Sample records for nanoemulsion resembling low-density

  1. The effects of oil-in-water nanoemulsion polyethylene glycol surface density on intracellular stability, pharmacokinetics, and biodistribution in tumor bearing mice.

    PubMed

    Hak, Sjoerd; Garaiova, Zuzana; Olsen, Linda Therese; Nilsen, Asbjørn Magne; de Lange Davies, Catharina

    2015-04-01

    Lipid-based nanoparticles are extensively studied for drug delivery. These nanoparticles are often surface-coated with polyethylene glycol (PEG) to improve their biodistribution. Until now, the effects of varying PEG surface density have been studied in a narrow and low range. Here, the effects of high and a broad range of PEG surface densities on the in vivo performance of lipid-based nanoparticles were studied. Oil-in-water nanoemulsions were prepared with PEG surface densities of 5-50 mol%. Confocal microscopy was used to assess intracellular disintegration in vitro. In vivo pharmacokinetics and biodistribution in tumor bearing mice were studied using a small animal optical imager. PEG surface density did not affect intracellular nanoemulsion stability. Surprisingly, circulation half-lives decreased with increasing PEG surface density. A plausible explanation was that nanoemulsion with high (50 mol%) PEG surface density activated the complement in a whole blood assay, whereas nanoemulsion with low (5 mol%) PEG density did not. In vivo, nanoemulsion with low PEG surface density was mostly confined to the tumor and organs of the mononuclear phagocyte system, whereas nanoemulsion with high PEG density accumulated throughout the mouse. Optimal PEG surface density of lipid-based nanoparticles for tumor targeting was found to be below 10 mol%.

  2. Utilization of nanoemulsions to enhance bioactivity of pharmaceuticals, supplements, and nutraceuticals: Nanoemulsion delivery systems and nanoemulsion excipient systems.

    PubMed

    Aboalnaja, Khaled Omer; Yaghmoor, Soonham; Kumosani, Taha Abdullah; McClements, David Julian

    2016-09-01

    The efficacy of many hydrophobic bioactives (pharmaceuticals, supplements, and nutraceuticals) is limited due to their relatively low or highly variable bioavailability. Nanoemulsions consisting of small lipid droplets (r < 100 nm) dispersed in water can be designed to improve bioavailability. The major factors limiting the oral bioavailability of hydrophobic bioactive agents are highlighted: bioaccessibility, absorption and transformation. Two nanoemulsion-based approaches to control these processes and improve bioavailability are discussed: nanoemulsion delivery systems (NDS) and nanoemulsion excipient systems (NES). In NDS, hydrophobic bioactives are dissolved within the lipid phase of oil-in-water nanoemulsions. In NES, the bioactives are present within a conventional drug, supplement, or food, which is consumed with an oil-in-water nanoemulsion. Examples of NDS and NES utilization to improve bioactive bioavailability are given. Considerable progress has been made in nanoemulsion design, fabrication, and testing. This knowledge facilitates the design of new formulations to improve the bioavailability of pharmaceuticals, supplements, and nutraceuticals. NDS and NES must be carefully designed based on the major factors limiting the bioavailability of specific bioactives. Research is still required to ensure these systems are commercially viable, and to demonstrate their safety and efficacy using animal and human feeding studies.

  3. Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs.

    PubMed

    Kotta, Sabna; Khan, Abdul Wadood; Pramod, Kannissery; Ansari, Shahid H; Sharma, Rakesh Kumar; Ali, Javed

    2012-05-01

    More than 40% of new chemical entities discovered are poorly water soluble and suffer from low oral bioavailability. In recent years, nanoemulsions are receiving increasing attention as a tool of delivering these low-bioavailable moieties in an efficient manner. This review gives a brief description about how oral nanoemulsions act as a tool to improve the bioavailability of poorly water-soluble drugs. The recurrent confusion found in the literature regarding the theory behind the formation of nanoemulsions is clarified, along with the difference between nanoemulsion and lyotropic 'microemulsion' phase. This paper gives a clear-cut idea about all possible methods for the preparation of nanoemulsions and the advantages and disadvantages of each method are described. A description of the stability problems of nanoemulsions and their prevention methods is also provided, in addition to a comprehensive update on the patents and research works done in the arena of oral nanoemulsions. Low-energy emulsification techniques can also produce stable nanoemulsions. It is guaranteed that oral nanoemulsions can act as a potential tool for the delivery of poorly water-soluble therapeutic moieties in a very efficient manner.

  4. Advanced Nanoemulsions

    NASA Astrophysics Data System (ADS)

    Fryd, Michael M.; Mason, Thomas G.

    2012-05-01

    Recent advances in the growing field of nanoemulsions are opening up new applications in many areas such as pharmaceuticals, foods, and cosmetics. Moreover, highly controlled nanoemulsions can also serve as excellent model systems for investigating basic scientific questions about soft matter. Here, we highlight some of the most recent developments in nanoemulsions, focusing on methods of formation, surface modification, material properties, and characterization. These developments provide insight into the substantial advantages that nanoemulsions can offer over their microscale emulsion counterparts.

  5. γ-Oryzanol nanoemulsions produced by a low-energy emulsification method: an evaluation of process parameters and physicochemical stability.

    PubMed

    Zhong, Jinfeng; Liu, Xiong; Wang, Yonghua; Qin, Xiaoli; Li, Zeling

    2017-06-21

    γ-Oryzanol is a natural antioxidant and nutraceutical compound, which makes it a good candidate for nutraceuticals, food supplements and pharmaceutical preparations. However, the incorporation of γ-oryzanol into aqueous formulations is rather difficult and its bioavailability can be severely decreased because of its water-insoluble property. In this study, γ-oryzanol-enriched nanoemulsion based fish oil and medium-chain triglyceride as carrier oils were proposed. The main objective was to optimize process parameters to form stable nanoemulsions and evaluate their physicochemical stability. The formulations of stable γ-oryzanol nanoemulsions were composed of 10% mixed carrier oils (weight ratio of fish oil to medium-chain triglyceride = 3 : 7) and 10% mixed surfactants (weight ratio of Tween 80 to Span 20 = 3 : 1). The nanoemulsions were stable at a broad pH range of 2-7 and high salt concentrations (≤0.8 mol L -1 ) and sucrose levels (≤16%). The nanoemulsions were much more stable at heating temperatures below 50 °C than at elevated heating temperatures (60 and 70 °C). The nanoemulsions maintained their physical stability at various storage temperatures (5-37 °C) for 18 days. Nanoemulsions at 5 and 23 °C had lower peroxide values and anisidine values than those at an elevated storage temperature (37 °C). These results demonstrate that the low-energy emulsification method can produce γ-oryzanol-enriched nanoemulsions using fish oil and medium-chain triglyceride as carrier oils, and provide useful information for producing bioactive lipids-loaded nanoemulsions for food systems, personal care and pharmaceutical products.

  6. Nanoemulsions prepared by a low-energy emulsification method applied to edible films

    USDA-ARS?s Scientific Manuscript database

    Catastrophic phase inversion (CPI) was used as a low-energy emulsification method to prepare oil-in-water (O/W) nanoemulsions in a lipid (Acetem)/water/nonionic surfactant (Tween 60) system. CPIs in which water-in-oil emulsions (W/O) are transformed into oil-in-water emulsions (O/W) were induced by ...

  7. Traversing the Skin Barrier with Nano-emulsions.

    PubMed

    Burger, Cornel; Shahzad, Yasser; Brummer, Alicia; Gerber, Minja; du Plessis, Jeanetta

    2017-01-01

    In recent years, colloidal delivery systems based on nano-emulsion are gaining popularity; being used for encapsulation and delivery of many drugs. This review therefore aims at summarizing various methods of nano-emulsion formulation and their use as a topical and transdermal delivery vehicle for a number of active pharmaceutical ingredients from different pharmacological classes. This article represents a systematic review of nano-emulsions for topical and transdermal drug delivery. A vast literature was searched and critically analysed. Nano-emulsions are thermokinetically stable dispersion systems, which have been used in topical and transdermal delivery of a number of pharmaceutically active compounds. Nano-emulsions have a narrow droplet size range with tuneable surface properties, which make them an ideal delivery vehicle. Nanoemulsions have a number of advantages over conventional emulsions, including easy preparation using various low and high energy methods, optical transparency, high solubilisation capacity, high stability to droplet aggregation and the ability to penetrate the skin; thus allowing the transdermal delivery of drugs. This review indicated that nano-emulsions are promising vehicle for entrapping various drugs and are suitable for traversing the skin barrier for systemic effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Influence of Polysorbate 60 on Formulation Properties and Bioavailability of Morin-Loaded Nanoemulsions with and without Low-Saponification-Degree Polyvinyl Alcohol.

    PubMed

    Ikeuchi-Takahashi, Yuri; Kobayashi, Ayaka; Ishihara, Chizuko; Matsubara, Takumi; Matsubara, Hiroaki; Onishi, Hiraku

    2018-01-01

    The aim of the present study was to investigate the influence of polysorbate 60 (Tween 60) on the development of morin-loaded nanoemulsions to improve the oral bioavailability of morin. Nanoemulsions were prepared using Tween 60 and polyvinyl alcohol (PVA) as emulsifiers, and medium chain triglycerides (MCT) as the lipid base. Low-saponification-degree PVA (LL-810) was also added to stabilize dispersed droplets. MCT-LL810 nanoemulsion containing LL-810 was prepared with a reduced amount of Tween 60. However, the area under the blood concentration-time curve (AUC) of MCT-LL810 (0.18) nanoemulsion containing a small amount of Tween 60 did not increase because the absorption of morin was limited by P-glycoprotein (P-gp)-mediated efflux. MCT-LL810 (0.24) nanoemulsion containing a large amount of Tween 60 showed the highest AUC, dispersed droplets containing Tween 60 may have been transported into epithelial cells in the small intestine, and P-gp transport activity appeared to be suppressed by permeated Tween 60. Based on the plasma concentration profile, dispersed droplets in MCT-LL810 (0.24) nanoemulsion permeated more rapidly through the mucus layer and the intestinal membrane than MCT (0.24) nanoemulsion without LL-810. In conclusion, a novel feature of Tween 60 incorporated into the dispersed droplets of a nanoemulsion interacting with P-gp was demonstrated herein. Dispersed droplets in MCT-LL810 (0.24) nanoemulsion containing LL-810 permeated rapidly through the mucus layer and intestinal membrane, and Tween 60 incorporated in dispersed droplets interacted with P-gp-mediated efflux, increasing the bioavailability of morin.

  9. Nanoemulsions stabilized by non-ionic surfactants: stability and degradation mechanisms.

    PubMed

    Koroleva, M; Nagovitsina, T; Yurtov, E

    2018-04-18

    The prevailing opinion in the literature is that the main mechanism of O/W nanoemulsion degradation is Ostwald ripening. Nevertheless, the experimental rates of Ostwald ripening are usually several orders of magnitude higher than the theoretical values. This suggests that other mechanisms, such as coalescence, flocculation and subsequent creaming, significantly influence nanoemulsion breakdown. We investigated O/W nanoemulsions stabilized by Brij 30 or by a mixture of Tween 80 and Span 80 and with liquid paraffin as a dispersed phase. The results indicate that Ostwald ripening is the main process leading to nanoemulsion coarsening only in nanoemulsions with low oil phase fractions of up to 0.05. For quasi-steady state conditions the rates of Ostwald ripening are equal to (1.5 ± 0.3) × 10-29 and (1.1 ± 0.3) × 10-29 m3 s-1 in nanoemulsions with Brij 30 and Tween 80 & Span 80, respectively. In nanoemulsions with oil phase fractions of 0.15-0.45, different mechanisms are identified. Flocculation prevails over other processes during the first days in nanoemulsions stabilized by Brij 30. Coalescence is the main mechanism of nanoemulsion degradation for long times. An increase in droplet size 5-10 days after nanoemulsion preparation due to Ostwald ripening takes place in the case of nanoemulsion stabilization by Tween 80 and Span 80. The stability behavior of these nanoemulsions at later stages is distinctly affected by coalescence and flocculation.

  10. Preparation of Robust Metal-Free Magnetic Nanoemulsions Encapsulating Low-Molecular-Weight Nitroxide Radicals and Hydrophobic Drugs Directed Toward MRI-Visible Targeted Delivery.

    PubMed

    Nagura, Kota; Takemoto, Yusa; Moronaga, Satori; Uchida, Yoshiaki; Shimono, Satoshi; Shiino, Akihiko; Tanigaki, Kenji; Amano, Tsukuru; Yoshino, Fumi; Noda, Yohei; Koizumi, Satoshi; Komatsu, Naoki; Kato, Tatsuhisa; Yamauchi, Jun; Tamura, Rui

    2017-11-07

    With a view to developing a theranostic nanomedicine for targeted drug delivery systems visible by magnetic resonance (MR) imaging, robust metal-free magnetic nanoemulsions (mean particle size less than 20 nm) consisting of a biocompatible surfactant and hydrophobic, low molecular weight 2,2,5-trimethyl-5-(4-alkoxy)phenylpyrrolidine-N-oxyl radicals were prepared in pH 7.4 phosphate-buffered saline (PBS). The structure of the nanoemulsions was characterized by electron paramagnetic resonance spectroscopy, and dynamic light scattering and small-angle neutron-scattering measurements. The nanoemulsions showed high colloidal stability, low cytotoxicity, enough reduction resistance to excess ascorbic acid, and sufficient contrast enhancement in the proton longitudinal relaxation time (T 1 ) weighted MR images in PBS in vitro (and preliminarily in vivo). Furthermore, the hydrophobic anticancer drug paclitaxel could be encapsulated inside the nanoparticles, and the resulting paclitaxel-loaded nanoemulsions were efficiently incorporated into HeLa cells to suppress cell growth. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Understanding Nanoemulsion Formation and Developing a Procedure for Porous Material Growth using Assembled Nanoemulsions

    NASA Astrophysics Data System (ADS)

    Yeranossian, Vahagn Frounzig

    Nanoemulsions as an emerging technology have found many applications in consumer products, drug delivery, and even particle formation. However, knowledge gaps exist in how some of these emulsions are formed, specifically what pathways are traversed to reach the final state. Moreover, how these pathways affect the final properties of the nanoemulsions would affect the applications that these droplets possess. Some nanoemulsions possess unique properties, including the assembly of droplets. While the assembly of droplets is being studied in the Helgeson lab, work must be done to understand how the assembly itself could be used to control the growth of porous materials, such a hydrogels. Thus, this thesis aims to address two factors of nanoemulsions: the formation of water-in-oil nanoemulsions and the use of assemblying droplets in oil-in-water nanoemulsions to form macroporous hydrogels. To elucidate the formation mechanism of water-in-oil nanoemulsions, a combination of dynamic light scattering and small angle neutron scattering were used to study the intermediate and final states of the nanoemulsion during its formation. These nanoemulsions were prepared by slowly adding water to an oil and surfactant mixture and were diluted to effectively measure using scattering techniques without multiple scattering events. To develop a procedure to use assembled nanoemulsions for the growth of porous materials, a combination of optical microscopy and diffusional studies were employed. Optical microscopy images taken at various stages of the procedure help elucidate how the pore sizes of the final porous material is related to the droplet-rich domains of the assembled nanoemulsion. Meanwhile, diffusional measurements help confirm the size and interconnectedness of the macropores. From the work done in the completion of my thesis, the formation mechanism of the water-in-oil nanoemulsion studied has been elucidated. The neutron scattering measurements show that during the

  12. Nanoemulsion: for improved oral delivery of repaglinide.

    PubMed

    Akhtar, Juber; Siddiqui, Hefazat Hussain; Fareed, Sheeba; Badruddeen; Khalid, Mohammad; Aqil, Mohammed

    2016-07-01

    Repaglinide (RPG) is a fast-acting prandial glucose regulator. It acts by stimulating insulin release from pancreatic β-cells. Recurrent dosing of RPG before each meal is burdensome remedy. Hence the plan of the present study was to evaluate nanoemulsion as a hopeful carrier for RPG for persistent hypoglycemic effect. The drug was incorporated into oil phase of nanoemulsion to give improved biopharmaceutical properties as compared to the lipid-based systems. Pseudo ternary phase diagrams were prepared by aqueous titration method. Formulations were selected at a difference of 5% w/w of oil from the o/w nanoemulsion region of phase diagrams. The optimized nanoemulsion formulation constituted sefsol-218 (5% v/v) as an oil phase, 30% v/v of Tween-80 and transcutol as a surfactant and co-surfactant to restrain nanodroplet size and low viscosity and distilled water (65%). In vitro dissolution studies showed higher drug release (98.22%), finest droplet size (76.23 nm), slightest polydispersity value (0.183), least viscosity (21.45 cps) and immeasurable dilution capability from the nanoemulsion as compared with existing oral tablet formulation. The optimized RPG nanoemulsion formulation showed better hypoglycemic effect in comparison to tablet formulation in experimental diabetic rats. No significant variations were also observed in the optimized formulation when subjected to accelerated stability study at different temperature and relative humidity over a period of 3 months.

  13. Rationalizing lipid nanoemulsion formation for utilization in the food and beverage industry

    NASA Astrophysics Data System (ADS)

    Rao, Jiajia

    stable nanoemulsions could be fabricated were also established when sucrose monopalmitate (SMP) and lemon oil were used as the surfactant and oil phase. Nanoemulsions (r < 100 nm) were formed at low surfactant-to-oil ratios (SOR < 1) depending on homogenization conditions, whereas microemulsions (r < 10 nm) were formed at higher ratios (SOR > 1). Relatively stable nanoemulsions could be formed at pH 6 and 7, but extensive particle growth/aggregation occurred at lower and higher pH values. Flavor oil nanoemulsions were also formed using an emulsion titration method that involves titration of emulsion droplets into surfactant micelle solutions. In this study, the effectiveness of nanoemulsion formation using nonionic surfactants (sucrose monopalmitate (SMP) and/or Tween 80 (T80) was investigated. Lemon oil was transferred from emulsion droplets into the micelle phase until a critical lemon oil concentration (Csat ) was reached. The solubilization process was rapid (< few minutes), with the rate increasing with increasing surfactant concentration. The value of Csat increased with increasing surfactant concentration and was higher for SMP than Tween 80. The influence of lemon oil composition (1x, 3x, 5x, and 10x) on the formation and properties of oil-in-water nanoemulsions was also studied. Initially, the composition, molecular characteristics, and physicochemical properties of four lemon oils were established. The main constituents in 1-fold lemon oil were monoterpenes (> 90 %), whereas the major constituents in 10-fold lemon oil were monoterpenes (≈ 35%), sesquiterpenes (≈ 14%) and oxygenates (≈ 33%). The density, interfacial tension, viscosity, and refractive index of the lemon oils increased as the oil fold increased ( i.e., 1x < 3x < 5x < 10x). The stability of oil-in-water nanoemulsions produced by high pressure homogenization was strongly influenced by lemon oil composition. The lower fold oils were highly unstable to droplet growth during storage (1x, 3x, 5x

  14. Organogel-nanoemulsion containing nisin and D-limonene and its antimicrobial activity

    PubMed Central

    Bei, Weiya; Zhou, Yan; Xing, Xuya; Zahi, Mohamed Reda; Li, Yuan; Yuan, Qipeng; Liang, Hao

    2015-01-01

    The aim of this study was to investigate a novel delivery system containing D-limonene and nisin by food organogel-nanoemulsion and study its effect on the antimicrobial activity. Organogel-nanoemulsion containing with D-limonene and nisin or without nisin was prepared by a homogenization method. Factors that may affect the droplet size and stability of organogel-nanoemulsion such as pressure and surfactant to oil ratio (SOR) were studied. The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR. Positive effects and outstanding antimicrobial activities of organogel-nanoemulsion containing with D-limonene and nisin were confirmed by minimal inhibitory concentrations comparison, growth curves of bacteria, scanning electron microscopy and determination of cell constituents’ release. Furthermore, the organogel-nanoemulsion applied as food preservative in milk also shown excellent antimicrobial performance. Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food. PMID:26441935

  15. Nanoemulsion formulation of fisetin improves bioavailability and antitumour activity in mice.

    PubMed

    Ragelle, Héloïse; Crauste-Manciet, Sylvie; Seguin, Johanne; Brossard, Denis; Scherman, Daniel; Arnaud, Philippe; Chabot, Guy G

    2012-05-10

    The natural flavonoid fisetin (3,3',4',7-tetrahydroxyflavone) has shown antitumour activity but its administration is complicated by its low water solubility. Our aim was to incorporate fisetin into a nanoemulsion to improve its pharmacokinetics and therapeutic efficacy. Solubility and emulsification tests allowed to develop an optimal nanoemulsion composed of Miglyol 812N/Labrasol/Tween 80/Lipoid E80/water (10%/10%/2.5%/1.2%/76.3%). The nanoemulsion had an oil droplet diameter of 153 ± 2 nm, a negative zeta potential (-28.4 ± 0.6 mV) and a polydispersity index of 0.129. The nanoemulsion was stable at 4 °C for 30 days, but phase separation occurred at 20 °C. Pharmacokinetic studies in mice revealed that the fisetin nanoemulsion injected intravenously (13 mg/kg) showed no significant difference in systemic exposure compared to free fisetin. However, when the fisetin nanoemulsion was administered intraperitoneally, a 24-fold increase in fisetin relative bioavailability was noted, compared to free fisetin. Additionally, the antitumour activity of the fisetin nanoemulsion in Lewis lung carcinoma bearing mice occurred at lower doses (36.6 mg/kg) compared to free fisetin (223 mg/kg). In conclusion, we have developed a stable nanoemulsion of fisetin and have shown that it could improve its relative bioavailability and antitumour activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions.

    PubMed

    Yu, Hailong; Huang, Qingrong

    2012-05-30

    Curcumin is a natural bioactive compound with many health-promoting benefits. Its low oral bioavailability limits its application in functional foods. In the present study, novel organogel-based nanoemulsions have been developed for oral delivery of curcumin and improvement of its bioavailability. Recently developed curcumin organogel was used as the oil phase in the curcumin nanoemulsion formulation. Tween 20 was selected as the emulsifier on the basis of maximum in vitro bioaccessibility of curcumin in the nanoemulsion. In vitro lipolysis profile revealed that the digestion of nanoemulsion was significantly faster and more complete than the organogel. Permeation experiments on Caco-2 cell monolayers suggested that digestion-diffusion was the major absorption mechanism for curcumin in the nanoemulsion. Furthermore, in vivo pharmacokinetics analysis on mice confirmed that the oral bioavailability of curcumin in the nanoemulsion was increased by 9-fold compared with unformulated curcumin. This novel formulation approach may also be used for oral delivery of other poorly soluble nutraceuticals with high loading capacity, which has significant impact in functional foods, dietary supplements and pharmaceutical industries.

  17. The preparation of 3,5-dihydroxy-4-isopropylstilbene nanoemulsion and in vitro release

    PubMed Central

    Zhang, Yue; Gao, Jungang; Zheng, Hetang; Zhang, Ran; Han, Yucui

    2011-01-01

    We have reported a novel procedure to prepare 3,5-dihydroxy-4-isopropylstilbene (DHPS) nanoemulsion, using a low-energy emulsification method. Based on the phase diagram, the optimum prescription of nanoemulsion preparation was screened. With polyoxyethylenated castor oil (EL-40) as the surfactant, ethanol as the co-surfactant, and isopropyl myristate (IPM) as the oil phase, the DHPS nanoemulsion was obtained with a transparent appearance, little viscosity, and spherically uniform distribution verified by transmission electron microscopy and laser scattering analyzer. The nanoemulsion was also determined by FT-Raman spectroscopy. The DHPS nanoemulsion demonstrated good stability and stable physical and chemical properties. The nanoemulsion dramatically improved the transdermal release of DHPS (from 8.02 μg · cm−2 to 273.15 μg · cm−2) and could become a favorable new dosage form for DHPS. PMID:21674020

  18. Challenges and Future Prospects of Nanoemulsion as a Drug Delivery System.

    PubMed

    Yukuyama, Megumi Nishitani; Kato, Edna Tomiko Myiake; Lobenberg, Raimar; Bou-Chacra, Nadia Araci

    2017-01-01

    Nanoemulsion has the potential to overcome several disadvantages in drug formulation. Loading poor water-soluble drugs in the appropriate nanoemulsions enhances their wettability and/or solubility. Consequently, this improves their pharmacokinetics and pharmacodynamics by different routes of administration. Associated with the optimum nanodroplets size or even combined with key components, the droplets act as a reservoir of drugs, enabling nanoemulsion to be multifunctional platform to treat diverse diseases. A number of important advantages, which comprise nanoemulsion attributes, such as efficient drug release with appropriate rate, prolonged efficacy, drug uptake control, low side effects and drug protection properties from enzymatic or oxidative processes, have been reported in last decade. The high flexibility of nanoemulsion includes also a variety of manufacturing process options and a combination of widely assorted components such as surfactants, liquid lipids or even drug-conjugates. These features provide alternatives for designing innovative nanoemulsions aiming at high-value applications. This review presents the challenges and prospects of different nanoemulsion types and its application. The drug interaction with the components of the formulation, as well as the drug mechanistic interaction with the biological environment of different routes of administration are also presented. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Nanoemulsions of cancer chemopreventive agent benzyl isothiocyanate display enhanced solubility, dissolution, and permeability.

    PubMed

    Qhattal, Hussaini Syed Sha; Wang, Shu; Salihima, Tri; Srivastava, Sanjay K; Liu, Xinli

    2011-12-14

    Benzyl isothiocyanate (BITC), a compound found in cruciferous vegetables, is an effective chemopreventive agent. The objective of this study was to develop nanoemulsion formulations for the oral delivery of BITC. Optimized oil-in-water BITC nanoemulsions were prepared by a spontaneous self-nanoemulsification method and a homogenization-sonication method. Both nanoemulsions entrapped high amounts of BITC (15-17 mg/mL), with low polydispersity and good colloidal stability. The BITC nanoemulsions showed enhanced solubility and dissolution compared to pure BITC. These formulations markedly increased the apical to basolateral transport of BITC in Caco-2 cell monolayers. The apparent permeability values were 3.6 × 10(-6) cm/s for pure BITC and (1.1-1.3) × 10(-5) cm/s for BITC nanoemulsions. The nanoemulsions were easily taken up by human cancer cells A549 and SKOV-3 and inhibited tumor growth in vitro. This work shows for the first time that BITC can be formulated into nanoemulsions and may show promise in enhancing absorption and bioavailability.

  20. Characteristics of Nano-emulsion for Cold Thermal Storage

    NASA Astrophysics Data System (ADS)

    Fumoto, Koji; Kawaji, Masahiro; Kawanami, Tsuyoshi

    Phase change emulsion (PCE) is novel kind of heat storage and heat transfer fluids. It has characteristics as follows; greater apparent specific heat and higher heat transfer abilities in the phase change temperature range than conventional single phase heat transfer fluid. In this paper, a phase change emulsion, which has droplet diameter distribution of nanometer, were prepared. The Nano-emulsion was formed by low energy emulsification methods, as known the phase inversion temperature (PIT) method. Physical properties, such as viscosity, diameter and its distribution of emulsion were investigated. Especially, the relationships between preparation method and the concentration of surfactant have been discussed in detail. The results show that the viscosity of the Nano-emulsion is lower than the micro-emulsion, which was made by same mixing ratio of surfactant and concentration of phase change material. In addition, the Nano-emulsion clarified that stability was higher than microemulsions.

  1. Formation and stability of nanoemulsions with mixed ionic-nonionic surfactants.

    PubMed

    Wang, Lijuan; Tabor, Rico; Eastoe, Julian; Li, Xuefeng; Heenan, Richard K; Dong, Jinfeng

    2009-11-14

    A simple, low-energy two-step dilution process has been applied with binary mixtures of ionic-nonionic surfactants to prepare nanoemulsions. The systems consist of water/DDAB-C(12)E(5)/decane. Nanoemulsions were obtained by dilution of concentrates located in bicontinuous microemulsion or lamellar liquid crystal phase regions. The nanoemulsions generated were investigated both by contrast-variation small-angle neutron scattering (SANS) and dynamic light scattering (DLS). The SANS profiles show that C(12)E(5) nanodroplets suffer essentially no structural change on incorporation of the cationic DDAB surfactant, except for increased electrostatic repulsive interactions. Interestingly, SANS indicated that the preferred droplet sizes were hardly affected by the surfactant mixture composition (up to a DDAB molar ratio (m(DDAB)/(m(DDAB) + m(C(12)E(5))) of 0.40) and droplet volume fraction, phi, between 0.006 and 0.120. No notable changes in the structure or radius of nanoemulsion droplets were observed by SANS over the test period of 1 d, although the droplet number intensity decreased significantly in systems stabilized by C(12)E(5) only. However, the DLS sizing shows a marked increase with time, with higher droplet volume fractions giving rise to the largest changes. The discrepancy between apparent nanoemulsion droplet size determined by DLS and SANS data can be attributed to long-range droplet interactions occurring outside of the SANS sensitivity range. The combined SANS and DLS results suggest flocculation is the main mechanism of instability for these nanoemulsions. The flocculation rate is shown to be significantly retarded by addition of the charged DDAB, which may be due to enhanced electrostatic repulsive forces between droplets, leading to improved stability of the nanoemulsions.

  2. Design and evaluation of oral nanoemulsion drug delivery system of mebudipine.

    PubMed

    Khani, Samira; Keyhanfar, Fariborz; Amani, Amir

    2016-07-01

    A nanoemulsion drug delivery system was developed to increase the oral bioavailability of mebudipine as a calcium channel blocker with very low bioavailability profile. The impact of nano-formulation on the pharmacokinetic parameters of mebudipine in rats was investigated. Nanoemulsion formulations containing ethyl oleate, Tween 80, Span 80, polyethylene glycol 400, ethanol and deionized water were prepared using probe sonicator. The optimum formulation was evaluated for physicochemical properties, such as particle size, morphology and stability. The particle size of optimum formulation was 22.8 ± 4.0 nm. Based on the results of this study, the relative bioavailability of mebudipine nanoemulsion was enhanced by about 2.6-, 2.0- and 1.9-fold, respectively, compared with suspension, ethyl oleate solution and micellar solution. In conclusion, nanoemulsion is an interesting option for the delivery of poorly water soluble molecules, such as mebudipine.

  3. Physicochemical Characterization and Thermodynamic Studies of Nanoemulsion-Based Transdermal Delivery System for Fullerene

    PubMed Central

    Basri, Mahiran; Tripathy, Minaketan; Abdul-Malek, Emilia

    2014-01-01

    Fullerene nanoemulsions were formulated in palm kernel oil esters stabilized by low amount of mixed nonionic surfactants. Pseudoternary phase diagrams were established in the colloidal system of PKOEs/Tween 80 : Span 80/water incorporated with fullerene as antioxidant. Preformulation was subjected to combination of high and low energy emulsification methods and the physicochemical characteristics of fullerene nanoemulsions were analyzed using electroacoustic spectrometer. Oil-in-water (O/W) nanoemulsions with particle sizes in the range of 70–160 nm were formed. The rheological characteristics of colloidal systems exhibited shear thinning behavior which fitted well into the power law model. The effect of xanthan gum (0.2–1.0%, w/w) and beeswax (1–3%, w/w) in the estimation of thermodynamics was further studied. From the energetic parameters calculated for the viscous flow, a moderate energy barrier for transport process was observed. Thermodynamic study showed that the enthalpy was positive in all xanthan gum and beeswax concentrations indicating that the formation of nanoemulsions could be endothermic in nature. Fullerene nanoemulsions with 0.6% or higher xanthan gum content were found to be stable against creaming and flocculation when exposed to extreme environmental conditions. PMID:25165736

  4. NIR-labeled perfluoropolyether nanoemulsions for drug delivery and imaging

    PubMed Central

    O’Hanlon, Claire E.; Amede, Konjit G.; O’Hear, Meredith R.; Janjic, Jelena M.

    2012-01-01

    Theranostic nanoparticle development recently took center stage in the field of drug delivery nanoreagent design. Theranostic nanoparticles combine therapeutic delivery systems (liposomes, micelles, nanoemulsions, etc.) with imaging reagents (MRI, optical, PET, CT). This combination allows for non-invasive in vivo monitoring of therapeutic nanoparticles in diseased organs and tissues. Here, we report a novel perfluoropolyether (PFPE) nanoemulsion with a water-insoluble lipophilic drug. The formulation enables non-invasive monitoring of nanoemulsion biodistribution using two imaging modalities, 19F MRI and near-infrared (NIR) optical imaging. The nanoemulsion is composed of PFPE-tyramide as a 19F MRI tracer, hydrocarbon oil, surfactants, and a NIR dye. Preparation utilizes a combination of self-assembly and high energy emulsification methods, resulting in droplets with average diameter 180 nm and low polydispersity index (PDI less than 0.2). A model nonsteroidal anti-inflammatory drug (NSAID), celecoxib, was incorporated into the formulation at 0.2 mg/mL. The reported nanoemulsion’s properties, including small particle size, visibility under 19F NMR and NIR fluorescence spectroscopy, and the ability to carry drugs make it an attractive potential theranostic agent for cancer imaging and treatment. PMID:22675234

  5. Wound healing effects of nanoemulsion containing clove essential oil.

    PubMed

    Alam, Prawez; Ansari, Mohammad J; Anwer, Md Khalid; Raish, Mohammad; Kamal, Yoonus K T; Shakeel, Faiyaz

    2017-05-01

    The aim of this study was to investigate the wound healing effects of clove oil (CO) via its encapsulation into nanoemulsion. Optimized nanoemulsion (droplet size of 29.10 nm) was selected for wound healing investigation, collagen determination, and histopathological examination in rats. Optimized nanoemulsion presented significant would healing effects in rats as compared to pure CO. Nanoemulsion also presented significant enhancement in leucine content (0.61 mg/g) as compared to pure CO (0.50 mg/g) and negative control (0.31 mg/g). Histopathology of nanoemulsion treated rats showed no signs of inflammatory cells. These results suggested that nanoemulsion of CO was safe and nontoxic.

  6. [Physicochemical properties and skin penetration in vitro of total alkaloids of Sophora flavescens nanoemulsion].

    PubMed

    Feng, Ai-Ling; Wang, Ying-Zi; Zhang, Sheng-Hai; Sun, Xiu-Yu; Duan, Fei-Peng; Li, Cai-Xia

    2013-08-01

    The research aimed at investigating the physicochemical properties, stability and skin penetration in vitro of total alkaloids of Sophora flavescens nanoemulsion. Prepare total alkaloids of S. flavescens nanoemulsion and detect the determination of matrine and oxymatrine in the nanoemulsion using HPLC method. Transmission electron microscopy and laser particle size analyzer were utilized to detect the shape and size of the nanoemulsion respectively. And also the stability of nanoemulsion was studied under the conditions of low temperature (4 degrees C), normal temperature (25 degrees C) and high temperature (60 degrees C). Franz diffusion cell was used to research the transdermal absorption of nanoemulsion in vitro. The results found that the nanoemulsion we prepared presented appearance of rounded, uniform; its average diameter was (15.55 +/- 2.24) nm, and particle size distribution value was 0. 161; the appearance, diameter and percentage determination of total alkaloids of S. flavescens had no variations after 15 d under 4, 25, 60 degrees C respectively. The steady-state permeation rate was 4.564 1 microg x cm(-2) x h(-1), 24 h cumulative amount of penetration was 110.7 microg x cm(-2), which was 1.86 fold of 24 h cumulative amount of aqueous solution (59.41 microg x cm(-2)). All the results demonstrated total alkaloids of S. flavescens nanoemulsion had good permeability, and could provide a new preparation for its clinical application.

  7. Sustained release formulations of citronella oil nanoemulsion using cavitational techniques.

    PubMed

    Agrawal, Naveen; Maddikeri, Ganesh L; Pandit, Aniruddha B

    2017-05-01

    Nanoemulsion synthesis has proven to be an effective way for transportation of immobile, insoluble bioactive compounds. Citronella Oil (lemongrass oil), a natural plant extract, can be used as a mosquito repellent and has less harmful effects compared to its available market counterpart DEET (N, N-Diethyl-meta-toluamide). Nanoemulsion of citronella oil in water was prepared using cavitation-assisted techniques while investigating the effect of system parameters like HLB (Hydrophilic Lipophilic Balance), surfactant concentration, input energy density and mode of power input on emulsion quality. The present work also examines the effect of emulsification on release rate to understand the relationship between droplet size and the release rate. Minimum droplet size (60nm) of the emulsion was obtained at HLB of 14, S/O 1 ratio of 1.0, ultrasound amplitude of 50% and irradiation time of 5min. This study revealed that hydrodynamic cavitation-assisted emulsification is more energy efficient compared to ultrasonic emulsification. It was also found that the release rate of nanoemulsion enhanced as the droplet size of emulsion reduced. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Pilot clinical study of carmustine associated with a lipid nanoemulsion in combination with vincristine and prednisone for the treatment of canine lymphoma.

    PubMed

    Lucas, S R R; Maranhão, R C; Guerra, J L; Coelho, B M P; Barboza, R; Pozzi, D H B

    2015-09-01

    A lipid nanoemulsion (LDE) resembling low-density lipoprotein can target malignant tumours. In in vivo and clinical studies, association of chemotherapeutic agents to LDE decreased their toxicity and increased pharmacological action. Here, safety of LDE as carmustine carrier (50 mg m(-2) , intravenous) combined with vincristine and prednisone for the treatment of dogs with lymphoma was tested and compared with commercial carmustine with vincristine and prednisone. In five dogs from LDE-carmustine and six from commercial carmustine, complete remission was achieved (P > 0.05). Partial remission occurred in two dogs from each group. In both groups, the median progression-free intervals (119 and 199 days) and overall survival times (207 and 247 days) were equal. Neutropenia was observed in both groups, but no other major toxicities occurred. Therefore, no difference was observed between the treatments. LDE-carmustine was shown to be safe and effective in a drug combination protocol, which encourages larger studies to investigate the use of this novel formulation to treat canine lymphomas. © 2013 Blackwell Publishing Ltd.

  9. Development and characterization of resveratrol nanoemulsions carrying dual-imaging agents

    PubMed Central

    Herneisey, Michele; Williams, Jonathan; Mirtic, Janja; Liu, Lu; Potdar, Sneha; Bagia, Christina; Cavanaugh, Jane E; Janjic, Jelena M

    2016-01-01

    Aim: Delivery of the natural anti-inflammatory compound resveratrol with nanoemulsions can dramatically improve its tissue targeting, bioavailability and efficacy. Current assessment of resveratrol delivery efficacy is limited to indirect pharmacological measures. Molecular imaging solves this problem. Results/methodology: Nanoemulsions containing two complementary imaging agents, near-infrared dye and perfluoropolyether (PFPE), were developed and evaluated. Nanoemulsion effects on macrophage uptake, toxicity and NO production were also evaluated. The presence of PFPE did not affect nanoemulsion size, zeta potential, colloidal stability, drug loading or drug release. Conclusion: PFPE nanoemulsions can be used in future studies to evaluate nanoemulsion biodistribution without interfering with resveratrol delivery and pharmacological outcomes. Developed nanoemulsions show promise as a versatile treatment strategy for cancer and other inflammatory diseases. Graphical abstract PMID:27834615

  10. Perfluorocarbon nanoemulsions with fluorescent, colloidal and magnetic properties

    PubMed Central

    Janjic, Jelena M.; Shao, Pin; Zhang, Shaojuan; Yang, Xun; Patel, Sravan K.; Bai, Mingfeng

    2014-01-01

    Bimodal imaging agents that combine magnetic resonance imaging (MRI) and nearinfrared (NIR) imaging formulated as nanoemulsions became increasingly popular for imaging inflammation in vivo. Quality of in vivo imaging using nanoemulsions is directly dependent on their integrity and stability. Here we report the design of nanoemulsions for bimodal imaging, where both photostability and colloidal stability are equally addressed. A highly chemically and photo stable quaterrylenediimide dye was introduced into perfluoro-15-crown-5 ether (PCE) nanoemulsions. The nanoemulsions were prepared with PCE and Miglyol 812N mixed at 1:1 v/v ratio as internal phase stabilized by non-ionic surfactants. Data shows exceptional colloidal stability demonstrated as unchanged droplet size (~130 nm) and polydispersity (<0.15) after 182 days follow up at both 4 and 25 °C. Nanoemulsions also sustained the exposure to mechanical and temperature stress, and prolonged exposure to light without changes in droplet size, 19F signal or fluorescence signal. No toxicity was observed in vitro in model inflammatory cells upon 24 h exposure while confocal microscopy showed that nanoemulsions droplets accumulated in the cytoplasm. Overall, our data demonstrates that design of bimodal imaging agents requires consideration of stability of each imaging component and that of the nanosystem as a whole to achieve excellent imaging performance. PMID:24674463

  11. Perfluorocarbon nanoemulsions with fluorescent, colloidal and magnetic properties.

    PubMed

    Janjic, Jelena M; Shao, Pin; Zhang, Shaojuan; Yang, Xun; Patel, Sravan K; Bai, Mingfeng

    2014-06-01

    Bimodal imaging agents that combine magnetic resonance imaging (MRI) and nearinfrared (NIR) imaging formulated as nanoemulsions became increasingly popular for imaging inflammation in vivo. Quality of in vivo imaging using nanoemulsions is directly dependent on their integrity and stability. Here we report the design of nanoemulsions for bimodal imaging, where both photostability and colloidal stability are equally addressed. A highly chemically and photo stable quaterrylenediimide dye was introduced into perfluoro-15-crown-5 ether (PCE) nanoemulsions. The nanoemulsions were prepared with PCE and Miglyol 812N mixed at 1:1 v/v ratio as internal phase stabilized by non-ionic surfactants. Data shows exceptional colloidal stability demonstrated as unchanged droplet size (~130 nm) and polydispersity (<0.15) after 182 days follow up at both 4 and 25 °C. Nanoemulsions also sustained the exposure to mechanical and temperature stress, and prolonged exposure to light without changes in droplet size, (19)F signal or fluorescence signal. No toxicity was observed in vitro in model inflammatory cells upon 24 h exposure while confocal microscopy showed that nanoemulsions droplets accumulated in the cytoplasm. Overall, our data demonstrates that design of bimodal imaging agents requires consideration of stability of each imaging component and that of the nanosystem as a whole to achieve excellent imaging performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Cationic nanoemulsions as potential carriers for intracellular delivery

    PubMed Central

    Khachane, P.V.; Jain, A.S.; Dhawan, V.V.; Joshi, G.V.; Date, A.A.; Mulherkar, R.; Nagarsenker, M.S.

    2014-01-01

    Successful cytosolic delivery enables opportunities for improved treatment of various genetic disorders, infectious diseases and cancer. Cationic nanoemulsions were designed using alternative excipients and evaluated for particle size, charge, effect of sterilization on its stability, DNA condensation potential and cellular uptake efficiency. Various concentrations of non-ionic and ionic stabilizers were evaluated to design formula for colloidally stable cationic nanoemulsion. The nanoemulsion comprised of 5% Capmul MCM, 0.5% didodecyldimethylammonium bromide (DDAB), 1% phospholipid, 1% Poloxamer 188 and 2.25% glycerol and possessed particle size of 81.6 ± 3.56 nm and 137.1 ± 1.57 nm before and after steam sterilization, respectively. DNA condensation studies were carried out at various nanoemulsion: DNA ratios ranging from 1:1 to 10:1. Cell uptake studies were conducted on human embryonic kidney (HEK) cell lines which are widely reported for transfection studies. The nanoemulsions showed excellent cellular uptake as evaluated by fluorescence microscopy and flow cytometry. Overall, a colloidally stable cationic nanoemulsion with good DNA condensation ability was successfully fabricated for efficient cytosolic delivery and potential for in vivo effectiveness. PMID:25972740

  13. Improvement of cellular uptake, in vitro antitumor activity and sustained release profile with increased bioavailability from a nanoemulsion platform.

    PubMed

    Choudhury, Hira; Gorain, Bapi; Karmakar, Sanmoy; Biswas, Easha; Dey, Goutam; Barik, Rajib; Mandal, Mahitosh; Pal, Tapan Kumar

    2014-01-02

    Paclitaxel, a potential anticancer agent against solid tumors has been restricted from its oral use due to poor water solubility as well as Pgp efflux property. The present study was aimed to improve the oral bioavailability of paclitaxel through development of (o/w) nanoemulsion consisting of Capryol 90 as internal phase with Tween 20 as emulsifier with water as an external phase. Formulations were selected from the nanoemulsion region of pseudo-ternary phase diagrams, formulated by aqueous titration method. The developed nanoemulsion has been characterized by its thermodynamic stability, morphology, droplet size, zeta potential, viscosity where in vitro release was evaluated through dialysis. Paclitaxel nanoemulsion exhibited thermodynamical stability with low viscosity, nano-sized oil droplets in water with low poly-dispersity index. The shelf life of the paclitaxel nanoemulsion was found to be approximately 2.38 years. Increased permeability through the Caco-2 cell monolayer and decreased efflux is great advantageous for nanoemulsion formulation. The effects of paclitaxel nanoemulsion on breast cancer cell proliferation, morphology and DNA fragmentation were analyzed in vitro which showed significant anti-proliferation and decreased IC50 values in nanoemulsion group which may be due to enhanced uptake of paclitaxel through the oil core. Moreover, the absolute oral bioavailability and sustained release profile of the paclitaxel nanoemulsion evaluated in mouse model was found to improve up to 55.9%. The concentration of paclitaxel in mice plasma was determined by our validated LC-MS/MS method. By reviewing the significant outcome of the present investigation based on stability study, Caco-2 permeability, cell proliferative assay and pharmacokinetic profile it may be concluded that the oral nanoemulsion has got encouraging advantages over the presently available formulations of this injectable chemotherapeutic drug. Copyright © 2013 Elsevier B.V. All rights

  14. Versatile Methodology to Encapsulate Gold Nanoparticles in PLGA Nanoparticles Obtained by Nano-Emulsion Templating.

    PubMed

    Fornaguera, Cristina; Feiner-Gracia, Natàlia; Dols-Perez, Aurora; García-Celma, Maria José; Solans, Conxita

    2017-05-01

    Gold nanoparticles have been proved useful for many biomedical applications, specifically, for their use as advanced imaging systems. However, they usually present problems related with stability and toxicity. In the present work, gold-nanoparticles have been encapsulated in polymeric nanoparticles using a novel methodology based on nano-emulsion templating. Firstly, gold nanoparticles have been transferred from water to ethyl acetate, a solvent classified as class III by the NIH guidelines (low toxic potential). Next, the formation of nano-emulsions loaded with gold nanoparticles has been performed using a low-energy, the phase inversion composition (PIC) emulsification method, followed by solvent evaporation giving rise to polymeric nanoparticles. Using this methodology, high concentrations of gold nanoparticles (>100 pM) have been encapsulated. Increasing gold nanoparticle concentration, nano-emulsion and nanoparticle sizes increase, resulting in a decrease on the stability. It is noteworthy that the designed nanoparticles did not produce cytotoxicity neither hemolysis at the required concentration. Therefore, it can be concluded that a novel and very versatile methodology has been developed for the production of polymeric nanoparticles loaded with gold nanoparticles. Graphical Abstract Schematic representation of AuNP-loaded polymeric nanoparticles preparation from nano-emulsion templating.

  15. Benefits of cetalkonium chloride cationic oil-in-water nanoemulsions for topical ophthalmic drug delivery.

    PubMed

    Daull, Philippe; Lallemand, Frédéric; Garrigue, Jean-Sébastien

    2014-04-01

    Topical ocular administration is the most convenient route of administration of drugs for the treatment of eye diseases. However, the bioavailability of drugs following eye instillations of eye drops is very low. Over the past 20 years, extensive efforts have been put into research to improve drug bioavailability without compromising treatment compliance and patients' quality of life. One of the most efficient ways to improve drug bioavailability is to increase the precorneal residence time of the eye drop formulations. As a result, new eye drops, with bioadhesive properties, have been developed based on the cationic oil-in-water (o/w) nanoemulsion technology. These low viscosity eye drop nanoemulsions have improved precorneal residence time through the electrostatic interactions between the positively charged oil nanodroplets and the negatively charged ocular surface epithelium. This review is the first to present the benefits of this new strategy used to improve ocular drug bioavailability. The roles of the cationic agent in the stabilization of a safe cationic o/w nanoemulsion have been discussed, as well as the unexpected benefits of the cationic o/w nanoemulsion for the protection and restoration of a healthy tear film and corneal epithelium.

  16. Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions

    NASA Astrophysics Data System (ADS)

    Helgeson, Matthew E.; Moran, Shannon E.; An, Harry Z.; Doyle, Patrick S.

    2012-04-01

    We report the formation of mesoporous organohydrogels from oil-in-water nanoemulsions containing an end-functionalized oligomeric gelator in the aqueous phase. The nanoemulsions exhibit an abrupt thermoreversible transition from a low-viscosity liquid to a fractal-like colloidal gel of droplets with mesoscale porosity and solid-like viscoelasticity with moduli approaching 100 kPa, possibly the highest reported for an emulsion-based system. We hypothesize that gelation is brought about by temperature-induced interdroplet bridging of the gelator, as shown by its dependence on the gelator chemistry. The use of photocrosslinkable gelators enables the freezing of the nanoemulsion’s microstructure into a soft hydrogel nanocomposite containing a large fraction of dispersed liquid hydrophobic compartments, and we show its use in the encapsulation and release of lipophilic biomolecules. The tunable structural, mechanical and optical properties of these organohydrogels make them a robust material platform suitable for a wide range of applications.

  17. Nano-emulsions of fluorinated trityl radicals as sensors for EPR oximetry

    NASA Astrophysics Data System (ADS)

    Charlier, N.; Driesschaert, B.; Wauthoz, N.; Beghein, N.; Préat, V.; Amighi, K.; Marchand-Brynaert, J.; Gallez, B.

    2009-04-01

    This article reports the development and evaluation of two nano-emulsions (F45T-03/HFB and F15T-03/PFOB) containing fluorinated trityl radicals dissolved in perfluorocarbons. Preparation with a high-pressure homogenizer conferred sub-micronic size to both nano-emulsions. In vitro and in vivo EPR spectroscopy showed that the nano-emulsions had much greater oxygen sensitivity than the hydrophilic trityl, CT-03. In vivo experiments in rodents confirmed the ability of the nano-emulsions to follow the changes in oxygen concentration after induced ischemia. Histological evaluation of the tissue injected with the nano-emulsions revealed some acute toxicity for the F45T-03/HFB nano-emulsion but none for the F15T-03/PFOB nano-emulsion. These new formulations should be considered for further EPR oximetry experiments in pathophysiological situations where subtle changes in tissue oxygenation are expected.

  18. Nanoemulsion of atovaquone as a promising approach for treatment of acute and chronic toxoplasmosis.

    PubMed

    Azami, Sanaz Jafarpour; Amani, Amir; Keshavarz, Hossein; Najafi-Taher, Roqya; Mohebali, Mehdi; Faramarzi, Mohammad Ali; Mahmoudi, Mahmood; Shojaee, Saeedeh

    2018-05-30

    Treatment of toxoplasmosis is necessary in congenital form and immunocompromised patients. Atovaquone is a powerful suppressor of protozoan parasites with a broad-spectrum activity, but an extremely low water solubility and bioavailability. In this study, nanoemulsion of this drug was prepared with grape seed oil using spontaneous emulsification method to increase bioavailability and efficacy of atovaquone for treatment of toxoplasmosis. In vitro activity of atovaquone nanoemulsion against T. gondii, RH and Tehran strains, was assessed in HeLa cell culture. For in vivo assessment, BALB/c mice were infected with RH and Tehran strains and then treated with nanoemulsion of atovaquone, compared to that treated with free atovaquone. Concentration of atovaquone nanoemulsion showed in vitro anti-parasitic effects in both strains of T. gondii. Furthermore, oral administration of atovaquone nanoemulsion increased oral bioavailability, tissue distribution and mice survival time and reduced parasitemia and number and size of the brain cysts. Decrease of cyst numbers was verified by down regulation of BAG1 using real-time polymerase chain reaction (real-time PCR) assay. Effective therapeutic activity of atovaquone at a reduced dose is the major achievement of this study. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Nanoemulsion-based delivery systems for polyunsaturated (ω-3) oils: formation using a spontaneous emulsification method.

    PubMed

    Gulotta, Alessandro; Saberi, Amir Hossein; Nicoli, Maria Cristina; McClements, David Julian

    2014-02-19

    Nanoemulsion-based delivery systems are finding increasing utilization to encapsulate lipophilic bioactive components in food, personal care, cosmetic, and pharmaceutical applications. In this study, a spontaneous emulsification method was used to fabricate nanoemulsions from polyunsaturated (ω-3) oils, that is, fish oil. This low-energy method relies on formation of fine oil droplets when an oil/surfactant mixture is added to an aqueous solution. The influence of surfactant-to-oil ratio (SOR), oil composition (lemon oil and MCT), and cosolvent composition (glycerol, ethanol, propylene glycol, and water) on the formation and stability of the systems was determined. Optically transparent nanoemulsions could be formed by controlling SOR, oil composition, and aqueous phase composition. The spontaneous emulsification method therefore has considerable potential for fabricating nanoemulsion-based delivery systems for incorporating polyunsatured oils into clear food, personal care, and pharmaceutical products.

  20. Long-term stability of sodium caseinate-stabilized nanoemulsions.

    PubMed

    Yerramilli, Manispuritha; Ghosh, Supratim

    2017-01-01

    Oil-in-water (5 wt%) nanoemulsions were prepared with different concentration (2.5-10 wt%) of sodium caseinate as a sole emulsifier and their long-term storage stability was investigated for 6 months. Previous studies associated with sodium caseinate looked only into nanoemulsion formation; hence the challenges with long-term stability were not addressed. All nanoemulsions displayed an average droplet size <200 nm, which remained unchanged over 6 months. However, all of them displayed rapid creaming due to unabsorbed protein induced depletion flocculation, whose extent increased with protein concentration, although the cream layer formed was weak and re-dispersible upon gentle mixing. Microstructural analysis of the cream layer showed compaction of flocculated nanodroplet network with time leaving the aqueous phase out. Calculation of depletion interaction energy showed an increase in inter-droplet attraction with protein concentration and decrease with a reduction in droplet size, making the nanoemulsions more resistant to flocculation than conventional emulsions. This work aids in understanding the dependence of protein concentration on long-term stability of sodium caseinate-stabilized nanoemulsions.

  1. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil.

    PubMed

    Lu, Wen-Chien; Huang, Da-Wei; Wang, Chiun-C R; Yeh, Ching-Hua; Tsai, Jen-Chieh; Huang, Yu-Ting; Li, Po-Hsien

    2018-01-01

    Citral is a typical essential oil used in the food, cosmetic, and drug industries and has shown antimicrobial activity against microorganisms. Citral is unstable and hydrophobic under normal storage conditions, so it can easily lose its bactericide activity. Nanoemulsion technology is an excellent way to hydrophilize, microencapsulate, and protect this compound. In our studies, we used a mixed surfactant to form citral-in-water nanoemulsions, and attempted to optimize the formula for preparing nanoemulsions. Citral-in-water nanoemulsions formed at S o 0.4 to 0.6 and ultrasonic power of 18 W for 120 seconds resulted in a droplet size of < 100 nm for nanoemulsions. The observed antimicrobial activities were significantly affected by the formulation of the nanoemulsions. The observed relationship between the formulation and activity can lead to the rational design of nanoemulsion-based delivery systems for essential oils, based on the desired function of antimicrobials in the food, cosmetics, and agrochemical industries. Copyright © 2017. Published by Elsevier B.V.

  2. Nanoemulsions: a new vehicle for skincare products.

    PubMed

    Sonneville-Aubrun, O; Simonnet, J-T; L'Alloret, F

    2004-05-20

    Nanoemulsions consist in very fine oil-in-water dispersions, having droplet diameter smaller than 100 nm. Compared to microemulsions, they are in a metastable state, and their structure depends on the history of the system. In the present work, nanoemulsions were prepared with a high shear device, which is less constraining than spontaneous emulsification procedures. Nanoemulsions are very fragile systems by nature. As they are transparent, the slightest sign of destabilisation appears visually. Two major sources of unstability were identified and extensively studied: Ostwald ripening and depletion induced floculation following the addition of thickening polymers. The control of these two mechanisms allowed the industrial production of a large variety of cosmetic products, from water-like fluids, to ringing gels obtained by increasing the oil phase content or by adding polymers. The nanoemulsions are easily valued in skin care due to their good sensorial properties (rapid penetration, merging textures) and their biophysical properties (especially their hydrating power).

  3. Microencapsulation of nanoemulsions: novel Trojan particles for bioactive lipid molecule delivery.

    PubMed

    Li, Xiang; Anton, Nicolas; Ta, Thi Minh Chau; Zhao, Minjie; Messaddeq, Nadia; Vandamme, Thierry F

    2011-01-01

    Nanoemulsions consist of very stable nanodroplets of oil dispersed in an aqueous phase, typically below 300 nm in size. They can be used to obtain a very fine, homogeneous dispersion of lipophilic compounds in water, thus facilitating their handling and use in nanomedicine. However, the drawback is that they are suspended in an aqueous media. This study proposes a novel technique for drying lipid nanoemulsion suspensions to create so-called Trojan particles, ie, polymer microparticles (around 2 μm) which very homogeneously "entrap" the nano-oil droplets (around 150 nm) in their core. Microencapsulation of the nanoemulsions was performed using a spray-drying process and resulted in a dried powder of microparticles. By using a low-energy nanoemulsification method and relatively gentle spray-drying, the process was well suited to sensitive molecules. The model lipophilic molecule tested was vitamin E acetate, encapsulated at around 20% in dried powder. We showed that the presence of nanoemulsions in solution before spray-drying had a significant impact on microparticle size, distribution, and morphology. However, the process itself did not destroy the oil nanodroplets, which could easily be redispersed when the powder was put back in contact with water. High-performance liquid chromatography follow-up of the integrity of the vitamin E acetate showed that the molecules were intact throughout the process, as well as when conserved in their dried form. This study proposes a novel technique using a spray-drying process to microencapsulate nanoemulsions. The multiscale object formed, so-called Trojan microparticles, were shown to successfully encapsulate, protect, and release the lipid nanodroplets.

  4. Mathematical Modeling and Experimental Validation of Nanoemulsion-Based Drug Transport across Cellular Barriers.

    PubMed

    Kadakia, Ekta; Shah, Lipa; Amiji, Mansoor M

    2017-07-01

    Nanoemulsions have shown potential in delivering drug across epithelial and endothelial cell barriers, which express efflux transporters. However, their transport mechanisms are not entirely understood. Our goal was to investigate the cellular permeability of nanoemulsion-encapsulated drugs and apply mathematical modeling to elucidate transport mechanisms and sensitive nanoemulsion attributes. Transport studies were performed in Caco-2 cells, using fish oil nanoemulsions and a model substrate, rhodamine-123. Permeability data was modeled using a semi-mechanistic approach, capturing the following cellular processes: endocytotic uptake of the nanoemulsion, release of rhodamine-123 from the nanoemulsion, efflux and passive permeability of rhodamine-123 in aqueous solution. Nanoemulsions not only improved the permeability of rhodamine-123, but were also less sensitive to efflux transporters. The model captured bidirectional permeability results and identified sensitive processes, such as the release of the nanoemulsion-encapsulated drug and cellular uptake of the nanoemulsion. Mathematical description of cellular processes, improved our understanding of transport mechanisms, such as nanoemulsions don't inhibit efflux to improve drug permeability. Instead, their endocytotic uptake, results in higher intracellular drug concentrations, thereby increasing the concentration gradient and transcellular permeability across biological barriers. Modeling results indicated optimizing nanoemulsion attributes like the droplet size and intracellular drug release rate, may further improve drug permeability.

  5. Preparation, characterization and bioavailability by oral administration of O/W curcumin nanoemulsions stabilized with lysophosphatidylcholine.

    PubMed

    Chávez-Zamudio, Rubi; Ochoa-Flores, Angélica A; Soto-Rodríguez, Ida; Garcia-Varela, Rebeca; García, Hugo Sergio

    2017-09-20

    Curcumin is the main and most abundant bioactive component in Curcuma longa L. with documented properties in the prevention and treatment of chronic degenerative and infectious diseases. However, curcumin has low solubility in aqueous media, hence low bioavailability when administered orally. The use of nanoemulsions as carriers can provide a partial solution to bioavailability restrictions. In our study, O/W nanoemulsions of curcumin were prepared using lysophosphatidylcholine, a phospholipid with proven emulsification capacity; nevertheless, such qualities have not been previously reported in the preparation of nanoemulsions. Lysophosphatidylcholine was obtained by enzymatic removal of one fatty acid residue from phosphatidylcholine. The objective of our work was to formulate stable curcumin nanoemulsions and evaluate their bioavailability in BALB/c mice plasma after oral administration. Formulated nanoemulsions had a droplet size mean of 154.32 ± 3.10 nm, a polydispersity index of 0.34 ± 0.07 and zeta potential of -10.43 ± 1.10 mV; stability was monitored for 12 weeks. Lastly, in vivo pharmacokinetic parameters, using BALB/c mice, were obtained; namely, C max of 610 ± 65.0 μg mL -1 and T max of 2 h. Pharmacokinetic data revealed a higher bioavailability of emulsified as opposed to free curcumin. Research regarding other potential emulsifiers that may provide better health benefits and carry nano-encapsulated bioactive compounds more effectively, is necessary. This study provides important data on the preparation and design of nanoencapsulated Curcumin using lysophosphatidylcholine as an emulsifier.

  6. Development and stability evaluation of olive oil nanoemulsion using sucrose monoester laurate

    NASA Astrophysics Data System (ADS)

    Eid, Ahmad M. M.; Baie, Saringat Haji; Arafat, Osama

    2012-11-01

    Nanoemulsion is a type of emulsion that consists of fine oil-in-water dispersions, with the droplets covering the size range of 20-200 nm. It can be achieved through emulsification process. One of the processes is through low energy emulsification method. Olive oil was chosen in this study due to its efficiency in treating skin problem. Olive oil nanophase gel (NPG) formulations were performed through various ratios of olive oil, sucrose laurate and glycerin. The particle sizes and stability of the prepared olive oil nanophase gel were evaluated and the optimal formulation was then selected for the development of olive oil nanoemulsion. This study proved that the composition of oil and surfactant play an important roles in influencing the nanophase gel droplet size. Nanophase gels containing olive oil in the concentration of 50 and 60 % show good stability at 4 °C and room temperature while it was less stable at 40 °C. Olive oil nanophase gels in the concentration of 50 % and 60 % with sucrose laurate 25 % in each formulation were good candidates to prepare nanoemulsion because they have the suitable droplets size and Polydispersing Index (PDI) when compared to other formulations. A mixture of NPG 50 % and water in the ratio of 40:60 and NPG 60 % and water in the ratio of 33.3:66.7 were used to produce nanoemulsions containing 20 % of oil with negative values of zeta potential (>60) which indicate the good stability of the nanoemulsions.

  7. Edible Nanoemulsions as Carriers of Active Ingredients: A Review.

    PubMed

    Salvia-Trujillo, Laura; Soliva-Fortuny, Robert; Rojas-Graü, M Alejandra; McClements, D Julian; Martín-Belloso, Olga

    2017-02-28

    There has been growing interest in the use of edible nanoemulsions as delivery systems for lipophilic active substances, such as oil-soluble vitamins, antimicrobials, flavors, and nutraceuticals, because of their unique physicochemical properties. Oil-in-water nanoemulsions consist of oil droplets with diameters typically between approximately 30 and 200 nm that are dispersed within an aqueous medium. The small droplet size usually leads to an improvement in stability, gravitational separation, and aggregation. Moreover, the high droplet surface area associated with the small droplet size often leads to a high reactivity with biological cells and macromolecules. As a result, lipid digestibility and bioactive bioavailability are usually higher in nanoemulsions than conventional emulsions, which is an advantage for the development of bioactive delivery systems. In this review, the most important factors affecting nanoemulsion formation and stability are highlighted, and a critical analysis of the potential benefits of using nanoemulsions in food systems is presented.

  8. Thyme oil nanoemulsions coemulsified by sodium caseinate and lecithin.

    PubMed

    Xue, Jia; Zhong, Qixin

    2014-10-08

    Many nanoemulsions are currently formulated with synthetic surfactants. The objective of the present work was to study the possibility of blending sodium caseinate (NaCas) and lecithin to prepare transparent thyme oil nanoemulsions. Thyme oil was emulsified using NaCas and soy lecithin individually or in combination at neutral pH by shear homogenization. The surfactant combination improved the oil content in transparent/translucent nanoemulsions, from 1.0% to 2.5% w/v for 5% NaCas with and without 1% lecithin, respectively. Nanoemulsions prepared with the NaCas-lecithin blend had hydrodynamic diameters smaller than 100 nm and had significantly smaller and more narrowly distributed droplets than those prepared with NaCas or lecithin alone. Particle dimension and protein surface load data suggested the coadsorption of both surfactants on oil droplets. These characteristics of nanoemulsions minimized destabilization mechanisms of creaming, coalescence, and Ostwald ripening, as evidenced by no significant changes in appearance and particle dimension after 120-day storage at 21 °C.

  9. Two-color fluorescent (near-infrared and visible) triphasic perfluorocarbon nanoemulsions

    PubMed Central

    Patel, Sravan Kumar; Patrick, Michael J.; Pollock, John A.

    2013-01-01

    Abstract. Design and development of a new formulation as a unique assembly of distinct fluorescent reporters with nonoverlapping fluorescence spectra and a F19 magnetic resonance imaging agent into colloidally and optically stable triphasic nanoemulsion are reported. Specifically, a cyanine dye-perfluorocarbon (PFC) conjugate was introduced into the PFC phase of the nanoemulsion and a near-infrared dye was introduced into the hydrocarbon (HC) layer. To the best of our knowledge, this is the first report of a triphasic nanoemulsion system where each oil phase, HC, and PFC are fluorescently labeled and formulated into an optically and colloidally stable nanosystem. Having, each oil phase separately labeled by a fluorescent dye allows for improved correlation between in vivo imaging and histological data. Further, dual fluorescent labeling can improve intracellular tracking of the nanodroplets and help assess the fate of the nanoemulsion in biologically relevant media. The nanoemulsions were produced by high shear processing (microfluidization) and stabilized with biocompatible nonionic surfactants resulting in mono-modal size distribution with average droplet size less than 200 nm. Nanoemulsions demonstrate excellent colloidal stability and only moderate changes in the fluorescence signal for both dyes. Confocal fluorescence microscopy of macrophages exposed to nanoemulsions shows the presence of both fluorescence agents in the cytoplasm. PMID:23912666

  10. Quetiapine Nanoemulsion for Intranasal Drug Delivery: Evaluation of Brain-Targeting Efficiency.

    PubMed

    Boche, Mithila; Pokharkar, Varsha

    2017-04-01

    To evaluate the possibility of improved drug delivery of quetiapine fumarate (QTP), a nanoemulsion system was developed for intranasal delivery. Effects of different HLBs of Emalex LWIS 10, PEG 400 and Transcutol P, as co-surfactants, were studied on isotropic region of pseudoternary-phase diagrams of nanoemulsion system composed of capmul MCM (CPM) as oil phase, Tween 80 as surfactant and water. Phase behaviour, globule size, transmission electron microscope (TEM) photographs and brain-targeting efficiency of quetiapine nanoemulsion were investigated. In vitro dissolution study of optimised nanoemulsion formulation, with mean diameter 144 ± 0.5 nm, showed more than twofold increase in drug release as compared with pure drug. According to results of in vivo tissue distribution study in Wistar rats, intranasal administration of QTP-loaded nanoemulsion had shorter T max compared with that of intravenous administration. Higher drug transport efficiency (DTE%) and direct nose-to-brain drug transport (DTP%) was achieved by nanoemulsion. The nanoemulsion system may be a promising strategy for brain-targeted delivery of QTP.

  11. β-lactoglobulin stabilized nanemulsions--Formulation and process factors affecting droplet size and nanoemulsion stability.

    PubMed

    Ali, Ali; Mekhloufi, Ghozlene; Huang, Nicolas; Agnely, Florence

    2016-03-16

    To avoid the toxicological concerns associated to synthetic surfactants, proteins might be an alternative for the stabilization of pharmaceutical nanoemulsions. The present study investigates the use of β-lactoglobulin (β-lg) to stabilize oil in water biocompatible nanoemulsions intended for a pharmaceutical use and prepared by high pressure homogenization (HPH). The effects of composition (nature and weight fraction of oil, β-lg concentration) and of process parameters (pressure and number of cycles) on the droplet size and on the stability of nanoemulsions were thoroughly assessed. The nanoemulsions prepared with β-lg at 1 wt% and with 5 wt% Miglyol 812 (the oil with the lowest viscosity) displayed a relatively small particle size (about 200 nm) and a low polydispersity when a homogenization pressure of 100 MPa was applied for 4 cycles. These nanoemulsions were the most stable formulations over 30 days at least. Emulsification efficiency of β-lg was reduced at higher homogenization pressures (200 MPa and 300 MPa). The effect of HPH process on the interfacial properties of β-lg was evaluated by drop shape analysis. This treatment had an effect neither on the interfacial tension nor on the interfacial dilatational rheology of β-lg at the Miglyol 812/water interface. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Soy Protein Isolate-Phosphatidylcholine Nanoemulsions Prepared Using High-Pressure Homogenization

    PubMed Central

    Li, Yang; Liu, Jun; Zhu, Ying; Zhang, Xiao-Yuan; Jiang, Lian-Zhou; Qi, Bao-Kun; Zhang, Xiao-Nan; Wang, Zhong-Jiang; Teng, Fei

    2018-01-01

    The nanoemulsions of soy protein isolate-phosphatidylcholine (SPI-PC) with different emulsion conditions were studied. Homogenization pressure and homogenization cycle times were varied, along with SPI and PC concentration. Evaluations included turbidity, particle size, ζ-potential, particle distribution index, and turbiscan stability index (TSI). The nanoemulsions had the best stability when SPI was at 1.5%, PC was at 0.22%, the homogenization pressure was 100 MPa and homogenization was performed 4 times. The average particle size of the SPI-PC nanoemulsions was 217 nm, the TSI was 3.02 and the emulsification yield was 93.4% of nanoemulsions. PMID:29735918

  13. Soy Protein Isolate-Phosphatidylcholine Nanoemulsions Prepared Using High-Pressure Homogenization.

    PubMed

    Li, Yang; Wu, Chang-Ling; Liu, Jun; Zhu, Ying; Zhang, Xiao-Yuan; Jiang, Lian-Zhou; Qi, Bao-Kun; Zhang, Xiao-Nan; Wang, Zhong-Jiang; Teng, Fei

    2018-05-07

    The nanoemulsions of soy protein isolate-phosphatidylcholine (SPI-PC) with different emulsion conditions were studied. Homogenization pressure and homogenization cycle times were varied, along with SPI and PC concentration. Evaluations included turbidity, particle size, ζ-potential, particle distribution index, and turbiscan stability index (TSI). The nanoemulsions had the best stability when SPI was at 1.5%, PC was at 0.22%, the homogenization pressure was 100 MPa and homogenization was performed 4 times. The average particle size of the SPI-PC nanoemulsions was 217 nm, the TSI was 3.02 and the emulsification yield was 93.4% of nanoemulsions.

  14. Development of an insecticidal nanoemulsion with Manilkara subsericea (Sapotaceae) extract

    PubMed Central

    2014-01-01

    Background Plants have been recognized as a good source of insecticidal agents, since they are able to produce their own defensives to insect attack. Moreover, there is a growing concern worldwide to develop pesticides with low impact to environment and non-target organisms. Hexane-soluble fraction from ethanolic crude extract from fruits of Manilkara subsericea and its triterpenes were considered active against a cotton pest (Dysdercus peruvianus). Several natural products with insecticidal activity have poor water solubility, including triterpenes, and nanotechnology has emerged as a good alternative to solve this main problem. On this context, the aim of the present study was to develop an insecticidal nanoemulsion containing apolar fraction from fruits of Manilkara subsericea. Results It was obtained a formulation constituted by 5% of oil (octyldodecyl myristate), 5% of surfactants (sorbitan monooleate/polysorbate 80), 5% of apolar fraction from M. subsericea and 85% of water. Analysis of mean droplet diameter (155.2 ± 3.8 nm) confirmed this formulation as a nanoemulsion. It was able to induce mortality in D. peruvianus. It was observed no effect against acetylcholinesterase or mortality in mice induced by the formulation, suggesting the safety of this nanoemulsion for non-target organisms. Conclusions The present study suggests that the obtained O/A nanoemulsion may be useful to enhance water solubility of poor water soluble natural products with insecticidal activity, including the hexane-soluble fraction from ethanolic crude extract from fruits of Manilkara subsericea. PMID:24886215

  15. Microencapsulation of nanoemulsions: novel Trojan particles for bioactive lipid molecule delivery

    PubMed Central

    Li, Xiang; Anton, Nicolas; Ta, Thi Minh Chau; Zhao, Minjie; Messaddeq, Nadia; Vandamme, Thierry F

    2011-01-01

    Background Nanoemulsions consist of very stable nanodroplets of oil dispersed in an aqueous phase, typically below 300 nm in size. They can be used to obtain a very fine, homogeneous dispersion of lipophilic compounds in water, thus facilitating their handling and use in nanomedicine. However, the drawback is that they are suspended in an aqueous media. This study proposes a novel technique for drying lipid nanoemulsion suspensions to create so-called Trojan particles, ie, polymer microparticles (around 2 μm) which very homogeneously “entrap” the nano-oil droplets (around 150 nm) in their core. Methods Microencapsulation of the nanoemulsions was performed using a spray-drying process and resulted in a dried powder of microparticles. By using a low-energy nanoemulsification method and relatively gentle spray-drying, the process was well suited to sensitive molecules. The model lipophilic molecule tested was vitamin E acetate, encapsulated at around 20% in dried powder. Results We showed that the presence of nanoemulsions in solution before spray-drying had a significant impact on microparticle size, distribution, and morphology. However, the process itself did not destroy the oil nanodroplets, which could easily be redispersed when the powder was put back in contact with water. High-performance liquid chromatography follow-up of the integrity of the vitamin E acetate showed that the molecules were intact throughout the process, as well as when conserved in their dried form. Conclusion This study proposes a novel technique using a spray-drying process to microencapsulate nanoemulsions. The multiscale object formed, so-called Trojan microparticles, were shown to successfully encapsulate, protect, and release the lipid nanodroplets. PMID:21760727

  16. Nutraceutical delivery systems: resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification.

    PubMed

    Davidov-Pardo, Gabriel; McClements, David Julian

    2015-01-15

    The aim of this work was to fabricate nanoemulsions-based delivery systems to encapsulate resveratrol. Nanoemulsions were formed using spontaneous emulsification method: 10% oil phase (grape seed oil plus orange oil) and 10% surfactant (Tween 80) were titrated into 80% aqueous phase. An optimum orange oil-to-grape seed oil ratio of 1:1(w/w) formed small droplets (d ≈ 100 nm) with good stability to droplet growth. The maximum amount of resveratrol that could be dissolved in the oil phase was 120 ± 10 μg/ml. The effect of droplet size on the chemical stability of encapsulated resveratrol was examined by preparing systems with different mean droplet diameters of 220 ± 2; 99 ± 3; and 45 ± 0.4 nm. Encapsulation of resveratrol improved its chemical stability after exposure to UV-light: 88% retention in nanoemulsions compared to 50% in dimethylsulphoxide (DMSO). This study showed that resveratrol could be encapsulated within low-energy nanoemulsion-based delivery systems and protected against degradation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. [Preparation and characterization of nanoemulsion].

    PubMed

    Sun, Yu-Jing; Wu, Dao-Cheng; Cao, Yun-Xin; Sui, Yan-Fang

    2005-01-01

    To prepare nanoemulsion-encapsulated BSA-FITC (NEBSA-FITC), study its characteristics, and measure its uptake by dendritic cells (DCs) and peritoneal macrophages. NEBSA-FITC was prepared by a method of interfacial polymerization.The encapsulation rate, drug-carrying capacity and stability of the nanoemulsion were determined by Sephadex-G100 chromatography. The shape and size of NEBSA-FITC were observed under electron microscope. The uptake of NEBSA-FITC by DCs and macrophage cells was detected by FACS and laser confocal microscopy. The mean size of NEBSA-FITC was (25+/-10) nm. The encapsulation rate was 91%, the drug-carrying capacity was 0.091 g/L and NEBSA-FITC had a good stability. The FACS analysis showed that DCs and macrophage cells could take in more NEBSA-FITC than free BSA. The observation under laser confocal microscope found that NEBSA-FITC was located in the cytoplasm of DCs. Nanoemulsion can be efficiently taken by DCs and macrophage cells, and therefore may be promising efficient carrier of APCs-targeted antitumor vaccine.

  18. Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging

    PubMed Central

    Kislukhin, Alexander A.; Xu, Hongyan; Adams, Stephen R.; Narsinh, Kazim H.; Tsien, Roger Y.; Ahrens, Eric T.

    2016-01-01

    Fluorine-19 magnetic resonance imaging (19F MRI) probes enable quantitative in vivo detection of cell therapies and inflammatory cells. Here, we describe the formulation of perfluorocarbon-based nanoemulsions with improved sensitivity for cellular MRI. Reduction of the 19F spin-lattice relaxation time (T1) enables rapid imaging and an improved signal-to-noise ratio, thereby improving cell detection sensitivity. We synthesized metal-binding β-diketones conjugated to linear perfluoropolyether (PFPE), formulated these fluorinated ligands as aqueous nanoemulsions, and then metalated them with various transition and lanthanide ions in the fluorous phase. Iron(III) tris-β-diketonate ('FETRIS') nanoemulsions with PFPE have low cytotoxicity (<20%) and superior MRI properties. Moreover, the 19F T1 can readily be reduced by an order of magnitude and tuned by stoichiometric modulation of the iron concentration. The resulting 19F MRI detection sensitivity is enhanced by 3-to-5 fold over previously used tracers at 11.7 T, and is predicted to increase by at least 8-fold at clinical field strength of 3 T. PMID:26974409

  19. Effects of a nanoemulsion with Copaifera officinalis oleoresin against monogenean parasites of Colossoma macropomum: A Neotropical Serrasalmidae.

    PubMed

    Valentim, D S S; Duarte, J L; Oliveira, A E M F M; Cruz, R A S; Carvalho, J C T; Solans, C; Fernandes, C P; Tavares-Dias, M

    2018-05-16

    Monogeneans are ectoparasites that may cause losses in production and productivity in the aquaculture of Colossoma macropomum. Chemotherapeutics used in aquaculture usually have major adverse effects on fish; hence, the use of essential oils has been considered advantageous, but these are not soluble in water. Thus, the use of nanostructures to enhance water solubility of compounds and improve bioactivity may be very promising. This study investigated the antiparasitic activity of nanoemulsion prepared with Copaifera officinalis oleoresin (50, 100, 150, 200 and 300 mg/L), against monogenean parasites from the gills of C. macropomum. The particle size distribution and zeta potential suggested that a potentially kinetic stable system was generated. The nanoemulsion from C. officinalis oleoresin achieved high efficacy (100%) at low concentrations (200 and 300 mg/L) after 15 min of exposure. This was the first time that a nanoemulsion was generated from C. officinalis oleoresin using a solvent-free, non-heating and low-energy method. Moreover, this was the first time that an antiparasitic against monogeneans on fish gills, based on nanoemulsion of C. officinalis oleoresin, was tested. © 2018 John Wiley & Sons Ltd.

