Sample records for nanofibrous fibrin-based scaffolds

  1. Microporous nanofibrous fibrin-based scaffolds for craniofacial bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Osathanon, Thanaphum

    The fibrotic response of the body to synthetic polymers limits their success in tissue engineering and other applications. Though porous polymers have demonstrated improved healing, difficulty in controlling their pore sizes and pore interconnections has clouded the understanding of this phenomenon. In this study, a novel method to fabricate natural polymer/calcium phosphate composite scaffolds and immobilized alkaline phosphatase fibrin scaffolds with tightly controllable pore size, pore interconnection has been investigated. Microporous, nanofibrous fibrin scaffolds (FS) were fabricated using sphere-templating method. Calcium phosphate/fibrin composite scaffolds were created by solution deposition of calcium phosphate on fibrin surfaces or by direct incorporation of nanocrystalline hydroxyapatite (nHA). The SEM results showed that fibrin scaffolds exhibited a highly porous and interconnected structure. Osteoblast-like cells, obtained from murine calvaria, attached, spread and showed a polygonal morphology on the surface of the biomaterial. Multiple cell layers and fibrillar matrix deposition were observed. Moreover, cells seeded on mineralized fibrin scaffolds (MFS) exhibited significantly higher alkaline phosphatase activity as well as osteoblast marker gene expression compared to FS and nHA incorporated fibrin scaffolds (nHA/FS). These fibrin-based scaffolds were degraded both in vitro and in vivo. Furthermore, these scaffolds promoted bone formation in a mouse calvarial defect model and the bone formation was enhanced by addition of rhBMP-2. The second approach was to immobilize alkaline phosphatase (ALP) on fibrin scaffolds. ALP enzyme was covalently immobilized on the microporous nanofibrous fibrin scaffolds using 1-ethyl-3-(dimethylaminopropyl)carbodiimide hydrochloride (EDC). The SEM results demonstrated mineral deposition on immobilized ALP fibrin scaffolds (ALP/FS) when incubated in medium supplemented with beta-glycerophosphate, suggesting that the

  2. Characterisation of cell-substrate interactions between Schwann cells and three-dimensional fibrin hydrogels containing orientated nanofibre topographical cues.

    PubMed

    Hodde, Dorothee; Gerardo-Nava, José; Wöhlk, Vanessa; Weinandy, Stefan; Jockenhövel, Stefan; Kriebel, Andreas; Altinova, Haktan; Steinbusch, Harry W M; Möller, Martin; Weis, Joachim; Mey, Jörg; Brook, Gary A

    2016-02-01

    The generation of complex three-dimensional bioengineered scaffolds that are capable of mimicking the molecular and topographical cues of the extracellular matrix found in native tissues is a field of expanding research. The systematic development of such scaffolds requires the characterisation of cell behaviour in response to the individual components of the scaffold. In the present investigation, we studied cell-substrate interactions between purified populations of Schwann cells and three-dimensional fibrin hydrogel scaffolds, in the presence or absence of multiple layers of highly orientated electrospun polycaprolactone nanofibres. Embedded Schwann cells remained viable within the fibrin hydrogel for up to 7 days (the longest time studied); however, cell behaviour in the hydrogel was somewhat different to that observed on the two-dimensional fibrin substrate: Schwann cells failed to proliferate in the fibrin hydrogel, whereas cell numbers increased steadily on the two-dimensional fibrin substrate. Schwann cells within the fibrin hydrogel developed complex process branching patterns, but, when presented with orientated nanofibres, showed a strong tendency to redistribute themselves onto the nanofibres, where they extended long processes that followed the longitudinal orientation of the nanofibres. The process length along nanofibre-containing fibrin hydrogel reached near-maximal levels (for the present experimental conditions) as early as 1 day after culturing. The ability of this three-dimensional, extracellular matrix-mimicking scaffold to support Schwann cell survival and provide topographical cues for rapid process extension suggest that it may be an appropriate device design for the bridging of experimental lesions of the peripheral nervous system. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Magnesium Oxide Nanoparticles Reinforced Electrospun Alginate-Based Nanofibrous Scaffolds with Improved Physical Properties

    PubMed Central

    Mantilaka, M. M. M. G. P. G.; Goh, K. L.; Ratnayake, S. P.; Amaratunga, G. A. J.; de Silva, K. M. Nalin

    2017-01-01

    Mechanically robust alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning method to mimic the natural extracellular matrix structure which benefits development and regeneration of tissues. Alginate-based nanofibres were electrospun from an alginate/poly(vinyl alcohol) (PVA) polyelectrolyte complex. SEM images revealed the spinnability of the complex composite nanofibrous scaffolds, showing randomly oriented, ultrafine, and virtually defects-free alginate-based/MgO nanofibrous scaffolds. Here, it is shown that an alginate/PVA complex scaffold, blended with near-spherical MgO nanoparticles (⌀ 45 nm) at a predetermined concentration (10% (w/w)), is electrospinnable to produce a complex composite nanofibrous scaffold with enhanced mechanical stability. For the comparison purpose, chemically cross-linked electrospun alginate-based scaffolds were also fabricated. Tensile test to rupture revealed the significant differences in the tensile strength and elastic modulus among the alginate scaffolds, alginate/MgO scaffolds, and cross-linked alginate scaffolds (P < 0.05). In contrast to cross-linked alginate scaffolds, alginate/MgO scaffolds yielded the highest tensile strength and elastic modulus while preserving the interfibre porosity of the scaffolds. According to the thermogravimetric analysis, MgO reinforced alginate nanofibrous scaffolds exhibited improved thermal stability. These novel alginate-based/MgO scaffolds are economical and versatile and may be further optimised for use as extracellular matrix substitutes for repair and regeneration of tissues. PMID:28694826

  4. Functional Electrospun Nanofibrous Scaffolds for Biomedical Applications

    PubMed Central

    Liang, Dehai; Hsiao, Benjamin S.; Chu, Benjamin

    2009-01-01

    Functional nanofibrous scaffolds produced by electrospinning have great potential in many biomedical applications, such as tissue engineering, wound dressing, enzyme immobilization and drug (gene) delivery. For a specific successful application, the chemical, physical and biological properties of electrospun scaffolds should be adjusted to match the environment by using a combination of multi-component compositions and fabrication techniques where electrospinning has often become a pivotal tool. The property of the nanofibrous scaffold can be further improved with innovative development in electrospinning processes, such as two-component electrospinning and in-situ mixing electrospinning. Post modifications of electrospun membranes also provide effective means to render the electrospun scaffolds with controlled anisotropy and porosity. In this review, we review the materials, techniques and post modification methods to functionalize electrospun nanofibrous scaffolds suitable for biomedical applications. PMID:17884240

  5. Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators.

    PubMed

    Wang, Ling; Wu, Yaobin; Hu, Tianli; Guo, Baolin; Ma, Peter X

    2017-09-01

    Mimicking the nanofibrous structure similar to extracellular matrix and conductivity for electrical propagation of native myocardium would be highly beneficial for cardiac tissue engineering and cardiomyocytes-based bioactuators. Herein, we developed conductive nanofibrous sheets with electrical conductivity and nanofibrous structure composed of poly(l-lactic acid) (PLA) blending with polyaniline (PANI) for cardiac tissue engineering and cardiomyocytes-based 3D bioactuators. Incorporating of varying contents of PANI from 0wt% to 3wt% into the PLA polymer, the electrospun nanofibrous sheets showed enhanced conductivity while maintaining the same fiber diameter. These PLA/PANI conductive nanofibrous sheets exhibited good cell viability and promoting effect on differentiation of H9c2 cardiomyoblasts in terms of maturation index and fusion index. Moreover, PLA/PANI nanofibrous sheets enhanced the cell-cell interaction, maturation and spontaneous beating of primary cardiomyocytes. Furthermore, the cardiomyocytes-laden PLA/PANI conductive nanofibrous sheets can form 3D bioactuators with tubular and folding shapes, and spontaneously beat with much higher frequency and displacement than that on cardiomyocytes-laden PLA nanofibrous sheets. Therefore, these PLA/PANI conductive nanofibrous sheets with conductivity and extracellular matrix like nanostructure demonstrated promising potential in cardiac tissue engineering and cardiomyocytes-based 3D bioactuators. Cardiomyocytes-based bioactuators have been paid more attention due to their spontaneous motion by integrating cardiomyocytes into polymer structures, but developing suitable scaffolds for bioactuators remains challenging. Electrospun nanofibrous scaffolds have been widely used in cardiac tissue engineering because they can mimic the extracellular matrix of myocardium. Developing conductive nanofibrous scaffolds by electrospinning would be beneficial for cardiomyocytes-based bioactuators, but such scaffolds have been

  6. Partially nanofibrous architecture of 3D tissue engineering scaffolds.

    PubMed

    Wei, Guobao; Ma, Peter X

    2009-11-01

    An ideal tissue-engineering scaffold should provide suitable pores and appropriate pore surface to induce desired cellular activities and to guide 3D tissue regeneration. In the present work, we have developed macroporous polymer scaffolds with varying pore wall architectures from smooth (solid), microporous, partially nanofibrous, to entirely nanofibrous ones. All scaffolds are designed to have well-controlled interconnected macropores, resulting from leaching sugar sphere template. We examine the effects of material composition, solvent, and phase separation temperature on the pore surface architecture of 3D scaffolds. In particular, phase separation of PLLA/PDLLA or PLLA/PLGA blends leads to partially nanofibrous scaffolds, in which PLLA forms nanofibers and PDLLA or PLGA forms the smooth (solid) surfaces on macropore walls, respectively. Specific surface areas are measured for scaffolds with similar macroporosity but different macropore wall architectures. It is found that the pore wall architecture predominates the total surface area of the scaffolds. The surface area of a partially nanofibrous scaffold increases linearly with the PLLA content in the polymer blend. The amounts of adsorbed proteins from serum increase with the surface area of the scaffolds. These macroporous scaffolds with adjustable pore wall surface architectures may provide a platform for investigating the cellular responses to pore surface architecture, and provide us with a powerful tool to develop superior scaffolds for various tissue-engineering applications.

  7. Cell culture in autologous fibrin scaffolds for applications in tissue engineering.

    PubMed

    de la Puente, Pilar; Ludeña, Dolores

    2014-03-10

    In tissue engineering techniques, three-dimensional scaffolds are needed to adjust and guide cell growth and to allow tissue regeneration. The scaffold must be biocompatible, biodegradable and must benefit the interactions between cells and biomaterial. Some natural biomaterials such as fibrin provide a structure similar to the native extracellular matrix containing the cells. Fibrin was first used as a sealant based on pools of commercial fibrinogen. However, the high risk of viral transmission of these pools led to the development of techniques of viral inactivation and elimination and the use of autologous fibrins. In recent decades, fibrin has been used as a release system and three-dimensional scaffold for cell culture. Fibrin scaffolds have been widely used for the culture of different types of cells, and have found several applications in tissue engineering. The structure and development of scaffolds is a key point for cell culture because scaffolds of autologous fibrin offer an important alternative due to their low fibrinogen concentrations, which are more suitable for cell growth. With this review our aim is to follow methods of development, analyze the commercial and autologous fibrins available and assess the possible applications of cell culture in tissue engineering in these three-dimensional structures. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Fabrication and characterization of curcumin-loaded silk fibroin/P(LLA-CL) nanofibrous scaffold

    NASA Astrophysics Data System (ADS)

    Lian, Yuan; Zhan, Jian-Chao; Zhang, Kui-Hua; Mo, Xiu-Mei

    2014-12-01

    Curcumin exhibited excellent properties including antioxidant, antiinflammatory, antiviral, antibacterial, antifungal, anticancer, and anticoagulant activities. In this study, curcumin was incorporated into silk fibroin (SF)/poly(L-lactic acid- co-e-caprolactone) (P(LLA-CL)) nanofibrous scaffolds via electrospinning, and changes brought about by raising the curcumin content were observed: SEM images showed that the average nanofibrous diameter decreased at the beginning and then increased, and the nanofibers became uniform; FTIR showed that the conformation of SF transforming from random coil form to β-sheet structure had not been induced, while SF conformation converted to β-sheet after being treated with 75% ethanol vapor; XRD results confirmed that the crystal structure of (P(LLA-CL)) had been destroyed; The mechanical test illustrated that nanofibrous scaffolds still maintained good mechanical properties. Further, curcumin-loaded nanofibrous scaffolds were evaluated for drug release, antioxidant and antimicrobial activities in vitro. The results showed that curcumin presented a sustained release behavior from nanofibrous scaffolds and maintained its free radical scavenging ability, and such scaffolds could effectively inhibit S. aureus growth (> 95%). Thus, curcumin-loaded SF/P(LLA-CL) nanofibrous scaffolds might be potential candidates for wound dressing and tissue engineering scaffolds.

  9. Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application.

    PubMed

    Zhang, Kuihua; Qian, Yongfang; Wang, Hongsheng; Fan, Linpeng; Huang, Chen; Yin, Anlin; Mo, Xiumei

    2010-12-01

    To improve water-resistant ability and mechanical properties of silk fibroin (SF)/hydroxybutyl chitosan (HBC) nanofibrous scaffolds for tissue-engineering applications, genipin, glutaraldehyde (GTA), and ethanol were used to crosslink electrospun nanofibers, respectively. The mechanical properties of nanofibrous scaffolds were obviously improved after 24 h of crosslinking with genipin and were superior to those crosslinked with GTA and ethanol for 24 h. SEM indicated that crosslinked nanofibers with genipin and GTA vapor had good water-resistant ability. Characterization of the microstructure (porosity and pore structure) demonstrated crosslinked nanofibrous scaffolds with genipin and GTA vapor had lager porosities and mean diameters than those with ethanol. Characterization of FTIR-ATR and (13)C NMR clarified both genipin and GTA acted as crosslinking agents for SF and HBC. Furthermore, genipin could induce SF conformation from random coil or α-helix to β-sheet. Although GTA could also successfully crosslink SF/HBC nanofibrous scaffolds, in long run, genipin maybe a better method due to lower cytotoxicity than GTA. Cell viability studies and wound-healing test in rats clarified that the genipin-crosslinked SF/HBC nanofibrous scaffolds had a good biocompatibility both in vitro and in vivo. These results suggested that genipin-crosslinked SF/HBC nanofibrous scaffolds might be potential candidates for wound dressing and tissue-engineering scaffolds. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  10. Preparation and characterization of biohybrid poly (3-hydroxybutyrate-co-3-hydroxyvalerate) based nanofibrous scaffolds

    NASA Astrophysics Data System (ADS)

    Kouhi, Monireh; Fathi, Mohammadhossein; Venugopal, Jayarama Reddy; Shamanian, Morteza; Ramakrishna, Seeram

    2018-01-01

    Development of bioengineered scaffolds for bone tissue regeneration is a growing area of research, especially those involving biodegradable electrospun nanofibers incorporated with ceramic nanoparticles, since they can mimic the extracellular matrix (ECM) of the native bone. In the current study, a biocomposite nanofibrous scaffolds consisting of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), fibrinogen (FIB) and bredigite (BR) nanoparticles was fabricated through electrospinning. The morphological, chemical and mechanical characteristics of the resultant scaffolds were studied by using field emission-scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR) and tensile tester, respectively. It was found that PHBV-FIB-BR scaffolds exhibited enhanced tensile strength and young modulus compared to PHBV and PHBV-FIB scaffolds. In addition, the measurements of the water contact angle suggested that incorporation of bredigite and fibrinogen into PHBV could improve the hydrophilicity of the composites. The results of bioactivity assessment performed in the simulated body fluid (SBF) demonstrated that the presence of the bredigite nanoparticles induced the nucleation and growth of apatite layer on the surface of PHBV-FIB-BR scaffold in SBF. Furthermore, the ion concentration changes of SBF solutions with composite scaffolds showed that PHBV-FIB-BR scaffolds released Ca and Si ions, which can stimulate osteoblast proliferation. The results of cell culture studies revealed the higher osteoblast proliferation, mineralization and differentiation on PHBV-FIB-BR and PHBV-FIB scaffolds than on PHBV. Our results suggest that PHBV-FIB-BR nanofibrous scaffold would be a promising candidate as a biocomposite nanofibrous scaffold material for tissue engineering applications.

  11. A chemistry/physics pathway with nanofibrous scaffolds for gene delivery.

    PubMed

    Wan, Fen; Tang, Zhaohui; He, Weidong; Chu, Benjamin

    2010-10-21

    This perspective is to introduce a new pathway for non-viral gene delivery by taking advantage of nanofibrous scaffolds as gene storage devices, gene carriers and homing devices. During gene delivery to the target, the DNA has to be protected in order to pass through a set of barriers before reaching the nucleus. The DNA can form a complex with polycations, and numerous publications exist on how to stabilize the DNA fragments by natural and synthetic materials. Electrospun nanofibrous scaffolds can be used to store the DNA, especially in the form of a more stabilized polyplex, and then to deliver the DNA (polyplex) to cells that are attached to the scaffold. While each essential step has been tested experimentally, the overall yet untested process, especially for in vivo experiments, may lead to a promising specific approach for gene/drug storage and delivery. The pathway described herein is based mainly on our understanding of the physics and chemistry of gene storage and delivery processes, in contrast to using pure biological concepts. Novel biodegradable, biocompatible nanofibrous materials with imbedded DNA (e.g., in the polyplex form) can then be designed to fabricate an intelligent scaffold for gene delivery. To achieve the above goal, the first step is to stabilize the DNA so that it can be incorporated into nanofibrous scaffolds. In this respect, we shall discuss the different methods of DNA/gene condensation and complex formation, and then explain the strategy used to incorporate DNA into electrospun nanofibers. Solvent-induced DNA condensation and then encapsulation were achieved. However, the released naked DNA was not sufficiently protected for gene transfection in cells. The objective of the current perspective is to suggest that, instead of the solvent-induced DNA condensation, one can combine the recently developed polyplex formation by using branched polyethyleneimine (bPEI). More importantly, free bPEI can be incorporated into the nanofibers

  12. Formation of Nanofibrous Matrices, Three-Dimensional Scaffolds, and Microspheres: From Theory to Practice

    PubMed Central

    Ma, Chi

    2017-01-01

    Nanofibrous architecture presents unique biophysical cues to facilitate cellular responses and is considered an indispensable feature of a biomimetic three-dimensional (3D) scaffold and cell carrier. While electrospinning is a widely used method to prepare natural extracellular matrix-like nanofibers, it faces significant challenges to incorporate nanofibrous architecture into well-defined macroporous 3D scaffolds or injectable microspheres. Here we report a nonelectrospinning approach that is effective at generating nanofibers from a variety of synthetic and natural biodegradable polymers and integrating these nanofibers into (1) 3D scaffolds with constructive geometry and designed internal macropore structures; and (2) injectable microspheres. Our approach to generating polymer nanofibers is based on the control of polymer–solvent interaction parameter χp-s. We obtained the χp-s and solvent composition phase diagrams of different temperatures according to the Flory–Huggins classic lattice model and the Hildebrand-Scott solubility parameter equation. A critical polymer–solvent interaction parameter χcrit was introduced as a criterion to predict phase separation and nanofiber formation. To test the effectiveness of our approach, a total of 15 widely used biodegradable polymers were selected and successfully fabricated into nanofibrous matrices. Furthermore, macroporous nanofibrous 3D scaffolds with complex architecture and nanofibrous injectable microspheres were generated from those biodegradable polymers by combining our method with other processes. Our approach is universally effective to fabricate nanofibrous matrices from any polymeric materials. This work, therefore, greatly expands our ability to design appropriate biomimetic 3D scaffolds and injectable cell carriers for advanced regenerative therapies. PMID:27923327

  13. Development of volume-stable adipose tissue constructs using polycaprolactone-based polyurethane scaffolds and fibrin hydrogels.

    PubMed

    Wittmann, Katharina; Storck, Katharina; Muhr, Christian; Mayer, Helena; Regn, Sybille; Staudenmaier, Rainer; Wiese, Hinrich; Maier, Gerhard; Bauer-Kreisel, Petra; Blunk, Torsten

    2016-10-01

    Adipose tissue engineering aims at the restoration of soft tissue defects and the correction of contour deformities. It is therefore crucial to provide functional adipose tissue implants with appropriate volume stability. Here, we investigate two different fibrin formulations, alone or in combination with biodegradable polyurethane (PU) scaffolds as additional support structures, with regard to their suitability to generate volume-stable adipose tissue constructs. Human adipose-derived stem cells (ASCs) were incorporated in a commercially available fibrin sealant as well as a stable fibrin hydrogel previously developed by our group. The composite constructs made from the commercially available fibrin and porous poly(ε-caprolactone)-based polyurethane scaffolds exhibited increased volume stability as compared to fibrin gels alone; however, only constructs using the stable fibrin gels completely maintained their size and weight for 21 days. Adipogenesis of ASCs was not impaired by the additional PU scaffold. After induction with a common hormonal cocktail, for constructs with either fibrin formulation, strong adipogenic differentiation of ASCs was observed after 21 days in vitro. Furthermore, upregulation of adipogenic marker genes was demonstrated at mRNA (PPARγ, C/EBPα, GLUT4 and aP2; qRT-PCR) and protein (leptin; ELISA) levels. Stable fibrin/PU constructs were further evaluated in a pilot in vivo study, resulting in areas of well-vascularized adipose tissue within the implants after only 5 weeks. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Enhanced neural stem cell functions in conductive annealed carbon nanofibrous scaffolds with electrical stimulation.

    PubMed

    Zhu, Wei; Ye, Tao; Lee, Se-Jun; Cui, Haitao; Miao, Shida; Zhou, Xuan; Shuai, Danmeng; Zhang, Lijie Grace

    2017-05-25

    Carbon-based nanomaterials have shown great promise in regenerative medicine because of their unique electrical, mechanical, and biological properties; however, it is still difficult to engineer 2D pure carbon nanomaterials into a 3D scaffold while maintaining its structural integrity. In the present study, we developed novel carbon nanofibrous scaffolds by annealing electrospun mats at elevated temperature. The resultant scaffold showed a cohesive structure and excellent mechanical flexibility. The graphitic structure generated by annealing renders superior electrical conductivity to the carbon nanofibrous scaffold. By integrating the conductive scaffold with biphasic electrical stimulation, neural stem cell proliferation was promoted associating with upregulated neuronal gene expression level and increased microtubule-associated protein 2 immunofluorescence, demonstrating an improved neuronal differentiation and maturation. The findings suggest that the integration of the conducting carbon nanofibrous scaffold and electrical stimulation may pave a new avenue for neural tissue regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Electrodeposition on nanofibrous polymer scaffolds: Rapid mineralization, tunable calcium phosphate composition and topography

    PubMed Central

    He, Chuanglong; Xiao, Guiyong; Jin, Xiaobing; Sun, Chenghui; Ma, Peter X.

    2011-01-01

    We developed a straightforward, fast, and versatile technique to fabricate mineralized nanofibrous polymer scaffolds for bone regeneration in this work. Nanofibrous poly(l-lactic acid) scaffolds were fabricated using both electrospinning and phase separation techniques. An electrodeposition process was designed to deposit calcium phosphate on the nanofibrous scaffolds. Such scaffolds contain a high quality mineral coating on the fiber surface with tunable surface topography and chemical composition by varying the processing parameters, which can mimic the composition and structure of natural bone extracellular matrix and provide a more biocompatible interface for bone regeneration. PMID:21673827

  16. Nanofibrous nonmulberry silk/PVA scaffold for osteoinduction and osseointegration.

    PubMed

    Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Maiti, Tapas K; Bhattacharya, Debasis; Kundu, Subhas C

    2015-05-01

    Poly-vinyl alcohol and nonmulberry tasar silk fibroin of Antheraea mylitta are blended to fabricate nanofibrous scaffolds for bone regeneration. Nanofibrous matrices are prepared by electrospinning the equal volume ratio blends of silk fibroin (2 and 4 wt%) with poly-vinyl alcohol solution (10 wt%) and designated as 2SF/PVA and 4SF/PVA, respectively with average nanofiber diameters of 177 ± 13 nm (2SF/PVA) and 193 ± 17 nm (4SF/PVA). Fourier transform infrared spectroscopy confirms retention of the secondary structure of fibroin in blends indicating the structural stability of neo-matrix. Both thermal stability and contact angle of the blends decrease with increasing fibroin percentage. Conversely, fibroin imparts mechanical stability to the blends; greater tensile strength is observed with increasing fibroin concentration. Blended scaffolds are biodegradable and support well the neo-bone matrix synthesis by human osteoblast like cells. The findings indicate the potentiality of nanofibrous scaffolds of nonmulberry fibroin as bone scaffolding material. © 2014 Wiley Periodicals, Inc.

  17. Heparin/collagen encapsulating nerve growth factor multilayers coated aligned PLLA nanofibrous scaffolds for nerve tissue engineering.

    PubMed

    Zhang, Kuihua; Huang, Dianwu; Yan, Zhiyong; Wang, Chunyang

    2017-07-01

    Biomimicing topological structure of natural nerve tissue to direct axon growth and controlling sustained release of moderate neurotrophic factors are extremely propitious to the functional recovery of damaged nervous systems. In this study, the heparin/collagen encapsulating nerve growth factor (NGF) multilayers were coated onto the aligned poly-L-lactide (PLLA) nanofibrous scaffolds via a layer-by-layer (LbL) self-assembly technique to combine biomolecular signals, and physical guidance cues for peripheral nerve regeneration. Scanning electronic microscopy (SEM) revealed that the surface of aligned PLLA nanofibrous scaffolds coated with heparin/collagen multilayers became rougher and appeared some net-like filaments and protuberances in comparison with PLLA nanofibrous scaffolds. The heparin/collagen multilayers did not destroy the alignment of nanofibers. X-ray photoelectron spectroscopy and water contact angles displayed that heparin and collagen were successfully coated onto the aligned PLLA nanofibrous scaffolds and improved its hydrophilicity. Three-dimensional (3 D) confocal microscopy images further demonstrated that collagen, heparin, and NGF were not only coated onto the surface of aligned PLLA nanofibrous scaffolds but also permeated into the inner of scaffolds. Moreover, NGF presented a sustained release for 2 weeks from aligned nanofibrous scaffolds coated with 5.5 bilayers or above and remained good bioactivity. The heparin/collagen encapsulating NGF multilayers coated aligned nanofibrous scaffolds, in particular 5.5 bilayers or above, was more beneficial to Schwann cells (SCs) proliferation and PC12 cells differentiation as well as the SC cytoskeleton and neurite growth along the direction of nanofibrous alignment compared to the aligned PLLA nanofibrous scaffolds. This novel scaffolds combining sustained release of bioactive NGF and aligned nanofibrous topography presented an excellent potential in peripheral nerve regeneration. © 2016 Wiley

  18. Pectin-chitosan-PVA nanofibrous scaffold made by electrospinning and its potential use as a skin tissue scaffold.

    PubMed

    Lin, Hsin-Yi; Chen, Hsin-Hung; Chang, Shih-Hsin; Ni, Tsung-Sheng

    2013-01-01

    Scaffolds made of chitosan nanofibers are often too mechanically weak for their application and often their manufacturing processes involve the use of harmful and flammable organic solvents. In the attempt to improve the mechanical properties of nanofibrous scaffolds made of chitosan without the use of harmful chemicals, pectin, an anionic polymer was blended with chitosan, a cationic polymer, to form a polyelectrolyte complex and electrospun into nanofibers for the first time. The electrospun chitosan-pectin scaffolds, when compared to electrospun chitosan scaffolds, had a 58% larger diameter, a 21% higher Young's modulus, a 162% larger strain at break, and a 104% higher ultimate tensile strength. Compared to the chitosan scaffolds, the chitosan-pectin scaffolds' swelling ratios decreased by 55% after 60 min in a saline solution and more quickly released the preloaded tetracycline HCl. The L929 fibroblast cells proliferated slightly slower on the chitosan-pectin scaffolds than on the chitosan scaffolds. Nonetheless, cells on both materials deposited similar levels of extracellular type I collagen on a per DNA basis. In conclusion, a novel chitosan-pectin nanofibrous scaffold with superior mechanical properties than a chitosan nanofibrous scaffold was successfully made without the use of harmful solvents.

  19. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration

    PubMed Central

    Wang, Zi; Lin, Ming; Xie, Qing; Sun, Hao; Huang, Yazhuo; Zhang, DanDan; Yu, Zhang; Bi, Xiaoping; Chen, Junzhao; Wang, Jing; Shi, Wodong; Gu, Ping; Fan, Xianqun

    2016-01-01

    Background Tissue engineering has become a promising therapeutic approach for bone regeneration. Nanofibrous scaffolds have attracted great interest mainly due to their structural similarity to natural extracellular matrix (ECM). Poly(lactide-co-ε-caprolactone) (PLCL) has been successfully used in bone regeneration, but PLCL polymers are inert and lack natural cell recognition sites, and the surface of PLCL scaffold is hydrophobic. Silk fibroin (SF) is a kind of natural polymer with inherent bioactivity, and supports mesenchymal stem cell attachment, osteogenesis, and ECM deposition. Therefore, we fabricated hybrid nanofibrous scaffolds by adding different weight ratios of SF to PLCL in order to find a scaffold with improved properties for bone regeneration. Methods Hybrid nanofibrous scaffolds were fabricated by blending different weight ratios of SF with PLCL. Human adipose-derived stem cells (hADSCs) were seeded on SF/PLCL nanofibrous scaffolds of various ratios for a systematic evaluation of cell adhesion, proliferation, cytotoxicity, and osteogenic differentiation; the efficacy of the composite of hADSCs and scaffolds in repairing critical-sized calvarial defects in rats was investigated. Results The SF/PLCL (50/50) scaffold exhibited favorable tensile strength, surface roughness, and hydrophilicity, which facilitated cell adhesion and proliferation. Moreover, the SF/PLCL (50/50) scaffold promoted the osteogenic differentiation of hADSCs by elevating the expression levels of osteogenic marker genes such as BSP, Ocn, Col1A1, and OPN and enhanced ECM mineralization. In vivo assays showed that SF/PLCL (50/50) scaffold improved the repair of the critical-sized calvarial defect in rats, resulting in increased bone volume, higher trabecular number, enhanced bone mineral density, and increased new bone areas, compared with the pure PLCL scaffold. Conclusion The SF/PLCL (50/50) nanofibrous scaffold facilitated hADSC proliferation and osteogenic differentiation in

  20. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering.

    PubMed

    Shanmugavel, Suganya; Reddy, Venugopal Jayarama; Ramakrishna, Seeram; Lakshmi, B S; Dev, Vr Giri

    2014-07-01

    Advances in electrospun nanofibres with bioactive materials have enhanced the scope of fabricating biomimetic scaffolds for tissue engineering. The present research focuses on fabrication of polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds by electrospinning followed by hydroxyapatite deposition by calcium-phosphate dipping method for bone tissue engineering. Morphology, composition, hydrophilicity and mechanical properties of polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds along with controls polycaprolactone and polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds were examined by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle and tensile tests, respectively. Adipose-derived stem cells cultured on polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds displayed highest cell proliferation, increased osteogenic markers expression (alkaline phosphatase and osteocalcin), osteogenic differentiation and increased mineralization in comparison with polycaprolactone control. The obtained results indicate that polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds have appropriate physico-chemical and biological properties to be used as biomimetic scaffolds for bone tissue regeneration. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  1. In vitro cytotoxicity and antibacterial activity of silver-coated electrospun polycaprolactone/gelatine nanofibrous scaffolds.

    PubMed

    Lim, Mim Mim; Sultana, Naznin

    2016-12-01

    The development of nano-sized scaffolds with antibacterial properties that mimic the architecture of tissue is one of the challenges in tissue engineering. In this study, polycaprolactone (PCL) and PCL/gelatine (Ge) (70:30) nanofibrous scaffolds were fabricated using a less toxic and common solvent, formic acid and an electrospinning technique. Nanofibrous scaffolds were coated with silver (Ag) in different concentrations of silver nitrate (AgNO 3 ) aqueous solution (1.25, 2.5, 5, and 10 %) by using dipping method, drying and followed by ultraviolet (UV) photoreduction. The PCL/Ge (70:30) nanofibrous scaffold had an average fibre diameter of 155.60 ± 41.13 nm. Characterization showed that Ag was physically entrapped in both the PCL and PCL/Ge (70:30) nanofibrous scaffolds. Ag + ions release study was performed and showed much lesser release amount than the maximum toxic concentration of Ag + ions in human cells. Both scaffolds were non-toxic to cells and demonstrated antibacterial effects towards Gram-positive Bacillus cereus (B. cereus) and Gram-negative Escherichia coli (E. coli). The Ag/PCL/Ge (70:30) nanofibrous scaffold has potential for tissue engineering as it can protect wounds from bacterial infection and promote tissue regeneration.

  2. Scaffold architecture and fibrin gels promote meniscal cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawelec, K. M., E-mail: pawelec.km@gmail.com, E-mail: jw626@cam.ac.uk; Best, S. M.; Cameron, R. E.

    2015-01-01

    Stability of the knee relies on the meniscus, a complex connective tissue with poor healing ability. Current meniscal tissue engineering is inadequate, as the signals for increasing meniscal cell proliferation have not been established. In this study, collagen scaffold structure, isotropic or aligned, and fibrin gel addition were tested. Metabolic activity was promoted by fibrin addition. Cellular proliferation, however, was significantly increased by both aligned architectures and fibrin addition. None of the constructs impaired collagen type I production or triggered adverse inflammatory responses. It was demonstrated that both fibrin gel addition and optimized scaffold architecture effectively promote meniscal cell proliferation.

  3. Bioactive Nano-Fibrous Scaffolds for Bone and Cartilage Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Feng, Kai

    Scaffolds that can mimic the structural features of natural extracellular matrix and can deliver biomolecules in a controlled fashion may provide cells with a favorable microenvironment to facilitate tissue regeneration. Biodegradable nanofibrous scaffolds with interconnected pore network have previously been developed in our laboratory to mimic collagen matrix and advantageously support both bone and cartilage regeneration. This dissertation project aims to expand both the structural complexity and the biomolecule delivery capacity of such biomimetic scaffolds for tissue engineering. We first developed a nanofibrous scaffold that can release an antibiotic (doxycycline) with a tunable release rate and a tunable dosage, which was demonstrated to be able to inhibit bacterial growth over a prolonged time period. We then developed a nanofibrous tissue-engineciing scaffold that can release basic fibroblast growth factor (bFGF) in a spatially and temporally controlled fashion. In a mouse subcutaneous implantation model, the bFGF-releasing scaffold was shown to enhance cell penetration, tissue ingrowth and angiogenesis. It was also found that both the dose and the release rate of bFGF play roles in the biologic function of the scaffold. After that, we developed a nanofibrous PLLA scaffold that can release both bone morphogenetic protein 7 (BMP-7) and platelet-derived growth factor (PDGF) with distinct dosages and release kinetics. It was demonstrated that BMP-7 and PDGF could synergistically enhance bone regeneration using a mouse ectopic bone formation model and a rat periodontal fenestration defect regeneration model. The regeneration outcome was dependent on the dosage, the ratio and the release kinetics of the two growth factors. Last, we developed an anisotropic composite scaffold with an upper layer mimicking the superficial zone of cartilage and a lower layer mimicking the middle zone of cartilage. The thin superficial layer was fabricated using an electrospinning

  4. Nanostructured thick 3D nanofibrous scaffold can induce bone.

    PubMed

    Eap, Sandy; Morand, David; Clauss, François; Huck, Olivier; Stoltz, Jean-François; Lutz, Jean-Christophe; Gottenberg, Jacques-Eric; Benkirane-Jessel, Nadia; Keller, Laetitia; Fioretti, Florence

    2015-01-01

    Designing unique nanostructured biomimetic materials is a new challenge in modern regenerative medicine. In order to develop functional substitutes for damaged organs or tissues, several methods have been used to create implants able to regenerate robust and durable bone. Electrospinning produces nonwoven scaffolds based on polymer nanofibers mimicking the fibrillar organization of bone extracellular matrix. Here, we describe a biomimetic 3D thick nanofibrous scaffold obtained by electrospinning of the biodegradable, bioresorbable and FDA-approved polymer, poly(ε-caprolactone). Such scaffold presents a thickness reaching one centimeter. We report here the demonstration that the designed nanostructured implant is able to induce in vivo bone regeneration.

  5. Gelatin/chondroitin sulfate nanofibrous scaffolds for stimulation of wound healing: In-vitro and in-vivo study.

    PubMed

    Pezeshki-Modaress, Mohamad; Mirzadeh, Hamid; Zandi, Mojgan; Rajabi-Zeleti, Sareh; Sodeifi, Niloofar; Aghdami, Nasser; Mofrad, Mohammad R K

    2017-07-01

    In this research, fabrication of gelatin/chondroitin sulfate (GAG) nanofibrous scaffolds using electrospinning technique for skin tissue engineering was studied. The influence of GAG content on chemical, physical, mechanical and biological properties of the scaffolds were investigated. Human dermal fibroblast (HDF) cells were cultured and bioactivity of electrospun gelatin/GAG scaffolds for skin tissue engineering was assayed. Biological results illustrated that HDF cells attached and spread well on gelatin/GAG nanofibrous scaffolds displaying spindle-like shapes and stretching. MTS assay was performed to evaluate the cell proliferation on electrospun gelatin/GAG scaffolds. The results confirmed the influence of GAG content as well as the nanofibrous structure on cell proliferation and attachment of substrates. The gelatin/GAG nanofibrous scaffolds with the desired thickness for in-vivo evaluations were used on the full-thickness wounds. Pathobiological results showed that cell loaded gelatin/GAG scaffolds significantly accelerated wounds healing. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2020-2034, 2017. © 2017 Wiley Periodicals, Inc.

  6. A novel gellan-PVA nanofibrous scaffold for skin tissue regeneration: Fabrication and characterization.

    PubMed

    Vashisth, Priya; Nikhil, Kumar; Roy, Partha; Pruthi, Parul A; Singh, Rajesh P; Pruthi, Vikas

    2016-01-20

    In this investigation, we have introduced novel electrospun gellan based nanofibers as a hydrophilic scaffolding material for skin tissue regeneration. These nanofibers were fabricated using a blend mixture of gellan with polyvinyl alcohol (PVA). PVA reduced the repulsive force of resulting solution and lead to formation of uniform fibers with improved nanostructure. Field emission scanning electron microscopy (FESEM) confirmed the average diameter of nanofibers down to 50 nm. The infrared spectra (IR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis evaluated the crosslinking, thermal stability and highly crystalline nature of gellan-PVA nanofibers, respectively. Furthermore, the cell culture studies using human dermal fibroblast (3T3L1) cells established that these gellan based nanofibrous scaffold could induce improved cell adhesion and enhanced cell growth than conventionally proposed gellan based hydrogels and dry films. Importantly, the nanofibrous scaffold are biodegradable and could be potentially used as a temporary substrate/or biomedical graft to induce skin tissue regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering

    PubMed Central

    Arulmoli, Janahan; Wright, Heather J.; Phan, Duc T.T.; Sheth, Urmi; Que, Richard A.; Botten, Giovanni A.; Keating, Mark; Botvinick, Elliot L.; Pathak, Medha M.; Zarembinski, Thomas I.; Yanni, Daniel S.; Razorenova, Olga V.; Hughes, Christopher C.W.; Flanagan, Lisa A.

    2017-01-01

    Human neural stem/progenitor cells (hNSPCs) are good candidates for treating central nervous system (CNS) trauma since they secrete beneficial trophic factors and differentiate into mature CNS cells; however, many cells die after transplantation. This cell death can be ameliorated by inclusion of a biomaterial scaffold, making identification of optimal scaffolds for hNSPCs a critical research focus. We investigated the properties of fibrin-based scaffolds and their effects on hNSPCs and found that fibrin generated from salmon fibrinogen and thrombin stimulates greater hNSPC proliferation than mammalian fibrin. Fibrin scaffolds degrade over the course of a few days in vivo, so we sought to develop a novel scaffold that would retain the beneficial properties of fibrin but degrade more slowly to provide longer support for hNSPCs. We found combination scaffolds of salmon fibrin with interpenetrating networks (IPNs) of hyaluronic acid (HA) with and without laminin polymerize more effectively than fibrin alone and generate compliant hydrogels matching the physical properties of brain tissue. Furthermore, combination scaffolds support hNSPC proliferation and differentiation while significantly attenuating the cell-mediated degradation seen with fibrin alone. HNSPCs express two fibrinogen-binding integrins, αVβ1 and α5β1, and several laminin binding integrins (α7β1, α6β1, α3β1) that can mediate interaction with the scaffold. Lastly, to test the ability of scaffolds to support vascularization, we analyzed human cord blood-derived endothelial cells alone and in co-culture with hNSPCs and found enhanced vessel formation and complexity in co-cultures within combination scaffolds. Overall, combination scaffolds of fibrin, HA, and laminin are excellent biomaterials for hNSPCs. PMID:27475528

  8. Doxorubicin-loaded PLA/pearl electrospun nanofibrous scaffold for drug delivery and tumor cell treatment

    NASA Astrophysics Data System (ADS)

    Dai, Jiamu; Jin, Junhong; Yang, Shenglin; Li, Guang

    2017-07-01

    A drug-loaded implantable scaffold is a promising substitute for the treatment of tissue defects after a tumor resection operation. In this work, natural pearl powder with good biocompatibility and osteoconductivity was incorporated into polylactic (PLA) nanofibers via electrospinning, and doxorubicin hydrochloride (DOX) was also loaded in the PLA/pearl scaffold, resulting in a drug-loaded composite nanofibrous scaffold (DOX@PLA/pearl). In vitro drug delivery of DOX from a PLA/pearl composite scaffold was measured and in vitro anti-tumor efficacy was also examined, in particular the effect of the pearl content on both key properties were studied. The results showed that DOX was successfully loaded into PLA/pearl composite nanofibrous scaffolds with different pearl content. More importantly, the delivery rate of DOX kept rising as the pearl content increased, and the anti-tumor efficacy of the drug-loaded scaffold on HeLa cells was improved at an appropriate pearl powder concentration. Thus, we expect that the prepared DOX@PLA/pearl powder nanofibrous mat is a highly promising implantable scaffold that has great potential in postoperative cancer treatment.

  9. Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers

    PubMed Central

    Zhang, YZ; Su, B; Venugopal, J; Ramakrishna, S; Lim, CT

    2007-01-01

    Electrospinning is an enabling technology that can architecturally (in terms of geometry, morphology or topography) and biochemically fabricate engineered cellular scaffolds that mimic the native extracellular matrix (ECM). This is especially important and forms one of the essential paradigms in the area of tissue engineering. While biomimesis of the physical dimensions of native ECM’s major constituents (eg, collagen) is no longer a fabrication-related challenge in tissue engineering research, conveying bioactivity to electrospun nanofibrous structures will determine the efficiency of utilizing electrospun nanofibers for regenerating biologically functional tissues. This can certainly be achieved through developing composite nanofibers. This article gives a brief overview on the current development and application status of employing electrospun composite nanofibers for constructing biomimetic and bioactive tissue scaffolds. Considering that composites consist of at least two material components and phases, this review details three different configurations of nanofibrous composite structures by using hybridizing basic binary material systems as example. These are components blended composite nanofiber, core-shell structured composite nanofiber, and nanofibrous mingled structure. PMID:18203429

  10. Tissue engineered poly(caprolactone)-chitosan-poly(vinyl alcohol) nanofibrous scaffolds for burn and cutting wound healing.

    PubMed

    Gholipour-Kanani, Adeleh; Bahrami, S Hajir; Joghataie, Mohammad Taghi; Samadikuchaksaraei, Ali; Ahmadi-Taftie, Hossein; Rabbani, Shahram; Kororian, Alireza; Erfani, Elham

    2014-06-01

    Natural-synthetic blend nanofibres have recently attracted more interest because of the ability of achieving desirable properties. Poly(ε-caprolactone) (PCL)-chitosan (Cs)-poly(vinyl alcohol) (PVA) blend nanofibrous scaffolds were electrospun in 2:1:1.33 mass ratio of PCL:Cs:PVA. The presence of PCL in the blend leads to improvement in web hydrophobicity and helped the web to retain its integrity in aqueous media. The scaffolds were used in two forms of acellular and with mesenchymal stem cells. They were applied on burn (n = 12) and excisional cutting (n = 12) wounds on dorsum skin of rats. Macroscopic investigations were carried out to measure the wounds areas. It was found that the area of wounds that were treated with cell-seeded nanofibrous scaffolds were smaller compared to other samples. Pathological results showed much better healing performance for cell-seeded scaffolds followed by acellular scaffolds compared with control samples. All these results indicate that PCL:Cs:PVA nanofibrous web would be a proper material for burn and cutting wound healing.

