyl moieties and their quaternized derivatives have been synthesized and evaluated for their antifungal photodynamic activities toward Candida albicans. The α-substituted, quaternized, and mono-substituted ZnPcs are found to have higher antifungal photoactivity than β-substituted, neutral, and tetra-substituted counterparts. The cationic α-mono-substituted ZnPc (6a) exhibits the highest photocytotoxicity. Moreover, it is more potent than axially di-substituted analogue. The different photocytotoxicities of these compounds have also been rationalized by investigating their spectroscopic and photochemical properties, aggregation trend, partition coefficients, and cellular uptake. The IC90 value of 6a against C. albicans cells is as low as 3.3 μM with a light dose of 27 J cm(-2), meaning that 6a is a promising candidate as the antifungal photosensitizer for future investigations.

  6. Chemisorption of hydrogen sulphide on zinc oxide modified aluminum-substituted SBA-15

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohui; Jia, Jinping; Zhao, Ling; Sun, Tonghua

    2008-06-01

    Aluminum silicate mesoporous material, ZnO/Al-SBA-15, was synthesized by post-synthesis and immobilization method via microwave-assisted route. Desulphurization tests from a gas mixture with low content H 2S were carried out as the probing reaction on these materials. Chemical effects and the nature of the ZnO additive and textural properties on desulphurization capacity were studied over this material. Material was characterized using N 2 adsorption, XRD, TEM, FTIR, XPS, ICP and other techniques. The analysis suggests that the as-synthesized material had well-ordered hexagonal mesopores and was abundant in micropores. ZnO nanoparticles dispersed well and anchored both in the channel and the wall of mesoporous silica. The material with 2.1 wt.% zinc loading presented the highest H 2S uptake capacity. Both micropores and mesopores are active sites for H 2S capture, especially micropores. The enhancement of H 2S removal capacity was attributed to the integration of the pore structure of mesoporous material and the promising desulphurization properties of ZnO nanoparticles. ZnO/Al-SBA-15 could be an effective alternative to remove H 2S from gaseous streams and it also extends the research of mesoporous material.

  7. Effect of sintering temperature on the magnetic properties of zinc substituted lithium ferrites synthesized using sol-gel method

    NASA Astrophysics Data System (ADS)

    Reddy, P. Vijaya Bhasker; Reddy, S. Narender; Reddy, Ch. Gopal

    2013-06-01

    Polycrystalline zinc substituted lithium (Li-Zn) ferrite samples with chemical formula, Li0.5-x/2ZnxFe2.5-x/2O4(x = 0.6), were synthesized using sol-gel method. The synthesized powders were palletized and sintered at different temperatures starting from 500°C to 1000°C. XRD patterns of these samples confirm their single phase cubic spinel structure. The particle sizes obtained from XRD patterns using Debye-Scherrer formula were found to be in the range of 42 to 57 nm with almost a linear relationship between sintering temperature and particle size. Magnetization in these samples as a function of applied magnetic field was measured using vibrating sample magnetometer (VSM) and properties such as saturation magnetization (Ms) and coercivity (Hc) were found from M-H loops. It is found that Ms increases with increasing sintering temperature whereas Hc decreases. These variations in saturation magnetization and coercivity with sintering temperature are attributed to the corresponding variation in particle sizes.

  8. Investigation of the photophysical and photochemical properties of peripherally tetra-substituted water-soluble zwitterionic and cationic zinc(ii) phthalocyanines.

    PubMed

    Çolak, Senem; Durmuş, Mahmut; Yıldız, Salih Zeki

    2016-06-21

    In this study, 4-{4-[N-((3-dimethylamino)propyl)amide]phenoxy}phthalonitrile () and its zinc(ii) phthalocyanine derivative () were synthesized for the first time. 4-(N-((3-Dimethylamino)propyl)amide)phenoxy substituted zinc(ii) phthalocyanine () was converted to its water-soluble sulfobetaine (), betaine () and N-oxide () containing zwitterionic and quaternized cationic () derivatives. All newly synthesized compounds () were characterized by the combination of UV-vis, FT-IR, (1)H NMR, mass spectroscopy techniques and elemental analysis. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen quantum yields) properties were investigated in DMSO for all the synthesized zinc(ii) phthalocyanines () and in both DMSO and aqueous solutions for zwitterionic and cationic phthalocyanines () for the specification of their capability as photosensitizers in photodynamic therapy (PDT). The binding behavior of water soluble phthalocyanines () to the bovine serum albumin protein was also examined for the determination of their transportation ability in the blood stream. PMID:27253970

  9. Investigation of the photophysical and photochemical properties of peripherally tetra-substituted water-soluble zwitterionic and cationic zinc(ii) phthalocyanines.

    PubMed

    Çolak, Senem; Durmuş, Mahmut; Yıldız, Salih Zeki

    2016-06-21

    In this study, 4-{4-[N-((3-dimethylamino)propyl)amide]phenoxy}phthalonitrile () and its zinc(ii) phthalocyanine derivative () were synthesized for the first time. 4-(N-((3-Dimethylamino)propyl)amide)phenoxy substituted zinc(ii) phthalocyanine () was converted to its water-soluble sulfobetaine (), betaine () and N-oxide () containing zwitterionic and quaternized cationic () derivatives. All newly synthesized compounds () were characterized by the combination of UV-vis, FT-IR, (1)H NMR, mass spectroscopy techniques and elemental analysis. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen quantum yields) properties were investigated in DMSO for all the synthesized zinc(ii) phthalocyanines () and in both DMSO and aqueous solutions for zwitterionic and cationic phthalocyanines () for the specification of their capability as photosensitizers in photodynamic therapy (PDT). The binding behavior of water soluble phthalocyanines () to the bovine serum albumin protein was also examined for the determination of their transportation ability in the blood stream.

  10. Effect of F ions on physical and optical properties of fluorine substituted zinc arsenic tellurite glasses

    NASA Astrophysics Data System (ADS)

    Kareem Ahmmad, Shaik; kondaul, Edu; Rahman, Syed

    2015-02-01

    The effect of substitution of fluoride ions for oxide ions on the physical and optical properties of glass system (20-x) ZnO-xZnF2-40As2O3-40TeO2 where x = 0, 4, 8,12,16,20 mole % were investigated. The samples prepared by melt quenching method under controlled condition. The amorphous nature of these glasses was checked by X-ray diffraction technique. The density was measured according to Archimedes principle. The room temperature absorption spectra of all glass samples were determined using UV-Vis-NIR spectrometer. The thermal behaviour, glass transition temperature and stability of glass samples were studied by a differential scanning calorimetric (DSC). The density reduction of present glasses with ZnF2 concentrations may be due to the low density of ZnF2 compared with that of ZnO. Breaking the oxide network, the cross linking degree of the glass former could be reduced which results in decrease of both Tg and Tx. In the present glass system when F ions replaced by oxygen ions UV-Vis absorption cut-off wavelength decreases. This resulted form the conversion of structural unit in the glass from TeO4 to Te(O,F)4 and then to Te(O, F)3.

  11. Synthesis, characterization and electrical properties of peripherally tetra-aldazine substituted novel metal free phthalocyanine and its zinc(II) and nickel(II) complexes.

    PubMed

    Bayrak, Rıza; Dumludağ, Fatih; Akçay, Hakkı Türker; Değirmencioğlu, İsmail

    2013-03-15

    The novel phthalonitrile containing azine segment and its corresponding tetra aldazine substituted metal free- and metallo-phthalocyanines (Zn(II) and Ni(II)) were synthesized and characterized by IR, (1)H NMR, Mass, UV-Vis spectroscopy and elemental analysis and addition to these techniques for substituted phthalonitrile (13)C NMR have been used. In addition, dc and ac electrical properties of the films of these novel phthalocyanines were investigated as a function of temperature (295-523 K) and frequency (40-10(5)Hz). Activation energy values of the films of the phthalocyanines were calculated from straight portions of the Arrhenius plot (lnσ(dc)-1/T curves) as 0.70 eV, 0.93 eV and 0.91 eV for the films of metal free, nickel- and zinc-phthalocyanines, respectively. From impedance spectroscopy measurements, it is observed that bulk resistance decreases with increasing temperature indicating semiconductor property.

  12. Mononuclear zinc(II) complexes of 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols: Synthesis, structural characterization, DNA binding and cheminuclease activities

    NASA Astrophysics Data System (ADS)

    Ravichandran, J.; Gurumoorthy, P.; Karthick, C.; Kalilur Rahiman, A.

    2014-03-01

    Four new zinc(II) complexes [Zn(HL1-4)Cl2] (1-4), where HL1-4 = 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols, have been isolated and fully characterized using various spectro-analytical techniques. The X-ray crystal structure of complex 4 shows the distorted trigonal-bipyramidal coordination geometry around zinc(II) ion. The crystal packing is stabilized by intermolecular NH⋯O hydrogen bonding interaction. The complexes display no d-d electronic band in the visible region due to d10 electronic configuration of zinc(II) ion. The electrochemical properties of the synthesized ligands and their complexes exhibit similar voltammogram at reduction potential due to electrochemically innocent Zn(II) ion, which evidenced that the electron transfer is due to the nature of the ligand. Binding interaction of complexes with calf thymus DNA was studied by UV-Vis absorption titration, viscometric titration and cyclic voltammetry. All complexes bind with CT DNA by intercalation, giving the binding affinity in the order of 2 > 1 ≫ 3 > 4. The prominent cheminuclease activity of complexes on plasmid DNA (pBR322 DNA) was observed in the absence and presence of H2O2. Oxidative pathway reveals that the underlying mechanism involves hydroxyl radical.

  13. Substitution of DNA-Contacting Amino Acids with Functional Variants in the Gata-1 Zinc Finger: A Structurally and Phylogenetically Guided Mutagenesis

    PubMed Central

    Vonderfecht, Tyson R.; Schroyer, Daniel L.; Schenck, Brandy L.; McDonough, Virginia M.; Pikaart, Michael J.

    2008-01-01

    DNA binding functionality among transcription factor proteins is afforded by a number of structural motifs, such as the helix-turn-helix, helix-loop-helix, and zinc finger domains. The common thread among these diverse structures is their sequence-specific binding to essential promoter or other genetic regulatory sequences with high selectivity and affinity. One such motif, present in a wide range of organisms from bacteria to vertebrates, is the Gata-type zinc finger. This family of DNA-binding proteins is characterized by the presence of one or two (Cys)4 metal binding sites which recognize the protein’s eponymous binding site, GATA. Unlike other conserved DNA binding domains, Gata proteins appear to be restricted to binding consensus GATA sequences, or near variations, in DNA. Since the architecture of the Gata finger seems built around recognizing this particular sequence, we set out to define the allowable range of amino acid substitutions along the DNA-binding surface of a Gata finger that could continue to support sequence specific DNA binding activity. Accordingly, we set up a one-hybrid screen in yeast based on the chicken Gata-1 C-terminal zinc finger. Mutant libraries were generated at five amino acids identified in the Gata-DNA structure as likely to mediate sequence-specific contacts between the Gata finger and DNA. These libraries were designed to give as exhaustive amino acid coverage as possible such that almost all alternative amino acids were screened at each of the five probed positions. Screening and characterization of these libraries revealed several functional amino acid substitutions at two leucines which contact the DNA at the 3’ and 5’ flanks of the GATA binding site, but no functional substituents for amino acids near the core of the binding site. This pattern is consistent with amino acid sequences of known DNA-binding Gata fingers. PMID:18328814

  14. Electrical resistivity of nanocrystalline Al-doped zinc oxide films as a function of Al content and the degree of its segregation at the grain boundaries

    NASA Astrophysics Data System (ADS)

    Nasr, B.; Dasgupta, S.; Wang, D.; Mechau, N.; Kruk, R.; Hahn, H.

    2010-11-01

    Highly transparent and conducting Al-doped ZnO (AZO) films are prepared via sol-gel method with a broad range of nominal Al-doping. The film porosity and morphology is determined by the rate of temperature ramping during the drying of the gel phase. The minimum resistivity is observed to occur around 1.5-2 at. % Al-doped films, irrespective of the morphology and microstructure. It is found by local chemical analysis that Al tends to segregate at the grain boundaries and above a critical concentration, the segregated Al starts to dominate the electronic transport in nanocrystalline AZO. The optical measurements corroborate these findings showing a systematic increase in carrier density only up to 1.5-2 at. % Al-doping. It is concluded that the presence of the resistivity minimum is not merely determined by a solubility limit but is a result of the interplay between the changing carrier concentration and carrier scattering at the segregated Al.

  15. Synthesis, spectral characterization and biological activity of zinc(II) complexes with 3-substituted phenyl-4-amino-5-hydrazino-1, 2, 4-triazole Schiff bases

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Pandey, O. P.; Sengupta, S. K.

    New Zn(II) complexes have been synthesized by the reactions of zinc(II) acetate with Schiff bases derived from 3-substituted phenyl-4-amino-5-hydrazino-1, 2, 4-triazole and benzaldehyde, 2-hydroxyacetophenone or indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non-electrolytes. Elemental analyses suggest that the complexes have 1:1 stoichiometry of the type [ZnL(H 2O) 2], [ZnL'(OAc) 2(H 2O) 2] (L = dianionic Schiff bases derived from 3-(substituted phenyl)-4-amino-5-hydrazino-1, 2, 4-triazole and 2-hydroxyacetophenone or indoline-2,3-dione; L' = neutral Schiff bases derived from 3-(substituted phenyl)-4-amino-5-hydrazino-1, 2, 4-triazole and benzaldehyde) and they were characterized by FT-IR, 1H NMR, 13C NMR and FAB mass. All these Schiff bases and their complexes have also been screened for their antibacterial activities against Bacillus subtilis, Escherichia coli and antifungal activities against Colletotrichum falcatum, Aspergillus niger, Fusarium oxysporium and Carvularia pallescence by petriplates methods.

  16. Nanocrystalline ceramic materials

    DOEpatents

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  17. Effect of solvent volume on the physical properties of aluminium doped nanocrystalline zinc oxide thin films deposited using a simplified spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Jabena Begum, N.; Mohan, R.; Ravichandran, K.

    2013-01-01

    Aluminium doped zinc oxide (AZO) thin films were deposited by employing a low cost and simplified spray technique using a perfume atomizer from starting solutions having different volumes (10, 20, … , 50 mL) of solvent. The effect of solvent volume on the structural, electrical, optical, photoluminescence (PL) and surface morphological properties was studied. The electrical resistivity of the AZO films is remarkably influenced by the variation in the solvent volume. The X-ray diffraction profiles clearly showed that all the films have preferential orientation along the (0 0 2) plane irrespective of the solvent volume. The crystallite size was found to be in the nano range of 35-46 nm. The optical transmittance in the visible region is desirably high (>85%). The AFM images show columnar morphology with varying grain size. The PL studies revealed that the AZO film deposited from 50 mL of solvent volume has good quality with lesser defect density.

  18. Synthesis, characterization and investigation of the photophysical and photochemical properties of highly soluble novel metal-free, zinc(II), and indium(III) phthalocyanines substituted with 2,3,6-trimethylphenoxy moieties.

    PubMed

    Gürel, Ekrem; Pişkin, Mehmet; Altun, Selçuk; Odabaş, Zafer; Durmuş, Mahmut

    2015-04-01

    This work presents the synthesis and characterization of metal-free, zinc(II), and indium(III)acetate phthalocyanines substituted with 2,3,6-trimethylphenoxy groups at the peripheral and non-peripheral positions. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen generation and photodegradation under light irradiation) properties of these novel phthalocyanines and unsubstituted zinc(II) and indium(III)acetate phthalocyanines were investigated in dimethylformamide solution. The effects of the types of substituents and their positions and the variety of central metal ions on the phthalocyanine core on their spectroscopic, photophysical and photochemical properties were also determined. The studied 2,3,6-trimethylphenoxy substituted metal-free, zinc(II) and indium(III)acetate phthalocyanines especially indium(III)acetate derivatives exhibited appropriate photophysical and photochemical properties such as high singlet oxygen generation and these phthalocyanines can be potential Type II photosensitizers for photodynamic therapy in cancer applications.

  19. Spectral and Electroluminescent Properties of Binuclear Zinc Complexes with Halogen-Substituted Derivatives of 1,2,4-Triazole

    NASA Astrophysics Data System (ADS)

    Kopylova, T. N.; Degtyarenko, K. M.; Samsonova, L. G.; Gadirov, R. M.; Gusev, A. N.; Shul'gin, V. F.; Meshkova, S. B.

    2015-03-01

    Spectral properties of binuclear zinc complexes in chloroform solutions and polyvinylcarbazole (PVC) films are investigated. It is demonstrated that incorporation of a halogen atom (chlorine or bromine) in a ligand benzene ring leads to a small shift of the spectrum toward the red region and a reduction of the fluorescence quantum yield. The fluorescence and phosphorescence spectra at T = 77K are investigated. The fluorescence undergoes a blue shift of about 30 nm and multiply increases in the intensity, and the phosphorescence is observed at 540-580 nm. The phosphorescence lifetime is estimated. The electroluminescent properties of metal complexes in structures with thermal vacuum spin coating of complexes and in PVC films are investigated.

  20. Nanocrystalline ceramic materials

    DOEpatents

    Siegel, R.W.; Nieman, G.W.; Weertman, J.R.

    1994-06-14

    A method is disclosed for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material. 19 figs.

  1. Novel Catalytically-Inactive PII Metalloproteinases from a Viperid Snake Venom with Substitutions in the Canonical Zinc-Binding Motif

    PubMed Central

    Camacho, Erika; Sanz, Libia; Escalante, Teresa; Pérez, Alicia; Villalta, Fabián; Lomonte, Bruno; Neves-Ferreira, Ana Gisele C.; Feoli, Andrés; Calvete, Juan J.; Gutiérrez, José María; Rucavado, Alexandra

    2016-01-01

    Snake venom metalloproteinases (SVMPs) play key biological roles in prey immobilization and digestion. The majority of these activities depend on the hydrolysis of relevant protein substrates in the tissues. Hereby, we describe several isoforms and a cDNA clone sequence, corresponding to PII SVMP homologues from the venom of the Central American pit viper Bothriechis lateralis, which have modifications in the residues of the canonical sequence of the zinc-binding motif HEXXHXXGXXH. As a consequence, the proteolytic activity of the isolated proteins was undetectable when tested on azocasein and gelatin. These PII isoforms comprise metalloproteinase and disintegrin domains in the mature protein, thus belonging to the subclass PIIb of SVMPs. PII SVMP homologues were devoid of hemorrhagic and in vitro coagulant activities, effects attributed to the enzymatic activity of SVMPs, but induced a mild edema. One of the isoforms presents the characteristic RGD sequence in the disintegrin domain and inhibits ADP- and collagen-induced platelet aggregation. Catalytically-inactive SVMP homologues may have been hitherto missed in the characterization of snake venoms. The presence of such enzymatically-inactive homologues in snake venoms and their possible toxic and adaptive roles deserve further investigation. PMID:27754342

  2. Dextrin-coated zinc substituted cobalt-ferrite nanoparticles as an MRI contrast agent: In vitro and in vivo imaging studies.

    PubMed

    Sattarahmady, N; Zare, T; Mehdizadeh, A R; Azarpira, N; Heidari, M; Lotfi, M; Heli, H

    2015-05-01

    Application of superparamagnetic iron oxide nanoparticles (NPs) as a negative contrast agent in magnetic resonance imaging (MRI) has been of widespread interest. These particles can enhance contrast of images by altering the relaxation times of the water protons. In this study, dextrin-coated zinc substituted cobalt-ferrite (Zn0.5Co0.5Fe2O4) NPs were synthesized by a co-precipitation method, and the morphology, size, structure and magnetic properties of the NPs were investigated. These NPs had superparamagnetic behavior with an average size of 3.9 (±0.9, n=200)nm measured by transmission electron microscopy. Measurements on the relaxivities (r2 and r2(*)) of the NPs were performed in vitro by agarose phantom. In addition, after subcutaneous injection of the NPs into C540 cell line in C-57 inbred mice, the relaxivities were measured in vivo by a 1.5T MRI system. These NPs could effectively increase the image contrast in both T2-and T2(*)-weighted samples.

  3. The water soluble peripherally tetra-substituted zinc(ii), manganese(iii) and copper(ii) phthalocyanines as new potential anticancer agents.

    PubMed

    Barut, Burak; Sofuoğlu, Ayşenur; Biyiklioglu, Zekeriya; Özel, Arzu

    2016-09-28

    In this study, [2-(2-morpholin-4-ylethoxy)ethoxy] group substituted zinc(ii), manganese(iii) and copper(ii) phthalocyanines 2-4 and their water soluble derivatives 2a, 3a and 4a were synthesized and the interactions of compounds 2a, 3a and 4a with CT-DNA and supercoiled pBR322 plasmid DNA were investigated. The results of binding experiments showed that these compounds were able to interact with CT-DNA via intercalative mode with a strong binding affinity in the order 3a > 2a > 4a. DNA-photocleavage activities of compounds 2a, 3a and 4a were determined. These compounds cleaved supercoiled pBR322 plasmid DNA efficiently under irradiation at 650 nm for 2a and 4a, and at 750 nm for 3a. These compounds displayed remarkable inhibitory activities against topoisomerase I enzyme in a dose-dependent manner. All of these results suggest that these phthalocyanines might be suitable anticancer agents due to their strong binding affinities, significant cleavage activities and effective topoisomerase I inhibition.

  4. The water soluble peripherally tetra-substituted zinc(ii), manganese(iii) and copper(ii) phthalocyanines as new potential anticancer agents.

    PubMed

    Barut, Burak; Sofuoğlu, Ayşenur; Biyiklioglu, Zekeriya; Özel, Arzu

    2016-09-28

    In this study, [2-(2-morpholin-4-ylethoxy)ethoxy] group substituted zinc(ii), manganese(iii) and copper(ii) phthalocyanines 2-4 and their water soluble derivatives 2a, 3a and 4a were synthesized and the interactions of compounds 2a, 3a and 4a with CT-DNA and supercoiled pBR322 plasmid DNA were investigated. The results of binding experiments showed that these compounds were able to interact with CT-DNA via intercalative mode with a strong binding affinity in the order 3a > 2a > 4a. DNA-photocleavage activities of compounds 2a, 3a and 4a were determined. These compounds cleaved supercoiled pBR322 plasmid DNA efficiently under irradiation at 650 nm for 2a and 4a, and at 750 nm for 3a. These compounds displayed remarkable inhibitory activities against topoisomerase I enzyme in a dose-dependent manner. All of these results suggest that these phthalocyanines might be suitable anticancer agents due to their strong binding affinities, significant cleavage activities and effective topoisomerase I inhibition. PMID:27534374

  5. Zinc site redesign in T4 gene 32 protein: structure and stability of cobalt(II) complexes formed by wild-type and metal ligand substitution mutants.

    PubMed

    Guo, J; Giedroc, D P

    1997-01-28

    Phage T4 gene 32 protein (gp32) is a zinc metalloprotein which binds cooperatively and preferentially to single-stranded nucleic acids and functions as a replication and recombination accessory protein. Zn(II) coordination by gp32 employs a His-Cys3 metal ligand donor set derived from the His64-X12-Cys77-X9-Cys87-X2-Cys90 sequence in the ssDNA-binding core domain of the molecule. Crystallographic studies reveal that His64 and Cys77 are derived from two independent beta-strands within a distorted three-stranded beta-sheet and are relatively more buried from solvent than are Cys87 and Cys90, which are positioned immediately before and within, respectively, an alpha-helix. In an effort to understand the origin of the stability of the metal complex, we have employed an anaerobic optical spectroscopic, competitive metal binding assay to determine the coordination geometry and association constants (Ka) for the binding of Co(II) to wild-type gp32 and a series of zinc ligand substitution mutants. At pH 7.5, 25 degrees C, wild-type gp32 binds Co(II) with a Ka approximately 1 x 10(9) M-1. Competition experiments reveal that Ka for Zn(II) is 3.0 (+/-1.0) x 10(11) M-1. We find that all non-native metal complexes retain tetrahedral or distorted tetrahedral coordination geometry but are greatly destabilized in a manner essentially of whether a new protein-derived coordination bond is formed (e.g., in H64C gp32) or not. Co(II) binding isotherms obtained for three His64 substitution mutants, H64C, H64D, and H64N gp32s, suggest that each mutant forms a dimeric Cys4 tetrathiolate intermediate complex at limiting [Co(II)]f, each then rearranges at high [Co(II)]f to form a monomolecular site of the expected geometry and Ka approximately 1 x 10(4) M-1. Like the His64 mutants, C77A gp32 appears to form at least two types of complexes over the course of a Co(II) titration: one with octahedral coordination geometry formed at low [Co(II)]f, with a second tetrahedral or five

  6. Zinc oxyfluoride transparent conductor

    SciTech Connect

    Gordon, R.G.

    1991-02-05

    Transparent, electrically conductive and infrared-reflective films of zinc oxyfluoride are produced by chemical vapor deposition from vapor mixtures of zinc, oxygen and fluorine-containing compounds. The substitution of fluorine for some of the oxygen in zinc oxide results in dramatic increases in the electrical conductivity. For example, diethyl zinc, ethyl alcohol and hexafluoropropene vapors are reacted over a glass surface at 400 C to form a visibly transparent, electrically conductive, infrared reflective and ultraviolet absorptive film of zinc oxyfluoride. Such films are useful in liquid crystal display devices, solar cells, electrochromic absorbers and reflectors, energy-conserving heat mirrors, and antistatic coatings. 8 figures.

  7. Zinc oxyfluoride transparent conductor

    DOEpatents

    Gordon, Roy G.

    1991-02-05

    Transparent, electrically conductive and infrared-reflective films of zinc oxyfluoride are produced by chemical vapor deposition from vapor mixtures of zinc, oxygen and fluorine-containing compounds. The substitution of fluorine for some of the oxygen in zinc oxide results in dramatic increases in the electrical conductivity. For example, diethyl zinc, ethyl alcohol and hexafluoropropene vapors are reacted over a glass surface at 400.degree. C. to form a visibly transparent, electrically conductive, infrared reflective and ultraviolet absorptive film of zinc oxyfluoride. Such films are useful in liquid crystal display devices, solar cells, electrochromic absorbers and reflectors, energy-conserving heat mirrors, and antistatic coatings.

  8. Magnetic Properties of Grain Boundaries of Nanocrystalline Ni and of Ni Precipitates in Nanocrystalline NiCu Alloys

    NASA Astrophysics Data System (ADS)

    Wolf, H.; Guan, Z.; Li, X.; Wichert, Th.

    2001-11-01

    Perturbed γγ-angular correlation spectroscopy (PAC) was used to investigate nanocrystalline Ni and NiCu alloys, which are prepared by pulsed electrodeposition (PED). Using diffusion for doping nanocrystalline Ni with 111In four different ordered grain boundary structures are observed, which are characterized by unique electric field gradients. The incorporation of 111In on substitutional bulk sites of Ni is caused by moving grain boundaries below 1000 K and by volume diffusion above 1000 K. The nanocrystalline NiCu alloys prepared by PED are microscopically inhomogeneous as observed by PAC. In contrast, this inhomogeneity cannot be detected by X-ray diffraction. The influence of the temperature of the electrolyte, the current density during deposition, and the optional addition of saccharin to the electrolyte on the homogeneity of nanocrystalline NiCu alloys was investigated.

  9. Compressibility of Nanocrystalline Forsterite

    SciTech Connect

    Couvy, H.; Chen, J; Drozd, V

    2010-01-01

    We established an equation of state for nanocrystalline forsterite using multi-anvil press and diamond anvil cell. Comparative high-pressure and high-temperature experiments have been performed up to 9.6 GPa and 1,300 C. We found that nanocrystalline forsterite is more compressible than macro-powder forsterite. The bulk modulus of nanocrystalline forsterite is equal to 123.3 ({+-}3.4) GPa whereas the bulk modulus of macro-powder forsterite is equal to 129.6 ({+-}3.2) GPa. This difference is attributed to a weakening of the elastic properties of grain boundary and triple junction and their significant contribution in nanocrystalline sample compare to the bulk counterpart. The bulk modulus at zero pressure of forsterite grain boundary was determined to be 83.5 GPa.

  10. Creating bulk nanocrystalline metal.

    SciTech Connect

    Fredenburg, D. Anthony; Saldana, Christopher J.; Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John; Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  11. Nanocrystalline nanowires: I. Structure.

    PubMed

    Allen, Philip B

    2007-01-01

    Geometric constructions of possible atomic arrangements are suggested for inorganic nanowires. These are fragments of bulk crystals, and can be called "nanocrystalline" nanowires (NCNW). To minimize surface polarity, nearly one-dimensional formula units, oriented along the growth axis, generate NCNWs by translation and rotation.

  12. Nanocrystalline heterojunction materials

    SciTech Connect

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2003-07-15

    Mesoporous nanocrystalline titanium dioxide heterojunction materials are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  13. Nanocrystalline Heterojunction Materials

    SciTech Connect

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2004-02-03

    Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  14. A single amino acid substitution beyond the C2H2-zinc finger in Ros derepresses virulence and T-DNA genes in Agrobacterium tumefaciens.

    PubMed

    Archdeacon, J; Bouhouche, N; O'Connell, F; Kado, C I

    2000-06-15

    Ros is a chromosomally-encoded repressor containing a novel C2H2 zinc finger in Agrobacterium tumefaciens. Ros regulates the expression of six virulence genes and an oncogene on the Ti plasmid. Constitutive expression of these genes occurs in the spontaneous mutant 4011R derived from the octopine strain Ach-5, resulting in T-DNA processing in the absence of induction, and in the biosynthesis of cytokinin. Interestingly, the mutation in 4011R is an Arg to Cys conversion at amino acid residue 125 near the C-terminus well outside the zinc finger of Ros. Yet, Ros bearing this mutation is unable to bind to the Ros-box and is unable to complement other ros mutants. PMID:10856653

  15. Nanocrystalline nanowires: III. Electrons.

    PubMed

    Allen, Philip B

    2007-05-01

    Nanocrystalline nanowires (NCNW) are fragments of bulk crystals that are infinite in only one direction and typically have some rotational symmetry around this direction. Electron eigenstates belonging to the symmetry labels (k,m) (wavevector and rotational quantum number) are discussed. The rotational quantum number simplifies discussion of optical properties. For m not equal 0, the +/-m degeneracy allows orbital magnetism. The simplest sensible model which is more complex than a one-dimensional chain is solved. Methods are suggested for incorporating rotational symmetry into preexisting codes with three-dimensional translations.

  16. Nanocrystalline nanowires: 2. Phonons.

    PubMed

    Allen, Philip B

    2007-01-01

    Nanocrystalline nanowires (NCNW) are fragments of bulk crystals that are infinite in only one direction. A construction is given for calculating eigenstates belonging to the symmetry labels (k,m) (wavevector and rotational quantum number). Vibrational harmonic eigenstates are worked out explicitly for a simple model, illustrating the general results: the LA mode has m=0, while with sufficient rotational symmetry, the TA branch is doubly degenerate, has m=+/-1, and has quadratic dispersion with k for k less than the reciprocal diameter of the NCNW. The twiston branch (a fourth Goldstone boson) is an acoustic m=0 branch, additional to the LA and two TA branches.

  17. Magnetism in nanocrystalline gold.

    PubMed

    Tuboltsev, Vladimir; Savin, Alexander; Pirojenko, Alexandre; Räisänen, Jyrki

    2013-08-27

    While bulk gold is well known to be diamagnetic, there is a growing body of convincing experimental and theoretical work indicating that nanostructured gold can be imparted with unconventional magnetic properties. Bridging the current gap in experimental study of magnetism in bare gold nanomaterials, we report here on magnetism in gold nanocrystalline films produced by cluster deposition in the aggregate form that can be considered as a crossover state between a nanocluster and a continuous film. We demonstrate ferromagnetic-like hysteretic magnetization with temperature dependence indicative of spin-glass-like behavior and find this to be consistent with theoretical predictions, available in the literature, based on first-principles calculations.

  18. Zinc Enzymes.

    ERIC Educational Resources Information Center

    Bertini, I.; And Others

    1985-01-01

    Discusses the role of zinc in various enzymes concerned with hydration, hydrolysis, and redox reactions. The binding of zinc to protein residues, properties of noncatalytic zinc(II) and catalytic zinc, and the reactions catalyzed by zinc are among the topics considered. (JN)

  19. Zinc poisoning

    MedlinePlus

    ... other materials to make industrial items such as paint, dyes, and more. These combination substances can be ... Compounds used to make paint, rubber, dyes, wood preservatives, and ... Zinc chloride Zinc oxide (relatively nonharmful) Zinc ...

  20. Effect of Process Parameters on the Size and Shape of Nano- and Micrometric Zinc Oxide.

    PubMed

    Pulit-Prociak, Jolanta; Banach, Marcin

    2016-01-01

    The paper presents a method of obtaining zinc oxide nano- and microparticles. In these studies microwave reactor and laboratory pressure reactor were used. Since microwave radiation accelerates proceeding of reactions, this way was found to be an effective method in the process of obtaining nanocrystallines of zinc oxide. The size of prepared particles rarely exceeded 500 nm. PMID:27333554

  1. Mechanical properties and in vitro cellular behavior of zinc-containing nano-bioactive glass doped biphasic calcium phosphate bone substitutes.

    PubMed

    Badr-Mohammadi, Mohammad-Reza; Hesaraki, Saeed; Zamanian, Ali

    2014-01-01

    In the present study, different amounts (0.5-5 wt%) of a sol gel-derived zinc-containing nano-bioactive glass (NBG-Zn) powder were added to biphasic calcium phosphate (BCP). The mixtures were sintered at 1,100-1,300 °C and physical characteristics, mechanical properties, phase composition and morphology of them were studied. The samples were also soaked in human blood plasma for 15 days to evaluate variations in their surface morphologies. Rat calvarium-derived osteoblastic cells were seeded on tops of various samples and cell adhesion, proliferation, and alkaline phosphatase activity were evaluated at different culturing periods. The maximum bending strength (62 MPa) was obtained for BCP containing 0.5 wt% NBG-Zn at temperature 1,200 °C. This value was approximately 80% higher than that of pure BCP. The bending strength failed when both sintering temperature and amount of added NBG-Zn increased. At 1,100 °C, NBG-Zn additive did not change the phase composition of BCP. At temperatures 1,200 and 1,300 °C, both alpha-tricalcium calcium phosphate (α-TCP) and beta-tricalcium phosphate (β-TCP and) phases were detected. However, adding higher amount of NBG-Zn to BCP resulted in elevation of β-TCP at 1,200 °C and progression of α-TCP at 1,300 °C. Based on the microscopic observations, adding 0.5 wt% NBG-Zn to BCP led to disappearance of grain boundaries, reduction of micropores and formation of a monolithic microstructure. No calcium phosphate precipitation was observed on sample surfaces after soaking in blood plasma, but some pores were produced by phase dissolution. The size and volume of these pores were directly proportional to NBG-Zn content. Based on the cell studies, both BCP and NBG-Zn-added BCP samples supported attachment and proliferation of osteoblasts, but higher alkaline phosphatase enzyme was synthesized within the cells cultured on NBG-Zn-added BCP. Overall, biphasic calcium phosphate materials with improved mechanical and biological properties

  2. Zinc substituted ferrite nanoparticles with Zn0.9Fe2.1O4 formula used as heating agents for in vitro hyperthermia assay on glioma cells

    NASA Astrophysics Data System (ADS)

    Hanini, Amel; Lartigue, Lenaic; Gavard, Julie; Kacem, Kamel; Wilhelm, Claire; Gazeau, Florence; Chau, François; Ammar, Souad

    2016-10-01

    In this paper we investigate the ability of zinc rich ferrite nanoparticles to induce hyperthermia on cancer cells using an alternating magnetic field (AMF). First, we synthesized ferrites and then we analyzed their physico-chemical properties by transmission electron microscopy, X-ray diffraction and magnetic and magnetocalorimetric measurements. We found that the polyol-made magnetically diluted particles are of 11 nm in size. They are superparamagnetic at body temperature (310 K) with a low but non-negligible magnetization. Interestingly, as nano-ferrimagnets they exhibit a Curie temperature of 366 K, close to the therapeutic temperature range. Their effect on human healthy endothelial (HUVEC) and malignant glioma (U87-MG) cells was also evaluated using MTT viability assays. Incubated with the two cell lines, at doses ≤100 μg mL-1 and contact times ≤4 h, they exhibit a mild in vitro toxicity. In these same operating biological conditions and coupled to AMF (700 kHz and 34.4 Oe) for 1 h, they rapidly induce a net temperature increase. In the case of tumor cells it reaches 4 K, making the produced particles particularly promising for self-regulated magnetically-induced heating in local glioma therapy.

  3. Magnetic properties of nanocrystalline Mn{sub 1-x}Zn{sub x}Fe{sub 2}O{sub 4}

    SciTech Connect

    V, Jagadeesha Angadi.; Rudraswamy, B.; Matteppanavar, Shidaling; Bharathi, P.; Praveena, K.

    2015-06-24

    Nanocrystalline Mn{sub 1-x}Zn{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0) were prepared via solution combustion method. Structural and morphology of Mn-Zn ferrites were characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Magnetic properties were carried out using vibrating sample magnetometer (VSM) at room temperature (RT) up to maximum field of 1.5 T. The room temperature real and imaginary part of permeability (μ′ and μ″) has been measured in the frequency range of 1MHz to 1GHz. The room temperature XRD patterns exhibits the spinel cubic (Fm-3m) structure and broad XRD patterns shows the presence of nanoparticles. The imaginary part of the permeability (μ″) gradually increased with the frequency and took a broad maximum at a certain frequency, where the real permeability (μ′) rapidly decreases, which is known as natural resonance. The coercive filed values are low, hence probability of domain rotation is also lower and the magnetization decreased with zinc substitution. The values of μ′ and μ″ increases sharply, attained a maximum and then decreases with zinc content.

  4. Picosecond spectroscopic studies of equilibrium structural fluctuations of native and partially unfolded states of Zinc II-substituted and metal-free cytochromes C

    NASA Astrophysics Data System (ADS)

    Tripathy, Jagnyaseni

    Picosecond time-resolved fluorescence spectroscopy was employed to characterize the equilibrium and non-equilibrium protein structural fluctuations in Zn II-substituted (ZnCytc) and metal-free (fbCytc) cytochromes c using dynamic fluorescence Stokes shift (FSS) and fluorescence anisotropy (FA) measurements. The intrinsic porphyrin chromophore is used as the probe for the structural fluctuations of the surrounding protein and solvent. The FSS experiments examine how the time scales detected from the dynamic solvation of a chromoprotein report changes in the character of motion. ZnCytc and fbCytc serve as limited, single-chromophore models for photosynthetic reaction center and light-harvesting proteins. The dynamic solvation of redox and light-harvesting chromophores in photosynthesis plays an important role in the quantum efficiency of electron transfer and energy transfer performed by these systems, respectively. The FSS response function of fbCytc in water is biexponential over the 100-ps--50-ns regime and the two time constants are 1.4 ns and 9.1 ns. ZnCytc under similar solution conditions shows a biexponential FSS response but with time constants of 0.2 ns and 1.5 ns. The two correlation times from the FSS response function correspond to motions of the hydrophobic core and the solvent-contact layer, respectively. Both FSS correlation times were lengthened and the solvation reorganization energy was reduced from 43 cm-1 to 33 cm-1 in the presence of 50% (v/v) glycerol. A Brownian diffusion model with thermally activated barrier crossings on the protein-folding energy landscape is used to interpret these results. The conclusion is that the mean-squared deviations of the fluctuations exhibited by fbCytc are perhaps a factor of ten larger than those in ZnCytc, which is consistent with the suggestion that fbCytc assumes a dynamic, partially unfolded structure with some of the characteristics of a molten globule. The nature of the motion associated with the

  5. 46 CFR 148.330 - Zinc ashes; zinc dross; zinc residues; zinc skimmings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Zinc ashes; zinc dross; zinc residues; zinc skimmings... Materials § 148.330 Zinc ashes; zinc dross; zinc residues; zinc skimmings. (a) The shipper must inform the cognizant Coast Guard Captain of the Port in advance of any cargo transfer operations involving zinc...

  6. 46 CFR 148.330 - Zinc ashes; zinc dross; zinc residues; zinc skimmings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Zinc ashes; zinc dross; zinc residues; zinc skimmings... Materials § 148.330 Zinc ashes; zinc dross; zinc residues; zinc skimmings. (a) The shipper must inform the cognizant Coast Guard Captain of the Port in advance of any cargo transfer operations involving zinc...

  7. 46 CFR 148.330 - Zinc ashes; zinc dross; zinc residues; zinc skimmings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Zinc ashes; zinc dross; zinc residues; zinc skimmings... Materials § 148.330 Zinc ashes; zinc dross; zinc residues; zinc skimmings. (a) The shipper must inform the cognizant Coast Guard Captain of the Port in advance of any cargo transfer operations involving zinc...

  8. Recent advances in nanocrystalline intermetallic tin compounds for the negative electrode of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Alcántara, Ricardo; Nwokeke, Uche G.; Nacimiento, Francisco; Lavela, Pedro; Tirado, José L.

    2011-06-01

    Intermetallic compounds of tin and first-row transition metals have been considered as potential anode materials for Li-ion batteries that could improve the performance of pure tin. Particularly, the solids dispersed at the nano scale provide interesting behavior. Thus CoSn, FeSn2 and CoSn3 nanocrystalline samples have been obtained at low temperatures. As compared with micrometric particles of CoSn, significantly higher reversible capacities are found for nanocrystalline CoSn. For nanocrystalline CoSn3 maximum reversible capacities of 690 mAh g-1 were observed in lithium test cells. Nanocrystalline products in the series CoSn2-FeSn2 could be prepared by chemical reduction in polyol solvents using a "one-pot" method. Superparamagnetic nanocrystalline FeSn2 delivers reversible capacities of ca. 600 mAhg-1 by the formation of LixSn phases and superparamagnetic iron nanoparticles. A comparison between the properties of nano- FeSn2 and micro-FeSn2 shows a significantly better electrochemical behavior and electrode stability for the nanocrystalline material. For Fe1-xCoxSn2 solid solutions with x= 0.25, 0.3, 0.5, 0.6 and 0.8, particle diameters of about 20 nm and different morphologies were obtained. The substitution of iron by cobalt induces a contraction of the unit cell volume and the hyperfine parameters of the 57Fe Mössbauer spectra reveal a superparamagnetic behavior. The intermediate compositions exhibit better electrochemical performance than the limit compositions CoSn2 and FeSn2. To improve the performance of CoSnx intermetallics, composites in which the nanocrystalline intermetallic material is embedded in an amorphous layer based on the polyacrylonitrile (PAN) polymer were used. The PAN shell contributes to stabilize the intermetallic phases upon electrochemical cycling.

  9. Tensile behavior of nanocrystalline copper

    SciTech Connect

    Sanders, P.G.; Weertman, J.R.; Eastman, J.A. |

    1995-11-01

    High density nanocrystalline copper produced by inert gas condensation was tested in tension. Displacements were measured using foil strain gauges, which greatly improved the accuracy of the strain data. The Young`s modulus of nanocrystalline copper was found to be consistent with that of coarse-grained copper. Total elongations of {approx} 1% were observed in samples with grain sizes less than 50 nm, while a sample with a grain size of 110 nm exhibited more than 10% elongation, perhaps signifying a change to a dislocation-based deformation mechanism in the larger-grained material. In addition, tensile tests were performed as a function of strain rate, with a possible trend of decreased strength and increased elongation as the strain rate was decreased.

  10. Tribological behavior of nanocrystalline nickel.

    PubMed

    Guidry, D J; Lian, K; Jiang, J C; Meletis, E I

    2009-07-01

    During the last decade, an intensive investigative effort around the globe has been devoted to the understanding of scale effects on materials properties. In spite of their importance, nanoscale effects on tribological properties have attracted little attention. Such effects are of utmost importance to small scale devices such as nano and micro electromechanical systems that contain nanostructured dynamic components that would be difficult to replace or repair. The significant increase in strength arising from the grain size reduction in the nano domain is expected to impact on mechanical processes at asperity contacts that are dominating wear behavior. In the present work, nanocrystalline Ni produced by electroplating was used as a model system to study scale effects on tribological behavior. It was found that compared to bulk (microcrystalline), nanocrystalline Ni can cause a significant reduction in both, the coefficient of friction and wear rate. A consistent relationship was found between grain size, hardness and tribological behavior. It is suggested that the improved tribological behavior of the nanocrystalline Ni is due to the refinement of mechanical processes inhibiting plastic deformation by extensive dislocation motion leading to fracture events. PMID:19916423

  11. Method of making nanocrystalline alpha alumina

    DOEpatents

    Siegel, Richard W.; Hahn, Horst; Eastman, Jeffrey A.

    1992-01-01

    Method of making selected phases of nanocrystalline ceramic materials. Various methods of controlling the production of nanocrystalline alpha alumina and titanium oxygen phases are described. Control of the gas atmosphere and use of particular oxidation treatments give rise to the ability to control the particular phases provided in the aluminum/oxygen and titanium/oxygen system.

  12. Microstructure and physical properties of laser Zn modified amorphous-nanocrystalline coating on a titanium alloy

    NASA Astrophysics Data System (ADS)

    Li, Jia-Ning; Gong, Shui-Li; Shi, Yi-Ning; Suo, Hong-Bo; Wang, Xi-Chang; Deng, Yun-Hua; Shan, Fei-Hu; Li, Jian-Quan

    2014-02-01

    A Zn modified amorphous-nanocrystalline coating was fabricated on a Ti-6Al-4V alloy by laser cladding of the Co-Ti-B4C-Zn-Y2O3 mixed powders. Such coating was researched by means of a scanning electron microscope (SEM) and a high resolution transmission electron microscope (HRTEM), etc. Experimental results indicated that the Co5Zn21 and TiB2 nanocrystalline phases were produced through in situ metallurgical reactions, which blocked the motion of dislocation, and TiB2 grew along (010), (111) and (024). The Co5Zn21 nanocrystals were produced attached to the ceramics, which mainly consisted of the Co nanoparticles embedded in a heterogeneous zinc, and had varied crystalline orientations.

  13. Multifunctionality of nanocrystalline lanthanum ferrite

    NASA Astrophysics Data System (ADS)

    Rai, Atma; Thakur, Awalendra K.

    2016-05-01

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ˜42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ˜3.45 m2/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanum ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO3.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.

  14. New separators for nickel-zinc batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1976-01-01

    Flexible separators consisting of a substrate coated with a mixture of a polymer and organic and inorganic additives were cycle tested in nickel-zinc cells. By substituting a rubber-based resin for polyphenylene oxide in the standard inorganic-organic separator, major improvements in both cell life and flexibility were made. Substituting newsprint for asbestos as the substrate shows promise for use on the zinc electrode and reduces separator cost. The importance of ample electrolyte in the cells was noted. Cycle lives and the characteristics of these flexible, low-cost separators were compared with those of a standard microporous polypropylene separator.

  15. Nanocrystalline silicon based thin film solar cells

    NASA Astrophysics Data System (ADS)

    Ray, Swati

    2012-06-01

    Amorphous silicon solar cells and panels on glass and flexible substrate are commercially available. Since last few years nanocrystalline silicon thin film has attracted remarkable attention due to its stability under light and ability to absorb longer wavelength portion of solar spectrum. For amorphous silicon/ nanocrystalline silicon double junction solar cell 14.7% efficiency has been achieved in small area and 13.5% for large area modules internationally. The device quality nanocrystalline silicon films have been fabricated by RF and VHF PECVD methods at IACS. Detailed characterizations of the materials have been done. Nanocrystalline films with low defect density and high stability have been developed and used as absorber layer of solar cells.

  16. Solvent substitution

    SciTech Connect

    Not Available

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated.

  17. Nanocrystalline diamond synthesized from C60

    SciTech Connect

    Dubrovinskaia, N.; Dubrovinsky, L.; Langehorst, F.; Jacobsen, S.; Liebske, C.

    2010-11-30

    A bulk sample of nanocrystalline cubic diamond with crystallite sizes of 5-12 nm was synthesized from fullerene C{sub 60} at 20(1) GPa and 2000 C using a multi-anvil apparatus. The new material is at least as hard as single crystal diamond. It was found that nanocrystalline diamond at high temperature and ambient pressure kinetically is more stable with respect to graphitization than usual diamonds.

  18. Abnormal morphology of nanocrystalline Mn-Zn ferrite sintered by pulse electric current sintering

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhua; Yu, Liming; Yuan, Shujuan; Zhang, Shouhua; Zhao, Xinluo

    2009-11-01

    Nanocrystalline manganese-zinc (Mn-Zn) ferrite powders prepared by the sol-gel auto-combustion method are sintered to form bulk ferrite by pulse electric current sintering technique. The sample phase, before sintering and after sintering, is carried out by X-ray diffraction (XRD). The morphology of the sample is observed by scanning electron microscopy (SEM). The results indicate that the bulk ferrite obtained has a pure spinel structure. With special graphite die, a special morphology is observed, which is explained by pressure, temperature and induced electromagnetic field.

  19. Sensory Substitution

    NASA Astrophysics Data System (ADS)

    Verrillo, Ronald T.

    The idea that the cutaneous surface may be employed as a substitute for the eyes and ears is by no means a modern notion. Although the sense of touch has long been considered as a surrogate for both the visual and auditory modalities, the focus of this chapter will be on the efforts to develop a tactile substitute for hearing, especially that of human speech. The visual system is our primary means of processing information about environmental space such as orientation, distance, direction and size. It is much less effective in making temporal discriminations. The auditory system is unparalleled in processing information that involves rapid sequences of temporal events, such as speech and music. The tactile sense is capable of processing both spatial and temporal information although not as effective in either domain as the eye or the ear.