  20. Nano-emulsions as vehicles for topical delivery of forskolin.

    PubMed

    Miastkowska, Małgorzata; Sikora, Elżbieta; Lasoń, Elwira; Garcia-Celma, Maria Jose; Escribano-Ferrer, Elvira; Solans, Conxita; Llinas, Meritxell

    2017-01-01

    Two O/W forskolin-loaded nano-emulsions (0.075% wt.) based on medium chain triglycerides (MCT) and stabilized by a nonionic surfactant (Polysorbate 80 or Polysorbate 40) were studied as forskolin delivery systems. The nano-emulsions were prepared by the PIC method. The mean droplet size of the nano-emulsions with Polysorbate 80 and Polysorbate 40 with oil/surfactant (O/S) ratios of 20/80 and 80% water concentration, measured by Dynamic Light Scattering (DLS), was of 118 nm and 111 nm, respectively. Stability of the formulations, as assessed by light backscattering for 24 h, showed that both nano-emulsions were stable at 25°C. Studies of forskolin in vitro skin permeation from the nano-emulsions and from a triglyceride solution were carried out at 32°C, using Franz-type diffusion cells. A mixture of PBS/ethanol (60/40 v/v) was used as a receptor solution. The highest flux and permeability coefficient was obtained for the system stabilized with Polysorbate 80 (6.91±0.75 µg · cm -2 ·h -1 and 9.21 · 10 -3 ±1.00 · 10 -3 cm · h -1 , respectively) but no significant differences were observed with the flux and permeability coefficient value of forskolin dissolved in oil. The obtained results showed that the nano-emulsions developed in this study could be used as effective carriers for topical administration of forskolin.

  1. EGFR Targeted Theranostic Nanoemulsion For Image-Guided Ovarian Cancer Therapy

    PubMed Central

    Ganta, Srinivas; Singh, Amit; Kulkarni, Praveen; Keeler, Amanda W.; Piroyan, Aleksandr; Sawant, Rupa R.; Patel, Niravkumar R.; Davis, Barbara; Ferris, Craig; O’Neal, Sara; Zamboni, William; Amiji, Mansoor M.; Coleman, Timothy P.

    2015-01-01

    Purpose Platinum-based therapies are the first line treatments for most types of cancer including ovarian cancer. However, their use is associated with dose-limiting toxicities and resistance. We report initial translational studies of a theranostic nanoemulsion loaded with a cisplatin derivative, myrisplatin and pro-apoptotic agent, C6-ceramide. Methods The surface of the nanoemulsion is annotated with an endothelial growth factor receptor (EGFR) binding peptide to improve targeting ability and gadolinium to provide diagnostic capability for image-guided therapy of EGFR overexpressing ovarian cancers. A high shear microfludization process was employed to produce the formulation with particle size below 150 nm. Results Pharmacokinetic study showed a prolonged blood platinum and gadolinium levels with nanoemulsions in nu/nu mice. The theranostic nanoemulsions also exhibited less toxicity and enhanced the survival time of mice as compared to an equivalent cisplatin treatment. Conclusions Magnetic resonance imaging (MRI) studies indicate the theranostic nanoemulsions were effective contrast agents and could be used to track accumulation in a tumor. The MRI study additionally indicate that significantly more EGFR-targeted theranostic nanoemulsion accumulated in a tumor than non-targeted nanoemulsuion providing the feasibility of using a targeted theranostic agent in conjunction with MRI to image disease loci and quantify the disease progression. PMID:25732960

  2. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion

    PubMed Central

    Shakeel, Faiyaz; Baboota, Sanjula; Ahuja, Alka; Ali, Javed; Shafiq, Sheikh

    2008-01-01

    Background Celecoxib, a selective cyclo-oxygenase-2 inhibitor has been recommended orally for the treatment of arthritis and osteoarthritis. Long term oral administration of celecoxib produces serious gastrointestinal side effects. It is a highly lipophilic, poorly soluble drug with oral bioavailability of around 40% (Capsule). Therefore the aim of the present investigation was to assess the skin permeation mechanism and bioavailability of celecoxib by transdermally applied nanoemulsion formulation. Optimized oil-in-water nanoemulsion of celecoxib was prepared by the aqueous phase titration method. Skin permeation mechanism of celecoxib from nanoemulsion was evaluated by FTIR spectral analysis, DSC thermogram, activation energy measurement and histopathological examination. The optimized nanoemulsion was subjected to pharmacokinetic (bioavailability) studies on Wistar male rats. Results FTIR spectra and DSC thermogram of skin treated with nanoemulsion indicated that permeation occurred due to the disruption of lipid bilayers by nanoemulsion. The significant decrease in activation energy (2.373 kcal/mol) for celecoxib permeation across rat skin indicated that the stratum corneum lipid bilayers were significantly disrupted (p < 0.05). Photomicrograph of skin sample showed the disruption of lipid bilayers as distinct voids and empty spaces were visible in the epidermal region. The absorption of celecoxib through transdermally applied nanoemulsion and nanoemulsion gel resulted in 3.30 and 2.97 fold increase in bioavailability as compared to oral capsule formulation. Conclusion Results of skin permeation mechanism and pharmacokinetic studies indicated that the nanoemulsions can be successfully used as potential vehicles for enhancement of skin permeation and bioavailability of poorly soluble drugs. PMID:18613981

  3. Size-dependent penetration of nanoemulsions into epidermis and hair follicles: implications for transdermal delivery and immunization

    PubMed Central

    Su, Rui; Fan, Wufa; Yu, Qin; Dong, Xiaochun; Qi, Jianping; Zhu, Quangang; Zhao, Weili; Wu, Wei; Chen, Zhongjian; Li, Ye; Lu, Yi

    2017-01-01

    Nanoemulsions have been widely applied to dermal and transdermal drug delivery. However, whether and to what depth the integral nanoemulsions can permeate into the skin is not fully understood. In this study, an environment-responsive dye, P4, was loaded into nanoemulsions to track the transdermal translocation of the nanocarriers, while coumarin-6 was embedded to represent the cargoes. Particle size has great effects on the transdermal transportation of nanoemulsions. Integral nanoemulsions with particle size of 80 nm can diffuse into but not penetrate the viable epidermis. Instead, these nanoemulsions can efficiently fill the whole hair follicle canals and reach as deep as 588 μm underneath the dermal surfaces. The cargos are released from the nanoemulsions and diffuse into the surrounding dermal tissues. On the contrary, big nanoemulsions, with mean particle size of 500 nm, cannot penetrate the stratum corneum and can only migrate along the hair follicle canals. Nanoemulsions with median size, e.g. 200 nm, show moderate transdermal permeation effects among the three-size nanoemulsions. In addition, colocalization between nanoemulsions and immunofluorescence labeled antigen-presenting cells was observed in the epidermis and the hair follicles, implying possible capture of nanoemulsions by these cells. In conclusion, nanoemulsions are advantageous for transdermal delivery and potential in transcutaneous immunization. PMID:28465469

  4. Neem oil (Azadirachta indica) nanoemulsion--a potent larvicidal agent against Culex quinquefasciatus.

    PubMed

    Anjali, C H; Sharma, Yamini; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2012-02-01

    Nanoemulsion composed of neem oil and non-ionic surfactant Tween 20, with a mean droplet size ranging from 31.03 to 251.43 nm, was formulated for various concentrations of the oil and surfactant. The larvicidal effect of the formulated neem oil nanoemulsion was checked against Culex quinquefasciatus. O/W emulsion was prepared using neem oil, Tween 20 and water. Nanoemulsion of 31.03 nm size was obtained at a 1:3 ratio of oil and surfactant, and it was found to be stable. The larger droplet size (251.43 nm) shifted to a smaller size of 31.03 nm with increase in the concentration of Tween 20. The viscosity of the nanoemulsion increased with increasing concentration of Tween 20. The lethal concentration (LC50) of the nanoemulsion against Cx. quinquefasciatus was checked for 1:0.30, 1:1.5 and 1:3 ratios of oil and surfactant respectively. The LC50 decreased with droplet size. The LC50 for the ratio 1:3 nanoemulsions was 11.75 mg L(-1). The formulated nanoemulsion of 31.03 nm size was found to be an effective larvicidal agent. This is the first time that a neem oil nanoemulsion of this droplet size has been reported. It may be a good choice as a potent and selective larvicide for Cx. quinquefasciatus. Copyright © 2011 Society of Chemical Industry.

  5. Physical Factors Affecting Plasmid DNA Compaction in Stearylamine-Containing Nanoemulsions Intended for Gene Delivery

    PubMed Central

    Silva, André Leandro; Júnior, Francisco Alexandrino; Verissimo, Lourena Mafra; Agnez-Lima, Lucymara Fassarella; Egito, Lucila Carmem Monte; de Oliveira, Anselmo Gomes; do Egito, Eryvaldo Socrates Tabosa

    2012-01-01

    Cationic lipids have been used in the development of non-viral gene delivery systems as lipoplexes. Stearylamine, a cationic lipid that presents a primary amine group when in solution, is able to compact genetic material by electrostatic interactions. In dispersed systems such as nanoemulsions this lipid anchors on the oil/water interface confering a positive charge to them. The aim of this work was to evaluate factors that influence DNA compaction in cationic nanoemulsions containing stearylamine. The influence of the stearylamine incorporation phase (water or oil), time of complexation, and different incubation temperatures were studied. The complexation rate was assessed by electrophoresis migration on agarose gel 0.7%, and nanoemulsion and lipoplex characterization was done by Dynamic Light Scattering (DLS). The results demonstrate that the best DNA compaction process occurs after 120 min of complexation, at low temperature (4 ± 1 °C), and after incorporation of the cationic lipid into the aqueous phase. Although the zeta potential of lipoplexes was lower than the results found for basic nanoemulsions, the granulometry did not change. Moreover, it was demonstrated that lipoplexes are suitable vehicles for gene delivery. PMID:24281666

  6. Studies on the formation of polymeric nano-emulsions obtained via low-energy emulsification and their use as templates for drug delivery nanoparticle dispersions.

    PubMed

    Calderó, G; Montes, R; Llinàs, M; García-Celma, M J; Porras, M; Solans, C

    2016-09-01

    Ethylcellulose nanoparticles have been obtained from O/W nano-emulsions of the water/polyoxyethylene 10 oleyl ether/[ethyl acetate+4wt% ethylcellulose] system by low energy-energy emulsification at 25°C. Nano-emulsions with droplet sizes below 200nm and high kinetic stability were chosen for solubilising dexamethasone (DXM). Phase behaviour, conductivity and optical analysis studies of the system have evidenced for the first time that both, the polymer and the drug play a role on the structure of the aggregates formed along the emulsification path. Nano-emulsion formation may take place by both, phase inversion and self-emulsification. Spherical polymeric nanoparticles containing surfactant, showing sizes below 160nm have been obtained from the nano-emulsions by organic solvent evaporation. DXM loading in the nanoparticles was high (>90%). The release kinetics of nanoparticle dispersions with similar particle size and encapsulated DXM but different polymer to surfactant ratio were studied and compared to an aqueous DXM solution. Drug release from the nanoparticle dispersions was slower than from the aqueous solution. While the DXM solution showed a Fickian release pattern, the release behaviour from the nanoparticle dispersions was faster than that expected from a pure Fickian release. A coupled diffusion/relaxation model fitted the results very well, suggesting that polymer chains undergo conformational changes enhancing drug release. The contribution of diffusion and relaxation to drug transport in the nanoparticle dispersions depended on their composition and release time. Surfactant micelles present in the nanoparticle dispersion may exert a mild reservoir effect. The small particle size and the prolonged DXM release provided by the ethylcellulose nanoparticle dispersions make them suitable vehicles for controlled drug delivery applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Development and characterization of parenteral nanoemulsions containing thalidomide.

    PubMed

    Araújo, F A; Kelmann, R G; Araújo, B V; Finatto, R B; Teixeira, H F; Koester, L S

    2011-02-14

    This study reports the development of nanoemulsions intended for intravenous administration of thalidomide (THD). The formulations were prepared by spontaneous emulsification method and optimized with respect to thalidomide (0.01-0.05%, w/w), and hydrophilic emulsifier (polysorbate 80; 0.5-4.0%, w/w) content. The formulations were evaluated concerning physical appearance and drug crystallization; droplet size; zeta potential and drug assay. Only the formulation containing 0.01% THD and 0.5% polysorbate kept its properties in a satisfactory range over the evaluated period (60 days), i.e. droplet size around 200nm, drug content around 95% and zeta potential around -30mV. The transmission electron microscopy revealed emulsion droplets almost spherical in shape confirming the results obtained by photon correlation spectroscopy. Drug crystallization observed for higher content (THD 0.05%, w/w) nanoemulsions was investigated. The crystals observed at optical microscopy presented a different crystal habit compared to that of the raw material used. It was speculated whether the kind of THD polymorph employed could influence nanoemulsion formulation. Formulations were prepared with either one of THD polymorphs (β- or α-) and crystals were characterized by fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction (XRD). It was observed that regardless of the polymorph employed (β- or α-), drug crystallization occurs in the α-form. THD solubility in oils was not influenced by the polymorphic form. In addition, the in vitro dissolution profile of the selected formulation (THD 0.01%, w/w; polysorbate 0.5%, w/w) was assessed by bulk-equilibrium reverse dialysis sac technique and demonstrated a release profile similar to that of a THD acetonitrile solution, with around 95% THD being dissolved within 4h. Finally, a pharmacokinetic simulation of an intravenous infusion of 250mL of the selected nanoemulsion suggests that the parenteral administration of a dose as

  8. Properties of active gelatin films incorporated with rutin-loaded nanoemulsions.

    PubMed

    Dammak, Ilyes; de Carvalho, Rosemary Aparecida; Trindade, Carmen Sílvia Fávaro; Lourenço, Rodrigo Vinicius; do Amaral Sobral, Paulo José

    2017-05-01

    Physico-chemical, mechanical, barrier, release profiles and antioxidant properties of composite gelatin based-films incorporated with rutin-loaded oil-in-water nanoemulsion, at various concentrations (5, 10, 15, or 20% (based on the weight of the gelatin powder)) were studied. All the gelatin/rutin-loaded nanoemulsion films displayed higher tensile strength and higher elongation at break than the gelatin control film. The composite films did not show significant differences in thickness, color, brightness and transparency. The structural properties evaluated by FTIR showed that the rutin-loaded nanoemulsion achieved complete miscibility within the gelatin matrix. All the gelatin/nanoemulsion films exhibited compact and homogenous microstructure. In addition, these films showed high antioxidant activities monitored by DPPH radical scavenging and reducing power activities. The Korsmeyer-Peppas model described well the rutin release profile. Rutin release was mainly governed by Fickian diffusion with simultaneous interfering swelling and disintegration phenomena. These results indicate that nanoemulsions-in-gelatin systems can function as potential active packaging systems to enhance shelf life of food products and then to provide a high-quality products (fresh/safe). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Reverse micelle-loaded lipid nano-emulsions: new technology for nano-encapsulation of hydrophilic materials.

    PubMed

    Anton, Nicolas; Mojzisova, Halina; Porcher, Emilien; Benoit, Jean-Pierre; Saulnier, Patrick

    2010-10-15

    This study presents novel, recently patented technology for encapsulating hydrophilic species in lipid nano-emulsions. The method is based on the phase-inversion temperature method (the so-called PIT method), which follows a low-energy and solvent-free process. The nano-emulsions formed are stable for months, and exhibit droplet sizes ranging from 10 to 200 nm. Hydrophilic model molecules of fluorescein sodium salt are encapsulated in the oily core of these nano-emulsion droplets through their solubilisation in the reverse micellar system. As a result, original, multi-scaled nano-objects are generated with a 'hydrophilic molecule in a reverse-micelles-in-oil-in-water' structure. Once fluorescein has been encapsulated it remains stable, for thermodynamic reasons, and the encapsulation yields can reach 90%. The reason why such complex objects can be formed is due to the soft method used (PIT method) which allows the conservation of the structure of the reverse micelles throughout the formulation process, up to their entrapment in the nano-emulsion droplets. In this study, we focus the investigation on the process itself, revealing its potential and limits. Since the formulation of nanocarriers for the encapsulation of hydrophilic substances still remains a challenge, this study may constitute a significant advance in this field. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Development and characterization of a new oral dapsone nanoemulsion system: permeability and in silico bioavailability studies

    PubMed Central

    Monteiro, Lidiane M; Lione, Viviane F; do Carmo, Flavia A; do Amaral, Lilian H; da Silva, Julianna H; Nasciutti, Luiz E; Rodrigues, Carlos R; Castro, Helena C; de Sousa, Valeria P; Cabral, Lucio M

    2012-01-01

    Background Dapsone is described as being active against Mycobacterium leprae, hence its role in the treatment of leprosy and related pathologies. Despite its therapeutic potential, the low solubility of dapsone in water results in low bioavailability and high microbial resistance. Nanoemulsions are pharmaceutical delivery systems derived from micellar solutions with a good capacity for improving absorption. The aim of this work was to develop and compare the permeability of a series of dapsone nanoemulsions in Caco-2 cell culture against that of effective permeability in the human body simulated using Gastroplus™ software. Methods and results The release profiles of the dapsone nanoemulsions using different combinations of surfactants and cosolvent showed a higher dissolution rate in simulated gastric and enteric fluid than did the dispersed dapsone powder. The drug release kinetics were consistent with a Higuchi model. Conclusion This comparison of dapsone permeability in Caco-2 cells with effective permeability in the human body simulated by Gastroplus showed a good correlation and indicates potential improvement in the biodisponibility of dapsone using this new system. PMID:23055729

  11. Development and characterization of a new oral dapsone nanoemulsion system: permeability and in silico bioavailability studies.

    PubMed

    Monteiro, Lidiane M; Lione, Viviane F; do Carmo, Flavia A; do Amaral, Lilian H; da Silva, Julianna H; Nasciutti, Luiz E; Rodrigues, Carlos R; Castro, Helena C; de Sousa, Valeria P; Cabral, Lucio M

    2012-01-01

    Dapsone is described as being active against Mycobacterium leprae, hence its role in the treatment of leprosy and related pathologies. Despite its therapeutic potential, the low solubility of dapsone in water results in low bioavailability and high microbial resistance. Nanoemulsions are pharmaceutical delivery systems derived from micellar solutions with a good capacity for improving absorption. The aim of this work was to develop and compare the permeability of a series of dapsone nanoemulsions in Caco-2 cell culture against that of effective permeability in the human body simulated using Gastroplus™ software. The release profiles of the dapsone nanoemulsions using different combinations of surfactants and cosolvent showed a higher dissolution rate in simulated gastric and enteric fluid than did the dispersed dapsone powder. The drug release kinetics were consistent with a Higuchi model. This comparison of dapsone permeability in Caco-2 cells with effective permeability in the human body simulated by Gastroplus showed a good correlation and indicates potential improvement in the biodisponibility of dapsone using this new system.

  12. Vitamin E loaded resveratrol nanoemulsion for brain targeting for the treatment of Parkinson’s disease by reducing oxidative stress

    NASA Astrophysics Data System (ADS)

    Pangeni, Rudra; Sharma, Shrestha; Mustafa, Gulam; Ali, Javed; Baboota, Sanjula

    2014-12-01

    Resveratrol, a potent natural antioxidant, possesses a wide range of pharmacological activities, but its oral bioavailability is very low due to its extensive hepatic and presystemic metabolism. The aim of the present study was to formulate a kinetically stable nanoemulsion (o/w) using vitamin E:sefsol (1:1) as the oil phase, Tween 80 as the surfactant and Transcutol P as the co-surfactant for the better management of Parkinson’s disease. The nanoemulsion was prepared by a spontaneous emulsification method, followed by high-pressure homogenization. Ternary phase diagrams were constructed to locate the area of nanoemulsion. The prepared formulations were studied for globule size, zeta potential, refractive index, viscosity, surface morphology and in vitro and ex vivo release. The homogenized formulation, which contained 150 mg ml-1 of resveratrol, showed spherical globules with an average globule diameter of 102 ± 1.46 nm, a least poly dispersity index of 0.158 ± 0.02 and optimal zeta potential values of -35 ± 0.02. The cumulative percentage drug release for the pre-homogenized resveratrol suspension, pre-homogenized nanoemulsion and post-homogenized nanoemulsion were 24.18 ± 2.30%, 54.32 ± 0.95% and 88.57 ± 1.92%, respectively, after 24 h. The ex vivo release also showed the cumulative percentage drug release of 85.48 ± 1.34% at 24 h. The antioxidant activity determined by using a DPPH assay showed high scavenging efficiency for the optimized formulation. Pharmacokinetic studies showed the higher concentration of the drug in the brain (brain/blood ratio: 2.86 ± 0.70) following intranasal administration of the optimized nanoemulsion. Histopathological studies showed decreased degenerative changes in the resveratrol nanoemulsion administered groups. The levels of GSH and SOD were significantly higher, and the level of MDA was significantly lower in the resveratrol nanoemulsion treated group.

  13. [Preparation of O/W ginseng saponins-based nanoemulsion and its amplified immune response].

    PubMed

    Cao, Fahao; Ouyang, Wuqing; Wang, Yanping

    2010-02-01

    To prepare an O/W ginseng saponins-based nanoemulsion and investigate its amplified immune response. The formulation of ginseng saponins-based nanoemulsion was optimized via the range of nanoemulsion zone in phase diagrams and the solubility of ginseng saponins. Its physicochemical properties were investigated, including morphology, particle size distribution, pH, viscosity and stability. Ginseng saponins-based nanoemulsion as adjuvant was co-administrated with a model antigen ovalbumin (OVA) in mice. Two weeks after the boosting, the serum levels of OVA-specific antibody and its isotypes were determined. The optimized ginseng saponins-based nanoemulsion formulation consisted of ginseng saponins, IPM, Cremophor RH 40, glycerol and water (with the weight ratio of 2 : 4 : 17.8 : 17.8 : 58.4), which was a light yellow fluid. The shape of droplets was spherical under transmission electron microscopy with an average diameter of 72.20 nm and a polydispersity index of 0.052. The viscosity and pH value of it were 4.20 s and 6.02, respectively. And it showed good stability. When co-administered with OVA, no obvious side effects were observed in the mice immunized with ginseng saponin-based nanoemulsion. The serum levels of IgG, IgG1 and IgG2a antibody in the group of ginseng saponin-based nanoemulsion immunized mice was significantly increased compared to the groups of OVA and the saline solution of ginseng saponin. Compared with the adjuvant aluminium hydroxide, the serum levels of IgG and IgG1 antibodys in the groups of ginseng saponins-based nanoemulsion had no significant difference, but the level of IgG2a was obviously higher. ginseng saponin-based nanoemulsion could amplify the Th1 and Th2 immune responses, and can be used as the vaccine adjuvant.

  14. Tunable stability of monodisperse secondary O/W nano-emulsions

    NASA Astrophysics Data System (ADS)

    Vecchione, R.; Ciotola, U.; Sagliano, A.; Bianchini, P.; Diaspro, A.; Netti, P. A.

    2014-07-01

    Stable and biodegradable oil in water (O/W) nano-emulsions can have a huge impact on a wide range of bio-applications, from food to cosmetics and pharmaceuticals. Emulsions, however, are immiscible systems unstable over time; polymer coatings are known to be helpful, but an effective procedure to stabilize monodisperse and biodegradable O/W nano-emulsions is yet to be designed. Here, we coat biodegradable O/W nano-emulsions with a molecular layer of biodegradable polyelectrolytes such as polysaccharides - like chitosan - and polypeptides - like polylysine - and effectively re-disperse and densify the polymer coating at high pressure, thus obtaining monodisperse and stable systems. In particular, focusing on chitosan, our tests show that it is possible to obtain unprecedented ultra-stable O/W secondary nano-emulsions (diameter sizes tunable from ~80 to 160 nm and polydispersion indices below 0.1) by combining this process with high concentrations of polymers. Depending on the polymer concentration, it is possible to control the level of coating that results in a tunable stability ranging from a few weeks to several months. The above range of concentrations has been investigated using a fluorescence-based approach with new insights into the coating evolution.Stable and biodegradable oil in water (O/W) nano-emulsions can have a huge impact on a wide range of bio-applications, from food to cosmetics and pharmaceuticals. Emulsions, however, are immiscible systems unstable over time; polymer coatings are known to be helpful, but an effective procedure to stabilize monodisperse and biodegradable O/W nano-emulsions is yet to be designed. Here, we coat biodegradable O/W nano-emulsions with a molecular layer of biodegradable polyelectrolytes such as polysaccharides - like chitosan - and polypeptides - like polylysine - and effectively re-disperse and densify the polymer coating at high pressure, thus obtaining monodisperse and stable systems. In particular, focusing on

  15. Characterization of corn starch-based edible film incorporated with nutmeg oil nanoemulsion

    NASA Astrophysics Data System (ADS)

    Aisyah, Y.; Irwanda, L. P.; Haryani, S.; Safriani, N.

    2018-05-01

    This study aimed to formulate corn starch-based edible films by varying concentrations of nutmeg oil nanoemulsion and glycerol. Furthermore, the resulted edible film was characterized by its mechanical properties and antibacterial activity. The edible films were made using corn starch, nutmeg oil nanoemulsion, and glycerol. Concentrations of nutmeg oil nanoemulsion were 1%, 2%, and 3%, and glycerol were 10%, 20%, and 30%. Results indicated that the increase of nutmeg oil nanoemulsion concentration could increase the film thickness. However, the nutmeg oil had no effect on the film tensile strength and elongation. Glycerol had no effect on the film tensile strength. The best treatment of the corn starch-based film was obtained by adding 1% of nutmeg oil and 30% of glycerol, yielding a tensile strength of 18.73 Kgf/mm2, elongation of 69.44% and thickness of 0.0840. The addition of 1% nutmeg oil nanoemulsion has been able to inhibit the growth of two types of the bacteria tested (Staphylococcus aureus and Escherichia coli).

  16. Nanoemulsions of thymol and eugenol co-emulsified by lauric arginate and lecithin.

    PubMed

    Ma, Qiumin; Davidson, P Michael; Zhong, Qixin

    2016-09-01

    Lauric arginate (LAE) is a cationic surfactant with excellent antimicrobial activities. To incorporate essential oil components (EOCs) in aqueous systems, properties of EOC nanoemulsions prepared with a LAE and lecithin mixture were studied. The LAE-lecithin mixture resulted in stable translucent nanoemulsions of thymol and eugenol with spherical droplets smaller than 100nm, contrasting with the turbid emulsions prepared with individual emulsifiers. Zeta-potential data suggested the formation of LAE-lecithin complexes probably through hydrophobic interaction. Negligible difference was observed for antimicrobial activities of nanoemulsions and LAE in tryptic soy broth. In 2% reduced fat milk, nanoemulsions showed similar antilisterial activities compared to free LAE in inhibiting Listeria monocytogenes, but was less effective against Escherichia coli O157:H7 than free LAE, which was correlated with the availability of LAE as observed in release kinetics. Therefore, mixing LAE with lecithin improved the physical properties of EOC nanoemulsions but did not improve antimicrobial activities, especially against Gram-negative bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Hyperosmotic nanoemulsions: Development and application of a new antimicrobial treatment for wound care

    NASA Astrophysics Data System (ADS)

    Connell, Sean

    Wound healing is the intricate process that restores function to damaged skin. The process consists of the inflammatory, proliferative and remodeling phases that orchestrate dynamic cellular responses to regenerate the cutaneous barrier. However, microbial contamination of the wound site stimulates a deleterious inflammatory response with the production of endotoxins, exotoxins and proteases that result in secondary injury. The end result is delayed healing, protracted debilitation and increased health care costs. Controlling contamination is critical for proper wound management and reduced burden on the healthcare system. Based on this concern, we developed and applied a new antimicrobial therapeutic that relies on hyperosmotic nanoemulsions (HNE). The biomechanical process consists of a high-energy nanoemulsion component that permeates the protective microbial membrane and a (ii) nonionic hyperosmoticum that facilitates intracellular water extraction to critically dehydrate the pathogen. HNE was shown to be effective against a multitude of pathogens including bacteria, antibiotic-resistant variants, fungi and viruses. Reported non-clinical studies demonstrate that the membrane disrupting nanoemulsion and hyperosmotic component act synergistically to enhance microbicidal activity. Further, results illustrate that pathogen inactivation was rapid as determined by ion and macromolecule leakage assays. Application of HNE in a pre-clinical animal model of wound healing demonstrated the treatment actively promoted healing to reduce treatment times. HNE mitigated wound infection to reduce the inflammatory response and mechanically debrided the wound to facilitate wound closure. Recent work further enhanced the stability of the nanoemulsion component with the addition of surfactant stabilizers using a low-energy spontaneous emulsification process. The refined nanoemulsion composition was stable against physical stressors and long-term storage without disrupting the

  18. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide.

    PubMed

    Morsi, Nadia; Ibrahim, Magdy; Refai, Hanan; El Sorogy, Heba

    2017-06-15

    In the present work the antiglaucoma drug, acetazolamide, was formulated as an ion induced nanoemulsion-based in situ gel for ocular delivery aiming a sustained drug release and an improved therapeutic efficacy. Different acetazolamide loaded nanoemulsion formulations were prepared using peanut oil, tween 80 and/or cremophor EL as surfactant in addition to transcutol P or propylene glycol as cosurfactant. Based on physicochemical characterization, the nanoemulsion formulation containing mixed surfactants and transcutol P was selected to be incorporated into ion induced in situ gelling systems composed of gellan gum alone and in combination with xanthan gum, HPMC or carbopol. The nanoemulsion based in situ gels showed a significantly sustained drug release in comparison to the nanoemulsion. Gellan/xanthan and gellan/HPMC possessed good stability at all studied temperatures, but gellan/carbopol showed partial drug precipitation upon storage and was therefore excluded from the study. Gellan/xanthan and gellan/HPMC showed higher therapeutic efficacy and more prolonged intraocular pressure lowering effect relative to that of commercial eye drops and oral tablet. Gellan/xanthan showed superiority over gellan/HPMC in all studied parameters and is thus considered as a promising mucoadhesive nanoemulsion-based ion induced in situ gelling formula for topical administration of acetazolamide. Copyright © 2017. Published by Elsevier B.V.

  19. Enhancement of indocyanine green stability and cellular uptake by incorporating cationic lipid into indocyanine green-loaded nanoemulsions.

    PubMed

    Lee, Eun-Hye; Kim, Jin-Ki; Lim, Joon-Seok; Lim, Soo-Jeong

    2015-12-01

    Indocyanine green (ICG) is a near-infrared optical dye approved by the Food and Drug Administration. ICG has been investigated as a simultaneous color and fluorescence-imaging tracer for the intraoperative identification of sentinel lymph nodes, but its use has recently expanded to include application as a photosensitizer for the local photodynamic/thermal treatment of identified lymph node metastases. The current study was designed to develop an ICG-loaded nanoemulsion as an effective agent for both the diagnosis and treatment of lymph node metastases. Incorporating the cationic lipid stearylamine (SA) together with ICG in the shell of nanoemulsions did not affect the loaded ICG concentration, but changed the surface charge of nanoemulsions from a negative to a positive value and improved the physical stability of nanoemulsions. Loading ICG into SA-incorporated nanoemulsions more effectively blocked the aggregation and degradation of ICG compared to loading in SA-free nanoemulsions. SA incorporation also enhanced tumor cell uptake of ICG-loaded nanoemulsions, resulting in greater cell killing upon light irradiation. After subcutaneous injection into the footpad of mice, SA-incorporated nanoemulsions increased the concentration of ICG accumulated in popliteal lymph nodes to a greater extent than SA-free nanoemulsions without affecting the kinetics of lymph node uptake of nanoemulsions. These multiple beneficial effects of incorporating SA in nanoemulsions are likely attributable to the electrostatic interaction between anionic ICG and cationic SA, as well as the change in the nanoemulsion surface charge from negative to positive. Our findings indicate that SA-incorporated nanoemulsions are promising ICG carriers for combined diagnosis and treatment of lymph node metastases. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Development of nanoemulsion from Vitex negundo L. essential oil and their efficacy of antioxidant, antimicrobial and larvicidal activities (Aedes aegypti L.).

    PubMed

    Balasubramani, Sundararajan; Rajendhiran, Thamaraiselvi; Moola, Anil Kumar; Diana, Ranjitha Kumari Bollipo

    2017-06-01

    It is believed that nanoemulsions were emerged as a promising candidate to improve the qualities of natural essential oil towards antimicrobial and insecticidal applications. In the present study, we have focused on the encapsulation of Vitex negundo L. leaf essential oil using Polysorbate80 for its different biological activities including antioxidant, bactericidal and larvicidal activity against dengue fever vector Aedes aegypti L. Initially, the nanoemulsion was prepared by low energy method and droplet size of the formulated nanoemulsion was characterized by using Dynamic Light Scattering analysis. The freshly prepared V. negundo essential nanoemulsion was observed with the mean droplet size of below 200 nm indicating its excellent stability. Further, the larvicidal activity of essential oil and nanoemulsion with various concentrations (25, 50, 100, 200 and 400 ppm). The larvicidal activities were tested 2nd and 3rd instar larval mortality rate that was observed against the 12 and 24 h exposure period. After a 12 h exposure period, the larvicidal activities of 2nd instar larva were observed as essential oil (73.33 ± 1.88), nanoemulsion (81.00 ± 0.88) and the larvicidal activities of 3rd instar larva were displayed essential oil (70.33 ± 2.60) and nanoemulsion (79.00 ± 3.70). Likewise, after a 24 h exposure period, the larvicidal activities of 2nd instar larva were observed as essential oil (90.30 ± 2.15), nanoemulsion (94.33 ± 1.20) and the larvicidal activities of 3rd instar larva were essential oil (80.66 ± 0.66) and nanoemulsion (93.00 ± 1.25) respectively. We finally concluded that the developed plant-based emulsion essential oil systems were thermodynamically stable. Owing to its improved bioavailability and biocompatibility, formulated nanoemulsion can be used in various biomedical applications including drug delivery as well as disease transmitting mosquito vector control. Graphical abstract ᅟ.

  1. Enhanced Bioavailability of Curcumin Nanoemulsions Stabilized with Phosphatidylcholine Modified with Medium Chain Fatty Acids.

    PubMed

    Ochoa-Flores, Angélica A; Hernández-Becerra, Josafat A; Cavazos-Garduño, Adriana; Soto-Rodríguez, Ida; Sanchez-Otero, Maria Guadalupe; Vernon-Carter, Eduardo J; García, Hugo S

    2017-01-01

    Curcumin is a natural, oil-soluble polyphenolic compound with potent anticancer, anti-inflammatory, and antioxidant activities. In its free form, it is very poorly absorbed in the gut due to its very low solubility. The use of nanoemulsions as carrier is a feasible way for improving curcumin bioavailability. To this end, the choice of emulsifying agent for stabilizing the nanoemulsions is of the upmost importance for achieving a desired functionality. Phosphatidylcholine (PC) and phosphatidycholine enriched (PCE) with medium chain fatty acids (42.5 mol %) in combination with glycerol as co-surfactant, were used for preparing oil-in water nanoemulsions coded as NEPC and NEPCE, respectively. NEPCE displayed significantly smaller mean droplet size (30 nm), equal entrapment efficiency (100%), better droplet stability and suffered lower encapsulation efficiency loss (3%) during storage time (120 days, 4ºC) than NEPC. Bioavailability, measured in terms of area under the curve of curcumin concentration versus time, and maximum curcumin plasma concentration, was in general terms significantly higher for NEPCE than for NEPC, and for curcumin coarse aqueous suspension (CCS). Also, NEPCE produced significantly higher curcumin concentrations in liver and lung than NEPC and CCS. These data support the role of phosphatidylcholine enriched with medium chain fatty acids to increase the bioavailability of nanoemulsions for therapeutic applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Formulation development and optimization of a novel Cremophore EL-based nanoemulsion using ultrasound cavitation.

    PubMed

    Tang, Siah Ying; Manickam, Sivakumar; Wei, Tan Khang; Nashiru, Billa

    2012-03-01

    In the present study, response surface methodology (RSM) based on central composite design (CCD) was employed to investigate the influence of main emulsion composition variables, namely drug loading, oil content, emulsifier content as well as the effect of the ultrasonic operating parameters such as pre-mixing time, ultrasonic amplitude, and irradiation time on the properties of aspirin-loaded nanoemulsions. The two main emulsion properties studied as response variables were: mean droplet size and polydispersity index. The ultimate goal of the present work was to determine the optimum level of the six independent variables in which an optimal aspirin nanoemulsion with desirable properties could be produced. The response surface analysis results clearly showed that the variability of two responses could be depicted as a linear function of the content of main emulsion compositions and ultrasonic processing variables. In the present investigation, it is evidently shown that ultrasound cavitation is a powerful yet promising approach in the controlled production of aspirin nanoemulsions with smaller average droplet size in a range of 200-300 nm and with a polydispersity index (PDI) of about 0.30. This study proved that the use of low frequency ultrasound is of considerable importance in the controlled production of pharmaceutical nanoemulsions in the drug delivery system. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Nanoemulsion-based gel formulations of COX-2 inhibitors for enhanced efficacy in inflammatory conditions

    NASA Astrophysics Data System (ADS)

    Lala, R. R.; Awari, N. G.

    2014-02-01

    In the present study, we have investigated the potential of a nanoemulsion (thermodynamically stable transparent dispersions of oil and water having a droplet size <200 nm) formulation for the topical delivery of COX-2 inhibitors using etoricoxib as a model drug. Various oil-in-water nanoemulsions were prepared by the spontaneous emulsification method. The nanoemulsion area was identified by constructing pseudo-ternary phase diagrams. The prepared nanoemulsions were subjected to thermodynamic stability testing. Those that passed these tests were characterized for viscosity, droplet size and differential scanning calorimetry. Topical permeation of etoricoxib through porcine abdominal skin was estimated using the Franz diffusion cell. The ex vivo skin permeation profile of optimized formulations was compared with that of etoricoxib conventional gel. A significant increase in permeability was observed in optimized nanoemulsion formulations consisting of 2 % w/w of etoricoxib, 20 % w/w of Triacetin, 38 % w/w of a surfactant mixture (Cremophor RH 40:Transcutol P), and 42 % w/w of water. The anti-inflammatory effects of this formulation on carrageenan-induced paw edema in rats showed a significant increase in the percent inhibition value (84.61 % with the nanoemulsion gel and 92.30 % with the nanoemulsion) as compared with the conventional gel (69.23 %) after 6 h when compared with etoricoxib conventional gel. These results suggest that nanoemulsions can serve as potential vehicles for improved transdermal delivery of anti-inflammatory agents such as etoricoxib.

  4. Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations.

    PubMed

    Vyas, Tushar K; Shahiwala, Aliasgar; Amiji, Mansoor M

    2008-01-22

    The aim of this investigation was to develop novel oil-in-water (o/w) nanoemulsions containing Saquinavir (SQV), an anti-HIV protease inhibitor, for enhanced oral bioavailability and brain disposition. SQV was dissolved in different types of edible oils rich in essential polyunsaturated fatty acids (PUFA) to constitute the internal oil phase of the nanoemulsions. The external phase consisted of surfactants Lipoid-80 and deoxycholic acid dissolved in water. The nanoemulsions with an average oil droplet size of 100-200 nm, containing tritiated [(3)H]-SQV, were administered orally and intravenously to male Balb/c mice. The SQV bioavailability as well as distribution in different organ systems was examined. SQV concentrations in the systemic circulation administered in flax-seed oil nanoemulsions were threefold higher as compared to the control aqueous suspension. The oral bioavailability and distribution to the brain, a potential sanctuary site for HIV, were significantly enhanced with SQV delivered in nanoemulsion formulations. In comparing SQV in flax-seed oil nanoemulsion with aqueous suspension, the maximum concentration (C(max)) and the area-under-the-curve (AUC) values were found to be five- and threefold higher in the brain, respectively, suggesting enhanced rate and extent of SQV absorption following oral administration of nanoemulsions. The results of this study show that oil-in-water nanoemulsions made with PUFA-rich oils may be very promising for HIV/AIDS therapy, in particular, for reducing the viral load in important anatomical reservoir sites.

  5. Influence of palmitoyl pentapeptide and Ceramide III B on the droplet size of nanoemulsion

    NASA Astrophysics Data System (ADS)

    Sondari, Dewi; Haryono, Agus; Harmami, Sri Budi; Randy, Ahmad

    2010-05-01

    The influence of the Palmitoyl Pentapeptide (PPp) and Ceramide IIIB (Cm III B) as active ingredients on the droplet size of nano-emulsion was studied using different kinds of oil (avocado oil, sweet almond oil, jojoba oil, mineral oil and squalene). The formation of nano-emulsions were prepared in water mixed non ionic surfactant/oils system using the spontaneous emulsification mechanism. The aqueous solution, which consist of water and Tween® 20 as a hydrophilic surfactant was mixed homogenously. The organic solution, which consist of oil and Span® 80 as a lipophilic surfactant was mixed homogenously in ethanol. Ethanol was used as a water miscible solvent, which can help the formation of nano-emulsion. The oil phase (containing the blend of surfactant Span® 80, ethanol, oil and active ingredient) and the aqueous phase (containing water and Tween® 20) were separately prepared at room temperatures. The oil phase was slowly added into aqueous phase under continuous mechanical agitation (18000 rpm). All samples were subsequently homogenized with Ultra-Turrax for 30 minutes. The characterizations of nano-emulsion were carried out using photo-microscope and particle size analyzer. Addition of active ingredients on the formation of nano-emulsion gave smallest droplet size compared without active ingredients addition on the formation of nano-emulsion. Squalene oil with Palmitoyl Pentapeptide (PPm) and Ceramide IIIB (Cm IIIB) gave smallest droplet size (184.0 nm) compared without Palmitoyl Pentapeptide and Ceramide IIIB (214.9 nm), however the droplets size of the emulsion prepared by the other oils still in the range of nano-emulsion (below 500 nm). The stability of nano-emulsion was observed using two methods. In one method, the stability of nano-emulsion was observed for three months at temperature of 5°C and 50°C, while in the other method, the stability nano-emulsion was observed by centrifuged at 12000 rpm for 30 minutes. Nanoemulsion with active ingredient

  6. Accelerated Stability Testing of a Clobetasol Propionate-Loaded Nanoemulsion as per ICH Guidelines.

    PubMed

    Ali, Mohammad Sajid; Alam, Mohammad Sarfaraz; Alam, Nawazish; Anwer, Tarique; Safhi, Mohammed Mohsen A

    2013-01-01

    The physical and chemical degradation of drugs may result in altered therapeutic efficacy and even toxic effects. Therefore, the objective of this work was to study the stability of clobetasol propionate (CP) in a nanoemulsion. The nanoemulsion formulation containing CP was prepared by the spontaneous emulsification method. For the formulation of the nanoemulsion, Safsol, Tween 20, ethanol, and distilled water were used. The drug was incorporated into an oil phase in 0.05% w/v. The lipophilic nature of the drug led to the O/W nanoemulsion formulation. This was characterized by droplet size, pH, viscosity, conductivity, and refractive index. Stability studies were performed as per ICH guidelines for a period of three months. The shelf life of the nanoemulsion formulation was also determined after performing accelerated stability testing (40°C ± 2°C and 75% ± 5% RH). We also performed an intermediate stability study (30°C ± 2°C/65% RH ± 5% RH). It was found that the droplet size, conductivity, and refractive index were slightly increased, while the viscosity and pH slightly decreased at all storage conditions during the 3-month period. However, the changes in these parameters were not statistically significant (p≥0.05). The degradation (%) of the optimized nanoemulsion of CP was determined and the shelf life was found to be 2.18 years at room temperature. These studies confirmed that the physical and chemical stability of CP were enhanced in the nanoemulsion formulation.

  7. Stability of lutein encapsulated whey protein nano-emulsion during storage

    PubMed Central

    Guo, Mingruo

    2018-01-01

    Lutein is a hydrophobic carotenoid that has multiple health functions. However, the application of lutein is limited due to its poor solubility in water and instability under certain conditions during storage. Hereby we generated lutein loaded nano-emulsions using whey protein isolate (WPI) or polymerized whey protein isolate (PWP) with assistance of high intensity ultrasound and evaluate their stability during storage at different conditions. We measured the particle size, zeta-potential, physical stability and lutein content change. Results showed that the PWP based nano-emulsion system was not stable in the tested Oil/Water/Ethanol system indicated by the appearance of stratification within only one week. The WPI based nano-emulsion system showed stable physiochemical stability during the storage at 4°C. The lutein content of the system was reduced by only 4% after four weeks storage at 4°C. In conclusion, our whey protein based nano-emulsion system provides a promising strategy for encapsulation of lutein or other hydrophobic bioactive molecules to expand their applications. PMID:29415071

  8. Improved Physicochemical Properties of Yogurt Fortified with Fish Oil/γ-Oryzanol by Nanoemulsion Technology.

    PubMed

    Zhong, Jinfeng; Yang, Rong; Cao, Xiaoyi; Liu, Xiong; Qin, Xiaoli

    2018-01-02

    Fish oil has several dietary benefits, but its application in food formulations is limited because of its poor water-solubility, easy oxidation and strong odor. The purposes of this study were to produce a fish oil/γ-oryzanol nanoemulsion and to evaluate the effect of adding this nanoemulsion on the physicochemical and sensory characteristics of yogurts. Adding fish oil/γ-oryzanol nanoemulsion resulted in a significant reduction in the acidity and syneresis of yogurt. Yogurt with the nanoemulsion had significantly lower peroxide value (0.28 mmol/L after 21 days) and higher retention of eicosapentaenoic acid and docosahexaenoic acid contents (decreased to 95% and 94% of its initial value, respectively) than yogurt with fish oil/γ-oryzanol (peroxide value = 0.65 mmol/L; eicosapentaenoic acid and docosahexaenoic acid contents decreased to 72% and 53% of its initial value, respectively). Fish oil/γ-oryzanol nanoemulsion incorporated into yogurt had closer sensory attributes scores to plain yogurt. This study may have important implications for the application of fish oil/γ-oryzanol nanoemulsion in yogurt.

  9. Criterion for excipients screening in the development of nanoemulsion formulation of three anti-inflammatory drugs.

    PubMed

    Shakeel, Faiyaz

    2010-01-01

    The present study was undertaken for screening of different excipients in the development of nanoemulsion formulations of three anti-inflammatory drugs namely ketoprofen, celecoxib (CXB) and meloxicam. Based on solubility profiles of each drug in oil, Triacetin (ketoprofen and CXB) and Labrafil (meloxicam) were selected as the oil phase. Based on maximum solubilization potential of oil in different surfactants, Cremophor-EL (ketoprofen and CXB) and Tween-80 (meloxicam) were selected as surfactants. Based on maximum nanoemulsion region in the pseudoternary phase diagrams, Transcutol-HP was selected as cosurfactant for all three drugs. 1:1 (ketoprofen and CXB) and 2:1 (meloxicam) mass ratio of surfactant to cosurfactant was selected for selection of different nanoemulsions on the basis of maximum nanoemulsion region in the phase diagrams. All selected nanoemulsion formulations were found thermodynamically stable. Results of these studies showed that all excipients were properly optimized for the development of nanoemulsion formulation of ketoprofen, CXB and meloxicam.

  10. Bioactivity of Epigallocatechin Gallate Nanoemulsions Evaluated in Mice Model.

    PubMed

    Koutelidakis, Antonios E; Argyri, Konstantina; Sevastou, Zoi; Lamprinaki, Dimitra; Panagopoulou, Elli; Paximada, Evi; Sali, Aggeliki; Papalazarou, Vassilis; Mallouchos, Athanasios; Evageliou, Vasiliki; Kostourou, Vasiliki; Mantala, Ioanna; Kapsokefalou, Maria

    2017-09-01

    The hypothesis that incorporation of epigallocatechin gallate (EGCG) into nanoemulsions may increase its bioactivity compared with EGCG aqueous solutions was examined in mice. After an in vitro study in a model system with stimulated gastrointestinal conditions, the following EGCG nanoemulsions were used in a mice experiment: Emulsion I: emulsion water in oil (W/O), which contained 0.23 mg/mL EGCG in aqueous phase; Emulsion II: emulsion oil in water (O/W), which contained 10% olive oil and 0.23 mg/mL esterified EGCG in fatty phase; and Emulsion III: emulsion O/W in water (W1/O/W2; 8:32:60), which contained 32% olive oil and 0.23 mg/mL EGCG in aqueous phase. After 2 h of mice administration by gavage with 0.1 mL of EGCG nanoemulsions, total antioxidant capacity (TAC) of plasma and some tissues (especially colon, jejunum, heart, spleen) was measured with Ferric-Reducing Antioxidant Power (FRAP) and Oxygen Radical Absorbance Capacity (ORAC) assays. No toxic effects were observed after administration of 0.23 mg/mL esterified EGCG in CD1 mouse strain. The study concluded that administration of mice with the three EGCG nanoemulsions did not increase their TAC in specific tissues, compared with an aqueous EGCG solution at the same concentration. Nevertheless, the esterified EGCG emulsion (Emulsion II) exerted an increase in mice plasma compared with aqueous EGCG and showed higher values of TAC in several tissues, compared with Emulsions I and III. EGCG nanoemulsions could be considered a useful method in plethora functional food applications, but further research is required for safer results.

  11. Comparative biodistribution and safety profiling of olmesartan medoxomil oil-in-water oral nanoemulsion.

    PubMed

    Gorain, Bapi; Choudhury, Hira; Tekade, Rakesh Kumar; Karan, Saumen; Jaisankar, P; Pal, Tapan Kumar

    2016-12-01

    Poor aqueous solubility and unfavourable de-esterification of olmesartan medoxomil (a selective angiotensin II receptor blocker), results in low oral bioavailability of less than 26%. Improvement of oral bioavailability with prolonged pharmacodynamics activity of olmesartan in Wistar rats had been approached by nanoemulsification strategy in our previous article [Colloid Surface B, 115, 2014: 286]. In continuation to that work, we herewith report the biodistribution behaviour and 28-day repeated dose sub-chronic toxicity of olmesartan medoxomil nanoemulsion in Wistar rats following oral administration. The levels of olmesartan in collected biological samples were estimated using our validated LC-MS/MS technique. Our biodistribution study showed significantly higher brain concentrations of olmesartan (0.290 ± 0.089 μg/mL, 0.333 ± 0.071 μg/mL and 0.217 ± 0.062 μg/mL at 0.5, 2.0 and 8.0 h post dosing, respectively) when administered orally as nanoemulsion formulation as compared to the aqueous suspension. In addition, the olmesartan nanoemulsion was found to be safe and non-toxic, as it neither produced any lethality nor remarkable haematological, biochemical and structural adverse effects as observed during the 28-days sub-chronic toxicity studies in experimental Wistar rats. It is herewith envisaged that the developed nanoemulsion formulation approach for the delivery of olmesartan medoxomil via oral route can further be explored in memory dysfunction and brain ischemia, for better brain penetration and improved clinical application in stroke patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Calixarene-entrapped nanoemulsion for uranium extraction from contaminated solutions.

    PubMed

    Spagnul, Aurélie; Bouvier-Capely, Céline; Phan, Guillaume; Rebière, François; Fattal, Elias

    2010-03-01

    Accidental cutaneous contamination by actinides such as uranium occurring to nuclear power plant workers can lead to their dissemination in other tissues and induce severe damages. Until now, no specific emergency treatment for such contamination has been developed. The aim of the present work was to formulate a tricarboxylic calix[6]arene molecule, known to exhibit good affinity and selectivity for complexing uranium, within a topical delivery system for the treatment of skin contamination. Since calixarene was shown to reduce oil/water interfacial tension, we have designed an oil-in-water nanoemulsion, taking advantage of the small droplet size offering a high contact surface with the contaminated aqueous medium. Characterization of the calixarene nanoemulsion was performed by determination of the oily droplet size, zeta potential and pH, measured as a function of the calixarene concentration. The obtained results have confirmed the surface localization of calixarene molecules being potentially available to extract uranyl ions from an aqueous contaminated solution. In a preliminary experiments, the calixarene nanoemulsion was used for the removal of free uranium from an aqueous contaminated solution. Results showed that the calixarene nanoemulsion extracted up to 80 +/- 5% of uranium, which demonstrates the potential interest of this delivery system for uranium skin decontamination. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  13. Eugenol Nanoemulsion Stabilized with Zein and Sodium Caseinate by Self-Assembly.

    PubMed

    Wang, Lei; Zhang, Yue

    2017-03-31

    Eugenol-loaded nanoemulsion by zein and sodium caseinate (NaCas) was prepared without using specific equipment or organic solvents. The deprotonated eugenol in hot alkaline was added to NaCas/zein mixtures with different mass ratios at pH 11.5 and then neutralized to pH 7.0. The nanoemulsions showed a well-defined diameter (around 109-139 nm) and a negative surface potential (from -28.5 to -35.8 mV) with spherical morphology. The entrapment efficiency (EE) of 1% (v/v) eugenol reached 84.24% by 2% (m/v) NaCas/zein at a mass ratio of 1:1. This formulation also showed the narrowest size distribution and extraordinary stability during ambient storage (22 °C) up to 30 days and retained good redispersibility after spray- or freeze-drying. The current study showed a promising clean and low-cost strategy to deliver lipophilic compounds containing the hydroxyl group.

  14. PLGA nanoparticles from nano-emulsion templating as imaging agents: Versatile technology to obtain nanoparticles loaded with fluorescent dyes.

    PubMed

    Fornaguera, C; Feiner-Gracia, N; Calderó, G; García-Celma, M J; Solans, C

    2016-11-01

    The interest in polymeric nanoparticles as imaging systems for biomedical applications has increased notably in the last decades. In this work, PLGA nanoparticles, prepared from nano-emulsion templating, have been used to prepare novel fluorescent imaging agents. Two model fluorescent dyes were chosen and dissolved in the oil phase of the nano-emulsions together with PLGA. Nano-emulsions were prepared by the phase inversion composition (PIC) low-energy method. Fluorescent dye-loaded nanoparticles were obtained by solvent evaporation of nano-emulsion templates. PLGA nanoparticles loaded with the fluorescent dyes showed hydrodynamic radii lower than 40nm; markedly lower than those reported in previous studies. The small nanoparticle size was attributed to the nano-emulsification strategy used. PLGA nanoparticles showed negative surface charge and enough stability to be used for biomedical imaging purposes. Encapsulation efficiencies were higher than 99%, which was also attributed to the nano-emulsification approach as well as to the low solubility of the dyes in the aqueous component. Release kinetics of both fluorescent dyes from the nanoparticle dispersions was pH-independent and sustained. These results indicate that the dyes could remain encapsulated enough time to reach any organ and that the decrease of the pH produced during cell internalization by the endocytic route would not affect their release. Therefore, it can be assumed that these nanoparticles are appropriate as systemic imaging agents. In addition, in vitro toxicity tests showed that nanoparticles are non-cytotoxic. Consequently, it can be concluded that the preparation of PLGA nanoparticles from nano-emulsion templating represents a very versatile technology that enables obtaining biocompatible, biodegradable and safe imaging agents suitable for biomedical purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Entrapment into nanoemulsions potentiates the anticancer activity of tocotrienols against the highly malignant (+SA) mouse mammary epithelial cells.

    PubMed

    Alayoubi, Alaadin; Ayoub, Nehad M; Malaviya, Abhita; Sylvester, Paul W; Nazzal, Sami

    2014-05-01

    The highly malignant +SA mouse mammary epithelial cells were used as the model cell line over the years to establish the anticancer activity of tocotrienols. Tocotrienols, however, have poor oral bioavailability and were therefore entrapped into parenteral nanoemulsions for parenteral administration. The objective of this work was to test whether the activity of tocotrienols in lipid nanoemulsions against the +SA cells was retained. A secondary objective was to test whether stabilizing the nanoemulsions with poloxamer or sodium oleate would affect their activity. Nanoemulsions were found to be significantly more potent than tocotrienol/albumin conjugate. The IC50 values of the poloxamer and sodium oleate nanoemulsions were 3 and 6 microM, respectively, whereas the IC50 value of the conjugate was 10 microM. The antiproliferative activity of the nanoemulsions was also found to inversely correlate with particle size. No activity was observed with nanoemulsions loaded with alpha-tocopherol or vehicle, which confirmed the cytotoxic activity of tocotrienols and the potential use of nanoemulsions in cancer therapy.

  16. Low Bone Density

    MedlinePlus

    ... Bone Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone ... to people with normal bone density. Detecting Low Bone Density A bone density test will determine whether ...

  17. Characterization of rice bran wax policosanol and its nanoemulsion formulation

    PubMed Central

    Ishaka, Aminu; Umar Imam, Mustapha; Mahamud, Rozi; Zuki, Abu Bakar Zakaria; Maznah, Ismail

    2014-01-01

    Policosanol, a mixture of long-chain alcohols found in animal and plant waxes, has several biological effects; however, it has a bioavailability of less than 10%. Therefore, there is a need to improve its bioavailability, and one of the ways of doing this is by nanoemulsion formulation. Different droplet size distributions are usually achieved when emulsions are formed, which solely depends on the preparation method used. Mostly, emulsions are intended for better delivery with maintenance of the characteristics and properties of the leading components. In this study, policosanol was extracted from rice bran wax, its composition was determined by gas chromatography mass spectrophotometry, nanoemulsion was made, and the physical stability characteristics were determined. The results showed that policosanol nanoemulsion has a nanosize particle distribution below 100 nm (92.56–94.52 nm), with optimum charge distribution (−55.8 to −45.12 mV), pH (6.79–6.92) and refractive index (1.50); these were monitored and found to be stable for 8 weeks. The stability of policosanol nanoemulsion confers the potential to withstand long storage times. PMID:24872689

  18. Study on antimicrobial potential of neem oil nanoemulsion against Pseudomonas aeruginosa infection in Labeo rohita.

    PubMed

    Mishra, Prabhakar; R S, Suresh Kumar; Jerobin, Jayakumar; Thomas, John; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2014-01-01

    Presence of several biochemical constituents in neem makes it an efficient antimicrobial agent for pathogenic diseases. The current investigation was aimed to assess the therapeutic potential of neem nanoemulsion as a control measure for Pseudomonas aeruginosa infection in freshwater fish Labeo rohita. The median lethal concentration (LC50) for the neem oil and neem nanoemulsion was 73.9 and 160.3 mg/L, respectively. The biomarker enzymes of treated fish tissues showed a significant difference in the level of glutathione reductase, catalase, and lipid peroxidation in neem oil-treated samples than in neem nanoemulsion-treated samples at P<0.05. The results were corroborative with histopathology and ultrastructural analysis. The bacterial infection of P. aeruginosa treated using neem nanoemulsion was more effective in both in vitro and in vivo methods. Present findings suggest that neem-based nanoemulsion has negligible toxicity to Rohu fishes. This makes neem-based nanoemulsion as an efficient therapeutic agent against P. aeruginosa infection, leading to its possible usage in the aquaculture industry. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  19. Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A.

    PubMed

    Jerobin, Jayakumar; Sureshkumar, R S; Anjali, C H; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2012-11-06

    Azadirachtin a biological compound found in neem have medicinal and pesticidal properties. The present work reports on the encapsulation of neem oil nanoemulsion using sodium alginate (Na-Alg) by cross linking with glutaraldehyde. Starch and polyethylene glycol (PEG) were used as coating agents for smooth surface of beads. The SEM images showed beads exhibited nearly spherical shape. Swelling of the polymeric beads reduced with coating which in turn decreased the rate of release of Aza-A. Starch coated encapsulation of neem oil nanoemulsion was found to be effective when compared to PEG coated encapsulation of neem oil nanoemulsion. The release rate of neem Aza-A from the beads into an aqueous environment was analyzed by UV-visible spectrophotometer (214 nm). The encapsulated neem oil nanoemulsion have the potential for controlled release of Aza-A. Neem oil nanoemulsion encapsulated beads coated with PEG was found to be toxic in lymphocyte cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions.

    PubMed

    Majeed, Hamid; Liu, Fei; Hategekimana, Joseph; Sharif, Hafiz Rizwan; Qi, Jing; Ali, Barkat; Bian, Yuan-Yuan; Ma, Jianguo; Yokoyama, Wallace; Zhong, Fang

    2016-04-15

    Clove oil (CO) anionic nanoemulsions were prepared with varying ratios of CO to canola oil (CA), emulsified and stabilized with purity gum ultra (PGU), a newly developed succinylated waxy maize starch. Interfacial tension measurements showed that CO acted as a co-surfactant and there was a gradual decrease in interfacial tension which favored the formation of small droplet sizes on homogenization until a critical limit (5:5% v/v CO:CA) was reached. Antimicrobial activity of the negatively charged CO nanoemulsion was determined against Gram positive GPB (Listeria monocytogenes and Staphylococcus aureus) and Gram negative GNB (Escherichia coli) bacterial strains using minimum inhibitory concentration (MIC) and a time kill dynamic method. Negatively charged PGU emulsified CO nanoemulsion showed prolonged antibacterial activities against Gram positive bacterial strains. We concluded that negatively charged CO nanoemulsion droplets self-assemble with GPB cell membrane, and facilitated interaction with cellular components of bacteria. Moreover, no electrostatic interaction existed between negatively charged droplets and the GPB membrane. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Production of Nanoemulsions from Palm-Based Tocotrienol Rich Fraction by Microfluidization.

    PubMed

    Goh, Pik Seah; Ng, Mei Han; Choo, Yuen May; Amru, Nasrulhaq Boyce; Chuah, Cheng Hock

    2015-11-05

    In the present study, tocotrienol rich fraction (TRF) nanoemulsions were produced as an alternative approach to improve solubility and absorption of tocotrienols. In the present study, droplet size obtained after 10 cycles of homogenization with increasing pressure was found to decrease from 120 to 65.1 nm. Nanoemulsions stabilized with Tween series alone or emulsifier blend Brij 35:Span 80 (0.6:0.4 w/w) homogenized at 25,000 psi and 10 cycles, produced droplet size less than 100 nm and a narrow size distribution with a polydispersity index (PDI) value lower than 0.2. However blend of Tween series with Span 80 produced nanoemulsions with droplet size larger than 200 nm. This work has also demonstrated the amount of tocols losses in TRF nanoemulsion stabilized Tweens alone or emulsifier blend Brij 35:Span 80 (0.6:0.4 w/w) ranged between 3%-25%. This can be attributed to the interfacial film formed surrounding the droplets exhibited different level of oxidative stability against heat and free radicals created during high pressure emulsification.

  2. Highly enhanced optical properties of indocyanine green/perfluorocarbon nanoemulsions for efficient lymph node mapping using near-infrared and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bae, Pan Kee; Jung, Juyeon; Chung, Bong Hyun

    2014-03-01

    The near-infrared (NIR) fluorescence probe has better tissue penetration and lower autofluorescence. Indocyanine green (ICG) is an NIR organic dye for extensive biological application, and it has been clinically approved for human medical imaging and diagnosis. However, application of this dye is limited by its numerous disadvantageous properties in aqueous solution, including its concentration-dependent aggregation, poor aqueous stability in vitro, and low quantum yield. Its use in molecular imaging probes is limited because it loses fluorescence after binding to nonspecific plasma proteins, leading to rapid elimination from the body with a half-life of 2 - 4 min. In this study, the multifunctional perfluorocarbon (PFC)/ICG nanoemulsions were investigated with the aim of overcoming these limitations. The PFC/ICG nanoemulsions as a new type of delivery vehicle for contrast agents have both NIR optical imaging and 19 F-MR imaging moieties. These nanoemulsions exhibited less aggregation, increased fluorescence intensity, long-term stability, and physicochemical stability against external light and temperature compared to free aqueous ICG. Also, the PFC/ICG bimodal nanoemulsions allow excellent detection of lymph nodes in vivo through NIR optical imaging and 19 F-MR imaging. This result showed the suitability of the proposed nanoemulsions for non-invasive lymph node mapping as they enable long-time detection of lymph nodes.

  3. Evaluation of the antitumor effects of vitamin K2 (menaquinone-7) nanoemulsions modified with sialic acid-cholesterol conjugate.

    PubMed

    Shi, Jia; Zhou, Songlei; Kang, Le; Ling, Hu; Chen, Jiepeng; Duan, Lili; Song, Yanzhi; Deng, Yihui

    2018-02-01

    Numerous studies have recently shown that vitamin K 2 (VK 2 ) has antitumor effects in a variety of tumor cells, but there are few reports demonstrating antitumor effects of VK 2 in vivo. The antitumor effects of VK 2 in nanoemulsions are currently not known. Therefore, we sought to characterize the antitumor potential of VK 2 nanoemulsions in S180 tumor cells in the present study. Furthermore, a ligand conjugate sialic acid-cholesterol, with enhanced affinity towards the membrane receptors overexpressed in tumors, was anchored on the surface of the nanoemulsions to increase VK 2 distribution to the tumor tissue. VK 2 was encapsulated in oil-in-water nanoemulsions, and the physical and chemical stability of the nanoemulsions were characterized during storage at 25 °C. At 25 °C, all nanoemulsions remained physically and chemically stable with little change in particle size. An in vivo study using syngeneic mice with subcutaneously established S180 tumors demonstrated that intravenous or intragastric administration of VK 2 nanoemulsions significantly suppressed the tumor growth. The VK 2 nanoemulsions modified with sialic acid-cholesterol conjugate showed higher tumor growth suppression than the VK 2 nanoemulsions, while neither of them exhibited signs of drug toxicity. In summary, VK 2 exerted effective antitumor effects in vivo, and VK 2 nanoemulsions modified with sialic acid-cholesterol conjugate enhanced the antitumor activity, suggesting that these VK 2 may be promising agents for the prevention or treatment of tumor in patients.

  4. Fluorine-containing nanoemulsions for MRI cell tracking

    PubMed Central

    Janjic, Jelena M.; Ahrens, Eric T.

    2009-01-01

    In this article we review the chemistry and nanoemulsion formulation of perfluorocarbons used for in vivo 19F MRI cell tracking. In this application, cells of interest are labeled in culture using a perfluorocarbon nanoemulsion. Labeled cells are introduced into a subject and tracked using 19F MRI or NMR spectroscopy. In the same imaging session, a high-resolution, conventional (1H) image can be used to place the 19F-labeled cells into anatomical context. Perfluorocarbon-based 19F cell tracking is a useful technology because of the high specificity for labeled cells, ability to quantify cell accumulations, and biocompatibility. This technology can be widely applied to studies of inflammation, cellular regenerative medicine, and immunotherapy. PMID:19920872

  5. Evaluation of transdermal delivery of nanoemulsions in ex vivo porcine skin using two-photon microscopy and confocal laser-scanning microscopy

    NASA Astrophysics Data System (ADS)

    Choi, Sanghoon; Kim, Jin Woong; Lee, Yong Joong; Delmas, Thomas; Kim, Changhwan; Park, Soyeun; Lee, Ho

    2014-10-01

    This study experimentally evaluates the self-targeting ability of asiaticoside-loaded nanoemulsions compared with nontargeted nanoemulsions in ex vivo experiments with porcine skin samples. Homebuilt two-photon and confocal laser-scanning microscopes were employed to noninvasively examine the transdermal delivery of two distinct nanoemulsions. Prior to the application of nanoemulsions, we noninvasively observed the morphology of porcine skin using two-photon microscopy. We have successfully visualized the distributions of the targeted and nontargeted nanoemulsions absorbed into the porcine skin samples. Asiaticoside-loaded nanoemulsions showed an improved ex vivo transdermal delivery through the stratum corneum compared with nonloaded nanoemulsions. As a secondary measure, nanoemulsions-applied samples were sliced in the depth direction with a surgical knife in order to obtain the complete depth-direction distribution profile of Nile red fluorescence. XZ images demonstrated that asiaticoside-loaded nanoemulsion penetrated deeper into the skin compared with nontargeted nanoemulsions. The basal layer boundary is clearly visible in the case of the asiaticoside-loaded skin sample. These results reaffirm the feasibility of using self-targeting ligands to improve permeation through the skin barrier for cosmetics and topical drug applications.

  6. Physical properties of a frozen yogurt fortified with a nano-emulsion containing purple rice bran oil

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were to develop and evaluate a frozen yogurt (FY) fortified with a nano-emulsion containing purple rice bran oil (NPRBO). A nano-emulsion with a droplet size range of 150-300 nm was produced by sonication followed by ultra-shear homogenization. The nano-emulsion was mi...

  7. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications.

    PubMed

    Rai, Vineet Kumar; Mishra, Nidhi; Yadav, Kuldeep Singh; Yadav, Narayan Prasad

    2018-01-28

    The use of nanoemulsion in augmenting dermal and transdermal effectiveness of drugs has now well established. The development of nanoemulsion based semisolid dosage forms is an active area of present research. However, thickening or liquid-to-semisolid conversion of the nanoemulsions provides opportunities to the formulation scientist to explore novel means of solving instability issues during transformation. Extending knowledge about the explicit role of nature/magnitude of zeta potential, types of emulsifiers and selection of appropriate semisolid bases could place these versatile carriers from laboratory to industrial scale. This article reviews the progressive advancement in the delivery of medicament via nanoemulsion with special reference to the dermal and transdermal administration. It is attempted to explore the most suitable semi solid dosage form for the particular type of nanoemulsion (o/w, w/o and others) and effect of particle size and zeta potential on the delivery of drugs through dermal or transdermal route. Finally, this review also highlights the basic principles and fundamental considerations of nanoemulsion manufacture, application of nanoemulsion based semisolid dosage forms in the dermal/transdermal administration and basic considerations during the nanoemulsion absorption into and through skin. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Enhanced stability and permeation potential of nanoemulsion containing sefsol-218 oil for topical delivery of amphotericin B.

    PubMed

    Hussain, Afzal; Samad, Abdus; Singh, Sandeep Kumar; Ahsan, Mohd Neyaz; Faruk, Abdul; Ahmed, Farhan Jalees

    2015-05-01

    To characterize the enhanced stability and permeation potential of amphotericin B nanoemulsion comprising sefsol-218 oil at varying pH and temperature of aqueous continuous phase. Several batches of amphotericin B loaded nanoemulsion were prepared and evaluated for their physical and chemical stability at different pH and temperature. Also, a comparative study of ex vivo drug permeation across the albino rat skin was investigated with commercial Fungisome® and drug solution at 37 °C for 24 h. The extent of drug penetrated through the rat skin was thereby evaluated using the confocal laser scanning microscopy (CLSM). The optimized nanoemulsion demonstrated the highest flux rate 17.85 ± 0.5 µg/cm(2)/h than drug solution (5.37 ± 0.01 µg/cm(2)/h) and Fungisome® (7.97 ± 0.01 µg/cm(2)/h). Ex vivo drug penetration mechanism from the developed formulations at pH 6.8 and pH 7.4 of aqueous phase pH using the CLSM revealed enhanced penetration. Ex vivo drug penetration studies of developed formulation comprising of CLSM revealed enhanced penetration in aqueous phase at pH 6.8 and 7.4. The aggregation behavior of nanoemulsion at both the pH was found to be minimum and non-nephrotoxic. The stability of amphotericin B was obtained in terms of pH, optical density, globular size, polydispersity index and zeta potential value at different temperature for 90 days. The slowest drug degradation was observed in aqueous phase at pH 7.4 with shelf life 20.03-folds higher when stored at 4 °C (3.8 years) and 5-fold higher at 25 °C (0.951 years) than at 40 °C. The combined results suggested that nanoemulsion may hold an alternative for enhanced and sustained topical delivery system for amphotericin B.

  9. Application of Cinnamon oil Nanoemulsion to Control Foodborne Bacteria such as Listeria Sp. and Salmonella Sp. On Melons

    NASA Astrophysics Data System (ADS)

    Paudel, Sumit Kumar

    Listeria and Salmonella related recalls and outbreaks are of major concern to the melon industry. Cinnamon oil has shown its usefulness in food treatment due to strong antifungal, antiviral, and antibacterial activities. However, its applications are limited due to poor solubility of cinnamon oil in water. Utilization of Cinnamon oil nanoemulsion may offer effective antimicrobial washing treatment to melon industry. The purpose of this study was to test the antimicrobial efficacy of cinnamon oil nanoemulsion on melons against major food borne pathogens such as Listeria monocytogenes and Salmonella enterica. Different formulations of cinnamon oil nanoemulsion were made by ultrasonication using Tween 80 as an emulsifier. Nanoemulsion exhibiting the smallest oil droplets was applied. Oil droplets were characterized for particle size by dynamic light scattering. Microbroth dilution assay was performed on three strains each of Listeria monocytogenes and Salmonella enterica to find out the antimicrobial efficacy of cinnamon oil nanoemulsion. Honeydew and cantaloupe were artificially inoculated with the strains mentioned above followed by treatment in nanoemulsion (control, 0.1%, 0.25%, and 0.5%) for one minute. Samples were dried and enumerated after one hour of treatment on selective media (PALCAM and XLD agar). The average diameter of nanoemulsion was 9.63+/-0.3nm. Minimum inhibitory concentration (MIC) of cinnamon oil nanoemulsion for both Listeria and Salmonella strains was 0.078% v/v and 0.039% v/v, respectively and the minimum bactericidal concentration was 0.078125% v/v for both. Compared to the water control, 0.5% nanoemulsion showed up to 7.7 and 5.5 log CFU/gm reductions in L. monocytogenes and S. enterica, respectively. The data suggests that cinnamon oil nanoemulsion can be used as an effective natural microbial control agent for melons. Keywords: Nanoemulsion, ultrasonication, antimicrobial.

  10. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion

    PubMed Central

    Qin, Detao; Liu, Zhaoyang; Bai, Hongwei; Sun, Darren Delai; Song, Xiaoxiao

    2016-01-01

    Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant and oil from nanoemulsion, a novel hierarchically-structured membrane is designed with a nanostructured selective layer on top of a microstructured support layer. The physical and chemical properties of the overall membrane, including wettability, surface roughness, electric charge, thickness and structures, are delicately tailored through a nano-engineered fabrication process, that is, graphene oxide (GO) nanosheet assisted phase inversion coupled with surface functionalization. Compared with the membrane fabricated by conventional phase inversion, this novel membrane has four times higher water flux, significantly higher rejections of both oil (~99.9%) and surfactant (as high as 93.5%), and two thirds lower fouling ratio when treating surfactant stabilized oil-in-water nanoemulsion. Due to its excellent performances and facile fabrication process, this nano-engineered membrane is expected to have wide practical applications in the oil/water separation fields of environmental protection and water purification. PMID:27087362

  11. Nanoemulsions containing a synthetic chalcone as an alternative for treating cutaneous leshmaniasis: optimization using a full factorial design.

    PubMed

    de Mattos, Cristiane Bastos; Argenta, Débora Fretes; Melchiades, Gabriela de Lima; Cordeiro, Marlon Norberto Sechini; Tonini, Maiko Luis; Moraes, Milene Hoehr; Weber, Tanara Beatriz; Roman, Silvane Souza; Nunes, Ricardo José; Teixeira, Helder Ferreira; Steindel, Mário; Koester, Letícia Scherer

    2015-01-01

    Nanoemulsions are drug delivery systems that may increase the penetration of lipophilic compounds through the skin, enhancing their topical effect. Chalcones are compounds of low water solubility that have been described as promising molecules for the treatment of cutaneous leishmaniasis (CL). In this context, the aim of this work was to optimize the development of a nanoemulsion containing a synthetic chalcone for CL treatment using a 2(2) full factorial design. The formulations were prepared by spontaneous emulsification and the experimental design studied the influence of two independent variables (type of surfactant - soybean lecithin or sorbitan monooleate and type of co-surfactants - polysorbate 20 or polysorbate 80) on the physicochemical characteristics of the nanoemulsions, as well as on the skin permeation/retention of the synthetic chalcone in porcine skin. In order to evaluate the stability of the systems, the antileishmanial assay was performed against Leishmania amazonensis 24 hours and 60 days after the preparation of the nanoemulsions. The formulation composed of soybean lecithin and polysorbate 20 presented suitable physicochemical characteristics (droplet size 171.9 nm; polydispersity index 0.14; zeta potential -39.43 mV; pH 5.16; and viscosity 2.00 cP), drug content (91.09%) and the highest retention in dermis (3.03 µg·g(-1)) - the main response of interest - confirmed by confocal microscopy. This formulation also presented better stability of leishmanicidal activity in vitro against L. amazonensis amastigote forms (half maximal inhibitory concentration value 0.32±0.05 µM), which confirmed the potential of the nanoemulsion soybean lecithin and polysorbate 20 for CL treatment.

  12. Effects of tanshinone nanoemulsion and extract on inhibition of lung cancer cells A549

    NASA Astrophysics Data System (ADS)

    Lee, W. D.; Liang, Y. J.; Chen, B. H.

    2016-12-01

    Danshen (Salvia miltiorrhiza), a Chinese medicinal herb, consists of several functional components including tanshinones responsible for prevention of several chronic diseases. This study intends to prepare tanshinone extract and nanoemulsion from danshen and determine their inhibition effect on lung cancer cells A549. A highly stable tanshinone nanoemulsion composed of Capryol 90, Tween 80, ethanol and deionized water with the mean particle size of 14.2 nm was successfully prepared. Tanshinone nanoemulsion was found to be more effective in inhibiting A549 proliferation than tanshinone extract. Both nanoemulsion and extract could penetrate into cytoplasm through endocytosis, with the former being more susceptible than the latter. A dose-dependent response in up-regulation of p-JNK, p53 and p21 and down-regulation of CDK2, cyclin D1 and cyclin E1 expressions was observed with the cell cycle arrested at G0/G1 phase. The cellular microcompartment change of A549 was also investigated. The study demonstrated that tanshinone nanoemulsion may be used as a botanic drug for treatment of lung cancer.

  13. A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

    PubMed Central

    Hu, Zhenhua; Liao, Meiling; Chen, Yinghui; Cai, Yunpeng; Meng, Lele; Liu, Yajun; Lv, Nan; Liu, Zhenguo; Yuan, Weien

    2012-01-01

    Background Silicone oil, as a major component in conditioner, is beneficial in the moisture preservation and lubrication of hair. However, it is difficult for silicone oil to directly absorb on the hair surface because of its hydrophobicity. Stable nanoemulsions containing silicone oil may present as a potential solution to this problem. Methods Silicone oil nanoemulsions were prepared using the oil-in-water method with nonionic surfactants. Emulsion particle size and distribution were characterized by scanning electron microscopy. The kinetic stability of this nanoemulsion system was investigated under accelerated stability tests and long-term storage. The effect of silicone oil deposition on hair was examined by analyzing the element of hair after treatment of silicone oil nanoemulsions. Results Nonionic surfactants such as Span 80 and Tween 80 are suitable emulsifiers to prepare oil-in-water nanoemulsions that are both thermodynamically stable and can enhance the absorption of silicone oil on hair surface. Conclusion The silicone oil-in-water nanoemulsions containing nonionic surfactants present as a promising solution to improve the silicone oil deposition on the hair surface for hair care applications. PMID:23166436

  14. Development of EGFR Targeted Nanoemulsion for Imaging and Novel Platinum Therapy of Ovarian Cancer

    PubMed Central

    Ganta, Srinivas; Singh, Amit; Patel, Niravkumar R.; Cacaccio, Joseph; Rawal, Yashesh H.; Davis, Barbara J.; Amiji, Mansoor M.; Coleman, Timothy P.

    2014-01-01

    Purpose Platinum-based chemotherapy is the treatment of choice for malignant epithelial ovarian cancers, but generalized toxicity and platinum resistance limits its use. Theranostic nanoemulsion with a novel platinum prodrug, myrisplatin, and the pro-apoptotic agent, C6-ceramide, were designed to overcome these limitations. Methods The nanoemulsions, including ones with an EGFR binding peptide and gadolinium, were made using generally regarded as safe grade excipients and a high shear microfluidization process. Efficacy was evaluated in ovarian cancer cells, SKOV3, A2780 and A2780CP. Results The nanoemulsion with particle size <150 nm were stable in plasma and parenteral fluids for 24 h. Ovarian cancer cells in vitro efficiently took up the non-targeted and EGFR-targeted nanoemulsions; improved cytotoxicity was observed for the these nanoemulsions with the latter showing a 50-fold drop in the IC50 in SKOV3 cells as compared to cisplatin alone. The addition of gadolinium did not affect cell viability in vitro, but showed relaxation times comparable to Magnevist®. Conclusion The myrisplatin/C6-ceramide nanoemulsion synergistically enhanced in vitro cytotoxicity. An EGFR binding peptide addition further increased in vitro cytotoxicity in EGFR positive cancer cells. The diagnostic version showed MR imaging similar to the clinically relevant Magnevist® and may be suitable as a theranostic for ovarian cancer. PMID:24643932

  15. Ultrasound-Mediated Tumor Imaging and Nanotherapy using Drug Loaded, Block Copolymer Stabilized Perfluorocarbon Nanoemulsions

    PubMed Central

    Rapoport, Natalya; Nam, Kweon-Ho; Gupta, Roohi; Gao, Zhongao; Mohan, Praveena; Payne, Allison; Todd, Nick; Liu, Xin; Kim, Taeho; Shea, Jill; Scaife, Courtney; Parker, Dennis L.; Jeong, Eun-Kee; Kennedy, Anne M.