  11. The effects of scaffold architecture and fibrin gel addition on tendon cell phenotype.

    PubMed

    Pawelec, K M; Wardale, R J; Best, S M; Cameron, R E

    2015-01-01

    Development of tissue engineering scaffolds relies on careful selection of pore architecture and chemistry of the cellular environment. Repair of skeletal soft tissue, such as tendon, is particularly challenging, since these tissues have a relatively poor healing response. When removed from their native environment, tendon cells (tenocytes) lose their characteristic morphology and the expression of phenotypic markers. To stimulate tendon cells to recreate a healthy extracellular matrix, both architectural cues and fibrin gels have been used in the past, however, their relative effects have not been studied systematically. Within this study, a combination of collagen scaffold architecture, axial and isotropic, and fibrin gel addition was assessed, using ovine tendon-derived cells to determine the optimal strategy for controlling the proliferation and protein expression. Scaffold architecture and fibrin gel addition influenced tendon cell behavior independently in vitro. Addition of fibrin gel within a scaffold doubled cell number and increased matrix production for all architectures studied. However, scaffold architecture dictated the type of matrix produced by cells, regardless of fibrin addition. Axial scaffolds, mimicking native tendon, promoted a mature matrix, with increased tenomodulin, a marker for mature tendon cells, and decreased scleraxis, an early transcription factor for connective tissue. This study demonstrated that both architectural cues and fibrin gel addition alter cell behavior and that the combination of these signals could improve clinical performance of current tissue engineering constructs.

  12. Preparation of polypyrrole-embedded electrospun poly(lactic acid) nanofibrous scaffolds for nerve tissue engineering

    PubMed Central

    Zhou, Jun-feng; Wang, Yi-guo; Cheng, Liang; Wu, Zhao; Sun, Xiao-dan; Peng, Jiang

    2016-01-01

    Polypyrrole (PPy) is a biocompatible polymer with good conductivity. Studies combining PPy with electrospinning have been reported; however, the associated decrease in PPy conductivity has not yet been resolved. We embedded PPy into poly(lactic acid) (PLA) nanofibers via electrospinning and fabricated a PLA/PPy nanofibrous scaffold containing 15% PPy with sustained conductivity and aligned topography. There was good biocompatibility between the scaffold and human umbilical cord mesenchymal stem cells as well as Schwann cells. Additionally, the direction of cell elongation on the scaffold was parallel to the direction of fibers. Our findings suggest that the aligned PLA/PPy nanofibrous scaffold is a promising biomaterial for peripheral nerve regeneration. PMID:27904497

  13. Fibrin gel as a scaffold for skin substitute – production and clinical experience.

    PubMed

    Kljenak, Antun; Tominac Trcin, Mirna; Bujić, Marina; Dolenec, Tamara; Jevak, Martina; Mršić, Gordan; Zmiš, Gordana; Barčot, Zoran; Muljačić, Ante; Popović, Maja

    2016-06-01

    The purpose of this study was to create a fibrin-based human skin substitute in vitro with epidermal and dermal component and to assess its healing potential in deep partial and full thickness burns. Fibrin scaffolds were prepared from commercial fibrin glue kits. Human fibroblasts were cultured in fibrin gel. Human keratinocytes were seeded on the top of the gel. Viability of cells was determined fluorimetrically. Scanning electron microscope and immunocytochemistry analysis of cultured cells were performed. After hydrosurgical preparation of deep burn necrotic tissue, wound bed was prepared for skin substitutes. Progress of healing was documented using visual estimation and photos. Scanning electron microscope images showed good cell attachment and colony spreading of keratinocytes and fibroblasts on fibrin scaff old. Immunofluorescent staining of cell cultures on fibrin scaffold showed expression of vimentin, a marker of fibroblast cells, cytokeratin 19, a marker of epithelial stem cells, as well as involucrin, a marker of differentiated keratinocytes. Clinical results clearly showed that appearance of the skin did not differ significantly from the areas of transplanted skin using split-thickness skin graft techniques. In conclusion, using these fibrin-cultured autografts on massive full-thickness burn resulted in good healing.

  14. The effect of nanofibrous galactosylated chitosan scaffolds on the formation of rat primary hepatocyte aggregates and the maintenance of liver function.

    PubMed

    Feng, Zhang-Qi; Chu, Xuehui; Huang, Ning-Ping; Wang, Tao; Wang, Yichun; Shi, Xiaolei; Ding, Yitao; Gu, Zhong-Ze

    2009-05-01

    Liver tissue engineering requires a perfect extracellular matrix (ECM) for primary hepatocytes culture to maintain high level of liver-specific functions and desirable mechanical stability. The aim of this study was to develop a novel natural nanofibrous scaffold with surface-galactose ligands to enhance the bioactivity and mechanical stability of primary hepatocytes in culture. The nanofibrous scaffold was fabricated by electrospinning a natural material, galactosylated chitosan (GC), into nanofibers with an average diameter of approximately 160 nm. The GC nanofibrous scaffolds displayed slow degradation and suitable mechanical properties as an ECM for hepatocytes according to the evaluation of disintegration and Young's modulus testing. The results of morphology characterization, double-staining fluorescence assay and function detection showed that hepatocytes cultured on GC nanofibrous scaffold formed stably immobilized 3D flat aggregates and exhibited superior cell bioactivity with higher levels of liver-specific function maintenance in terms of albumin secretion, urea synthesis and cytochrome P-450 enzyme than 3D spheroid aggregates formed on GC films. These spheroid aggregates could be detached easily during culture period from the flat GC films. We suggest such GC-based nanofibrous scaffolds could be useful for various applications such as bioartificial liver-assist devices and tissue engineering for liver regeneration as primary hepatocytes culture substrates.

  15. In situ mineralization of hydroxyapatite on electrospun chitosan-based nanofibrous scaffolds.

    PubMed

    Yang, Dongzhi; Jin, Yu; Zhou, Yingshan; Ma, Guiping; Chen, Xiangmei; Lu, Fengmin; Nie, Jun

    2008-03-10

    A biocomposite of hydroxyapatite (HAp) with electrospun nanofibrous scaffolds was prepared by using chitosan/polyvinyl alcohol (CS/PVA) and N-carboxyethyl chitosan/PVA (CECS/PVA) electrospun membranes as organic matrix, and HAp was formed in supersaturated CaCl2 and KH2PO4 solution. The influences of carboxylic acid groups in CECS/PVA fibrous scaffold and polyanionic additive poly(acrylic acid) (PAA) in the incubation solution on the crystal distribution of the HAp were investigated. Field-emission scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), wide-angle X-ray diffraction (WAXD), and Fourier transform infrared (FTIR) were used to characterize the morphology and structure of the deposited mineral phase on the scaffolds. It was found that addition of PAA to the mineral solution and use of matrix with carboxylic acid groups promoted mineral growth and distribution of HAp. MTT testing and SEM imaging from mouse fibroblast (L929) cell culture revealed the attachment and growth of mouse fibroblast on the surface of biocomposite scaffold, and that the cell morphology and viability were satisfactory for the composite to be used in bioapplications.

  16. Human unrestricted somatic stem cells loaded in nanofibrous PCL scaffold and their healing effect on skin defects.

    PubMed

    Bahrami, Hoda; Keshel, Saeed Heidari; Chari, Aliakbar Jafari; Biazar, Esmaeil

    2016-09-01

    Unrestricted somatic stem cells (USSCs) loaded in nanofibrous polycaprolactone (PCL) scaffolds can be used for skin regeneration when grafted onto full-thickness skin defects of rats. Nanofibrous PCL scaffolds were designed by the electrospinning method and crosslinked with laminin protein. Afterwards, the scaffolds were evaluated by scanning electron microscopy, and physical and mechanical assays. In this study, nanofibrous PCL scaffolds loaded with USSCs were grafted onto the skin defects. The wounds were subsequently investigated 21 days after grafting. Results of mechanical and physical analyses showed good resilience and compliance to movement as a skin graft. In animal models; study samples exhibited the most pronounced effect on wound closure, with statistically significant improvement in wound healing being seen at 21 days post-operatively. Histological examinations of healed wounds from all samples showed a thin epidermis plus recovered skin appendages in the dermal layer for samples with cell. Thus, the graft of nanofibrous PCL scaffolds loaded with USSC showed better results during the healing process of skin defects in rat models.

  17. Human basic fibroblast growth factor fused with Kringle4 peptide binds to a fibrin scaffold and enhances angiogenesis.

    PubMed

    Zhao, Wenxue; Han, Qianqian; Lin, Hang; Sun, Wenjie; Gao, Yuan; Zhao, Yannan; Wang, Bin; Wang, Xia; Chen, Bing; Xiao, Zhifeng; Dai, Jianwu

    2009-05-01

    Appropriate three-dimensional (3D) scaffolds and signal molecules could accelerate tissue regeneration and wound repair. In this work, we targeted human basic fibroblast growth factor (bFGF), a potent angiogenic factor, to a fibrin scaffold to improve therapeutic angiogenesis. We fused bFGF to the Kringle4 domain (K4), a fibrin-binding peptide from human plasminogen, to endow bFGF with specific fibrin-binding ability. The recombinant K4bFGF bound specifically to the fibrin scaffold so that K4bFGF was delivered in a site-specific manner, and the fibrin scaffold provided 3D support for cell migration and proliferation. Subcutaneous implantation of the fibrin scaffolds bound with K4bFGF but not with bFGF induced neovascularization. Immunohistochemical analysis showed significantly more proliferation cells in the fibrin scaffolds incorporated with K4bFGF than in those with bFGF. Moreover, the regenerative tissues were integrated well with the fibrin scaffolds, suggesting its good biocompatibility. In summary, targeted delivery of K4bFGF could potentially improve therapeutic angiogenesis.

  18. L. inermis-loaded nanofibrous scaffolds for wound dressing applications.

    PubMed

    Vakilian, Saeid; Norouzi, Mohammad; Soufi-Zomorrod, Mahsa; Shabani, Iman; Hosseinzadeh, Simzar; Soleimani, Masoud

    2018-04-01

    Since ancient times, some herbal medicines have been extensively used for burn and wound treatments, showing preference to the common synthetic medications by virtue of having less side effects and faster healing rate. In this study, hybrid nanofibrous scaffolds of poly-l-lactic-acid (PLLA) and gelatin incorporated L. inermis were fabricated via electrospinning technique. Morphology and characteristics of the scaffolds were studied by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR), respectively. The release profile of the L. inermis from the nanofibers was also assessed in vitro. Moreover, the structural stability of the released L. inermis from the nanofibers was evaluated using high-performance liquid chromatography (HPLC). The nanofibers showed a gradual release of L. inermis up to two days while the intact structure was preserved. Furthermore, antibacterial assay demonstrated that L. inermis-loaded nanofibrous scaffolds could effectively kill E. coli and S. aureus within 2 h. Finally, biocompatibility of the nanofibers was proven on 3T3 fibroblasts. Therefore, the L. inermis loaded PLLA-Gelatin nanofibers showed a potential application as a wound dressing in order to control wound infections. Copyright © 2018. Published by Elsevier Ltd.

  19. In vivo efficiency of the collagen coated nanofibrous scaffold and their effect on growth factors and pro-inflammatory cytokines in wound healing.

    PubMed

    Ramanathan, Giriprasath; Muthukumar, Thangavelu; Tirichurapalli Sivagnanam, Uma

    2017-11-05

    Exploring the importance of nanofibrous scaffold with traditionally important medicine as a wound dressing material prevents infection and aids in faster healing of wounds. In the present study, the Collagen (COL) from the marine fish skin was extracted and employed for coating the Poly(3-hydroxybutyric acid) (P)-Gelatin (G) nanofibrous scaffold with a bioactive Coccinia grandis extract (CPE) fabricated through electrospinning. Further, the fabricated collagen coated nanofibrous scaffold (PG-CPE-COL) applied to the experimental wound of rats and the wound healing was analyzed with by physiochemical and biological techniques. The increased level of hydroxyproline, hexosamine and uronic acid was observed in PG-CPE-COL treated than the other groups. The CPE and collagen in the nanofibrous scaffold accelerates the wound healing and thereby reduced the inflammation caused by the cyclooxygenase-2 (COX-2) and inducible nitric oxide synthases (iNOS) in wound healing. The nanofibrous scaffold has influenced the expression of various growth factors such as vascular endothelial growth factor (VEGF), epidermal growth factor (EGF) and transforming growth factor (TGF-β). In addition, the PG-CPE-COL nanofibrous scaffold increases the deposition of collagen synthesis and accelerates reepithelialization. Thus, the results suggest that the collagen coated nanofibrous scaffold with bioactive traditional medicine enhanced the faster healing of wound. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Fabrication, characterization, and biocompatibility assessment of a novel elastomeric nanofibrous scaffold: A potential scaffold for soft tissue engineering.

    PubMed

    Shamirzaei Jeshvaghani, Elham; Ghasemi-Mobarakeh, Laleh; Mansurnezhad, Reza; Ajalloueian, Fatemeh; Kharaziha, Mahshid; Dinari, Mohammad; Sami Jokandan, Maryam; Chronakis, Ioannis S

    2017-11-23

    With regard to flexibility and strength properties requirements of soft biological tissue, elastomeric materials could be more beneficial in soft tissue engineering applications. The present work investigates the use of an elastic polymer, (polycaprolactone fumarate [PCLF]), for fabricating an electrospun scaffold. PCLF with number-average molecular weight of 13,284 g/mol was synthetized, electrospun PCLF:polycaprolactone (PCL) (70:30) nanofibrous scaffolds were fabricated and a novel strategy (in situ photo-crosslinking along with wet electrospinning) was applied for crosslinking of PCLF in the structure of PCLF:PCL nanofibers was presented. Sol fraction results, Fourier-transform infrared spectroscopy, and mechanical tests confirmed occurrence of crosslinking reaction. Strain at break and Young's modulus of crosslinked PCLF:PCL nanofibers fabricated was found to be 114.5 ± 3.9% and 0.6 ± 0.1 MPa, respectively, and dynamic mechanical analysis results revealed elasticity of nanofibers. MTS assay showed biocompatibility of PCLF:PCL (70:30) nanofibrous scaffolds. Our overall results showed that electrospun PCLF:PCL nanofibrous scaffold could be considered as a candidate for further in vitro and in vivo experiments and its application for engineering of soft tissues subjected to in vivo cyclic mechanical stresses. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  1. Cellular interactions with bacterial cellulose: Polycaprolactone nanofibrous scaffolds produced by a portable electrohydrodynamic gun for point-of-need wound dressing.

    PubMed

    Aydogdu, Mehmet Onur; Altun, Esra; Crabbe-Mann, Maryam; Brako, Francis; Koc, Fatma; Ozen, Gunes; Kuruca, Serap Erdem; Edirisinghe, Ursula; Luo, C J; Gunduz, Oguzhan; Edirisinghe, Mohan

    2018-05-27

    Electrospun nanofibrous scaffolds are promising regenerative wound dressing options but have yet to be widely used in practice. The challenge is that nanofibre productions rely on bench-top apparatuses, and the delicate product integrity is hard to preserve before reaching the point of need. Timing is critically important to wound healing. The purpose of this investigation is to produce novel nanofibrous scaffolds using a portable, hand-held "gun", which enables production at the wound site in a time-dependent fashion, thereby preserving product integrity. We select bacterial cellulose, a natural hydrophilic biopolymer, and polycaprolactone, a synthetic hydrophobic polymer, to generate composite nanofibres that can tune the scaffold hydrophilicity, which strongly affects cell proliferation. Composite scaffolds made of 8 different ratios of bacterial cellulose and polycaprolactone were successfully electrospun. The morphological features and cell-scaffold interactions were analysed using scanning electron microscopy. The biocompatibility was studied using Saos-2 cell viability test. The scaffolds were found to show good biocompatibility and allow different proliferation rates that varied with the composition of the scaffolds. A nanofibrous dressing that can be accurately moulded and standardised via the portable technique is advantageous for wound healing in practicality and in its consistency through mass production. © 2018 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  2. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold.

    PubMed

    Blakeney, Bryan A; Tambralli, Ajay; Anderson, Joel M; Andukuri, Adinarayana; Lim, Dong-Jin; Dean, Derrick R; Jun, Ho-Wook

    2011-02-01

    A limiting factor of traditional electrospinning is that the electrospun scaffolds consist entirely of tightly packed nanofiber layers that only provide a superficial porous structure due to the sheet-like assembly process. This unavoidable characteristic hinders cell infiltration and growth throughout the nanofibrous scaffolds. Numerous strategies have been tried to overcome this challenge, including the incorporation of nanoparticles, using larger microfibers, or removing embedded salt or water-soluble fibers to increase porosity. However, these methods still produce sheet-like nanofibrous scaffolds, failing to create a porous three-dimensional scaffold with good structural integrity. Thus, we have developed a three-dimensional cotton ball-like electrospun scaffold that consists of an accumulation of nanofibers in a low density and uncompressed manner. Instead of a traditional flat-plate collector, a grounded spherical dish and an array of needle-like probes were used to create a Focused, Low density, Uncompressed nanoFiber (FLUF) mesh scaffold. Scanning electron microscopy showed that the cotton ball-like scaffold consisted of electrospun nanofibers with a similar diameter but larger pores and less-dense structure compared to the traditional electrospun scaffolds. In addition, laser confocal microscopy demonstrated an open porosity and loosely packed structure throughout the depth of the cotton ball-like scaffold, contrasting the superficially porous and tightly packed structure of the traditional electrospun scaffold. Cells seeded on the cotton ball-like scaffold infiltrated into the scaffold after 7 days of growth, compared to no penetrating growth for the traditional electrospun scaffold. Quantitative analysis showed approximately a 40% higher growth rate for cells on the cotton ball-like scaffold over a 7 day period, possibly due to the increased space for in-growth within the three-dimensional scaffolds. Overall, this method assembles a nanofibrous scaffold

  3. Effects of fibrinogen concentration on fibrin glue and bone powder scaffolds in bone regeneration.

    PubMed

    Kim, Beom-Su; Sung, Hark-Mo; You, Hyung-Keun; Lee, Jun

    2014-10-01

    Fibrin polymers are widely used in the tissue engineering field as biomaterials. Although numerous researchers have studied the fabrication of scaffolds using fibrin glue (FG) and bone powder, the effects of varied fibrinogen content during the fabrication of scaffolds on human mesenchymal stem cells (hMSCs) and bone regeneration remain poorly understood. In this study, we formulated scaffolds using demineralized bone powder and various fibrinogen concentrations and analyzed the microstructure and mechanical properties. Cell proliferation, cell viability, and osteoblast differentiation assays were performed. The ability of the scaffold to enhance bone regeneration was evaluated using a rabbit calvarial defect model. Micro-computed tomography (micro-CT) showed that bone powders were uniformly distributed on the scaffolds, and scanning electron microscopy (SEM) showed that the fibrin networks and flattened fibrin layers connected adjacent bone powder particles. When an 80 mg/mL fibrinogen solution was used to formulate scaffolds, the porosity decreased 41.6 ± 3.6%, while the compressive strength increased 1.16 ± 0.02 Mpa, when compared with the values for the 10 mg/mL fibrinogen solution. Proliferation assays and SEM showed that the scaffolds prepared using higher fibrinogen concentrations supported and enhanced cell adhesion and proliferation. In addition, mRNA expression of alkaline phosphatase and osteocalcin in cells grown on the scaffolds increased with increasing fibrinogen concentration. Micro-CT and histological analysis revealed that newly formed bone was stimulated in the scaffold implantation group. Our results demonstrate that optimization of the fibrinogen content of fibrin glue/bone powder scaffolds will be beneficial for bone tissue engineering. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Suspended, Shrinkage-Free, Electrospun PLGA Nanofibrous Scaffold for Skin Tissue Engineering.

    PubMed

    Ru, Changhai; Wang, Feilong; Pang, Ming; Sun, Lining; Chen, Ruihua; Sun, Yu

    2015-05-27

    Electrospinning is a technique for creating continuous nanofibrous networks that can architecturally be similar to the structure of extracellular matrix (ECM). However, the shrinkage of electrospun mats is unfavorable for the triggering of cell adhesion and further growth. In this work, electrospun PLGA nanofiber assemblies are utilized to create a scaffold. Aided by a polypropylene auxiliary supporter, the scaffold is able to maintain long-term integrity without dimensional shrinkage. This scaffold is also able to suspend in cell culture medium; hence, keratinocyte cells seeded on the scaffold are exposed to air as required in skin tissue engineering. Experiments also show that human skin keratinocytes can proliferate on the scaffold and infiltrate into the scaffold.

  5. A new fibrin sealant as a three-dimensional scaffold candidate for mesenchymal stem cells

    PubMed Central

    2014-01-01

    Introduction The optimization of an organic scaffold for specific types of applications and cells is vital to successful tissue engineering. In this study, we investigated the effects of a new fibrin sealant derived from snake venom as a scaffold for mesenchymal stem cells, to demonstrate the ability of cells to affect and detect the biological microenvironment. Methods The characterization of CD34, CD44 and CD90 expression on mesenchymal stem cells was performed by flow cytometry. In vitro growth and cell viability were evaluated by light and electron microscopy. Differentiation into osteogenic, adipogenic and chondrogenic lineages was induced. Results The fibrin sealant did not affect cell adhesion, proliferation or differentiation and allowed the adherence and growth of mesenchymal stem cells on its surface. Hoechst 33342 and propidium iodide staining demonstrated the viability of mesenchymal stem cells in contact with the fibrin sealant and the ability of the biomaterial to maintain cell survival. Conclusions The new fibrin sealant is a three-dimensional scaffolding candidate that is capable of maintaining cell survival without interfering with differentiation, and might also be useful in drug delivery. Fibrin sealant has a low production cost, does not transmit infectious diseases from human blood and has properties of a suitable scaffold for stem cells because it permits the preparation of differentiated scaffolds that are suitable for every need. PMID:24916098

  6. A new heterologous fibrin sealant as a scaffold to cartilage repair—Experimental study and preliminary results

    PubMed Central

    de Barros, Caio Nunes; Miluzzi Yamada, Ana Lúcia; Junior, Rui Seabra F; Barraviera, Benedito; Hussni, Carlos Alberto; de Souza, Jaqueline Brandão; Watanabe, Marcos Jun; Rodrigues, Celso Antônio

    2015-01-01

    Autologous fibrin gel is commonly used as a scaffold for filling defects in articular cartilage. This biomaterial can also be used as a sealant to control small hemorrhages and is especially helpful in situations where tissue reparation capacity is limited. In particular, fibrin can act as a scaffold for various cell types because it can accommodate cell migration, differentiation, and proliferation. Despite knowledge of the advantages of this biomaterial and mastery of the techniques required for its application, the durability of several types of sealant at the site of injury remains questionable. Due to the importance of such data for evaluating the quality and efficiency of fibrin gel formulations on its use as a scaffold, this study sought to analyze the heterologous fibrin sealant developed from the venom of Crotalus durissus terrificus using studies in ovine experimental models. The fibrin gel developed from the venom of this snake was shown to act as a safe, stable, and durable scaffold for up to seven days, without causing adverse side effects. Fibrin gel produced from the venom of the Crotalus durissus terrificus snake possesses many clinical and surgical uses. It presents the potential to be used as a biomaterial to help repair skin lesions or control bleeding, and it may also be used as a scaffold when applied together with various cell types. The intralesional use of the fibrin gel from the venom of this snake may improve surgical and clinical treatments in addition to being inexpensive and adequately consistent, durable, and stable. The new heterologous fibrin sealant is a scaffold candidate to cartilage repair in this study. PMID:26264444

  7. Nanofibrous scaffolds for the guidance of stem cell-derived neurons for auditory nerve regeneration.

    PubMed

    Hackelberg, Sandra; Tuck, Samuel J; He, Long; Rastogi, Arjun; White, Christina; Liu, Liqian; Prieskorn, Diane M; Miller, Ryan J; Chan, Che; Loomis, Benjamin R; Corey, Joseph M; Miller, Josef M; Duncan, R Keith

    2017-01-01

    Impairment of spiral ganglion neurons (SGNs) of the auditory nerve is a major cause for hearing loss occurring independently or in addition to sensory hair cell damage. Unfortunately, mammalian SGNs lack the potential for autonomous regeneration. Stem cell based therapy is a promising approach for auditory nerve regeneration, but proper integration of exogenous cells into the auditory circuit remains a fundamental challenge. Here, we present novel nanofibrous scaffolds designed to guide the integration of human stem cell-derived neurons in the internal auditory meatus (IAM), the foramen allowing passage of the spiral ganglion to the auditory brainstem. Human embryonic stem cells (hESC) were differentiated into neural precursor cells (NPCs) and seeded onto aligned nanofiber mats. The NPCs terminally differentiated into glutamatergic neurons with high efficiency, and neurite projections aligned with nanofibers in vitro. Scaffolds were assembled by seeding GFP-labeled NPCs on nanofibers integrated in a polymer sheath. Biocompatibility and functionality of the NPC-seeded scaffolds were evaluated in vivo in deafened guinea pigs (Cavia porcellus). To this end, we established an ouabain-based deafening procedure that depleted an average 72% of SGNs from apex to base of the cochleae and caused profound hearing loss. Further, we developed a surgical procedure to implant seeded scaffolds directly into the guinea pig IAM. No evidence of an inflammatory response was observed, but post-surgery tissue repair appeared to be facilitated by infiltrating Schwann cells. While NPC survival was found to be poor, both subjects implanted with NPC-seeded and cell-free control scaffolds showed partial recovery of electrically-evoked auditory brainstem thresholds. Thus, while future studies must address cell survival, nanofibrous scaffolds pose a promising strategy for auditory nerve regeneration.

  8. Enhancing the Biomechanical Performance of Anisotropic Nanofibrous Scaffolds in Tendon Tissue Engineering: Reinforcement with Cellulose Nanocrystals.

    PubMed

    Domingues, Rui M A; Chiera, Silvia; Gershovich, Pavel; Motta, Antonella; Reis, Rui L; Gomes, Manuela E

    2016-06-01

    Anisotropically aligned electrospun nanofibrous scaffolds based on natural/synthetic polymer blends have been established as a reasonable compromise between biological and biomechanical performance for tendon tissue engineering (TE) strategies. However, the limited tensile properties of these biomaterials restrict their application in this field due to the load-bearing nature of tendon/ligament tissues. Herein, the use of cellulose nanocrystals (CNCs) as reinforcing nanofillers in aligned electrospun scaffolds based on a natural/synthetic polymer blend matrix, poly-ε-caprolactone/chitosan (PCL/CHT) is reported. The incorporation of small amounts of CNCs (up to 3 wt%) into tendon mimetic nanofiber bundles has a remarkable biomaterial-toughing effect (85% ± 5%, p < 0.0002) and raises the scaffolds mechanical properties to tendon/ligament relevant range (σ = 39.3 ± 1.9 MPa and E = 540.5 ± 83.7 MPa, p < 0.0001). Aligned PCL/CHT/CNC nanocomposite fibrous scaffolds meet not only the mechanical requirements for tendon TE applications but also provide tendon mimetic extracellular matrix (ECM) topographic cues, a key feature for maintaining tendon cell's morphology and behavior. The strategy proposed here may be extended to other anisotropic aligned nanofibrous scaffolds based on natural/synthetic polymer blends and enable the full exploitation of the advantages provided by their tendon mimetic fibrous structures in tendon TE. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electrospun nanofibrous scaffolds of segmented polyurethanes based on PEG, PLLA and PTMC blocks: Physico-chemical properties and morphology.

    PubMed

    Trinca, Rafael Bergamo; Abraham, Gustavo A; Felisberti, Maria Isabel

    2015-11-01

    Biocompatible polymeric scaffolds are crucial for successful tissue engineering. Biomedical segmented polyurethanes (SPUs) are an important and versatile class of polymers characterized by a broad spectrum of compositions, molecular architectures, properties and applications. Although SPUs are versatile materials that can be designed by different routes to cover a wide range of properties, they have been infrequently used for the preparation of electrospun nanofibrous scaffolds. This study reports the preparation of new electrospun polyurethane scaffolds. The segmented polyurethanes were synthesized using low molar masses macrodyols (poly(ethylene glycol), poly(l-lactide) and poly(trimethylene carbonate)) and 1,6-hexane diisocyanate and 1,4-butanodiol as isocyanate and chain extensor, respectively. Different electrospinning parameters such as solution properties and processing conditions were evaluated to achieve smooth, uniform bead-free fibers. Electrospun micro/nanofibrous structures with mean fiber diameters ranging from 600nm to 770nm were obtained by varying the processing conditions. They were characterized in terms of thermal and dynamical mechanical properties, swelling degree and morphology. The elastomeric polyurethane scaffolds exhibit interesting properties that could be appropriate as biomimetic matrices for soft tissue engineering applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Bioactive nano-fibrous scaffold for vascularized craniofacial bone regeneration.

    PubMed

    Prabha, Rahul Damodaran; Kraft, David Christian Evar; Harkness, Linda; Melsen, Birte; Varma, Harikrishna; Nair, Prabha D; Kjems, Jorgen; Kassem, Moustapha

    2018-03-01

    There has been a growing demand for bone grafts for correction of bone defects in complicated fractures or tumours in the craniofacial region. Soft flexible membrane like material that could be inserted into defect by less invasive approaches; promote osteoconductivity and act as a barrier to soft tissue in growth while promoting bone formation is an attractive option for this region. Electrospinning has recently emerged as one of the most promising techniques for fabrication of extracellular matrix such as nano-fibrous scaffolds that can serve as a template for bone formation. To overcome the limitation of cell penetration of electrospun scaffolds and improve on its osteoconductive nature, in this study, we fabricated a novel electrospun composite scaffold of polyvinyl alcohol (PVA)-poly (ε) caprolactone (PCL)-Hydroxyapatite based bioceramic (HAB), namely, PVA-PCL-HAB. The scaffold prepared by dual electrospinning of PVA and PCL with HAB overcomes reduced cell attachment associated with hydrophobic PCL by combination with a hydrophilic PVA and the HAB can contribute to enhance osteoconductivity. We characterized the physicochemical and biocompatibility properties of the new scaffold material. Our results indicate PVA-PCL-HAB scaffolds support attachment and growth of stromal stem cells; [human bone marrow skeletal (mesenchymal) stem cells and dental pulp stem cells]. In addition, the scaffold supported in vitro osteogenic differentiation and in vivo vascularized bone formation. Thus, PVA-PCL-HAB scaffold is a suitable potential material for therapeutic bone regeneration in dentistry and orthopaedics. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Protein nanocoatings on synthetic polymeric nanofibrous membranes designed as carriers for skin cells.

    PubMed

    Bacakova, Marketa; Pajorova, Julia; Stranska, Denisa; Hadraba, Daniel; Lopot, Frantisek; Riedel, Tomas; Brynda, Eduard; Zaloudkova, Margit; Bacakova, Lucie

    2017-01-01

    Protein-coated resorbable synthetic polymeric nanofibrous membranes are promising for the fabrication of advanced skin substitutes. We fabricated electrospun polylactic acid and poly(lactide- co -glycolic acid) nanofibrous membranes and coated them with fibrin or collagen I. Fibronectin was attached to a fibrin or collagen nanocoating, in order further to enhance the cell adhesion and spreading. Fibrin regularly formed a coating around individual nanofibers in the membranes, and also formed a thin noncontinuous nanofibrous mesh on top of the membranes. Collagen also coated most of the fibers of the membrane and randomly created a soft gel on the membrane surface. Fibronectin predominantly adsorbed onto a thin fibrin mesh or a collagen gel, and formed a thin nanofibrous structure. Fibrin nanocoating greatly improved the attachment, spreading, and proliferation of human dermal fibroblasts, whereas collagen nanocoating had a positive influence on the behavior of human HaCaT keratinocytes. In addition, fibrin stimulated the fibroblasts to synthesize fibronectin and to deposit it as an extracellular matrix. Fibrin coating also showed a tendency to improve the ultimate tensile strength of the nanofibrous membranes. Fibronectin attached to fibrin or to a collagen coating further enhanced the adhesion, spreading, and proliferation of both cell types.

  12. Protein nanocoatings on synthetic polymeric nanofibrous membranes designed as carriers for skin cells

    PubMed Central

    Bacakova, Marketa; Pajorova, Julia; Stranska, Denisa; Hadraba, Daniel; Lopot, Frantisek; Riedel, Tomas; Brynda, Eduard; Zaloudkova, Margit; Bacakova, Lucie

    2017-01-01

    Protein-coated resorbable synthetic polymeric nanofibrous membranes are promising for the fabrication of advanced skin substitutes. We fabricated electrospun polylactic acid and poly(lactide-co-glycolic acid) nanofibrous membranes and coated them with fibrin or collagen I. Fibronectin was attached to a fibrin or collagen nanocoating, in order further to enhance the cell adhesion and spreading. Fibrin regularly formed a coating around individual nanofibers in the membranes, and also formed a thin noncontinuous nanofibrous mesh on top of the membranes. Collagen also coated most of the fibers of the membrane and randomly created a soft gel on the membrane surface. Fibronectin predominantly adsorbed onto a thin fibrin mesh or a collagen gel, and formed a thin nanofibrous structure. Fibrin nanocoating greatly improved the attachment, spreading, and proliferation of human dermal fibroblasts, whereas collagen nanocoating had a positive influence on the behavior of human HaCaT keratinocytes. In addition, fibrin stimulated the fibroblasts to synthesize fibronectin and to deposit it as an extracellular matrix. Fibrin coating also showed a tendency to improve the ultimate tensile strength of the nanofibrous membranes. Fibronectin attached to fibrin or to a collagen coating further enhanced the adhesion, spreading, and proliferation of both cell types. PMID:28223803

  13. Fabrication and characterization of Antheraea pernyi silk fibroin-blended P(LLA-CL) nanofibrous scaffolds for peripheral nerve tissue engineering

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Sun, Binbin; Bhutto, Muhammad Aqeel; Zhu, Tonghe; Yu, Kui; Bao, Jiayu; Morsi, Yosry; El-Hamshary, Hany; El-Newehy, Mohamed; Mo, Xiumei

    2017-03-01

    Electrospun nanofibers have gained widespreading interest for tissue engineering application. In the present study, ApF/P(LLA-CL) nanofibrous scaffolds were fabricated via electrospinning. The feasibility of the material as tissue engineering nerve scaffold was investigated in vitro. The average diameter increased with decreasing the blend ratio of ApF to P(LLA-CL). Characterization of 13C NMR and FTIR clarified that there is no obvious chemical bond reaction between ApF and P(LLA-CL). The tensile strength and elongation at break increased with the content increase of P(LLA-CL). The surface hydrophilic property of nanofibrous scaffolds enhanced with the increased content of ApF. Cell viability studies with Schwann cells demonstrated that ApF/P(LLA-CL) blended nanofibrous scaffolds significantly promoted cell growth as compare to P(LLA-CL), especially when the weight ratio of ApF to P(LLA-CL) was 25:75. The present work provides a basis for further studies of this novel nanofibrous material (ApF/P(LLA-CL)) in peripheral nerve tissue repair or regeneration.

  14. Fibrin gel as a scaffold for photoreceptor cells differentiation from conjunctiva mesenchymal stem cells in retina tissue engineering.

    PubMed

    Soleimannejad, Mostafa; Ebrahimi-Barough, Somayeh; Soleimani, Masoud; Nadri, Samad; Tavangar, Seyed Mohammad; Roohipoor, Ramak; Yazdankhah, Meysam; Bayat, Neda; Riazi-Esfahani, Mohammad; Ai, Jafar

    2018-06-01

    Stem cell-based therapies are attraction approaches for regenerative medicine for treating retinal diseases. One of the limitations in cell therapy is cell death following post-injection whit preventing functional integration with retinal tissue. Fibrin gel, a bio-polymeric material with excellent biocompatibility, provides numerous advantages as a tissue engineering scaffold and a stem cell carrier. Therefore, current research is focusing on developing fibrin hydrogel scaffolds to protect stem cells during delivery and to stimulate endogenous regeneration through interactions of transplanted stem cells and retinal tissue. In this study fibrin gel was used as hydrogel scaffold for immobilization of cells. The structural characteristics of fibrin gel scaffold were examined with SEM. Rheological properties of fibrin gel were measured by rheometer and biodegradation rate of fibrin were assayed for 2 weeks. After isolation of stem cells CJMSCs, the cells were differentiated into photoreceptor-like cells by exposing with taurin for 14 days in tissue culture plate (TCP group) and fibrin hydrogel (3 D group). The attachment of cells was analyzed with SEM and MTT. The expression of rhodopsin, PKC, CRX, recoverin, peripherin, nestin and RPE65 as photoreceptor-like cell markers was evaluated by immunocytochemistry and quantitative real-time PCR (RT-PCR) in TCP and 3 D groups. The results of SEM analysis showed CJMSCs were well attached in fibrin gels and there were good integrity between cells and scaffold. The elastic modulus and constant degradation of the gel contributes to the growth and proliferation of cells. There was no toxicity effect of fibrin hydrogel on cells and the viability of cultured cells was higher in 3 D fibrin gels in comparison with TCP groups. After 2 weeks, the expression of rhodopsin, PKC, CRX, peripherin, recoverin, nestin and RPE65 as special markers of photoreceptor cells were detected by Real time PCR and immunofluorescence that these

  15. Co-Culture of Human Endothelial Cells and Foreskin Fibroblasts on 3D Silk-Fibrin Scaffolds Supports Vascularization.

    PubMed

    Samal, Juhi; Weinandy, Stefan; Weinandy, Agnieszka; Helmedag, Marius; Rongen, Lisanne; Hermanns-Sachweh, Benita; Kundu, Subhas C; Jockenhoevel, Stefan

    2015-10-01

    A successful strategy to enhance the in vivo survival of engineered tissues would be to prevascularize them. In this study, fabricated silk fibroin scaffolds from mulberry and non-mulberry silkworms are investigated and compared for supporting the co-culture of human umbilical vein endothelial cells and human foreskin fibroblasts. Scaffolds are cytocompatible and when combined with fibrin gel support capillary-like structure formation. Density and interconnectivity of the formed structures are found to be better in mulberry scaffolds. ELISA shows that levels of vascular endothelial growth factor (VEGF) released in co-cultures with fibrin gel are significantly higher than in co-cultures without fibrin gel. RT PCR shows an increase in VEGFR2 expression in mulberry scaffolds indicating these scaffolds combined with fibrin provide a suitable microenvironment for the development of capillary-like structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fabrication of a biomimetic ZeinPDA nanofibrous scaffold impregnated with BMP-2 peptide conjugated TiO2 nanoparticle for bone tissue engineering.

    PubMed

    Babitha, S; Annamalai, Meenakshi; Dykas, Michal Marcin; Saha, Surajit; Poddar, Kingshuk; Venugopal, Jayarama Reddy; Ramakrishna, Seeram; Venkatesan, Thirumalai; Korrapati, Purna Sai

    2018-04-01

    A biomimetic Zein polydopamine based nanofiber scaffold was fabricated to deliver bone morphogenic protein-2 (BMP-2) peptide conjugated titanium dioxide nanoparticles in a sustained manner for investigating its osteogenic differentiation potential. To prolong its retention time at the target site, BMP-2 peptide has been conjugated to titanium dioxide nanoparticles owing to its high surface to volume ratio. The effect of biochemical cues from BMP-2 peptide and nanotopographical stimulation of electrospun Zein polydopamine nanofiber were examined for its enhanced osteogenic expression of human fetal osteoblast cells. The sustained delivery of bioactive signals, improved cell adhesion, mineralization, and differentiation could be attributed to its highly interconnected nanofibrous matrix with unique material composition. Further, the expression of osteogenic markers revealed that the fabricated nanofibrous scaffold possess better cell-biomaterial interactions. These promising results demonstrate the potential of the composite nanofibrous scaffold as an effective biomaterial substrate for bone regeneration. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study.

    PubMed

    Li, Wan-Ju; Chiang, Hongsen; Kuo, Tzong-Fu; Lee, Hsuan-Shu; Jiang, Ching-Chuan; Tuan, Rocky S

    2009-01-01

    The aim of this study was to evaluate a cell-seeded nanofibrous scaffold for cartilage repair in vivo. We used a biodegradable poly(epsilon-caprolactone) (PCL) nanofibrous scaffold seeded with allogeneic chondrocytes or xenogeneic human mesenchymal stem cells (MSCs), or acellular PCL scaffolds, with no implant as a control to repair iatrogenic, 7 mm full-thickness cartilage defects in a swine model. Six months after implantation, MSC-seeded constructs showed the most complete repair in the defects compared to other groups. Macroscopically, the MSC-seeded constructs regenerated hyaline cartilage-like tissue and restored a smooth cartilage surface, while the chondrocyte-seeded constructs produced mostly fibrocartilage-like tissue with a discontinuous superficial cartilage contour. Incomplete repair containing fibrocartilage or fibrous tissue was found in the acellular constructs and the no-implant control group. Quantitative histological evaluation showed overall higher scores for the chondrocyte- and MSC-seeded constructs than the acellular construct and the no-implant groups. Mechanical testing showed the highest equilibrium compressive stress of 1.5 MPa in the regenerated cartilage produced by the MSC-seeded constructs, compared to 1.2 MPa in the chondrocyte-seeded constructs, 1.0 MPa in the acellular constructs and 0.2 MPa in the no-implant group. No evidence of immune reaction to the allogeneically- and xenogeneically-derived regenerated cartilage was observed, possibly related to the immunosuppressive activities of MSCs, suggesting the feasibility of allogeneic or xenogeneic transplantation of MSCs for cell-based therapy. Taken together, our results showed that biodegradable nanofibrous scaffolds seeded with MSCs effectively repair cartilage defects in vivo, and that the current approach is promising for cartilage repair. 2008 John Wiley & Sons, Ltd

  18. Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study

    PubMed Central

    Li, Wan-Ju; Chiang, Hongsen; Kuo, Tzong-Fu; Lee, Hsuan-Shu; Jiang, Ching-Chuan; Tuan, Rocky S.

    2013-01-01

    The aim of this study was to evaluate a cell-seeded nanofibrous scaffold for cartilage repair in vivo. We used a biodegradable poly(ε-caprolactone) (PCL) nanofibrous scaffold seeded with allogeneic chondrocytes or xenogeneic human mesenchymal stem cells (MSCs), or acellular PCL scaffolds, with no implant as a control to repair iatrogenic, 7 mm full-thickness cartilage defects in a swine model. Six months after implantation, MSC-seeded constructs showed the most complete repair in the defects compared to other groups. Macroscopically, the MSC-seeded constructs regenerated hyaline cartilage-like tissue and restored a smooth cartilage surface, while the chondrocyte-seeded constructs produced mostly fibrocartilage-like tissue with a discontinuous superficial cartilage contour. Incomplete repair containing fibrocartilage or fibrous tissue was found in the acellular constructs and the no-implant control group. Quantitative histological evaluation showed overall higher scores for the chondrocyte- and MSC-seeded constructs than the acellular construct and the no-implant groups. Mechanical testing showed the highest equilibrium compressive stress of 1.5 MPa in the regenerated cartilage produced by the MSC-seeded constructs, compared to 1.2 MPa in the chondrocyte-seeded constructs, 1.0 MPa in the acellular constructs and 0.2 MPa in the no-implant group. No evidence of immune reaction to the allogeneically- and xenogeneically-derived regenerated cartilage was observed, possibly related to the immunosuppressive activities of MSCs, suggesting the feasibility of allogeneic or xenogeneic transplantation of MSCs for cell-based therapy. Taken together, our results showed that biodegradable nanofibrous scaffolds seeded with MSCs effectively repair cartilage defects in vivo, and that the current approach is promising for cartilage repair. PMID:19004029

  19. Design and characterization of fibrin-based acoustically responsive scaffolds for tissue engineering applications

    PubMed Central

    Moncion, Alexander; Arlotta, Keith J.; Kripfgans, Oliver D.; Fowlkes, J. Brian; Carson, Paul L.; Putnam, Andrew J.; Franceschi, Renny T.; Fabiilli, Mario L.

    2015-01-01

    Hydrogel scaffolds are used in tissue engineering as a delivery vehicle for regenerative growth factors (GFs). Spatiotemporal patterns of GF signaling are critical for tissue regeneration, yet most scaffolds afford limited control of GF release, especially after implantation. We previously demonstrated that acoustic droplet vaporization (ADV) can control GF release from a fibrin scaffold doped with a perfluorocarbon emulsion. This study investigates properties of the acoustically responsive scaffold (ARS) critical for further translation. At 2.5 MHz, ADV and inertial cavitation thresholds ranged from 1.5 – 3.0 MPa and 2.0 – 7.0 MPa peak rarefactional pressure, respectively, for ARSs of varying compositions. Viability of C3H10T1/2 cells, encapsulated in the ARS, did not decrease significantly for pressures below 4 MPa. ARSs with perfluorohexane emulsions displayed higher stability versus perfluoropentane emulsions, while surrogate payload release was minimal without ultrasound. These results enable the selection of ARS compositions and acoustic parameters needed for optimized spatiotemporal control. PMID:26526782

  20. Cuttlebone-like V2O5 Nanofibre Scaffolds - Advances in Structuring Cellular Solids.

    PubMed

    Knöller, Andrea; Runčevski, Tomče; Dinnebier, Robert E; Bill, Joachim; Burghard, Zaklina

    2017-02-20

    The synthesis of ceramic materials combining high porosity and permeability with good mechanical stability is challenging, as optimising the latter requires compromises regarding the first two properties. Nonetheless, significant progress can be made in this direction by taking advantage of the structural design principles evolved by nature. Natural cellular solids achieve good mechanical stability via a defined hierarchical organisation of the building blocks they are composed of. Here, we report the first synthetic, ceramic-based scaffold whose architecture closely mimics that of cuttlebone -a structural biomaterial whose porosity exceeds that of most other natural cellular solids, whilst preserving an excellent mechanical strength. The nanostructured, single-component scaffold, obtained by ice-templated assembly of V 2 O 5 nanofibres, features a highly sophisticated and elaborate architecture of equally spaced lamellas, which are regularly connected by pillars as lamella support. It displays an unprecedented porosity of 99.8 %, complemented by an enhanced mechanical stability. This novel bioinspired, functional material not only displays mechanical characteristics similar to natural cuttlebone, but the multifunctionality of the V 2 O 5 nanofibres also renders possible applications, including catalysts, sensors and electrodes for energy storage.