  20. Nanocrystalline cellulose from coir fiber: preparation, properties, and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nanocrystalline cellulose derived from various botanical sources offers unique and potentially useful characteristics. In principle, any cellulosic material can be considered as a potential source of a nanocrystalline material, including crops, crop residues, and agroindustrial wastes. Because of t...

  1. Hemoglobin substitutes.

    PubMed

    Anbari, Kevin K; Garino, Jonathan P; Mackenzie, Colin F

    2004-10-01

    Orthopaedic patients frequently require blood transfusions to treat peri-operative anemia. Research in the area of hemoglobin substitutes has been of great interest since it holds the promise of reducing the reliance on allogeneic blood transfusions. The three categories of hemoglobin substitutes are (1) cell-free, extracellular hemoglobin preparations made from human or bovine hemoglobin (hemoglobin-based oxygen carriers or HBOCs); (2) fluorine-substituted linear or cyclic carbon chains with a high oxygen-carrying capacity (perfluorocarbons); and (3) liposome-encapsulated hemoglobin. Of the three, HBOCs have been the most extensively studied and tested in preclinical and clinical trials that have shown success in diminishing the number of blood transfusions as well as an overall favorable side-effect profile. This has been demonstrated in vascular, cardiothoracic, and orthopaedic patients. HBOC-201, which is a preparation of cell-free bovine hemoglobin, has been approved for clinical use in South Africa. These products may well become an important tool for physicians treating peri-operative anemia in orthopaedic patients.

  2. Zinc phosphide

    Integrated Risk Information System (IRIS)

    Zinc phoshide ; CASRN 1314 - 84 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  3. Zinc cyanide

    Integrated Risk Information System (IRIS)

    Zinc cyanide ; CASRN 557 - 21 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effe

  4. Photoconductivity on nanocrystalline ZnO/TiO2 thin films obtained by sol-gel

    NASA Astrophysics Data System (ADS)

    Valverde-Aguilar, G.; García-Macedo, J. A.; Juárez-Arenas, R.

    2008-08-01

    In this paper we report results on the synthesis, characterization and photoconductivity behaviour of amorphous and nanocrystalline ZnO/TiO2 thin films. They were produced by the sol-gel process at room temperature by using the spin-coating method and deposited on glass substrates. The ZnO/TiO2 films were synthesized by using tetrabutyl orthotitanate and zinc nitrate hexahydrate as the inorganic precursors. The samples were sintered at 520°C for 1 hour. The obtained films were characterized by X-ray diffraction (XRD), optical absorption (OA), infrared spectroscopy (IR) and scanning electronic microscopy (SEM) studies. Photoconductivity studies were performed on amorphous and nanocrystalline (anatase phase) films to determine the charge transport parameters. The experimental data were fitted with straight lines at darkness and under illumination at 310 nm, 439 nm and 633 nm. This indicates an ohmic behavior. The Φμτ and Φl0 parameters were fitted by least-squares with straight lines (nanocrystalline films) and polynomial fits (amorphous films).

  5. Formation of ZnO Nanocrystalline via Facile Non-Hydrolytic Route

    SciTech Connect

    Ooi, M. D. Johan; Aziz, A. Abdul; Abdullah, M. J.

    2011-05-25

    Zinc oxide (ZnO) nanocrystalline were synthesized via oxidizing Zn powder in non-aqueous solvent with addition of Diethanolamine (DEA) as a stabilizing agent. The influence of DEA on the structural, optical properties and the formation of ZnO nanocrystalline were studied. The synthesized ZnO were polycrystalline in structures where sample without the addition of DEA shows high intensity peak of (002) phase compared with sample in the presence of DEA which preferred to grow in (101) direction. SEM micrograph displays the morphology of ZnO nanocrystalline for both of the samples which shows micron size and non-uniform particles for sample without DEA whereas for sample with DEA exhibit smaller size ({approx}110 nm) and nearly spherical in shape despite of some agglomeration occurs at the interparticle separation. The photoluminescence (PL) spectra shows UV emission peak for both of the samples where sample with the absence of DEA possess lower intensity of UV emission peak compared to samples with DEA which demonstrate stronger intensity despite of having very weak visible secondary emission peak at 530 nm.

  6. Stacking fault and twinning in nanocrystalline metals.

    SciTech Connect

    Liao, Xiaozhou; Zhao, Y.; Srivilliputhur, S. G.; Zhou, F.; Lavernia, E. J.; Baskes, M. I.; Zhu, Y. T.; Xu, H. F.

    2004-01-01

    Nanocrystalline Al processed by cryogenic ball-milling and nanocrystalline Cu processed by high-pressure torsion at a very low strain rate and at room temperature were investigated using high-resolution transmission electron microscopy. For nanocrystalline Al, we observed partial dislocation emission from grain boundaries, which consequently resulted in deformation stacking faults and twinning. We also observed deformation twins formed via two other mechanisms recently predicted by molecular dynamic simulations. These results are surprising because (1) partial dislocation emission from grain boundaries has not been experimentally observed although it has been predicted by simulations and (2) deformation stacking faults and twinning have not been reported in Al due to its high stacking fault energy. For nanocrystalline Cu, we found that twinning becomes a major deformation mechanism, which contrasts with the literature reports that deformation twinning in coarse-grained Cu occurs only under high strain rate and/or low temperature conditions and that reducing grain sizes suppresses deformation twinning. The investigation of the twinning morphology suggests that twins and stacking faults in nanocrystalline Cu were formed through partial dislocation emissions from grain boundaries. This mechanism differs from the pole mechanism operating in coarse-grained Cu.

  7. Rapid phase synthesis of nanocrystalline cobalt ferrite

    SciTech Connect

    Shanmugavel, T.; Raj, S. Gokul; Rajarajan, G.; Kumar, G. Ramesh

    2014-04-24

    Synthesis of single phase nanocrystalline Cobalt Ferrite (CoFe{sub 2}O{sub 4}) was achieved by single step autocombustion technique with the use of citric acid as a chelating agent in mono proportion with metal. Specimens prepared with this method showed significantly higher initial permeability's than with the conventional process. Single phase nanocrystalline cobalt ferrites were formed at very low temperature. Surface morphology identification were carried out by transmission electron microscopy (TEM) analysis. The average grain size and density at low temperature increased gradually with increasing the temperature. The single phase formation is confirmed through powder X-ray diffraction analysis. Magnetization measurements were obtained at room temperature by using a vibrating sample magnetometer (VSM), which showed that the calcined samples exhibited typical magnetic behaviors. Temperature dependent magnetization results showed improved behavior for the nanocrystalline form of cobalt ferrite when compared to the bulk nature of materials synthesized by other methods.

  8. Ionic liquid-templated preparation of mesoporous silica embedded with nanocrystalline sulfated zirconia

    NASA Astrophysics Data System (ADS)

    Ward, Antony J.; Pujari, Ajit A.; Costanzo, Lorenzo; Masters, Anthony F.; Maschmeyer, Thomas

    2011-12-01

    A series of mesoporous silicas impregnated with nanocrystalline sulphated zirconia was prepared by a sol-gel process using an ionic liquid-templated route. The physicochemical properties of the mesoporous sulphated zirconia materials were studied using characterisation techniques such as inductively coupled optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray microanalysis, elemental analysis and X-ray photoelectron spectroscopy. Analysis of the new silicas indicates isomorphous substitution of silicon with zirconium and reveals the presence of extremely small (< 10 nm) polydispersed zirconia nanoparticles in the materials with zirconium loadings from 27.77 to 41.4 wt.%.

  9. Ionic liquid-templated preparation of mesoporous silica embedded with nanocrystalline sulfated zirconia

    PubMed Central

    2011-01-01

    A series of mesoporous silicas impregnated with nanocrystalline sulphated zirconia was prepared by a sol-gel process using an ionic liquid-templated route. The physicochemical properties of the mesoporous sulphated zirconia materials were studied using characterisation techniques such as inductively coupled optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray microanalysis, elemental analysis and X-ray photoelectron spectroscopy. Analysis of the new silicas indicates isomorphous substitution of silicon with zirconium and reveals the presence of extremely small (< 10 nm) polydispersed zirconia nanoparticles in the materials with zirconium loadings from 27.77 to 41.4 wt.%. PMID:21711725

  10. Vitreous Substitutes

    PubMed Central

    Foster, William Joseph

    2008-01-01

    Modern vitreoretinal surgery is a young science. While tremendous developments have occurred in instrument design and technique since Machemer first described vitrectomy surgery in 1973[1], the application of advanced materials concepts to the development of intra-ocular compounds is a particularly exciting area of research. To date, the development of vitreous substitutes has played a significant role in enabling the dramatic and progressive improvement in surgical outcome, but perhaps no other area of research has the potential to further improve the treatment of retinal detachment and other retinal disorders. While prior research has focused solely upon the ability of a compound to re-attach the retina, future research should seek to enable the surgeon to inhibit the development of proliferative vitreoretinopathy and re-detachment, the integration of stem-cell therapies with surgical retina, long-term delivery of medications to the posterior segment, and the promotion of more rapid and complete visual rehabilitation. PMID:19343097

  11. Blood substitutes.

    PubMed

    Palmer, Andre F; Intaglietta, Marcos

    2014-07-11

    The toxic side effects of early generations of red blood cell substitutes have stimulated development of more safe and efficacious high-molecular-weight polymerized hemoglobins, poly(ethylene glycol)-conjugated hemoglobins, and vesicle-encapsulated hemoglobins. Unfortunately, the high colloid osmotic pressure and blood plasma viscosity of these new-generation materials limit their application to blood concentrations that, in general, are not sufficient for full restoration of oxygen-carrying and -delivery capacity. However, these materials may serve as oxygen therapeutics for treating tissues affected by ischemia and trauma, particularly when the therapeutics are coformulated with antioxidants. These new oxygen therapeutics also possess additional beneficial effects owing to their optimal plasma expansion properties, which induce systemic supraperfusion that increases endothelial nitric oxide production and improves tissue washout of metabolic wastes, further contributing to their therapeutic role.

  12. Nanoscale zinc antimonides: synthesis and phase stability.

    PubMed

    Schlecht, Sabine; Erk, Christoph; Yosef, Maekele

    2006-02-20

    Highly crystalline single-phase nanoparticles of the important thermoelectric materials Zn4Sb3 and ZnSb were prepared from solvochemically activated powders of elemental zinc and elemental antimony. Low-temperature reactions with reaction temperatures of 275-300 degrees C were applied using an excess of elemental zinc. The nanoscale thermoelectrics obtained were characterized by X-ray powder diffraction, transmission electron microscopy, and thermal analysis. nc-Zn4Sb3 showed particle sizes of 50-70 nm, whereas particle sizes of 15-20 nm were observed for nc-ZnSb. Calorimetric investigations showed an increased heat capacity, Cp, for nc-Zn4Sb3 with respect to the bulk material which could be reduced to the bulk value by annealing nc-Zn4Sb3 at 190 degrees C. Interestingly, nc-Zn4Sb3 showed exothermic decomposition into zinc-poorer ZnSn at 196 degrees C in an open system, indicating that Zn4Sb3 is metastable in nanocrystalline form at room temperature.

  13. Zinc and zinc transporters in prostate carcinogenesis

    PubMed Central

    Kolenko, Vladimir; Teper, Ervin; Kutikov, Alexander; Uzzo, Robert

    2013-01-01

    The healthy human prostate accumulates the highest level of zinc of any soft tissue in the body. This unique property is retained in BPH, but is lost in prostatic malignancy, which implicates changes in zinc and its transporters in carcinogenesis. Indeed, zinc concentrations diminish early in the course of prostate carcinogenesis, preceding histopathological changes, and continue to decline during progression toward castration-resistant disease. Numerous studies suggest that increased zinc intake might protect against progression of prostatic malignancy. Despite increased dietary intake, zinc accumulation might be limited by the diminished expression of zinc uptake transporters, resulting in decreased intratumoural zinc levels. This finding can explain the conflicting results of various epidemiological studies evaluating the role of zinc supplementation on primary and secondary prostate cancer prevention. Overall, more research into the mechanisms of zinc homeostasis are needed to fully understand its impact on prostate carcinogenesis. Only then can the potential of zinc and zinc transport proteins be harnessed in the diagnosis and treatment of men with prostate cancer. PMID:23478540

  14. Simple, heart-smart substitutions

    MedlinePlus

    Coronary artery disease - heart smart substitutions; Atherosclerosis - heart smart substitutions; Cholesterol - heart smart substitutions; Coronary heart disease - heart smart substitutions; Healthy diet - heart ...

  15. Production of zinc pellets

    DOEpatents

    Cooper, John F.

    1996-01-01

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.

  16. Production of zinc pellets

    DOEpatents

    Cooper, J.F.

    1996-11-26

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  17. Enhancement of photo sensor properties of nanocrystalline ZnO thin film by swift heavy ion irradiation

    SciTech Connect

    Mahajan, S. V.; Upadhye, D. S.; Bagul, S. B.; Shaikh, S. U.; Birajadar, R. B.; Siddiqui, F. Y.; Huse, N. P.; Sharma, R. B. E-mail: rps.phy@gmail.com

    2015-06-24

    Nanocrystalline Zinc Oxide (ZnO) thin film prepared by Low cost Successive Ionic Layer Adsorption and Reaction (SILAR) method. This film was irradiated by 120 MeV Ni{sup 7+} ions with the fluence of 5x10{sup 12}ions/cm{sup 2}. The X-ray diffraction study was shows polycrystalline nature with wurtzite structure. The optical properties as absorbance were determined using UV-Spectrophotometer and band gap was also calculated. The Photo Sensor nature was calculated by I-V characteristics with different sources of light 40W, 60W and 100W.

  18. Magnetic domain structure in nanocrystalline Ni-Zn-Co spinel ferrite thin films using off-axis electron holography

    SciTech Connect

    Zhang, D.; Ray, N. M.; Petuskey, W. T.; Smith, D. J.; McCartney, M. R.

    2014-08-28

    We report a study of the magnetic domain structure of nanocrystalline thin films of nickel-zinc ferrite. The ferrite films were synthesized using aqueous spin-spray coating at low temperature (∼90 °C) and showed high complex permeability in the GHz range. Electron microscopy and microanalysis revealed that the films consisted of columnar grains with uniform chemical composition. Off-axis electron holography combined with magnetic force microscopy indicated a multi-grain domain structure with in-plane magnetization. The correlation between the magnetic domain morphology and crystal structure is briefly discussed.

  19. Enhancing the photoelectric conversion of dye-sensitized solar cell via nitrogen-doped nanocrystalline titania electrode.

    PubMed

    Cheng, Ping; Lan, Tian; Yang, Haijun; Wang, Wanjun; Wu, Haixia; Deng, Changsheng; Dai, Xiaming; Guo, Shouwu

    2010-11-01

    A high efficient dye-sensitized solar cell (DSC) was fabricated using nitrogen-doped nanocrystalline titania(TiO2) photoanode. X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS), X-ray powder diffraction (XRD), zeta potentials, nitrogen adsorption-desorption and elemental analysis experiments were employed to characterize the nitrogen-doped nanocrystalline TiO2 photoanode. An obvious enhancement of the optical absorption in the range of 380-550 nm was observed for nitrogen-doped TiO2, which was attributed to both the substitutional N and the chemisorbed N2 molecules. A conversion efficiency of 9.04% was obtained on the DSC based on nitrogen-doped TiO2 photoanode annealed in a flow of NH3 at 550 degrees C, with an increase of 15.6% improvement in comparison with pure TiO2 (7.82%). The mechanism for the enhanced photovoltaic performance was discussed.

  20. Simulation and bonding of dopants in nanocrystalline diamond.

    PubMed

    Barnard, A S; Russo, S P; Snook, I K

    2005-09-01

    The doping of the wide-band gap semiconductor diamond has led to the invention of many electronic and optoelectronic devices. Impurities can be introduced into diamond during chemical vapor deposition or high pressure-high temperature growth, resulting in materials with unusual physical and chemical properties. For electronic applications one of the main objectives in the doping of diamond is the production of p-type and n-type semiconductors materials; however, the study of dopants in diamond nanoparticles is considered important for use in nanodevices, or as qubits for quantum computing. Such devices require that bonding of dopants in nanodiamond must be positioned substitutionally at a lattice site, and must exhibit minimal or no possibility of diffusion to the nanocrystallite surface. In light of these requirements, a number of computational studies have been undertaken to examine the stability of various dopants in various forms of nanocrystalline diamond. Presented here is a review of some such studies, undertaken using quantum mechanical based simulation methods, to provide an overview of the crystal stability of doped nanodiamond for use in diamondoid nanodevices. PMID:16193953

  1. Dietary phytate, zinc and hidden zinc deficiency.

    PubMed

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency.

  2. Microemulsion-based synthesis of nanocrystalline materials.

    PubMed

    Ganguli, Ashok K; Ganguly, Aparna; Vaidya, Sonalika

    2010-02-01

    Microemulsion-based synthesis is found to be a versatile route to synthesize a variety of nanomaterials. The manipulation of various components involved in the formation of a microemulsion enables one to synthesize nanomaterials with varied size and shape. In this tutorial review several aspects of microemulsion based synthesis of nanocrystalline materials have been discussed which would be of interest to a cross-section of researchers working on colloids, physical chemistry, nanoscience and materials chemistry. The review focuses on the recent developments in the above area with current understanding on the various factors that control the structure and dynamics of microemulsions which can be effectively used to manipulate the size and shape of nanocrystalline materials. PMID:20111772

  3. Nanosecond magnetization reversal in nanocrystalline magnetic films

    NASA Astrophysics Data System (ADS)

    Rahman, I. Z.; Gandhi, A. A.; Khaddem-Mousavi, M. V.; Lynch, T. F.; Rahman, M. A.

    2007-03-01

    This paper reports on the investigation of dynamic magnetization reversal process in electrodeposited nanocrystalline Ni and Ni80Fe20 films by employing nanosecond magnetic pulse technique. The surface morphology has been investigated using SEM, EDAX, XRD and AFM analyses and static magnetic properties of the films are characterized by vibrating sample magnetometer (VSM). Two different techniques are designed and employed to study the nanosecond magnetization reversal process in nanocrystalline thin films: Magneto-Optical Kerr Effect (MOKE) and nanosecond pulsed field magnetometer. Results of dynamical behavior as a function of several variables such as magnitude of applied bias magnetic field, amplitude and width of the pulsed magnetic field are analyzed in detail using both techniques. A computer simulation package called Object Oriented Micro-Magnetic Framework (OOMMF) has been used to simulate the magnetic domain patterns of the samples.

  4. Bioavailability of zinc in fiber-enriched bread fortified with zinc sulphate.

    PubMed

    Khalil, Mona M

    2002-12-01

    The present study aimed to reduce the caloric value of bread by substituting a part of wheat flour with artichoke bracts at levels of 5%, 10% and 15% without sacrificing taste, texture or acceptability. Moreover, considerable trials had been made to reduce zinc deficiency in wheat bread and fiber-enriched bread and also to study the effect of fiber on zinc bioavailability. Therefore, zinc sulphate was added to bread at levels of 40, 60, 80, 100 and 120 mg/100 g edible portion. The results from this study show that: (i) The addition of artichoke bracts to wheat flour increased the water absorption, arrival time, development time, and weakening of the dough as the level of artichoke bracts increased, while dough stability decreased. (ii) Mixing wheat flour with increasing amount of artichoke bracts increased the content of protein, fiber and total essential amino acids, also all essential amino acids increased in wheat bread and fiber-enriched bread after fortification with zinc sulphate at a level of 100 mg/100 g edible portion except methionine, threonine and tyrosine. (iii) The best level of zinc sulphate to give the best bioavailability for zinc is 100 mg/100 g edible portion. (iv) Evaluation of fortified wheat bread and fiber-enriched bread with zinc sulphate showed no significant difference by test panel.

  5. Zinc contamination from brass upon heat treating a superconducting magnet

    SciTech Connect

    Stevens, D.W.; Hassenzahl, W.V.

    1994-07-01

    Theoretical calculations predicted that zinc outgassing from brass spacers during a planned heat treatment would likely damage a lab-scale superconducting magnet. This specter was reinforced by a simulated heat treatment, the samples of which were analyzed by gravimetry, metallography, and microprobe chemical analysis. It was found that zinc escaping from the brass could diffuse 80 {mu}m into copper electrical conductors and degrade their conductivity. To avoid this, steel was temporarily substituted for the brass during the heat treatment process.

  6. Zinc and vegetarian diets.

    PubMed

    Saunders, Angela V; Craig, Winston J; Baines, Surinder K

    2013-08-19

    Well planned vegetarian diets can provide adequate amounts of zinc from plant sources. Vegetarians appear to adapt to lower zinc intakes by increased absorption and retention of zinc. Good sources of zinc for vegetarians include whole grains, tofu, tempeh, legumes, nuts and seeds, fortified breakfast cereals and dairy products. The inhibitory effects of phytate on absorption of zinc can be minimised by modern food-processing methods such as soaking, heating, sprouting, fermenting and leavening. Absorption of zinc can be improved by using yeast-based breads and sourdough breads, sprouts, and presoaked legumes. Studies show vegetarians have similar serum zinc concentrations to, and no greater risk of zinc deficiency than, non-vegetarians (despite differences in zinc intake).

  7. Transient neonatal zinc deficiency.

    PubMed

    Krieger, I; Alpern, B E; Cunnane, S C

    1986-06-01

    We report an infant who developed clinical manifestations of zinc deficiency during the first month of life although the diet was adequate for zinc and no other causes could be ascertained. The diagnosis was confirmed by low plasma-zinc concentrations and a positive response to zinc treatment. The fatty acid profile of plasma phospholipids was typical of zinc deficiency (ie, arachidonic acid was markedly decreased). The transient nature of this disorder was evident when no relapse occurred after cessation of zinc therapy and plasma-zinc and arachidonic acid concentrations remained normal. Several explanations for the development of transient neonatal zinc deficiency are offered. The observation demonstrates that occasional infants may have requirements for zinc that are beyond the intakes of the conventional RDA. PMID:3717070

  8. Zinc: the neglected nutrient.

    PubMed

    Shambaugh, G E

    1989-03-01

    Zinc was first recognized as essential for animals at the University of Illinois School of Agriculture in 1916, when it was found that zinc-deficient baby pigs were runty, developed dermatitis on their legs, and were sterile. Zinc deficiency was first recognized in man by Dr. Ananda Prasad of Detroit 26 years ago when he measured serum and hair zinc levels in young male Egyptian dwarfs who had failed to mature and were small in stature. By simply adding zinc to their regular diet, they grew in height and became sexually mature. It is now recognized that dwarfism in males is frequent around the Mediterranean, where wheat is the staple of life and has been grown for 4,000 years on the same soil, thereby resulting in the depletion of zinc. Professor Robert Henkin first suggested that zinc deficiency might cause hearing-nerve impairment. Assay of the soft tissues of the cochlea and vestibule revealed a zinc level higher than that of any other part of the body. Previously, the eye was considered to have the highest level of zinc of any organ. To diagnose zinc deficiency clinically, we use serum zinc assays made at the Mayo Clinic Trace Element Laboratory. With zinc supplementation in patients who are marginally zinc deficient, there has been improvement in tinnitus and sensorineural hearing loss in about one-third of elderly adults. We believe zinc deficiency is one causation of presbycusis; by recognizing and correcting it, a progressive hearing loss can be arrested.

  9. Zinc: the neglected nutrient.

    PubMed

    Shambaugh, G E

    1989-03-01

    Zinc was first recognized as essential for animals at the University of Illinois School of Agriculture in 1916, when it was found that zinc-deficient baby pigs were runty, developed dermatitis on their legs, and were sterile. Zinc deficiency was first recognized in man by Dr. Ananda Prasad of Detroit 26 years ago when he measured serum and hair zinc levels in young male Egyptian dwarfs who had failed to mature and were small in stature. By simply adding zinc to their regular diet, they grew in height and became sexually mature. It is now recognized that dwarfism in males is frequent around the Mediterranean, where wheat is the staple of life and has been grown for 4,000 years on the same soil, thereby resulting in the depletion of zinc. Professor Robert Henkin first suggested that zinc deficiency might cause hearing-nerve impairment. Assay of the soft tissues of the cochlea and vestibule revealed a zinc level higher than that of any other part of the body. Previously, the eye was considered to have the highest level of zinc of any organ. To diagnose zinc deficiency clinically, we use serum zinc assays made at the Mayo Clinic Trace Element Laboratory. With zinc supplementation in patients who are marginally zinc deficient, there has been improvement in tinnitus and sensorineural hearing loss in about one-third of elderly adults. We believe zinc deficiency is one causation of presbycusis; by recognizing and correcting it, a progressive hearing loss can be arrested. PMID:2786676

  10. Characterization of nanocrystalline ZnO:Al films by sol-gel spin coating method

    SciTech Connect

    Gareso, P. L. Rauf, N. Juarlin, E.; Sugianto,; Maddu, A.

    2014-09-25

    Nanocrystalline ZnO films doped with aluminium by sol-gel spin coating method have been investigated using optical transmittance UV-Vis and X-ray diffraction (X-RD) measurements. ZnO films were prepared using zinc acetate dehydrate (Zn(CH{sub 3}COO){sub 2}@@‡2H{sub 2}O), ethanol, and diethanolamine (DEA) as a starting material, solvent, and stabilizer, respectively. For doped films, AlCl{sub 3} was added to the mixture. The ZnO:Al films were deposited on a transparent conductive oxide (TCO) substrate using spin coating technique at room temperature with a rate of 3000 rpm in 30 sec. The deposited films were annealed at various temperatures from 400°C to 600°C during 60 minutes. The transmittance UV-Vis measurement results showed that after annealing at 400°C, the energy band gap profile of nanocrystalline ZnO:Al film was a blue shift. This indicated that the band gap of ZnO:Al increased after annealing due to the increase of crystalline size. As the annealing temperature increased the bandgap energy was a constant. In addition to this, there was a small oscillation occurring after annealing compared to the as–grown samples. In the case of X-RD measurements, the crystalinity of the films were amorphous before annealing, and after annealing the crystalinity became enhance. Also, X-RD results showed that structure of nanocrystalline ZnO:Al films were hexagonal polycrystalline with lattice parameters are a = 3.290 Å and c = 5.2531 Å.

  11. Measurements of plasma zinc

    PubMed Central

    Davies, I. J. T.; Musa, M.; Dormandy, T. L.

    1968-01-01

    Zinc is an essential trace element. Previous methods of measuring zinc in clinical material have been difficult and reported findings must be treated with caution. Using atomic absorption spectroscopy it has been established that plasma zinc is one of the most uniform biochemical characteristics of normal adult blood. Sex and age differences in adult life are insignificant. Increased metabolic activity, on the other hand, induces a marked, immediate fall in plasma zinc level. The possible implications of this are discussed. Zinc levels in patients with diabetes mellitus, cardiovascular disease, and anaemia due to acute blood loss have been within normal limits. Plasma zinc is low in certain types of liver disease. PMID:5303355

  12. Is zinc a neuromodulator?

    PubMed

    Kay, Alan R; Tóth, Katalin

    2008-01-01

    The vesicles of certain glutamatergic terminals in the mammalian forebrain are replete with ionic zinc. It is believed that during synaptic transmission zinc is released, binds to receptors on the pre- or postsynaptic membranes, and hence acts as a neuromodulator. Although exogenous zinc modulates a wide variety of channels, whether synaptic zinc transits across the synaptic cleft and alters the response of channels has been difficult to establish. We will review the evidence for zinc as a neuromodulator and propose diagnostic criteria for establishing whether it is indeed one. Moreover, we will delineate alternative ways in which zinc might act at synapses.

  13. Electrical transport behavior of nonstoichiometric magnesium-zinc ferrite

    SciTech Connect

    Ghatak, S.; Sinha, M.; Meikap, A.K.; Pradhan, S.K.

    2010-08-15

    This paper presents the direct current conductivity, alternate current conductivity and dielectric properties of nonstoichiometric magnesium-zinc ferrite below room temperature. The frequency exponent (s) of conductivity shows an anomalous temperature dependency. The magnitude of the temperature exponent (n) of dielectric permittivity strongly depends on frequency and its value decreases with increasing frequency. The grain boundary contribution is dominating over the grain contribution in conduction process and the temperature dependence of resistance due to grain and grain boundary contribution exhibits two activation regions. The ferrite shows positive alternating current magnetoconductivity. The solid state processing technique was used for the preparation of nanocrystalline ferrite powder from oxides of magnesium, zinc and iron. The X-ray diffraction methods were used in determining the structure and composition of obtained ferrite, while multimeter, impedance analyzer, liquid nitrogen cryostat and electromagnet were used in the study of conducting and dielectric properties of ferrite.

  14. Microfluidics based on ZnO/nanocrystalline diamond surface acoustic wave devices

    PubMed Central

    Fu, Y. Q.; Garcia-Gancedo, L.; Pang, H. F.; Porro, S.; Gu, Y. W.; Luo, J. K.; Zu, X. T.; Placido, F.; Wilson, J. I. B.; Flewitt, A. J.; Milne, W. I.

    2012-01-01

    Surface acoustic wave (SAW) devices with 64 μm wavelength were fabricated on a zinc oxide (ZnO) film deposited on top of an ultra-smooth nanocrystalline diamond (UNCD) layer. The smooth surface of the UNCD film allowed the growth of the ZnO film with excellent c-axis orientation and low surface roughness, suitable for SAW fabrication, and could restrain the wave from significantly dissipating into the substrate. The frequency response of the fabricated devices was characterized and a Rayleigh mode was observed at ∼65.4 MHz. This mode was utilised to demonstrate that the ZnO/UNCD SAW device can be successfully used for microfluidic applications. Streaming, pumping, and jetting using microdroplets of 0.5 and 20 μl were achieved and characterized under different powers applied to the SAW device, focusing more on the jetting behaviors induced by the ZnO SAW. PMID:22655016

  15. Room temperature ferromagnetism in Co defused CdTe nanocrystalline thin films

    SciTech Connect

    Rao, N. Madhusudhana; Kaleemulla, S.; Begam, M. Rigana

    2014-04-24

    Nanocrystalline Co defused CdTe thin films were prepared using electron beam evaporation technique by depositing CdTe/Co/CdTe stacked layers with different Co thickness onto glass substrate at 373 K followed by annealing at 573K for 2 hrs. Structural, morphological and magnetic properties of of all the Co defused CdTe thin films has been investigated. XRD pattern of all the films exhibited zinc blende structure with <111> preferential orientation without changing the crystal structure of the films. The grain size of the films increased from 31.5 nm to 48.1 nm with the increase of Co layer thickness from 25nm to 100nm. The morphological studies showed that uniform texture of the films and the presence of Co was confirmed by EDAX. Room temperature magnetization curves indicated an improved ferromagnetic behavior in the films with increase of the Co thickness.

  16. Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders

    SciTech Connect

    Oliver, S. A.; Harris, V. G.; Hamdeh, H. H.; Ho, J. C.

    2000-05-08

    The cation site occupancy of a mechanically activated nanocrystalline zinc ferrite powder was determined as (Zn{sub 0.55}{sup 2+}Fe{sub 0.18}{sup 3+}){sub tet}[Zr{sub 0.45}{sup 2+}Fe{sub 1.82}{sup 3+}]{sub oct}O{sub 4} through analysis of extended x-ray absorption fine structure measurements, showing a large redistribution of cations between sites compared to normal zinc ferrite samples. The overpopulation of cations in the octahedral sites was attributed to the ascendance in importance of the ionic radii over the crystal energy and bonding coordination in determining which interstitial sites are occupied in this structurally disordered powder. Slight changes are observed in the local atomic environment about the zinc cations, but not the iron cations, with respect to the spinel structure. The presence of Fe{sup 3+} on both sites is consistent with the measured room temperature magnetic properties. (c) 2000 American Institute of Physics.

  17. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    SciTech Connect

    Hall, Aaron Christopher; Sarobol, Pylin; Argibay, Nicolas; Clark, Blythe; Diantonio, Christopher

    2015-09-01

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. We demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.

  18. Incorporation of zinc into calcium silicate hydrates, Part I: formation of C-S-H(I) with C/S=2/3 and its isochemical counterpart gyrolite

    SciTech Connect

    Stumm, Andreas . E-mail: andreas.stumm@itc-wgt.fzk.de; Garbev, Krassimir; Beuchle, Guenter; Black, Leon; Stemmermann, Peter; Nueesch, Rolf

    2005-09-01

    We have investigated the incorporation of zinc into both nanocrystalline and crystalline calcium silicate hydrates with starting C/S ratios of 2/3 (0.66). Zinc was added replacing calcium in the starting mixtures [Zn/(Zn+Ca)=0-1/4; 0-10 wt.% Zn], and the resultant phases were characterised using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), differential thermal analysis-thermogravimetry (DTA-TG) and environmental scanning electron microscopy (ESEM). In both groups of samples, increasing zinc content led to gradual structural changes, until eventually a second phase was formed. Zinc was incorporated to similar limits in both sets of samples. The thermal stability of the structures increased to a certain zinc content, beyond which there was structural destabilisation. Zinc incorporation is possible up to {approx}6 wt.%. Our observations strongly indicate similar zinc incorporation mechanisms in both sample series, namely incorporation of zinc into the interlayer of C-S-H(I) and the X-sheet of gyrolite for nanocrystalline and crystalline samples, respectively.

  19. Zinc oxide overdose

    MedlinePlus

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  20. Bacitracin zinc overdose

    MedlinePlus

    ... Small amounts of bacitracin zinc are dissolved in petroleum jelly to create antibiotic ointments. Bacitracin zinc overdose ... is accredited by URAC, also known as the American Accreditation HealthCare Commission (www.urac.org). URAC's accreditation ...

  1. New chiral zinc complexes: synthesis, structure, and induction of axial chirality.

    PubMed

    Degenbeck, Helmut; Felten, Anne-Sophie; Escudero-Adán, Eduardo C; Benet-Buchholz, Jordi; Di Bari, Lorenzo; Pescitelli, Gennaro; Vidal-Ferran, Anton

    2012-08-20

    We describe an efficient methodology for the preparation of new chiral zinc complexes by assembling dynamically racemic biphenol derivatives and chiral 1,2-diamines with suitable zinc(II) precursors. Mononuclear and dinuclear zinc(II) complexes were formed from differently substituted biphenols. The solid-state and solution structural characterization of the resulting compounds allowed us to demonstrate a preferential sense of induced axial chirality for mononuclear complexes, a phenomenon that was not observed for the dinuclear ones. PMID:22862880

  2. Zinc and gastrointestinal disease

    PubMed Central

    Skrovanek, Sonja; DiGuilio, Katherine; Bailey, Robert; Huntington, William; Urbas, Ryan; Mayilvaganan, Barani; Mercogliano, Giancarlo; Mullin, James M

    2014-01-01

    This review is a current summary of the role that both zinc deficiency and zinc supplementation can play in the etiology and therapy of a wide range of gastrointestinal diseases. The recent literature describing zinc action on gastrointestinal epithelial tight junctions and epithelial barrier function is described. Zinc enhancement of gastrointestinal epithelial barrier function may figure prominently in its potential therapeutic action in several gastrointestinal diseases. PMID:25400994

  3. Photovoltaic conversion using Zn chlorophyll derivative assembled in hydrophobic domain onto nanocrystalline TiO2 electrode.

    PubMed

    Amao, Yutaka; Yamada, Yuriko

    2007-02-15

    Photovoltaic conversion using zinc chlorin-e6 (ZnChl-e6), which is zinc chlorophyll-a derivative, and fatty acid (myristic acid or cholic acid) co-adsorbed nanocrystalline TiO2 layer onto ITO glass (OTE) electrode is developed. The maximum peaks of photocurrent action spectrum of the ZnChl-e6 adsorbed TiO2 layer onto OTE (ZnChl-e6/TiO2) are 400, 660 and 800 nm, respectively. Especially the IPCE value at 800 nm (7.5%) is larger than that of 660 nm (6.9%). This result indicates that ZnChl-e6 molecules is aggregated or formed dimer on a nanocrystalline TiO2 layer onto OTE and the absorption band is shifted to near IR region. The photocurrent action spectrum of ZnChl-e6 and cholic acid adsorbed TiO2 layer onto OTE (ZnChl-e6-Cho/TiO2 is similar to that of the UV-vis absorption spectrum in methanol solution, and IPCE values at 400 and 660 nm (8.1%) increase and the IPCE value at 800 nm (4.1%) decreases, indicating that the aggregation of ZnChl-e6 molecules on the TiO2 is suppressed by cholic acid. By using ZnChl-e6-Cho/TiO2, the short-circuit photocurrent density and open-circuit photovoltage also increase compared with that of ZnChl-e6 adsorbed nanocrystalline TiO2 electrode.

  4. Nucleophilic Aromatic Substitution.

    ERIC Educational Resources Information Center

    Avila, Walter B.; And Others

    1990-01-01

    Described is a microscale organic chemistry experiment which demonstrates one feasible route in preparing ortho-substituted benzoic acids and provides an example of nucleophilic aromatic substitution chemistry. Experimental procedures and instructor notes for this activity are provided. (CW)

  5. LIGHT-WEIGHT NANOCRYSTALLINE HYDROGEN STORAGE MATERIALS

    SciTech Connect

    S. G. Sankar; B. Zande; R.T. Obermyer; S. Simizu

    2005-11-21

    During Phase I of this SBIR Program, Advanced Materials Corporation has addressed two key issues concerning hydrogen storage: 1. We have conducted preliminary studies on the effect of certain catalysts in modifying the hydrogen absorption characteristics of nanocrystalline magnesium. 2. We have also conducted proof-of-concept design and construction of a prototype instrument that would rapidly screen materials for hydrogen storage employing chemical combinatorial technique in combination with a Pressure-Composition Isotherm Measurement (PCI) instrument. 3. Preliminary results obtained in this study approach are described in this report.

  6. [Zinc and gastrointestinal disorders].

    PubMed

    Higashimura, Yasuki; Takagi, Tomohisa; Naito, Yuji

    2016-07-01

    Zinc, an essential trace element, affects immune responses, skin metabolism, hormone composition, and some sensory function, so that the deficiency presents various symptoms such as immunodeficiency and taste obstacle. Further, the zinc deficiency also considers as a risk of various diseases. Recent reports demonstrated that -20% of the Japanese population was marginally zinc deficiency, and over 25% of the global population is at high risk of zinc deficiency. In gastrointestinal disorders, zinc plays an important role in the healing of mucosal and epithelial damage. In fact, polaprezinc, a chelate compound of zinc and L-carnosine, has been used for the treatment of gastric ulcer and gastritis. We describe here the therapeutic effect of zinc on gastrointestinal disorders. PMID:27455800

  7. Ternary and coupled binary zinc tin oxide nanopowders: Synthesis, characterization, and potential application in photocatalytic processes

    SciTech Connect

    Ivetić, T.B.; Finčur, N.L.; Đačanin, Lj. R.; Abramović, B.F.; Lukić-Petrović, S.R.

    2015-02-15

    Highlights: • Mechanochemically synthesized nanocrystalline zinc tin oxide (ZTO) powders. • Photocatalytic degradation of alprazolam in the presence of ZTO water suspensions. • Coupled binary ZTO exhibits enhanced photocatalytic activity compared to ternary ZTO. - Abstract: In this paper, ternary and coupled binary zinc tin oxide nanocrystalline powders were prepared via simple solid-state mechanochemical method. X-ray diffraction, scanning electron microscopy, Raman and reflectance spectroscopy were used to study the structure and optical properties of the obtained powder samples. The thermal behavior of zinc tin oxide system was examined through simultaneous thermogravimetric-differential scanning calorimetric analysis. The efficiencies of ternary (Zn{sub 2}SnO{sub 4} and ZnSnO{sub 3}) and coupled binary (ZnO/SnO{sub 2}) zinc tin oxide water suspensions in the photocatalytic degradation of alprazolam, short-acting anxiolytic of the benzodiazepine class of psychoactive drugs, under UV irradiation were determined and compared with the efficiency of pure ZnO and SnO{sub 2}.

  8. Growth and properties of nanocrystalline germanium films

    SciTech Connect

    Niu Xuejun; Dalal, Vikram L.

    2005-11-01

    We report on the growth characteristics and structure of nanocrystalline germanium films using low-pressure plasma-assisted chemical vapor deposition process in a remote electron-cyclotron-resonance reactor. The films were grown from mixtures of germane and hydrogen at deposition temperatures varying between 130 deg. C and 310 deg. C. The films were measured for structure using Raman and x-ray spectroscopy. It is shown that the orientation of the film depends strongly upon the deposition conditions. Low-temperature growth leads to both <111> and <220> orientations, whereas at higher temperatures, the <220> grain strongly dominates. The Raman spectrum reveals a sharp crystalline peak at 300 cm{sup -1} and a high ratio between crystalline and amorphous peak that is at 285 cm{sup -1}. The grain size in the films is a strong function of hydrogen dilution, with higher dilutions leading to smaller grain sizes. Growth temperature also has a strong influence on grain size, with higher temperatures yielding larger grain sizes. From these results, which are seen to be compatible with the growth of nanocrystalline Si films, it is seen that the natural growth direction for the film is <220>, and that bonded hydrogen interferes with the growth of <220> grains. High hydrogen dilutions lead to more random nucleation.

  9. Preparation of nanocrystalline yttria-stabilized zirconia

    SciTech Connect

    Venkatachari, K.R.; Huang, D.; Ostrander, S.P.; Schulze, W.A.; Stangle, G.C.

    1995-03-01

    Nanocrystalline powder with an average crystalline size of 8--12 nm, which was produced by a combustion synthesis process, was used to prepare dense, nanocrystalline articles. Green compacts of high green density were prepared by dry pressing and densified by a fast-firing process. During fast-firing, the dwell temperature significantly affected the final grain size and final density. On the other hand, the ranges of heating rates and dwell times that were used had a much less significant effect on the final density and final grain size. It was determined, however, that a high final density ({gt}99% {rho}{sub th}) and a very fine final average grain size ({lt}200 nm) can be simultaneously achieved under three different firing conditions. The high densification rates are, in part, a result of the minimal coarsening that the particles undergo when the sample is taken rapidly through the temperature regime in which surface diffusion predominates to the temperature regime in which the densification mechanisms of grain boundary and lattice diffusion predominate.

  10. Nanocrystalline cerium oxide materials for solid fuel cell systems

    SciTech Connect

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  11. Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel.

    PubMed

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha; Slobodyan, Zvenomyra; Tsyrulnyk, Oleksandr

    2016-12-01

    Engineering materials with nanocrystalline structure could be exploited under simultaneous action of mechanical loading and corrosion environments; therefore, their corrosion resistance is important. Surface nanocrystalline structure was generated on middle carbon steels by severe plastic deformation using the method of mechanical pulse friction treatment. This treatment additionally includes high temperature phase transformation and alloying. Using a complex of the corrosive, electrochemical and physical investigations, it was established that nanocrystalline structures can be characterized by lower or increased corrosion resistance in comparison with the reference material. It is caused by the action of two confronting factors: arising energy level and anticorrosive alloying of the surface layer.

  12. On the hardening and softening of nanocrystalline materials

    SciTech Connect

    Fougere, G.E.; Weertman, J.R. . Dept. of Materials Science and Engineering); Siegel, R.W. . Materials Science Div.)

    1993-04-01

    Nanocrystalline Pd and Cu samples have been thermally treated to determine whether the relation between hardness and grain size depend on the method used to vary the grain sizes. Previous reports indicate that hardening with decreasing grain size resulted from data obtained using individual samples, while softening with decreasing grain size resulted from data from a given sample that had been thermally treated. Hardening and softening regimes were evident for the nanocrystalline cu, and the hardness improvements over the original as-consolidated state were maintained throughout the thermal treatments. This review examines our hardness results for Cu and Pd and those for other nanocrystalline materials.

  13. Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel.

    PubMed

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha; Slobodyan, Zvenomyra; Tsyrulnyk, Oleksandr

    2016-12-01

    Engineering materials with nanocrystalline structure could be exploited under simultaneous action of mechanical loading and corrosion environments; therefore, their corrosion resistance is important. Surface nanocrystalline structure was generated on middle carbon steels by severe plastic deformation using the method of mechanical pulse friction treatment. This treatment additionally includes high temperature phase transformation and alloying. Using a complex of the corrosive, electrochemical and physical investigations, it was established that nanocrystalline structures can be characterized by lower or increased corrosion resistance in comparison with the reference material. It is caused by the action of two confronting factors: arising energy level and anticorrosive alloying of the surface layer. PMID:26831689

  14. Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel

    NASA Astrophysics Data System (ADS)

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha; Slobodyan, Zvenomyra; Tsyrulnyk, Oleksandr

    2016-02-01

    Engineering materials with nanocrystalline structure could be exploited under simultaneous action of mechanical loading and corrosion environments; therefore, their corrosion resistance is important. Surface nanocrystalline structure was generated on middle carbon steels by severe plastic deformation using the method of mechanical pulse friction treatment. This treatment additionally includes high temperature phase transformation and alloying. Using a complex of the corrosive, electrochemical and physical investigations, it was established that nanocrystalline structures can be characterized by lower or increased corrosion resistance in comparison with the reference material. It is caused by the action of two confronting factors: arising energy level and anticorrosive alloying of the surface layer.

  15. Exposure and risk assessment of zinc in Japanese surface waters.

    PubMed

    Naito, Wataru; Kamo, Masashi; Tsushima, Koji; Iwasaki, Yuichi

    2010-09-15

    to be substituted by other metals with less toxicity. In addition to improving science-based risk assessment methodologies which often focus on the toxicological perspectives, it is important to develop a more robust framework considering a trade-off between a damage in ecosystem and a benefit in human activities. Zinc can be a role model for it.

  16. Nonstoichiometric zinc oxide and indium-doped zinc oxide: Electrical conductivity and {sup 111}In-TDPAC studies

    SciTech Connect

    Wang, R.; Sleight, A.W.; Platzer, R.; Gardner, J.A.

    1996-02-15

    Indium-doped zinc oxide powders have been prepared which show room-temperature electrical conductivities as high as 30 {Omega}{sup {minus}1} cm{sup {minus}1}. The indium doping apparently occurs as Zn{sub 1-x}In{sub x}O,Zn{sub 1-y}In{sub y}O{sub 1+y/2}, or a combination of these. Optimum conductivity occurs for Zn{sub 1-x}In{sub x}O where the maximum value of x obtained was about 0.5 at%. The degrees of sample reduction were determined by iodimetric titration. Time differential perturbed angular correlation (TDPAC) spectroscopy on indium doped zinc oxide is consistent with indium substituting at normal zinc sites in the ZnO lattice. TDPAC studies on zinc oxide annealed under zinc vapors show a second environment for the {sup 111}In probe. In this case, there is an unusually high temperature dependence of the electric field gradient which may be caused by a nearby zinc interstitial. An important conclusion of this work is that zinc interstitials are not ionized and do not therefore contribute significantly to the increased conductivity of reduced zinc oxide.

  17. Growth of layered basic zinc acetate in methanolic solutions and its pyrolytic transformation into porous zinc oxide films.

    PubMed

    Hosono, Eiji; Fujihara, Shinobu; Kimura, Toshio; Imai, Hiroaki

    2004-04-15

    Layered basic zinc acetate (LBZA), Zn(5)(OH)(8)(CH(3)COO)(2).2H(2)O, was deposited on glass substrates by a chemical bath deposition (CBD) method using methanolic solutions of zinc acetate dihydrate. The substrates were put into bottles filled with the solutions and sealed up and were kept at 60 degrees C in a drying oven. Immersion time necessary for the deposition of LBZA films was typically more than 28 h. This was a key to inducing heterogeneous nucleation of LBZA through control over a degree of supersaturation in the evolution of a unique, nest-like morphology. Hydration water contained by zinc acetate dihydrate was quantitatively enough to promote hydrolysis of zinc acetate. The LBZA films were transformed into nanocrystalline, porous ZnO films without morphological deformation by heating at 150 degrees C in air. A mechanism of the formation of the nest-like morphology was discussed based on nonaqueous solution reactions, nucleation, and crystal growth during the CBD process.

  18. Dip coated nanocrystalline CdZnS thin films for solar cell application

    SciTech Connect

    Dongre, J. K. Chaturvedi, Mahim; Patil, Yuvraj; Sharma, Sandhya; Jain, U. K.

    2015-07-31

    Nanocrystalline cadmium sulfide (CdS) and zinc cadmium sulfide (ZnCdS) thin films have been grown via simple and low cost dip coating technique. The prepared films are characterized by X-ray diffraction (XRD), atomic force microscopic (AFM) and UV-VIS spectrophotometer techniques to reveal their structural, morphological and optical properties. XRD shows that both samples grown have zinc blende structure. The grain size is calculated as 6.2 and 8 nm using Scherrer’s formula. The band gap value of CdS and CdZnS film is estimated to be 2.58 and 2.69 eV respectively by UV-vis spectroscopy. Photoelectrochemical (PEC) investigations are carried out using cell configuration as n-CdZnS/(1M NaOH + 1M Na2S + 1M S)/C. The photovoltaic output characteristic is used to calculate fill-factor (FF) and solar conversion efficiency (η)

  19. Improved zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  20. [Zinc and autophagy].

    PubMed

    Qiaoyun, Liu; Hanming, Shen; Dajing, Xia

    2016-05-25

    Autophagy refers to a catabolic process,in which the damaged organelles or biological macromolecules, such as protein aggregates, are degraded via lysosome. The completion of autophagy depends on a series of autophagy-related genes (Atgs) and many upstream regulatory molecules. Zinc is an essential trace element, and plays an important role in the process of autophagy as a component of enzymes and structural proteins like zinc transporters or zinc finger protein. The regulation of autophagy is closely associated with the zinc ion homeostasis. In addition, many studies suggest that the protective effects of zinc on cells are likely to be done by autophagy. This review aims to summarize the current research progress and discuss the reciprocal regulation mechanism between zinc and autophagy, which may provide insights into the intricate roles of autophagy in diseases and find novel strategies for treatment and prevention of human diseases. PMID:27651198

  1. Zinc electrode and rechargeable zinc-air battery

    SciTech Connect

    Ross, P.N. Jr.