    2011-01-01

    Perfluorocarbon nanoemulsions can deliver lipophilic therapeutic agents to solid tumors and simultaneously provide for monitoring nanocarrier biodistribution via ultrasonography and/or 19F MRI. In the first generation of block copolymer stabilized perfluorocarbon nanoemulsions, perfluoropentane (PFP) was used as the droplet forming compound. Although manifesting excellent therapeutic and ultrasound imaging properties, PFP nanoemulsions were unstable at storage, difficult to handle, and underwent hard to control phenomenon of irreversible droplet-to-bubble transition upon injection. To solve the above problems, perfluoro-15-crown-5-ether (PFCE) was used as a core forming compound in the second generation of block copolymer stabilized perfluorocarbon nanoemulsions. PFCE nanodroplets manifest both ultrasound and fluorine (19F) MR contrast properties, which allows using multimodal imaging and 19F MR spectroscopy for monitoring nanodroplet pharmacokinetics and biodistribution. In the present paper, acoustic, imaging, and therapeutic properties of unloaded and paclitaxel (PTX) loaded PFCE nanoemulsions are reported. As manifested by the 19F MR spectroscopy, PFCE nanodroplets are long circulating, with about 50% of the injected dose remaining in circulation two hours after the systemic injection. Sonication with 1-MHz therapeutic ultrasound triggered reversible droplet-to-bubble transition in PFCE nanoemulsions. Microbubbles formed by acoustic vaporization of nanodroplets underwent stable cavitation. The nanodroplet size (200 nm to 350 nm depending on a type of the shell and conditions of emulsification) as well as long residence in circulation favored their passive accumulation in tumor tissue that was confirmed by ultrasonography. In the breast and pancreatic cancer animal models, ultrasound-mediated therapy with paclitaxel-loaded PFCE nanoemulsions showed excellent therapeutic properties characterized by tumor regression and suppression of metastasis. Anticipated

  16. Effect of ripening inhibitor type on formation, stability, and antimicrobial activity of thyme oil nanoemulsion.

    PubMed

    Ryu, Victor; McClements, David J; Corradini, Maria G; McLandsborough, Lynne

    2018-04-15

    The objective of this research was to study the impact of ripening inhibitor level and type on the formation, stability, and activity of antimicrobial thyme oil nanoemulsions formed by spontaneous emulsification. Oil-in-water antimicrobial nanoemulsions (10 wt%) were formed by titrating a mixture of essential oil, ripening inhibitor, and surfactant (Tween 80) into 5 mM sodium citrate buffer (pH 3.5). Stable nanoemulsions containing small droplets (d < 70 nm) were formed. The antimicrobial activity of the nanoemulsions decreased with increasing ripening inhibitor concentration which was attributed to a reduction in the amount of hydrophobic antimicrobial constituents transferred to the separated hydrophobic domain, mimicking bacterial cell membranes, by using dialysis and chromatography. The antimicrobial activity of the nanoemulsions also depended on the nature of the ripening inhibitor used: palm ≈ corn > canola > coconut which also depended on their ability to transfer hydrophobic antimicrobial constituents to the separated hydrophobic domain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Optimization of β-casein stabilized nanoemulsions using experimental mixture design.

    PubMed

    Maher, Patrick G; Fenelon, Mark A; Zhou, Yankun; Kamrul Haque, Md; Roos, Yrjö H

    2011-10-01

    The objective of this study was to determine the effect of changing viscosity and glass transition temperature in the continuous phase of nanoemulsion systems on subsequent stability. Formulations comprising of β-casein (2.5%, 5%, 7.5%, and 10% w/w), lactose (0% to 20% w/w), and trehalose (0% to 20% w/w) were generated from Design of Experiments (DOE) software and tested for glass transition temperature and onset of ice-melting temperature in maximally freeze-concentrated state (T(g) ' & T(m) '), and viscosity (μ). Increasing β-casein content resulted in significant (P < 0.0001) increases in viscosity and T(m) ' (P= 0.0003), and significant (P < 0.0001) decreases in T(g) '. A mixture design was used to predict the optimum levels of lactose and trehalose required to attain the minimum and maximum T(g) ' and viscosity in solution at fixed protein contents. These mixtures were used to form the continuous phase of β-casein stabilized nanoemulsions (10% w/w sunflower oil) prepared by microfluidization at 70 MPa. Nanoemulsions were analyzed for T(g) ' & T(m) ', as well as viscosity, mean particle size, and stability. Increasing levels of β-casein (2.5% to 10% w/w) resulted in a significant (P < 0.0001) increase in viscosity (5 to 156 mPa.s), significant increase in particle size (P= 0.0115) from 186 to 199 nm, and significant decrease (P= 0.0001) in T(g) ' (-45 to -50 °C). Increasing the protein content resulted in a significant (P < 0.0001) increase in nanoemulsion stability. A mixture DOE was successfully used to predict glass transition and rheological properties for development of a continuous phase for use in nanoemulsions. © 2011 Institute of Food Technologists®

  18. Nanoemulsions for Intranasal Delivery of Riluzole to Improve Brain Bioavailability: Formulation Development and Pharmacokinetic Studies.

    PubMed

    Parikh, Rajesh H; Patel, Ravish J

    2016-01-01

    Amyotrophic Lateral Sclerosis (ALS), a motor neuron disease (MND), is a progressive neurodegenerative disorder characterized by the deterioration of both upper and lower motor neurons. Only one drug (riluzole) has been approved for the treatment of ALS. Riluzole is a BCS class II drug having 60% absolute bioavailability. It is a substrate of P-glycoprotein and BBB restricts its entry in brain. This investigation was aimed to develop O/W nanoemulsion system of riluzole to improve its brain bioavailability. Riluzole loaded nanoemulsion was prepared by phase titration method. It was consisting of 3% w/w Sefsol 218, 28.3% w/w Tween 80:Carbitol (1:1) and 68.7% w/w water. It was characterized for drop size, drop size distribution, transmittance, viscosity, pH, zeta potential, conductivity and nasal ciliotoxicity study. Thermodynamic stability and room temperature stability of prepared nanoemulsion formulation were evaluated. Pharmacokinetic and brain uptake study was carried out using albino rats (wistar) post intranasal and oral administration. Riluzole loaded nanoemulsion was having a drop size of 23.92±0.52 nm. It was free from nasal ciliotoxicity and stable for three months. Brain uptake of riluzole post intranasal administration of riluzole loaded nanoemulsion was significantly (P <4.10 × 10-6) higher when it was compared with oral administration of riluzole loaded nanoemulsion. This study indicates that nanoemulsion of riluzole for intranasal administration could be a promising approach for the treatment of ALS to minimize the dose of riluzole in order to avoid dose related adverse events.

  19. Comparative evaluation of propofol in nanoemulsion with solutol and soy lecithin for general anesthesia.

    PubMed

    Rittes, José Carlos; Cagno, Guilherme; Perez, Marcelo Vaz; Mathias, Ligia Andrade da Silva Telles

    2016-01-01

    The vehicle for propofol in 1 and 2% solutions is soybean oil emulsion 10%, which may cause pain on injection, instability of the solution and bacterial contamination. Formulations have been proposed aiming to change the vehicle and reduce these adverse reactions. To compare the incidence of pain caused by the injection of propofol, with a hypothesis of reduction associated with nanoemulsion and the occurrence of local and systemic adverse effects with both formulations. After approval by the CEP, patients undergoing gynecological procedures were included in this prospective study: control (n=25) and nanoemulsion (n=25) groups. Heart rate, noninvasive blood pressure and peripheral oxygen saturation were monitored. Demographics and physical condition were analyzed; surgical time and total volume used of propofol; local or systemic adverse effects; changes in variables monitored. A value of p<0.05 was considered significant. There was no difference between groups regarding demographic data, surgical times, total volume of propofol used, arm withdrawal, pain during injection and variables monitored. There was a statistically significant difference in pain intensity at the time of induction of anesthesia, with less pain intensity in the nanoemulsion group. Both lipid and nanoemulsion formulations of propofol elicited pain on intravenous injection; however, the nanoemulsion solution elicited a less intense pain. Lipid and nanoemulsion propofol formulations showed neither hemodynamic changes nor adverse effects of clinical relevance. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  20. Enhanced antibacterial effects of clove essential oil by nanoemulsion.

    PubMed

    Anwer, Md Khalid; Jamil, Shahid; Ibnouf, Elmutasim Osman; Shakeel, Faiyaz

    2014-01-01

    The aim of present study was to develop and evaluate nanoemulsion formulations of clove essential oil (CEO) for its antibacterial effects in comparison with pure CEO and standard amikacin antibiotic (positive control). Different nanoemulsions of CEO were developed by aqueous phase titration method via construction of pseudo-ternary phase diagrams and investigated for thermodynamic stability and self-nanoemulsification tests. Selected formulations (F1-F5) were characterized for droplet size distribution, viscosity, zeta potential, transmittance and surface morphology. Based on lowest droplet size (29.1 nm), lowest PI (0.026), lowest viscosity (34.6 cp), optimal zeta potential (-31.4 mV), highest transmittance (99.4 %) and lowest concentration of Triacetin (8 % w/w), CEO nanoemulsion F1 (containing 1 % w/w of CEO, 8 % w/w of Triacetin, 15 % w/w of Tween-80, 15 % w/w of Labrasol and 61 % w/w of water) was subjected to antibacterial studies in comparison with pure oil and standard amikacin. The antibacterial effects of F1 were found to be superior over pure oil against all bacterial strains investigated. However, the antibacterial effects of F1 were highly comparable with standard amikacin against all bacterial strains. The minimum inhibitory concentrations (MICs) of F1 were observed in the range of 0.075-0.300 % w/w as compared to pure oil (MICs 0.130-0.500 % w/w) and standard amikacin (MICs 2-16 μg/ml). These results indicated the potential of nanoemulsions for enhancing the therapeutic efficacy of natural bioactive ingredients such as CEO.

  1. Nanoemulsions containing a synthetic chalcone as an alternative for treating cutaneous leshmaniasis: optimization using a full factorial design

    PubMed Central

    de Mattos, Cristiane Bastos; Argenta, Débora Fretes; Melchiades, Gabriela de Lima; Sechini Cordeiro, Marlon Norberto; Tonini, Maiko Luis; Moraes, Milene Hoehr; Weber, Tanara Beatriz; Roman, Silvane Souza; Nunes, Ricardo José; Teixeira, Helder Ferreira; Steindel, Mário; Koester, Letícia Scherer

    2015-01-01

    Nanoemulsions are drug delivery systems that may increase the penetration of lipophilic compounds through the skin, enhancing their topical effect. Chalcones are compounds of low water solubility that have been described as promising molecules for the treatment of cutaneous leishmaniasis (CL). In this context, the aim of this work was to optimize the development of a nanoemulsion containing a synthetic chalcone for CL treatment using a 22 full factorial design. The formulations were prepared by spontaneous emulsification and the experimental design studied the influence of two independent variables (type of surfactant – soybean lecithin or sorbitan monooleate and type of co-surfactants – polysorbate 20 or polysorbate 80) on the physicochemical characteristics of the nanoemulsions, as well as on the skin permeation/retention of the synthetic chalcone in porcine skin. In order to evaluate the stability of the systems, the antileishmanial assay was performed against Leishmania amazonensis 24 hours and 60 days after the preparation of the nanoemulsions. The formulation composed of soybean lecithin and polysorbate 20 presented suitable physicochemical characteristics (droplet size 171.9 nm; polydispersity index 0.14; zeta potential −39.43 mV; pH 5.16; and viscosity 2.00 cP), drug content (91.09%) and the highest retention in dermis (3.03 µg·g−1) – the main response of interest – confirmed by confocal microscopy. This formulation also presented better stability of leishmanicidal activity in vitro against L. amazonensis amastigote forms (half maximal inhibitory concentration value 0.32±0.05 µM), which confirmed the potential of the nanoemulsion soybean lecithin and polysorbate 20 for CL treatment. PMID:26366075

  2. Physicochemical properties and storage stability of soybean protein nanoemulsions prepared by ultra-high pressure homogenization.

    PubMed

    Xu, Jing; Mukherjee, Dipaloke; Chang, Sam K C

    2018-02-01

    This study investigated the effects of the ultrahigh pressure homogenization (pressure, protein concentration, oil phase fraction, pH, temperature, and ionic strength) and storage on the properties of nanoemulsions (100-500nm range), which were stabilized by laboratory-prepared soybean protein isolate (SPI), β-conglycinin (7S) and glycinin (11S). The nanoemulsions made with SPI, 7S and 11S proteins exhibited considerable stability over various ionic strengths (0-500mM NaCl), pH (<4 or >7), thermal treatments (30-60°C) and storage (0-45days). The far-UV spectra of SPI, 7S, 11S dispersions, and SPI-, 7S-, 11S protein-stabilized nanoemulsions were analyzed for the protein structural changes following lipid removal. The ultra-high pressure homogenization changed the secondary structure of SPI, 7S, 11S proteins in the nanoemulsions, and enhanced their stability. This study demonstrated that SPI, 7S, and 11S proteins can be used as effective emulsifiers in nanoemulsions prepared by ultra-high pressure homogenization. Copyright © 2017. Published by Elsevier Ltd.

  3. Penetration and release studies of positively and negatively charged nanoemulsions--is there a benefit of the positive charge?

    PubMed

    Baspinar, Yücel; Borchert, Hans-Hubert

    2012-07-01

    The surface of all tissues, including the stratum corneum, carries a negative charge. Following that fact it is assumed that a positively charged topical formulation could lead to an enhanced penetration because of an increased interaction with the negative charge of the membrane. The intention of this study is to prove an enhanced penetration of a positively charged nanoemulsion compared to a negatively charged nanoemulsion, both containing prednicarbate. The release and penetration of these nanoemulsions, produced with the high pressure homogenization method, were investigated. Regarding these results reveals that the release of the negatively charged formulation is higher compared to the positively charged nanoemulsion, while the penetration of the positively charged nanoemulsion is enhanced compared to the negatively charged formulation. The results of the investigated positively charged nanoemulsion containing prednicarbate show that its topical use could be advantageous for the therapy of atopic dermatitis, especially regarding phytosphingosine, which was responsible for the positive charge. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Lutein and zeaxanthin: Role as macular pigment and factors that control bioavailability from egg yolks and nanoemulsions

    NASA Astrophysics Data System (ADS)

    Vishwanathan, Rohini

    ) raising serum HDL-C without an adverse affect on serum LDL-C and TC:HDL-C ratio. Increased cholesterol, lutein and zeaxanthin intake from the 2 and 4 egg yolk interventions did not decrease the absorption of other carotenoids, such as alpha-cryptoxanthin, beta-cryptoxanthin, lycopene, alpha-carotene and beta-carotene, tocopherols and retinol from the diet. An unexpected increase was observed in serum alpha-cryptoxanthin and gamma-tocopherol concentrations during the 4 egg yolk phase, these carotenoids are normally present in low concentrations in serum. Lipoprotein distribution of carotenoids and tocopherols was also not affected by the increased egg consumption. In the pursuit of designing a highly bioavailable matrix for lutein/zeaxanthin, similar to the egg yolk micellar matrix, nanoemulsion formulations of lutein were developed using the MicrofluidizerRTM Processor technology. Lutein nanoemulsions are O/W emulsions of lutein which have particle sizes in the nanometer range (≤ 200 nm). Lutein consumed orally as a nanoemulsion was shown to have significantly greater bioavailability than lutein supplement-pills in pilot-scale clinical studies described here. However, lutein nanoemulsions did not raise plasma lutein concentrations to the same extent as egg yolks in a study performed on BALB/c mice. Formation of mixed micelles in the intestinal lumen during digestion and uptake of these micelles by enterocytes are crucial steps that dictate bioavailability i.e. the proportion of ingested lutein/carotenoid that enters the blood circulation and accumulates in the peripheral tissues such as the macula. In-vitro stomach and intestinal digestion experiments showed lutein nanoemulsions have significantly greater micellarization efficiency compared to egg yolks. Nanoemulsions with a phospholipid (PL) emulsifier containing 80% phosphatidyl choline (PC) or Polysorbate 80 as the emulsifier had better ability to form micelles during the intestinal digestion phase compared to a PL

  5. Development of Curcumin loaded chitosan polymer based nanoemulsion gel: In vitro, ex vivo evaluation and in vivo wound healing studies.

    PubMed

    Thomas, Lydia; Zakir, Foziyah; Mirza, Mohd Aamir; Anwer, Md Khalid; Ahmad, Farhan Jalees; Iqbal, Zeenat

    2017-08-01

    In the present study, various nanoemulsions were prepared using Labrafac PG+Triacetin as oil, Tween 80 as a surfactant and polyethylene glycol (PEG 400) as a co-surfactant. The developed nanoemulsions (NE1-NE5) were evaluated for physicochemical characterizations and ex-vivo for skin permeation and deposition studies. The highest skin deposition was observed for NE2 with 46.07% deposition amongst all developed nanoemulsions (NE1-NE5). Optimized nanoemulsion (NE2) had vesicle size of 84.032±0.023nm, viscosity 78.23±22.2 cps, refractive index 1.404. Nanoemulsion gel were developed by incorporation of optimized nanoemulsion (NE2) into 1-3% chitosan and characterized by physical evaluation and rheological studies. Chitosan gel (2%) was found to be suitable for gelation of nanoemulsion based on its consistency, feel and ease of spreadability. The flux of nanoemulsion gel was found 68.88μg/cm 2 /h as compared to NE2 (76.05μg/cm 2 /h) is significantly lower suggesting limited skin permeation of curcumin form gel. However, the retained amount of curcumin on skin by gel formulation (980.75±88μg) is significantly higher than NE2 (771.25±67μg). Enhanced skin permeation of NE2 (46.07%) was observed when compared to nanoemulsion gel (31.25%) and plain gel (11.47%). The outcome of this study evidently points out the potential of curcumin entrapped nanoemulsion gel in wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Optimization of ultrasonic emulsification conditions for the production of orange peel essential oil nanoemulsions.

    PubMed

    Hashtjin, Adel Mirmajidi; Abbasi, Soleiman

    2015-05-01

    The aim of the present study was to investigate the influence of emulsifying conditions on some physical and rheological properties of orange peel essential oil (OPEO) in water nanoemulsions. In this regard, using the response surface methodology, the influence of ultrasonication conditions including sonication amplitude (70-100 %), sonication time (90-150 s) and process temperature (5-45 °C) on the mean droplets diameter (Z-average value), polydispersity index (PDI), and viscosity of the OPEO nanoemulsions was evaluated. In addition, the flow behavior and stability of selected nanoemulsions was evaluated during storage (up to 3 months) at different temperatures (5, 25 and 45 °C). Based on the results of the optimization, the optimum conditions for producing OPEO nanoemulsions (Z-average value 18.16 nm) were determined as 94 % (sonication amplitude), 138 s (sonication time) and 37 °C (process temperature). Moreover, analysis of variance (ANOVA) showed high coefficients of determination values (R (2) > 0.95) for the response surface models of the energy input and Z-average. In addition, the flow behavior of produced nanoemulsions was Newtonian, and the effect of time and storage temperature as well as their interactions on the Z-average value was highly significant (P < 0.0001).

  7. Self-assembly formation of palm-based esters nano-emulsion: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Abdul Rahman, Mohd. Basyaruddin; Huan, Qiu-Yi; Tejo, Bimo A.; Basri, Mahiran; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Abdul

    2009-10-01

    Palm-oil esters (POEs) are unsaturated and non-ionic esters that can be prepared by enzymatic synthesis from palm oil. Their nano-emulsion properties possess great potential to act as drug carrier for transdermal drug delivery system. A ratio of 75:5:20 (water/POEs/Span20) was chosen from homogenous region in the phase diagram of our previous experimental work to undergo molecular dynamics simulation. A 15 ns molecular dynamics simulation of nano-emulsion system (water/POEs/Span20) was carried out using OPLS-AA force field. The aggregations of the oil and surfactant molecules are observed throughout the simulation. After 8 ns of simulation, the molecules start to aggregate to form one spherical micelle where the POEs molecules are surrounded by the non-ionic surfactant (Span20) molecules with an average size of 4.2 ± 0.05 nm. The size of the micelle and the ability of palm-based nano-emulsion to self-assemble suggest that this nano-emulsion can potentially use in transdermal drug delivery system.

  8. Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions

    NASA Astrophysics Data System (ADS)

    Zhou, Ke; Zhang, Qiu Gen; Li, Hong Mei; Guo, Nan Nan; Zhu, Ai Mei; Liu, Qing Lin

    2014-08-01

    Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective separation of oil-in-water nanoemulsions. The newly developed ultrathin cellulose membranes have a wide application in oily wastewater treatment, separation and purification of nanomaterials.Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective

  9. Maillard-Reaction-Functionalized Egg Ovalbumin Stabilizes Oil Nanoemulsions.

    PubMed

    Liu, Gang; Yuan, Dan; Wang, Qi; Li, Wanrong; Cai, Jie; Li, Shuyi; Lamikanra, Olusola; Qin, Xinguang

    2018-04-25

    Egg white proteins are an excellent source of nutrition, with high biological and technological values. However, their limited functional properties prevent their widespread industrial applications. In this study, the ovalbumin functionality was improved via glycation by Maillard reaction with d-lactose. The free amino groups and sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile were determined, confirming that glycation occurred between ovalbumin and lactose. The emulsification of the conjugate was 2.69-fold higher than that of ovalbumin at pH 7.0 after glycation. The thermal stability also improved remarkably. The glycated protein products were used to form an oil-water nanoemulsion for polymethoxyflavone-rich aged orange peel oil. The resulting nanoemulsion showed good pH, thermal, and storage stabilities.

  10. Phase Transitions of Nanoemulsions Using Ultrasound: Experimental Observations

    PubMed Central

    Singh, Ram; Husseini, Ghaleb A.; Pitt, William G.

    2012-01-01

    The ultrasound-induced transformation of perfluorocarbon liquids to gases is of interest in the area of drug and gene delivery. In this study, three independent parameters (temperature, size, and perfluorocarbon species) were selected to investigate the effects of 476-kHz and 20-kHz ultrasound on nanoemulsion phase transition. Two levels of each factor (low and high) were considered at each frequency. The acoustic intensities at gas bubble formation and at the onset of inertial cavitation were recorded and subsequently correlated with the acoustic parameters. Experimental data showed that low frequencies are more effective in forming and collapsing a bubble. Additionally, as the size of the emulsion droplet increased, the intensity required for bubble formation decreased. As expected, perfluorohexane emulsions require greater intensity to form cavitating bubbles than perfluoropentane emulsions. PMID:22444691

  11. Thymol nanoemulsions incorporated in quinoa protein/chitosan edible films; antifungal effect in cherry tomatoes.

    PubMed

    Robledo, Nancy; Vera, Paola; López, Luis; Yazdani-Pedram, Mehrdad; Tapia, Cristian; Abugoch, Lilian

    2018-04-25

    Thymol nanoemulsions were produced by spontaneous emulsification, ultrasound, and a combination of both methods. The best result in terms of size and polydispersion was spontaneous emulsification where thymol was efficiently encapsulated, the nanoemulsions inhibited Botrytis cinerea at 110 ppm of thymol. A 10% dilution of this nanoemulsion in water was used to prepare quinoa-chitosan films. The film microstructure was porous and heterogeneous. The tensile strength of the film was significantly lower but its mean elongation at break was similar to that of the control film. The water vapour permeability was similar to that of the control film. The effect of nanoemulsion-thymol-quinoa protein/chitosan coating on mould growth in inoculated cherry tomatoes was evaluated. Compared with control samples (tomatoes without coating and those coated with quinoa protein/chitosan), tomatoes with this coating and inoculated with B. cinerea showed a significant decrease in fungal growth after 7 days at 5 °C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Enhancing the antimicrobial activity of d-limonene nanoemulsion with the inclusion of ε-polylysine.

    PubMed

    Zahi, Mohamed Reda; El Hattab, Mohamed; Liang, Hao; Yuan, Qipeng

    2017-04-15

    The objective of this research was to investigate the synergism between ε-polylysine and d-limonene and develop a novel nanoemulsion system by merging the positive effect of these two antimicrobial agents. Results from the checkerboard method showed that ε-polylysine and d-limonene exhibit strong synergistic and useful additive effects against Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Saccharomyces cerevisiae. In addition, d-limonene nanoemulsion with the inclusion of ε-polylysine was successfully prepared by high pressure homogenizer technology. Its antimicrobial efficiency was compared with pure d-limonene nanoemulsion by measuring the minimal inhibitory concentration, electronic microscope observation and the leakage of the intercellular constituents. The results demonstrated a wide improvement of the antimicrobial activity of d-limonene nanoemulsion following the inclusion of ε-polylysine. Overall, the current study may have a valuable contribution to make in developing a more efficient antimicrobial system in the food industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. In Vitro Evaluation of Novel Phenytoin-Loaded Alkyd Nanoemulsions Designed for Application in Topical Wound Healing.

    PubMed

    Teo, Siew Yong; Yew, Mei Yeng; Lee, Siang Yin; Rathbone, Michael J; Gan, Seng Neon; Coombes, Allan G A

    2017-01-01

    Phenytoin-loaded alkyd nanoemulsions were prepared spontaneously using the phase inversion method from a mixture of novel biosourced alkyds and Tween 80 surfactant. Exposure of human adult keratinocytes (HaCaT cells) for 48 h to alkyd nanoemulsions producing phenytoin concentrations of 3.125-200 μg/mL resulted in relative cell viability readings using tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide of 100% confirming nontoxicity and suggesting cell proliferation activity. Phenytoin-loaded alkyd nanoemulsions generally resulted in higher mean cell viability compared with equivalent concentration of phenytoin solutions, suggesting that the nanoemulsions provided a controlled-release property that maintained the optimum phenytoin level for keratinocyte growth. HaCaT cell proliferation, measured by 5-bromo-2-deoxyuridine uptake, was found to increase following exposure to increasing phenytoin concentration from 25 to 50 μg/mL in solution or encapsulated in nanoemulsions but declined at a drug concentration of 100 μg/mL. An in vitro cell monolayer wound scratch assay revealed that phenytoin solution or nanoemulsions producing 50 μg/mL phenytoin concentration resulted in 75%-82% "scratch closure" after 36 h, similar to medium containing 10% fetal bovine serum as a cell growth promoter. These findings indicate that phenytoin-loaded alkyd nanoemulsions show potential for promoting topical wound healing through enhanced proliferation of epidermal cells. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Combined high-power ultrasound and high-pressure homogenization nanoemulsification: The effect of energy density, oil content and emulsifier type and content.

    PubMed

    Calligaris, Sonia; Plazzotta, Stella; Valoppi, Fabio; Anese, Monica

    2018-05-01

    Combinations of ultrasound (US) and high-pressure homogenization (HPH) at low-medium energy densities were studied as alternative processes to individual US and HPH to produce Tween 80 and whey protein stabilized nanoemulsions, while reducing the energy input. To this aim, preliminary trials were performed to compare emulsification efficacy of single and combined HPH and US treatments delivering low-medium energy densities. Results highlighted the efficacy of US-HPH combined process in reducing the energy required to produce nanoemulsions stabilized with both Tween 80 and whey protein isolate. Subsequently, the effect of emulsifier content (1-3% w/w), oil amount (10-20% w/w) and energy density (47-175 MJ/m 3 ) on emulsion mean particle diameter was evaluated by means of a central composite design. Particles of 140-190 nm were obtained by delivering 175 MJ/m 3 energy density at emulsions containing 3% (w/w) Tween 80 and 10% (w/w) oil. In the case of whey protein isolate stabilized emulsions, a reduced emulsifier amount (1% w/w) and intermediate energy density (120 MJ/m 3 ) allowed a minimum droplet size around 220-250 nm to be achieved. Results showed that, in both cases, at least 50% of the energy density should be delivered by HPH to obtain the minimum particle diameter. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Food protein-stabilized nanoemulsions as potential delivery systems for poorly water-soluble drugs: preparation, in vitro characterization, and pharmacokinetics in rats

    PubMed Central

    He, Wei; Tan, Yanan; Tian, Zhiqiang; Chen, Lingyun; Hu, Fuqiang; Wu, Wei

    2011-01-01

    Nanoemulsions stabilized by traditional emulsifiers raise toxicological concerns for long-term treatment. The present work investigates the potential of food proteins as safer stabilizers for nanoemulsions to deliver hydrophobic drugs. Nanoemulsions stabilized by food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) were prepared by high-pressure homogenization. The toxicity of the nanoemulsions was tested in Caco-2 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide viability assay. In vivo absorption in rats was also evaluated. Food protein-stabilized nanoemulsions, with small particle size and good size distribution, exhibited better stability and biocompatibility compared with nanoemulsions stabilized by traditional emulsifiers. Moreover, β-lactoglobulin had a better emulsifying capacity and biocompatibility than the other two food proteins. The pancreatic degradation of the proteins accelerated drug release. It is concluded that an oil/water nanoemulsion system with good biocompatibility can be prepared by using food proteins as emulsifiers, allowing better and more rapid absorption of lipophilic drugs. PMID:21468355

  16. Food protein-stabilized nanoemulsions as potential delivery systems for poorly water-soluble drugs: preparation, in vitro characterization, and pharmacokinetics in rats.

    PubMed

    He, Wei; Tan, Yanan; Tian, Zhiqiang; Chen, Lingyun; Hu, Fuqiang; Wu, Wei

    2011-01-01

    Nanoemulsions stabilized by traditional emulsifiers raise toxicological concerns for long-term treatment. The present work investigates the potential of food proteins as safer stabilizers for nanoemulsions to deliver hydrophobic drugs. Nanoemulsions stabilized by food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) were prepared by high-pressure homogenization. The toxicity of the nanoemulsions was tested in Caco-2 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide viability assay. In vivo absorption in rats was also evaluated. Food protein-stabilized nanoemulsions, with small particle size and good size distribution, exhibited better stability and biocompatibility compared with nanoemulsions stabilized by traditional emulsifiers. Moreover, β-lactoglobulin had a better emulsifying capacity and biocompatibility than the other two food proteins. The pancreatic degradation of the proteins accelerated drug release. It is concluded that an oil/water nanoemulsion system with good biocompatibility can be prepared by using food proteins as emulsifiers, allowing better and more rapid absorption of lipophilic drugs.

  17. Development of a Larvicidal Nanoemulsion with Pterodon emarginatus Vogel Oil

    PubMed Central

    Oliveira, Anna E. M. F. M.; Duarte, Jonatas L.; Amado, Jesus R. R.; Cruz, Rodrigo A. S.; Rocha, Clarice F.; Souto, Raimundo N. P.; Ferreira, Ricardo M. A.; Santos, Karen; da Conceição, Edemilson C.; de Oliveira, Leandra A. R.; Kelecom, Alphonse; Fernandes, Caio P.; Carvalho, José C. T.

    2016-01-01

    Pterodon emarginatus Vogel is a Brazilian species that belongs to the family Fabaceae, popularly known as sucupira. Its oil has several biological activities, including potent larvicidal property against Aedes aegypti. This insect is the vector of dengue, a tropical disease that has been considered a critical health problem in developing countries, such as Brazil. Most of dengue control methods involve larvicidal agents suspended or diluted in water and making active lipophilic natural products available is therefore considered a technological challenge. In this context, nanoemulsions appear as viable alternatives to solve this major problem. The present study describes the development of a novel nanoemulsion with larvicidal activity against A. aegypti along with the required Hydrophile Lipophile Balance determination of this oil. It was suggested that the mechanism of action might involve reversible inhibition of acetylcholinesterase and our results also suggest that the P. emarginatus nanoemulsion is not toxic for mammals. Thus, it contributes significantly to alternative integrative practices of dengue control, as well as to develop sucupira based nanoproducts for application in aqueous media. PMID:26742099

  18. From nanoemulsions to self-nanoemulsions, with recent advances in self-nanoemulsifying drug delivery systems (SNEDDS).

    PubMed

    Rehman, Fiza Ur; Shah, Kifayat Ullah; Shah, Shefaat Ullah; Khan, Ikram Ullah; Khan, Gul Majid; Khan, Amjad

    2017-11-01

    Lipid-based drug delivery systems (LBDDS) are the most promising technique to formulate the poorly water soluble drugs. Nanotechnology strongly influences the therapeutic performance of hydrophobic drugs and has become an essential approach in drug delivery research. Self-nanoemulsifying drug delivery systems (SNEDDS) are a vital strategy that combines benefits of LBDDS and nanotechnology. SNEDDS are now preferred to improve the formulation of drugs with poor aqueous solubility. Areas covered: The review in its first part shortly describes the LBDDS, nanoemulsions and clarifies the ambiguity between nanoemulsions and microemulsions. In the second part, the review discusses SNEDDS and elaborates on the current developments and modifications in this area without discussing their associated preparation techniques and excipient properties. Expert opinion: SNEDDS have exhibit the potential to increase the bioavailability of poorly water soluble drugs. The stability of SNEDDS is further increased by solidification. Controlled release and supersaturation can be achieved, and are associated with increased patient compliance and improved drug loads, respectively. Presence of biodegradable ingredients and ease of large-scale manufacturing combined with a lot of 'drug-targeting opportunities' give SNEDDS a clear distinction and prominence over other solubility enhancement techniques.

  19. Polymeric micelles and nanoemulsions as tumor-targeted drug carriers: Insight through intravital imaging.

    PubMed

    Rapoport, Natalya; Gupta, Roohi; Kim, Yoo-Shin; O'Neill, Brian E

    2015-05-28

    Intravital imaging of nanoparticle extravasation and tumor accumulation has revealed, for the first time, detailed features of carrier and drug behavior in circulation and tissue that suggest new directions for optimization of drug nanocarriers. Using intravital fluorescent microscopy, the extent of the extravasation, diffusion in the tissue, internalization by tissue cells, and uptake by the RES system were studied for polymeric micelles, nanoemulsions, and nanoemulsion-encapsulated drug. Discrimination of vascular and tissue compartments in the processes of micelle and nanodroplet extravasation and tissue accumulation was possible. A simple 1-D continuum model was suggested that allowed discriminating between various kinetic regimes of nanocarrier (or released drug) internalization in tumors of various sizes and cell density. The extravasation and tumor cell internalization occurred much faster for polymeric micelles than for nanoemulsion droplets. Fast micelle internalization resulted in the formation of a perivascular fluorescent coating around blood vessels. A new mechanism of micelle extravasation and internalization was suggested, based on the fast extravasation and internalization rates of copolymer unimers while maintaining micelle/unimer equilibrium in the circulation. The data suggested that to be therapeutically effective, nanoparticles with high internalization rate should manifest fast diffusion in the tumor tissue in order to avoid generation of concentration gradients that induce drug resistance. However an extra-fast diffusion should be avoided as it may result in the flow of extravasated nanoparticles from the tumor to normal organs, which would compromise targeting efficiency. The extravasation kinetics were different for nanodroplets and nanodroplet-encapsulated drug F-PTX suggesting a premature release of some fraction of the drug from the carrier. In conclusion, the development of an "ideal" drug carrier should involve the optimization of both

  20. Formulation Development and Evaluation of the Therapeutic Efficacy of Brinzolamide Containing Nanoemulsions

    PubMed Central

    Mahboobian, Mohammad Mehdi; Seyfoddin, Ali; Rupenthal, Ilva D.; Aboofazeli, Reza; Foroutan, Seyed Mohsen

    2017-01-01

    Brinzolamide (BZ) is an intraocular pressure reducing agent with low bioavailability. The purpose of the present study was to overcome this issue by development of BZ containing nanoemulsions (NEs) as an ocular drug delivery system with desirable therapeutic efficacy. Brinzolamide NEs were prepared by the spontaneous emulsification method. Based on initial release studies, twelve formulations with the slowest release characteristics were subjected to further physicochemical investigations such as particle size, polydispersity index, pH, refractive index, osmolality and viscosity. The therapeutic efficacy of these formulations was assessed by measuring the intraocular pressure after instillation of the prepared NEs in normotensive albino rabbit eyes. Nanoemulsions with suitable physicochemical properties exhibited high formulation stability under different conditions. more over biological evaluations indicated that using lower drug concentrations in NE formulations (0.4%) had a similar or even better pharmacodynamic effect compared to the commercial suspension with a higher drug concentration (1%). Our findings suggest that NEs could be effectively used as carriers for enhancing the bioavailability of topically applied ophthalmic drugs. PMID:29201076

  1. Emulsifying conditions and processing parameters optimisation of kenaf seed oil-in-water nanoemulsions stabilised by ternary emulsifier mixtures.

    PubMed

    Cheong, Ai M; Tan, Chin P; Nyam, Kar L

    2018-01-01

    Kenaf ( Hibiscus cannabinus L.) seed oil has been proven for its multi-pharmacological benefits; however, its poor water solubility and stability have limited its industrial applications. This study was aimed to further improve the stability of pre-developed kenaf seed oil-in-water nanoemulsions by using food-grade ternary emulsifiers. The effects of emulsifier concentration (1, 5, 10, 15% w/w), homogenisation pressure (16,000, 22,000, 28,000 psi), and homogenisation cycles (three, four, five cycles) were studied to produce high stability of kenaf seed oil-in-water nanoemulsions using high pressure homogeniser. Generally, results showed that the emulsifier concentration and homogenisation conditions had great effect ( p < 0.05) on the particle sizes, polydispersity index and hence the physical stability of nanoemulsions. Homogenisation parameters at 28,000 psi for three cycles produced the most stable homogeneous nanoemulsions that were below 130 nm, below 0.16, and above -40 mV of particle size, polydispersity index, and zeta potential, respectively. Field emission scanning electron microscopy micrograph showed that the optimised nanoemulsions had a good distribution within nano-range. The optimised nanoemulsions were proved to be physically stable for up to six weeks of storage at room temperature. The results from this study also provided valuable information in producing stable kenaf seed oil nanoemulsions for the future application in food and nutraceutical industries.

  2. Impact of alcohols on the formation and stability of protein-stabilized nanoemulsions.

    PubMed

    Zeeb, Benjamin; Herz, Eva; McClements, David Julian; Weiss, Jochen

    2014-11-01

    Nanoemulsions are increasingly being used for encapsulation, protection, and delivery of bioactive lipids, however, their formation from natural emulsifiers is still challenging. We investigated the impact of alcohol on the formation and stability of protein-stabilized oil-in-water nanoemulsions prepared by high-pressure homogenization. The influence of different alcohols (ethanol, 1-propanol, and 1-butanol) at various concentrations (0-25% w/w) on the formation and stability of emulsions stabilized by sodium caseinate, whey protein isolate, and fish gelatin was investigated. The mean particle diameter decreased with increasing alcohol concentrations from 0 to 10%w/w, but extensive droplet aggregation occurred at higher levels. This phenomenon was attributed to enhanced protein-protein interactions between the adsorbed emulsifier molecules in the presence of alcohol leading to droplet flocculation. The smallest droplets (d<100nm) were obtained when 10%w/w 1-butanol was added to sodium caseinate-stabilized nanoemulsions, but relatively small droplets (d<150nm) could also be obtained in the presence of a food-grade alcohol (ethanol). This study demonstrated that alcohol addition might be a useful tool for producing protein-stabilized nanoemulsions suitable for use as delivery systems of lipophilic bioactive agents. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Skin intervention of fullerene-integrated nanoemulsion in structural and collagen regeneration against skin aging.

    PubMed

    Ngan, Cheng Loong; Basri, Mahiran; Tripathy, Minaketan; Abedi Karjiban, Roghayeh; Abdul-Malek, Emilia

    2015-04-05

    Despite the fact that intrinsic oxidative stress is inevitable, the extrinsic factor such as ultraviolet radiation enhances reactive oxygen species (ROS) generation resulting in premature skin aging. Nanoemulsion was loaded with fullerene, a strong free radical scavenger, and its efficacy to provide protection and regenerative effect against ROS-induced collagen breakdown in human skin was studied. Stable fullerene nanoemulsions were formulated using high shear homogenization and ultrasonic dispersion technique. An open trial was conducted using fullerene nanoemulsion on skin twice a day for 28 days. The mean collagen score significantly increased (P<0.05) from 36.53±4.39 to 48.69±5.46 with 33.29% increment at the end of the treatment. Biophysical characteristics of skin revealed that skin hydration was increased significantly (P<0.05) from 40.91±7.01 to 58.55±6.08 corneometric units (43.12% increment) and the water was able to contain within the stratum corneum without any increased in transepidermal water loss. In the in vitro safety evaluation, fullerene nanoemulsion showed no acute toxicity on 3T3 fibroblast cell line for 48h and no indication of potential dermal irritation. Hence, the fullerene nanoemulsion may assist in protecting collagen from breakdown with cosmeceutical benefit. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3.

    PubMed

    Kabri, Tin-Hinan; Arab-Tehrany, Elmira; Belhaj, Nabila; Linder, Michel

    2011-09-21

    Nano-emulsions, as non-equilibrium systems, present characteristics and properties which depend not only on composition but also on their method of preparation. To obtain better penetration, nanocosmeceuticals use nano-sized systems for the delivery of active ingredients to targeted cells. In this work, nano-emulsions composed of miglyol, rapeseed oil and salmon oil were developed as a cosmetic matrix. Measurements of different physico-chemical properties of nano-emulsions were taken according to size, electrophoretic mobility, conductivity, viscosity, turbidity, cristallization and melting point. The RHLB was calculated for each formulation in order to achieve maximum stability. Both tween 80 and soya lecithin were found to stabilize formulations. The results showed that rapeseed oil and miglyol are the predominant parameters for determining the expression of results concerning the characterization of emulsion. Based on the mixture design, we achieved the optimal point using the following formulation: 56.5% rapessed oil, 35.5% miglyol, and 8% salmon oil. We considered this formulation to be the best as a nanocosmeceutical product due to the small size, good turbidity, and average HLB. This study demonstrates the influence of formulation on the physico-chemical properties of each nano-emulsion obtained by the mixture design.

  5. Biocompatible Nanoemulsions for Improved Aceclofenac Skin Delivery: Formulation Approach Using Combined Mixture-Process Experimental Design.

    PubMed

    Isailović, Tanja; Ðorđević, Sanela; Marković, Bojan; Ranđelović, Danijela; Cekić, Nebojša; Lukić, Milica; Pantelić, Ivana; Daniels, Rolf; Savić, Snežana

    2016-01-01

    We aimed to develop lecithin-based nanoemulsions intended for effective aceclofenac (ACF) skin delivery utilizing sucrose esters [sucrose palmitate (SP) and sucrose stearate (SS)] as additional stabilizers and penetration enhancers. To find the suitable surfactant mixtures and levels of process variables (homogenization pressure and number of cycles - high pressure homogenization manufacturing method) that result in drug-loaded nanoemulsions with minimal droplet size and narrow size distribution, a combined mixture-process experimental design was employed. Based on optimization data, selected nanoemulsions were evaluated regarding morphology, surface charge, drug-excipient interactions, physical stability, and in vivo skin performances (skin penetration and irritation potential). The predicted physicochemical properties and storage stability were proved satisfying for ACF-loaded nanoemulsions containing 2% of SP in the blend with 0%-1% of SS and 1%-2% of egg lecithin (produced at 50°C/20 cycles/800 bar). Additionally, the in vivo tape stripping demonstrated superior ACF skin absorption from these nanoemulsions, particularly from those containing 2% of SP, 0.5% of SS, and 1.5% of egg lecithin, when comparing with the sample costabilized by conventional surfactant - polysorbate 80. In summary, the combined mixture-process experimental design was shown as a feasible tool for formulation development of multisurfactant-based nanosized delivery systems with potentially improved overall product performances.

  6. Low capping group surface density on zinc oxide nanocrystals.

    PubMed

    Valdez, Carolyn N; Schimpf, Alina M; Gamelin, Daniel R; Mayer, James M

    2014-09-23

    The ligand shell of colloidal nanocrystals can dramatically affect their stability and reaction chemistry. We present a methodology to quantify the dodecylamine (DDA) capping shell of colloidal zinc oxide nanocrystals in a nonpolar solvent. Using NMR spectroscopy, three different binding regimes are observed: strongly bound, weakly associated, and free in solution. The surface density of bound DDA is constant over a range of nanocrystal sizes, and is low compared to both predictions of the number of surface cations and maximum coverages of self-assembled monolayers. The density of strongly bound DDA ligands on the as-prepared ZnO NCs is 25% of the most conservative estimate of the maximum surface DDA density. Thus, these NCs do not resemble the common picture of a densely capped surface ligand layer. Annealing the ZnO NCs in molten DDA for 12 h at 160 °C, which is thought to remove surface hydroxide groups, resulted in a decrease of the weakly associated DDA and an increase in the density of strongly bound DDA, to ca. 80% of the estimated density of a self-assembled monolayer on a flat ZnO surface. These findings suggest that as-prepared nanocrystal surfaces contain hydroxide groups (protons on the ZnO surfaces) that inhibit strong binding of DDA.

  7. Effectiveness of a novel spontaneous carvacrol nanoemulsion against Salmonella enterica Enteritidis and Escherichia coli O157:H7 on contaminated mung bean and alfalfa seeds.

    PubMed

    Landry, Kyle S; Chang, Yuhua; McClements, David Julian; McLandsborough, Lynne

    2014-09-18

    Outbreaks of foodborne illness from consumption of sprouts have been linked to contaminated seeds prior to germination. Due to the long sprouting period at ambient temperatures and high humidity, germinating seeds contaminated with low pathogen levels (0.1logCFU/g) can result in sprouts with high numbers (≥10(8)CFU/g) of pathogens. Currently, the recommended treatment method involves soaking seeds in 20,000ppm (2%) calcium hypochlorite prior to germination. In this study, an alternative treatment involving soaking seeds in a carvacrol nanoemulsion was tested for its efficacy against Salmonella enterica subspecies enterica serovar Enteritidis (ATCC BAA-1045) or EGFP expressing E. coli O157:H7 (ATCC 42895) contaminated mung bean and alfalfa seeds. The antimicrobial treatment was performed by soaking inoculated seed batches in the spontaneous nanoemulsion (4000 or 8000ppm) for 30 or 60min. The spontaneous nanoemulsion was formed by titrating the oil phase (carvacrol and medium chain triglycerides) and water-soluble surfactant (Tween 80®) into sodium citrate buffer. Following treatment, the numbers of surviving cells were determined by suspending the seeds in TSB and performing plate counts and/or Most Probable Number (MPN) enumeration. Treated seeds were sprouted and tested for the presence of the appropriate pathogen. This treatment successfully inactivated low levels (2 and 3logCFU/g) of S. Enteritidis and E. coli on either seed types when soaked for either 30 or 60min at nanoemulsion concentrations corresponding to 4000 (0.4%) or 8000 (0.8%) ppm carvacrol. Inoculated alfalfa seeds treated with 4000ppm nanoemulsion, required a 60min treatment time to show a similar 2-3 log reduction. Complete inactivation was confirmed by germinating treated seeds and performing microbiological testing. Total sprout yield was not compromised by any of the tested treatments. These results show that carvacrol nanoemulsions may be an alternative antimicrobial treatment method for

  8. The therapeutic effect of nano-encapsulated and nano-emulsion forms of carvacrol on experimental liver fibrosis.

    PubMed

    Hussein, Jihan; El-Banna, Mona; Mahmoud, Khaled F; Morsy, Safaa; Abdel Latif, Yasmin; Medhat, Dalia; Refaat, Eman; Farrag, Abdel Razik; El-Daly, Sherien M

    2017-06-01

    The present study aimed to compare the therapeutic efficiency of nano-encapsulated and nano-emulsion carvacrol administration on liver injury in thioacetamide (TAA) treated rats. To fulfill our target, we used sixty male albino rats classified into six groups as follow: control, nano-encapsulated carvacrol, nano-emulsion carvacrol, thioacetamide, treated nano-encapsulated carvacrol and treated nano-emulsion carvacrol groups. Blood samples were collected from all groups and the separated serum was used for analysis of the following biochemical parameters; aspartate aminotransferase (AST), alanine aminotransferase (ALT), S100 B protein, alpha fetoprotein (AFP) and caspase-3. The levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), monocyte chemoattractant protein-1(MCP-1) and hydroxyproline content were all evaluated in liver tissue homogenate. Histopathological examinations for liver tissues were also performed. Thioacetamide induced hepatic damage in rats as revealed by the significant increase in the levels of serum ALT, AST and produced oxidative stress as displayed by the significant elevation in the levels of hepatic MDA and NO concomitant with a significant decrease in GSH. In addition, thioacetamide significantly increased serum S100B protein, alpha fetoprotein and caspase-3 along with hepatic MCP-1 and hydroxyproline; these results were confirmed by the histopathological investigation. In contrast, nano-encapsulated and nano-emulsion carvacrol were able to ameliorate these negative changes in the thioacetamide injected rats. However, the effect of the nano-encapsulated form of carvacrol was more prominent than the nano-emulsion form. Nano-encapsulated and nano-emulsion carvacrol can ameliorate thioacetamide induced liver injury. These results could be attributed to the potential anti-inflammatory, antioxidant, and anti-apoptotic activities of carvacrol in addition to the effectiveness of the encapsulation technique that can protect

  9. Development of Organogel-Derived Capsaicin Nanoemulsion with Improved Bioaccessibility and Reduced Gastric Mucosa Irritation.

    PubMed

    Lu, Muwen; Cao, Yong; Ho, Chi-Tang; Huang, Qingrong

    2016-06-15

    Capsaicin (CAP) is the major active component in chili peppers with health-promoting benefits. However, the low bioavailability and irritating quality of CAP greatly limit its applications in functional foods. The objective of this study was to develop a food-grade nanoemulsion to increase the dissolution and bioaccessibility of CAP and to alleviate its irritating effects. To achieve this goal, CAP was first dissolved in medium-chain triacylglycerol (MCT), followed by the addition of sucrose stearate S-370 as organogelator to develop CAP-loaded organogel. The oil-in-water (O/W) emulsion was formed using organogel as the oil phase and Tween 80 as the emulsifier. After ultrasonication treatment, droplet sizes of emulsion were decreased to 168 nm with enhanced dissolution rate and bioaccessibility. In vivo study further confirmed the reduced rat gastric mucosa irritation caused by CAP. The organogel-derived nanoemulsion was proved to be an effective delivery system for CAP-based functional food products.

  10. Delivery of adapalene using a novel topical gel based on tea tree oil nano-emulsion: Permeation, antibacterial and safety assessments.

    PubMed

    Najafi-Taher, Roqya; Ghaemi, Behnaz; Amani, Amir

    2018-07-30

    The aim of present study was to design and optimize 0.1% adapalene loaded nano-emulsion to improve the drug efficacy and increase its user compliance. Effect of type and concentration of surfactants was studied on size of 0.1% adapalene loaded nano-emulsion. Optimized formulation was then evaluated for particle size, polydispersity index, morphology, viscosity, and pH. Subsequently, 1% carbopol® 934 was incorporated to the optimized formulation for preparation of its gel form. The efficacy and safety of 0.1% adapalene loaded nano-emulsion gel was assessed compared to marketed gel containing 0.1% adapalene. In-vitro studies showed that adapalene permeation through the skin was negligible in both adapalene loaded nano-emulsion gel and adapalene marketed gel. Furthermore, drug distribution studies in skin indicated higher retention of adapalene in the dermis in adapalene loaded nano-emulsion gel compared with adapalene marketed gel. Antibacterial activity against Propionibacterium acnes showed that adapalene loaded nano-emulsion is effective in reducing minimum inhibitory concentration of the formulation in comparison with tea tree oil nano-emulsion, and pure tea tree oil. In vivo skin irritation studies showed absence of irritancy for adapalene loaded nano-emulsion gel. Also, blood and liver absorption of the drug, histological analysis of liver and liver enzyme activity of rats after 90 days' treatment were investigated. No drug was detected in blood/liver which in addition to an absence of any adverse effect on liver and enzymes showed the potential of adapalene loaded nano-emulsion gel as a novel carrier for topical delivery of adapalene. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Neem oil nanoemulsions: characterisation and antioxidant activity.

    PubMed

    Rinaldi, Federica; Hanieh, Patrizia Nadia; Longhi, Catia; Carradori, Simone; Secci, Daniela; Zengin, Gokhan; Ammendolia, Maria Grazia; Mattia, Elena; Del Favero, Elena; Marianecci, Carlotta; Carafa, Maria

    2017-12-01

    The aim of the present work is to develop nanoemulsions (NEs), nanosized emulsions, manufactured for improving the delivery of active pharmaceutical ingredients. In particular, nanoemulsions composed of Neem seed oil, contain rich bioactive components, and Tween 20 as nonionic surfactant were prepared. A mean droplet size ranging from 10 to 100 nm was obtained by modulating the oil/surfactant ratio. Physicochemical characterisation was carried out evaluating size, ζ-potential, microviscosity, polarity and turbidity of the external shell and morphology, along with stability in simulated cerebrospinal fluid (CSF), activity of Neem oil alone and in NEs, HEp-2 cell interaction and cytotoxicity studies. This study confirms the formation of NEs by Tween 20 and Neem oil at different weight ratios with small and homogenous dimensions. The antioxidant activity of Neem oil alone and in NEs was comparable, whereas its cytotoxicity was strongly reduced when loaded in NEs after interaction with HEp-2 cells.

  12. Amphotericin B releasing topical nanoemulsion for the treatment of candidiasis and aspergillosis.

    PubMed

    Sosa, Lilian; Clares, Beatriz; Alvarado, Helen L; Bozal, Nuria; Domenech, Oscar; Calpena, Ana C

    2017-10-01

    The present study was designed to develop a nanoemulsion formulation of Amphotericin B (AmB) for the treatment of skin candidiasis and aspergillosis. Several ingredients were selected on the basis of AmB solubility and compatibility with skin. The formulation that exhibited the best properties was selected from the pseudo-ternary phase diagram. After physicochemical characterization its stability was assessed. Drug release and skin permeation studies were also accomplished. The antifungal efficacy and skin tolerability of developed AmB nanoemulsion was demonstrated. Finally, our results showed that the developed AmB formulation could provide an effective local antifungal effect without theoretical systemic absorption, based on its skin retention capacity, which might avoid related side effect. These results suggested that the nanoemulsion may be an optimal therapeutic alternative for the treatment of skin fungal infections with AmB. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Design Expert® supported optimization and predictive analysis of selegiline nanoemulsion via the olfactory region with enhanced behavioural performance in Parkinson’s disease

    NASA Astrophysics Data System (ADS)

    Kumar, Shobhit; Ali, Javed; Baboota, Sanjula

    2016-10-01

    Selegiline is a monoamine oxidase B (MAO-B) inhibitor and is used in the treatment of Parkinson’s disease. The main problem associated with its oral administration is its low oral bioavailability (10%) due to its poor aqueous solubility and extensive first pass metabolism. The aim of the present research work was to develop a nanoemulsion loaded with selegiline for direct nose-to-brain delivery for the better management of Parkinson’s disease. A quality by design (QbD) approach was used in a statistical multivariate method for the preparation and optimization of nanoemulsion. In this study, four independent variables were chosen, in which two were compositions and two were process variables, while droplet size, transmittance, zeta potential and drug release were selected as response variables. The optimized formulation was assessed for efficacy in Parkinson’s disease using behavioural studies, namely forced swimming, locomotor, catalepsy, muscle coordination, akinesia and bradykinesia or pole test in Wistar rats. The observed droplet size, polydispersity index (PDI), refractive index, transmittance, zeta potential and viscosity of selegiline nanoemulsion were found to be 61.43 ± 4.10 nm, 0.203 ± 0.005, 1.30 ± 0.01, 99.80 ± 0.04%, -34 mV and 31.85 ± 0.24 mPas respectively. Surface characterization studies demonstrated a spherical shape of nanoemulsion which showed 3.7 times enhancement in drug permeation as compared to drug suspension. The results of behaviour studies showed that treatment of haloperidol induced Parkinson’s disease in rats with selegiline nanoemulsion (administered intranasally) showed significant improvement in behavioural activities in comparison to orally administered drug. These findings demonstrate that nanoemulsion could be a promising new drug delivery carrier for intranasal delivery of selegiline in the treatment of Parkinson’s disease.

  14. Fabrication, in-vitro characterization, and enhanced in-vivo evaluation of carbopol-based nanoemulsion gel of apigenin for UV-induced skin carcinoma.

    PubMed

    Jangdey, Manmohan S; Gupta, Anshita; Saraf, Swarnlata

    2017-11-01

    The aim of this study was to develop a potential novel formulation of carbopol-based nanoemulsion gel containing apigenin using tamarind gum emulsifier which was having the smallest droplet size, the highest drug content, and a good physical stability for Skin delivery. Apigenin loaded nanoemulsion was prepared by high speed homogenization method and they were characterized with respect to morphology, zeta potential, differential scanning calorimeter study, and penetration studies. In-vitro release studies and skin permeation of apigenin loaded nanoemulsion by goat abdominal skin was determined using Franz diffusion cell and confocal laser scanning microscope (CLSM). The cytotoxicity of the reported formulation was evaluated in HaCaT Cells (A) and A431 cells (B) by MTT assay. The nanoemulsion formulation showed droplet size, polydispersity index, and zeta potential of 183.31 nm, 0.532, and 31.9 mV, respectively. The nanoemulsions were characterized by TEM demonstrated spherical droplets and FTIR to ensure the compatibility among its ingredients. CLSM showed uniform fluorescence intensity across the entire depth of skin in nanocarriers treatment, indicating high penetrability of nanoemulsion gel through goatskin. The nanoemulsion gel showed toxicity on melanoma (A341) in a concentration range of 0.4-2.0 mg/ml, but less toxicity toward HaCaT cells. The carbopol-based nanoemulsion gel formulation of apigenin possesses better penetrability across goatskin as compared to marketed formulation. Hence, the study postulates that the novel nanoemulsion gel of apigenin can be proved fruitful for the treatment of skin cancer in near future.

  15. A novel ionic amphiphilic chitosan derivative as a stabilizer of nanoemulsions: Improvement of antimicrobial activity of Cymbopogon citratus essential oil.

    PubMed

    Bonferoni, Maria Cristina; Sandri, Giuseppina; Rossi, Silvia; Usai, Donatella; Liakos, Ioannis; Garzoni, Alice; Fiamma, Maura; Zanetti, Stefania; Athanassiou, Athanassia; Caramella, Carla; Ferrari, Franca

    2017-04-01

    Amphiphilic chitosans have been recently proposed to improve delivery of poorly soluble drugs. In the present paper a derivative obtained by ionic interaction between chitosan and oleic acid was for the first time studied to physically stabilize o/w nanoemulsions of an antimicrobial essential oil, Cymbopogon citratus (Lemongrass), in a low energy and mild conditions emulsification process. The novel combination of spontaneous emulsification process with chitosan oleate amphiphilic properties resulted in a stable dispersion of a few hundred nanometer droplets. Positive zeta potential confirmed the presence of a chitosan shell around the oil droplets, which is responsible for the nanoemulsion physical stabilization and for the maintenance of chitosan bioactive properties, such as mucoadhesion. Cytotoxicity test was performed on four different cell lines (HEp-2, Caco-2, WKD and McCoy cells) showing biocompatibility of the system. The maintenance and in some cases even a clear improvement in the essential oil antimicrobial activity towards nine bacterial and ten fungal strains, all of clinical relevance was verified for Lemongrass nanoemulsion. Copyright © 2017. Published by Elsevier B.V.

  16. Analysis of anti-neoplastic drug in bacterial ghost matrix, w/o/w double nanoemulsion and w/o nanoemulsion by a validated 'green' liquid chromatographic method.

    PubMed

    Youssof, Abdullah M E; Salem-Bekhit, Mounir M; Shakeel, Faiyaz; Alanazi, Fars K; Haq, Nazrul

    2016-07-01

    The objective of the present investigation was to develop and validate a 'green' reversed phase high-performance liquid chromatography (RP-HPLC) method for rapid analysis of a cytotoxic drug 5-fluorouracil (5-FU) in bulk drug, marketed injection, water-in-oil (w/o) nanoemulsion, double water-in-oil-in-water (w/o/w) nanoemulsion and bacterial ghost (BG) matrix. The chromatography study was carried out at room temperature (25±1°C) using an HPLC system with the help of ultraviolet (UV)-visible detector. The chromatographic performance was achieved with a Nucleodur 150mm×4.6mm RP C8 column filled with 5µm filler as a static phase. The mobile phase consisted of ethyl acetate: methanol (7:3% v/v) which was delivered at a flow rate of 1.0mLmin(-1) and the drug was detected in UV mode at 254nm. The developed method was validated in terms of linearity (r(2)=0.998), accuracy (98.19-102.09%), precision (% RSD=0.58-1.17), robustness (% RSD=0.12-0.53) and sensitivity with satisfactory results. The efficiency of the method was demonstrated by the assay of the drug in marketed injection, w/o nanoemulsion, w/o/w nanoemulsion and BG with satisfactory results. The successful resolution of the drug along with its degradation products clearly established the stability-indicating nature of the proposed method. Overall, these results suggested that the proposed analytical method could be effectively applied to the routine analysis of 5-FU in bulk drug, various pharmaceutical dosage forms and BG. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: opportunities and obstacles in the food industry.

    PubMed

    Walker, Rebecca; Decker, Eric A; McClements, David Julian

    2015-01-01

    Consumption of biologically active amounts of omega-3 fatty acids is linked to improved human health, which has partly been attributed to their important role in brain development and cardiovascular health. Western diets are relatively low in omega-3 fatty acids and many consumers turn to supplements or functional foods to increase their intake of these healthy lipids. Fish oil is one of the most widely used sources of omega-3 fatty acid for supplementation and has greater health benefits than plant sources because of its higher concentration of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The incorporation of omega-3 fatty acids into foods and beverages is often challenging due to their low water-solubility, poor oxidative stability, and variable bioavailability. Nanoemulsions offer a promising way to incorporate omega-3 fatty acids into liquid food systems like beverages, dressing, sauces, and dips. Nanoemulsions are colloidal dispersions that contain small oil droplets (r<100 nm) that may be able to overcome many of the challenges of fortifying foods and beverages with omega-3 fatty acids. The composition and fabrication of nanoemulsions can be optimized to increase the chemical and physical stability of oil droplets, as well as to increase the bioavailability of omega-3 fatty acids.

  18. Protective role of free and quercetin-loaded nanoemulsion against damage induced by intracerebral haemorrhage in rats.

    PubMed

    Galho, A R; Cordeiro, M F; Ribeiro, S A; Marques, M S; Antunes, M F D; Luz, D C; Hädrich, G; Muccillo-Baisch, A L; Barros, D M; Lima, J V; Dora, C L; Horn, A P

    2016-04-29

    Intracerebral haemorrhage (ICH) is a worldwide public health problem. Experimental studies have shown that oxidative stress plays an important role in the pathogenesis of ICH and could represent a target for its treatment. However, the blood-brain barrier is an obstacle to be overcome, as it hampers the administration of compounds to the central nervous system. In this study, we compared the effects of a quercetin-loaded nanoemulsion (QU-N) with the free form of the drug (QU-SP) in a collagenase-induced ICH rat model. Quercetin (QU) is a polyphenol that has an antioxidant effect in vitro, but due to its high lipophilicity, it has low bioavailability in vivo. In this study, animals submitted or not to ICH were treated with a single intraperitoneal QU dose (free or nanoemulsion) of 30 mg kg(-1). Motor assessment was evaluated by the open field, foot fault and beam walking behavioural tests. 72 h after surgery the haematoma size was evaluated and biochemical measurements were performed. Animals treated with QU-N had a significant improvement in the beam walking and open field tests. Also, QU-N was able to reduce the size of the haematoma, preserving the activity of glutathione S-transferase (GST), increasing GSH content, and the total antioxidant capacity. QU-SP recovered locomotor activity and increased the GSH content and the total antioxidant capacity. Thus, it can be observed that QU presented antioxidant activity in both formulations, but the incorporation into nanoemulsions increased its antioxidant effect, which was reflected in the improvement of the motor skills and in the haematoma size decrement. These results suggest that the nanoemulsion containing QU developed in this study could be promising for future studies on treatments for ICH.

  19. Protective role of free and quercetin-loaded nanoemulsion against damage induced by intracerebral haemorrhage in rats

    NASA Astrophysics Data System (ADS)

    Galho, A. R.; Cordeiro, M. F.; Ribeiro, S. A.; Marques, M. S.; Antunes, M. F. D.; Luz, D. C.; Hädrich, G.; Muccillo-Baisch, A. L.; Barros, D. M.; Lima, J. V.; Dora, C. L.; Horn, A. P.

    2016-04-01

    Intracerebral haemorrhage (ICH) is a worldwide public health problem. Experimental studies have shown that oxidative stress plays an important role in the pathogenesis of ICH and could represent a target for its treatment. However, the blood-brain barrier is an obstacle to be overcome, as it hampers the administration of compounds to the central nervous system. In this study, we compared the effects of a quercetin-loaded nanoemulsion (QU-N) with the free form of the drug (QU-SP) in a collagenase-induced ICH rat model. Quercetin (QU) is a polyphenol that has an antioxidant effect in vitro, but due to its high lipophilicity, it has low bioavailability in vivo. In this study, animals submitted or not to ICH were treated with a single intraperitoneal QU dose (free or nanoemulsion) of 30 mg kg-1. Motor assessment was evaluated by the open field, foot fault and beam walking behavioural tests. 72 h after surgery the haematoma size was evaluated and biochemical measurements were performed. Animals treated with QU-N had a significant improvement in the beam walking and open field tests. Also, QU-N was able to reduce the size of the haematoma, preserving the activity of glutathione S-transferase (GST), increasing GSH content, and the total antioxidant capacity. QU-SP recovered locomotor activity and increased the GSH content and the total antioxidant capacity. Thus, it can be observed that QU presented antioxidant activity in both formulations, but the incorporation into nanoemulsions increased its antioxidant effect, which was reflected in the improvement of the motor skills and in the haematoma size decrement. These results suggest that the nanoemulsion containing QU developed in this study could be promising for future studies on treatments for ICH.

  20. Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3

    PubMed Central

    2011-01-01

    Background Nano-emulsions, as non-equilibrium systems, present characteristics and properties which depend not only on composition but also on their method of preparation. To obtain better penetration, nanocosmeceuticals use nano-sized systems for the delivery of active ingredients to targeted cells. In this work, nano-emulsions composed of miglyol, rapeseed oil and salmon oil were developed as a cosmetic matrix. Measurements of different physico-chemical properties of nano-emulsions were taken according to size, electrophoretic mobility, conductivity, viscosity, turbidity, cristallization and melting point. The RHLB was calculated for each formulation in order to achieve maximum stability. Results Both tween 80 and soya lecithin were found to stabilize formulations. The results showed that rapeseed oil and miglyol are the predominant parameters for determining the expression of results concerning the characterization of emulsion. Based on the mixture design, we achieved the optimal point using the following formulation: 56.5% rapessed oil, 35.5% miglyol, and 8% salmon oil. We considered this formulation to be the best as a nanocosmeceutical product due to the small size, good turbidity, and average HLB. Conclusions This study demonstrates the influence of formulation on the physico-chemical properties of each nano-emulsion obtained by the mixture design. PMID:21936893

  1. Fabrication, Characterization, In vitro Evaluation of Solid Lipid Nanoemulsion of Flunarizine dihydrochloride for Nasal Delivery.

    PubMed

    Newton, Maria J; Harjot, Kaur

    2017-01-01

    Flunarizine dihydrochloride (FHC) is used for the prophylaxis to migraine. Flunarizine has solubility problems which is practically insoluble in water and alcohol. Nanoemulsion is the approach to increase the solubility of the insoluble drugs. Nanoemulsions of FHC was prepared which can be given through the alternate route such as nasal drug delivery for migraine. In this research work the solubility of the poorly soluble FHC was successfully improved by preparing it as a nano emulsion. Nanoemulsions can pass through the biological membrane easily so it can be delivered through nasal mucosa by which it may provide a quicker onset of action. The currently available dosage forms are in the form of tablet. The formulations were prepared by using Glycerl Monostearate (GMS), Tween 80 as surfactant and PEG 400: Ethanol as co-surfactant in the distilled water. Nanoemulsions were prepared by step by step procedure. The prepared nanoemulsions were analyzed preliminarily by Master Sizer followed by Zeta Sizer by using the technique Dynamic Photon Correlation Spectroscopy. The best nanoemulsion was subjected to Zeta Potential study. The TEM analysis was carried out on the best formulation to gain the detailed information about the formulation. The best formulation was selected based on the physical appearance, homogenecity of the preparation, Preliminary Master Sizer analysis report, Secondary Zeta Sizer analysis report with Zeta Potential and TEM. The best formulation demonstrated the size in nano range with improved solubility. The FHC nano emulsion was prepared successfully which improved the solubility of the drug. The drug release study on simulated nasal fluid revealed that the preparation is suitable to be delivered through the nasal route. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Importance of crystallinity of anchoring block of semi-solid amphiphilic triblock copolymers in stabilization of silicone nanoemulsions.

    PubMed

    Le Kim, Trang Huyen; Jun, Hwiseok; Nam, Yoon Sung

    2017-10-01

    Polymer emulsifiers solidified at the interface between oil and water can provide exceptional dispersion stability to emulsions due to the formation of unique semi-solid interphase. Our recent works showed that the structural stability of paraffin-in-water emulsions highly depends on the oil wettability of hydrophobic block of methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-b-PCL). Here we investigate the effects of the crystallinity of hydrophobic block of triblock copolymer-based emulsifiers, PCLL-b-PEG-b-PCLL, on the colloidal properties of silicone oil-in-water nanoemulsions. The increased ratio of l-lactide to ε-caprolactone decreases the crystallinity of the hydrophobic block, which in turn reduces the droplet size of silicone oil nanoemulsions due to the increased chain mobility at the interface. All of the prepared nanoemulsions are very stable for a month at 37°C. However, the exposure to repeated freeze-thaw cycles quickly destabilizes the nanoemulsions prepared using the polymer with the reduced crystallinity. This work demonstrates that the anchoring chain crystallization in the semi-solid interphase is critically important for the structural robustness of nanoemulsions under harsh physical stresses. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Photodynamic therapy mediated by acai oil (Euterpe oleracea Martius) in nanoemulsion: A potential treatment for melanoma.

    PubMed

    Monge-Fuentes, Victoria; Muehlmann, Luis Alexandre; Longo, João Paulo Figueiró; Silva, Jaqueline Rodrigues; Fascineli, Maria Luiza; de Souza, Paulo; Faria, Fernando; Degterev, Igor Anatolievich; Rodriguez, Anselmo; Carneiro, Fabiana Pirani; Lucci, Carolina Madeira; Escobar, Patricia; Amorim, Rivadávio Fernandes Batista; Azevedo, Ricardo Bentes

    2017-01-01

    Melanoma is the most aggressive and lethal form of skin cancer, responsible for >80% of deaths. Standard treatments for late-stage melanoma usually present poor results, leading to life-threatening side effects and low overall survival. Thus, it is necessary to rethink treatment strategies and design new tools for the treatment of this disease. On that ground, we hereby report the use of acai oil in nanoemulsion (NanoA) as a novel photosensitizer for photodynamic therapy (PDT) used to treat melanoma in in vitro and in vivo experimental models. NIH/3T3 normal cells and B16F10 melanoma cell lines were treated with PDT and presented 85% cell death for melanoma cells, while maintaining high viability in normal cells. Flow cytometry indicated that cell death occurred by late apoptosis/necrosis. Tumor bearing C57BL/6 mice treated five times with PDT using acai oil in nanoemulsion showed tumor volume reduction of 82% in comparison to control/tumor group. Necrotic tissue per tumor area reached its highest value in PDT-treated mice, supporting PDT efficacy. Overall, acai oil in nanoemulsion was an effective photosensitizer, representing a promising source of new photosensitizing molecules for PDT treatment of melanoma, a tumor with an inherent tendency to be refractory for this type of therapy. Copyright © 2016. Published by Elsevier B.V.

  4. Determination of oral bioavailability of curcuminoid dispersions and nanoemulsions prepared from Curcuma longa Linnaeus.

    PubMed

    Lu, Pei Shan; Inbaraj, Baskaran Stephen; Chen, Bing Huei

    2018-01-01

    Curcuminoid from Curcuma longa Linnaeus has been demonstrated to be effective in anti-cancer and anti-inflammation. The objectives of the present study were to prepare curcuminoid dispersion and nanoemulsion from C. longa and determine their oral bioavailabilities in rats. After curcuminoid extraction using 99.5% ethanol, bisdemethoxycurcumin (BDMC), demethoxycurcumin (DMC) and curcumin were separated within 10 min by high-performance liquid chromatography using an Eclipse XDB-C18 column (Agilent, Palo Alto, CA, USA) and a gradient mobile phase of 0.1% aqueous formic acid and acetonitrile, with a flow rate of 1 mL min -1 , column temperature of 35 °C and detection wavelength of 425 nm. Curcuminoid nanoemulsion at a particle size of 12.1 nm and encapsulation efficiency 98.8% was prepared using lecithin, Tween 80 and water. A pharmacokinetic study in rats revealed that the parameters including T max , C max , t 1/2 and the area under the curve were higher for curcuminoid nanoemulsions than for curcuminoid dispersion at the same dose employed for gavage administration, whereas, for intravenous injection, an opposite trend was shown. The oral bioavailabilities of BDMC, DMC, curcumin and total curcuminoids in nanoemulsion and dispersion were 34.39 and 4.65%, 39.93 and 5.49%, 47.82 and 9.38%, and 46 and 8.7%, respectively. The results of the present study demonstrate a higher oral bioavailability after incorporation of curcuminoid into nanoemulsion, facilitating its application as a botanic drug. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Antimicrobial Activity of Nanoemulsion in Combination with Cetylpyridinium Chloride in Multidrug-Resistant Acinetobacter baumannii

    DTIC Science & Technology

    2013-08-01

    antimicrobial nanoparticles, chelating agents, and peptides . ACKNOWLEDGMENTS We thank Stephanie A. Brown and Hunter Radetsky for technical support. Funding...AUG 2013 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Antimicrobial activity of nanoemulsion in combination with...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Antimicrobial Activity of Nanoemulsion in Combination

  6. Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds

    NASA Astrophysics Data System (ADS)

    Abd-Elsalam, Kamel A.; Khokhlov, Alexei R.

    2015-02-01

    The current research deals with the formulation and characterization of bio-based oil-in-water nanoemulsion. The formulated eugenol oil nanoemulsion was characterized by dynamic light scattering, stability test, transmission electron microscopy and thin layer chromatography. The nanoemulsion droplets were found to have a Z-average diameter of 80 nm and TEM study reveals the spherical shape of eugenol oil nanoemulsion (EON). The size of the nanoemulsion was found to be physically stable up to more than 1-month when it was kept at room temperature (25 °C). The TEM micrograph showed that the EON was spherical in shape and moderately mono or di-dispersed and was in the range of 50-110 nm. Three concentrations of the nanoformulation were used to evalute the anti-fusarium activity both in vitro and in vivo experiments. SDS-PAGE results of total protein from the Fusarium oxysporum f. sp. vasinfectum (FOV) isolate before and after treatment with eugenol oil nanoemulsion indicate that the content of extra cellular soluble small molecular proteins decreased significantly in EON-treated fungus. Light micrographs of mycelia and spores treated with EON showed the disruption of the fungal structures. The analysis of variance (ANOVA) for Fusarium wilt incidence indicated highly significant ( p = 0.000) effects of concentration, genotype, and their interaction. The difference in wilt incidence between concentrations and control was not the same for each genotype, that is, the genotypes responded differently to concentrations. Effects of three EON concentration on germination percentage, and radicle length, were determined in the laboratory. One very interesting finding in the current study is that cotton genotypes was the most important factors in determining wilt incidence as it accounted for 93.18 % of the explained (model) variation. In vitro experiments were conducted to evaluate the potential phytotoxic effect of three EON concentrations. Concentration, genotype and

  7. Physical Stability, Autoxidation, and Photosensitized Oxidation of ω-3 Oils in Nanoemulsions Prepared with Natural and Synthetic Surfactants.

    PubMed

    Uluata, Sibel; McClements, D Julian; Decker, Eric A

    2015-10-28

    The food industry is interested in the utilization of nanoemulsions stabilized by natural emulsifiers, but little research has been conducted to determine the oxidative stability of such emulsions. In this study, two natural (lecithin and quillaja saponin) and two synthetic (Tween 80 and sodium dodecyl sulfate) surfactants were used to fabricate omega-3 nanoemulsion using high pressure homogenization (microfluidization). Initially, all the nanoemulsions contained small (d from 45 to 89 nm) and anionic (ζ-potential from -8 to -65 mV) lipid droplets (pH 7). The effect of pH, ionic strength, and temperature on the physical stability of the nanoemulsion system was examined. Nanoemulsion stabilized with Tween 80, quillaja saponin, or sodium dodecyl sulfate (SDS) exhibited no major changes in particle size or visible creaming in the pH range of 3 to 8. All nanoemulsions were relatively stable to salt addition (0 to 500 mM NaCl, pH 7.0). Nanoemulsions stabilized with SDS and quillaja saponin were stable to heating (30 to 90 °C). The impact of surfactant type on lipid oxidation was determined in the presence and absence of the singlet oxygen photosensitizers, riboflavin, and rose bengal. Riboflavin and rose bengal accelerated lipid oxidation when compare to samples without photosensitizers. Lipid hydroperoxide formation followed the order Tween 80 > SDS > lecithin > quillaja saponin, and propanal formation followed the order lecithin > Tween 80 > SDS > quillaja saponin at 37 °C for autoxidation. The same order of oxidative stability was observed in the presence of photosensitized oxidation promoted by riboflavin. Quillaja saponin consistently produced the most oxidatively stable emulsions, which could be due to its high free radical scavenging capacity.

  8. Phytosterol structured algae oil nanoemulsions and powders: improving antioxidant and flavor properties.

    PubMed

    Chen, Xiao-Wei; Chen, Ya-Jun; Wang, Jin-Mei; Guo, Jian; Yin, Shou-Wei; Yang, Xiao-Quan

    2016-09-14

    Algae oil, enriched with omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), is known for its health benefits. However, protection against lipid oxidation as well as masking of unpleasant fishy malodors in algae oil enriched foods is a big challenge to achieve. In this study, we firstly achieved a one-pot ultrasound emulsification strategy (alternative heating-homogenization) to prepare phytosterol structured thermosensitive algae oil-in-water nanoemulsion stabilized by quillaja saponin. After spray drying, the resulting algae oil powders from the structured nanoemulsion templates exhibit an excellent reconstructed behavior, even after 30 d of storage. Furthermore, an enhanced oxidative stability was obtained by reducing both the primary and secondary oxidation products through formulation with β-sitosterol and γ-oryzanol, which are natural antioxidants. Following the results of headspace volatiles using dynamic headspace-gas chromatography-mass spectrometry (DHS-GC-MS), it was clear that the structured algae oil-loaded nanoemulsion and powder had lower levels of fishy off-flavour (e.g., (Z)-heptenal, decanal, ethanone, and hexadecenoic acid), whereas the control emulsion and oil powder without structure performed worse. This study demonstrated that the structure from phytosterols is an effective strategy to minimize the fishy off-flavour and maximize oxidative stability of both algae oil nanoemulsions and spray-dried powders, and opens up the possibility of formulation design in polyunsaturated oil encapsulates as novel delivery systems to apply in functional foods and beverages.