  1. Cuttlebone-like V2O5 Nanofibre Scaffolds - Advances in Structuring Cellular Solids

    NASA Astrophysics Data System (ADS)

    Knöller, Andrea; Runčevski, Tomče; Dinnebier, Robert E.; Bill, Joachim; Burghard, Zaklina

    2017-02-01

    The synthesis of ceramic materials combining high porosity and permeability with good mechanical stability is challenging, as optimising the latter requires compromises regarding the first two properties. Nonetheless, significant progress can be made in this direction by taking advantage of the structural design principles evolved by nature. Natural cellular solids achieve good mechanical stability via a defined hierarchical organisation of the building blocks they are composed of. Here, we report the first synthetic, ceramic-based scaffold whose architecture closely mimics that of cuttlebone -a structural biomaterial whose porosity exceeds that of most other natural cellular solids, whilst preserving an excellent mechanical strength. The nanostructured, single-component scaffold, obtained by ice-templated assembly of V2O5 nanofibres, features a highly sophisticated and elaborate architecture of equally spaced lamellas, which are regularly connected by pillars as lamella support. It displays an unprecedented porosity of 99.8 %, complemented by an enhanced mechanical stability. This novel bioinspired, functional material not only displays mechanical characteristics similar to natural cuttlebone, but the multifunctionality of the V2O5 nanofibres also renders possible applications, including catalysts, sensors and electrodes for energy storage.

  2. Peptide modified nanofibrous scaffold promotes human mesenchymal stem cell proliferation and long-term passaging.

    PubMed

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2018-03-01

    Long-term culture, passage and proliferation of human mesenchymal stem cells (hMSCs) cause loss of their stemness properties including self-renewal and multipotency. By optimizing the MSCs environment in vitro, maintaining the stemness state and better controlling the cell fate might be possible. We have recently reported the significant effects of bioactive Tat protein-derived peptide named R-peptide on hMSC adhesion, morphology and proliferation, which has demonstrated R-peptide enhanced MSC early adhesion and proliferation in comparison to other bioactive molecules including RGD peptide, fibronectin and collagen. In this study, R-peptide was used to evaluate stemness properties of MSCs after long-term passaging. R-peptide conjugated poly caprolactone (PCL) nanofibrous scaffold and unmodified nanofibrous scaffold were used to study the impact of R-peptide modified PCL nanofibers and PCL nanofibers on cell behavior. The results showed early formation of focal adhesion (FA) complex on R-peptide modified scaffolds at 30min after cell seeding. The rate of cell proliferation was significantly increased due to presence of R-peptide, and the MSCs marker analyses using flow cytometry and immunocytochemistry staining proved the ability of R-peptide to maintain mesenchymal stem cell properties (high proliferation, expression of multipotent markers and differentiation capacity) even after long-term passage culturing. Accordingly, our (The) results concluded that bioactive R-peptide in combination with nanofibrous scaffold can mimic the native ECM comprising micro/nano architecture and biochemical molecules in a best way. The designed scaffold can link extracellular matrix (ECM) to nucleus via formation of FA and organization of cytoskeleton, causing fast and strong attachment of MSCs and allowing integrin-mediated signaling to start. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Comparison between self-assembling peptide nanofiber scaffold (SAPNS) and fibrin sealant in neurosurgical hemostasis.

    PubMed

    Xu, Fei-Fan; Wang, Yue-Chun; Sun, Stella; Ho, Amy S W; Lee, Derek; Kiang, Karrie M Y; Zhang, Xiao-Qin; Lui, Wai-Man; Liu, Bai-Yun; Wu, Wu-Tian; Leung, Gilberto K K

    2015-10-01

    RADA16-I is a synthetic type I self-assembling peptide nanofiber scaffold (SAPNS) which may serve as a novel biocompatible hemostatic agent. Its application in neurosurgical hemostasis, however, has not been explored. Although RADA16-I is nontoxic and nonimmunogenic, its intrinsic acidity may potentially provoke inflammation in the surgically injured brain. We conducted an animal study to compare RADA16-I with fibrin sealant, a commonly used agent, with the hypothesis that the former would be a comparable alternative. Using a standardized surgical brain injury model, 30 Sprague-Dawley rats were randomized into three treatment groups: RADA16-I, fibrin sealant or gelatin sponge (control). Animals were sacrificed on day 3 and 42. Astrocytic and microglial infiltrations within the cerebral parenchyma adjacent to the operative site were significantly lower in the RADA16-I and fibrin sealant groups than control. RADA16-I did not cause more cellular inflammatory response despite its acidity when compared with fibrin sealant. Immunohistochemical studies showed infiltration by astrocytes and microglia into the fibrin sealant and RADA16-I grafts, suggesting their potential uses as tissue scaffolds. RADA16-I is a promising candidate for further translational and clinical studies that focus on its applications as a safe and effective hemostat, proregenerative nanofiber scaffold as well as drug and cell carrier. © 2015 Wiley Periodicals, Inc.

  4. A Stem Cell-Seeded Nanofibrous Scaffold for Auditory Nerve Replacement

    DTIC Science & Technology

    2015-10-01

    guinea pigs . Initial results show improved electrically-evoked auditory brainstem responses in cell-seeded implants compared to control, cell-free...scaffold’s conduit, but the IAM of the guinea pig and limits imposed by the surgical approach make this difficult. Alternatives are being pursued...transplantation of the seeded nanofibrous scaffold Task 13. Group 1: Pilot deafening. Confirm efficacy of ß-bungarotoxin in guinea pig and time point of

  5. In vitro degradation and in vivo toxicity of NanoMatrix3D® polycaprolactone and poly(lactic acid) nanofibrous scaffolds.

    PubMed

    Pogorielov, Maksym; Hapchenko, Andrii; Deineka, Volodymyr; Rogulska, Larysa; Oleshko, Olexandr; Vodseďálková, Kateřina; Berezkinová, Liliana; Vysloužilová, Lucie; Klápšťová, Andrea; Erben, Jakub

    2018-04-10

    Nanofibrous materials present unique properties favorable in many biomedicine and industrial applications. In this research we evaluated biodegradation, tissue response and general toxicity of nanofibrous poly(lactic acid) (PLA) and polycaprolactone (PCL) scaffolds produced by conventional method of electrospinning and using NanoMatrix3D ® (NM3D ® ) technology. Mass density, scanning electron microscopy and in vitro degradation (static and dynamic) were used for material characterization, and subcutaneous, intramuscular and intraperitoneal implantation - for in vivo tests. Biochemical blood analysis and histology were used to assess toxicity and tissue response. Pore size and fiber diameter did not differ in conventional and NM3D ® PLA and PCL materials, but mass density was significantly lower in NM3D ® ones. Scaffolds made by conventional method showed toxic effect during the in-vivo tests due to residual concentration of chloroform that released with material degradation. NM3D ® method allowed cleaning scaffolds from residual solutions that made them nontoxic and biocompatible. Subcutaneous, intramuscular and intraperitoneal implantation of PCL and PLA NM3D ® electrospun nanofibrous scaffolds showed their appropriate cell conductive properties, tissue and vessels formation in all sites. Thus, NM3D ® PCL and PLA nanofibrous electrospun scaffolds can be used in the field of tissue engineering, surgery, wound healing, drug delivery, and so forth, due to their unique properties, nontoxicity and biocompatibility. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 00A:000-000, 2018. © 2018 Wiley Periodicals, Inc.

  6. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.

    PubMed

    Wang, Junping; Valmikinathan, Chandra M; Liu, Wei; Laurencin, Cato T; Yu, Xiaojun

    2010-05-01

    Polymeric nanofiber matrices have already been widely used in tissue engineering. However, the fabrication of nanofibers into complex three-dimensional (3D) structures is restricted due to current manufacturing techniques. To overcome this limitation, we have incorporated nanofibers onto spiral-structured 3D scaffolds made of poly (epsilon-caprolactone) (PCL). The spiral structure with open geometries, large surface areas, and porosity will be helpful for improving nutrient transport and cell penetration into the scaffolds, which are otherwise limited in conventional tissue-engineered scaffolds for large bone defects repair. To investigate the effect of structure and fiber coating on the performance of the scaffolds, three groups of scaffolds including cylindrical PCL scaffolds, spiral PCL scaffolds (without fiber coating), and spiral-structured fibrous PCL scaffolds (with fiber coating) have been prepared. The morphology, porosity, and mechanical properties of the scaffolds have been characterized. Furthermore, human osteoblast cells are seeded on these scaffolds, and the cell attachment, proliferation, differentiation, and mineralized matrix deposition on the scaffolds are evaluated. The results indicated that the spiral scaffolds possess porosities within the range of human trabecular bone and an appropriate pore structure for cell growth, and significantly lower compressive modulus and strength than cylindrical scaffolds. When compared with the cylindrical scaffolds, the spiral-structured scaffolds demonstrated enhanced cell proliferation, differentiation, and mineralization and allowed better cellular growth and penetration. The incorporation of nanofibers onto spiral scaffolds further enhanced cell attachment, proliferation, and differentiation. These studies suggest that spiral-structured nanofibrous scaffolds may serve as promising alternatives for bone tissue engineering applications. Copyright 2009 Wiley Periodicals, Inc.

  7. Effect of Prevascularization on In Vivo Vascularization of Poly(Propylene fumarate)/Fibrin Scaffolds

    PubMed Central

    Mishra, Ruchi; Roux, Brianna M.; Posukonis, Megan; Bodamer, Emily; Brey, Eric M.; Fisher, John P.; Dean, David

    2016-01-01

    The importance of vascularization in the field of bone tissue engineering has been established by previous studies. The present work proposes a novel poly(propylene fumarate) (PPF)/fibrin composite scaffold for the development of vascularized neobone tissue. The effect of prevascularization (i.e., in vitro pre-culture prior to implantation) with human mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells (HUVECs) on in vivo vascularization of scaffolds was determined. Five conditions were studied: no pre-culture (NP), 1 week preculture (1P), 2 week pre-culture (2P), 3 week pre-culture (3P), and scaffolds without cells (control, C). Scaffolds were implanted subcutaneously in a severe combined immunodeficiency (SCID) mice model for 9 days. During in vitro studies, CD31 staining showed a significant increase in vascular network area over 3 weeks of culture. Vascular density was significantly higher in vivo when comparing NP to 3P groups. Immunohistochemical staining of human CD-31 expression indicated spreading of vascular networks with increasing pre-culture time. These vascular networks were perfused with mouse blood indicated by perfused lectin staining in human CD-31 positive vessels. Our results demonstrate that in vitro prevascularization supports in vivo vascularization in PPF/fibrin scaffolds. PMID:26606451

  8. A review of fibrin and fibrin composites for bone tissue engineering

    PubMed Central

    Noori, Alireza; Ashrafi, Seyed Jamal; Vaez-Ghaemi, Roza; Hatamian-Zaremi, Ashraf; Webster, Thomas J

    2017-01-01

    Tissue engineering has emerged as a new treatment approach for bone repair and regeneration seeking to address limitations associated with current therapies, such as autologous bone grafting. While many bone tissue engineering approaches have traditionally focused on synthetic materials (such as polymers or hydrogels), there has been a lot of excitement surrounding the use of natural materials due to their biologically inspired properties. Fibrin is a natural scaffold formed following tissue injury that initiates hemostasis and provides the initial matrix useful for cell adhesion, migration, proliferation, and differentiation. Fibrin has captured the interest of bone tissue engineers due to its excellent biocompatibility, controllable biodegradability, and ability to deliver cells and biomolecules. Fibrin is particularly appealing because its precursors, fibrinogen, and thrombin, which can be derived from the patient’s own blood, enable the fabrication of completely autologous scaffolds. In this article, we highlight the unique properties of fibrin as a scaffolding material to treat bone defects. Moreover, we emphasize its role in bone tissue engineering nanocomposites where approaches further emulate the natural nanostructured features of bone when using fibrin and other nanomaterials. We also review the preparation methods of fibrin glue and then discuss a wide range of fibrin applications in bone tissue engineering. These include the delivery of cells and/or biomolecules to a defect site, distributing cells, and/or growth factors throughout other pre-formed scaffolds and enhancing the physical as well as biological properties of other biomaterials. Thoughts on the future direction of fibrin research for bone tissue engineering are also presented. In the future, the development of fibrin precursors as recombinant proteins will solve problems associated with using multiple or single-donor fibrin glue, and the combination of nanomaterials that allow for the

  9. A review of fibrin and fibrin composites for bone tissue engineering.

    PubMed

    Noori, Alireza; Ashrafi, Seyed Jamal; Vaez-Ghaemi, Roza; Hatamian-Zaremi, Ashraf; Webster, Thomas J

    2017-01-01

    Tissue engineering has emerged as a new treatment approach for bone repair and regeneration seeking to address limitations associated with current therapies, such as autologous bone grafting. While many bone tissue engineering approaches have traditionally focused on synthetic materials (such as polymers or hydrogels), there has been a lot of excitement surrounding the use of natural materials due to their biologically inspired properties. Fibrin is a natural scaffold formed following tissue injury that initiates hemostasis and provides the initial matrix useful for cell adhesion, migration, proliferation, and differentiation. Fibrin has captured the interest of bone tissue engineers due to its excellent biocompatibility, controllable biodegradability, and ability to deliver cells and biomolecules. Fibrin is particularly appealing because its precursors, fibrinogen, and thrombin, which can be derived from the patient's own blood, enable the fabrication of completely autologous scaffolds. In this article, we highlight the unique properties of fibrin as a scaffolding material to treat bone defects. Moreover, we emphasize its role in bone tissue engineering nanocomposites where approaches further emulate the natural nanostructured features of bone when using fibrin and other nanomaterials. We also review the preparation methods of fibrin glue and then discuss a wide range of fibrin applications in bone tissue engineering. These include the delivery of cells and/or biomolecules to a defect site, distributing cells, and/or growth factors throughout other pre-formed scaffolds and enhancing the physical as well as biological properties of other biomaterials. Thoughts on the future direction of fibrin research for bone tissue engineering are also presented. In the future, the development of fibrin precursors as recombinant proteins will solve problems associated with using multiple or single-donor fibrin glue, and the combination of nanomaterials that allow for the

  10. Potential applications of three-dimensional structure of silk fibroin/poly(ester-urethane) urea nanofibrous scaffold in heart valve tissue engineering

    NASA Astrophysics Data System (ADS)

    Du, Juan; Zhu, Tonghe; Yu, Haiyan; Zhu, Jingjing; Sun, Changbing; Wang, Jincheng; Chen, Sihao; Wang, Jihu; Guo, Xuran

    2018-07-01

    Tissue engineering heart valves (TEHV) are thought to have many advantages in low immunogenicity, good histocompatibility, excellent mechanical properties. In this paper, we reported the fabrication and characterization of a novel composite nanofibrous scaffold consisting of silk fibroin (SF) and poly(ester-urethane) urea (LDI-PEUU) by using electrospinning. Chemical and physical properties of scaffolds were evaluated using scanning electron microscopy, attenuated total reflectance Fourier transform infrared, X-ray diffraction, contact angle measurement, thermogravimetric analysis, biodegradation test and tensile strength analysis. We determined that the composite scaffolds supported the growth of human umbilical vein endothelial cell (HUVEC). The results of cell proliferation and cell morphology indicate that SF/LDI-PEUU nanofibers promoted cell viability, which supporting the application in tissue engineering. All results clarified that SF/LDI-PEUU (40:60) nanofibrous scaffolds meet the required specifications for tissue engineering and could be used as a promising construct for heart valve tissue engineering.

  11. In-situ synthesis of AgNPs in the natural/synthetic hybrid nanofibrous scaffolds: Fabrication, characterization and antimicrobial activities.

    PubMed

    Maharjan, Bikendra; Joshi, Mahesh Kumar; Tiwari, Arjun Prasad; Park, Chan Hee; Kim, Cheol Sang

    2017-01-01

    Silver nanoparticles embedded within a nanofibrous polymer matrix have significant attention in recent years as an antimicrobial wound dressing materials. Herein, we have fabricated a novel Ag-polyurethane-zein hybrid nanofibrous scaffold for wound dressing applications. AgNPs were synthesized in-situ via reduction of silver nitrate in electrospinning solution. Varying mass composition of the components showed the pronounced effect on the morphology and physicochemical properties of the composite fibers. Field-Emission Scanning Electron Microscopy (FESEM) images revealed that PU and zein with mass ratio 2:1 produced the bead-free continuous and uniformly distributed nanofibers. Fourier-transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD) and Thermogravimetric Analysis (TGA) confirmed the well interaction between component polymers. Compared to the pristine PU nanofibers, composite fibers showed enhanced tensile strength, young׳s modulus and surface wettability. The antibacterial capacity of the nanofibrous membrane was evaluated against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacterial strains via a zone of inhibition test, and the results showed high antibacterial performance for Ag incorporated composite mat. Experimental results of cell viability assay and microscopic imaging revealed that as-fabricated scaffolds have an excellent ability for fibroblast cell adhesion, proliferation and growth. Overall, as-fabricated antibacterial natural/synthetic composite scaffold can be a promising substrate for repairing skin defects. Copyright © 2016. Published by Elsevier Ltd.

  12. Multi-component nanofibrous scaffolds with tunable properties for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Jose, Moncy V.

    Bone is a highly complex tissue which is an integral part of vertebrates and hence any damage has a major negative effect on the quality of life. Tissue engineering is regarded as an ideal route to resolve the issues related to the scarcity of tissue and organ for transplantation. Apart from cell line and growth factors, the choice of materials and fabrication technique for scaffold are equally important. The goal of this work was to develop a multi-component nanofibrous scaffold based on a synthetic polymer (poly(lactic-co-glycolide) (PLGA)), a biopolymer (collagen) and a biomineral (nano-hydroxyapatite (nano-HA)) by electrospinning technique, which mimics the nanoscopic, chemical, and anisotropic features of bone. Preliminary studies involved fabrication of nanocomposite scaffolds based on PLGA and nano-HA. Morphological and mechanical characterizations revealed that at low concentrations, nano-HA acted as reinforcements, whereas at higher concentrations the presence of aggregation was detrimental to the scaffold. Hydrolytic degradation studies revealed the scaffold had a little mass loss and the mechanical property was maintained for a period of 6 weeks. This study was followed by evaluation of a blend system based on PLGA and collagen. Collagen addition provides hydrophilicity and the necessary cell binding sites in PLGA. The structural characterization revealed that the blend had limited interactions between the two components. The mechanical characterization revealed that with increasing collagen concentration, there was a decline in mechanical properties. However, crosslinking of the blend system, with carbodiimide (EDC) resulted in improving the mechanical properties of the scaffolds. A multi-component system was developed by adding different concentrations of nano-HA to a fixed PLGA/collagen blend composition (80/20). Morphological and mechanical characterizations revealed properties similar to the PLGA/HA system. Cyto-compatibility studies revealed

  13. Braided and Stacked Electrospun Nanofibrous Scaffolds for Tendon and Ligament Tissue Engineering

    PubMed Central

    Rothrauff, Benjamin B.; Lauro, Brian B.; Yang, Guang; Debski, Richard E.; Musahl, Volker

    2017-01-01

    Tendon and ligament injuries are a persistent orthopedic challenge given their poor innate healing capacity. Nonwoven electrospun nanofibrous scaffolds composed of polyesters have been used to mimic the mechanics and topographical cues of native tendons and ligaments. However, nonwoven nanofibers have several limitations that prevent broader clinical application, including poor cell infiltration, as well as tensile and suture-retention strengths that are inferior to native tissues. In this study, multilayered scaffolds of aligned electrospun nanofibers of two designs–stacked or braided–were fabricated. Mechanical properties, including structural and mechanical properties and suture-retention strength, were determined using acellular scaffolds. Human bone marrow-derived mesenchymal stem cells (MSCs) were seeded on scaffolds for up to 28 days, and assays for tenogenic differentiation, histology, and biochemical composition were performed. Braided scaffolds exhibited improved tensile and suture-retention strengths, but reduced moduli. Both scaffold designs supported expression of tenogenic markers, although the effect was greater on braided scaffolds. Conversely, cell infiltration was superior in stacked constructs, resulting in enhanced cell number, total collagen content, and total sulfated glycosaminoglycan content. However, when normalized against cell number, both designs modulated extracellular matrix protein deposition to a similar degree. Taken together, this study demonstrates that multilayered scaffolds of aligned electrospun nanofibers supported tenogenic differentiation of seeded MSCs, but the macroarchitecture is an important consideration for applications of tendon and ligament tissue engineering. PMID:28071988

  14. Braided and Stacked Electrospun Nanofibrous Scaffolds for Tendon and Ligament Tissue Engineering.

    PubMed

    Rothrauff, Benjamin B; Lauro, Brian B; Yang, Guang; Debski, Richard E; Musahl, Volker; Tuan, Rocky S

    2017-05-01

    Tendon and ligament injuries are a persistent orthopedic challenge given their poor innate healing capacity. Nonwoven electrospun nanofibrous scaffolds composed of polyesters have been used to mimic the mechanics and topographical cues of native tendons and ligaments. However, nonwoven nanofibers have several limitations that prevent broader clinical application, including poor cell infiltration, as well as tensile and suture-retention strengths that are inferior to native tissues. In this study, multilayered scaffolds of aligned electrospun nanofibers of two designs-stacked or braided-were fabricated. Mechanical properties, including structural and mechanical properties and suture-retention strength, were determined using acellular scaffolds. Human bone marrow-derived mesenchymal stem cells (MSCs) were seeded on scaffolds for up to 28 days, and assays for tenogenic differentiation, histology, and biochemical composition were performed. Braided scaffolds exhibited improved tensile and suture-retention strengths, but reduced moduli. Both scaffold designs supported expression of tenogenic markers, although the effect was greater on braided scaffolds. Conversely, cell infiltration was superior in stacked constructs, resulting in enhanced cell number, total collagen content, and total sulfated glycosaminoglycan content. However, when normalized against cell number, both designs modulated extracellular matrix protein deposition to a similar degree. Taken together, this study demonstrates that multilayered scaffolds of aligned electrospun nanofibers supported tenogenic differentiation of seeded MSCs, but the macroarchitecture is an important consideration for applications of tendon and ligament tissue engineering.

  15. Electrospun nanofibrous scaffolds increase the efficacy of stem cell-mediated therapy of surgically resected glioblastoma

    PubMed Central

    Bagó, Juli R.; Pegna, Guillaume J.; Okolie, Onyi; Mohiti-Asli, Mahsa; Loboa, Elizabeth G.; Hingtgen, Shawn D.

    2017-01-01

    Engineered stem cell (SC)-based therapy holds enormous promise for treating the incurable brain cancer glioblastoma (GBM). Retaining the cytotoxic SCs in the surgical cavity after GBM resection is one of the greatest challenges to this approach. Here, we describe a biocompatible electrospun nanofibrous scaffold (bENS) implant capable of delivering and retaining tumor-homing cytotoxic stem cells that suppress recurrence of post-surgical GBM. As a new approach to GBM therapy, we created poly(l-lactic acid) (PLA) bENS bearing drug-releasing human mesenchymal stem cells (hMSCs). We discovered that bENS-based implant increased hMSC retention in the surgical cavity 5-fold and prolonged persistence 3-fold compared to standard direct injection using our mouse model of GBM surgical resection/recurrence. Time-lapse imaging showed cytotoxic hMSC/bENS treatment killed co-cultured human GBM cells, and allowed hMSCs to rapidly migrate off the scaffolds as they homed to GBMs. In vivo, bENS loaded with hMSCs releasing the anti-tumor protein TRAIL (bENSsTR) reduced the volume of established GBM xenografts 3-fold. Mimicking clinical GBM patient therapy, lining the post-operative GBM surgical cavity with bENSsTR implants inhibited the re-growth of residual GBM foci 2.3-fold and prolonged post-surgical median survival from 13.5 to 31 days in mice. These results suggest that nanofibrous-based SC therapies could be an innovative new approach to improve the outcomes of patients suffering from terminal brain cancer. PMID:27016620

  16. An acid-free water-born quaternized chitosan/montmorillonite loaded into an innovative ultra-fine bead-free water-born nanocomposite nanofibrous scaffold; in vitro and in vivo approaches.

    PubMed

    Dastjerdi, Roya; Sharafi, Mahsa; Kabiri, Kourosh; Mivehi, Leila; Samadikuchaksaraei, Ali

    2017-07-26

    An acid-free water-born chitosan derivative/montmorillonite has been successfully synthesized. A natural-based biopolymer, N-(2-hydroxy) propyl-3-trimethyl ammonium chitosan chloride, was synthesized, and its structure confirmed by Fourier transform infrared microscopy and conductometric titration. It was applied to the cationic ion-exchange reaction of montmorillonite. Then, the synthesized materials were used to produce water-born composite scaffolds for tissue engineering applications and formed an ultra-fine bead-free multicomponent nanofibrous scaffold. The scaffold was subjected to in vitro and in vivo investigations. The effects of both acidic and neutral reaction media on the efficiency of the cationic ion-exchange reaction of montmorillonite were investigated. A mechanism has been suggested for the more efficient cationic ion-exchange reaction achieved in the absence of the acid. In in vitro studies, the modified montmorillonite showed synergistic biocompatibility and cell growth with enhanced bioactivity compared to unmodified clay and even chitosan and the chitosan derivative. Scanning electron microscopy showed ultra-fine bead-free nanocomposite nanofibers. Improved biocompatibility, cell attachment, and cell growth were observed for the nanofibrous scaffolds compared to the individual components. In vivo experiments showed complete restoration of a critical-sized full-thickness wound without infection in 21 d. The technique provides a guideline to achieve chitosan nanofibrous morphology for multifunctional biomedical applications.

  17. Reconstruction of living bilayer human skin equivalent utilizing human fibrin as a scaffold.

    PubMed

    Mazlyzam, A L; Aminuddin, B S; Fuzina, N H; Norhayati, M M; Fauziah, O; Isa, M R; Saim, L; Ruszymah, B H I

    2007-05-01

    Our aim of this study was to develop a new methodology for constructing a bilayer human skin equivalent to create a more clinical compliance skin graft composite for the treatment of various skin defects. We utilized human plasma derived fibrin as the scaffold for the development of a living bilayer human skin equivalent: fibrin-fibroblast and fibrin-keratinocyte (B-FF/FK SE). Skin cells from six consented patients were culture-expanded to passage 1. For B-FF/FK SE formation, human fibroblasts were embedded in human fibrin matrix and subsequently another layer of human keratinocytes in human fibrin matrix was stacked on top. The B-FF/FK SE was then transplanted to athymic mice model for 4 weeks to evaluate its regeneration and clinical performance. The in vivo B-FF/FK SE has similar properties as native human skin by histological analysis and expression of basal Keratin 14 gene in the epidermal layer and Collagen type I gene in the dermal layer. Electron microscopy analysis of in vivo B-FF/FK SE showed well-formed and continuous epidermal-dermal junction. We have successfully developed a technique to engineer living bilayer human skin equivalent using human fibrin matrix. The utilization of culture-expanded human skin cells and fibrin matrix from human blood will allow a fully autologous human skin equivalent construction.

  18. Braided nanofibrous scaffold for tendon and ligament tissue engineering.

    PubMed

    Barber, John G; Handorf, Andrew M; Allee, Tyler J; Li, Wan-Ju

    2013-06-01

    Tendon and ligament (T/L) injuries present an important clinical challenge due to their intrinsically poor healing capacity. Natural healing typically leads to the formation of scar-like tissue possessing inferior mechanical properties. Therefore, tissue engineering has gained considerable attention as a promising alternative for T/L repair. In this study, we fabricated braided nanofibrous scaffolds (BNFSs) as a potential construct for T/L tissue engineering. Scaffolds were fabricated by braiding 3, 4, or 5 aligned bundles of electrospun poly(L-lactic acid) nanofibers, thus introducing an additional degree of flexibility to alter the mechanical properties of individual scaffolds. We observed that the Young's modulus, yield stress, and ultimate stress were all increased in the 3-bundle compared to the 4- and 5-bundle BNFSs. Interestingly, acellular BNFSs mimicked the normal tri-phasic mechanical behavior of native tendon and ligament (T/L) during loading. When cultured on the BNFSs, human mesenchymal stem cells (hMSCs) adhered, aligned parallel to the length of the nanofibers, and displayed a concomitant realignment of the actin cytoskeleton. In addition, the BNFSs supported hMSC proliferation and induced an upregulation in the expression of key pluripotency genes. When cultured on BNFSs in the presence of tenogenic growth factors and stimulated with cyclic tensile strain, hMSCs differentiated into the tenogenic lineage, evidenced most notably by the significant upregulation of Scleraxis gene expression. These results demonstrate that BNFSs provide a versatile scaffold capable of supporting both stem cell expansion and differentiation for T/L tissue engineering applications.

  19. Differentiation of human endometrial stem cells into urothelial cells on a three-dimensional nanofibrous silk-collagen scaffold: an autologous cell resource for reconstruction of the urinary bladder wall.

    PubMed

    Shoae-Hassani, Alireza; Mortazavi-Tabatabaei, Seyed Abdolreza; Sharif, Shiva; Seifalian, Alexander Marcus; Azimi, Alireza; Samadikuchaksaraei, Ali; Verdi, Javad

    2015-11-01

    Reconstruction of the bladder wall via in vitro differentiated stem cells on an appropriate scaffold could be used in such conditions as cancer and neurogenic urinary bladder. This study aimed to examine the potential of human endometrial stem cells (EnSCs) to form urinary bladder epithelial cells (urothelium) on nanofibrous silk-collagen scaffolds, for construction of the urinary bladder wall. After passage 4, EnSCs were induced by keratinocyte growth factor (KGF) and epidermal growth factor (EGF) and seeded on electrospun collagen-V, silk and silk-collagen nanofibres. Later we tested urothelium-specific genes and proteins (uroplakin-Ia, uroplakin-Ib, uroplakin-II, uroplakin-III and cytokeratin 20) by immunocytochemistry, RT-PCR and western blot analyses. Scanning electron microscopy (SEM) and histology were used to detect cell-matrix interactions. DMEM/F12 supplemented by KGF and EGF induced EnSCs to express urothelial cell-specific genes and proteins. Either collagen, silk or silk-collagen scaffolds promoted cell proliferation. The nanofibrous silk-collagen scaffolds provided a three-dimensional (3D) structure to maximize cell-matrix penetration and increase differentiation of the EnSCs. Human EnSCs seeded on 3D nanofibrous silk-collagen scaffolds and differentiated to urothelial cells provide a suitable source for potential use in bladder wall reconstruction in women. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Nanofibrous substrates support colony formation and maintain stemness of human embryonic stem cells

    PubMed Central

    Gauthaman, Kalamegam; Venugopal, Jayarama Reddy; Yee, Fong Chui; Peh, Gary Swee Lim; Ramakrishna, Seeram; Bongso, Ariff

    2009-01-01

    Inadequate cell numbers in culture is one of the hurdles currently delaying the application of human embryonic stem cells (hESCs) for transplantation therapy. Nanofibrous scaffolds have been effectively used to expand and differentiate non-colony forming multipotent mesenchymal stem cells (MSC) for the repair of tissues or organs. In the present study, we evaluated the influence of nanofibrous scaffolds for hESC proliferation, increase in colony formation, self-renewal properties, undifferentiation and retention of ‘stemness’. Polycaprolactone/collagen (PCL/collagen) and PCL/gelatin nanofibrous scaffolds were fabricated using electrospinning technology. The hESCs were seeded on the nanofibrous scaffolds in the presence or absence of mitomycin-C treated mouse embryonic fibroblasts (MEFs). The hESCs grown on both scaffolds in the presence of the MEFs produced an increase in cell growth of 47.58% (P≤ 0.006) and 40.18% (P≤ 0.005), respectively, over conventional controls of hESCs on MEFs alone. The hESC colonies were also larger in diameter on the scaffolds compared to controls (PCL/collagen, 156.25 ± 7 μM and PCL/gelatin, 135.42 ± 5 μM). Immunohistochemistry of the hESCs grown on the nanofibrous scaffolds with MEFs, demonstrated positive staining for the various stemness-related markers (octamer 4 [OCT-4], tumour rejection antigen-1–60, GCTM-2 and TG-30), and semi-quantitative RT-PCR for the pluripotent stemness genomic markers (NANOG, SOX-2, OCT-4) showed that they were also highly expressed. Continued successful propagation of hESC colonies from nanofibrous scaffolds back to conventional culture on MEFs was also possible. Nanofibrous scaffolds support hESC expansion in an undifferentiated state with retention of stemness characteristics thus having tremendous potential in scaling up cell numbers for transplantation therapy. PMID:19228268

  1. A novel electrospun-aligned nanoyarn/three-dimensional porous nanofibrous hybrid scaffold for annulus fibrosus tissue engineering.

    PubMed

    Ma, Jun; He, Yunfei; Liu, Xilin; Chen, Weiming; Wang, An; Lin, Chia-Ying; Mo, Xiumei; Ye, Xiaojian

    2018-01-01

    Herniation of the nucleus pulposus (NP) because of defects in the annulus fibrosus (AF) is a well-known cause of low back pain. Defects in the AF thus remain a surgical challenge, and efforts have been made to develop new techniques for closure and repair. In this study, we developed an electrospun aligned nanoyarn scaffold (AYS) and nanoyarn/three-dimensional porous nanofibrous hybrid scaffold (HS) for AF tissue engineering. The AYS was fabricated via conjugated electrospinning, while the aligned nanofibrous scaffold (AFS) was prepared by traditional electrospinning as a baseline scaffold. The HS was constructed by freeze-drying and cross-linking methods. Scanning electron microscopy and mechanical measurement were used to characterize the properties of these scaffolds. Bone marrow derived mesenchymal stem cells (BMSCs) were seeded on scaffolds, and cell proliferation was determined by CCK-8 assay, while cell infiltration and differentiation were assessed by histological measurement and quantitative real-time polymerase chain reaction, respectively. Morphological measurements showed that AYS presented a relatively better three-dimensional structure with larger pore sizes, higher porosity, and better fibers' alignment compared to AFS. Mechanical testing demonstrated that the tensile property of AFS and AYS was qualitatively similar to the native AF tissue, albeit to a lesser extent. When BMSCs were seeded and cultured on these scaffolds, the number of cells cultured on HS and AYS was found to be significantly higher than that on AFS and culture plate after 7 days of culture ( P <0.05). In addition, cell infiltration was significantly higher in HS when compared with AFS and AYS ( P <0.05). A part of BMSCs ingressed into the inner part of AYS upon long-term in vitro culture. No significant difference was observed between AFS and AYS in terms of the median infiltration depth ( P >0.05). BMSCs seeded on AYS demonstrated an increased expression of COL1A1 , while the

  2. Electrospun Poly(L-lactide)/Poly(ε-caprolactone) Blend Nanofibrous Scaffold: Characterization and Biocompatibility with Human Adipose-Derived Stem Cells

    PubMed Central

    Liao, Guiying; Peng, Ejun; Wu, Bolin; Wang, Yuxi; Zeng, Xiaoyong; Xie, Xiaolin

    2013-01-01

    The essence of tissue engineering is the fabrication of autologous cells or induced stem cells in naturally derived or synthetic scaffolds to form specific tissues. Polymer is thought as an appealing source of cell-seeded scaffold owing to the diversity of its physicochemical property and can be electrospun into nano-size to mimic natural structure. Poly (L-lactic acid) (PLLA) and poly (ε-caprolactone) (PCL) are both excellent aliphatic polyester with almost “opposite” characteristics. The controlling combination of PLLA and PCL provides varying properties and makes diverse applications. Compared with the copolymers of the same components, PLLA/PCL blend demonstrates its potential in regenerative medicine as a simple, efficient and scalable alternative. In this study, we electrospun PLLA/PCL blends of different weight ratios into nanofibrous scaffolds (NFS) and their properties were detected including morphology, porosity, degradation, ATR-FTIR analysis, stress-stain assay, and inflammatory reaction. To explore the biocompatibility of the NFS we synthesized, human adipose-derived stem cells (hASCs) were used to evaluate proliferation, attachment, viability and multi-lineage differentiation. In conclusion, the electrospun PLLA/PCL blend nanofibrous scaffold with the indicated weight ratios all supported hASCs well. However, the NFS of 1/1 weight ratio showed better properties and cellular responses in all assessments, implying it a biocompatible scaffold for tissue engineering. PMID:23990941

  3. A bird's eye view on the use of electrospun nanofibrous scaffolds for bone tissue engineering: Current state-of-the-art, emerging directions and future trends.

    PubMed

    Rezvani, Zahra; Venugopal, Jayarama R; Urbanska, Aleksandra M; Mills, David K; Ramakrishna, Seeram; Mozafari, Masoud

    2016-10-01

    Tissue engineering aims to develop therapeutic products that utilize a combination of scaffolds with viable cell systems or responsive biomolecules derived from such cells, for the repair, restoration/regeneration of tissues. Here, the main goal is to enable the body to heal itself by the introduction of electrospun scaffolds, such that the body recognizes them as its own and in turn uses them to regenerate "neo-native" functional tissues. During the last decade, innovative nanofibrous scaffolds have attracted substantial interest in bone tissue engineering. The electrospinning process makes it possible to fabricate appropriate scaffolds for bone tissue engineering from different categories of nanobiomaterials having the ability of controlled delivery of drugs in the defective tissues. It is expected that with the progress in science and technology, better bone constructs will be proposed in the future. This review discusses the innovative approaches into electrospinning techniques for the fabrication of nanofibrous scaffolds for bone tissue engineering. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Engineered electrospun poly(caprolactone)/polycaprolactone-g-hydroxyapatite nano-fibrous scaffold promotes human fibroblasts adhesion and proliferation.

    PubMed

    Keivani, F; Shokrollahi, P; Zandi, M; Irani, S; F Shokrolahi; Khorasani, S C

    2016-11-01

    Polycaprolactone (PCL)/hydroxyapatite nano-composites are among the best candidates for tissue engineering. However, interactions between nHAp and PCL are difficult to control leading to inhomogeneous dispersion of the bio-ceramic particles. Grafting of polymer chains at high density/chain length while promotes the phase compatibility may result in reduced HAp exposed surface area and therefore, bioactivity is compromised. This issue is addressed here by grafting PCL chains onto HAp nano-particles through ring opening polymerization of ε-caprolactone (PCL-g-HAp). FTIR and TGA analysis showed that PCL (6.9wt%), was successfully grafted on the HAp. PCL/PCL-g-HAp nano-fibrous scaffold showed up to 10 and 33% enhancement in tensile strength and modulus, respectively, compared to those of PCL/HAp. The effects of HAp on the in vitro HAp formation were investigated for both the PCL/HAp and PCL/PCL-g-HAp scaffolds. Precipitation of HAp on the nano-composite scaffolds observed after 15days incubation in simulated body fluid (SBF), as confirmed by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). Human fibroblasts were seeded on PCL, PCL/HAp and PCL/PCL-g-HAp scaffolds. According to MTT assay, the highest cell proliferation was recorded for PCL/PCL-g-HAp nano-composite, at all time intervals (1-21days, P<0.001). Fluorescent microscopy (of DAPI stained samples) and electron microscopy images showed that all nano-fibrous scaffolds (PCL, PCL/HAp, and PCL/PCL-g-HAp), were non-toxic against cells, while more cell adhesion, and the most uniform cell distribution observed on the PCL/PCL-g-HAp. Overall, grafting of relatively short chains of PCL on the surface of HAp nano-particles stimulates fibroblasts adhesion and proliferation on the PCL/PCL-g-HAp nano-composite. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds.

    PubMed

    Pelaez, Daniel; Huang, Chun-Yuh Charles; Cheung, Herman S

    2009-01-01

    Mechanical loading has long been shown to modulate cartilage-specific extracellular matrix synthesis. With joint motion, cartilage can experience mechanical loading in the form of compressive, tensile or shearing load, and hydrostatic pressure. Recent studies have demonstrated the capacity of unconfined cyclic compression to induce chondrogenic differentiation of human mesenchymal stem cell (hMSC) in agarose culture. However, the use of a nonbiodegradable material such as agarose limits the applicability of these constructs. Of the possible biocompatible materials available for tissue engineering, fibrin is a natural regenerative scaffold, which possesses several desired characteristics including a controllable degradation rate and low immunogenicity. The objective of the present study was to determine the capability of fibrin gels for supporting chondrogenesis of hMSCs under cyclic compression. To optimize the system, three concentrations of fibrin gel (40, 60, and 80 mg/mL) and three different stimulus frequencies (0.1, 0.5, and 1.0 Hz) were used to examine the effects of cyclic compression on viability, proliferation and chondrogenic differentiation of hMSCs. Our results show that cyclic compression (10% strain) at frequencies >0.5 Hz and gel concentration of 40 mg/mL fibrinogen appears to maintain cellular viability within scaffolds. Similarly, variations in gel component concentration and stimulus frequency can be modified such that a significant chondrogenic response can be achieved by hMSC in fibrin constructs after 8 h of compression spread out over 2 days. This study demonstrates the suitability of fibrin gel for supporting the cyclic compression-induced chondrogenesis of mesenchymal stem cells.

  6. Enhanced biological properties of biomimetic apatite fabricated polycaprolactone/chitosan nanofibrous bio-composite for tendon and ligament regeneration.

    PubMed

    Wu, Geng; Deng, Xuefeng; Song, Jinqi; Chen, Feiqiang

    2018-01-01

    The development of tailored nanofibrous scaffolds for tendon and ligament tissue engineering has been a goal of clinical research for current researchers. Here, we establish a formation of novel nanofibrous matrix with significant mechanical and biological properties by electro-spinning process. The fine fibrous morphology of the nanostructured hydroxyapatite (HAp) dispersed in the polycaprolactone/chitosan (HAp-PCL/CS) nanofibrous matrix was exhibited by microscopic (SEM and TEM) techniques. The favorable mechanical properties (load and modulus) were achieved. The load and modulus of the HAp-PCL/CS composite fibers was 250.1N and 215.5MPa, which is very similar to that of standard value of the human tendon and ligament tissues. The cellular responses and biocompatibility of HAp-PCL/CS nanofibrous scaffolds were investigated with human osteoblast (HOS) cells for tendon regeneration and examined the primary osteoblast mechanism by in vitro method. The morphological (FE-SEM and fluorescence) microscopic images clearly exhibited that HOS cells are well attached and flatted on the nanofibrous composites. The HAp dispersed PCL/CS nanofibrous scaffolds promoted higher adhesion and proliferation of HOS cells comparable to the nanofibrous scaffolds without HAp nanoparticles. The physic-chemical and biological properties of the synthesized nanofibrous scaffold were very close to that of normal ligament and tendon in human body. Over all, these studied results confirmed that the prepared nanofibrous scaffolds will be effective biomaterial of tendon ligament regeneration applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puente, Pilar de la, E-mail: pilardelapuentegarcia@gmail.com; Ludeña, Dolores; López, Marta

    2013-02-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12more » pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.« less

  8. A novel electrospun-aligned nanoyarn/three-dimensional porous nanofibrous hybrid scaffold for annulus fibrosus tissue engineering

    PubMed Central

    Chen, Weiming; Wang, An; Lin, Chia-Ying; Mo, Xiumei; Ye, Xiaojian

    2018-01-01

    Introduction Herniation of the nucleus pulposus (NP) because of defects in the annulus fibrosus (AF) is a well-known cause of low back pain. Defects in the AF thus remain a surgical challenge, and efforts have been made to develop new techniques for closure and repair. In this study, we developed an electrospun aligned nanoyarn scaffold (AYS) and nanoyarn/three-dimensional porous nanofibrous hybrid scaffold (HS) for AF tissue engineering. Methods The AYS was fabricated via conjugated electrospinning, while the aligned nanofibrous scaffold (AFS) was prepared by traditional electrospinning as a baseline scaffold. The HS was constructed by freeze-drying and cross-linking methods. Scanning electron microscopy and mechanical measurement were used to characterize the properties of these scaffolds. Bone marrow derived mesenchymal stem cells (BMSCs) were seeded on scaffolds, and cell proliferation was determined by CCK-8 assay, while cell infiltration and differentiation were assessed by histological measurement and quantitative real-time polymerase chain reaction, respectively. Results Morphological measurements showed that AYS presented a relatively better three-dimensional structure with larger pore sizes, higher porosity, and better fibers’ alignment compared to AFS. Mechanical testing demonstrated that the tensile property of AFS and AYS was qualitatively similar to the native AF tissue, albeit to a lesser extent. When BMSCs were seeded and cultured on these scaffolds, the number of cells cultured on HS and AYS was found to be significantly higher than that on AFS and culture plate after 7 days of culture (P<0.05). In addition, cell infiltration was significantly higher in HS when compared with AFS and AYS (P<0.05). A part of BMSCs ingressed into the inner part of AYS upon long-term in vitro culture. No significant difference was observed between AFS and AYS in terms of the median infiltration depth (P>0.05). BMSCs seeded on AYS demonstrated an increased expression

  9. Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties.