    1989-06-27

    This patent describes an improved zinc electrode for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed.

  2. Monolithic Nanocrystalline Au Fabricated by the Compaction of Nanoscale Foam

    SciTech Connect

    Hodge, A M; Biener, J; Hsiung, L M; Hamza, A V; Satcher Jr., J H

    2004-07-28

    We describe a two-step dealloying/compaction process to produce nanocrystalline Au. First, nanocrystalline/nanoporous Au foam is synthesized by electrochemically-driven dealloying. The resulting Au foams exhibit porosities of 60 and 70% with pore sizes of {approx} 40 and 100 nm, respectively, and a typical grain size of <50 nm. Second, the nanoporous foams are fully compacted to produce nanocrystalline monolithic Au. The compacted Au was characterized by TEM and X-ray diffraction and tested by depth-sensing nanoindentation. The compacted nanocrystalline Au exhibits an average grain size of <50 nm and hardness values ranging from 1.4 to 2.0 GPa, which are up to 4.5 times higher than the hardness values obtained from polycrystalline Au.

  3. High Temperature Stable Nanocrystalline SiGe Thermoelectric Material

    NASA Technical Reports Server (NTRS)

    Yang, Sherwin (Inventor); Matejczyk, Daniel Edward (Inventor); Determan, William (Inventor)

    2013-01-01

    A method of forming a nanocomposite thermoelectric material having microstructural stability at temperatures greater than 1000 C. The method includes creating nanocrystalline powder by cryomilling. The method is particularly useful in forming SiGe alloy powder.

  4. Zinc in Entamoeba invadens.

    NASA Technical Reports Server (NTRS)

    Morgan, R. S.; Sattilaro, R. F.

    1972-01-01

    Atomic absorption spectroscopy, electron microprobe analysis, and dithizone staining of trophozoites and cysts of Entamoeba invadens demonstrate that these cells have a high concentration of zinc (approximately one picogram per cell or 1% of their dry weight). In the cysts of this organism, the zinc is confined to the chromatoid bodies, which previous work has shown to contain crystals of ribosomes. The chemical state and function of this zinc are unknown.

  5. Supra- and nanocrystallinities: a new scientific adventure.

    PubMed

    Pileni, M P

    2011-12-21

    Nanomaterials exist in the interstellar medium, in biology, in art and also metallurgy. Assemblies of nanomaterials were observed in the early solar system as well as silicate particle opals. The latter exhibits unusual optical properties directly dependent on particle ordering in 3D superlattices.The optical properties of noble metal nanoparticles (Ag, Au and Cu) change with the ordering of atoms in the nanocrystals, called nanocrystallinity. The vibrational properties related to nanocrystallinity markedly differ with the vibrational modes studied. Hence, a drastic effect on nanocrystallinity is observed on the confined acoustic vibrational property of the fundamental quadrupolar modes whereas the breathing acoustic modes remain quasi-unchanged. The mechanical properties characterized by the Young's modulus of multiply twinned particle (MTP) films are markedly lower than those of single nanocrystals.Two fcc supracrystal growth mechanisms, supported by simulation, of Au nanocrystals are proposed: heterogeneous and homogeneous growth processes. The final morphology of nanocrystal assemblies, with either films by layer-by-layer growth characterized by their plastic deformation or well-defined shapes grown in solution, depends on the solvent used to disperse the nanocrystals before the evaporation process.At thermodynamic equilibrium, two simultaneous supracrystal growth processes of Au nanocrystals take place in solution and at the air-liquid interface. These growth processes are rationalized by simulation. They involve, on the one hand, van der Waals interactions and, on the other hand, the attractive interaction between nanocrystals and the interface.Ag nanocrystals (5 nm) self-order in colloidal crystals with various arrangements called supracrystallinities. As in bulk materials, phase diagrams of supracrystals with structural transitions from face-centered-cubic (fcc) to hexagonal-close-packed (hcp) and body-centered-cubic (bcc) structures are observed. They

  6. Nanocrystalline Zeolites: Synthesis, Mechanism, and Applications

    NASA Astrophysics Data System (ADS)

    Severance, Michael Andrew

    Nanocrystalline zeolite particles are becoming an important material in many technical applications (e.g. zeolite membranes). Synthetic methods that minimize the zeolite crystal diameter, while providing a narrow particle size distribution, are of primary importance in these technical applications. However, there are several limitations to currently existing synthetic routes aimed at producing nanozeolites and zeolite membrane devices. For example, zeolite growth in these contexts typically requires days to weeks at high temperature to crystallize. Despite excellent performance of zeolite membranes in several separation applications, the long synthesis times required undermine any practical application of these technologies. This work focuses on chemical manipulation of zeolite nucleation processes in sol gel systems in effort to address such limitations. The primary findings indicate that careful control of the nucleation stage of a clear zeolite synthesis (optically transparent sol gel) allow the formation of zeolite Y nanocrystals less than 50 nm in diameter with a polydispersity index less than 0.2. Furthermore, chemical perturbations made during the nucleation stage of zeolite Y hydrogel synthesis is shown to accelerate crystal growth by a factor of 3-4, depending on the specific sol gel chemistry. These findings are applied to the nanocrystal seeding and rapid hydrothermal growth of zeolite Y membranes on inexpensive polymeric supports. A novel synthetic method is developed to this end. Also, the chemical and physical properties of monodisperse nanocrystalline zeolite Y synthesized herein are explored by electrochemical impedance spectroscopy. It is found that the particle interface plays an important role in the ionic conductivity of nanocrystalline zeolites in contrast to their larger zeolite counterparts in analogy to other ceramic and metal oxide ion conductors. Finally, the possibility to produce novel organic and inorganic composite systems through

  7. Supra- and nanocrystallinities: a new scientific adventure

    NASA Astrophysics Data System (ADS)

    Pileni, M. P.

    2011-12-01

    Nanomaterials exist in the interstellar medium, in biology, in art and also metallurgy. Assemblies of nanomaterials were observed in the early solar system as well as silicate particle opals. The latter exhibits unusual optical properties directly dependent on particle ordering in 3D superlattices. The optical properties of noble metal nanoparticles (Ag, Au and Cu) change with the ordering of atoms in the nanocrystals, called nanocrystallinity. The vibrational properties related to nanocrystallinity markedly differ with the vibrational modes studied. Hence, a drastic effect on nanocrystallinity is observed on the confined acoustic vibrational property of the fundamental quadrupolar modes whereas the breathing acoustic modes remain quasi-unchanged. The mechanical properties characterized by the Young’s modulus of multiply twinned particle (MTP) films are markedly lower than those of single nanocrystals. Two fcc supracrystal growth mechanisms, supported by simulation, of Au nanocrystals are proposed: heterogeneous and homogeneous growth processes. The final morphology of nanocrystal assemblies, with either films by layer-by-layer growth characterized by their plastic deformation or well-defined shapes grown in solution, depends on the solvent used to disperse the nanocrystals before the evaporation process. At thermodynamic equilibrium, two simultaneous supracrystal growth processes of Au nanocrystals take place in solution and at the air-liquid interface. These growth processes are rationalized by simulation. They involve, on the one hand, van der Waals interactions and, on the other hand, the attractive interaction between nanocrystals and the interface. Ag nanocrystals (5 nm) self-order in colloidal crystals with various arrangements called supracrystallinities. As in bulk materials, phase diagrams of supracrystals with structural transitions from face-centered-cubic (fcc) to hexagonal-close-packed (hcp) and body-centered-cubic (bcc) structures are observed

  8. Zinc: An Essential Micronutrient

    PubMed Central

    SAPER, ROBERT B.; RASH, REBECCA

    2009-01-01

    Zinc is an essential micronutrient for human metabolism that catalyzes more than 100 enzymes, facilitates protein folding, and helps regulate gene expression. Patients with malnutrition, alcoholism, inflammatory bowel disease, and malabsorption syndromes are at an increased risk of zinc deficiency. Symptoms of zinc deficiency are nonspecific, including growth retardation, diarrhea, alopecia, glossitis, nail dystrophy, decreased immunity, and hypogonadism in males. In developing countries, zinc supplementation may be effective for the prevention of upper respiratory infection and diarrhea, and as an adjunct treatment for diarrhea in malnourished children. Zinc in combination with antioxidants may be modestly effective in slowing the progression of intermediate and advanced age-related macular degeneration. Zinc is an effective treatment for Wilson disease. Current data do not support zinc supplementation as effective for upper respiratory infection, wound healing, or human immunodeficiency virus. Zinc is well tolerated at recommended dosages. Adverse effects of long-term high-dose zinc use include suppressed immunity, decreased high-density lipoprotein cholesterol levels, anemia, copper deficiency, and possible genitourinary complications. PMID:20141096

  9. Zinc and Chlamydia trachomatis

    SciTech Connect

    Sugarman, B.; Epps, L.R.

    1985-07-01

    Zinc was noted to have significant effects upon the infection of McCoy cells by each of two strains of Chlamydia trachomatis. With a high or low Chlamydia inoculant, the number of infected cells increased up to 200% utilizing supplemental zinc (up to 1 x 10/sup -4/ M) in the inoculation media compared with standard Chlamydia cultivation media (8 x 10/sup -6/ M zinc). Ferric chloride and calcium chloride did not effect any such changes. Higher concentrations of zinc, after 2 hr of incubation with Chlamydia, significantly decreased the number of inclusions. This direct effect of zinc on the Chlamydia remained constant after further repassage of the Chlamydia without supplemental zinc, suggesting a lethal effect of the zinc. Supplemental zinc (up to 10/sup -4/ M) may prove to be a useful addition to inoculation media to increase the yield of culturing for Chlamydia trachomatis. Similarly, topical or oral zinc preparations used by people may alter their susceptibility to Chamydia trachomatis infections.

  10. Luminescence and related properties of nanocrystalline porous silicon

    NASA Astrophysics Data System (ADS)

    Koshida, N.

    This document is part of subvolume C3 'Optical Properties' of volume 34 'Semiconductor quantum structures' of Landolt-Börnstein, Group III, Condensed Matter, on the optical properties of quantum structures based on group IV semiconductors. It discusses luminescence and related properties of nanocrystalline porous silicon. Topics include an overview of nanostructured silicon, its fabrication technology, and properties of nanocrystalline porous silicon such as confinement effects, photoluminescence, electroluminesce, carrier charging effects, ballistic transport and emission, and thermally induced acoustic emission.

  11. Narrowing the gap: from semiconductor to semimetal in the homologous series of rare-earth zinc arsenides RE(2-y)Zn4As4·n(REAs) and Mn-substituted derivatives RE(2-y)Mn(x)Zn(4-x)As4·n(REAs) (RE = La-Nd, Sm, Gd).

    PubMed

    Lin, Xinsong; Tabassum, Danisa; Mar, Arthur

    2015-12-14

    A homologous series of ternary rare-earth zinc arsenides, prepared by reactions of the elements at 750 °C, has been identified with the formula RE(2-y)Zn4As4·n(REAs) (n = 2, 3, 4) for various RE members. They adopt trigonal structures: RE(4-y)Zn4As6 (RE = La-Nd), space group R3̄m1, Z = 3; RE(5-y)Zn4As7 (RE = Pr, Nd, Sm, Gd), space group P3̄m1, Z = 1; RE(6-y)Zn4As8 (RE = La-Nd, Sm, Gd), space group R3̄m1, Z = 3. The Zn atoms can be partially substituted by Mn atoms, resulting in quaternary derivatives RE(2-y)Mn(x)Zn(4-x)As4·n(REAs). Single-crystal structures were determined for nine ternary and quaternary arsenides RE(2-y)M4As4·n(REAs) (M = Mn, Zn) as representative examples of these series. The structures are built by stacking close-packed nets of As atoms, sometimes in very long sequences, with RE atoms occupying octahedral sites and M atoms occupying tetrahedral sites, resulting in an intergrowth of [REAs] and [M2As2] slabs. The recurring feature of all members of the homologous series is a sandwich of [M2As2]-[REAs]-[M2As2] slabs, while rocksalt-type blocks of [REAs] increase in thickness between these sandwiches with higher n. Similar to the previously known related homologous series REM(2-x)As2·n(REAs) which is deficient in M, this new series RE(2-y)M4As4·n(REAs) exhibits deficiencies in RE to reduce the electron excess that would be present in the fully stoichiometric formulas. Enthalpic and entropic factors are considered to account for the differences in site deficiencies in these two homologous series. Band structure calculations indicate that the semiconducting behaviour of the parent n = 0 member (with CaAl2Si2-type structure) gradually evolves, through a narrowing of the gap between valence and conduction bands, to semimetallic behaviour as the number of [REAs] blocks increases, to the limit of n = ∞ for rocksalt-type REAs.

  12. Chelators for investigating zinc metalloneurochemistry.

    PubMed

    Radford, Robert J; Lippard, Stephen J

    2013-04-01

    The physiology and pathology of mobile zinc signaling has become an important topic in metalloneurochemistry. To study the action of mobile zinc effectively, specialized tools are required that probe the temporal and positional changes of zinc ions within live tissue and cells. In the present article we describe the design and implementation of selective zinc chelators as antagonists to interrogate the function of mobile zinc, with an emphasis on the pools of vesicular zinc in the terminals of hippocampal mossy fiber buttons.

  13. Toughness and strength of nanocrystalline graphene

    PubMed Central

    Shekhawat, Ashivni; Ritchie, Robert O.

    2016-01-01

    Pristine monocrystalline graphene is claimed to be the strongest material known with remarkable mechanical and electrical properties. However, graphene made with scalable fabrication techniques is polycrystalline and contains inherent nanoscale line and point defects—grain boundaries and grain-boundary triple junctions—that lead to significant statistical fluctuations in toughness and strength. These fluctuations become particularly pronounced for nanocrystalline graphene where the density of defects is high. Here we use large-scale simulation and continuum modelling to show that the statistical variation in toughness and strength can be understood with ‘weakest-link' statistics. We develop the first statistical theory of toughness in polycrystalline graphene, and elucidate the nanoscale origins of the grain-size dependence of its strength and toughness. Our results should lead to more reliable graphene device design, and provide a framework to interpret experimental results in a broad class of two-dimensional materials. PMID:26817712

  14. Nanocrystalline diamond coatings for mechanical seals applications.

    PubMed

    Santos, J A; Neto, V F; Ruch, D; Grácio, J

    2012-08-01

    A mechanical seal is a type of seal used in rotating equipment, such as pumps and compressors. It consists of a mechanism that assists the connection of the rotating shaft to the housings of the equipments, preventing leakage or avoiding contamination. A common cause of failure of these devices is end face wear out, thus the use of a hard, smooth and wear resistant coating such as nanocrystalline diamond would be of great importance to improve their working performance and increase their lifetime. In this paper, different diamond coatings were deposited by the HFCVD process, using different deposition conditions. Additionally, the as-grown films were characterized for, quality, morphology and microstructure using scanning electron microscopy (SEM) and Raman spectroscopy. The topography and the roughness of the films were characterized by atomic force microscopy (AFM). PMID:22962831

  15. Dye-sensitized nanocrystalline solar cells.

    PubMed

    Peter, Laurence M

    2007-06-01

    The basic physical and chemical principles behind the dye-sensitized nanocrystalline solar cell (DSC: also known as the Grätzel cell after its inventor) are outlined in order to clarify the differences and similarities between the DSC and conventional semiconductor solar cells. The roles of the components of the DSC (wide bandgap oxide, sensitizer dye, redox electrolyte or hole conductor, counter electrode) are examined in order to show how they influence the performance of the system. The routes that can lead to loss of DSC performance are analyzed within a quantitative framework that considers electron transport and interfacial electron transfer processes, and strategies to improve cell performance are discussed. Electron transport and trapping in the mesoporous oxide are discussed, and a novel method to probe the electrochemical potential (quasi Fermi level) of electrons in the DSC is described. The article concludes with an assessment of the prospects for future development of the DSC concept.

  16. Thermal Conductivity in Nanocrystalline Ceria Thin Films

    SciTech Connect

    Marat Khafizov; In-Wook Park; Aleksandr Chernatynskiy; Lingfeng He; Jianliang Lin; John J. Moore; David Swank; Thomas Lillo; Simon R. Phillpot; Anter El-Azab; David H. Hurley

    2014-02-01

    The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser-based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO2. A variety of microstructure imaging techniques including X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron analysis, and electron energy loss spectroscopy indicate that the thermal conductivity is influenced by grain boundaries, dislocations, and oxygen vacancies. The temperature dependence of the thermal conductivity is analyzed using an analytical solution of the Boltzmann transport equation. The conclusion of this study is that oxygen vacancies pose a smaller impediment to thermal transport when they segregate along grain boundaries.

  17. Mesoscopically structured nanocrystalline metal oxide thin films

    NASA Astrophysics Data System (ADS)

    Carretero-Genevrier, Adrian; Drisko, Glenna L.; Grosso, David; Boissiere, Cédric; Sanchez, Clement

    2014-11-01

    This review describes the main successful strategies that are used to grow mesostructured nanocrystalline metal oxide and SiO2 films via deposition of sol-gel derived solutions. In addition to the typical physicochemical forces to be considered during crystallization, mesoporous thin films are also affected by the substrate-film relationship and the mesostructure. The substrate can influence the crystallization temperature and the obtained crystallographic orientation due to the interfacial energies and the lattice mismatch. The mesostructure can influence the crystallite orientation, and affects nucleation and growth behavior due to the wall thickness and pore curvature. Three main methods are presented and discussed: templated mesoporosity followed by thermally induced crystallization, mesostructuration of already crystallized metal oxide nanobuilding units and substrate-directed crystallization with an emphasis on very recent results concerning epitaxially grown piezoelectric structured α-quartz films via crystallization of amorphous structured SiO2 thin films.

  18. Toughness and strength of nanocrystalline graphene

    DOE PAGES

    Shekhawat, Ashivni; Ritchie, Robert O.

    2016-01-28

    Pristine monocrystalline graphene is claimed to be the strongest material known with remarkable mechanical and electrical properties. However, graphene made with scalable fabrication techniques is polycrystalline and contains inherent nanoscale line and point defects—grain boundaries and grain-boundary triple junctions—that lead to significant statistical fluctuations in toughness and strength. These fluctuations become particularly pronounced for nanocrystalline graphene where the density of defects is high. Here we use large-scale simulation and continuum modelling to show that the statistical variation in toughness and strength can be understood with ‘weakest-link’ statistics. We develop the first statistical theory of toughness in polycrystalline graphene, and elucidatemore » the nanoscale origins of the grain-size dependence of its strength and toughness. Lastly, our results should lead to more reliable graphene device design, and provide a framework to interpret experimental results in a broad class of two-dimensional materials.« less

  19. Nanocrystalline silicon thin films for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Queen, Daniel; Jugdersuren, Battogtokh; Culberston, Jim; Wang, Qi; Nemeth, William; Metcalf, Tom; Liu, Xiao

    2014-03-01

    Recent advances in thermoelectric materials have come from reductions in thermal conductivity by manipulating both chemical composition and nanostructure to limit the phonon mean free path. However, wide spread applications for some of these materials may be limited due to high raw material and integration costs. In this talk we will discuss our recent results on nanocrystalline silicon thin films deposited by both hot-wire and plasma enhanced chemical vapor deposition where the nanocrystal size and crystalline volume fraction are varied by dilution of the silane precursor gas with hydrogen. Nanocyrstalline silicon is an established material technology used in multijunction amorphous silicon solar cells and has the potential to be a low cost and scalable material for use in thermoelectric devices. This work supported by the Office of Naval Research and the National Research Council.

  20. Electrochemical Aging of Thermal-Sprayed Zinc Anodes on Concrete

    SciTech Connect

    Holcomb, G.R.; Bullard, S.J.; Covino, B.S. Jr.; Cramer, S.D.; Cryer, C.B.; McGill, G.E.

    1996-10-01

    Thermal-sprayed zinc anodes are used in impressed current cathodic protection systems for some of Oregon's coastal reinforced concrete bridges. Electrochemical aging of zinc anodes results in physical and chemical changes at the zinc-concrete interface. Concrete surfaces heated prior to thermal-spraying had initial adhesion strengths 80 pct higher than unheated surfaces. For electrochemical aging greater than 200 kC/m{sup 2} (5.2 A h/ft{sup 2}), there was no difference in adhesion strengths for zinc on preheated and unheated concrete. Adhesion strengths decreased monotonically after about 400 to 600 kC/m{sup 2} (10.4 to 15.6 A-h/ft{sup 2}) as a result of the reaction zones at the zinc-concrete interface. A zone adjacent to the metallic zinc (and originally part of the zinc coating) was primarily zincite (ZnO), with minor constituents of wulfingite (Zn(OH){sub 2}), simonkolleite (Zn{sub 5}(OH) {sub 8}C{sub l2}{sup .}H{sub 2}O), and hydrated zinc hydroxide sulfates (Zn{sub 4}SO{sub 4}(OH){sub 6}{sup .}xH{sub 2}O). This zone is the locus for cohesive fracture when the zinc coating separates from the concrete during adhesion tests. Zinc ions substitute for calcium in the cement paste adjacent to the coating as the result of secondary mineralization. The initial estimate of the coating service life based on adhesion strength measurements in accelerated impressed current cathodic protection tests is about 27 years.

  1. Optoelectronic properties of nanocrystalline silicon composites

    NASA Astrophysics Data System (ADS)

    Posada Marin, Yury

    The interest in silicon at the nano-scale level has gained great impetus since the discovery in the last decade of its photoluminescence properties at room temperature; this characteristic has opened up the possibility of creating microelectronics with optical integrated capabilities and has been the main motivation for new research in photonics and optoelectronics applications. To date, the most cost effective technique used to make silicon nanoparticles is the electroetching of silicon wafers in HF electrolytes solutions; this method generates hydrogen-passivated particles by the electrochemical dispersion of bulk silicon. The ultrasonic fracturing of porous silicon structures produces a colloidal suspension of particles in a large variety of organic solvents that can be readily used as photoluminescent tags and to create new optical materials. Silicon nanoparticles can be also produced by sputtering Si-SiO 2, a technique that can render films with distributions of silicon crystallite sizes. This thesis presents the results of an optoelectronic study of nanocrystalline silicon produced by chemical electroetching of silicon wafers and RF-co sputtering of Si-SiO2. Herein are presented the experimental contributions of this work: the development of two novel materials: silica gel monoliths and microfilms doped with porous silicon nanoclusters that have showed blue shifted photoluminescence emission with intensities over five times higher than the original intensity from the native material used for the sol-gel preparation; the enhancement of the photoluminescence of porous silicon substrates by silica gel spin coating. Finally, through a charge transport study of nanocrystalline silicon in Si-SiO2 a relationship between the photoluminescence with the silicon crystallites sizes and concentrations is demonstrated and analyzed along with the diffusion length.

  2. Zinc Inhibits Hedgehog Autoprocessing

    PubMed Central

    Xie, Jian; Owen, Timothy; Xia, Ke; Singh, Ajay Vikram; Tou, Emiley; Li, Lingyun; Arduini, Brigitte; Li, Hongmin; Wan, Leo Q.; Callahan, Brian; Wang, Chunyu

    2015-01-01

    Zinc is an essential trace element with wide-ranging biological functions, whereas the Hedgehog (Hh) signaling pathway plays crucial roles in both development and disease. Here we show that there is a mechanistic link between zinc and Hh signaling. The upstream activator of Hh signaling, the Hh ligand, originates from Hh autoprocessing, which converts the Hh precursor protein to the Hh ligand. In an in vitro Hh autoprocessing assay we show that zinc inhibits Hh autoprocessing with a Ki of 2 μm. We then demonstrate that zinc inhibits Hh autoprocessing in a cellular environment with experiments in primary rat astrocyte culture. Solution NMR reveals that zinc binds the active site residues of the Hh autoprocessing domain to inhibit autoprocessing, and isothermal titration calorimetry provided the thermodynamics of the binding. In normal physiology, zinc likely acts as a negative regulator of Hh autoprocessing and inhibits the generation of Hh ligand and Hh signaling. In many diseases, zinc deficiency and elevated level of Hh ligand co-exist, including prostate cancer, lung cancer, ovarian cancer, and autism. Our data suggest a causal relationship between zinc deficiency and the overproduction of Hh ligand. PMID:25787080

  3. Preparation of zinc orthotitanate

    NASA Technical Reports Server (NTRS)

    Gates, D. W.; Gilligan, J. E.; Harada, Y.; Logan, W. R.

    1977-01-01

    Use of decomposable precursors to enhance zinc oxide-titanium dioxide reaction and rapid fixing results in rapid preparation of zinc orthotitanate powder pigment. Preparation process allows production under less stringent conditions. Elimination of powder grinding results in purer that is less susceptible to color degradation.

  4. Managing Substitute Teaching.

    ERIC Educational Resources Information Center

    Jones, Kevin R.

    1999-01-01

    This news brief presents information on managing substitute teaching. The information is based on issues discussed at a summit meeting which included public school administrators and personnel directors from around the nation. The main topics of concern focused around four core components related to the management of substitute teaching:…

  5. Structural and morphological studies of manganese substituted CoFe2O4 and NiFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ranjith kumar, E.; Jayaprakash, R.; Patel, Rajesh

    2013-10-01

    Nanocrystalline manganese substituted cobalt and nickel ferrites have been synthesized through the evaporation method by using egg white. These powders were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The XRD pattern of manganese substituted spinel ferrites contains some impurity peaks, which are the decomposition of the ferrites to α-Fe2O3 phase at higher annealing temperature. The microstructure and particle size of the annealed sample analyzed by TEM, which gives the particle size well with XRD. The magnetic properties were measured using Vibrating Sample Magnetometer (VSM). The surface/near-surface chemical states of the nanocrystalline manganese substituted cobalt and nickel ferrites are analyzed by XPS within a range of binding energies of 0-1000 eV.

  6. Triplet state magnetic resonance and fluorescence spectroscopy of metal-substituted hemoglobins.

    PubMed Central

    Polm, M W; Schaafsma, T J

    1997-01-01

    Fluorescence detected magnetic resonance (FDMR) spectra detected at 596 nm of zinc-substituted hemoglobins at 4.2 K show a split D-E transition, which is not observed for zinc protoporphyrins ligated by methylimidazole in glasses. Incorporation of the zinc heme into the globin pocket is also accompanied by a blue shift of the fluorescence of 20 nm at 4.2 K. FDMR spectra recorded at 576 nm do not show the D-E splitting. The D-E splitting and the huge blue shift are not observed for the magnesium-substituted hemoglobins. Fluorescence measurements at 4.2 K and 77 K, and EPR measurements at 110 K, were carried out to obtain information about the ligation states of the zinc and magnesium protoporphyrins in glasses and in hemoglobin. The results are explained by considering ligation effects and distortion of the porphyrin plane. Images FIGURE 12 PMID:8994622

  7. Magnetic properties of bio-synthesized zinc ferrite nanoparticles

    SciTech Connect

    Yeary, Lucas W; Moon, Ji Won; Rawn, Claudia J; Love, Lonnie J; Rondinone, Adam Justin; Thompson, James R; Chakoumakos, Bryan C; Phelps, Tommy Joe

    2011-01-01

    The magnetic properties of zinc ferrite (Zn-substituted magnetite, Zn{sub y}Fe{sub 1-y}Fe{sub 2}O{sub 4}) formed by a microbial process compared favorably with chemically synthesized materials. A metal reducing bacterium, Thermoanaerobacter, strain TOR-39 was incubated with Zn{sub x}Fe{sub 1-x}OOH (x=0.01, 0.1, and 0.15) precursors and produced nanoparticulate zinc ferrites. Composition and crystalline structure of the resulting zinc ferrites were verified using X-ray fluorescence, X-ray diffraction, transmission electron microscopy, and neutron diffraction. The average composition from triplicates gave a value for y of 0.02, 0.23, and 0.30 with the greatest standard deviation of 0.02. Average crystallite sizes were determined to be 67, 49, and 25 nm, respectively. While crystallite size decreased with more Zn substitution, the lattice parameter and the unit cell volume showed a gradual increase in agreement with previous literature values. The magnetic properties were characterized using a superconducting quantum interference device magnetometer and were compared with values for the saturation magnetization (M{sub s}) reported in the literature. The averaged M{sub s} values for the triplicates with the largest amount of zinc (y=0.30) gave values of 100.1, 96.5, and 69.7 emu/g at temperatures of 5, 80, and 300 K, respectively indicating increased magnetic properties of the bacterially synthesized zinc ferrites.

  8. Magnetic study of M-type doped barium hexaferrite nanocrystalline particles

    SciTech Connect

    Alsmadi, A. M.; Bsoul, I.; Mahmood, S. H.; Alnawashi, G.; Prokeš, K.; Siemensmeyer, K.; Klemke, B.; Nakotte, H.

    2013-12-28

    Co-Ti and Ru-Ti substituted barium ferrite nanocrystalline particles BaFe{sub 12−2x}Co{sub x}Ti{sub x}O{sub 19} with (0≤x≤1) and BaFe{sub 12−2x}Ru{sub x}Ti{sub x}O{sub 19} with (0≤x≤0.6) were prepared by ball milling method, and their magnetic properties and their temperature dependencies were studied. The zero-field-cooled (ZFC) and field-cooled (FC) processes were recorded at low magnetic fields and the ZFC curves displayed a broad peak at a temperature T{sub M}. In all samples under investigation, a clear irreversibility between the ZFC and FC curves was observed below room temperature, and this irreversibility disappeared above room temperature. These results were discussed within the framework of random particle assembly model and associated with the magnetic domain wall motion. The resistivity data showed some kind of a transition from insulator to perfect insulator around T{sub M}. At 2 K, the saturation magnetization slightly decreased and the coercivity dropped dramatically with increasing the Co-Ti concentration x. With Ru-Ti substitution, the saturation magnetization showed small variations, while the coercivity decreased monotonically, recording a reduction of about 73% at x = 0.6. These results were discussed in light of the single ion anisotropy model and the cationic distributions based on previously reported neutron diffraction data for the CoTi substituted system, and the results of our Mössbauer spectroscopy data for the RuTi substituted system.

  9. Exploring zinc coordination in novel zinc battery electrolytes.

    PubMed

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2014-06-14

    The coordination of zinc ions by tetraglyme has been investigated here to support the development of novel electrolytes for rechargeable zinc batteries. Zn(2+) reduction is electrochemically reversible from tetraglyme. The spectroscopic data, molar conductivity and thermal behavior as a function of zinc composition, between mole ratios [80 : 20] and [50 : 50] [tetraglyme : zinc chloride], all suggest that strong interactions take place between chloro-zinc complexes and tetraglyme. Varying the concentration of zinc chloride produces a range of zinc-chloro species (ZnClx)(2-x) in solution, which hinder full interaction between the zinc ion and tetraglyme. Both the [70 : 30] and [50 : 50] mixtures are promising electrolyte candidates for reversible zinc batteries, such as the zinc-air device.

  10. Exploring zinc coordination in novel zinc battery electrolytes.

    PubMed

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2014-06-14

    The coordination of zinc ions by tetraglyme has been investigated here to support the development of novel electrolytes for rechargeable zinc batteries. Zn(2+) reduction is electrochemically reversible from tetraglyme. The spectroscopic data, molar conductivity and thermal behavior as a function of zinc composition, between mole ratios [80 : 20] and [50 : 50] [tetraglyme : zinc chloride], all suggest that strong interactions take place between chloro-zinc complexes and tetraglyme. Varying the concentration of zinc chloride produces a range of zinc-chloro species (ZnClx)(2-x) in solution, which hinder full interaction between the zinc ion and tetraglyme. Both the [70 : 30] and [50 : 50] mixtures are promising electrolyte candidates for reversible zinc batteries, such as the zinc-air device. PMID:24760367

  11. Interstitial zinc clusters in zinc oxide

    NASA Astrophysics Data System (ADS)

    Gluba, M. A.; Nickel, N. H.; Karpensky, N.

    2013-12-01

    Doped zinc oxide (ZnO) exhibits anomalous Raman modes in the range of 270 to 870 cm-1. Commonly, the resonance at 275 cm-1 is attributed to the local vibration of Zn atoms in the vicinity of extrinsic dopants. We revisit this assignment by investigating the influence of isotopically purified zinc oxide thin films on the frequency of the vibrational mode around 275 cm-1. For this purpose, undoped and nitrogen-doped ZnO thin-films with Zn isotope compositions of natural Zn, 64Zn, 68Zn, and a 1:1 mixture of 64Zn and 68Zn were grown by pulsed laser deposition. The isotopic shift and the line shape of the Raman resonance around 275 cm-1 are analyzed in terms of three different microscopic models, which involve the vibration of (i) interstitial zinc atoms bound to extrinsic defects, (ii) interstitial diatomic Zn molecules, and (iii) interstitial zinc clusters. The energy diagram of interstitial Zn-Zn bonds in a ZnO matrix is derived from density functional theory calculations. The interstitial Zn-Zn bond is stabilized by transferring electrons from the antibonding orbital into the ZnO conduction band. This mechanism facilitates the formation of interstitial Zn clusters and fosters the common n-type doping asymmetry of ZnO.

  12. Designing hydrolytic zinc metalloenzymes.

    PubMed

    Zastrow, Melissa L; Pecoraro, Vincent L

    2014-02-18

    Zinc is an essential element required for the function of more than 300 enzymes spanning all classes. Despite years of dedicated study, questions regarding the connections between primary and secondary metal ligands and protein structure and function remain unanswered, despite numerous mechanistic, structural, biochemical, and synthetic model studies. Protein design is a powerful strategy for reproducing native metal sites that may be applied to answering some of these questions and subsequently generating novel zinc enzymes. From examination of the earliest design studies introducing simple Zn(II)-binding sites into de novo and natural protein scaffolds to current studies involving the preparation of efficient hydrolytic zinc sites, it is increasingly likely that protein design will achieve reaction rates previously thought possible only for native enzymes. This Current Topic will review the design and redesign of Zn(II)-binding sites in de novo-designed proteins and native protein scaffolds toward the preparation of catalytic hydrolytic sites. After discussing the preparation of Zn(II)-binding sites in various scaffolds, we will describe relevant examples for reengineering existing zinc sites to generate new or altered catalytic activities. Then, we will describe our work on the preparation of a de novo-designed hydrolytic zinc site in detail and present comparisons to related designed zinc sites. Collectively, these studies demonstrate the significant progress being made toward building zinc metalloenzymes from the bottom up. PMID:24506795

  13. Designing Hydrolytic Zinc Metalloenzymes

    PubMed Central

    2015-01-01

    Zinc is an essential element required for the function of more than 300 enzymes spanning all classes. Despite years of dedicated study, questions regarding the connections between primary and secondary metal ligands and protein structure and function remain unanswered, despite numerous mechanistic, structural, biochemical, and synthetic model studies. Protein design is a powerful strategy for reproducing native metal sites that may be applied to answering some of these questions and subsequently generating novel zinc enzymes. From examination of the earliest design studies introducing simple Zn(II)-binding sites into de novo and natural protein scaffolds to current studies involving the preparation of efficient hydrolytic zinc sites, it is increasingly likely that protein design will achieve reaction rates previously thought possible only for native enzymes. This Current Topic will review the design and redesign of Zn(II)-binding sites in de novo-designed proteins and native protein scaffolds toward the preparation of catalytic hydrolytic sites. After discussing the preparation of Zn(II)-binding sites in various scaffolds, we will describe relevant examples for reengineering existing zinc sites to generate new or altered catalytic activities. Then, we will describe our work on the preparation of a de novo-designed hydrolytic zinc site in detail and present comparisons to related designed zinc sites. Collectively, these studies demonstrate the significant progress being made toward building zinc metalloenzymes from the bottom up. PMID:24506795

  14. Ultrasoft magnetic properties in nanocrystalline alloy Finemet with Au substituted for Cu

    NASA Astrophysics Data System (ADS)

    Chau, N.; Hoa, N. Q.; The, N. D.; Niem, P. Q.

    2006-09-01

    The amorphous ribbon Fe 73.5Si 13.5B 9Nb 3Au 1 has been prepared by rapid cooling on a copper wheel. The ribbon is 16.8 μm thick and 7 mm wide. The DSC curves show the first peak at 547-579 °C (corresponds to the crystallization of α-Fe(Si) phase) depending on heating rate from 10 to 50 °C/min which is a little higher than that of pure Finemet (542-570 °C, respectively). From the Kissinger plot, the crystallization activation energy is determined and shown to be 2.8 eV for α-Fe(Si) phase, less than that of Finemet ( E=3.25 eV). By annealing at 530 °C for 30, 60 and 90 min, the crystallization volume fraction of α-Fe(Si) phase increased from 73% to 78% and 84%, respectively. After appropriate annealing, the ultrasoft magnetic properties are achieved. The maximum magnetic entropy change, ∣Δ Sm∣ max, showed a giant value of 7.8 J/kg K which occurred at around Curie temperature of amorphous phase of the ribbon.

  15. Synthesis, characterization and catalytic activity of indium substituted nanocrystalline Mobil Five (MFI) zeolite

    SciTech Connect

    Shah, Kishor Kr.; Nandi, Mithun; Talukdar, Anup K.

    2015-06-15

    Highlights: • In situ modification of the MFI zeolite by incorporation of indium. • The samples were characterized by XRD, FTIR, TGA, UV–vis (DRS), SAA, EDX and SEM. • The incorporation of indium was confirmed by XRD, FT-IR, UV–vis (DRS), EDX and TGA. • Hydroxylation of phenol reaction was studied on the synthesized catalysts. - Abstract: A series of indium doped Mobil Five (MFI) zeolite were synthesized hydrothermally with silicon to aluminium and indium molar ratio of 100 and with aluminium to indium molar ratios of 1:1, 2:1 and 3:1. The MFI zeolite phase was identified by XRD and FT-IR analysis. In XRD analysis the prominent peaks were observed at 2θ values of around 6.5° and 23° with a few additional shoulder peaks in case of all the indium incorporated samples suggesting formation of pure phase of the MFI zeolite. All the samples under the present investigation were found to exhibit high crystallinity (∼92%). The crystallite sizes of the samples were found to vary from about 49 to 55 nm. IR results confirmed the formation of MFI zeolite in all cases showing distinct absorbance bands near 1080, 790, 540, 450 and 990 cm{sup −1}. TG analysis of In-MFI zeolites showed mass losses in three different steps which are attributed to the loss due to adsorbed water molecules and the two types TPA{sup +} cations. Further, the UV–vis (DRS) studies reflected the position of the indium metal in the zeolite framework. Surface area analysis of the synthesized samples was carried out to characterize the synthesized samples The analysis showed that the specific surface area ranged from ∼357 to ∼361 m{sup 2} g{sup −1} and the pore volume of the synthesized samples ranged from 0.177 to 0.182 cm{sup 3} g{sup −1}. The scanning electron microscopy studies showed the structure of the samples to be rectangular and twinned rectangular shaped. The EDX analysis was carried out for confirmation of Si, Al and In in zeolite frame work. The catalytic activities of the synthesized samples were investigated with respect to hydroxylation of phenol, in which catechol and hydroquinone were found to be the major products. It is observed that under all reaction conditions catechol selectivity was higher than the hydroquinone selectivity. In-MFI zeolites were successfully synthesized and were used as an effective catalyst for the hydroxylation of phenol to synthesize catechol and hydroquinone as the major product.

  16. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  17. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  18. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  19. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  20. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  1. Synthesis of nanocrystalline Cu2ZnSnS4 thin films grown by the spray-pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Chandel, Tarun; Singh, Joginder; Rajaram, P.

    2015-08-01

    Spray pyrolysis was used to deposit Cu2ZnSnS4 (CZTS) thin films on soda lime glass substrates at 300 °C. Aqueous solutions of copper chloride, zinc chloride, stannous chloride and thiourea were mixed together to form the spray liquid. The sprayed films were annealed under vacuum at 350 °C, 400 °C and 450 °C. Structural and optical characterization was performed on the CZTS films using X-ray diffraction (XRD) and UV-VIS spectrophotometry. XRD results indicate that the films are single phase nanocrystalline CZTS. Optical studies show that the optical gap values are 1.44 eV for the as-grown film and 1.46 eV, 1.48 eV and 1.49 eV for the films annealed at 350 °C, 400 °C and 450 °C, respectively.

  2. Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Wang, Fu-Chi; Li, Sheng-Lin; Korznikov, Elena; Zhao, Xiu-Chen; Liu, Ying; Liu, Zhen-Feng; Kang, Zhe

    2016-05-01

    In this study, a novel multi-walled carbon nanotubes reinforced nanocrystalline copper matrix composite with super high strength and moderate plasticity was synthesized. We successfully overcome the agglomeration problem of the carbon nanotubes and the grain growth problem of the nanocrystalline copper matrix by combined use of the electroless deposition and spark plasma sintering methods. The yield strength of the composite reach up to 692 MPa, which is increased by 2 and 5 times comparing with those of the nanocrystalline and coarse copper, respectively. Simultaneously, the plasticity of the composite was also significantly increased in contrast with that of the nanocrystalline copper. The increase of the density of the carbon nanotubes after coating, the isolation effect caused by the copper coating, and the improvement of the compatibility between the reinforcements and matrix as well as the effective control of the grain growth of the copper matrix all contribute to improving the mechanical properties of the composite. In addition, a new strengthening mechanism, i.e., the series-connection effect of the nanocrystalline copper grains introduced by carbon nanotubes, is proposed to further explain the mechanical behavior of the nanocomposite.

  3. Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes

    PubMed Central

    Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Wang, Fu-Chi; Li, Sheng-Lin; Korznikov, Elena; Zhao, Xiu-Chen; Liu, Ying; Liu, Zhen-Feng; Kang, Zhe

    2016-01-01

    In this study, a novel multi-walled carbon nanotubes reinforced nanocrystalline copper matrix composite with super high strength and moderate plasticity was synthesized. We successfully overcome the agglomeration problem of the carbon nanotubes and the grain growth problem of the nanocrystalline copper matrix by combined use of the electroless deposition and spark plasma sintering methods. The yield strength of the composite reach up to 692 MPa, which is increased by 2 and 5 times comparing with those of the nanocrystalline and coarse copper, respectively. Simultaneously, the plasticity of the composite was also significantly increased in contrast with that of the nanocrystalline copper. The increase of the density of the carbon nanotubes after coating, the isolation effect caused by the copper coating, and the improvement of the compatibility between the reinforcements and matrix as well as the effective control of the grain growth of the copper matrix all contribute to improving the mechanical properties of the composite. In addition, a new strengthening mechanism, i.e., the series-connection effect of the nanocrystalline copper grains introduced by carbon nanotubes, is proposed to further explain the mechanical behavior of the nanocomposite. PMID:27185503

  4. Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes.

    PubMed

    Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Wang, Fu-Chi; Li, Sheng-Lin; Korznikov, Elena; Zhao, Xiu-Chen; Liu, Ying; Liu, Zhen-Feng; Kang, Zhe

    2016-01-01

    In this study, a novel multi-walled carbon nanotubes reinforced nanocrystalline copper matrix composite with super high strength and moderate plasticity was synthesized. We successfully overcome the agglomeration problem of the carbon nanotubes and the grain growth problem of the nanocrystalline copper matrix by combined use of the electroless deposition and spark plasma sintering methods. The yield strength of the composite reach up to 692 MPa, which is increased by 2 and 5 times comparing with those of the nanocrystalline and coarse copper, respectively. Simultaneously, the plasticity of the composite was also significantly increased in contrast with that of the nanocrystalline copper. The increase of the density of the carbon nanotubes after coating, the isolation effect caused by the copper coating, and the improvement of the compatibility between the reinforcements and matrix as well as the effective control of the grain growth of the copper matrix all contribute to improving the mechanical properties of the composite. In addition, a new strengthening mechanism, i.e., the series-connection effect of the nanocrystalline copper grains introduced by carbon nanotubes, is proposed to further explain the mechanical behavior of the nanocomposite.

  5. Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes.

    PubMed

    Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Wang, Fu-Chi; Li, Sheng-Lin; Korznikov, Elena; Zhao, Xiu-Chen; Liu, Ying; Liu, Zhen-Feng; Kang, Zhe

    2016-01-01

    In this study, a novel multi-walled carbon nanotubes reinforced nanocrystalline copper matrix composite with super high strength and moderate plasticity was synthesized. We successfully overcome the agglomeration problem of the carbon nanotubes and the grain growth problem of the nanocrystalline copper matrix by combined use of the electroless deposition and spark plasma sintering methods. The yield strength of the composite reach up to 692 MPa, which is increased by 2 and 5 times comparing with those of the nanocrystalline and coarse copper, respectively. Simultaneously, the plasticity of the composite was also significantly increased in contrast with that of the nanocrystalline copper. The increase of the density of the carbon nanotubes after coating, the isolation effect caused by the copper coating, and the improvement of the compatibility between the reinforcements and matrix as well as the effective control of the grain growth of the copper matrix all contribute to improving the mechanical properties of the composite. In addition, a new strengthening mechanism, i.e., the series-connection effect of the nanocrystalline copper grains introduced by carbon nanotubes, is proposed to further explain the mechanical behavior of the nanocomposite. PMID:27185503

  6. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  7. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  8. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains.

    PubMed Central

    Vallee, B L; Coleman, J E; Auld, D S

    1991-01-01

    We now recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have been determined. Both proteins contain two zinc binding sites, and in both, cysteine residues are the sole zinc ligands. In GAL4, two zinc atoms are bound to six cysteine residues which form a "zinc cluster" akin to that of metallothionein; the distance between the two zinc atoms of GAL4 is approximately 3.5 A. In the glucocorticoid receptor, each zinc atom is bound to four cysteine residues; the interatomic zinc-zinc distance is approximately 13 A, and in this instance, a "zinc twist" is represented by a helical DNA recognition site located between the two zinc atoms. Zinc clusters and zinc twists are here recognized as two distinctive motifs in DNA-binding proteins containing multiple zinc atoms. For native "zinc fingers," structural data do not exist as yet; consequently, the interatomic distances between zinc atoms are not known. As further structural data become available, the structural and functional significance of these different motifs in their binding to DNA and other proteins participating in the transmission of the genetic message will become apparent. Images PMID:1846973

  9. Control of zinc transfer between thionein, metallothionein, and zinc proteins

    PubMed Central

    Jacob, Claus; Maret, Wolfgang; Vallee, Bert L.

    1998-01-01

    Metallothionein (MT), despite its high metal binding constant (KZn = 3.2 × 1013 M−1 at pH 7.4), can transfer zinc to the apoforms of zinc enzymes that have inherently lower stability constants. To gain insight into this paradox, we have studied zinc transfer between zinc enzymes and MT. Zinc can be transferred in both directions—i.e., from the enzymes to thionein (the apoform of MT) and from MT to the apoenzymes. Agents that mediate or enhance zinc transfer have been identified that provide kinetic pathways in either direction. MT does not transfer all of its seven zinc atoms to an apoenzyme, but apparently contains at least one that is more prone to transfer than the others. Modification of thiol ligands in MT zinc clusters increases the total number of zinc ions released and, hence, the extent of transfer. Aside from disulfide reagents, we show that selenium compounds are potential cellular enhancers of zinc transfer from MT to apoenzymes. Zinc transfer from zinc enzymes to thionein, on the other hand, is mediated by zinc-chelating agents such as Tris buffer, citrate, or glutathione. Redox agents are asymmetrically involved in both directions of zinc transfer. For example, reduced glutathione mediates zinc transfer from enzymes to thionein, whereas glutathione disulfide oxidizes MT with enhanced release of zinc and transfer of zinc to apoenzymes. Therefore, the cellular redox state as well as the concentration of other biological chelating agents might well determine the direction of zinc transfer and ultimately affect zinc distribution. PMID:9520393

  10. Superhydrophobic surfaces using selected zinc oxide microrod growth on ink-jetted patterns.

    PubMed

    Myint, Myo Tay Zar; Kitsomboonloha, Rungrot; Baruah, Sunandan; Dutta, Joydeep

    2011-02-15

    The synthesis and properties of superhydrophobic surfaces based on binary surface topography made of zinc oxide (ZnO) microrod-decorated micropatterns are reported. ZnO is intrinsically hydrophilic but can be utilized to create hydrophobic surfaces by creating artificial roughness via microstructuring. Micron scale patterns consisting of nanocrystalline ZnO seed particles were applied to glass substrates with a modified ink-jet printer. Microrods were then grown on the patterns by a hydrothermal process without any further chemical modification. Water contact angle (WCA)(1) up to 153° was achieved. Different micro array patterned surfaces with varying response of static contact angle or sessile droplet analysis are reported.