  9. Preparation and Evaluation of Multiple Nanoemulsions Containing Gadolinium (III) Chelate as a Potential Magnetic Resonance Imaging (MRI) Contrast Agent.

    PubMed

    Sigward, Estelle; Corvis, Yohann; Doan, Bich-Thuy; Kindsiko, Kadri; Seguin, Johanne; Scherman, Daniel; Brossard, Denis; Mignet, Nathalie; Espeau, Philippe; Crauste-Manciet, Sylvie

    2015-09-01

    The objective was to develop, characterize and assess the potentiality of W1/O/W2 self-emulsifying multiple nanoemulsions to enhance signal/noise ratio for Magnetic Resonance Imaging (MRI). For this purpose, a new formulation, was designed for encapsulation efficiency and stability. Various methods were used to characterize encapsulation efficiency ,in particular calorimetric methods (Differential Scanning Calorimetry (DSC), thermogravimetry analysis) and ultrafiltration. MRI in vitro relaxivities were assessed on loaded DTPA-Gd multiple nanoemulsions. Characterization of the formulation, in particular of encapsulation efficiency was a challenge due to interactions found with ultrafiltration method. Thanks to the specifically developed DSC protocol, we were able to confirm the formation of multiple nanoemulsions, differentiate loaded from unloaded nanoemulsions and measure the encapsulation efficiency which was found to be quite high with a 68% of drug loaded. Relaxivity studies showed that the self-emulsifying W/O/W nanoemulsions were positive contrast agents, exhibiting higher relaxivities than those of the DTPA-Gd solution taken as a reference. New self-emulsifying multiple nanoemulsions that were able to load satisfactory amounts of contrasting agent were successfully developed as potential MRI contrasting agents. A specific DSC protocol was needed to be developed to characterize these complex systems as it would be useful to develop these self-formation formulations.

  10. Droplet microfluidics with a nanoemulsion continuous phase.

    PubMed

    Gu, Tonghan; Yeap, Eunice W Q; Somasundar, Ambika; Chen, Ran; Hatton, T Alan; Khan, Saif A

    2016-07-05

    We present the first study of a novel, generalizable method that uses a water-in-oil nanoemulsion as the continuous phase to generate uniform aqueous micro-droplets in a capillary-based microfluidic system. We first study the droplet generation mechanism in this system and compare it to the more conventional case where a simple oil/solvent (with surfactant) is used as the continuous phase. Next, we present two versatile methods - adding demulsifying chemicals and heat treatment - to allow active online chemical interaction between the continuous and dispersed phases. These methods allow each generated micro-droplet to act as a well-mixed micro-reactor with walls that are 'permeable' to the nanoemulsion droplets and their contents. Finally, we demonstrate an application of this system in the fabrication of uniform hydrogel (alginate) micro-beads with control over particle properties such as size and swelling. Our work expands the toolbox of droplet-based microfluidics, enabling new opportunities and applications involving active colloidal continuous phases carrying chemical payloads, both in advanced materials synthesis and droplet-based screening and diagnostic methods.

  11. Formulation and physiochemical study of α-tocopherol based oil in water nanoemulsion stabilized with non toxic, biodegradable surfactant: Sodium stearoyl lactate.

    PubMed

    Kaur, Khushwinder; Kaur, Jaspreet; Kumar, Raj; Mehta, S K

    2017-09-01

    The unique properties such as high optical clarity, stability and enhanced bioavailability of nanoemulsion make them useful for food, cosmetic and pharmaceutical industries. In this work, sodium stearoyl lactate and Tween 80 surfactants were collectively used to fabricate alpha tocopherol based oil in water nanoemulsion using high energy ultrasonication method. The spherical nature of pure and drug loaded nanoemulsion has been confirmed with transmission electron microscopy (TEM). The influence of pH, dilution, surfactant concentration and ionic strength on average particle size of pure and nutraceutical (benzylisothiocyanate and curcumin) encapsulated emulsion was examined. The prepared emulsion exhibited good stability up to 90days in salt solution (50-200mM) and different pH conditions. The cumulative release % of benzylisothiocyanate and curcumin was found to be 50.29% in 36h and 89.15% in 150h respectively. The antioxidant activity of pure, benzylisothiocyanate, curcumin and cocktail (benzylisothiocyanate and curcumin) nanoemulsion was calculated with 2,2-diphenyl-1-picrylhydrazyl radical. The IC 50 value of different antioxidant showed that benzylisothiocyanate nanoemulsion acted as better antioxidant as compared to pure and curcumin encapsulated nanoemulsion. Also the cell viability of pure nanoemulsion was found to be 24% on hep G2 cell. The effect of UV light irradiation on curcumin and benzylisothiocyanate stability was carried out in different solvent conditions (water/ethanol and nanoemulsion). The degradation of curcumin by the impact of UV light was successfully controlled by trapping in NEm. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Parenteral nanoemulsions of risperidone for enhanced brain delivery in acute psychosis: Physicochemical and in vivo performances.

    PubMed

    Đorđević, Sanela M; Santrač, Anja; Cekić, Nebojša D; Marković, Bojan D; Divović, Branka; Ilić, Tanja M; Savić, Miroslav M; Savić, Snežana D

    2017-11-30

    This work aimed to deepen the lately acquired knowledge about parenteral nanoemulsions as carriers for brain delivery of risperidone, a poorly water-soluble antipsychotic drug, through establishing the prospective relationship between their physicochemical, pharmacokinetic, biodistribution, and behavioral performances. For this purpose, two optimized risperidone-loaded nanoemulsions, stabilized by lecithin or lecithin/polysorbate 80 mixture, and costabilized by sodium oleate, were produced by high-pressure homogenization. The characterization revealed the favorable droplet size, narrow size distribution, high surface charge, with proven stability to autoclaving and long-term stability for at least one year at 25±2°C. Pharmacokinetic and tissue distribution results demonstrated improved plasma, liver, and brain pharmacokinetic parameters, resulting in 1.2-1.5-fold increased relative bioavailability, 1.1-1.8-fold decreased liver distribution, and about 1.3-fold improved brain uptake of risperidone active moiety following intraperitoneal administration of nanoemulsions relative to solution in rats. In behavioral study, investigated nanoemulsions showed pronounced reduction in basal and, more pertinently, amphetamine-induced locomotor activity in rats, with an early onset of antipsychotic action, and this effect lasted at least 90min after drug injection. Together, these findings corroborate the applicability of parenteral nanoemulsions as carriers for enhanced brain delivery of risperidone, further suggesting their promise in acute psychosis treatment or other emergency situations. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Acoustic Droplet Vaporization, Cavitation, and Therapeutic Properties of Copolymer-Stabilized Perfluorocarbon Nanoemulsions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Kweon-Ho; Christensen, Douglas A.; Rapoport, Natalya

    2009-04-14

    Acoustic and therapeutic properties of Doxorubicin (DOX) and paclitaxel (PTX)-loaded perfluorocarbon nanoemulsions have been investigated in a mouse model of ovarian cancer. The nanoemulsions were stabilized by two biodegradable amphiphilic block copolymers that differed in the structure of the hydrophobic block. Acoustic droplet vaporization (ADV) and cavitation parameters were measured as a function of ultrasound frequency, pressure, duty cycles, and temperature. The optimal parameters that induced ADV and inertial cavitation of the formed microbubbles were used in vivo in the experiments on the ultrasound-mediated chemotherapy of ovarian cancer. A combination tumor treatment by intravenous injections of drug-loaded perfluoropentane nanoemulsions andmore » tumor-directed 1-MHz ultrasound resulted in a dramatic decrease of ovarian or breast carcinoma tumor volume and sometimes complete tumor resolution. However, tumors often recurred three to six weeks after the treatment indicating that some cancer cells survived the treatment. The recurrent tumors proved more aggressive and resistant to the repeated therapy than initial tumors suggesting selection for the resistant cells during the first treatment.« less

  14. Characterization and mosquito repellent activity of citronella oil nanoemulsion.

    PubMed

    Sakulku, Usawadee; Nuchuchua, Onanong; Uawongyart, Napaporn; Puttipipatkhachorn, Satit; Soottitantawat, Apinan; Ruktanonchai, Uracha

    2009-05-08

    Encapsulated citronella oil nanoemulsion prepared by high pressure homogenization at varying amounts of surfactant and glycerol, was studied in terms of the droplet size, stability, release characteristics and in vivo mosquito protection. Transparent nanoemulsion can be obtained at optimal concentration of 2.5% surfactant and 100% glycerol. Physical appearance and the stability of the emulsion were greatly improved through an addition of glycerol, owing to its co-solvent and highly viscous property. The increasing emulsion droplet increased the oil retention. The release behavior could be attributed to the effect of droplet size and concentrations of surfactant and glycerol. By fitting to Higuchi's equation, an increase in glycerol and surfactant concentrations resulted in slow release of the oil. The release rate related well to the protection time where a decrease in release rate can prolong mosquito protection time.

  15. Optimization of olive oil based O/W nanoemulsions prepared through ultrasonic homogenization: A response surface methodology approach.

    PubMed

    Mehmood, Tahir; Ahmad, Asif; Ahmed, Anwaar; Ahmed, Zaheer

    2017-08-15

    The present study was conducted to prepare co-surfactant free, olive-oil based alpha tocopherol nanoemulsions, using a food grade non-ionic surfactant. Response surface methodology (RSM) was used to determine the effects of independent variables (ultrasonic homogenization time, olive oil concentrations and surfactant contents) on different physico-chemical characteristics of O/W nanoemulsions. This study was carried out using a central composite design. The coefficients of determination were greater than 0.900 for all response variables and there were significant effects of independent variables on all responses. The optimum levels of independent variables for the preparation of nanoemulsions were 3min. ultrasonic homogenization time, 4% olive oil content and 2.08% surfactant concentration. The physico-chemical responses at these levels were 151.68nm particle size, 7.17% p-anisidine and 88.64% antioxidant activity. These results will help in design of nanoemulsions with optimum independent variables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Characterization, Cytotoxicity, and Genotoxicity of TiO2 and Folate-Coupled Chitosan Nanoparticles Loading Polyprenol-Based Nanoemulsion.

    PubMed

    Tao, Ran; Wang, Chengzhang; Zhang, Changwei; Li, WenJun; Zhou, Hao; Chen, Hongxia; Ye, Jianzhong

    2018-07-01

    The structure and bioactivity of Ginkgo biloba leaves polyprenol (GBP) are similar to that of dolichol which widely exists in human and mammalian organs. GBP possesses potential pharmacological activities against cancer. This study involved oil-in-water type nanoemulsion (NE) loading GBP was prepared by dissolving polyprenol in nanoemulsion of sodium tripolyphosphate (TPP)/TiO 2 solution, Triton X-100, and 1-octanol by inversed-phase emulsification (EIP) and ultrasonic emulsification (UE) method. Folic acid (FA)-coupled chitosan (CS) nanoparticles (NPs), GBP-FA-CS-NPs and GBP-TiO 2 -FA-CS-NPs, were fabricated by ionic cross-linking of positively charged FA-CS conjugates and negatively charged nanoemulsion with TPP/TiO 2 . And characterizations of them were investigated by TEM, SEM, FTIR, particle size, and zeta potential. The cytotoxic and genotoxic effects of GBP-TiO 2 -FA-CS-NP treatment were higher than GBP-NE, GBP-FA-CS-NPs, TiO 2 -NE, GBP-TiO 2 -NE, TiO 2 -FA-CS-NPs, and GBP-TiO 2 -FA-CS-NP treatment at the same tested concentrations in HepG2 cells. GBP-TiO 2 -FA-CS-NPs at low TiO 2 concentration (from 1 to 2.5 μg/ml) showed good inhibition capacity on HepG2 cells and low cytotoxic and genotoxic effects on HL-7702 cells. The possible mechanism of cytotoxicity on GBP-TiO 2 -FA-CS-NPs against HepG2 cells is by preventing excessive intracellular Ca 2+ into extracellular spaces via inhibiting Ca 2+ -ATPase and Ca 2+ /Mg 2+ -ATPase.

  17. Evaluation of Stability and In Vitro Security of Nanoemulsions Containing Eucalyptus globulus Oil

    PubMed Central

    Quatrin, Priscilla Maciel; Sagrillo, Michele Rorato; Nascimento, Kátia

    2017-01-01

    Essential oil of Eucalyptus globulus presents several pharmacological properties. However, their therapeutic efficacy may be affected by limitations due to several conditions, rendering it difficult to obtain stable and effective pharmaceutical formulations. The use of nanotechnology is an alternative to improve their characteristics aiming to ensure their stability and effectiveness. Furthermore, studies about the possible toxic effects of nanostructures are necessary to evaluate safety when the formulation comes into contact with human cells. Hence, in this paper, we evaluate for the first time the stability and in vitro cytogenotoxicity of nanoemulsions containing Eucalyptus globulus in peripheral blood mononuclear cells. As a result, the stability study found that the best condition for storage up to 90 days was refrigeration (4°C); it was the condition that best preserved the nanometric features. The content of the major compounds of oil was maintained after nanoencapsulation and preserved over time. In tests to evaluate the safety of this formulation, we can conclude that, at a low concentration (approximately 0.1%), Eucalyptus globulus nanoemulsion did not cause toxicity in peripheral blood mononuclear cells and also showed a protective effect in cells against possible damage when compared to oil in free form. PMID:28691021

  18. Anti-inflammatory and analgesic activity of novel oral aspirin-loaded nanoemulsion and nano multiple emulsion formulations generated using ultrasound cavitation.

    PubMed

    Tang, Siah Ying; Sivakumar, Manickam; Ng, Angela Min-Hwei; Shridharan, Parthasarathy

    2012-07-01

    The present study investigated the anti-inflammatory and analgesic activities of novel aspirin oil-in-water (O/W) nanoemulsion and water-in-oil-in-water (W/O/W) nano multiple emulsion formulations generated using ultrasound cavitation techniques. The anti-inflammatory activities of nanoemulsion and nano multiple emulsion were determined using the λ-carrageenan-induced paw edema model. The analgesic activities of both nanoformulations were determined using acetic acid-induced writhing response and hot plate assay. For comparison, the effect of pretreatment with blank nanoemulsion and reference aspirin suspension were also studied for their anti-inflammatory and antinociceptive activities. The results showed that oral administration of nanoemulsion and nano multiple emulsion containing aspirin (60 mg/kg) significantly reduced paw edema induced by λ-carrageenan injection. Both nanoformulations decreased the number of abdominal constriction in acetic acid-induced writhing model. Pretreatment with nanoformulations led to a significant increase in reaction time in hot plate assay. Nanoemulsion demonstrated an enhanced anti-inflammatory and analgesic effects compared to reference suspension while nano multiple emulsion exhibited a mild inhibitory effects in the three experimental animal model tests. The results obtained for nano multiple emulsion were relatively lower than reference. However, administration of blank nanoemulsion did not alter the nociceptive response significantly though it showed slight anti-inflammatory effect. These experimental studies suggest that nanoemulsion and nano multiple emulsion produced a pronounced anti-inflammatory and analgesic effects in rats and may be candidates as new nanocarriers for pharmacological NSAIDs in the treatment of inflammatory disorders and alleviating pains. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Development of antimicrobial nanoemulsion-based delivery systems against selected pathogenic bacteria using a thymol-rich Thymus daenensis essential oil.

    PubMed

    Ghaderi, L; Moghimi, R; Aliahmadi, A; McClements, D J; Rafati, H

    2017-10-01

    Thymol-rich medicinal plants have been used in traditional medicine to relieve infectious diseases. However, the application of essential oils as medicine is limited by its low water solubility and high vapour pressure. The objective of this study was to produce stable nanoemulsions of Thymus daenensis oil in water by preventing Ostwald ripening and phase separation. The antibacterial activity of bulk and emulsified essential oil against selected pathogenic bacteria including Gram-negative (Haemophilus influenzae, Pseudomonas aeruginosa) and Gram-positive (Streptococcus pneumoniae) were investigated in the liquid and vapour phase. The optimum formulation (L2) contained 2% Tween 80 (surfactant) and 0·1% lecithin (cosurfactant) had a mean droplet diameter of 131 nm. In the liquid phase, the optimized nanoemulsion exhibited good antibacterial activity against S. pneumonia with MIC value of 0·0039 mg mL -1 . In the vapour phase, the MIC values against S. pneumonia were similar (<7·35 μL L -1 ) for both bulk and emulsified essential oil. However, there was no antibacterial activity in the vapour phase against H. influenzae and P. aeruginosa. Analysis of thymol concentration in the head space indicated that the nanoemulsion retarded the release of thymol into the vapour phase. These findings highlight the potential applications of nanoemulsions containing essential oils as antibacterial products. The results of the current study highlight the advantages of nanoemulsification for improvement of the physicochemical properties and the antibacterial activity of T. daenensis EOs in the liquid and vapour phase for therapeutic purposes. © 2017 The Society for Applied Microbiology.

  20. Formulation and characterization of garlic (Allium sativum L.) essential oil nanoemulsion and its acaricidal activity on eriophyid olive mites (Acari: Eriophyidae).

    PubMed

    Mossa, Abdel-Tawab H; Afia, Sahar I; Mohafrash, Samia M M; Abou-Awad, Badawi A

    2018-04-01

    Green and nanoacaricides including essential oil (EO) nanoemulsions are important compounds to provide new, active, safe acaricides and lead to improvement of avoiding the risk of synthetic acaricides. This study was carried out for the first time on eriophyid mites to develop nanoemulsion of garlic essential oil by ultrasonic emulsification and evaluate its acaricidal activity against the two eriophyid olive mites Aceria oleae Nalepa and Tegolophus hassani (Keifer). Acute toxicity of nanoemulsion was also studied on male rats. Garlic EO was analyzed by gas chromatography-mass spectrometry (GC-MS), and the major compounds were diallyl sulfide (8.6%), diallyl disulfide (28.36%), dimethyl tetrasulfide (15.26%), trisulfide,di-2-propenyl (10.41%), and tetrasulfide,di-2-propenyl (9.67%). Garlic oil nanoemulsion with droplet size 93.4 nm was formulated by ultrasonic emulsification for 35 min. Emulsification time and oil and surfactant ratio correlated to the emulsion droplet size and stability. The formulated nanoemulsion showed high acaricidal activity against injurious eriophyid mites with LC 50 298.225 and 309.634 μg/ml, respectively. No signs of nanoemulsion toxicity were noted in treating rats; thus, it may be considered non-toxic to mammals. Stability of garlic oil nanoemulsion, high acaricidal activity, and the absence of organic toxic solvents make the formulation that may be a possible acaricidal product. Results suggest the possibility of developing suitable natural nanoacaricide from garlic oil.

  1. Influence of non-ionic emulsifier type on the stability of cinnamaldehyde nanoemulsions: A comparison of polysorbate 80 and hydrophobically modified inulin.

    PubMed

    Sedaghat Doost, Ali; Dewettinck, Koen; Devlieghere, Frank; Van der Meeren, Paul

    2018-08-30

    Cinnamaldehyde nanoemulsions were formulated to enable its application in an aqueous environment. The pure cinnamaldehyde nanoemulsions, stabilized by polysorbate 80 (at concentrations >0.5%), had both a higher stability and smaller droplet size, whereas the emulsions containing hydrophobically modified inulin (HMI) formed a colloidal dispersion with larger particle size. Incorporation of sunflower oil (SO) allowed postponement of Ostwald ripening for a sufficiently long period of time (at least 60 days). Cryo-SEM and droplet size analyses of the nanoemulsions emulsified by HMI revealed no significant changes during storage. Under these conditions, HMI as an emulsifier exhibited a powerful resistance to high salt contents (up to 2 M) and high thermal processing temperatures (90 °C). The surfactant type and SO content had no marked influence on the antimicrobial activity of the nanoemulsions. This study provides precious information for a commercial formulation of nanoemulsions with durable physical stability under severe stress conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Cationic nanoemulsions as nucleic acids delivery systems.

    PubMed

    Teixeira, Helder Ferreira; Bruxel, Fernanda; Fraga, Michelle; Schuh, Roselena Silvestri; Zorzi, Giovanni Konat; Matte, Ursula; Fattal, Elias

    2017-12-20

    Since the first clinical studies, knowledge in the field of gene therapy has advanced significantly, and these advances led to the development and subsequent approval of the first gene medicines. Although viral vectors-based products offer efficient gene expression, problems related to their safety and immune response have limited their clinical use. Thus, design and optimization of nonviral vectors is presented as a promising strategy in this scenario. Nonviral systems are nanotechnology-based products composed of polymers or lipids, which are usually biodegradable and biocompatible. Cationic liposomes are the most studied nonviral carriers and knowledge about these systems has greatly evolved, especially in understanding the role of phospholipids and cationic lipids. However, the search for efficient delivery systems aiming at gene therapy remains a challenge. In this context, cationic nanoemulsions have proved to be an interesting approach, as their ability to protect and efficiently deliver nucleic acids for diverse therapeutic applications has been demonstrated. This review focused on cationic nanoemulsions designed for gene therapy, providing an overview on their composition, physicochemical properties, and their efficacy on biological response in vitro and in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Antimicrobial eugenol nanoemulsion prepared by gum arabic and lecithin and evaluation of drying technologies.

    PubMed

    Hu, Qiaobin; Gerhard, Hannah; Upadhyaya, Indu; Venkitanarayanan, Kumar; Luo, Yangchao

    2016-06-01

    The purpose of present work was to develop eugenol oil nanoemulsions using gum arabic and lecithin as food grade natural emulsifiers, and study their antimicrobial activity. In addition, our study also evaluated different drying techniques (spray drying and freeze drying) on the morphology and redispersibility of nanoemulsion powders. The optimal fabrication method, physicochemical and structural characterization, stability, and antimicrobial activity were investigated. Results showed that nanoemusions with a particle size of 103.6±7.5nm were obtained by mixing aqueous phase (0.5% gum arabic, 0.5% lecithin, w/v) and eugenol oil (1.25%, w/v), which was premixed with ethanol (as a co-surfactant), followed by high speed homogenization process. The molecular interactions among emulsifiers and eugenol were evidenced by Fourier transform infrared spectroscopy. Buchi B-90 Nano Spray Dryer was evaluated as a powerful tool to obtain ultrafine spherical powders with a size of less than 500nm, compared to flake-like aggregation obtained by freeze-drying. The dried powders exhibited excellent re-dispersibility in water and maintained their physicochemical properties after re-hydration. The nanoemulsions did not adversely affect the antimicrobial activity of eugenol against Listeria monocytogenes and Salmonella Enteritidis. Therefore, the nanoemulsions have the potential to be applied in the food industry as a food preservative or sanitizer. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The antitumor immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70/SEA complex protein vaccine following different administration routes.

    PubMed

    Ge, Wei; Hu, Pei-Zhen; Huang, Yang; Wang, Xiao-Ming; Zhang, Xiu-Min; Sun, Yu-Jing; Li, Zeng-Shan; Si, Shao-Yan; Sui, Yan-Fang

    2009-10-01

    Our previous study showed that nanoemulsion-encapsulated MAGE1-HSP70/SEA (MHS) complex protein vaccine elicited MAGE-1 specific immune response and antitumor effects against MAGE-1-expressing tumor and nanoemulsion is a useful vehicle with possible important implications for cancer biotherapy. The purpose of this study was to compare the immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70 and SEA as NE(MHS) vaccine following different administration routes and to find out the new and effective immune routes. Nanoemulsion vaccine was prepared using magnetic ultrasound methods. C57BL/6 mice were immunized with NE(MHS) via po., i.v., s.c. or i.p., besides mice s.c. injected with PBS or NE(-) as control. The cellular immunocompetence was detected by ELISpot assay and LDH release assay. The therapeutic and tumor challenge assay were also examined. The results showed that the immune responses against MAGE-1 expressing murine tumors elicited by NE(MHS) via 4 different routes were approximately similar and were all stronger than that elicited by PBS or NE(-), suggesting that this novel nanoemulsion carrier can exert potent antitumor immunity against antigens encapsulated in it. Especially, the present results indicated that nanoemulsion vaccine adapted to administration via different routes including peroral, and may have broader applications in the future.

  5. Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce.

    PubMed

    Bhargava, Kanika; Conti, Denise S; da Rocha, Sandro R P; Zhang, Yifan

    2015-05-01

    Although antimicrobial activities of plant essential oils are well documented, challenges remain as to their application in fresh produce due to the hydrophobic nature of essential oils. Oregano oil nanoemulsions were formulated with a food-grade emulsifier and evaluated for their efficacy in inactivating the growth of foodborne bacteria on fresh lettuce. Lettuce was artificially inoculated with Listeria monocytogenes, Salmonella Typhimurium and Escherichia coli O157:H7, followed by a one-minute dipping in oregano oil nanoemulsions (0.05% or 0.1%). Samples were stored at 4 °C and enumerated for bacteria at fixed intervals (0 h, 3 h, 24 h, and 72 h). Compared to control, 0.05% nanoemulsion showed an up to 3.44, 2.31, and 3.05 log CFU/g reductions in L. monocytogenes, S. Typhimurium, and E. coli O157:H7, respectively. Up to 3.57, 3.26, and 3.35 log CFU/g reductions were observed on the same bacteria by the 0.1% treatment. Scanning Electron Microscopy (SEM) demonstrated disrupted bacterial membranes due to the oregano oil treatment. The data suggest that applying oregano oil nanoemulsions to fresh produce may be an effective antimicrobial control strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Skin permeation of D-limonene-based nanoemulsions as a transdermal carrier prepared by ultrasonic emulsification.

    PubMed

    Lu, Wen-Chien; Chiang, Been-Huang; Huang, Da-Wei; Li, Po-Hsien

    2014-03-01

    Nanoemulsions can be used for transporting pharmaceutical phytochemicals in skin-care products because of their stability and rapid permeation properties. However, droplet size may be a critical factor aiding permeation through skin and transdermal delivery efficiency. We prepared D-limonene nanoemulsions with various droplet sizes by ultrasonic emulsification using mixed surfactants of sorbitane trioleate and polyoxyethylene (20) oleyl ether under different hydrophilic-lipophilic balance (HLB) values. Droplet size decreased with increasing HLB value. With HLB 12, the droplet size was 23 nm, and the encapsulated ratio peaked at 92.3%. Transmission electron microscopy revealed spherical droplets and the gray parts were D-limonene precipitation incorporated in spherical droplets of the emulsion system. Franz diffusion cell was used to evaluate the permeation of D-limonene nanoemulsion through rat abdominal skin; the permeation rate depended on droplet size. The emulsion with the lowest droplet size (54 nm) achieved the maximum permeation rate. The concentration of D-limonene in the skin was 40.11 μL/cm(2) at the end of 360 min. Histopathology revealed no distinct voids or empty spaces in the epidermal region of permeated rat skin, so the D-limonene nanoemulsion may be a safe carrier for transdermal drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Fornaguera, C.; Feiner-Gracia, N.; Calderó, G.; García-Celma, M. J.; Solans, C.

    2015-07-01

    Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from aqueous and micellar solutions. The enzymatic activity of the drug was maintained at 80% after its encapsulation into nanoparticles that were non-cytotoxic at the required therapeutic concentration. Therefore, novel galantamine-loaded polymeric nanoparticles have been designed for the first time using the nano-emulsification approach and showed the appropriate features to become advanced drug delivery systems to treat neurodegenerative diseases.Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from

  8. Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: essential oil (thyme oil) and cationic surfactant (lauric arginate).

    PubMed

    Chang, Yuhua; McLandsborough, Lynne; McClements, David Julian

    2015-04-01

    The influence of a cationic surfactant (lauric arginate, LAE) on the physical properties and antimicrobial efficacy of thyme oil nanoemulsions was investigated. Nanoemulsions prepared from pure thyme oil were highly unstable due to Ostwald ripening, but they could be stabilized by adding a ripening inhibitor (corn oil) to the oil phase prior to homogenisation. The loading capacity and antimicrobial efficacy of thyme oil nanoemulsions were significantly increased by adding LAE. In the absence of LAE, at least 60 wt% corn oil had to be added to the lipid phase to inhibit Ostwald ripening; but in the presence of 0.1 wt% LAE, only 30 wt% corn oil was needed. LAE addition substantially increased the antimicrobial efficacy of the thyme oil nanoemulsions: 200 μg/ml thyme oil was needed to inhibit growth of a spoilage yeast (Zygosaccharomyces bailii) if LAE was added, whereas ⩾ 400 μg/ml was needed in the absence of LAE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion.

    PubMed

    Zhang, Zijie; Vriesekoop, Frank; Yuan, Qipeng; Liang, Hao

    2014-05-01

    d-Limonene has been considered to be a safer alternative compared to synthetic antimicrobial food additives. However, its hydrophobic and oxidative nature has limited its application in foods. The purpose of this research was to study effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion and develop a novel antimicrobial delivery system by combining the positive effect of these two antibacterial agents at the same time. By the checkerboard method, both the synergistic and additive effects of d-limonene and nisin were found against four selected food-related microorganisms. Then, d-limonene nanoemulsion with or without nisin was prepared by catastrophic phase inversion method, which has shown good droplet size and stability. The positive effects and outstanding antimicrobial activity of d-limonene nanoemulsion with nisin were confirmed by MICs comparison, scanning electron microscopy and determination of cell constituents released. Overall, the research described in the current article would be helpful in developing a more effective antimicrobial system for the production and preservation of foods. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  10. Preparation and the in vitro evaluation of nanoemulsion system for the transdermal delivery of granisetron hydrochloride.

    PubMed

    Zheng, Wen-wu; Zhao, Ling; Wei, Yu-meng; Ye, Yun; Xiao, Shun-han

    2010-08-01

    The objective of this study was to develop and evaluate nanoemulsion system for transdermal delivery of granisetron hydrochloride. Pseudo-ternary phase diagram was constructed to ascertain the concentration range of components of nanoemulsion composed of isopropyl myristate (IPM) as an oil phase, tween 85 as surfactant, ethanol as cosurfactant, water as aqueous phase. The effects of the content of IPM as an oil phase and n-methyl pyrrolidone (NMP) as transdermal enhancer on rat skin permeation of granisetron hydrochloride nanoemulsion were studied in vitro. The results showed that the mean particle size of nanoemulsion ranged from 50.4+/-1.5 to 82.4+/-0.9 nm with homogeneous size distribution. The resulted optimum formulation composed of 2.5% granisetron hydrochloride, 4% IPM, 40% tween 85/ethanol (1 : 1) and 10% NMP showed that the skin permeation rate was the highest (85.39+/-2.90 microg/cm(2)/h) and enhancement of drug permeability was 4.1-fold for transdermal delivery of granisetron hydrochloridein comparison with the control group (20% of tween 85 and 20% of ethanol micelle solution containing 2.5% of granisetron hydrochloride without IPM), and cumulative permeation amount was the highest (891.8+/-2.86 microg/cm(2)) with the shortest lag time (0.11+/-0.02 h) and was stable for at least 12 months. Therefore, the nanoemulsion system developed in this study offers a promising vehicle for the transdermal delivery system of granisetron hydrochloride, which may be as effective as oral or intravenous dosage forms and avoid some difficulties associated with these dosage forms.

  11. Compared in vivo efficiency of nanoemulsions unloaded and loaded with calixarene and soapy water in the treatment of superficial wounds contaminated by uranium.

    PubMed

    Grivès, Sophie; Phan, Guillaume; Bouvier-Capely, Céline; Suhard, David; Rebière, François; Agarande, Michelle; Fattal, Elias

    2017-04-01

    No emergency decontamination treatment is currently available in the case of radiological skin contamination by uranium compounds. First responders in the workplace or during an industrial nuclear accident must be able to treat internal contamination through skin. For this purpose, a calixarene nanoemulsion was developed for the treatment of intact skin or superficial wounds contaminated by uranium, and the decontamination efficiency of this nanoemulsion was investigated in vitro and ex vivo. The present work addresses the in vivo decontamination efficiency of this nanoemulsion, using a rat model. This efficiency is compared to the radio-decontaminant soapy water currently used in France (Trait rouge ® ) in the workplace. The results showed that both calixarene-loaded nanoemulsion and non-loaded nanoemulsion allowed a significant decontamination efficiency compared to the treatment with soapy water. Early application of the nanoemulsions on contaminated excoriated rat skin allowed decreasing the uranium content by around 85% in femurs, 95% in kidneys and 93% in urines. For skin wounded by microneedles, mimicking wounds by microstings, nanoemulsions allowed approximately a 94% decrease in the uranium retention in kidneys. However, specific chelation of uranium by calixarene molecules within the nanoemulsion was not statistically significant, probably because of the limited calixarene-to-uranium molar ratio in these experiment conditions. Moreover, these studies showed that the soapy water treatment potentiates the transcutaneous passage of uranium, thus making it bioavailable, in particular when the skin is superficially wounded. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Effect of orientational ordering of magnetic nanoemulsions immobilized in agar gel on magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Ranoo, Surojit; Philip, John

    2018-04-01

    Magnetic nanoemulsions of droplet size ∼200 nm, loaded with single domain superparamagnetic nanoparticles (MNP), are potential candidates for multimodal hyperthermia due to availability of large loading volume and enhanced permeation and retention (EPR) in the cancerous tissues. In such nanoemulsions, radio frequency alternating magnetic field induced heating occur at two entirely different length scales, viz. Neel-Brown relaxation of the dispersed MNP and Brownian relaxation of emulsion droplets. Here we study the effects of orientation ordering or texturing of droplets, immobilized in a tissue mimicking agar matrix, on the field induced heating efficiency. A higher specific absorption rate (maximum ∼73 ± 2 W/gFe) is observed for droplets orientated parallel to the direction of the alternating magnetic field because of the enhancement of effective uniaxial anisotropy energy density and increased effective relaxation time. For identical and non-interacting MNP oriented parallel to the external DC magnetic field, a threefold increase in the effective uniaxial anisotropy energy density and ∼20-30% increased specific absorption rate are observed as compared to those oriented perpendicular to the magnetic field. Magnetic force microscopy images showed that the spherical morphology of the droplets remains intact even after orientational ordering and average topographic height of the droplets are found to be ∼220 (±17) nm, which is in good agreement with the most probable size obtained from dynamic light scattering. The residual volume magnetization of the emulsion droplets is found to be 1.1 × 10-6 emu/cc, indicating the superparamagnetic nature of the droplets in tissue equivalent environment. The observed increase in heating efficiency of the immobilized and oriented emulsion droplets shows promising applications in multimodal hyperthermia therapy because of the requirement of lower dose of MNP and shorter treatment time.

  13. Hydrogel-thickened nanoemulsions based on essential oils for topical delivery of psoralen: Permeation and stability studies.

    PubMed

    Barradas, Thaís Nogueira; Senna, Juliana Perdiz; Cardoso, Stephani Araujo; Nicoli, Sara; Padula, Cristina; Santi, Patrizia; Rossi, Francesca; de Holanda E Silva, K Gyselle; Mansur, Claudia R Elias

    2017-07-01

    Nanoemulsions (NE) have attracted much attention due to their as dermal delivery systems for lipophilic drugs such as psoralens. However, NE feature low viscosity which might be unsuitable for topical application. In this work, we produced hydrogel-thickened nanoemulsions (HTN) using chitosan as thickening polymer to overcome the low viscosity attributed to NE. The aim of this study is to develop and characterize oil-in-water (o/w) HTN based on sweet fennel and clove essential oil to transdermal delivery of 8-methoxsalen (8-MOP). NE components (oil, surfactant) were selected on the basis of solubility and droplet size and processed in a high-pressure homogenizer (HPH). Drug loaded NE and HTN were characterized for particle size, stability under storage and centrifugation, rheological behavior, transdermal permeation and skin accumulation. Transdermal permeation of 8-MOP from HTN was determined by using Franz diffusion cell. Transdermal permeation from HTN using clove essential oil showed strong dependency chitosan molecular weight. On the other hand, HTN using sweet fennel oil showed an unexpected pH-dependent behavior not fully understood at the moment. These results need further investigation, nevertheless HTN revealed to be interesting and complex dermal delivery systems for poorly soluble drugs. Copyright © 2016. Published by Elsevier B.V.

  14. Magnetic hyperthermia in magnetic nanoemulsions: Effects of polydispersity, particle concentration and medium viscosity

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Ranoo, Surojit; Zaibudeen, A. W.; Philip, John

    2017-11-01

    Magnetic fluid hyperthermia (MFH) is a promising cancer treatment modality where alternating magnetic field is used for heating cancerous cells loaded with magnetic nanofluids. Of late, it is realized that magnetic nano-carriers in the size range ∼100-200 nm (e.g. magnetic nanocomposites, magnetic liposomes and magnetic nanoemulsions) are ideal candidates for multimodal MFH coupled with drug delivery or photodynamic therapy due to enhanced permeation and retention (EPR) in the leaky vasculature of cancerous tissues. Here, we study the radiofrequency alternating magnetic field induced heating in magnetically polarizable oil-in-water nanoemulsions of hydrodynamic diameter ∼200 nm, containing single domain superparamagnetic nanoparticles of average diameter ∼10 nm in the oil phase. We probe the effects of size polydispersity of the droplets and medium viscosity on the field induced heating efficiency. The contribution of Neel and Brown relaxation of the magnetic nanoparticles on specific absorption rate (SAR) of the magnetic nanoemulsions, was found to increase linearly with the square of the applied field, with a maximum value of 164.4 ± 4.3 W/gFe. In magnetic nanoemulsions, the heating is induced by the Neel-Brown relaxation of the MNP over a length scale of 10 nm, and the whole scale Brownian relaxation of the emulsion droplets has over a length scale of 200 nm. The magnetic nanoemulsion sample with lower polydispersity (σ = 0.2) exhibited a significantly higher SAR value (3.3 times higher) as compared to the sample with larger polydispersity (σ = 0.4). The SAR values of the samples with 4.6 and 1.7 wt.% of MNP loading with σ values 0.4 a 0.3, respectively were comparable, suggesting a higher heating efficiency in nanofluid containing particles of lower size polydispersity even at lower particle loading. The emulsion droplets, immobilized in an agar matrix (4 wt.%), gave a maximum SAR value of 41.7 ± 2.4 W/gFe as compared to 111.8 ± 3.4 W/gFe in the

  15. Preparation of lipid nanoemulsions by premix membrane emulsification with disposable materials.

    PubMed

    Gehrmann, Sandra; Bunjes, Heike

    2016-09-25

    The possibility to prepare nanoemulsions as drug carrier systems on small scale was investigated with disposable materials. For this purpose premix membrane emulsification (premix ME) as a preparation method for nanoemulsions with narrow particle size distributions on small scale was used. The basic principle of premix ME is that the droplets of a coarse pre-emulsion get disrupted by the extrusion through a porous membrane. In order to implement the common preparation setup for premix ME with disposable materials, the suitability of different syringe filters (made from polyethersulfone, cellulose acetate, cellulose ester and nylon) and different pharmaceutically relevant emulsifiers (phospholipids, polysorbate 80 and sucrose laurate) for the preparation of nanoemulsions was investigated. Already the preparation of the premix could be realized by emulsification with the help of two disposable syringes. As shown for a phospholipid-stabilized emulsion, the polyethersulfone filter was the most appropriate one and was used for the study with different emulsifiers. With this syringe filter, the median particle size of all investigated emulsions was below 500nm after 21 extrusion cycles through a 200nm filter and a subsequent extrusion cycle through a 100nm filter. Furthermore, the particle size distribution of the polysorbate 80- and sucrose laurate-stabilized emulsions prepared this way was very narrow (span value of 0.7). Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Minoxidil Skin Delivery from Nanoemulsion Formulations Containing Eucalyptol or Oleic Acid: Enhanced Diffusivity and Follicular Targeting

    PubMed Central

    Abd, Eman; Benson, Heather A. E.; Roberts, Michael S.; Grice, Jeffrey E.

    2018-01-01

    In this work, we examined enhanced skin delivery of minoxidil applied in nanoemulsions incorporating skin penetration enhancers. Aliquots of fully characterized oil-in-water nanoemulsions (1 mL), containing minoxidil (2%) and the skin penetration enhancer oleic acid or eucalyptol as oil phases, were applied to full-thickness excised human skin in Franz diffusion cells, while aqueous solutions (1 mL) containing minoxidil were used as controls. Minoxidil in the stratum corneum (SC), hair follicles, deeper skin layers, and flux through the skin over 24 h was determined, as well as minoxidil solubility in the formulations and in the SC. The nanoemulsions significantly enhanced the permeation of minoxidil through skin compared with control solutions. The eucalyptol formulations (NE) promoted minoxidil retention in the SC and deeper skin layers more than did the oleic acid formulations, while the oleic acid formulations (NO) gave the greatest hair follicle penetration. Minoxidil maximum flux enhancement was associated with increases in both minoxidil SC solubility and skin diffusivity in both nanoemulsion systems. The mechanism of enhancement appeared to be driven largely by increased diffusivity, rather than increased partitioning into the stratum corneum, supporting the concept of enhanced fluidity and disruption of stratum corneum lipids. PMID:29370122

  17. Enhancement of encapsulation efficiency of nanoemulsion-containing aripiprazole for the treatment of schizophrenia using mixture experimental design.

    PubMed

    Masoumi, Hamid Reza Fard; Basri, Mahiran; Samiun, Wan Sarah; Izadiyan, Zahra; Lim, Chaw Jiang

    2015-01-01

    Aripiprazole is considered as a third-generation antipsychotic drug with excellent therapeutic efficacy in controlling schizophrenia symptoms and was the first atypical anti-psychotic agent to be approved by the US Food and Drug Administration. Formulation of nanoemulsion-containing aripiprazole was carried out using high shear and high pressure homogenizers. Mixture experimental design was selected to optimize the composition of nanoemulsion. A very small droplet size of emulsion can provide an effective encapsulation for delivery system in the body. The effects of palm kernel oil ester (3-6 wt%), lecithin (2-3 wt%), Tween 80 (0.5-1 wt%), glycerol (1.5-3 wt%), and water (87-93 wt%) on the droplet size of aripiprazole nanoemulsions were investigated. The mathematical model showed that the optimum formulation for preparation of aripiprazole nanoemulsion having the desirable criteria was 3.00% of palm kernel oil ester, 2.00% of lecithin, 1.00% of Tween 80, 2.25% of glycerol, and 91.75% of water. Under optimum formulation, the corresponding predicted response value for droplet size was 64.24 nm, which showed an excellent agreement with the actual value (62.23 nm) with residual standard error <3.2%.

  18. Formulation and pharmacokinetics of diclofenac lipid nanoemulsions for parenteral application.

    PubMed

    Ramreddy, Srividya; Kandadi, Prabhakar; Veerabrahma, Kishan

    2012-01-01

    The objective of the present study was to formulate and determine the pharmacokinetics of stable o/w parenteral lipid nanoemulsions (LNEs) of diclofenac acid used to treat arthritic conditions. The LNEs of diclofenac acid with a mean size ranging from 200 to 240 nm and a zeta potential of -29.4 ± 1.04 mV (negatively charged LNEs) and 62.1 ± 3.5 (positively charged LNEs) emulsions were prepared by hot homogenization and ultrasonication process. The influence of formulation variables, such as the change in proportion of cholesterol, was studied, and optimized formulations were developed. The optimized formulations were relatively stable during centrifugal stress, dilution stress, and storage. The drug content and entrapment efficiency were determined using high-performance liquid chromatography. The in vitro drug release was carried out in phosphate-buffered saline pH 7.4 and cumulative amount of drug released was estimated using a UV-visible spectro-photometer. During in vivo pharmacokinetic studies in male Wistar rats, diclofenac serum concentration from LNEs was higher than that of Voveran injection and was detectable up to 12 h. Diclofenac in LNEs showed improved pharmacokinetic profile with increase in area under the curve, elimination half-life and mean residence time in comparison to Voveran. Our aim was to prepare and determine the pharmacokinetics of injectable lipid nanoemulsions of diclofenac acid for treating arthritic conditions by reducing the frequency of dosing and pain at site of injection. The nanoemulsions of diclofenac acid were prepared by homogenization and ultrasonication process. The sizes and charges of oil globules were determined. The effect of cholesterol on stability of emulsion was studied, and an optimized preparation was developed. The optimized formulations were stable during centrifugation, dilution, and storage. The total amount of drug in emulsion and percentage amount of drug present in emulsion globules were determined using

  19. Do oil-in-water (O/W) nano-emulsions have an effect on survival and growth of bacteria?

    PubMed

    Kadri, Hani El; Devanthi, Putu Virgina Partha; Overton, Tim W; Gkatzionis, Konstantinos

    2017-11-01

    Nano-emulsions (typically droplet diameter<1μm) are common in foods, and have been extensively reported to present antimicrobial activity, however, the mechanism is not well defined, and some studies reported no effect. A review of the literature was conducted and revealed strongly contradictory reports regarding the antimicrobial effect of nano-emulsions even in reference to similar microbial species and formulations. Following up, this study aimed to investigate the effect of nano-emulsions on four bacterial species (Staphylococcus epidermidis, Bacillus cereus, Lactobacillus acidophilus and five Escherichia coli strains) possessing different surface charge and hydrophobicity. Model oil-in-water (O/W) emulsions with different size of oil droplets were prepared with sunflower oil stabilised by polysorbate 80 (Tween80) emulsifier (hydrophilic), using high shear mixing followed by ultrasonication. The viability of bacteria was monitored by culture, membrane integrity was assessed with flow cytometric analysis with propidium iodide (PI) staining and fluorescence microscopy monitored the spatial distribution of cells within the O/W emulsions. The stability of the nano-O/W emulsions in the presence of bacteria was assessed by monitoring the droplet size [D (4, 3)] and creaming height. In contrast to other reports the survival and growth of bacteria was not affected by the size of the oil droplets, no damage to the bacterial membrane was evident with flow cytometry and emulsion stability was not affected by the presence of bacteria during 7days of storage. Furthermore, the antimicrobial activity of caprylic acid (CA) was compared between O/W coarse and nano-emulsions while varying the concentration of the hydrophilic surfactant Tween80. The activity of CA was similar in nano-emulsion and coarse emulsion; however, it was higher than in bulk oil and was reduced with increasing Tween80 concentration, suggesting that its efficacy is dictated by formulation rather than oil

  20. The oxidative stability of omega-3 oil-in-water nanoemulsion systems suitable for functional food enrichment: A systematic review of the literature.

    PubMed

    Bush, Linda; Stevenson, Leo; Lane, Katie E

    2017-10-23

    There is growing demand for functional food products enriched with long chain omega-3 polyunsaturated fatty acids (LCω3PUFA). Nanoemulsions, systems with extremely small droplet sizes have been shown to increase LCω3PUFA bioavailability. However, nanoemulsion creation and processing methods may impact on the oxidative stability of these systems. The present systematic review collates information from studies that evaluated the oxidative stability of LCω3PUFA nanoemulsions suitable for use in functional foods. The systematic search identified seventeen articles published during the last 10 years. Researchers used a range of surfactants and antioxidants to create systems which were evaluated from 7 to 100 days of storage. Nanoemulsions were created using synthetic and natural emulsifiers, with natural sources offering equivalent or increased oxidative stability compared to synthetic sources, which is useful as consumers are demanding natural, cleaner label food products. Equivalent vegetarian sources of LCω3PUFA found in fish oils such as algal oils are promising as they provide direct sources without the need for conversion in the human metabolic pathway. Quillaja saponin is a promising natural emulsifier that can produce nanoemulsion systems with equivalent/increased oxidative stability in comparison to other emulsifiers. Further studies to evaluate the oxidative stability of quillaja saponin nanoemulsions combined with algal sources of LCω3PUFA are warranted.

  1. Hypocholesterolemic Effects of Kenaf Seed Oil, Macroemulsion, and Nanoemulsion in High-Cholesterol Diet Induced Rats.

    PubMed

    Cheong, Ai Mun; Jessica Koh, Jue Xi; Patrick, Nwabueze Okechukwu; Tan, Chin Ping; Nyam, Kar Lin

    2018-03-01

    This study aimed to evaluate the effect of kenaf seed oil (KSO), kenaf seed oil-in-water macroemulsion (KSOM), kenaf seed oil-in-water nanoemulsions (KSON), and emulsifier mixtures (EM) on serum lipid profile, liver oxidative status, and histopathological changes in high-cholesterol fed rats. Stability and characteristic of KSOM and KSON were carried out prior to in vivo study. Forty-two Sprague-Dawley rats were divided into 7 groups (6 rats each) and induced hypercholesterolemia by feeding high cholesterol diet (HCD) for 14 days prior to treatments. Different treatments were introduced on day 15 to 29 while supplemented with HCD and removal of HCD during treatment on day 30 to 43, except for HCD group. Body weight and serum lipid profiles were measured at 3 different points: after hypercholesterolemia was induced, on day 29, and at the end of the experiment. Relative liver weight, atherogenic index, coronary risk index, and fecal total bile acids were also determined at the end of experiment. KSON showed significantly higher stability than KSOM and FTIR exhibited good encapsulation of KSO after 1.5 years of storage. Serum total cholesterol, low density lipoprotein cholesterol, lipid peroxidation levels in HCD group without treatment were significantly higher compared to normal control group and all treatment groups. All samples demonstrated hypocholesterolemic effect, but KSON exhibited higher efficiency in cholesterol-lowering properties, weight control and decreased liver fat as confirmed by histopathological evaluation. The overall results revealed that the efficacy of different treatments was in descending order of KSON, KSO, KSOM, and EM. Kenaf seed oil-in-water nanoemulsion (KSON) has the potential to be used as a natural alternative to the synthetic hypocholesterolemic drug in the future. However, larger sample size and clinical trial are needed to confirm on this potential application. In addition, treatment with KSON was suggested to prevent

  2. In vitro and in vivo Effects of Free and Chalcones-Loaded Nanoemulsions: Insights and Challenges in Targeted Cancer Chemotherapies

    PubMed Central

    Winter, Evelyn; Dal Pizzol, Carine; Locatelli, Claudriana; Silva, Adny H.; Conte, Aline; Chiaradia-Delatorre, Louise D.; Nunes, Ricardo J.; Yunes, Rosendo A.; Creckzynski-Pasa, Tânia B.

    2014-01-01

    Several obstacles are encountered in conventional chemotherapy, such as drug toxicity and poor stability. Nanotechnology is envisioned as a strategy to overcome these effects and to improve anticancer therapy. Nanoemulsions comprise submicron emulsions composed of biocompatible lipids, and present a large surface area revealing interesting physical properties. Chalcones are flavonoid precursors, and have been studied as cytotoxic drugs for leukemia cells that induce cell death by different apoptosis pathways. In this study, we encapsulated chalcones in a nanoemulsion and compared their effect with the respective free compounds in leukemia and in non-tumoral cell lines, as well as in an in vivo model. Free and loaded-nanoemulsion chalcones induced a similar anti-leukemic effect. Free chalcones induced higher toxicity in VERO cells than chalcones-loaded nanoemulsions. Similar results were observed in vivo. Free chalcones induced a reduction in weight gain and liver injuries, evidenced by oxidative stress, as well as an inflammatory response. Considering the high toxicity and the side effects induced generally by all cancer chemotherapies, nanotechnology provides some options for improving patients’ life quality and/or increasing survival rates. PMID:25264679

  3. Factorial design applied to the optimization of lipid composition of topical antiherpetic nanoemulsions containing isoflavone genistein

    PubMed Central

    Argenta, Débora Fretes; de Mattos, Cristiane Bastos; Misturini, Fabíola Dallarosa; Koester, Leticia Scherer; Bassani, Valquiria Linck; Simões, Cláudia Maria Oliveira; Teixeira, Helder Ferreira

    2014-01-01

    The aim of this study was to optimize topical nanoemulsions containing genistein, by means of a 23 full factorial design based on physicochemical properties and skin retention. The experimental arrangement was constructed using oil type (isopropyl myristate or castor oil), phospholipid type (distearoylphosphatidylcholine [DSPC] or dioleylphosphaditylcholine [DOPC]), and ionic cosurfactant type (oleic acid or oleylamine) as independent variables. The analysis of variance showed effect of third order for particle size, polydispersity index, and skin retention of genistein. Nanoemulsions composed of isopropyl myristate/DOPC/oleylamine showed the smallest diameter and highest genistein amount in porcine ear skin whereas the formulation composed of isopropyl myristate/DSPC/oleylamine exhibited the lowest polydispersity index. Thus, these two formulations were selected for further studies. The formulations presented positive ζ potential values (>25 mV) and genistein content close to 100% (at 1 mg/mL). The incorporation of genistein in nanoemulsions significantly increased the retention of this isoflavone in epidermis and dermis, especially when the formulation composed by isopropyl myristate/DOPC/oleylamine was used. These results were supported by confocal images. Such formulations exhibited antiherpetic activity in vitro against herpes simplex virus 1 (strain KOS) and herpes simplex virus 22 (strain 333). Taken together, the results show that the genistein-loaded nanoemulsions developed in this study are promising options in herpes treatment. PMID:25336951

  4. Enhancement of encapsulation efficiency of nanoemulsion-containing aripiprazole for the treatment of schizophrenia using mixture experimental design

    PubMed Central

    Fard Masoumi, Hamid Reza; Basri, Mahiran; Sarah Samiun, Wan; Izadiyan, Zahra; Lim, Chaw Jiang

    2015-01-01

    Aripiprazole is considered as a third-generation antipsychotic drug with excellent therapeutic efficacy in controlling schizophrenia symptoms and was the first atypical anti-psychotic agent to be approved by the US Food and Drug Administration. Formulation of nanoemulsion-containing aripiprazole was carried out using high shear and high pressure homogenizers. Mixture experimental design was selected to optimize the composition of nanoemulsion. A very small droplet size of emulsion can provide an effective encapsulation for delivery system in the body. The effects of palm kernel oil ester (3–6 wt%), lecithin (2–3 wt%), Tween 80 (0.5–1 wt%), glycerol (1.5–3 wt%), and water (87–93 wt%) on the droplet size of aripiprazole nanoemulsions were investigated. The mathematical model showed that the optimum formulation for preparation of aripiprazole nanoemulsion having the desirable criteria was 3.00% of palm kernel oil ester, 2.00% of lecithin, 1.00% of Tween 80, 2.25% of glycerol, and 91.75% of water. Under optimum formulation, the corresponding predicted response value for droplet size was 64.24 nm, which showed an excellent agreement with the actual value (62.23 nm) with residual standard error <3.2%. PMID:26508853

  5. Antimicrobial activity of nanoemulsion in combination with cetylpyridinium chloride in multidrug-resistant Acinetobacter baumannii.

    PubMed

    Hwang, Yoon Y; Ramalingam, Karthikeyan; Bienek, Diane R; Lee, Valerie; You, Tao; Alvarez, Rene

    2013-08-01

    Acinetobacter baumannii has emerged as a serious problematic pathogen due to the ever-increasing presence of antibiotic resistance, demonstrating a need for novel, broad-spectrum antimicrobial therapeutic options. Antimicrobial nanoemulsions are emulsified mixtures of detergent, oil, and water (droplet size, 100 to 800 nm) which have broad antimicrobial activity against bacteria, enveloped viruses, and fungi. Here, we screened the antimicrobial activities of five nanoemulsion preparations against four Acinetobacter baumannii isolates to identify the most suitable preparation for further evaluation. Among them, N5, which contains 10% (vol/vol) Triton X-100, 25% (vol/vol) soybean oil, and 1% (wt/vol) cetylpyridinium chloride (CPC), showed the best efficacy against A. baumannii in both its planktonic and biofilm forms and was selected for further study. Our data demonstrate that, while the killing of planktonic forms of A. baumannii was due to the 1% CPC component of our nanoemulsions, the breakdown of biofilms was achieved via the emulsified oil and detergent fractions. Furthermore, we documented the effect of ethanol and NaCl in combination with N5 on planktonic A. baumannii. In killing curves of N5 combined with other agents (ethanol or NaCl), a synergistic effect of a ≥ 2-log decrease in CFU/ml was observed. The antibiofilm activity of N5 was confirmed via a cell proliferation test and scanning electron microscopy. The effects of exposure to severe environmental conditions, which simulates the field conditions in Iraq and Afghanistan, were evaluated, and this exposure did not affect the overall antimicrobial activity of N5. These studies lay a solid foundation for the utilization of nanoemulsions against the antibiotic-resistant forms of A. baumannii.

  6. Local sustained delivery of bupivacaine HCl from a new castor oil-based nanoemulsion system.

    PubMed

    Rachmawati, Heni; Arvin, Yang Aryani; Asyarie, Sukmadjaja; Anggadiredja, Kusnandar; Tjandrawinata, Raymond Rubianto; Storm, Gert

    2018-06-01

    Bupivacaine HCl (1-butyl-2',6'-pipecoloxylidide hydrochloride), an amide local anesthetic compound, is a local anesthetic drug utilized for intraoperative local anesthesia, post-operative analgesia and in the treatment of chronic pain. However, its utility is limited by the relative short duration of analgesia after local administration (approximately 9 h after direct injection) and risk for side effects. This work is aimed to develop a nanoemulsion of bupivacaine HCl with sustained local anesthetics release kinetics for improved pain management, by exhibiting extended analgesic action and providing reduced peak levels in the circulation to minimize side effects. Herein, biodegradable oils were evaluated for use in nanoemulsions to enable sustained release kinetics of bupivacaine HCl. Only with castor oil, a clear and stable nanoemulsion was obtained without the occurrence of phase separation over a period of 3 months. High loading of bupivacaine HCl into the castor oil-based nanoemulsion system was achieved with about 98% entrapment efficiency and the resulting formulation showed high stability under stress conditions (accelerated stability test) regarding changes in visual appearance, drug content, and droplet size. We show herein that the in vitro release and in vivo pharmacokinetic profiles as well as pharmacodynamic outcome (pain relief test) after subcutaneous administration in rats correlate well and clearly demonstrate the prolonged release and extended duration of activity of our novel nanoformulation. In addition, the lower C max value achieved in the blood compartment suggests the possibility that the risk for systemic side effects is reduced. We conclude that castor oil-based nanomulsion represents an attractive pain treatment possibility to achieve prolonged local action of bupivacaine HCl.

  7. Antimicrobial Activity of Nanoemulsion in Combination with Cetylpyridinium Chloride in Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Hwang, Yoon Y.; Ramalingam, Karthikeyan; Bienek, Diane R.; Lee, Valerie; You, Tao

    2013-01-01

    Acinetobacter baumannii has emerged as a serious problematic pathogen due to the ever-increasing presence of antibiotic resistance, demonstrating a need for novel, broad-spectrum antimicrobial therapeutic options. Antimicrobial nanoemulsions are emulsified mixtures of detergent, oil, and water (droplet size, 100 to 800 nm) which have broad antimicrobial activity against bacteria, enveloped viruses, and fungi. Here, we screened the antimicrobial activities of five nanoemulsion preparations against four Acinetobacter baumannii isolates to identify the most suitable preparation for further evaluation. Among them, N5, which contains 10% (vol/vol) Triton X-100, 25% (vol/vol) soybean oil, and 1% (wt/vol) cetylpyridinium chloride (CPC), showed the best efficacy against A. baumannii in both its planktonic and biofilm forms and was selected for further study. Our data demonstrate that, while the killing of planktonic forms of A. baumannii was due to the 1% CPC component of our nanoemulsions, the breakdown of biofilms was achieved via the emulsified oil and detergent fractions. Furthermore, we documented the effect of ethanol and NaCl in combination with N5 on planktonic A. baumannii. In killing curves of N5 combined with other agents (ethanol or NaCl), a synergistic effect of a ≥2-log decrease in CFU/ml was observed. The antibiofilm activity of N5 was confirmed via a cell proliferation test and scanning electron microscopy. The effects of exposure to severe environmental conditions, which simulates the field conditions in Iraq and Afghanistan, were evaluated, and this exposure did not affect the overall antimicrobial activity of N5. These studies lay a solid foundation for the utilization of nanoemulsions against the antibiotic-resistant forms of A. baumannii. PMID:23669390

  8. In vitro characterization and mosquito (Aedes aegypti) repellent activity of essential-oils-loaded nanoemulsions.

    PubMed

    Nuchuchua, Onanong; Sakulku, Usawadee; Uawongyart, Napaporn; Puttipipatkhachorn, Satit; Soottitantawat, Apinan; Ruktanonchai, Uracha

    2009-01-01

    The nanoemulsions composed of citronella oil, hairy basil oil, and vetiver oil with mean droplet sizes ranging from 150 to 220 nm were prepared and investigated both in vitro and in vivo. Larger emulsion droplets (195-220 nm) shifted toward a smaller size (150-160 nm) after high-pressure homogenization and resulted in higher release rate. We proposed that thin films obtained from the nanoemulsions with smaller droplet size would have higher integrity, thus increasing the vaporization of essential oils and subsequently prolonging the mosquito repellant activity. The release rates were fitted with Avrami's equations and n values were in the same range of 0.6 to 1.0, implying that the release of encapsulated limonene was controlled by the diffusion mechanism from the emulsion droplet. By using high-pressure homogenization together with optimum concentrations of 5% (w/w) hairy basil oil, 5% (w/w) vetiver oil (5%), and 10% (w/w) citronella oil could improve physical stability and prolong mosquito protection time to 4.7 h due to the combination of these three essential oils as well as small droplet size of nanoemulsion.

  9. Carbamazepine parenteral nanoemulsions prepared by spontaneous emulsification process.

    PubMed

    Kelmann, Regina G; Kuminek, Gislaine; Teixeira, Helder F; Koester, Letícia S

    2007-09-05

    Carbamazepine (CBZ), a widely used anticonvulsant drug, is a poorly soluble drug with no parenteral treatment available for patients. This study was aimed at developing a nanoemulsion for CBZ intravenous delivery. The spontaneous emulsification method was used to prepare different formulations containing 2mg/mL CBZ. Likewise, a 2(2) full factorial experimental design was applied to study the influence of two independent variables (type of oil and type of lipophilic emulsifier) on emulsion physicochemical characteristics. The nanoemulsions were evaluated concerning droplet size, zeta potential, viscosity, drug content and association to oily phase. The formulation, which presented the best characteristics required for intravenous administration was selected and refined with respect to the lipophilic emulsifier content (increase from 5% to 6% of soy lecithin). This formulation was characterized and kept its properties in a satisfactory range over the evaluated period (3 months), i.e. droplet size around 150 nm, drug content around 95% and zeta potential around -40 mV. The transmission electron microscopy revealed emulsion droplets almost spherical in shape with an amorphous core, whereas the in vitro release profile assessed by dialysis bags demonstrated a release kinetics square root time dependent, with 95% of ca. having been released within 11h.

  10. Citral stabilization and characterization of nanoemulsions stabilized by a mixture of gelatin and Tween 20 in an acidic system.

    PubMed

    Tian, Huaixiang; Li, Danfeng; Xu, Ting; Hu, Jing; Rong, Yuzhi; Zhao, Bo

    2017-07-01

    Citral is one of the most important flavor compounds in fresh juice and lemon oil. Unfortunately, citral is chemically unstable and degrades over time in aqueous solutions. Here, citral nanoemulsions including a mixture of gelatin and Tween 20 as emulsifiers were produced in an effort to maintain the stability of citral in an acidic system. The mean droplet size and polydispersity index of the citral nanoemulsion were 467.83 nm and 0.259 respectively when the mass ratio of gelatin/Tween 20 was 3:1 and the total emulsifier concentration of the emulsion system was 10 g kg -1 . The citral nanoemulsion remained stable during storage for 14 days at 30 °C. Therefore this nanoemulsion system effectively protected citral from degradation and decreased the formation of off-flavor compounds (e.g. p-cymene, p-cresol and p-methylacetophenone) relative to a single emulsifier. The mixture of gelatin and Tween 20 enhanced the stability of citral under acidic conditions and could be used as an effective emulsifier to protect citral from degradation under acidic environments in the food industry. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Does Facial Resemblance Enhance Cooperation?

    PubMed Central

    Giang, Trang; Bell, Raoul; Buchner, Axel

    2012-01-01

    Facial self-resemblance has been proposed to serve as a kinship cue that facilitates cooperation between kin. In the present study, facial resemblance was manipulated by morphing stimulus faces with the participants' own faces or control faces (resulting in self-resemblant or other-resemblant composite faces). A norming study showed that the perceived degree of kinship was higher for the participants and the self-resemblant composite faces than for actual first-degree relatives. Effects of facial self-resemblance on trust and cooperation were tested in a paradigm that has proven to be sensitive to facial trustworthiness, facial likability, and facial expression. First, participants played a cooperation game in which the composite faces were shown. Then, likability ratings were assessed. In a source memory test, participants were required to identify old and new faces, and were asked to remember whether the faces belonged to cooperators or cheaters in the cooperation game. Old-new recognition was enhanced for self-resemblant faces in comparison to other-resemblant faces. However, facial self-resemblance had no effects on the degree of cooperation in the cooperation game, on the emotional evaluation of the faces as reflected in the likability judgments, and on the expectation that a face belonged to a cooperator rather than to a cheater. Therefore, the present results are clearly inconsistent with the assumption of an evolved kin recognition module built into the human face recognition system. PMID:23094095

  12. Impact of process parameters in the generation of novel aspirin nanoemulsions--comparative studies between ultrasound cavitation and microfluidizer.

    PubMed

    Tang, Siah Ying; Shridharan, Parthasarathy; Sivakumar, Manickam

    2013-01-01

    In the present investigation, the operating efficiency of a bench-top air-driven microfluidizer has been compared to that of a bench-top high power ultrasound horn in the production of pharmaceutical grade nanoemulsions using aspirin as a model drug. The influence of important process variables as well as the pre-homogenization and drug loading on the resultant mean droplet diameter and size distribution of emulsion droplets was studied in an oil-in-water nanoemulsion incorporated with a model drug aspirin. Results obtained show that both the emulsification methods were capable of producing very fine nanoemulsions containing aspirin with the minimum droplet size ranging from 150 to 170 nm. In case of using the microfluidizer, it has been observed that the size of the emulsion droplets obtained was almost independent of the applied microfluidization pressure (200-600 bar) and the number of passes (up to 10 passes) while the pre-homogenization and drug loading had a marginal effect in increasing the droplet size. Whereas, in the case of ultrasound emulsification, the droplet size was generally decreased with an increase in sonication amplitude (50-70%) and period of sonication but the resultant emulsion was found to be dependent on the pre-homogenization and drug loading. The STEM microscopic observations illustrated that the optimized formulations obtained using ultrasound cavitation technique are comparable to microfluidized emulsions. These comparative results demonstrated that ultrasound cavitation is a relatively energy-efficient yet promising method of pharmaceutical nanoemulsions as compared to microfluidizer although the means used to generate the nanoemulsions are different. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Optimization of Process Parameters in Preparation of Nanoemulsions of CLnA Rich Oil by Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Sengupta, Avery; Gupta, Surashree Sen; Ghosh, Mahua

    2013-03-01

    The purpose of the present study was to obtain optimal processing for preparation of uniform-sized nanoemulsion of conjugated linolenic acid (CLnA) rich oil to increase the oxidative stability of CLnA by using a high-speed disperser (HSD) and ultrasonication. The emulsifiers used were egg phospholipid and soya protein isolate. The effects of oil concentration [0.05 to 1.25 % (w/w)], emulsifier ratio [0.1:0.9 to 0.9:0.1 (phospholipid:protein)], speed of the HSD (2,000 to 12,000 rpm) and times of HSD and sonication treatments (10 to 50 min) were observed. Optimization was performed with and without response surface methodology (RSM). The optimum compositional variables i.e. concentration of oil was 1 % and phospholipid:protein molar ratio was 0.5:0.5. Maximum size reduction occurred at 10,000 rpm speed of HSD. HSD should be administered for 40 min followed by 40 min ultrasonication. The range of the size of the droplets in the nanoemulsion was between 173 ± 1.20 and 183 ± 0.94 nm. Nanoemulsion is a size reduction technique where the oil present in the emulsion can be easily stabilized which increases the shelf-life of the oil. The present study derived the reaction parameters were optimized using RSM to produce nanoemulsion of CLnA rich oils of minimum size to obtain maximum stability.

  14. Trypanocidal activity of the essential oils in their conventional and nanoemulsion forms: in vitro tests.

    PubMed

    Baldissera, Matheus D; Da Silva, Aleksandro S; Oliveira, Camila B; Zimmermann, Carine E P; Vaucher, Rodrigo A; Santos, Roberto C V; Rech, Virginia C; Tonin, Alexandre A; Giongo, Janice L; Mattos, Cristiane B; Koester, Letícia; Santurio, Janio M; Monteiro, Silvia G

    2013-07-01

    The aim of this study was to investigate the susceptibility in vitro of Trypanosoma evansi to the essential oils of andiroba (Carapa guaianensis) and aroeira (Schinus molle), in their conventional and nanostructured forms. For that, pure oils at concentrations of 0.5%, 1.0% and 2.0% were used. A negative control (untreated) and a positive control (diminazene aceturate 0.5%) were used as comparative parameters. Later, the same tests were performed, using nanoemulsions oils at concentrations of 0.5% and 1.0%. The tests were carried out in triplicates and the numbers of parasites were quantified on 1, 3 and 6 h from onset of the study. A dose-dependent reduction in the number of parasites to the forms of two oils tested was observed after 1 h. The concentration of parasites was significantly reduced at low concentrations after 3 h, as well as at 6 h no alive parasites were observed for the essential oils tested. Ours findings indicate, for the first time, that oils of andiroba and aroeira (in their conventional and nanoemulsion forms) have high activity against T. evansi in vitro, leading to the suggestion that these oils may be applied as an alternative treatment for this disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Antimicrobial activity of suspensions and nanoemulsions of citral in combination with heat or pulsed electric fields.

    PubMed

    Pagán, E; Berdejo, D; Espina, L; García-Gonzalo, D; Pagán, R

    2018-01-01

    The application of essential oils in form of nanoemulsions has been proposed as a method to improve their solubility in aqueous solutions, and hence their antimicrobial activity. The objective of this study was to evaluate the antimicrobial activity of citral, applied directly or in combined treatments with heat or pulsed electric fields (PEF), as a function of the inoculation procedure assayed: (i) a simple, vigorous shaking method by vortex agitation (suspension of citral; s-citral) or (ii) the previous preparation of nanoemulsions by the emulsion phase inversion (EPI) method (nanoemulsion of citral; n-citral). n-Citral was more effective in either inhibiting or inactivating Escherichia coli O157:H7 Sakai than s-citral. However, when combined with heat, a greater synergistic effect was observed with s-citral rather than with n-citral, either in lab media (pH 7·0 and 4·0) or apple juice. For instance, while almost 5 log 10 cell cycles were inactivated in apple juice after 15 min at 53°C in the presence of 0·1 μl ml -1 of s-citral, the use of n-citral required 30 min. The use of nanoemulsions did not modify the slight synergism observed when citral and mild PEF were combined (150 μs, 30 kV cm -1 ). The exploration of different delivery systems of antimicrobial compounds such as citral in aqueous food products aids in the establishment of successful combined treatments for food preservation. While at room temperature, citral in form of a nanoemulsion shows a higher antimicrobial activity; its combination with heat would imply a partial loss of the outstanding synergistic lethal effect achieved when added in suspension form. Therefore, the most suitable procedure to magnify the synergism between heat and citral when processing juices would merely require an intense homogenization step prior to the combined treatment. © 2017 The Society for Applied Microbiology.

  16. Plum coatings of lemongrass oil-incorporating carnauba wax-based nanoemulsion.

    PubMed

    Kim, In-Hah; Lee, Hanna; Kim, Jung Eun; Song, Kyung Bin; Lee, Youn Suk; Chung, Dae Sung; Min, Sea C

    2013-10-01

    Nanoemulsions containing lemongrass oil (LO) were developed for coating plums and the effects of the nanoemulsion coatings on the microbial safety and physicochemical storage qualities of plums during storage at 4 and 25 °C were investigated. The emulsions used for coating were produced by mixing a carnauba wax-based solution (18%, w/w) with LO at various concentrations (0.5% to 4.0%, w/w) using dynamic high pressure processing at 172 MPa. The coatings were evaluated for their ability to inhibit the growth of Salmonella Typhimurium and Escherichia coli O157:H7 and their ability to preserve various physicochemical qualities of plums. Uniform and continuous coatings on plums, formed with stable emulsions, initially inhibited S. Typhimurium and E. coli O157:H7 by 0.2 to 2.8 and 0.8 to 2.7 log CFU/g, respectively, depending on the concentration of LO and the sequence of coating. The coatings did not significantly alter the flavor, fracturability, or glossiness of the plums. The antimicrobial effects of the coatings against S. Typhimurium and E. coli O157:H7 were demonstrated during storage at 4 and 25 °C. The coatings reduced weight loss and ethylene production by approximately 2 to 3 and 1.4 to 4.0 fold, respectively, and also retarded the changes in lightness and the concentration of phenolic compounds in plums during storage. The firmness of coated plums was generally higher than uncoated plums when stored at 4 °C and plum respiration rates were reduced during storage. Coatings containing nanoemulsions of LO have the potential to inhibit Salmonella and E. coli O157:H7 contamination of plums and may extend plum shelf life. Journal of Food Science © 2013 Institute of Food Technologists® No claim to original US government works.

  17. Antibacterial hydroxypropyl methyl cellulose edible films containing nanoemulsions of Thymus daenensis essential oil for food packaging.

    PubMed

    Moghimi, Roya; Aliahmadi, Atousa; Rafati, Hasan

    2017-11-01

    Edible films containing essential oils (EO) as natural antibacterial agents are promising systems for food preservation. In this work, nanoemulsions of Thymus daenensis EO (wild; F1 and cultivated; F2) were loaded in hydroxyl propyl methyl cellulose (HPMC) films and the effect of different parameters (polymer, plasticizer, and EO concentration) on the film properties were analyzed and optimized. Prepared HPMC films were characterized in terms of EO loading, morphology, mechanical properties, and the antibacterial activity. The results of SEM showed uniform incorporation of nanoemulsions into the edible film. Investigation of the mechanical properties of two edible films revealed a plasticizing effect of T. daenensis EO on the films. Also, edible films had noticeable antimicrobial activity against selected microorganisms, i.e. 47.0±2.5mm and 22.6±0.5mm zone of inhibition against S. aureus for films containing F1 and F2, respectively. Incorporation of nanoemulsions into the HPMC films can be used for active food preservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Potential Application of Nanoemulsions for Skin Delivery of Pomegranate Peel Polyphenols.

    PubMed

    Baccarin, Thaisa; Lemos-Senna, Elenara

    2017-11-01

    Pomegranate peel and seeds have demonstrated to possess antioxidant compounds with potential application to protect the skin against the ultraviolet radiation damage. However, the photoprotection activity is dependent on the amount of these compounds that reach the viable skin layers. In this paper, we describe the in vitro skin permeation and retention of the major pomegranate peel polyphenols using Franz diffusion cells, after entrapping a ethyl acetate fraction (EAF) from Punica granatum peel extract into nanoemulsions (NEs) prepared with pomegranate seed oil (PSO) or medium chain triglyceride oil (MCT). The in vitro skin permeation of gallic acid (GA), ellagic acid (EA), and punicalagin (PC) was evaluated using a HPLC-DAD validated method. After 8 h of skin permeation, all polyphenol compounds were mostly retained in the skin and did not reach the receptor compartment. However, a 2.2-fold enhancement of the retained amount of gallic acid in the stratum corneum was verified after EAF-loaded NEs are applied, when compared with the free EAF. GA and EA were delivered to the viable epidermis and dermis only when nanoemulsions were applied onto the skin. The mean retained amounts of GA and EA in the EP and DE after applying the EAF-loaded PSO-NE were 1.78 and 1.36 μg cm -2 and 1.10 and 0.97 μg cm -2 , respectively. Similar values were obtained after applying the EAF-loaded MCT-NE. The skin permeation results were supported by the confocal microscopy images. These results evidenced the promising application of nanoemulsions to deliver the pomegranate polyphenols into the deeper skin layers.

  19. Preparation of carotenoid extracts and nanoemulsions from Lycium barbarum L. and their effects on growth of HT-29 colon cancer cells

    NASA Astrophysics Data System (ADS)

    Hsu, H. J.; Huang, R. F.; Kao, T. H.; Inbaraj, B. S.; Chen, B. H.

    2017-03-01

    Lycium barbarum L., a traditional Chinese herb widely used in Asian countries, has been demonstrated to be protective against chronic diseases such as age-related macular degeneration. The objectives of this study were to determine the carotenoid content in L. barbarum by high-performance liquid chromatography-mass spectrometry, followed by preparation of a carotenoid nanoemulsion to evaluate the mechanism of inhibition on HT-29 colon cancer cells. The highest extraction yield of carotenoids was attained by employing a solvent system of hexane-ethanol-acetone (1:1:1, v/v/v). Nine carotenoids, including neoxanthin (4.47 μg g-1), all-trans-zeaxanthin and its cis-isomers (1666.3 μg g-1), all-trans-β-cryptoxanthin (51.69 μg g-1), all-trans-β-carotene and its cis-isomers (20.11 μg g-1), were separated within 45 min and quantified using a YMC C30 column and a gradient mobile phase of methanol-water (9:1, v/v) (A) and methylene chloride (B). A highly stable carotenoid nanoemulsion composed of CapryolTM 90, Transcutol®HP, Tween 80 and deionized water was prepared with a mean particle size of 15.1 nm. Characterization of zeaxanthin standard, blank nanoemulsion, carotenoid extract and carotenoid nanoemulsion by differential scanning calorimetry curves and Fourier transform infrared spectra revealed a good dispersion of zeaxanthin-dominated carotenoid extract with no significant chemical change after incorporation into nanoemulsion. The in vitro release kinetic study showed a higher release profile at pH 5.2 than at physiological pH 7.4, suggesting a rapid release of carotenoids in the acidic environment (pH 4.5-6.5) characteristic of tumors. Both the carotenoid nanoemulsion and the extract were effective at inhibiting growth of HT-29 colon cancer cells, with an IC50 of 4.5 and 4.9 μg ml-1, respectively. Also, both treatments could up-regulate p53 and p21 expression and down-regulate CDK2, CDK1, cyclin A and cyclin B expression and arrest the cell cycle at G2/M. The

  20. Development and evaluation of zinc phthalocyanine nanoemulsions for use in photodynamic therapy for Leishmania spp.

    NASA Astrophysics Data System (ADS)

    Betzler de Oliveira de Siqueira, Luciana; da Silva Cardoso, Verônica; Almeida Rodrigues, Igor; Lúcia Vazquez-Villa, Ana; Pereira dos Santos, Elisabete; da Costa Leal Ribeiro Guimarães, Bruno; dos Santos Cerqueira Coutinho, Cristal; Vermelho, Alane Beatriz; Ricci Junior, Eduardo

    2017-02-01

    Photodynamic therapy (PDT) combines light with photosensitizers (PS) for production of reactive oxygen species (ROS) that can kill infectious microorganisms such as bacteria, fungi and protozoa. The application of nanotechnology has enabled the advancement of PDT because many PS are insoluble in water, necessitating a nanocarrier as a physiologically acceptable carrier. Nanoemulsions are efficient nanocarriers for solubilizing liposoluble drugs, like the PS, in water. Cutaneous (CL) and mucocutaneous leishmaniasis (ML) are caused by different species of the genus Leishmania, transmitted to humans by sandfly bites. Parasites are hosted in skin macrophages producing ulcerative lesions. Thus, a topical treatment, effective and inexpensive, for CL and ML is preferable to systemic interventions. There are topical treatments like paromomycin and amphotericin B, but they have many local side effects or a very high cost, limiting their use. This work aimed to develop a zinc phthalocyanine (photosensitizer) oil-in-water nanoemulsion, essential clove oil and polymeric surfactant (Pluronic® F127) for the formulation of a topical delivery system for use in PDT against Leishmania amazonensis and Leishmania infantum. The nanoemulsion was produced by a high-energy method and characterized by size, polydispersity, morphology, pH, content and stability studies. The toxicity in the dark and the photobiological activity of the formulations were evaluated in vitro for Leishmania and macrophages. The formulation presented was pH compatible with topical use, approximately 30 nm in size, with a polydispersity index ≤0.1 and remained stable at room and refrigerator temperature during the stability study (60 days). The zinc phthalocyanine nanoemulsion is effective in PDT against Leishmania spp.; use against skin infections can be a future application of this topical formulation, avoiding the use of oral or injectable medications, decreasing systemic adverse effects.