    PubMed

    Mehrasa, Mohammad; Asadollahi, Mohammad Ali; Nasri-Nasrabadi, Bijan; Ghaedi, Kamran; Salehi, Hossein; Dolatshahi-Pirouz, Alireza; Arpanaei, Ayyoob

    2016-09-01

    Poly(lactic-co-glycolic acid) (PLGA) and PLGA/gelatin random nanofibrous scaffolds embedded with different amounts of mesoporous silica nanoparticles (MSNPs) were fabricated using electrospinning method. To evaluate the effects of nanoparticles on the scaffolds, physical, chemical, and mechanical properties as well as in vitro degradation behavior of scaffolds were investigated. The mean diameters of nanofibers were 974±68nm for the pure PLGA scaffolds vs 832±70, 764±80, and 486±64 for the PLGA/gelatin, PLGA/10wt% MSNPs, and the PLGA/gelatin/10wt% MSNPs scaffolds, respectively. The results suggested that the incorporation of gelatin and MSNPs into PLGA-based scaffolds enhances the hydrophilicity of scaffolds due to an increase of hydrophilic functional groups on the surface of nanofibers. With porosity examination, it was concluded that the incorporation of MSNPs and gelatin decrease the porosity of scaffolds. Nanoparticles also improved the tensile mechanical properties of scaffolds. Using in vitro degradation analysis, it was shown that the addition of nanoparticles to the nanofibers matrix increases the weight loss percentage of PLGA-based samples, whereas it decreases the weight loss percentage in the PLGA/gelatin composites. Cultivation of rat pheochromocytoma cell line (PC12), as precursor cells of dopaminergic neural cells, on the scaffolds demonstrated that the introduction of MSNPs into PLGA and PLGA/gelatin matrix leads to improved cell attachment and proliferation and enhances cellular processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Comparative evaluation of absorbable hemostats: advantages of fibrin-based sheets.

    PubMed

    Krishnan, Lissy K; Mohanty, Mira; Umashankar, P R; Lal, Arthur Vijayan

    2004-11-01

    Bioactive hemostats and wound dressings consist of either inherently active materials or act as delivery vehicles which contain such materials. Fibrin is a natural hemostat and scaffold, guiding the direction of wound contraction and closure. In order to improve the ease of application of liquid fibrin glue, we have made a freeze-dried form of polymerized fibrin that supports hemostasis and wound healing. The bleeding from the middle ear artery of rabbits was found to be arrested instantaneously on application of fibrin sheets, even when the animal was heparinized systemically. As the fibrin sheet was found to be fragile, gelatin was incorporated to the sheet and thus the mechanical stability was improved without compromising the hemostatic effect. The efficacy of the fabricated fibrin and fibrin-gelatin sheets to seal traumatized rat liver was compared with commercially available hemostats, Abgel (cross-linked gelatin) and Surgicel (cross-linked cellulose). Tissue compatibility of all the hemostats was studied by analyzing the liver tissue 15 days after application. While the hemostatic effect was best with fibrin and fibrin-gelatin sheets, both Surgicel and Abgel were not capable of arresting the bleeding quickly. Gross analysis of tissue on the 15th day of application, visibly, Abgel was not only degraded but resulted in severe adhesions of internal organs and histologically capsule formation around the implant was evident. Though Surgicel was also seen as cream soft material on the site of application that joined two pieces of liver, there was no adhesion of other internal organs and histologically, immune reaction and foreign-body-type giant cells were present in large amounts. Fibrin was not found grossly on application site whereas fibrin-gelatin was seen as a small white spot. Granulation tissue formation and cell migration into the fibrin-based sheets were evident, and therefore, fibrin-based sheets are not only efficient hemostats but showed optimum

  11. Polyethylenimine/silk fibroin multilayers deposited nanofibrics for cell culture.

    PubMed

    Ye, Xinguo; Li, Sheng; Chen, Xuanxuan; Zhan, Yingfei; Li, Xiaonan

    2017-01-01

    Scaffold with good three-dimensional (3D) structure and appropriate surface modification is essential to tissue regeneration in the treatment of tissue or organ failure. Silk fibroin (SF) is a promising scaffolding material with high biocompatibility, cytocompatibility, biodegradability and flexibility. In this study, positively charged polyethylenimine (PEI) and negatively charged SF assembled alternately onto cellulose nanofibrous substrates hydrolyzed from electrospun cellulose acetate nanofibrous mats. The obtained nanofibrous membranes modified with multiple layers of PEI/SF were characterized by field emission scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. L929 cells were applied to examine the cytocompatibility of PEI/SF coated membranes. The results demonstrated that the nanofibrous membranes after modification with multiple layers of PEI/SF maintained 3D nanofibrous structure, and cells cultured on them showed good adherence and spreading on them as well, which indicated that PEI/SF coated membranes had potential application in tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Morphogen and proinflammatory cytokine release kinetics from PRGF-Endoret fibrin scaffolds: evaluation of the effect of leukocyte inclusion.

    PubMed

    Anitua, E; Zalduendo, M M; Prado, R; Alkhraisat, M H; Orive, G

    2015-03-01

    The potential influence of leukocyte incorporation in the kinetic release of growth factors from platelet-rich plasma (PRP) may explain the conflicting efficiency of leukocyte platelet-rich plasma (L-PRP) scaffolds in tissue regeneration. To assess this hypothesis, leukocyte-free (PRGF-Endoret) and L-PRP fibrin scaffolds were prepared, and both morphogen and proinflammatory cytokine release kinetics were analyzed. Clots were incubated with culture medium to monitor protein release over 8 days. Furthermore, the different fibrin scaffolds were morphologically characterized. Results show that leukocyte-free fibrin matrices were homogenous while leukocyte-containing ones were heterogeneous, loose and cellular. Leukocyte incorporation produced a significant increase in the contents of proinflammatory cytokines interleukin (IL)-1β and IL-16 but not in the platelet-derived growth factors release (<1.5-fold). Surprisingly, the availability of vascular endothelial growth factor suffered an important decrease after 3 days of incubation in the case of L-PRP matrices. While the release of proinflammatory cytokines was almost absent or very low from PRGF-Endoret, the inclusion of leukocytes induced a major increase in these cytokines, which was characterized by the presence of a latent period. The PRGF-Endoret matrices were stable during the 8 days of incubation. The inclusion of leukocytes alters the growth factors release profile and also increased the dose of proinflammatory cytokines. © 2014 Wiley Periodicals, Inc.

  13. Suppressing Mesenchymal Stem Cell Hypertrophy and Endochondral Ossification in 3D Cartilage Regeneration with Nanofibrous Poly(l-Lactic Acid) Scaffold and Matrilin-3.

    PubMed

    Liu, Qihai; Wang, Jun; Chen, Yupeng; Zhang, Zhanpeng; Saunders, Laura; Schipani, Ernestina; Chen, Qian; Ma, Peter X

    2018-06-22

    Articular cartilage has a very limited ability to self-heal after injury or degeneration due to its low cellularity, poor proliferative activity, and avascular nature. Current clinical options are able to alleviate patient suffering, but cannot sufficiently regenerate the lost tissue. Biomimetic scaffolds that recapitulate the important features of the extracellular matrix (ECM) of cartilage are hypothesized to be advantageous in supporting cell growth, chondrogenic differentiation, and integration of regenerated cartilage with native cartilage, ultimately restoring the injured tissue to its normal function. It's a challenge to support and maintain articular cartilage regenerated by bone marrow-derived mesenchymal stem cells (BMSCs), which are prone to hypertrophy and endochondral ossification after implanted in vivo. In the present work, a nanofibrous poly(l-lactic acid) (NF PLLA) scaffold developed by our group was utilized because of the desired highly porous structure, high interconnectivity, collagen-like NF architecture to support rabbit BMSCs for articular cartilage regeneration. We further hypothesized that Matrilin-3 (MATN3), a non-collagenous, cartilage-specific ECM protein, would enhance the microenvironment of the NF PLLA scaffold for cartilage regeneration and maintaining its property. To test this hypothesis, we seeded BMSCs on the NF PLLA scaffold with or without MATN3. We found that MATN3 suppresses hypertrophy in this 3D culture system in vitro. Subcutaneous implantation of the chondrogenic cell/scaffold constructs in a nude mouse model showed that pretreatment with MATN3 was able to maintain chondrogenesis and prevent hypertrophy and endochondral ossification in vivo. These results demonstrate that the porous NF PLLA scaffold treated with MATN3 represents an advantageous 3D microenvironment for cartilage regeneration and phenotype maintenance, and is a promising strategy for articular cartilage repair. Articular cartilage defects, caused by trauma

  14. Fibrin-based biomaterials: Modulation of macroscopic properties through rational design at the molecular level

    PubMed Central

    Brown, Ashley C.; Barker, Thomas H.

    2013-01-01

    Fibrinogen is one of the primary components of the coagulation cascade and rapidly forms an insoluble matrix following tissue injury. In addition to its important role in hemostasis, fibrin acts as a scaffold for tissue repair and provides important cues for directing cell phenotype following injury. Because of these properties and the ease of polymerization of the material, fibrin has been widely utilized as a biomaterial for over a century. Modifying the macroscopic properties of fibrin, such as elasticity and porosity, has been somewhat elusive until recently, yet with a molecular-level rational design approach can now be somewhat easily modified through alterations of molecular interactions key to the protein’s polymerization process. This review outlines the biochemistry of fibrin and discusses methods for modification of molecular interactions and their application to fibrin based biomaterials. PMID:24056097

  15. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering.

    PubMed

    Nerurkar, Nandan L; Elliott, Dawn M; Mauck, Robert L

    2007-08-01

    Engineering a functional replacement for the annulus fibrosus (AF) of the intervertebral disc is contingent upon recapitulation of AF structure, composition, and mechanical properties. In this study, we propose a new paradigm for AF tissue engineering that focuses on the reconstitution of anatomic fiber architecture and uses constitutive modeling to evaluate construct function. A modified electrospinning technique was utilized to generate aligned nanofibrous polymer scaffolds for engineering the basic functional unit of the AF, a single lamella. Scaffolds were tested in uniaxial tension at multiple fiber orientations, demonstrating a nonlinear dependence of modulus on fiber angle that mimicked the nonlinearity and anisotropy of native AF. A homogenization model previously applied to native AF successfully described scaffold mechanical response, and parametric studies demonstrated that nonfibrillar matrix, along with fiber connectivity, are key contributors to tensile mechanics for engineered AF. We demonstrated that AF cells orient themselves along the aligned scaffolds and deposit matrix that contributes to construct mechanics under loading conditions relevant to the in vivo environment. The homogenization model was applied to cell-seeded constructs and provided quantitative measures for the evolution of matrix and interfibrillar interactions. Finally, the model demonstrated that at fiber angles of the AF (28 degrees -44 degrees ), engineered material behaved much like native tissue, suggesting that engineered constructs replicate the physiologic behavior of the single AF lamella. Constitutive modeling provides a powerful tool for analysis of engineered AF neo-tissue and native AF tissue alike, highlighting key mechanical design criteria for functional AF tissue engineering.

  16. A microfluidic chip containing multiple 3D nanofibrous scaffolds for culturing human pluripotent stem cells

    NASA Astrophysics Data System (ADS)

    Wertheim, Lior; Shapira, Assaf; Amir, Roey J.; Dvir, Tal

    2018-04-01

    In microfluidics-based lab-on-a-chip systems, which are used for investigating the effect of drugs and growth factors on cells, the latter are usually cultured within the device’s channels in two-dimensional, and not in their optimal three-dimensional (3D) microenvironment. Herein, we address this shortfall by designing a microfluidic system, comprised of two layers. The upper layer of the system consists of multiple channels generating a gradient of soluble factors. The lower layer is comprised of multiple wells, each deposited with 3D, nanofibrous scaffold. We first used a mathematical model to characterize the fluid flow within the system. We then show that induced pluripotent stem cells can be seeded within the 3D scaffolds and be exposed to a well-mixed gradient of soluble factors. We believe that utilizing such system may enable in the future to identify new differentiation factors, investigate drug toxicity, and eventually allow to perform analyses on patient-specific tissues, in order to fit the appropriate combination and concentration of drugs.

  17. The Effect of Poly (Glycerol Sebacate) Incorporation within Hybrid Chitin-Lignin Sol-Gel Nanofibrous Scaffolds.

    PubMed

    Abudula, Tuerdimaimaiti; Gzara, Lassaad; Simonetti, Giovanna; Alshahrie, Ahmed; Salah, Numan; Morganti, Pierfrancesco; Chianese, Angelo; Fallahi, Afsoon; Tamayol, Ali; Bencherif, Sidi A; Memic, Adnan

    2018-03-19

    Chitin and lignin primarily accumulate as bio-waste resulting from byproducts of crustacean crusts and plant biomass. Recently, their use has been proposed for diverse and unique bioengineering applications, amongst others. However, their weak mechanical properties need to be improved in order to facilitate their industrial utilization. In this paper, we fabricated hybrid fibers composed of a chitin-lignin (CL)-based sol-gel mixture and elastomeric poly (glycerol sebacate) (PGS) using a standard electrospinning approach. Obtained results showed that PGS could be coherently blended with the sol-gel mixture to form a nanofibrous scaffold exhibiting remarkable mechanical performance and improved antibacterial and antifungal activity. The developed hybrid fibers showed promising potential in advanced biomedical applications such as wound care products. Ultimately, recycling these sustainable biopolymers and other bio-wastes alike could propel a "greener" economy.

  18. Structure and physico-mechanical properties of low temperature plasma treated electrospun nanofibrous scaffolds examined with atomic force microscopy.

    PubMed

    Chlanda, Adrian; Kijeńska, Ewa; Rinoldi, Chiara; Tarnowski, Michał; Wierzchoń, Tadeusz; Swieszkowski, Wojciech

    2018-04-01

    Electrospun nanofibrous scaffolds are willingly used in tissue engineering applications due to their tunable mechanical, chemical and physical properties. Additionally, their complex openworked architecture is similar to the native extracellular matrix of living tissue. After implantation such scaffolds should provide sufficient mechanical support for cells. Moreover, it is of crucial importance to ensure sterility and hydrophilicity of the scaffold. For this purpose, a low temperature surface plasma treatment can be applied. In this paper, we report physico-mechanical evaluation of stiffness and adhesive properties of electrospun mats after their exposition to low temperature plasma. Complex morphological and mechanical studies performed with an atomic force microscope were followed by scanning electron microscope imaging and a wettability assessment. The results suggest that plasma treatment can be a useful method for the modification of the surface of polymeric scaffolds in a desirable manner. Plasma treatment improves wettability of the polymeric mats without changing their morphology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. PCL and PCL-gelatin nanofibers as esophageal tissue scaffolds: optimization, characterization and cell-matrix interactions.

    PubMed

    Kuppan, Purushothaman; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2013-09-01

    Nanofiber based scaffolds offer great promise in regeneration of various tissues including esophagus. Diseases of the esophagus such as malignancy and strictures require surgical intervention to repair the affected region using an appropriate substitute. Long gap esophageal atresia poses a clinical challenge to bridge the gap. In this study, nanofibrous scaffolds made of PCL and PCL-gelatin were fabricated through electrospinning. The average diameter of PCL and PCL-gelatin nanofibers were found to be 324 +/- 50 nm and 242 +/- 30 nm respectively. PCL-gelatin nanofibers was characterized using FTIR, DSC, UTM, Goniometer, suture retention strength and in vitro degradation and the results were compared with the PCL nanofibers. PCL nanofiber characterization results showed that it exhibited higher tensile strength, suture retention strength, contact angle and slower degradation when compared with the PCL-gelatin nanofibers. Further, the interaction of human esophageal epithelial cells with PCL and PCL-gelatin nanofibrous scaffold was determined by cell adhesion, proliferation and gene expression studies. Our results demonstrated that the epithelial cells adhered and proliferated well on both PCL and PCL-gelatin nanofibrous scaffolds and also exhibited the characteristic cobblestone morphology. Cell proliferation on PCL-gelatin nanofibrous scaffold was significantly higher than the PCL nanofibrous scaffold (*p <0.05). Therefore, these scaffolds could be explored as potential candidates for regeneration of functional esophagus.

  20. Design of a Novel Two-Component Hybrid Dermal Scaffold for the Treatment of Pressure Sores.

    PubMed

    Sharma, Vaibhav; Kohli, Nupur; Moulding, Dale; Afolabi, Halimat; Hook, Lilian; Mason, Chris; García-Gareta, Elena

    2017-11-01

    The aim of this study is to design a novel two-component hybrid scaffold using the fibrin/alginate porous hydrogel Smart Matrix combined to a backing layer of plasma polymerized polydimethylsiloxane (Sil) membrane to make the fibrin-based dermal scaffold more robust for the treatment of the clinically challenging pressure sores. A design criteria are established, according to which the Sil membranes are punched to avoid collection of fluid underneath. Manual peel test shows that native silicone does not attach to the fibrin/alginate component while the plasma polymerized silicone membranes are firmly bound to fibrin/alginate. Structural characterization shows that the fibrin/alginate matrix is intact after the addition of the Sil membrane. By adding a Sil membrane to the original fibrin/alginate scaffold, the resulting two-component scaffolds have a significantly higher shear or storage modulus G'. In vitro cell studies show that dermal fibroblasts remain viable, proliferate, and infiltrate the two-component hybrid scaffolds during the culture period. These results show that the design of a novel two-component hybrid dermal scaffold is successful according to the proposed design criteria. To the best of the authors' knowledge, this is the first study that reports the combination of a fibrin-based scaffold with a plasma-polymerized silicone membrane. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs

    NASA Astrophysics Data System (ADS)

    Peng, Hongju; Yin, Zi; Liu, Huanhuan; Chen, Xiao; Feng, Bei; Yuan, Huihua; Su, Bo; Ouyang, Hongwei; Zhang, Yanzhong

    2012-12-01

    Engaging functional biomaterial scaffolds to regulate stem cell differentiation has drawn a great deal of attention in the tissue engineering and regenerative medicine community. In this study, biomimetic composite nanofibrous scaffolds of hydroxyapatite/chitosan (HAp/CTS) were prepared to investigate their capacity for inducing murine mesenchymal stem cells (mMSCs) to differentiate into the osteogenic lineage, in the absence and presence of an osteogenic supplementation (i.e., ascorbic acid, β-glycerol phosphate, and dexamethasone), respectively. Using electrospun chitosan (CTS) nanofibrous scaffolds as the control, cell morphology, growth, specific osteogenic genes expression, and quantified proteins secretion on the HAp/CTS scaffolds were sequentially examined and assessed. It appeared that the HAp/CTS scaffolds supported better attachment and proliferation of the mMSCs. Most noteworthy was that in the absence of the osteogenic supplementation, expression of osteogenic genes including collagen I (Col I), runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and osteocalcin (OCN) were significantly upregulated in mMSCs cultured on the HAp/CTS nanofibrous scaffolds. Also increased secretion of the osteogenesis protein markers of alkaline phosphatase and collagen confirmed that the HAp/CTS nanofibrous scaffold markedly promoted the osteogenic commitment in the mMSCs. Moreover, the presence of osteogenic supplementation proved an enhanced efficacy of mMSC osteogenesis on the HAp/CTS nanofibrous scaffolds. Collectively, this study demonstrated that the biomimetic nanofibrous HAp/CTS scaffolds could support and enhance the adhesion, proliferation, and particularly osteogenic differentiation of the mMSCs. It also substantiated the potential of using biomimetic nanofibrous scaffolds of HAp/CTS for functional bone repair and regeneration applications.

  2. Functionalization of PCL-3D Electrospun Nanofibrous Scaffolds for Improved BMP2-Induced Bone Formation.

    PubMed

    Miszuk, Jacob M; Xu, Tao; Yao, Qingqing; Fang, Fang; Childs, Josh D; Hong, Zhongkui; Tao, Jianning; Fong, Hao; Sun, Hongli

    2018-03-01

    Bone morphogenic protein 2 (BMP2) is a key growth factor for bone regeneration, possessing FDA approval for orthopedic applications. BMP2 is often required in supratherapeutic doses clinically, yielding adverse side effects and substantial treatment costs. Considering the crucial role of materials for BMPs delivery and cell osteogenic differentiation, we devote to engineering an innovative bone-matrix mimicking niche to improve low dose of BMP2-induced bone formation. Our previous work describes a novel technique, named thermally induced nanofiber self-agglomeration (TISA), for generating 3D electrospun nanofibrous (NF) polycaprolactone (PCL) scaffolds. TISA process could readily blend PCL with PLA, leading to increased osteogenic capabilities in vitro , however, these bio-inert synthetic polymers produced limited BMP2-induced bone formation in vivo. We therefore hypothesize that functionalization of NF 3D PCL scaffolds with bone-like hydroxyapatite (HA) and BMP2 signaling activator phenamil will provide a favorable osteogenic niche for bone formation at low doses of BMP2. Compared to PCL-3D scaffolds, PCL/HA-3D scaffolds demonstrated synergistically enhanced osteogenic differentiation capabilities of C2C12 cells with phenamil. Importantly, in vivo studies showed this synergism was able to generate significantly increased new bone in an ectopic mouse model, suggesting PCL/HA-3D scaffolds act as a favorable synthetic extracellular matrix for bone regeneration.

  3. The Effect of Poly (Glycerol Sebacate) Incorporation within Hybrid Chitin–Lignin Sol–Gel Nanofibrous Scaffolds

    PubMed Central

    Abudula, Tuerdimaimaiti; Gzara, Lassaad; Simonetti, Giovanna; Alshahrie, Ahmed; Salah, Numan; Morganti, Pierfrancesco; Chianese, Angelo; Fallahi, Afsoon; Tamayol, Ali; Memic, Adnan

    2018-01-01

    Chitin and lignin primarily accumulate as bio-waste resulting from byproducts of crustacean crusts and plant biomass. Recently, their use has been proposed for diverse and unique bioengineering applications, amongst others. However, their weak mechanical properties need to be improved in order to facilitate their industrial utilization. In this paper, we fabricated hybrid fibers composed of a chitin–lignin (CL)-based sol–gel mixture and elastomeric poly (glycerol sebacate) (PGS) using a standard electrospinning approach. Obtained results showed that PGS could be coherently blended with the sol–gel mixture to form a nanofibrous scaffold exhibiting remarkable mechanical performance and improved antibacterial and antifungal activity. The developed hybrid fibers showed promising potential in advanced biomedical applications such as wound care products. Ultimately, recycling these sustainable biopolymers and other bio-wastes alike could propel a “greener” economy. PMID:29562729

  4. Superelastic, superabsorbent and 3D nanofiber-assembled scaffold for tissue engineering.

    PubMed

    Chen, Weiming; Ma, Jun; Zhu, Lei; Morsi, Yosry; -Ei-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei

    2016-06-01

    Fabrication of 3D scaffold to mimic the nanofibrous structure of the nature extracellular matrix (ECM) with appropriate mechanical properties and excellent biocompatibility, remain an important technical challenge in tissue engineering. The present study reports the strategy to fabricate a 3D nanofibrous scaffold with similar structure to collagen in ECM by combining electrospinning and freeze-drying technique. With the technique reported here, a nanofibrous structure scaffold with hydrophilic and superabsorbent properties can be readily prepared by Gelatin and Polylactic acid (PLA). In wet state the scaffold also shows a super-elastic property, which could bear a compressive strain as high as 80% and recovers its original shape afterwards. Moreover, after 6 days of culture, L-929 cells grow, proliferate and infiltrated into the scaffold. The results suggest that this 3D nanofibrous scaffold would be promising for varied field of tissue engineering application. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Synergistic effect of topography, surface chemistry and conductivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells.

    PubMed

    Tian, Lingling; Prabhakaran, Molamma P; Hu, Jue; Chen, Menglin; Besenbacher, Flemming; Ramakrishna, Seeram

    2016-09-01

    Electrospun nanofibrous nerve implants is a promising therapy for peripheral nerve injury, and its performance can be tailored by chemical cues, topographical features as well as electrical properties. In this paper, a surface modified, electrically conductive, aligned nanofibrous scaffold composed of poly (lactic acid) (PLA) and polypyrrole (Ppy), referred to as o-PLAPpy_A, was fabricated for nerve regeneration. The morphology, surface chemistry and hydrophilicity of nanofibers were characterized by Scanning Electron Microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle, respectively. The effects of these nanofibers on neuronal differentiation using PC12 cells were evaluated. A hydrophilic surface was created by Poly-ornithine coating, which was able to provide a better environment for cell attachment, and furthermore aligned fibers were proved to be able to guide PC12 cells grow along the fiber direction and be beneficial for neurite outgrowth. The cellular response of PC12 cells to pulsed electrical stimulation was evaluated by NF 200 and alpha tubulin expression, indicating that electrical stimulation with a voltage of 40mV could enhance the neurite outgrowth. The PC12 cells stimulated with electrical shock showed greater level of neurite outgrowth and smaller cell body size. Moreover, the PC12 cells under electrical stimulation showed better viability. In summary, the o-PLAPpy_A nanofibrous scaffold supported the attachment, proliferation and differentiation of PC12 cells in the absence of electrical stimulation, which could be potential candidate for nerve regeneration applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Mesenchymal stem cell implantation in osteoarthritic knees: is fibrin glue effective as a scaffold?

    PubMed

    Kim, Yong Sang; Choi, Yun Jin; Suh, Dong Suk; Heo, Dong Beom; Kim, Yong Il; Ryu, Jae-Sung; Koh, Yong Gon

    2015-01-01

    The cell-based tissue engineering approach that uses mesenchymal stem cells (MSCs) has addressed the issue of articular cartilage repair in osteoarthritic (OA) knees. However, to improve outcomes, an advanced surgical procedure with tissue-engineered scaffolds may be needed to treat patients with large cartilage lesions. To investigate the clinical and second-look arthroscopic outcomes of the implantation of MSCs loaded in fibrin glue as a scaffold in patients with OA knees and to compare these outcomes with those of MSC implantation without a scaffold. Cohort study; Level of evidence, 3. This study retrospectively evaluated 54 patients (56 knees) who were examined with second-look arthroscopy after MSC implantation for cartilage lesions in their OA knees. Patients were divided into 2 groups: 37 patients (39 knees) were treated with MSC implantation without a scaffold (group 1), and 17 patients (17 knees) underwent implantation of MSCs loaded in fibrin glue as a scaffold (group 2). Clinical outcomes were evaluated according to the International Knee Documentation Committee (IKDC) score and the Tegner activity scale, and cartilage repair was assessed with the International Cartilage Repair Society (ICRS) grade. Statistical analyses were performed to identify various prognostic factors associated with the clinical and second-look arthroscopic outcomes. At final follow-up (mean, 28.6 months; range, 24-34 months), the mean IKDC score and Tegner activity scale in each group significantly improved: group 1, from 38.1±7.7 to 62.0±11.7 (IKDC) and from 2.5±0.9 to 3.5±0.8 (Tegner); group 2, from 36.1±6.2 to 64.4±11.5 (IKDC) and from 2.2±0.8 to 3.8±0.8 (Tegner) (P<.001 for all). According to the overall ICRS cartilage repair grades, 9 of the 39 lesions (23%) in group 1 and 12 of the 17 lesions (58%) in group 2 achieved a grade of I or II. There was a significant difference in ICRS grades between the groups (P=.028). Overweight (body mass index≥27.5 kg/m2) and large

  7. Release of Bioactive Adeno-Associated Virus from Fibrin Scaffolds: Effects of Fibrin Glue Concentrations

    PubMed Central

    Lee, Hannah H.; Haleem, Amgad M.; Yao, Veronica; Li, Juan; Xiao, Xiao

    2011-01-01

    Fibrin glue (FG) is used in a variety of clinical applications and in the laboratory for localized and sustained release of factors potentially important for tissue engineering. However, the effect of different fibrinogen concentrations on FG scaffold delivery of bioactive adeno-associated viruses (AAVs) has not been established. This study was performed to test the hypothesis that FG concentration alters AAV release profiles, which affect AAV bioavailability. Gene transfer efficiency of AAV-GFP released from FG was measured using HEK-293 cells. Bioactivity of AAV transforming growth factor-beta1 (TGF-β1) released from FG was assessed using the mink lung cell assay, and by measuring induction of cartilage-specific gene expression in human mesenchymal stem cells (hMSCs). Nondiluted FG had longer clotting times, smaller pore sizes, thicker fibers, and slower dissolution rate, resulting in reduced release of AAV. AAV release and gene transfer efficiency was higher with 25% and 50% FG than with the 75% and 100% FG. AAV-TGF-β1 released from dilute-FG transduced hMSCs, resulting in higher concentrations of bioactive TGF-β1 and greater upregulation of cartilage-specific gene expression compared with hMSC from undiluted FG. This study, showing improved release, transduction efficiency, and chondrogenic effect on hMSC of bioactive AAV-TGF-β1 released from diluted FG, provides information important to optimization of this clinically available scaffold for therapeutic gene delivery, both in cartilage regeneration and for other tissue engineering applications. PMID:21449684

  8. Binding of thrombin-activated platelets to a fibrin scaffold through α(IIb)β₃ evokes phosphatidylserine exposure on their cell surface.

    PubMed

    Brzoska, Tomasz; Suzuki, Yuko; Mogami, Hideo; Sano, Hideto; Urano, Tetsumei

    2013-01-01

    Recently, by employing intra-vital confocal microscopy, we demonstrated that platelets expose phosphatidylserine (PS) and fibrin accumulate only in the center of the thrombus but not in its periphery. To address the question how exposure of platelet anionic phospholipids is regulated within the thrombus, an in-vitro experiment using diluted platelet-rich plasma was employed, in which the fibrin network was formed in the presence of platelets, and PS exposure on the platelet surface was analyzed using Confocal Laser Scanning Microscopy. Almost all platelets exposed PS after treatment with tissue factor, thrombin or ionomycin. Argatroban abrogated fibrin network formation in all samples, however, platelet PS exposure was inhibited only in tissue factor- and thrombin-treated samples but not in ionomycin-treated samples. FK633, an α(IIb)β₃ antagonist, and cytochalasin B impaired platelet binding to the fibrin scaffold and significantly reduced PS exposure evoked by thrombin. Gly-Pro-Arg-Pro amide abrogated not only fibrin network formation, but also PS exposure on platelets without suppressing platelet binding to fibrin/fibrinogen. These results suggest that outside-in signals in platelets generated by their binding to the rigid fibrin network are essential for PS exposure after thrombin treatment.

  9. Mechanical properties of single electrospun drug-encapsulated nanofibres

    PubMed Central

    Chew, Sing Yian; Hufnagel, Todd C; Lim, Chwee Teck; Leong, Kam W

    2008-01-01

    The mechanical and structural properties of a surface play an important role in determining the morphology of attached cells, and ultimately their cellular functions. As such, mechanical and structural integrity are important design parameters for a tissue scaffold. Electrospun fibrous meshes are widely used in tissue engineering. When in contact with electrospun scaffolds, cells see the individual micro- or nanofibres as their immediate microenvironment. In this study, tensile testing of single electrospun nanofibres composed of poly(ε-caprolactone) (PCL), and its copolymer, poly(caprolactone-co-ethyl ethylene phosphate) (PCLEEP), revealed a size effect in the Young's modulus, E, and tensile strength, σT. Both strength and stiffness increase as the fibre diameter decreases from bulk (∼5 μm) into the nanometre region (200–300 nm). In particular, E and σT of individual PCL nanofibres were at least two-fold and an order of magnitude higher than that of PCL film, respectively. PCL films were observed to have more pronounced crystallographic texture than the nanofibres; however no difference in crystalline fraction, perfection, or texture was detected among the various fibres. When drugs were encapsulated into single PCLEEP fibres, mechanical properties were enhanced with 1–20 wt% of loaded retinoic acid, but weakened by 10–20 wt% of encapsulated bovine serum albumin. This understanding of the effect of size and drug and protein encapsulation on the mechanical properties of electrospun fibres may help in the optimization of tissue scaffold design that combines biochemical and biomechanical cues for tissue regeneration. PMID:19079553

  10. An overview on autologous fibrin glue in bone tissue engineering of maxillofacial surgery

    PubMed Central

    Khodakaram-Tafti, Azizollah; Mehrabani, Davood; Shaterzadeh-Yazdi, Hanieh

    2017-01-01

    The purpose of this review is to have an overview on the applications on the autologous fibrin glue as a bone graft substitute in maxillofacial injuries and defects. A search was conducted using the databases such as Medline or PubMed and Google Scholar for articles from 1985 to 2016. The criteria were “Autograft,” “Fibrin tissue adhesive,” “Tissue engineering,” “Maxillofacial injury,” and “Regenerative medicine.” Bone tissue engineering is a new promising approach for bone defect reconstruction. In this technique, cells are combined with three-dimensional scaffolds to provide a tissue-like structure to replace lost parts of the tissue. Fibrin as a natural scaffold, because of its biocompatibility and biodegradability, and the initial stability of the grafted stem cells is introduced as an excellent scaffold for tissue engineering. It promotes cell migration, proliferation, and matrix making through acceleration in angiogenesis. Growth factors in fibrin glue can stimulate and promote tissue repair. Autologous fibrin scaffolds are excellent candidates for tissue engineering so that they can be produced faster, cheaper, and in larger quantities. In addition, they are easy to use and the probability of viral or prion transmission may be decreased. Therefore, autologous fibrin glue appears to be promising scaffold in regenerative maxillofacial surgery. PMID:28584530

  11. Osteogenic differentiation of mesenchymal progenitor cells in computer designed fibrin-polymer-ceramic scaffolds manufactured by fused deposition modeling.

    PubMed

    Schantz, Jan-Thorsten; Brandwood, Arthur; Hutmacher, Dietmar Werner; Khor, Hwei Ling; Bittner, Katharina

    2005-09-01

    Biomimetic scaffolds offer great potentials in the development of bone analogs for tissue engineering. The studies presented in this paper focus specifically on the osteogenic potential of the novel PCL/CaP matrices and its degradation behavior. Biodegradable Polymer-ceramic Scaffolds were fabricated using the solid free form fabrication technology: Fused Deposition Modeling (FDM). The scaffold architecture was characterized by a honeycomb-like design and a complete interconnectivity of the pores. Human mesenchymal stem cells (MSCs) were seeded together with fibrin glue into PCL/CaP scaffolds and cultured in vitro for periods of up to eight weeks. Cellular adhesion, proliferation and osteogenic differentiation were assessed in these constructs using a range of histological and microscopic techniques. In additional experiments, degradation was assessed by measuring mass loss, diameter change, molecular weight change and by scanning electron micrographs. MSCs were able to adhere, migrate, and differentiate along the osteogenic lineage with in these scaffolds. The PCL/CaP scaffolds showed up to 27 fold increased degradation of compared to PCL scaffolds.

  12. Autologous Fibrin Glue as an Encapsulating Scaffold for Delivery of Retinal Progenitor Cells

    PubMed Central

    Ahmed, Tamer A. E.; Ringuette, Randy; Wallace, Valerie A.; Griffith, May

    2015-01-01

    The retina is a highly sophisticated piece of the neural machinery that begins the translation of incoming light signals into meaningful visual information. Several degenerative diseases of the retina are characterized by photoreceptor loss and eventually lead to irreversible blindness. Regenerative medicine, using tissue engineering-based constructs to deliver progenitor cells or photoreceptors along with supporting carrier matrix is a promising approach for restoration of structure and function. Fresh fibrin glue (FG) produced by the CryoSeal®FS system in combination with mouse retinal progenitor cells (RPCs) were evaluated in this study. In vitro expanded RPCs isolated from postnatal mouse retina were encapsulated into FG and cultured in the presence of the protease inhibitor, tranexamic acid. Encapsulation of RPCs into FG did not show adverse effects on cell proliferation or cell survival. RPCs exhibited fibroblast-like morphology concomitantly with attachment to the encapsulating FG surface. They expressed α7 and β3 integrin subunits that could mediate attachment to fibrin matrix via an RGD-independent mechanism. The three-dimensional environment and the attachment surface provided by FG was associated with a rapid down-regulation of the progenitor marker SOX2 and enhanced the expression of the differentiation markers cone-rod homeobox and recoverin. However, the in vitro culture conditions did not promote full differentiation into mature photoreceptors. Nevertheless, we have shown that autologous fibrin, when fabricated into a scaffold for RPCs for delivery to the retina, provides the cells with external cues that could potentially improve the differentiation events. Hence, transient encapsulation of RPCs into FG could be a valid and potential treatment strategy to promote retinal regeneration following degenerative diseases. However, further optimization is necessary to maximize the outcomes in terms of mature photoreceptors. PMID:25692127

  13. PCL/PVA nanofibrous scaffold improve insulin-producing cells generation from human induced pluripotent stem cells.

    PubMed

    Abazari, Mohammad Foad; Soleimanifar, Fatemeh; Aleagha, Maryam Nouri; Torabinejad, Sepehr; Nasiri, Navid; Khamisipour, Gholamreza; Mahabadi, Javad Amini; Mahboudi, Hossein; Enderami, Seyed Ehsan; Saburi, Ehsan; Hashemi, Javad; Kehtari, Mousa

    2018-05-31

    Pancreatic differentiation of stem cells will aid treatment of patients with type I diabetes mellitus (T1DM). Synthetic biopolymers utilization provided extracellular matrix (ECM) and desired attributes in vitro to enhance conditions for stem cells proliferation, attachment and differentiation. A mixture of polycaprolactone and polyvinyl alcohol (PCL/PVA)-based scaffold, could establish an in vitro three-dimensional (3D) culture model. The objective of this study was investigation of the human induced pluripotent stem cells (hiPSCs) differentiation capacity to insulin-producing cells (IPCs) in 3D culture were compared with conventional culture (2D) groups evaluated at the mRNA and protein levels by quantitative PCR and immunofluorescence assay, respectively. The functionality of differentiated IPCs was assessed by C-peptide and insulin release in response to glucose stimulation test. Real-Time PCR results showed that iPSCs-IPCs expressed pancreas-specific transcription factors (Insulin, Pdx1, Glucagon, Glut2 and Ngn3). The expressions of these transcription factors in PCL/PVA scaffold were higher than 2D groups. In addition to IPCs specific markers were detected by immunochemistry. These cells in both groups secreted insulin and C-peptide in a glucose challenge test by ELISA showing in vitro maturation. The results of current study demonstrated that enhanced differentiation of IPCs from hiPSCs could be result of PCL/PVA nanofibrous scaffolds. In conclusion, this research could provide a new approach to beta-like cells replacement therapies and pancreatic tissue engineering for T1DM in the future. Copyright © 2017. Published by Elsevier B.V.

  14. Emerging chitin and chitosan nanofibrous materials for biomedical applications

    NASA Astrophysics Data System (ADS)

    Ding, Fuyuan; Deng, Hongbing; Du, Yumin; Shi, Xiaowen; Wang, Qun

    2014-07-01

    Over the past several decades, we have witnessed significant progress in chitosan and chitin based nanostructured materials. The nanofibers from chitin and chitosan with appealing physical and biological features have attracted intense attention due to their excellent biological properties related to biodegradability, biocompatibility, antibacterial activity, low immunogenicity and wound healing capacity. Various methods, such as electrospinning, self-assembly, phase separation, mechanical treatment, printing, ultrasonication and chemical treatment were employed to prepare chitin and chitosan nanofibers. These nanofibrous materials have tremendous potential to be used as drug delivery systems, tissue engineering scaffolds, wound dressing materials, antimicrobial agents, and biosensors. This review article discusses the most recent progress in the preparation and application of chitin and chitosan based nanofibrous materials in biomedical fields.

  15. Binding of Thrombin-Activated Platelets to a Fibrin Scaffold through αIIbβ3 Evokes Phosphatidylserine Exposure on Their Cell Surface

    PubMed Central

    Brzoska, Tomasz; Suzuki, Yuko; Mogami, Hideo; Sano, Hideto; Urano, Tetsumei

    2013-01-01

    Recently, by employing intra-vital confocal microscopy, we demonstrated that platelets expose phosphatidylserine (PS) and fibrin accumulate only in the center of the thrombus but not in its periphery. To address the question how exposure of platelet anionic phospholipids is regulated within the thrombus, an in-vitro experiment using diluted platelet-rich plasma was employed, in which the fibrin network was formed in the presence of platelets, and PS exposure on the platelet surface was analyzed using Confocal Laser Scanning Microscopy. Almost all platelets exposed PS after treatment with tissue factor, thrombin or ionomycin. Argatroban abrogated fibrin network formation in all samples, however, platelet PS exposure was inhibited only in tissue factor- and thrombin-treated samples but not in ionomycin-treated samples. FK633, an αIIbβ3 antagonist, and cytochalasin B impaired platelet binding to the fibrin scaffold and significantly reduced PS exposure evoked by thrombin. Gly-Pro-Arg-Pro amide abrogated not only fibrin network formation, but also PS exposure on platelets without suppressing platelet binding to fibrin/fibrinogen. These results suggest that outside-in signals in platelets generated by their binding to the rigid fibrin network are essential for PS exposure after thrombin treatment. PMID:23383331

  16. Synthetic vs natural scaffolds for human limbal stem cells

    PubMed Central

    Tominac Trcin, Mirna; Dekaris, Iva; Mijović, Budimir; Bujić, Marina; Zdraveva, Emilija; Dolenec, Tamara; Pauk-Gulić, Maja; Primorac, Dragan; Crnjac, Josip; Špoljarić, Branimira; Mršić, Gordan; Kuna, Krunoslav; Špoljarić, Daniel; Popović, Maja

    2015-01-01

    Aim To investigate the impact of synthetic electrospun polyurethane (PU) and polycaprolactone (PCL) nanoscaffolds, before and after hydrolytic surface modification, on viability and differentiation of cultured human eye epithelial cells, in comparison with natural scaffolds: fibrin and human amniotic membrane. Methods Human placenta was taken at elective cesarean delivery. Fibrin scaffolds were prepared from commercial fibrin glue kits. Nanoscaffolds were fabricated by electrospinning. Limbal cells were isolated from surpluses of human cadaveric cornea and seeded on feeder 3T3 cells. The scaffolds used for viability testing and immunofluorescence analysis were amniotic membrane, fibrin, PU, and PCL nanoscaffolds, with or without prior NaOH treatment. Results Scanning electron microscope photographs of all tested scaffolds showed good colony spreading of seeded limbal cells. There was a significant difference in viability performance between cells with highest viability cultured on tissue culture plastic and cells cultured on all other scaffolds. On the other hand, electrospun PU, PCL, and electrospun PCL treated with NaOH had more than 80% of limbal cells positive for stem cell marker p63 compared to only 27%of p63 positive cells on fibrin. Conclusion Natural scaffolds, fibrin and amniotic membrane, showed better cell viability than electrospun scaffolds. On the contrary, high percentages of p63 positive cells obtained on these scaffolds still makes them good candidates for efficient delivery systems for therapeutic purposes. PMID:26088849

  17. A biocompatibility study of new nanofibrous scaffolds for nervous system regeneration

    NASA Astrophysics Data System (ADS)

    Raspa, A.; Marchini, A.; Pugliese, R.; Mauri, M.; Maleki, M.; Vasita, R.; Gelain, F.

    2015-12-01

    effective therapy will require contribution of different disciplines such as materials science, cell biology, drug delivery and nanotechnology. One of the biggest challenges in SCI regeneration is to create an artificial scaffold that could mimic the extracellular matrix (ECM) and support nervous system regeneration. Electrospun constructs and hydrogels based on self-assembling peptides (SAPs) have been recently preferred. In this work SAPs and polymers were assembled by using a coaxial electrospinning setup. We tested the biocompatibility of two types of coaxially electrospun microchannels: the first one made by a core of poly(ε-caprolactone) and poly(d,l-lactide-co-glycolide) (PCL-PLGA) and a shell of an emulsion of PCL-PLGA and a functionalized self-assembling peptide Ac-FAQ and the second one made by a core of Ac-FAQ and a shell of PCL-PLGA. Moreover, we tested an annealed scaffold by PCL-PLGA microchannel heat-treatment. The properties of coaxial scaffolds were analyzed using scanning electron microscopy (SEM), Fourier transform spectroscopy (FTIR), contact angle measurements and differential scanning calorimetry (DSC). In vitro cytotoxicity was assessed via viability and differentiation assays with neural stem cells (NSCs); whereas in vivo inflammatory response was evaluated following scaffold implantation in rodent spinal cords. Emulsification of the outer shell turned out to be the best choice in terms of cell viability and tissue response: thus suggesting the potential of using functionalized SAPs in coaxial electrospinning for applications in regenerative medicine. Electronic supplementary information (ESI) available: In vivo analysis to evaluate tissue reaction in the scaffold implant walls (Fig. S1) and to test axonal regeneration (Fig. S2). Waters LC-MS Alliance-3100 analysis to confirm the molecular weight and the integrity of peptides following the electrospray process (Fig. S3). Water contact angle of electrospun nanofibrous mats (Fig. S4). See DOI: 10

  18. Biomimetic Engineering of Nanofibrous Gelatin Scaffolds with Noncollagenous Proteins for Enhanced Bone Regeneration

    PubMed Central

    Sun, Yao; Jiang, Yong; Liu, Qilin; Gao, Tian; Feng, Jian Q.; Dechow, Paul; D'Souza, Rena N.; Qin, Chunlin

    2013-01-01

    Biomimetic approaches are widely used in scaffolding designs to enhance tissue regeneration. In this study, we integrated noncollagenous proteins (NCPs) from bone extracellular matrix (ECM) with three-dimensional nanofibrous gelatin (NF-Gelatin) scaffolds to form an artificial matrix (NF-Gelatin-NCPs) mimicking both the nano-structured architecture and chemical composition of natural bone ECM. Through a chemical coupling process, the NCPs were evenly distributed over all the surfaces (inner and outer) of the NF-gelatin-NCPs. The in vitro study showed that the number of osteoblasts (MC3T3-E1) on the NF-Gelatin-NCPs was significantly higher than that on the NF-Gelatin after being cultured for 14 days. Both the alkaline phosphatase (ALP) activity and the expression of osteogenic genes (OPN, BSP, DMP1, CON, and Runx2) were significantly higher in the NF-Gelatin-NCPs than in the NF-Gelatin at 3 weeks. Von Kossa staining, backscattered scanning electron microscopy, and microcomputed tomography all revealed a higher amount of mineral deposition in the NF-Gelatin-NCPs than in the NF-Gelatin after in vitro culturing for 3 weeks. The in vivo calvarial defect study indicated that the NF-Gelatin-NCPs recruited more host cells to the defect and regenerated a higher amount of bone than the controls after implantation for 6 weeks. Immunohistochemical staining also showed high-level mineralization of the bone matrix in the NF-Gelatin-NCPs. Taken together, both the in vitro and in vivo results confirmed that the incorporation of NCPs onto the surfaces of the NF-Gelatin scaffold significantly enhanced osteogenesis and mineralization. Biomimetic engineering of the surfaces of the NF-Gelatin scaffold with NCPs, therefore, is a promising strategy to enhance bone regeneration. PMID:23469769

  19. Multiple-Step Injection Molding for Fibrin-Based Tissue-Engineered Heart Valves

    PubMed Central

    Weber, Miriam; Gonzalez de Torre, Israel; Moreira, Ricardo; Frese, Julia; Oedekoven, Caroline; Alonso, Matilde; Rodriguez Cabello, Carlos J.