  11. Inhibitory zinc sites in enzymes.

    PubMed

    Maret, Wolfgang

    2013-04-01

    Several pathways increase the concentrations of cellular free zinc(II) ions. Such fluctuations suggest that zinc(II) ions are signalling ions used for the regulation of proteins. One function is the inhibition of enzymes. It is quite common that enzymes bind zinc(II) ions with micro- or nanomolar affinities in their active sites that contain catalytic dyads or triads with a combination of glutamate (aspartate), histidine and cysteine residues, which are all typical zinc-binding ligands. However, for such binding to be physiologically significant, the binding constants must be compatible with the cellular availability of zinc(II) ions. The affinity of inhibitory zinc(II) ions for receptor protein tyrosine phosphatase β is particularly high (K i = 21 pM, pH 7.4), indicating that some enzymes bind zinc almost as strongly as zinc metalloenzymes. The competitive pattern of zinc inhibition for this phosphatase implicates its active site cysteine and nearby residues in the coordination of zinc. Quantitative biophysical data on both affinities of proteins for zinc and cellular zinc(II) ion concentrations provide the basis for examining the physiological significance of inhibitory zinc-binding sites in proteins and the role of zinc(II) ions in cellular signalling. Regulatory functions of zinc(II) ions add a significant level of complexity to biological control of metabolism and signal transduction and embody a new paradigm for the role of transition metal ions in cell biology.

  12. Nanocrystalline films for gas-reactive applications

    DOEpatents

    Eastman, Jeffrey A.; Thompson, Loren J.

    2004-02-17

    A gas sensor for detection of oxidizing and reducing gases, including O.sub.2, CO.sub.2, CO, and H.sub.2, monitors the partial pressure of a gas to be detected by measuring the temperature rise of an oxide-thin-film-coated metallic line in response to an applied electrical current. For a fixed input power, the temperature rise of the metallic line is inversely proportional to the thermal conductivity of the oxide coating. The oxide coating contains multi-valent cation species that change their valence, and hence the oxygen stoichiometry of the coating, in response to changes in the partial pressure of the detected gas. Since the thermal conductivity of the coating is dependent on its oxygen stoichiometry, the temperature rise of the metallic line depends on the partial pressure of the detected gas. Nanocrystalline (<100 nm grain size) oxide coatings yield faster sensor response times than conventional larger-grained coatings due to faster oxygen diffusion along grain boundaries rather than through grain interiors.

  13. Functionalization of nanocrystalline diamond films with phthalocyanines

    NASA Astrophysics Data System (ADS)

    Petkov, Christo; Reintanz, Philipp M.; Kulisch, Wilhelm; Degenhardt, Anna Katharina; Weidner, Tobias; Baio, Joe E.; Merz, Rolf; Kopnarski, Michael; Siemeling, Ulrich; Reithmaier, Johann Peter; Popov, Cyril

    2016-08-01

    Phthalocyanine (Pc) derivatives containing different central metal atoms (Mn, Cu, Ti) and different peripheral chains were synthesized and comprehensively characterized. Their interaction with nanocrystalline diamond (NCD) films, as-grown by hot-filament chemical vapor deposition or after their modification with oxygen plasma to exchange the hydrogen termination with oxygen-containing groups, was studied by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The elemental composition as determined by XPS showed that the Pc were grafted on both as-grown and O-terminated NCD. Mn, Cu and Ti were detected together with N stemming from the Pc ring and S in case of the Ti-Pc from the peripheral ligands. The results for the elemental surface composition and the detailed study of the N 1s, S 2p and O 1s core spectra revealed that Ti-Pc grafted better on as-grown NCD but Cu-Pc and Mn-Pc on O-terminated films. Samples of Mn-Pc on as-grown and O-terminated NCD were further investigated by NEXAFS spectroscopy. The results showed ordering of the grafted molecules, laying flat on the H-terminated NCD surface while only the macrocycles were oriented parallel to the O-terminated surface with the peripheral chains perpendicular to it.

  14. Characterisation of Suspension Precipitated Nanocrystalline Hydroxyapatite Powders

    NASA Astrophysics Data System (ADS)

    Mallik, P. K.; Swain, P. K.; Patnaik, S. C.

    2016-02-01

    Hydroxyapatite (HA) is a well-known biomaterial for coating on femoral implants, filling of dental cavity and scaffold for tissue replacement. Hydroxyapatite possess limited load bearing capacity due to their brittleness. In this paper, the synthesis of nanocrystalline hydroxyapatite powders was prepared by dissolving calcium oxide in phosphoric acid, followed by addition of ammonia liquor in a beaker. The prepared solution was stirred by using magnetic stirrer operated at temperature of 80°C for an hour. This leads to the formation of hydroxyapatite precipitate. The precipitate was dried in oven for overnight at 100°C. The dried agglomerated precipitate was calcined at 800°C in conventional furnace for an hour. The influence of calcium oxide concentration and pH on the resulting precipitates was studied using BET, XRD and SEM. As result, a well-defined sub-rounded morphology of powders size of ∼41 nm was obtained with a salt concentration of 0.02 M. Finally, it can be concluded that small changes in the reaction conditions led to large changes in final size, shape and degree of aggregation of the hydroxyapatite particles.

  15. Deuterium storage in nanocrystalline magnesium thin films

    NASA Astrophysics Data System (ADS)

    Checchetto, R.; Bazzanella, N.; Miotello, A.; Brusa, R. S.; Zecca, A.; Mengucci, A.

    2004-02-01

    Nanocrystalline magnesium deuteride thin films with the β-MgD2 structure were prepared by vacuum evaporation of hexagonal magnesium (h-Mg) samples and thermal annealing in 0.15 MPa D2 atmosphere at 373 K. Thermal desorption spectroscopy analysis indicated that the rate-limiting step in the deuterium desorption was given by the thermal decomposition of the deuteride phase. The activation energy Δg of the β-MgD2→h-Mg+D2 reaction scaled from 1.13±0.03 eV in 650-nm-thick films to 1.01±0.02 eV in 75-nm-thick films most likely as consequence of different stress and defect level. Positron annihilation spectroscopy analysis of the thin-film samples submitted to deuterium absorption and desorption cycles reveal the presence of a high concentration of void-like defects in the h-Mg layers after the very first decomposition of the β-MgD2 phase, the presence of these open volume defects reduces the D2 absorption capacity of the h-Mg thin film.

  16. Films prepared from electrosterically stabilized nanocrystalline cellulose.

    PubMed

    Yang, Han; Tejado, Alvaro; Alam, Nur; Antal, Miro; van de Ven, Theo G M

    2012-05-22

    Electrosterically stabilized nanocrystalline cellulose (ENCC) was modified in three ways: (1) the hydroxyl groups on C2 and C3 of glucose repeat units of ENCC were converted to aldehyde groups by periodate oxidation to various extents; (2) the carboxyl groups in the sodium form on ENCC were converted to the acid form by treating them with an acid-type ion-exchange resin; and (3) ENCC was cross-linked in two different ways by employing adipic dihydrazide as a cross-linker and water-soluble 1-ethyl-3-[3-(dimethylaminopropyl)] carbodiimide as a carboxyl-activating agent. Films were prepared from these modified ENCC suspensions by vacuum filtration. The effects of these three modifications on the properties of films were investigated by a variety of techniques, including UV-visible spectroscopy, a tensile test, thermogravimetric analysis (TGA), the water vapor transmission rate (WVTR), and contact angle (CA) studies. On the basis of the results from UV spectra, the transmittance of these films was as high as 87%, which shows them to be highly transparent. The tensile strength of these films was increased with increasing aldehyde content. From TGA and WVTR experiments, cross-linked films showed much higher thermal stability and lower water permeability. Furthermore, although the original cellulose is hydrophilic, these films also exhibited a certain hydrophobic behavior. Films treated by trichloromethylsilane become superhydrophobic. The unique characteristics of these transparent films are very promising for potential applications in flexible packaging and other high-technology products. PMID:22482733

  17. Mesoporous junctions and nanocrystalline solar cells

    NASA Astrophysics Data System (ADS)

    Graetzel, Michael

    2000-03-01

    Learning from the concepts used by green plants, we have developed a molecular photovoltaic system based on the sensitization of nanocrystalline TiO2 films. In analogy to photosyntesis, light is absorbed by a monolayer of dye attached to the surface of a wide-band-gap oxide. The mesoporous morphology of the layer provides a substrate characterized by a very large surface area. The roughness factor of a 10-micron thick film reaches easily 1000. Light penetrating the dye loaded TiO2 nanocrystals is therefore collected in an efficient manner, similar to the thylakoid vesicles in green leafs which are stacked in order to enhance solar light harvesting. The excited dye injects an electron in the conduction band of the oxide resulting in efficient and very rapid charge separation. Nearly quantitative conversion of photons in electric current have been achieved with these devices over the whole visible and near-IR range of the spectrum. The overall AM 1.5 solar-to electric power conversion efficiency has reached already 11unravel the dynamics of interfacial charge transfer reactions at these dye- sensitized heterojunctions.

  18. Synthesis of substituted pyrazines

    DOEpatents

    Pagoria, Philip F.; Zhang, Mao Xi

    2016-10-04

    A method for synthesizing a pyrazine-containing material according to one embodiment includes contacting an iminodiacetonitrile derivative with a base and a reagent selected from a group consisting of hydroxylamine, a hydroxylamine salt, an aliphatic primary amine, a secondary amine, an aryl-substituted alkylamine a heteroaryl-substituted alkyl amine, an alcohol, an alkanolamine and an aryl alcoholamine. Additional methods and several reaction products are presented. ##STR00001##

  19. Zinc in diet

    MedlinePlus

    ... Zinc is also needed for the senses of smell and taste. During pregnancy, infancy, and childhood the ... sense of taste Problems with the sense of smell Skin sores Slow growth Trouble seeing in the ...

  20. Zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  1. Reduction behavior of zinc ferrite in EAF-dust recycling with CO gas as a reducing agent.

    PubMed

    Wu, Chia-Cheng; Chang, Fang-Chih; Chen, W-S; Tsai, Min-Shing; Wang, Ya-Nang

    2014-10-01

    EAF-dust containing metal oxides can be regarded as an important source for zinc and iron. In this study, the reduction behavior of zinc ferrite with CO gas as a reducing agent under different temperatures was investigated to develop a new process for the recovery of zinc and iron from EAF-dust. The results of the phase studies with synthetic franklinite show that zinc substituted wustite, and spinel with low zinc content formed at lower temperatures from 450 to 850 °C due to incomplete zinc-iron-separation. Zinc ferrite was completely reduced to metallic zinc and iron at 950 °C. After evaporation and condensation, metallic zinc was collected in the form of zinc powder while iron, the reduction residue, was obtained in the form of direct reduced iron (DRI). The mass balance indicates a high zinc recovery ratio of over 99%. The new treatment process by thermal reduction with CO gas as a reducing agent achieved higher recovery and metallization grade of both zinc and iron from EAF-dust at lower temperatures than other commercial processes. The metallic products can be used directly as semi-products or as raw materials for refinery.

  2. Reduction behavior of zinc ferrite in EAF-dust recycling with CO gas as a reducing agent.

    PubMed

    Wu, Chia-Cheng; Chang, Fang-Chih; Chen, W-S; Tsai, Min-Shing; Wang, Ya-Nang

    2014-10-01

    EAF-dust containing metal oxides can be regarded as an important source for zinc and iron. In this study, the reduction behavior of zinc ferrite with CO gas as a reducing agent under different temperatures was investigated to develop a new process for the recovery of zinc and iron from EAF-dust. The results of the phase studies with synthetic franklinite show that zinc substituted wustite, and spinel with low zinc content formed at lower temperatures from 450 to 850 °C due to incomplete zinc-iron-separation. Zinc ferrite was completely reduced to metallic zinc and iron at 950 °C. After evaporation and condensation, metallic zinc was collected in the form of zinc powder while iron, the reduction residue, was obtained in the form of direct reduced iron (DRI). The mass balance indicates a high zinc recovery ratio of over 99%. The new treatment process by thermal reduction with CO gas as a reducing agent achieved higher recovery and metallization grade of both zinc and iron from EAF-dust at lower temperatures than other commercial processes. The metallic products can be used directly as semi-products or as raw materials for refinery. PMID:24921184

  3. In vivo evaluation of matrix pellets containing nanocrystalline ketoprofen.

    PubMed

    Vergote, G J; Vervaet, C; Van Driessche, I; Hoste, S; De Smedt, S; Demeester, J; Jain, R A; Ruddy, S; Remon, J P

    2002-06-20

    The aim of this study was to evaluate the in-vivo behaviour of matrix pellets formulated with nanocrystalline ketoprofen after oral administration to dogs. No significant differences in AUC-values were seen between pellet formulations containing nanocrystalline or microcrystalline ketoprofen and a commercial ketoprofen formulation (reference: Rofenid 200 Long Acting). C(max) of the formulations containing nano- or microcrystalline ketoprofen was significantly higher compared to reference, whereas t(max) was significantly lower. The in-vivo burst release observed for the spray dried nanocrystalline ketoprofen matrix pellets was reduced following compression of the pellets in combination with placebo wax/starch pellets. These matrix tablets sustained the ketoprofen plasma concentrations during 5.6 and 5.4 h for formulations containing nano- and microcrystalline ketoprofen, respectively.

  4. Mechanochemical processing of nanocrystalline Ti-6Al-4V alloy

    NASA Astrophysics Data System (ADS)

    Pirzada, M. D. S.; (Sam) Froes, F. H.; Patankar, S. N.

    2004-06-01

    Synthesis of nanocrystalline Ti-6Al-4V was explored using mechanochemical processing. The reaction mixture was comprised of CaH2, Mg powder, anhydrous AlCl3, anhydrous VCl3, and TiCl4. The milled powder (reaction product) primarily consisted of nanocrystalline alloy hydride having a composition (Ti-6Al-4V)H1.942, along with MgCl2 and CaCl2 as by-products. Aqueous solutions of nitric acid, sulfuric acid, and 1 pct sodium sulfite were found to be very effective in leaching of the chlorides from the milled powder. The (Ti-6Al-4V)H1.942 on dehydrogenation at 375°C resulted in nanocrystalline Ti-6Al-4V alloy powder.

  5. Kinetic constants of abnormal grain growth in nanocrystalline nickel

    NASA Astrophysics Data System (ADS)

    Aleshin, A. N.

    2016-02-01

    The grain growth in nanocrystalline nickel with a purity of 99.5 at % during non-isothermal annealing was experimentally investigated using differential scanning calorimetry and transmission electron microscopy. Nanocrystalline nickel was prepared by electrodeposition and had an average grain size of approximately 20 nm. It was shown that, at a temperature corresponding to the calorimetric signal peak, abnormal grain growth occurs with the formation of a bimodal grain microstructure. Calorimeters signals were processed within the Johnson-Mehl-Avrami formalism. This made it possible to determine the exponent of the corresponding equation, the frequency factor, and the activation energy of the grain growth, which was found to be equal to the activation energy of the vacancy migration. The reasons for the abnormal grain growth in nanocrystalline nickel were discussed.

  6. A combustion synthesis process for synthesizing nanocrystalline zirconia powders

    SciTech Connect

    Venkatachari, K.R.; Huang, D.; Ostrander, S.P.; Schulze, W.A.; Stangle, G.C.

    1995-03-01

    Materials with nanocrystalline features are expected to have improved or unique properties when compared to those of conventional materials. Methods for the practical and economical production of nanoparticles in large quantities are not presently available. A method based on combustion synthesis for preparing nanocrystalline powders was investigated in this work. Yttria-doped zirconia powders with an average crystalline size of 10 nm were synthesized. The characteristics of the powder (e.g., surface area and phase content) were found to depend strongly on the fuel content in the starting mixture and on the ignition temperature used in the process. The method is expected to be suitable for commercial fabrication of nanocrystalline multicomponent oxide ceramic powders.

  7. Small, but perfectly formed: The microstructure of nanocrystalline oxides

    NASA Astrophysics Data System (ADS)

    Chadwick, A. V.

    2003-01-01

    There is considerable interest in nanocrystalline materials due to their unusual properties that offer the possibility of exciting technological applications. This paper concentrates on the microstructure of nanocrystalline binary oxides as revealed by X-ray absorption studies. It will be shown that these experiments yield a picture of the materials in which, even when the particles are only a few nanometres in size, the crystallites are highly ordered and the interfaces are similar to grain boundaries in normal bulk solids. This is in conflict with earlier ideas where it was often assumed the surfaces of nanocrystals and the interfaces between them were very disordered.

  8. Research Update: Phonon engineering of nanocrystalline silicon thermoelectrics

    NASA Astrophysics Data System (ADS)

    Shiomi, Junichiro

    2016-10-01

    Nanocrystalline silicon thermoelectrics can be a solution to improve the cost-effectiveness of thermoelectric technology from both material and integration viewpoints. While their figure-of-merit is still developing, recent advances in theoretical/numerical calculations, property measurements, and structural synthesis/fabrication have opened up possibilities to develop the materials based on fundamental physics of phonon transport. Here, this is demonstrated by reviewing a series of works on nanocrystalline silicon materials using calculations of multiscale phonon transport, measurements of interfacial heat conduction, and synthesis from nanoparticles. Integration of these approaches allows us to engineer phonon transport to improve the thermoelectric performance by introducing local silicon-oxide structures.

  9. Incorporation Of Nanocrystalline Silver on Carbon Nanotubes by Electrodeposition Technique

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Pal, A. K.

    2008-10-01

    Nanocrystalline silver incorporated carbon nanotubes were grown on Si (001) substrate from an electrolytic bath containing acetonitrile (1% v/v) and water with appropriate amount of silver acetate at an applied d.c. potential ˜20V. The films were characterized by measuring their microstructural properties, FTIR and Raman studies. HRTEM image indicated that the diameter of the nanotubes as ˜5 nm and the d spacing as ˜0.34 nm for (002) plane of CNT. With the addition of nanocrystalline silver, the intensity of G-band decreases while the D-band located ˜1352 cm-1 becomes sharper.

  10. Development of high permeability nanocrystalline permalloy by electrodeposition

    NASA Astrophysics Data System (ADS)

    Seet, H. L.; Li, X. P.; Zhao, Z. J.; Kong, Y. K.; Zheng, H. M.; Ng, W. C.

    2005-05-01

    In this study, for developing microsensors for weak magnetic field, methods for developing high permeability nanocrystalline permalloy by electrodeposition and the relationship between the grain size and magnetic properties of the nanocrystalline permalloy are investigated. By dc plating with and without saccharin added and pulse plating with saccharin added, permalloy samples of grain sizes from 52 nm to 11 nm are obtained. The coercivity and magnetoimpedance (MI) ratio of the samples are tested against the grain size variation. Results show that the coercivity decreases rapidly and MI ratio increases greatly with grain size decrease from 52 nm to 11 nm.

  11. Development of high permeability nanocrystalline permalloy by electrodeposition

    SciTech Connect

    Seet, H.; Li, X.P.; Zhao, Z.J.; Kong, Y.K.; Zheng, H.M.; Ng, W.C.

    2005-05-15

    In this study, for developing microsensors for weak magnetic field, methods for developing high permeability nanocrystalline permalloy by electrodeposition and the relationship between the grain size and magnetic properties of the nanocrystalline permalloy are investigated. By dc plating with and without saccharin added and pulse plating with saccharin added, permalloy samples of grain sizes from 52 nm to 11 nm are obtained. The coercivity and magnetoimpedance (MI) ratio of the samples are tested against the grain size variation. Results show that the coercivity decreases rapidly and MI ratio increases greatly with grain size decrease from 52 nm to 11 nm.

  12. A mild reduction phosphidation approach to nanocrystalline GaP

    NASA Astrophysics Data System (ADS)

    Chen, Luyang; Luo, Tao; Huang, Mingxing; Gu, Yunle; Shi, Liang; Qian, Yitai

    2004-12-01

    Nanocrystalline gallium phosphide (GaP) has been prepared through a reduction-phosphidation by using Ga, PCl 3 as gallium and phosphorus sources and metallic sodium as reductant at 350 °C. The XRD pattern can be indexed as cublic GaP with the lattice constant of a=5.446 Å. The TEM image shows particle-like polycrystals and flake-like single crystals. The PL spectrum exhibits one peak at 330 nm for the as-prepared nanocrystalline GaP.

  13. Zinc deficiency in elderly patients.

    PubMed

    Prasad, A S; Fitzgerald, J T; Hess, J W; Kaplan, J; Pelen, F; Dardenne, M

    1993-01-01

    Zinc is needed for growth and development, DNA synthesis, neurosensory functions, and cell-mediated immunity. Although zinc intake is reduced in elderly people, its deficiency and effects on cell-mediated immunity of the elderly have not been established. Subjects enrolled in "A Model Health Promotion and Intervention Program for Urban Middle Aged and Elderly Americans" were assessed for nutrition and zinc status. One hundred eighty healthy subjects were randomly selected for the study. Their mean dietary zinc intake was 9.06 mg/day, whereas the recommended dietary allowance is 15 mg/day. Plasma zinc was normal, but zinc in granulocytes and lymphocytes were decreased compared with younger control subjects. Of 118 elderly subjects in whom zinc levels in both granulocytes and lymphocytes were available, 36 had deficient levels. Plasma copper was increased, and interleukin 1 (IL-1) production was significantly decreased. Reduced response to the skin-test antigen panel and decreased taste acuity were observed. Thirteen elderly zinc-deficient subjects were supplemented with zinc, and various variables were assessed before and after zinc supplementation. Zinc supplementation corrected zinc deficiency and normalized plasma copper levels. Serum thymulin activity, IL-1 production, and lymphocyte ecto-5'-nucleotidase increased significantly after supplementation. Improvement in response to skin-test antigens and taste acuity was observed after zinc supplementation. A mild zinc deficiency appears to be a significant clinical problem in free-living elderly people. PMID:8353362

  14. Treatment of zinc deficiency without zinc fortification

    PubMed Central

    Oberleas, Donald; Harland, Barbara F.

    2008-01-01

    Zinc (Zn) deficiency in animals became of interest until the 1950s. In this paper, progresses in researches on physiology of Zn deficiency in animals, phytate effect on bioavailability of Zn, and role of phytase in healing Zn deficiency of animals were reviewed. Several studies demonstrated that Zn is recycled via the pancreas; the problem of Zn deficiency was controlled by Zn homeostasis. The endogenous secretion of Zn is considered as an important factor influencing Zn deficiency, and the critical molar ratio is 10. Phytate (inositol hexaphosphate) constituted up to 90% of the organically bound phosphorus in seeds. Great improvement has been made in recent years on isolating and measuring phytate, and its structure is clear. Phytate is considered to reduce Zn bioavailability in animal. Phytase is the enzyme that hydrolyzes phytate and is present in yeast, rye bran, wheat bran, barley, triticale, and many bacteria and fungi. Zinc nutrition and bioavailability can be enhanced by addition of phytase to animal feeds. Therefore, using phytase as supplements, the most prevalent Zn deficiency in animals may be effectively corrected without the mining and smelting of several tons of zinc daily needed to correct this deficiency by fortification worldwide. PMID:18357621

  15. Anomalous behavior of the optical band gap of nanocrystalline zinc oxide thin films

    SciTech Connect

    Srikant, V.; Clarke, D.R.

    1997-06-01

    The optical band gap of ZnO films on fused silica in the carrier concentration regime of 10{sup 18}{endash}10{sup 20}/cm{sup 3} is reported. Contrary to theoretical predictions there is an anomalous increase in the band gap of ZnO films at a carrier concentration of 5{times}10{sup 18}/cm{sup 3}, followed by an abrupt decrease at a critical concentration of 3{endash}4{times}10{sup 19}/cm{sup 3} before the optical band gap rises again. Similar observations have been made before, but an explanation of these observations was lacking. We propose a model based on the existence of potential barriers at the grain boundaries, causing quantum confinement of the electrons in the small grains realized in these films. Quantum confinement leads to the initial rise in the optical band gap. On increasing the carrier concentration to the critical value the potentials at the grain boundaries collapse leading, to the abrupt decrease in the optical band gap. Above this carrier concentration the films behave according to existing many-body theories. {copyright} {ital 1997 Materials Research Society.}

  16. Synthesis, structural and optical properties of nanocrystalline vanadium doped zinc oxide aerogel

    NASA Astrophysics Data System (ADS)

    El Ghoul, J.; Barthou, C.; El Mir, L.

    2012-06-01

    We report the synthesis of vanadium-doped ZnO nanoparticles prepared by a sol-gel processing technique. In our approach, the water for hydrolysis was slowly released by esterification reaction followed by a supercritical drying in ethyl alcohol. Vanadium doping concentration of 10 at% has been investigated. After treatment in air at different temperatures, the obtained nanopowder was characterized by various techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescence (PL). Analysis by scanning electron microscopy at high resolution shows that the grain size increases with increasing temperature. Thus, in the case of thermal treatment at 500 °C in air, the powder with an average particle size of 25 nm shows a strong luminescence band in the visible range. The intensity and energy position of the obtained PL band depends on the temperature measurement increase. The mechanism of this emission band is discussed.

  17. Structural parameters and vibrational spectra of a series of zinc meso-phenylporphyrins: A DFT and experimental study

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Hui; Zhao, Wei; Jiang, Ping; Zhang, Long-Jin; Zhang, Tao; Wang, Jin

    2010-02-01

    The influences of meso-phenyl substitution on the geometric structure and vibrational spectra have been studied by DFT calculation (B3LYP/6-31G(d)) and experiment on a series of zinc porphyrins (ZnTPP: zinc 5,10,15,20-tetraphenylporphyrin; ZnTrPP: zinc 5,10,15-triphenylporphryin; ZnDPP: zinc 5,15-dipenylporphyirn; ZnMPP: zinc 5-monophenylporphyrin; ZnP: zinc porphine). Calculation indicates that meso-phenyl substitution gives rise to slight out-of-plane distortion but significant in-plane distortion, especially for the configuration around Cm atom, to zinc porphyrin. The assignment of experimental vibrational spectra was proposed mainly on the basis of calculation. Different shifting tendency upon meso-phenyl substitution is observed for different structure-sensitive bands, such as the shifting of ν2, ν3, ν6, and ν8 modes toward higher frequencies and ν4 and ν28 modes toward lower frequencies, upon meso-phenyl substitution. This is attributed primarily to in-plane nuclear reorganization effect (IPNR), though the contribution from out-of-plane distortion cannot be excluded completely. Analysis on vibrational structure reveals that asymmetric meso-phenyl substitution, especially the 5,15-diphenyl substitution of ZnDPP, brings about asymmetric vibrational displacement, or even splitting of vibrational structure to normal modes involving mainly the motion of meso- Cm. This is ascribed to the reduction of symmetry of porphyrin skeleton caused by asymmetric meso-phenyl substitution.

  18. Endogenous zinc in neurological diseases.

    PubMed

    Koh, Jae-Yong

    2005-10-01

    The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC (for example, the Smith Papyrus), and zinc has apparently been used fairly steadily throughout Roman and modern times (for example, as the American lotion named for its zinc ore, 'Calamine'). It is, therefore, somewhat ironic that zinc is a relatively late addition to the pantheon of signal ions in biology and medicine. However, the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'. Here neurobiological roles of endogenous zinc is summarized.

  19. Endogenous Zinc in Neurological Diseases

    PubMed Central

    2005-01-01

    The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC (for example, the Smith Papyrus), and zinc has apparently been used fairly steadily throughout Roman and modern times (for example, as the American lotion named for its zinc ore, 'Calamine'). It is, therefore, somewhat ironic that zinc is a relatively late addition to the pantheon of signal ions in biology and medicine. However, the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'. Here neurobiological roles of endogenous zinc is summarized. PMID:20396459

  20. The substitutability of reinforcers.

    PubMed

    Green, Leonard; Freed, Debra E

    1993-07-01

    Substitutability is a construct borrowed from microeconomics that describes a continuum of possible interactions among the reinforcers in a given situation. Highly substitutable reinforcers, which occupy one end of the continuum, are readily traded for each other due to their functional similarity. Complementary reinforcers, at the other end of the continuum, tend to be consumed jointly in fairly rigid proportion, and therefore cannot be traded for one another except to achieve that proportion. At the center of the continuum are reinforcers that are independent with respect to each other; consumption of one has no influence on consumption of another. Psychological research and analyses in terms of substitutability employ standard operant conditioning paradigms in which humans and nonhumans choose between alternative reinforcers. The range of reinforcer interactions found in these studies is more readily accommodated and predicted when behavior-analytic models of choice consider issues of substitutability. New insights are gained into such areas as eating and drinking, electrical brain stimulation, temporal separation of choice alternatives, behavior therapy, drug use, and addictions. Moreover, the generalized matching law (Baum, 1974) gains greater explanatory power and comprehensiveness when measures of substitutability are included. PMID:16812696

  1. The substitutability of reinforcers

    PubMed Central

    Green, Leonard; Freed, Debra E.

    1993-01-01

    Substitutability is a construct borrowed from microeconomics that describes a continuum of possible interactions among the reinforcers in a given situation. Highly substitutable reinforcers, which occupy one end of the continuum, are readily traded for each other due to their functional similarity. Complementary reinforcers, at the other end of the continuum, tend to be consumed jointly in fairly rigid proportion, and therefore cannot be traded for one another except to achieve that proportion. At the center of the continuum are reinforcers that are independent with respect to each other; consumption of one has no influence on consumption of another. Psychological research and analyses in terms of substitutability employ standard operant conditioning paradigms in which humans and nonhumans choose between alternative reinforcers. The range of reinforcer interactions found in these studies is more readily accommodated and predicted when behavior-analytic models of choice consider issues of substitutability. New insights are gained into such areas as eating and drinking, electrical brain stimulation, temporal separation of choice alternatives, behavior therapy, drug use, and addictions. Moreover, the generalized matching law (Baum, 1974) gains greater explanatory power and comprehensiveness when measures of substitutability are included. PMID:16812696

  2. Copper removal using electrosterically stabilized nanocrystalline cellulose.

    PubMed

    Sheikhi, Amir; Safari, Salman; Yang, Han; van de Ven, Theo G M

    2015-06-01

    Removal of heavy metal ions such as copper using an efficient and low-cost method with low ecological footprint is a critical process in wastewater treatment, which can be achieved in a liquid phase using nanoadsorbents such as inorganic nanoparticles. Recently, attention has turned toward developing sustainable and environmentally friendly nanoadsorbents to remove heavy metal ions from aqueous media. Electrosterically stabilized nanocrystalline cellulose (ENCC), which can be prepared from wood fibers through periodate/chlorite oxidation, has been shown to have a high charge content and colloidal stability. Here, we show that ENCC scavenges copper ions by different mechanisms depending on the ion concentration. When the Cu(II) concentration is low (C0≲200 ppm), agglomerates of starlike ENCC particles appear, which are broken into individual starlike entities by shear and Brownian motion, as evidenced by photometric dispersion analysis, dynamic light scattering, and transmission electron microscopy. On the other hand, at higher copper concentrations, the aggregate morphology changes from starlike to raftlike, which is probably due to the collapse of protruding dicarboxylic cellulose (DCC) chains and ENCC charge neutralization by copper adsorption. Such raftlike structures result from head-to-head and lateral aggregation of neutralized ENCCs as confirmed by transmission electron microscopy. As opposed to starlike aggregates, the raftlike structures grow gradually and are prone to sedimentation at copper concentrations C0≳500 ppm, which eliminates a costly separation step in wastewater treatment processes. Moreover, a copper removal capacity of ∼185 mg g(-1) was achieved thanks to the highly charged DCC polyanions protruding from ENCC. These properties along with the biorenewability make ENCC a promising candidate for wastewater treatment, in which fast, facile, and low-cost removal of heavy metal ions is desired most.

  3. Tribological properties of nanocrystalline diamond films

    SciTech Connect

    Erdemir, A.; Fenske, G. R.; Kraus, A. R.; Gruen, D. M.; McCauley, T.; Csencsits, R. T.

    2000-01-26

    In this paper, the authors present the friction and wear properties of nanocrystalline diamond (NCD) films grown in A-fullerene (C{sub 60}) and Ar-CH{sub 4} microwave plasmas. Specifically, they address the fundamental tribological issues posed by these films during sliding against Si{sub 3}N{sub 4} counterfaces in ambient air and inert gases. Grain sizes of the films grown by the new method are very small (10--30 nm) and are much smoother (20-40 nm, root mean square) than those of films grown by the conventional H{sub 2}-CH{sub 4} microwave-assisted chemical-vapor-deposition (CVD) process. Transmission electron microscopy (TEM) revealed that the grain boundaries of these films are very sharp and free of nondiamond phases. The microcrystalline diamond (MCD) films grown by most conventional methods consist of large grains and a rough surface finish, which can cause severe abrasion during sliding against other materials. The friction coefficients of films grown by the new method (i.e., in Ar-C{sub 60} and Ar-CH{sub 4} plasmas) are comparable to those of natural diamond, and wear damage on counterface materials is minimal. Fundamental tribological studies indicate that these films may undergo phase transformation during long-duration, high-speed and/or high-load sliding tests and that the transformation products trapped at the sliding interfaces can intermittently dominate friction and wear performance. Using results from a combination of TEM, electron diffraction, Raman spectroscopy, and electron energy loss spectroscopy (EELS), they describe the structural chemistry of the debris particles trapped at the sliding interfaces and elucidate their possible effects on friction and wear of NCD films in dry N{sub 2}. Finally, they suggest a few potential applications in which NCD films can improve performance and service lives.

  4. Copper removal using electrosterically stabilized nanocrystalline cellulose.

    PubMed

    Sheikhi, Amir; Safari, Salman; Yang, Han; van de Ven, Theo G M

    2015-06-01

    Removal of heavy metal ions such as copper using an efficient and low-cost method with low ecological footprint is a critical process in wastewater treatment, which can be achieved in a liquid phase using nanoadsorbents such as inorganic nanoparticles. Recently, attention has turned toward developing sustainable and environmentally friendly nanoadsorbents to remove heavy metal ions from aqueous media. Electrosterically stabilized nanocrystalline cellulose (ENCC), which can be prepared from wood fibers through periodate/chlorite oxidation, has been shown to have a high charge content and colloidal stability. Here, we show that ENCC scavenges copper ions by different mechanisms depending on the ion concentration. When the Cu(II) concentration is low (C0≲200 ppm), agglomerates of starlike ENCC particles appear, which are broken into individual starlike entities by shear and Brownian motion, as evidenced by photometric dispersion analysis, dynamic light scattering, and transmission electron microscopy. On the other hand, at higher copper concentrations, the aggregate morphology changes from starlike to raftlike, which is probably due to the collapse of protruding dicarboxylic cellulose (DCC) chains and ENCC charge neutralization by copper adsorption. Such raftlike structures result from head-to-head and lateral aggregation of neutralized ENCCs as confirmed by transmission electron microscopy. As opposed to starlike aggregates, the raftlike structures grow gradually and are prone to sedimentation at copper concentrations C0≳500 ppm, which eliminates a costly separation step in wastewater treatment processes. Moreover, a copper removal capacity of ∼185 mg g(-1) was achieved thanks to the highly charged DCC polyanions protruding from ENCC. These properties along with the biorenewability make ENCC a promising candidate for wastewater treatment, in which fast, facile, and low-cost removal of heavy metal ions is desired most. PMID:25950624

  5. Electrochemical Behavior of meso-Substituted Porphyrins: The Role of Cation Radicals to the Half-Wave Oxidation Potential Splitting.

    PubMed

    Tran, Thai T H; Chang, Yan-Ru; Hoang, Tuan K A; Kuo, Ming-Yu; Su, Yuhlong O

    2016-07-21

    In this study, the electrochemical behavior of free base and zinc meso-substituted porphyrins is examined by cyclic voltammetry (CV) and density functional theory (DFT). The results show that the half-wave oxidation potential splitting of the two oxidation states (ΔE= second E1/2 - first E1/2) of tetraphenylporphyrin (H2TPP) and its zinc complex (ZnTPP) are higher than those of porphyrins and their zinc complexes with meso-substituted five-membered heterocylic rings. The ΔE values follow the trend of TPP > T(3'-thienyl)P > T(3'-furyl)P > T(2'-thienyl)P for both meso-porphyrins and their respective zinc complexes. By employing DFT calculations, we have found that the trend of ΔE values is consistent with that of highest spin density (HSD) distribution and HOMO-LUMO energy gaps of cationic radicals as well as the π-conjugation between central porphyrin and meso-substituted rings. Also, they exhibit the better resonance between the porphyrin ring with meso-substituted rings as moving from porphyrins and their zinc complexes with phenyl rings to five-membered heterocyclic rings. A good agreement between calculated and experimental results indicates that cationic radicals, especially their spin density distribution, do play an important role in half-wave oxidation potential splitting of meso-porphyrins and their zinc complexes. PMID:27379447

  6. [Study on spectra properties of novel octa-substituted phthalocyanines].

    PubMed

    Xia, Dao-Cheng; Li, Wan-Cheng; Wang, Hong-Fu; Zheng, Xin-Xing; Guo, Yan-Jie; Yang, Xu-Qing

    2011-08-01

    The spectrum properties of four novel 1, 4, 8, 11, 15, 18, 22, 25-octaoxybutyl copper phthalocyanine; 1,4,8,11,15,18, 22, 25-octamethoxybutanoate manganese phthalocyanine; 1, 4, 8, 11, 15, 18, 22, 25-octamethoxybutanoate copper phthalocyanine; 1, 4, 8, 11, 15, 18, 22, 25-octamethoxybutanoate zinc phthalocyanine were investigated by infrared, fluorescence and UV-visible spectrum in the the paper. There is no rule in the infrared spectrum of these octa-substituted phthalocyanines. The orders of the Q band, B band and Pc dimer band are different among the above Octa-substituted Phthalocyanines in the UV and fluorescence spectra. The reason is related to the interaction between the ligand and the central metal of these octa-substituted phthalocyanines.

  7. ZINC ROUGHER CELLS ON LEFT, ZINC CLEANER CELLS ON RIGHT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ZINC ROUGHER CELLS ON LEFT, ZINC CLEANER CELLS ON RIGHT, LOOKING NORTH. NOTE ONE STYLE OF DENVER AGITATOR IN LOWER RIGHT CELL. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  8. Suppression of zinc dendrites in zinc electrode power cells

    NASA Technical Reports Server (NTRS)

    Damjanovic, A.; Diggle, J. W.

    1970-01-01

    Addition of various tetraalkyl quarternary ammonium salts, to alkaline zincate electrolyte of cell, prevents formation of zinc dendrites during charging of zinc electrode. Electrode capacity is not impaired and elimination of dendrites prolongs cell life.

  9. FAST TRACK COMMUNICATION: A shortcut hydrothermal strategy for the synthesis of zinc nanowires

    NASA Astrophysics Data System (ADS)

    Hu, Jianqiang; Chen, Zhiwu; Xie, Jingsi; Yu, Ying

    2008-02-01

    Synthesis of metal nanowires has opened many new possibilities for designing ideal building blocks for future nanodevices. In this work, zinc nanowires with lengths of micrometre magnitude were synthesized in high yield by a shortcut hydrothermal strategy. The synthesis involves a template-free, non-seed and catalyst-free solution-phase process to high-quality zinc nanowires, which is low-cost and proceeds at relatively short time. In this process, zinc nanowires were prepared through the reduction of zinc acetate with absolute ethanol in the presence of silver nitrate under hydrothermal atmosphere. The strategy suggests that silver ion plays a vital role in the synthesis of zinc nanowires, without which the substituted product is zinc oxide nanowires. X-ray diffraction and energy-dispersive x-ray spectroscopy measurements confirm the final formation of zinc nanowires and component transformation from zinc oxide nanowires in the introduction of silver ion. We believe that with the efficient synthesis, longer zinc nanowires can be fabricated and may find potential applications for superconductors and nanodevices.

  10. New route to the fabrication of nanocrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Varshney, Deepak; Palomino, Javier; Gil, Jennifer; Resto, Oscar; Weiner, Brad R.; Morell, Gerardo

    2014-02-01

    Nanocrystalline diamond (NCD) thin films offer applications in various fields, but the existing synthetic approaches are cumbersome and destructive. A major breakthrough has been achieved by our group in the direction of a non-destructive, scalable, and economic process of NCD thin-film fabrication. Here, we report a cheap precursor for the growth of nanocrystalline diamond in the form of paraffin wax. We show that NCD thin films can be fabricated on a copper support by using simple, commonplace paraffin wax under reaction conditions of Hot Filament Chemical Vapor Deposition (HFCVD). Surprisingly, even the presence of any catalyst or seeding that has been conventionally used in the state-of-the-art is not required. The structure of the obtained films was analyzed by scanning electron microscopy and transmission electron microscopy. Raman spectroscopy and electron energy-loss spectroscopy recorded at the carbon K-edge region confirm the presence of nanocrystalline diamond. The process is a significant step towards cost-effective and non-cumbersome fabrication of nanocrystalline diamond thin films for commercial production.

  11. New route to the fabrication of nanocrystalline diamond films

    SciTech Connect

    Varshney, Deepak Morell, Gerardo; Palomino, Javier; Resto, Oscar; Gil, Jennifer; Weiner, Brad R.

    2014-02-07

    Nanocrystalline diamond (NCD) thin films offer applications in various fields, but the existing synthetic approaches are cumbersome and destructive. A major breakthrough has been achieved by our group in the direction of a non-destructive, scalable, and economic process of NCD thin-film fabrication. Here, we report a cheap precursor for the growth of nanocrystalline diamond in the form of paraffin wax. We show that NCD thin films can be fabricated on a copper support by using simple, commonplace paraffin wax under reaction conditions of Hot Filament Chemical Vapor Deposition (HFCVD). Surprisingly, even the presence of any catalyst or seeding that has been conventionally used in the state-of-the-art is not required. The structure of the obtained films was analyzed by scanning electron microscopy and transmission electron microscopy. Raman spectroscopy and electron energy-loss spectroscopy recorded at the carbon K-edge region confirm the presence of nanocrystalline diamond. The process is a significant step towards cost-effective and non-cumbersome fabrication of nanocrystalline diamond thin films for commercial production.

  12. Distinctive glial and neuronal interfacing on nanocrystalline diamond.

    PubMed

    Bendali, Amel; Agnès, Charles; Meffert, Simone; Forster, Valérie; Bongrain, Alexandre; Arnault, Jean-Charles; Sahel, José-Alain; Offenhäusser, Andreas; Bergonzo, Philippe; Picaud, Serge

    2014-01-01

    Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth.

  13. The Thermal Stability of Nanocrystalline Au-Cu Alloys

    SciTech Connect

    Jankowski, A F; Saw, C K; Hayes, J P

    2006-02-15

    Grain refinement to the nanocrystalline scale is known to enhance physical properties as strength and surface hardness. For the case of Au-Cu alloys, development of the pulsed electroplating has led to the functional control of nanocrystalline grain size in the as-deposited condition. The thermal aging of Au-Cu electrodeposits is now investigated to assess the stability of the nanocrystalline grain structure and the difference between two diffusion mechanisms. The mobility of grain boundaries, dominant at low temperatures, leads to coarsening of grain size whereas at high temperature the process of bulk diffusion dominates. Although the kinetics of bulk diffusion are slow below 500 K at 10{sup -20} cm{sup 2} {center_dot} sec, the kinetics of grain boundary diffusion are faster at 10{sup -16} cm{sup 2} {center_dot} sec. The diffusivity values indicate that the grain boundaries of the as-deposited nanocrystalline Au-Cu are mobile and sensitive to low-temperature anneal treatments affecting the grain size, hence the strength of the material.

  14. Synthesis and characterization of nanocrystalline and mesoporous zeolites

    NASA Astrophysics Data System (ADS)

    Petushkov, Anton

    2011-12-01

    Mesoporous aggregates of nanocrystalline zeolites with MFI and BEA frameworks have been synthesized using a one-pot and single structure directing agent. The effect of different reaction conditions, such as temperature, time, pH and water content, on the particle size, surface area and mesopore volume has been studied. Nanocrystalline and mesoporous ZSM-5, beta and Y zeolites were modified with different transition metals and the resulting single- and double metal containing catalyst materials were characterized. Nanocrystalline Silicalite-1 zeolite samples with varying particle size were functionalized with different organosilane groups and the cytotoxic activity of the zeolite nanocrystals was studied as a function of particle size, concentration, organic functional group type, as well as the type of cell line. Framework stability of nanocrystalline NaY zeolite was tested under different pH conditions. The synthesized zeolites used in this work were characterized using a variety of physico-chemical methods, including powder X-ray diffraction, Solid State NMR, nitrogen sorption, electron microscopy, Inductively Coupled Plasma -- Optical Emission Spectroscopy and X-ray Photoelectron Spectroscopy.

  15. Positron lifetime calculation for possible defects in nanocrystalline copper

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Zhang, Ting; Wang, Zhu

    2015-10-01

    Structural models for dislocation, vacancy clusters, twin boundary, stacking fault and nanocrystalline sample are constructed using copper as a model material. Positron lifetimes and momentum distributions of annihilating electron-positron pairs are calculated for these structural models. The calculated results indicate that the dislocation, twin boundary and stacking fault are shallow traps to positrons. The dislocation associated with monovacancies gives rise to a positron lifetime similar to that of monovacancies. The calculated positron lifetimes of the nanocrystalline copper show no dependence on the mean grain size. The as-constructed nanocrystalline samples contain vacancy clusters in grain boundaries, and positrons are localized by the vacancy clusters. However after relaxation the samples show only other two kinds of free volumes: one is the interatomic space in grain boundaries which is a shallow trap to positrons; the other is similar to a monovacancy. The latter contributes a positron lifetime of about 163 ps. This kind of free volume is not only observed in grain boundaries but also in the regions near grain boundaries. Positron lifetime calculation combined with the momentum distribution calculation is useful to identify the defect in the nanocrystalline Cu.

  16. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    SciTech Connect

    Z. Zak Fang, H. Y. Sohn

    2009-03-10

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  17. Synthesis of Nano-Crystalline Gamma-TiAl Materials

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Vasquez, Peter

    2003-01-01

    One of the principal problems with nano-crystalline materials is producing them in quantities and sizes large enough for valid mechanical property evaluation. The purpose of this study was to explore an innovative method for producing nano-crystalline gamma-TiAl bulk materials using high energy ball milling and brief secondary processes. Nano-crystalline powder feedstock was produced using a Fritsch P4(TM) vario-planetary ball mill recently installed at NASA-LaRC. The high energy ball milling process employed tungsten carbide tooling (vials and balls) and no process control agents to minimize contamination. In a collaborative effort, two approaches were investigated, namely mechanical alloying of elemental powders and attrition milling of pre-alloyed powders. The objective was to subsequently use RF plasma spray deposition and short cycle vacuum hot pressing in order to effect consolidation while retaining nano-crystalline structure in bulk material. Results and discussion of the work performed to date are presented.

  18. Fatigue stress concentration and notch sensitivity in nanocrystalline metals

    DOE PAGES

    Furnish, Timothy A.; Boyce, Brad L.; Sharon, John A.; O’Brien, Christopher J.; Clark, Blythe G.; Arrington, Christian L.; Pillars, Jamin R.

    2016-03-11

    Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zonesmore » underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. Furthermore, the onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.« less

  19. Light emission, light detection and strain sensing with nanocrystalline graphene

    NASA Astrophysics Data System (ADS)

    Riaz, Adnan; Pyatkov, Feliks; Alam, Asiful; Dehm, Simone; Felten, Alexandre; Chakravadhanula, Venkata S. K.; Flavel, Benjamin S.; Kübel, Christian; Lemmer, Uli; Krupke, Ralph

    2015-08-01

    Graphene is of increasing interest for optoelectronic applications exploiting light detection, light emission and light modulation. Intrinsically, the light-matter interaction in graphene is of a broadband type. However, by integrating graphene into optical micro-cavities narrow-band light emitters and detectors have also been demonstrated. These devices benefit from the transparency, conductivity and processability of the atomically thin material. To this end, we explore in this work the feasibility of replacing graphene with nanocrystalline graphene, a material which can be grown on dielectric surfaces without catalyst by graphitization of polymeric films. We have studied the formation of nanocrystalline graphene on various substrates and under different graphitization conditions. The samples were characterized by resistance, optical transmission, Raman and x-ray photoelectron spectroscopy, atomic force microscopy and electron microscopy measurements. The conducting and transparent wafer-scale material with nanometer grain size was also patterned and integrated into devices for studying light-matter interaction. The measurements show that nanocrystalline graphene can be exploited as an incandescent emitter and bolometric detector similar to crystalline graphene. Moreover the material exhibits piezoresistive behavior which makes nanocrystalline graphene interesting for transparent strain sensors.

  20. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  1. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  2. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  3. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  4. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  5. Clinical manifestations of zinc deficiency.

    PubMed

    Prasad, A S

    1985-01-01

    The essentiality of zinc for humans was recognized in the early 1960s. The causes of zinc deficiency include malnutrition, alcoholism, malabsorption, extensive burns, chronic debilitating disorders, chronic renal diseases, following uses of certain drugs such as penicillamine for Wilson's disease and diuretics in some cases, and genetic disorders such as acrodermatitis enteropathica and sickle cell disease. In pregnancy and during periods of growth the requirement of zinc is increased. The clinical manifestations in severe cases of zinc deficiency include bullous-pustular dermatitis, alopecia, diarrhea, emotional disorder, weight loss, intercurrent infections, hypogonadism in males; it is fatal if unrecognized and untreated. A moderate deficiency of zinc is characterized by growth retardation and delayed puberty in adolescents, hypogonadism in males, rough skin, poor appetite, mental lethargy, delayed wound healing, taste abnormalities, and abnormal dark adaptation. In mild cases of zinc deficiency in human subjects, we have observed oligospermia, slight weight loss, and hyperammonemia. Zinc is a growth factor. Its deficiency adversely affects growth in many animal species and humans. Inasmuch as zinc is needed for protein and DNA synthesis and for cell division, it is believed that the growth effect of zinc is related to its effect on protein synthesis. Whether or not zinc is required for the metabolism of somatomedin needs to be investigated in the future. Testicular functions are affected adversely as a result of zinc deficiency in both humans and experimental animals. This effect of zinc is at the end organ level; the hypothalamic-pituitary axis is intact in zinc-deficient subjects. Inasmuch as zinc is intimately involved in cell division, its deficiency may adversely affect testicular size and thus affect its functions. Zinc is required for the functions of several enzymes and whether or not it has an enzymatic role in steroidogenesis is not known at present

  6. Zinc titanate sorbents

    DOEpatents

    Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.