  1. Monitoring the Stability of Perfluorocarbon Nanoemulsions by Cryo-TEM Image Analysis and Dynamic Light Scattering

    PubMed Central

    Grapentin, Christoph; Barnert, Sabine; Schubert, Rolf

    2015-01-01

    Perfluorocarbon nanoemulsions (PFC-NE) are disperse systems consisting of nanoscale liquid perfluorocarbon droplets stabilized by an emulsifier, usually phospholipids. Perfluorocarbons are chemically inert and non-toxic substances that are exhaled after in vivo administration. The manufacture of PFC-NE can be done in large scales by means of high pressure homogenization or microfluidization. Originally investigated as oxygen carriers for cases of severe blood loss, their application nowadays is more focused on using them as marker agents in 19F Magnetic Resonance Imaging (19F MRI). 19F is scarce in organisms and thus PFC-NE are a promising tool for highly specific and non-invasive imaging of inflammation via 19F MRI. Neutrophils, monocytes and macrophages phagocytize PFC-NE and subsequently migrate to inflamed tissues. This technique has proven feasibility in numerous disease models in mice, rabbits and mini pigs. The translation to clinical trials in human needs the development of a stable nanoemulsion whose droplet size is well characterized over a long storage time. Usually dynamic light scattering (DLS) is applied as the standard method for determining particle sizes in the nanometer range. Our study uses a second method, analysis of transmission electron microscopy images of cryo-fixed samples (Cryo-TEM), to evaluate stability of PFC-NE in comparison to DLS. Four nanoemulsions of different composition are observed for one year. The results indicate that DLS alone cannot reveal the changes in particle size, but can even mislead to a positive estimation of stability. The combination with Cryo-TEM images gives more insight in the particulate evolution, both techniques supporting one another. The study is one further step in the development of analytical tools for the evaluation of a clinically applicable perfluorooctylbromide nanoemulsion. PMID:26098661

  2. P-Selectin Targeted Dexamethasone-Loaded Lipid Nanoemulsions: A Novel Therapy to Reduce Vascular Inflammation

    PubMed Central

    Simion, Viorel; Constantinescu, Cristina Ana; Stan, Daniela; Deleanu, Mariana; Tucureanu, Monica Madalina; Butoi, Elena; Manduteanu, Ileana; Simionescu, Maya

    2016-01-01

    Inflammation is a common process associated with numerous vascular pathologies. We hypothesized that targeting the inflamed endothelium by coupling a peptide with high affinity for P-selectin to the surface of dexamethasone-loaded lipid nanoemulsions will highly increase their specific binding to activated endothelial cells (EC) and reduce the cell activation. We developed and characterized dexamethasone-loaded lipid nanoemulsions directed towards P-selectin (PLN-Dex) and monitored their anti-inflammatory effects in vitro using cultured EC (EA.hy926 cells) and in vivo using a mouse model of acute inflammation [lipopolysaccharides (LPS) intravenously administered in C57BL/6 mice]. We found that PLN-Dex bound specifically to the surface of activated EC are efficiently internalized by EC and reduced the expression of proinflammatory genes, thus preventing the monocyte adhesion and transmigration to/through activated EC. Given intravenously in mice with acute inflammation, PLN-Dex accumulated at a significant high level in the lungs (compared to nontargeted nanoemulsions) and significantly reduced mRNA expression level of key proinflammatory cytokines such as IL-1β, IL-6, and MCP-1. In conclusion, the newly developed nanoformulation, PLN-Dex, is functional in vitro and in vivo, reducing selectively the endothelium activation and the consequent monocyte infiltration and diminishing significantly the lungs' inflammation, in a mouse model of acute inflammation. PMID:27703301

  3. Synergistic Skin Penetration Enhancer and Nanoemulsion Formulations Promote the Human Epidermal Permeation of Caffeine and Naproxen.

    PubMed

    Abd, Eman; Namjoshi, Sarika; Mohammed, Yousuf H; Roberts, Michael S; Grice, Jeffrey E

    2016-01-01

    We examined the extent of skin permeation enhancement of the hydrophilic drug caffeine and lipophilic drug naproxen applied in nanoemulsions incorporating skin penetration enhancers. Infinite doses of fully characterized oil-in-water nanoemulsions containing the skin penetration enhancers oleic acid or eucalyptol as oil phases and caffeine (3%) or naproxen (2%) were applied to human epidermal membranes in Franz diffusion cells, along with aqueous control solutions. Caffeine and naproxen fluxes were determined over 8 h. Solute solubility in the formulations and in the stratum corneum (SC), as well as the uptake of product components into the SC were measured. The nanoemulsions significantly enhanced the skin penetration of caffeine and naproxen, compared to aqueous control solutions. Caffeine maximum flux enhancement was associated with a synergistic increase in both caffeine SC solubility and skin diffusivity, whereas a formulation-increased solubility in the SC was the dominant determinant for increased naproxen fluxes. Enhancements in SC solubility were related to the uptake of the formulation excipients containing the active compounds into the SC. Enhanced skin penetration in these systems is largely driven by uptake of formulation excipients containing the active compounds into the SC with impacts on SC solubility and diffusivity.

  4. Low density, resorcinol-formaldehyde aerogels

    DOEpatents

    Pekala, R.W.

    1989-10-10

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer clusters. The covalent crosslinking of these clusters produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density [<=]100 mg/cc; cell size [<=]0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 [angstrom]. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  5. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus.

    PubMed

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.

  6. Effectiveness of a spontaneous carvacrol nanoemulsion against Salmonella enterica Enteritidis and Escherichia coli O157:H7 on contaminated broccoli and radish seeds.

    PubMed

    Landry, Kyle S; Micheli, Sean; McClements, David Julian; McLandsborough, Lynne

    2015-10-01

    The incidence of foodborne illness associated with the consumption of fresh produce has continued to increase over the past decade. Sprouts, such as mung bean, alfalfa, radish, and broccoli, are minimally processed and have been sources for foodborne illness. Currently, a 20,000 ppm calcium hypochlorite soak is recommended for the treatment of sprouting seeds. In this study, the efficacy of an antimicrobial carvacrol nanoemulsion was tested against Salmonella enterica subspecies enterica serovar Enteritidis (ATCC BAA-1045) or EGFP expressing Escherichia coli O157:H7 (ATCC 42895) contaminated sprouting seeds. Antimicrobial treatments were performed by soaking inoculated seeds in nanoemulsions (4000 or 8000 ppm) for 30 or 60 min. Following treatment, surviving cells were determined by performing plate counts and/or Most Probable Number (MPN) enumeration. Treated seeds were sprouted and tested for the presence of pathogens. Treatment successfully inactivated low levels (2 and 3 log CFU/g) of S. Enteritidis and E. coli on radish seeds when soaked for 60 min at concentrations ≥4000 (0.4%) ppm carvacrol. This treatment method was not affective on contaminated broccoli seeds. Total sprout yield was not influenced by any treatments. These results show that carvacrol nanoemulsions may be an alternative treatment method for contaminated radish seeds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Green nanoemulsion-laden glyphosate isopropylamine formulation in suppressing creeping foxglove (A. gangetica), slender button weed (D. ocimifolia) and buffalo grass (P. conjugatum).

    PubMed

    Lim, Chaw Jiang; Basri, Mahiran; Omar, Dzolkhifli; Abdul Rahman, Mohd Basyaruddin; Salleh, Abu Bakar; Raja Abdul Rahman, Raja Noor Zaliha

    2013-01-01

    Pesticides are developed with carriers to improve their physicochemical properties and, accordingly, the bioefficacy of the applied formulation. For foliar-applied herbicide, generally less than 0.1% of the active ingredient reaching the target site could reduce pesticide performance. Recently, a carrier of nanoemulsion consisting of oil, surfactant and water, with a particle size of less than 200 nm, has been shown to enhance drug permeability for skin penetration in pharmaceutical delivery systems. In the present work, the aim was to formulate a water-soluble herbicide, glyphosate isopropylamine (IPA), using a green nanoemulsion system for a biological activity study against the weeds creeping foxglove, slender button weed and buffalo grass. The nanoemulsion formulations displayed a significantly lower spray deposition on creeping foxglove (2.9-3.5 ng cm(-2) ), slender button weed (2.6-2.9 ng cm(-2) ) and buffalo grass (1.8-2.4 ng cm(-2) ) than Roundup(®) (3.7-5.1 ng cm(-2) ). The visible injury rates of weeds treated with the nanoemulsion formulations were statistically equivalent to those relating to Roundup(®) at 14 days after treatment, with a control range of 86.67-96.67%. It was hypothesised that the significant difference in spray deposition with equal injury rates can be attributed to enhanced bioactivity of the nanoemulsion formulations. This initial discovery could be the platform for developing better penetration of agrochemical formulations in the future. Copyright © 2013 Society of Chemical Industry.

  8. Antimicrobial Nanoemulsion Formulation with Improved Penetration of Foliar Spray through Citrus Leaf Cuticles to Control Citrus Huanglongbing.

    PubMed

    Yang, Chuanyu; Powell, Charles A; Duan, Yongping; Shatters, Robert; Zhang, Muqing

    2015-01-01

    Huanglongbing (HLB) is the most serious disease affecting the citrus industry worldwide to date. The causal agent, Candidatus Liberibacter asiaticus (Las), resides in citrus phloem, which makes it difficult to effectively treat with chemical compounds. In this study, a transcuticular nanoemulsion formulation was developed to enhance the permeation of an effective antimicrobial compound (ampicillin; Amp) against HLB disease through the citrus cuticle into the phloem via a foliar spray. The results demonstrated that efficiency of cuticle isolation using an enzymatic method (pectinase and cellulase) was dependent on the citrus cultivar and Las-infection, and it was more difficult to isolate cuticles from valencia orange (Citrus sinensis) and HLB-symptomatic leaves. Of eight adjuvants tested, Brij 35 provided the greatest increase in permeability of the HLB-affected cuticle with a 3.33-fold enhancement of cuticular permeability over water control. An in vitro assay using Bacillus subtilis showed that nanoemulsion formulations containing Amp (droplets size = 5.26 ± 0.04 nm and 94 ± 1.48 nm) coupled with Brij 35 resulted in greater inhibitory zone diameters (5.75 mm and 6.66 mm) compared to those of Brij 35 (4.34 mm) and Amp solution (2.83 mm) alone. Furthermore, the nanoemulsion formulations eliminated Las bacteria in HLB-affected citrus in planta more efficiently than controls. Our study shows that a water in oil (W/O) nanoemulsion formulation may provide a useful model for the effective delivery of chemical compounds into citrus phloem via a foliar spray for controlling citrus HLB.

  9. Antimicrobial Nanoemulsion Formulation with Improved Penetration of Foliar Spray through Citrus Leaf Cuticles to Control Citrus Huanglongbing

    PubMed Central

    Yang, Chuanyu; Powell, Charles A.; Duan, Yongping; Shatters, Robert; Zhang, Muqing

    2015-01-01

    Huanglongbing (HLB) is the most serious disease affecting the citrus industry worldwide to date. The causal agent, Candidatus Liberibacter asiaticus (Las), resides in citrus phloem, which makes it difficult to effectively treat with chemical compounds. In this study, a transcuticular nanoemulsion formulation was developed to enhance the permeation of an effective antimicrobial compound (ampicillin; Amp) against HLB disease through the citrus cuticle into the phloem via a foliar spray. The results demonstrated that efficiency of cuticle isolation using an enzymatic method (pectinase and cellulase) was dependent on the citrus cultivar and Las-infection, and it was more difficult to isolate cuticles from valencia orange (Citrus sinensis) and HLB-symptomatic leaves. Of eight adjuvants tested, Brij 35 provided the greatest increase in permeability of the HLB-affected cuticle with a 3.33-fold enhancement of cuticular permeability over water control. An in vitro assay using Bacillus subtilis showed that nanoemulsion formulations containing Amp (droplets size = 5.26 ± 0.04 nm and 94 ± 1.48 nm) coupled with Brij 35 resulted in greater inhibitory zone diameters (5.75 mm and 6.66 mm) compared to those of Brij 35 (4.34 mm) and Amp solution (2.83 mm) alone. Furthermore, the nanoemulsion formulations eliminated Las bacteria in HLB-affected citrus in planta more efficiently than controls. Our study shows that a water in oil (W/O) nanoemulsion formulation may provide a useful model for the effective delivery of chemical compounds into citrus phloem via a foliar spray for controlling citrus HLB. PMID:26207823

  10. Study of O/W micro- and nano-emulsions based on propylene glycol diester as a vehicle for geranic acid.

    PubMed

    Jaworska, Małgorzata; Sikora, Elżbieta; Ogonowski, Jan; Konieczna, Monika

    2015-01-01

    Nano- and microemulsions containing as the oil phase caprylic/capric propylene glycol diesters (Crodamol PC) were investigated as potential vehicle for controlled release of geranic acid. The influence of emulsifiers and co-surfactants on stability of the emulsions was investigated. Different kind of polysorbates (ethoxylated esters of sorbitan and fatty acids) were applied as the emulsifiers. The short-chain alcohols (ethanol, 1-propanol, 1-butanol) were used as co-surfactants. The emulsions were prepared at ambient temperature (25°C), by the phase inversion composition method (PIC). The stable O/W high dispersed emulsion systems based on Crodamol PC, of mean droplets size less than 200 nm, were prepared. Microemulsions stabilized by the mixture of Polisorbat 80 and 1-butanol were characterized by the largest degree of dispersion (137 nm) and the lowest PDI value (0.094), at surfactant/co-surfactant: oil weight ratio 90:10. The stable nano-emulsion (mean droplet size of 33 nm) was obtained for surfactant: oil (S:O) weight ratio 90:10, without co-surfactant addition. This nano-emulsion was chosen to release studies. The obtained results showed that the prepared stable nano-emulsion can be used as a carrier for controlled release of geranic acid. The active substance release from the nano-emulsion and the oil solution, after 24 hours was 22%.

  11. Low density, resorcinol-formaldehyde aerogels

    DOEpatents

    Pekala, Richard W.

    1991-01-01

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "Clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density.ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100.circle.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  12. Low density, resorcinol-formaldehyde aerogels

    DOEpatents

    Pekala, Richard W.

    1989-01-01

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density .ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 .ANG.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  13. Intranasal delivery of quercetin-loaded mucoadhesive nanoemulsion for treatment of cerebral ischaemia.

    PubMed

    Ahmad, Niyaz; Ahmad, Rizwan; Naqvi, Atta Abbas; Alam, Md Aftab; Ashafaq, Mohammad; Abdur Rub, Rehan; Ahmad, Farhan Jalees

    2018-06-01

    Quercetin (QUR), as an antioxidant flavonoid, exhibits potential role in the amelioration of cerebral ischaemia; however, poor solubility as well as oral absorption results low serum and tissue levels for this drug. To enhance bioavailability, this study aims to prepare QUR nanoemulsions and administer via non-invasive nasal route in order to evaluate the drug targeting in brain. Quercetin mucoadhesive nanoemulsion (QMNE) was prepared (ionic gelation method) and optimized using various parameters, that is, particle size, entrapment efficiency, zeta potential and ex vivo permeation study. The results observed for optimized QMNE were as follows: mean globule size (91.63 ± 4.36 nm), zeta potential (-17.26 ± 1.04 mV), drug content (99.84 ± 0.34%) and viscosity (121 ± 13 cp). To evaluate the extent of bioavailability for QMNE via post-intranasal (i.n.) administration, Ultra performance liquid chromatography-mass spectroscopy (UPLC-ESI-Q-TOF-MS/MS)-based bioanalytical method was developed and validated for pharmacokinetics, biodistribution, brain-targeting efficiency (9333.33 ± 39.39%) and brain drug-targeting potential (2181.83 ± 5.69%) which revealed enhanced QUR brain bioavailability as compared to intravenous administration (i.v.). Furthermore, improved neurobehavioral activity (locomotor and grip strength), histopathology and reduced infarction volume effects were observed in middle cerebral artery occlusion (MCAO)-induced cerebral ischemic rats model after i.n. administration of QMNE. This study supports a significant role for QMNE in terms of high brain-targeting potential and formulation efficiency due to ease of access and effective targeting in brain.

  14. Low density, resorcinol-formaldehyde aerogels

    DOEpatents

    Pekala, R.W.

    1988-05-26

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer ''clusters''. The covalent crosslinking of these ''clusters'' produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density less than or equal to100 mg/cc; cell size less than or equal to0.1 microns). The aerogels are transparent,dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 A/degree/. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron. 1 fig., 1 tab.

  15. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus

    PubMed Central

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells. PMID:26345201

  16. p-Tertbutylcalix[4]arene nanoemulsion: preparation, characterization and comparative evaluation of its decontamination efficacy against Technetium-99m, Iodine-131 and Thallium-201.

    PubMed

    Rana, Sudha; Sharma, Navneet; Ojha, Himanshu; Shivkumar, Hosakote Gurumalappa; Sultana, Sarwat; Sharma, Rakesh Kumar

    2014-05-01

    This study aimed to develop p-tertbutylcalix[4]arene o/w nanoemulsion for decontamination of radioisotopes from skin. Formulation was characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), multi-photon confocal microscopy techniques and in vitro dissolution studies. In vivo evaluation of nano-emulsion was done using nuclear medicine technique. Stability studies and dermal toxicity studies were also carried out. Comparative decontamination efficacy (DE) studies were performed on synthetic human tissue equivalent material and Sprague Dawley rat against three commonly used medical radioisotopes, i.e., Technetium-99m ((99m)Tc), Iodine-131 ((131)I) and Thallium-201 ((201)Tl). Decontamination was performed using cotton swabs soaked in nanoemulsion at different time intervals of contaminants exposure. Whole body imaging and static counts were recorded using gamma camera before and after each decontamination attempt data was analyzed using one way analysis of variance (ANOVA) and found to be statistically significant (p<0.05). DE of the nanoemulsion loaded with p-tertbutylcalix[4]arene was observed to be 88±5%, 90±3% and 89±3% for (99m)Tc, (131)I and (201)Tl respectively. Dermal toxicity studies revealed no significant differences between treated and control animals. Skin histopathology slides with and without API (Active pharmaceutical ingredients) also found to be comparable. p-Tertbutylcalix[4]arene loaded nanoemulsion shows great promise for skin decontamination against broad ranges of radiological contaminants besides being stable and safe. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Nanoemulsion-based gel formulation of diclofenac diethylamine: design, optimization, rheological behavior and in vitro diffusion studies.

    PubMed

    Hamed, Rania; Basil, Marwa; AlBaraghthi, Tamadur; Sunoqrot, Suhair; Tarawneh, Ola

    2016-12-01

    Chronic oral administration of the non-steroidal anti-inflammatory drug, diclofenac diethylamine (DDEA), is often associated with gastrointestinal ulcers and bleeding. As an alternative to oral administration, a nanoemulsion-based gel (NE gel) formulation of DDEA was developed for topical administration. An optimized formulation for the o/w nanoemulsion of oil, surfactant and cosurfactant was selected based on nanoemulsion mean droplet size, clarity, stability, and flowability, and incorporated into the gelling agent Carbopol® 971P. Rheological studies of the DDEA NE gel were conducted and compared to those of conventional DDEA gel and emulgel. The three gels exhibited an elastic behavior, where G' dominated G″ at all frequencies, indicating the formation of strong gels. NE gel exhibited higher G' values than conventional gel and emulgel, which indicated the formation of a stronger gel network. Strat-M® membrane, a synthetic membrane with diffusion characteristics that are well correlated to human skin, was used for the in vitro diffusion studies. The release of DDEA from conventional gel, emulgel and NE gel showed a controlled release pattern over 12 h, which was consistent with the rheological properties of the gels. DDEA release kinetics from the three gels followed super case II transport as fitted by Korsmeyer-Peppas model.

  18. Optimization of Water/Oil/Surfactant System for Preparation of Medium-Chain-Length Poly-3-Hydroxyalkanoates (mcl-PHA)-Incorporated Nanoparticles via Nanoemulsion Templating Technique.

    PubMed

    Ishak, K A; Annuar, M Suffian M; Ahmad, N

    2017-12-01

    Polymeric nanoparticles gain a widespread interest in food and pharmaceutical industries as delivery systems that encapsulate, protect, and release lipophilic compounds such as omega-3 fatty acids, fat-soluble vitamins, carotenoids, carvedilol, cyclosporine, and ketoprofen. In this study, medium-chain-length poly-3-hydroxyalkanoate (mcl-PHA)-incorporated nanoparticle was developed via facile organic solvent-free nanoemulsion templating technique. The water content (W/surfactant-to-oil (S/O)), S/O, and Cremophor EL-to-Span 80 (Cremo/Sp80) ratios were first optimized using response surface methodology (RSM) to obtain nanoemulsion template prior to incorporation of mcl-PHA. Their effects on nanoemulsion formation were investigated. The mcl-PHA-incorporated nanoparticle system showed a good preservation capability of β-carotene and extended storage stability.

  19. Thymoquinone-rich fraction nanoemulsion (TQRFNE) decreases Aβ40 and Aβ42 levels by modulating APP processing, up-regulating IDE and LRP1, and down-regulating BACE1 and RAGE in response to high fat/cholesterol diet-induced rats.

    PubMed

    Ismail, Norsharina; Ismail, Maznah; Azmi, Nur Hanisah; Bakar, Muhammad Firdaus Abu; Yida, Zhang; Abdullah, Maizaton Atmadini; Basri, Hamidon

    2017-11-01

    Though the causes of Alzheimer's disease (AD) are yet to be understood, much evidence has suggested that excessive amyloid-β (Aβ) accumulation due to abnormal amyloid-β precursor protein (APP) processing and Aβ metabolism are crucial processes towards AD pathogenesis. Hence, approaches aiming at APP processing and Aβ metabolism are currently being actively pursued for the management of AD. Studies suggest that high cholesterol and a high fat diet have harmful effects on cognitive function and may instigate the commencement of AD pathogenesis. Despite the neuropharmacological attributes of black cumin seed (Nigella sativa) extracts and its main active compound, thymoquinone (TQ), limited records are available in relation to AD research. Nanoemulsion (NE) is exploited as drug delivery systems due to their capacity of solubilising non-polar active compounds and is widely examined for brain targeting. Herewith, the effects of thymoquinone-rich fraction nanoemulsion (TQRFNE), thymoquinone nanoemulsion (TQNE) and their counterparts' conventional emulsion in response to high fat/cholesterol diet (HFCD)-induced rats were investigated. Particularly, the Aβ generation; APP processing, β-secretase 1 (BACE1), γ-secretases of presenilin 1 (PSEN1) and presenilin 2 (PSEN2), Aβ degradation; insulin degrading enzyme (IDE), Aβ transportation; low density lipoprotein receptor-related protein 1 (LRP1) and receptor for advanced glycation end products (RAGE) were measured in brain tissues. TQRFNE reduced the brain Aβ fragment length 1-40 and 1-42 (Aβ40 and Aβ42) levels, which would attenuate the AD pathogenesis. This reduction could be due to the modulation of β- and γ-secretase enzyme activity, and the Aβ degradation and transportation in/out of the brain. The findings show the mechanistic actions of TQRFNE in response to high fat and high cholesterol diet associated to Aβ generation, degradation and transportation in the rat's brain tissue. Copyright © 2017 Elsevier

  20. Nanoemulsion improves the oral bioavailability of baicalin in rats: in vitro and in vivo evaluation

    PubMed Central

    Zhao, Ling; Wei, Yumeng; Huang, Yu; He, Bing; Zhou, Yang; Fu, Junjiang

    2013-01-01

    Baicalin is one of the main bioactive flavone glucuronides derived as a medicinal herb from the dried roots of Scutellaria baicalensis Georgi, and it is widely used for the treatment of fever, inflammation, and other conditions. Due to baicalin’s poor solubility in water, its absolute bioavailability after oral administration is only 2.2%. The objective of this study was to develop a novel baicalin-loaded nanoemulsion to improve the oral bioavailability of baicalin. Based on the result of pseudoternary phase diagram, the nanoemulsion formulation consisting of soy-lecithin, tween-80, polyethylene glycol 400, isopropyl myristate, and water (1:2:1.5:3.75:8.25, w/w) was selected for further study. Baicalin-loaded nanoemulsions (BAN-1 and BAN-2) were prepared by internal or external drug addition and in vivo and in vitro evaluations were performed. The results showed that the mean droplet size, polydispersity index, and drug content of BAN-1 and BAN-2 were 91.2 ± 2.36 nm and 89.7 ± 3.05 nm, 0.313 ± 0.002 and 0.265 ± 0.001, and 98.56% ± 0.79% and 99.40% ± 0.51%, respectively. Transmission electron microscopy revealed spherical globules and confirmed droplet size analysis. After dilution 30-fold with water, the solubilization capacity of BAN-1 and BAN-2 did not change. In vitro release results showed sustained-release characteristics. BAN-1 formulation was stable for at least 6 months and was more stable than BAN-2. In rats, the area under the plasma drug concentration-time curve value of BAN-1 was 1.8-fold and 7-fold greater than those of BAN-2 and free baicalin suspension after oral administration at a dose of 100 mg/kg. In conclusion, these results demonstrated that the baicalin-loaded nanoemulsion formulation, in particular BAN-1, was very effective for improving the oral bioavailability of baicalin and exhibited great potential for future clinical application. PMID:24124365

  1. Curcumin longa extract-loaded nanoemulsion improves the survival of endotoxemic mice by inhibiting nitric oxide-dependent HMGB1 release.

    PubMed

    Ahn, Min Young; Hwang, Jung Seok; Lee, Su Bi; Ham, Sun Ah; Hur, Jinwoo; Kim, Jun Tae; Seo, Han Geuk

    2017-01-01

    High mobility group box 1 (HMGB1) is a well-known damage-related alarmin that participates in cellular inflammatory responses. However, the mechanisms leading to HMGB1 release in inflammatory conditions and the therapeutic agents that could prevent it remain poorly understood. This study attempted to examine whether the Curcumin longa herb, which is known to have anti-inflammatory property, can modulate cellular inflammatory responses by regulating HMGB1 release. The murine macrophage RAW264.7 cells were treated with lipopolysaccharide (LPS) and/or a C. longa extract-loaded nanoemulsion (CLEN). The levels of released HMGB1, nitric oxide (NO) production, inducible NO synthase (iNOS) expression, and phosphorylation of mitogen-activated protein kinases were analyzed in RAW264.7 macrophages. The effects of CLEN on survival of endotoxemic model mice, circulating HMGB1 levels, and tissue iNOS expression were also evaluated. We have shown that a nanoemulsion loaded with an extract from the C. longa rhizome regulates cellular inflammatory responses and LPS-induced systemic inflammation by suppressing the release of HMGB1 by macrophages. First, treatment of RAW264.7 macrophages with the nanoemulsion significantly attenuated their LPS-induced release of HMGB1: this effect was mediated by inhibiting c-Jun N-terminal kinase activation, which in turn suppressed the NO production and iNOS expression of the cells. The nanoemulsion did not affect LPS-induced p38 or extracellular signal-regulated kinase activation. Second, intraperitoneal administration of the nanoemulsion improved the survival rate of LPS-injected endotoxemic mice. This associated with marked reductions in circulating HMGB1 levels and tissue iNOS expression. The present study shows for the first time the mechanism by which C. longa ameliorates sepsis, namely, by suppressing NO signaling and thereby inhibiting the release of the proinflammatory cytokine HMGB1. These observations suggest that identification of

  2. Crystallization and preliminary X-ray analysis of a low density lipoprotein from human plasma.

    PubMed

    Prassl, R; Chapman, J M; Nigon, F; Sara, M; Eschenburg, S; Betzel, C; Saxena, A; Laggner, P

    1996-11-15

    Single crystals of human plasma low density lipoprotein (LDL), the major transport vehicle for cholesterol in blood, have been produced with a view to analysis of the three-dimensional structure by x-ray crystallography. Crystals with dimensions of approximately 200 x 100 x 50 microm have been reproducibly obtained from highly homogeneous LDL particle subspecies, isolated in the density ranges d = 1.0271-1. 0297 g/ml and d = 1.0297-1.0327 g/ml. Electron microscopic imaging of ultrathin-sectioned preparations of the crystals confirmed the existence of a regular, quasihexagonal arrangement of spherical particles of approximately 18 nm in diameter, thereby resembling the dimensions characteristic of LDL after dehydration and fixation. X-ray diffraction with synchrotron radiation under cryogenic conditions revealed the presence of well resolved diffraction spots, to a resolution of about 29 A. The diffraction patterns are indexed in terms of a triclinic lattice with unit cell dimensions of a = 16. 1 nm, b = 39.0 nm, c = 43.9 nm; alpha = 96.2 degrees, beta = 92.1 degrees, gamma = 102 degrees, and with space group P1.

  3. Method of synthesizing a low density material

    DOEpatents

    Lorensen, L.E.; Monaco, S.B.

    1987-02-27

    A novel method of synthesizing a polymeric material of low density of the order of 50mg/cc or less. Such a low density material has applications in many areas including laser target fabrication. The method comprises preparing a polymer blend of two incompatible polymers as a major and a minor phase by mixing them and extruding the mixture, and then selectively extracting the major component, to yield a fine, low density structure.

  4. Resemblance and investment in children.

    PubMed

    Dolinska, Barbara

    2013-01-01

    According to evolutionary explanations men hardly ever are absolutely certain about their biological fatherhood therefore they must seek various sources of information to subjectively establish whether they are the genetic fathers of the children they raise. Apicella and Marlowe (2004) showed that fathers who perceived greater similarity between their children and themselves were willing to invest more resources (e.g., time, money, care) in their offspring presumably because the perceived resemblance indicated to the fathers their genetic relatedness with their children. The present study extended the design of Apicella and Marlowe's original study and included both fathers and mothers as participants. Parents were recruited by a female confederate at the airport and at the railway station in Wroclaw (Poland). Multiple regression analyses showed that perceived resemblance predicted parental investment in the child for both men and women. The fact that mothers' declarations of investment in their children also depended on the perceived resemblance factor is not consistent with evolutionary formulations delineated by Apicella and Marlowe (2004; 2007). Future studies must resolve the issue of whether the resemblance-investment relation in fathers results from men relaying on child's resemblance to themselves as an indicator of their own biological paternity, or whether it results from the more parsimonious phenomenon that people in general are attracted more to other people who are similar to them.

  5. Anti-inflammatory activity of nanoemulsions of essential oil from Rosmarinus officinalis L.: in vitro and in zebrafish studies.

    PubMed

    Borges, Raphaelle Sousa; Keita, Hady; Ortiz, Brenda Lorena Sánchez; Dos Santos Sampaio, Tafnis Ingret; Ferreira, Irlon Maciel; Lima, Emerson Silva; de Jesus Amazonas da Silva, Márcia; Fernandes, Caio Pinho; de Faria Mota Oliveira, Anna Eliza Maciel; da Conceição, Edemilson Cardoso; Rodrigues, Alex Bruno Lobato; Filho, Arlindo César Matias Pereira; Castro, Andrés Navarrete; Carvalho, José Carlos Tavares

    2018-02-05

    The essential oil from Rosmarinus officinalis L. (OERO) has bioactive compounds with anti-inflammatory activity. The objective of this study was to evaluate the anti-inflammatory potency of nanoemulsions containing essential oil of Rosmarinus officinalis L. (NOERO, NECHA, NECULT, and NECOM) in vitro and in vivo. This study was accomplished in a quantitative format through tests with diphenyl picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), cellular antioxidant activity (CCA), determination of nitric oxide production, cellular viability and anti-inflammatory activity in zebrafish. OERO's were submitted to the analysis-coupled gas chromatography-mass spectrometry (GC-MS), which highlighted 1,8-cineol and camphor as major compounds. NOEROs were obtained by a low-energy method and presenting the medium size smaller than 200 nm. The efficiency of encapsulation by spectrometry and gas chromatographic analysis was 67.61 and 75.38%, respectively. In the CCA assay, all of the samples presented percentage values of inhibition similar to the quercetin pattern, indicating antioxidant activity. In the test for determination of NO·, all of the samples inhibited the production of NO· when compared to LPS, and NOEROS were more effective than OEROS to 5 µg/mL. In the cell viability assay, the cells remained viable after contact with the samples, demonstrating an absence of cytotoxicity. This study showed that all nanoemulsions (NECHA, NECULT, and NECOM) showed no toxicity to macrophages, besides demonstrating antioxidant activity and potentiation of the essential oil effect in the proliferation of viable fibroblasts. Nanoemulsions has also shown the ability to potentiate the anti-inflammatory action of essential oils by exerting immunomodulatory activity by inhibiting the production of the pro-inflammatory mediator nitric oxide. The results obtained with NECHA in zebrafish confirm the hypothesis that prominent terpenic compounds, alpha

  6. Systems evaluation of low density air transportation concepts

    NASA Technical Reports Server (NTRS)

    Bruce, R. W.; Webb, H. M.

    1972-01-01

    Methods were studied for improving air transportation to low-density population regions in the U.S. through the application of new aeronautical technology. The low-density air service concepts are developed for selected regions, and critical technologies that presently limit the effective application of low-density air transportation systems are identified.

  7. Sono-photoacoustic imaging of gold nanoemulsions: Part II. Real time imaging

    PubMed Central

    Arnal, Bastien; Wei, Chen-Wei; Perez, Camilo; Nguyen, Thu-Mai; Lombardo, Michael; Pelivanov, Ivan; Pozzo, Lilo D.; O’Donnell, Matthew

    2015-01-01

    Photoacoustic (PA) imaging using exogenous agents can be limited by degraded specificity due to strong background signals. This paper introduces a technique called sono-photoacoustics (SPA) applied to perfluorohexane nanodroplets coated with gold nanospheres. Pulsed laser and ultrasound (US) excitations are applied simultaneously to the contrast agent to induce a phase-transition ultimately creating a transient microbubble. The US field present during the phase transition combined with the large thermal expansion of the bubble leads to 20–30 dB signal enhancement. Aqueous solutions and phantoms with very low concentrations of this agent were probed using pulsed laser radiation at diagnostic exposures and a conventional US array used both for excitation and imaging. Contrast specificity of the agent was demonstrated with a coherent differential scheme to suppress US and linear PA background signals. SPA shows great potential for molecular imaging with ultrasensitive detection of targeted gold coated nanoemulsions and cavitation-assisted theranostic approaches. PMID:25893170

  8. Colloidal properties of sodium caseinate-stabilized nanoemulsions prepared by a combination of a high-energy homogenization and evaporative ripening methods.

    PubMed

    Montes de Oca-Ávalos, J M; Candal, R J; Herrera, M L

    2017-10-01

    Nanoemulsions stabilized by sodium caseinate (NaCas) were prepared using a combination of a high-energy homogenization and evaporative ripening methods. The effects of protein concentration and sucrose addition on physical properties were analyzed by dynamic light scattering (DLS), Turbiscan analysis, confocal laser scanning microscopy (CLSM) and small angle X-ray scattering (SAXS). Droplets sizes were smaller (~100nm in diameter) than the ones obtained by other methods (200 to 2000nm in diameter). The stability behavior was also different. These emulsions were not destabilized by creaming. As droplets were so small, gravitational forces were negligible. On the contrary, when they showed destabilization the main mechanism was flocculation. Stability of nanoemulsions increased with increasing protein concentrations. Nanoemulsions with 3 or 4wt% NaCas were slightly turbid systems that remained stable for at least two months. According to SAXS and Turbiscan results, aggregates remained in the nano range showing small tendency to aggregation. In those systems, interactive forces were weak due to the small diameter of flocs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Intranasal delivery of paroxetine nanoemulsion via the olfactory region for the management of depression: formulation, behavioural and biochemical estimation

    NASA Astrophysics Data System (ADS)

    Pandey, Yogendra Raj; Kumar, Shobhit; Gupta, Bijay Kumar; Ali, Javed; Baboota, Sanjula

    2016-01-01

    Paroxetine is a selective serotonin reuptake inhibitor (SSRI) and is used for the treatment of depression and anxiety problems, but suffers from the drawback of poor oral bioavailability (less than 50%) due to its extensive first pass metabolism. The objective of the present study was to develop a paroxetine loaded nanoemulsion (o/w type) for direct nose-to-brain delivery. Nanoemulsions were prepared by the spontaneous emulsification technique using Capmul MCM, Solutol HS 15 and propylene glycol as oil phase, surfactant and co-surfactant, respectively, for delivery of drug directly to the brain through the nasal route for better management of depression. Formulations were studied for droplet size, polydispersity index (PDI), percentage transmittance, refractive index, viscosity, zeta potential, surface morphology and in vitro permeation study. TEM images of optimized formulation showed spherical droplets with a mean diameter of 58.47 ± 3.02 nm, PDI of 0.339 ± 0.007 and zeta potential values of -33 mV. The formulation showed good results for transmittance (100.60 ± 0.577%), refractive index (1.412 ± 0.003) and viscosity (40.85 ± 6.40 cP). Permeation studies revealed a 2.57-fold enhancement in permeation as compared to the paroxetine suspension. Behavioural studies such as the forced swimming test and locomotor activity test were done on Wistar rats to study the antidepressant effect of the optimized formulation. Treatment of depressed rats with paroxetine nanoemulsion (administered intranasally) significantly improved the behavioural activities in comparison to paroxetine suspension (orally administered). Biochemical estimation results revealed that the prepared nanoemulsion was effective in enhancing the depressed levels of glutathione and decreasing the elevated levels of TBARS.

  10. Theranostic nanoemulsions: codelivery of hydrophobic drug and hydrophilic imaging probe for cancer therapy and imaging.

    PubMed

    Yang, Xinggang; Wang, Dun; Ma, Yan; Zhao, Qiang; Fallon, John K; Liu, Dan; Xu, Xian Emma; Wang, Yongjun; He, Zhonggui; Liu, Feng

    2014-12-01

    To develop a theranostic nanoemulsion (TNE) that can codeliver the conjugates of a hydrophobic drug paclitaxel (PTX) and a hydrophilic imaging probe sulforhodamine B (SRB). The TNE was established using core-matched technology, and can achieve high encapsulation efficiency and synchronized release of the loaded cargo. It has been examined for a correlation between the dynamic uptake of PTX and the intensity of SRB imaging signal in different organs. Our data demonstrate that the TNE, with improved circulation time, increases therapeutic efficacy and imaging efficiency in both drug-sensitive and drug-resistant cancer. The TNE could not satisfy the demand of visual diagnosis in the living animal because of interference. We therefore formulated a long-circulating theranostic nanoemulsion (LCTNE). Results showed that the LCTNE can meet imaging requirements in vivo. The LCTNE plays a good therapeutic and diagnostic role for subcutaneous tumors in the living animal.

  11. Gene editing of MPS I human fibroblasts by co-delivery of a CRISPR/Cas9 plasmid and a donor oligonucleotide using nanoemulsions as nonviral carriers.

    PubMed

    Schuh, Roselena Silvestri; de Carvalho, Talita Giacomet; Giugliani, Roberto; Matte, Ursula; Baldo, Guilherme; Teixeira, Helder Ferreira

    2018-01-01

    Mucopolysaccharidosis type I (MPS I) is an inherited disease caused by the deficiency of alpha-L-iduronidase (IDUA). This study shows the use of nanoemulsions co-complexed with the plasmid of CRISPR/Cas9 system and a donor oligonucleotide aiming at MPS I gene editing in vitro. Nanoemulsions composed of MCT, DOPE, DOTAP, DSPE-PEG, and water were prepared by high-pressure homogenization. The DNA was complexed by adsorption (NA) or encapsulation (NE) of preformed DNA/DOTAP complexes with nanoemulsions at +4/-1 charge ratio. The incubation in pure DMEM or supplemented with serum showed that the complexation with DNA was stable after 1 h of incubation, but the complexes tended to release the adsorbed DNA after 24 h of incubation, while the encapsulated DNA remained complexed in the oil core of the nanoemulsions even 48 h after incubation with DMEM. The treatment of MPS I patient's fibroblasts homozygous for the p.Trp402 ∗ mutation led to a significant increase in IDUA activity at 2, 15, and 30 days when compared to MPS I untreated fibroblasts. Flow cytometry and confocal microscopy demonstrated that there was a reduction in the area of lysosomes to values similar to normal, an indicator of correction of the cellular phenotype. These results show that the nanoemulsions co-complexed with the CRISPR/Cas9 system and a donor oligonucleotide could effectively transfect MPS I p.Trp402 ∗ patient's fibroblasts, as well as enable the production of IDUA, and represent a potential new treatment option for MPS I. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Enhanced immune response to gastric cancer specific antigen Peptide by coencapsulation with CpG oligodeoxynucleotides in nanoemulsion.

    PubMed

    Shi, Rui; Hong, Liu; Wu, Daocheng; Ning, Xiaoxuan; Chen, Yu; Lin, Tao; Fan, Daiming; Wu, Kaichun

    2005-02-01

    CpG oligodeoxynucleotides (CpG ODN) have been shown to have potent adjuvant activity for a wide range of antigens. Of particular interest is their improved activity when closely associated with the antigen. The purpose of this study is to construct a nanovaccine coencapsulated with a gastric cancer specific antigen MG7 mimotope peptide and adjuvant CpG ODN 1645 using new nanotechnology as nanoemulsion and evaluate its immunocompetence. Nanoemulsion vaccine was prepared using magnetic ultrasound methods. BALB/c mice were immunized and the in vivo effectiveness was evaluated using tumor challenge assay. It was shown that the tumor masses formed in the mice immunized with coencapsulated nanovaccine (0.0825 g) markedly smaller (P < 0.01) than those formed in the mice immunized with nanovaccine encapsulated with antigen peptide alone (0.4465 g). A tumor inhibiting rate as high as 82.5% of the coencapsulated nanovaccine was obtained, while nanovaccine encapsulated with peptide only could not achieve the same effect (28.5%) (P < 0.01). Enzyme-linked immunospot assay (ELISPOT) showed that immunization using MG7 mimotope peptide coencapsulated with CpG ODN within the same nanoemulsion enhanced the frequency of splenocytes secreting IFN-gamma significantly (P < 0.01) when compared with immunization using MG7 peptide encapsulated in nanoemulsion alone (197spots/1 x 10(6) vs. 73 spots/1 x 10(6)). Cellular ELISA indicated that serum titer of antibody against MG7-Ag was significantly higher (P < 0.01) in mice immunized with coencapsulation form nanovaccine (0.7884) than that in the group immunized with nanovaccine encapsulated with MG7 peptide alone (0.3616). Using intracellular flow cytometric analysis, it was found that the IFN-gamma response was contributed by CD4+ T-cells. Our experiments suggest that a vaccinal approach using nano-delivery system carrying in tumoral epitope and CpG ODN as adjuvant may have important implications for cancer therapy.

  13. An alternative method for calibration of flow field flow fractionation channels for hydrodynamic radius determination: The nanoemulsion method (featuring multi angle light scattering).

    PubMed

    Bolinsson, Hans; Lu, Yi; Hall, Stephen; Nilsson, Lars; Håkansson, Andreas

    2018-01-19

    This study suggests a novel method for determination of the channel height in asymmetrical flow field-flow fractionation (AF4), which can be used for calibration of the channel for hydrodynamic radius determinations. The novel method uses an oil-in-water nanoemulsion together with multi angle light scattering (MALS) and elution theory to determine channel height from an AF4 experiment. The method is validated using two orthogonal methods; first, by using standard particle elution experiments and, secondly, by imaging an assembled and carrier liquid filled channel by x-ray computed tomography (XCT). It is concluded that the channel height can be determined with approximately the same accuracy as with the traditional channel height determination technique. However, the nanoemulsion method can be used under more challenging conditions than standard particles, as the nanoemulsion remains stable in a wider pH range than the previously used standard particles. Moreover, the novel method is also more cost effective. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Fabrication of low density ceramic material

    DOEpatents

    Meek, T.T.; Blake, R.D.; Sheinberg, H.

    1985-01-01

    A precursor mixture and a method of making a low-density ceramic structural material are disclosed. The precursor mixture includes hollow microballoons, typically made of glass, together with a cementing agent capable of being cured by microwave irradiation. A preferred cementing agent is liquid hydrated potassium silicate, which is mixed with the glass microballoons to form a slurry. Upon irradiation the potassium silicate is dehydrated to form a solid porous matrix in which the microballoons are evenly distributed. Ground glass or other filling agents may be included in the slurry to enhance the properties of the final product. Low-density structural ceramics having densities on the order of 0.1 to 0.3 are obtained.

  15. Development of nanoemulsion for efficient brain parenteral delivery of cefuroxime: designs, characterizations, and pharmacokinetics

    PubMed Central

    Harun, Siti Norhawani; Nordin, Syafinaz Amin; Gani, Siti Salwa Abd; Shamsuddin, Ahmad Fuad; Basri, Mahiran; Basri, Hamidon Bin

    2018-01-01

    Background and aim Drugs that are effective against diseases in the central nervous system and reach the brain via blood must pass through the blood–brain barrier (BBB), a unique interface that protects against potential harmful molecules. This presents a major challenge in neuro-drug delivery. This study attempts to fabricate the cefuroxime-loaded nanoemulsion (CLN) to increase drug penetration into the brain when parenterally administered. Methods The nanoemulsions were formulated using a high-pressure homogenization technique and were characterized for their physicochemical properties. Results The characterizations revealed a particle size of 100.32±0.75 nm, polydispersity index of 0.18±0.01, zeta potential of −46.9±1.39 mV, viscosity of 1.24±0.34 cps, and osmolality of 285.33±0.58 mOsm/kg, indicating that the nanoemulsion has compatibility for parenteral application. CLN was physicochemically stable within 6 months of storage at 4°C, and the transmission electron microscopy revealed that the CLN droplets were almost spherical in shape. The in vitro release of CLN profile followed a sustained release pattern. The pharmacokinetic profile of CLN showed a significantly higher Cmax, area under the curve (AUC)0–t, prolonged half-life, and lower total plasma clearance, indicating that the systemic concentration of cefuroxime was higher in CLN-treated rats as compared to cefuroxime-free treated rats. A similar profile was obtained for the biodistribution of cefuroxime in the brain, in which CLN showed a significantly higher Cmax, AUC0–t, prolonged half-life, and lower clearance as compared to free cefuroxime solution. Conclusion Overall, CLN showed excellent physicochemical properties, fulfilled the requirements for parenteral administration, and presented improved in vivo pharmacokinetic profile, which reflected its practical approach to enhance cefuroxime delivery to the brain. PMID:29731632

  16. Bio-active nanoemulsions enriched with gold nanoparticle, marigold extracts and lipoic acid: In vitro investigations.

    PubMed

    Guler, Emine; Barlas, F Baris; Yavuz, Murat; Demir, Bilal; Gumus, Z Pinar; Baspinar, Yucel; Coskunol, Hakan; Timur, Suna

    2014-09-01

    A novel and efficient approach for the preparation of enriched herbal formulations was described and their potential applications including wound healing and antioxidant activity (cell based and cell free) were investigated via in vitro cell culture studies. Nigella sativa oil was enriched with Calendula officinalis extract and lipoic acid capped gold nanoparticles (AuNP-LA) using nanoemulsion systems. The combination of these bio-active compounds was used to design oil in water (O/W) and water in oil (W/O) emulsions. The resulted emulsions were characterized by particle size measurements. The phenolic content of each nanoemulsion was examined by using both colorimetric assay and chromatographic analyses. Two different methods containing cell free chemical assay (1-diphenyl-2-picrylhydrazyl method) and cell based antioxidant activity test were used to evaluate the antioxidant capacities. In order to investigate the bio-activities of the herbal formulations, in vitro cell culture experiments, including cytotoxicity, scratch assay, antioxidant activity and cell proliferation were carried out using Vero cell line as a model cell line. Furthermore, to monitor localization of the nanoemulsions after application of the cell culture, the cell images were monitored via fluorescence microscope after FITC labeling. All data confirmed that the enriched N. sativa formulations exhibited better antioxidant and wound healing activity than N. sativa emulsion without any enrichment. In conclusion, the incorporation of AuNP-LA and C. officinalis extract into the N. sativa emulsions significantly increased the bio-activities. The present work may support further studies about using the other bio-active agents for the enrichment of herbal preparations to strengthen their activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3

    PubMed Central

    Tsai, Yin-Jieh; Chen, Bing-Huei

    2016-01-01

    Green tea is one of the most commonly consumed natural health beverages in Taiwan’s market, with the major functional component catechin being shown to possess several biological activities such as antioxidation, anticancer, and prevention of cardiovascular disease. The objectives of this study were to develop a high-performance liquid chromatography–mass spectrometry method to determine the variety and content of catechins in green tea leaf waste, a by-product obtained during processing of tea beverage. In addition, catechin nanoemulsion was prepared to study its inhibition effect on prostate cancer cell PC-3. Results showed that a total of eight catechin standards were separated within 25 minutes by using a Gemini C18 column and a gradient mobile phase of 0.1% formic acid (A) and acetonitrile (B) with flow rate at 1 mL/min, column temperature at 30°C, and detection wavelength at 280 nm. Among various extraction solvents, 50% ethanol generated the highest yield of total catechins from tea leaf waste, of which five catechins were identified and quantified. The catechin nanoemulsion was composed of catechin extract, lecithin, Tween 80, and deionized water in an appropriate proportion, with the mean particle size being 11.45 nm, encapsulation efficiency 88.1%, and zeta potential −66.3 mV. A high stability of catechin nanoemulsion was shown over a storage period of 120 days at 4°C. Both catechin extract and nanoemulsion could inhibit growth of PC-3 tumor cells, with the half maximal inhibitory concentration being 15.4 μg/mL and 8.5 μg/mL, respectively. The PC-3 cell cycle was arrested at S phase through elevation of P27 expression and decline of cyclin A, cyclin B, cyclin-dependent kinase 2, and cyclin-dependent kinase 1 expression. In addition, both catechin extract and nanoemulsion could induce apoptosis of PC-3 cells through decrease in B-cell lymphoma 2 (bcl-2) expression and increase in cytochrome c expression for activation of caspase-3, caspase-8, and

  18. Circulating CD21low B cells in common variable immunodeficiency resemble tissue homing, innate-like B cells

    PubMed Central

    Rakhmanov, Mirzokhid; Keller, Baerbel; Gutenberger, Sylvia; Foerster, Christian; Hoenig, Manfred; Driessen, Gertjan; van der Burg, Mirjam; van Dongen, Jacques J.; Wiech, Elisabeth; Visentini, Marcella; Quinti, Isabella; Prasse, Antje; Voelxen, Nadine; Salzer, Ulrich; Goldacker, Sigune; Fisch, Paul; Eibel, Hermann; Schwarz, Klaus; Peter, Hans-Hartmut; Warnatz, Klaus

    2009-01-01

    The homeostasis of circulating B cell subsets in the peripheral blood of healthy adults is well regulated, but in disease it can be severely disturbed. Thus, a subgroup of patients with common variable immunodeficiency (CVID) presents with an extraordinary expansion of an unusual B cell population characterized by the low expression of CD21. CD21low B cells are polyclonal, unmutated IgM+IgD+ B cells but carry a highly distinct gene expression profile which differs from conventional naïve B cells. Interestingly, while clearly not representing a memory population, they do share several features with the recently defined memory-like tissue, Fc receptor-like 4 positive B cell population in the tonsils of healthy donors. CD21low B cells show signs of previous activation and proliferation in vivo, while exhibiting defective calcium signaling and poor proliferation in response to B cell receptor stimulation. CD21low B cells express decreased amounts of homeostatic but increased levels of inflammatory chemokine receptors. This might explain their preferential homing to peripheral tissues like the bronchoalveolar space of CVID or the synovium of rheumatoid arthritis patients. Therefore, as a result of the close resemblance to the gene expression profile, phenotype, function and preferential tissue homing of murine B1 B cells, we suggest that CD21low B cells represent a human innate-like B cell population. PMID:19666505

  19. Low density metal hydride foams

    DOEpatents

    Maienschein, Jon L.; Barry, Patrick E.

    1991-01-01

    Disclosed is a low density foam having a porosity of from 0 to 98% and a density less than about 0.67 gm/cc, prepared by heating a mixture of powered lithium hydride and beryllium hydride in an inert atmosphere at a temperature ranging from about 455 to about 490 K for a period of time sufficient to cause foaming of said mixture, and cooling the foam thus produced. Also disclosed is the process of making the foam.

  20. Enhancement of the antimicrobial properties of bacteriophage-K via stabilization using oil-in-water nano-emulsions.

    PubMed

    Esteban, Patricia Perez; Alves, Diana R; Enright, Mark C; Bean, Jessica E; Gaudion, Alison; Jenkins, A T A; Young, Amber E R; Arnot, Tom C

    2014-01-01

    Bacteriophage therapy is a promising new treatment that may help overcome the threat posed by antibiotic-resistant pathogenic bacteria, which are increasingly identified in hospitalized patients. The development of biocompatible and sustainable vehicles for incorporation of viable bacterial viruses into a wound dressing is a promising alternative. This article evaluates the antimicrobial efficacy of Bacteriophage K against Staphylococcus aureus over time, when stabilized and delivered via an oil-in-water nano-emulsion. Nano-emulsions were formulated via thermal phase inversion emulsification, and then bacterial growth was challenged with either native emulsion, or emulsion combined with Bacteriophage K. Bacteriophage infectivity, and the influence of storage time of the preparation, were assessed by turbidity measurements of bacterial samples. Newly prepared Bacteriophage K/nano-emulsion formulations have greater antimicrobial activity than freely suspended bacteriophage. The phage-loaded emulsions caused rapid and complete bacterial death of three different strains of S. aureus. The same effect was observed for preparations that were either stored at room temperature (18-20°C), or chilled at 4°C, for up to 10 days of storage. A response surface design of experiments was used to gain insight on the relative effects of the emulsion formulation on bacterial growth and phage lytic activity. More diluted emulsions had a less significant effect on bacterial growth, and diluted bacteriophage-emulsion preparations yielded greater antibacterial activity. The enhancement of bacteriophage activity when delivered via nano-emulsions is yet to be reported. This prompts further investigation into the use of these formulations for the development of novel anti-microbial wound management strategies. © 2014 American Institute of Chemical Engineers.

  1. High-Grade Urothelial Carcinoma on Urine Cytology Resembling Umbrella Cells.

    PubMed

    Renshaw, Andrew A; Gould, Edwin W

    2018-01-01

    High-grade urothelial carcinoma (UC) cells have many appearances on urine cytology, but according to The Paris System, they can be easily distinguished from umbrella cells. We aimed to define the incidence and appearance of high-grade UC cells that resemble umbrella cells in Cytospin preparations on urine cytology. Cytospin preparations from 331 cases with biopsy follow-up (230 benign/low-grade and 101 malignant [22 carcinoma in situ, 52 papillary, 19 invasive UC, 8 other] cases) were reviewed. A total of 18 cases with malignant cells resembling umbrella cells were identified (17.8% of the malignant cases) and were the only type of malignant cell in 3% of the cases. Two patterns were identified. Tumor cells were either identifiable by at least 20 abnormal cells which were large, had abundant cytoplasm but an elevated nuclear-to-cytoplasmic ratio, and markedly enlarged, round-to-elongated nucleoli, or else rare cells with abundant cytoplasm but obviously malignant nuclei. Cells without nucleoli or obviously malignant nuclei were not specific. Malignant cells resembling umbrella cells can be seen in up to 17% of urine cytology specimens. © 2017 S. Karger AG, Basel.

  2. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5600 Low-density lipoprotein immunological test system. (a) Identification. A low-density lipoprotein... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Low-density lipoprotein immunological test system...

  3. Physicochemical stability and in vitro bioaccessibility of ß-carotene nanoemulsions stabilized with whey protein-dextran conjugates

    USDA-ARS?s Scientific Manuscript database

    In this study, ß-carotene (BC)-loaded nanoemulsions encapsulated with native whey protein isolate (WPI) and WPI-dextran (DT, 5 kDa, 20 kDa, and 70 kDa) conjugates were prepared and the effects of glycosylation with various molecular weight DTs on the physicochemical property, lipolysis, and BC bioac...

  4. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    NASA Astrophysics Data System (ADS)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  5. Two-resonance probe for measuring electron density in low-pressure plasmas

    NASA Astrophysics Data System (ADS)

    Kim, D. W.; You, S. J.; Kim, S. J.; Kim, J. H.; Oh, W. Y.

    2017-04-01

    A technique for measuring double-checked electron density using two types of microwave resonance is presented. Simultaneous measurement of the resonances (plasma and quarter-wavelength resonator resonances), which were used for the cutoff probe (CP) and hairpin probe (HP), was achieved by the proposed microwave resonance probe. The developed two-resonance probe (TRP) consists of parallel separated coaxial cables exposing the radiation and detection tips. The structure resembles that of the CP, except the gapped coaxial cables operate not only as a microwave feeder for the CP but also as a U- shaped quarter-wavelength resonator for the HP. By virtue of this structure, the microwave resonances that have typically been used for measuring the electron density for the CP and HP were clearly identified on the microwave transmission spectrum of the TRP. The two types of resonances were measured experimentally under various power and pressure conditions for the plasma. A three-dimensional full-wave simulation model for the TRP is also presented and used to investigate and reproduce the resonances. The electron densities inferred from the resonances were compared and showed good agreement. Quantitative differences between the densities were attributed to the effects of the sheath width and spatial density gradient on the resonances. This accessible technique of using the TRP to obtain double-checked electron densities may be useful for comparative study and provides complementary uses for the CP and HP.

  6. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein in... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Low-density lipoprotein immunological test system. 866.5600 Section 866.5600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  7. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein in... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Low-density lipoprotein immunological test system. 866.5600 Section 866.5600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  8. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein in... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Low-density lipoprotein immunological test system. 866.5600 Section 866.5600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  9. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein in... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Low-density lipoprotein immunological test system. 866.5600 Section 866.5600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  10. Combined passive acoustic mapping and magnetic resonance thermometry for monitoring phase-shift nanoemulsion enhanced focused ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Crake, Calum; Meral, F. Can; Burgess, Mark T.; Papademetriou, Iason T.; McDannold, Nathan J.; Porter, Tyrone M.

    2017-08-01

    Focused ultrasound (FUS) has the potential to enable precise, image-guided noninvasive surgery for the treatment of cancer in which tumors are identified and destroyed in a single integrated procedure. However, success of the method in highly vascular organs has been limited due to heat losses to perfusion, requiring development of techniques to locally enhance energy absorption and heating. In addition, FUS procedures are conventionally monitored using MRI, which provides excellent anatomical images and can map temperature, but is not capable of capturing the full gamut of available data such as the acoustic emissions generated during this inherently acoustically-driven procedure. Here, we employed phase-shift nanoemulsions (PSNE) embedded in tissue phantoms to promote cavitation and hence temperature rise induced by FUS. In addition, we incorporated passive acoustic mapping (PAM) alongside simultaneous MR thermometry in order to visualize both acoustic emissions and temperature rise, within the bore of a full scale clinical MRI scanner. Focal cavitation of PSNE could be resolved using PAM and resulted in accelerated heating and increased the maximum elevated temperature measured via MR thermometry compared to experiments without nanoemulsions. Over time, the simultaneously acquired acoustic and temperature maps show translation of the focus of activity towards the FUS transducer, and the magnitude of the increase in cavitation and focal shift both increased with nanoemulsion concentration. PAM results were well correlated with MRI thermometry and demonstrated greater sensitivity, with the ability to detect cavitation before enhanced heating was observed. The results suggest that PSNE could be beneficial for enhancement of thermal focused ultrasound therapies and that PAM could be a critical tool for monitoring this process.

  11. Production and characterization of cosmetic nanoemulsions containing Opuntia ficus-indica (L.) mill extract as moisturizing agent.

    PubMed

    Ribeiro, Renato Cesar de Azevedo; Barreto, Stella Maria de Andrade Gomes; Ostrosky, Elissa Aarantes; da Rocha-Filho, Pedro Alves; Veríssimo, Lourena Mafra; Ferrari, Márcio

    2015-02-02

    This study aimed to produce and characterize an oil in water (O/W) nanoemulsion containing Opuntia ficus-indica (L.) Mill hydroglycolic extract, as well as evaluate its preliminary and accelerated thermal stability and moisturizing efficacy. The formulations containing 0.5% of xanthan gum (FX) and 0.5% of xanthan gum and 1% of Opuntia ficus-indica MILL extract (FXE) were white, homogeneus and fluid in aspect. Both formulations were stable during preliminary and accelerated stability tests. FX and FXE presented a pH compatible to skin pH (4.5-6.0); droplet size varying from 92.2 to 233.6 nm; a polydispersion index (PDI) around 0.200 and a zeta potential from -26.71 to -47.01 mV. FXE was able to increase the water content of the stratum corneum for 5 h after application on the forearm. The O/W nanoemulsions containing 1% of Opuntia ficus-indica (L.) Mill extract presented suitable stability for at least for 60 days. Besides, this formulation was able to increase the water content of stratum corneum, showing its moisturizing efficacy.

  12. Metabolism of cholesteryl esters of rat very low density lipoproteins.

    PubMed

    Faergeman, O; Havel, R J

    1975-06-01

    Rat very low density lipoproteins (d smaller than 1.006), biologically labeled in esterified and free cholesterol, were obtained form serum 6 h after intravenous injection of particulate (3-H) cholesterol. When injected into recipient animals, the esterified cholesterol was cleared form plasma with a half-life of 5 min. After 15 min, 71% of the injected esterified (3-H) cholesterol had been taken up by the liver, where it was rapidly hydrolyzed. After 60 min only 3.3% of the amount injected had been transferred, via lipoproteins of intermediate density, to the low density lipoproteins of plasma (d 1.019-1.063). Both uptake in the liver and transfer to low density lipoproteins occurred without change of distribution of 3-H in the various cholesteryl esters. 3-H appearing in esterified cholesterol of high density lipoproteins (d greater than 1.063) was derived from esterification, presumably by lecithin: cholesterol acyltransferase, of simultaneously injected free (3-H) cholesterol. Content of free (3-H) cholesterol in the very low density lipoproteins used for injection could be reduced substantially by incubation with erythrocytes. This procedure, however, increased the rate of clearance of the lipoproteins after injection into recipient rats. These studies show that hepatic removal is the major catabolic pathway for cholesteryl esters of rat very low density lipoproteins and that transfer to low density lipoproteins occurs to only a minor extent.

  13. Measured acoustic properties of variable and low density bulk absorbers

    NASA Technical Reports Server (NTRS)

    Dahl, M. D.; Rice, E. J.

    1985-01-01

    Experimental data were taken to determine the acoustic absorbing properties of uniform low density and layered variable density samples using a bulk absober with a perforated plate facing to hold the material in place. In the layered variable density case, the bulk absorber was packed such that the lowest density layer began at the surface of the sample and progressed to higher density layers deeper inside. The samples were placed in a rectangular duct and measurements were taken using the two microphone method. The data were used to calculate specific acoustic impedances and normal incidence absorption coefficients. Results showed that for uniform density samples the absorption coefficient at low frequencies decreased with increasing density and resonances occurred in the absorption coefficient curve at lower densities. These results were confirmed by a model for uniform density bulk absorbers. Results from layered variable density samples showed that low frequency absorption was the highest when the lowest density possible was packed in the first layer near the exposed surface. The layers of increasing density within the sample had the effect of damping the resonances.

  14. The low density type III ELMy H-mode regime on JET-ILW: a low density H-mode compatible with a tungsten divertor?

    NASA Astrophysics Data System (ADS)

    Delabie, E.; Hillesheim, J. C.; Mailloux, J.; Maggi, C. F.; Rimini, F.; Solano, E. R.; JET contributors Team

    2016-10-01

    The threshold power to access H-mode on JET-ILW has a minimum as function of density. Power ramps in the low and high density branch show qualitatively very different behavior above threshold. In the high density branch, edge density and temperature abruptly increase after the L-H transition, and the plasma evolves into a type I ELMy H-mode. Transitions in the low density branch are gradual and lead to the formation of a temperature pedestal, without increase in edge density. These characteristics are reminiscent of the I-mode regime, but with high frequency ELM activity. The small ELMs allow stable H-mode operation with tolerable tungsten contamination, as long as both density and power stay below the type I ELM boundary. The density range in which the low density branch can be accessed scales favourably with toroidal field but unfavourably with isotope mass. At BT=3.4T, a stable H-mode has been obtained at = 2.9 1019 m-3 with up to 15 MW of heating power at H98y 0.9. Better knowledge of the operational boundaries of this high frequency ELM regime could provide insight in how to sustain it at higher heating power for high temperature scenarios. Work supported, in part, by the US DOE under Contract No. DE-AC05-00OR22725.

  15. Oil/water nano-emulsion loaded with cobalt ferrite oxide nanocubes for photo-acoustic and magnetic resonance dual imaging in cancer: in vitro and preclinical studies.

    PubMed

    Vecchione, Raffaele; Quagliariello, Vincenzo; Giustetto, Pierangela; Calabria, Dominic; Sathya, Ayyappan; Marotta, Roberto; Profeta, Martina; Nitti, Simone; Silvestri, Niccolò; Pellegrino, Teresa; Iaffaioli, Rosario V; Netti, Paolo Antonio

    2017-01-01

    Dual imaging dramatically improves detection and early diagnosis of cancer. In this work we present an oil in water (O/W) nano-emulsion stabilized with lecithin and loaded with cobalt ferrite oxide (Co 0.5 Fe 2.5 O 4 ) nanocubes for photo-acoustic and magnetic resonance dual imaging. The nanocarrier is responsive in in vitro photo-acoustic and magnetic resonance imaging (MRI) tests. A clear and significant time-dependent accumulation in tumor tissue is shown in in vivo photo-acoustic studies on a murine melanoma xenograft model. The proposed O/W nano-emulsion exhibits also high values of r 2 /r 1 (ranging from 45 to 85, depending on the magnetic field) suggesting a possible use as T 2 weighted image contrast agents. In addition, viability and cellular uptake studies show no significant cytotoxicity on the fibroblast cell line. We also tested the O/W nano-emulsion loaded with curcumin against melanoma cancer cells demonstrating a significant cytotoxicity and thus showing possible therapeutic effects in addition to the in vivo imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Cataract surgery in eyes with low corneal endothelial cell density.

    PubMed

    Hayashi, Ken; Yoshida, Motoaki; Manabe, Shin-ichi; Hirata, Akira

    2011-08-01

    To compare corneal endothelial damage after cataract surgery in eyes with low endothelial cell density (ECD) and eyes with normal ECD. Hayashi Eye Hospital, Fukuoka, Japan. Case-control study. Cataract surgery was performed in eyes with a low ECD (500 to 1000 cells/mm(2)) (low-density group) and control eyes with a normal ECD. The ECD and central corneal thickness (CCT) were measured preoperatively and 1 and 3 months postoperatively, and the percentage cell loss and increase in CCT were compared. The low-density group and control group each comprised 50 eyes. In the low-density group, 39 eyes had nonprogressive endothelial pathology and 11 had Fuchs dystrophy. The mean ECD was significantly less and the CCT significantly greater in the low-density group than in the control group throughout the follow-up (P ≤.0066). However, no significant difference in the percentage of cell loss was found between groups at 1 or 3 months (5.1%, low-density group; 4.2%, control group) (P ≥.1477). The percentage increase in CCT was significantly greater in the low-density group than in the control group at 1 month (P<.0001), although there was no significant difference at 3 months (0.4% and -0.4%, respectively) (P=.2172). Corneal endothelial damage after cataract surgery in eyes with low ECD was slight and comparable to that in healthy eyes, which suggests that cataract surgery alone (without corneal transplantation) should be performed first. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  17. Brain Targeted Intranasal Zaleplon Nano-emulsion: In-Vitro Characterization and Assessment of Gamma Aminobutyric Acid Levels in rabbits' Brain and Plasma at low and high Doses.

    PubMed

    Abd-Elrasheed, Eman; El-Helaly, Sara Nageeb; El-Ashmoony, Manal M; Salah, Salwa

    2017-11-30

    Zaleplon is a pyrazolopyrimidin derivative hypnotic drug indicated for the short-term management of insomnia. Zaleplon belongs to Class II drugs, according to the biopharmaceutical classification system (BCS), showing poor solubility and high permeability. It undergoes extensive first-pass hepatic metabolism after oral absorption, with only 30% of Zaleplon being systemically available. It is available in tablet form which is unable to overcome the previous problems. The aim of this study is to enhance solubility and bioavailability via utilizing nanotechnology in the formulation of intranasal Zaleplon nano-emulsion (ZP-NE) to bypass the barriers and deliver an effective therapy to the brain. Screening studies were carried out wherein the solubility of zaleplon in various oils, surfactants(S) and co-surfactants(CoS) were estimated. Pseudo-ternary phase diagrams were constructed and various nano-emulsion formulations were prepared. These formulations were subjected to thermodynamic stability, in-vitro characterization, histopathological studies and assessment of the gamma aminobutyric acid (GABA) level in plasma and brain in rabbits compared to the market product (Sleep aid®). Stable NEs were successfully developed with a particle size range of 44.57±3.351 to 136.90±1.62 nm. A NE composed of 10% Miglyol® 812, 40%Cremophor® RH40 40%Transcutol® HP and 10% water successfully enhanced the bioavailability and brain targeting in the rabbits, showing a three to four folds increase than the marketed product. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. A low-density boundary-layer wind tunnel facility

    NASA Technical Reports Server (NTRS)

    White, B. R.

    1987-01-01

    This abstract describes a low-density wind-tunnel facility that was established at NASA Ames in order to aid interpretation and understanding of data received from the Mariner and Viking spacecraft through earth-based simulation. The wind tunnel is a boundary-layer type which is capable of operating over a range of air densities ranging from 0.01 to 1.24 kg/cu m, with the lower values being equivalent to the near-surface density of the planet Mars. Although the facility was developed for space and extraterrestrial simulation, it also can serve as a relatively large-scale, low-density aerodynamic test facility. A description of this unique test facility and some Pitot-tube and hot-wire anemometry data acquired in the facility are presented.

  19. Ponderomotive perturbations of low density low-temperature plasma under laser Thomson scattering diagnostics

    NASA Astrophysics Data System (ADS)

    Shneider, Mikhail N.

    2017-10-01

    The ponderomotive perturbation in the interaction region of laser radiation with a low density and low-temperature plasma is considered. Estimates of the perturbation magnitude are determined from the plasma parameters, geometry, intensity, and wavelength of laser radiation. It is shown that ponderomotive perturbations can lead to large errors in the electron density when measured using Thomson scattering.

  20. Encapsulation of natural ingredient for skin protection via nanoemulsion process

    NASA Astrophysics Data System (ADS)

    Asmatulu, Eylem; Usta, Aybala; Alzahrani, Naif; Patil, Vinay; Vanderwall, Adeesha

    2017-04-01

    Many of the sunscreens are used during the hot summer time to protect the skin surface. However, some of ingredients in the sunscreens, such as oxybenzone, retinyl palmitate and synthetic fragrances including parabens, phthalates and synthetic musk may disrupt the cells on the skin and create harmful effects to human body. Natural oils may be considered for substitution of harmful ingredients in sunscreens. Many natural oils (e.g., macadamia oil, sesame oil, almond oil and olive oil) have UV protective property and on top of that they have natural essences. Among the natural oils, olive oil has a long history of being used as a home remedy for skincare. Olive oil is used or substituted for cleanser, moisturizer, antibacterial agent and massage reliever for muscle fatigue. It is known that sun protection factor (SPF) of olive oil is around eight. There has been relatively little scientific work performed on the effect of olive oil on the skin as sunscreen. With nanoencapsulation technique, UV light protection of the olive oil can be extended which will provide better coverage for the skin throughout the day. In the present study, natural olive oil was incorporated with DI water and surfactant (sodium dodecyl sulfate - SDS) and sonicated using probe sonicators. Sonication time, and concentrations of olive oil, DI water and surfactant were investigated in detail. The produced nanoemulsions were characterized using dynamic light scattering, and UV-Vis spectroscopy. It is believed that the nanoencupsulation of olive oil could provide better skin protection by slow releasing and deeper penetration of the nanoemulsion on skin surface. Undergraduate engineering students were involved in the project and observed all the process during the laboratory studies, as well as data collection, analysis and presentation. This experience based learning will likely enhance the students' skills and interest in the scientific and engineering studies.

  1. Hydrogen crystallization in low-density aerogels.

    PubMed

    Kucheyev, S O; Van Cleve, E; Johnston, L T; Gammon, S A; Worsley, M A

    2015-04-07

    Crystallization of liquids confined in disordered low-density nanoporous scaffolds is poorly understood. Here, we use relaxation calorimetry to study the liquid-solid phase transition of H2 in a series of silica and carbon (nanotube- and graphene-based) aerogels with porosities ≳94%. Results show that freezing temperatures of H2 inside all the aerogels studied are depressed but do not follow predictions of the Gibbs-Thomson theory based on average pore diameters measured by conventional gas sorption techniques. Instead, we find that, for each material family investigated, the depression of average freezing temperatures scales linearly with the ratio of the internal surface area (measured by gas sorption) and the total pore volume derived from the density of aerogel monoliths. The slope of such linear dependences is, however, different for silica and carbon aerogels, which we attribute to microporosity of carbons and the presence of macropores in silica aerogels. Our results have important implications for the analysis of pore size distributions of low-density nanoporous materials and for controlling crystallization of fuel layers in targets for thermonuclear fusion energy applications.

  2. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    NASA Astrophysics Data System (ADS)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-01

    A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  3. Observation of ionization fronts in low density foam targets

    NASA Astrophysics Data System (ADS)

    Hoarty, D.; Willi, O.; Barringer, L.; Vickers, C.; Watt, R.; Nazarov, W.

    1999-05-01

    Ionization fronts have been observed in low density chlorinated foam targets and low density foams confined in gold tubes using time resolved K-shell absorption spectroscopy. The front was driven by an intense pulse of soft x-rays produced by high power laser irradiation. The density and temperature profiles inferred from the radiographs provided detailed measurement of the conditions. The experimental data were compared to radiation hydrodynamics simulations and reasonable agreement was obtained.

  4. Opportune Landing Site CBR and Low-Density Laboratory Database

    DTIC Science & Technology

    2008-05-01

    Program Opportune Landing Site CBR and Low- Density Laboratory Database Larry S. Danyluk, Sally A. Shoop, Rosa T. Affleck, and Wendy L. Wieder...Opportune Landing Site Program ERDC/CRREL TR-08-9 May 2008 Opportune Landing Site CBR and Low- Density Laboratory Database Larry S. Danyluk, Sally A...reproduce in-situ density , moisture, and CBR values and therefore do not accurately repre- sent the complete range of these values measured in the field

  5. A New Approach of Designing Superalloys for Low Density

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Gabb, Timothy P.; Smialek, James L.; Nathal, Michael V.

    2010-01-01

    New low-density single-crystal (LDS) alloy, have bee. developed for turbine blade applications, which have the potential for significant improvements in the thrust-to-weight ratio over current production superalloys. An innovative alloying strategy was wed to achieve alloy density reductions, high-temperature creep resistance, microstructural stability, and cyclic oxidation resistance. The alloy design relies on molybdenum as a potent. lower-density solid-solution strengthener in the nickel-based superalloy. Low alloy density was also achieved with modest rhenium levels tmd the absence of tungsten. Microstructural, physical mechanical, and environmental testing demonstrated the feasibility of this new LDS superalloy design.

  6. Low-Density, Aerogel-Filled Thermal-Insulation Tiles

    NASA Technical Reports Server (NTRS)

    Santos, Maryann; Heng, Vann; Barney, Andrea; Oka, Kris; Droege, Michael

    2005-01-01

    Aerogel fillings have been investigated in a continuing effort to develop low-density thermal-insulation tiles that, relative to prior such tiles, have greater dimensional stability (especially less shrinkage), equal or lower thermal conductivity, and greater strength and durability. In preparation for laboratory tests of dimensional and thermal stability, prototypes of aerogel-filled versions of recently developed low-density tiles have been fabricated by impregnating such tiles to various depths with aerogel formations ranging in density from 1.5 to 5.6 lb/ft3 (about 53 to 200 kg/cu m). Results available at the time of reporting the information for this article showed that the thermal-insulation properties of the partially or fully aerogel- impregnated tiles were equivalent or superior to those of the corresponding non-impregnated tiles and that the partially impregnated tiles exhibited minimal (<1.5 percent) shrinkage after multiple exposures at a temperature of 2,300 F (1,260 C). Latest developments have shown that tiles containing aerogels at the higher end of the density range are stable after multiple exposures at the said temperature.

  7. Low density, microcellular foams, preparation, and articles

    DOEpatents

    Young, Ainslie T.; Marsters, Robert G.; Moreno, Dawn K.

    1984-01-01

    A microcellular low density foam of poly(4-methyl-1-pentene) which is particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 .mu.m). Methods for forming the foam and articles are given; and the yield strength of the foam of the invention is higher than was obtained in other structures of this same material.

  8. Low density, microcellular foams, preparation, and articles

    DOEpatents

    Young, A.T.

    1982-03-03

    A microcellular low-density foam of poly(4-methyl-1-pentene) particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 ..mu..m). Methods for forming the foam and articles are given. The yield strength of the foam of the invention is higher than was obtained in other structures of this same material.

  9. Study on ternary low density polyethylene/linear low density polyethylene/thermoplastic starch blend films.

    PubMed

    Sabetzadeh, Maryam; Bagheri, Rouhollah; Masoomi, Mahmood

    2015-03-30

    In this work, low-density polyethylene/linear low-density polyethylene/thermoplastic starch (LDPE/LLDPE/TPS) films are prepared with the aim of obtaining environmentally friendly materials containing high TPS content with required packaging properties. Blending of LDPE/LLDPE (70/30 wt/wt) with 5-20 wt% of TPS and 3 wt% of PE-grafted maleic anhydride (PE-g-MA) is performed in a twin-screw extruder, followed by the blowing process. Differential scanning calorimetric results indicate starch has more pronounced effect on crystallization of LLDPE than LDPE. Scanning electron micrograph shows a fairly good dispersion of TPS in PE matrices. Fourier transfer infrared spectra confirm compatibility between polymers using PE-g-MA as the compatibilizer. Storage modulus, loss modulus and complex viscosity increase with incorporation of starch. Tensile strength and elongation-at-break decrease from 18 to 10.5 MPa and 340 to 200%, respectively when TPS increases from 5 to 20%. However, the required mechanical properties for packaging applications are attained when 15 wt% starch is added, as specified in ASTM D4635. Finally 12% increase in water uptake is achieved with inclusion of 15 wt% starch. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Instability Analysis of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Lawson, Anthony Layiwola

    2001-01-01

    The objective of this study was to determine the effects of buoyancy on the absolute instability of low-density gas jets injected into high-density gas mediums. Most of the existing analyses of low-density gas jets injected into a high-density ambient have been carried out neglecting effects of gravity. In order to investigate the influence of gravity on the near-injector development of the flow, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round jet injected into a high-density ambient gas were performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The temporal growth rates and the phase velocity of the disturbances were obtained. It was found that the presence of variable density within the shear layer resulted in an increase in the temporal amplification rate of the disturbances and an increase in the range of unstable frequencies, accompanied by a reduction in the phase velocities of the disturbances. Also, the temporal growth rates of the disturbances were increased as the Froude number was reduced (i.e. gravitational effects increased), indicating the destabilizing role played by gravity. The spatio-temporal stability analysis was performed to determine the nature of the absolute instability of the jet. The roles of the density ratio

  11. Low-memory iterative density fitting.

    PubMed

    Grajciar, Lukáš

    2015-07-30

    A new low-memory modification of the density fitting approximation based on a combination of a continuous fast multipole method (CFMM) and a preconditioned conjugate gradient solver is presented. Iterative conjugate gradient solver uses preconditioners formed from blocks of the Coulomb metric matrix that decrease the number of iterations needed for convergence by up to one order of magnitude. The matrix-vector products needed within the iterative algorithm are calculated using CFMM, which evaluates them with the linear scaling memory requirements only. Compared with the standard density fitting implementation, up to 15-fold reduction of the memory requirements is achieved for the most efficient preconditioner at a cost of only 25% increase in computational time. The potential of the method is demonstrated by performing density functional theory calculations for zeolite fragment with 2592 atoms and 121,248 auxiliary basis functions on a single 12-core CPU workstation. © 2015 Wiley Periodicals, Inc.