    2015-01-01

    Heart valves are elaborate and highly heterogeneous structures of the circulatory system. Despite the well accepted relationship between the structural and mechanical anisotropy and the optimal function of the valves, most approaches to create tissue-engineered heart valves (TEHVs) do not try to mimic this complexity and rely on one homogenous combination of cells and materials for the whole construct. The aim of this study was to establish an easy and versatile method to introduce spatial diversity into a heart valve fibrin scaffold. We developed a multiple-step injection molding process that enables the fabrication of TEHVs with heterogeneous composition (cell/scaffold material) of wall and leaflets without the need of gluing or suturing components together, with the leaflets firmly connected to the wall. The integrity of the valves and their functionality was proved by either opening/closing cycles in a bioreactor (proof of principle without cells) or with continuous stimulation over 2 weeks. We demonstrated the potential of the method by the two-step molding of the wall and the leaflets containing different cell lines. Immunohistology after stimulation confirmed tissue formation and demonstrated the localization of the different cell types. Furthermore, we showed the proof of principle fabrication of valves using different materials for wall (fibrin) and leaflets (hybrid gel of fibrin/elastin-like recombinamer) and with layered leaflets. The method is easy to implement, does not require special facilities, and can be reproduced in any tissue-engineering lab. While it has been demonstrated here with fibrin, it can easily be extended to other hydrogels. PMID:25654448

  20. Multiple-Step Injection Molding for Fibrin-Based Tissue-Engineered Heart Valves.

    PubMed

    Weber, Miriam; Gonzalez de Torre, Israel; Moreira, Ricardo; Frese, Julia; Oedekoven, Caroline; Alonso, Matilde; Rodriguez Cabello, Carlos J; Jockenhoevel, Stefan; Mela, Petra

    2015-08-01

    Heart valves are elaborate and highly heterogeneous structures of the circulatory system. Despite the well accepted relationship between the structural and mechanical anisotropy and the optimal function of the valves, most approaches to create tissue-engineered heart valves (TEHVs) do not try to mimic this complexity and rely on one homogenous combination of cells and materials for the whole construct. The aim of this study was to establish an easy and versatile method to introduce spatial diversity into a heart valve fibrin scaffold. We developed a multiple-step injection molding process that enables the fabrication of TEHVs with heterogeneous composition (cell/scaffold material) of wall and leaflets without the need of gluing or suturing components together, with the leaflets firmly connected to the wall. The integrity of the valves and their functionality was proved by either opening/closing cycles in a bioreactor (proof of principle without cells) or with continuous stimulation over 2 weeks. We demonstrated the potential of the method by the two-step molding of the wall and the leaflets containing different cell lines. Immunohistology after stimulation confirmed tissue formation and demonstrated the localization of the different cell types. Furthermore, we showed the proof of principle fabrication of valves using different materials for wall (fibrin) and leaflets (hybrid gel of fibrin/elastin-like recombinamer) and with layered leaflets. The method is easy to implement, does not require special facilities, and can be reproduced in any tissue-engineering lab. While it has been demonstrated here with fibrin, it can easily be extended to other hydrogels.

  1. Development and molecular characterization of polymeric micro-nanofibrous scaffold of a defined 3-D niche for in vitro chemosensitivity analysis against acute myeloid leukemia cells

    PubMed Central

    Nair, Maya S; Mony, Ullas; Menon, Deepthy; Koyakutty, Manzoor; Sidharthan, Neeraj; Pavithran, Keechilat; Nair, Shantikumar V; Menon, Krishnakumar N

    2015-01-01

    Standard in vitro drug testing employs 2-D tissue culture plate systems to test anti-leukemic drugs against cell adhesion-mediated drug-resistant leukemic cells that harbor in 3-D bone marrow microenvironments. This drawback necessitates the fabrication of 3-D scaffolds that have cell adhesion-mediated drug-resistant properties similar to in vivo niches. We therefore aimed at exploiting the known property of polyurethane (PU)/poly-l-lactic acid (PLLA) in forming a micro-nanofibrous structure to fabricate unique, not presented before, as far as we are aware, 3-D micro-nanofibrous scaffold composites using a thermally induced phase separation technique. Among the different combinations of PU/PLLA composites generated, the unique PU/PLLA 60:40 composite displayed micro-nanofibrous morphology similar to decellularized bone marrow with increased protein and fibronectin adsorption. Culturing of acute myeloid leukemia (AML) KG1a cells in FN-coated PU/PLLA 60:40 shows increased cell adhesion and cell adhesion-mediated drug resistance to the drugs cytarabine and daunorubicin without changing the original CD34+/CD38−/CD33− phenotype for 168 hours compared to fibronectin tissue culture plate systems. Molecularly, as seen in vivo, increased chemoresistance is associated with the upregulation of anti-apoptotic Bcl2 and the cell cycle regulatory protein p27Kip1 leading to cell growth arrest. Abrogation of Bcl2 activity by the Bcl2-specific inhibitor ABT 737 led to cell death in the presence of both cytarabine and daunorubicin, demonstrating that the cell adhesion-mediated drug resistance induced by Bcl2 and p27Kip1 in the scaffold was similar to that seen in vivo. These results thus show the utility of a platform technology, wherein drug testing can be performed before administering to patients without the necessity for stromal cells. PMID:26028971

  2. Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications

    PubMed Central

    Rajangam, Thanavel; An, Seong Soo A

    2013-01-01

    Over the past two decades, many types of natural and synthetic polymer-based micro- and nanocarriers, with exciting properties and applications, have been developed for application in various types of tissue regeneration, including bone, cartilage, nerve, blood vessels, and skin. The development of suitable polymers scaffold designs to aid the repair of specific cell types have created diverse and important potentials in tissue restoration. Fibrinogen (Fbg)- and fibrin (Fbn)-based micro- and nanostructures can provide suitable natural matrix environments. Since these primary materials are abundantly available in blood as the main coagulation proteins, they can easily interact with damaged tissues and cells through native biochemical interactions. Fbg- and Fbn-based micro and nanostructures can also be consecutively furnished/or encapsulated and specifically delivered, with multiple growth factors, proteins, and stem cells, in structures designed to aid in specific phases of the tissue regeneration process. The present review has been carried out to demonstrate the progress made with micro and nanoscaffold applications and features a number of applications of Fbg- and Fbn-based carriers in the field of biomaterials, including the delivery of drugs, active biomolecules, cells, and genes, that have been effectively used in tissue engineering and regenerative medicine. PMID:24106425

  3. Fiber Angle and Aspect Ratio Influence the Shear Mechanics of Oriented Electrospun Nanofibrous Scaffolds

    PubMed Central

    Driscoll, Tristan P.; Nerurkar, Nandan L.; Jacobs, Nathan T.; Elliott, Dawn M.; Mauck, Robert L.

    2011-01-01

    Fibrocartilages, including the knee meniscus and the annulus fibrosus (AF) of the intervertebral disc, play critical mechanical roles in load transmission across joints and their function is dependent upon well-defined structural hierarchies, organization, and composition. All, however, are compromised in the pathologic transformations associated with tissue degeneration. Tissue engineering strategies that address these key features, for example, aligned nanofibrous scaffolds seeded with mesenchymal stem cells (MSCs), represent a promising approach for the regeneration of these fibrous structures. While such engineered constructs can replicate native tissue structure and uniaxial tensile properties, the multidirectional loading encountered by these tissues in vivo necessitates that they function adequately in other loading modalities as well, including shear. As previous findings have shown that native tissue tensile and shear properties are dependent on fiber angle and sample aspect ratio, respectively, the objective of the present study was to evaluate the effects of a changing fiber angle and sample aspect ratio on the shear properties of aligned electrospun poly(ε-caprolactone) (PCL) scaffolds, and to determine how extracellular matrix deposition by resident MSCs modulates the measured shear response. Results show that fiber orientation and sample aspect ratio significantly influence the response of scaffolds in shear, and that measured shear strains can be predicted by finite element models. Furthermore, acellular PCL scaffolds possessed a relatively high shear modulus, 2–4 fold greater than native tissue, independent of fiber angle and aspect ratio. It was further noted that under testing conditions that engendered significant fiber stretch, the aggregate resistance to shear was higher, indicating a role for fiber stretch in the overall shear response. Finally, with time in culture, the shear modulus of MSC laden constructs increased, suggesting that

  4. Microscale diffusion measurements and simulation of a scaffold with a permeable strut.

    PubMed

    Lee, Seung Youl; Lee, Byung Ryong; Lee, Jongwan; Kim, Seongjun; Kim, Jung Kyung; Jeong, Young Hun; Jin, Songwan

    2013-10-10

    Electrospun nanofibrous structures provide good performance to scaffolds in tissue engineering. We measured the local diffusion coefficients of 3-kDa FITC-dextran in line patterns of electrospun nanofibrous structures fabricated by the direct-write electrospinning (DWES) technique using the fluorescence recovery after photobleaching (FRAP) method. No significant differences were detected between DWES line patterns fabricated with polymer supplied at flow rates of 0.1 and 0.5 mL/h. The oxygen diffusion coefficients of samples were estimated to be ~92%-94% of the oxygen diffusion coefficient in water based on the measured diffusion coefficient of 3-kDa FITC-dextran. We also simulated cell growth and distribution within spatially patterned scaffolds with struts consisting of either oxygen-permeable or non-permeable material. The permeable strut scaffolds exhibited enhanced cell growth. Saturated depths at which cells could grow to confluence were 15% deeper for the permeable strut scaffolds than for the non-permeable strut scaffold.

  5. Mechanical enhancement and in vitro biocompatibility of nanofibrous collagen-chitosan scaffolds for tissue engineering.

    PubMed

    Zou, Fengjuan; Li, Runrun; Jiang, Jianjun; Mo, Xiumei; Gu, Guofeng; Guo, Zhongwu; Chen, Zonggang

    2017-12-01

    The collagen-chitosan complex with a three-dimensional nanofiber structure was fabricated to mimic native ECM for tissue repair and biomedical applications. Though the three-dimensional hierarchical fibrous structures of collagen-chitosan composites could provide more adequate stimulus to facilitate cell adhesion, migrate and proliferation, and thus have the potential as tissue engineering scaffolding, there are still limitations in their applications due to the insufficient mechanical properties of natural materials. Because poly (vinyl alcohol) (PVA) and thermoplastic polyurethane (TPU) as biocompatible synthetic polymers can offer excellent mechanical properties, they were introduced into the collagen-chitosan composites to fabricate the mixed collagen/chitosan/PVA fibers and a sandwich structure (collagen/chitosan-TPU-collagen/chitosan) of nanofiber in order to enhance the mechanical properties of the nanofibrous collagen-chitosan scaffold. The results showed that the tensile behavior of materials was enhanced to different degrees with the difference of collagen content in the fibers. Besides the Young's modulus had no obvious changes, both the break strength and the break elongation of materials were heightened after reinforced by PVA. For the collagen-chitosan nanofiber reinforced by TPU, both the break strength and the Young's modulus of materials were heightened in different degrees with the variety of collagen content in the fibers despite the decrease of the break elongation of materials to some extent. In vitro cell test demonstrated that the materials could provide adequate environment for cell adhesion and proliferation. All these indicated that the reinforced collagen-chitosan nanofiber could be as potential scaffold for tissue engineering according to the different mechanical requirements in clinic.

  6. Homologous structure-function relationships between native fibrocartilage and tissue engineered from MSC-seeded nanofibrous scaffolds.

    PubMed

    Nerurkar, Nandan L; Han, Woojin; Mauck, Robert L; Elliott, Dawn M

    2011-01-01

    Understanding the interplay of composition, organization and mechanical function in load-bearing tissues is a prerequisite in the successful engineering of tissues to replace diseased ones. Mesenchymal stem cells (MSCs) seeded on electrospun scaffolds have been successfully used to generate organized tissues that mimic fibrocartilages such as the knee meniscus and the annulus fibrosus of the intervertebral disc. While matrix deposition has been observed in parallel with improved mechanical properties, how composition, organization, and mechanical function are related is not known. Moreover, how this relationship compares to that of native fibrocartilage is unclear. Therefore, in the present work, functional fibrocartilage constructs were formed from MSC-seeded nanofibrous scaffolds, and the roles of collagen and glycosaminoglycan (GAG) in compressive and tensile properties were determined. MSCs deposited abundant collagen and GAG over 120 days of culture, and these extracellular molecules were organized in such a way that they performed similar mechanical functions to their native roles: collagen dominated the tensile response while GAG was important for compressive properties. GAG removal resulted in significant stiffening in tension. A similar stiffening response was observed when GAG was removed from native inner annulus fibrosus, suggesting an interaction between collagen fibers and their surrounding extrafibrillar matrix that is shared by both engineered and native fibrocartilages. These findings strongly support the use of electrospun scaffolds and MSCs for fibrocartilage tissue engineering, and provide insight on the structure-function relations of both engineered and native biomaterials. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. HOMOLOGOUS STRUCTURE-FUNCTION RELATIONSHIPS BETWEEN NATIVE FIBROCARTILAGE AND TISSUE ENGINEERED FROM MSC-SEEDED NANOFIBROUS SCAFFOLDS

    PubMed Central

    Nerurkar, Nandan L.; Han, Woojin; Mauck, Robert L.; Elliott, Dawn M.

    2010-01-01

    Understanding the interplay of composition, organization and mechanical function in load-bearing tissues is a prerequisite in the successful engineering of replacement tissues for diseased ones. Mesenchymal stem cells (MSCs) seeded on electrospun scaffolds have been successfully used to generate organized tissues that mimic fibrocartilages such as the knee meniscus and the annulus fibrosus of the intervertebral disc. While matrix deposition has been observed in parallel with improved mechanical properties, how composition, organization, and mechanical function are related is not known. Moreover, how this relationship compares to that of native fibrocartilage is unclear. Therefore, in the present work, functional fibrocartilage constructs were formed from MSC-seeded nanofibrous scaffolds, and the roles of collagen and glycosaminoglycan (GAG) in compressive and tensile properties were determined. MSCs deposited abundant collagen and GAG over 120 days of culture, and these extracellular molecules were organized in such a way that they performed similar mechanical functions to their native roles: collagen dominated the tensile response while GAG was important for compressive properties. GAG removal resulted in significant stiffening in tension. A similar stiffening response was observed when GAG was removed from native inner annulus fibrosus, suggesting an interaction between collagen fibers and their surrounding extrafibrillar matrix that is shared by both engineered and native fibrocartilages. These findings strongly support the use of electrospun scaffolds and MSCs for fibrocartilage tissue engineering, and provide insight on the structure-function relations of both engineered and native biomaterials. PMID:20880577

  8. Chitosan microspheres with an extracellular matrix-mimicking nanofibrous structure as cell-carrier building blocks for bottom-up cartilage tissue engineering

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Gao, Huai-Ling; Shen, Li-Li; Pan, Zhao; Mao, Li-Bo; Wu, Tao; He, Jia-Cai; Zou, Duo-Hong; Zhang, Zhi-Yuan; Yu, Shu-Hong

    2015-12-01

    Scaffolds for tissue engineering (TE) which closely mimic the physicochemical properties of the natural extracellular matrix (ECM) have been proven to advantageously favor cell attachment, proliferation, migration and new tissue formation. Recently, as a valuable alternative, a bottom-up TE approach utilizing cell-loaded micrometer-scale modular components as building blocks to reconstruct a new tissue in vitro or in vivo has been proved to demonstrate a number of desirable advantages compared with the traditional bulk scaffold based top-down TE approach. Nevertheless, micro-components with an ECM-mimicking nanofibrous structure are still very scarce and highly desirable. Chitosan (CS), an accessible natural polymer, has demonstrated appealing intrinsic properties and promising application potential for TE, especially the cartilage tissue regeneration. According to this background, we report here the fabrication of chitosan microspheres with an ECM-mimicking nanofibrous structure for the first time based on a physical gelation process. By combining this physical fabrication procedure with microfluidic technology, uniform CS microspheres (CMS) with controlled nanofibrous microstructure and tunable sizes can be facilely obtained. Especially, no potentially toxic or denaturizing chemical crosslinking agent was introduced into the products. Notably, in vitro chondrocyte culture tests revealed that enhanced cell attachment and proliferation were realized, and a macroscopic 3D geometrically shaped cartilage-like composite can be easily constructed with the nanofibrous CMS (NCMS) and chondrocytes, which demonstrate significant application potential of NCMS as the bottom-up cell-carrier components for cartilage tissue engineering.Scaffolds for tissue engineering (TE) which closely mimic the physicochemical properties of the natural extracellular matrix (ECM) have been proven to advantageously favor cell attachment, proliferation, migration and new tissue formation

  9. Enhanced chondrocyte culture and growth on biologically inspired nanofibrous cell culture dishes.

    PubMed

    Bhardwaj, Garima; Webster, Thomas J

    2016-01-01

    Chondral and osteochondral defects affect a large number of people in which treatment options are currently limited. Due to its ability to mimic the natural nanofibrous structure of cartilage, this current in vitro study aimed at introducing a new scaffold, called XanoMatrix™, for cartilage regeneration. In addition, this same scaffold is introduced here as a new substrate onto which to study chondrocyte functions. Current studies on chondrocyte functions are limited due to nonbiologically inspired cell culture substrates. With its polyethylene terephthalate and cellulose acetate composition, good mechanical properties and nanofibrous structure resembling an extracellular matrix, XanoMatrix offers an ideal surface for chondrocyte growth and proliferation. This current study demonstrated that the XanoMatrix scaffolds promote chondrocyte growth and proliferation as compared with the Corning and Falcon surfaces normally used for chondrocyte cell culture. The XanoMatrix scaffolds also have greater hydrophobicity, three-dimensional surface area, and greater tensile strength, making them ideal candidates for alternative treatment options for chondral and osteochondral defects as well as cell culture substrates to study chondrocyte functions.

  10. Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering.

    PubMed

    Yao, Qingqing; Liu, Yangxi; Selvaratnam, Balaranjan; Koodali, Ranjit T; Sun, Hongli

    2018-04-09

    Controlled delivery systems play a critical role in the success of bone morphogenetic proteins (i.e., BMP2 and BMP7) for challenged bone repair. Instead of single-drug release that is currently and commonly prevalent, dual-drug delivery strategies are highly desired to achieve effective bone regeneration because natural bone repair process is driven by multiple factors. Particularly, angiogenesis is essential for osteogenesis and requires more than just one factor (e.g., Vascular Endothelial Growth Factor, VEGF). Therefore, we developed a novel mesoporous silicate nanoparticles (MSNs) incorporated-3D nanofibrous gelatin (GF) scaffold for dual-delivery of BMP2 and deferoxamine (DFO). DFO is a hypoxia-mimetic drug that can activate hypoxia-inducible factor-1 alpha (HIF-1α), and trigger subsequent angiogenesis. Sustained BMP2 release system was achieved through encapsulation into large-pored MSNs, while the relative short-term release of DFO was engineered through covalent conjugation with chitosan to reduce its cytotoxicity and elongate its half-life. Both MSNs and DFO were incorporated onto a porous 3D GF scaffold to serve as a biomimetic osteogenic microenvironment. Our data indicated that DFO and BMP2 were released from a scaffold at different release rates (10 vs 28 days) yet maintained their angiogenic and osteogenic ability, respectively. Importantly, our data indicated that the released DFO significantly improved BMP2-induced osteogenic differentiation where the dose/duration was important for its effects in both mouse and human stem cell models. Thus, we developed a novel and tunable MSNs/GF 3D scaffold-mediated dual-drug delivery system and studied the potential application of the both FDA-approved DFO and BMP2 for bone tissue engineering. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Improved human endometrial stem cells differentiation into functional hepatocyte-like cells on a glycosaminoglycan/collagen-grafted polyethersulfone nanofibrous scaffold.

    PubMed

    Khademi, Farzaneh; Ai, Jafar; Soleimani, Masoud; Verdi, Javad; Mohammad Tavangar, Seyed; Sadroddiny, Esmaeil; Massumi, Mohammad; Mahmoud Hashemi, Seyed

    2017-11-01

    Liver tissue engineering (TE) is rapidly emerging as an effective technique which combines engineering and biological processes to compensate for the shortage of damaged or destroyed liver tissues. We examined the viability, differentiation, and integration of hepatocyte-like cells on an electrospun polyethersulfone (PES) scaffold, derived from human endometrial stem cells (hEnSCs). Natural polymers were separately grafted on plasma-treated PES nanofibers, that is, collagen, heparan sulfate (HS) and collagen-HS. Galactosilated PES (PES-Gal) nanofibrous were created. The engineering and cell growth parameters were considered and compared with each sample. The cellular studies revealed increased cell survival, attachment, and normal morphology on the bioactive natural polymer-grafted scaffolds after 30 days of hepatic differentiation. The chemical and molecular assays displayed hepatocyte differentiation. These cells were also functional, showing glycogen storage, α-fetoprotein, and albumin secretion. The HS nanoparticle-grafted PES nanofibers demonstrated a high rate of cell proliferation, differentiation, and integration. Based on the observations mentioned above, engineered tissue is a good option in the future, for the commercial production of three-dimensional liver tissues for clinical purposes. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2516-2529, 2017. © 2016 Wiley Periodicals, Inc.

  12. Variations in chondrogenesis of human bone marrow-derived mesenchymal stem cells in fibrin/alginate blended hydrogels

    PubMed Central

    Ma, Kun; Titan, Ashley L.; Stafford, Melissa; Zheng, Chun hua; Levenston, Marc E.

    2012-01-01

    Fibrin and alginate hydrogels have been widely used to support chondrogenesis of bone marrow-derived mesenchymal stem cells (BM-MSCs) for articular cartilage and fibrocartilage tissue engineering, with distinct advantages and disadvantages to each material. Attempting to produce a gel scaffold exhibiting beneficial characteristics of both materials, we fabricated fibrin/alginate blended hydrogels at various blend ratios and evaluated the gel morphology, mechanical properties and their support for BM-MSC chondrogenesis. Results show that when the fibrin/alginate ratio decreased, the fibrin architecture transitioned from uniform to interconnected fibrous and finally to disconnected islands against an alginate background, with opposing trends in the alginate architecture. Fibrin maintained gel extensibility and promoted cell proliferation, while alginate improved the gel biostability and better supported glycosaminoglycan and collagen II production and chondrogenic gene expression. Blended gels had physical and biological characteristics intermediate between fibrin and alginate. Of the blends examined, FA 40:8 (40 mg/mL fibrinogen blended with 8 mg/mL alginate) was found to be the most appropriate group for future studies on tension-driven BM-MSC fibrochondrogenesis. As BM-MSC differentiation appeared to vary between fibrin and alginate regions of blended scaffolds, this study also highlighted the potential to develop spatially heterogeneous tissues through manipulating the heterogeneity of scaffold composition. PMID:22750738

  13. Advances in skin regeneration: application of electrospun scaffolds.

    PubMed

    Norouzi, Mohammad; Boroujeni, Samaneh Moghadasi; Omidvarkordshouli, Noushin; Soleimani, Masoud

    2015-06-03

    The paucity of cellular and molecular signals essential for normal wound healing makes severe dermatological ulcers stubborn to heal. The novel strategies of skin regenerative treatments are focused on the development of biologically responsive scaffolds accompanied by cells and multiple biomolecules resembling structural and biochemical cues of the natural extracellular matrix (ECM). Electrospun nanofibrous scaffolds provide similar architecture to the ECM leading to enhancement of cell adhesion, proliferation, migration and neo tissue formation. This Review surveys the application of biocompatible natural, synthetic and composite polymers to fabricate electrospun scaffolds as skin substitutes and wound dressings. Furthermore, the application of biomolecules and therapeutic agents in the nanofibrous scaffolds viz growth factors, genes, antibiotics, silver nanoparticles, and natural medicines with the aim of ameliorating cellular behavior, wound healing, and skin regeneration are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Lyophilized platelet-rich fibrin (PRF) promotes craniofacial bone regeneration through Runx2.

    PubMed

    Li, Qi; Reed, David A; Min, Liu; Gopinathan, Gokul; Li, Steve; Dangaria, Smit J; Li, Leo; Geng, Yajun; Galang, Maria-Therese; Gajendrareddy, Praveen; Zhou, Yanmin; Luan, Xianghong; Diekwisch, Thomas G H

    2014-05-14

    Freeze-drying is an effective means to control scaffold pore size and preserve its composition. The purpose of the present study was to determine the applicability of lyophilized Platelet-rich fibrin (LPRF) as a scaffold for craniofacial tissue regeneration and to compare its biological effects with commonly used fresh Platelet-rich fibrin (PRF). LPRF caused a 4.8-fold±0.4-fold elevation in Runt-related transcription factor 2 (Runx2) expression in alveolar bone cells, compared to a 3.6-fold±0.2-fold increase when using fresh PRF, and a more than 10-fold rise of alkaline phosphatase levels and mineralization markers. LPRF-induced Runx2 expression only occurred in alveolar bone and not in periodontal or dental follicle cells. LPRF also caused a 1.6-fold increase in osteoblast proliferation (p<0.001) when compared to fresh PRF. When applied in a rat craniofacial defect model for six weeks, LPRF resulted in 97% bony coverage of the defect, compared to 84% for fresh PRF, 64% for fibrin, and 16% without scaffold. Moreover, LPRF thickened the trabecular diameter by 25% when compared to fresh PRF and fibrin, and only LPRF and fresh PRF resulted in the formation of interconnected trabeculae across the defect. Together, these studies support the application of lyophilized PRF as a biomimetic scaffold for craniofacial bone regeneration and mineralized tissue engineering.

  15. Enhanced Osteogenic and Vasculogenic Differentiation Potential of Human Adipose Stem Cells on Biphasic Calcium Phosphate Scaffolds in Fibrin Gels

    PubMed Central

    2016-01-01

    For bone tissue engineering synthetic biphasic calcium phosphate (BCP) with a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ratio of 60/40 (BCP60/40) is successfully clinically applied, but the high percentage of HA may hamper efficient scaffold remodelling. Whether BCP with a lower HA/β-TCP ratio (BCP20/80) is more desirable is still unclear. Vascular development is needed before osteogenesis can occur. We aimed to test the osteogenic and/or vasculogenic differentiation potential as well as degradation of composites consisting of human adipose stem cells (ASCs) seeded on BCP60/40 or BCP20/80 incorporated in fibrin gels that trigger neovascularization for bone regeneration. ASC attachment to BCP60/40 and BCP20/80 within 30 min was similar (>93%). After 11 days of culture BCP20/80-based composites showed increased alkaline phosphatase activity and DMP1 gene expression, but not RUNX2 and osteonectin expression, compared to BCP60/40-based composites. BCP20/80-based composites also showed enhanced expression of the vasculogenic markers CD31 and VEGF189, but not VEGF165 and endothelin-1. Collagen-1 and collagen-3 expression was similar in both composites. Fibrin degradation was increased in BCP20/80-based composites at day 7. In conclusion, BCP20/80-based composites showed enhanced osteogenic and vasculogenic differentiation potential compared to BCP60/40-based composites in vitro, suggesting that BCP20/80-based composites might be more promising for in vivo bone augmentation than BCP60/40-based composites. PMID:27547223

  16. Submillisecond elastic recoil reveals molecular origins of fibrin fiber mechanics.

    PubMed

    Hudson, Nathan E; Ding, Feng; Bucay, Igal; O'Brien, E Timothy; Gorkun, Oleg V; Superfine, Richard; Lord, Susan T; Dokholyan, Nikolay V; Falvo, Michael R

    2013-06-18

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin's elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin's mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Gum tragacanth/poly(l-lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage.

    PubMed

    Ranjbar-Mohammadi, Marziyeh; Prabhakaran, Molamma P; Bahrami, S Hajir; Ramakrishna, Seeram

    2016-04-20

    Nanofibrous nerve guides have gained huge interest in supporting the peripheral nerve regeneration due to their abilities to simulate the topography, mechanical, biological and extracellular matrix morphology of native tissue. Gum tragacanth (GT) is a biocompatible mixture of polysaccharides that has been used in biomedical applications. During this study, we fabricated aligned and random nanofibers from poly(l-lactic acid) and gum tragacanth (PLLA/GT) in various ratios (100:0, 75:25, and 50:50) by electrospinning. Scanning electron microscope demonstrated smooth and uniform nanofibers with diameters in the range of 733±65nm and 226±73nm for align PLLA and random PLLA/GT 50:50 nanofibers, respectively. FTIR analysis, contact angle, in vitro biodegradation and tensile measurements were carried out to evaluate the chemical and mechanical properties of the different scaffolds. PLLA/GT 75:25 exhibited the most balanced properties compared to other scaffolds and was used for in vitro culture of nerve cells (PC12) to assess the potential of using these scaffolds as a substrate for nerve regeneration. The cells were found to attach and proliferate on aligned PLLA/GT 75:25 scaffolds, expressing bi-polar neurite extensions and the orientation of nerve cells was along the direction of the fiber alignment. Results of 8 days of in vitro culture of PC12 cells on aligned PLLA/GT 75:25 nanofibers, showed 20% increase in cell proliferation compared to PLLA/GT 75:25 random nanofibers. PLLA/GT 75:25 aligned nanofibers acted as a favorable cue to support neurite outgrowth and nerve cell elongation compared with PLLA nanofibers. Our results showed that aligned PLLA/GT 75:25 nanofibers are promising substrates for application as bioengineered grafts for nerve tissue regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Fibrin glue mixed with platelet-rich fibrin as a scaffold seeded with dental bud cells for tooth regeneration.

    PubMed

    Yang, Kai-Chiang; Wang, Chun-Hao; Chang, Hao-Hueng; Chan, Wing P; Chi, Chau-Hwa; Kuo, Tzong-Fu

    2012-11-01

    Odontogenesis is a complex process with a series of epithelial-mesenchymal interactions and odontogenic molecular cascades. In tissue engineering of teeth from stem cells, platelet-rich fibrin (PRF), which is rich in growth factors and cytokines, may improve regeneration. Accordingly, PRF was added into fibrin glue to enrich the microenvironment with growth factors. Unerupted second molar tooth buds were harvested from miniature swine and cultured in vitro for 3 weeks to obtain dental bud cells (DBCs). Whole blood was collected for the preparation of PRF and fibrin glue before surgery. DBCs were suspended in fibrin glue and then enclosed with PRF, and the DBC-fibrin glue-PRF composite was autografted back into the original alveolar sockets. Radiographic and histological examinations were used to identify the regenerated tooth structure 36 weeks after implantation. Immunohistochemical staining was used to detect proteins specific to tooth regeneration. One pig developed a complete tooth with crown, root, pulp, enamel, dentin, odontoblast, cementum, blood vessels, and periodontal ligaments in indiscriminate shape. Another animal had an unerupted tooth that expressed cytokeratin 14, dentin matrix protein-1, vascular endothelial growth factor, and osteopontin. This study demonstrated, using autogenic cell transplantation in a porcine model, that DBCs seeded into fibrin glue-PRF could regenerate a complete tooth. Copyright © 2011 John Wiley & Sons, Ltd.

  19. MOLD-SHAPED, NANOFIBER SCAFFOLD-BASED CARTILAGE ENGINEERING USING HUMAN MESENCHYMAL STEM CELLS AND BIOREACTOR

    PubMed Central

    Janjanin, Sasa; Li, Wan-Ju; Morgan, Meredith T.; Shanti, Rabie M.; Tuan, Rocky S.

    2008-01-01

    Background Mesenchymal stem cell (MSC)-based tissue engineering is a promising future alternative to autologous cartilage grafting. This study evaluates the potential of using MSCs, seeded into electrospun, biodegradable polymeric nanofibrous scaffolds, to engineer cartilage with defined dimensions and shape, similar to grafts used for subcutaneous implantation in plastic and reconstructive surgery. Materials and methods Human bone marrow derived MSCs seeded onto nanofibrous scaffolds and placed in custom-designed molds were cultured for up to 42 days in bioreactors. Chondrogenesis was induced with either transforming growth factor-β1 (TGF-β1) alone or in combination with insulin-like growth factor-I (IGF-I). Results Constructs exhibited hyaline cartilage histology with desired thickness and shape as well as favorable tissue integrity and shape retention, suggesting the presence of elastic tissue. Time-dependent increase in cartilage matrix gene expression was seen in both types of culture; at Day 42, TGF-β1/IGF-I treated cultures showed higher collagen type II and aggrecan expression. Both culture conditions showed significant time-dependent increase in sulfated glycosaminoglycan and hydroxyproline contents. TGF-β1/IGF-I treated samples were significantly stiffer; with equilibrium compressive Young’s modulus values reaching 17 kPa by Day 42. Conclusions The successful ex vivo development of geometrically defined cartilaginous construct using customized molding suggests the potential of cell-based cartilage tissue for reconstructive surgery. PMID:18316094

  20. Fibrin Degradation Enhances Vascular Smooth Muscle Cell Proliferation and Matrix Deposition in Fibrin-Based Tissue Constructs Fabricated In Vitro

    PubMed Central

    Ahmann, Katherine A.; Weinbaum, Justin S.; Johnson, Sandra L.

    2010-01-01

    Completely biological tissue replacements can be fabricated by entrapping cells in a molded fibrin gel. Over time, the fibrin is degraded and replaced with cell-produced extracellular matrix. However, the relationship between fibrin degradation and matrix deposition has not been elucidated. We developed techniques to quantify fibrin degradation products (FDP) and examine plasmin activity in the conditioned medium from fibrin-based constructs. Fibrin-based tissue constructs fabricated with vascular smooth muscle cells (vSMC) were cultured for 5 weeks in the presence of varied concentrations of the fibrinolysis inhibitor ɛ-aminocaproic acid and cellularity, and deposited collagen and elastin were measured weekly. These data revealed that increasing concentrations of ɛ-aminocaproic acid led to delayed and diminished FDP production, lower vSMC proliferation, and decreased collagen and elastin deposition. FDP were shown to have a direct biological effect on vSMC cultures and vSMC within the fibrin-based constructs. Supplementing construct cultures with 250 or 500 μg/mL FDP led to 30% higher collagen deposition than the untreated controls. FDP concentrations as high as 250 μg/mL were estimated to exist within the constructs, indicating that FDP generation during remodeling of the fibrin-based constructs exerted direct biological activity. These results help explain many of the positive outcomes reported with fibrin-based tissue constructs in the literature, as well as demonstrate the importance of regulating plasmin activity during their fabrication. PMID:20536358

  1. Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri-tasar silk fibroin nanofibrous scaffold.

    PubMed

    Panda, N; Bissoyi, A; Pramanik, K; Biswas, A

    2014-01-01

    Stimulating stem cell differentiation without growth factor supplement offers a potent and cost-effective scaffold for tissue regeneration. We hypothesise that surface precipitation of nano-hydroxyapatite (nHAp) over blends of non-mulberry silk fibroin with better hydrophilicity and RGD amino acid sequences can direct the stem cell towards osteogenesis. This report focuses on the fabrication of a blended eri-tasar silk fibroin nanofibrous scaffold (ET) followed by nHAp deposition by a surface precipitation (alternate soaking in calcium and phosphate solution) method. Morphology, hydrophilicity, composition, and the thermal and mechanical properties of ET/nHAp were examined by field emission scanning electron microscopy, TEM, FT-IR, X-ray diffraction, TGA and contact angle measurement and compared with ET. The composite scaffold demonstrated improved thermal stability and surface hydrophilicity with an increase in stiffness and elastic modulus (778 ± 2.4 N/m and 13.1 ± 0.36 MPa) as compared to ET (160.6 ± 1.34 N/m and 8.3 ± 0.4 MPa). Mineralisation studies revealed an enhanced and more uniform surface deposition of HAp-like crystals, while significant differences in cellular viability and attachment were observed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and confocal microscopy study. The cell viability and expression of adhesion molecules (CD 44 and CD 29) are found to be optimum for subsequent stages of growth proliferation and differentiation. The rates of proliferation have been observed to decrease owing to the transition of MSC from a state of proliferation to a state of differentiation. The confirmation of improved osteogenic differentiation was finally verified through the alkaline phosphatase assay, pattern of gene expression related to osteogenic differentiation and morphological observations of differentiated cord blood human mesenchymal stem cells under fluorescence microscope. The results

  2. In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning.

    PubMed

    Burke, Luke; Mortimer, Chris J; Curtis, Daniel J; Lewis, Aled R; Williams, Rhodri; Hawkins, Karl; Maffeis, Thierry G G; Wright, Chris J

    2017-01-01

    We demonstrate a facile, one-step process to form polymer scaffolds composed of magnetic iron oxide nanoparticles (MNPs) contained within electrospun nano- and micro-fibres of two biocompatible polymers, Poly(ethylene oxide) (PEO) and Poly(vinyl pyrrolidone) (PVP). This was achieved with both needle and free-surface electrospinning systems demonstrating the scalability of the composite fibre manufacture; a 228 fold increase in fibre fabrication was observed for the free-surface system. In all cases the nanoparticle-nanofibre composite scaffolds displayed morphological properties as good as or better than those previously described and fabricated using complex multi-stage techniques. Fibres produced had an average diameter (Needle-spun: 125±18nm (PEO) and 1.58±0.28μm (PVP); Free-surface electrospun: 155±31nm (PEO)) similar to that reported previously, were smooth with no bead defects. Nanoparticle-nanofibre composites were characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) (Nanoparticle average diameter ranging from 8±3nm to 27±5nm), XRD (Phase of iron oxide nanoparticles identified as magnetite) and nuclear magnetic resonance relaxation measurements (NMR) (T1/T2: 32.44 for PEO fibres containing MNPs) were used to verify the magnetic behaviour of MNPs. This study represents a significant step forward for production rates of magnetic nanoparticle-nanofibre composite scaffolds by the electrospinning technique. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Silk-fibrin/hyaluronic acid composite gels for nucleus pulposus tissue regeneration.

    PubMed

    Park, Sang-Hyug; Cho, Hongsik; Gil, Eun Seok; Mandal, Biman B; Min, Byoung-Hyun; Kaplan, David L

    2011-12-01

    Scaffold designs are critical for in vitro culture of tissue-engineered cartilage in three-dimensional environments to enhance cellular differentiation for tissue engineering and regenerative medicine. In the present study we demonstrated silk and fibrin/hyaluronic acid (HA) composite gels as scaffolds for nucleus pulposus (NP) cartilage formation, providing both biochemical support for NP outcomes as well as fostering the retention of size of the scaffold during culture due to the combined features of the two proteins. Passage two (P2) human chondrocytes cultured in 10% serum were encapsulated within silk-fibrin/HA gels. Five study groups with fibrin/HA gel culture (F/H) along with varying silk concentrations (2% silk gel only, fibrin/HA gel culture with 1% silk [F/H+1S], 1.5% silk [F/H+1.5S], and 2% silk [F/H+2S]) were cultured in serum-free chondrogenic defined media (CDM) for 4 weeks. Histological examination with alcian blue showed a defined chondrogenic area at 1 week in all groups that widened homogenously until 4 weeks. In particular, chondrogenic differentiation observed in the F/H+1.5S had no reduction in size throughout the culture period. The results of biochemical and molecular biological evaluations supported observations made during histological examination. Mechanical strength measurements showed that the silk mixed gels provided stronger mechanical properties for NP tissue than fibrin/HA composite gels in CDM. This effect could potentially be useful in the study of in vitro NP tissue engineering as well as for clinical implications for NP tissue regeneration.

  4. Silk-Fibrin/Hyaluronic Acid Composite Gels for Nucleus Pulposus Tissue Regeneration

    PubMed Central

    Park, Sang-Hyug; Cho, Hongsik; Gil, Eun Seok; Mandal, Biman B.; Min, Byoung-Hyun

    2011-01-01

    Scaffold designs are critical for in vitro culture of tissue-engineered cartilage in three-dimensional environments to enhance cellular differentiation for tissue engineering and regenerative medicine. In the present study we demonstrated silk and fibrin/hyaluronic acid (HA) composite gels as scaffolds for nucleus pulposus (NP) cartilage formation, providing both biochemical support for NP outcomes as well as fostering the retention of size of the scaffold during culture due to the combined features of the two proteins. Passage two (P2) human chondrocytes cultured in 10% serum were encapsulated within silk-fibrin/HA gels. Five study groups with fibrin/HA gel culture (F/H) along with varying silk concentrations (2% silk gel only, fibrin/HA gel culture with 1% silk [F/H+1S], 1.5% silk [F/H+1.5S], and 2% silk [F/H+2S]) were cultured in serum-free chondrogenic defined media (CDM) for 4 weeks. Histological examination with alcian blue showed a defined chondrogenic area at 1 week in all groups that widened homogenously until 4 weeks. In particular, chondrogenic differentiation observed in the F/H+1.5S had no reduction in size throughout the culture period. The results of biochemical and molecular biological evaluations supported observations made during histological examination. Mechanical strength measurements showed that the silk mixed gels provided stronger mechanical properties for NP tissue than fibrin/HA composite gels in CDM. This effect could potentially be useful in the study of in vitro NP tissue engineering as well as for clinical implications for NP tissue regeneration. PMID:21736446

  5. Electrospun nanofibrous SF/P(LLA-CL) membrane: a potential substratum for endothelial keratoplasty.

    PubMed

    Chen, Junzhao; Yan, Chenxi; Zhu, Mengyu; Yao, Qinke; Shao, Chunyi; Lu, Wenjuan; Wang, Jing; Mo, Xiumei; Gu, Ping; Fu, Yao; Fan, Xianqun

    2015-01-01

    Cornea transplant technology has progressed markedly in recent decades, allowing surgeons to replace diseased corneal endothelium by a thin lamellar structure. A thin, transparent, biocompatible, tissue-engineered substratum with corneal endothelial cells for endothelial keratoplasty is currently of interest. Electrospinning a nanofibrous structure can simulate the extracellular matrix and have beneficial effects for cell culture. Silk fibroin (SF) has good biocompatibility but poor mechanical properties, while poly(L-lactic acid-co-ε-caprolactone) (P(LLA-CL)) has good mechanical properties but poor biocompatibility. Blending SF with P(LLA-CL) can maintain the advantages of both these materials and overcome their disadvantages. Blended electrospun nanofibrous membranes may be suitable for regeneration of the corneal endothelium. The aim of this study was to produce a tissue-engineered construct suitable for endothelial keratoplasty. Five scaffolds containing different SF:P(LLA-CL) blended ratios (100:0, 75:25, 50:50, 25:75, 0:100) were manufactured. A human corneal endothelial (B4G12) cell line was cultured on the membranes. Light transmission, speed of cell adherence, cell viability (live-dead test), cell proliferation (Ki-67, BrdU staining), and cell monolayer formation were detected on membranes with the different blended ratios, and expression of some functional genes was also detected by real-time polymerase chain reaction. Different blended ratios of scaffolds had different light transmittance properties. The 25:75 blended ratio membrane had the best transmittance among these scaffolds. All electrospun nanofibrous membranes showed improved speed of cell adherence when compared with the control group, especially when the P(LLA-CL) ratio increased. The 25:75 blended ratio membranes also had the highest cell proliferation. B4G12 cells could form a monolayer on all scaffolds, and most functional genes were also stably expressed on all scaffolds. Only two genes

  6. Potential of inherent RGD containing silk fibroin-poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering.

    PubMed

    Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Kim, Hae-Won; Bhattacharya, Debasis; Maiti, T K; Kundu, S C

    2016-02-01

    The current study deals with the fabrication and characterization of blended nanofibrous scaffolds of tropical tasar silk fibroin of Antheraea mylitta and poly (Є-caprolactone) to act as an ideal scaffold for bone regeneration. The use of poly (Є-caprolactone) in osteogenesis is well-recognized. At the same time, the osteoconductive nature of the non-mulberry tasar fibroin is also established due to its internal integrin binding peptide RGD (Arg-Gly-Asp) sequences, which enhance cellular interaction and proliferation. Considering that the materials have the required and favorable properties, the blends are formed using an equal volume ratio of fibroin (2 and 4 wt%) and poly (Є-caprolactone) solution (10 wt%) to fabricate nanofibers. The nanofibers possess an average diameter of 152 ± 18 nm (2 % fibroin/PCL) and 175 ± 15 nm (4% fibroin/PCL). The results of Fourier transform infrared spectroscopy substantiates the preservation of the secondary structure of the fibroin in the blends indicating the structural stability of the neo-matrix. With an increase in the fibroin percentage, the hydrophobicity and thermal stability of the matrices as measured from melting temperature Tm (using DSC) decrease, while the mechanical strength is improved. The blended nanofibrous scaffolds are biodegradable, and support the viability and proliferation of human osteoblast-like cells as observed through scanning electron and confocal microscopes. Alkaline phosphatase assay indicates the cell proliferation and the generation of the neo-bone matrix. Taken together, these findings illustrate that the silk-poly (Є-caprolactone) blended nanofibrous scaffolds have an excellent prospect as scaffolding material in bone tissue engineering.