    1998-01-01

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750.degree. C. to about 950.degree. C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 .mu., and about 1 part titanium dioxide having a median particle size of less than about 1 .mu.. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  7. Zinc titanate sorbents

    DOEpatents

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1998-02-03

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750 to about 950 C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 microns, and about 1 part titanium dioxide having a median particle size of less than about 1 micron. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  8. Hot Superplastic Powder Forging for Transparent nanocrystalline Ceramics

    SciTech Connect

    Cannon, W. Roger

    2006-05-22

    The program explored a completely new, economical method of manufacturing nanocrystalline ceramics, Hot Superplastic Powder Forging (HSPF). The goal of the work was the development of nanocrystalline/low porosity optically transparent zirconia/alumina. The high optical transparency should result from lack of grain boundary scattering since grains will be smaller than one tenth the wavelength of light and from elimination of porosity. An important technological potential for this process is manufacturing of envelopes for high-pressure sodium vapor lamps. The technique for fabricating monolithic nanocrystalline material does not begin with powder whose particle diameter is <100 nm as is commonly done. Instead it begins with powder whose particle diameter is on the order of 10-100 microns but contains nanocrystalline crystallites <<100 nm. Spherical particles are quenched from a melt and heat treated to achieve the desired microstructure. Under a moderate pressure within a die or a mold at temperatures of 1100C to 1300C densification is by plastic flow of superplastic particles. A nanocrystalline microstructure results, though some features are greater than 100nm. It was found, for instance, that in the fully dense Al2O3-ZrO2 eutectic specimens that a bicontinuous microstructure exists containing <100 nm ZrO2 particles in a matrix of Al2O3 grains extending over 1-2 microns. Crystallization, growth, phase development and creep during hot pressing and forging were studied for several compositions and so provided some details on development of polycrystalline microstructure from heating quenched ceramics.

  9. Pulse I–V characterization of a nano-crystalline oxide device with sub-gap density of states

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Hur, Ji-Hyun; Jeon, Sanghun

    2016-05-01

    Understanding the charge trapping nature of nano-crystalline oxide semiconductor thin film transistors (TFTs) is one of the most important requirements for their successful application. In our investigation, we employed a fast-pulsed I–V technique for understanding the charge trapping phenomenon and for characterizing the intrinsic device performance of an amorphous/nano-crystalline indium-hafnium-zinc-oxide semiconductor TFT with varying density of states in the bulk. Because of the negligible transient charging effect with a very short pulse, the source-to-drain current obtained with the fast-pulsed I–V measurement was higher than that measured by the direct-current characterization method. This is because the fast-pulsed I–V technique provides a charge-trap free environment, suggesting that it is a representative device characterization methodology of TFTs. In addition, a pulsed source-to-drain current versus time plot was used to quantify the dynamic trapping behavior. We found that the charge trapping phenomenon in amorphous/nano-crystalline indium-hafnium-zinc-oxide TFTs is attributable to the charging/discharging of sub-gap density of states in the bulk and is dictated by multiple trap-to-trap processes.

  10. Pulse I-V characterization of a nano-crystalline oxide device with sub-gap density of states.

    PubMed

    Kim, Taeho; Hur, Ji-Hyun; Jeon, Sanghun

    2016-05-27

    Understanding the charge trapping nature of nano-crystalline oxide semiconductor thin film transistors (TFTs) is one of the most important requirements for their successful application. In our investigation, we employed a fast-pulsed I-V technique for understanding the charge trapping phenomenon and for characterizing the intrinsic device performance of an amorphous/nano-crystalline indium-hafnium-zinc-oxide semiconductor TFT with varying density of states in the bulk. Because of the negligible transient charging effect with a very short pulse, the source-to-drain current obtained with the fast-pulsed I-V measurement was higher than that measured by the direct-current characterization method. This is because the fast-pulsed I-V technique provides a charge-trap free environment, suggesting that it is a representative device characterization methodology of TFTs. In addition, a pulsed source-to-drain current versus time plot was used to quantify the dynamic trapping behavior. We found that the charge trapping phenomenon in amorphous/nano-crystalline indium-hafnium-zinc-oxide TFTs is attributable to the charging/discharging of sub-gap density of states in the bulk and is dictated by multiple trap-to-trap processes. PMID:27094772

  11. The influence of interfacial defects on fast charge trapping in nanocrystalline oxide-semiconductor thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Hur, Jihyun; Jeon, Sanghun

    2016-05-01

    Defects in oxide semiconductors not only influence the initial device performance but also affect device reliability. The front channel is the major carrier transport region during the transistor turn-on stage, therefore an understanding of defects located in the vicinity of the interface is very important. In this study, we investigated the dynamics of charge transport in a nanocrystalline hafnium-indium-zinc-oxide thin-film transistor (TFT) by short pulse I-V, transient current and 1/f noise measurement methods. We found that the fast charging behavior of the tested device stems from defects located in both the front channel and the interface, following a multi-trapping mechanism. We found that a silicon-nitride stacked hafnium-indium-zinc-oxide TFT is vulnerable to interfacial charge trapping compared with silicon-oxide counterpart, causing significant mobility degradation and threshold voltage instability. The 1/f noise measurement data indicate that the carrier transport in a silicon-nitride stacked TFT device is governed by trapping/de-trapping processes via defects in the interface, while the silicon-oxide device follows the mobility fluctuation model.

  12. Pulse I-V characterization of a nano-crystalline oxide device with sub-gap density of states

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Hur, Ji-Hyun; Jeon, Sanghun

    2016-05-01

    Understanding the charge trapping nature of nano-crystalline oxide semiconductor thin film transistors (TFTs) is one of the most important requirements for their successful application. In our investigation, we employed a fast-pulsed I-V technique for understanding the charge trapping phenomenon and for characterizing the intrinsic device performance of an amorphous/nano-crystalline indium-hafnium-zinc-oxide semiconductor TFT with varying density of states in the bulk. Because of the negligible transient charging effect with a very short pulse, the source-to-drain current obtained with the fast-pulsed I-V measurement was higher than that measured by the direct-current characterization method. This is because the fast-pulsed I-V technique provides a charge-trap free environment, suggesting that it is a representative device characterization methodology of TFTs. In addition, a pulsed source-to-drain current versus time plot was used to quantify the dynamic trapping behavior. We found that the charge trapping phenomenon in amorphous/nano-crystalline indium-hafnium-zinc-oxide TFTs is attributable to the charging/discharging of sub-gap density of states in the bulk and is dictated by multiple trap-to-trap processes.

  13. Pulse I-V characterization of a nano-crystalline oxide device with sub-gap density of states.

    PubMed

    Kim, Taeho; Hur, Ji-Hyun; Jeon, Sanghun

    2016-05-27

    Understanding the charge trapping nature of nano-crystalline oxide semiconductor thin film transistors (TFTs) is one of the most important requirements for their successful application. In our investigation, we employed a fast-pulsed I-V technique for understanding the charge trapping phenomenon and for characterizing the intrinsic device performance of an amorphous/nano-crystalline indium-hafnium-zinc-oxide semiconductor TFT with varying density of states in the bulk. Because of the negligible transient charging effect with a very short pulse, the source-to-drain current obtained with the fast-pulsed I-V measurement was higher than that measured by the direct-current characterization method. This is because the fast-pulsed I-V technique provides a charge-trap free environment, suggesting that it is a representative device characterization methodology of TFTs. In addition, a pulsed source-to-drain current versus time plot was used to quantify the dynamic trapping behavior. We found that the charge trapping phenomenon in amorphous/nano-crystalline indium-hafnium-zinc-oxide TFTs is attributable to the charging/discharging of sub-gap density of states in the bulk and is dictated by multiple trap-to-trap processes.

  14. The Age of Substitutability

    ERIC Educational Resources Information Center

    Goeller, H. E.; Weinberg, Alvin M.

    1976-01-01

    Dwindling mineral resources might cause a shift from nonrenewable resources to renewable resources and inexhaustible elements such as iron and aluminum. Alternative energy sources such as breeder, fusion, solar, and geothermal power must be developed for production and recycling of materials. Substitution and, hence, living standards ultimately…

  15. Performing Substitute Teaching

    ERIC Educational Resources Information Center

    Bletzer, Keith V.

    2010-01-01

    Formal education is both a right and an obligation bestowed on young people in most all nations of the world. Teachers (adults) and students (youth) form a co-present dyadic contract that must be maintained within the classroom. Substitute teachers fill a role in sustaining the integrity of this teacher-student link, whenever teachers are absent.…

  16. Screening Substitute Teachers.

    ERIC Educational Resources Information Center

    Kakkuri, Mark

    2000-01-01

    The screening process a school district uses in hiring substitute teachers is critical to striking a balance between required qualifications and immediate need. Typically, screening involves at least one of the following: pre-screening, paper and pencil screening, interviews, and background checks, each of which is used to different degrees…

  17. Observations of interstellar zinc

    NASA Technical Reports Server (NTRS)

    Jura, M.; York, D.

    1981-01-01

    The International Ultraviolet Explorer observations of interstellar zinc toward 10 stars are examined. It is found that zinc is at most only slightly depleted in the interstellar medium; its abundance may serve as a tracer of the true metallicity in the gas. The local interstellar medium has abundances that apparently are homogeneous to within a factor of two, when integrated over paths of about 500 pc, and this result is important for understanding the history of nucleosynthesis in the solar neighborhood. The intrinsic errors in detecting weak interstellar lines are analyzed and suggestions are made as to how this error limit may be lowered to 5 mA per target observation.

  18. Photovoltaic cells employing zinc phosphide

    DOEpatents

    Barnett, Allen M.; Catalano, Anthony W.; Dalal, Vikram L.; Masi, James V.; Meakin, John D.; Hall, Robert B.

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  19. Recovering Zinc From Discarded Tires

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Zinc sulfate monohydrate sold at profit. Shredded tire material steeped in three sulfuric acid baths to extract zinc. Final product removed by evaporating part of solution until product crystallizes out. Recovered as zinc sulfate monohydrate and sold as fertilizer or for general use.

  20. Photovoltaic cells employing zinc phosphide

    SciTech Connect

    Barnett, A.M.; Catalano, A.W.; Dalal, V.L.; Hall, R.B.; Masi, J.V.; Meakin, J.D.

    1984-10-16

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  1. Processing and characterization of nanocrystalline ceria

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao-Dong

    Ceria and doped ceria have been extensively investigated and applied in various industrial fields, including automotive, energy, polishing media, paint additives and cosmetics. The use of high surface area, nanocrystalline CeO2 powder could benefit all of these applications. This is particularly true for processing dense components, since the high melting point (2400°C) of pure CeO2 makes it difficult to sinter. In this dissertation, a semi-batch reactor method was developed for directly synthesizing undoped and doped, nanometer-scale CeO2 particles at room temperature. Powders exhibited a surface area of ≈170 m 2/g, and could be decreased to 5 m2/g by thermal annealing at 1000°C. Control over the particle size, size distribution and state of agglomeration could be achieved through variation of the mixing conditions, and oxidation pathway. Modeling of the nucleation behavior yielded a surface energy for Ce(OH)3 to be in the range of 2.9--3.7 J/m 2. Size induced lattice relaxation was observed for nanoscale CeO2 single crystals with an average size from 4 to 60 nm. Results showed the finest crystallites exhibited no strain-induced line broadening, while high temperature annealing resulted in larger grain sizes and significant strains. Modeling revealed that the [V••o] was found to be ≈4 x 1020/cm 3 for the 4 nm crystallites, and decreased two orders of magnitude for larger 60 mn single crystals. The microstructural evolution and grain boundary influence on electrical properties of Ce0.90Gd0.10 O1.95 were also studied. The nanoscale powders synthesized from semi-batch reactor exhibited 50% green density and 92% sintering density at 1200°C (≈200°C less than previous studies). A series of impedance spectra as a function of temperature and grain size were analyzed. The Ce 0.90Gd0.10O1.95 with finest grain size possessed highest overall grain boundary resistance; this contribution was eliminated at T>600°C, regardless of grain size. The grain conductivity

  2. Biomolecule-mediated synthesis of nanocrystalline semiconductors

    NASA Astrophysics Data System (ADS)

    Bae, Weon

    CdS and ZnS nanocrystalline semiconductors (NCs) were prepared by titrating inorganic sulfide into preformed Cd(II)- or Zn(II)-complexes of phytochelatins, glutathione or cysteine. This strategy resulted in the formation NCs capped by the chosen biomolecule. The range of sizes and their distributions depended primarily on the quantity of sulfide titrated and the biomolecule chosen for the initial metallo-complex. The processes of NC formation were studied by absorption and fluorescence spectrophotometry. The size distribution was analyzed by gel permeation chromatography. Ethanol precipitation of NCs under aqueous conditions was used to isolate nanoparticles within a very narrow size-range. Reduction of selected dyes was also studied on the surfaces of NCs. Glutathione-capped CdS nanoparticles exhibited significant size heterogeneity even at a single sulfide titration. In contrast, phytochelatins showed much less dispersion in size at a given sulfide titration. Phytochelatins could replace glutathione without changing the size of glutathione-capped CdS nanoparticles. Cysteine appeared to be intermediate between glutathione and phytochelatins in the formation of CdS nanoparticles. The calculated radii, using an effective mass approximation method, were 10.8-17.3, 10.6-11.8, and 13.5-15.5A for glutathione-, phytochelatin-, and cysteine-capped CdS nanoparticles, respectively. Cysteine-capped ZnS showed narrower size distribution than glutathione-capped ZnS. However, elevated temperatures were necessary to accomplish optimal yields of cysteine-capped ZnS NCs. An additional control over the size distribution of NCs was achieved by size-selective precipitation with ethanol. These procedures led to the isolation of nanoparticles that were more uniform in size and chemical compositions as determined by spectroscopic and chemical analyses of size-fractionated samples. Precipitation also allowed preparation of large quantities of powdered nanoparticles that could be

  3. Electrical and optical properties of molybdenum doped zinc oxide films prepared by reactive RF magnetron sputtering

    SciTech Connect

    Reddy, R. Subba; Sreedhar, A.; Uthanna, S.

    2015-08-28

    Molybdenum doped zinc oxide (MZO) films were deposited on to glass substrates held at temperatures in the range from 303 to 673 K by reactive RF magnetron sputtering method. The chemical composition, crystallographic structure and surface morphology, electrical and optical properties of the films were determined. The films contained the molybdenum of 2.7 at. % in ZnO. The films deposited at 303 K were of X-ray amorphous. The films formed at 473 K were of nanocrystalline in nature with wurtzite structure. The crystallite size of the films was increased with the increase of substrate temperature. The optical transmittance of the films was in the visible range was 80–85%. The molybdenum (2.7 at %) doped zinc oxide films deposited at substrate temperature of 573 K were of nanocrystalline with electrical resistivity of 7.2×10{sup −3} Ωcm, optical transmittance of 85 %, optical band gap of 3.35 eV and figure of merit 30.6 Ω{sup −1}cm{sup −1}.

  4. The Antimicrobial Properties of Zinc-Releasing Bioceramics

    NASA Astrophysics Data System (ADS)

    He, Xin

    Up to 80% of nosocomial infections are caused by biofilm-producing bacteria such as Staphylococci and Pseudomonas aeruginosa. These types of microorganisms can become resistant to antibiotics and are difficult to eliminate. As such, there is tremendous interest in developing bioactive implant materials that can help to minimize these post- operative infections. Using water-based chemistry, we developed an economical, biodegradable and biocompatible orthopedic implant material consisting of zinc- doped hydroxyapatite (HA), which mimics the main inorganic component of the bone. Because the crystallinity of HA is typically too compact for efficient drug release, we substituted calcium ions in HA with zinc during the synthesis step to perturb the crystal structure. An added benefit is that zinc itself is a microelement of the human body with anti-inflammatory property, and we hypothesized that Zn-doped HA is an inherently antibacterial material. All HA samples were synthesized by a co-precipitation method using aqueous solutions of Zinc nitrate, Calcium Nitrate, and Ammonium Phosphate. XRD data showed that Zn was successfully incorporated into the HA. The effectiveness of Zn-doped HA against a model biofilm-forming bacterium is currently being evaluated using a wild-type strain and a streptomycin- resistant strain of Pseudomonas syringae pv. papulans (Psp) which is a plant pathogen isolated from diseased apples. Key words: Hydroxyapatite, Zinc, Citrate, Pseudomonas, Antibacterial.

  5. Zinc requirements and zinc intakes of breast-fed infants.

    PubMed

    Krebs, N F; Hambidge, K M

    1986-02-01

    Longitudinal changes in dietary zinc requirements for infants at different levels of net absorption were estimated using a factorial approach. Apart from variations in net absorption, the zinc needed for new lean body mass is the major determinant of requirements. As growth velocity declines progressively, estimated zinc requirements for growth and for replacement of urine and sweat losses decrease from a high for male infants of 780 micrograms/day at 1 mo to 480 micrograms/day in the 5th mo and then remain quite constant through the 1st yr. Calculated percentage absorption of zinc from human milk necessary to meet estimated requirements increases with duration of lactation. For infants of mothers whose zinc intake approximated 25 mg/day the calculated percentage absorption remained within plausible limits. It is suggested that the progressive decrease in milk zinc concentrations provides a mechanism for conserving maternal zinc while meeting infant needs. PMID:3946293

  6. Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NOx.

    PubMed

    Huang, Yu; Ho, Wingkei; Lee, Shuncheng; Zhang, Lizhi; Li, Guisheng; Yu, Jimmy C

    2008-04-01

    Effective mesoporous nanocrystalline C-doped TiO(2) photocatalysts were synthesized through a direct solution-phase carbonization using titanium tetrachloride and diethanolamine as precursors. X-ray photoelectron spectroscopy (XPS) results revealed that oxygen sites in the TiO(2) lattice were substituted by carbon atoms and formed a C-Ti-O-C structure. The absorption region of the as-prepared TiO(2) was extended to the visible light region in view of the substitution for oxygen sites by carbon atoms. The photocatalytic activities of the as-prepared samples were tested in a flow system on the degradation of NO at typical indoor air levels under simulated solar-light irradiation. The samples showed a more effective removal efficiency than commercial photocatalyst (P25) on the degradation of the common indoor pollutant NO. The parameters significantly affecting the mesoporous structure and removal efficiency on indoor air were also investigated. PMID:18290683

  7. Imaging Mobile Zinc in Biology

    PubMed Central

    Tomat, Elisa; Lippard, Stephen J.

    2009-01-01

    Summary Trafficking and regulation of mobile zinc pools influence cellular functions and pathological conditions in multiple organs, including brain, pancreas, and prostate. The quest for a dynamic description of zinc distribution and mobilization in live cells fuels the development of increasingly sophisticated probes. Detection systems that respond to zinc binding with changes of their fluorescence emission properties have provided sensitive tools for mobile zinc imaging, and fluorescence microscopy experiments have afforded depictions of zinc distribution within live cells and tissues. Both small-molecule and protein-based fluorescent probes can address complex imaging challenges, such as analyte quantification, site-specific sensor localization, and real-time detection. PMID:20097117

  8. Zinc and Compounds

    Integrated Risk Information System (IRIS)

    Zinc and Compounds ; CASRN 7440 - 66 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  9. Creep Resistant Zinc Alloy

    SciTech Connect

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  10. Doped zinc oxide microspheres

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  11. Doped zinc oxide microspheres

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-12-14

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  12. Zinc sulfide liquefaction catalyst

    DOEpatents

    Garg, Diwakar

    1984-01-01

    A process for the liquefaction of carbonaceous material, such as coal, is set forth wherein coal is liquefied in a catalytic solvent refining reaction wherein an activated zinc sulfide catalyst is utilized which is activated by hydrogenation in a coal derived process solvent in the absence of coal.

  13. Zinc, the brain and behavior.

    PubMed

    Pfeiffer, C C; Braverman, E R

    1982-04-01

    The total content of zinc in the adult human body averages almost 2 g. This is approximately half the total iron content and 10 to 15 times the total body copper. In the brain, zinc is with iron, the most concentrated metal. The highest levels of zinc are found in the hippocampus in synaptic vesicles, boutons, and mossy fibers. Zinc is also found in large concentrations in the choroid layer of the retina which is an extension of the brain. Zinc plays an important role in axonal and synaptic transmission and is necessary for nucleic acid metabolism and brain tubulin growth and phosphorylation. Lack of zinc has been implicated in impaired DNA, RNA, and protein synthesis during brain development. For these reasons, deficiency of zinc during pregnancy and lactation has been shown to be related to many congenital abnormalities of the nervous system in offspring. Furthermore, in children insufficient levels of zinc have been associated with lowered learning ability, apathy, lethargy, and mental retardation. Hyperactive children may be deficient in zinc and vitamin B-6 and have an excess of lead and copper. Alcoholism, schizophrenia, Wilson's disease, and Pick's disease are brain disorders dynamically related to zinc levels. Zinc has been employed with success to treat Wilson's disease, achrodermatitis enteropathica, and specific types of schizophrenia.

  14. Method to produce nanocrystalline powders of oxide-based phosphors for lighting applications

    DOEpatents

    Loureiro, Sergio Paulo Martins; Setlur, Anant Achyut; Williams, Darryl Stephen; Manoharan, Mohan; Srivastava, Alok Mani

    2007-12-25

    Some embodiments of the present invention are directed toward nanocrystalline oxide-based phosphor materials, and methods for making same. Typically, such methods comprise a steric entrapment route for converting precursors into such phosphor material. In some embodiments, the nanocrystalline oxide-based phosphor materials are quantum splitting phosphors. In some or other embodiments, such nanocrystalline oxide based phosphor materials provide reduced scattering, leading to greater efficiency, when used in lighting applications.

  15. Methods for preparation of nanocrystalline rare earth phosphates for lighting applications

    DOEpatents

    Comanzo, Holly Ann; Manoharan, Mohan; Martins Loureiro, Sergio Paulo; Setlur, Anant Achyut; Srivastava, Alok Mani

    2013-04-16

    Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.

  16. Extreme creep resistance in a microstructurally stable nanocrystalline alloy.

    PubMed

    Darling, K A; Rajagopalan, M; Komarasamy, M; Bhatia, M A; Hornbuckle, B C; Mishra, R S; Solanki, K N

    2016-01-01

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10(-6) per second-six to eight orders of magnitude lower than most nanocrystalline metals-at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  17. Extreme creep resistance in a microstructurally stable nanocrystalline alloy

    NASA Astrophysics Data System (ADS)

    Darling, K. A.; Rajagopalan, M.; Komarasamy, M.; Bhatia, M. A.; Hornbuckle, B. C.; Mishra, R. S.; Solanki, K. N.

    2016-09-01

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10-6 per second—six to eight orders of magnitude lower than most nanocrystalline metals—at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  18. Extreme creep resistance in a microstructurally stable nanocrystalline alloy.

    PubMed

    Darling, K A; Rajagopalan, M; Komarasamy, M; Bhatia, M A; Hornbuckle, B C; Mishra, R S; Solanki, K N

    2016-09-14

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10(-6) per second-six to eight orders of magnitude lower than most nanocrystalline metals-at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  19. Comparative toxicity of a zinc salt, zinc powder and zinc oxide to Eisenia fetida, Enchytraeus albidus and Folsomia candida.

    PubMed

    Lock, Koen; Janssen, Colin R

    2003-12-01

    The pore water zinc concentration and the calcium chloride extracted zinc fraction are higher in the soils spiked with a zinc salt (ZnCl2) compared to soils spiked with zinc oxide or zinc powder. Based on total zinc concentrations in the soil, the acute toxicity of zinc salt to the compost worm Eisenia fetida, the potworm Enchytraeus albidus and the springtail Folsomia candida was lower compared to zinc oxide and zinc powder. However, when expressed on the basis of pore water concentrations or calcium chloride extracted fractions, acute toxicity was higher for zinc salt, which indicated that dermal uptake via the pore water is not the only route of uptake. Chronic toxicity of zinc salt, zinc oxide and zinc powder was similar when based on total concentrations in the soil which again indicates that the pore water route of uptake is not the only route of exposure but that oral uptake is also important.

  20. High mobility amorphous zinc oxynitride semiconductor material for thin film transistors

    SciTech Connect

    Ye Yan; Lim, Rodney; White, John M.

    2009-10-01

    Zinc oxynitride semiconductor material is produced through a reactive sputtering process in which competition between reactions responsible for the growth of hexagonal zinc oxide (ZnO) and for the growth of cubic zinc nitride (Zn{sub 3}N{sub 2}) is promoted. In contrast to processes in which the reaction for either the oxide or the nitride is dominant, the multireaction process yields a substantially amorphous or a highly disordered nanocrystalline film with higher Hall mobility, 47 cm{sup 2} V{sup -1} s{sup -1} for the as-deposited film produced at 50 deg. C and 110 cm{sup 2} V{sup -1} s{sup -1} after annealing at 400 deg. C. In addition, it has been observed that the Hall mobility of the material increases as the carrier concentration decreases in a carrier concentration range where a multicomponent metal oxide semiconductor, indium-gallium-zinc oxide, follows the opposite trend. This indicates that the carrier transports in the single-metal compound and the multimetal compound are probably dominated by different mechanisms. Film stability and thin film transistor performance of the material have also been tested, and results are presented herein.

  1. Effect of Nanocrystalline Hydroxyapatite Socket Preservation on Orthodontically Induced Inflammatory Root Resorption

    PubMed Central

    Seifi, Massoud; Arayesh, Ali; Shamloo, Nafise; Hamedi, Roya

    2015-01-01

    Objective Orthodontically induced inflammatory root resorption (OIIRR) is considered to be an important sequel associated with orthodontic tooth movement (OTM). OTM after Socket preservation enhances the periodontal condition before orthodontic space closure. The purpose of this study is to investigate the histologic effects of NanoBone®, a new highly nonsintered porous nano-crystalline hydroxyapatite bone on root resorption following OTM. Materials and Methods This experimental study was conducted on four male dogs. In each dog, four defects were created at the mesial aspects of the maxillary and mandibular first premolars. The defects were filled with NanoBone®. We used the NiTi closed coil for mesial movement of the first premolar tooth. When the experimental teeth moved approximately halfway into the defects, after two months, the animals were sacrificed and we harvested the area of interest. The first premolar root and adjacent tissues were histologically evaluated. The three-way ANOVA statistical test was used for comparison. Results The mean root resorption in the synthetic bone substitute group was 22.87 ± 11.25×10-4mm2 in the maxilla and 21.41 ± 11.25×10-4mm2 in the mandible. Statistically, there was no significant difference compared to the control group (p>0.05). Conclusion The use of a substitution graft in the nano particle has some positive effects in accessing healthy periodontal tissue following orthodontic procedures without significant influence on root resorption (RR). Histological evaluation in the present study showed osteoblastic activity and remodeling environment of nanoparticles in NanoBone®. PMID:25685742

  2. Acute changes in cellular zinc alters zinc uptake rates prior to zinc transporter gene expression in Jurkat cells.

    PubMed

    Holland, Tai C; Killilea, David W; Shenvi, Swapna V; King, Janet C

    2015-12-01

    A coordinated network of zinc transporters and binding proteins tightly regulate cellular zinc levels. Canonical responses to zinc availability are thought to be mediated by changes in gene expression of key zinc transporters. We investigated the temporal relationships of actual zinc uptake with patterns of gene expression in membrane-bound zinc transporters in the human immortalized T lymphocyte Jurkat cell line. Cellular zinc levels were elevated or reduced with exogenous zinc sulfate or N,N,N',N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), respectively. Excess zinc resulted in a rapid 44 % decrease in the rate of zinc uptake within 10 min. After 120 min, the expression of metallothionein (positive control) increased, as well as the zinc exporter, ZnT1; however, the expression of zinc importers did not change during this time period. Zinc chelation with TPEN resulted in a rapid twofold increase in the rate of zinc uptake within 10 min. After 120 min, the expression of ZnT1 decreased, while again the expression of zinc importers did not change. Overall, zinc transporter gene expression kinetics did not match actual changes in cellular zinc uptake with exogenous zinc or TPEN treatments. This suggests zinc transporter regulation may be the initial response to changes in zinc within Jurkat cells.

  3. New Bismuth-Substituted Hydroxyapatite Nanoparticles for Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Ciobanu, Gabriela; Bargan, Ana Maria; Luca, Constantin

    2015-11-01

    New bismuth-substituted hydroxyapatite [Ca10- x Bi x (PO4)6(OH)2 where x = 0-2.5] nanoparticles were synthesized by the co-precipitation method from aqueous solutions. The structural properties of the samples were analyzed by scanning electron microscopy coupled with x-ray analysis, x-ray powder diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller surface area analysis. The results confirm that bismuth ions have been incorporated into the hydroxyapatite lattice. The prepared nanocrystalline powders consisted of hydroxyapatite as single phase with hexagonal structure, crystal sizes smaller than 60 nm and (Bi + Ca)/P atomic ratio of around 1.67. The hydroxyapatite samples doped with Bi have mesoporous textures with pores size of around 2 nm and specific surface area in the range of 12-25 m2/g. The Bi-substituted hydroxyapatite powders are more effective against Gram-negative Escherichia coli bacteria than Gram-positive Staphylococcus aureus bacteria.

  4. Synthesis and Characterization of Zirconium Substituted Cobalt Ferrite Nanopowders.

    PubMed

    Rus, S F; Vlazan, P; Herklotz, A

    2016-01-01

    Nanocrystalline ferrites; CoFe₂O₄ (CFO) and CoFe₁.₉Zr₀.₁O₄ (CFZO) have been synthesized through chemical coprecipitation method. The role played by the zirconium ions in improving the magnetic and structural properties is analyzed. X-ray diffraction revealed a single-phase cubic spinel structure for both materials, where the crystallite size increases and the lattice parameter decreases with substitution of Zr. The average sizes of the nanoparticles are estimated to be 16-19 nm. These sizes are small enough to achieve the suitable signal to noise ratio in the high density recording media. The increase in the saturation magnetization with the substitution of Zr suggests the preferential occupation of Zr⁴⁺ ions in the tetrahedral sites. A decrease in the coercivity values indicates the reduction of magneto-crystalline anisotropy. In the present study the investigated spinel ferrites can be used also in recoding media due to the large value of coercivity 1000 Oe which is comparable to those of hard magnetic materials. PMID:27398535

  5. Synthesis and Characterization of Zirconium Substituted Cobalt Ferrite Nanopowders

    SciTech Connect

    Rus, S. F.; Vlazan, P.; Herklotz, A.

    2016-01-01

    Nanocrystalline ferrites; CoFe2O4 (CFO) and CoFe1.9Zr0.1O4 (CFZO) have been synthesized through chemical coprecipitation method. Moreover, the role played by the zirconium ions in improving the magnetic and structural properties is analyzed. X-ray diffraction revealed a single-phase cubic spinel structure for both materials, where the crystallite size increases and the lattice parameter decreases with substitution of Zr. The average sizes of the nanoparticles are estimated to be 16-19 nm. These sizes are small enough to achieve the suitable signal to noise ratio in the high density recording media. An increase in the saturation magnetization with the substitution of Zr suggests the preferential occupation of Zr4+ ions in the tetrahedral sites. A decrease in the coercivity values indicates the reduction of magneto-crystalline anisotropy. We investigated spinel ferrites can be used also in recoding media due to the large value of coercivity 1000 Oe which is comparable to those of hard magnetic materials.

  6. Synthesis and Characterization of Zirconium Substituted Cobalt Ferrite Nanopowders

    DOE PAGES

    Rus, S. F.; Vlazan, P.; Herklotz, A.

    2016-01-01

    Nanocrystalline ferrites; CoFe2O4 (CFO) and CoFe1.9Zr0.1O4 (CFZO) have been synthesized through chemical coprecipitation method. Moreover, the role played by the zirconium ions in improving the magnetic and structural properties is analyzed. X-ray diffraction revealed a single-phase cubic spinel structure for both materials, where the crystallite size increases and the lattice parameter decreases with substitution of Zr. The average sizes of the nanoparticles are estimated to be 16-19 nm. These sizes are small enough to achieve the suitable signal to noise ratio in the high density recording media. An increase in the saturation magnetization with the substitution of Zr suggests themore » preferential occupation of Zr4+ ions in the tetrahedral sites. A decrease in the coercivity values indicates the reduction of magneto-crystalline anisotropy. We investigated spinel ferrites can be used also in recoding media due to the large value of coercivity 1000 Oe which is comparable to those of hard magnetic materials.« less

  7. Synthesis and Characterization of Zirconium Substituted Cobalt Ferrite Nanopowders.

    PubMed

    Rus, S F; Vlazan, P; Herklotz, A

    2016-01-01

    Nanocrystalline ferrites; CoFe₂O₄ (CFO) and CoFe₁.₉Zr₀.₁O₄ (CFZO) have been synthesized through chemical coprecipitation method. The role played by the zirconium ions in improving the magnetic and structural properties is analyzed. X-ray diffraction revealed a single-phase cubic spinel structure for both materials, where the crystallite size increases and the lattice parameter decreases with substitution of Zr. The average sizes of the nanoparticles are estimated to be 16-19 nm. These sizes are small enough to achieve the suitable signal to noise ratio in the high density recording media. The increase in the saturation magnetization with the substitution of Zr suggests the preferential occupation of Zr⁴⁺ ions in the tetrahedral sites. A decrease in the coercivity values indicates the reduction of magneto-crystalline anisotropy. In the present study the investigated spinel ferrites can be used also in recoding media due to the large value of coercivity 1000 Oe which is comparable to those of hard magnetic materials.

  8. Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    NASA Astrophysics Data System (ADS)

    Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.

    2013-07-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics.

  9. Grain boundary and triple junction diffusion in nanocrystalline copper

    SciTech Connect

    Wegner, M. Leuthold, J.; Peterlechner, M.; Divinski, S. V.; Song, X.; Wilde, G.

    2014-09-07

    Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes, 〈d〉, of ∼35 and ∼44 nm produced by spark plasma sintering were investigated by the radiotracer method using the {sup 63}Ni isotope. The measured diffusivities, D{sub eff}, are comparable with those determined previously for Ni grain boundary diffusion in well-annealed, high purity, coarse grained, polycrystalline copper, substantiating the absence of a grain size effect on the kinetic properties of grain boundaries in a nanocrystalline material at grain sizes d ≥ 35 nm. Simultaneously, the analysis predicts that if triple junction diffusion of Ni in Cu is enhanced with respect to the corresponding grain boundary diffusion rate, it is still less than 500⋅D{sub gb} within the temperature interval from 420 K to 470 K.

  10. Grain growth and structural relaxation of nanocrystalline Bi₂Te₃

    SciTech Connect

    Humphry-Baker, Samuel A.; Schuh, Christopher A.

    2014-10-21

    Recovery and grain growth behavior is investigated systematically for the nanocrystalline thermoelectric compound bismuth telluride, synthesized by mechanical alloying. During annealing treatments at elevated temperatures, structural evolution is tracked using x-ray diffraction, electron microscopy and calorimetry. Below a homologous temperature of about 0.6T{sub m}, grain growth occurs slowly with an activation energy of 89 kJ/mol. However above this temperature grain growth becomes more rampant with an activation energy of 242 kJ/mol. The transition is attributed to a shift from a relaxation or recovery process that includes some reordering of the grain boundary structure, to a more conventional diffusionally-limited grain growth process. By extrapolating the measured grain growth and microstrain evolution kinetics, a thermal budget map is constructed, permitting recommendations for improving the thermoelectric properties of nanocrystalline materials processed via a powder route.

  11. Laser-induced refractive index changes in nanocrystalline diamond membranes.

    PubMed

    Preclíková, Jana; Kromka, Alexander; Rezek, Bohuslav; Malý, Petr

    2010-02-15

    We have observed what we believe to be a new phenomenon in nanocrystalline diamond membranes. The optical thickness of the membrane is changed under laser irradiation, which leads to a spectral shift of interference fringes in the transmission and photoluminescence spectra of high-quality thin self-supporting nanocrystalline membranes. The direction of the spectral shift (red/blue) can be tuned by the ambient air pressure. The effect is reversible and is accompanied by changes in photoluminescence intensity. We interpret the results in terms of the changes in the index of refraction caused by the photoinduced adsorption/desorption of air molecules that subsequently affect the properties of subgap energy states related to the surface and the grain boundaries of the nanocrystals.

  12. Metal replacement in "zinc finger" and its effect on DNA binding.

    PubMed Central

    Predki, P F; Sarkar, B

    1994-01-01

    Metal replacement studies were used to investigate the metal requirement of a bacterially expressed polypeptide encoding the zinc finger DNA binding domain of the estrogen receptor. Apopolypeptide was generated by dialysis of native polypeptide against low-pH buffer under reducing conditions. Specific DNA binding can be restored by refolding the apopolypeptide in the presence of ionic zinc, cadmium, or cobalt. However, refolding in the presence of copper or nickel fails to regenerate DNA binding activity. While cobalt-reconstituted polypeptide has a reduced affinity for its AGGTCA-binding site compared to zinc- or cadmium-polypeptide, it has the surprising property of increased cooperative DNA binding. Our work indicates that metal substitution results in a range of effects upon DNA binding in vitro. The potential biological significance of metal substitution in vivo is discussed. Images Figure 1. Figure 2. Figure 3. Figure 4. PMID:7843097

  13. Interaction Between Yeasts and Zinc

    NASA Astrophysics Data System (ADS)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  14. Economic aspects of drug substitution

    PubMed Central

    Salehi, Hossein; Schweitzer, Stuart O.

    1985-01-01

    One of the major directions of health policy is the attempt to contain expenditures on pharmaceuticals by encouraging substitution of generic for brand name drug products. Yet, a major marketing survey of prescribing and dispensing patterns in California in 1977 found relatively little drug substitution occurring, and in fact substitution of more expensive products occurred more frequently than did substitution of less expensive products. This article tests alternative models of pharmacy dispensing behavior to better explain substitution patterns and it estimates price functions to measure the extent to which cost savings on generic products are passed on to consumers. PMID:10311162

  15. Zinc hydroxide sulphate and its transformation to crystalline zinc oxide.

    PubMed

    Moezzi, Amir; Cortie, Michael B; McDonagh, Andrew M

    2013-10-28

    The thermal transformation of zinc hydroxide sulphate hydrate to zinc oxide has been examined using synchrotron X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, and surface area measurements. By collecting X-ray diffraction data in situ, we found that the dehydration of zinc hydroxide sulphate pentahydrate proceeded in discrete steps to form anhydrous zinc hydroxide sulphate. This compound then decomposed to a mixture of zinc oxide and a compound tentatively identified as Zn3(OH)2(SO4)2 at ~235 °C. At ~360 °C, the final dehydroxylation occurred with the formation of zinc oxy-sulphate, Zn3O(SO4)2, which then decomposed to ZnO at about ~800 °C. Interruption of the dehydration process can be used to synthesize the intermediate compounds.

  16. Experimental phasing using zinc anomalous scattering

    SciTech Connect

    Cha, Sun-Shin; An, Young Jun; Jeong, Chang-Sook; Kim, Min-Kyu; Lee, Sung-Gyu; Lee, Kwang-Hoon; Oh, Byung-Ha

    2012-09-01

    The surface of proteins can be charged with zinc ions and the anomalous signals from these zinc ions can be used for structure determination of proteins. Zinc is a suitable metal for anomalous dispersion phasing methods in protein crystallography. Structure determination using zinc anomalous scattering has been almost exclusively limited to proteins with intrinsically bound zinc(s). Here, it is reported that multiple zinc ions can easily be charged onto the surface of proteins with no intrinsic zinc-binding site by using zinc-containing solutions. Zn derivatization of protein surfaces appears to be a largely unnoticed but promising method of protein structure determination.

  17. Method for the preparation of nanocrystalline diamond thin films

    DOEpatents

    Gruen, D.M.; Krauss, A.R.

    1998-06-30

    A method and system are disclosed for manufacturing nanocrystalline diamond film on a substrate such as field emission tips. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrocarbon and possibly hydrogen, and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous vapor and deposition of a diamond film on the field emission tip. 40 figs.

  18. Method for the preparation of nanocrystalline diamond thin films

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.

    1998-01-01

    A method and system for manufacturing nanocrystalline diamond film on a substrate such as field emission tips. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrocarbon and possibly hydrogen, and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous vapor and deposition of a diamond film on the field emission tip.

  19. Structural Modification of Nanocrystalline Ceria by Ion Beams

    SciTech Connect

    Zhang, Yanwen; Edmondson, Philip D.; Varga, Tamas; Moll, Sandra J.; Namavar, Fereydoon; Lan, Chune; Weber, William J.

    2011-05-25

    Using energetic ions, we have demonstrated effective modification of grain size in nanocrystalline ceria in the critical region for controlling exceptional size-dependent electronicionic conductivity. The grain size increases and follows an exponential law as a function of ion fluence that increases with temperature, while the cubic phase is stable under the irradiation. The unique self-healing response of radiation damage at grain boundaries is utilized to control the grain size at the nanoscale.

  20. Twinning in nanocrystalline Ni by severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Feng, X. Y.; Cheng, Z. Y.; Wu, X.; Wang, T. C.; Hong, Y. S.

    2006-02-01

    Deformation twinning is confirmed upon large plastic deformation in nanocrystalline (nc) Ni by transmission electron microscopy examinations. New and compelling evidence has been obtained for several twinning mechanisms that operate in nc grains, with the grain boundary emission of partial dislocations determined as the most proficient. Twinning in nc Ni may be interpreted in terms of molecular dynamics simulation based on generalized planar fault energy curves.

  1. Controllable nonlinear refraction characteristics in hydrogenated nanocrystalline silicon

    SciTech Connect

    Zheng, D. Q.; Ye, Q. H.; Shen, W. Z.; Su, W. A.

    2014-02-07

    Nonlinear refraction (NLR) of hydrogenated nanocrystalline silicon (nc-Si:H) has been investigated through the close aperture Z-scan method. We demonstrate a significant NLR and a unique feature of controllable NLR characteristics between saturable and Kerr NLR with the incident photon energy. We numerically evaluate the proportion of these two mechanisms in different wavelengths by a modified NLR equation. The band tail of nc-Si:H appears to play a crucial role in such NLR responses.

  2. Role of nanocrystalline cerium oxide coatings on austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Zhang, Haiying

    Protective nanocrystalline cerium oxide coating has been applied to ASTM grade 304L and 304 austenitic stainless steels to improve its oxidation resistance at elevated temperatures. Experimentally, the selected alloy was exposed to 800°C/1000°C under dry air conditions. Weight changes (DeltaW/A) were monitored as a function of time and the results were compared with uncoated alloys tested under similar conditions. It was found that the oxidation resistances of 304L and 304 stainless steels were significantly improved. A comparison of the oxidation rates indicated that the nanocrystalline cerium oxide coating reduced the rate of oxidation by more than two orders of magnitude. Nevertheless, a comprehensive understanding of the mechanisms responsible for the reduction in the oxidation rate is not clear. Consequently, this work is aimed at investigating the mechanisms involved during scale growth in the presence or absence of nanocrystalline coatings. For this purpose, density functional theory was carried out in order to predict oxygen and iron diffusion microscopic activation energies and reveal the intrinsic characteristics of nanocrystalline coatings. A numerical simulation of corrosion process has also been conducted to predict the corrosion rates of alloys with and without coatings. Hence, the results from simulations are compared with the experimental outcome, and possible explanations are given to account for the reduction in the exhibited oxidation rates. The simulation results will provide a highly valuable tool for the realization of functional nanostructures and architectures "by design", particularly in the development of novel coatings, and a new approach of life assessment.

  3. Magnons as a Bose-Einstein Condensate in Nanocrystalline Gadolinium

    SciTech Connect

    Kaul, S. N.; Mathew, S. P.

    2011-06-17

    The recent observation [S. P. Mathew et al., J. Phys. Conf. Ser. 200, 072047 (2010)] of the anomalous softening of spin-wave modes at low temperatures in nanocrystalline gadolinium is interpreted as a Bose-Einstein condensation (BEC) of magnons. A self-consistent calculation, based on the BEC picture, is shown to closely reproduce the observed temperature variations of magnetization and specific heat at constant magnetic fields.

  4. Magnetic irreversibility and magnetocrystalline anisotropy in nanocrystalline nickel

    NASA Astrophysics Data System (ADS)

    Prakash, P. V.; Madduri, Srinath, S.; Kaul, S. N.

    2015-06-01

    Magnetic properties of nanocrystalline Ni samples, with average grain sizes, d = 11(1) nm, 19(1) nm and 30(2) nm, synthesized by pulse electrodeposition, have been studied. We observed that (i) at low temperatures, the effective magneto-crystalline anisotropy constant, K1, increases with the crystallite size so as to reach the bulk value at d = 30 nm, and (ii) the rate of thermal decline of K1(T) slows down as the crystallite size reduces.

  5. Characterisation of amorphous and nanocrystalline molecular materials by total scattering

    SciTech Connect

    Billinge, Simon J.L.; Dykhne, Timur; Juhás, Pavol; Boin, Emil; Taylor, Ryan; Florence, Alastair J.; Shankland, Kenneth

    2010-09-17

    The use of high-energy X-ray total scattering coupled with pair distribution function analysis produces unique structural fingerprints from amorphous and nanostructured phases of the pharmaceuticals carbamazepine and indomethacin. The advantages of such facility-based experiments over laboratory-based ones are discussed and the technique is illustrated with the characterisation of a melt-quenched sample of carbamazepine as a nanocrystalline (4.5 nm domain diameter) version of form III.

  6. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc... indirect process whereby zinc metal isolated from the zinc-containing ore is vaporized and then...

  7. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc... indirect process whereby zinc metal isolated from the zinc-containing ore is vaporized and then...

  8. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc... indirect process whereby zinc metal isolated from the zinc-containing ore is vaporized and then...

  9. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc... indirect process whereby zinc metal isolated from the zinc-containing ore is vaporized and then...

  10. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc... indirect process whereby zinc metal isolated from the zinc-containing ore is vaporized and then...

  11. Model for temperature-dependent magnetization of nanocrystalline materials

    SciTech Connect

    Bian, Q.; Niewczas, M.

    2015-01-07

    A magnetization model of nanocrystalline materials incorporating intragrain anisotropies, intergrain interactions, and texture effects has been extended to include the thermal fluctuations. The method relies on the stochastic Landau–Lifshitz–Gilbert theory of magnetization dynamics and permits to study the magnetic properties of nanocrystalline materials at arbitrary temperature below the Currie temperature. The model has been used to determine the intergrain exchange constant and grain boundary anisotropy constant of nanocrystalline Ni at 100 K and 298 K. It is found that the thermal fluctuations suppress the strength of the intergrain exchange coupling and also reduce the grain boundary anisotropy. In comparison with its value at 2 K, the interparticle exchange constant decreases by 16% and 42% and the grain boundary anisotropy constant decreases by 28% and 40% at 100 K and 298 K, respectively. An application of the model to study the grain size-dependent magnetization indicates that when the thermal activation energy is comparable to the free energy of grains, the decrease in the grain size leads to the decrease in the magnetic permeability and saturation magnetization. The mechanism by which the grain size influences the magnetic properties of nc–Ni is discussed.

  12. Model for temperature-dependent magnetization of nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2015-01-01

    A magnetization model of nanocrystalline materials incorporating intragrain anisotropies, intergrain interactions, and texture effects has been extended to include the thermal fluctuations. The method relies on the stochastic Landau-Lifshitz-Gilbert theory of magnetization dynamics and permits to study the magnetic properties of nanocrystalline materials at arbitrary temperature below the Currie temperature. The model has been used to determine the intergrain exchange constant and grain boundary anisotropy constant of nanocrystalline Ni at 100 K and 298 K. It is found that the thermal fluctuations suppress the strength of the intergrain exchange coupling and also reduce the grain boundary anisotropy. In comparison with its value at 2 K, the interparticle exchange constant decreases by 16% and 42% and the grain boundary anisotropy constant decreases by 28% and 40% at 100 K and 298 K, respectively. An application of the model to study the grain size-dependent magnetization indicates that when the thermal activation energy is comparable to the free energy of grains, the decrease in the grain size leads to the decrease in the magnetic permeability and saturation magnetization. The mechanism by which the grain size influences the magnetic properties of nc-Ni is discussed.

  13. Model of the magnetization of nanocrystalline materials at low temperatures

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2014-07-01

    A theoretical model incorporating the material texture has been developed to simulate the magnetic properties of nanocrystalline materials at low temperatures where the effect of thermal energy on magnetization is neglected. The method is based on Landau-Lifshitz-Gilbert (LLG) theory and it describes the magnetization dynamics of individual grains in the effective field. The modified LLG equation incorporates the intrinsic fields from the intragrain magnetocrystalline and grain boundary anisotropies and the interacting fields from intergrain dipolar and exchange couplings between the neighbouring grains. The model is applied to study magnetic properties of textured nanocrystalline Ni samples at 2K and is capable to reproduce closely the hysteresis loop behaviour at different orientations of applied magnetic field. Nanocrystalline Ni shows the grain boundary anisotropy constant K 1 s = - 6.0 × 104 J / m 3 and the intergrain exchange coupling denoted by the effective exchange constant Ap = 2.16 × 10-11 J/m. Analytical expressions to estimate the intergrain exchange energy density and the effective exchange constant have been formulated.