  12. Hydrogen Crystallization in Low-Density Aerogels

    DOE PAGES

    Kucheyev, S. O.; Van Cleve, E.; Johnston, L. T.; ...

    2015-03-17

    Crystallization of liquids confined in disordered low-density nanoporous scaffolds is poorly understood. Here in this work, we use relaxation calorimetry to study the liquid–solid phase transition of H 2 in a series of silica and carbon (nanotube- and graphene-based) aerogels with porosities ≳94%. Results show that freezing temperatures of H 2 inside all the aerogels studied are depressed but do not follow predictions of the Gibbs–Thomson theory based on average pore diameters measured by conventional gas sorption techniques. Instead, we find that, for each material family investigated, the depression of average freezing temperatures scales linearly with the ratio of themore » internal surface area (measured by gas sorption) and the total pore volume derived from the density of aerogel monoliths. The slope of such linear dependences is, however, different for silica and carbon aerogels, which we attribute to microporosity of carbons and the presence of macropores in silica aerogels. In conclusion, our results have important implications for the analysis of pore size distributions of low-density nanoporous materials and for controlling crystallization of fuel layers in targets for thermonuclear fusion energy applications.« less

  13. Orbiter thermal pressure drop characteristics for shuttle orbiter thermal protection system components: High density tile, low density tile, densified low density tile, and strain isolation pad

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Nystrom, D. M.

    1980-01-01

    Pressure drop tests were conducted on available samples of low and high density tile, densified low density tile, and strain isolation pads. The results are presented in terms of pressure drop, material thickness and volume flow rate. Although the test apparatus was only capable of a small part of the range of conditions to be encountered in a Shuttle Orbiter flight, the data serve to determine the type of flow characteristics to be expected for each material type tested; the measured quantities also should serve as input for initial venting and flow through analysis.

  14. Study of low density air transportation concepts

    NASA Technical Reports Server (NTRS)

    Webb, H. M.

    1972-01-01

    Low density air transport refers to air service to sparsely populated regions. There are two major objectives. The first is to examine those characteristics of sparsely populated areas which pertain to air transportation. This involves determination of geographical, commercial and population trends, as well as those traveler characteristics which affect the viability of air transport in the region. The second objective is to analyze the technical, economic and operational characteristics of low density air service. Two representative, but diverse arenas, West Virginia and Arizona, were selected for analysis: The results indicate that Arizona can support air service under certain assumptions whereas West Virginia cannot.

  15. Ultra-Low Density Aerogel Mirror Substrates

    DTIC Science & Technology

    1993-04-01

    Silica aerogel materials were fabricated by both the high temperature and low temperature methods at the Lawrence Livermore National Laboratory in...evaporation techniques were used to planarize the silica aerogel with SiO 2 prior to metalization. The PECVD was performed at the Cornell University...incident hv. Defect Physics Silica aerogel is an amorphous SiO, matrix of high porosity (or a low density disordered material). The amorphous r~ature of

  16. Mucoadhesive dexamethasone acetate-polymyxin B sulfate cationic ocular nanoemulsion--novel combinatorial formulation concept.

    PubMed

    Li, X; Müller, R H; Keck, C M; Bou-Chacra, N A

    2016-06-01

    Dexamethasone acetate (DEX) and polymyxin B sulfate (polymyxin B) were formulated as a cationic nanoemulsion for the treatment of ophthalmic infections. As novel concept, the positive charge to achieve mucoadhesion was not generated by toxicologically and regulatorily problematic cationic lipids or polymers, but by using a positively charged drug in combination with positively charged preservatives. The preservative also acts as co-surfactant to stabilize the emulsion. Nanoemulsions with the lipid phase Eutanol G-Lipoid S 100 (70%:30%) containing 0.05% (w/w) DEX were produced by high pressure homogenization, followed by dissolving the hydrophilic molecules in the water phase, e.g. polymyxin B (0.1%, w/w), cetylpyridinium chloride (0.01%, w/w) and glycerol (2.6%, w/w) to yield a combination product. The particles were below 200 nm with narrow size distribution. The osmolality (374 mOsm/kg), pH (5.31) and viscosity (2.45 mPa s at 37 degrees C) were compatible to the ocular administration. The zeta potential of the optimized formulation was shifted from approx. +9 mV to -11 mV after mucin incubation. The in vitro test revealed no potential cytotoxicity. The final products were stable after 180 days of storage at 4 degrees C and room temperature. The developed product is a viable alternative to the commercial ophthalmic suspensions. Moreover, this concept of generating the positive charge by cationic drug and/or preservative addition can be transferred to other ophthalmic products.

  17. Mesophase and size manipulation of itraconazole liquid crystalline nanoparticles produced via quasi nanoemulsion precipitation.

    PubMed

    Mugheirbi, Naila A; Tajber, Lidia

    2015-10-01

    The fabrication of drug nanoparticles (NPs) with process-mediated tunable properties and performances continues to grow rapidly during the last decades. This study investigates the synthesis and phase tuning of nanoparticulate itraconazole (ITR) mesophases using quasi nanoemulsion precipitation from acetone/water systems to seek out an alternative pathway to the nucleation-based NP formation. ITR liquid crystalline (LC) phases were formed and nematic-smectic mesomorphism was achieved via controlling solvent:antisolvent temperature difference (ΔTS:AS). The use of ΔTS:AS=49.5°C was associated with a nematic assembly, while intercalated smectic A layering was observed at ΔTS:AS=0°C, with both phases confined in the nanospheres at room temperature. The quasi emulsion system has not been investigated at the nanoscale to date and in contrary to the microscale, quasi nanoemulsion was observed over the solvent:antisolvent viscosity ratios of 1:7-1:1.4. Poly(acrylic acid) in the solvent phase exhibited a concentration dependent interaction when ITR formed NPs. This nanodroplet-based approach enabled the preparation of a stable ITR nanodispersion using Poloxamer 407 at 80°C, which was unachievable before using precipitation via nucleation. Findings of this work lay groundwork in terms of rationalised molecular assembly as a tool in designing pharmaceutical LC NPs with tailored properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Nanoemulsion delivery systems for oil-soluble vitamins: Influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility.

    PubMed

    Ozturk, Bengu; Argin, Sanem; Ozilgen, Mustafa; McClements, David Julian

    2015-11-15

    The influence of carrier oil type on the bioaccessibility of vitamin D3 encapsulated within oil-in-water nanoemulsions prepared using a natural surfactant (quillaja saponin) was studied using a simulated gastrointestinal tract (GIT) model: mouth; stomach; small intestine. The rate of free fatty acid release during lipid digestion decreased in the following order: medium chain triglycerides (MCT) > corn oil ≈ fish oil > orange oil > mineral oil. Conversely, the measured bioaccessibility of vitamin D3 decreased in the following order: corn oil ≈ fish oil > orange oil > mineral oil > MCT. These results show that carrier oil type has a considerable impact on lipid digestion and vitamin bioaccessibility, which was attributed to differences in the release of bioactives from lipid droplets, and their solubilization in mixed micelles. Nanoemulsions prepared using long chain triglycerides (corn or fish oil) were most effective at increasing vitamin bioaccessibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The non-thermal origin of the tokamak low-density stability limit

    DOE PAGES

    Paz-Soldan, C.; La Haye, R. J.; Shiraki, D.; ...

    2016-04-13

    DIII-D plasmas at very low density exhibit onset of n=1 error field (EF) penetration (the `low-density locked mode') not at a critical density or EF, but instead at a critical level of runaway electron (RE) intensity. Raising the density during a discharge does not avoid EF penetration, so long as RE growth proceeds to the critical level. Penetration is preceded by non-thermalization of the electron cyclotron emission, anisotropization of the total pressure, synchrotron emission shape changes, as well as decreases in the loop voltage and bulk thermal electron temperature. The same phenomena occur despite various types of optimal EF correction,more » and in some cases modes are born rotating. Similar phenomena are also found at the low-density limit in JET. These results stand in contrast to the conventional interpretation of the low-density stability limit as being due to residual EFs and demonstrate a new pathway to EF penetration instability due to REs. Existing scaling laws for penetration project to increasing EF sensitivity as bulk temperatures decrease, though other possible mechanisms include classical tearing instability, thermo-resistive instability, and pressure-anisotropy driven instability. Regardless of first-principles mechanism, known scaling laws for Ohmic energy confinement combined with theoretical RE production rates allow rough extrapolation of the RE criticality condition, and thus, the low-density limit to other tokamaks. Furthermore, the extrapolated low-density limit by this pathway decreases with increasing machine size and is considerably below expected operating conditions for ITER. While likely unimportant for ITER, this effect can explain the low-density limit of existing tokamaks operating with small residual EFs.« less

  20. Nanomedicine for therapeutic drug therapy: Approaches to increase the efficacy of drug therapy with nanoemulsion delivery and reduce the toxicity of quantum dots

    NASA Astrophysics Data System (ADS)

    Kambalapally, Swetha Reddy

    The advancement of nanotechnology has paved the way for novel nanoscale materials for use in a wide range of applications. The use of these nanomaterials in biomedicine facilitates the improvement of existing technologies for disease prevention and treatment through diagnostics, tumor detection, drug delivery, medical imaging and vaccine development. Nanotechnology delivery systems for therapeutic uses includes the formulation of nanoparticles in emulsions. These novel delivery systems can improve drug efficacy by their ability to enhance bioavailability, minimize drug side effects, decrease drug toxicity, provide targeted site delivery and increase circulation of the drug in the blood. Additionally, these delivery systems also improve the drug stability and encapsulation efficiency. In the Introduction, this thesis will describe a novel technique for the preparation of nanoemulsions which was utilized in drug delivery and diagnostic applications. This novel Phase Inversion Temperature (PIT) method is a solvent and polymer-free and low energy requiring emulsification method, typically utilizing oils stabilized by nonionic surfactants to prepare water in oil (W/O) emulsions. The correlation between the particle size, zeta potential and the emulsion stability is described. The use of this nanoemulsion delivery system for pharmaceuticals and nutraceuticals by utilizing in vitro systems was investigated. Using the PIT method, a self assembling nanoemulsion (SANE) of gamma Tocotrienols (gammaT3), a component of Vitamin E family has been demonstrated to reduce cholesterol accumulation in HepG-2 cells. The nanoemulsion is stable and the particle size is around 20 nm with a polydispersity index (PDI) of 0.065. The effect of the nano gammaT3 on the metabolism of cholesterol, HMG-CoA activity and Apo-B levels were evaluated in an in vitro system utilizing HepG2 cells. A new class of nanoparticles, Quantum dots (QDs) has shown immense potential as novel nanomaterials used as

  1. Preparation of coffee oil-algae oil-based nanoemulsions and the study of their inhibition effect on UVA-induced skin damage in mice and melanoma cell growth.

    PubMed

    Yang, Chu-Ching; Hung, Chi-Feng; Chen, Bing-Huei

    2017-01-01

    Coffee grounds, a waste by-product generated after making coffee, contains approximately 15% coffee oil which can be used as a raw material in cosmetics. Algae oil rich in docosahexaenoic acid (DHA) has been demonstrated to possess anticancer and anti-inflammation functions. The objectives of this study were to develop a gas chromatography-mass spectrometry (GC-MS) method for the determination of fatty acids in coffee oil and algae oil and prepare a nanoemulsion for studying its inhibition effect on ultraviolet A-induced skin damage in mice and growth of melanoma cells B16-F10. A total of 8 and 5 fatty acids were separated and quantified in coffee oil and algae oil by GC-MS, respectively, with linoleic acid (39.8%) dominating in the former and DHA (33.9%) in the latter. A nanoemulsion with a particle size of 30 nm, zeta potential -72.72 mV, and DHA encapsulation efficiency 100% was prepared by using coffee oil, algae oil, surfactant (20% Span 80 and 80% Tween 80), and deionized water. Differential scanning calorimetry (DSC) analysis revealed a high stability of nanoemulsion when heated up to 110°C at a pH 6, whereas no significant changes in particle size distribution and pH occurred over a 90-day storage period at 4°C. Animal experiments showed that a dose of 0.1% coffee oil-algae oil nanoemulsion was effective in mitigating trans-epidermal water loss, skin erythema, melanin formation, and subcutaneous blood flow. Cytotoxicity test implied effective inhibition of melanoma cell growth by nanoemulsion with an IC 50 value of 26.5 µg/mL and the cell cycle arrested at G2/M phase. A dose-dependent upregulation of p53, p21, cyclin B, and cyclin A expressions and downregulation of CDK1 and CDK2 occurred. Also, both Bax and cytochrome c expressions were upregulated and bcl-2 expression downregulated, accompanied by a rise in caspase-3, caspase-8, and caspase-9 activities for apoptosis execution. Collectively, the apoptosis pathway of melanoma cells B16-F10 may involve

  2. Preparation of coffee oil-algae oil-based nanoemulsions and the study of their inhibition effect on UVA-induced skin damage in mice and melanoma cell growth

    PubMed Central

    Chen, Bing-Huei

    2017-01-01

    Coffee grounds, a waste by-product generated after making coffee, contains approximately 15% coffee oil which can be used as a raw material in cosmetics. Algae oil rich in docosahexaenoic acid (DHA) has been demonstrated to possess anticancer and anti-inflammation functions. The objectives of this study were to develop a gas chromatography-mass spectrometry (GC-MS) method for the determination of fatty acids in coffee oil and algae oil and prepare a nanoemulsion for studying its inhibition effect on ultraviolet A-induced skin damage in mice and growth of melanoma cells B16-F10. A total of 8 and 5 fatty acids were separated and quantified in coffee oil and algae oil by GC-MS, respectively, with linoleic acid (39.8%) dominating in the former and DHA (33.9%) in the latter. A nanoemulsion with a particle size of 30 nm, zeta potential −72.72 mV, and DHA encapsulation efficiency 100% was prepared by using coffee oil, algae oil, surfactant (20% Span 80 and 80% Tween 80), and deionized water. Differential scanning calorimetry (DSC) analysis revealed a high stability of nanoemulsion when heated up to 110°C at a pH 6, whereas no significant changes in particle size distribution and pH occurred over a 90-day storage period at 4°C. Animal experiments showed that a dose of 0.1% coffee oil-algae oil nanoemulsion was effective in mitigating trans-epidermal water loss, skin erythema, melanin formation, and subcutaneous blood flow. Cytotoxicity test implied effective inhibition of melanoma cell growth by nanoemulsion with an IC50 value of 26.5 µg/mL and the cell cycle arrested at G2/M phase. A dose-dependent upregulation of p53, p21, cyclin B, and cyclin A expressions and downregulation of CDK1 and CDK2 occurred. Also, both Bax and cytochrome c expressions were upregulated and bcl-2 expression downregulated, accompanied by a rise in caspase-3, caspase-8, and caspase-9 activities for apoptosis execution. Collectively, the apoptosis pathway of melanoma cells B16-F10 may involve

  3. Facial resemblance to emotions: group differences, impression effects, and race stereotypes.

    PubMed

    Zebrowitz, Leslie A; Kikuchi, Masako; Fellous, Jean-Marc

    2010-02-01

    The authors used connectionist modeling to extend previous research on emotion overgeneralization effects. Study 1 demonstrated that neutral expression male faces objectively resemble angry expressions more than female faces do, female faces objectively resemble surprise expressions more than male faces do, White faces objectively resemble angry expressions more than Black or Korean faces do, and Black faces objectively resemble happy and surprise expressions more than White faces do. Study 2 demonstrated that objective resemblance to emotion expressions influences trait impressions even when statistically controlling possible confounding influences of attractiveness and babyfaceness. It further demonstrated that emotion overgeneralization is moderated by face race and that racial differences in emotion resemblance contribute to White perceivers' stereotypes of Blacks and Asians. These results suggest that intergroup relations may be strained not only by cultural stereotypes but also by adaptive responses to emotion expressions that are overgeneralized to groups whose faces subtly resemble particular emotions. Copyright 2009 APA, all rights reserved

  4. A hypothesis to explain accuracy of wasp resemblances.

    PubMed

    Boppré, Michael; Vane-Wright, Richard I; Wickler, Wolfgang

    2017-01-01

    Mimicry is one of the oldest concepts in biology, but it still presents many puzzles and continues to be widely debated. Simulation of wasps with a yellow-black abdominal pattern by other insects (commonly called "wasp mimicry") is traditionally considered a case of resemblance of unprofitable by profitable prey causing educated predators to avoid models and mimics to the advantage of both (Figure 1a). However, as wasps themselves are predators of insects, wasp mimicry can also be seen as a case of resemblance to one's own potential antagonist. We here propose an additional hypothesis to Batesian and Müllerian mimicry (both typically involving selection by learning vertebrate predators; cf. Table 1) that reflects another possible scenario for the evolution of multifold and in particular very accurate resemblances to wasps: an innate, visual inhibition of aggression among look-alike wasps, based on their social organization and high abundance. We argue that wasp species resembling each other need not only be Müllerian mutualists and that other insects resembling wasps need not only be Batesian mimics, but an innate ability of wasps to recognize each other during hunting is the driver in the evolution of a distinct kind of masquerade, in which model, mimic, and selecting agent belong to one or several species (Figure  1b). Wasp mimics resemble wasps not (only) to be mistaken by educated predators but rather, or in addition, to escape attack from their wasp models. Within a given ecosystem, there will be selection pressures leading to masquerade driven by wasps and/or to mimicry driven by other predators that have to learn to avoid them. Different pressures by guilds of these two types of selective agents could explain the widely differing fidelity with respect to the models in assemblages of yellow jackets and yellow jacket look-alikes.

  5. Herbal infusions of black seed and wheat germ oil: Their chemical profiles, in vitro bio-investigations and effective formulations as Phyto-Nanoemulsions.

    PubMed

    Gumus, Z Pinar; Guler, Emine; Demir, Bilal; Barlas, F Baris; Yavuz, Murat; Colpankan, Dilara; Senisik, A Murat; Teksoz, Serap; Unak, Perihan; Coskunol, Hakan; Timur, Suna

    2015-09-01

    The reported studies related to black seed oil (BSO) and wheat germ oil (WGO) have illustrated that they have a wide range of biological activities. Therefore, enhancing the amount of bio-active compounds that caused higher cell based anti-oxidative effect as well as cell proliferation, etc. in seed oils, infusion of crude plant material has been gained importance as a traditional technique. Herein, we accomplished the infusion of Calendula flowers that also contains many phyto-constituents into BSO and WGO. After the infusion of oils, the change of phytochemical amount was investigated and evaluated according to the oils by chromatography, radical scavenging activity. Subsequently, for investigating the biological impact upon live cells, cytotoxicity, cell-based antioxidant capacity, wound healing and radioprotective activity were tested with monkey kidney fibroblast like cells (Vero) and HaCaT keratinocytes. In vitro cell based experiments (wound healing and radioprotective activity) confirmed that Calendula infused BSO and WGO have greater bio-activity when compared to those plain forms. The herbal oils prepared with an effective extraction technique were incorporated into nanoemulsion systems which will be then called as 'Phyto-Nanoemulsion'. After herbal oil biomolecules were encapsulated into nanoemulsion based delivery systems, the designed formulations were investigated in terms of biological activities. In conclusion, these preparations could be a good candidate as a part of dermal cosmetic products or food supplements which have the therapeutic efficiency, especially after radio- or chemotherapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. [Liesegang's rings resembling helminthiasis].

    PubMed

    Zámecník, M; Riedl, I

    1996-12-01

    So called Liesegang's rings are lamellar corpuscles which develop after periodical precipitation of oversaturated solutions in gel medium. They can occur in cysts, closed cavities, inflammatory exudates and necroses. They resemble parasitic eggs, larvae or adult forms. A case of 28-year-old woman is presented with many Liesegang's rings in a stuff from dilated renal calyx. Their preliminary evaluation considered helminths, especially Dioctophyma renale.

  7. Dynamics and diffusion mechanism of low-density liquid silicon

    DOE PAGES

    Shen, B.; Wang, Z. Y.; Dong, F.; ...

    2015-11-05

    A first-order phase transition from a high-density liquid to a low-density liquid has been proposed to explain the various thermodynamic anomies of water. It also has been proposed that such liquid–liquid phase transition would exist in supercooled silicon. Computer simulation studies show that, across the transition, the diffusivity drops roughly 2 orders of magnitude, and the structures exhibit considerable tetrahedral ordering. The resulting phase is a highly viscous, low-density liquid silicon. Investigations on the atomic diffusion of such a novel form of liquid silicon are of high interest. Here we report such diffusion results from molecular dynamics simulations using themore » classical Stillinger–Weber (SW) potential of silicon. We show that the atomic diffusion of the low-density liquid is highly correlated with local tetrahedral geometries. We also show that atoms diffuse through hopping processes within short ranges, which gradually accumulate to an overall random motion for long ranges as in normal liquids. There is a close relationship between dynamical heterogeneity and hopping process. We point out that the above diffusion mechanism is closely related to the strong directional bonding nature of the distorted tetrahedral network. Here, our work offers new insights into the complex behavior of the highly viscous low density liquid silicon, suggesting similar diffusion behaviors in other tetrahedral coordinated liquids that exhibit liquid–liquid phase transition such as carbon and germanium.« less

  8. The formulation of a nasal nanoemulsion zaleplon in situ gel for the treatment of insomnia.

    PubMed

    Hosny, Khaled Mohamed; Banjar, Zainy Mohammed

    2013-08-01

    Zaleplon is a drug used for the treatment of insomnia and is available in tablet form; however, it has two major problems. First, the drug undergoes extensive first pass metabolism, resulting in only 30% bioavailability, and second, the drug has a poor aqueous solubility, which delays the onset of action. The objective of this study is to utilise nanotechnology to formulate zaleplon into a nasal in situ nanoemulsion gel (NEG) to provide a solution for the previously mentioned problems. The solubility of zaleplon in various oils, surfactants and co-surfactants was estimated. Pseudo-ternary phase diagrams were developed and various nanoemulsion (NE) formulations were prepared; these formulations were subjected to visual characterisation, thermodynamic stability study and droplet size and conductivity measurements. Carbopol 934 was used as an in situ gelling agent. The gel strength, pH, gelation time, in vitro release and ex vivo nasal permeation were determined. The pharmacokinetic study of the NEG was carried out in rabbits. Stable NEs were successfully developed with a droplet size range of 35 to 73 nm. A NEG composed of 15% Miglyol, 30% Labrasol and 10% PEG 200 successfully provided the maximum in vitro and ex vivo permeation and enhanced the bioavailability in the rabbits by eightfold, when compared with the marketed tablets. The nasal NEG is a promising novel formula for zaleplon that has higher nasal tissue permeability and enhanced systemic bioavailability.

  9. Clathrates and beyond: Low-density allotropy in crystalline silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beekman, Matt; Wei, Kaya; Nolas, George S., E-mail: gnolas@usf.edu

    2016-12-15

    In its common, thermodynamically stable state, silicon adopts the same crystal structure as diamond. Although only a few alternative allotropic structures have been discovered and studied over the past six decades, advanced methods for structure prediction have recently suggested a remarkably rich low-density phase space that has only begun to be explored. The electronic properties of these low-density allotropes of silicon, predicted by first-principles calculations, indicate that these materials could offer a pathway to improving performance and reducing cost in a variety of electronic and energy-related applications. In this focus review, we provide an introduction and overview of recent theoreticalmore » and experimental results related to low-density allotropes of silicon, highlighting the significant potential these materials may have for technological applications, provided substantial challenges to their experimental preparation can be overcome.« less

  10. Low Bone Density and Bisphosphonate Use and the Risk of Kidney Stones.

    PubMed

    Prochaska, Megan; Taylor, Eric; Vaidya, Anand; Curhan, Gary

    2017-08-07

    Previous studies have demonstrated lower bone density in patients with kidney stones, but no longitudinal studies have evaluated kidney stone risk in individuals with low bone density. Small studies with short follow-up reported reduced 24-hour urine calcium excretion with bisphosphonate use. We examined history of low bone density and bisphosphonate use and the risk of incident kidney stone as well as the association with 24-hour calcium excretion. We conducted a prospective analysis of 96,092 women in the Nurses' Health Study II. We used Cox proportional hazards models to adjust for age, body mass index, thiazide use, fluid intake, supplemental calcium use, and dietary factors. We also conducted a cross-sectional analysis of 2294 participants using multivariable linear regression to compare 24-hour urinary calcium excretion between participants with and without a history of low bone density, and among 458 participants with low bone density, with and without bisphosphonate use. We identified 2564 incident stones during 1,179,860 person-years of follow-up. The multivariable adjusted relative risk for an incident kidney stone for participants with history of low bone density compared with participants without was 1.39 (95% confidence interval [95% CI], 1.20 to 1.62). Among participants with low bone density, the multivariable adjusted relative risk for an incident kidney stone for bisphosphonate users was 0.68 (95% CI, 0.48 to 0.98). In the cross-sectional analysis of 24-hour urine calcium excretion, the multivariable adjusted mean difference in 24-hour calcium was 10 mg/d (95% CI, 1 to 19) higher for participants with history of low bone density. However, among participants with history of low bone density, there was no association between bisphosphonate use and 24-hour calcium with multivariable adjusted mean difference in 24-hour calcium of -2 mg/d (95% CI, -25 to 20). Low bone density is an independent risk factor for incident kidney stone and is associated with

  11. Children's Explanations of Family Resemblances.

    ERIC Educational Resources Information Center

    Horobin, Karen D.

    Four studies investigated children's explanations for family resemblance and species-typical characteristics, under different conditions of biological parentage and rearing environment. Participating were 226 children between 3 and 11 years. Children Children were presented with a number of different tasks, some involving people and some domestic…

  12. Low Density ITB Studies Using the Upgraded C-Mod Reflectometry System

    NASA Astrophysics Data System (ADS)

    Dominguez, A.; Edlund, E.; Fiore, C. L.; Lin, L.; Marmar, E. S.; Snipes, J. A.; Porkolab, M.; Kramer, G. J.; Rowan, W. L.

    2007-11-01

    The Alcator C-Mod reflectometry system was recently upgraded in two ways: The low frequency channels were changed from amplitude modulation - in which two microwave signals, slightly separated in frequency, are injected into the plasma - to baseband, where a single frequency is used, in order to improve density fluctuation measurements. The second change, a variable frequency channel operating over the range from 122GHz to 140GHz (with corresponding density cutoffs of 1.84-2.43x10^20m-3) has been installed in collaboration with PPPL. Initial results from the upgraded system are presented, including the study of low density Internal Transport Barriers. Using O-mode waves, the reflectometry system is able to radially localize density fluctuations on the low field side along the tokamak midplane. It can, therefore, be used to probe the foot of low density ITBs. The corresponding reflectometry data will be compared to those of other fluctuation diagnostics, including Phase Contrast Imaging and magnetic pick-up coils.

  13. A review of low density porous materials used in laser plasma experiments

    NASA Astrophysics Data System (ADS)

    Nagai, Keiji; Musgrave, Christopher S. A.; Nazarov, Wigen

    2018-03-01

    This review describes and categorizes the synthesis and properties of low density porous materials, which are commonly referred to as foams and are utilized for laser plasma experiments. By focusing a high-power laser on a small target composed of these materials, high energy and density states can be produced. In the past decade or so, various new target fabrication techniques have been developed by many laboratories that use high energy lasers and consequently, many publications and reviews followed these developments. However, the emphasis so far has been on targets that did not utilize low density porous materials. This review therefore, attempts to redress this balance and endeavors to review low density materials used in laser plasma experiments in recent years. The emphasis of this review will be on aspects of low density materials that are of relevance to high energy laser plasma experiments. Aspects of low density materials such as densities, elemental compositions, macroscopic structures, nanostructures, and characterization of these materials will be covered. Also, there will be a brief mention of how these aspects affect the results in laser plasma experiments and the constrictions that these requirements put on the fabrication of low density materials relevant to this field. This review is written from the chemists' point of view to aid physicists and the new comers to this field.

  14. New Edible Bionanocomposite Prepared by Pectin and Clove Essential Oil Nanoemulsions.

    PubMed

    Sasaki, Ronaldo S; Mattoso, Luiz H C; de Moura, Márcia Regina

    2016-06-01

    Nanocomposites are being extremely investigated to provide packaging with interesting characteristics for packages. Because of essential oils' natural occurrence and antibacterial activity, they are considered as an alternative for synthetic additives in the food industry. In this paper, we studied an edible bionanocomposite film made up of pectin and clove essential oil nanoemulsion for application as edible package. Mechanical properties, water vapor permeability (WVP), and antibacterial activity were analyzed. From mechanical and WVP analyses, we noticed an interesting improvement in film properties. In the antibacterial activity test, disk diffusion was used to assess the inhibition zones of Escherichia coli and Staphylococcus aureus. With these results, we concluded that the most interesting results were promoted by smaller nanodroplets (diameter of approximately 142 nm).

  15. Low-density microcellular foam and method of making same

    DOEpatents

    Rinde, James A.

    1977-01-01

    Low-density microcellular foam having a cell size of not greater than 2 .mu.m and method of making by dissolving cellulose acetate in an acetone-based solvent, gelling the solution in a water bath maintained at 0.degree.-10.degree. C for a selected period of time to allow impurities to diffuse out, freezing the gel, and then freeze-drying wherein water and solvents sublime and the gel structure solidifies into low-density microcellular foam. The foam has a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3 and cell size of about 0.3 to 2 .mu.m. The small cell size foam is particularly applicable for encapsulation of laser targets.

  16. Scat-detection dogs survey low density moose in New York

    Treesearch

    Heidi Kretser; Michale Glennon; Alice Whitelaw; Aimee Hurt; Kristine Pilgrim; Michael Schwartz

    2016-01-01

    The difficulty of collecting occurrence and population dynamics data in mammalian populations of low density poses challenges for making informed management decisions. We assessed the use of scat-detection dogs to search for fecal pellets in a low density moose (Alces alces) population in the Adirondack Park in New York State, and the success rate of DNA...

  17. Biocompatible nanoemulsions based on hemp oil and less surfactants for oral delivery of baicalein with enhanced bioavailability

    PubMed Central

    Yin, Juntao; Xiang, Cuiyu; Wang, Peiqing; Yin, Yuyun; Hou, Yantao

    2017-01-01

    Baicalein (BCL) possesses high pharmacological activities but low solubility and stability in the intestinal tract. This study aimed to probe the potential of nanoemulsions (NEs) consisting of hemp oil and less surfactants in ameliorating the oral bioavailability of BCL. BCL-loaded NEs (BCL-NEs) were prepared by high-pressure homogenization technique to reduce the amount of surfactants. BCL-NEs were characterized by particle size, entrapment efficiency (EE), in vitro drug release, and morphology. Bioavailability was studied in Sprague-Dawley rats following oral administration of BCL suspensions, BCL conventional emulsions, and BCL-NEs. The obtained NEs were ~90 nm in particle size with an EE of 99.31%. BCL-NEs significantly enhanced the oral bioavailability of BCL, up to 524.7% and 242.1% relative to the suspensions and conventional emulsions, respectively. BCL-NEs exhibited excellent intestinal permeability and transcellular transport ability. The cytotoxicity of BCL-NEs was documented to be low and acceptable for oral purpose. Our findings suggest that such novel NEs and preparative process provide a promising alternative to current formulation technologies and suitable for oral delivery of drugs with bioavailability issues. PMID:28435268

  18. Biocompatible nanoemulsions based on hemp oil and less surfactants for oral delivery of baicalein with enhanced bioavailability.

    PubMed

    Yin, Juntao; Xiang, Cuiyu; Wang, Peiqing; Yin, Yuyun; Hou, Yantao

    2017-01-01

    Baicalein (BCL) possesses high pharmacological activities but low solubility and stability in the intestinal tract. This study aimed to probe the potential of nanoemulsions (NEs) consisting of hemp oil and less surfactants in ameliorating the oral bioavailability of BCL. BCL-loaded NEs (BCL-NEs) were prepared by high-pressure homogenization technique to reduce the amount of surfactants. BCL-NEs were characterized by particle size, entrapment efficiency (EE), in vitro drug release, and morphology. Bioavailability was studied in Sprague-Dawley rats following oral administration of BCL suspensions, BCL conventional emulsions, and BCL-NEs. The obtained NEs were ~90 nm in particle size with an EE of 99.31%. BCL-NEs significantly enhanced the oral bioavailability of BCL, up to 524.7% and 242.1% relative to the suspensions and conventional emulsions, respectively. BCL-NEs exhibited excellent intestinal permeability and transcellular transport ability. The cytotoxicity of BCL-NEs was documented to be low and acceptable for oral purpose. Our findings suggest that such novel NEs and preparative process provide a promising alternative to current formulation technologies and suitable for oral delivery of drugs with bioavailability issues.

  19. Development of Low Density, Flexible Carbon Phenolic Ablators

    NASA Technical Reports Server (NTRS)

    Stackpoole, Mairead; Thornton, Jeremy; Fan, Wendy; Covington, Alan; Doxtad, Evan; Beck, Robin; Gasch, Matt; Arnold, Jim

    2012-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was the enabling TPS material for the Stardust mission where it was used as a single piece heatshield. PICA has the advantages of low density (approximately 0.27 grams per cubic centimeter) coupled with efficient ablative capability at high heat fluxes. Due to its brittle nature and low strain to failure recent efforts at NASA ARC have focused on alternative architectures to yield flexible and more conformal carbon phenolic materials with comparable densities to PICA. This presentation will discuss flexible alternatives to PICA and include preliminary mechanical and thermal properties as well as recent arc jet and LHMEL screening test results.

  20. Sampling low-density gypsy moth populations

    Treesearch

    William E. Wallner; Clive G. Jones; Joseph S. Elkinton; Bruce L. Parker

    1991-01-01

    The techniques and methodology for sampling gypsy moth, Lymantria dispar L., at low densities, less than 100 egg masses/ha (EM/ha), are compared. Forest managers have constraints of time and cost, and need a useful, simple predictable means to assist them in sampling gypsy moth populations. A comparison of various techniques coupled with results of...

  1. Evidence of low-density and high-density liquid phases and isochore end point for water confined to carbon nanotube

    PubMed Central

    Nomura, Kentaro; Kaneko, Toshihiro; Bai, Jaeil; Francisco, Joseph S.; Yasuoka, Kenji; Zeng, Xiao Cheng

    2017-01-01

    Possible transition between two phases of supercooled liquid water, namely the low- and high-density liquid water, has been only predicted to occur below 230 K from molecular dynamics (MD) simulation. However, such a phase transition cannot be detected in the laboratory because of the so-called “no-man’s land” under deeply supercooled condition, where only crystalline ices have been observed. Here, we show MD simulation evidence that, inside an isolated carbon nanotube (CNT) with a diameter of 1.25 nm, both low- and high-density liquid water states can be detected near ambient temperature and above ambient pressure. In the temperature–pressure phase diagram, the low- and high-density liquid water phases are separated by the hexagonal ice nanotube (hINT) phase, and the melting line terminates at the isochore end point near 292 K because of the retracting melting line from 292 to 278 K. Beyond the isochore end point (292 K), low- and high-density liquid becomes indistinguishable. When the pressure is increased from 10 to 600 MPa along the 280-K isotherm, we observe that water inside the 1.25-nm-diameter CNT can undergo low-density liquid to hINT to high-density liquid reentrant first-order transitions. PMID:28373562

  2. Three-factor response surface optimization of nano-emulsion formation using a microfluidizer.

    PubMed

    Sadeghpour Galooyak, Saeed; Dabir, Bahram

    2015-05-01

    Emulsification of sunflower oil in water by microfluidization was studied. Response surface methodology (RSM) and the central composite design (CCD) were applied to determine the effects of certain process parameters on performance of the apparatus for optimization of nano-emulsion fabrication. Influence of pressure, oil content and number of passes on the disruption of emulsions was studied. Quadratic multiple regression models were chosen for two available responses, namely Sauter mean diameter (SMD) and Polydispersity index (PdI). Analysis of variance (ANOVA) showed a high coefficient of determination (R(2)) value for both responses, confirming adjustment of the models with experimental data. The SMD and the PdI decreased as the pressure of emulsification increased from 408 to 762.3 bar for the oil content of 5 vol% and from 408 to 854.4 bar for the oil content of 13 vol%, and thereafter, increasing the pressure up to 952 bar led to increasing the both responses. The results implied that laminar elongational flow is the alternative disruption mechanism in addition to inertia in turbulence flow, especially at low treatment pressures. Both of responses improved with increase in number of passes from 2 to 4 cycles. The oil content depicted low effect on responses; however, interaction of this parameter with other regressors pointed remarkable impact. Also, the effect of pressure on Kolmogorov micro-scale was studied. The results implied that Kolmogorov equation did not take into account the over-processing and was applicable only for disruption of droplets in the inertial turbulent flow.

  3. Method and composition for molding low density desiccant syntactic foam articles

    DOEpatents

    Lula, James W.; Schicker, James R.

    1984-01-01

    A method and a composition are provided for molding low density desiccant syntactic foam articles. A low density molded desiccant article may be made as a syntactic foam by blending a thermosetting resin, microspheres and molecular sieve desiccant powder, molding and curing. Such articles have densities of 0.2-0.9 g/cc, moisture capacities of 1-12% by weight, and can serve as light weight structural supports.

  4. Electrons In The Low Density Solar Wind

    NASA Technical Reports Server (NTRS)

    Ogilvie, Keith W.; Desch, Michael; Fitzenreiter, Richard; Vondrak, Richard R. (Technical Monitor)

    2000-01-01

    The recent occurrence of an interval (May 9th to May 12th, 1999) of abnormally low density solar wind has drawn attention to such events. The SWE instrument on the Wind spacecraft observed nine similar events between launch (November 1994) and August 1999: one in 1997, three in 1998, and five in January-August 1999. No such events were observed in 1996, the year of solar minimum. This already suggests a strong dependence upon solar activity. In this paper we discuss observations of the electron strahl, a strong anisotropy in the solar wind electrons above 60 eV directed along the magnetic field and observed continuously during the periods of low density in 1998 and 1999. When the solar wind density was less than 2/cc, the angular width of the strahl was below 3.5 degrees and the temperature deduced from the slope of the electron strahl phase density (as a function of energy in the energy range 200 to 800 eV) was 100 to 150 eV, equivalent to a typical coronal electron temperature. Three examples of this phenomenon, observed on Feb. 20- 22, April 26-27 and May 9-12, 1999, are discussed to show their similarity to one another. These electron observations are interpreted to show that the strahl occurs as a result of the conservation of the first adiabatic invariant, combined with the lack of coulomb collisions as suggested by Fairfield and Scudder, 1985.

  5. Improving GLOBALlAND30 Artificial Type Extraction Accuracy in Low-Density Residents

    NASA Astrophysics Data System (ADS)

    Hou, Lili; Zhu, Ling; Peng, Shu; Xie, Zhenlei; Chen, Xu

    2016-06-01

    GlobalLand 30 is the first 30m resolution land cover product in the world. It covers the area within 80°N and 80°S. There are ten classes including artificial cover, water bodies, woodland, lawn, bare land, cultivated land, wetland, sea area, shrub and snow,. The TM imagery from Landsat is the main data source of GlobalLand 30. In the artificial surface type, one of the omission error happened on low-density residents' part. In TM images, hash distribution is one of the typical characteristics of the low-density residents, and another one is there are a lot of cultivated lands surrounded the low-density residents. Thus made the low-density residents part being blurred with cultivated land. In order to solve this problem, nighttime light remote sensing image is used as a referenced data, and on the basis of NDBI, we add TM6 to calculate the amount of surface thermal radiation index TR-NDBI (Thermal Radiation Normalized Difference Building Index) to achieve the purpose of extracting low-density residents. The result shows that using TR-NDBI and the nighttime light remote sensing image are a feasible and effective method for extracting low-density residents' areas.

  6. Development of Food-Grade Curcumin Nanoemulsion and its Potential Application to Food Beverage System: Antioxidant Property and In Vitro Digestion.

    PubMed

    Joung, Hee Joung; Choi, Mi-Jung; Kim, Jun Tae; Park, Seok Hoon; Park, Hyun Jin; Shin, Gye Hwa

    2016-03-01

    Curcumin nanoemulsions (Cur-NEs) were developed with various surfactant concentrations by using high pressure homogenization and finally applied to the commercial milk system. Characterization of Cur-NEs was performed by measuring the droplet size and polydispersity index value at different Tween 20 concentrations. The morphology of the Cur-NEs was observed by confocal laser scanning microscopy and transmission electron microscopy. Antioxidant activity and in vitro digestion ability were tested using 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, pH-stat method, and thiobarbituric acid reactive substances assays. Cur-NEs were found to be physically stable for 1 mo at room temperature. The surfactant concentration affects particle formation and droplet size. The mean droplet size decreased from 122 to 90 nm when surfactant concentration increased 3 times. Cur-NEs had shown an effective oxygen scavenging activity. Cur-NEs-fortified milk showed significantly lower lipid oxidation than control (unfortified) milk and milk containing curcumin-free nanoemulsions. These properties make Cur-NEs suitable systems for the beverage industry. © 2016 Institute of Food Technologists®

  7. Recent origin of low trabecular bone density in modern humans

    PubMed Central

    Chirchir, Habiba; Kivell, Tracy L.; Ruff, Christopher B.; Hublin, Jean-Jacques; Carlson, Kristian J.; Zipfel, Bernhard; Richmond, Brian G.

    2015-01-01

    Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations. PMID:25535354

  8. Recent origin of low trabecular bone density in modern humans.

    PubMed

    Chirchir, Habiba; Kivell, Tracy L; Ruff, Christopher B; Hublin, Jean-Jacques; Carlson, Kristian J; Zipfel, Bernhard; Richmond, Brian G

    2015-01-13

    Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations.

  9. Improved oral bioavailability of 20(R)-25-methoxyl-dammarane-3β, 12β, 20-triol using nanoemulsion based on phospholipid complex: design, characterization, and in vivo pharmacokinetics in rats

    PubMed Central

    Zhang, Xiangrong; Zhang, Yi; Guo, Shuang; Bai, Feifei; Wu, Tong; Zhao, Yuqing

    2016-01-01

    The aim of the study was to improve the oral absorption of the compound 25-OCH3-PPD with poor hydrophilicity and lipophilicity. 25-OCH3-PPD-phospholipid complex was prepared by solvent evaporation, then characterized by differential scanning calorimetry, scanning electron microscopy, and infrared absorption spectroscopy. The aqueous solubility and oil–water partition coefficient were compared with the free compound. A nanoemulsion loaded with 25-OCH3-PPD-phospholipid complex was developed by dissolving the complex in water in the presence of hydrophilic surfactant under sonication. After oral administration of the nanoemulsion and the suspension of 25-OCH3-PPD in rats, the concentrations of 25-OCH3-PPD in plasma were determined by high-performance liquid chromatography–tandem mass spectrometry method. The results showed that the solubility of the complex in water and n-octanol was enhanced. The oil–water partition coefficient improved 1.7 times. Peak plasma concentration and area under the curve(0–24 h) of the nanoemulsion of 25-OCH3-PPD-phospholipid complex were higher than that of free compound by 3.9- and 3.5-folds. PMID:27877020

  10. Measurement of Flux Density of Cas A at Low Frequencies

    NASA Astrophysics Data System (ADS)

    Patil, Ajinkya; Fisher, R.

    2012-01-01

    Cas A is used as a flux calibrator throughout the radio spectrum. Therefore it is important to know the spectral and secular variations in its flux density. Earlier observations by Scott et. al. (1969) and Baars et. al. (1972) suggested a secular decrease in flux density of Cas A at a rate of about 1% per year at all frequencies. However later observations by Erickson & Perley (1975) and Read (1977) indicated anomalously high flux from Cas A at 38 MHz. Also, these observations suggested that the original idea of faster decay of the flux density rate at low frequencies may be in error or that something more complex than simple decay is affecting the flux density at low frequencies. The source changes at 38 MHz still remains a mystery. We intend to present the results of follow up observations made from 1995 to 1998 with a three element interferometer in Green Bank operating in frequency range 30 to 120 MHz. We will discuss the problems at such low frequencies due to large beamwidth and unstable ionosphere. We will also discuss the strategies we have used so far to to find the flux density of Cas A by calculating the ratio of flux density of Cas A to that of Cyg A, assuming flux density of Cyg A to be constant. Above mentioned work was performed in summer student program sponsored by National Radio Astronomy Observatory.

  11. Interaction of human low density lipoprotein and apolipoprotein B with ternary lipid microemulsion. Physical and functional properties.

    PubMed

    Chun, P W; Brumbaugh, E E; Shiremann, R B

    1986-12-31

    Based on data from sedimentation velocity experiments, electrophoresis, electron microscopy, cellular uptake studies, scanning molecular sieve chromatography using a quasi-three-dimensional data display and flow performance liquid chromatography (FPLC), models for the interaction of human serum low density lipoprotein (LDL) and of apolipoprotein B (apo B) with a ternary lipid microemulsion (ME) are proposed. The initial step in the interaction of LDL (Stokes radius 110 A) with the ternary microemulsion (Stokes radius 270 A) appears to be attachment of the LDL to emulsion particles. This attachment is followed by a very slow fusion into particles having a radius of approx. 280 A. Sonication of this mixture yields large aggregates. Electron micrographs of deoxycholate-solubilized apo B indicate an arrangement of apo B resembling strings of beads. During incubation, these particles also attach to the ternary microemulsion particles and, upon sonication, spherical particles result which resemble native LDL particles in size. Scanning chromatography corroborates the electron microscopy results. By appropriate choice of display angles in a quasi-three-dimensional display of the scanning data (corrected for gel apparent absorbance) taken at equal time intervals during passage of a sample through the column, changes in molecular radius of less than 10 A can be detected visually. Such a display gives a quantitative estimate of 101 +/- 2 A for these particles (compared to 110 A for native LDL). The LDL-ME particles and apo B-ME particles compete efficiently with native LDL for cellular binding and uptake. Cellular association studies indicate that both LDL- and apo B-ME particles are effective vehicles for lipid delivery into cells.

  12. Analysis of compaction shock interactions during DDT of low density HMX

    NASA Astrophysics Data System (ADS)

    Rao, Pratap T.; Gonthier, Keith A.

    2017-01-01

    Deflagration-to-Detonation Transition (DDT) in confined, low density granular HMX occurs by a complex mechanism that involves compaction shock interactions within the material. Piston driven DDT experiments indicate that detonation is abruptly triggered by the interaction of a strong combustion-supported secondary shock and a piston-supported primary (input) shock, where the nature of the interaction depends on initial packing density and primary shock strength. These interactions influence transition by affecting dissipative heating within the microstructure during pore collapse. Inert meso-scale simulations of successive shock loading of low density HMX are performed to examine how dissipation and hot-spot formation are affected by the initial density, and the primary and secondary shock strengths. This information is used to formulate an ignition and burn model for low density HMX that accounts for the effect of shock densensitization on burn. Preliminary DDT predictions are presented that illustrate how primary shock strength affects the transition mechanism.

  13. Herbicide dissipation from low density polyethylene mulch

    USDA-ARS?s Scientific Manuscript database

    Field and laboratory studies were conducted to examine herbicide dissipation when applied to low density polyethylene (LDPE) mulch for dry scenarios vs. washing off with water. In field studies, halosulfuron, paraquat, carfentrazone, glyphosate, and flumioxazin were applied to black 1.25-mil LDPE at...

  14. Effects of Lipids on in Vitro Release and Cellular Uptake of β-Carotene in Nanoemulsion-Based Delivery Systems.

    PubMed

    Yi, Jiang; Zhong, Fang; Zhang, Yuzhu; Yokoyama, Wallace; Zhao, Liqing

    2015-12-23

    β-Carotene (BC) nanoemulsions were successfully prepared by microfluidization. BC micellarization was significantly affected by bile salts and pancreatin concentration. Positive and linear correlation was observed between BC release and bile salts concentration. Pancreatin facilitated BC's release in simulated digestion. Compared to the control (bulk oil) (4.6%), nanoemulsion delivery systems significantly improved the micellarization of BC (70.9%). The amount of BC partitioned into micelles was positively proportional to the length of carrier oils. Unsaturated fatty acid (UFA)-rich oils were better than saturated fatty acid (SFA)-rich oils in transferring BC (p < 0.05). No significant difference was observed between monounsaturated fatty acid (MUFA)-rich oils and polyunsaturated fatty acid (PUFA)-rich oils (p > 0.05). A positive and linear relationship between the degree of lipolysis and the release of BC in vitro digestion was observed. Bile salts showed cytotoxicity to Caco-2 cells below 20 times dilution. BC uptake by Caco-2 cells was not affected by fatty acid (FA) compositions in micelles, but BC uptake was proportional to its concentration in the diluted micelle fraction. The results obtained are beneficial to encapsulate and deliver BC or other bioactive lipophilic carotenoids in a wide range of commercial products.

  15. Auto antibodies against oxidized low density lipoprotein in severe preeclampsia.

    PubMed

    Jain, Meenakshi; Sawhney, Harjeet; Aggarwal, Neelam; Vashistha, Kala; Majumdhar, Siddarth

    2004-06-01

    To study autoantibody titres against oxidized low density lipoprotein in preeclamsia. Ten millimeters of heparinized blood samples were collected from 20 primigravidae with severe preeclamsia (study group) and 20 gestation-matched normotensive primigravidae (control group). Concentration of malondialdehyde, metabolite of lipid peroxidation were measured in sera by HPLC and autoantibodies against oxidized low density lipoproteins (obtained after oxidation with 2 mm CuSO(4)) were determined by ELISA. Statistical analysis was performed by Student's t-test and chi(2) test. Mean triglyceride levels were significantly (P < 0.001) higher in the study group (193.20 +/- 31.16 mg/dL) compared to the control group (170.60 +/- 23.2 mg/dL). Mean plasma lipid per oxide levels were not significantly different between the study (4.45 +/- 1.28 mmol/mL) and control (3.88 +/- 0.99 mmol/mL) groups. The majority of women in both groups had low antibody titres (<1.32) against low density lipoprotein. Six women (30%) of the study group and four (20%) of the control group had high autoantibody titres (>/=1.32). In preeclamptic women, diastolic blood pressure, the amount of urinary protein excretion and the plasma level of urea were significantly higher (P < 0.05) in patients with higher auto antibody titre. Titres of autoantibodies to oxidized low density lipoprotein were similar in normotensive and preeclamptic women. In preeclamptic women, titres correlated positively with the severity of preeclampsia.

  16. Influence of weather on low larkspur (Delphinium nuttallianum) density

    USDA-ARS?s Scientific Manuscript database

    Delphinium nuttallianum (low larkspur) causes serious cattle losses on mountain rangelands in western North America. Risk of cattle deaths is related to density of low larkspurs. Our hypothesis was that warmer winter/spring conditions, coupled with below average precipitation, would result in reduc...

  17. Comparison of low density and high density pedicle screw instrumentation in Lenke 1 adolescent idiopathic scoliosis.

    PubMed

    Shen, Mingkui; Jiang, Honghui; Luo, Ming; Wang, Wengang; Li, Ning; Wang, Lulu; Xia, Lei

    2017-08-02

    The correlation between implant density and deformity correction has not yet led to a precise conclusion in adolescent idiopathic scoliosis (AIS). The aim of this study was to evaluate the effects of low density (LD) and high density (HD) pedicle screw instrumentation in terms of the clinical, radiological and Scoliosis Research Society (SRS)-22 outcomes in Lenke 1 AIS. We retrospectively reviewed 62 consecutive Lenke 1 AIS patients who underwent posterior spinal arthrodesis using all-pedicle screw instrumentation with a minimum follow-up of 24 months. The implant density was defined as the number of screws per spinal level fused. Patients were then divided into two groups according to the average implant density for the entire study. The LD group (n = 28) had fewer than 1.61 screws per level, while the HD group (n = 34) had more than 1.61 screws per level. The radiographs were analysed preoperatively, postoperatively and at final follow-up. The perioperative and SRS-22 outcomes were also assessed. Independent sample t tests were used between the two groups. Comparisons between the two groups showed no significant differences in the correction of the main thoracic curve and thoracic kyphosis, blood transfusion, hospital stay, and SRS-22 scores. Compared with the HD group, there was a decreased operating time (278.4 vs. 331.0 min, p = 0.004) and decreased blood loss (823.6 vs. 1010.9 ml, p = 0.048), pedicle screws needed (15.1 vs. 19.6, p < 0.001), and implant costs ($10,191.0 vs. $13,577.3, p = 0.003) in the LD group. Both low density and high density pedicle screw instrumentation achieved satisfactory deformity correction in Lenke 1 AIS patients. However, the operating time and blood loss were reduced, and the implant costs were decreased with the use of low screw density constructs.

  18. Diffusive dynamics during the high-to-low density transition in amorphous ice

    NASA Astrophysics Data System (ADS)

    Perakis, Fivos; Amann-Winkel, Katrin; Lehmkühler, Felix; Sprung, Michael; Mariedahl, Daniel; Sellberg, Jonas A.; Pathak, Harshad; Späh, Alexander; Cavalca, Filippo; Schlesinger, Daniel; Ricci, Alessandro; Jain, Avni; Massani, Bernhard; Aubree, Flora; Benmore, Chris J.; Loerting, Thomas; Grübel, Gerhard; Pettersson, Lars G. M.; Nilsson, Anders

    2017-08-01

    Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high- (HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distribution function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. The diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid-liquid transition in the ultraviscous regime.

  19. Density and temperature characterization of long-scale length, near-critical density controlled plasma produced from ultra-low density plastic foam

    PubMed Central

    Chen, S. N.; Iwawaki, T.; Morita, K.; Antici, P.; Baton, S. D.; Filippi, F.; Habara, H.; Nakatsutsumi, M.; Nicolaï , P.; Nazarov, W.; Rousseaux, C.; Starodubstev, M.; Tanaka, K. A.; Fuchs, J.

    2016-01-01

    The ability to produce long-scale length (i.e. millimeter scale-length), homogeneous plasmas is of interest in studying a wide range of fundamental plasma processes. We present here a validated experimental platform to create and diagnose uniform plasmas with a density close or above the critical density. The target consists of a polyimide tube filled with an ultra low-density plastic foam where it was heated by x-rays, produced by a long pulse laser irradiating a copper foil placed at one end of the tube. The density and temperature of the ionized foam was retrieved by using x-ray radiography and proton radiography was used to verify the uniformity of the plasma. Plasma temperatures of 5–10 eV and densities around 1021 cm−3 are measured. This well-characterized platform of uniform density and temperature plasma is of interest for experiments using large-scale laser platforms conducting High Energy Density Physics investigations. PMID:26923471

  20. The critical density for star formation in HII galaxies

    NASA Technical Reports Server (NTRS)

    Taylor, Christopher L.; Brinks, Elias; Skillman, Evan D.

    1993-01-01

    The star formation rate (SFR) in galaxies is believed to obey a power law relation with local gas density, first proposed by Schmidt (1959). Kennicutt (1989) has shown that there is a threshold density above which star formation occurs, and for densities at or near the threshold density, the DFR is highly non-linear, leading to bursts of star formation. Skillman (1987) empirically determined this threshold for dwarf galaxies to be approximately 1 x 10(exp 21) cm(exp -2), at a linear resolution of 500pc. During the course of our survey for HI companion clouds to HII galaxies, we obtained high resolution HI observations of five nearby HII galaxies. HII galaxies are low surface brightness, rich in HI, and contain one or a few high surface brightness knots whose optical spectra resemble those of HII regions. These knots are currently experiencing a burst of star formation. After Kennicutt (1989) we determine the critical density for star formation in the galaxies, and compare the predictions with radio and optical data.

  1. Method of making a cellulose acetate low density microcellular foam

    DOEpatents

    Rinde, James A.

    1978-01-01

    Low-density microcellular foam having a cell size of not greater than 2 .mu.m and method of making by dissolving cellulose acetate in an acetone-based solvent, gelling the solution in a water bath maintained at 0-10.degree. C for a selected period of time to allow impurities to diffuse out, freezing the gel, and then freeze-drying wherein water and solvents sublime and the gel structure solidifies into low-density microcellular foam. The foam has a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3 and cell size of about 0.3 to 2 .mu.m. The small cell size foam is particularly adaptable for encapsulation of laser targets.

  2. Density enhancement mechanism of upwind schemes for low Mach number flows

    NASA Astrophysics Data System (ADS)

    Lin, Bo-Xi; Yan, Chao; Chen, Shu-Sheng

    2018-06-01

    Many all-speed Roe schemes have been proposed to improve performance in terms of low speeds. Among them, the F-Roe and T-D-Roe schemes have been found to get incorrect density fluctuation in low Mach flows, which is expected to be with the square of Mach number. Asymptotic analysis presents the mechanism of how the density fluctuation problem relates to the incorrect order of terms in the energy equation \\tilde{ρ {\\tilde{a}} {\\tilde{U}}Δ U}. It is known that changing the upwind scheme coefficients of the pressure-difference dissipation term D^P and the velocity-difference dissipation term in the momentum equation D^{ρ U} to the order of O(c^{-1}) and O(c0) can improve the level of pressure and velocity accuracy at low speeds. This paper shows that corresponding changes in energy equation can also improve the density accuracy in low speeds. We apply this modification to a recently proposed scheme, TV-MAS, to get a new scheme, TV-MAS2. Unsteady Gresho vortex flow, double shear-layer flow, low Mach number flows over the inviscid cylinder, and NACA0012 airfoil show that energy equation modification in these schemes can obtain the expected square Ma scaling of density fluctuations, which is in good agreement with corresponding asymptotic analysis. Therefore, this density correction is expected to be widely implemented into all-speed compressible flow solvers.

  3. Response of ecosystem metabolism to low densities of spawning Chinook salmon

    USGS Publications Warehouse

    Benjamin, Joseph R.; Bellmore, J. Ryan; Watson, Grace A.

    2016-01-01

    Marine derived nutrients delivered by large runs of returning salmon are thought to subsidize the in situ food resources that support juvenile salmon. In the Pacific Northwest, USA, salmon have declined to <10% of their historical abundance, with subsequent declines of marine derived nutrients once provided by large salmon runs. We explored whether low densities (<0.001 spawners/m2) of naturally spawning Chinook Salmon (Oncorhynchus tshawytscha) can affect ecosystem metabolism. We measured gross primary production (GPP) and ecosystem respiration (ER) continuously before, during, and after salmon spawning. We compared downstream reaches with low densities of spawning salmon to upstream reaches with fewer or no spawners in 3 mid-sized (4th-order) rivers in northern Washington. In addition, we measured chemical, physical, and biological factors that may be important in controlling rates of GPP and ER. We observed that low densities of spawning salmon can increase GPP by 46% during spawning, but values quickly return to those observed before spawning. No difference in ER was observed between up- and downstream reaches. Based on our results, salmon density, temperature, and the proximity to salmon redds were the most important factors controlling rates of GPP, whereas temperature was most important for ER. These results suggest that even at low spawning densities, salmon can stimulate basal resources that may propagate up the food web. Understanding how recipient ecosystems respond to low levels of marine derived nutrients may inform nutrient augmentation studies aimed at enhancing fish populations.

  4. Linear Stability Analysis of Gravitational Effects on a Low-Density Gas Jet Injected into a High-Density Medium

    NASA Technical Reports Server (NTRS)

    Lawson, Anthony L.; Parthasarathy, Ramkumar N.

    2005-01-01

    The objective of this study was to determine the effects of buoyancy on the absolute instability of low-density gas jets injected into high-density gas mediums. Most of the existing analyses of low-density gas jets injected into a high-density ambient have been carried out neglecting effects of gravity. In order to investigate the influence of gravity on the near-injector development of the flow, a spatio-temporal stability analysis of a low-density round jet injected into a high-density ambient gas was performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The Briggs-Bers criterion was combined with the spatio-temporal stability analysis to determine the nature of the absolute instability of the jet whether absolutely or convectively unstable. The roles of the density ratio, Froude number, Schmidt number, and the lateral shift between the density and velocity profiles on the absolute instability of the jet were determined. Comparisons of the results with previous experimental studies show good agreement when the effects of these variables are combined together. Thus, the combination of these variables determines how absolutely unstable the jet will be.

  5. Effect of Partnership Status on Preferences for Facial Self-Resemblance

    PubMed Central

    Lindová, Jitka; Little, Anthony C.; Havlíček, Jan; Roberts, S. Craig; Rubešová, Anna; Flegr, Jaroslav

    2016-01-01

    Self-resemblance has been found to have a context-dependent effect when expressing preferences for faces. Whereas dissimilarity preference during mate choice in animals is often explained as an evolutionary adaptation to increase heterozygosity of offspring, self-resemblance can be also favored in humans, reflecting, e.g., preference for kinship cues. We performed two studies, using transformations of facial photographs to manipulate levels of resemblance with the rater, to examine the influence of self-resemblance in single vs. coupled individuals. Raters assessed facial attractiveness of other-sex and same-sex photographs according to both short-term and long-term relationship contexts. We found a preference for dissimilarity of other-sex and same-sex faces in single individuals, but no effect of self-resemblance in coupled raters. No effect of sex of participant or short-term vs. long-term attractiveness rating was observed. The results support the evolutionary interpretation that dissimilarity of other-sex faces is preferred by uncoupled individuals as an adaptive mechanism to avoid inbreeding. In contrast, lower dissimilarity preference of other-sex faces in coupled individuals may reflect suppressed attention to attractiveness cues in potential alternative partners as a relationship maintenance mechanism, and its substitution by attention to cues of kinship and psychological similarity connected with greater likelihood of prosocial behavior acquisition from such persons. PMID:27378970

  6. Low bone mineral density in ambulatory persons with cerebral palsy? A systematic review.

    PubMed

    Mus-Peters, Cindy T R; Huisstede, Bionka M A; Noten, Suzie; Hitters, Minou W M G C; van der Slot, Wilma M A; van den Berg-Emons, Rita J G

    2018-05-22

    Non-ambulatory persons with cerebral palsy are prone to low bone mineral density. In ambulatory persons with cerebral palsy, bone mineral density deficits are expected to be small or absent, but a consensus conclusion is lacking. In this systematic review bone mineral density in ambulatory persons with cerebral palsy (Gross Motor Function Classification Scales I-III) was studied. Medline, Embase, and Web of Science were searched. According to international guidelines, low bone mineral density was defined as Z-score ≤ -2.0. In addition, we focused on Z-score ≤ -1.0 because this may indicate a tendency towards low bone mineral density. We included 16 studies, comprising 465 patients aged 1-65 years. Moderate and conflicting evidence for low bone mineral density (Z-score ≤ -2.0) was found for several body parts (total proximal femur, total body, distal femur, lumbar spine) in children with Gross Motor Function Classification Scales II and III. We found no evidence for low bone mineral density in children with Gross Motor Function Classification Scale I or adults, although there was a tendency towards low bone mineral density (Z-score ≤ -1.0) for several body parts. Although more high-quality research is needed, results indicate that deficits in bone mineral density are not restricted to non-ambulatory people with cerebral palsy. Implications for Rehabilitation Although more high-quality research is needed, including adults and fracture risk assessment, the current study indicates that deficits in bone mineral density are not restricted to non-ambulatory people with CP. Health care professionals should be aware that optimal nutrition, supplements on indication, and an active lifestyle, preferably with weight-bearing activities, are important in ambulatory people with CP, also from a bone quality point-of-view. If indicated, medication and fall prevention training should be prescribed.

  7. Elastic Behavior and Platelet Retraction in Low- and High-Density Fibrin Gels

    PubMed Central

    Wufsus, Adam R.; Rana, Kuldeepsinh; Brown, Andrea; Dorgan, John R.; Liberatore, Matthew W.; Neeves, Keith B.

    2015-01-01

    Fibrin is a biopolymer that gives thrombi the mechanical strength to withstand the forces imparted on them by blood flow. Importantly, fibrin is highly extensible, but strain hardens at low deformation rates. The density of fibrin in clots, especially arterial clots, is higher than that in gels made at plasma concentrations of fibrinogen (3–10 mg/mL), where most rheology studies have been conducted. Our objective in this study was to measure and characterize the elastic regimes of low (3–10 mg/mL) and high (30–100 mg/mL) density fibrin gels using shear and extensional rheology. Confocal microscopy of the gels shows that fiber density increases with fibrinogen concentration. At low strains, fibrin gels act as thermal networks independent of fibrinogen concentration. Within the low-strain regime, one can predict the mesh size of fibrin gels by the elastic modulus using semiflexible polymer theory. Significantly, this provides a link between gel mechanics and interstitial fluid flow. At moderate strains, we find that low-density fibrin gels act as nonaffine mechanical networks and transition to affine mechanical networks with increasing strains within the moderate regime, whereas high-density fibrin gels only act as affine mechanical networks. At high strains, the backbone of individual fibrin fibers stretches for all fibrin gels. Platelets can retract low-density gels by >80% of their initial volumes, but retraction is attenuated in high-density fibrin gels and with decreasing platelet density. Taken together, these results show that the nature of fibrin deformation is a strong function of fibrin fiber density, which has ramifications for the growth, embolization, and lysis of thrombi. PMID:25564864

  8. Low density microcellular carbon foams and method of preparation

    DOEpatents

    Arnold, C. Jr.; Aubert, J.H.; Clough, R.L.; Rand, P.B.; Sylwester, A.P.

    1988-06-20

    A low density, open-celled microcellular carbon foam is disclosed which is prepared by dissolving a carbonizable polymer or copolymer in a solvent, pouring the solution into a mold, cooling the solution, removing the solvent, and then carbonizing the polymer or copolymer in a high temperature oven to produce the foam. If desired, an additive can be introduced in order to produce a doped carbon foam, and the foams can be made isotropic by selection of a suitable solvent. The low density, microcellular foams produced by this process are particularly useful in the fabrication of inertial confinement fusion targets, but can also be used as catalysts, absorbents, and electrodes.

  9. Low density microcellular carbon foams and method of preparation

    DOEpatents

    Arnold, Jr., Charles; Aubert, James H.; Clough, Roger L.; Rand, Peter B.; Sylwester, Alan P.

    1989-01-01

    A low density, open-celled microcellular carbon foam is disclosed which is prepared by dissolving a carbonizable polymer or copolymer in a solvent, pouring the solution into a mold, cooling the solution, removing the solvent, and then carbonizing the polymer or copolymer in a high temperature oven to produce the foam. If desired, an additive can be introduced in order to produce a doped carbon foam, and the foams can be made isotropic by selection of a suitable solvent. The low density, microcellular foams produced by this process are particularly useful in the fabrication of inertial confinement fusion targets, but can also be used as catalysts, absorbents, and electrodes.

  10. Modeling shock-driven reaction in low density PMDI foam

    NASA Astrophysics Data System (ADS)

    Brundage, Aaron; Alexander, C. Scott; Reinhart, William; Peterson, David

    Shock experiments on low density polyurethane foams reveal evidence of reaction at low impact pressures. However, these reaction thresholds are not evident over the low pressures reported for historical Hugoniot data of highly distended polyurethane at densities below 0.1 g/cc. To fill this gap, impact data given in a companion paper for polymethylene diisocyanate (PMDI) foam with a density of 0.087 g/cc were acquired for model validation. An equation of state (EOS) was developed to predict the shock response of these highly distended materials over the full range of impact conditions representing compaction of the inert material, low-pressure decomposition, and compression of the reaction products. A tabular SESAME EOS of the reaction products was generated using the JCZS database in the TIGER equilibrium code. In particular, the Arrhenius Burn EOS, a two-state model which transitions from an unreacted to a reacted state using single step Arrhenius kinetics, as implemented in the shock physics code CTH, was modified to include a statistical distribution of states. Hence, a single EOS is presented that predicts the onset to reaction due to shock loading in PMDI-based polyurethane foams. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.

  11. Diffusive dynamics during the high-to-low density transition in amorphous ice

    DOE PAGES

    Perakis, Fivos; Amann-Winkel, Katrin; Lehmkuhler, Felix; ...

    2017-06-26

    Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high- (HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distributionmore » function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. In conclusion, the diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid–liquid transition in the ultraviscous regime.« less

  12. Diffusive dynamics during the high-to-low density transition in amorphous ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perakis, Fivos; Amann-Winkel, Katrin; Lehmkuhler, Felix

    Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high- (HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distributionmore » function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. In conclusion, the diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid–liquid transition in the ultraviscous regime.« less

  13. LOW BONE MINERAL DENSITY AMONG PATIENTS WITH NEWLY DIAGNOSED RHEUMATOID ARTHRITIS.

    PubMed

    Arain, Shafique Rehman; Riaz, Amir; Nazir, Lubna; Umer, Tahira Perveen; Rasool, Tabe

    2016-01-01

    Osteoporosis is an early and common feature in rheumatoid arthritis. Apart from other manifestations, Osteoporosis is an extra-articular manifestation of rheumatoid arthritis whichmay result in increased risk of fractures, morbidity mortality, and associated healthcare costs. This study evaluates bone mineral density changes in patients withrheumatoid arthritis of recent-onset. This cross sectional descriptive study was conducted in the Rheumatology Department of a tertiary care hospital in Karachi. Data was collected from 76 patients presenting with seropositive or seronegative rheumatoid arthritis. Bone mineral density of these patients measured at lumbar spine and hip by using dual energy x-ray absorptiometrys can. Variables like age, gender, BMI, menstrual status, disease duration, erythrocyte sedimentation rate, vitamin D level, clinical disease activity index and seropositivity for rheumatoid arthritis were measured along with outcome variables. A total of 104 patients fulfilling inclusion criteria were registered with 28 excluded from study. A mong the remaining 76 patients, 68 (89.50%) were female, with mean age of patients (with low bone mineral density) as 50.95 ± 7.87 years. Nineteen (25%) patients had low bone mineral density, 68.52% had low BMD at spine while 10.52% at hip and 21.05% at spine and hip both. Low bone mineral density was found higher in patients with seronegative 7 (50%) as compared to seropositive patients 12 (19.4%) (p-value 0.017), whereas low bone mineral d ensity was found higher 12 (70.6%) among post-menopausal women. Low BMD was found in 25% of patients at earlier stage of the rheumatoid arthritis with seropositivity, age and menopausal status as significant risk factors.

  14. Vitamin E nanoemulsion activity on stored red blood cells.

    PubMed

    Silva, C A L; Azevedo Filho, C A; Pereira, G; Silva, D C N; Castro, M C A B; Almeida, A F; Lucena, S C A; Santos, B S; Barjas-Castro, M L; Fontes, A

    2017-06-01

    Stored red blood cells (RBCs) undergo numerous changes that have been termed RBC storage lesion, which can be related to oxidative damage. Vitamin E is an important antioxidant, acting on cell lipids. Thus, this study aimed to investigate vitamin E activity on stored RBCs. We prepared a vitamin E nanoemulsion that was added to RBC units and stored at 4 °C. Controls, without vitamin E, were kept under the same conditions. Reactive oxygen species (ROS) production was monitored for up to 35 days of storage. RBC elasticity was also evaluated using an optical tweezer system. Vitamin E-treated samples presented a significant decrease in ROS production. Additionally, the elastic constant for vitamin E-treated RBCs did not differ from the control. Vitamin E decreased the amount of ROS in stored RBCs. Because vitamin E acts on lipid oxidation, results suggest that protein oxidation should also be considered a key factor for erythrocyte elastic properties. Thus, further studies combining vitamin E with protein antioxidants deserve attention, aiming to better preserve overall stored RBC properties. © 2017 British Blood Transfusion Society.

  15. Intelligence and EEG current density using low-resolution electromagnetic tomography (LORETA).

    PubMed

    Thatcher, R W; North, D; Biver, C

    2007-02-01

    The purpose of this study was to compare EEG current source densities in high IQ subjects vs. low IQ subjects. Resting eyes closed EEG was recorded from 19 scalp locations with a linked ears reference from 442 subjects ages 5 to 52 years. The Wechsler Intelligence Test was administered and subjects were divided into low IQ (< or =90), middle IQ (>90 to <120) and high IQ (> or =120) groups. Low-resolution electromagnetic tomographic current densities (LORETA) from 2,394 cortical gray matter voxels were computed from 1-30 Hz based on each subject's EEG. Differences in current densities using t tests, multivariate analyses of covariance, and regression analyses were used to evaluate the relationships between IQ and current density in Brodmann area groupings of cortical gray matter voxels. Frontal, temporal, parietal, and occipital regions of interest (ROIs) consistently exhibited a direct relationship between LORETA current density and IQ. Maximal t test differences were present at 4 Hz, 9 Hz, 13 Hz, 18 Hz, and 30 Hz with different anatomical regions showing different maxima. Linear regression fits from low to high IQ groups were statistically significant (P < 0.0001). Intelligence is directly related to a general level of arousal and to the synchrony of neural populations driven by thalamo-cortical resonances. A traveling frame model of sequential microstates is hypothesized to explain the results.

  16. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic.

    PubMed

    Ozturk, Bengu; Argin, Sanem; Ozilgen, Mustafa; McClements, David Julian

    2015-12-01

    Natural biopolymers, whey protein isolate (WPI) and gum arabic (GA), were used to fabricate emulsion-based delivery systems for vitamin E-acetate. Stable delivery systems could be formed when vitamin E-acetate was mixed with sufficient orange oil prior to high pressure homogenization. WPI (d32=0.11 μm, 1% emulsifier) was better than GA (d32=0.38 μm, 10% emulsifier) at producing small droplets at low emulsifier concentrations. However, WPI-stabilized nanoemulsions were unstable to flocculation near the protein isoelectric point (pH 5.0), at high ionic strength (>100mM), and at elevated temperatures (>60 °C), whereas GA-stabilized emulsions were stable. This difference was attributed to differences in emulsifier stabilization mechanisms: WPI by electrostatic repulsion; GA by steric repulsion. These results provide useful information about the emulsifying and stabilizing capacities of natural biopolymers for forming food-grade vitamin-enriched delivery systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Method of Error Floor Mitigation in Low-Density Parity-Check Codes

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon (Inventor)

    2014-01-01

    A digital communication decoding method for low-density parity-check coded messages. The decoding method decodes the low-density parity-check coded messages within a bipartite graph having check nodes and variable nodes. Messages from check nodes are partially hard limited, so that every message which would otherwise have a magnitude at or above a certain level is re-assigned to a maximum magnitude.

  18. Viscosity and density of methanol/water mixtures at low temperatures

    NASA Technical Reports Server (NTRS)

    Austin, J. G.; Kurata, F.; Swift, G. W.

    1968-01-01

    Viscosity and density are measured at low temperatures for three methanol/water mixtures. Viscosity is determined by a modified falling cylinder method or a calibrated viscometer. Density is determined by the volume of each mixture contained in a calibrated glass cell placed in a constant-temperature bath.

  19. Low-Density Parity-Check (LDPC) Codes Constructed from Protographs

    NASA Astrophysics Data System (ADS)

    Thorpe, J.

    2003-08-01

    We introduce a new class of low-density parity-check (LDPC) codes constructed from a template called a protograph. The protograph serves as a blueprint for constructing LDPC codes of arbitrary size whose performance can be predicted by analyzing the protograph. We apply standard density evolution techniques to predict the performance of large protograph codes. Finally, we use a randomized search algorithm to find good protographs.

  20. Optical diagnostics with radiation trapping effect in low density and low temperature helium plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Wonwook, E-mail: wwlee@kaeri.re.kr; Kwon, Duck-Hee; Park, Kyungdeuk

    2016-06-15

    Low density (n{sub e} < 10{sup 11 }cm{sup −3}) and low temperature (T{sub e} < 10 eV) helium plasma was generated by hot filament discharge. Electron temperature and density of neutral helium plasma were measured by Langmuir probe and were determined by line intensity ratio method using optical emission spectroscopy with population modelings. Simple corona model and collisional-radiative (CR) model without consideration for radiation trapping effect are applied. In addition, CR model taking into account the radiation trapping effect (RTE) is adopted. The change of single line intensity ratio as a function of electron temperature and density were investigated when the RTE is included and excluded.more » The changes of multi line intensity ratios as a function of electron temperature were scanned for various radiative-excitation rate coefficients from the ground state and the helium gas pressures related with the RTE. Our CR modeling with RTE results in fairly better agreement of the spectroscopic diagnostics for the plasma temperature or density with the Langmuir probe measurements for various helium gas pressures than corona modeling and CR modeling without RTE.« less

  1. Replication of Low Density Electroformed Normal Incidence Optics

    NASA Technical Reports Server (NTRS)

    Ritter, Joseph M.

    2000-01-01

    Replicated electroformed light-weight nickel alloy mirrors can have high strength, low areal density (<3kg/m2), smooth finish, and controllable alloy composition. Progress at NASA MSFC SOMTC in developing normal incidence replicated Nickel mirrors will be reported.

  2. Role of strangeness and isospin in low density expansions of hadronic matter

    NASA Astrophysics Data System (ADS)

    de Oliveira, Thamirys; Menezes, Débora P.; Pinto, Marcus B.; Gulminelli, Francesca

    2018-05-01

    We compare relativistic mean-field models with their low density expansion counterparts used to mimic nonrelativistic models by consistently expanding the baryonic scalar density in powers of the baryonic number density up to O (13 /3 ) , which goes two orders beyond the order considered in previous works. We show that, due to the nontrivial density dependence of the Dirac mass, the convergence of the expansion is very slow, and the validity of the nonrelativistic approximation is questionable even at subsaturation densities. In order to analyze the roles played by strangeness and isospin we consider n -Λ and n -p matter separately. Our results indicate that these degrees of freedom play quite different roles in the expansion mechanism and n -Λ matter can be better described by low density expansions than n -p matter in general.

  3. Replication of Low Density Electroformed Normal Incidence Optics

    NASA Technical Reports Server (NTRS)

    Ritter, Joseph M.; Burdine, Robert (Technical Monitor)

    2001-01-01

    Replicated electroformed light-weight nickel alloy mirrors can have high strength, low areal density (less than 3kg/m2), smooth finish, and controllable alloy composition. Progress at NASA MSFC SOMTC in developing normal incidence replicated Nickel mirrors will be reported.

  4. Galaxy clusters and cold dark matter - A low-density unbiased universe?

    NASA Technical Reports Server (NTRS)

    Bahcall, Neta A.; Cen, Renyue

    1992-01-01

    Large-scale simulations of a universe dominated by cold dark matter (CDM) are tested against two fundamental properties of clusters of galaxies: the cluster mass function and the cluster correlation function. We find that standard biased CDM models are inconsistent with these observations for any bias parameter b. A low-density, low-bias CDM-type model, with or without a cosmological constant, appears to be consistent with both the cluster mass function and the cluster correlations. The low-density model agrees well with the observed correlation function of the Abell, Automatic Plate Measuring Facility (APM), and Edinburgh-Durham cluster catalogs. The model is in excellent agreement with the observed dependence of the correlation strength on cluster mean separation, reproducing the measured universal dimensionless cluster correlation. The low-density model is also consistent with other large-scale structure observations, including the APM angular galaxy-correlations, and for lambda = 1-Omega with the COBE results of the microwave background radiation fluctuations.