  7. Submillisecond Elastic Recoil Reveals Molecular Origins of Fibrin Fiber Mechanics

    PubMed Central

    Hudson, Nathan E.; Ding, Feng; Bucay, Igal; O’Brien, E. Timothy; Gorkun, Oleg V.; Superfine, Richard; Lord, Susan T.; Dokholyan, Nikolay V.; Falvo, Michael R.

    2013-01-01

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. PMID:23790375

  8. Compression-induced structural and mechanical changes of fibrin-collagen composites.

    PubMed

    Kim, O V; Litvinov, R I; Chen, J; Chen, D Z; Weisel, J W; Alber, M S

    2017-07-01

    Fibrin and collagen as well as their combinations play an important biological role in tissue regeneration and are widely employed in surgery as fleeces or sealants and in bioengineering as tissue scaffolds. Earlier studies demonstrated that fibrin-collagen composite networks displayed improved tensile mechanical properties compared to the isolated protein matrices. Unlike previous studies, here unconfined compression was applied to a fibrin-collagen filamentous polymer composite matrix to study its structural and mechanical responses to compressive deformation. Combining collagen with fibrin resulted in formation of a composite hydrogel exhibiting synergistic mechanical properties compared to the isolated fibrin and collagen matrices. Specifically, the composite matrix revealed a one order of magnitude increase in the shear storage modulus at compressive strains>0.8 in response to compression compared to the mechanical features of individual components. These material enhancements were attributed to the observed structural alterations, such as network density changes, an increase in connectivity along with criss-crossing, and bundling of fibers. In addition, the compressed composite collagen/fibrin networks revealed a non-linear transformation of their viscoelastic properties with softening and stiffening regimes. These transitions were shown to depend on protein concentrations. Namely, a decrease in protein content drastically affected the mechanical response of the networks to compression by shifting the onset of stiffening to higher degrees of compression. Since both natural and artificially composed extracellular matrices experience compression in various (patho)physiological conditions, our results provide new insights into the structural biomechanics of the polymeric composite matrix that can help to create fibrin-collagen sealants, sponges, and tissue scaffolds with tunable and predictable mechanical properties. Copyright © 2016 Elsevier B.V. All rights

  9. Bladder tissue engineering using biocompatible nanofibrous electrospun constructs: feasibility and safety investigation.

    PubMed

    Shakhssalim, Nasser; Dehghan, Mohammad Mehdi; Moghadasali, Reza; Soltani, Mohammad Hossein; Shabani, Iman; Soleimani, Masoud

    2012-01-01

    To investigate the feasibility and safety of using biocompatible, nanofibrous electrospun polycaprolactone (PCL) and combination of polylactic acid (PLLA) and PCL mats in a canine model. Plasma-treated electrospun unseeded mats were implanted in three dogs. The first dog was sacrificed after 3 months and the second and third ones after 4 months, and then, the graft was examined macroscopically with subsequent morphological and histochemical evaluation. Both films showed high levels of cell infiltration and tissue formation, but body response to PLLA/PCL mat in comparison to PCL mat was very low. All three implantation models showed the same light microscopic morphology, immunohistochemistry, and scanning electron microscopy results; nevertheless, only the PCL/PLLA model showed favorable clinical results. Based on these data, nanofibrous PLLA/PCL scaffolding could be a suitable material for the bladder tissue engineering; however, it deserves further investigations.

  10. A radiopaque electrospun scaffold for engineering fibrous musculoskeletal tissues: Scaffold characterization and in vivo applications.

    PubMed

    Martin, John T; Milby, Andrew H; Ikuta, Kensuke; Poudel, Subash; Pfeifer, Christian G; Elliott, Dawn M; Smith, Harvey E; Mauck, Robert L

    2015-10-01

    Tissue engineering strategies have emerged in response to the growing prevalence of chronic musculoskeletal conditions, with many of these regenerative methods currently being evaluated in translational animal models. Engineered replacements for fibrous tissues such as the meniscus, annulus fibrosus, tendons, and ligaments are subjected to challenging physiologic loads, and are difficult to track in vivo using standard techniques. The diagnosis and treatment of musculoskeletal conditions depends heavily on radiographic assessment, and a number of currently available implants utilize radiopaque markers to facilitate in vivo imaging. In this study, we developed a nanofibrous scaffold in which individual fibers included radiopaque nanoparticles. Inclusion of radiopaque particles increased the tensile modulus of the scaffold and imparted radiation attenuation within the range of cortical bone. When scaffolds were seeded with bovine mesenchymal stem cells in vitro, there was no change in cell proliferation and no evidence of promiscuous conversion to an osteogenic phenotype. Scaffolds were implanted ex vivo in a model of a meniscal tear in a bovine joint and in vivo in a model of total disc replacement in the rat coccygeal spine (tail), and were visualized via fluoroscopy and microcomputed tomography. In the disc replacement model, histological analysis at 4 weeks showed that the scaffold was biocompatible and supported the deposition of fibrous tissue in vivo. Nanofibrous scaffolds that include radiopaque nanoparticles provide a biocompatible template with sufficient radiopacity for in vivo visualization in both small and large animal models. This radiopacity may facilitate image-guided implantation and non-invasive long-term evaluation of scaffold location and performance. The healing capacity of fibrous musculoskeletal tissues is limited, and injury or degeneration of these tissues compromises the standard of living of millions in the US. Tissue engineering repair

  11. Electrically conductive poly-ɛ-caprolactone/polyethylene glycol/multi-wall carbon nanotube nanocomposite scaffolds coated with fibrin glue for myocardial tissue engineering

    NASA Astrophysics Data System (ADS)

    Mehdikhani, Mehdi; Ghaziof, Sharareh

    2018-01-01

    In this research, poly-ɛ-caprolactone (PCL), polyethylene glycol (PEG), multi-wall carbon nanotubes (MWCNTs), and nanocomposite scaffolds containing 0.5 and 1% (w/w) MWCNTs coated with fibrin glue (FG) were prepared via solvent casting and freeze-drying technique for cardiac tissue engineering. Scanning electron microscopy, transmission electron microscopy, Fourier transform-infrared spectroscopy, and X-ray diffraction were used to characterize the samples. Furthermore, mechanical properties, electrical conductivity, degradation, contact angle, and cytotoxicity of the samples were evaluated. Results showed the uniform distribution of the MWCNTs with some aggregates in the prepared nanocomposite scaffolds. The scaffolds containing 1% (w/w) MWCNTs with and without FG coating illustrated optimum modulus of elasticity, high electrical conductivity, and wettability compared with PCL/PEG and PCL/PEG/0.5%(w/w) MWCNTs' scaffolds. FG coating enhanced electrical conductivity and cell response, and increased wettability of the constructs. The prepared scaffolds were degraded significantly after 60 days of immersion in PBS. Meanwhile, the nanocomposite containing 1% (w/w) MWCNTs with FG coating (S3) showed proper spreading and viability of the myoblasts seeded on it after 1, 4, and 7 days of culture. The scaffold containing 1% (w/w) MWCNTs with FG coating demonstrated optimal properties including acceptable mechanical properties, proper wettability, high electrical conductivity, satisfactory degradation, and excellent myoblasts response to it.

  12. A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells.

    PubMed

    Sahoo, Sambit; Toh, Siew Lok; Goh, James C H

    2010-04-01

    An ideal scaffold that provides a combination of suitable mechanical properties along with biological signals is required for successful ligament/tendon regeneration in mesenchymal stem cell-based tissue engineering strategies. Among the various fibre-based scaffolds that have been used, hybrid fibrous scaffolds comprising both microfibres and nanofibres have been recently shown to be particularly promising. This study developed a biohybrid fibrous scaffold system by coating bioactive bFGF-releasing ultrafine PLGA fibres over mechanically robust slowly-degrading degummed knitted microfibrous silk scaffolds. On the ECM-like biomimetic architecture of ultrafine fibres, sustained release of bFGF mimicked the ECM in function, initially stimulating mesenchymal progenitor cell (MPC) proliferation, and subsequently, their tenogeneic differentiation. The biohybrid scaffold system not only facilitated MPC attachment and promoted cell proliferation, with cells growing both on ultrafine PLGA fibres and silk microfibres, but also stimulated tenogeneic differentiation of seeded MPCs. Upregulated gene expression of ligament/tendon-specific ECM proteins and increased collagen production likely contributed to enhancing mechanical properties of the constructs, generating a ligament/tendon analogue that has the potential to be used to repair injured ligaments/tendons. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity.

    PubMed

    Entekhabi, Elahe; Haghbin Nazarpak, Masoumeh; Moztarzadeh, Fathollah; Sadeghi, Ali

    2016-12-01

    Given the large differences in nervous tissue and other tissues of the human body and its unique features, such as poor and/or lack of repair, there are many challenges in the repair process of this tissue. Tissue engineering is one of the most effective approaches to repair neural damages. Scaffolds made from electrospun fibers have special potential in cell adhesion, function and cell proliferation. This research attempted to design a high porous nanofibrous scaffold using hyaluronic acid and polycaprolactone to provide ideal conditions for nerve regeneration by applying proper physicochemical and mechanical signals. Chemical and mechanical properties of pure PCL and PCL/HA nanofibrous scaffolds were measured by FTIR and tensile test. Morphology, swelling behavior, and biodegradability of the scaffolds were evaluated too. Porosity of various layers of scaffolds was measured by image analysis method. To assess the cell-scaffold interaction, SH-SY5Y human neuroblastoma cell line were cultured on the electrospun scaffolds. Taken together, these results suggest that the blended nanofibrous scaffolds PCL/HA 95:5 exhibit the most balanced properties to meet all of the required specifications for neural cells and have potential application in neural tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Mechanical Restoration and Failure Analyses of a Hydrogel and Scaffold Composite Strategy for Annulus Fibrosus Repair

    PubMed Central

    Long, Rose G; Bürki, Alexander; Zysset, Philippe; Eglin, David; Grijpma, Dirk W.; Blanquer, Sebastien BG; Hecht, Andrew C; Iatridis, James C

    2015-01-01

    Unrepaired defects in the annulus fibrosus of intervertebral discs are associated with degeneration and persistent back pain. A clinical need exists for a disc repair strategy that can seal annular defects, be easily delivered during surgical procedures, and restore biomechanics with low risk of herniation. Multiple annulus repair strategies were developed using poly(trimethylene carbonate) scaffolds optimized for cell delivery, polyurethane membranes designed to prevent herniation, and fibrin-genipin adhesive tuned to annulus fibrosus shear properties. This three-part study evaluated repair strategies for biomechanical restoration, herniation risk and failure mode in torsion, bending and compression at physiological and hyper-physiological loads using a bovine injury model. Fibrin-genipin hydrogel restored some torsional stiffness, bending ROM and disc height loss, with negligible herniation risk and failure was observed histologically at the fibrin-genipin mid-substance following rigorous loading. Scaffold-based repairs partially restored biomechanics, but had high herniation risk even when stabilized with sutured membranes and failure was observed histologically at the interface between scaffold and fibrin-genipin adhesive. Fibrin-genipin was the simplest annulus fibrosus repair solution evaluated that involved an easily deliverable adhesive that filled irregularly-shaped annular defects and partially restored disc biomechanics with low herniation risk, suggesting further evaluation for disc repair may be warranted. PMID:26577987

  15. Vascular Morphogenesis in the Context of Inflammation: Self-Organization in a Fibrin-Based 3D Culture System.

    PubMed

    Rüger, Beate M; Buchacher, Tanja; Giurea, Alexander; Kubista, Bernd; Fischer, Michael B; Breuss, Johannes M

    2018-01-01

    Introduction: New vessel formation requires a continuous and tightly regulated interplay between endothelial cells with cells of the perivascular microenvironment supported by mechanic-physical and chemical cues from the extracellular matrix. Aim: Here we investigated the potential of small fragments of synovial tissue to form de novo vascular structures in the context of inflammation within three dimensional (3D) fibrin-based matrices in vitro , and assessed the contribution of mesenchymal stromal cell (MSC)-immune cell cross-talk to neovascularization considering paracrine signals in a fibrin-based co-culture model. Material and Methods: Synovial tissue fragments from patients with rheumatoid arthritis (RA) and inflammatory osteoarthritis (OA) were cultivated within 3D fibrin matrices for up to 4 weeks. Cellular and structural re-arrangement of the initially acellular matrix were documented by phase contrast microscopy and characterized by confocal laser-scanning microscopy of topographically intact 3D cultures and by immunohistochemistry. MSC-peripheral blood mononuclear cell (PBMC) co-cultures in the 3D fibrin system specifically addressed the influence of perivascular cell interactions to neo-vessel formation in a pro-inflammatory microenvironment. Cytokine levels in the supernatants of cultured explant tissues and co-cultures were evaluated by the Bio-Plex cytokine assay and ELISA. Results: Vascular outgrowth from the embedded tissue into the fibrin matrix was preceded by leukocyte egress from the tissue fragments. Neo-vessels originating from both the embedded sample and from clusters locally formed by emigrated mononuclear cells were consistently associated with CD45 + leukocytes. MSC and PBMC in co-culture formed vasculogenic clusters. Clusters and cells with endothelial phenotype emerging from them, were surrounded by a collagen IV scaffold. No vascular structures were observed in control 3D monocultures of PBMC or MSC. Paracrine signals released by

  16. Noninvasive visualization of tumoral fibrin deposition using a peptidic fibrin-binding single photon emission computed tomography tracer.

    PubMed

    Starmans, Lucas W E; van Mourik, Tiemen; Rossin, Raffaella; Verel, Iris; Nicolay, Klaas; Grüll, Holger

    2015-06-01

    Fibrin deposition plays an important role in the formation of mature tumor stroma and provides a facilitating scaffold for tumor angiogenesis. This study investigates the potential of the (111)In-labeled fibrin-binding peptide EPep for SPECT imaging of intratumoral fibrin deposition. (111)In-EPep and negative control (111)In-NCEPep were synthesized and characterized in vitro. In vivo SPECT images and ex vivo biodistribution profiles and autoradiographs were obtained in a fibrin-rich BT-20 breast cancer mouse model. Furthermore, biodistribution profiles were obtained in the fibrin-poor MDA-MD-231 model. In vitro, (111)In-EPep displayed significantly more binding than (111)In-NCEPep toward human and mouse derived fibrin. SPECT/CT images displayed a marked SPECT signal in the tumor area for BT-20 tumor bearing mice injected with EPep but not for mice injected with NCEPep. Biodistribution profiles of BT-20 tumor bearing mice 3 h post-tracer injection showed significantly higher tumor uptake for EPep with respect to NCEPep (0.39 ± 0.14 and 0.11 ± 0.03% ID g(-1), respectively), whereas uptake in other organs was similar for EPep and NCEPep. Autoradiography of BT-20 tumor sections displayed a high signal for EPep which colocalized with intratumoral fibrin deposits. Histological evaluation of MDA-MB-231 tumor sections displayed no significant tumor stroma and only minute fibrin deposits. Biodistribution profiles in MDA-MB-231 tumor bearing mice 3 h post-injection showed EPep tumor uptake (0.14 ± 0.04% ID g(-1)) which was significantly lower with respect to EPep BT-20 tumor uptake, indicating fibrin-specificity of EPep tumoral uptake. In conclusion, this work demonstrates the potential of EPep SPECT imaging for visualization of tumoral fibrin deposition.

  17. Functionality in Electrospun Nanofibrous Membranes Based on Fiber's Size, Surface Area, and Molecular Orientation

    PubMed Central

    Matsumoto, Hidetoshi; Tanioka, Akihiko

    2011-01-01

    Electrospinning is a versatile method for forming continuous thin fibers based on an electrohydrodynamic process. This method has the following advantages: (i) the ability to produce thin fibers with diameters in the micrometer and nanometer ranges; (ii) one-step forming of the two- or three-dimensional nanofiber network assemblies (nanofibrous membranes); and (iii) applicability for a broad spectrum of molecules, such as synthetic and biological polymers and polymerless sol-gel systems. Electrospun nanofibrous membranes have received significant attention in terms of their practical applications. The major advantages of nanofibers or nanofibrous membranes are the functionalities based on their nanoscaled-size, highly specific surface area, and highly molecular orientation. These functionalities of the nanofibrous membranes can be controlled by their fiber diameter, surface chemistry and topology, and internal structure of the nanofibers. This report focuses on our studies and describes fundamental aspects and applications of electrospun nanofibrous membranes. PMID:24957735

  18. Electrospun collagen-based nanofibres: A sustainable material for improved antibiotic utilisation in tissue engineering applications.

    PubMed

    Hall Barrientos, Ivan J; Paladino, Eleonora; Szabó, Peter; Brozio, Sarah; Hall, Peter J; Oseghale, Charles I; Passarelli, Melissa K; Moug, Susan J; Black, Richard A; Wilson, Clive G; Zelkó, Romana; Lamprou, Dimitrios A

    2017-10-05

    For the creation of scaffolds in tissue engineering applications, it is essential to control the physical morphology of fibres and to choose compositions which do not disturb normal physiological function. Collagen, the most abundant protein in the human body, is a well-established biopolymer used in electrospinning compositions. It shows high in-vivo stability and is able to maintain a high biomechanical strength over time. In this study, the effects of collagen type I in polylactic acid-drug electrospun scaffolds for tissue engineering applications are examined. The samples produced were subsequently characterised using a range of techniques. Scanning electron microscopy analysis shows that the fibre morphologies varied across PLA-drug and PLA-collagen-drug samples - the addition of collagen caused a decrease in average fibre diameter by nearly half, and produced nanofibres. Atomic force microscopy imaging revealed collagen-banding patterns which show the successful integration of collagen with PLA. Solid-state characterisation suggested a chemical interaction between PLA and drug compounds, irgasan and levofloxacin, and the collagen increased the amorphous regions within the samples. Surface energy analysis of drug powders showed a higher dispersive surface energy of levofloxacin compared with irgasan, and contact angle goniometry showed an increase in hydrophobicity in PLA-collagen-drug samples. The antibacterial studies showed a high efficacy of resistance against the growth of both E. coli and S. Aureus, except with PLA-collagen-LEVO which showed a regrowth of bacteria after 48h. This can be attributed to the low drug release percentage incorporated into the nanofibre during the in vitro release study. However, the studies did show that collagen helped shift both drugs into sustained release behaviour. These ideal modifications to electrospun scaffolds may prove useful in further research regarding the acceptance of human tissue by inhibiting the potential

  19. Osteochondral tissue formation through adipose-derived stromal cell differentiation on biomimetic polycaprolactone nanofibrous scaffolds with graded insulin and Beta-glycerophosphate concentrations.

    PubMed

    Erisken, Cevat; Kalyon, Dilhan M; Wang, Hongjun; Ornek-Ballanco, Ceren; Xu, Jiahua

    2011-05-01

    The ability to fabricate tissue engineering scaffolds containing systematic gradients in the distributions of stimulators provides additional means for the mimicking of the important gradients observed in native tissues. Here the concentration distributions of two bioactive agents were varied concomitantly for the first time (one increasing, whereas the other decreasing monotonically) in between the two sides of a nanofibrous scaffold. This was achieved via the application of a new processing method, that is, the twin-screw extrusion and electrospinning method, to generate gradients of insulin, a stimulator of chondrogenic differentiation, and β-glycerophosphate (β-GP), for mineralization. The graded poly(ɛ-caprolactone) mesh was seeded with human adipose-derived stromal cells and cultured over 8 weeks. The resulting tissue constructs were analyzed for and revealed indications of selective differentiation of human adipose-derived stromal cells toward chondrogenic lineage and mineralization as functions of position as a result of the corresponding concentrations of insulin and β-GP. Chondrogenic differentiation of the stem cells increased at insulin-rich locations and mineralization increased at β-GP-rich locations.

  20. Composite poly(l-lactic-acid)/silk fibroin scaffold prepared by electrospinning promotes chondrogenesis for cartilage tissue engineering.

    PubMed

    Li, Zhengqiang; Liu, Peng; Yang, Ting; Sun, Ying; You, Qi; Li, Jiale; Wang, Zilin; Han, Bing

    2016-05-01

    Nanofibrous materials produced by electrospinning have attracted considerable attention from researchers in regenerative medicine. A combination of nanofibrous scaffold and chondrocytes is considered promising for repair of cartilage defect or damage. In the present study, we fabricated a poly(l-lactic-acid) (PLLA)/silk fibroin (SF) nanofibrous scaffold by electrospinning and evaluated its chondrogenic potential. The PLLA/SF nanofibers were characterized for diameter, surface wettability, swelling ratio, and tensile strength. Throughin vitroexperiments, PLLA/SF scaffold-chondrocyte interactions were investigated relative to the unmodified PLLA scaffold with regard to cellular adhesion, spreading, and proliferation by scanning electron microscopy and confocal laser scanning microscopy, and through analyses of DNA, sulfated glycosaminoglycan, and collagen. In addition, hematoxylin-eosin and Alcian blue-nuclear fast red staining were used to observe growth of chondrocytes, and secretion and distribution of cartilage-specific extracellular matrices in the scaffolds. Expressions of cartilage-related genes (collagen II, aggrecan, sox9, collagen I, and collagen X) were detected by real-time quantitative PCR. The PLLA/SF scaffold had better hydrophilicity, and could support chondrocytes adhesion and spreading more effectively than the unmodified PLLA scaffold. Chondrocytes secreted more cartilage-specific extracellular matrices and maintained their phenotype on the PLLA/SF scaffold. So it is concluded that the PLLA/SF scaffold is more conducive toin vitroformation of cartilage-like new tissues than the unmodified PLLA scaffold, and may be a promising material in cartilage tissue engineering. © The Author(s) 2016.

  1. Scaffold-assisted cartilage tissue engineering using infant chondrocytes from human hip cartilage.

    PubMed

    Kreuz, P C; Gentili, C; Samans, B; Martinelli, D; Krüger, J P; Mittelmeier, W; Endres, M; Cancedda, R; Kaps, C

    2013-12-01

    Studies about cartilage repair in the hip and infant chondrocytes are rare. The aim of our study was to evaluate the use of infant articular hip chondrocytes for tissue engineering of scaffold-assisted cartilage grafts. Hip cartilage was obtained from five human donors (age 1-10 years). Expanded chondrocytes were cultured in polyglycolic acid (PGA)-fibrin scaffolds. De- and re-differentiation of chondrocytes were assessed by histological staining and gene expression analysis of typical chondrocytic marker genes. In vivo, cartilage matrix formation was assessed by histology after subcutaneous transplantation of chondrocyte-seeded PGA-fibrin scaffolds in immunocompromised mice. The donor tissue was heterogenous showing differentiated articular cartilage and non-differentiated tissue and considerable expression of type I and II collagens. Gene expression analysis showed repression of typical chondrocyte and/or mesenchymal marker genes during cell expansion, while markers were re-induced when expanded cells were cultured in PGA-fibrin scaffolds. Cartilage formation after subcutaneous transplantation of chondrocyte loaded PGA-fibrin scaffolds in nude mice was variable, with grafts showing resorption and host cell infiltration or formation of hyaline cartilage rich in type II collagen. Addition of human platelet rich plasma (PRP) to cartilage grafts resulted robustly in formation of hyaline-like cartilage that showed type II collagen and regions with type X collagen. These results suggest that culture of expanded and/or de-differentiated infant hip cartilage cells in PGA-fibrin scaffolds initiates chondrocyte re-differentiation. The heterogenous donor tissue containing immature chondrocytes bears the risk of cartilage repair failure in vivo, which may be possibly overcome by the addition of PRP. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. Nerve regeneration using tubular scaffolds from biodegradable polyurethane.

    PubMed

    Hausner, T; Schmidhammer, R; Zandieh, S; Hopf, R; Schultz, A; Gogolewski, S; Hertz, H; Redl, H

    2007-01-01

    In severe nerve lesion, nerve defects and in brachial plexus reconstruction, autologous nerve grafting is the golden standard. Although, nerve grafting technique is the best available approach a major disadvantages exists: there is a limited source of autologous nerve grafts. This study presents data on the use of tubular scaffolds with uniaxial pore orientation from experimental biodegradable polyurethanes coated with fibrin sealant to regenerate a 8 mm resected segment of rat sciatic nerve. Tubular scaffolds: prepared by extrusion of the polymer solution in DMF into water coagulation bath. The polymer used for the preparation of tubular scaffolds was a biodegradable polyurethane based on hexamethylene diisocyanate, poly(epsilon-caprolactone) and dianhydro-D-sorbitol. EXPERIMENTAL MODEL: Eighteen Sprague Dawley rats underwent mid-thigh sciatic nerve transection and were randomly assigned to two experimental groups with immediate repair: (1) tubular scaffold, (2) 180 degrees rotated sciatic nerve segment (control). Serial functional measurements (toe spread test, placing tests) were performed weekly from 3rd to 12th week after nerve repair. On week 12, electrophysiological assessment was performed. Sciatic nerve and scaffold/nerve grafts were harvested for histomorphometric analysis. Collagenic connective tissue, Schwann cells and axons were evaluated in the proximal nerve stump, the scaffold/nerve graft and the distal nerve stump. The implants have uniaxially-oriented pore structure with a pore size in the range of 2 micorm (the pore wall) and 75 x 700 microm (elongated pores in the implant lumen). The skin of the tubular implants was nonporous. Animals which underwent repair with tubular scaffolds of biodegradable polyurethanes coated with diluted fibrin sealant had no significant functional differences compared with the nerve graft group. Control group resulted in a trend-wise better electrophysiological recovery but did not show statistically significant

  3. Functionalized scaffolds to enhance tissue regeneration

    PubMed Central

    Guo, Baolin; Lei, Bo; Li, Peng; Ma, Peter X.

    2015-01-01

    Tissue engineering scaffolds play a vital role in regenerative medicine. It not only provides a temporary 3-dimensional support during tissue repair, but also regulates the cell behavior, such as cell adhesion, proliferation and differentiation. In this review, we summarize the development and trends of functional scaffolding biomaterials including electrically conducting hydrogels and nanocomposites of hydroxyapatite (HA) and bioactive glasses (BGs) with various biodegradable polymers. Furthermore, the progress on the fabrication of biomimetic nanofibrous scaffolds from conducting polymers and composites of HA and BG via electrospinning, deposition and thermally induced phase separation is discussed. Moreover, bioactive molecules and surface properties of scaffolds are very important during tissue repair. Bioactive molecule-releasing scaffolds and antimicrobial surface coatings for biomedical implants and scaffolds are also reviewed. PMID:25844177

  4. Does the tissue engineering architecture of poly(3-hydroxybutyrate) scaffold affects cell-material interactions?

    PubMed

    Masaeli, Elahe; Morshed, Mohammad; Rasekhian, Parsa; Karbasi, Saeed; Karbalaie, Khadije; Karamali, Fereshte; Abedi, Daryoush; Razavi, Shahnaz; Jafarian-Dehkordi, Abbas; Nasr-Esfahani, Mohammad Hossein; Baharvand, Hossein

    2012-07-01

    A critical element in tissue engineering involves the fabrication of a three-dimensional scaffold. The scaffold provides a space for new tissue formation, supports cellular ingrowth, and proliferation and mimics many roles of the extracellular matrix. Poly(3-hydroxybutyrate) (PHB) is the most thoroughly investigated member of the polyhydroxyalkanoates (PHAs) family that has various degrees of biocompatibility and biodegradability for tissue engineering applications. In this study, we fabricated PHB scaffolds by utilizing electrospinning and salt-leaching procedures. The behavior of monkey epithelial kidney cells (Vero) and mouse mesenchymal stem cells (mMSCs) on these scaffolds was compared by the MTS assay and scanning electron microscopy. Additionally, this study investigated the mechanical and physical properties of these scaffolds by measuring tensile strength and modulus, dynamic contact angle and porosity. According to our results, the salt-leached scaffolds showed more wettability and permeability, but inferior mechanical properties when compared with nanofibrous scaffolds. In terms of cell response, salt-leached scaffolds showed enhanced Vero cell proliferation, whereas both scaffolds responded similarly in the case of mMSCs proliferation. In brief, nanofibrous scaffolds can be a better substrate for cell attachment and morphology. Copyright © 2012 Wiley Periodicals, Inc.

  5. Platelet-Rich Fibrin Promotes Periodontal Regeneration and Enhances Alveolar Bone Augmentation

    PubMed Central

    Li, Qi; Pan, Shuang; Dangaria, Smit J.; Gopinathan, Gokul; Kolokythas, Antonia; Chu, Shunli; Geng, Yajun; Zhou, Yanmin; Luan, Xianghong

    2013-01-01

    In the present study we have determined the suitability of platelet-rich fibrin (PRF) as a complex scaffold for periodontal tissue regeneration. Replacing PRF with its major component fibrin increased mineralization in alveolar bone progenitors when compared to periodontal progenitors, suggesting that fibrin played a substantial role in PRF-induced osteogenic lineage differentiation. Moreover, there was a 3.6-fold increase in the early osteoblast transcription factor RUNX2 and a 3.1-fold reduction of the mineralization inhibitor MGP as a result of PRF application in alveolar bone progenitors, a trend not observed in periodontal progenitors. Subcutaneous implantation studies revealed that PRF readily integrated with surrounding tissues and was partially replaced with collagen fibers 2 weeks after implantation. Finally, clinical pilot studies in human patients documented an approximately 5 mm elevation of alveolar bone height in tandem with oral mucosal wound healing. Together, these studies suggest that PRF enhances osteogenic lineage differentiation of alveolar bone progenitors more than of periodontal progenitors by augmenting osteoblast differentiation, RUNX2 expression, and mineralized nodule formation via its principal component fibrin. They also document that PRF functions as a complex regenerative scaffold promoting both tissue-specific alveolar bone augmentation and surrounding periodontal soft tissue regeneration via progenitor-specific mechanisms. PMID:23586051

  6. Platelet-rich fibrin promotes periodontal regeneration and enhances alveolar bone augmentation.

    PubMed

    Li, Qi; Pan, Shuang; Dangaria, Smit J; Gopinathan, Gokul; Kolokythas, Antonia; Chu, Shunli; Geng, Yajun; Zhou, Yanmin; Luan, Xianghong

    2013-01-01

    In the present study we have determined the suitability of platelet-rich fibrin (PRF) as a complex scaffold for periodontal tissue regeneration. Replacing PRF with its major component fibrin increased mineralization in alveolar bone progenitors when compared to periodontal progenitors, suggesting that fibrin played a substantial role in PRF-induced osteogenic lineage differentiation. Moreover, there was a 3.6-fold increase in the early osteoblast transcription factor RUNX2 and a 3.1-fold reduction of the mineralization inhibitor MGP as a result of PRF application in alveolar bone progenitors, a trend not observed in periodontal progenitors. Subcutaneous implantation studies revealed that PRF readily integrated with surrounding tissues and was partially replaced with collagen fibers 2 weeks after implantation. Finally, clinical pilot studies in human patients documented an approximately 5 mm elevation of alveolar bone height in tandem with oral mucosal wound healing. Together, these studies suggest that PRF enhances osteogenic lineage differentiation of alveolar bone progenitors more than of periodontal progenitors by augmenting osteoblast differentiation, RUNX2 expression, and mineralized nodule formation via its principal component fibrin. They also document that PRF functions as a complex regenerative scaffold promoting both tissue-specific alveolar bone augmentation and surrounding periodontal soft tissue regeneration via progenitor-specific mechanisms.

  7. Fabrication of conductive polymer-based nanofiber scaffolds for tissue engineering applications.

    PubMed

    Gu, Bon Kang; Kim, Min Sup; Kang, Chang Mo; Kim, Jong-Ll; Park, Sang Jun; Kim, Chun-Ho

    2014-10-01

    Natural and synthetic polymers, in particular those that are conductive, are of great interest in the field of tissue engineering and the pursuit of biomimetic extracellular matrix (ECM) structures for adhesion, proliferation, and differentiation of cells. In the present study, natural chitin and conductive polyaniline (PANi) blended solutions were electrospun to produce biodegradable and conductive biomimetic nanostructured scaffolds. The chitin/PANi (Chi-PANi) nanofibrous materials were characterized using field emission scanning electron microscopy, Fourier transform-infrared spectroscopy, wettability analysis, mechanical testing, and electrical conductivity measurements using a 4-point probe method. The calculated electrical conductivities of the PANi-containing nanofiber scaffolds significantly increased as the amount of PANi increased, reaching 5.21 ± 0.28 x 10(-3) S/cm for 0.3 wt% content of the conducting polymer. In addition, the viability of human mesenchymal stem cells (hMSCs) cultured on the Chi-PANi nanofiber scaffolds in vitro was found to be excellent. These results suggest that the Chi-PANi nanofiber scaffolds have great potential for use in tissue engineering applications that involve electrical stimulation.

  8. Fabrication of an ultrafine fish gelatin nanofibrous web from an aqueous solution by electrospinning.

    PubMed

    Kwak, Hyo Won; Shin, Munju; Lee, Jeong Yun; Yun, Haesung; Song, Dae Woong; Yang, Yesol; Shin, Bong-Seob; Park, Young Hwan; Lee, Ki Hoon

    2017-09-01

    Electrospinning of aqueous gelatin solution obtained from bovine or porcine sources has been difficult to achieve without additional facilities, such as a temperature control oven or heating cover. Gelatin from cold-water fish has low contents of proline (Pro) and hydroxyproline (Hyp) compared with mammalian-derived gelatin. For this reason, the fish-derived gelatin maintains a sol state without showing gelation behavior at room temperature. In the present study, we prepared an ultrafine fish gelatin nanofibrous web by electrospinning from aqueous solutions without any additive polymers or temperature control facilities. The concentration and viscosity of fish gelatin are the most important factor in determining the electrospinnability and fiber diameter. Electrospinning of aqueous fish gelatin has the highest nanofiber productivity compared to other organic solvent systems. Using glutaraldehyde vapor (GTA), the water stability was improved and substantial enhancement was achieved in the mechanical properties. Finally, the cytotoxicity of a fish gelatin nanofibrous scaffold was evaluated based on a cell proliferation study by culturing human dermal fibroblasts (HDFs) compared with a fish gelatin film and nanofibrous mat from mammalian gelatin. The result shows better initial cell attachment and proliferation compared with the fish gelatin film and no significant difference compared with mammalian-derived gelatin nanofibrous mat. We expect that electrospinning of aqueous fish gelatin could be an effective alternative mammalian gelatin source. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales.

    PubMed

    Kurniawan, Nicholas A; Vos, Bart E; Biebricher, Andreas; Wuite, Gijs J L; Peterman, Erwin J G; Koenderink, Gijsje H

    2016-09-06

    Tissues and cells sustain recurring mechanical loads that span a wide range of loading amplitudes and timescales as a consequence of exposure to blood flow, muscle activity, and external impact. Both tissues and cells derive their mechanical strength from fibrous protein scaffolds, which typically have a complex hierarchical structure. In this study, we focus on a prototypical hierarchical biomaterial, fibrin, which is one of the most resilient naturally occurring biopolymers and forms the structural scaffold of blood clots. We show how fibrous networks composed of fibrin utilize irreversible changes in their hierarchical structure at different scales to maintain reversible stress stiffening up to large strains. To trace the origin of this paradoxical resilience, we systematically tuned the microstructural parameters of fibrin and used a combination of optical tweezers and fluorescence microscopy to measure the interactions of single fibrin fibers for the first time, to our knowledge. We demonstrate that fibrin networks adapt to moderate strains by remodeling at the network scale through the spontaneous formation of new bonds between fibers, whereas they adapt to high strains by plastic remodeling of the fibers themselves. This multiscale adaptation mechanism endows fibrin gels with the remarkable ability to sustain recurring loads due to shear flows and wound stretching. Our findings therefore reveal a microscopic mechanism by which tissues and cells can balance elastic nonlinearity and plasticity, and thus can provide microstructural insights into cell-driven remodeling of tissues. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Study of a novel three-dimensional scaffold to repair bone defect in rabbit.

    PubMed

    Chen, Yushu; Bai, Bo; Zhang, Shujiang; Ye, Jing; Zhai, Haohan; Chen, Yi; Zhang, Linlin; Zeng, Yanjun

    2014-05-01

    Both decalcified bone matrix (DBM) and fibrin gel possess good biocompatibility, so they are used as scaffolds to culture bone marrow mesenchymal stem cells (BMSCs). The feasibility and efficacy of using compound material being made of decalcified bone matrix and fibrin gel as a three-dimensional scaffold for bone growth were investigated. BMSCs were isolated from the femur of rabbit, then seeded in prepared scaffolds after incubation for 28 days in vitro. In vivo: 30 New Zealand White Rabbits received bone defect in left radius and divided three treatment groups randomly: (1) BMSCs/decalcified bone matrix/fibrin glue as experimental group; (2) decalcified bone matrix/fibrin glue without cells as control group; (3) nothing was implanted into the bone defects as blank group. The observation period of specimens was 12 weeks, and were analyzed bone formation in terms of serum proteomics (2D-PAGE and MALDI-TOF-TOF-MS), hematoxylin-eosin (HE) staining, ALP staining, and Osteopontin immunofluorescence detection. The experimental group present in three peculiar kinds of proteins, whose Geninfo identifier (GI) number were 136466, 126722803, and 126723746, respectively, correspond to TTR protein, ALB protein, RBP4 protein, and the histological inspections were superior to the other group. The content of osteopontin in experimental group was significantly higher than control group (p <  0.05). The overall results indicated that a combined material being made of BMSCs/decalcified bone matrix/fibrin glue can result in successful bone formation and decalcified bone matrix/fibrin glue admixtures can be used as a scaffold for bone tissue engineering. Copyright © 2013 Wiley Periodicals, Inc.

  11. A new step toward the artificial ovary: survival and proliferation of isolated murine follicles after autologous transplantation in a fibrin scaffold.

    PubMed

    Luyckx, Valérie; Dolmans, Marie-Madeleine; Vanacker, Julie; Legat, Camille; Fortuño Moya, Cristina; Donnez, Jacques; Amorim, Christiani Andrade

    2014-04-01

    To create an artificial ovary to provide an alternative way of restoring fertility in patients who cannot benefit from transplantation of cryopreserved ovarian tissue due to the threat of reintroducing malignant cells. In vivo experimental study. Gynecology research unit in a university hospital. Six-week-old female NMRI mice. Autografting of isolated preantral follicles and ovarian cells (OCs) encapsulated in two fibrin matrices containing low concentrations of fibrinogen (F; mg/mL) and thrombin (T; IU/mL): F12.5/T1 and F25/T4. Follicular density and development, OC survival and proliferation, inflammatory response, and vascularization. After 1 week, the follicle recovery rate ranged from 30.8% (F25/T4) to 31.8% (F12.5/T1). With both fibrin formulations, all follicles were found to be alive or minimally damaged, as demonstrated by terminal deoxynucleotide transferase-mediated dUTP nick-end labeling assay, and at the growing stage (primary, secondary, and antral follicles), confirmed by Ki67 immunostaining. Isolated OCs also survived and proliferated after grafting, as evidenced by <1% apoptotic cells and a high proportion of Ki67-positive cells. Vessels were found in both fibrin formulations, and the global vascular surface area varied from 1.35% (F25/T4) to 1.88% (F12.5/T1). Numerous CD45-positive cells were also observed in both F25/T4 and F12.5/T1 combinations. The present study is the first to show survival and growth of isolated murine ovarian follicles 1 week after autotransplantation of isolated OCs in a fibrin scaffold. The results indicate that fibrin is a promising candidate as a matrix for the construction of an artificial ovary. Xenotransplantation of isolated human follicles and OCs is the necessary next step to validate these findings. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Diffusion of rhodamine B and bovine serum albumin in fibrin gels seeded with primary endothelial cells.

    PubMed

    Shkilnyy, Andriy; Proulx, Pierre; Sharp, Jamie; Lepage, Martin; Vermette, Patrick

    2012-05-01

    Scaffolds with adequate mass transport properties are needed in many tissue engineering applications. Fibrin is considered a good biological material to fabricate such scaffolds. However, very little is known about mass transport in fibrin. Therefore, a method based on the analysis of fluorescence intensity for measuring the apparent diffusion coefficient of rhodamine B and fluorescein-labelled bovine serum albumin (FITC-BSA) is described. The experiments are performed in fibrin gels with and without human umbilical vein endothelial cells (HUVEC). The apparent diffusion coefficients of rhodamine B and FITC-BSA in fibrin (fibrinogen concentration of 4 mg/mL) with different cell densities are reported. A LIVE/DEAD(®) assay is performed to confirm the viability of HUVEC seeded at high densities. Diffusion coefficients for rhodamine B remain more or less constant up to 5×10(5) cells/mL and correlate well with literature values measured by other methods in water systems. This indicates that the presence of HUVEC in the fibrin gels (up to 5×10(5) cells/mL) has almost no effect on the diffusion coefficients. Higher cell densities (>5×10(5) cells/mL) result in a decrease of the diffusion coefficients. Diffusion coefficients of rhodamine B and FITC-BSA obtained by this method agree with diffusion coefficients in water predicted by the Stokes-Einstein equation. The experimental design used in this study can be applied to measure diffusion coefficients in different types of gels seeded or not with living cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Injectable alginate-O-carboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering.

    PubMed

    Jaikumar, Dhanya; Sajesh, K M; Soumya, S; Nimal, T R; Chennazhi, K P; Nair, Shantikumar V; Jayakumar, R

    2015-03-01

    Injectable, biodegradable scaffolds are required for soft tissue reconstruction owing to its minimally invasive approach. Such a scaffold can mimic the native extracellular matrix (ECM), provide uniform distribution of cells and overcome limitations like donor site morbidity, volume loss, etc. So, here we report two classes of biocompatible and biodegradable hydrogel blend systems namely, Alginate/O-carboxymethyl chitosan (O-CMC) and Alginate/poly (vinyl alcohol) (PVA) with the inclusion of fibrin nanoparticles in each. The hydrogels were prepared by ionic cross-linking method. The developed hydrogels were compared in terms of its swelling ratio, degradation profile, compressive strength and elastic moduli. From these preliminary findings, it was concluded that Alginate/O-CMC formed a better blend for tissue engineering applications. The potential of the formed hydrogel as an injectable scaffold was revealed by the survival of adipose derived stem cells (ADSCs) on the scaffold by its adhesion, proliferation and differentiation into adipocytes. Cell differentiation studies of fibrin incorporated hydrogel scaffolds showed better differentiation was confirmed by Oil Red O staining technique. These injectable gels have potential in soft tissue regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. [Construction of injectable tissue engineered adipose tissue with fibrin glue scaffold and human adipose-derived stem cells transfected by lentivirus vector expressing hepatocyte growth factor].