  14. Low temperature solid-state synthesis of nanocrystalline gallium nitride

    SciTech Connect

    Wang, Liangbiao; Shi, Liang; Li, Qianwen; Si, Lulu; Zhu, Yongchun; Qian, Yitai

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► GaN nanocrystalline was prepared via a solid-state reacion at relatively low temperature. ► The sizes and crystallinities of the GaN samples obtained at the different temperatures are investigated. ► The GaN sample has oxidation resistance and good thermal stability below 1000 °C. -- Abstract: Nanocrystalline gallium nitride was synthesized by a solid-state reaction of metallic magnesium powder, gallium sesquioxide and sodium amide in a stainless steel autoclave at a relatively low temperature (400–550 °C). The structures and morphologies of the obtained products were derived from X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). XRD patterns indicated that the products were hexagonal GaN (JCPDS card no. 76-0703). The influence of reaction temperature on size of the products was studied by XRD and TEM. Furthermore, the thermal stability and oxidation resistance of the nanocrystalline GaN were also investigated. It had good thermal stability and oxidation resistance below 800 °C in air.

  15. MOLECULAR DYNAMICS STUDY OF DIFFUSIONAL CREEP IN NANOCRYSTALLINE UO2

    SciTech Connect

    Tapan G. Desai; Paul C. Millett; Dieter Wolf

    2008-09-01

    We present the results of molecular dynamics (MD) simulations to study hightemperature deformation of nanocrystalline UO2. In qualitative agreement with experimental observations, the oxygen sub-lattice undergoes a structural transition at a temperature of about 2200 K (i.e., well below the melting point of 3450 K of our model system), whereas the uranium sub-lattice remains unchanged all the way up to melting. At temperatures well above this structural transition, columnar nanocrystalline model microstructures with a uniform grain size and grain shape were subjected to constantstress loading at levels low enough to avoid microcracking and dislocation nucleation from the GBs. Our simulations reveal that in the absence of grain growth, the material deforms via GB diffusion creep (also known as Coble creep). Analysis of the underlying self-diffusion behavior in undeformed nanocrystalline UO2 reveals that, on our MD time scale, the uranium ions diffuse only via the grain boundaries (GBs) whereas the much faster moving oxygen ions diffuse through both the lattice and the GBs. As expected for the Coble-creep mechanism, the creep activation energy agrees well with that for GB diffusion of the slowest moving species, i.e., of the uranium ions.

  16. Hardness and microplasticity of nanocrystalline and amorphous calcium phosphate coatings

    NASA Astrophysics Data System (ADS)

    Ievlev, V. M.; Kostyuchenko, A. V.; Darinskii, B. M.; Barinov, S. M.

    2014-02-01

    The hardness of thin (1.0-4.0 μm) hydroxyapatite coatings with different structures (nanocrystalline, amorphous-crystalline, and amorphous) grown by rf magnetron sputtering on Ti and Si plates has been studied using the nanoindentation method. All the grown structures are characterized by the strain which has reversible and irreversible components. The hardness of nanocrystalline coatings (about 10 GPa) corresponds to the average hardness of hydroxyapatite single crystals. The structure of nanocrystalline coatings in the indentation zone and outside it has been investigated and changes in the structure under the indenter have been revealed using high-resolution transmission electron microscopy. From a comparison of the hardnesses of coatings with different structures and based on an analysis of the intragranular structure, it has been assumed that the plastic deformation occurs according to a dislocation-free mechanism. The plastic deformation is interpreted in terms of the cluster representation of the hydroxyapatite structure and amorphous calcium phosphates of the same elemental composition and cluster-boundary sliding during the deformation.

  17. Tensile Properties of Electrodeposited Nanocrystalline Ni-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Dai, P. Q.; Zhang, C.; Wen, J. C.; Rao, H. C.; Wang, Q. T.

    2016-02-01

    Nanocrystalline Ni-Cu alloys with a Cu content of 6, 10, 19, and 32 wt.% were prepared by pulse electrodeposition. The microstructure and tensile properties of the nanocrystalline Ni-Cu alloys were characterized by x-ray diffraction, transmission electron microscopy, and tensile testing. The x-ray diffraction analysis indicates that the structure of the nanocrystalline Ni-Cu alloys is a face-centered cubic, single-phase solid solution with an average grain size of 18 to 24 nm, and that the average grain size decreased with increasing Cu content. The ultimate tensile strength (~1265 to 1640 MPa) and elongation to failure (~5.8 to 8.9%) of the Ni-Cu alloys increased with increasing Cu content. The increase in tensile strength results from the solid solution and fine-grain strengthening. Elemental Cu addition results in a decrease in stacking fault energy, an increase in work hardening rate, a delay in plasticity instability, and consequently, a higher plasticity.

  18. Improve oxidation resistance at high temperature by nanocrystalline surface layer

    PubMed Central

    Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.

    2015-01-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content. PMID:26269034

  19. Thermoluminescence characteristics of LiF: Cu nanocrystalline phosphor

    NASA Astrophysics Data System (ADS)

    Seth, Pooja; Aggarwal, Shruti

    2016-05-01

    Copper (Cu) activated LiF phosphor in nanocrystalline form has been prepared by the chemical co-precipitation method for radiation dosimetry application. The formation of nanocrystalline structure has been confirmed by X-ray diffraction and Scanning electron microscopy. Cubical shaped nanostructure with average particle size of 33nm has been formed. The sample was prepared at different concentration of Cu from 0.01mol% to 3 mol%. TL properties were investigated by studying the glow curve after irradiating the phosphor to gamma ray Co60 source with dose of 15 Gy. It has been found that nanocrystalline LiF: Cu show simple glow curve structure with a single glow peak at 404 K where as commercially available phosphors exhibits multi peak complex glow curve structure. The effect of different normality on the TL properties of phosphor has been studied. Maximum TL intensity for LiF: Cu (0.1mol %) phosphor is observed at the normality of 0.5N and annealing temperature of 200°C. The phosphor showed good linearity up to 10 KGy.

  20. MSRC-based defective nanocrystalline soft magnetic ribbon detection

    NASA Astrophysics Data System (ADS)

    He, Zaixing; Zhao, Xinyue

    2015-09-01

    The traditional manual inspection of nanocrystalline soft magnetic materials based on metallographic samples is a time-consuming and somewhat unreliable task. It is also difficult to achieve high accuracy by simply adopting existing automatic signal processing methods as an alternative. To address the issue, a novel automatic microscopic defect recognition method for nanocrystalline soft magnetic ribbon using high-resolution optical microscopic images is proposed. The target problem is viewed as a pattern recognition problem, in which images are classified as non-defective and defective. An effective and highly efficient random feature is used to describe the structures of the nanocrystalline soft magnetic ribbons. Then the extracted features are used to recognize defects via a modified sparse representation-based classifier (MSRC). In the experiment, two well-known features, LBP (local binary pattern) and PCA (principal component analysis), and different classifiers, SVM (support vector machine) and SRC (sparse representation classifier), are compared. The experimental results demonstrate that the proposed method can provide low error rates in recognizing ribbon defects.

  1. Nanocrystalline semiconductor doped rare earth oxide for the photocatalytic degradation studies on Acid Blue 113: A di-azo compound under UV slurry photoreactor.

    PubMed

    Suganya Josephine, G A; Mary Nisha, U; Meenakshi, G; Sivasamy, A

    2015-11-01

    Preventive measures for the control of environmental pollution and its remediation has received much interest in recent years due to the world-wide increase in the contamination of water bodies. Contributions of these harmful effluents are caused by the leather processing, pharmaceutical, cosmetic, textile, agricultural and other chemical industries. Nowadays, advanced oxidation processes considered to be better option for the complete destruction of organic contaminants in water and wastewater. Acid Blue 113 is a most widely used di-azo compound in leather, textile, dying and food industry as a color rending compound. In the present study, we have reported the photo catalytic degradation of Acid Blue 113 using a nanocrystalline semiconductor doped rare earth oxide as a photo catalyst under UV light irradiation. The photocatalyst was prepared by a simple precipitation technique and were characterized by XRD, FT-IR, UV-DRS and FE-SEM analysis. The experimental results proved that the prepared photo catalyst was nanocrystalline and highly active in the UV region. The UV-DRS results showed the band gap energy was 3.15eV for the prepared photo catalyst. The photodegradation efficiency was analyzed by various experimental parameters such as pH, catalyst dosage, variation of substrate concentration and effect of electrolyte addition. The photo degradation process followed a pseudo first order kinetics and was continuously monitored by UV-visible spectrophotometer. The experimental results proved the efficacy of the nanocrystalline zinc oxide doped dysprosium oxide which are highly active under UV light irradiations. It is also suggested that the prepared material would find wider applications in environmental remediation technologies to remove the carcinogenic and toxic moieties present in the industrial effluents.

  2. Nanocrystalline semiconductor doped rare earth oxide for the photocatalytic degradation studies on Acid Blue 113: A di-azo compound under UV slurry photoreactor.

    PubMed

    Suganya Josephine, G A; Mary Nisha, U; Meenakshi, G; Sivasamy, A

    2015-11-01

    Preventive measures for the control of environmental pollution and its remediation has received much interest in recent years due to the world-wide increase in the contamination of water bodies. Contributions of these harmful effluents are caused by the leather processing, pharmaceutical, cosmetic, textile, agricultural and other chemical industries. Nowadays, advanced oxidation processes considered to be better option for the complete destruction of organic contaminants in water and wastewater. Acid Blue 113 is a most widely used di-azo compound in leather, textile, dying and food industry as a color rending compound. In the present study, we have reported the photo catalytic degradation of Acid Blue 113 using a nanocrystalline semiconductor doped rare earth oxide as a photo catalyst under UV light irradiation. The photocatalyst was prepared by a simple precipitation technique and were characterized by XRD, FT-IR, UV-DRS and FE-SEM analysis. The experimental results proved that the prepared photo catalyst was nanocrystalline and highly active in the UV region. The UV-DRS results showed the band gap energy was 3.15eV for the prepared photo catalyst. The photodegradation efficiency was analyzed by various experimental parameters such as pH, catalyst dosage, variation of substrate concentration and effect of electrolyte addition. The photo degradation process followed a pseudo first order kinetics and was continuously monitored by UV-visible spectrophotometer. The experimental results proved the efficacy of the nanocrystalline zinc oxide doped dysprosium oxide which are highly active under UV light irradiations. It is also suggested that the prepared material would find wider applications in environmental remediation technologies to remove the carcinogenic and toxic moieties present in the industrial effluents. PMID:26025644

  3. Preparation and characterization of cobalt-substituted anthrax lethal factor

    SciTech Connect

    Saebel, Crystal E.; Carbone, Ryan; Dabous, John R.; Lo, Suet Y.; Siemann, Stefan

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Cobalt-substituted anthrax lethal factor (CoLF) is highly active. Black-Right-Pointing-Pointer CoLF can be prepared by bio-assimilation and direct exchange. Black-Right-Pointing-Pointer Lethal factor binds cobalt tightly. Black-Right-Pointing-Pointer The electronic spectrum of CoLF reveals penta-coordination. Black-Right-Pointing-Pointer Interaction of CoLF with thioglycolic acid follows a 2-step mechanism. -- Abstract: Anthrax lethal factor (LF) is a zinc-dependent endopeptidase involved in the cleavage of mitogen-activated protein kinase kinases near their N-termini. The current report concerns the preparation of cobalt-substituted LF (CoLF) and its characterization by electronic spectroscopy. Two strategies to produce CoLF were explored, including (i) a bio-assimilation approach involving the cultivation of LF-expressing Bacillus megaterium cells in the presence of CoCl{sub 2}, and (ii) direct exchange by treatment of zinc-LF with CoCl{sub 2}. Independent of the method employed, the protein was found to contain one Co{sup 2+} per LF molecule, and was shown to be twice as active as its native zinc counterpart. The electronic spectrum of CoLF suggests the Co{sup 2+} ion to be five-coordinate, an observation similar to that reported for other Co{sup 2+}-substituted gluzincins, but distinct from that documented for the crystal structure of native LF. Furthermore, spectroscopic studies following the exposure of CoLF to thioglycolic acid (TGA) revealed a sequential mechanism of metal removal from LF, which likely involves the formation of an enzyme: Co{sup 2+}:TGA ternary complex prior to demetallation of the active site. CoLF reported herein constitutes the first spectroscopic probe of LF's active site, which may be utilized in future studies to gain further insight into the enzyme's mechanism and inhibitor interactions.

  4. Mutational analysis of the two zinc-binding sites of the Bacillus cereus 569/H/9 metallo-beta-lactamase.

    PubMed Central

    de Seny, Dominique; Prosperi-Meys, Christelle; Bebrone, Carine; Rossolini, Gian Maria; Page, Michael I; Noel, Philippe; Frère, Jean-Marie; Galleni, Moreno

    2002-01-01

    The metallo-beta-lactamase BcII from Bacillus cereus 569/H/9 possesses a binuclear zinc centre. The mono-zinc form of the enzyme displays an appreciably high activity, although full efficiency is observed for the di-zinc enzyme. In an attempt to assign the involvement of the different zinc ligands in the catalytic properties of BcII, individual substitutions of selected amino acids were generated. With the exception of His(116)-->Ser (H116S), C221A and C221S, the mono- and di-zinc forms of all the other mutants were poorly active. The activity of H116S decreases by a factor of 10 when compared with the wild type. The catalytic efficiency of C221A and C221S was zinc-dependent. The mono-zinc forms of these mutants exhibited a low activity, whereas the catalytic efficiency of their respective di-zinc forms was comparable with that of the wild type. Surprisingly, the zinc contents of the mutants and the wild-type BcII were similar. These data suggest that the affinity of the beta-lactamase for the metal was not affected by the substitution of the ligand. The pH-dependence of the H196S catalytic efficiency indicates that the zinc ions participate in the hydrolysis of the beta-lactam ring by acting as a Lewis acid. The zinc ions activate the catalytic water molecule, but also polarize the carbonyl bond of the beta-lactam ring and stabilize the development of a negative charge on the carbonyl oxygen of the tetrahedral reaction intermediate. Our studies also demonstrate that Asn(233) is not directly involved in the interaction with the substrates. PMID:11964169

  5. Observations of interstellar zinc

    NASA Technical Reports Server (NTRS)

    York, D. G.; Jura, M.

    1982-01-01

    IUE observations toward 10 stars have shown that zinc is not depleted in the interstellar medium by more than a factor of two, suggesting that its abundance may serve as a tracer of the true metallicity in the gas. A result pertinent to the history of nucleosynthesis in the solar neighborhood is that the local interstellar medium has abundances that appear to be homogeneous to within a factor of two, when integrated over paths of about 500 pc.

  6. 40 CFR 721.10214 - Poly(oxyalkylenediyl),.alpha.-substituted carbomonocycle-.omega.-substituted carbomonocycle...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....-substituted carbomonocycle-.omega.-substituted carbomonocycle (generic). 721.10214 Section 721.10214... Poly(oxyalkylenediyl),.alpha.-substituted carbomonocycle-.omega.-substituted carbomonocycle (generic... identified generically as poly(oxyalkylenediyl),.alpha.-substituted...

  7. Photophysical and photochemical studies of a novel amphiphilic zinc phthalocyanine and its interaction with calf thymus DNA

    NASA Astrophysics Data System (ADS)

    Yuan, Linxin; Gui, Li; Wang, Yue; Zhang, Quanquan; Zhou, Lin; Wei, Shaohua

    2016-04-01

    β-tetra (aminophenoxy) sulfonic substituted zinc phthalocyanines (SNZnPc), a novel amphiphilic zinc phthalocyanine (Pc), was synthesized. The photophysical, photochemical, and photobiology properties were studied. Results indicated that the synthesized SNZnPc has good amphiphilic property and high reactive oxygen species (ROSs) generation ability. Furthermore, SNZnPc has strong affinity to calf thymus DNA (CT-DNA) through intercalation ways and can effectively cleavage CT-DNA after irradiation by light with appropriate wavelength.

  8. Photophysical and photochemical studies of a novel amphiphilic zinc phthalocyanine and its interaction with calf thymus DNA.

    PubMed

    Yuan, Linxin; Gui, Li; Wang, Yue; Zhang, Quanquan; Zhou, Lin; Wei, Shaohua

    2016-04-01

    β-tetra (aminophenoxy) sulfonic substituted zinc phthalocyanines (SNZnPc), a novel amphiphilic zinc phthalocyanine (Pc), was synthesized. The photophysical, photochemical, and photobiology properties were studied. Results indicated that the synthesized SNZnPc has good amphiphilic property and high reactive oxygen species (ROSs) generation ability. Furthermore, SNZnPc has strong affinity to calf thymus DNA (CT-DNA) through intercalation ways and can effectively cleavage CT-DNA after irradiation by light with appropriate wavelength.

  9. Highly enantioselective Simmons-Smith fluorocyclopropanation of allylic alcohols via the halogen scrambling strategy of zinc carbenoids.

    PubMed

    Beaulieu, Louis-Philippe B; Schneider, Jakob F; Charette, André B

    2013-05-29

    Highly enantio- and diastereoenriched monofluorocyclopropanes were accessed via the Simmons-Smith fluorocyclopropanation of allylic alcohols using difluoroiodomethane and ethylzinc iodide as the substituted carbenoid precursors. The scrambling of halogens at the zinc carbenoid led to the formation of the fluorocyclopropanating agent (fluoroiodomethyl)zinc(II) fluoride. This strategy circumvented the ongoing limitation in Simmons-Smith fluorocyclopropanations relying on the use of the relatively inaccessible and expensive carbenoid precursor fluorodiiodomethane.

  10. Surface energy of zinc

    SciTech Connect

    Bilello, J.C.; Dew-Hughes, D.; Pucino, A.T.

    1983-04-01

    The influence of temperature and associated dislocation microstructure on the energetics of basal plane cleavage in zinc crystals has been investigated using the method of Hull, Beardmore, and Valentine (HBV). A marked temperature dependence was observed in the zinc surface energy, over the range 77--298 /sup 0/K, contrary to previous expectations. Plastic relaxation was associated with crack initiation at 77 /sup 0/K, but not propagation; while at room temperature a plastic zone of 1200--1500 ..mu..m in depth was produced by crack extension. The surface energy could be estimated, independent of the usual Griffith analysis, by measuring the energy dissipation in a fully relaxed deformed zone associated with an explosively formed precursor crack. This method yielded surface energies of 0.066 to 0.079 J m/sup -2/ which was in good agreement with previous work. It is demonstrated that the cleavage surface energy of zinc is well below the thermodynamic surface energy and that this discrepancy is not related to plastic deformation.

  11. Depleted zinc: Properties, application, production.

    PubMed

    Borisevich, V D; Pavlov, A V; Okhotina, I A

    2009-01-01

    The addition of ZnO, depleted in the Zn-64 isotope, to the water of boiling water nuclear reactors lessens the accumulation of Co-60 on the reactor interior surfaces, reduces radioactive wastes and increases the reactor service-life because of the inhibitory action of zinc on inter-granular stress corrosion cracking. To the same effect depleted zinc in the form of acetate dihydrate is used in pressurized water reactors. Gas centrifuge isotope separation method is applied for production of depleted zinc on the industrial scale. More than 20 years of depleted zinc application history demonstrates its benefits for reduction of NPP personnel radiation exposure and combating construction materials corrosion.

  12. Synthesis of nanocrystalline Cu{sub 2}ZnSnS{sub 4} thin films grown by the spray-pyrolysis technique

    SciTech Connect

    Chandel, Tarun Singh, Joginder; Rajaram, P.

    2015-08-28

    Spray pyrolysis was used to deposit Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films on soda lime glass substrates at 300 °C. Aqueous solutions of copper chloride, zinc chloride, stannous chloride and thiourea were mixed together to form the spray liquid. The sprayed films were annealed under vacuum at 350 °C, 400 °C and 450 °C. Structural and optical characterization was performed on the CZTS films using X-ray diffraction (XRD) and UV-VIS spectrophotometry. XRD results indicate that the films are single phase nanocrystalline CZTS. Optical studies show that the optical gap values are 1.44 eV for the as-grown film and 1.46 eV, 1.48 eV and 1.49 eV for the films annealed at 350 °C, 400 °C and 450 °C, respectively.

  13. Innovative uses for zinc in dermatology.

    PubMed

    Bae, Yoon Soo; Hill, Nikki D; Bibi, Yuval; Dreiher, Jacob; Cohen, Arnon D

    2010-07-01

    Severe zinc deficiency states, such as acrodermatitis enteropathica, are associated with a variety of skin manifestations, such as perioral, acral, and perineal dermatitis. These syndromes can be reversed with systemic zinc repletion. In addition to skin pathologies that are clearly zinc-dependent, many dermatologic conditions (eg, dandruff, acne, and diaper rash) have been associated and treated with zinc. Success rates for treatment with zinc vary greatly depending on the disease, mode of administration, and precise zinc preparation used. With the exception of systemic zinc deficiency states, there is little evidence that convincingly demonstrates the efficacy of zinc as a reliable first-line treatment for most dermatologic conditions. However, zinc may be considered as an adjunctive treatment modality. Further research is needed to establish the indications for zinc treatment in dermatology, optimal mode of zinc delivery, and best type of zinc compound to be used. PMID:20510767

  14. Enhanced Activity of Nanocrystalline Zeolites for Selective Catalytic Reduction of NOx

    SciTech Connect

    Sarah C. Larson; Vicki H. Grassian

    2006-12-31

    Nanocrystalline zeolites with discrete crystal sizes of less than 100 nm have different properties relative to zeolites with larger crystal sizes. Nanocrystalline zeolites have improved mass transfer properties and very large internal and external surface areas that can be exploited for many different applications. The additional external surface active sites and the improved mass transfer properties of nanocrystalline zeolites offer significant advantages for selective catalytic reduction (SCR) catalysis with ammonia as a reductant in coal-fired power plants relative to current zeolite based SCR catalysts. Nanocrystalline NaY was synthesized with a crystal size of 15-20 nm and was thoroughly characterized using x-ray diffraction, electron paramagnetic resonance spectroscopy, nitrogen adsorption isotherms and Fourier Transform Infrared (FT-IR) spectroscopy. Copper ions were exchanged into nanocrystalline NaY to increase the catalytic activity. The reactions of nitrogen dioxides (NO{sub x}) and ammonia (NH{sub 3}) on nanocrystalline NaY and CuY were investigated using FT-IR spectroscopy. Significant conversion of NO{sub 2} was observed at room temperature in the presence of NH{sub 3} as monitored by FT-IR spectroscopy. Copper-exchanged nanocrystalline NaY was more active for NO{sub 2} reduction with NH{sub 3} relative to nanocrystalline NaY.

  15. Nanocrystalline silicon quantum dots thin films prepared by magnetron reaction sputtering

    NASA Astrophysics Data System (ADS)

    Zhao, Weiping; Deng, Jinxiang; Yang, Bing; Yu, Zhenrui; Aceves, Mariano

    2009-07-01

    Silicon is a kind of excellent semiconductor material and is one of the core material of microelectronics. But it is not a fine luminescent material. The photoluminescence(PL) will be obtained by excitation only when the size of silicon partials reduced to a certain value. Nanocrystalline silicon films have special structure and many excellent optoelectronic properties and are supposed to be applied in optoelectronic devices and large scale integrated circuits. In this paper, Nanocrystalline silicon films was deposited on silicon substrate by RF magnetron sputtering with pure Si target. And the working gas is the mixture of oxygen and argon .The content of O2 in working gas (O2/ O2 + Ar) and the power of sputtering were changed separately .However, the substrate temperature, working gas pressure and other conditions were definite. After annealing in the stove, we got the Nanocrystalline silicon particles in the thin films. Fourier transform infrared(FTIR) transmittance measurement was carried out to characterized Nanocrystalline silicon films. X-ray photoelectron spectroscopy (XPS) measurement was also performed to estimate the atom ratio of the Nanocrystalline silicon films. Raman scattering measurements was also taken in to characterize the Nanocrystalline silicon films. The formation of Nanocrystalline silicon filmswere depended partly on the parameters of experiment. The annealed silicon films were researched that the size of the Nanocrystalline silicon particles proved to be largely impacted by the annealing temperature in the thin film

  16. Mn-Zn nano-crystalline ferrites synthesized from spent Zn-C batteries using novel gelatin method.

    PubMed

    Gabal, M A; Al-Luhaibi, R S; Al Angari, Y M

    2013-02-15

    A novel recycling route using acid leaching, reduction and gelatin method was applied to recycle spent Zn-C batteries into more valuable magnetic nano-crystalline ferrites; Mn(1-x)Zn(x)Fe(2)O(4) (with x=0.2-0.8). The cost of this recycling technology has economical advantages, which holds promising industrial application products. Dried gel thermal decomposition process was monitored by simultaneous differential thermal analysis-thermogravimetry-differential scanning calorimetry. Phase composition, morphological and magnetic properties of the as-prepared precursors were characterized using X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared and vibrating sample magnetometer. Single-phase agglomerated cubic ferrites with crystal sizes in the range 21-41 nm were detected. The obtained magnetization values are significantly lower than that of the bulk ferrite and showed a gradual increase with increasing Zn-substitution with an obvious decrease at x=0.6. On the other hand, a reverse trend was exhibited by coercivity. The effect of Zn-substitution on both structural and magnetic properties, paved the way to suggest proper cation distributions for the investigated system.

  17. Comparative effects of zinc-nano complexes, zinc-sulphate and zinc-methionine on performance in broiler chickens.

    PubMed

    Mohammadi, V; Ghazanfari, S; Mohammadi-Sangcheshmeh, A; Nazaran, M H

    2015-01-01

    Micronutrients, especially zinc, have an important role in normal metabolism and growth of broilers. Using novel technologies helps to synthesise novel zinc complexes to deliver this micronutrient more efficiently. In the present study, the effects of different zinc complexes and nano complexes on broiler performance were compared. Broilers in 6 groups were given basal diet (without zinc) and basal diet supplemented with zinc-sulphate, zinc-methionine, zinc-nano-sulphate, zinc-nano-methionine and zinc-nano-max (that was synthesised based on nanochelating technology) at a concentration of 80 mg/kg of diet. At 1-42 d of age, dietary zinc-nano-sulphate supplementation decreased weight gain and feed intake. However, feed conversion ratio was not influenced by treatments. Carcass yield (%) of birds in the zinc-nano-sulphate and control groups were dramatically reduced at 42 d of age and abdominal fat (%) increased in these groups. Relative to the control group, the antibody titre, spleen and bursa of Fabricius (%) were significantly higher in groups supplemented with zinc. Heterophil (%) was also significantly higher in the zinc-nano-methionine group in blood on d 42 compared to the control, zinc-sulphate and zinc-nano-sulphate. Compared to the controls, the mean malondialdehyde content in thigh tissue was significantly reduced in groups supplemented with zinc at the time 0, 50, 100 and 150 min after oxidation. Tibia zinc concentration in nanoparticle zinc samples was significantly higher relative to the control and zinc-sulphate groups. Taken together, our data indicate that delivery of zinc in the structure of zinc-nano-methionine and zinc-nano-max at concentrations of 80 mg/kg of diet improves growth performance. However, dietary zinc-nano-sulphate decreased growth performance in broilers.

  18. Processing-structure-property relationships in ultrafine grain and nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Koch, C. C.

    2009-01-01

    This paper will review selected aspects of the processingstructureproperty relationships in ultrafine grained (ufg- grain sizes 100 to 500 nm) and nanocrystalline (nc- grain sizes < 100 nm) materials. Of the various processing methods to obtain fine grain size materials, the two that have provided bulk artifactfree samples are electrodeposition and severe plastic deformation. The processing methods and important variables will be described for these techniques. Since the stability of the nanocrystalline microstructure is important for both processing (e.g. consolidation of powders) and elevated temperature mechanical property studies, the stability of nanocrystalline grain sizes as influenced by solute additions will be discussed. While hardness and strength usually increase with decreasing grain size, ductility is typically poor. There are now, however, a number of examples of nanocrystalline materials which combine high strength with good ductility. An example from the author's laboratory on nanocrystalline Cu with optimized mechanical properties will be presented.

  19. Preparation of nitrogen doped zinc oxide nanoparticles and thin films by colloidal route and low temperature nitridation process

    NASA Astrophysics Data System (ADS)

    Valour, Arnaud; Cheviré, François; Tessier, Franck; Grasset, Fabien; Dierre, Benjamin; Jiang, Tengfei; Faulques, Eric; Cario, Laurent; Jobic, Stéphane

    2016-04-01

    Nitrogen doped zinc oxide (ZnO) nanoparticles have been synthesized using a colloidal route and low temperature nitridation process. Based on these results, 200 nm thick transparent ZnO thin films have been prepared by dip-coating on SiO2 substrate from a ZnO colloidal solution. Zinc peroxide (ZnO2) thin film was then obtained after the chemical conversion of a ZnO colloidal thin film by H2O2 solution. Finally, a nitrogen doped ZnO nanocrystalline thin film (ZnO:N) was obtained by ammonolysis at 250 °C. All the films have been characterized by scanning electron microscopy, X-ray diffraction, X-Ray photoelectron spectroscopy and UV-Visible transmittance spectroscopy.

  20. Explicit Substitutions and All That

    NASA Technical Reports Server (NTRS)

    Ayala-Rincon, Mauricio; Munoz, Cesar; Busnell, Dennis M. (Technical Monitor)

    2000-01-01

    Explicit substitution calculi are extensions of the Lambda-calculus where the substitution mechanism is internalized into the theory. This feature makes them suitable for implementation and theoretical study of logic-based tools such as strongly typed programming languages and proof assistant systems. In this paper we explore new developments on two of the most successful styles of explicit substitution calculi: the lambda(sigma)- and lambda(s(e))-calculi.

  1. Explicit Substitutions and All That

    NASA Technical Reports Server (NTRS)

    Ayala-Rincon, Mauricio; Munoz, Cesar

    2000-01-01

    Explicit substitution calculi are extensions of the lambda-calculus where the substitution mechanism is internalized into the theory. This feature makes them suitable for implementation and theoretical study of logic-based tools such as strongly typed programming languages and proof assistant systems. In this paper we explore new developments on two of the most successful styles of explicit substitution calculi: the lambda sigma- and lambda S(e)-calculi.

  2. Uptake and partitioning of zinc in Lemnaceae.

    PubMed

    Lahive, Elma; O'Callaghan, Michael J A; Jansen, Marcel A K; O'Halloran, John

    2011-11-01

    Macrophytes provide food and shelter for aquatic invertebrates and fish, while also acting as reservoirs for nutrients and trace elements. Zinc accumulation has been reported for various Lemnaceae species. However, comparative accumulation across species and the link between zinc accumulation and toxicity are poorly understood. Morphological distribution and cellular storage, in either bound or soluble form, are important for zinc tolerance. This study shows differences in the uptake and accumulation of zinc by three duckweed species. Landoltia punctata and Lemna minor generally accumulated more zinc than Lemna gibba. L. minor, but not L. gibba or L. punctata, accumulated greater concentrations of zinc in roots compared to fronds when exposed to high levels of zinc. The proportion of zinc stored in the bound form relative to the soluble-form was higher in L. minor. L. punctata accumulated greater concentrations of zinc in fronds compared to roots and increased the proportion of zinc it stored in the soluble form, when exposed to high zinc levels. L. gibba is the only species that significantly accumulated zinc at low concentrations, and was zinc-sensitive. Overall, internal zinc concentrations showed no consistent correlation with toxic effect. We conclude that relationships between zinc toxicity and uptake and accumulation are species specific reflecting, among others, zinc distribution and storage. Differences in zinc distribution and storage are also likely to have implications for zinc bioavailability and trophic mobility. PMID:21755349

  3. Highly soluble 3,4-(dimethoxyphenylthio) substituted phthalocyanines: synthesis, photophysical and photochemical studies.

    PubMed

    Öztürk, Cansu; Erdoğmuş, Ali; Durmuş, Mahmut; Uğur, Ahmet Lütfi; Kılıçarslan, Fatma Aytan; Erden, Ibrahim

    2012-02-01

    The synthesis of a new 3,4-(dimethoxyphenylthio) substituted phthalonitrile (1) and its soluble metal free (2), zinc (II) (3), oxo-titanium (IV) (4) and nickel (II) (5) phthalocyanine derivatives are reported for the first time. The new compounds have been characterized by elemental analysis, FT-IR, (1)H NMR, UV-Vis, fluorescence spectroscopies and mass spectra. General trends are described for fluorescence, photodegradation and singlet oxygen quantum yields and fluorescence lifetimes of oxo-titanium (IV) and zinc (II) phthalocyanine compounds in dimethylsulfoxide (DMSO). The effects of the metal ion on the photophysical and photochemical parameters for these phthalocyanines (3 and 4) are also reported. PMID:22112573

  4. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    PubMed

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process. PMID:27030646

  5. Role of Conserved Glycine in Zinc-dependent Medium Chain Dehydrogenase/Reductase Superfamily*

    PubMed Central

    Tiwari, Manish Kumar; Singh, Raushan Kumar; Singh, Ranjitha; Jeya, Marimuthu; Zhao, Huimin; Lee, Jung-Kul

    2012-01-01

    The medium-chain dehydrogenase/reductase (MDR) superfamily consists of a large group of enzymes with a broad range of activities. Members of this superfamily are currently the subject of intensive investigation, but many aspects, including the zinc dependence of MDR superfamily proteins, have not yet have been adequately investigated. Using a density functional theory-based screening strategy, we have identified a strictly conserved glycine residue (Gly) in the zinc-dependent MDR superfamily. To elucidate the role of this conserved Gly in MDR, we carried out a comprehensive structural, functional, and computational analysis of four MDR enzymes through a series of studies including site-directed mutagenesis, isothermal titration calorimetry, electron paramagnetic resonance (EPR), quantum mechanics, and molecular mechanics analysis. Gly substitution by other amino acids posed a significant threat to the metal binding affinity and activity of MDR superfamily enzymes. Mutagenesis at the conserved Gly resulted in alterations in the coordination of the catalytic zinc ion, with concomitant changes in metal-ligand bond length, bond angle, and the affinity (Kd) toward the zinc ion. The Gly mutants also showed different spectroscopic properties in EPR compared with those of the wild type, indicating that the binding geometries of the zinc to the zinc binding ligands were changed by the mutation. The present results demonstrate that the conserved Gly in the GHE motif plays a role in maintaining the metal binding affinity and the electronic state of the catalytic zinc ion during catalysis of the MDR superfamily enzymes. PMID:22500022

  6. Spectral and Luminescent Characteristics of a Hexaphenyltetraazachlorin Zinc Complex

    NASA Astrophysics Data System (ADS)

    Belkov, M. V.; Makarov, E. A.; Pershukevich, P. P.; Solovyov, K. N.

    2015-05-01

    In continuation of previous studies on the photophysics of phenyl-substituted tetraazachlorins, we determined the spectral and luminescent characteristics of a tetramethylhexaphenyltetraazachlorin zinc complex at 293 and 77 K. Absorption, fluorescence, and fluorescence excitation spectra; the fluorescence quantum yield and lifetime; and the quantum yield for singlet oxygen generation were measured at room temperature. Fluorescence, fluorescence excitation, and fluorescence polarization spectra were measured at liquid nitrogen temperature. Fluorescence spectra indicated that the zinc complex rearranged in the excited electronic state S1 at both temperatures. A high quantum yield for singlet oxygen generation (0.91) was obtained for a toluene solution. Zn-tetramethylhexaphenyl tetraazachlorin was proposed as a photosensitizer for photodynamic therapy because the long-wavelength band at 707 nm was located in the transparent region of biological tissues.

  7. Arsenic doped zinc oxide

    SciTech Connect

    Volbers, N.; Lautenschlaeger, S.; Leichtweiss, T.; Laufer, A.; Graubner, S.; Meyer, B. K.; Potzger, K.; Zhou Shengqiang

    2008-06-15

    As-doping of zinc oxide has been approached by ion implantation and chemical vapor deposition. The effect of thermal annealing on the implanted samples has been investigated by using secondary ion mass spectrometry and Rutherford backscattering/channeling geometry. The crystal damage, the distribution of the arsenic, the diffusion of impurities, and the formation of secondary phases is discussed. For the thin films grown by vapor deposition, the composition has been determined with regard to the growth parameters. The bonding state of arsenic was investigated for both series of samples using x-ray photoelectron spectroscopy.

  8. Zinc Oxide Nanophotonics

    NASA Astrophysics Data System (ADS)

    Choi, Sumin; Aharonovich, Igor

    2015-12-01

    The emerging field of nanophotonics initiated a dedicated study of single photon sources and optical resonators in new class of materials. One such material is zinc oxide (ZnO) that has been long considered only for classical light-emitting applications. However, it recently showed promise for quantum photonics technologies. In this review, we highlight the recent advances in studying single emitters in ZnO, engineering of optical cavities and practical nanophotonics devices including nanolasers and electrically triggered devices. We finalize with an outlook at this promising area, as well as provide perspectives and open questions in solid state nanophotonics employing ZnO.

  9. Associations among dietary zinc intakes and biomarkers of zinc status before and after a zinc supplementation program in Guatemalan schoolchildren

    PubMed Central

    Bui, Vinh Q.; Marcinkevage, Jessica; Ramakrishnan, Usha; Flores-Ayala, Rafael C.; Ramirez-Zea, Manuel; Villalpando, Salvador; Martorell, Reynaldo; DiGirolamo, Ann M.; Stein, Aryeh D.

    2015-01-01

    Background The associations among dietary zinc intakes and biomarkers of zinc status are unknown in apparently healthy children at high risk for zinc deficiency. Objective To assess associations among zinc-related parameters in a sample of Guatemalan school-aged children. Methods We assessed total dietary intakes and biomarkers of zinc status before and after receiving 6 months of zinc supplementation or placebo in 691 Guatemalan schoolchildren aged 6 to 11 years. Most of the children also received zinc-fortified milk from a government program that started shortly after the trial began. We assessed associations between zinc intakes and serum zinc, alkaline phosphatase (ALP), and albumin. Results At baseline, the prevalence of serum zinc < 65 μg/dL and dietary zinc intake below Estimated Average Requirements (EAR) (< 4 and < 7 mg/day for children < 9 and ≥ 9 years, respectively) were 21.6% and 39.4%, respectively. Pearson correlations between serum zinc concentration and dietary zinc intake, serum ALP, and serum albumin were r = 0.07, 0.15, and 0.07, respectively. At the 6-month follow-up, low serum zinc and low total (diet plus fortified milk) zinc intakes were observed in 1.2% and 0.0% of children in the zinc-supplemented group and 4.0% and 34.1% in the placebo group, respectively. Pearson correlations between serum zinc concentration and total zinc intake, serum ALP, and serum albumin were 0.10, 0.06, and −0.11 in the zinc-supplemented group and −0.04, 0.05, and 0.01 in the placebo group, respectively. Conclusions Zinc intake was inconsistently associated with markers of serum zinc concentration. Zinc fortification or supplementation attenuated the associations. PMID:23964387

  10. Superhard Nanocrystalline Homometallic Stainless Steel on Steel for Seamless Coatings

    NASA Technical Reports Server (NTRS)

    Tobin, Eric J.; Hafley, R. (Technical Monitor)

    2002-01-01

    The objective of this work is to deposit nanocrystalline stainless steel onto steel substrates (homometallic) for enhanced wear and corrosion resistance. Homometallic coatings provide superior adhesion, and it has been shown that ultrafine-grained materials exhibit the increased hardness and decreased permeability desired for protective coatings. Nanocrystals will be produced by controlling nucleation and growth and use of an ion beam during deposition by e-beam evaporation or sputtering. Phase I is depositing 31 6L nanocrystalline stainless steel onto 31 6L stainless steel substrates. These coatings exhibit hardnesses comparable to those normally obtained for ceramic coatings such ZrO2, and possess the superior adhesion of seamless, homometallic coatings. Hardening the surface with a similar material also enhances adhesion, by avoiding problems associated with thermal and lattice mismatch. So far we have deposited nanocrystalline homometallic 316L stainless steel coatings by varying the ions and the current density of the ion beams. For all deposition conditions we have produced smooth, uniform, superhard coatings. All coatings exhibit hardness of at least 200% harder than that of bulk materials. Our measurements indicate that there is a direct relationship between nanohardness and the current density of the ion beam. Stress measurements indicate that stress in the films is increasingly proportional to current density of the ion beam. TEM, XPS, and XRD results indicate that the coated layers consist of FCC structure nanocrystallites with a dimension of about 10 to 20 nm. The Ni and Mo concentration of these coating are lower than those of bulk 316L but the concentration of Cr is higher.

  11. Morphological, luminescence and structural properties of nanocrystalline silicon thin films

    SciTech Connect

    Ali, Atif Mossad; Kobayashi, Hikaru; Inokuma, Takao; Al-Hajry, Ali

    2013-03-15

    Highlights: ► The PL spectra showed two stronger peaks and one weaker peak. ► The PL peak energies and optical band-gap values were found higher than 1.12 eV. ► The structural change from an amorphous to nanocrystalline with increasing [SiH{sub 4}]. - Abstract: Nanocrystalline silicon (nc-Si) thin films deposited by plasma-enhanced chemical vapor deposition at various silane flow rates ([SiH{sub 4}]) are studied. The characterization of these films by high-resolution transmission electron microscopy, Raman spectroscopy and X-ray diffraction reveals that no film and very thin film is deposited at [SiH{sub 4}] = 0.0 and 0.1 sccm, respectively. In addition, the structural change from an amorphous to a nanocrystalline phase occurs at around [SiH{sub 4}] = 0.2 sccm. In this study, the importance of arriving species at surfaces and precursors is clearly demonstrated by the effect of a small addition of SiH{sub 4} on the frequency and width of a Raman peak and the structure of the grown film. The infrared spectroscopic analysis shows no hydrogen incorporation in the nc-Si film deposited at the low value of [SiH{sub 4}]. However, the intensity of the peak around 2100 cm{sup −1} due to SiH decreases with increasing [SiH{sub 4}]. All fabricated films give photoluminescence in the range between 1.7 and 2.4 eV at room temperature, indicating enlargement of the band-gap energy. The presence of very small crystallites leads to the appearance of quantum confinement effects. The variations of the photoluminescence energy and spectral width are well correlated with the structural properties of the films such as crystallite size, crystalline volume fraction, and the density of Si-H bonds.

  12. Synthesis and structure of nanocrystalline mixed Ce–Yb silicates

    SciTech Connect

    Małecka, Małgorzata A. Kępiński, Leszek

    2013-07-15

    Graphical abstract: - Highlights: • New method of synthesis of nanocrystalline mixed lanthanide silicates is proposed. • Formation of A-type (Ce{sub 1−y}Yb{sub y}){sub 2}Si{sub 2}O{sub 7} in well dispersed Ce{sub 1−x}Yb{sub x}O{sub 2−(x/2)}–SiO{sub 2} system. • Formation of Yb{sub y}Ce{sub 9.33−y}(SiO{sub 4}){sub 6}O{sub 2} in agglomerated Ce{sub 1−x}Yb{sub x}O{sub 2−(x/2)}–SiO{sub 2} system. - Abstract: This work presents results of studies on synthesis and structure of mixed, nanocrystalline Ce–Yb silicates. Using TEM, XRD and FTIR we showed that heat treatment of nanocrystalline Ce{sub 1−x}Yb{sub x}O{sub 2−(x/2)} (x = 0.3, 0.5) mixed oxide supported on amorphous silica in reducing atmosphere, results in formation of Ce–Yb mixed silicates. Dispersion of the oxide on the silica surface and thus a local lanthanide/Si atomic ratio determines the stoichiometry of the silicate. Oxide crystallites uniformly dispersed on the silica surface transformed into A-(Ce{sub 1−y}Yb{sub y}){sub 2}Si{sub 2}O{sub 7} disilicate, while the agglomerated nanoparticles converted into Yb{sub y}Ce{sub 9.33−y}(SiO{sub 4}){sub 6}O{sub 2} oxyapatite silicate as an intermediate phase.

  13. Mutagenesis of Zinc Ligand Residue Cys221 Reveals Plasticity in the IMP-1 Metallo-β-Lactamase Active Site

    PubMed Central

    Horton, Lori B.; Shanker, Sreejesh; Mikulski, Rose; Brown, Nicholas G.; Phillips, Kevin J.; Lykissa, Ernest; Venkataram Prasad, B. V.

    2012-01-01

    Metallo-β-lactamases catalyze the hydrolysis of a broad range of β-lactam antibiotics and are a concern for the spread of drug resistance. To analyze the determinants of enzyme structure and function, the sequence requirements for the subclass B1 IMP-1 β-lactamase zinc binding residue Cys221 were tested by saturation mutagenesis and evaluated for protein expression, as well as hydrolysis of β-lactam substrates. The results indicated that most substitutions at position 221 destabilized the enzyme. Only the enzymes containing C221D and C221G substitutions were expressed well in Escherichia coli and exhibited catalytic activity toward β-lactam antibiotics. Despite the lack of a metal-chelating group at position 221, the C221G enzyme exhibited high levels of catalytic activity in the presence of exogenous zinc. Molecular modeling suggests the glycine substitution is unique among substitutions in that the complete removal of the cysteine side chain allows space for a water molecule to replace the thiol and coordinate zinc at the Zn2 zinc binding site to restore function. Multiple methods were used to estimate the C221G Zn2 binding constant to be 17 to 43 μM. Studies of enzyme function in vivo in E. coli grown on minimal medium showed that both IMP-1 and the C221G mutant exhibited compromised activity when zinc availability was low. Finally, substitutions at residue 121, which is the IMP-1 equivalent of the subclass B3 zinc-chelating position, failed to rescue C221G function, suggesting the coordination schemes of subclasses B1 and B3 are not interchangeable. PMID:22908171

  14. Residual stress, strain, and faults in nanocrystalline palladium and copper

    SciTech Connect

    Sanders, P.G.; Witney, A.B.; Weertman, J.R.; Valiev, R.Z.; Siegel, R.W.

    1995-02-01

    Nanocrystalline Pd and Cu, prepared by inert gas condensation and warm compaction, were studied using x-ray diffraction techniques. A sample of Cu with sub-micrometer grain size produced by severe plastic deformation was also examined. The Warren-Averbach technique was used to separate the line broadening due to grain size, root-mean-squared strain, and faults. Peak shifts and asymmetry were used to determine the long range surface stresses, stacking fault probability, and twin probability. The Young`s modulus of a Pd sample was determined by an ultrasonic technique, and compared with the coarse-grained, fully-dense value.

  15. Exciton annihilation in dye-sensitized nanocrystalline semiconductor films

    NASA Astrophysics Data System (ADS)

    Namekawa, Akihiro; Katoh, Ryuzi

    2016-08-01

    Exciton annihilation in dye-sensitized nanocrystalline semiconductor (Al2O3) films has been studied through laser-induced fluorescence spectroscopy. The relative quantum yield of the fluorescence decreases with increasing excitation light intensity, the indication being that exciton annihilation occurred. The rate constants of the annihilation were estimated for three dyes, N719, D149, and MK2, that are known to be sensitizing dyes for efficient dye-sensitized solar cells. The hopping time between dye molecules and the diffusion length of excitons within their lifetime were also estimated to facilitate discussion of the relevance of exciton annihilation to primary processes in dye-sensitized solar cells.

  16. Nanocrystalline todorokite-like manganese oxide produced by bacterial catalysis.

    PubMed

    Kim, Hack-Sung; Pastén, Pablo A; Gaillard, Jean-François; Stair, Peter C

    2003-11-26

    We describe the characterization of an unknown and difficult to identify but geochemically and environmentally significant MnOx structure produced by a freshwater bacterium, Leptothrix discophora SP-6, using combined transmission electron microscopy (TEM), extended X-ray absorption fine structure (EXAFS), and UV Raman spectroscopy. The large surface-to-volume ratio of the needle-shaped nanocrystalline MnO2 formed around the bacterial cells coupled to the porous, zeolite-like structure has the potential to catalyze reactions and oxidize and adsorb metals. PMID:14624570

  17. Plasma metallurgical production of nanocrystalline borides and carbides

    NASA Astrophysics Data System (ADS)

    Galevsky, G. V.; Rudneva, V. V.; Cherepanov, A. N.; Galevsky, S. G.; Efimova, K. A.

    2016-09-01

    he experience in production and study of properties of nanocrystalline borides and chromium carbides, titanium, silicon was summarized. The design and features of the vertical three-jet once-through reactor with power 150 kW, used in the plasma metallurgical production, was described. The technological, thermotechnical and resource characteristics of the reactor were identified. The parameters of borides and carbides synthesis, their main characteristics in the nanodispersed state and equipment-technological scheme of production were provided. Evaluation of engineering-and-economical performance of the laboratory and industrial levels of borides and carbides production and the state corresponding to the segment of the world market was carried out.

  18. Stress-induced phase transformation in nanocrystalline UO2

    SciTech Connect

    Uberuaga, Blas Pedro; Desai, Tapan

    2009-01-01

    We report a stress-induced phase transfonnation in stoichiometric UO{sub 2} from fluorite to the {alpha}-PbO{sub 2} structure using molecular dynamics (MD) simulations and density functional theory (DFT) calculations. MD simulations, performed on nanocrystalline microstructure under constant-stress tensile loading conditions, reveal a heterogeneous nucleation of the {alpha}-PbO{sub 2} phase at the grain boundaries followed by the growth of this phase towards the interior of the grain. The DFT calculations confinn the existence of the {alpha}-PbO{sub 2} structure, showing that it is energetically favored under tensile loading conditions.