  5. Aircraft Configured for Flight in an Atmosphere Having Low Density

    NASA Technical Reports Server (NTRS)

    Teter, Jr., John E. (Inventor); Croom, Mark A. (Inventor); Smith, Stephen C. (Inventor); Gelhausen, Paul A. (Inventor); Hunter, Craig A. (Inventor); Riddick, Steven E. (Inventor); Guynn, Mark D. (Inventor); Paddock, David A. (Inventor)

    2012-01-01

    An aircraft is configured for flight in an atmosphere having a low density. The aircraft includes a fuselage, a pair of wings, and a rear stabilizer. The pair of wings extends from the fuselage in opposition to one another. The rear stabilizer extends from the fuselage in spaced relationship to the pair of wings. The fuselage, the wings, and the rear stabilizer each present an upper surface opposing a lower surface. The upper and lower surfaces have X, Y, and Z coordinates that are configured for flight in an atmosphere having low density.

  6. Low-Density Parity-Check Code Design Techniques to Simplify Encoding

    NASA Astrophysics Data System (ADS)

    Perez, J. M.; Andrews, K.

    2007-11-01

    This work describes a method for encoding low-density parity-check (LDPC) codes based on the accumulate-repeat-4-jagged-accumulate (AR4JA) scheme, using the low-density parity-check matrix H instead of the dense generator matrix G. The use of the H matrix to encode allows a significant reduction in memory consumption and provides the encoder design a great flexibility. Also described are new hardware-efficient codes, based on the same kind of protographs, which require less memory storage and area, allowing at the same time a reduction in the encoding delay.

  7. A numerical study of shock wave reflections on low density foam

    NASA Astrophysics Data System (ADS)

    Baer, M. R.

    1992-06-01

    A continuum mixture theory is used to describe shock wave reflections on low density open-cell polyurethane foam. Numerical simulations are compared to the shock tube experiments of Skews (1991) and detailed wave fields are shown of a shock wave interacting with a layer of foam adjacent to a rigid wall boundary. These comparisons demonstrate that a continuum mixture theory describes well the shock interactions with low density foam.

  8. The impact of vaporized nanoemulsions on ultrasound-mediated ablation.

    PubMed

    Zhang, Peng; Kopechek, Jonathan A; Porter, Tyrone M

    2013-01-01

    The clinical feasibility of using high-intensity focused ultrasound (HIFU) for ablation of solid tumors is limited by the high acoustic pressures and long treatment times required. The presence of microbubbles during sonication can increase the absorption of acoustic energy and accelerate heating. However, formation of microbubbles within the tumor tissue remains a challenge. Phase-shift nanoemulsions (PSNE) have been developed as a means for producing microbubbles within tumors. PSNE are emulsions of submicron-sized, lipid-coated, and liquid perfluorocarbon droplets that can be vaporized into microbubbles using short (<1 ms), high-amplitude (>5 MPa) acoustic pulses. In this study, the impact of vaporized phase-shift nanoemulsions on the time and acoustic power required for HIFU-mediated thermal lesion formation was investigated in vitro. PSNE containing dodecafluoropentane were produced with narrow size distributions and mean diameters below 200 nm using a combination of sonication and extrusion. PSNE was dispersed in albumin-containing polyacrylamide gel phantoms for experimental tests. Albumin denatures and becomes opaque at temperatures above 58°C, enabling visual detection of lesions formed from denatured albumin. PSNE were vaporized using a 30-cycle, 3.2-MHz, at an acoustic power of 6.4 W (free-field intensity of 4,586 W/cm(2)) pulse from a single-element, focused high-power transducer. The vaporization pulse was immediately followed by a 15-s continuous wave, 3.2-MHz signal to induce ultrasound-mediated heating. Control experiments were conducted using an identical procedure without the vaporization pulse. Lesion formation was detected by acquiring video frames during sonication and post-processing the images for analysis. Broadband emissions from inertial cavitation (IC) were passively detected with a focused, 2-MHz transducer. Temperature measurements were acquired using a needle thermocouple. Bubbles formed at the HIFU focus via PSNE vaporization

  9. Who Resembles Whom? Mimetic and Coincidental Look-Alikes among Tropical Reef Fishes

    PubMed Central

    Robertson, D. Ross

    2013-01-01

    Studies of mimicry among tropical reef-fishes usually give little or no consideration to alternative explanations for behavioral associations between unrelated, look-alike species that benefit the supposed mimic. I propose and assess such an alternative explanation. With mimicry the mimic resembles its model, evolved to do so in response to selection by the mimicry target, and gains evolved benefits from that resemblance. In the alternative, the social-trap hypothesis, a coincidental resemblance of the model to the “mimic” inadvertently attracts the latter to it, and reinforcement of this social trapping by learned benefits leads to the “mimic” regularly associating with the model. I examine three well known cases of supposed aggressive mimicry among reef-fishes in relation to nine predictions from these hypotheses, and assess which hypothesis offers a better explanation for each. One case, involving precise and complex morphological and behavioral resemblance, is strongly consistent with mimicry, one is inconclusive, and one is more consistent with a social-trap based on coincidental, imprecise resemblance. Few cases of supposed interspecific mimicry among tropical reef fishes have been examined in depth, and many such associations may involve social traps arising from generalized, coincidental resemblance. Mimicry may be much less common among these fishes than is generally thought. PMID:23372795

  10. High energy density capacitors for low cost applications

    NASA Astrophysics Data System (ADS)

    Iyore, Omokhodion David

    Polyvinylidene fluoride (PVDF) and its copolymers with trifluoroethylene, hexafluoropropylene and chlorotrifluoroethylene are the most widely investigated ferroelectric polymers, due to their relatively high electromechanical properties and potential to achieve high energy density. [Bauer, 2010; Zhou et al., 2009] The research community has focused primarily on melt pressed or extruded films of PVDF-based polymers to obtain the highest performance with energy density up to 25 Jcm-3. [Zhou et al., 2009] Solution processing offers an inexpensive, low temperature alternative, which is also easily integrated with flexible electronics. This dissertation focuses on the fabrication of solution-based polyvinylidene fluoride-hexafluoropropylene metal-insulator-metal capacitors on flexible substrates using a photolithographic process. Capacitors were optimized for maximum energy density, high dielectric strength and low leakage current density. It is demonstrated that with the right choice of solvent, electrodes, spin-casting and annealing conditions, high energy density thin film capacitors can be fabricated repeatably and reproducibly. The high electric field dielectric constants were measured and the reliabilities of the polymer capacitors were also evaluated via time-zero breakdown and time-dependent breakdown techniques. Chapter 1 develops the motivation for this work and provides a theoretical overview of dielectric materials, polarization, leakage current and dielectric breakdown. Chapter 2 is a literature review of polymer-based high energy density dielectrics and covers ferroelectric polymers, highlighting PVDF and some of its derivatives. Chapter 3 summarizes some preliminary experimental work and presents materials and electrical characterization that support the rationale for materials selection and process development. Chapter 4 discusses the fabrication of solution-processed PVDF-HFP and modification of its properties by photo-crosslinking. It is followed by a

  11. Low-density lipoprotein reconstituted by pyropheophorbide cholesteryl oleate as target-specific photosensitizer.

    PubMed

    Zheng, Gang; Li, Hui; Zhang, Min; Lund-Katz, Sissel; Chance, Britton; Glickson, Jerry D

    2002-01-01

    To target tumors overexpressing low-density lipoprotein receptors (LDLr), a pyropheophorbide cholesterol oleate conjugate was synthesized and successfully reconstituted into the low-density lipoprotein (LDL) lipid core. Laser scanning confocal microscopy studies demonstrated that this photosensitizer-reconstituted LDL can be internalized via LDLr by human hepatoblastoma G(2) (HepG(2)) tumor cells.

  12. Aircraft requirements for low/medium density markets

    NASA Technical Reports Server (NTRS)

    Ausrotas, R.; Dodge, S.; Faulkner, H.; Glendinning, I.; Hays, A.; Simpson, R.; Swan, W.; Taneja, N.; Vittek, J.

    1973-01-01

    A study was conducted to determine the demand for and the economic factors involved in air transportation in a low and medium density market. The subjects investigated are as follows: (1) industry and market structure, (2) aircraft analysis, (3) economic analysis, (4) field surveys, and (5) computer network analysis. Graphs are included to show the economic requirements and the aircraft performance characteristics.

  13. Experimental evidence of low-density liquid water upon rapid decompression

    PubMed Central

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Shen, Guoyin

    2018-01-01

    Water is an extraordinary liquid, having a number of anomalous properties which become strongly enhanced in the supercooled region. Due to rapid crystallization of supercooled water, there exists a region that has been experimentally inaccessible for studying deeply supercooled bulk water. Using a rapid decompression technique integrated with in situ X-ray diffraction, we show that a high-pressure ice phase transforms to a low-density noncrystalline (LDN) form upon rapid release of pressure at temperatures of 140–165 K. The LDN subsequently crystallizes into ice-Ic through a diffusion-controlled process. Together with the change in crystallization rate with temperature, the experimental evidence indicates that the LDN is a low-density liquid (LDL). The measured X-ray diffraction data show that the LDL is tetrahedrally coordinated with the tetrahedral network fully developed and clearly linked to low-density amorphous ices. On the other hand, there is a distinct difference in structure between the LDL and supercooled water or liquid water in terms of the tetrahedral order parameter. PMID:29440411

  14. H2S-releasing nanoemulsions: a new formulation to inhibit tumor cells proliferation and improve tissue repair

    PubMed Central

    Carotenuto, Felicia; Khashoggi, Haneen A.; Nanni, Francesca; Melino, Sonia

    2016-01-01

    The improvement of solubility and/or dissolution rate of poorly soluble natural compounds is an ideal strategy to make them optimal candidates as new potential drugs. Accordingly, the allyl sulfur compounds and omega-3 fatty acids are natural hydrophobic compounds that exhibit two important combined properties: cardiovascular protection and antitumor activity. Here, we have synthesized and characterized a novel formulation of diallyl disulfide (DADS) and α-linolenic acid (ALA) as protein-nanoemulsions (BAD-NEs), using ultrasounds. BAD-NEs are stable over time at room temperature and show antioxidant and radical scavenging property. These NEs are also optimal H2S slow-release donors and show a significant anti-proliferative effect on different human cancer cell lines: MCF-7 breast cancer and HuT 78 T-cell lymphoma cells. BAD-NEs are able to regulate the ERK1/2 pathway, inducing apoptosis and cell cycle arrest at the G0/G1 phase. We have also investigated their effect on cell proliferation of human adult stem/progenitor cells. Interestingly, BAD-NEs are able to improve the Lin– Sca1+ human cardiac progenitor cells (hCPC) proliferation. This stem cell growth stimulation is combined with the expression and activation of proteins involved in tissue-repair, such as P-AKT, α-sma and connexin 43. Altogether, our results suggest that these antioxidant nanoemulsions might have potential application in selective cancer therapy and for promoting the muscle tissue repair. PMID:27741519

  15. Beneficial effects of curcumin nano-emulsion on spermatogenesis and reproductive performance in male rats under protein deficient diet model: enhancement of sperm motility, conservancy of testicular tissue integrity, cell energy and seminal plasma amino acids content.

    PubMed

    Ahmed-Farid, Omar A H; Nasr, Maha; Ahmed, Rania F; Bakeer, Rofanda M

    2017-09-02

    Malnutrition resulting from protein and calorie deficiency continues to be a major concern worldwide especially in developing countries. Specific deficiencies in the protein intake can adversely influence reproductive performance. The present study aimed to evaluate the effects of curcumin and curcumin nano-emulsion on protein deficient diet (PDD)-induced testicular atrophy, troubled spermatogenesis and decreased reproductive performance in male rats. Juvenile rats were fed the protein deficient diet (PDD) for 75 days. Starting from day 60 the rats were divided into 4 groups and given the corresponding treatments for the last 15 days orally and daily as follows: 1st group; curcumin group (C) received 50 mg/kg curcumin p.o. 2 nd group; curcumin nano-form low dose group (NCL) received 2.5 mg/kg nano-curcumin. 3rd group; curcumin nano-form high dose group (NCH) received 5 mg/kg nano-curcumin. 4th group served as malnutrition group (PDD group) receiving the protein deficient diet daily for 75 days and received distilled water ingestions (5 ml/kg p.o) daily for the last 15 days of the experiment. A normal control group was kept under the same conditions for the whole experiment and received normal diet according to nutrition requirement center daily for 75 days and received distilled water ingestions (5 ml/kg p.o) daily for the last 15 days of the experiment. PDD induced significant (P < 0.05) reduction in serum testosterone level, sperm motility, testicular GSH, CAT, SOD, testicular cell energy (ATP, ADP and AMP), essential and non-essential amino acids in seminal plasma, an increase in testicular MDA, NOx, GSSG and 8-OHDG. Data was confirmed by histological examination and revealed pathological alteration in the PDD group. Ingestion of curcumin (50 mg/kg) and curcumin nano-emulsion (2.5 and 5 mg/kg) showed significant (P< 0.05) amelioration effects against PDD-induced disrupted reproductive performance as well as biochemical and pathological

  16. Methods for passivating silicon devices at low temperature to achieve low interface state density and low recombination velocity while preserving carrier lifetime

    DOEpatents

    Chen, Zhizhang; Rohatgi, Ajeet

    1995-01-01

    A new process has been developed to achieve a very low SiO.sub.x /Si interface state density D.sub.it, low recombination velocity S (<2 cm/s), and high effective carrier lifetime T.sub.eff (>5 ms) for oxides deposited on silicon substrates at low temperature. The technique involves direct plasma-enhanced chemical vapor deposition (PECVD), with appropriate growth conditions, followed by a photo-assisted rapid thermal annealing (RTA) process. Approximately 500-A-thick SiO.sub.x layers are deposited on Si by PECVD at 250.degree. C. with 0.02 W/cm.sup.-2 rf power, then covered with SiN or an evaporated thin aluminum layer, and subjected to a photo-assisted anneal in forming gas ambient at 350.degree. C., resulting in an interface state density D.sub.it in the range of about 1-4.times.10.sup.10 cm.sup.-2 eV.sup.-1, which sets a record for the lowest interface state density D.sub.it for PECVD oxides fabricated to date. Detailed analysis shows that the PECVD deposition conditions, photo-assisted anneal, forming gas ambient, and the presence of an aluminum layer on top of the oxides during the anneal, all contributed to this low value of interface state density D.sub.it. Detailed metal-oxide semiconductor analysis and model calculations show that such a low recombination velocity S is the result of moderately high positive oxide charge (5.times.10.sup.11 -1.times.10.sup.12 cm.sup.-2) and relatively low midgap interface state density (1.times.10.sup.10 -4.times.10.sup.10 cm.sup.-2 eV.sup.-1). Photo-assisted anneal was found to be superior to furnace annealing, and a forming gas ambient was better than a nitrogen ambient for achieving a very low surface recombination velocity S.

  17. The utility of low-density genotyping for imputation in the Thoroughbred horse

    PubMed Central

    2014-01-01

    Background Despite the dramatic reduction in the cost of high-density genotyping that has occurred over the last decade, it remains one of the limiting factors for obtaining the large datasets required for genomic studies of disease in the horse. In this study, we investigated the potential for low-density genotyping and subsequent imputation to address this problem. Results Using the haplotype phasing and imputation program, BEAGLE, it is possible to impute genotypes from low- to high-density (50K) in the Thoroughbred horse with reasonable to high accuracy. Analysis of the sources of variation in imputation accuracy revealed dependence both on the minor allele frequency of the single nucleotide polymorphisms (SNPs) being imputed and on the underlying linkage disequilibrium structure. Whereas equidistant spacing of the SNPs on the low-density panel worked well, optimising SNP selection to increase their minor allele frequency was advantageous, even when the panel was subsequently used in a population of different geographical origin. Replacing base pair position with linkage disequilibrium map distance reduced the variation in imputation accuracy across SNPs. Whereas a 1K SNP panel was generally sufficient to ensure that more than 80% of genotypes were correctly imputed, other studies suggest that a 2K to 3K panel is more efficient to minimize the subsequent loss of accuracy in genomic prediction analyses. The relationship between accuracy and genotyping costs for the different low-density panels, suggests that a 2K SNP panel would represent good value for money. Conclusions Low-density genotyping with a 2K SNP panel followed by imputation provides a compromise between cost and accuracy that could promote more widespread genotyping, and hence the use of genomic information in horses. In addition to offering a low cost alternative to high-density genotyping, imputation provides a means to combine datasets from different genotyping platforms, which is becoming

  18. Synthesis of nanostructured/macroscopic low-density copper foams based on metal-coated polymer core–shell particles [Templated synthesis of nanowalled low-density copper foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung Ho; Bazin, Nick; Shaw, Jessica I.

    A robust, millimeter-sized low-density Cu foam with ~90% (v/v) porosity, ~30 nm thick walls, and ~1 μm diameter spherical pores is prepared by the slip-casting of metal-coated polymer core–shell particles followed by a thermal removal of the polymer. In this paper, we report our key findings that enable the development of the low-density Cu foams. First, we need to synthesize polystyrene (PS) particles coated with a very thin Cu layer (in the range of tens of nanometers). A simple reduction in the amount of Cu deposited onto the PS was not sufficient to form such a low-density Cu foams duemore » to issues related to foam collapse and densification upon the subsequent polymer removal step. Precise control over the morphology of the Cu coating on the particles is essential for the synthesis of a lower density of foams. Second, improving the dispersion of PS–Cu particles in a suspension used for the casting as well as careful optimization of a baking condition minimize the formation of irregular large voids, leading to Cu foams with a more uniform packing and a better connectivity of neighboring Cu hollow shells. Finally, we analyzed mechanical properties of the Cu foams with a depth-sensing indentation test. The uniform Cu foams show a significant improvement in mechanical properties (~1.5× modulus and ~3× hardness) compared to those of uncontrolled foam samples with a similar foam density but irregular large voids. As a result, higher surface areas and a good electric conductivity of the Cu foams present a great potential to future applications.« less

  19. Synthesis of nanostructured/macroscopic low-density copper foams based on metal-coated polymer core–shell particles [Templated synthesis of nanowalled low-density copper foams

    DOE PAGES

    Kim, Sung Ho; Bazin, Nick; Shaw, Jessica I.; ...

    2016-12-06

    A robust, millimeter-sized low-density Cu foam with ~90% (v/v) porosity, ~30 nm thick walls, and ~1 μm diameter spherical pores is prepared by the slip-casting of metal-coated polymer core–shell particles followed by a thermal removal of the polymer. In this paper, we report our key findings that enable the development of the low-density Cu foams. First, we need to synthesize polystyrene (PS) particles coated with a very thin Cu layer (in the range of tens of nanometers). A simple reduction in the amount of Cu deposited onto the PS was not sufficient to form such a low-density Cu foams duemore » to issues related to foam collapse and densification upon the subsequent polymer removal step. Precise control over the morphology of the Cu coating on the particles is essential for the synthesis of a lower density of foams. Second, improving the dispersion of PS–Cu particles in a suspension used for the casting as well as careful optimization of a baking condition minimize the formation of irregular large voids, leading to Cu foams with a more uniform packing and a better connectivity of neighboring Cu hollow shells. Finally, we analyzed mechanical properties of the Cu foams with a depth-sensing indentation test. The uniform Cu foams show a significant improvement in mechanical properties (~1.5× modulus and ~3× hardness) compared to those of uncontrolled foam samples with a similar foam density but irregular large voids. As a result, higher surface areas and a good electric conductivity of the Cu foams present a great potential to future applications.« less

  20. Unexpected storm-time nightside plasmaspheric density enhancement at low L shell

    NASA Astrophysics Data System (ADS)

    Chu, X.; Bortnik, J.; Denton, R. E.; Yue, C.

    2017-12-01

    We have developed a three-dimensional dynamic electron density (DEN3D) model in the inner magnetosphere using a neural network approach. The DEN3D model can provide spatiotemporal distribution of the electron density at any location and time that spacecraft observations are not available. Given DEN3D's good performance in predicting the structure and dynamic evolution of the plasma density, the salient features of the DEN3D model can be used to gain further insight into the physics. For instance, the DEN3D models can be used to find unusual phenomena that are difficult to detect in observations or simulations. We report, for the first time, an unexpected plasmaspheric density increase at low L shell regions on the nightside during the main phase of a moderate storm during 12-16 October 2004, as opposed to the expected density decrease due to storm-time plasmaspheric erosion. The unexpected density increase is first discovered in the modeled electron density distribution using the DEN3D model, and then validated using in-situ density measurements obtained from the IMAGE satellite. The density increase was likely caused by increased earthward transverse field plasma transport due to enhanced nightside ExB drift, which coincided with enhanced solar wind electric field and substorm activity. This is consistent with the results of physics-based simulation SAMI3 model which show earthward enhanced plasma transport and electron density increase at low L shells during storm main phase.

  1. Observation of low magnetic field density peaks in helicon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.

    2013-04-15

    Single density peak has been commonly observed in low magnetic field (<100 G) helicon discharges. In this paper, we report the observations of multiple density peaks in low magnetic field (<100 G) helicon discharges produced in the linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. Experiments are carried out using argon gas with m = +1 right helical antenna operating at 13.56 MHz by varying the magnetic field from 0 G to 100 G. The plasma density varies with varying the magnetic field at constant input power and gas pressure and reaches to its peakmore » value at a magnetic field value of {approx}25 G. Another peak of smaller magnitude in density has been observed near 50 G. Measurement of amplitude and phase of the axial component of the wave using magnetic probes for two magnetic field values corresponding to the observed density peaks indicated the existence of radial modes. Measured parallel wave number together with the estimated perpendicular wave number suggests oblique mode propagation of helicon waves along the resonance cone boundary for these magnetic field values. Further, the observations of larger floating potential fluctuations measured with Langmuir probes at those magnetic field values indicate that near resonance cone boundary; these electrostatic fluctuations take energy from helicon wave and dump power to the plasma causing density peaks.« less

  2. Anomalous low strain induced by surface charge in nanoporous gold with low relative density.

    PubMed

    Liu, Feng; Ye, Xing-Long; Jin, Hai-Jun

    2017-07-26

    The surface stress induced axial strain in a fiber-like solid is larger than its radical strain, and is also greater than the radical strain in similar-sized spherical solids. It is thus envisaged that the surface-induced macroscopic dimension change (i.e., actuation strain) in nanoporous gold (NPG) increases with decreasing relative density, or alternatively, with an increasing ratio between volumes of fiber-like ligaments and sphere-like nodes. In this study, electrochemical actuations of NPG with similar structure sizes, same (oxide-covered) surface state but different relative densities were characterized in situ in response to surface charging/discharging. We found that the actuation strain amplitude did not increase, but decreased dramatically with decreasing relative density of NPG, in contrast to the above prediction. The actuation strain decreased abruptly when the relative density of NPG was decreased to below 0.25, when the Au content in the AuAg precursor was below 20 at%. Further studies indicate that this anomalous behavior cannot be explained by potential- or size-dependences of the elasticity, the structure difference arising from different dealloying rates, or additional strain induced by the external load during dilatometry experiments. In NPG with low relative density, mutual movements of nano-ligaments may occur in the pore space and disconnected regions, which may compensate the local strain in ligaments and account for the anomalous low actuation strain in macroscopic NPG samples.

  3. Mercury Slovenian soils: High, medium and low sample density geochemical maps

    NASA Astrophysics Data System (ADS)

    Gosar, Mateja; Šajn, Robert; Teršič, Tamara

    2017-04-01

    Regional geochemical survey was conducted in whole territory of Slovenia (20273 km2). High, medium and low sample density surveys were compared. High sample density represented the regional geochemical data set supplemented by local high-density sampling data (irregular grid, n=2835). Medium-density soil sampling was performed in a 5 x 5 km grid (n=817) and low-density geochemical survey was conducted in a sampling grid 25 x 25 km (n=54). Mercury distribution in Slovenian soils was determined with models of mercury distribution in soil using all three data sets. A distinct Hg anomaly in western part of Slovenia is evident on all three models. It is a consequence of 500-years of mining and ore processing in the second largest mercury mine in the world, the Idrija mine. The determined mercury concentrations revealed an important difference between the western and the eastern parts of the country. For the medium scale geochemical mapping is the median value (0.151 mg /kg) for western Slovenia almost 2-fold higher than the median value (0.083 mg/kg) in eastern Slovenia. Besides the Hg median for the western part of Slovenia exceeds the Hg median for European soil by a factor of 4 (Gosar et al., 2016). Comparing these sample density surveys, it was shown that high sampling density allows the identification and characterization of anthropogenic influences on a local scale, while medium- and low-density sampling reveal general trends in the mercury spatial distribution, but are not appropriate for identifying local contamination in industrial regions and urban areas. The resolution of the pattern generated is the best when the high-density survey on a regional scale is supplemented with the geochemical data of the high-density surveys on a local scale. References: Gosar, M, Šajn, R, Teršič, T. Distribution pattern of mercury in the Slovenian soil: geochemical mapping based on multiple geochemical datasets. Journal of geochemical exploration, 2016, 167/38-48.

  4. Low density biodegradable shape memory polyurethane foams for embolic biomedical applications

    PubMed Central

    Singhal, Pooja; Small, Ward; Cosgriff-Hernandez, Elizabeth; Maitland, Duncan J; Wilson, Thomas S

    2014-01-01

    Low density shape memory polymer foams hold significant interest in the biomaterials community for their potential use in minimally invasive embolic biomedical applications. The unique shape memory behavior of these foams allows them to be compressed to a miniaturized form, which can be delivered to an anatomical site via a transcatheter process, and thereafter actuated to embolize the desired area. Previous work in this field has described the use of a highly covalently crosslinked polymer structure for maintaining excellent mechanical and shape memory properties at the application-specific ultra low densities. This work is aimed at further expanding the utility of these biomaterials, as implantable low density shape memory polymer foams, by introducing controlled biodegradability. A highly covalently crosslinked network structure was maintained by use of low molecular weight, symmetrical and polyfunctional hydroxyl monomers such as Polycaprolactone triol (PCL-t, Mn 900 g), N,N,N0,N0-Tetrakis (hydroxypropyl) ethylenediamine (HPED), and Tris (2-hydroxyethyl) amine (TEA). Control over the degradation rate of the materials was achieved by changing the concentration of the degradable PCL-t monomer, and by varying the material hydrophobicity. These porous SMP materials exhibit a uniform cell morphology and excellent shape recovery, along with controllable actuation temperature and degradation rate. We believe that they form a new class of low density biodegradable SMP scaffolds that can potentially be used as “smart” non-permanent implants in multiple minimally invasive biomedical applications. PMID:24090987

  5. Intermetallic Precipitation in Low-Density Steel

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Chatterjee, A.; Chakrabarti, D.

    2018-06-01

    Low-density steels (LDS) represent a relatively new class of material that contains a large concentration of aluminum. In the present work, we studied the effect of copper addition to these steels. Microanalysis and electron diffraction study were used to demonstrate that on the contrary to the theoretical expectation, copper formed a variety of intermetallic, instead of metallic, precipitates on reaction with aluminum. The precipitation led to a significant age-hardening response that imparted a special characteristic to this material, which had never been reported previously.

  6. Very low density lipoprotein receptor in Alzheimer disease.

    PubMed

    Helbecque, N; Amouyel, P

    2000-08-15

    The apolipoprotein (APO) E4 isoform is associated with an accelerated rate of Alzheimer disease (AD) expression in sporadic as well as late-onset familial forms of the disease but the precise mechanism is unknown. In an attempt to approach the possible mechanisms involved, APOE receptors have been studied. They all belong to the low density lipoprotein (LDL) receptor family and share the same structural motifs. Some of them are preferentially expressed in the brain such as the LDL receptor related protein, the apolipoprotein E receptor 2, and the very low density lipoprotein (VLDL) receptor. These receptors have been suspected to be involved in Alzheimer disease at various levels. Among them, the VLDL receptor was extensively explored. Although genetic studies conducted on a polymorphism in the promoter of the VLDL receptor in Japanese and Caucasian populations gave divergent results, this does not exclude a possible involvement of the VLDL receptor in AD. Copyright 2000 Wiley-Liss, Inc.

  7. Resemblance in dietary intakes between urban low-income African-American adolescents and their mothers: the healthy eating and active lifestyles from school to home for kids study.

    PubMed

    Wang, Youfa; Li, Ji; Caballero, Benjamin

    2009-01-01

    To examine the association and predictors of dietary intake resemblance between urban low-income African-American adolescents and their mothers. Detailed dietary data collected from 121 child-parent pairs in Chicago during fall 2003 were used. The association was assessed using correlation coefficients, kappa, and percentage of agreement, as well as logistic regression models. Overall, the association was weak as indicated by correlations and other measures. None of the mother-son correlations for nutrients and food groups were greater than 0.20. Mother-daughter pairs had stronger correlations (0.26 for energy and 0.30 for fat). The association was stronger in normal-weight mothers than in mothers with overweight or obesity. Logistic models showed that mother being a current smoker, giving child more pocket money, and allowing child to eat or purchase snacks without parental permission or presence predicted a higher probability of resemblance in undesirable eating patterns, such as high-energy, high-fat, and high-snack intakes (P<0.05). Mother-child diet association was generally weak, and varied considerably across groups and intake variables in this homogenous population. Some maternal characteristics seem to affect the association.

  8. Experimental Evidence of Low Density Liquid Water under Decompression

    NASA Astrophysics Data System (ADS)

    Shen, G.; Lin, C.; Sinogeikin, S. V.; Smith, J.

    2017-12-01

    Water is not only the most important substance for life, but also plays important roles in liquid science for its anomalous properties. It has been widely accepted that water's anomalies are not a result of simple thermal fluctuation, but are connected to the formation of various structural aggregates in the hydrogen bonding network. Among several proposed scenarios, one model of fluctuations between two different liquids has gradually gained traction. These two liquids are referred to as a low-density liquid (LDL) and a high-density liquid (HDL) with a coexistence line in the deeply supercooled regime at elevated pressure. The LDL-HDL transition ends with decreasing pressure at a liquid-liquid critical point (LLCP) with its Widom line extending to low pressures. Above the Widom line lies mostly HDL which is favored by entropy, while LDL, mostly lying below the Widom line, is favored by enthalpy in the tetrahedral hydrogen bonding network. The origin of water's anomalies can then be explained by the increase in structural fluctuations, as water is cooled down to deeply supercooled temperatures approaching the Widom line. Because both the LLCP and the LDL-HDL transition line lie in water's "no man's land" between the homogeneous nucleation temperature (TH, 232 K) and the crystallization temperature (TX, 150 K), the success of experiments exploring this region has been limited thus far. Using a rapid decompression technique integrated with in situ x-ray diffraction, we observe that a high-pressure ice phase transforms to a low-density noncrystalline (LDN) form upon rapid release of pressure at temperatures of 140-165K. The LDN subsequently crystallizes into ice-Ic through a diffusion-controlled process. The change in crystallization rate with temperature indicates that the LDN is a LDL with its tetrahedrally-coordinated network fully developed and clearly linked to low-density amorphous ices. The observation of the tetrahedral LDL supports the two-liquid model for

  9. Self-microemulsifying drug delivery system and nanoemulsion for enhancing aqueous miscibility of Alpinia galanga oil.

    PubMed

    Khumpirapang, Nattakanwadee; Pikulkaew, Surachai; Müllertz, Anette; Rades, Thomas; Okonogi, Siriporn

    2017-01-01

    Alpinia galanga oil (AGO) possesses various activities but low aqueous solubility limits its application particularly in aquatic animals. AGO has powerful activity on fish anesthesia. Ethanol used for enhancing water miscible of AGO always shows severe side effects on fish. The present study explores the development of self-microemulsifying drug delivery systems (SMEDDS) and nanoemulsions (NE) to deliver AGO for fish anesthesia with less or no alcohol. Pseudoternary phase diagrams were constructed to identify the best SMEDDS-AGO formulation, whereas NE-AGO were developed by means of high-energy emulsification. The mean droplet size of the best SMEDDS-AGO was 82 ± 0.5 nm whereas that of NE-AGO was 48 ± 1.6 nm. The anesthetic effect of the developed SMEDDS-AGO and NE-AGO in koi (Cyprinus carpio) was evaluated and compared with AGO ethanolic solution (EtOH-AGO). It was found that the time of induction the fish to reach the surgical stage of anesthesia was dose dependent. NE-AGO showed significantly higher activity than SMEDDS-AGO and EtOH-AGO, respectively. EtOH-AGO caused unwanted hyperactivity in the fish. This side effect did not occur in the fish anesthetized with SMEDDS-AGO and NE-AGO. In conclusion, SMEDDS and NE are promising delivery systems for AGO.

  10. Self-microemulsifying drug delivery system and nanoemulsion for enhancing aqueous miscibility of Alpinia galanga oil

    PubMed Central

    Khumpirapang, Nattakanwadee; Pikulkaew, Surachai; Müllertz, Anette; Rades, Thomas

    2017-01-01

    Alpinia galanga oil (AGO) possesses various activities but low aqueous solubility limits its application particularly in aquatic animals. AGO has powerful activity on fish anesthesia. Ethanol used for enhancing water miscible of AGO always shows severe side effects on fish. The present study explores the development of self-microemulsifying drug delivery systems (SMEDDS) and nanoemulsions (NE) to deliver AGO for fish anesthesia with less or no alcohol. Pseudoternary phase diagrams were constructed to identify the best SMEDDS-AGO formulation, whereas NE-AGO were developed by means of high-energy emulsification. The mean droplet size of the best SMEDDS-AGO was 82 ± 0.5 nm whereas that of NE-AGO was 48 ± 1.6 nm. The anesthetic effect of the developed SMEDDS-AGO and NE-AGO in koi (Cyprinus carpio) was evaluated and compared with AGO ethanolic solution (EtOH-AGO). It was found that the time of induction the fish to reach the surgical stage of anesthesia was dose dependent. NE-AGO showed significantly higher activity than SMEDDS-AGO and EtOH-AGO, respectively. EtOH-AGO caused unwanted hyperactivity in the fish. This side effect did not occur in the fish anesthetized with SMEDDS-AGO and NE-AGO. In conclusion, SMEDDS and NE are promising delivery systems for AGO. PMID:29190663

  11. Multiscale habitat selection by Ruffed Grouse at low population densities

    USGS Publications Warehouse

    Zimmerman, G.S.; Gutierrez, R.J.; Thogmartin, W.E.; Banerjee, S.

    2009-01-01

    Theory suggests habitats should be chosen according to their relative evolutionary benefits and costs. It has been hypothesized that aspen (Populus spp.) forests provide optimal habitat for Ruffed Grouse (Bonasa umbellus). We used the low phase of a grouse population's cycle to assess the prediction that grouse should occupy aspen and avoid other forest types at low population density because of the presumptive fitness benefits of aspen. On the basis of our observations, we predict how the Ruffed Grouse population will increase in different forest types during the next cycle. In conifer (Pinus spp., Abies balsamea, Picea spp.)-dominated and mixed aspen-conifer landscapes, grouse densities were highest where forest types were evenly distributed. Within these landscapes, male Ruffed Grouse selected young aspen stands that were large and round or square. Although Ruffed Grouse selected young aspen stands strongly, contrary to prediction, they also used other forest types even when young aspen stands remained unoccupied. The relative densities of Ruffed Grouse in aspen and conifer forests indicated that the aspen forest's carrying capacities for grouse was higher than the conifer forest's at least during the low and declining phases of the grouse's cycle. On the basis of our observations, we predict that Ruffed Grouse populations in aspen-dominated landscapes will have higher population densities and fluctuate more than will populations in conifer-dominated landscapes. We suggest that studies of avian habitat selection would benefit from knowledge about the relative densities among habitats at differing population sizes because this information could provide insight into the role of habitat in regulating populations and clarify inferences from studies about habitat quality for birds. ?? 2009 by The Cooper Ornithological Society. All rights reserved.

  12. Method for making a low density polyethylene waste form for safe disposal of low level radioactive material

    DOEpatents

    Colombo, P.; Kalb, P.D.

    1984-06-05

    In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.

  13. Thermodynamic signature of secondary nano-emulsion formation by isothermal titration calorimetry.

    PubMed

    Fotticchia, Iolanda; Fotticchia, Teresa; Mattia, Carlo Andrea; Netti, Paolo Antonio; Vecchione, Raffaele; Giancola, Concetta

    2014-12-09

    The stabilization of oil in water nano-emulsions by means of a polymer coating is extremely important; it prolongs the shelf life of the product and makes it suitable for a variety of applications ranging from nutraceutics to cosmetics and pharmaceutics. To date, an effective methodology to assess the best formulations in terms of thermodynamic stability has yet to be designed. Here, we perform a complete physicochemical characterization based on isothermal titration calorimetry (ITC) compared to conventional dynamic light scattering (DLS) to identify polymer concentration domains that are thermodynamically stable and to define the degree of stability through thermodynamic functions depending upon any relevant parameter affecting the stability itself, such as type of polymer coating, droplet distance, etc. For instance, the method was proven by measuring the energetics in the case of two different biopolymers, chitosan and poly-L-lysine, and for different concentrations of the emulsion coated with poly-L-lysine.

  14. Triglycerides, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol in rats exposed to premium motor spirit fumes.

    PubMed

    Aberare, Ogbevire L; Okuonghae, Patrick; Mukoro, Nathaniel; Dirisu, John O; Osazuwa, Favour; Odigie, Elvis; Omoregie, Richard

    2011-06-01

    Deliberate and regular exposure to premium motor spirit fumes is common and could be a risk factor for liver disease in those who are occupationally exposed. A possible association between premium motor spirit fumes and plasma levels of triglyceride, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol using a rodent model could provide new insights in the pathology of diseases where cellular dysfunction is an established risk factor. The aim of this study was to evaluate the possible effect of premium motor spirit fumes on lipids and lipoproteins in workers occupationally exposed to premium motor spirit fumes using rodent model. Twenty-five Wister albino rats (of both sexes) were used for this study between the 4(th) of August and 7(th) of September, 2010. The rats were divided into five groups of five rats each. Group 1 rats were not exposed to premium motor spirit fumes (control group), group 2 rats were exposed for 1 hour daily, group 3 for 3 hours daily, group 4 for 5 hours daily and group 5 for 7 hours daily. The experiment lasted for a period of 4 weeks. Blood samples obtained from all the groups after 4 weeks of exposure were used for the estimation of plasma levels of triglyceride, total cholesterol, high density lipoprotein- cholesterol and low density lipoprotein- cholesterol. Results showed significant increase in means of plasma total cholesterol and low density lipoprotein levels (P<0.05). The mean triglyceride and total body weight were significantly lower (P<0.05) in the exposed group when compared with the unexposed. The plasma level of high density lipoprotein, the ratio of low density lipoprotein to high density lipoprotein and the ratio of total cholesterol to high density lipoprotein did not differ significantly in exposed subjects when compared with the control group. These results showed that frequent exposure to petrol fumes may be highly deleterious to the liver cells.

  15. Examining the occupancy–density relationship for a low-density carnivore

    USGS Publications Warehouse

    Linden, Daniel W.; Fuller, Angela K.; Royle, J. Andrew; Hare, Matthew P.

    2017-01-01

    The challenges associated with monitoring low-density carnivores across large landscapes have limited the ability to implement and evaluate conservation and management strategies for such species. Non-invasive sampling techniques and advanced statistical approaches have alleviated some of these challenges and can even allow for spatially explicit estimates of density, one of the most valuable wildlife monitoring tools.For some species, individual identification comes at no cost when unique attributes (e.g. pelage patterns) can be discerned with remote cameras, while other species require viable genetic material and expensive laboratory processing for individual assignment. Prohibitive costs may still force monitoring efforts to use species distribution or occupancy as a surrogate for density, which may not be appropriate under many conditions.Here, we used a large-scale monitoring study of fisher Pekania pennanti to evaluate the effectiveness of occupancy as an approximation to density, particularly for informing harvest management decisions. We combined remote cameras with baited hair snares during 2013–2015 to sample across a 70 096-km2 region of western New York, USA. We fit occupancy and Royle–Nichols models to species detection–non-detection data collected by cameras, and spatial capture–recapture (SCR) models to individual encounter data obtained by genotyped hair samples. Variation in the state variables within 15-km2 grid cells was modelled as a function of landscape attributes known to influence fisher distribution.We found a close relationship between grid cell estimates of fisher state variables from the models using detection–non-detection data and those from the SCR model, likely due to informative spatial covariates across a large landscape extent and a grid cell resolution that worked well with the movement ecology of the species. Fisher occupancy and density were both positively associated with the proportion of coniferous

  16. Evidence for a Low Bulk Crustal Density for Mars from Gravity and Topography.

    PubMed

    Goossens, Sander; Sabaka, Terence J; Genova, Antonio; Mazarico, Erwan; Nicholas, Joseph B; Neumann, Gregory A

    2017-08-16

    Knowledge of the average density of the crust of a planet is important in determining its interior structure. The combination of high-resolution gravity and topography data has yielded a low density for the Moon's crust, yet for other terrestrial planets the resolution of the gravity field models has hampered reasonable estimates. By using well-chosen constraints derived from topography during gravity field model determination using satellite tracking data, we show that we can robustly and independently determine the average bulk crustal density directly from the tracking data, using the admittance between topography and imperfect gravity. We find a low average bulk crustal density for Mars, 2582 ± 209 kg m -3 . This bulk crustal density is lower than that assumed until now. Densities for volcanic complexes are higher, consistent with earlier estimates, implying large lateral variations in crustal density. In addition, we find indications that the crustal density increases with depth.

  17. Effects of Mean Flow Profiles on Instability of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Vedantam, Nanda Kishore

    2003-01-01

    The objective of this study was to investigate the effects of the mean flow profiles on the instability characteristics in the near-injector region of low-density gas jets injected into high-density ambient gas mediums. To achieve this, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round gas jet injected vertically upwards into a high-density ambient gas were performed by assuming three different sets of mean velocity and density profiles. The flow was assumed to be isothermal and locally parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The first set of mean velocity and density profiles assumed were those used by Monkewitz and Sohn for investigating absolute instability in hot jets. The second set of velocity and density profiles assumed for this study were the ones used by Lawson. And the third set of mean profiles included a parabolic velocity profile and a hyperbolic tangent density profile. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results for each set of mean profiles were delineated. Additional information is included in the original extended abstract.

  18. Low density microcellular foams

    DOEpatents

    Aubert, J.H.; Clough, R.L.; Curro, J.G.; Quintana, C.A.; Russick, E.M.; Shaw, M.T.

    1985-10-02

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the reusltant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 ..mu..m and a volume such that the foams have a length greater than 1 cm are provided.

  19. Effect of nanoclay on the properties of low density polyethylene/linear low density polyethylene/thermoplastic starch blend films.

    PubMed

    Sabetzadeh, Maryam; Bagheri, Rouhollah; Masoomi, Mahmood

    2016-05-05

    The aim of this work is to study effect of nanoclay (Cloisite(®)15A) on morphology and properties of low-density polyethylene/linear low-density polyethylene/thermoplastic starch (LDPE/LLDPE/TPS) blend films. LDPE/LLDPE blend (70/30wt/wt) containing 15wt.% TPS in the presence of PE-grafted maleic anhydride (PE-g-MA, 3wt.%) with 1, 3 and 5phr of nanoclay are compounded in a twin-screw extruder and then film blown using a blowing machine. Nanocomposites with intercalated structures are obtained, based on the X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies. However, some exfoliated single platelets in the samples are also observable. Scanning electron microscopic (SEM) images confirm the ability of both exfoliated nanoclay and PE-g-MA to reduce the size of TPS domains and deform their particles within the PE matrices. As the nanoclay content increases from 1 to 5phr, the tensile strength, tear resistance and impact strength of the films increase, whereas a slight decrease in the elongation at break is observed. The film samples with 5phr nanoclay possess the required packaging properties, as specified by ASTM D4635. These films provide desired optical transparency and surface roughness which are more attractive for packaging applications. Copyright © 2016. Published by Elsevier Ltd.

  20. Sexual conflict and the evolution of asexuality at low population densities.

    PubMed

    Gerber, Nina; Kokko, Hanna

    2016-10-26

    Theories for the evolution of sex rarely include facultatively sexual reproduction. Sexual harassment by males is an underappreciated factor: it should at first sight increase the relative advantage of asexual reproduction by increasing the cost of sex. However, if the same females can perform either sexual or asexual life cycles, then females trying to reproduce asexually may not escape harassment. If resisting male harassment is costly, it might be beneficial for a female to accept a mating and undertake a sexual life cycle rather than 'insist' on an asexual one. We investigate the effects of sexual harassment on the maintenance of sex under different population densities. Our model shows that resisting matings pays off at low population densities, which leads to the complete extinction of males, and thus to the evolution of completely asexual populations. Facultative sex persists in a narrow range of slightly higher densities. At high densities, selection favours giving up resisting male mating attempts and thus sexual reproduction takes over. These interactions between the outcomes of sexual conflict and population density suggest an explanation for the rarity of facultative sex and also patterns of geographical parthenogenesis, where marginal environments with potentially low densities are associated with asexuality. © 2016 The Author(s).

  1. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility.

    PubMed

    Kim, Sang-Heon; Kim, Hansoo; Kim, Nack J

    2015-02-05

    Although steel has been the workhorse of the automotive industry since the 1920s, the share by weight of steel and iron in an average light vehicle is now gradually decreasing, from 68.1 per cent in 1995 to 60.1 per cent in 2011 (refs 1, 2). This has been driven by the low strength-to-weight ratio (specific strength) of iron and steel, and the desire to improve such mechanical properties with other materials. Recently, high-aluminium low-density steels have been actively studied as a means of increasing the specific strength of an alloy by reducing its density. But with increasing aluminium content a problem is encountered: brittle intermetallic compounds can form in the resulting alloys, leading to poor ductility. Here we show that an FeAl-type brittle but hard intermetallic compound (B2) can be effectively used as a strengthening second phase in high-aluminium low-density steel, while alleviating its harmful effect on ductility by controlling its morphology and dispersion. The specific tensile strength and ductility of the developed steel improve on those of the lightest and strongest metallic materials known, titanium alloys. We found that alloying of nickel catalyses the precipitation of nanometre-sized B2 particles in the face-centred cubic matrix of high-aluminium low-density steel during heat treatment of cold-rolled sheet steel. Our results demonstrate how intermetallic compounds can be harnessed in the alloy design of lightweight steels for structural applications and others.

  2. The impact of vaporized nanoemulsions on ultrasound-mediated ablation

    PubMed Central

    2013-01-01

    Background The clinical feasibility of using high-intensity focused ultrasound (HIFU) for ablation of solid tumors is limited by the high acoustic pressures and long treatment times required. The presence of microbubbles during sonication can increase the absorption of acoustic energy and accelerate heating. However, formation of microbubbles within the tumor tissue remains a challenge. Phase-shift nanoemulsions (PSNE) have been developed as a means for producing microbubbles within tumors. PSNE are emulsions of submicron-sized, lipid-coated, and liquid perfluorocarbon droplets that can be vaporized into microbubbles using short (<1 ms), high-amplitude (>5 MPa) acoustic pulses. In this study, the impact of vaporized phase-shift nanoemulsions on the time and acoustic power required for HIFU-mediated thermal lesion formation was investigated in vitro. Methods PSNE containing dodecafluoropentane were produced with narrow size distributions and mean diameters below 200 nm using a combination of sonication and extrusion. PSNE was dispersed in albumin-containing polyacrylamide gel phantoms for experimental tests. Albumin denatures and becomes opaque at temperatures above 58°C, enabling visual detection of lesions formed from denatured albumin. PSNE were vaporized using a 30-cycle, 3.2-MHz, at an acoustic power of 6.4 W (free-field intensity of 4,586 W/cm2) pulse from a single-element, focused high-power transducer. The vaporization pulse was immediately followed by a 15-s continuous wave, 3.2-MHz signal to induce ultrasound-mediated heating. Control experiments were conducted using an identical procedure without the vaporization pulse. Lesion formation was detected by acquiring video frames during sonication and post-processing the images for analysis. Broadband emissions from inertial cavitation (IC) were passively detected with a focused, 2-MHz transducer. Temperature measurements were acquired using a needle thermocouple. Results Bubbles formed at the HIFU focus via

  3. Hybrid reconstruction of quantum density matrix: when low-rank meets sparsity

    NASA Astrophysics Data System (ADS)

    Li, Kezhi; Zheng, Kai; Yang, Jingbei; Cong, Shuang; Liu, Xiaomei; Li, Zhaokai

    2017-12-01

    Both the mathematical theory and experiments have verified that the quantum state tomography based on compressive sensing is an efficient framework for the reconstruction of quantum density states. In recent physical experiments, we found that many unknown density matrices in which people are interested in are low-rank as well as sparse. Bearing this information in mind, in this paper we propose a reconstruction algorithm that combines the low-rank and the sparsity property of density matrices and further theoretically prove that the solution of the optimization function can be, and only be, the true density matrix satisfying the model with overwhelming probability, as long as a necessary number of measurements are allowed. The solver leverages the fixed-point equation technique in which a step-by-step strategy is developed by utilizing an extended soft threshold operator that copes with complex values. Numerical experiments of the density matrix estimation for real nuclear magnetic resonance devices reveal that the proposed method achieves a better accuracy compared to some existing methods. We believe that the proposed method could be leveraged as a generalized approach and widely implemented in the quantum state estimation.

  4. Alloy Design Challenge: Development of Low Density Superalloys for Turbine Blade Applications

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Gabb, Timothy P.; Smialek, James L.; Nathal, Michael V.

    2009-01-01

    New low density single crystal (LDS) alloys have been developed for turbine blade applications, which have the potential for significant improvements in the thrust to weight ratio over current production alloys. An innovative alloying strategy was identified to achieve high temperature creep resistance, alloy density reductions, microstructural stability, and cyclic oxidation resistance. The approach relies on the use of molybdenum (Mo) as a potent solid solution strengthener for the nickel (Ni)-base superalloy; Mo has a density much closer to Ni than other refractory elements, such as rhenium (Re) or tungsten (W). A host of testing and microstructural examinations was conducted on the superalloy single crystals, including creep rupture testing, microstructural stability, cyclic oxidation, and hot corrosion. The paper will provide an overview of the single crystal properties that were generated in this new superalloy design space. The paper will also demonstrate the feasibility of this innovative approach of low density single crystal superalloy design. It will be shown that the best LDS alloy possesses the best attributes of three generations of single crystal alloys: the low density of first-generation single crystal alloys, the excellent oxidation resistance of second-generation single crystal alloys, and a creep strength which exceeds that of second and third generation alloys.

  5. High and low density development in Puerto Rico

    Treesearch

    William A. Gould; Sebastian Martinuzzi; Olga M. Ramos Gonzalez

    2008-01-01

    This map shows the distribution of high and low density developed lands in Puerto Rico (Martinuzzi et al. 2007). The map was created using a mosaic of Landsat ETM+ images that range from the years 2000 to 2003. The developed land cover was classified using the Iterative Self-Organizing Data Analysis Technique (ISODATA) unsupervised classification (ERDAS 2003)....

  6. Low lymphatic vessel density associates with chronic rhinosinusitis with nasal polyps.

    PubMed

    Luukkainen, A; Seppälä, M; Renkonen, J; Renkonen, R; Hagstrő M, J; Huhtala, H; Rautiainen, M; Myller, J; Paavonen, T; Ranta, A; Torkkeli, T; Toppila-Salmi, S

    2017-06-01

    Chronic rhinosinusitis with and without nasal polyps (CRSwNP and CRSsNP) and antrochoanal polyps (ACP) are different upper airway inflammation phenotypes with different pathomechanisms. In order to understand the development of tissue edema, the present study aimed to evaluate lymphatic vessel density in CRSsNP, CRSwNP and ACP. 120 retrospective nasal and maxillary sinus specimens were stained immunohistochemically with a von Willebrand factor polyclonal antibody recognizing vascular and lymphatic endothelium, and with a podoplanin monoclonal antibody recognizing lymphatic endothelium. Vessels were studied by microscopy in a blinded fashion, and the vessel density and the relative density of lymphatic vessels were calculated. Patient characteristic factors and follow-up data of in average 9 years were collected from patient records. In the nasal cavity, the low absolute and relative density of vessels and of lymphatic vessels was associated with CRSwNP and ACP tissues compared to control inferior turbinate. This was observed also in the inflammatory hotspot area. In the maxillary sinus, lower absolute and relative density of lymphatic vessels associated with the CRSwNP phenotype. High lymphatic vessel density in polyp tissue associated with the need for revision CRS-surgery. As a conclusion, low density of lymphatic vessels distinguished patients with CRSwNP not only in the hotspot area of polyp tissue, but also in maxillary sinus mucosa. Yet, higher lymphatic vessel density seems to associate with polyp recurrence. Further studies are still needed to explore if formation of nasal polyps could be diminished by intranasal therapeutics affecting lymphangiogenesis.

  7. Effects of low-density thinning in a declining white pine stand in Maine

    Treesearch

    William B. Leak; Mariko. Yamasaki

    2013-01-01

    Low-density (32 ft2/acre residual basal area) and medium-low density (60 ft2/acre residual basal area) thinnings were studied over a 4-year period in a declining white pine stand on the Massabesic Experimental Forest in southern Maine. Gross basal area growth at 60 ft2 was about three-fourths the rate...

  8. Low density microcellular foams

    DOEpatents

    Aubert, James H.; Clough, Roger L.; Curro, John G.; Quintana, Carlos A.; Russick, Edward M.; Shaw, Montgomery T.

    1987-01-01

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the resultant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Means for subjecting such a solvent to one-dimensional cooling are also provided. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 .mu.m and a volume such that the foams have a length greater than 1 cm are provided.

  9. RELATIONSHIP BETWEEN THE AERODYNAMIC ROUGHNESS LENGTH AND THE ROUGHNESS DENSITY IN CASES OF LOW ROUGHNESS DENSITY

    EPA Science Inventory

    This paper presents measurements of roughness length performed in a wind tunnel for low roughness density. The experiments were performed with both compact and porous obstacles (clusters), in order to simulate the behavior of sparsely vegetated surfaces.

  10. Low Density Supersonic Decelerator Parachute Decelerator System

    NASA Technical Reports Server (NTRS)

    Gallon, John C.; Clark, Ian G.; Rivellini, Tommaso P.; Adams, Douglas S.; Witkowski, Allen

    2013-01-01

    The Low Density Supersonic Decelerator Project has undertaken the task of developing and testing a large supersonic ringsail parachute. The parachute under development is intended to provide mission planners more options for parachutes larger than the Mars Science Laboratory's 21.5m parachute. During its development, this new parachute will be taken through a series of tests in order to bring the parachute to a TRL-6 readiness level and make the technology available for future Mars missions. This effort is primarily focused on two tests, a subsonic structural verification test done at sea level atmospheric conditions and a supersonic flight behind a blunt body in low-density atmospheric conditions. The preferred method of deploying a parachute behind a decelerating blunt body robotic spacecraft in a supersonic flow-field is via mortar deployment. Due to the configuration constraints in the design of the test vehicle used in the supersonic testing it is not possible to perform a mortar deployment. As a result of this limitation an alternative deployment process using a ballute as a pilot is being developed. The intent in this alternate approach is to preserve the requisite features of a mortar deployment during canopy extraction in a supersonic flow. Doing so will allow future Mars missions to either choose to mortar deploy or pilot deploy the parachute that is being developed.

  11. Observation of Transonic Ionization Fronts in Low-Density Foam Targets

    NASA Astrophysics Data System (ADS)

    Hoarty, D.; Barringer, L.; Vickers, C.; Willi, O.; Nazarov, W.

    1999-04-01

    Transonic ionization fronts have been observed in low-density chlorinated foam targets using time-resolved K-shell absorption spectroscopy. The front was driven by an intense pulse of soft x rays produced by high-power laser irradiation of a thin foil. The density and temperature profiles inferred from the radiographs provided detailed measurement of the conditions at a number of times. The experimental data were compared to radiation hydrodynamics simulations and reasonable agreement was obtained.

  12. BMI, hypertension and low bone mineral density in adult men and women.

    PubMed

    Szklarska, Alicja; Lipowicz, Anna

    2012-08-01

    The aim of this work was to estimate the body mass index (BMI) at which risk of hypertension is lowest in men and women, while concurrently considering the protective role of adipose tissue in osteoporosis. Healthy, occupationally active inhabitants of the city of Wrocław, Poland, 1218 women and 434 men were studied. BMI, systolic and diastolic blood pressures, bone mineral density (BMD) of the trabecular compartment and distal radius of the non-dominant hand were recorded. Overweight in young women (≤45 years) was associated with increased risk of hypertension, whereas the risk of low bone mineral was decreased for the same BMI. In older women (>45 years), a BMI>27 was the threshold for increased risk of hypertension. In this age group, extremely slim women (BMI<21) had the highest risk of low bone mineral density. In younger males (≤45 years), risk of hypertension was lowest among the thinnest subjects (BMI<21). Increase in BMI over 21 kg/m(2) increased the risk of hypertension. The probability of low bone mineral density was the same in all BMI categories of men. In older men (>45 years), the thinnest (BMI<21) had higher risk of hypertension. To begin from BMI=25 kg/m(2), there was a monotonous increase in risk of hypertension in men. Higher risk for low bone mineral density was observed in older men with the BMI<23. Among younger adults, risk of hypertension and low bone mineral density increase at BMI≥21 kg/m(2) in men and BMI≥23 kg/m(2) in women. Among older men and women, the BMI threshold was 27 kg/m(2). Copyright © 2012 Elsevier GmbH. All rights reserved.

  13. Simulation Study on Jet Formability and Damage Characteristics of a Low-Density Material Liner

    PubMed Central

    Tang, Wenhui; Ran, Xianwen

    2018-01-01

    The shaped charge tandem warhead is an effective weapon against the ERA (explosive reactive armor). Whether the pre-warhead can reliably initiate the ERA directly determines the entire performance of the tandem warhead. The existing shaped charge pre-warhead mostly adopts a metal shaped jet, which effectively initiates the ERA, but interferes the main shaped jet. This article, on the other hand, explores the possibility of producing a pre-warhead using a low-density material as the liner. The nonlinear dynamic analysis software Autodyn-2D is used to simulate and compare three kinds of low-density shaped jets, including floatglass, Lucite, and Plexiglas, to the copper shaped jet in the effectiveness of impacting ERA. Based on the integrative criteria (including u-d initiation criterion, explosive reactive degree, explosive pressure, and particle velocity of the panels), it can be determined whether the low-density shaped jet can reliably initiate the sandwich charge. The results show that the three kinds of low-density shaped jets can not only initiate the reaction armor, but are also superior to the existing copper shaped jet in ductility, jet tip velocity, jet tip diameter, and the mass; namely, it is feasible to use the low-density material shaped jet to destroy the ERA. PMID:29300351

  14. Optimization of the canola oil based vitamin E nanoemulsions stabilized by food grade mixed surfactants using response surface methodology.

    PubMed

    Mehmood, Tahir

    2015-09-15

    The objective of the present study was to prepare canola oil based vitamin E nanoemulsions by using food grade mixed surfactants (Tween:80 and lecithin; 3:1) to replace some concentration of nonionic surfactants (Tween 80) with natural surfactant (soya lecithin) and to optimize their preparation conditions. RBD (Refined, Bleached and Deodorized) canola oil and vitamin E acetate were used in water/vitamin E/oil/surfactant system due to their nutritional benefits and oxidative stability, respectively. Response surface methodology (RSM) was used to optimize the preparation conditions. The effects of homogenization pressure (75-155MPa), oil concentrations (4-12% w/w), surfactant concentrations (3-11% w/w) and vitamin E acetate contents (0.4-1.2% w/w) on the particle size and emulsion stability were studied. RSM analysis has shown that the experimental data could be fitted well into second-order polynomial model with the coefficient of determinations of 0.9464 and 0.9278 for particle size and emulsion stability, respectively. The optimum values of independent variables were 135MPa homogenization pressure, 6.18% oil contents, 6.39% surfactant concentration and 1% vitamin E acetate concentration. The optimized response values for particle size and emulsion stability were 150.10nm and 0.338, respectively. Whereas, the experimental values for particle size and nanoemulsion stability were 156.13±2.3nm and 0.328±0.015, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Initial glenoid fixation using two different reverse shoulder designs with an equivalent center of rotation in a low-density and high-density bone substitute.

    PubMed

    Stroud, Nicholas J; DiPaola, Matthew J; Martin, Brian L; Steiler, Cindy A; Flurin, Pierre-Henri; Wright, Thomas W; Zuckerman, Joseph D; Roche, Christopher P

    2013-11-01

    Numerous glenoid implant designs have been introduced into the global marketplace in recent years; however, little comparative biomechanical data exist to substantiate one design consideration over another. This study dynamically evaluated reverse shoulder glenoid baseplate fixation and compared the initial fixation associated with 2 reverse shoulder designs having an equivalent center of rotation in low-density and high-density bone substitute substrates. Significant differences in fixation were observed between implant designs, where the circular-porous reverse shoulder was associated with approximately twice the micromotion per equivalent test than the oblong-grit-blasted design. Additionally, 6 of the 7 circular-porous reverse shoulders failed catastrophically in the low-density bone model at an average of 2603 ± 981 cycles. None of the oblong-grit-blasted designs failed in the low-or high-density bone models and none of the circular-porous designs failed in the high-density bone models after 10,000 cycles of loading. These results demonstrate that significant differences in initial fixation exist between reverse shoulder implants having an equivalent center of rotation and suggest that design parameters, other than the position of the center of rotation, significantly affect fixation in low-density and high-density polyurethane bone substitutes. Subtle changes in glenoid baseplate design can dramatically affect fixation, particularly in low-density bone substitutes that are intended to simulate the bone quality of the recipient population for reverse shoulders. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  16. Low-density microarray technologies for rapid human norovirus genotyping

    USDA-ARS?s Scientific Manuscript database

    Human noroviruses cause up to 21 million cases of foodborne disease in the United States annually and are the most common cause of acute gastroenteritis in industrialized countries. To reduce the burden of foodborne disease associated with viruses, the use of low density DNA microarrays in conjuncti...

  17. Application of adaptive cluster sampling to low-density populations of freshwater mussels

    USGS Publications Warehouse

    Smith, D.R.; Villella, R.F.; Lemarie, D.P.

    2003-01-01

    Freshwater mussels appear to be promising candidates for adaptive cluster sampling because they are benthic macroinvertebrates that cluster spatially and are frequently found at low densities. We applied adaptive cluster sampling to estimate density of freshwater mussels at 24 sites along the Cacapon River, WV, where a preliminary timed search indicated that mussels were present at low density. Adaptive cluster sampling increased yield of individual mussels and detection of uncommon species; however, it did not improve precision of density estimates. Because finding uncommon species, collecting individuals of those species, and estimating their densities are important conservation activities, additional research is warranted on application of adaptive cluster sampling to freshwater mussels. However, at this time we do not recommend routine application of adaptive cluster sampling to freshwater mussel populations. The ultimate, and currently unanswered, question is how to tell when adaptive cluster sampling should be used, i.e., when is a population sufficiently rare and clustered for adaptive cluster sampling to be efficient and practical? A cost-effective procedure needs to be developed to identify biological populations for which adaptive cluster sampling is appropriate.

  18. Older Adults' Trait Impressions of Faces Are Sensitive to Subtle Resemblance to Emotions

    PubMed Central

    Zebrowitz, Leslie A.

    2013-01-01

    Younger adults (YA) attribute emotion-related traits to people whose neutral facial structure resembles an emotion (emotion overgeneralization). The fact that older adults (OA) show deficits in accurately labeling basic emotions suggests that they may be relatively insensitive to variations in the emotion resemblance of neutral expression faces that underlie emotion overgeneralization effects. On the other hand, the fact that OA, like YA, show a ‘pop-out’ effect for anger, more quickly locating an angry than a happy face in a neutral array, suggests that both age groups may be equally sensitive to emotion resemblance. We used computer modeling to assess the degree to which neutral faces objectively resembled emotions and assessed whether that resemblance predicted trait impressions. We found that both OA and YA showed anger and surprise overgeneralization in ratings of danger and naiveté, respectively, with no significant differences in the strength of the effects for the two age groups. These findings suggest that well-documented OA deficits on emotion recognition tasks may be more due to processing demands than to an insensitivity to the social affordances of emotion expressions. PMID:24058225

  19. Traumatic bone cyst resembling apical periodontitis.

    PubMed

    Rosen, D J; Ardekian, L; Machtei, E E; Peled, M; Manor, R; Laufer, D

    1997-10-01

    Among the pseudocysts of the jaws, the traumatic bone cyst is known as an asymptomatic lesion often noted unintentionally during routine radiographic examinations. The lesion neither devitalizes the teeth within its borders, nor does it cause resorption of their roots. The well-demarcated traumatic bone cyst often projects into the intraradicular septa and hence has been described as having scalloped borders. The following presentation is of a traumatic bone cyst that resembled periodontal pathology in its appearance.

  20. An Artificial Neural Network Based Analysis of Factors Controlling Particle Size in a Virgin Coconut Oil-Based Nanoemulsion System Containing Copper Peptide

    PubMed Central

    Samson, Shazwani; Basri, Mahiran; Fard Masoumi, Hamid Reza; Abdul Malek, Emilia; Abedi Karjiban, Roghayeh

    2016-01-01

    A predictive model of a virgin coconut oil (VCO) nanoemulsion system for the topical delivery of copper peptide (an anti-aging compound) was developed using an artificial neural network (ANN) to investigate the factors that influence particle size. Four independent variables including the amount of VCO, Tween 80: Pluronic F68 (T80:PF68), xanthan gum and water were the inputs whereas particle size was taken as the response for the trained network. Genetic algorithms (GA) were used to model the data which were divided into training sets, testing sets and validation sets. The model obtained indicated the high quality performance of the neural network and its capability to identify the critical composition factors for the VCO nanoemulsion. The main factor controlling the particle size was found out to be xanthan gum (28.56%) followed by T80:PF68 (26.9%), VCO (22.8%) and water (21.74%). The formulation containing copper peptide was then successfully prepared using optimum conditions and particle sizes of 120.7 nm were obtained. The final formulation exhibited a zeta potential lower than -25 mV and showed good physical stability towards centrifugation test, freeze-thaw cycle test and storage at temperature 25°C and 45°C. PMID:27383135

  1. An Artificial Neural Network Based Analysis of Factors Controlling Particle Size in a Virgin Coconut Oil-Based Nanoemulsion System Containing Copper Peptide.

    PubMed

    Samson, Shazwani; Basri, Mahiran; Fard Masoumi, Hamid Reza; Abdul Malek, Emilia; Abedi Karjiban, Roghayeh

    2016-01-01

    A predictive model of a virgin coconut oil (VCO) nanoemulsion system for the topical delivery of copper peptide (an anti-aging compound) was developed using an artificial neural network (ANN) to investigate the factors that influence particle size. Four independent variables including the amount of VCO, Tween 80: Pluronic F68 (T80:PF68), xanthan gum and water were the inputs whereas particle size was taken as the response for the trained network. Genetic algorithms (GA) were used to model the data which were divided into training sets, testing sets and validation sets. The model obtained indicated the high quality performance of the neural network and its capability to identify the critical composition factors for the VCO nanoemulsion. The main factor controlling the particle size was found out to be xanthan gum (28.56%) followed by T80:PF68 (26.9%), VCO (22.8%) and water (21.74%). The formulation containing copper peptide was then successfully prepared using optimum conditions and particle sizes of 120.7 nm were obtained. The final formulation exhibited a zeta potential lower than -25 mV and showed good physical stability towards centrifugation test, freeze-thaw cycle test and storage at temperature 25°C and 45°C.

  2. The effects of low environmental cadmium exposure on bone density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trzcinka-Ochocka, M., E-mail: ochocka@imp.lodz.pl; Jakubowski, M.; Szymczak, W.

    2010-04-15

    Recent epidemiological data indicate that low environmental exposure to cadmium, as shown by cadmium body burden (Cd-U), is associated with renal dysfunction as well as an increased risk of cadmium-induced bone disorders. The present study was designed to assess the effects of low environmental cadmium exposure, at the level sufficient to induce kidney damage, on bone metabolism and mineral density (BMD). The project was conducted in the area contaminated with cadmium, nearby a zinc smelter located in the region of Poland where heavy industry prevails. The study population comprised 170 women (mean age=39.7; 18-70 years) and 100 men (mean age=31.9;more » 18-76 years). Urinary and blood cadmium and the markers of renal tubular dysfunction ({beta}{sub 2}M-U RBP, NAG), glomerular dysfunction (Alb-U and {beta}{sub 2}M-S) and bone metabolism markers (BAP-S, CTX-S) as well as forearm BMD, were measured. The results of this study based on simple dose-effect analysis showed the relationship between increasing cadmium concentrations and an increased excretion of renal dysfunction markers and decreasing bone density. However, the results of the multivariate analysis did not indicate the association between exposure to cadmium and decrease in bone density. They showed that the most important factors that have impact on bone density are body weight and age in the female subjects and body weight and calcium excretion in males. Our investigation revealed that the excretion of low molecular weight proteins occurred at a lower level of cadmium exposure than the possible loss of bone mass. It seems that renal tubular markers are the most sensitive and significant indicators of early health effects of cadmium intoxication in the general population. The correlation of urinary cadmium concentration with markers of kidney dysfunction was observed in the absence of significant correlations with bone effects. Our findings did not indicate any effects of environmental cadmium exposure

  3. A novel lipid nanoemulsion system for improved permeation of granisetron.

    PubMed

    Doh, Hea-Jeong; Jung, Yunjin; Balakrishnan, Prabagar; Cho, Hyun-Jong; Kim, Dae-Duk

    2013-01-01

    A new lipid nanoemulsion (LNE) system containing granisetron (GRN) was developed and its in vitro permeation-enhancing effect was evaluated using Caco-2 cell monolayers. Particle size, polydispersity index (PI) and stability of the prepared GRN-loaded LNE systems were also characterized. The mean diameters of prepared LNEs were around 50 nm with PI<0.2. Developed LNEs were stable at 4°C in the dark place over a period of 12 weeks. In vitro drug dissolution and cytotoxicity studies of GRN-loaded LNEs were performed. GRN-loaded LNEs exhibited significantly higher drug dissolution than GRN suspension at pH 6.8 for 2h (P<0.05). In vitro permeation study in Caco-2 cell monolayers showed that the LNEs significantly enhanced the drug permeation compared to GRN powder. The in vivo toxicity study in the rat jejunum revealed that the prepared GRN-loaded LNE was as safe as the commercial formulation (Kytril). These results suggest that LNE could be used as a potential oral liquid formulation of GRN for anti-emetic treatment on the post-operative and chemotherapeutic patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.

    PubMed

    Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-11-01

    Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes

  5. Edible films from methylcellulose and nanoemulsions of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) essential oils as shelf life extenders for sliced bread.

    PubMed

    Otoni, Caio G; Pontes, Silvania F O; Medeiros, Eber A A; Soares, Nilda de F F

    2014-06-04

    Consumers are increasingly demanding foods with lower synthetic preservatives. Plant essential oils are natural compounds with remarkable antimicrobial properties and may be incorporated as emulsions into water-soluble polymers to form antimicrobial films. Coarse emulsions (diameters of 1.3-1.9 μm) and nanoemulsions (diameters of 180-250 nm) of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) essential oils were produced through low-speed mixing and ultrasonication, respectively. Methylcellulose was added for film-forming purposes. Both essential oils reduced the rigidity and increased the extensibility of the methylcellulose films, effects that were even more pronounced for nanodroplets. Both essential oils lessened the counts of yeasts and molds in sliced bread during 15 days, and droplet size reduction provided a further improvement in antimicrobial properties. Due to increased bioavailability, less preservative content might be used and still deliver the same antimicrobial efficiency if encapsulated in smaller particles.

  6. Direct numerical simulation of axisymmetric laminar low-density jets

    NASA Astrophysics Data System (ADS)

    Gomez Lendinez, Daniel; Coenen, Wilfried; Sevilla, Alejandro

    2017-11-01

    The stability of submerged laminar axisymmetric low-density jets has been investigated experimentally (Kyle & Sreenivasan 1993, Hallberg & Strykowski 2006) and with linear analysis (Jendoubi & Strykowski 1994, Coenen & Sevilla 2012, Coenen et al. 2017). These jets become globally unstable when the Reynolds number is larger than a certain critical value which depends on the density ratio and on the velocity profile at the injector outlet. In this work, Direct Numerical Simulations using FreeFEM + + (Hecht 2012) with P1 elements for pressure and P2 for velocity and density are performed to complement the above mentioned studies. Density and velocity fields are analyzed at long time showing the unforced space-time evolution of nonlinear disturbances propagating along the jet. Using the Stuart-Landau model to fit the numerical results for the self-excited oscillations we have computed a neutral stability curve that shows good agreement with experiments and stability theory. Thanks to Spanish MINECO under projects DPI2014-59292-C3-1-P and DPI2015-71901-REDT for financial support.

  7. Increased fracture risk and low bone mineral density in patients with loeys-dietz syndrome.

    PubMed

    Tan, Eric W; Offoha, Roosevelt U; Oswald, Gretchen L; Skolasky, Richard L; Dewan, Ashvin K; Zhen, Gehua; Shapiro, Jay R; Dietz, Harry C; Cao, Xu; Sponseller, Paul D

    2013-08-01

    Loeys-Dietz syndrome is a recently recognized connective tissue disorder with widespread systemic involvement. Little is known about its skeletal phenotype. Our goal was to investigate the risk of fracture and incidence of low bone mineral density in patients with Loeys-Dietz syndrome. We performed a cross-sectional, descriptive, survey-based study with subsequent chart review from July 2011 to April 2012. Fifty-seven patients (26 men, 31 women) with Loeys-Dietz syndrome confirmed by genetic testing completed the survey (average age, 25.3 years; range, 0.9-79.6 years). There were a total of 51 fractures (33 patients): 35 fractures in the upper extremities, 14 in the lower extremities, and two in the spine. Fourteen patients (24.6%) reported two or more fractures. There was a 50% risk of fracture by age 14 years. The incidence of any fracture in this cohort was 3.86 per 100 person-years. Seventeen patients had dual-energy X-ray absorptiometry scans available for review, 11 (64.7%) of whom had at least one fracture. Thirteen included lumbar spine absorptiometry reports; eight (61.5%) indicated low or very low bone mineral density. In the left hip, ten of 14 participants (71.4%) had low or very low bone mineral density. In the left femoral neck, nine of 13 participants (69.2%) had low or very low bone mineral density. The lowest Z- and T-scores were not associated with an increased number of fractures. Patients with Loeys-Dietz syndrome have a high risk of fracture and a high incidence of low bone mineral density. Copyright © 2013 Wiley Periodicals, Inc.

  8. Polyamide nanocapsules and nano-emulsions containing Parsol® MCX and Parsol® 1789: in vitro release, ex vivo skin penetration and photo-stability studies.

    PubMed

    Hanno, Ibrahim; Anselmi, Cecilia; Bouchemal, Kawthar

    2012-02-01

    To prepare polyamide nanocapsules for skin photo-protection, encapsulating α-tocopherol, Parsol®MCX (ethylhexyl methoxycinnamate) and/or Parsol®1789 (butyl methoxydibenzoylmethane). Nanocapsules were obtained by combining spontaneous emulsification and interfacial polycondensation reaction between sebacoyl chloride and diethylenetriamine. Nano-emulsions used as control were obtained by the same process without monomers. The influence of carrier on release rate was studied in vitro with a membrane-free model. Epidermal penetration of encapsulated sunscreens was ex vivo evaluated using Franz diffusion cells. Ability of encapsulated sunscreens to improve photo-stability was verified by comparing percentage of degradation after UV radiation exposure. Sunscreen-containing nanocapsules (260-400 nm) were successfully prepared; yield of encapsulation was >98%. Parsol®MCX and Parsol®1789 encapsulation led to decreased release rate by up to 60% in comparison with nano-emulsion and allowed minimum penetration through pig ear epidermis. Presence of polyamide shell protected encapsulated sunscreen filters from photo-degradation without affecting their activity. Encapsulation of Parsol®MCX and Parsol®1789 into oil-core of polyamide nanocapsules allowed protection from photo-degradation, controlled release from nanocapsules, and limited penetration through pig ear epidermis.

  9. Pharmacologic management of isolated low high-density lipoprotein syndrome.

    PubMed

    Bermúdez, Valmore; Cano, Raquel; Cano, Clímaco; Bermúdez, Fernando; Arraiz, Nailet; Acosta, Luis; Finol, Freddy; Pabón, María Rebeca; Amell, Anilsa; Reyna, Nadia; Hidalgo, Joaquin; Kendall, Paúl; Manuel, Velasco; Hernández, Rafael

    2008-01-01

    High-density lipoprotein (HDL) cholesterol is a heterogeneous group of lipoproteins exhibiting a variety of properties like prostacyclin production stimulation, decrease in platelet aggregation, endothelial cell apoptosis inhibition, and low-density lipoprotein oxidation blockade. Epidemiologic studies have shown an inverse relation between HDL cholesterol levels and cardiovascular risk. Low HDL cholesterol is associated with increased risk for myocardial infarction, stroke, sudden death, peripheral artery disease, and postangioplasty restenosis. In contrast, high HDL levels are associated with longevity and protection against atherosclerotic disease development. Given the evolving epidemic of obesity, diabetes mellitus, and metabolic syndrome, the prevalence of low HDL will continue to rise. In the United States, low HDL is present in 35% of men, 15% of women, and approximately 63% of patients with coronary artery disease. Data extracted from the Framingham study highlight that 1-mg increase in HDL levels decreases by 2% to 3% the risk of cardiovascular disease. There is no doubt regarding clinical importance about isolated low HDL, but relatively few clinicians consider a direct therapeutic intervention of this dyslipidemia. In this sense, lifestyle measures should be the first-line strategy to manage low HDL levels. On the other hand, pharmacologic options include niacin, fibrates, and statins. Fibrates appear to reduce risk preferentially in patients with low HDL with metabolic syndrome, whereas statins reduce risk across all levels of HDL. Torcetrapib, a cholesteryl esters transfer protein inhibitor, represented a hope to raise this lipoprotein; however, all clinical trials on this drug had ceased after ILLUMINATE, RADIANCE and ERASE trials had recorded an increase in mortality, rates of myocardial infarction, angina, and heart failure. In the near future, drugs as beta-glucans, Apo-A1 mimetic peptides, and ACAT inhibitors, are the new promises to treat this

  10. Low-dislocation-density epitatial layers grown by defect filtering by self-assembled layers of spheres

    DOEpatents

    Wang, George T.; Li, Qiming

    2013-04-23

    A method for growing low-dislocation-density material atop a layer of the material with an initially higher dislocation density using a monolayer of spheroidal particles to bend and redirect or directly block vertically propagating threading dislocations, thereby enabling growth and coalescence to form a very-low-dislocation-density surface of the material, and the structures made by this method.

  11. Evaluation of a Low Energy, Low Density, Non-Ablative Fractional 1927 nm Wavelength Laser for Facial Skin Resurfacing.

    PubMed

    Brauer, Jeremy A; Alabdulrazzaq, Hamad; Bae, Yoon-Soo Cindy; Geronemus, Roy G

    2015-11-01

    We investigated the safety, tolerability and efficacy of a low energy low density, non-ablative fractional 1,927-nm laser in the treatment of facial photodamage, melasma, and post inflammatory hyperpigmentation. Prospective non-randomized trial. Single center, private practice with a dedicated research department. Subjects with clinically diagnosed facial photodamage, melasma, or post inflammatory hyperpigmentation. Subjects received four to six treatments at 14-day intervals (+/- 3 days) with a low energy low density non-ablative fractional 1,927-nm laser (Solta Hayward, CA) with an energy level of 5 mJ, and density coverage of either 5%, 7.5%, or 10%, with a total of up to 8 passes. Blinded assessment of clinical photos for overall improvement at one and three months post final treatment. Investigator improvement scores, and subject pain and satisfaction scores for overall improvement were recorded as well. We enrolled 23 subjects, average age 45.0 years (range, 25-64 years), 22 with Fitzpatrick Skin Types I-IV and 1 with Type VI, with facial photodamage, melasma, or post inflammatory hyperpigmentation. Approximately 55% of subjects reported marked to very significant improvement at one and three months post final treatment. Blinded assessment of photography of 20 subjects revealed an average of moderate improvement at one-month follow up and mild to moderate improvement at three months. Average subject pain score was 3.4/10 during treatment. Favorable outcomes were demonstrated using the low energy low density, non-ablative fractional 1,927-nm laser in facial resurfacing for photodamage, melasma, and post inflammatory hyperpigmentation. Results were maintained at the 3-month follow up, as demonstrated by investigator and subject assessments, as well as blinded evaluations by three independent dermatologists utilizing photographs obtained from a standardized facial imaging device.