    PubMed

    Zhu, Yuanzheng; Yi, Yangyan; Yang, Shuifa; Zhang, Jing; Wu, Shu; Wang, Zhaohui

    2017-09-01

    To discuss the possibility of constructing injectable tissue engineered adipose tissue, and to provide a new approach for repairing soft tissue defects. Human adipose-derived stem cells (hADSCs) were extracted from the lipid part of human liposuction aspirate by enzymatic digestion and identified by morphological observation, flow cytometry, and adipogenic induction. The hADSCs underwent transfection by lentivirus vector expressing hepatocyte growth factor and green fluorescent protein (HGF-GFP-LVs) of different multiplicity of infection (MOI, 10, 30, 50, and 100), the transfection efficiency was calculated to determine the optimum MOI. The hADSCs transfected by HGF-GFP-LVs of optimal MOI and being adipogenic inducted were combined with injectable fibrin glue scaffold, and were injected subcutaneously into the right side of the low back of 10 T-cell deficiency BALB/c female nude mice (transfected group); non-HGF-GFP-LVs transfected hADSCs (being adipogenic inducted) combined with injectable fibrin glue scaffold were injected subcutaneously into the left side of the low back (untransfected group); and injectable fibrin glue scaffold were injected subcutaneously into the middle part of the neck (blank control group); 0.4 mL at each point. Twelve weeks later the mice were killed and the implants were taken out. Gross observation, wet weight measurement, HE staining, GFP fluorescence labeling, and immunofluorescence staining were performed to assess the in vivo adipogenic ability of the seed cells and the neovascularization of the grafts. The cultured cells were identified as hADSCs. Poor transfection efficiency was observed in MOI of 10 and 30, the transfection efficiency of MOI of 50 and 100 was more than 80%, so the optimum MOI was 50. Adipose tissue-like new-born tissues were found in the injection sites of the transfected and untransfected groups after 12 weeks of injection, and no new-born tissues was found in the blank control group. The wet-weight of new

  15. Electrospun nanofibrous 3D scaffold for bone tissue engineering.

    PubMed

    Eap, Sandy; Ferrand, Alice; Palomares, Carlos Mendoza; Hébraud, Anne; Stoltz, Jean-François; Mainard, Didier; Schlatter, Guy; Benkirane-Jessel, Nadia

    2012-01-01

    Tissue engineering aims at developing functional substitutes for damaged tissues by mimicking natural tissues. In particular, tissue engineering for bone regeneration enables healing of some bone diseases. Thus, several methods have been developed in order to produce implantable biomaterial structures that imitate the constitution of bone. Electrospinning is one of these methods. This technique produces nonwoven scaffolds made of nanofibers which size and organization match those of the extracellular matrix. Until now, seldom electrospun scaffolds were produced with thickness exceeding one millimeter. This article introduces a new kind of electrospun membrane called 3D scaffold of thickness easily exceeding one centimeter. The manufacturing involves a solution of poly(ε-caprolactone) in DMF/DCM system. The aim is to establish parameters for electrospinning in order to characterize these 3D scaffolds and, establish whether such scaffolds are potentially interesting for bone regeneration.

  16. Failure mechanisms of fibrin-based surgical tissue adhesives

    NASA Astrophysics Data System (ADS)

    Sierra, David Hugh

    A series of studies was performed to investigate the potential impact of heterogeneity in the matrix of multiple-component fibrin-based tissue adhesives upon their mechanical and biomechanical properties both in vivo and in vitro. Investigations into the failure mechanisms by stereological techniques demonstrated that heterogeneity could be measured quantitatively and that the variation in heterogeneity could be altered both by the means of component mixing and delivery and by the formulation of the sealant. Ex vivo tensile adhesive strength was found to be inversely proportional to the amount of heterogeneity. In contrast, in vivo tensile wound-closure strength was found to be relatively unaffected by the degree of heterogeneity, while in vivo parenchymal organ hemostasis in rabbits was found to be affected: greater heterogeneity appeared to correlate with an increase in hemostasis time and amount of sealant necessary to effect hemostasis. Tensile testing of the bulk sealant showed that mechanical parameters were proportional to fibrin concentration and that the physical characteristics of the failure supported a ductile mechanism. Strain hardening as a function of percentage of strain, and strain rate was observed for both concentrations, and syneresis was observed at low strain rates for the lower fibrin concentration. Blister testing demonstrated that burst pressure and failure energy were proportional to fibrin concentration and decreased with increasing flow rate. Higher fibrin concentration demonstrated predominately compact morphology debonds with cohesive failure loci, demonstrating shear or viscous failure in a viscoelastic rubbery adhesive. The lower fibrin concentration sealant exhibited predominately fractal morphology debonds with cohesive failure loci, supporting an elastoviscous material condition. The failure mechanism for these was hypothesized and shown to be flow-induced ductile fracture. Based on these findings, the failure mechanism was

  17. High-throughput proteomic characterization of plasma rich in growth factors (PRGF-Endoret)-derived fibrin clot interactome.

    PubMed

    Anitua, Eduardo; Prado, Roberto; Azkargorta, Mikel; Rodriguez-Suárez, Eva; Iloro, Ibon; Casado-Vela, Juan; Elortza, Felix; Orive, Gorka

    2015-11-01

    Plasma rich in growth factors (PRGF®-Endoret®) is an autologous technology that contains a set of proteins specifically addressed to wound healing and tissue regeneration. The scaffold formed by using this technology is a clot mainly composed of fibrin protein, forming a three-dimensional (3D) macroscopic network. This biomaterial is easily obtained by biotechnological means from blood and can be used in a range of situations to help wound healing and tissue regeneration. Although the main constituent of this clot is the fibrin scaffold, little is known about other proteins interacting in this clot that may act as adjuvants in the healing process. The aim of this study was to characterize the proteins enclosed by PRGF-Endoret scaffold, using a double-proteomic approach that combines 1D-SDS-PAGE approach followed by LC-MS/MS, and 2-DE followed by MALDI-TOF/TOF. The results presented here provide a description of the catalogue of key proteins in close contact with the fibrin scaffold. The obtained lists of proteins were grouped into families and networks according to gene ontology. Taken together, an enrichment of both proteins and protein families specifically involved in tissue regeneration and wound healing has been found. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Characterization of Electrospun Nanofibrous Scaffolds for Nanobiomedical Applications

    NASA Astrophysics Data System (ADS)

    Emul, E.; Saglam, S.; Ates, H.; Korkusuz, F.; Saglam, N.

    2016-08-01

    The electrospinning method is employed in the production of porous fiber scaffolds, and the usage of electrospun scaffolds especially as drug carrier and bone reconstructive material such as implants is promising for future applications in tissue engineering. The number of publications has grown very rapidly in this field through the fabrication of complex scaffolds, novel approaches in nanotechnology, and improvements of imaging methods. Hence, characterization of these materials has also grown significantly important for getting satisfied and accurate results. This advantageous and versatile method is ideal for mimicking bone extracellular matrix, and many biodegradable and biocompatible polymers are preferred in the field of bone reconstruction. In this study, gelatin, gelatin/nanohydroxyapatite (nHAp) and gelatin/PLLA/nHAp scaffolds were fabricated by the electrospinning process. These composite fibers showed clear and continuous morphology according to observation through a scanning electron microscope and their component analyses were also determined by Fourier transform infrared spectrometer analyses. These characterization experiments revealed the great effects of the electrospinning method for biomedical applications and have an especially important role in bone reconstruction and production of implant coating material.

  19. Antibacterial TAP-mimic electrospun polymer scaffold: effects on P. gingivalis-infected dentin biofilm.

    PubMed

    Albuquerque, Maria Tereza P; Evans, Joshua D; Gregory, Richard L; Valera, Marcia C; Bottino, Marco C

    2016-03-01

    This study sought to investigate, in vitro, the effects of a recently developed triple antibiotic paste (TAP)-mimic polymer nanofibrous scaffold against Porphyromonas gingivalis-infected dentin biofilm. Dentin specimens (4 × 4 × 1 mm(3)) were prepared from human canines. The specimens were sterilized, inoculated with P. gingivalis (ATCC 33277), and incubated for 1 week to allow for biofilm formation. Infected dentin specimens were exposed for 3 days to the following treatments: antibiotic-free polydioxanone scaffold (PDS, control), PDS + 25 wt% TAP [25 mg of each antibiotic (metronidazole, ciprofloxacin, and minocycline) per mL of the PDS polymer solution], or a saturated TAP-based solution (50 mg of each antibiotic per mL of saline solution). In order to serve as the negative control, infected dentin specimens were left untreated (bacteria only). To determine the antimicrobial efficacy of the TAP-mimic scaffold, a colony-forming unit (CFU) per milliliter (n = 10/group) measurement was performed. Furthermore, additional specimens (n = 2/group) were prepared to qualitatively study biofilm inhibition via scanning electron microscopy (SEM). Statistics were performed, and significance was set at the 5% level. Both the TAP-mimic scaffold and the positive control (TAP solution) led to complete bacterial elimination, differing statistically (p < 0.05) from the negative control group (bacteria only). No statistical differences were observed for CFU per milliliter data between antibiotic-free scaffolds (2.7 log10 CFU/mL) and the negative control (5.9 log10 CFU/mL). The obtained data revealed significant antimicrobial properties of the novel PDS-based TAP-mimic scaffold against an established P. gingivalis-infected dentin biofilm. Collectively, the data suggest that the proposed nanofibrous scaffold might be used as an alternative to the advocated clinical gold standard (i.e., TAP) for intracanal disinfection prior to regenerative endodontics.

  20. Facile fabrication of gold nanoparticles-poly(vinyl alcohol) electrospun water-stable nanofibrous mats: efficient substrate materials for biosensors.

    PubMed

    Wang, Juan; Yao, Hong-Bin; He, Dian; Zhang, Chuan-Ling; Yu, Shu-Hong

    2012-04-01

    Electrospun nanofibrous mats are intensively studied as efficient scaffold materials applied in the fields of tissue engineering, catalysis, and biosensors due to their flexibility and porosity. In this paper, we report a facile route to fabricate gold nanoparticles-poly(vinyl alcohol) (Au NPs-PVA) hybrid water stable nanofibrous mats with tunable densities of Au NPs and further demonstrate the potential application of as-prepared Au NPs-PVA nanofibrous mats as efficient biosensor substrate materials. First, through the designed in situ cross-linkage in coelectrospun PVA-glutaraldehyde nanofibers, water insoluble PVA nanofibrous mats with suitable tensile strength were successfully prepared. Then, 3-mercaptopropyltrimethoxysilane (MPTES) was modified on the surface of obtained PVA nanofibrous films, which triggered successful homogeneous decoration of Au NPs through gold-sulfur bonding interactions. Finally, the Au NPs-PVA nanofibrous mats embedded with horseradish peroxidase (HRP) by electrostatic interactions were used as biosensor substrate materials for H(2)O(2) detection. The fabricated HRP-Au NPs/PVA biosensor showed a highly sensitive detection of H(2)O(2) with a detection limit of 0.5 μM at a signal-to-noise ratio of 3. By modifying other different functional nanaoparticles or enzyme on the PVA nanofibrous film will further expand their potential applications as substrate materials of different biosensors.

  1. What Is the Biological and Clinical Relevance of Fibrin?

    PubMed

    Litvinov, Rustem I; Weisel, John W

    2016-06-01

    As our knowledge of the structure and functions of fibrinogen and fibrin has increased tremendously, several key findings have given some people a superficial impression that the biological and clinical significance of these clotting proteins may be less than earlier thought. Most strikingly, studies of fibrinogen knockout mice demonstrated that many of these mice survive to weaning and beyond, suggesting that fibrin(ogen) may not be entirely necessary. Humans with afibrinogenemia also survive. Furthermore, in recent years, the major emphasis in the treatment of arterial thrombosis has been on inhibition of platelets, rather than fibrin. In contrast to the initially apparent conclusions from these results, it has become increasingly clear that fibrin is essential for hemostasis; is a key factor in thrombosis; and plays an important biological role in infection, inflammation, immunology, and wound healing. In addition, fibrinogen replacement therapy has become a preferred, major treatment for severe bleeding in trauma and surgery. Finally, fibrin is a unique biomaterial and is used as a sealant or glue, a matrix for cells, a scaffold for tissue engineering, and a carrier and/or a vector for targeted drug delivery. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. An Advanced Electrospinning Method of Fabricating Nanofibrous Patterned Architectures with Controlled Deposition and Desired Alignment

    NASA Astrophysics Data System (ADS)

    Rasel, Sheikh Md

    We introduce a versatile advanced method of electrospinning for fabricating various kinds of nanofibrous patterns along with desired alignment, controlled amount of deposition and locally variable density into the architectures. In this method, we employed multiple electrodes whose potentials have been altered in milliseconds with the help of microprocessor based control system. Therefore, key success of this method was that the electrical field as well as charge carrying fibers could be switched shortly from one electrode's location to another, as a result, electrospun fibers could be deposited on the designated areas with desired alignment. A wide range of nanofibrous patterned architectures were constructed using proper arrangement of multiple electrodes. By controlling the concurrent activation time of two adjacent electrodes, we demonstrated that amount of fibers going into the pattern can be adjusted and desired alignment in electrospun fibers can be obtained. We also revealed that the deposition density of electrospun fibers in different areas of patterned architectures can be varied. We showed that by controlling the deposition time between two adjacent electrodes, a number of functionally graded patterns can be generated with uniaxial alignment. We also demonstrated that this handy method was capable of producing random, aligned, and multidirectional nanofibrous mats by engaging a number of electrodes and switching them in desired patterns. A comprehensive study using finite element method was carried out to understand the effects of electrical field. Simulation results revealed that electrical field strength alters shortly based on electrode control switch patterns. Nanofibrous polyvinyl alcohol (PVA) scaffolds and its composite reinforced with wollastonite and wood flour were fabricated using rotating drum electrospinning technique. Morphological, mechanical, and thermal, properties were characterized on PVA/wollastonite and PVA/wood flour nanocomposites

  3. [Research of repairing rabbit knee joint cartilage defect by compound material of fibrin glue and decalcified bone matrix (DBM) and chondrocytes].

    PubMed

    He, Jie; Yang, Xiang; Yue, Peng-ju; Wang, Guan-yu; Guo, Ting; Zhao, Jian-ning

    2009-07-01

    To investigate the feasibility and effectivity of using compound material of fibrin glue and DBM as scaffolds for cartilage tissue engineering. Chondrocytes isolated from articular cartilage were seeded into prepared scaffolds, after incubation for 4 weeks in vitro. Chondrocytes and fibrin glue and DBM constructs were implanted in the joint cave of rabbit. The specimens were excised at the 4th, 8th, 12th week, examined grossly analyzed by haematoxylin cosine, toluidine blues staining and type II collagen immunohistochemistry reaction. Wakitani score was counted to evaluate the repairing effect. Grossly analysis showed some ivory tissue filled the caves after 4 weeks and the caves were full filled with smooth surface after 12 weeks. The microscope showed a good deal of chondrocytes appeared after 8 weeks and more type II collagen than 4 weeks. Twelve weeks later, cartilage lacuna could be observed. The cells arrangement and the amount of type II collagen both showed the same as the natural one. Complicated material of fibrin glue and DBM as scaffolds can be used as scaffolds for cartilage tissue engineering.

  4. Synthesis and Fabrication of Collagen-Coated Ostholamide Electrospun Nanofiber Scaffold for Wound Healing.

    PubMed

    Kandhasamy, Subramani; Perumal, Sathiamurthi; Madhan, Balaraman; Umamaheswari, Narayanan; Banday, Javid Ahmad; Perumal, Paramasivan Thirumalai; Santhanakrishnan, Vichangal Pridiuldi

    2017-03-15

    A novel scaffold for effective wound healing treatment was developed utilizing natural product bearing collagen-based biocompatible electrospun nanofibers. Initially, ostholamide (OSA) was synthesized from osthole (a natural coumarin), characterized by 1 H, 13 C, DEPT-135 NMR, ESI-MS, and FT-IR spectroscopy analysis. OSA was incorporated into polyhydroxybutyrate (PHB) and gelatin (GEL), which serve as templates for electrospun nanofibers. The coating of OSA-PHB-GEL nanofibers with collagen resulted in PHB-GEL-OSA-COL nanofibrous scaffold which mimics extracellular matrix and serves as an effective biomaterial for tissue engineering applications, especially for wound healing. PHB-GEL-OSA-COL, along with PHB-GEL-OSA and collagen film (COLF), was characterized in vitro and in vivo to determine its efficacy. The developed PHB-GEL-OSA-COL nanofibers posed an impressive mechanical stability, an essential requirement for wound healing. The presence of OSA had contributed to antimicrobial efficacy. These scaffolds exhibited efficient antibacterial activity against common wound pathogens, Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The zones of inhibition were observed to be 14 ± 22 and 10 ± 2 mm, respectively. It was observed that nanofibrous scaffold had the ability to release OSA in a controlled manner, and hence, OSA would be present at the site of application and exhibit bioactivity in a sustained manner. PHB-GEL-OSA-COL nanofiber was determined to be stable against enzymatic degradation, which is the most important parameter for promoting proliferation of cells contributing to repair and remodeling of tissues during wound healing applications. As hypothesized, PHB-GEL-OSA-COL was observed to imbibe excellent cytocompatibility, which was determined using NIH 3T3 fibroblast cell proliferation studies. PHB-GEL-OSA-COL exhibited excellent wound healing efficacy which was confirmed using full thickness excision wound model in Wistar rats

  5. Rheological characterization of human fibrin and fibrin-agarose oral mucosa substitutes generated by tissue engineering.

    PubMed

    Rodríguez, I A; López-López, M T; Oliveira, A C X; Sánchez-Quevedo, M C; Campos, A; Alaminos, M; Durán, J D G

    2012-08-01

    In regenerative medicine, the generation of biocompatible substitutes of tissues by in vitro tissue engineering must fulfil certain requirements. In the case of human oral mucosa, the rheological properties of tissues deserve special attention because of their influence in the acoustics and biomechanics of voice production. This work is devoted to the rheological characterization of substitutes of the connective tissue of the human oral mucosa. Two substitutes, composed of fibrin and fibrin-agarose, were prepared in cell culture for periods in the range 1-21 days. The time evolution of the rheological properties of both substitutes was studied by two different experimental procedures: steady-state and oscillatory measurements. The former allows the plastic behaviour of the substitutes to be characterized by estimating their yield stress; the latter is employed to quantify their viscoelastic responses by obtaining the elastic (G') and viscous (G'') moduli. The results demonstrate that both substitutes are characterized by a predominant elastic response, in which G' (order 100 Pa) is roughly one order of magnitude larger than G'' (order 10 Pa). But the most relevant insight is the stability, throughout the 21 days of culture time, of the rheological quantities in the case of fibrin-agarose, whereas the fibrin substitute shows a significant hardening. This result provides evidence that the addition to fibrin of a small amount of agarose allows the rheological stability of the oral mucosa substitute to be maintained. This feature, together with its viscoelastic similitude with native tissues, makes this biomaterial appropriate for potential use as a scaffold in regenerative therapies of human oral mucosa. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering.

    PubMed

    Henry, Jeffrey J D; Yu, Jian; Wang, Aijun; Lee, Randall; Fang, Jun; Li, Song

    2017-08-17

    Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts. LMW elastic polymer improved the elasticity of the scaffolds, and significantly increased the amount of heparin conjugated to the micro/nanofibrous scaffolds, which in turn increased the loading capacity of vascular endothelial growth factor (VEGF) and prolonged the release of VEGF. Vascular grafts were implanted into the carotid artery of rats to evaluate the in vivo performance. VEGF treatment significantly enhanced endothelium formation and the overall patency of vascular grafts. Heparin coating also increased cell infiltration into the electrospun grafts, thus increasing the production of collagen and elastin within the graft wall. This work demonstrates that LMW elastic polymer blending is an approach to engineer the mechanical and biological property of micro/nanofibrous vascular grafts for in situ vascular tissue engineering.

  7. Evaluation of fibrin-gelatin hydrogel as biopaper for application in skin bioprinting: An in-vitro study.

    PubMed

    Hakam, Mohammad Sadjad; Imani, Rana; Abolfathi, Nabiollah; Fakhrzadeh, Hossein; Sharifi, Ali Mohammad

    2016-01-01

    Recent advances in tissue engineering have led to the development of the concept of bioprinting as an interesting alternative to traditional tissue engineering approaches. Biopaper, a biomimetic hydrogel, is an essential component of the bioprinting process. The aim of this work was to synthesize a biopaper made of fibrin-gelatin hybrid hydrogel for application in skin bioprinting. Different composition percentages of the two biopolymer hydrogels, fibrin-gelatin, have been studied for the construction of the biopaper and were examined in terms of water absorption, biodegradability, glucose absorption, mechanical properties and water vapor transmission. Subsequently, tissue fusion study was performed on prepared 3T3 fibroblast cell line pellets embedded into the hydrogel. Based on the obtained results, fibrin-gelatin blend hydrogel with the same proportion of two components provides a natural scaffold for fibroblast-based bioink embedding and culture. The suggested optimized hydrogel was a suitable candidate as a biopaper for skin bioprinting technology.

  8. Nanofiber Scaffold-Based Tissue-Engineered Retinal Pigment Epithelium to Treat Degenerative Eye Diseases

    PubMed Central

    Khristov, Vladimir; Wan, Qin; Sharma, Ruchi; Jha, Balendu Shekhar; Lotfi, Mostafa; Maminishkis, Arvydas; Simon, Carl G.

    2016-01-01

    Abstract Clinical-grade manufacturing of a functional retinal pigment epithelium (RPE) monolayer requires reproducing, as closely as possible, the natural environment in which RPE grows. In vitro, this can be achieved by a tissue engineering approach, in which the RPE is grown on a nanofibrous biological or synthetic scaffold. Recent research has shown that nanofiber scaffolds perform better for cell growth and transplantability compared with their membrane counterparts and that the success of the scaffold in promoting cell growth/function is not heavily material dependent. With these strides, the field has advanced enough to begin to consider implementation of one, or a combination, of the tissue engineering strategies discussed herein. In this study, we review the current state of tissue engineering research for in vitro culture of RPE/scaffolds and the parameters for optimal scaffold design that have been uncovered during this research. Next, we discuss production methods and manufacturers that are capable of producing the nanofiber scaffolds in such a way that would be biologically, regulatory, clinically, and commercially viable. Then, a discussion of how the scaffolds could be characterized, both morphologically and mechanically, to develop a testing process that is viable for regulatory screening is performed. Finally, an example of a tissue-engineered RPE/scaffold construct is given to provide the reader a framework for understanding how these pieces could fit together to develop a tissue-engineered RPE/scaffold construct that could pass regulatory scrutiny and can be commercially successful. PMID:27110730

  9. Improved neovascularization and wound repair by targeting human basic fibroblast growth factor (bFGF) to fibrin.

    PubMed

    Zhao, Wenxue; Han, Qianqian; Lin, Hang; Gao, Yuan; Sun, Wenjie; Zhao, Yannan; Wang, Bin; Chen, Bing; Xiao, Zhifeng; Dai, Jianwu

    2008-10-01

    Targeted therapy is a new generation of therapeutics, where two critical factors are involved. One is the particular molecular target, and the other is the specific target-binding drug. In this work, the fibrin, a main component of plasma clot at wound sites, was used as the target for human bFGF, aiming to improve therapeutic neovascularization and wound repair. To endow bFGF with fibrin-targeting ability, a fibrin-binding peptide Kringle1 (K1), derived from human plasminogen, was fused to human bFGF. The recombinant K1bFGF showed high fibrin and plasma-clot-binding ability. When applied to the wound sites with plasma clots, K1bFGF induced robust neovascularization and improved wound healing. To extend the application of K1bFGF to other cases where no plasma clots exist, we developed a fibrin-scaffold/K1bFGF system. This system could induce localized neovascularization by delivery of K1bFGF in a sustained and site-targeting manner, and provide a microenvironment promoting cell growth and tissue regeneration. In summary, we successfully used the pathologic environment fibrin clot as the target for bFGF, and based on which bFGF was designed into a targeting agent by introduction of a fibrin-binding peptide. This provides a potential approach to improve therapeutic neovascularization and wound repair.

  10. Manufacture and characterisation of EmDerm-novel hierarchically structured bio-active scaffolds for tissue regeneration.

    PubMed

    Lim, Xuxin; Potter, Matthew; Cui, Zhanfeng; Dye, Julian F

    2018-06-05

    There are significant challenges for using emulsion templating as a method of manufacturing macro-porous protein scaffolds. Issues include protein denaturation by adsorption at hydrophobic interfaces, emulsion instability, oil droplet and surfactant removal after protein gelation, and compatible cross-linking methods. We investigated an oil-in-water macro-emulsion stabilised with a surfactant blend, as a template for manufacturing protein-based nano-structured bio-intelligent scaffolds (EmDerm) with tuneable micro-scale porosity for tissue regeneration. Prototype EmDerm scaffolds were made using either collagen, through thermal gelation, fibrin, through enzymatic coagulation or collagen-fibrin composite. Pore size was controlled via surfactant-to-oil phase ratio. Scaffolds were crosslink-stabilised with EDC/NHS for varying durations. Scaffold micro-architecture and porosity were characterised with SEM, and mechanical properties by tensiometry. Hydrolytic and proteolytic degradation profiles were quantified by mass decrease over time. Human dermal fibroblasts, endothelial cells and bone marrow derived mesenchymal stem cells were used to investigate cytotoxicity and cell proliferation within each scaffold. EmDerm scaffolds showed nano-scale based hierarchical structures, with mean pore diameters ranging from 40-100 microns. The Young's modulus range was 1.1-2.9 MPa, and ultimate tensile strength was 4-16 MPa. Degradation rate was related to cross-linking duration. Each EmDerm scaffold supported excellent cell ingress and proliferation compared to the reference materials Integra™ and Matriderm™. Emulsion templating is a novel rapid method of fabricating nano-structured fibrous protein scaffolds with micro-scale pore dimensions. These scaffolds hold promising clinical potential for regeneration of the dermis and other soft tissues, e.g., for burns or chronic wound therapies.

  11. Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering

    PubMed Central

    Zakhem, Elie; Raghavan, Shreya; Gilmont, Robert R; Bitar, Khalil N

    2012-01-01

    Intestinal tissue engineering is an emerging field due to a growing demand for intestinal lengthening and replacement procedures secondary to massive resections of the bowel. Here, we demonstrate the potential use of a chitosan/collagen scaffold as a 3D matrix to support the bioengineered circular muscle constructs maintain their physiological functionality. We investigated the biocompatibility of chitosan by growing rabbit colonic circular smooth muscle cells (RCSMCs) on chitosan-coated plates. The cells maintained their spindle-like morphology and preserved their smooth muscle phenotypic markers. We manufactured tubular scaffolds with central openings composed of chitosan and collagen in a 1:1 ratio. Concentrically-aligned 3D circular muscle constructs were bioengineered using fibrin-based hydrogel seeded with RCSMCs. The constructs were placed around the scaffold for 2 weeks, after which they were taken off and tested for their physiological functionality. The muscle constructs contracted in response to Acetylcholine (Ach) and potassium chloride (KCl) and they relaxed in response to vasoactive intestinal peptide (VIP). These results demonstrate that chitosan is a biomaterial possibly suitable for intestinal tissue engineering applications. PMID:22483012

  12. Improving effects of chitosan nanofiber scaffolds on osteoblast proliferation and maturation

    PubMed Central

    Ho, Ming-Hua; Liao, Mei-Hsiu; Lin, Yi-Ling; Lai, Chien-Hao; Lin, Pei-I; Chen, Ruei-Ming

    2014-01-01

    Osteoblast maturation plays a key role in regulating osteogenesis. Electrospun nanofibrous products were reported to possess a high surface area and porosity. In this study, we developed chitosan nanofibers and examined the effects of nanofibrous scaffolds on osteoblast maturation and the possible mechanisms. Macro- and micro observations of the chitosan nanofibers revealed that these nanoproducts had a flat surface and well-distributed fibers with nanoscale diameters. Mouse osteoblasts were able to attach onto the chitosan nanofiber scaffolds, and the scaffolds degraded in a time-dependent manner. Analysis by scanning electron microscopy further showed mouse osteoblasts adhered onto the scaffolds along the nanofibers, and cell–cell communication was also detected. Mouse osteoblasts grew much better on chitosan nanofiber scaffolds than on chitosan films. In addition, human osteoblasts were able to adhere and grow on the chitosan nanofiber scaffolds. Interestingly, culturing human osteoblasts on chitosan nanofiber scaffolds time-dependently increased DNA replication and cell proliferation. In parallel, administration of human osteoblasts onto chitosan nanofibers significantly induced osteopontin, osteocalcin, and alkaline phosphatase (ALP) messenger (m)RNA expression. As to the mechanism, chitosan nanofibers triggered runt-related transcription factor 2 mRNA and protein syntheses. Consequently, results of ALP-, alizarin red-, and von Kossa-staining analyses showed that chitosan nanofibers improved osteoblast mineralization. Taken together, results of this study demonstrate that chitosan nanofibers can stimulate osteoblast proliferation and maturation via runt-related transcription factor 2-mediated regulation of osteoblast-associated osteopontin, osteocalcin, and ALP gene expression. PMID:25246786

  13. 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications.

    PubMed

    Ning, Liqun; Sun, Haoying; Lelong, Tiphanie; Guilloteau, Romain; Zhu, Ning; Schreyer, David J; Chen, Daniel Xiongbiao

    2018-06-18

    Three-dimensional (3D) bioprinting of biomaterials shows great potential for producing cell-encapsulated scaffolds to repair nerves after injury or disease. For this, preparation of biomaterials and bioprinting itself are critical to create scaffolds with both biological and mechanical properties appropriate for nerve regeneration, yet remain unachievable. This paper presents our study on bioprinting Schwann cell-encapsulated scaffolds using composite hydrogels of alginate, fibrin, hyaluronic acid, and/or RGD peptide, for nerve tissue engineering applications. For the preparation of composite hydrogels, suitable hydrogel combinations were identified and prepared by adjusting the concentration of fibrin based on the morphological spreading of Schwann cells. In bioprinting, the effects of various printing process parameters (including the air pressure for dispensing, dispensing head movement speed, and crosslinking conditions) on printed structures were investigated and, by regulating these parameters, mechanically-stable scaffolds with fully interconnected pores were printed. The performance of Schwann cells within the printed scaffolds were examined in terms of viability, proliferation, orientation, and ability to produce laminin. Our results show that the printed scaffolds can promote the alignment of Schwann cells inside scaffolds and thus provide haptotactic cues to direct the extension of dorsal root ganglion neurites along the printed strands, demonstrating their great potential for applications in the field of nerve tissue engineering. © 2018 IOP Publishing Ltd.

  14. Comparative evaluation of Chitosan, Cellulose Acetate, and Polyethersulfone Nanofiber Scaffolds for Neural Differentiation

    PubMed Central

    Du, Jian; Tan, Elaine; Kim, Hyo Jun; Zhang, Allen; Bhattacharya, Rahul; Yarema, Kevin J

    2013-01-01

    Based on accumulating evidence that the 3D topography and the chemical features of a growth surface influence neuronal differentiation, we combined these two features by evaluating the cytotoxicity, proliferation, and differentiation of the rat PC12 line and human neural stem cells (hNSCs) on chitosan (CS), cellulose acetate (CA), and polyethersulfone (PES)-derived electrospun nanofibers that had similar diameters, centered in the 200 to 500 nm range. None of the nanofibrous materials were cytotoxic compared to 2D (e.g., flat surface) controls; however, proliferation generally was inhibited on the nanofibrous scaffolds although to a lesser extent on the polysaccharide-derived materials compared to PES. In an exception to the trend towards slower growth on the 3D substrates, hNSCs differentiated on the CS nanofibers proliferated faster than the 2D controls and both cell types showed enhanced indication of neuronal differentiation on the CS scaffolds. Together, these results demonstrate beneficial attributes of CS for neural tissue engineering when this polysaccharide is used in the context of the defined 3D topography found in electrospun nanofibers. PMID:24274534

  15. First step in developing a 3D biodegradable fibrin scaffold for an artificial ovary

    PubMed Central

    2013-01-01

    Background Although transplantation of cryopreserved ovarian tissue is a promising approach to restore fertility in cancer patients, it is not advisable for women at risk of ovarian involvement due to the threat of reintroducing malignant cells. The aim of this study was therefore to find an alternative for these patients by development of an artificial ovary. Methods For construction of the artificial ovary matrix, we used a central composite design to investigate nine combinations of fibrinogen (mg/ml) and thrombin (IU/mL) (F/T): F1/T4, F12.5/T1, F12.5/T20, F25/T0.1, F25/T4, F25/T500, F50/T1, F50/T20 and F100/T4. From the first qualitative analyses (handling and matrix size), five combinations (F12.5/T1, F25/T4, F50/T20, F50/T1 and F100/T4) yielded positive results. They were further evaluated in order to assess fibrin matrix degradation and homogeneous cell encapsulation (density), survival and proliferation (Ki67), and atresia (TUNEL) before and after 7 days of in vitro culture. To determine the best compromise between maximizing the dynamic density (Y1) and minimizing the apoptosis rate (Y2), we used the desirability function approach. Results Two combinations (F12.5/T1 and F25/T4) showed greater distribution of cells before in vitro culture, reproducible degradation of the fibrin network and adequate support for isolated human ovarian stromal cells, with a high proportion of Ki67-positive cells. SEM analysis revealed a network of fibers with regular pores and healthy stromal cells after in vitro culture with both F/T combinations. Conclusion This study reports two optimal F/T combinations that allow survival and proliferation of isolated human ovarian cells. Further studies are required to determine if such a scaffold will also be a suitable environment for isolated ovarian follicles. PMID:24274108

  16. First step in developing a 3D biodegradable fibrin scaffold for an artificial ovary.

    PubMed

    Luyckx, Valérie; Dolmans, Marie-Madeleine; Vanacker, Julie; Scalercio, Sarah R; Donnez, Jacques; Amorim, Christiani A

    2013-11-25

    Although transplantation of cryopreserved ovarian tissue is a promising approach to restore fertility in cancer patients, it is not advisable for women at risk of ovarian involvement due to the threat of reintroducing malignant cells. The aim of this study was therefore to find an alternative for these patients by development of an artificial ovary. For construction of the artificial ovary matrix, we used a central composite design to investigate nine combinations of fibrinogen (mg/ml) and thrombin (IU/mL) (F/T): F1/T4, F12.5/T1, F12.5/T20, F25/T0.1, F25/T4, F25/T500, F50/T1, F50/T20 and F100/T4. From the first qualitative analyses (handling and matrix size), five combinations (F12.5/T1, F25/T4, F50/T20, F50/T1 and F100/T4) yielded positive results. They were further evaluated in order to assess fibrin matrix degradation and homogeneous cell encapsulation (density), survival and proliferation (Ki67), and atresia (TUNEL) before and after 7 days of in vitro culture. To determine the best compromise between maximizing the dynamic density (Y1) and minimizing the apoptosis rate (Y2), we used the desirability function approach. Two combinations (F12.5/T1 and F25/T4) showed greater distribution of cells before in vitro culture, reproducible degradation of the fibrin network and adequate support for isolated human ovarian stromal cells, with a high proportion of Ki67-positive cells. SEM analysis revealed a network of fibers with regular pores and healthy stromal cells after in vitro culture with both F/T combinations. This study reports two optimal F/T combinations that allow survival and proliferation of isolated human ovarian cells. Further studies are required to determine if such a scaffold will also be a suitable environment for isolated ovarian follicles.

  17. Enhancement of stem cell differentiation to osteogenic lineage on hydroxyapatite-coated hybrid PLGA/gelatin nanofiber scaffolds.

    PubMed

    Sanaei-Rad, Parisa; Jafarzadeh Kashi, Tahereh-Sadat; Seyedjafari, Ehsan; Soleimani, Masoud

    2016-11-01

    A combination of polymeric materials and bioceramics has recently received a great deal of attention for bone tissue engineering applications. In the present study, hybrid nanofibrous scaffolds were fabricated from PLGA and gelatin via electrospinning and then were coated with hydroxyapatite (HA). They were then characterized and used in stem cell culture studies for the evaluation of their biological behavior and osteogenic differentiation in vitro. This study showed that all PLGA, hybrid PLGA/gelatin and HA-PLGA/gelatin scaffolds were composed of ultrafine fibers with smooth morphology and interconnected pores. The MTT assay confirmed that the scaffolds can support the attachment and proliferation of stem cells. During osteogenic differentiation, bone-related gene expression, ALP activity and biomineralization on HA-PLGA/gelatin scaffolds were higher than those observed on other scaffolds and TCPS. PLGA/gelatin electrospun scaffolds also showed higher values of these markers than TCPS. Taking together, it was shown that nanofibrous structure enhanced osteogenic differentiation of adipose-tissue derived stem cells. Furthermore, surface-coated HA stimulated the effect of nanofibers on the commitment of stem cells toward osteolineage. In conclusion, HA-PLGA/gelatin electrospun scaffolds were demonstrated to have significant potential for bone tissue engineering applications. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  18. Electrospun scaffold containing TGF-β1 promotes human mesenchymal stem cell differentiation towards a nucleus pulposus-like phenotype under hypoxia.

    PubMed

    Cui, Xiang; Liu, Minghan; Wang, Jiaxu; Zhou, Yue; Xiang, Qiang

    2015-04-01

    The study was aimed at evaluating the effect of electrospun scaffold containing TGF-β1 on promoting human mesenchymal stem cells (MSCs) differentiation towards a nucleus pulposus-like phenotype under hypoxia. Two kinds of nanofibrous scaffolds containing TGF-β1 were fabricated using uniaxial electrospinning (Group I) and coaxial electrospinning (Group II). Human MSCs were seeded on both kinds of scaffolds and cultured in a hypoxia chamber (2% O2), and then the scaffolds were characterised. Cell proliferation and differentiation were also evaluated after 3 weeks of cell culture. Results showed that both kinds of scaffolds shared similar diameter distributions and protein release. However, Group I scaffolds were more hydrophilic than that of Group II. Both kinds of scaffolds induced the MSCs to differentiate towards the nucleus pulposus-type phenotype in vitro. In addition, the expression of nucleus pulposus-associated genes (aggrecan, type II collagen, HIF-1α and Sox-9) in Group I increased more than that of Group II. These results indicate that electrospinning nanofibrous scaffolds containing TGF-β1 supports the differentiation of MSCs towards the pulposus-like phenotype in a hypoxia chamber, which would be a more appropriate choice for nucleus pulposus regeneration.

  19. Fibrin-based tissue engineering: comparison of different methods of autologous fibrinogen isolation.

    PubMed

    Dietrich, Maren; Heselhaus, Johanna; Wozniak, Justyna; Weinandy, Stefan; Mela, Petra; Tschoeke, Beate; Schmitz-Rode, Thomas; Jockenhoevel, Stefan

    2013-03-01

    This study is focussed on the optimal method of autologous fibrinogen isolation with regard to the yield and the use as a scaffold material. This is particularly relevant for pediatric patients with strictly limited volumes of blood. The following isolation methods were evaluated: cryoprecipitation, ethanol (EtOH) precipitation, ammonium sulfate [(NH(4))(2)SO(4))] precipitation, ammonium sulfate precipitation combined with cryoprecipitation, and polyethylene glycol precipitation combined with cryoprecipitation. Fibrinogen yields were quantified spectrophotometrically and by electrophoretic analyses. To test the influence of the different isolation methods on the microstructure of the fibrin gels, scanning electron microscopy (SEM) was used and the mechanical strength of the cell-free and cell-seeded fibrin gels was tested by burst strength measurements. Cytotoxicity assays were performed to analyze the effect of various fibrinogen isolation methods on proliferation, apoptosis, and necrosis. Tissue development and cell migration were analyzed in all samples using immunohistochemical techniques. The synthesis of collagen as an extracellular matrix component by human umbilical cord artery smooth muscle cells in fibrin gels was measured using hydroxyproline assay. Compared to cryoprecipitation, all other considered methods were superior in quantitative analyses, with maximum fibrinogen yields of ∼80% of total plasma fibrinogen concentration using ethanol precipitation. SEM imaging demonstrated minor differences in the gel microstructure. Ethanol-precipitated fibrin gels exhibited the best mechanical properties. None of the isolation methods had a cytotoxic effect on the cells. Collagen production was similar in all gels except those from ammonium sulfate precipitation. Histological analysis showed good cell compatibility for ethanol-precipitated gels. The results of the present study demonstrated that ethanol precipitation is a simple and effective method for

  20. Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration.

    PubMed

    Almeida, H V; Eswaramoorthy, R; Cunniffe, G M; Buckley, C T; O'Brien, F J; Kelly, D J

    2016-05-01

    Freshly isolated stromal cells can potentially be used as an alternative to in vitro expanded cells in regenerative medicine. Their use requires the development of bioactive hydrogels or scaffolds which provide an environment to enhance their proliferation and tissue-specific differentiation in vivo. The goal of the current study was to develop an injectable fibrin hydrogel functionalized with cartilage ECM microparticles and transforming growth factor (TGF)-β3 as a putative therapeutic for articular cartilage regeneration. ECM microparticles were produced by cryomilling and freeze-drying porcine articular cartilage. Up to 2% (w/v) ECM could be incorporated into fibrin without detrimentally affecting its capacity to form stable hydrogels. To access the chondroinductivity of cartilage ECM, we compared chondrogenesis of infrapatellar fat pad-derived stem cells in fibrin hydrogels functionalized with either particulated ECM or control gelatin microspheres. Cartilage ECM particles could be used to control the delivery of TGF-β3 to IFP-derived stem cells within fibrin hydrogels in vitro, and furthermore, led to higher levels of sulphated glycosaminoglycan (sGAG) and collagen accumulation compared to control constructs loaded with gelatin microspheres. In vivo, freshly isolated stromal cells generated a more cartilage-like tissue within fibrin hydrogels functionalized with cartilage ECM particles compared to the control gelatin loaded constructs. These tissues stained strongly for type II collagen and contained higher levels of sGAGs. These results support the use of fibrin hydrogels functionalized with cartilage ECM components in single-stage, cell-based therapies for joint regeneration. An alternative to the use of in vitro expanded cells in regenerative medicine is the use of freshly isolated stromal cells, where a bioactive scaffold or hydrogel is used to provide an environment that enhances their proliferation and tissue-specific differentiation in vivo. The

  1. The potential of 3-dimensional construct engineered from poly(lactic-co-glycolic acid)/fibrin hybrid scaffold seeded with bone marrow mesenchymal stem cells for in vitro cartilage tissue engineering.

    PubMed

    Abdul Rahman, Rozlin; Mohamad Sukri, Norhamiza; Md Nazir, Noorhidayah; Ahmad Radzi, Muhammad Aa'zamuddin; Zulkifly, Ahmad Hafiz; Che Ahmad, Aminudin; Hashi, Abdurezak Abdulahi; Abdul Rahman, Suzanah; Sha'ban, Munirah

    2015-08-01

    Articular cartilage is well known for its simple uniqueness of avascular and aneural structure that has limited capacity to heal itself when injured. The use of three dimensional construct in tissue engineering holds great potential in regenerating cartilage defects. This study evaluated the in vitro cartilaginous tissue formation using rabbit's bone marrow mesenchymal stem cells (BMSCs)-seeded onto poly(lactic-co-glycolic acid) PLGA/fibrin and PLGA scaffolds. The in vitro cartilaginous engineered constructs were evaluated by gross inspection, histology, cell proliferation, gene expression and sulphated glycosaminoglycan (sGAG) production at week 1, 2 and 3. After 3 weeks of culture, the PLGA/fibrin construct demonstrated gross features similar to the native tissue with smooth, firm and glistening appearance, superior histoarchitectural and better cartilaginous extracellular matrix compound in concert with the positive glycosaminoglycan accumulation on Alcian blue. Significantly higher cell proliferation in PLGA/fibrin construct was noted at day-7, day-14 and day-21 (p<0.05 respectively). Both constructs expressed the accumulation of collagen type II, collagen type IX, aggrecan and sox9, showed down-regulation of collagen type I as well as produced relative sGAG content with PLGA/fibrin construct exhibited better gene expression in all profiles and showed significantly higher relative sGAG content at each time point (p<0.05). This study suggested that with optimum in vitro manipulation, PLGA/fibrin when seeded with pluripotent non-committed BMSCs has the capability to differentiate into chondrogenic lineage and may serve as a prospective construct to be developed as functional tissue engineered cartilage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Elastin-like-recombinamers multilayered nanofibrous scaffolds for cardiovascular applications.

    PubMed

    Putzu, M; Causa, F; Nele, V; de Torre, I González; Rodriguez-Cabello, J C; Netti, P A

    2016-11-15

    Coronary angioplasty is the most widely used technique for removing atherosclerotic plaques in blood vessels. The regeneration of the damaged intima layer after this treatment is still one of the major challenges in the field of cardiovascular tissue engineering. Different polymers have been used in scaffold manufacturing in order to improve tissue regeneration. Elastin-mimetic polymers are a new class of molecules that have been synthesized and used to obtain small diameter fibers with specific morphological characteristics. Elastin-like polymers produced by recombinant techniques and called elastin-like recombinamers (ELRs) are particularly promising due to their high degree of functionalization. Generally speaking, ELRs can show more complex molecular designs and a tighter control of their sequence than other chemically synthetized polymers Rodriguez Cabello et al (2009 Polymer 50 5159-69, 2011 Nanomedicine 6 111-22). For the fabrication of small diameter fibers, different ELRs were dissolved in 2,2,2-fluoroethanol (TFE). Dynamic light scattering was used to identify the transition temperature and get a deep characterization of the transition behavior of the recombinamers. In this work, we describe the use of electrospinning technique for the manufacturing of an elastic fibrous scaffold; the obtained fibers were characterized and their cytocompatibility was tested in vitro. A thorough study of the influence of voltage, flow rate and distance was carried out in order to determine the appropriate parameters to obtain fibrous mats without beads and defects. Moreover, using a rotating mandrel, we fabricated a tubular scaffold in which ELRs containing different cell adhesion sequences (mainly REDV and RGD) were collected. The stability of the scaffold was improved by using genipin as a crosslinking agent. Genipin-ELRs crosslinked scaffolds  show a good stability and fiber morphology. Human umbilical vein endothelial cells  were used to assess the in vitro

  3. Nanofibrous electrocatalysts

    DOEpatents

    Liu, Di Jia; Shui, Jianglan; Chen, Chen

    2016-05-24

    A nanofibrous catalyst and method of manufacture. A precursor solution of a transition metal based material is formed into a plurality of interconnected nanofibers by electro-spinning the precursor solution with the nanofibers converted to a catalytically active material by a heat treatment. Selected subsequent treatments can enhance catalytic activity.