  19. Osteoblastic cells trigger gate currents on nanocrystalline diamond transistor.

    PubMed

    Izak, Tibor; Krátká, Marie; Kromka, Alexander; Rezek, Bohuslav

    2015-05-01

    We show the influence of osteoblastic SAOS-2 cells on the transfer characteristics of nanocrystalline diamond solution-gated field-effect transistors (SGFET) prepared on glass substrates. Channels of these fully transparent SGFETs are realized by hydrogen termination of undoped diamond film. After cell cultivation, the transistors exhibit about 100× increased leakage currents (up to 10nA). During and after the cell delamination, the transistors return to original gate currents. We propose a mechanism where this triggering effect is attributed to ions released from adhered cells, which depends on the cell adhesion morphology, and could be used for cell culture monitoring.

  20. Mechanical properties of micro- and nanocrystalline diamond foils

    PubMed Central

    Lodes, M. A.; Kachold, F. S.; Rosiwal, S. M.

    2015-01-01

    Diamond coating of suitable template materials and subsequent delamination allows for the manufacturing of free-standing diamond foil. The evolution of the microstructure can be influenced by secondary nucleation via control of process conditions in the hot-filament chemical vapour deposition process. Bending tests show extraordinarily high strength (more than 8 GPa), especially for diamond foils with nanocrystalline structure. A detailed fractographic analysis is conducted in order to correlate measured strength values with crack-initiating defects. The size of the failure causing flaw can vary from tens of micrometres to tens of nanometres, depending on the diamond foil microstructure as well as the loading conditions. PMID:25713455

  1. Ferromagnetism in Tb doped ZnO nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Zou, W. Q.; Ge, C. N.; Venkataiah, G.; Su, H. L.; Hsu, H. S.; Huang, J. C. A.; Liu, X. C.; Zhang, F. M.; Du, Y. W.

    2012-06-01

    Nanocrystalline Tb-doped ZnO films have been prepared by ion-beam sputtering technique. Magnetic characterization showed that the films are ferromagnetic with Curie temperature (TC) higher than room temperature. By further treated with a rapid thermal annealing process, both the grain size and the carrier concentration of the films increase, while the saturation magnetization of the films decreases. This magnetic behavior can be hardly explained by either bound magnetic polaron model or free carrier mediation model, thus suggests that the grain boundaries play a key role for the origin of ferromagnetism in these films.

  2. Structural Modification of Nanocrystalline Ceria using Ion Beams

    SciTech Connect

    Zhang, Yanwen; Edmondson, Philip D; Varga, Tamas; Moll, Sandra; Namavar, Fereydoon; Weber, William J

    2011-01-01

    Exceptional size-dependent electronic-ionic conductivity of nanostructured ceria can significantly alter materials properties in chemical, physical, electronic and optical applications. Using energetic ions, we have demonstrated effective modification of interface volume and grain size in nanocrystalline ceria from a few nm up to ~ 25 nm, which is the critical region for controlling size-dependent material property. The unique self-healing response of radiation damage at grain boundaries is applied to control the grain size at nanoscale as a function of ion dose and irradiation temperature. Structural modification by energetic ions is proposed to achieve disirable electronic-ionic conductivity.

  3. Magnetic induction heating of FeCr nanocrystalline alloys

    NASA Astrophysics Data System (ADS)

    Gómez-Polo, C.; Larumbe, S.; Pérez-Landazábal, J. I.; Pastor, J. M.; Olivera, J.; Soto-Armañanzas, J.

    2012-06-01

    In this work the thermal effects of magnetic induction heating in (FeCr)73.5Si13.5Cu1B9Nb3 amorphous and nanocrystalline wires were analyzed. A single piece of wire was immersed in a glass capillary filled with water and subjected to an ac magnetic field (frequency, 320 kHz). The initial temperature rise enabled the determination of the effective Specific Absorption Rate (SAR). Maximum SAR values are achieved for those samples displaying high magnetic susceptibility, where the eddy current losses dominate the induction heating behavior. Moreover, the amorphous sample with Curie temperature around room temperature displays characteristic features of self-regulated hyperthermia.

  4. Deformation Twinning in Nanocrystalline Ni during Cryogenic Rolling

    NASA Astrophysics Data System (ADS)

    Feng, Xiu-Yan; Cheng, Zhi-Ying; Zhou, Jia; Wu, Xiao-Lei; Wang, Zi-Qiang; Hong, You-Shi

    2006-02-01

    Deformation twinning is evidenced by transmission electron microscopy examinations in electrodeposited nanocrystalline (nc) Ni with mean grain size 25 nm upon cryogenic rolling. Two twinning mechanisms are confirmed to operate in nc grains, i.e. heterogeneous formation via emission of partial dislocations from the grain boundary and homogeneous nucleation through dynamic overlapping of stacking faults, with the former being determined as the most proficient. Deformation twinning in nc Ni may be well interpreted in terms of molecular dynamics simulation based on generalized planar fault energy curves.

  5. A reduction boronation route to nanocrystalline titanium diboride

    NASA Astrophysics Data System (ADS)

    Chen, Luyang; Gu, Yunle; Shi, Liang; Yang, Zeheng; Ma, Jianhua; Qian, Yitai

    2004-04-01

    Nanocrystalline titanium diboride (TiB 2) has been prepared through a reduction-boronation route by using Ti powders and BBr 3 as titanium and boron sources, and metallic sodium as reductant at 400 °C. X-ray powder diffraction (XRD) pattern can be indexed as hexagonal TiB 2 with the lattice constants of a=3.028 and c=3.223 Å. Transmission electron microscopy images show particle morphology with average size of 15 nm. Selected area electron diffraction patterns confirm the preparation of the hexagonal TiB 2.

  6. Vibrational Properties of Nanograins and Interfaces in Nanocrystalline Materials

    SciTech Connect

    Stankov, S.; Sergueev, I.; Chumakov, A. I.; Rueffer, R.; Yue, Y. Z.; Hu, L.; Miglierini, M.; Sepiol, B.; Svec, P.

    2008-06-13

    The vibrational dynamics of nanocrystalline Fe{sub 90}Zr{sub 7}B{sub 3} was studied at various phases of crystallization. The density of phonon states (DOS) of the nanograins was separated from that of the interfaces for a wide range of grain sizes and interface thicknesses. The DOS of the nanograins does not vary with their size and down to 2 nm grains still closely resembles that of the bulk. The anomalous enhancement of the phonon states at low and high energies originates from the DOS of the interfaces and scales linearly to their atomic fraction.

  7. Synthesis of nanocrystalline rare earth oxides by glycothermal method

    SciTech Connect

    Hosokawa, Saburo; Iwamoto, Shinji; Inoue, Masashi

    2008-11-03

    The reaction of yttrium acetate hydrate in 1,2-propanediol at 300 deg. C yielded a product containing acetate groups and glycol moieties. From this product, Y{sub 2}O{sub 3} was directly crystallized at 400 deg. C without the formation of a carbonate oxide phase. The thus-obtained Y{sub 2}O{sub 3} samples had a small crystallite size (2.2 nm) and significantly large surface area (280 m{sup 2}/g). Other nanocrystalline rare earth (Gd-Yb) oxides were also obtained by this method.

  8. Displacement, Substitution, Sublimation: A Bibliography.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    Sigmund Freund worked with the mechanisms of displacement, substitution, and sublimation. These mechanisms have many similarities and have been studied diagnostically and therapeutically. Displacement and substitution seem to fit in well with phobias, hysterias, somatiyations, prejudices, and scapegoating. Phobias, prejudices, and scapegoating…

  9. Site-directed mutants of human RECQ1 reveal functional importance of the zinc binding domain.

    PubMed

    Sami, Furqan; Gary, Ronald K; Fang, Yayin; Sharma, Sudha

    2016-08-01

    RecQ helicases are a highly conserved family of ATP-dependent DNA-unwinding enzymes with key roles in DNA replication and repair in all kingdoms of life. The RECQ1 gene encodes the most abundant RecQ homolog in humans. We engineered full-length RECQ1 harboring point mutations in the zinc-binding motif (amino acids 419-480) within the conserved RecQ-specific-C-terminal (RQC) domain known to be critical for diverse biochemical and cellular functions of RecQ helicases. Wild-type RECQ1 contains a zinc ion. Substitution of three of the four conserved cysteine residues that coordinate zinc severely impaired the ATPase and DNA unwinding activities but retained DNA binding and single strand DNA annealing activities. Furthermore, alteration of these residues attenuated zinc binding and significantly changed the overall conformation of full-length RECQ1 protein. In contrast, substitution of cysteine residue at position 471 resulted in a wild-type like RECQ1 protein. Differential contribution of the conserved cysteine residues to the structure and functions of the RECQ1 protein is also inferred by homology modeling. Overall, our results indicate that the zinc binding motif in the RQC domain of RECQ1 is a key structural element that is essential for the structure-functions of RECQ1. Given the recent association of RECQ1 mutations with breast cancer, these results will contribute to understanding the molecular basis of RECQ1 functions in cancer etiology. PMID:27248010

  10. 76 FR 51992 - Determination That PENTETATE ZINC TRISODIUM (Zinc Trisodium Diethylenetriaminepentaacetate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... HUMAN SERVICES Food and Drug Administration Determination That PENTETATE ZINC TRISODIUM (Zinc Trisodium... Administration (FDA) has determined that PENTETATE ZINC TRISODIUM (zinc trisodium diethylenetriaminepentaacetate... PENTETATE ZINC TRISODIUM (Zn-DTPA) solution for intravenous or inhalation administration (EQ 1 g base/5...

  11. Template-assisted formation of microsized nanocrystalline CeO2 tubes and their catalytic performance in the carboxylation of methanol

    PubMed Central

    Naumann, Meike; Schäfer, Christian; Brandner, Armin; Hofmann, Heiko J; Claus, Peter

    2011-01-01

    Summary Polymethylmethacrylate (PMMA)/ceria composite fibres were synthesized by using a sequential combination of polymer electrospinning, spray-coating with a sol, and a final calcination step to yield microstructured ceria tubes, which are composed of nanocrystalline ceria particles. The PMMA template is removed from the organic/inorganic hybrid material by radio frequency (rf) plasma etching followed by calcination of the ceramic green-body fibres. Microsized ceria (CeO2) tubes, with a diameter of ca. 0.75 µm, composed of nanocrystalline agglomerated ceria particles were thus obtained. The 1-D ceramic ceria material was characterized by X-ray diffraction, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV–vis and photoluminescence spectroscopy (PL), as well as thermogravimetric analysis (TGA). Its catalytic performance was studied in the direct carboxylation of methanol with carbon dioxide leading to dimethyl carbonate [(CH3O)2CO, DMC], which is widely employed as a phosgene and dimethyl sulfate substitute, and as well as a fuel additive. PMID:22259761

  12. 21 CFR 522.2690 - Zinc gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter of solution contains 13.1 milligrams zinc as zinc...

  13. 21 CFR 522.2690 - Zinc gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter of solution contains 13.1 milligrams zinc as zinc...

  14. 21 CFR 522.2690 - Zinc gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter of solution contains 13.1 milligrams zinc as zinc...

  15. Regeneration of zinc chloride hydrocracking catalyst

    DOEpatents

    Zielke, Clyde W.

    1979-01-01

    Improved rate of recovery of zinc values from the solids which are carried over by the effluent vapors from the oxidative vapor phase regeneration of spent zinc chloride catalyst is achieved by treatment of the solids with both hydrogen chloride and calcium chloride to selectively and rapidly recover the zinc values as zinc chloride.

  16. Structural and optical properties of PVP-capped nanocrystalline ZnxCd1-xS solid solutions

    NASA Astrophysics Data System (ADS)

    Askari, Mina; Soltani, Nayereh; Saion, Elias; Yunus, W. Mahmood Mat; Maryam Erfani, H.; Dorostkar, Mahdi

    2015-05-01

    Nanocrystalline ZnxCd1-xS solid solutions were prepared in a microwave-assisted hydrothermal process with gradient distribution of components (x = 0.1, 0.3, 0.5, 0.7, and 0.9). The growth of the cubic-structured quantum dots was observed for all component stoichiometries with the crystallite size between 4.5 and 5.7 nm. The obvious peak shifts have been found in the XRD patterns and the lattice parameters showed linear variation with x increasing. The evolution of the optical properties of obtained solid solutions including absorption and photoemission was also monitored in detail. The solid solutions show a considerable shift in the nanoparticle optical absorption edge from 482 to 343 nm with the increasing of Zn fraction. The band gaps of the solid solutions were estimated to be between 2.94 and 3.40 eV and the position of conduction band was shifted toward more negative potential with x increasing. The photoluminescence spectra showed a broad blue-green emission spreading up to 600 nm with emergence of three dominant peaks belong to sulfur, zinc, and cadmium vacancies.

  17. Structural and magnetic properties of nano-crystalline Ni-Zn ferrites synthesized using egg-white precursor

    NASA Astrophysics Data System (ADS)

    Gabal, M. A.; El-Shishtawy, Reda M.; Al Angari, Y. M.

    2012-07-01

    Nano-crystalline nickel-zinc ferrites of different compositions; Ni1-xZnxFe2O4 (x=0.0-1.0) were prepared by a precursor method involving egg-white and metal nitrates. An appropriate mechanism for the egg-white-metal complexation was suggested. Differential thermal analysis-thermogravimetry, X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer and AC-magnetic susceptibility measurements were carried out to investigate chemical, structural and magnetic aspects of Ni-Zn ferrites. XRD confirmed the formation of spinel cubic structure. The average crystallite size was calculated using line broadening in XRD patterns. Structural parameters like lattice constant, X-ray density, bond lengths and inter-cationic distance were determined from XRD data. TEM showed agglomerated particles with average size agreed well with that estimated using XRD. FT-IR spectra confirm the formation of spinel structure and further lends support to the proposed cation distribution. Zn-content was found to have a significant influence on the magnetic properties of the system. The changes in the magnetic properties can be attributed to the influence of the cationic stoichiometry and their occupancy in the specific sites.

  18. Zinc Bells Rang in Jerusalem!

    PubMed Central

    Hershfinkel, Michal; Aizenman, Elias; Andrews, Glen; Sekler, Israel

    2010-01-01

    “Oh, Jerusalem of gold, and of light, and of bronze…” goes the popular song. But it was another metal that towered above the Jerusalem landscape during the meeting of the International Society for Zinc Biology (ISZB; http://www.iszb.org/), held at Mishkenot Sha’ananim, a whisper away from the Old City walls. More than 100 scientists gathered on 1 to 5 December 2009 to discuss their research on the biology of this metal. Zinc is a double-edged sword. Zinc supplementation accelerates wound healing and growth and promotes an effective immune response. On the other hand, zinc deficiency leads to growth retardation and impaired learning and memory function, and has been linked to mood disorders. At the cellular level, however, uncontrolled increases in zinc concentrations can lead to neuronal cell death and may be involved in neurodegenerative disorders. Through regulation of various intracellular signaling pathways, zinc can accelerate cell growth and possibly contribute to cancer. However, despite the physiological and clinical importance of this metal, research on the molecular basis of these effects is still in its infancy. The 2009 ISZB meeting provided a venue for investigators working on various zinc-related issues to share their thoughts and ideas and to promote the growth of this field. PMID:20606213

  19. How Do Substitute Teachers Substitute? An Empirical Study of Substitute-Teacher Labor Supply

    ERIC Educational Resources Information Center

    Gershenson, Seth

    2012-01-01

    This paper examines the daily labor supply of a potentially important, but often overlooked, source of instruction in U.S. public schools: substitute teachers. I estimate a sequential binary-choice model of substitute teachers' job-offer acceptance decisions using data on job offers made by a randomized automated calling system. Importantly, this…

  20. Biomimetic nanocrystalline apatites: Emerging perspectives in cancer diagnosis and treatment.

    PubMed

    Al-Kattan, Ahmed; Girod-Fullana, Sophie; Charvillat, Cédric; Ternet-Fontebasso, Hélène; Dufour, Pascal; Dexpert-Ghys, Jeannette; Santran, Véronique; Bordère, Julie; Pipy, Bernard; Bernad, José; Drouet, Christophe

    2012-02-14

    Nanocrystalline calcium phosphate apatites constitute the mineral part of hard tissues, and the synthesis of biomimetic analogs is now well-mastered at the lab-scale. Recent advances in the fine physico-chemical characterization of these phases enable one to envision original applications in the medical field along with a better understanding of the underlying chemistry and related pharmacological features. In this contribution, we specifically focused on applications of biomimetic apatites in the field of cancer diagnosis or treatment. We first report on the production and first biological evaluations (cytotoxicity, pro-inflammatory potential, internalization by ZR-75-1 breast cancer cells) of individualized luminescent nanoparticles based on Eu-doped apatites, eventually associated with folic acid, for medical imaging purposes. We then detail, in a first approach, the preparation of tridimensional constructs associating nanocrystalline apatite aqueous gels and drug-loaded pectin microspheres. Sustained releases of a fluorescein analog (erythrosin) used as model molecule were obtained over 7 days, in comparison with the ceramic or microsphere reference compounds. Such systems could constitute original bone-filling materials for in situ delivery of anticancer drugs.

  1. Low cost and efficient photovoltaic conversion by nanocrystalline solar cells

    SciTech Connect

    Graetzel, M.

    1996-09-01

    Solar cells are expected to provide environmentally friendly solutions to the world`s energy supply problem. Learning from the concepts used by green plants we have developed a molecular photovoltaic device whose overall efficiency for AM 1.5 solar light to electricity has already attained 8-11%. The system is based on the sensitization of nanocrystalline oxide films by transition metal charge transfer sensitizers. In analogy to photosynthesis, the new chemical solar cell achieves the separation of the light absorption and charge carrier transport processes. Extraordinary yields for the conversion of incident photons into electric current are obtained, exceeding 90% for transition metal complexes within the wavelength range of their absorption band. The use of molten salt electrolytes together with coordination complexes of ruthenium as sensitizers and adequate sealing technology has endowed these cells with a remarkable stability making practical applications feasible. Seven industrial cooperations are presently involved in the development to bring these cells to the market. The first cells will be applied to supply electric power for consumer electronic devices. The launching of production of several products of this type is imminent and they should be on the market within the next two years. Quite aside from their intrinsic merits as photovoltaic device, the mesoscopic oxide semiconductor films developed in our laboratory offer attractive possibilities for a number of other applications. Thus, the first example of a nanocrystalline rocking chair battery will be demonstrated and its principle briefly discussed.

  2. Nanocrystalline materials: recent advances in crystallographic characterization techniques.

    PubMed

    Ringe, Emilie

    2014-11-01

    Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask 'how are nanoshapes created?', 'how does the shape relate to the atomic packing and crystallography of the material?', 'how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  3. Large piezoresistive effect in surface conductive nanocrystalline diamond

    SciTech Connect

    Janssens, S. D. Haenen, K.; Drijkoningen, S.

    2014-09-08

    Surface conductivity in hydrogen-terminated single crystal diamond is an intriguing phenomenon for fundamental reasons as well as for application driven research. Surface conductivity is also observed in hydrogen-terminated nanocrystalline diamond although the electronic transport mechanisms remain unclear. In this work, the piezoresistive properties of intrinsic surface conductive nanocrystalline diamond are investigated. A gauge factor of 35 is calculated from bulging a diamond membrane of 350 nm thick, with a diameter of 656 μm and a sheet resistance of 1.45 MΩ/sq. The large piezoresistive effect is reasoned to originate directly from strain-induced changes in the resistivity of the grain boundaries. Additionally, we ascribe a small time-dependent fraction of the piezoresistive effect to charge trapping of charge carriers at grain boundaries. In conclusion, time-dependent piezoresistive effect measurements act as a tool for deeper understanding the complex electronic transport mechanisms induced by grain boundaries in a polycrystalline material or nanocomposite.

  4. New atom probe approaches to studying segregation in nanocrystalline materials.

    PubMed

    Samudrala, S K; Felfer, P J; Araullo-Peters, V J; Cao, Y; Liao, X Z; Cairney, J M

    2013-09-01

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping.

  5. Electronic transport of N-type semiconductor nanocrystalline solids

    NASA Astrophysics Data System (ADS)

    Yu, Dong

    2005-07-01

    A bottleneck limiting the widespread applications of semiconductor nanocrystalline solids on optoelectronic devices such as photovoltaic cells, light emitting devices and quantum dots lasers is their poor conductivity. In this thesis, we show that the conductivity of thin films of CdSe nanocrystals is increased by many orders of magnitude when n-doped either by potassium or electrochemistry. Around half-filling of the first electronic shell, a peak in the conductivity is observed indicating shell to shell transport. Introducing conjugated ligands between nanocrystals increases the conductivities to ˜10-2 S cm. NaOH treatment of the thin films leads to a large carrier mobility and a semiconductor nanocrystals field effect transistor is produced. The temperature and electrical field dependent conductivity of n-type CdSe nanocrystal thin films is then investigated. The low field conductivity follows exp(-(T*/T)-1/2 ) and high field conductivity follows exp(-(E*/ E)-1/2). The complete behavior is very well described by the variable range hopping theory with a Coulomb gap. Finally, n-type colloidal CdSe nanocrystalline solids show large positive magnetoresistance at low temperatures (0.3K--4K). We attempted to dope Manganese (II) ions in nanocrystals, which might show interesting negative magnetoresistance. However, they still show similar positive magnetoresistance probably due to the difficulty of Mn doping. At ˜0.3K the resistance is increased by ˜150% at 10 Tesla.

  6. An oral controlled release matrix pellet formulation containing nanocrystalline ketoprofen.

    PubMed

    Vergote, G J; Vervaet, C; Van Driessche, I; Hoste, S; De Smedt, S; Demeester, J; Jain, R A; Ruddy, S; Remon, J P

    2001-05-21

    A controlled release pellet formulation using a NanoCrystal colloidal dispersion of ketoprofen was developed. In order to be able to process the aqueous NanoCrystal colloidal dispersion into a hydrophobic solid dosage form a spray drying procedure was used. The in vitro dissolution profiles of wax based pellets loaded with nanocrystalline ketoprofen are compared with the profiles of wax based pellets loaded with microcrystalline ketoprofen and of a commercial sustained release ketoprofen formulation. Pellets were produced using a melt pelletisation technique. All pellet formulations were composed of a mixture of microcrystalline wax and starch derivatives. The starch derivatives used were waxy maltodextrin and drum dried corn starch. Varying the concentration of drum dried corn starch increased the release rate of ketoprofen but the ketoprofen recovery remained problematic. To increase the dissolution yield surfactants were utilised. The surfactants were either added during the production process of the NanoCrystal colloidal dispersion (sodium laurylsulphate) or during the pellet manufacturing process (Cremophor RH 40). Both methods resulted in a sustained but complete release of nanocrystalline ketoprofen from the matrix pellet formulations.

  7. Weakened Flexural Strength of Nanocrystalline Nanoporous Gold by Grain Refinement.

    PubMed

    Gwak, Eun-Ji; Kim, Ju-Young

    2016-04-13

    High density of grain boundaries in solid materials generally leads to high strength because grain boundaries act as strong obstacles to dislocation activity. We find that the flexural strength of nanoporous gold of grain size 206 nm is 33.6% lower than that of grain size 238 μm. We prepared three gold-silver precursor alloys, well-annealed, prestrained, and high-energy ball-milled, from which nanoporous gold samples were obtained by the same free-corrosion dealloying process. Ligaments of the same size are formed regardless of precursor alloys, and microstructural aspects of precursor alloys such as crystallographic orientation and grain size is preserved in the dealloying process. While the nanoindentation hardness of three nanoporous golds is independent of microstructural variation, flexural strength of nanocrystalline nanoporous gold is significantly lower than that of nanoporous golds with much larger grain size. We investigate weakening mechanisms of grain boundaries in nanocrystalline nanoporous gold, leading to weakening of flexural strength.

  8. Nanocrystalline silicon: Lattice dynamics and enhanced thermoelectric properties

    SciTech Connect

    Claudio, Tania; Stein, Niklas; Stroppa, Daniel G.; Klobes, Benedikt; Koza, Michael Marek; Kudejova, Petra; Petermann, Nils; Wiggers, Hartmut; Schierning, Gabi; Hermann, Raphaël P.

    2014-12-21

    In this study, silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K-1 m-1 at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phonon scattering has been a subject of many studies. In this work we have evaluated the effects of nanostructuration on the lattice dynamics of bulk nanocrystalline doped silicon. The samples were prepared by gas phase synthesis, followed by current and pressure assisted sintering. The heat capacity, density of phonons states, and elastic constants were measured, which all reveal a significant, ≈25%, reduction in the speed of sound. The samples present a significantly decreased lattice thermal conductivity, ≈25 W K-1 m-1, which, combined with a very high carrier mobility, results in a dimensionless figure of merit with a competitive value that peaks at ZT ≈ 0.57 at 973 °C. Due to its easily scalable and extremely low-cost production process, nanocrystalline Si prepared by gas phase synthesis followed by sintering could become the material of choice for high temperature thermoelectric generators.

  9. Magnetic field-dependent spin structures of nanocrystalline holmium

    PubMed Central

    Szary, Philipp; Kaiser, Daniel; Bick, Jens-Peter; Lott, Dieter; Heinemann, André; Dewhurst, Charles; Birringer, Rainer; Michels, Andreas

    2016-01-01

    The results are reported of magnetic field-dependent neutron diffraction experiments on polycrystalline inert-gas condensed holmium with a nanometre crystallite size (D = 33 nm). At T = 50 K, no evidence is found for the existence of helifan(3/2) or helifan(2) structures for the nanocrystalline sample, in contrast with results reported in the literature for the single crystal. Instead, when the applied field H is increased, the helix pattern transforms progressively, most likely into a fan structure. It is the component of H which acts on the basal-plane spins of a given nanocrystallite that drives the disappearance of the helix; for nanocrystalline Ho, this field is about 1.3 T, and it is related to a characteristic kink in the virgin magnetization curve. For a coarse-grained Ho sample, concomitant with the destruction of the helix phase, the emergence of an unusual angular anisotropy (streak pattern) and the appearance of novel spin structures are observed. PMID:27047307

  10. Weakened Flexural Strength of Nanocrystalline Nanoporous Gold by Grain Refinement.

    PubMed

    Gwak, Eun-Ji; Kim, Ju-Young

    2016-04-13

    High density of grain boundaries in solid materials generally leads to high strength because grain boundaries act as strong obstacles to dislocation activity. We find that the flexural strength of nanoporous gold of grain size 206 nm is 33.6% lower than that of grain size 238 μm. We prepared three gold-silver precursor alloys, well-annealed, prestrained, and high-energy ball-milled, from which nanoporous gold samples were obtained by the same free-corrosion dealloying process. Ligaments of the same size are formed regardless of precursor alloys, and microstructural aspects of precursor alloys such as crystallographic orientation and grain size is preserved in the dealloying process. While the nanoindentation hardness of three nanoporous golds is independent of microstructural variation, flexural strength of nanocrystalline nanoporous gold is significantly lower than that of nanoporous golds with much larger grain size. We investigate weakening mechanisms of grain boundaries in nanocrystalline nanoporous gold, leading to weakening of flexural strength. PMID:26982460

  11. Nanocrystalline silicon: Lattice dynamics and enhanced thermoelectric properties

    DOE PAGES

    Claudio, Tania; Stein, Niklas; Stroppa, Daniel G.; Klobes, Benedikt; Koza, Michael Marek; Kudejova, Petra; Petermann, Nils; Wiggers, Hartmut; Schierning, Gabi; Hermann, Raphaël P.

    2014-12-21

    In this study, silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K-1 m-1 at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phonon scattering has been a subject of many studies. In this work we have evaluated the effects of nanostructuration on the lattice dynamics of bulk nanocrystalline doped silicon. The samples were prepared by gas phase synthesis, followed by current and pressure assisted sintering. The heat capacity, density of phonons states, and elastic constants were measured,more » which all reveal a significant, ≈25%, reduction in the speed of sound. The samples present a significantly decreased lattice thermal conductivity, ≈25 W K-1 m-1, which, combined with a very high carrier mobility, results in a dimensionless figure of merit with a competitive value that peaks at ZT ≈ 0.57 at 973 °C. Due to its easily scalable and extremely low-cost production process, nanocrystalline Si prepared by gas phase synthesis followed by sintering could become the material of choice for high temperature thermoelectric generators.« less

  12. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    PubMed Central

    Ringe, Emilie

    2014-01-01

    Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask ‘how are nanoshapes created?’, ‘how does the shape relate to the atomic packing and crystallography of the material?’, ‘how can we control and characterize the external shape and crystal structure of such small nanocrystals?’. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed. PMID:25485133

  13. Photoreduction of Sm(3+) in Nanocrystalline BaFCl.

    PubMed

    Riesen, Nicolas; François, Alexandre; Badek, Kate; Monro, Tanya M; Riesen, Hans

    2015-06-18

    We demonstrate that exposure of nanocrystalline BaFCl:Sm(3+) X-ray storage phosphor to blue laser pulses with peak power densities on the order of 10 GW/cm(2) results in conversion of Sm(3+) to Sm(2+). This photoreduction is found to be strongly power-dependent with an initial fast rate, followed by a slower rate. The photoreduction appears to be orders of magnitude more efficient than that for previously reported systems, and it is estimated that up to 50% of the samarium ions can be photoreduced to the divalent state. The main mechanism is most likely based on multiphoton electron-hole creation, followed by subsequent trapping of the electrons in the conduction band at the Sm(3+) centers. Nanocrystalline BaFCl:Sm(3+) is an efficient photoluminescent X-ray storage phosphor with possible applications as dosimetry probes, and the present study shows for the first time that the power levels of the blue light have to be kept relatively low to avoid the generation of Sm(2+) in the readout process. A system comprising the BaFCl:Sm(3+) nanocrystallites embedded into a glass is also envisioned for 3D memory applications.

  14. Nanocrystalline silicon: lattice dynamics and enhanced thermoelectric properties.

    PubMed

    Claudio, Tania; Stein, Niklas; Stroppa, Daniel G; Klobes, Benedikt; Koza, Michael Marek; Kudejova, Petra; Petermann, Nils; Wiggers, Hartmut; Schierning, Gabi; Hermann, Raphaël P

    2014-12-21

    Silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K(-1) m(-1) at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phonon scattering has been a subject of many studies. In this work we have evaluated the effects of nanostructuration on the lattice dynamics of bulk nanocrystalline doped silicon. The samples were prepared by gas phase synthesis, followed by current and pressure assisted sintering. The heat capacity, density of phonons states, and elastic constants were measured, which all reveal a significant, ≈25%, reduction in the speed of sound. The samples present a significantly decreased lattice thermal conductivity, ≈25 W K(-1) m(-1), which, combined with a very high carrier mobility, results in a dimensionless figure of merit with a competitive value that peaks at ZT≈ 0.57 at 973 °C. Due to its easily scalable and extremely low-cost production process, nanocrystalline Si prepared by gas phase synthesis followed by sintering could become the material of choice for high temperature thermoelectric generators. PMID:24848359

  15. Implantation induced hardening of nanocrystalline titanium thin films.

    PubMed

    Krishnan, R; Amirthapandian, S; Mangamma, G; Ramaseshan, R; Dash, S; Tyagi, A K; Jayaram, V; Raj, Baldev

    2009-09-01

    Formation of nanocrystalline TiN at low temperatures was demonstrated by combining Pulsed Laser Deposition (PLD) and ion implantation techniques. The Ti films of nominal thickness approximatly 250 nm were deposited at a substrate temperature of 200 degrees C by ablating a high pure titanium target in UHV conditions using a nanosecond pulsed Nd:YAG laser operating at 1064 nm. These films were implanted with 100 keV N+ ions with fluence ranging from 1.0 x 10(16) ions/cm2 to 1.0 x 10(17) ions/cm2 The structural, compositional and morphological evolutions were tracked using Transmission Electron Microscopy (TEM), Secondary Ion Mass Spectrometry (SIMS) and Atomic Force Microscopy (AFM), respectively. TEM analysis revealed that the as-deposited titanium film is an fcc phase. With increasing ion fluence, its structure becomes amorphous phase before precipitation of nanocrystalline fcc TIN phase. Compositional depth profiles obtained from SIMS have shown the extent of nitrogen concentration gradient in the implantation zone. Both as-deposited and ion implanted films showed much higher hardness as compared to the bulk titanium. AFM studies revealed a gradual increase in surface roughness leading to surface patterning with increase in ion fluence.

  16. Light source with carbon nanotubes field emission cathode and rare-earth doped nanocrystalline phosphors

    NASA Astrophysics Data System (ADS)

    Psuja, P.; Strek, W.

    2007-09-01

    In this work we report a new carbon nanotubes field emission (CNT-FED) light source with nanocrystalline phosphors. The nanocrystalline powders of cerium doped yttrium aluminum garnet were obtained by modified Pechini method. The phosphor has been electrophoretically deposited on ITO-glass substrates. The cathode composed of carbon nanotubes was fabricated in the same manner. A light source was assembled and tested. Low-voltage cathodoluminescent spectra and I-V characteristics of fabricated cathodes were measured. A possibility of application of Ce doped nanocrystalline YAG phosphor in the field emission displays (FEDs) was discussed.

  17. Indentation creep of nanocrystalline Cu-TiC alloys prepared by mechanical alloying

    SciTech Connect

    Shen, B.L.; Itoi, T.; Yamasaki, T.; Ogino, Y.

    2000-04-01

    In recent years, nanocrystalline materials have attracted much attention in materials research because they behave differently from conventional materials. For example, the nanocrystalline materials exhibit enhanced mechanical properties, such as high strength and hardness. The present study was performed to investigate the indentation creep mechanism of nanocrystalline Cu-TiC alloys which were prepared by HIP (Hot Isostatic Press) processing of MA (Mechanical Alloying) powders and hot rolling afterwards. As these materials have high densities and high structural stability, the authors could investigate creep behavior at wide temperature ranges below 0.5Tm (Tm is the melting temperature of copper).

  18. The electrochemical corrosion of bulk nanocrystalline ingot iron in acidic sulfate solution.

    PubMed

    Wang, S G; Shen, C B; Long, K; Zhang, T; Wang, F H; Zhang, Z D

    2006-01-12

    The corrosion properties of bulk nanocrystalline ingot iron (BNII) fabricated from conventional polycrystalline ingot iron (CPII) by severe rolling were investigated by means of immersion test, potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) tests, and scanning electron microscopy (SEM) observation. These experimental results indicate that BNII possesses excellent corrosion resistance in comparison with CPII in acidic sulfate solution at room temperature. It may mainly result from different surface microstructures between CPII and BNII. However, the corrosion resistance of nanocrystalline materials is usually degraded because of their metastable microstructure nature, and the residual stress in nanocrystalline materials also can result in degradation of corrosion resistance according to the traditional point of view.

  19. Zinc - an indispensable micronutrient.

    PubMed

    Sharma, Ashish; Patni, Babita; Shankhdhar, Deepti; Shankhdhar, S C

    2013-01-01

    Availability of Zn to plant is hampered by its immobile nature and adverse soil conditions. Thus, Zn deficiency is observed even though high amount is available in soil. Root-shoot barrier, a major controller of zinc transport in plant is highly affected by changes in the anatomical structure of conducting tissue and adverse soil conditions like pH, clay content, calcium carbonate content, etc. Zn deficiency results in severe yield losses and in acute cases plant death. Zn deficiency in edible plant parts results in micronutrient malnutrition leading to stunted growth and improper sexual development in humans. To overcome this problem several strategies have been used to enrich Zn availability in edible plant parts, including nutrient management, biotechnological tools, and classical and molecular breeding approaches. PMID:24381434

  20. Mineral resource of the month: zinc

    USGS Publications Warehouse

    Tolcin, Amy C.

    2009-01-01

    The article provides information on zinc, the fourth most-widely consumed metal. It traces the first use of zinc with the Romans' production of brass. It describes the presence of zinc in Earth's crust and the importance of sphalerite as a source of zinc and other some minor metal production. The production and consumption of zinc as well as the commercial and industrial uses of this metal are also discussed.

  1. Oriented nanometric aggregates of partially inverted zinc ferrite: One-step processing and tunable high-frequency magnetic properties

    SciTech Connect

    Sai, Ranajit; Endo, Yasushi; Shimada, Yutaka; Yamaguchi, Masahiro; Shivashankar, S. A.

    2015-05-07

    In this work, it is demonstrated that the in situ growth of oriented nanometric aggregates of partially inverted zinc ferrite can potentially pave a way to alter and tune magnetocrystalline anisotropy that, in turn, dictates ferromagnetic resonance frequency (f{sub FMR}) by inducing strain due to aggregation. Furthermore, the influence of interparticle interaction on magnetic properties of the aggregates is investigated. Mono-dispersed zinc ferrite nanoparticles (<5 nm) with various degrees of aggregation were prepared through decomposition of metal-organic compounds of zinc (II) and iron (III) in an alcoholic solution under controlled microwave irradiation, below 200 °C. The nanocrystallites were found to possess high degree of inversion (>0.5). With increasing order of aggregation in the samples, saturation magnetization (at 5 K) is found to decrease from 38 emu/g to 24 emu/g, while coercivity is found to increase gradually by up to 100% (525 Oe to 1040 Oe). Anisotropy-mediated shift of f{sub FMR} has also been measured and discussed. In essence, the result exhibits an easy way to control the magnetic characteristics of nanocrystalline zinc ferrite, boosted with significant degree of inversion, at GHz frequencies.

  2. Oriented nanometric aggregates of partially inverted zinc ferrite: One-step processing and tunable high-frequency magnetic properties

    NASA Astrophysics Data System (ADS)

    Sai, Ranajit; Endo, Yasushi; Shimada, Yutaka; Yamaguchi, Masahiro; Shivashankar, S. A.

    2015-05-01

    In this work, it is demonstrated that the in situ growth of oriented nanometric aggregates of partially inverted zinc ferrite can potentially pave a way to alter and tune magnetocrystalline anisotropy that, in turn, dictates ferromagnetic resonance frequency (fFMR) by inducing strain due to aggregation. Furthermore, the influence of interparticle interaction on magnetic properties of the aggregates is investigated. Mono-dispersed zinc ferrite nanoparticles (<5 nm) with various degrees of aggregation were prepared through decomposition of metal-organic compounds of zinc (II) and iron (III) in an alcoholic solution under controlled microwave irradiation, below 200 °C. The nanocrystallites were found to possess high degree of inversion (>0.5). With increasing order of aggregation in the samples, saturation magnetization (at 5 K) is found to decrease from 38 emu/g to 24 emu/g, while coercivity is found to increase gradually by up to 100% (525 Oe to 1040 Oe). Anisotropy-mediated shift of fFMR has also been measured and discussed. In essence, the result exhibits an easy way to control the magnetic characteristics of nanocrystalline zinc ferrite, boosted with significant degree of inversion, at GHz frequencies.

  3. Effect of gamma irradiation on dielectric properties of manganese zinc nanoferrites

    SciTech Connect

    Angadi, V. Jagadeesha Rudraswamy, B.; Melagiriyappa, E.; Somashekarappa, H. M.; Nagabhushana, H.

    2014-04-24

    Naocrystalline ferrites Mn{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x = 0.00, 0.25, 0.50, 0.75 and 1.00) were prepared by combustion method. The samples were characterized by XRD technique. The dielectric measurements were carried out in the frequency range 40 Hz to 100 MHz at room temperature. All the measurements were performed before and after gamma {sup 60}Co irradiation. The X-ray diffraction patterns revealed the formation of nanocrystalline and single-phase spinel structure. The lattice parameter decrease with zinc ion concentration and increased after the irradiation due to ferric ions of smaller radius converted to ferrous ions of larger radius. The dielectric behavior is attributed to the Maxwell-Wagner type interfacial polarization. The dielctric contant, dielectric loss and AC conductivity enhanced after the irradiation.

  4. "Bulk" Nanocrystalline Metals: Review of the Current State of the Art and Future Opportunities for Copper and Copper Alloys

    NASA Astrophysics Data System (ADS)

    Tschopp, M. A.; Murdoch, H. A.; Kecskes, L. J.; Darling, K. A.

    2014-06-01

    It is a new beginning for innovative fundamental and applied science in nanocrystalline materials. Many of the processing and consolidation challenges that have haunted nanocrystalline materials are now more fully understood, opening the doors for bulk nanocrystalline materials and parts to be produced. While challenges remain, recent advances in experimental, computational, and theoretical capability have allowed for bulk specimens that have heretofore been pursued only on a limited basis. This article discusses the methodology for synthesis and consolidation of bulk nanocrystalline materials using mechanical alloying, the alloy development and synthesis process for stabilizing these materials at elevated temperatures, and the physical and mechanical properties of nanocrystalline materials with a focus throughout on nanocrystalline copper and a nanocrystalline Cu-Ta system, consolidated via equal channel angular extrusion, with properties rivaling that of nanocrystalline pure Ta. Moreover, modeling and simulation approaches as well as experimental results for grain growth, grain boundary processes, and deformation mechanisms in nanocrystalline copper are briefly reviewed and discussed. Integrating experiments and computational materials science for synthesizing bulk nanocrystalline materials can bring about the next generation of ultrahigh strength materials for defense and energy applications.

  5. Vitreous substitutes: challenges and directions

    PubMed Central

    Gao, Qian-Ying; Fu, Yue; Hui, Yan-Nian

    2015-01-01

    The natural vitreous body has a fine structure and complex functions. The imitation of the natural vitreous body by vitreous substitutes is a challenging work for both researchers and ophthalmologists. Gases, silicone oil, heavy silicone oil and hydrogels, particularly the former two vitreous substitutes are clinically widely used with certain complications. Those, however, are not real artificial vitreous due to lack of structure and function like the natural vitreous body. This article reviews the situations, challenges, and future directions in the development of vitreous substitutes, particularly the experimental and clinical use of a new artificial foldable capsular vitreous body. PMID:26085987

  6. Substitution Rates under Stabilizing Selection

    PubMed Central

    Hastings, Alan

    1987-01-01

    Allelic substitutions under stabilizing phenotypic selection on quantitative traits are studied in Monte Carlo simulations of 8 and 16 loci. The results are compared and contrasted to analytical models based on work of M. Kimura for two and "infinite" loci. Selection strengths of S = 4Nes approximately four (which correspond to reasonable strengths of selection for quantitative characters) can retard substitution rates tenfold relative to rates under neutrality. An important finding is a strong dependence of per locus substitution rates on the number of loci. PMID:3609727

  7. Zinc tolerance and zinc removal ability of living and dried biomass of Desmodesmus communis.

    PubMed

    Novák, Zoltán; Jánószky, Mihály; B-Béres, Viktória; Nagy, Sándor Alex; Bácsi, István

    2014-12-01

    Effects of zinc on growth, cell morphology, oxidative stress, and zinc removal ability of the common phytoplankton species Desmodesmus communis were investigated at a concentration range of 0.25-160 mg L(-1) zinc. Cell densities and chlorophyll content decreased in treated cultures, changes in coenobia morphology and elevated lipid peroxidation levels appeared above 2.5 mg L(-1) zinc. The most effective zinc removal was observed at 5 mg L(-1) zinc concentration, while maximal amount of removed zinc appeared in 15 mg L(-1) zinc treated culture. Removed zinc is mainly bound on the cell surface. Dead biomass adsorbed more zinc than living biomass relative to unit of dry mass, but living biomass was more effective, relative to initial zinc content. This study comprehensively examines the zinc tolerance and removal ability of D. communis and demonstrates, in comparison with published literature, that these characteristics of different isolates of the same species can vary within a wide range. PMID:25193446

  8. Bacterial biosynthesis of a calcium phosphate bone-substitute material.

    PubMed

    Thackray, Aniac C; Sammons, Rachel L; Macaskie, Lynne E; Yong, Ping; Lugg, Harriet; Marquis, Peter M

    2004-04-01

    A species of Serratia bacteria produces nano-crystalline hydroxyapatite (HA) crystals by use of a cell-bound phosphatase enzyme, located both periplasmically and within extracellular polymeric materials. The enzyme functions in resting cells by cleaving glycerol-2-phosphate (G-2-P) to liberate free phosphate ions which combine with calcium in solution to produce a cell-bound calcium phosphate material. Bacteria grown as a biofilm on polyurethane reticulated foam cubes were challenged with calcium and G-2-P in a bioreactor to produce a 3-D porous bone-substitute material. The scaffold has 1 mm macropores and 1 microm micropores. XRD showed the crystallites to be 25-28 nm in size, resembling HA before sintering and beta-tricalcium phosphate (beta-TCP, whitlockite) after. When biofilm was grown on titanium discs and challenged with calcium and G-2-P, a calcium phosphate layer formed on the discs. Biomineralisation is therefore a potential route to production of precursor nanophase HA, which has the potential to improve strength. The scaffold material produced by this method could be used as a bone-filler or as an alternative method for coating implants with a layer of HA.

  9. Effects of hydrogen annealing and codoping (Mn, Fe, Ni, Ga, Y) of nanocrystalline Cu-doped ZnO dilute magnetic semiconductor

    NASA Astrophysics Data System (ADS)

    Bououdina, Mohamed; Aziz Dakhel, Aqeel

    2015-01-01

    Zinc oxide (ZnO) codoped with Cu and M ions (M = Mn, Fe, Ni, Ga, Y) powders were synthesised by simultaneous thermal co-decomposition of a mixture of zinc and metal complexes. The synthesised chemical formula for the prepared solid solution is Zn0.97Cu0.01M0.02O. X-ray diffraction (XRD) analysis confirms the formation of single nanocrystalline structure of the as-prepared powders, thus, both Cu and M ions were incorporated into ZnO lattice forming solid solutions. Magnetic measurements reveal that all the as-synthesised doped ZnO powders gained partial (RT-FM) properties but with different strength and BH-behaviour depends on the nature of the doping (M). Furthermore, H2 post-treatment was subsequently carried out and it was found that the observed RT-FM is enhanced. Very interestingly, in case of Ni dopant, the whole powder becomes completely ferromagnetic with coercivity (Hc), remanence (Mr) and saturation magnetisation (Ms) of 133.6 Oe, 1.086 memu/g and 4.959 memu/g, respectively. The value of Ms was increased by ~ 95% in comparison with as-prepared.

  10. Synthesis of nanocrystalline barium-hexaferrite from nanocrystalline goethite using the hydrothermal method: Particle size evolution and magnetic properties

    SciTech Connect

    Penn, R.L.; Banfield, J.F.; Voigt, J.

    1997-03-01

    To characterize particle size/magnetic property relationships, 9 to 50 nm in diameter barium hexaferrite, BaFe{sub 12}O{sub 19} (BHF), particles were prepared using a new synthesis route. By replacing the conventional 50 to 100 nm particles of goethite with nanocrystalline goethite produced via the microwave anneal method of Knight and Sylva, nanocrystalline BHF was synthesized using the hydrothermal method. Evolution of particle size and morphology with respect to concentration and heat treatment time is reported. Hysteresis properties, including coercivity (0.2--1.0 kOe), magnetization saturation (0.1--33.4 emu/g), and magnetization remanence (0.004--22.5 emu/g) are discussed as a function of particle size. The magnetization saturation and remanence of the 7 nm particles is nearly zero, suggesting the superparamagnetic threshold size for BHF is around this size. In addition, the equilibrium morphology of BHF crystals was calculated to be truncated hexagonal prisms which was verified by experiment, and the isoelectric point, pH of 4.1, was measured for 18 nm BHF particles.

  11. Zinc toxicology following particulate inhalation.

    PubMed

    Cooper, Ross G

    2008-04-01

    The current mini-review describes the toxic effects of zinc inhalation principally in the workplace and associated complications with breathing and respiration. The International Classification of Functioning, Disability and Health Criteria were used to specifically select articles. Most of the commercial production of zinc involves the galvanizing of iron and the manufacture of brass. The recommended daily allowance for adults is 15 mg zinc/day. Metal fume fever associated with inhalation of fumes of ZnO is characterized by fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste and salivation. ZnCl(2) inhalation results in edema in the alveolar surface and the protein therein the lavage fluid is elevated. Particular pathological changes associated with zinc intoxication include: pale mucous membranes; jaundice; numerous Heinz bodies; and marked anemia. Adequate ambient air monitors for permissible exposure limits, excellent ventilation and extraction systems, and approved respirators are all important in providing adequate protection.

  12. Zinc toxicology following particulate inhalation

    PubMed Central

    Cooper, Ross G.

    2008-01-01

    The current mini-review describes the toxic effects of zinc inhalation principally in the workplace and associated complications with breathing and respiration. The International Classification of Functioning, Disability and Health Criteria were used to specifically select articles. Most of the commercial production of zinc involves the galvanizing of iron and the manufacture of brass. The recommended daily allowance for adults is 15 mg zinc/day. Metal fume fever associated with inhalation of fumes of ZnO is characterized by fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste and salivation. ZnCl2 inhalation results in edema in the alveolar surface and the protein therein the lavage fluid is elevated. Particular pathological changes associated with zinc intoxication include: pale mucous membranes; jaundice; numerous Heinz bodies; and marked anemia. Adequate ambient air monitors for permissible exposure limits, excellent ventilation and extraction systems, and approved respirators are all important in providing adequate protection. PMID:20040991

  13. Factor substitution in nursing homes.

    PubMed

    Cawley, John; Grabowski, David C; Hirth, Richard A

    2006-03-01

    This paper studies factor substitution in one important sector: the nursing home industry. Specifically, we measure the extent to which nursing homes substitute materials for labor when labor becomes relatively more expensive. From a policy perspective, factor substitution in this market is important because materials-intensive methods of care are associated with greater risks of morbidity and mortality among nursing home residents. Studying longitudinal data from 1991 to 2000 on nearly every nursing home in the United States, we use the method of instrumental variables (IV) to address measurement error in nursing home wages. The results from the IV models yield evidence of factor substitution: higher nursing home wages are associated with greater use of psychoactive drugs and lower quality.