  12. Gravitational Effects on Flow Instability and Transition in Low Density Jets

    NASA Technical Reports Server (NTRS)

    Agrawal A. K.; Parthasarathy, K.; Pasumarthi, K.; Griffin, D. W.

    2000-01-01

    Recent experiments have shown that low-density gas jets injected into a high-density ambient gas undergo an instability mode, leading to highly-periodic oscillations in the flow-field for certain conditions. The transition from laminar to turbulent flow in these jets is abrupt, without the gradual change in scales. Even the fine scale turbulent structure repeats itself with extreme regularity from cycle to cycle. Similar observations were obtained in buoyancy-dominated and momentum-dominated jets characterized by the Richardson numbers, Ri = [gD(rho(sub a)-rho(sub j))/rho(sub j)U(sub j)(exp 2) ] where g is the gravitational acceleration, D is the jet diameter, rho(sub a) and rho(sub a) are, respectively, the free-stream and jet densities, and U(sub j) is the mean jet exit velocity. At high Richardson numbers, the instability is presumably caused by buoyancy since the flow-oscillation frequency (f) or the Strouhal number, St = [fD/U(sub j)] scales with Ri. In momentum-dominated jets, however, the Strouhal number of the oscillating flow is relatively independent of the Ri. In this case, a local absolute instability is predicted in the potential core of low-density jets with S [= rho(sub j)/rho(sub a)] < 0.7, which agrees qualitatively with experiments. Although the instability in gas jets of high Richardson numbers is attributed to buoyancy, direct physical evidence has not been acquired in experiments. If the instability is indeed caused by buoyancy, the near-field flow structure of the jet will change significantly when the buoyancy is removed, for example, in the microgravity environment. Thus, quantitative data on the spatial and temporal evolutions of the instability, length and time scale of the oscillating mode and its effects on the mean flow and breakdown of the potential core are needed in normal and microgravity to delineate gravitational effects in buoyant jets. In momentum dominated low-density jets, the instability is speculated to originate in the

  13. Ultra low density biodegradable shape memory polymer foams with tunable physical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singhal, Pooja; Wilson, Thomas S.; Cosgriff-Hernandez, Elizabeth

    Compositions and/or structures of degradable shape memory polymers (SMPs) ranging in form from neat/unfoamed to ultra low density materials of down to 0.005 g/cc density. These materials show controllable degradation rate, actuation temperature and breadth of transitions along with high modulus and excellent shape memory behavior. A method of m ly low density foams (up to 0.005 g/cc) via use of combined chemical and physical aking extreme blowing agents, where the physical blowing agents may be a single compound or mixtures of two or more compounds, and other related methods, including of using multiple co-blowing agents of successively higher boilingmore » points in order to achieve a large range of densities for a fixed net chemical composition. Methods of optimization of the physical properties of the foams such as porosity, cell size and distribution, cell openness etc. of these materials, to further expand their uses and improve their performance.« less

  14. Peromyscus ranges at high and low population densities

    USGS Publications Warehouse

    Stickel, L.F.

    1960-01-01

    Live-trapping studies at the Patuxent Wildlife Research Center, Maryland, showed that the ranges of wood mice were larger when the population density was lower and smaller when the population density was higher. When the population density was about 1.3 male mice per acre in June 1954, the average distance recorded between traps after four or more captures was 258 feet. When the population density was about 4.1 male mice per acre in June 1957, the average distance was 119 feet. Differences were statistically significant. Females were so scarce at the low that comparisons could not be made for them. Examples from the literature also show that home range of a species may vary with population density. Other examples show that the range may vary with habitat, breeding condition and food supply. These variations in range size reduce the reliability of censuses in which relative methods are used: Lines of traps sample the population of a larger area when ranges are large than they do when ranges are small. Direct comparisons therefore will err in some degree. Error may be introduced also when line-trap data are transformed to per acre figures on the basis of home-range estimates made by area-trapping at another place or time. Variation in range size also can make it necessary to change area-trapping plans, for larger quadrants are needed when ranges are larger. It my be necessary to set traps closer together when ranges are small than when ranges are large.

  15. Internal processes affecting surfaces of low-density satellites - Ganymede and Callisto

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.; Head, J. W.

    1979-01-01

    Possible significant physical processes on low-density (icy) satellites, particularly Ganymede and Callisto, are outlined, and the relations of these interior processes to the formation and evolution of satellite surfaces are discussed. A variety of mechanisms is shown to lead to interior melting in early satellite history and a configuration characterized by a predominantly water ice lithosphere overlying a mantle containing liquid water. Physical processes capable of affecting the lithosphere of an ice-silicate body and thus creating observable surface features are assessed, including tectonic stresses from tidal deformation and volume changes, gravitational effects on density differences and water volcanism. The residence time of surface features on icy bodies produced by the outlined processes and by impact cratering is considered, and a tentative outline of the geologic history of Ganymede and Callisto is presented. Observations from Voyager and Galileo are expected to provide evidence on the evolution and geologic history of low-density satellites.

  16. Nutritional Correlates of Koala Persistence in a Low-Density Population

    PubMed Central

    Stalenberg, Eleanor; Wallis, Ian R.; Cunningham, Ross B.; Allen, Chris; Foley, William J.

    2014-01-01

    It is widely postulated that nutritional factors drive bottom-up, resource-based patterns in herbivore ecology and distribution. There is, however, much controversy over the roles of different plant constituents and how these influence individual herbivores and herbivore populations. The density of koala (Phascolarctos cinereus) populations varies widely and many attribute population trends to variation in the nutritional quality of the eucalypt leaves of their diet, but there is little evidence to support this hypothesis. We used a nested design that involved sampling of trees at two spatial scales to investigate how leaf chemistry influences free-living koalas from a low-density population in south east New South Wales, Australia. Using koala faecal pellets as a proxy for koala visitation to trees, we found an interaction between toxins and nutrients in leaves at a small spatial scale, whereby koalas preferred trees with leaves of higher concentrations of available nitrogen but lower concentrations of sideroxylonals (secondary metabolites found exclusively in eucalypts) compared to neighbouring trees of the same species. We argue that taxonomic and phenotypic diversity is likely to be important when foraging in habitats of low nutritional quality in providing diet choice to tradeoff nutrients and toxins and minimise movement costs. Our findings suggest that immediate nutritional concerns are an important priority of folivores in low-quality habitats and imply that nutritional limitations play an important role in constraining folivore populations. We show that, with a careful experimental design, it is possible to make inferences about populations of herbivores that exist at extremely low densities and thus achieve a better understanding about how plant composition influences herbivore ecology and persistence. PMID:25470599

  17. Sprayable low density ablator and application process

    NASA Technical Reports Server (NTRS)

    Sharpe, M. H.; Hill, W. E.; Simpson, W. G.; Carter, J. M.; Brown, E. L.; King, H. M.; Schuerer, P. H.; Webb, D. D. (Inventor)

    1978-01-01

    A sprayable, low density ablative composition is described consisting esentially of: (1) 100 parts by weight of a mixture of 25-65% by weight of phenolic microballoons, 0-20% by weight of glass microballoons, 4-10% by weight of glass fibers, 25-45% by weight of an epoxy-modified polyurethane resin, 2-4% by weight of a bentonite dispersing aid, and 1-2% by weight of an alcohol activator for the bentonite; (2) 1-10 parts by weight of an aromatic amine curing agent; and (3) 200-400 parts by weight of a solvent.

  18. Fullerene-based low-density superhard materials with tunable bandgaps

    NASA Astrophysics Data System (ADS)

    Cao, Ai-Hua; Zhao, Wen-Juan; Gan, Li-Hua

    2018-06-01

    Four carbon allotropes built from tetrahedral symmetrical fullerenes C28 and C40 are predicted to be superhard materials with mass density around that of water, and all of them are porous semiconductors. Both the bandgaps and hardness decrease with increasing ratio of sp2 hybridized carbon atoms. The mechanical and thermodynamic stabilities of C28- and C40-based allotropes at zero pressure are confirmed by a variety of state-of-the-art theoretical calculations. The evolution trend of bandgap found here suggests that one can obtain low-density hard materials with tunable bandgaps by substituting the carbon atom in diamond with different Td-symmetrical non-IPR fullerene Cn.

  19. Pareidolia in Neuroendocrinology: A Pituitary Macroadenoma Resembling "Big Bird".

    PubMed

    de Herder, Wouter W

    2016-04-01

    The MRI picture of a pituitary macroadenoma with supra- and perisellar expansion resembled a famous character from a children's television series demonstrating that pareidolia is also observed in neuro-endocrinology and -radiology.

  20. Potential bias in TEOS10 density of sea water samples

    NASA Astrophysics Data System (ADS)

    Budéus, G. Th.

    2018-04-01

    Direct density measurements of ocean water samples are compared to TEOS10 derived densities. The water sample set includes waters from remote areas as Antarctic waters and the central Arctic, but also waters of regions that resemble closely the reference composition of TEOS10. With few exceptions, the measured densities are smaller than those derived according to TEOS10. The result suggests a potential systematic overestimation of density by TEOS10. For the majority of waters the deviations are about 10 g/m3.

  1. Nanomedicine for prostate cancer using nanoemulsion: A review.

    PubMed

    Sasikumar, Aravindsiva; Kamalasanan, Kaladhar

    2017-08-28

    Prostate cancer (PCa) is a worldwide issue, with burgeoning rise in prevalence, morbidity and mortality. Targeted drug delivery, a long sort solution in this regard using controlled release (CR) - nanocarriers, is still a challenge. There is an emerging criticism that, the challenges are due to less appreciation for the biological barriers and lack of corresponding newer technologies. Over the years, more understanding about the biological barriers has come with the progress in characterization techniques. Correspondingly, there is a change in opinion about approaches in clinical trial that; focus of the end point need to be shifted towards disease stabilization for these explorative technologies. Currently, there is a requirement to overcome these newly identified challenges to develop newer affordable therapeutics. The ongoing clinical protocol for therapy using CR-nanocarriers is intravenous injection followed by local targeting to cancer site. This is the most accepted protocol and new CR-nanocarriers are being developed to suit this protocol. In this review, recent progress in treatment of PCa using CR-nanocarriers is analyzed with respect to newly identified biological barriers and design challenges. Possibilities of exploring nanoemulsion (NE) platform for targeted drug delivery to PCa are examined. Repurposing of drugs and combination therapy using NE platform targeted to PCa can be explored for design and development of affordable nanomedicine. In 20yrs. from now there expected to be numerous affordable nanomedicine technologies available in market exploring these lines. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of interstitial low level laser stimulation in skin density

    NASA Astrophysics Data System (ADS)

    Jang, Seulki; Ha, Myungjin; Lee, Sangyeob; Yu, Sungkon; Park, Jihoon; Radfar, Edalat; Hwang, Dong Hyun; Lee, Han A.; Kim, Hansung; Jung, Byungjo

    2016-03-01

    As the interest in skin was increased, number of studies on skin care also have been increased. The reduction of skin density is one of the symptoms of skin aging. It reduces elasticity of skin and becomes the reason of wrinkle formation. Low level laser therapy (LLLT) has been suggested as one of the effective therapeutic methods for skin aging as in hasten to change skin density. This study presents the effect of a minimally invasive laser needle system (MILNS) (wavelength: 660nm, power: 20mW) in skin density. Rabbits were divided into three groups. Group 1 didn't receive any laser stimulation as a control group. Group 2 and 3 as test groups were exposed to MILNS with energy of 8J and 6J on rabbits' dorsal side once a week, respectively. Skin density of rabbits was measured every 12 hours by using an ultrasound skin scanner.

  3. Conspicuousness, color resemblance, and toxicity in geographically diverging mimicry: The pan-Amazonian frog Allobates femoralis.

    PubMed

    Amézquita, Adolfo; Ramos, Óscar; González, Mabel Cristina; Rodríguez, Camilo; Medina, Iliana; Simões, Pedro Ivo; Lima, Albertina Pimentel

    2017-04-01

    Predation risk is allegedly reduced in Batesian and Müllerian mimics, because their coloration resembles the conspicuous coloration of unpalatable prey. The efficacy of mimicry is thought to be affected by variation in the unpalatability of prey, the conspicuousness of the signals, and the visual system of predators that see them. Many frog species exhibit small colorful patches contrasting against an otherwise dark body. By measuring toxicity and color reflectance in a geographically variable frog species and the syntopic toxic species, we tested whether unpalatability was correlated with between-species color resemblance and whether resemblance was highest for the most conspicuous components of coloration pattern. Heterospecific resemblance in colorful patches was highest between species at the same locality, but unrelated to concomitant variation in toxicity. Surprisingly, resemblance was lower for the conspicuous femoral patches compared to the inconspicuous dorsum. By building visual models, we further tested whether resemblance was affected by the visual system of model predators. As predicted, mimic-model resemblance was higher under the visual system of simulated predators compared to no visual system at all. Our results indicate that femoral patches are aposematic signals and support a role of mimicry in driving phenotypic divergence or mimetic radiation between localities. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  4. Low-grade central osteosarcoma of distal femur, resembling fibrous dysplasia

    PubMed Central

    Vasiliadis, Haris S; Arnaoutoglou, Christina; Plakoutsis, Sotiris; Doukas, Michalis; Batistatou, Anna; Xenakis, Theodoros A

    2013-01-01

    We report a case of a 32 year-old male, admitted for a lytic lesion of the distal femur. One month after the first X-ray, clinical and imaging deterioration was evident. Open biopsy revealed fibrous dysplasia. Three months later, the lytic lesion had spread to the whole distal third of the femur reaching the articular cartilage. The malignant clinical and imaging features necessitated excision of the lesion and reconstruction with a custom-made total knee arthroplasty. Intra-operatively, no obvious soft tissue infiltration was evident. Nevertheless, an excision of the distal 15.5 cm of the femur including 3.0 cm of the surrounding muscles was finally performed. The histological examination of the excised specimen revealed central low-grade osteosarcoma. Based on the morphological features of the excised tumor, allied to the clinical findings, the diagnosis of low-grade central osteosarcoma was finally made although characters of a fibrous dysplasia were apparent. Central low-grade osteosarcoma is a rare, well-differentiated sub-type of osteosarcoma, with clinical, imaging, and histological features similar to benign tumours. Thus, initial misdiagnosis is usual with the condition commonly mistaken for fibrous dysplasia. Central low-grade osteosarcoma is usually treated with surgery alone, with rare cases of distal metastases. However, regional recurrence is quite frequent after close margin excision. PMID:24147271

  5. Phase behavior and formation of o/w nano-emulsion in vegetable oil/ mixture of polyglycerol polyricinoleate and polyglycerin fatty acid ester/water systems.

    PubMed

    Wakisaka, Satoshi; Nakanishi, Masami; Gohtani, Shoichi

    2014-01-01

    It is reported that mixing polyglycerol polyricinoleate (PGPR) and polyglycerol laurilester has a great emulsifying capacity, and consequently fine oil-in-water (o/w) emulsions can be formed. However, the role of PGPR is not clear. The objective of this research is to investigate the phase behavior of vegetable oil/mixture of PGPR and polyglycerol fatty acid ester/water systems, and to clarify the role of PGPR in making a fine emulsion. Phase diagrams were constructed to elucidate the optimal process for preparing fine emulsions. In all the systems examined in this study, the phases, including the liquid crystal phase (L(c)) and sponge phase (L(3)), spread widely in the phase diagrams. We examined droplet size of the emulsions prepared from each phase and found that o/w nano-emulsions with droplet sizes as small as 50 nm were formed by emulsifying either from a single L(3) phase or a two-phase region, L(c) + L(3). These results indicate that a sponge phase L(3) or liquid crystal phase L(c) or both is necessary to form an o/w nano-emulsion whose average droplet diameter is less than 50 nm for PGPR and polyglycerin fatty acid ester mixtures used as surfactant.

  6. Fathers see stronger family resemblances than non-fathers in unrelated children's faces.

    PubMed

    Bressan, Paola; Dal Pos, Stefania

    2012-12-01

    Even after they have taken all reasonable measures to decrease the probability that their spouses cheat on them, men still face paternal uncertainty. Such uncertainty can lead to paternal disinvestment, which reduces the children's probability to survive and reproduce, and thus the reproductive success of the fathers themselves. A theoretical model shows that, other things being equal, men who feel confident that they have fathered their spouses' offspring tend to enjoy greater fitness (i.e., leave a larger number of surviving progeny) than men who do not. This implies that fathers should benefit from exaggerating paternal resemblance. We argue that the self-deceiving component of this bias could be concealed by generalizing this resemblance estimation boost to (1) family pairs other than father-child and (2) strangers. Here, we tested the prediction that fathers may see, in unrelated children's faces, stronger family resemblances than non-fathers. In Study 1, 70 men and 70 women estimated facial resemblances between children paired, at three different ages (as infants, children, and adolescents), either to themselves or to their parents. In Study 2, 70 men and 70 women guessed the true parents of the same children among a set of adults. Men who were fathers reported stronger similarities between faces than non-fathers, mothers, and non-mothers did, but were no better at identifying childrens' real parents. We suggest that, in fathers, processing of facial resemblances is biased in a manner that reflects their (adaptive) wishful thinking that fathers and children are related.

  7. Stemflow in low-density and hedgerow olive orchards in Portugal

    NASA Astrophysics Data System (ADS)

    Dias, Pedro D.; Valente, Fernanda; Pereira, Fernando L.; Abreu, Francisco G.

    2015-04-01

    Stemflow (Sf) is responsible for a localized water and solute input to soil around tree's trunks, playing an important eco-hydrological role in forest and agricultural ecosystems. Sf was monitored for seven months in 25 Olea europaea L. trees distributed in three orchards managed in two different ways, traditional low-density and super high density hedgerow. The orchards were located in central Portugal in the regions of Santarém (Várzea and Azóia) and Lisboa (Tapada). Seven olive varieties were analysed: Arbequina, Galega, Picual, Maçanilha, Cordovil, Azeiteira, Negrinha and Blanqueta. Measured Sf ranged from 7.5 to 87.2 mm (relative to crown-projected area), corresponding to 1.2 and 16.7% of gross rainfall (Pg). To understand better the variables that affect Sf and to be able to predict its value, linear regression models were fitted to these data. Whenever possible, the linear models were simplified using the backward stepwise algorithm based on the Akaike information criterion. For each tree, multiple linear regressions were adjusted between Sf and the duration, volume and intensity of rainfall episodes and maximum evaporation rate. In the low-density Várzea grove the more relevant explanatory variables were the three rainfall characteristics. In the super high density Azóia orchard only rainfall volume and intensity were considered relevant. In the low-density Tapada's grove all trees had a different sub-model with Pg being the only common variable. To try to explain differences between trees and to improve the quality of the modeling in each orchard, another set of explanatory variables was added: canopy volume, tree and trunk heights and trunk perimeter at the height of the first branches. The variables present in all sub-models were rainfall volume and intensity and the tree and trunk heights. Canopy volume and rainfall duration were also present in the sub-models of the two low-density groves (Tapada and Várzea). The determination coefficient (R2

  8. Ultra-low density microcellular polymer foam and method

    DOEpatents

    Simandl, Ronald F.; Brown, John D.

    1996-01-01

    An ultra-low density, microcellular open-celled polymer foam and a method for making such foam. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm.sup.3 and open porosity provided by well interconnected strut morphology is formed.

  9. Ultra-low density microcellular polymer foam and method

    DOEpatents

    Simandl, R.F.; Brown, J.D.

    1996-03-19

    An ultra-low density, microcellular open-celled polymer foam and a method for making such foam are disclosed. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm{sup 3} and open porosity provided by well interconnected strut morphology is formed.

  10. Simulated Tip Rub Testing of Low-Density Metal Foam

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Jones, Michael G.

    2009-01-01

    Preliminary acoustic studies have indicated that low-density, open-cell, metal foams may be suitable acoustic liner material for noise suppression in high by-pass engines. Metal foam response under simulated tip rub conditions was studied to assess whether its durability would be sufficient for the foam to serve both as a rub strip above the rotor as well as an acoustic treatment. Samples represented four metal alloys, nominal cell dimensions ranging from 60 to 120 cells per inch (cpi), and relative densities ranging from 3.4 to 10 percent. The resulting rubbed surfaces were relatively smooth and the open cell structure of the foam was not adversely affected. Sample relative density appeared to have significant influence on the forces induced by the rub event. Acoustic responses of various surface preparations were measured using a normal incidence tube. The results of this study indicate that the foam s open-cell structure was retained after rubbing and that the acoustic absorption spectra variation was minimal.

  11. Effective thermal conductivity determination for low-density insulating materials

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, D. M.

    1978-01-01

    That nonlinear least squares can be used to determine effective thermal conductivity was demonstrated, and a method for assessing the relative error associated with these predicted values was provided. The differences between dynamic and static determination of effective thermal conductivity of low-density materials that transfer heat by a combination of conduction, convection, and radiation were discussed.

  12. Fully automated breast density assessment from low-dose chest CT

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Margolies, Laurie R.; Xie, Yiting; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.

    2017-03-01

    Breast cancer is the most common cancer diagnosed among US women and the second leading cause of cancer death 1 . Breast density is an independent risk factor for breast cancer and more than 25 states mandate its reporting to patients as part of the lay mammogram report 2 . Recent publications have demonstrated that breast density measured from low-dose chest CT (LDCT) correlates well with that measured from mammograms and MRIs 3-4 , thereby providing valuable information for many women who have undergone LDCT but not recent mammograms. A fully automated framework for breast density assessment from LDCT is presented in this paper. The whole breast region is first segmented using an anatomy-orientated novel approach based on the propagation of muscle fronts for separating the fibroglandular tissue from the underlying muscles. The fibroglandular tissue regions are then identified from the segmented whole breast and the percentage density is calculated based on the volume ratio of the fibroglandular tissue to the local whole breast region. The breast region segmentation framework was validated with 1270 LDCT scans, with 96.1% satisfactory outcomes based on visual inspection. The density assessment was evaluated by comparing with BI-RADS density grades established by an experienced radiologist in 100 randomly selected LDCT scans of female subjects. The continuous breast density measurement was shown to be consistent with the reference subjective grading, with the Spearman's rank correlation 0.91 (p-value < 0.001). After converting the continuous density to categorical grades, the automated density assessment was congruous with the radiologist's reading in 91% cases.

  13. Proteomic Markers of Functional Sperm Population in Bovines: Comparison of Low- and High-Density Spermatozoa Following Cryopreservation.

    PubMed

    D'Amours, Olivier; Frenette, Gilles; Bourassa, Sylvie; Calvo, Ézéchiel; Blondin, Patrick; Sullivan, Robert

    2018-01-05

    Mammalian semen contains a heterogeneous population of sperm cells. This heterogeneity results from variability in the complex processes of cell differentiation in the testis, biochemical modifications undergone by spermatozoa during transit along the male reproductive tract, interactions with secretions from accessory sex glands at ejaculation, and, in the context of reproductive technologies, in the ability of ejaculated spermatozoa to resist damage associated with freeze-thaw procedures. When submitted to density gradient centrifugation, ejaculated spermatozoa distribute themselves into two distinct populations: a low-density population characterized by low motility parameters, and a high-density population with high motility characteristics. To understand the origin of ejaculated spermatozoa heterogeneity, cryopreserved semen samples from bulls used by the artificial insemination (A.I.) industry were submitted to Percoll gradient centrifugation. Proteins from low and high density spermatozoa were then extracted with sodium deoxycholate and submitted to proteomic analysis using iTRAQ (isobaric tag for relative and absolute quantitation) methodologies. Quantification of selected sperm proteins was confirmed by multiple reaction monitoring (MRM). Overall, 31 different proteins were more abundant in low-density spermatozoa, while 80 different proteins were more abundant in the high-density subpopulation. Proteins enriched in high-density spermatozoa were markers of sperm functionality such as the glycolytic process, binding to the egg zona pellucida, and motility. Low-density spermatozoa were not solely characterized by loss of proteins and their associated functions. Chaperonin-containing TCP1s and chaperones are hallmarks of the low-density subpopulation. iTRAQ analysis revealed that other proteins such as binder of sperm proteins, histone, GPX5, ELSPBP1, and clusterin are overexpressed in low-density spermatozoa suggesting that these proteins represent defects

  14. Osteoprotegerin autoantibodies do not predict low bone mineral density in middle-aged women.

    PubMed

    Vaziri-Sani, Fariba; Brundin, Charlotte; Agardh, Daniel

    2017-12-01

    Autoantibodies against osteoprotegerin (OPG) have been associated with osteoporosis. The aim was to develop an immunoassay for OPG autoantibodies and test their diagnostic usefulness of identifying women general population with low bone mineral density. Included were 698 women at mean age 55.1 years (range 50.4-60.6) randomly selected from the general population. Measurement of wrist bone mineral density (g/cm 2 ) was performed of the non-dominant wrist by dual-energy X-ray absorptiometry (DXA). A T-score < - 2.5 was defined as having a low bone mineral density. Measurements of OPG autoantibodies were carried by radiobinding assays. Cut-off levels for a positive value were determined from the deviation from normality in the distribution of 398 healthy blood donors representing the 99.7th percentile. Forty-five of the 698 (6.6%) women were IgG-OPG positive compared with 2 of 398 (0.5%) controls ( p  < 0.0001) and 35 of the 698 (5.0%) women had a T-score < - 2.5. There was no difference in bone mineral density between IgG-OPG positive (median 0.439 (range 0.315-0.547) g/cm 2 ) women and IgG-OPG negative (median 0.435 (range 0.176-0.652) g/cm 2 ) women ( p  = 0.3956). Furthermore, there was neither a correlation between IgG-OPG levels and bone mineral density (r s  = 0.1896; p  = 0.2068) nor T-score (r s  = 0.1889; p  = 0.2086). Diagnostic sensitivity and specificity of IgG-OPG for low bone mineral density were 5.7% and 92.9%, and positive and negative predictive values were 7.4% and 90.8%, respectively. Elevated OPG autoantibody levels do not predict low bone mineral density in middle-aged women selected from the general population.

  15. Cell openness manipulation of low density polyurethane foam for efficient sound absorption

    NASA Astrophysics Data System (ADS)

    Hyuk Park, Ju; Suh Minn, Kyung; Rae Lee, Hyeong; Hyun Yang, Sei; Bin Yu, Cheng; Yeol Pak, Seong; Sung Oh, Chi; Seok Song, Young; June Kang, Yeon; Ryoun Youn, Jae

    2017-10-01

    Satisfactory sound absorption using a low mass density foam is an intriguing desire for achieving high fuel efficiency of vehicles. This issue has been dealt with a microcellular geometry manipulation. In this study, we demonstrate the relationship between cell openness of polyurethane (PU) foam and sound absorption behaviors, both theoretically and experimentally. The objective of this work is to mitigate a threshold of mass density by rendering a sound absorber which shows a satisfactory performance. The cell openness, which causes the best sound absorption performance in all cases considered, was estimated as 15% by numerical simulation. Cell openness of PU foam was experimentally manipulated into desired ranges by adjusting rheological properties in a foaming reaction. Microcellular structures of the fabricated PU foams were observed and sound absorption coefficients were measured using a B&K impedance tube. The fabricated PU foam with the best cell openness showed better sound absorption performance than the foam with double mass density. We envisage that this study can help the manufacture of low mass density sound absorbing foams more efficiently and economically.

  16. High-density amorphous ice: nucleation of nanosized low-density amorphous ice

    NASA Astrophysics Data System (ADS)

    Tonauer, Christina M.; Seidl-Nigsch, Markus; Loerting, Thomas

    2018-01-01

    The pressure dependence of the crystallization temperature of different forms of expanded high-density amorphous ice (eHDA) was scrutinized. Crystallization at pressures 0.05-0.30 GPa was followed using volumetry and powder x-ray diffraction. eHDA samples were prepared via isothermal decompression of very high-density amorphous ice at 140 K to different end pressures between 0.07-0.30 GPa (eHDA0.07-0.3). At 0.05-0.17 GPa the crystallization line T x (p) of all eHDA variants is the same. At pressures  >0.17 GPa, all eHDA samples decompressed to pressures  <0.20 GPa exhibit significantly lower T x values than eHDA0.2 and eHDA0.3. We rationalize our findings with the presence of nanoscaled low-density amorphous ice (LDA) seeds that nucleate in eHDA when it is decompressed to pressures  <0.20 GPa at 140 K. Below ~0.17 GPa, these nanosized LDA domains are latent within the HDA matrix, exhibiting no effect on T x of eHDA<0.2. Upon heating at pressures  ⩾0.17 GPa, these nanosized LDA nuclei transform to ice IX nuclei. They are favored sites for crystallization and, hence, lower T x . By comparing crystallization experiments of bulk LDA with the ones involving nanosized LDA we are able to estimate the Laplace pressure and radius of ~0.3-0.8 nm for the nanodomains of LDA. The nucleation of LDA in eHDA revealed here is evidence for the first-order-like nature of the HDA  →  LDA transition, supporting water’s liquid-liquid transition scenarios.

  17. The effect of low-density broiler breeder diets on performance and immune status of their offspring.

    PubMed

    Enting, H; Boersma, W J A; Cornelissen, J B W J; van Winden, S C L; Verstegen, M W A; van der Aar, P J

    2007-02-01

    Effects of low-density broiler breeder diets on offspring performance and mortality were studied using 2,100 female and 210 male Cobb 500 breeders. Breeder treatments involved 4 experimental groups and a control group with normal density diets (ND, 2,600 kcal of AME/kg during rearing and 2,800 kcal of AME/kg during laying). In treatment 2, nutrient densities were decreased by 12% (LD12) and 11% (LD11) during the rearing and laying periods, respectively, whereas in treatment 3, nutrient densities were decreased by 23% (LD23) and 21% (LD21) during the rearing and laying periods, respectively. The nutrient density in these treatments was decreased through inclusion of palm kernel meal, wheat bran, wheat gluten feed, and sunflower seed meal in the diets. Treatment 4 included diets with the same nutrient densities as in treatment 2 but included oats and sugar beet pulp (LD12(OP) and LD11(OP)). In treatment 5, the same low-density diet was given to the breeders as in treatment 2 during the rearing period, but it was followed by a normal density diet during the laying period (LD12-ND). Treatments were applied from 4 to 60 wk of age. On low-density diets, offspring showed an increased 1-d-old weight. As compared with offspring of breeders that received ND, the d 38 live weight of chickens from 29-wk-old breeders fed LD11 was improved. Mortality was reduced in offspring from 60-wk-old parent stock given low-density diets. The IgM titers in 35-d-old offspring from eggs with a lower-than-average weight were reduced when 29-wk-old broiler breeders were fed low-density diets. In offspring from eggs with a higher-than-average weight from 60-wk-old parent stock given LD11 or LD21 diets, IgM titers were higher compared with ND. It was concluded that low-density broiler breeder diets can improve offspring growth rates, reduce mortality, and reduce or increase immune responses, depending on breeder age and egg weight.

  18. Prevalence of low bone mineral density in female dancers.

    PubMed

    Amorim, Tânia; Wyon, Matthew; Maia, José; Machado, José Carlos; Marques, Franklim; Metsios, George S; Flouris, Andreas D; Koutedakis, Yiannis

    2015-02-01

    While some authors report that dancers have reduced bone mineral density (BMD) and increased risk of osteoporosis, others have stressed the positive effects of dance training on developing healthy BMD. Given the existing controversy, the aim of this systematic review was to examine the best evidence-based information available in relation to female dancers. Four databases (Web of Science, PubMed, EBSCO, Scopus) and two dance science journals (Journal of Dance Medicine and Science and Medical Problems of Performing Artists) were searched for relevant material using the keywords "dance", "ballet", "BMD", "bone density", "osteoporosis" and "female athlete triad syndrome". A total of 257 abstracts were screened using selected inclusion (studies involving bone measurements in dancers) and exclusion (editorials, opinion papers, chapters in books, narrative reviews and non-English language papers) criteria according to PRISMA guidelines. Following the above screening, a total of 108 abstracts were identified as potentially relevant. After the exclusion of conference proceedings, review papers, studies focusing only in male dancers and studies in which dancers' information were combined with other athletes, the eligible papers were subsequently assessed using the GRADE system and grouped according to: (1) prevalence of low BMD and associated factors, (2) incidence of low BMD and risk factors, (3) prevention/treatment of low BMD in dancers, and (4) other studies. Of the 257 abstracts that were initially screened, only 35 studies were finally considered. Only one of these 35 was of high quality, while the remaining 34 were of relatively low quality. Seven studies reported prevalence of low BMD and associated factors, 10 reported associated factors with no prevalence data, while one reported prevalence with no associated factors data. One study cited risk factors, while another one elaborated on the treatment of low BMD in dancers. The remaining 15 studies were classified as

  19. Regulation of plasma cholesterol by hepatic low-density lipoprotein receptors.

    PubMed

    Kovanen, P T

    1987-02-01

    The endogenous lipoprotein system (very low-density lipoprotein [VLDL], intermediate-density lipoprotein [IDL], low-density lipoprotein [LDL] cascade) holds the key to understanding the mechanisms by which hormones, diet, and drugs interact to regulate the plasma cholesterol level. Crucial components of this system are hepatic LDL receptors that mediate the uptake and degradation of plasma LDL. With experimental animals, it has been possible to demonstrate that hepatic LDL receptors are sensitive to hormonal, dietary, and pharmacologic manipulation. The decrease in number of hepatic LDL receptors in hypothyroidism or after cholesterol feeding leads to elevation of plasma LDL cholesterol levels. Conversely, the increase in number of hepatic LDL receptors results in lowering of plasma LDL cholesterol levels. This can be observed in hyperthyroidism, during administration of pharmacologic doses of 17 alpha-ethinyl estradiol, or during treatment with cholesterol-lowering drugs such as the bile acid-binding resins and cholesterol-synthesis inhibitors. Since cholesterol excretion from the body occurs via the liver, the increased efficiency of disposal of plasma cholesterol by increasing hepatic LDL receptors will ultimately lead to depletion of excessive body cholesterol. Pharmacologic regulation of hepatic LDL receptors should be a valuable tool in the prevention and therapy of atherosclerosis.

  20. Low-Density Nozzle Flow by the Direct Simulation Monte Carlo and Continuum Methods

    NASA Technical Reports Server (NTRS)

    Chung, Chang-Hong; Kim, Sku C.; Stubbs, Robert M.; Dewitt, Kenneth J.

    1994-01-01

    Two different approaches, the direct simulation Monte Carlo (DSMC) method based on molecular gasdynamics, and a finite-volume approximation of the Navier-Stokes equations, which are based on continuum gasdynamics, are employed in the analysis of a low-density gas flow in a small converging-diverging nozzle. The fluid experiences various kinds of flow regimes including continuum, slip, transition, and free-molecular. Results from the two numerical methods are compared with Rothe's experimental data, in which density and rotational temperature variations along the centerline and at various locations inside a low-density nozzle were measured by the electron-beam fluorescence technique. The continuum approach showed good agreement with the experimental data as far as density is concerned. The results from the DSMC method showed good agreement with the experimental data, both in the density and the rotational temperature. It is also shown that the simulation parameters, such as the gas/surface interaction model, the energy exchange model between rotational and translational modes, and the viscosity-temperature exponent, have substantial effects on the results of the DSMC method.

  1. Low density mesostructures of confined dipolar particles in an external field

    NASA Astrophysics Data System (ADS)

    Richardi, J.; Weis, J.-J.

    2011-09-01

    Mesostructures formed by dipolar particles confined between two parallel walls and subjected to an external field are studied by Monte Carlo simulations. The main focus of the work is the structural behavior of the Stockmayer fluid in the low density regime. The dependence of cluster thickness and ordering is estimated as a function of density and wall separation, the two most influential parameters, for large dipole moments and high field strengths. The great sensitivity of the structure to details of the short-range part of the interactions is pointed out. In particular, the attractive part of the Lennard-Jones potential is shown to play a major role in driving chain aggregation. The effect of confinement, evaluated by comparison with results for a bulk system, is most pronounced for a short range hard sphere potential. No evidence is found for a novel "gel-like" phase recently uncovered in low density dipolar colloidal suspensions [A. K. Agarwal and A. Yethiraj, Phys. Rev. Lett. 102, 198301 (2009), 10.1103/PhysRevLett.102.198301].

  2. Measurement of low-density lipoprotein cholesterol in assessment and management of cardiovascular disease risk.

    PubMed

    Jialal, I; Remaley, A T

    2014-07-01

    The deposition of cholesterol in the arterial wall by the infiltration of low-density lipoproteins (LDLs) is a key step in the development of atherosclerosis. In this Commentary, we discuss recent recommendations for clinical laboratory measurement of low-density lipoprotein cholesterol (LDL-C) and its utility both for assessing cardiovascular disease risk and as a tool in the management of patients receiving lipid-lowering therapy.

  3. An intermittency route to global instability in low-density jets

    NASA Astrophysics Data System (ADS)

    Murugesan, Meenatchidevi; Zhu, Yuanhang; Li, Larry K. B.

    2017-11-01

    Above a critical Reynolds number (Re), a low-density jet can become globally unstable, transitioning from a steady state (i.e. a fixed point) to a self-excited oscillatory state (i.e. a limit cycle) via a Hopf bifurcation. In this experimental study, we show that this transition can sometimes involve intermittency. When Re is just slightly above the critical point, intermittent bursts of high-amplitude periodic oscillations emerge amidst a background of low-amplitude aperiodic fluctuations. As Re increases further, these intermittent bursts persist longer in time until they dominate the overall dynamics, causing the jet to transition fully to a periodic limit cycle. We identify this as Type-II Pomeau-Manneville intermittency by quantifying the statistical distribution of the duration of the aperiodic fluctuations at the onset of intermittency. This study shows that the transition to global instability in low-density jets is not always abrupt but can involve an intermediate state with characteristics of both the initial fixed point and the final limit cycle. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

  4. Nanoemulsion of ethanolic extracts of propolis and its antioxidant activity

    NASA Astrophysics Data System (ADS)

    Mauludin, R.; Primaviri, D. S.; Fidrianny, I.

    2015-09-01

    Propolis contains several antioxidant compounds which can be used in topical application to protect skin against free radical and prevent skin cancer and skin aging. Ethanolic extracts of propolis (EEP) provided the greatest antioxidant activity but has very small solubility in water thus was prepared in nanoemulsion (NE). EEP contains steroid/triterpenoid, flavonoid, and saponin. EEP had the value of DPPH scavenging activity 61.14% and IC50 0.41629 ppm. The best NE formulation consisted of 26.25% Kolliphor RH40; 8.75% glycerin; 5% rice bran oil; and 3% EEP. NE was transparent, had particle size of 23.72 nm and polydispersity index of 0.338. Based on TEM morphology, NE was almost spherical and has particle size below 50 nm. NE propolis revealed to be physically stable after stability test within 63 days at 25°C and passed 6 cycles of Freeze and Thaw test without separated. NE propolis reduced around 58% of free radical DPPH similar to antioxidant activity of the original extracts. Antioxidant activity of NE propolis is relatively stable after stored for 6 weeks. NE propolis was proven to be safe by primary irritation test with the value of primary irritation index (OECD) was 0.

  5. A low-density M-type asteroid in the main belt.

    PubMed

    Margot, J L; Brown, M E

    2003-06-20

    The orbital parameters of a satellite revolving around 22 Kalliope indicate that the bulk density of this main-belt asteroid is 2.37 +/- 0.4 grams per cubic centimeter. M-type asteroids such as Kalliope are thought to be the disrupted metallic cores of differentiated bodies. The low-density indicates that Kalliope cannot be predominantly composed of metal and may be composed of chondritic material with approximately 30% porosity. The satellite orbit is circular, suggesting that Kalliope and its satellite have different internal structures and tidal dissipation rates. The satellite may be an aggregate of impact ejecta from an earlier collision with Kalliope.

  6. On the mechanism of charge transport in low density polyethylene

    NASA Astrophysics Data System (ADS)

    Upadhyay, Avnish K.; Reddy, C. C.

    2017-08-01

    Polyethylene based polymeric insulators, are being increasingly used in the power industry for their inherent advantages over conventional insulation materials. Specifically, modern power cables are almost made with these materials, replacing the mass-impregnated oil-paper cable technology. However, for ultra-high dc voltage applications, the use of these polymeric cables is hindered by ununderstood charge transport and accumulation. The conventional conduction mechanisms (Pool-Frenkel, Schottky, etc.) fail to track high-field charge transport in low density polyethylene, which is semi-crystalline in nature. Until now, attention was devoted mainly to the amorphous region of the material. In this paper, authors propose a novel mechanism for conduction in low density polyethylene, which could successfully track experimental results. As an implication, a novel, substantial relationship is established for electrical conductivity that could be effectively used for understanding conduction and breakdown in polyethylene, which is vital for successful development of ultra-high voltage dc cables.

  7. Difference in distribution of membrane proteins between low- and high-density secretory granules in parotid acinar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita-Yoshigaki, Junko; Katsumata, Osamu; Matsuki, Miwako

    Secretory granules (SGs) are considered to be generated as immature granules and to mature by condensation of their contents. In this study, SGs of parotid gland were separated into low-, medium-, and high-density granule fractions by Percoll-density gradient centrifugation, since it was proposed that the density corresponds to the degree of maturation. The observation with electron microscopy showed that granules in the three fractions were very similar. The average diameter of high-density granules was a little but significantly larger than that of low-density granules. Although the three fractions contained amylase, suggesting that they are all SGs, distribution of membrane proteinsmore » was markedly different. Syntaxin6 and VAMP4 were localized in the low-density granule fraction, while VAMP2 was concentrated in the high-density granule fraction. Immunoprecipitation with anti-syntaxin6 antibody caused coprecipitation of VAMP2 from the medium-density granule fraction without solubilization, but not from Triton X-100-solubilized fraction, while VAMP4 was coprecipitated from both fractions. Therefore, VAMP2 is present on the same granules, but is separated from syntaxin6 and VAMP4, which are expected to be removed from immature granules. These results suggest that the medium-density granules are intermediates from low- to high-density granules, and that the membrane components of SGs dynamically change by budding and fusion during maturation.« less

  8. Real-time sono-photoacoustic imaging of gold nanoemulsions

    NASA Astrophysics Data System (ADS)

    Arnal, Bastien; Wei, Chen-Wei; Perez, Camilo; Lombardo, Michael; Pelivanov, Ivan M.; Pozzo, Danilo; O'Donnell, Matthew

    2015-03-01

    Phase transition contrast agents were first introduced in ultrasound (US) in the form of perfluorocarbon droplets. When their size is reduced to the nanoscale, surface tension dominates their stability and high pressure is required to vaporize them using long US emissions at high frequencies. Our group recently showed that nanoemulsion beads (100-300 nm) coated with gold nanopsheres could be used as non-linear contrast agents. Beads can be vaporized with light only, inducing stronger photoacoustic signals by increasing thermal expansion. A photoacoustic cavitation threshold study (US: 1.2 MHz, Laser 750 nm and 10-ns pulse) shows that the vaporization thresholds of NEB-GNS can be greatly reduced using simultaneous light and US excitations. The resulting signal is driven only by the pressure amplitude for a fluence higher than 2.4 mJ/cm2. At diagnostic exposures, it is possible to capture very high signals from the vaporized beads at concentrations reduced to 10 pM with optical absorption smaller than 0.01 cm-1. A real-time imaging mode selectively isolating vaporization signals was implemented on a Verasonics system. A linear US probe (L74, 3 MHz) launched short US bursts before light was emitted from the laser. Vaporization of NEB-GNS resulted in a persistent 30-dB signal enhancement compared to a dye with the same absorption. Specific vaporization signals were retrieved in phantom experiments with US scatterers. This technique, called sonophotoacoustics, has great potential for targeted molecular imaging and therapy using compact nanoprobes with potentially high-penetrability into tissue.

  9. Ultra-Low Density Organic-Inorganic Composite Materials Possessing Thermally Insulating and Acoustic Damping Properties

    DTIC Science & Technology

    1992-05-07

    Officer. Dr. Kenneth Wynne d. Brief Description of Project- We are investigating the design and synthesis of strong, ultra-low density xerogel and aerogel ...materials of this type would have applications in a broad range of areas including lightweight engine components, high temperature coatings, aircraft wings...we plan to investigate the formation of ultra-low density composites using supercritical universal drying (SCUD) techniques. SiO2 aerogel materials

  10. Electron density profile measurements at a self-focusing ion beam with high current density and low energy extracted through concave electrodes.

    PubMed

    Fujiwara, Y; Hirano, Y; Kiyama, S; Nakamiya, A; Koguchi, H; Sakakita, H

    2014-02-01

    The self-focusing phenomenon has been observed in a high current density and low energy ion beam. In order to study the mechanism of this phenomenon, a special designed double probe to measure the electron density and temperature is installed into the chamber where the high current density ion beam is injected. Electron density profile is successfully measured without the influence of the ion beam components. Estimated electron temperature and density are ∼0.9 eV and ∼8 × 10(8) cm(-3) at the center of ion beam cross section, respectively. It was found that a large amount of electrons are spontaneously accumulated in the ion beam line in the case of self-forcing state.

  11. Experimental demonstration of laser to x-ray conversion enhancements with low density gold targets

    DOE PAGES

    Shang, Wanli; Yang, Jiamin; Zhang, Wenhai; ...

    2016-02-12

    The enhancement of laser to x-ray conversion efficiencies using low density gold targets [W. L. Shang, J. M. Yang, and Y. S. Dong, Appl. Phys. Lett. 102, 094105 (2013)] is demonstrated. Laser to x-ray conversion efficiencies with 6.3% and 12% increases are achieved with target densities of 1 and 0.25 g/cm 3, when compared with that of a solid gold target (19.3 g/cm 3). Experimental data and numerical simulations are in good agreement. Lastly, the enhancement is caused by larger x-ray emission zone lengths formed in low density targets, which is in agreement with the simulation results.

  12. Experimental demonstration of laser to x-ray conversion enhancements with low density gold targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, Wanli; Yang, Jiamin; Zhang, Wenhai

    The enhancement of laser to x-ray conversion efficiencies using low density gold targets [W. L. Shang, J. M. Yang, and Y. S. Dong, Appl. Phys. Lett. 102, 094105 (2013)] is demonstrated. Laser to x-ray conversion efficiencies with 6.3% and 12% increases are achieved with target densities of 1 and 0.25 g/cm 3, when compared with that of a solid gold target (19.3 g/cm 3). Experimental data and numerical simulations are in good agreement. Lastly, the enhancement is caused by larger x-ray emission zone lengths formed in low density targets, which is in agreement with the simulation results.

  13. Mind-Wandering as a Natural Kind: A Family-Resemblances View.

    PubMed

    Seli, Paul; Kane, Michael J; Smallwood, Jonathan; Schacter, Daniel L; Maillet, David; Schooler, Jonathan W; Smilek, Daniel

    2018-06-01

    As empirical research on mind-wandering accelerates, we draw attention to an emerging trend in how mind-wandering is conceptualized. Previously articulated definitions of mind-wandering differ from each other in important ways, yet they also maintain overlapping characteristics. This conceptual structure suggests that mind-wandering is best considered from a family-resemblances perspective, which entails treating it as a graded, heterogeneous construct and clearly measuring and describing the specific aspect(s) of mind-wandering that researchers are investigating. We believe that adopting this family-resemblances approach will increase conceptual and methodological connections among related phenomena in the mind-wandering family and encourage a more nuanced and precise understanding of the many varieties of mind-wandering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Mode conversion in cold low-density plasma with a sheared magnetic field

    DOE PAGES

    Dodin, I. Y.; Ruiz, D. E.; Kubo, S.

    2017-12-19

    Here, a theory is proposed that describes mutual conversion of two electromagnetic modes in cold low-density plasma, specifically, in the high-frequency limit where the ion response is negligible. In contrast to the classic (Landau–Zener-type) theory of mode conversion, the region of resonant coupling in low-density plasma is not necessarily narrow, so the coupling matrix cannot be approximated with its first-order Taylor expansion; also, the initial conditions are set up differently. For the case of strong magnetic shear, a simple method is identified for preparing a two-mode wave such that it transforms into a single-mode wave upon entering high-density plasma. Themore » theory can be used for reduced modeling of wave-power input in fusion plasmas. In particular, applications are envisioned in stellarator research, where the mutual conversion of two electromagnetic modes near the plasma edge is a known issue.« less

  15. Mode conversion in cold low-density plasma with a sheared magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodin, I. Y.; Ruiz, D. E.; Kubo, S.

    Here, a theory is proposed that describes mutual conversion of two electromagnetic modes in cold low-density plasma, specifically, in the high-frequency limit where the ion response is negligible. In contrast to the classic (Landau–Zener-type) theory of mode conversion, the region of resonant coupling in low-density plasma is not necessarily narrow, so the coupling matrix cannot be approximated with its first-order Taylor expansion; also, the initial conditions are set up differently. For the case of strong magnetic shear, a simple method is identified for preparing a two-mode wave such that it transforms into a single-mode wave upon entering high-density plasma. Themore » theory can be used for reduced modeling of wave-power input in fusion plasmas. In particular, applications are envisioned in stellarator research, where the mutual conversion of two electromagnetic modes near the plasma edge is a known issue.« less

  16. Microcraters formed in glass by low density projectiles

    NASA Technical Reports Server (NTRS)

    Mandeville, J.-C.; Vedder, J. F.

    1971-01-01

    Microcraters were produced in soda-lime glass by the impact of low density projectiles of polystyrene (p = 1.06 g/cu cm) with masses between 0.7 and 62 picograms and velocities between 2 and 14 km/s. The morphology of the craters depended on the velocity and the angle of incidence of the projectiles and these are discussed in detail. It was found that the transitions in morphology of the craters formed by polystyrene spheres occurred at higher velocities than they did for more dense projectiles.

  17. Risk factors for low bone mineral density in children and adolescents with inflammatory bowel disease.

    PubMed

    Lopes, Letícia Helena Caldas; Sdepanian, Vera Lucia; Szejnfeld, Vera Lúcia; de Morais, Mauro Batista; Fagundes-Neto, Ulysses

    2008-10-01

    To evaluate bone mineral density of the lumbar spine in children and adolescents with inflammatory bowel disease, and to identify the clinical risk factors associated with low bone mineral density. Bone mineral density of the lumbar spine was evaluated using dual-energy X-ray absorptiometry (DXA) in 40 patients with inflammatory bowel disease. Patients were 11.8 (SD = 4.1) years old and most of them were male (52.5%). Multiple linear regression analysis was performed to identify potential associations between bone mineral density Z-score and age, height-for-age Z-score, BMI Z-score, cumulative corticosteroid dose in milligrams and in milligrams per kilogram, disease duration, number of relapses, and calcium intake according to the dietary reference intake. Low bone mineral density (Z-score bellow -2) was observed in 25% of patients. Patients with Crohn's disease and ulcerative colitis had equivalent prevalence of low bone mineral density. Multiple linear regression models demonstrated that height-for-age Z-score, BMI Z-score, and cumulative corticosteroid dose in mg had independent effects on BMD, respectively, beta = 0.492 (P = 0.000), beta = 0.460 (P = 0.001), beta = - 0.014 (P = 0.000), and these effects remained significant after adjustments for disease duration, respectively, beta = 0.489 (P = 0.013), beta = 0.467 (P = 0.001), and beta = - 0.005 (P = 0.015). The model accounted for 54.6% of the variability of the BMD Z-score (adjusted R2 = 0.546). The prevalence of low bone mineral density in children and adolescents with inflammatory bowel disease is considerably high and independent risk factors associated with bone mineral density are corticosteroid cumulative dose in milligrams, height-for-age Z-score, and BMI Z-score.

  18. The validation of tomotherapy dose calculations in low-density lung media

    NASA Astrophysics Data System (ADS)

    Chaudhari, Summer R.; Pechenaya, Olga L.; Goddu, S. Murty; Mutic, Sasa; Rangaraj, Dharanipathy; Bradley, Jeffrey D.; Low, Daniel

    2009-04-01

    The dose-calculation accuracy of the tomotherapy Hi-Art II® (Tomotherapy, Inc., Madison, WI) treatment planning system (TPS) in the presence of low-density lung media was investigated. In this evaluation, a custom-designed heterogeneous phantom mimicking the mediastinum geometry was used. Gammex LN300 and balsa wood were selected as two lung-equivalent materials with different densities. Film analysis and ionization chamber measurements were performed. Treatment plans for esophageal cancers were used in the evaluation. The agreement between the dose calculated by the TPS and the dose measured via ionization chambers was, in most cases, within 0.8%. Gamma analysis using 3% and 3 mm criteria for radiochromic film dosimetry showed that 98% and 95% of the measured dose distribution had passing gamma values <=1 for LN300 and balsa wood, respectively. For a homogeneous water-equivalent phantom, 95% of the points passed the gamma test. It was found that for the interface between the low-density medium and water-equivalent medium, the TPS calculated the dose distribution within acceptable limits. The phantom developed for this work enabled detailed quality-assurance testing under realistic conditions with heterogeneous media.

  19. The validation of tomotherapy dose calculations in low-density lung media.

    PubMed

    Chaudhari, Summer R; Pechenaya, Olga L; Goddu, S Murty; Mutic, Sasa; Rangaraj, Dharanipathy; Bradley, Jeffrey D; Low, Daniel

    2009-04-21

    The dose-calculation accuracy of the tomotherapy Hi-Art II(R) (Tomotherapy, Inc., Madison, WI) treatment planning system (TPS) in the presence of low-density lung media was investigated. In this evaluation, a custom-designed heterogeneous phantom mimicking the mediastinum geometry was used. Gammex LN300 and balsa wood were selected as two lung-equivalent materials with different densities. Film analysis and ionization chamber measurements were performed. Treatment plans for esophageal cancers were used in the evaluation. The agreement between the dose calculated by the TPS and the dose measured via ionization chambers was, in most cases, within 0.8%. Gamma analysis using 3% and 3 mm criteria for radiochromic film dosimetry showed that 98% and 95% of the measured dose distribution had passing gamma values < or =1 for LN300 and balsa wood, respectively. For a homogeneous water-equivalent phantom, 95% of the points passed the gamma test. It was found that for the interface between the low-density medium and water-equivalent medium, the TPS calculated the dose distribution within acceptable limits. The phantom developed for this work enabled detailed quality-assurance testing under realistic conditions with heterogeneous media.

  20. On the feasibility of increasing the energy of laser-accelerated protons by using low-density targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brantov, A. V., E-mail: brantov@lebedev.ru; Bychenkov, V. Yu., E-mail: bychenk@lebedev.ru

    2015-06-15

    Optimal regimes of proton acceleration in the interaction of short high-power laser pulses with thin foils and low-density targets are determined by means of 3D numerical simulation. It is demonstrated that the maximum proton energy can be increased by using low-density targets in which ions from the front surface of the target are accelerated most efficiently. It is shown using a particular example that, for the same laser pulse, the energy of protons accelerated from a low-density target can be increased by one-third as compared to a solid-state target.

  1. Fluorocarbon seal replaces metal piston ring in low density gas environment

    NASA Technical Reports Server (NTRS)

    Morath, W. D.; Morgan, N. E.

    1967-01-01

    Reinforced fluorocarbon cupseal, which provides an integral lip-type seal, replaces the metal piston rings in piston-cylinder configurations used in the compression of low density gases. The fluorocarbon seal may be used as cryogenic compressor piston seals.

  2. Particle-in-cell modeling of laser Thomson scattering in low-density plasmas at elevated laser intensities

    NASA Astrophysics Data System (ADS)

    Powis, Andrew T.; Shneider, Mikhail N.

    2018-05-01

    Incoherent Thomson scattering is a non-intrusive technique commonly used for measuring local plasma density. Within low-density, low-temperature plasmas and for sufficient laser intensity, the laser may perturb the local electron density via the ponderomotive force, causing the diagnostic to become intrusive and leading to erroneous results. A theoretical model for this effect is validated numerically via kinetic simulations of a quasi-neutral plasma using the particle-in-cell technique.

  3. Fabrication of Low-Density Foam Liners in Hohlraums for NIF Targets

    DOE PAGES

    Bhandarkar, Suhas; Baumann, Ted; Alfonso, Noel; ...

    2018-01-15

    Low-density foam liners are seen as a means to mitigate hohlraum wall motion that can interfere with the inner set of beams that are pointed toward the middle section of the hohlraum. These liners need to meet several requirements, most notably the material choice and the maximum allowable solid fraction and thickness, which necessitate development of new processing capabilities. In this paper, we discuss our strategy and work on fabrication of a tantalum oxide foam liner and its assembly into targets for the National Ignition Facility (NIF). Finally, in particular, we discuss our approach to finding solutions to the uniquemore » challenges that come up in working with such low-density materials so as to be able establish a viable platform for production of cryogenic targets for NIF with foam-lined hohlraums.« less

  4. Fabrication of Low-Density Foam Liners in Hohlraums for NIF Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandarkar, Suhas; Baumann, Ted; Alfonso, Noel

    Low-density foam liners are seen as a means to mitigate hohlraum wall motion that can interfere with the inner set of beams that are pointed toward the middle section of the hohlraum. These liners need to meet several requirements, most notably the material choice and the maximum allowable solid fraction and thickness, which necessitate development of new processing capabilities. In this paper, we discuss our strategy and work on fabrication of a tantalum oxide foam liner and its assembly into targets for the National Ignition Facility (NIF). Finally, in particular, we discuss our approach to finding solutions to the uniquemore » challenges that come up in working with such low-density materials so as to be able establish a viable platform for production of cryogenic targets for NIF with foam-lined hohlraums.« less

  5. Pairs of galaxies in low density regions of a combined redshift catalog

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.; Salpeter, Edwin E.

    1990-01-01

    The distributions of projected separations and radial velocity differences of pairs of galaxies in the CfA and Southern Sky Redshift Survey (SSRS) redshift catalogs are examined. The authors focus on pairs that fall in low density environments rather than in clusters or large groups. The projected separation distribution is nearly flat, while uncorrelated galaxies would have given one linearly rising with r sub p. There is no break in this curve even below 50 kpc, the minimum halo size consistent with measured galaxy rotation curves. The significant number of pairs at small separations is inconsistent with the N-body result that galaxies with overlapping halos will rapidly merge, unless there are significant amounts of matter distributed out to a few hundred kpc of the galaxies. This dark matter may either be in distinct halos or more loosely distributed. Large halos would allow pairs at initially large separations to head toward merger, replenishing the distribution at small separations. In the context of this model, the authors estimate that roughly 10 to 25 percent of these low density galaxies are the product of a merger, compared with the elliptical/SO fraction of 18 percent, observed in low density regions of the sample.

  6. Carrier characteristics influence the kinetics of passive drug loading into lipid nanoemulsions.

    PubMed

    Göke, Katrin; Bunjes, Heike

    2018-05-01

    Passive loading as a novel screening approach is a material-saving tool for the efficient selection of a suitable colloidal lipid carrier system for poorly water soluble drug candidates. This method comprises incubation of preformed carrier systems with drug powder and subsequent determination of the resulting drug load of the carrier particles after removal of excess drug. For reliable routine use and to obtain meaningful loading results, information on the kinetics of the process is required. Passive loading proceeds via a dissolution-diffusion-based mechanism, where drug surface area and drug water solubility are key parameters for fast passive loading. While the influence of the drug characteristics is mostly understood, the influence of the carrier characteristics remains unknown. The aim of this study was to examine how the lipid nanocarriers' characteristics, i.e. the type of lipid, the lipid content and the particle size, influence the kinetics of passive loading. Fenofibrate was used as model drug and the loading progress was analyzed by UV spectroscopy. The saturation solubility in the nanocarrier particles, i.e. the lipid type, did not influence the passive loading rate constant. Low lipid content in the nanocarrier and a small nanocarrier particle size both increased passive loading speed. Both variations increase the diffusivity of the nanocarrier particles, which is the primary cause for fast loading at these conditions: The quicker the carrier particles diffuse, the higher is the speed of passive loading. The influence of the diffusivity of the lipid nanocarriers and the effect of drug dissolution rate were included in an overall mechanistic model developed for similar processes (A. Balakrishnan, B.D. Rege, G.L. Amidon, J.E. Polli, Surfactant-mediated dissolution: contributions of solubility enhancement and relatively low micelle diffusivity, J. Pharm. Sci. 93 (2004) 2064-2075). The resulting mechanistic model gave a good estimate of the speed of

  7. Saccular aortic aneurysm that resembled a mediastinal neoplasm

    PubMed Central

    Nose, Naohiro; Kataoka, Hiroumi; Hamada, Masakatsu; Kosako, Yukio; Matsuno, Yasuji; Ishii, Takahiro

    2012-01-01

    INTRODUCTION Saccular aortic arch aneurysms in unusual sites may be misdiagnosed as a neoplasm. We present the case of a rare saccular aortic arch aneurysm between trachea and esophagus that resembled a mediastinal neoplasm in the preoperative findings. PRESENTATION OF CASE A 63-year-old male with an abnormal mediastinal shadow on chest X-ray was referred to the hospital. An axial plain computed tomogram of the chest revealed mediastinal soft tissue next to the right side of the aortic arch resembling a neoplasm originating from the gap between the trachea and the esophagus. The coronal view constructed by enhanced 64-row multi detector computed tomography revealed the soft tissue was an aneurysm arising from the inner side of the aortic arch. An aortic arch replacement was performed via a median sternotomy. DISCUSSION A thoracic aortic aneurysm sometimes behaves like a mediastinal neoplasm. The multiple cross-sectional image from multidetector computed tomography was useful for the correct diagnosis of such an aneurysm. CONCLUSION The possibility of an aneurysm should be considered whenever a mass in contact with the aortic wall is identified. PMID:22995656

  8. Resembling a viper: implications of mimicry for conservation of the endangered smooth snake.

    PubMed

    Valkonen, Janne K; Mappes, Johanna

    2014-12-01

    The phenomenon of Batesian mimicry, where a palatable animal gains protection against predation by resembling an unpalatable model, has been a core interest of evolutionary biologists for 150 years. An extensive range of studies has focused on revealing mechanistic aspects of mimicry (shared education and generalization of predators) and the evolutionary dynamics of mimicry systems (co-operation vs. conflict) and revealed that protective mimicry is widespread and is important for individual fitness. However, according to our knowledge, there are no case studies where mimicry theories have been applied to conservation of mimetic species. Theoretically, mimicry affects, for example, frequency dependency of predator avoidance learning and human induced mortality. We examined the case of the protected, endangered, nonvenomous smooth snake (Coronella austriaca) that mimics the nonprotected venomous adder (Vipera berus), both of which occur in the Åland archipelago, Finland. To quantify the added predation risk on smooth snakes caused by the rarity of vipers, we calculated risk estimates from experimental data. Resemblance of vipers enhances survival of smooth snakes against bird predation because many predators avoid touching venomous vipers. Mimetic resemblance is however disadvantageous against human predators, who kill venomous vipers and accidentally kill endangered, protected smooth snakes. We found that the effective population size of the adders in Åland is very low relative to its smooth snake mimic (28.93 and 41.35, respectively).Because Batesian mimicry is advantageous for the mimic only if model species exist in sufficiently high numbers, it is likely that the conservation program for smooth snakes will fail if adders continue to be destroyed. Understanding the population consequences of mimetic species may be crucial to the success of endangered species conservation. We suggest that when a Batesian mimic requires protection, conservation planners should

  9. The climatology of low-latitude ionospheric densities and zonal drifts from IMAGE-FUV.

    NASA Astrophysics Data System (ADS)

    Immel, T. J.; Sagawa, E.; Frey, H. U.; Mende, S. B.; Patel, J.

    2004-12-01

    The IMAGE satellite was the first dedicated to magnetospheric imaging, but has also provided numerous images of the nightside ionosphere with its Far-Ultraviolet (FUV) spectrographic imager. Nightside emissions of O I at 135.6-nm originating away from the aurora are due to recombination of ionospheric O+, and vary in intensity with (O+)2. IMAGE-FUV, operating in a highly elliptical orbit with apogee at middle latitudes and >7 Re altitude, measures this emission globally with 100-km resolution. During each 14.5 hour orbit, IMAGE-FUV is able to monitor nightside ionospheric densities for up to 6-7 hours. Hundreds of low-latitude ionospheric bubbles, their development and drift speed, and a variety of other dynamical variations in brightness and morphology of the equatorial anomalies have been observed during this mission. Furthermore, the average global distribution of low-latitude ionospheric plasma densities can be determined in 3 days. Imaging data collected from February through June of 2002 are used to compile a dataset containing a variety of parameters (e.g., latitude and brightness of peak plasma density, zonal bubble drift speed) which can be drawn from for climatological studies. Recent results indicate that the average ground speed of low-latitude zonal plasma drifts vary with longitude by up to 50%, and that a periodic variation in ionospheric densities with longitude suggests the influence of a lower-thermospheric non-migrating tide with wave number = 4 on ionospheric densities. An excellent correlation between zonal drift speed and the magnetic storm index Dst is also found.

  10. Self-Assembly of Diblock Molecular Polymer Brushes in the Spherical Confinement of Nanoemulsion Droplets.

    PubMed

    Steinhaus, Andrea; Pelras, Théophile; Chakroun, Ramzi; Gröschel, André H; Müllner, Markus

    2018-05-02

    Understanding the self-assembly behavior of polymers of various topologies is key to a reliable design of functional polymer materials. Self-assembly under confinement conditions emerges as a versatile avenue to design polymer particles with complex internal morphologies while simultaneously facilitating scale-up. However, only linear block copolymers have been studied to date, despite the increasing control over macromolecule composition and architecture available. This study extends the investigation of polymer self-assembly in confinement from regular diblock copolymers to diblock molecular polymer brushes (MPBs). Block-type MPBs with polystyrene (PS) and polylactide (PLA) compartments of different sizes are incorporated into surfactant-stabilized oil-in-water (chloroform/water) emulsions. The increasing confinement in the nanoemulsion droplets during solvent evaporation directs the MPBs to form solid nano/microparticles. Microscopy studies reveal an intricate internal particle structure, including interpenetrating networks and axially stacked lamellae of PS and PLA, depending on the PS/PLA ratio of the brushes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effects of parenting quality on adolescents' personality resemblance to their parents. The TRAILS study.

    PubMed

    Langenhof, M Rohaa; Komdeur, Jan; Oldehinkel, Albertine J

    2016-08-01

    This study considers the development of resemblance between 741 adolescents and their biological parents, across six NEO-PI-R personality traits known to be important in psychological problems: anger-hostility, impulsiveness, vulnerability, assertiveness, excitement-seeking, and self-discipline. We modelled the association between perceived parental warmth and rejection at age eleven and personality resemblance to parents at about age sixteen. Parenting experienced during early adolescence was related to the degree and direction in which adolescents resembled their parents five years later in life. Rejection, especially from fathers, significantly predicted a smaller resemblance to both the parents. Girls were more strongly affected by parental quality than boys, and there was some indication that adolescents responded in opposite ways to parenting from mothers and fathers. This study is a first step in uncovering the complex interplay between parenting, gender, and the current generation's ability to develop personality traits independent from the previous generation. Copyright © 2016 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  12. Ion and electron sheath characteristics in a low density and low temperature plasma

    NASA Astrophysics Data System (ADS)

    Borgohain, Binita; Bailung, H.

    2017-11-01

    Ion and electron sheath characteristics in a low electron temperature (Te ˜ 0.25-0.40 eV) and density (ne ˜ 106-107 cm-3) plasma are described. The plasma is produced in the experimental volume through diffusion from a hot cathode discharge plasma source by using a magnetic filter. The electron energy distribution function in the experimental plasma volume is measured to be a narrow Maxwellian distribution indicating the absence of primary and energetic electrons which are decoupled in the source side by the cusp magnetic field near the filter. An emissive probe is used to measure the sheath potential profiles in front of a metal plate biased negative and positive with respect to the plasma potential. For a positive plate bias, the electron density decreases considerably and the electron sheath expands with a longer presheath region compared to the ion sheath. The sheath potential structures are found to follow the Debye sheath model.

  13. Directed self-assembly into low-density colloidal liquid crystal phases

    NASA Astrophysics Data System (ADS)

    Gao, Yongxiang; Romano, Flavio; Dullens, Roel P. A.; Doye, Jonathan K.; Aarts, Dirk G. A. L.

    2018-01-01

    Alignment of anisometric particles into liquid crystals (LCs) often results from an entropic competition between their rotational and translational degrees of freedom at dense packings. Here we show that by selectively functionalizing the heads of colloidal rods with magnetic nanoparticles this tendency can be broken to direct the particles into novel, low-density LC phases. Under an external magnetic field, the magnetic heads line up in columns whereas the nonmagnetic tails point out randomly in a plane perpendicular to the columns, forming bottle-brush-like objects; laterally, the bottle brushes are entropically stabilized against coalescence. Experiments and simulations show that upon increasing the particle density the system goes from a dilute gas to a dense two-dimensional liquid of bottle brushes with a density well below the zero-field nematic phase. Our findings offer a strategy for self-assembly into three-dimensional open phases that may find applications in switchable photonics, filtration, and light-weight materials.

  14. Buoyancy Effects on Flow Structure and Instability of Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Pasumarthi, Kasyap Sriramachandra

    2004-01-01

    A low-density gas jet injected into a high-density ambient gas is known to exhibit self-excited global oscillations accompanied by large vortical structures interacting with the flow field. The primary objective of the proposed research is to study buoyancy effects on the origin and nature of the flow instability and structure in the near-field of low-density gas jets. Quantitative rainbow schlieren deflectometry, Computational fluid dynamics (CFD) and Linear stability analysis were the techniques employed to scale the buoyancy effects. The formation and evolution of vortices and scalar structure of the flow field are investigated in buoyant helium jets discharged from a vertical tube into quiescent air. Oscillations at identical frequency were observed throughout the flow field. The evolving flow structure is described by helium mole percentage contours during an oscillation cycle. Instantaneous, mean, and RMS concentration profiles are presented to describe interactions of the vortex with the jet flow. Oscillations in a narrow wake region near the jet exit are shown to spread through the jet core near the downstream location of the vortex formation. The effects of jet Richardson number on characteristics of vortex and flow field are investigated and discussed. The laminar, axisymmetric, unsteady jet flow of helium injected into air was simulated using CFD. Global oscillations were observed in the flow field. The computed oscillation frequency agreed qualitatively with the experimentally measured frequency. Contours of helium concentration, vorticity and velocity provided information about the evolution and propagation of vortices in the oscillating flow field. Buoyancy effects on the instability mode were evaluated by rainbow schlieren flow visualization and concentration measurements in the near-field of self-excited helium jets undergoing gravitational change in the microgravity environment of 2.2s drop tower at NASA John H. Glenn Research Center. The jet

  15. Si-compatible cleaning process for graphene using low-density inductively coupled plasma.

    PubMed

    Lim, Yeong-Dae; Lee, Dae-Yeong; Shen, Tian-Zi; Ra, Chang-Ho; Choi, Jae-Young; Yoo, Won Jong

    2012-05-22

    We report a novel cleaning technique for few-layer graphene (FLG) by using inductively coupled plasma (ICP) of Ar with an extremely low plasma density of 3.5 × 10(8) cm(-3). It is known that conventional capacitively coupled plasma (CCP) treatments destroy the planar symmetry of FLG, giving rise to the generation of defects. However, ICP treatment with extremely low plasma density is able to remove polymer resist residues from FLG within 3 min at a room temperature of 300 K while retaining the carbon sp(2)-bonding of FLG. It is found that the carrier mobility and charge neutrality point of FLG are restored to their pristine defect-free state after the ICP treatment. Considering the application of graphene to silicon-based electronic devices, such a cleaning method can replace thermal vacuum annealing, electrical current annealing, and wet-chemical treatment due to its advantages of being a low-temperature, large-area, high-throughput, and Si-compatible process.

  16. The association of very-low-density lipoprotein with ankle-brachial index in peritoneal dialysis patients with controlled serum low-density lipoprotein cholesterol level

    PubMed Central

    2013-01-01

    Background Peripheral artery disease (PAD) represents atherosclerotic disease and is a risk factor for death in peritoneal dialysis (PD) patients, who tend to show an atherogenic lipid profile. In this study, we investigated the relationship between lipid profile and ankle-brachial index (ABI) as an index of atherosclerosis in PD patients with controlled serum low-density lipoprotein (LDL) cholesterol level. Methods Thirty-five PD patients, whose serum LDL cholesterol level was controlled at less than 120mg/dl, were enrolled in this cross-sectional study in Japan. The proportions of cholesterol level to total cholesterol level (cholesterol proportion) in 20 lipoprotein fractions and the mean size of lipoprotein particles were measured using an improved method, namely, high-performance gel permeation chromatography. Multivariate linear regression analysis was adjusted for diabetes mellitus and cardiovascular and/or cerebrovascular diseases. Results The mean (standard deviation) age was 61.6 (10.5) years; PD vintage, 38.5 (28.1) months; ABI, 1.07 (0.22). A low ABI (0.9 or lower) was observed in 7 patients (low-ABI group). The low-ABI group showed significantly higher cholesterol proportions in the chylomicron fraction and large very-low-density lipoproteins (VLDLs) (Fractions 3–5) than the high-ABI group (ABI>0.9). Adjusted multivariate linear regression analysis showed that ABI was negatively associated with serum VLDL cholesterol level (parameter estimate=-0.00566, p=0.0074); the cholesterol proportions in large VLDLs (Fraction 4, parameter estimate=-3.82, p=0.038; Fraction 5, parameter estimate=-3.62, p=0.0039) and medium VLDL (Fraction 6, parameter estimate=-3.25, p=0.014); and the size of VLDL particles (parameter estimate=-0.0352, p=0.032). Conclusions This study showed that the characteristics of VLDL particles were associated with ABI among PD patients. Lowering serum VLDL level may be an effective therapy against atherosclerosis in PD patients after the

  17. A novel nanoemulsion-based method to produce ultrasmall, water-dispersible nanoparticles from chitosan, surface modified with cell-penetrating peptide for oral delivery of proteins and peptides

    PubMed Central

    Barbari, Ghullam Reza; Dorkoosh, Farid Abedin; Amini, Mohsen; Sharifzadeh, Mohammad; Atyabi, Fateme; Balalaie, Saeed; Rafiee Tehrani, Niyousha; Rafiee Tehrani, Morteza

    2017-01-01

    A simple and reproducible water-in-oil (W/O) nanoemulsion technique for making ultrasmall (<15 nm), monodispersed and water-dispersible nanoparticles (NPs) from chitosan (CS) is reported. The nano-sized (50 nm) water pools of the W/O nanoemulsion serve as “nano-containers and nano-reactors”. The entrapped polymer chains of CS inside these “nano-reactors” are covalently cross-linked with the chains of polyethylene glycol (PEG), leading to rigidification and formation of NPs. These NPs possess excessive swelling properties in aqueous medium and preserve integrity in all pH ranges due to chemical cross-linking with PEG. A potent and newly developed cell-penetrating peptide (CPP) is further chemically conjugated to the surface of the NPs, leading to development of a novel peptide-conjugated derivative of CS with profound tight-junction opening properties. The CPP-conjugated NPs can easily be loaded with almost all kinds of proteins, peptides and nucleotides for oral delivery applications. Feasibility of this nanoparticulate system for oral delivery of a model peptide (insulin) is investigated in Caco-2 cell line. The cell culture results for translocation of insulin across the cell monolayer are very promising (15%–19% increase), and animal studies are actively under progress and will be published separately. PMID:28496323

  18. Reactive decomposition of low density PMDI foam subject to shock compression

    NASA Astrophysics Data System (ADS)

    Alexander, Scott; Reinhart, William; Brundage, Aaron; Peterson, David

    Low density polymethylene diisocyanate (PMDI) foam with a density of 5.4 pounds per cubic foot (0.087 g/cc) was tested to determine the equation of state properties under shock compression over the pressure range of 0.58 - 3.4 GPa. This pressure range encompasses a region approximately 1.0-1.2 GPa within which the foam undergoes reactive decomposition resulting in significant volume expansion of approximately three times the volume prior to reaction. This volume expansion has a significant effect on the high pressure equation of state. Previous work on similar foam was conducted only up to the region where volume expansion occurs and extrapolation of that data to higher pressure results in a significant error. It is now clear that new models are required to account for the reactive decomposition of this class of foam. The results of plate impact tests will be presented and discussed including details of the unique challenges associated with shock compression of low density foams. Sandia National Labs is a multi-program lab managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  19. Mapping low- and high-density clouds in astrophysical nebulae by imaging forbidden line emission

    NASA Astrophysics Data System (ADS)

    Steiner, J. E.; Menezes, R. B.; Ricci, T. V.; Oliveira, A. S.

    2009-06-01

    Emission line ratios have been essential for determining physical parameters such as gas temperature and density in astrophysical gaseous nebulae. With the advent of panoramic spectroscopic devices, images of regions with emission lines related to these physical parameters can, in principle, also be produced. We show that, with observations from modern instruments, it is possible to transform images taken from density-sensitive forbidden lines into images of emission from high- and low-density clouds by applying a transformation matrix. In order to achieve this, images of the pairs of density-sensitive lines as well as the adjacent continuum have to be observed and combined. We have computed the critical densities for a series of pairs of lines in the infrared, optical, ultraviolet and X-rays bands, and calculated the pair line intensity ratios in the high- and low-density limit using a four- and five-level atom approximation. In order to illustrate the method, we applied it to Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (GMOS-IFU) data of two galactic nuclei. We conclude that this method provides new information of astrophysical interest, especially for mapping low- and high-density clouds; for this reason, we call it `the ld/hd imaging method'. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation on behalf of the Gemini partnership: the National Science Foundation (United States); the Science and Technology Facilities Council (United Kingdom); the National Research Council (Canada), CONICYT (Chile); the Australian Research Council (Australia); Ministério da Ciência e Tecnologia (Brazil) and Secretaria de Ciencia y Tecnologia (Argentina). E-mail: steiner@astro.iag.usp.br

  20. Properties of Dwarf Ellipticals in Low-Density Environments

    NASA Astrophysics Data System (ADS)

    Sur, Debnil; Guhathakurta, P.; Toloba, E.

    2013-01-01

    Dwarf elliptical galaxies have been studied only in dense cluster environments, where they are the most common type of object. While this suggests that their location affects their formation and evolution, the role of distance is not fully understood. Thus, to investigate the physical processes that shape these galaxies, we have conducted a study of dwarf elliptical galaxies (dEs) in low-density environments to compare their properties with those in clusters. Catalogs of such objects have not been created; thus, we have developed a novel objective method to find new dEs through comparing photometric properties with those of galaxies in the Virgo Cluster Catalog. This method utilizes optical colors, surface brightness and ellipticity, and it confirms smoothness through visual classification. In this last step, we found a very low contamination rate, which suggests the procedure’s utility in finding dEs. Through the NSA Sloan Atlas, we have analyzed the spectrophotometric properties of the dE candidates as a function of distance to the nearest massive galaxy, which we refer to as their host. We have found that these dEs are younger and more actively forming stars than dEs in denser regions. This is consistent with a transformation scenario in which low luminosity spiral galaxies are affected by the environment and transformed into quiescent galaxies. This low density regime contains objects in an intermediate state between the spiral galaxy and the classical dE in Virgo, where no star formation is ongoing. The correlation of the studied properties with the distance to the host galaxy provides new evidence that the dEs are created by a process called ram-pressure stripping: the interstellar medium of a host galaxy removes the gas of a smaller star-forming galaxy and provokes its quenching. We are currently analysing Keck/DEIMOS spectroscopy of some of the dE candidates from our catalog to explore in more detail their connection to cluster dEs. Possible similarities