  14. DESIGNING ENVIRONMENTALLY BENIGN SOLVENT SUBSTITUTES

    EPA Science Inventory

    Since the signing of 1987 Montreal Protocol, reducing and eliminating the use of harmful solvents has become an internationally imminent environmental protection mission. Solvent substitution is an effective way to achieve this goal. The Program for Assisting the Replacement of...

  15. Nucleophilic Substitution by Benzodithioate Anions.

    ERIC Educational Resources Information Center

    Bonnans-Plaisance, Chantal; Gressier, Jean-Claude

    1988-01-01

    Describes a two-session experiment designed to provide a good illustration of, and to improve student knowledge of, the Grignard reaction and nucleophilic substitution. Discusses the procedure, experimental considerations, and conclusion of this experiment. (CW)

  16. Effects of Ti substitution on structural and magnetic properties of Zn–Mn ferrospinels

    SciTech Connect

    Patil, R.P.; Patil, N.M.; Sasikala, R.; Hankare, P.P.; Delekar, S.D.

    2013-05-15

    Highlights: ► Novel system ZnMn{sub 1−x}Ti{sub x}FeO{sub 4} synthesized by sol–gel route. ► Nanocrystalline materials. ► Magnetic materials. - Abstract: Nanocrystalline ZnMn{sub 1−x}Ti{sub x}FeO{sub 4} (1.0 ≥ x ≥ 0) ferrites were prepared by sol–gel route. Formation of single phase cubic spinel structure for all the compositions was confirmed from their X-ray diffraction patterns. The lattice parameter shows an increasing trend with the increase in Ti content. These ferrite samples existed as crystalline nanoparticles of about 30–40 nm size as observed from transmission electron microscopy (TEM) technique. EDAX analysis indicated that the concentration of different elements in different compositions is in close agreement with the starting concentrations. Infrared spectra showed two main absorption bands in the range 400–800 cm{sup −1} arising due to tetrahedral (A) and octahedral (B) stretching vibrations. The magnetic studies indicated that, the ferrimagnetic behavior increases with titanium substitution.

  17. Batteries: from alkaline to zinc-air.

    PubMed

    Dondelinger, Robert M

    2004-01-01

    There is no perfect disposable battery--one that will sit on the shelf for 20 years, then continually provide unlimited current, at a completely constant voltage until exhausted, without producing heat. There is no perfect rechargeable battery--one with all of the above characteristics and will also withstand an infinite overcharge while providing an equally infinite cycle life. There are only compromises. Every battery selection is a compromise between the ideally required characteristics, the advantages, and the limitations of each battery type. General selection of a battery type to power a medical device is largely outside the purview of the biomed. Initially, these are engineering decisions made at the time of medical equipment design and are intended to be followed in perpetuity. However, since newer cell types evolve and the manufacturer's literature is fixed at the time of printing, some intelligent substitutions may be made as long as the biomed understands the characteristics of both the recommended cell and the replacement cell. For example, when the manufacturer recommends alkaline, it is usually because of the almost constant voltage it produces under the devices' design load. Over time, other battery types may be developed that will meet the intent of the manufacturer, at a lower cost, providing longer operational life, at a lower environmental cost, or with a combination of these advantages. In the Obstetrical Doppler cited at the beginning of this article, the user had put in carbon-zinc cells, and the biomed had unknowingly replaced them with carbonzinc cells. If the alkaline cells recommended by the manufacturer had been used, there would have been the proper output voltage at the battery terminals when the [table: see text] cells were at their half-life. Instead, the device refused to operate since the battery voltage was below presumed design voltage. While battery-type substitutions may be easily and relatively successfully made in disposable

  18. Batteries: from alkaline to zinc-air.

    PubMed

    Dondelinger, Robert M

    2004-01-01

    There is no perfect disposable battery--one that will sit on the shelf for 20 years, then continually provide unlimited current, at a completely constant voltage until exhausted, without producing heat. There is no perfect rechargeable battery--one with all of the above characteristics and will also withstand an infinite overcharge while providing an equally infinite cycle life. There are only compromises. Every battery selection is a compromise between the ideally required characteristics, the advantages, and the limitations of each battery type. General selection of a battery type to power a medical device is largely outside the purview of the biomed. Initially, these are engineering decisions made at the time of medical equipment design and are intended to be followed in perpetuity. However, since newer cell types evolve and the manufacturer's literature is fixed at the time of printing, some intelligent substitutions may be made as long as the biomed understands the characteristics of both the recommended cell and the replacement cell. For example, when the manufacturer recommends alkaline, it is usually because of the almost constant voltage it produces under the devices' design load. Over time, other battery types may be developed that will meet the intent of the manufacturer, at a lower cost, providing longer operational life, at a lower environmental cost, or with a combination of these advantages. In the Obstetrical Doppler cited at the beginning of this article, the user had put in carbon-zinc cells, and the biomed had unknowingly replaced them with carbonzinc cells. If the alkaline cells recommended by the manufacturer had been used, there would have been the proper output voltage at the battery terminals when the [table: see text] cells were at their half-life. Instead, the device refused to operate since the battery voltage was below presumed design voltage. While battery-type substitutions may be easily and relatively successfully made in disposable

  19. Alterations in zinc binding capacity, free zinc levels and total serum zinc in a porcine model of sepsis.

    PubMed

    Hoeger, Janine; Simon, Tim-Philipp; Doemming, Sabine; Thiele, Christoph; Marx, Gernot; Schuerholz, Tobias; Haase, Hajo

    2015-08-01

    Zinc is crucial for immune function. In addition, the redistribution of zinc and other nutrients due to infection is an integral part of the host immune response to limit availability to pathogens. However, the major zinc binding protein albumin is down regulated during the acute phase response, implicating a decrease in zinc binding capacity. A prospective animal study with eight female German landrace pigs was conducted to investigate alterations in zinc binding capacity, total serum zinc and free zinc levels in the initial phase of sepsis. Sepsis was induced by instillation of autologous feces via midline laparotomy. Total serum zinc declined significantly after 1 h (10.89 ± 0.42 µM vs. 7.67 ± 0.41 µM, p < 0.001), total serum copper and iron reached a significant reduction at 4 h. Urinary excretion of zinc declined in line with total serum zinc. In comparison to total serum zinc, free zinc levels declined to a lesser, though significant, extent. Zinc binding capacity of serum decreased over time, whereby free zinc levels after addition of zinc correlated negatively with total serum protein and albumin levels. In addition IL-6 and TNF-α concentrations were measured and increased significantly 2 h after induction of sepsis. Hence, total serum zinc was the first marker of inflammation in our experiment, and might therefore be a promising biomarker for the early diagnosis of sepsis. Furthermore the observation of a substantially different serum free zinc homeostasis during sepsis provides valuable information for a potential therapeutic zinc supplementation, which has to take buffering capacity by serum proteins into account.

  20. Nutritional zinc increases platelet reactivity.

    PubMed

    Marx, G; Krugliak, J; Shaklai, M

    1991-11-01

    After ingestion of 220 mg zinc sulfate, platelet aggregation was evaluated at various time intervals (i.e., T = 0, 1, and 3 hr) and the autologous plasma analyzed by atomic absorption analysis. The zinc levels increased maximally some 0.4 +/- 0.2 microgram/ml within 3 hr after ingestion, which for the entire blood pool corresponds to only 5% of the ingested zinc. Aggregation responses of platelet rich plasma (PRP), instigated with suboptimal levels of thrombin (less than 0.2 U/ml), ADP (less than 2 microM), epinephrine (less than 2 microM), collagen (less than 2 micrograms/ml), or PAF (less than 50 ng/ml), show significant improvement to at least one aggregant. Mean +/- SEM values for delta % aggregation increase are as follows: thrombin, 51 +/- 10%; epinephrine, 21 +/- 6%; ADP, 31 +/- 6%; collagen 23 +/- 6%; and platelet aggregating factor (PAF), 56 +/- 6%. For controls, the platelets from one individual with Glanzmann thrombasthenia as well as four undosed volunteers exhibited no significant changes in platelet responsiveness. Increased platelet responsiveness to agonists after zinc sulfate ingestion was observed in PRP from blood collected in either citrate or heparin. We demonstrate that within a relatively short time period, single bolus of nutritional zinc intake can significantly increase platelet reactivity. These findings show that nutritional zinc availability is relevant to hemostasis and may pertain to the viability of platelet concentrates in blood banks.

  1. Blood substitutes based on nanobiotechnology.

    PubMed

    Chang, Thomas Ming Swi

    2006-08-01

    Stimulated by concerns of potential infective agents in donated blood, commercial enterprises have attempted to develop blood substitutes since the 1900s. After several years of development, a few of the many leads are showing promise. In this article, nanobiotechnological approaches that are now in phase III clinical trials are reviewed, followed by a discussion of how important basic knowledge gained is being used to develop new generations of blood substitutes based on nanobiotechnology.

  2. Electrophilic Substitution Reactions of Indoles

    NASA Astrophysics Data System (ADS)

    Sundberg, Richard J.

    The topic of this chapter is electrophilic substitution of indole and its derivatives. The indole ring is highly reactive at its 3-position toward protonation, halogenation, alkylation and acylation. Electrophilic substitution can be combined with inter- or intramolecular addition at C-2. Intramolecular alkylation by iminium ions (Pictet-Spengler reaction) is particularly useful. Enantioselectivity can be achieved in many conjugate addition reactions. These reactions have been applied to synthesis of both natural products and drugs.

  3. In situ observation of deformation processes in nanocrystalline face-centered cubic metals

    PubMed Central

    Kobler, Aaron; Brandl, Christian; Hahn, Horst

    2016-01-01

    Summary The atomistic mechanisms active during plastic deformation of nanocrystalline metals are still a subject of controversy. The recently developed approach of combining automated crystal orientation mapping (ACOM) and in situ straining inside a transmission electron microscope was applied to study the deformation of nanocrystalline PdxAu1− x thin films. This combination enables direct imaging of simultaneously occurring plastic deformation processes in one experiment, such as grain boundary motion, twin activity and grain rotation. Large-angle grain rotations with ≈39° and ≈60° occur and can be related to twin formation, twin migration and twin–twin interaction as a result of partial dislocation activity. Furthermore, plastic deformation in nanocrystalline thin films was found to be partially reversible upon rupture of the film. In conclusion, conventional deformation mechanisms are still active in nanocrystalline metals but with different weighting as compared with conventional materials with coarser grains. PMID:27335747

  4. In situ observation of deformation processes in nanocrystalline face-centered cubic metals.

    PubMed

    Kobler, Aaron; Brandl, Christian; Hahn, Horst; Kübel, Christian

    2016-01-01

    The atomistic mechanisms active during plastic deformation of nanocrystalline metals are still a subject of controversy. The recently developed approach of combining automated crystal orientation mapping (ACOM) and in situ straining inside a transmission electron microscope was applied to study the deformation of nanocrystalline Pd x Au1- x thin films. This combination enables direct imaging of simultaneously occurring plastic deformation processes in one experiment, such as grain boundary motion, twin activity and grain rotation. Large-angle grain rotations with ≈39° and ≈60° occur and can be related to twin formation, twin migration and twin-twin interaction as a result of partial dislocation activity. Furthermore, plastic deformation in nanocrystalline thin films was found to be partially reversible upon rupture of the film. In conclusion, conventional deformation mechanisms are still active in nanocrystalline metals but with different weighting as compared with conventional materials with coarser grains. PMID:27335747

  5. SiH{sub x} film growth precursors during high-rate nanocrystalline silicon deposition

    SciTech Connect

    Kessels, W. M. M.; Nadir, K.; Sanden, M. C. M. van de

    2006-04-01

    The densities of the silane radicals Si, SiH, and SiH{sub 3} have been measured in a remote SiH{sub 4} plasma for various H{sub 2} dilution ratios yielding amorphous and nanocrystalline silicon film growth. The measurements carried out under high deposition rate conditions of nanocrystalline silicon reveal typical densities of {approx}10{sup 12} cm{sup -3} for SiH{sub 3} and {approx}10{sup 11} cm{sup -3} for both Si and SiH. It is concluded that SiH{sub 3} is the dominant silane radical in the plasma for both amorphous and nanocrystalline silicon depositions although the importance of Si and SiH to film growth increases drastically when going from amorphous to nanocrystalline material.

  6. Nonallograft osteoconductive bone graft substitutes.

    PubMed

    Bucholz, Robert W

    2002-02-01

    An estimated 500,000 to 600,000 bone grafting procedures are done annually in the United States. Approximately (1/2) of these surgeries involve spinal arthrodesis whereas 35% to 40% are used for general orthopaedic applications. Synthetic bone graft substitutes currently represent only 10% of the bone graft market, but their share is increasing as experience and confidence in their use are accrued. Despite 15 to 20 years of clinical experience with various synthetic substitutes, there have been few welldesigned, controlled clinical trials of these implants. Synthetic bone graft substitutes consist of hydroxyapatite, tricalcium phosphate, calcium sulfate, or a combination of these minerals. Their fabrication technique, crystallinity, pore dimensions, mechanical properties, and resorption rate vary. All synthetic porous substitutes share numerous advantages over autografts and allografts including their unlimited supply, easy sterilization, and storage. However, the degree to which the substitute provides an osteoconductive structural framework or matrix for new bone ingrowth differs among implants. Disadvantages of ceramic implants include brittle handling properties, variable rates of resorption, poor performance in diaphyseal defects, and potentially adverse effects on normal bone remodeling. These inherent weaknesses have refocused their primary use to bone graft extenders and carriers for pharmaceuticals. The composition, histologic features, indications, and clinical experience of several of the synthetic bone graft substitutes approved for orthopaedic use in the United States are reviewed. PMID:11937865

  7. Characterization and Application of Colloidal Nanocrystalline Materials for Advanced Photovoltaics

    NASA Astrophysics Data System (ADS)

    Bhandari, Khagendra P.

    Solar energy is Earth's primary source of renewable energy and photovoltaic solar cells enable the direct conversion of sunlight into electricity. Crystalline silicon solar cells and modules have dominated photovoltaic technology from the beginning and they now constitute more than 90% of the PV market. Thin film (CdTe and CIGS) solar cells and modules come in second position in market share. Some organic, dye-sensitized and perovskite solar cells are emerging in the market but are not yet in full commercial scale. Solar cells made from colloidal nanocrystalline materials may eventually provide both low cost and high efficiency because of their promising properties such as high absorption coefficient, size tunable band gap, and quantum confinement effect. It is also expected that the greenhouse gas emission and energy payback time from nanocrystalline solar PV systems will also be least compared to all other types of PV systems mainly due to the least embodied energy throughout their life time. The two well-known junction architectures for the fabrication of quantum dot based photovoltaic devices are the Schottky junction and heterojunction. In Schottky junction cells, a heteropartner semiconducting material is not required. A low work function metal is used as the back contact, a transparent conducting layer is used as the front contact, and the layer of electronically-coupled quantum dots is placed between these two materials. Schottky junction solar cells explain the usefulness of nanocrystalline materials for high efficiency heterojunction solar cells. For heterojunction devices, n-type semiconducting materials such as ZnO , CdS or TiO2 have been used as suitable heteropartners. Here, PbS quantum dot solar cells were fabricated using ZnO and CdS semiconductor films as window layers. Both of the heteropartners are sputter-deposited onto TCO coated glass substrates; ZnO was deposited with the substrate held at room temperature and for CdS the substrate was at 250

  8. Zinc and copper: proposed fortification levels and recommended zinc compounds.

    PubMed

    Rosado, Jorge L

    2003-09-01

    Micronutrient fortification of foods is now a highly relevant tool worldwide for overcoming micronutrient deficiency. Recent data show that subclinical zinc deficiency is widespread; in Mexico a national survey showed that 25% of children less than age 11 y had plasma zinc concentrations below 10.0 micromol/L (65 microg/dL). Copper deficiency in populations is unknown but copper supplementation is recommended to accompany zinc supplementation. Of the foods available for fortification, staple cereals are very good candidates for reducing micronutrient deficiencies. Because of its higher stability and lower cost, we recommend fortification of cereal flours with zinc oxide, which is absorbed as well as the less stable and more expensive forms of zinc. Depending on the amount of the food that is expected to be eaten, zinc fortification of staple foods could be 20-50 mg/kg of flour. For copper fortification the safer compound is copper gluconate. Copper sulfate is significantly less expensive, but an evaluation of potential physicochemical reactions that affect the final food product is recommended. The suggested amount of copper added to staple foods is 1.2-3.0 mg/kg of flour. For food supplements designed as part of supplementation programs to reduce micronutrient deficiency in children less than age 3 y, a dose of the final product (usually approximately 40-50 g) should contain approximately 4-5 mg of zinc and approximately 0.2-0.4 mg of copper depending on the habitual diet, magnitude of deficiencies and period of supplementation. PMID:12949397

  9. Effect of folic acid on zinc absorption

    SciTech Connect

    Wada, L.; Keating, S.; King, J.C.; Stokstad, E.L.R.

    1986-03-05

    The effect of folic acid on zinc uptake was studied in the human and in the rat. The serum zinc response to a 25 mg oral dose or zinc was measured with and without a 10 mg dose of folic acid. Serum zinc levels were measured prior to the oral dose of zinc and at hourly intervals up to 4 hours after the dose. When zinc was given along, the increases in serum zinc from baseline at hours 1, 2, 3 and 4 were 92, 118, 92 and 66 ..mu..g/dl, respectively. When both zinc and folic acid were given, the increases in serum zinc at hours 1, 2, 3 and 4 were 100, 140, 110 and 75 ..mu..g/dl, respectively. When the increases in serum zinc were plotted against time, there was no significant difference between the areas under the two curves. The everted jejunal sac from the rat was used to study the effect of folate on zinc transport using 100 ..mu..M zinc in the mucosal buffer. The addition of folic acid at levels up to 10/sup -3/M had no significant effect on zinc transport to the serosal side solution or on uptake by the intestinal mucosa. This in vivo study with humans and in vitro study with rat intestine does not support a direct adverse effect of folic acid on zinc absorption.

  10. Transition in the deformation mode of nanocrystalline tantalum processed by high-pressure torsion

    SciTech Connect

    Ligda, J.P.; Schuster, B.E.; Wei, Q.

    2012-10-11

    We present quasi-static room temperature compression and nanoindentation data for nanocrystalline and ultrafine grained tantalum processed by high-pressure torsion. Because bulk samples possess an inherent gradient in properties, microstructures were characterized using site-specific transmission electron microscopy and synchrotron X-ray diffraction. Nanocrystalline Ta shows appreciable homogeneous plastic deformation in compression; however, specimens with the smallest grain sizes exhibit localized plastic deformation via shear bands. Microstructural changes associated with this transition in deformation mode are discussed.

  11. RAPID COMMUNICATION: Strengthening mechanism for high-strain-rate superplasticity in nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Gutkin, M. Yu; Ovid'ko, I. A.; Skiba, N. V.

    2003-06-01

    A theoretical model is suggested that describes the strengthening of nanocrystalline materials under superplastic deformation due to the effects of triple junctions of grain boundaries (GBs) as obstacles for GB sliding. In the framework of the model, dependences of the yield stress for the GB sliding on parameters of defects and triple junctions are revealed. The results of the model account for experimental data from nanocrystalline materials exhibiting superplasticity, reported in the literature.

  12. Effect of Pb on the Mechanical Properties of Nanocrystalline A1

    SciTech Connect

    Rajulapati, Koteswararao V; Scattergood, Ronald; Murty, K.; Duscher, Gerd J M; Koch, Carl C

    2006-01-01

    Nanocrystalline (nc) Al-Pb two phase mixtures of different Pb concentrations were made by two different routes using high energy ball milling. The microhardness measurements show a softening in nc Al-Pb composites with the increase in Pb content, contradicting the previous results reported in the literature. We conclude that interaction of Pb atoms with nanocrystalline Al grain boundaries is responsible for the softening of the nc Al matrix observed in the current study.

  13. Microstructure and aging behavior of conventional and nanocrystalline aluminum-copper-magnesium alloys with scandium additions

    NASA Astrophysics Data System (ADS)

    Zuniga, Alejandro

    The influence of small amounts of scandium (0.15 and 0.3 wt.%) on the microstructure, aging behavior and mechanical properties of 2618 (Al-Cu-Mg-Fe-Ni) and C416 (Al-Cu-Mg-Ag-Mn) alloys was studied. It was observed the overall precipitation sequence and the general morphology of the aging curve were not affected by the addition of small amounts of Sc. It was also observed that a separate population of small Al3Sc particles improved the aging response and mechanical properties of low-Cu, low-Sc Al-Cu-Mg alloys, while the formation of Al5-8Cu7-4Sc particles resulted in a decrease of the mechanical properties in high-Cu Sc-containing alloys. The Sc-modified with the best aging response (2618 + 0.15 % Sc) was cryomilled in order to produce Al-Cu-Mg-Fe-Ni-Sc nanocrystalline powders. Bulk nanocrystalline samples were consolidated from the cryomilled powder using three different techniques: hot isostatic pressing and extrusion, spark plasma sintering, cold spraying. The influence of consolidation technique on the microstructure, aging behavior and mechanical properties was analyzed. The extruded and spark plasma sintered Al-Cu-Mg-Fe-Ni-Sc nanocrystalline samples presented a bimodal grain structure consisting of coarse-grained regions located at the inter-particle region, and nanocrystalline regions at the particle interiors. The aging behavior of the nanocrystalline Al-Cu-Mg-Fe-Ni-Sc alloy was characterized by softening instead of hardening. This behavior was rationalized on the basis of changes in the precipitation processes that occur in the nanocrystalline state. On the other hand, the cold spray process promoted the formation of truly nanocrystalline coatings. The mechanisms influencing the coating formation of conventional and nanocrystalline Al-Cu-Mg-Fe-Ni-Sc samples were analyzed.

  14. Zinc Absorption by Young Adults from Supplemental Zinc Citrate Is Comparable with That from Zinc Gluconate and Higher than from Zinc Oxide123

    PubMed Central

    Wegmüller, Rita; Tay, Fabian; Zeder, Christophe; Brnić, Marica; Hurrell, Richard F.

    2014-01-01

    The water-soluble zinc salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent zinc deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high zinc content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with 67Zn and 70Zn to measure zinc absorption from zinc citrate given as supplements containing 10 mg of zinc to 15 healthy adults without food and compared absorption with that from zinc gluconate and zinc oxide (insoluble in water) using a randomized, double-masked, 3-way crossover design. Median (IQR) fractional absorption of zinc from zinc citrate was 61.3% (56.6–71.0) and was not different from that from zinc gluconate with 60.9% (50.6–71.7). Absorption from zinc oxide at 49.9% (40.9–57.7) was significantly lower than from both other supplements (P < 0.01). Three participants had little or no absorption from zinc oxide. We conclude that zinc citrate, given as a supplement without food, is as well absorbed by healthy adults as zinc gluconate and may thus be a useful alternative for preventing zinc deficiency and treating diarrhea. The more insoluble zinc oxide is less well absorbed when given as a supplement without food and may be minimally absorbed by some individuals. This trial was registered at clinicaltrials.gov as NCT01576627. PMID:24259556

  15. Zinc absorption by young adults from supplemental zinc citrate is comparable with that from zinc gluconate and higher than from zinc oxide.

    PubMed

    Wegmüller, Rita; Tay, Fabian; Zeder, Christophe; Brnic, Marica; Hurrell, Richard F

    2014-02-01

    The water-soluble zinc salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent zinc deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high zinc content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with (67)Zn and (70)Zn to measure zinc absorption from zinc citrate given as supplements containing 10 mg of zinc to 15 healthy adults without food and compared absorption with that from zinc gluconate and zinc oxide (insoluble in water) using a randomized, double-masked, 3-way crossover design. Median (IQR) fractional absorption of zinc from zinc citrate was 61.3% (56.6-71.0) and was not different from that from zinc gluconate with 60.9% (50.6-71.7). Absorption from zinc oxide at 49.9% (40.9-57.7) was significantly lower than from both other supplements (P < 0.01). Three participants had little or no absorption from zinc oxide. We conclude that zinc citrate, given as a supplement without food, is as well absorbed by healthy adults as zinc gluconate and may thus be a useful alternative for preventing zinc deficiency and treating diarrhea. The more insoluble zinc oxide is less well absorbed when given as a supplement without food and may be minimally absorbed by some individuals. This trial was registered at clinicaltrials.gov as NCT01576627.

  16. Zinc absorption by young adults from supplemental zinc citrate is comparable with that from zinc gluconate and higher than from zinc oxide.

    PubMed

    Wegmüller, Rita; Tay, Fabian; Zeder, Christophe; Brnic, Marica; Hurrell, Richard F

    2014-02-01

    The water-soluble zinc salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent zinc deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high zinc content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with (67)Zn and (70)Zn to measure zinc absorption from zinc citrate given as supplements containing 10 mg of zinc to 15 healthy adults without food and compared absorption with that from zinc gluconate and zinc oxide (insoluble in water) using a randomized, double-masked, 3-way crossover design. Median (IQR) fractional absorption of zinc from zinc citrate was 61.3% (56.6-71.0) and was not different from that from zinc gluconate with 60.9% (50.6-71.7). Absorption from zinc oxide at 49.9% (40.9-57.7) was significantly lower than from both other supplements (P < 0.01). Three participants had little or no absorption from zinc oxide. We conclude that zinc citrate, given as a supplement without food, is as well absorbed by healthy adults as zinc gluconate and may thus be a useful alternative for preventing zinc deficiency and treating diarrhea. The more insoluble zinc oxide is less well absorbed when given as a supplement without food and may be minimally absorbed by some individuals. This trial was registered at clinicaltrials.gov as NCT01576627. PMID:24259556

  17. Silver film on nanocrystalline TiO{sub 2} support: Photocatalytic and antimicrobial ability

    SciTech Connect

    Vukoje, Ivana D.; Tomašević-Ilić, Tijana D.; Zarubica, Aleksandra R.; Dimitrijević, Suzana; Budimir, Milica D.; Vranješ, Mila R.; Šaponjić, Zoran V.; Nedeljković, Jovan M.

    2014-12-15

    Highlights: • Simple photocatalytic rout for deposition of Ag on nanocrystalline TiO{sub 2} films. • High antibactericidal efficiency of deposited Ag on TiO{sub 2} support. • Improved photocatalytic performance of TiO{sub 2} films in the presence of deposited Ag. - Abstract: Nanocrystalline TiO{sub 2} films were prepared on glass slides by the dip coating technique using colloidal solutions consisting of 4.5 nm particles as a precursor. Photoirradiation of nanocrystalline TiO{sub 2} film modified with alanine that covalently binds to the surface of TiO{sub 2} and at the same time chelate silver ions induced formation of metallic silver film. Optical and morphological properties of thin silver films on nanocrystalline TiO{sub 2} support were studied by absorption spectroscopy and atomic force microscopy. Improvement of photocatalytic performance of nanocrystalline TiO{sub 2} films after deposition of silver was observed in degradation reaction of crystal violet. Antimicrobial ability of deposited silver films on nanocrystalline TiO{sub 2} support was tested in dark as a function of time against Escherichia coli, Staphylococcus aureus, and Candida albicans. The silver films ensured maximum cells reduction of both bacteria, while the fungi reduction reached satisfactory 98.45% after 24 h of contact.

  18. Zinc and Diabetic Retinopathy

    PubMed Central

    Miao, Xiao; Sun, Weixia; Miao, Lining; Fu, Yaowen; Wang, Yonggang; Su, Guanfang; Liu, Quan

    2013-01-01

    Zinc (Zn) is an important nutrient that is involved in various physiological metabolisms. Zn dyshomeostasis is often associated with various pathogeneses of chronic diseases, such as metabolic syndrome, diabetes, and related complications. Zn is present in ocular tissue in high concentrations, particularly in the retina and choroid. Zn deficiencies have been shown to affect ocular development, cataracts, age-related macular degeneration, and even diabetic retinopathy. However, the mechanism by which Zn deficiency increases the prevalence of diabetic retinopathy remains unclear. In addition, due to the negative effect of Zn deficiency on the eye, Zn supplementation should prevent diabetic retinopathy; however, limited available data do not always support this notion. Therefore, the goal of this paper was to summarize these pieces of available information regarding Zn prevention of diabetic retinopathy. Current theories and possible mechanisms underlying the role of Zn in the eye-related diseases are discussed. The possible factors that affect the preventive effect of Zn supplementation on diabetic retinopathy were also discussed. PMID:23671870

  19. Zinc content of selected tissues and taste perception in rats fed zinc deficient and zinc adequate rations

    SciTech Connect

    Boeckner, L.S.; Kies, C.

    1986-03-05

    The objective of the study was to determine the effects of feeding zinc sufficient and zinc deficient rations on taste sensitivity and zinc contents of selected organs in rats. The 36 Sprague-Dawley male weanling rats were divided into 2 groups and fed zinc deficient or zinc adequate rations. The animals were subjected to 4 trial periods in which a choice of deionized distilled water or a solution of quinine sulfate at 1.28 x 10/sup -6/ was given. A randomized schedule for rat sacrifice was used. No differences were found between zinc deficient and zinc adequate rats in taste preference aversion scores for quinine sulfate in the first three trial periods; however, in the last trial period rats in the zinc sufficient group drank somewhat less water containing quinine sulfate as a percentage of total water consumption than did rats fed the zinc deficient ration. Significantly higher zinc contents of kidney, brain and parotid salivary glands were seen in zinc adequate rats compared to zinc deficient rats at the end of the study. However, liver and tongue zinc levels were lower for both groups at the close of the study than were those of rats sacrificed at the beginning of the study.

  20. Short-term in vivo evaluation of zinc-containing calcium phosphate using a normalized procedure.

    PubMed

    Calasans-Maia, Monica; Calasans-Maia, José; Santos, Silvia; Mavropoulos, Elena; Farina, Marcos; Lima, Inayá; Lopes, Ricardo Tadeu; Rossi, Alexandre; Granjeiro, José Mauro

    2014-08-01

    The effect of zinc-substituted calcium phosphate (CaP) on bone osteogenesis was evaluated using an in vivo normalized ISO 10993-6 protocol. Zinc-containing hydroxyapatite (ZnHA) powder with 0.3% by wt zinc (experimental group) and stoichiometric hydroxyapatite (control group) were shaped into cylindrical implants (2×6 mm) and were sintered at 1000 °C. Thermal treatment transformed the ZnHA cylinder into a biphasic implant that was composed of Zn-substituted HA and Zn-substituted β-tricalcium phosphate (ZnHA/βZnTCP); the hydroxyapatite cylinder was a highly crystalline and poorly soluble HA implant. In vivo tests were performed in New Zealand White rabbits by implanting two cylinders of ZnHA/βZnTCP in the left tibia and two cylinders of HA in the right tibia for 7, 14 and 28 days. Incorporation of 0.3% by wt zinc into CaP increased the rate of Zn release to the biological medium. Microfluorescence analyses (μXRF-SR) using synchrotron radiation suggested that some of the Zn released from the biomaterial was incorporated into new bone near the implanted region. In contrast with previous studies, histomorphometric analysis did not show significant differences between the newly formed bone around ZnHA/βZnTCP and HA due to the dissolution profile of Zn-doped CaP. Despite the great potential of Zn-containing CaP matrices for future use in bone regeneration, additional in vivo studies must be conducted to explain the mobility of zinc at the CaP surface and its interactions with a biological medium. PMID:24907765

  1. Chemical vapor deposition and characterization of zinc oxide thin films and nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Xiang

    2003-07-01

    Zinc oxide (ZnO) is a wide band gap semiconductor material. It is a promising candidate for short wavelength optoelectronic devices. Single crystalline and nanocrystalline ZnO thin films have been grown by organo-metallic chemical vapor depositions in a pulsed organo-metallic beam epitaxy (POMBE) system. The structural and morphological properties of ZnO films strongly depend on growth conditions. For epitaxially grown ZnO films on sapphire under optimal conditions, excellent crystallinity have been confirmed by X-ray diffraction (XRD) and high resolution transmission electron microscopy (TEM) studies. Nanocrystalline films with columnar-shaped grains are grown with different grain sizes. With decreasing growth temperature, the morphology of POMBE grown ZnO goes through an transition from continuous thin film to nanorods. Well-aligned ZnO nanorods have been grown using two-step chemical vapor deposition methods. The growth mechanism is based on studies of ZnO nucleation. By controlling substrate temperature and oxygen concentration during the nucleation and growth steps, ZnO nanorods growth is achieved without any catalysts. High-resolution TEM studies show that ZnO nanorods are single crystals. Alignment of these nanorods depends on lattice match between ZnO and substrate. ZnO nanorods with different areal densities can be obtained by varying nucleation time. The photoluminescence (PL) spectra of nonorods have shown band edge emission at 380 nm with full width at half maximum (FWHM) of 106 meV which is comparable to films grown by molecular beam epitaxy (MBE). Green emissions are found to originate from oxygen vacancies and zinc interstitials; while orange-red emissions are attributed to oxygen interstitials. Optical properties of ZnO thin films and nanostructures are studied. Clear excitonic features observed in different optical measurements have proven good optical qualities of single crystal ZnO films. By alloying with magnesium, band gap of ZnO can be widened

  2. Toughness enhancement in zirconium-tungsten-nitride nanocrystalline hard coatings

    NASA Astrophysics Data System (ADS)

    Dubey, P.; Srivastava, S.; Chandra, R.; Ramana, C. V.

    2016-07-01

    An approach is presented to increase the toughness (KIC) while retaining high hardness (H) of Zr-W-N nanocrystalline coatings using energetic ions bombardment. Tuning KIC and H values was made possible by a careful control over the substrate bias, i.e., the kinetic energy (Uk˜9-99 J/cm3) of the bombarding ions, while keeping the deposition temperature relatively low (200 oC). Structural and mechanical characterization revealed a maximum wear resistance (H/Er˜0.23) and fracture toughness (KIC˜2.25 MPa √{ m } ) of ZrWN coatings at Uk˜72 J/cm3. A direct Uk-microstructure-KIC-H relationship suggests that tailoring mechanical properties for a given application is possible by tuning Uk and, hence, ZrWN-coatings' microstructure.

  3. Method for producing nanocrystalline multicomponent and multiphase materials

    DOEpatents

    Eastman, Jeffrey A.; Rittner, Mindy N.; Youngdahl, Carl J.; Weertman, Julia R.

    1998-01-01

    A process for producing multi-component and multiphase nanophase materials is provided wherein a plurality of elements are vaporized in a controlled atmosphere, so as to facilitate thorough mixing, and then condensing and consolidating the elements. The invention also provides for a multicomponent and multiphase nanocrystalline material of specified elemental and phase composition having component grain sizes of between approximately 1 nm and 100 nm. This material is a single element in combination with a binary compound. In more specific embodiments, the single element in this material can be a transition metal element, a non-transition metal element, a semiconductor, or a semi-metal, and the binary compound in this material can be an intermetallic, an oxide, a nitride, a hydride, a chloride, or other compound.

  4. Science at the interface : grain boundaries in nanocrystalline metals.

    SciTech Connect

    Rodriguez, Mark Andrew; Follstaedt, David Martin; Knapp, James Arthur; Brewer, Luke N.; Holm, Elizabeth Ann; Foiles, Stephen Martin; Hattar, Khalid M.; Clark, Blythe B.; Olmsted, David L.; Medlin, Douglas L.

    2009-09-01

    Interfaces are a critical determinant of the full range of materials properties, especially at the nanoscale. Computational and experimental methods developed a comprehensive understanding of nanograin evolution based on a fundamental understanding of internal interfaces in nanocrystalline nickel. It has recently been shown that nanocrystals with a bi-modal grain-size distribution possess a unique combination of high-strength, ductility and wear-resistance. We performed a combined experimental and theoretical investigation of the structure and motion of internal interfaces in nanograined metal and the resulting grain evolution. The properties of grain boundaries are computed for an unprecedented range of boundaries. The presence of roughening transitions in grain boundaries is explored and related to dramatic changes in boundary mobility. Experimental observations show that abnormal grain growth in nanograined materials is unlike conventional scale material in both the level of defects and the formation of unfavored phases. Molecular dynamics simulations address the origins of some of these phenomena.

  5. Fabrication and Characterization of Amorphous/Nanocrystalline Thin Film Composite

    NASA Astrophysics Data System (ADS)

    Newton, Benjamin S.

    Combining the absorption abilities of amorphous silicon and the electron transport capabilities of crystalline silicon would be a great advantage to not only solar cells but other semiconductor devices. In this work composite films were created using molecular beam epitaxy and electron beam deposition interchangeably as a method to create metallic precursors. Aluminum induced crystallization techniques were used to convert an amorphous silicon film with a capping layer of aluminum nanodots into a film composed of a mixture of amorphous silicon and nanocrystalline silicon. This layer was grown into the amorphous layer by cannibalizing a portion of the amorphous silicon material during the aluminum induced crystallization. Characterization was performed on films and metallic precursors utilizing SEM, TEM, ellipsometry and spectrophotometer.

  6. Gas sensing properties of nanocrystalline diamond at room temperature

    PubMed Central

    Kulha, Pavel; Laposa, Alexandr; Hruska, Karel; Demo, Pavel; Kromka, Alexander

    2014-01-01

    Summary This study describes an integrated NH3 sensor based on a hydrogenated nanocrystalline diamond (NCD)-sensitive layer coated on an interdigitated electrode structure. The gas sensing properties of the sensor structure were examined using a reducing gas (NH3) at room temperature and were found to be dependent on the electrode arrangement. A pronounced response of the sensor, which was comprised of dense electrode arrays (of 50 µm separation distance), was observed. The sensor functionality was explained by the surface transfer doping effect. Moreover, the three-dimensional model of the current density distribution of the hydrogenated NCD describes the transient flow of electrons between interdigitated electrodes and the hydrogenated NCD surface, that is, the formation of a closed current loop. PMID:25551062

  7. Nanocrystalline thoria powders via glycine-nitrate combustion

    NASA Astrophysics Data System (ADS)

    Purohit, R. D.; Saha, S.; Tyagi, A. K.

    2001-01-01

    Nanocrystalline thoria powders were prepared by the combustion technique using glycine as a fuel and nitrate as an oxidizer. The technique involves the exothermic decomposition of viscous liquid prepared by thermal dehydration of the aqueous solution containing thorium nitrate and glycine. Thoria powders of different crystallite sizes, surface areas and sinterabilities were prepared by starting with two different fuel-to-oxidant molar ratios. The exothermic decomposition of viscous liquid, at about 200°C, containing thorium nitrate-to-glycine in molar ratio 1:1.2 yielded the well-crystalline nano-sized ThO 2 powder. Thoria powders prepared by this technique were shown to have a higher surface area ( >50 m2/ g) and could be sintered to highly dense pellets (⩾93% th.d.) at relatively low sintering temperature of 1300°C for 3 h.

  8. LiBr passivation effect of porous nanocrystalline hydrogenated silicon

    NASA Astrophysics Data System (ADS)

    Amor, Sana Ben; Haddadi, Ikbel; Seif, El Whibi; Daik, Ridha; Bousbih, Rabaa; Dimassi, Wissem; Ezzaouia, Hatem

    2015-12-01

    Nanocrystalline hydrogenated silicon (nc-Si:H) films were deposited on a p-type silicon substrate by plasma enhanced chemical vapor deposition (PECVD), using SiH4 and H2 as reactive gases. Porous (nc-Si:H) layers were afterward obtained and immersed in a lithium bromide (LiBr) aqueous solution in order to enhance their optical and electrical properties for a potential solar cells application. A decrease in the reflectivity to about 9% for Li/porous nc-Si:H layer deposited at 75 sccm against an increase in the minority carrier lifetime were obtained. We correlate these results to the change in crystalline characteristics and chemical composition of the layers in order to understand the effect of LiBr coating on nc-Si:H Through optical and electrical characterization we have demonstrated the possibility of using such LiBr treatment to improve the properties of porous nc-Si:H.

  9. Synthesis and Characterization of a Nanocrystalline Thoria Aerogel

    SciTech Connect

    Reibold, R A; Satcher, Jr, J H; Baumann, T F; Simpson, R L; Poco, J F

    2004-02-04

    We report the synthesis and characterization for the first example of a low-density nanocrystalline thoria aerogel. The monolithic aerogels were prepared through the solgel polymerization of hydrated thorium nitrate in ethanol using ammonium hydroxide and propylene oxide as gelation initiators. The dried ThO{sub 2} aerogel was characterized by high-resolution transmission electron microscopy (HRTEM) and nitrogen adsorption/desorption analyses. The aerogel network was determined to be composed of spherical primary particles with features in the 5-20 nm range. These particles were also determined to be highly crystalline as evidenced by the higher magnification TEM examination. The thoria aerogel possesses high surface area (120 m{sup 2}/g) and pore diameters in the micro- and mesoporous range.

  10. Properties and processing of nanocrystalline materials. Quarterly report

    SciTech Connect

    Valiev, R.Z.

    1996-01-22

    The present Report completes the investigations in the frame of the project for the first year. It is important to estimate our achievements in the investigation of properties of nanocrystalline materials obtained by severe plastic deformation and their production. We think that the main results obtained can be summarized as follows: (1) We performed an improvement of the die-set for equal channel (ECA) pressing and torsion under high pressure with the aim to increase dimensions of the samples produced and to conduct processing of low ductile materials. (2) It was established that in pure metals severe plastic deformation led to the formation of an ultra fine-grained structure with a mean grain size of 100-200 nm, while in alloys due to severe plastic deformation and/or special methods of treatment (a decrease in the temperature of deformation, an increase of the pressure applied etc.) the grain size could be decreased down to a few tens of manometers.

  11. Five-fold twin formation during annealing of nanocrystalline Cu

    SciTech Connect

    Bringa, E M; Farkas, D; Caro, A; Wang, Y M; McNaney, J; Smith, R

    2009-05-20

    Contrary to the common belief that many-fold twins, or star twins, in nanophase materials are due to the action of significant external stresses, we report molecular dynamics simulations of annealing in 5 nm grain size samples annealed at 800 K for nearly 0.5 nsec at 0 external pressure showing the formation of five-fold star twins during annealing under the action of the large internal stresses responsible for grain growth and microstructural evolution. The structure of the many-fold twins is remarkably similar to those we have found to occur under uniaxial shock loading, of samples of nanocrystalline NiW with a grain size of {approx}5-30 nm. The mechanism of formation of the many-fold twins is discussed in the light of the simulations and experiments.

  12. Electronic structure studies of nanocrystalline diamond grain boundaries

    SciTech Connect

    Zapol, P.; Sternberg, M.; Frauenheim, T.; Gruen, D. M.; Curtiss, L. A.

    1999-11-29

    Diamond growth from hydrogen-poor plasmas results in diamond structures that are profoundly different from conventionally CVD-grown diamond. High concentration of carbon dimers in the microwave plasma results in a high rate of heterogeneous renucleation leading to formation of nanocrystalline diamond with a typical grain size of 3--10 nm. Therefore, up to 10% of carbon atoms are located in the grain boundaries. In this paper the authors report on density-functional based tight-binding molecular dynamics calculations of the structure of a {Sigma}13 twist (100) grain boundary in diamond. Beginning with a coincidence site lattice model, simulated annealing of the initial structure was performed at 1,500 K followed by relaxation toward lower temperatures. About one-half of the carbons in the grain boundary are found to be three-coordinated. Coordination numbers, bond length and bond angle distributions are analyzed and compared to those obtained in previous studies.

  13. Structural modification of nanocrystalline ceria by ion beams

    SciTech Connect

    Zhang, Yanwen; Edmondson, Philip D.; Varga, Tamas; Moll, Sandra; Namavar, Fereydoon; Lan, Chune; Weber, William J.

    2011-01-01

    Exceptional size-dependent electronic–ionic conductivity of nanostructured ceria can significantly alter materials properties in chemical, physical, electronic and optical applications. Using energetic ions, we have demonstrated effective modification of interface volume and grain size in nanocrystalline ceria from a few nm up to ~25 nm, which is the critical region for controlling size-dependent material property. The grain size increases and follows an exponential law as a function of ion fluence that increases with temperature, while the cubic phase is stable under the irradiation. The unique self-healing response of radiation damage at grain boundaries is utilized to control the grain size at the nanoscale. Structural modification by energetic ions is proposed to achieve desirable electronic–ionic conductivity.

  14. Sintering characteristics of nanocrystalline TiO sub 2

    SciTech Connect

    Hahn, H.; Logas, J.; Averback, R.S. Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 )

    1990-03-01

    The microstructural development of compacted nanocrystalline TiO{sub 2} powder was studied as a function of sintering temperature up to 1000 {degree}C. Grain growth was monitored using x-ray diffraction and scanning electron microscopy. The specific surface area and total porosity were determined quantitatively using the nitrogen adsorption BET. The density was measured by gravimetry using Archimedes principle. The green body density of compacted {ital n}-TiO{sub 2} with average grain size of 14 nm is as high as 75% of theoretical bulk density. Low temperature surface diffusion leads to the disappearance of small pores, while noticeable densification commences at 600 {degree}C and reaches near theoretical values at 900 {degree}C. Grain growth also begins at 600 {degree}C, accelerating rapidly by 1000 {degree}C. Hot isostatic pressing is observed to enhance densification while suppressing grain growth.

  15. Synthesis and characterization of a nanocrystalline diamond aerogel

    SciTech Connect

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Jr., Joe H.

    2011-07-06

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel's void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel.

  16. Synthesis and characterization of a nanocrystalline diamond aerogel

    PubMed Central

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Joe H.

    2011-01-01

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel’s void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel. PMID:21555550

  17. In vitro collagen fibril alignment via incorporation of nanocrystalline cellulose.

    PubMed

    Rudisill, Stephen G; DiVito, Michael D; Hubel, Allison; Stein, Andreas

    2015-01-01

    This study demonstrates a method for producing ordered collagen fibrils on a similar length scale to those in the cornea, using a one-pot liquid-phase synthesis. The alignment persists throughout samples on the mm scale. The addition of nanocrystalline cellulose (NCC), a biocompatible and widely available material, to collagen prior to gelation causes the fibrils to align and achieve a narrow size distribution (36±8nm). The effects of NCC loading in the composites on microstructure, transparency and biocompatibility are studied by scanning electron microscopy, ultraviolet-visible spectroscopy and cell growth experiments. A 2% loading of NCC increases the transparency of collagen while producing an ordered microstructure. A mechanism is proposed for the ordering behavior on the basis of enhanced hydrogen bonding during collagen gel formation.

  18. Nanocrystalline hydroxyapatite prepared under various pH conditions

    NASA Astrophysics Data System (ADS)

    Palanivelu, R.; Mary Saral, A.; Ruban Kumar, A.

    2014-10-01

    Hydroxyapatite (HAP) has sovereign biomedical application due to its excellent biocompatibility, chemical and crystallographic similitude with natural human bone. In this present work, we discussed about the role of pH in the synthesis of calcium phosphate compound using calcium nitrate tetrahydrate and di-ammonium hydrogen phosphate as starting materials by chemical precipitation method assisted with ultrasonic irradiation technique. 5% polyethylene glycol (PEG600) is added along with the precursors under various pH condition of 7, 9 and 11 respectively. The functional group analysis, crystallized size and fraction of crystallized size are confirmed using Fourier Transformation Infra-Red spectroscopy and X-ray diffraction pattern. Morphological observations are done by scanning electron microscope. The results revealed the presence of nanocrystalline hydroxyapatite at pH above 9.

  19. Synthesis and characterization of superconducting nanocrystalline niobium nitride.

    PubMed

    Shi, Liang; Gu, Yunle; Chen, Luyang; Yang, Zeheng; Ma, Jianhua; Qian, Yitai

    2005-02-01

    Nanocrystalline niobium nitride (NbN0.9) was successfully synthesized at 600 degrees C through a solid-state reaction. The synthesis was carried out in an autoclave by using NbCl5 and NaN3 as the reactants. The X-ray powder diffraction pattern indicates the formation of cubic NbN0.9. Transmission electron microscopy images show that typical NbN0.9 crystallites are composed of uniform particles with an average size of about 30 nm and nanorod crystallites with a typical size of about 40 x 2500 nm. Magnetic measurements exhibited that a superconducting transition occurred at 15.4 K for the NbN0.9 product. PMID:15853151

  20. Method for producing functionally graded nanocrystalline layer on metal surface

    DOEpatents

    Ajayi, Oyelayo O.; Hershberger, Jeffrey G.

    2010-03-23

    An improved process for the creation or formation of nanocrystalline layers on substrates' surfaces is provided. The process involves "prescuffing" the surface of a substrate such as a metal by allowing friction to occur on the surface by a load-bearing entity making rubbing contact and moving along and on the substrate's surface. The "prescuffing" action is terminated when the coefficient of friction between the surface and the noise is rising significantly. Often, the significant rise in the coefficient of friction is signaled by a change in pitch of the scuffing action sound emanating from the buffeted surface. The "prescuffing" gives rise to a harder and smoother surface which withstands better any inadequate lubrication that may take place when the "prescuffed" surface is contacted by other surfaces.