  4. Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes

    PubMed Central

    Chen, Zhuwen; Zeng, Jiaying; Lv, Dong; Gao, Jinqiang; Zhang, Jian; Bai, Shan; Li, Ruili; Wu, Jingshen

    2016-01-01

    Some key parameters of supports such as porosity, pore shape and size are of great importance for fabrication and performance of zeolite membranes. In this study, we fabricated millimetre-thick, self-standing electrospun ceramic nanofibre mats and employed them as a novel support for zeolite membranes. The nanofibre mats were prepared by electrospinning a halloysite nanotubes/polyvinyl pyrrolidone composite followed by a programmed sintering process. The interwoven nanofibre mats possess up to 80% porosity, narrow pore size distribution, low pore tortuosity and highly interconnected pore structure. Compared with the commercial α-Al2O3 supports prepared by powder compaction and sintering, the halloysite nanotube-based mats (HNMs) show higher flux, better adsorption of zeolite seeds, adhesion of zeolite membranes and lower Al leaching. Four types of zeolite membranes supported on HNMs have been successfully synthesized with either in situ crystallization or a secondary growth method, demonstrating good universality of HNMs for supporting zeolite membranes. PMID:28083098

  5. Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes

    NASA Astrophysics Data System (ADS)

    Chen, Zhuwen; Zeng, Jiaying; Lv, Dong; Gao, Jinqiang; Zhang, Jian; Bai, Shan; Li, Ruili; Hong, Mei; Wu, Jingshen

    2016-12-01

    Some key parameters of supports such as porosity, pore shape and size are of great importance for fabrication and performance of zeolite membranes. In this study, we fabricated millimetre-thick, self-standing electrospun ceramic nanofibre mats and employed them as a novel support for zeolite membranes. The nanofibre mats were prepared by electrospinning a halloysite nanotubes/polyvinyl pyrrolidone composite followed by a programmed sintering process. The interwoven nanofibre mats possess up to 80% porosity, narrow pore size distribution, low pore tortuosity and highly interconnected pore structure. Compared with the commercial α-Al2O3 supports prepared by powder compaction and sintering, the halloysite nanotube-based mats (HNMs) show higher flux, better adsorption of zeolite seeds, adhesion of zeolite membranes and lower Al leaching. Four types of zeolite membranes supported on HNMs have been successfully synthesized with either in situ crystallization or a secondary growth method, demonstrating good universality of HNMs for supporting zeolite membranes.

  6. Preparation and characterization of carbon nanofibrous/hydroxyapatite sheets for bone tissue engineering.

    PubMed

    Abd El-Aziz, A M; El Backly, Rania M; Taha, Nahla A; El-Maghraby, Azza; Kandil, Sherif H

    2017-07-01

    Critical size bone defects are orthopedic defects that will not heal without intervention or that will not completely heal over the natural life time of the animal. Although bone generally has the ability to regenerate completely however, critical defects require some sort of scaffold to do so. In the current study we proposed a method to obtain a carbon nanofibrous/Hydroxyapatite (HA) bioactive scaffold. The carbon nanofibrous (CNF) nonwoven fabrics were obtained by the use of the electrospinning process of the polymeric solution of poly acrylonitrile "PAN" and subsequent stabilization and carbonization processes. The CNFs sheets were functionalized by both hydroxyapatite (HA) and bovine serum albumin (BSA). The HA was added to the electrospun solution, but in case of (BSA), it was adsorbed after the carbonization process. The changes in the properties taking place in the precursor sheets were investigated using the characterization methods (SEM, FT-IR, TGA and EDX). The prepared materials were tested for biocompatibility via subcutaneous implantation in New Zealand white rabbits. We successfully prepared biocompatible functionalized sheets, which have been modified with HA or HA and BSA. The sheets that were functionalized by both HA and BSA are more biocompatible with fewer inflammatory cells of (neutrophils and lymphocytes) than ones with only HA over the period of 3weeks. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Establishing the framework to support bioartificial heart fabrication using fibrin-based three-dimensional artificial heart muscle.

    PubMed

    Hogan, Matthew; Mohamed, Mohamed; Tao, Ze-Wei; Gutierrez, Laura; Birla, Ravi

    2015-02-01

    Only 3000 heart transplants are performed in the USA every year, leaving some 30 000-70 000 Americans without proper care. Current treatment modalities for heart failure have saved many lives yet still do not correct the underlying problems of congestive heart failure. Tissue engineering represents a potential field of study wherein a combination of cells, scaffolds, and/or bioreactors can be utilized to create constructs to mimic, replace, and/or repair defective tissue. The focus of this study was to generate a bioartificial heart (BAH) model using artificial heart muscle (AHM), composed of fibrin gel and neonatal rat cardiac myocytes, and a decellularized scaffold, formed by subjecting an adult rat heart to a series of decellularization solutions. By suturing the AHM around the outside of the decellularized heart and culturing while suspended in media, we were able to retain functional cardiac cells on the scaffold as evinced by visible contractility. Observed contractility rate was correlated with biopotential measurements to confirm essential functionality of cardiac constructs. Cross-sections of the BAH show successful decellularization of the scaffold and contiguous cell-rich AHM around the perimeter of the heart. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  8. Technical manual for manufacturing autologous fibrin tissue adhesive.

    PubMed

    Park, J J; Cintron, J R; Siedentop, K H; Orsay, C P; Pearl, R K; Nelson, R L; Abcarian, H

    1999-10-01

    The aim of this article is to provide a concise and simple technical manual for manufacturing autologous fibrin tissue adhesive derived from the precipitation of fibrinogen using a combination of ethanol and freezing for surgery. All materials and equipment needed to manufacture ethanol-based autologous fibrin tissue adhesive are listed. In addition, step-by-step instructions are provided to allow for easy and rapid fibrin adhesive production. Ethanol-based autologous fibrin tissue adhesive can be manufactured in under 60 minutes. Furthermore, at our institution the startup cost for manufacturing ethanol-based autologous fibrin tissue adhesive was under $2,500.00. Ethanol-based autologous fibrin tissue adhesive is a safe, reliable, and easily manufactured autologous fibrin tissue adhesive that can be made by a trained technician in any blood bank, pharmacy, or surgical laboratory.

  9. Generation of strip-format fibrin-based engineered heart tissue (EHT).

    PubMed

    Schaaf, Sebastian; Eder, Alexandra; Vollert, Ingra; Stöhr, Andrea; Hansen, Arne; Eschenhagen, Thomas

    2014-01-01

    This protocol describes a method for casting fibrin-based engineered heart tissue (EHT) in standard 24-well culture dishes. In principle, a hydrogel tissue engineering method requires cardiomyocytes, a liquid matrix that forms a gel, a casting mold, and a device that keeps the developing tissue in place. This protocol refers to neonatal rat heart cells as the cell source; the matrix of choice is fibrin, and the tissues are generated in rectangular agarose-casting molds (12 × 3 × 3 mm) prepared in standard 24-well cell culture dishes, in which a pair of flexible silicone posts is suspended from above. A master mix of freshly isolated cells, medium, fibrinogen, and thrombin is pipetted into the casting mold and, over a period of 2 h, polymerizes and forms a fibrin cell block around two silicone posts. Silicone racks holding four pairs of silicone posts each are used to transfer the fresh fibrin cell blocks into new 24-well dishes with culture medium. Without further handling, the cells start to remodel the fibrin gel, form contacts with each other, elongate, and condense the gel to approximately ¼ of the initial volume. Spontaneous and rhythmic contractions start after 1 week. EHTs are viable and relatively stable for several weeks in this format and can be subjected to repeated measurements of contractile function and final morphological and molecular analyses.

  10. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue.

    PubMed

    Lv, Jia; Xiu, Peng; Tan, Jie; Jia, Zhaojun; Cai, Hong; Liu, Zhongjun

    2015-06-24

    Electron beam melting (EBM)-fabricated porous titanium implants possessing low elastic moduli and tailored structures are promising biomaterials for orthopedic applications. However, the bio-inert nature of porous titanium makes reinforcement with growth factors (GFs) a promising method to enhance implant in vivo performance. Bone-morphogenic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) are key factors of angiogenesis and osteogenesis. Therefore, the present study is aimed at evaluating EBM-fabricated porous titanium implants incorporating GF-doped fibrin glue (FG) as composite scaffolds providing GFs for improvement of angiogenesis and osteogenesis in rabbit femoral condyle defects. BMP-2 and VEGF were added into the constituent compounds of FG, and then this GF-doped FG was subsequently injected into the porous scaffolds. In five groups of implants, angiogenesis and osteogenesis were evaluated at 4 weeks post-implantation using Microfil perfusion and histological analysis: eTi (empty scaffolds), cTi (containing undoped FG), BMP/cTi (containing 50 μg rhBMP-2), VEGF/cTi (containing 0.5 μg VEGF) and Dual/cTi (containing 50 μg rhBMP-2 and 0.5 μg VEGF). The results demonstrate that these composite implants are biocompatible and provide the desired gradual release of the bioactive growth factors. Incorporation of GF delivery, whether a single factor or dual factors, significantly enhanced both angiogenesis and osteogenesis inside the porous scaffolds. However, the synergistic effect of the dual factors combination was observable on angiogenesis but absent on osteogenesis. In conclusion, fibrin glue is a biocompatible material that could be employed as a delivery vehicle in EBM-fabricated porous titanium for controlled release of BMP-2 and VEGF. Application of this method for loading a porous titanium scaffold to incorporate growth factors is a convenient and promising strategy for improving osteogenesis of critical-sized bone defects.

  11. Aβ delays fibrin clot lysis by altering fibrin structure and attenuating plasminogen binding to fibrin

    PubMed Central

    Zamolodchikov, Daria

    2012-01-01

    Alzheimer disease is characterized by the presence of increased levels of the β-amyloid peptide (Aβ) in the brain parenchyma and cerebral blood vessels. This accumulated Aβ can bind to fibrin(ogen) and render fibrin clots more resistant to degradation. Here, we demonstrate that Aβ42 specifically binds to fibrin and induces a tighter fibrin network characterized by thinner fibers and increased resistance to lysis. However, Aβ42-induced structural changes cannot be the sole mechanism of delayed lysis because Aβ overlaid on normal preformed clots also binds to fibrin and delays lysis without altering clot structure. In this regard, we show that Aβ interferes with the binding of plasminogen to fibrin, which could impair plasmin generation and fibrin degradation. Indeed, plasmin generation by tissue plasminogen activator (tPA), but not streptokinase, is slowed in fibrin clots containing Aβ42, and clot lysis by plasmin, but not trypsin, is delayed. Notably, plasmin and tPA activities, as well as tPA-dependent generation of plasmin in solution, are not decreased in the presence of Aβ42. Our results indicate the existence of 2 mechanisms of Aβ42 involvement in delayed fibrinolysis: (1) through the induction of a tighter fibrin network composed of thinner fibers, and (2) through inhibition of plasmin(ogen)–fibrin binding. PMID:22238323

  12. Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation.

    PubMed

    Wu, Shaohua; Wang, Ying; Streubel, Philipp N; Duan, Bin

    2017-10-15

    Non-woven nanofibrous scaffolds have been developed for tendon graft application by using electrospinning strategies. However, electrospun nanofibrous scaffolds face some obstacles and limitations, including suboptimal scaffold structure, weak tensile and suture-retention strengths, and compact structure for cell infiltration. In this work, a novel nanofibrous, woven biotextile, fabricated based on electrospun nanofiber yarns, was implemented as a tissue engineered tendon scaffold. Based on our modified electrospinning setup, polycaprolactone (PCL) nanofiber yarns were fabricated with reproducible quality, and were further processed into plain-weaving fabrics interlaced with polylactic acid (PLA) multifilaments. Nonwoven nanofibrous PCL meshes with random or aligned fiber structures were generated using typical electrospinning as comparative counterparts. The woven fabrics contained 3D aligned microstructures with significantly larger pore size and obviously enhanced tensile mechanical properties than their nonwoven counterparts. The biological results revealed that cell proliferation and infiltration, along with the expression of tendon-specific genes by human adipose derived mesenchymal stem cells (HADMSC) and human tenocytes (HT), were significantly enhanced on the woven fabrics compared with those on randomly-oriented or aligned nanofiber meshes. Co-cultures of HADMSC with HT or human umbilical vein endothelial cells (HUVEC) on woven fabrics significantly upregulated the functional expression of most tenogenic markers. HADMSC/HT/HUVEC tri-culture on woven fabrics showed the highest upregulation of most tendon-associated markers than all the other mono- and co-culture groups. Furthermore, we conditioned the tri-cultured constructs with dynamic conditioning and demonstrated that dynamic stretch promoted total collagen secretion and tenogenic differentiation. Our nanofiber yarn-based biotextiles have significant potential to be used as engineered scaffolds to

  13. Silver/polysaccharide-based nanofibrous materials synthesized from green chemistry approach.

    PubMed

    Martínez-Rodríguez, M A; Garza-Navarro, M A; Moreno-Cortez, I E; Lucio-Porto, R; González-González, V A

    2016-01-20

    In this contribution a novel green chemistry approach for the synthesis of nanofibrous materials based on blends of carboxymethyl-cellulose (CMC)-silver nanoparticles (AgNPs) composite and polyvinyl-alcohol (PVA) is proposed. These nanofibrous materials were obtained from the electrospinning of blends of aqueous solutions of CMC-AgNPs composite and PVA, which were prepared at different CMC/PVA weight ratios in order to electrospin nanofibers applying a constant tension of 15kV. The synthesized materials were characterized by means of transmission electron microscopy, scanning electron microscopy; as well as Fourier-transform infrared, ultraviolet and Raman spectroscopic techniques. Experimental evidence suggests that the diameter of the nanofibers is thinner than any other reported in the literature regarding the electrospinning of CMC. This feature is related to the interactions of AgNPs with carboxyl functional groups of the CMC, which diminish those between the later and acetyl groups of PVA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Surface-modified bacterial nanofibrillar PHB scaffolds for bladder tissue repair.

    PubMed

    Karahaliloğlu, Zeynep; Demirbilek, Murat; Şam, Mesut; Sağlam, Necdet; Mızrak, Alpay Koray; Denkbaş, Emir Baki

    2016-01-01

    The aim of the study is in vitro investigation of the feasibility of surface-modified bacterial nanofibrous poly [(R)-3-hydroxybutyrate] (PHB) graft for bladder reconstruction. In this study, the surface of electrospun bacterial PHB was modified with PEG- or EDA via radio frequency glow discharge method. After plasma modification, contact angle of EDA-modified PHB scaffolds decreased from 110 ± 1.50 to 23 ± 0.5 degree. Interestingly, less calcium oxalate stone deposition was observed on modified PHB scaffolds compared to that of non-modified group. Results of this study show that surface-modified scaffolds not only inhibited calcium oxalate growth but also enhanced the uroepithelial cell viability and proliferation.

  15. Evidence that αC region is origin of low modulus, high extensibility, and strain stiffening in fibrin fibers.

    PubMed

    Houser, John R; Hudson, Nathan E; Ping, Lifang; O'Brien, E Timothy; Superfine, Richard; Lord, Susan T; Falvo, Michael R

    2010-11-03

    Fibrin fibers form the structural scaffold of blood clots and perform the mechanical task of stemming blood flow. Several decades of investigation of fibrin fiber networks using macroscopic techniques have revealed remarkable mechanical properties. More recently, the microscopic origins of fibrin's mechanics have been probed through direct measurements on single fibrin fibers and individual fibrinogen molecules. Using a nanomanipulation system, we investigated the mechanical properties of individual fibrin fibers. The fibers were stretched with the atomic force microscope, and stress-versus-strain data was collected for fibers formed with and without ligation by the activated transglutaminase factor XIII (FXIIIa). We observed that ligation with FXIIIa nearly doubled the stiffness of the fibers. The stress-versus-strain behavior indicates that fibrin fibers exhibit properties similar to other elastomeric biopolymers. We propose a mechanical model that fits our observed force extension data, is consistent with the results of the ligation data, and suggests that the large observed extensibility in fibrin fibers is mediated by the natively unfolded regions of the molecule. Although some models attribute fibrin's force-versus-extension behavior to unfolding of structured regions within the monomer, our analysis argues that these models are inconsistent with the measured extensibility and elastic modulus. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Augmenting endogenous repair of soft tissues with nanofibre scaffolds

    PubMed Central

    Snelling, Sarah; Dakin, Stephanie; Carr, Andrew

    2018-01-01

    As our ability to engineer nanoscale materials has developed we can now influence endogenous cellular processes with increasing precision. Consequently, the use of biomaterials to induce and guide the repair and regeneration of tissues is a rapidly developing area. This review focuses on soft tissue engineering, it will discuss the types of biomaterial scaffolds available before exploring physical, chemical and biological modifications to synthetic scaffolds. We will consider how these properties, in combination, can provide a precise design process, with the potential to meet the requirements of the injured and diseased soft tissue niche. Finally, we frame our discussions within clinical trial design and the regulatory framework, the consideration of which is fundamental to the successful translation of new biomaterials. PMID:29695606

  17. High-sensitivity acoustic sensors from nanofibre webs.

    PubMed

    Lang, Chenhong; Fang, Jian; Shao, Hao; Ding, Xin; Lin, Tong

    2016-03-23

    Considerable interest has been devoted to converting mechanical energy into electricity using polymer nanofibres. In particular, piezoelectric nanofibres produced by electrospinning have shown remarkable mechanical energy-to-electricity conversion ability. However, there is little data for the acoustic-to-electric conversion of electrospun nanofibres. Here we show that electrospun piezoelectric nanofibre webs have a strong acoustic-to-electric conversion ability. Using poly(vinylidene fluoride) as a model polymer and a sensor device that transfers sound directly to the nanofibre layer, we show that the sensor devices can detect low-frequency sound with a sensitivity as high as 266 mV Pa(-1). They can precisely distinguish sound waves in low to middle frequency region. These features make them especially suitable for noise detection. Our nanofibre device has more than five times higher sensitivity than a commercial piezoelectric poly(vinylidene fluoride) film device. Electrospun piezoelectric nanofibres may be useful for developing high-performance acoustic sensors.

  18. High-sensitivity acoustic sensors from nanofibre webs

    PubMed Central

    Lang, Chenhong; Fang, Jian; Shao, Hao; Ding, Xin; Lin, Tong

    2016-01-01

    Considerable interest has been devoted to converting mechanical energy into electricity using polymer nanofibres. In particular, piezoelectric nanofibres produced by electrospinning have shown remarkable mechanical energy-to-electricity conversion ability. However, there is little data for the acoustic-to-electric conversion of electrospun nanofibres. Here we show that electrospun piezoelectric nanofibre webs have a strong acoustic-to-electric conversion ability. Using poly(vinylidene fluoride) as a model polymer and a sensor device that transfers sound directly to the nanofibre layer, we show that the sensor devices can detect low-frequency sound with a sensitivity as high as 266 mV Pa−1. They can precisely distinguish sound waves in low to middle frequency region. These features make them especially suitable for noise detection. Our nanofibre device has more than five times higher sensitivity than a commercial piezoelectric poly(vinylidene fluoride) film device. Electrospun piezoelectric nanofibres may be useful for developing high-performance acoustic sensors. PMID:27005010

  19. A combinatorial approach towards the design of nanofibrous scaffolds for chondrogenesis

    NASA Astrophysics Data System (ADS)

    Ahmed, Maqsood; Ramos, Tiago André Da Silva; Damanik, Febriyani; Quang Le, Bach; Wieringa, Paul; Bennink, Martin; van Blitterswijk, Clemens; de Boer, Jan; Moroni, Lorenzo

    2015-10-01

    The extracellular matrix (ECM) is a three-dimensional (3D) structure composed of proteinaceous fibres that provide physical and biological cues to direct cell behaviour. Here, we build a library of hybrid collagen-polymer fibrous scaffolds with nanoscale dimensions and screen them for their ability to grow chondrocytes for cartilage repair. Poly(lactic acid) and poly (lactic-co-glycolic acid) at two different monomer ratios (85:15 and 50:50) were incrementally blended with collagen. Physical properties (wettability and stiffness) of the scaffolds were characterized and related to biological performance (proliferation, ECM production, and gene expression) and structure-function relationships were developed. We found that soft scaffolds with an intermediate wettability composed of the highly biodegradable PLGA50:50 and collagen, in two ratios (40:60 and 60:40), were optimal for chondrogenic differentiation of ATDC5 cells as determined by increased ECM production and enhanced cartilage specific gene expression. Long-term cultures indicated a stable phenotype with minimal de-differentiation or hypertrophy. The combinatorial methodology applied herein is a promising approach for the design and development of scaffolds for regenerative medicine.

  20. A combinatorial approach towards the design of nanofibrous scaffolds for chondrogenesis.

    PubMed

    Ahmed, Maqsood; Ramos, Tiago André da Silva; Damanik, Febriyani; Quang Le, Bach; Wieringa, Paul; Bennink, Martin; van Blitterswijk, Clemens; de Boer, Jan; Moroni, Lorenzo

    2015-10-07

    The extracellular matrix (ECM) is a three-dimensional (3D) structure composed of proteinaceous fibres that provide physical and biological cues to direct cell behaviour. Here, we build a library of hybrid collagen-polymer fibrous scaffolds with nanoscale dimensions and screen them for their ability to grow chondrocytes for cartilage repair. Poly(lactic acid) and poly (lactic-co-glycolic acid) at two different monomer ratios (85:15 and 50:50) were incrementally blended with collagen. Physical properties (wettability and stiffness) of the scaffolds were characterized and related to biological performance (proliferation, ECM production, and gene expression) and structure-function relationships were developed. We found that soft scaffolds with an intermediate wettability composed of the highly biodegradable PLGA50:50 and collagen, in two ratios (40:60 and 60:40), were optimal for chondrogenic differentiation of ATDC5 cells as determined by increased ECM production and enhanced cartilage specific gene expression. Long-term cultures indicated a stable phenotype with minimal de-differentiation or hypertrophy. The combinatorial methodology applied herein is a promising approach for the design and development of scaffolds for regenerative medicine.

  1. Nanofibrous membrane-based absorption refrigeration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isfahani, RN; Sampath, K; Moghaddam, S

    2013-12-01

    This paper presents a study on the efficacy of highly porous nanofibrous membranes for application in membrane-based absorbers and desorbers. Permeability studies showed that membranes with a pore size greater than about one micron have a sufficient permeability for application in the absorber heat exchanger. Membranes with smaller pores were found to be adequate for the desorber heat exchanger. The membranes were implemented in experimental membrane-based absorber and desorber modules and successfully tested. Parametric studies were conducted on both absorber and desorber processes. Studies on the absorption process were focused on the effects of water vapor pressure, cooling water temperature,more » and the solution velocity on the absorption rate. Desorption studies were conducted on the effects of wall temperature, vapor and solution pressures, and the solution velocity on the desorption rate. Significantly higher absorption and desorption rates than in the falling film absorbers and desorbers were achieved. Published by Elsevier Ltd.« less

  2. Recent progress concerning the production of controlled highly oriented electrospun nanofibrous arrays

    NASA Astrophysics Data System (ADS)

    Manea, L. R.; Hristian, L.; Leon, A. L.; Popa, A.

    2016-08-01

    Among the foreground domains of all the research-development programs at national and international level, a special place is occupied by that concerning the nanosciences, nanotechnologies, new materials and technologies. Electrospinning found a well-deserved place in this space, offering the preparation of nanomaterials with distinctive properties and applications in medicine, environment, photonic sensors, filters, etc. These multiple applications are generated by the fact that the electrospinning technology makes available the production of nanofibers with controllable characteristics (length, porosity, density, and mechanical characteristics), complexity and architecture. The apparition of 3D printing technology favors the production of complex nanofibrous structures, controlled assembly, self-assembly of electrospun nanofibers for the production of scaffolds used in various medical applications. The architecture of fibrous deposits has a special influence on the subsequent development of the cells of the reconstructed organism. The present work proposes to study of recent progress concerning the production of controlled highly oriented electrospun nanofibrous arrays and progress in research on the production of complex 2D and 3D structures.

  3. A high efficiency microfluidic-based photocatalytic microreactor using electrospun nanofibrous TiO2 as a photocatalyst

    NASA Astrophysics Data System (ADS)

    Meng, Zhaoxu; Zhang, Xu; Qin, Jianhua

    2013-05-01

    We present a novel microfluidic-based photocatalytic microreactor by using electrospun nanofibrous TiO2 as a photocatalyst for the first time. The microreactor exhibits not only a simple fabrication process, but also much higher photocatalytic activity than that achieved by a TiO2 film microreactor.We present a novel microfluidic-based photocatalytic microreactor by using electrospun nanofibrous TiO2 as a photocatalyst for the first time. The microreactor exhibits not only a simple fabrication process, but also much higher photocatalytic activity than that achieved by a TiO2 film microreactor. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00775h

  4. Volumetric muscle loss injury repair using in situ fibrin gel cast seeded with muscle-derived stem cells (MDSCs)

    PubMed Central

    Matthias, Nadine; Hunt, Samuel D.; Wu, Jianbo; Lo, Jonathan; Smith Callahan, Laura A.; Li, Yong; Huard, Johnny; Darabi, Radbod

    2018-01-01

    Volumetric muscle defect, caused by trauma or combat injuries, is a major health concern leading to severe morbidity. It is characterized by partial or full thickness loss of muscle and its bio-scaffold, resulting in extensive fibrosis and scar formation. Therefore, the ideal therapeutic option is to use stem cells combined with bio-scaffolds to restore muscle. For this purpose, muscle-derived stem cells (MDSCs) are a great candidate due to their unique multi-lineage differentiation potential. In this study, we evaluated the regeneration potential of MDSCs for muscle loss repair using a novel in situ fibrin gel casting. Muscle defect was created by a partial thickness wedge resection in the tibialis anterior (TA)muscles of NSG mice which created an average of 25% mass loss. If untreated, this defect leads to severe muscle fibrosis. Next, MDSCs were delivered using a novel in situ fibrin gel casting method. Our results demonstrated MDSCs are able to engraft and form new myofibers in the defect when casted along with fibrin gel. LacZ labeled MDSCs were able to differentiate efficiently into new myofibers and significantly increase muscle mass. This was also accompanied by significant reduction of fibrotic tissue in the engrafted muscles. Furthermore, transplanted cells also contributed to new vessel formation and satellite cell seeding. These results confirmed the therapeutic potential of MDSCs and feasibility of direct in situ casting of fibrin/MDSC mixture to repair muscle mass defects. PMID:29331939

  5. Nanostructured fumarate copolymer-chitosan crosslinked scaffold: An in vitro osteochondrogenesis regeneration study.

    PubMed

    Lastra, María Laura; Molinuevo, María Silvina; Blaszczyk-Lezak, Iwona; Mijangos, Carmen; Cortizo, María Susana

    2018-02-01

    In the tissue engineering field, the design of the scaffold inspired on the natural occurring tissue is of vital importance. Ideally, the scaffold surface must promote cell growth and differentiation, while promote angiogenesis in the in vivo implant of the scaffold. On the other hand, the material selection must be biocompatible and the degradation times should meet tissue reparation times. In the present work, we developed a nanofibrous scaffold based on chitosan crosslinked with diisopropylfumarate-vinyl acetate copolymer using anodized aluminum oxide (AAO) templates. We have previously demonstrated its biocompatibility properties with low cytotoxicity and proper degradation times. Now, we extended our studies to demonstrate that it can be successfully nanostructured using the AAO templates methodology, obtaining a nanorod-like scaffold with a diameter comparable to those of collagen fibers of the bone matrix (170 and 300 nm). The nanorods obtained presented a very homogeneous pattern in diameter and length, and supports cell attachment and growth. We also found that both osteoblastic and chondroblastic matrix production were promoted on bone marrow progenitor cells and primary condrocytes growing on the scaffolds, respectively. In addition, the nanostructured scaffold presented no cytotoxicity as it was evaluated using a model of macrophages on culture. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 570-579, 2018. © 2017 Wiley Periodicals, Inc.

  6. Electrospinning of gelatin and SMPU with carbon nanotubes for tissue engineering scaffolds.

    PubMed

    Mejia, Monica A; Hoyos, Lina M; Zapata, Jenniffer; Restrepo, Luz M; Moneada, Maria E

    2016-08-01

    The nanofibres created by electrospinning technique are currently used for a variety of applications in tissue engineering; and Gelatin and Polyurethane Shape-Memory (SMPU) have important results in biomedicine. Similarly, carbon nanotubes combined with other biomaterials change important properties, opening new opportunities for biomedical applications. In this work, we constructed scaffold using electrospinning technique based in bovine-hide gelatin, SMPU and both materials hybrid with carbon nanotube. Morphology and cytotoxicity were evaluated and mechanical properties for two materials were obtained in scaffold building. Morphological, mechanical and citotoxic properties of the electrospun fibers were found to be dependent of alteration in materials concentration, electrospinning conditions and MWCNT concentration. According to morphological, cytotoxic and mechanical analysis, SMPU more MWCNT were the best material, with nanofibers of 451 nm, tensile strength of 1.912 MPa, and a high ratio surface volume.

  7. Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs.

    PubMed

    Kharaziha, Mahshid; Shin, Su Ryon; Nikkhah, Mehdi; Topkaya, Seda Nur; Masoumi, Nafiseh; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2014-08-01

    In the past few years, a considerable amount of effort has been devoted toward the development of biomimetic scaffolds for cardiac tissue engineering. However, most of the previous scaffolds have been electrically insulating or lacked the structural and mechanical robustness to engineer cardiac tissue constructs with suitable electrophysiological functions. Here, we developed tough and flexible hybrid scaffolds with enhanced electrical properties composed of carbon nanotubes (CNTs) embedded aligned poly(glycerol sebacate):gelatin (PG) electrospun nanofibers. Incorporation of varying concentrations of CNTs from 0 to 1.5% within the PG nanofibrous scaffolds (CNT-PG scaffolds) notably enhanced fiber alignment and improved the electrical conductivity and toughness of the scaffolds while maintaining the viability, retention, alignment, and contractile activities of cardiomyocytes (CMs) seeded on the scaffolds. The resulting CNT-PG scaffolds resulted in stronger spontaneous and synchronous beating behavior (3.5-fold lower excitation threshold and 2.8-fold higher maximum capture rate) compared to those cultured on PG scaffold. Overall, our findings demonstrated that aligned CNT-PG scaffold exhibited superior mechanical properties with enhanced CM beating properties. It is envisioned that the proposed hybrid scaffolds can be useful for generating cardiac tissue constructs with improved organization and maturation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Gel polymer electrolytes based on nanofibrous polyacrylonitrile–acrylate for lithium batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dul-Sun; Woo, Jang Chang; Youk, Ji Ho, E-mail: youk@inha.ac.kr

    2014-10-15

    Graphical abstract: - Highlights: • Nanofibrous polyacrylonitrile–acrylate membranes were prepared by electrospinning. • Trimethylolpropane triacrylate was used as a crosslinking agent of fibers. • The GPE based on PAN–acrylate (1/0.5) showed good electrochemical properties. - Abstract: Nanofibrous membranes for gel polymer electrolytes (GPEs) were prepared by electrospinning a mixture of polyacrylonitrile (PAN) and trimethylolpropane triacrylate (TMPTA) at weight ratios of 1/0.5 and 1/1. TMPTA is used to achieve crosslinking of fibers thereby improving mechanical strength. The average fiber diameters increased with increasing TMPTA concentration and the mechanical strength was also improved due to the enhanced crosslinking of fibers. GPEs basedmore » on electrospun membranes were prepared by soaking them in a liquid electrolyte of 1 M LiPF{sub 6} in ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1, v/v). The electrolyte uptake and ionic conductivity of GPEs based on PAN and PAN–acrylate (weight ratio; 1/1 and 1/0.5) were investigated. Ionic conductivity of GPEs based on PAN–acrylate was the highest for PAN/acrylate (1/0.5) due to the proper swelling of fibers and good affinity with liquid electrolyte. Both GPEs based on PAN and PAN–acrylate membranes show good oxidation stability, >5.0 V vs. Li/Li{sup +}. Cells with GPEs based on PAN–acrylate (1/0.5) showed remarkable cycle performance with high initial discharge capacity and low capacity fading.« less

  9. Volumetric muscle loss injury repair using in situ fibrin gel cast seeded with muscle-derived stem cells (MDSCs).

    PubMed

    Matthias, Nadine; Hunt, Samuel D; Wu, Jianbo; Lo, Jonathan; Smith Callahan, Laura A; Li, Yong; Huard, Johnny; Darabi, Radbod

    2018-03-01

    Volumetric muscle defect, caused by trauma or combat injuries, is a major health concern leading to severe morbidity. It is characterized by partial or full thickness loss of muscle and its bio-scaffold, resulting in extensive fibrosis and scar formation. Therefore, the ideal therapeutic option is to use stem cells combined with bio-scaffolds to restore muscle. For this purpose, muscle-derived stem cells (MDSCs) are a great candidate due to their unique multi-lineage differentiation potential. In this study, we evaluated the regeneration potential of MDSCs for muscle loss repair using a novel in situ fibrin gel casting. Muscle defect was created by a partial thickness wedge resection in the tibialis anterior (TA) muscles of NSG mice which created an average of 25% mass loss. If untreated, this defect leads to severe muscle fibrosis. Next, MDSCs were delivered using a novel in situ fibrin gel casting method. Our results demonstrated MDSCs are able to engraft and form new myofibers in the defect when casted along with fibrin gel. LacZ labeled MDSCs were able to differentiate efficiently into new myofibers and significantly increase muscle mass. This was also accompanied by significant reduction of fibrotic tissue in the engrafted muscles. Furthermore, transplanted cells also contributed to new vessel formation and satellite cell seeding. These results confirmed the therapeutic potential of MDSCs and feasibility of direct in situ casting of fibrin/MDSC mixture to repair muscle mass defects. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. SPECT imaging of fibrin using fibrin-binding peptides.

    PubMed

    Starmans, Lucas W E; van Duijnhoven, Sander M J; Rossin, Raffaella; Aime, Silvio; Daemen, Mat J A P; Nicolay, Klaas; Grüll, Holger

    2013-01-01

    Noninvasive detection of fibrin in vivo using diagnostic imaging modalities may improve clinical decision-making on possible therapeutic options in atherosclerosis, cancer and thrombus-related pathologies such as pulmonary embolism and deep venous thrombosis. The aim of this study was to assess the potential of a novel (111)In-labeled fibrin-binding peptide (FibPep) to visualize thrombi in mice noninvasively using single-photon emission computed tomography (SPECT). FibPep and a negative control peptide (NCFibPep) were synthesized and their fibrin-binding properties were assessed in vitro. FibPep showed enhanced binding compared with NCFibPep to both fibrin and blood clots. FibPep bound to fibrin with a dissociation constant (K(d)) of 0.8 μ m, whereas NCFibPep displayed at least a 100-fold lower affinity towards fibrin. A FeCl3 -injury carotid artery thrombosis mouse model was used to evaluate the peptides in vivo. FibPep and NCFibPep displayed rapid blood clearance and were eliminated via the renal pathway. In vivo SPECT imaging using FibPep allowed clear visualization of thrombi. Ex vivo biodistribution showed significantly increased uptake of FibPep in the thrombus-containing carotid in comparison to the noninjured carotid (5.7 ± 0.7 and 0.6 ± 0.4% injected dose per gram (%ID g(-1)), respectively; p < 0.01; n = 4), whereas nonspecific NCFibPep did not (0.4 ± 0.2 and 0.3 ± 0.0%ID g(-1), respectively; n = 4). In conclusion, FibPep displayed high affinity towards fibrin in vitro and rapid blood clearance in vivo, and allowed sensitive detection of thrombi using SPECT imaging. Therefore, this particular imaging approach may provide a new tool to diagnose and monitor diseases such as atherosclerosis and cancer. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Nanofibre distribution in composites manufactured with epoxy reinforced with nanofibrillated cellulose: model prediction and verification

    NASA Astrophysics Data System (ADS)

    Aitomäki, Yvonne; Westin, Mikael; Korpimäki, Jani; Oksman, Kristiina

    2016-07-01

    In this study a model based on simple scattering is developed and used to predict the distribution of nanofibrillated cellulose in composites manufactured by resin transfer moulding (RTM) where the resin contains nanofibres. The model is a Monte Carlo based simulation where nanofibres are randomly chosen from probability density functions for length, diameter and orientation. Their movements are then tracked as they advance through a random arrangement of fibres in defined fibre bundles. The results of the model show that the fabric filters the nanofibres within the first 20 µm unless clear inter-bundle channels are available. The volume fraction of the fabric fibres, flow velocity and size of nanofibre influence this to some extent. To verify the model, an epoxy with 0.5 wt.% Kraft Birch nanofibres was made through a solvent exchange route and stained with a colouring agent. This was infused into a glass fibre fabric using an RTM process. The experimental results confirmed the filtering of the nanofibres by the fibre bundles and their penetration in the fabric via the inter-bundle channels. Hence, the model is a useful tool for visualising the distribution of the nanofibres in composites in this manufacturing process.

  12. Shape-Related Toxicity of Titanium Dioxide Nanofibres

    PubMed Central

    Allegri, Manfredi; Bianchi, Massimiliano G.; Chiu, Martina; Varet, Julia; Costa, Anna L.; Ortelli, Simona; Blosi, Magda; Bussolati, Ovidio; Poland, Craig A.; Bergamaschi, Enrico

    2016-01-01

    Titanium dioxide (TiO2) nanofibres are a novel fibrous nanomaterial with increasing applications in a variety of fields. While the biological effects of TiO2 nanoparticles have been extensively studied, the toxicological characterization of TiO2 nanofibres is far from being complete. In this study, we evaluated the toxicity of commercially available anatase TiO2 nanofibres using TiO2 nanoparticles (NP) and crocidolite asbestos as non-fibrous or fibrous benchmark materials. The evaluated endpoints were cell viability, haemolysis, macrophage activation, trans-epithelial electrical resistance (an indicator of the epithelial barrier competence), ROS production and oxidative stress as well as the morphology of exposed cells. The results showed that TiO2 nanofibres caused a cell-specific, dose-dependent decrease of cell viability, with larger effects on alveolar epithelial cells than on macrophages. The observed effects were comparable to those of crocidolite, while TiO2 NP did not decrease cell viability. TiO2 nanofibres were also found endowed with a marked haemolytic activity, at levels significantly higher than those observed with TiO2 nanoparticles or crocidolite. Moreover, TiO2 nanofibres and crocidolite, but not TiO2 nanoparticles, caused a significant decrease of the trans-epithelial electrical resistance of airway cell monolayers. SEM images demonstrated that the interaction with nanofibres and crocidolite caused cell shape perturbation with the longest fibres incompletely or not phagocytosed. The expression of several pro-inflammatory markers, such as NO production and the induction of Nos2 and Ptgs2, was significantly increased by TiO2 nanofibres, as well as by TiO2 nanoparticles and crocidolite. This study indicates that TiO2 nanofibres had significant toxic effects and, for most endpoints with the exception of pro-inflammatory changes, are more bio-active than TiO2 nanoparticles, showing the relevance of shape in determining the toxicity of nanomaterials

  13. Preparation, structural characterization, and in vitro cell studies of three-dimensional SiO2-CaO binary glass scaffolds built ofultra-small nanofibers.

    PubMed

    Luo, Honglin; Li, Wei; Ao, Haiyong; Li, Gen; Tu, Junpin; Xiong, Guangyao; Zhu, Yong; Wan, Yizao

    2017-07-01

    Three-dimensional (3D) nanofibrous scaffolds hold great promises in tissue engineering and regenerative medicine. In this work, for the first time, 3D SiO 2 -CaO binary glass nanofibrous scaffolds have been fabricated via a combined method of template-assisted sol-gel and calcination by using bacterial cellulose as the template. SEM with EDS, TEM, and AFM confirm that the molar ratio of Ca to Si and fiber diameter of the resultant SiO 2 -CaO nanofibers can be controlled by immersion time in the solution of tetraethyl orthosilicate and ethanol. The optimal immersion time was 6h which produced the SiO 2 -CaO binary glass containing 60at.% Si and 40at.% Ca (named 60S40C). The fiber diameter of 60S40C scaffold is as small as 29nm. In addition, the scaffold has highly porous 3D nanostructure with dominant mesopores at 10.6nm and macropores at 20μm as well as a large BET surface area (240.9m 2 g -1 ), which endow the 60S40C scaffold excellent biocompatibility and high ALP activity as revealed by cell studies using osteoblast cells. These results suggest that the 60S40C scaffold has great potential in bone tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Pericellular plasma clot negates the influence of scaffold stiffness on chondrogenic differentiation.

    PubMed

    Arora, Aditya; Kothari, Anjaney; Katti, Dhirendra S

    2016-12-01

    Matrix stiffness is known to play a pivotal role in cellular differentiation. Studies have shown that soft scaffolds (<2-3kPa) promote cellular aggregation and chondrogenesis, whereas, stiffer ones (>10kPa) show poor chondrogenesis in vitro. In this work we investigated if fibrin matrix from clotted blood can act as a soft surrogate which nullifies the influence of the underlying stiff scaffold, thus promoting chondrogenesis irrespective of bulk scale scaffold stiffness. For this we performed in vitro chondrogenesis on soft (∼1.5kPa) and stiff (∼40kPa) gelatin scaffolds in the presence and absence of pericellular plasma clot. Our results demonstrated that in absence of pericellular plasma clot, chondrocytes showed efficient condensation and cartilaginous matrix secretion only on soft scaffolds, whereas, in presence of pericellular plasma clot, cell rounding and cartilaginous matrix secretion was observed in both soft and stiff scaffolds. More specifically, significantly higher collagen II, chondroitin sulfate and aggrecan deposition was observed in soft scaffolds, and soft and stiff scaffolds with pericellular plasma clot as compared to stiff scaffolds without pericellular plasma clot. Moreover, collagen type I, a fibrocartilage/bone marker was significantly higher only in stiff scaffolds without plasma clot. Therefore, it can be concluded that chondrocytes surrounded by a soft fibrin network were unable to sense the stiffness of the underlying scaffold/substrate and hence facilitate chondrogenesis even on stiff scaffolds. This understanding can have significant implications in the design of scaffolds for cartilage tissue engineering. Cell fate is influenced by the mechanical properties of cell culture substrates. Outside the body, cartilage progenitor cells express significant amounts of cartilage-specific markers on soft scaffolds but not on stiff scaffolds. However, when implanted in joints, stiff scaffolds show equivalent expression of markers as seen in

  15. Kevlar based nanofibrous particles as robust, effective and recyclable absorbents for water purification.

    PubMed

    Nie, Chuanxiong; Peng, Zihang; Yang, Ye; Cheng, Chong; Ma, Lang; Zhao, Changsheng

    2016-11-15

    Developing robust and recyclable absorbents for water purification is of great demand to control water pollution and to provide sustainable water resources. Herein, for the first time, we reported the fabrication of Kevlar nanofiber (KNF) based composite particles for water purification. Both the KNF and KNF-carbon nanotube composite particles can be produced in large-scale by automatic injection of casting solution into ethanol. The resulted nanofibrous particles showed high adsorption capacities towards various pollutants, including metal ions, phenylic compounds and various dyes. Meanwhile, the adsorption process towards dyes was found to fit well with the pseudo-second-order model, while the adsorption speed was controlled by intraparticle diffusion. Furthermore, the adsorption capacities of the nanofibrous particles could be easily recovered by washing with ethanol. In general, the KNF based particles integrate the advantages of easy production, robust and effective adsorption performances, as well as good recyclability, which can be used as robust absorbents to remove toxic molecules and forward the application of absorbents in water purification. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Tissue-engineering-based Strategies for Regenerative Endodontics

    PubMed Central

    Albuquerque, M.T.P.; Valera, M.C.; Nakashima, M.; Nör, J.E.; Bottino, M.C.

    2014-01-01

    Stemming from in vitro and in vivo pre-clinical and human models, tissue-engineering-based strategies continue to demonstrate great potential for the regeneration of the pulp-dentin complex, particularly in necrotic, immature permanent teeth. Nanofibrous scaffolds, which closely resemble the native extracellular matrix, have been successfully synthesized by various techniques, including but not limited to electrospinning. A common goal in scaffold synthesis has been the notion of promoting cell guidance through the careful design and use of a collection of biochemical and physical cues capable of governing and stimulating specific events at the cellular and tissue levels. The latest advances in processing technologies allow for the fabrication of scaffolds where selected bioactive molecules can be delivered locally, thus increasing the possibilities for clinical success. Though electrospun scaffolds have not yet been tested in vivo in either human or animal pulpless models in immature permanent teeth, recent studies have highlighted their regenerative potential both from an in vitro and in vivo (i.e., subcutaneous model) standpoint. Possible applications for these bioactive scaffolds continue to evolve, with significant prospects related to the regeneration of both dentin and pulp tissue and, more recently, to root canal disinfection. Nonetheless, no single implantable scaffold can consistently guide the coordinated growth and development of the multiple tissue types involved in the functional regeneration of the pulp-dentin complex. The purpose of this review is to provide a comprehensive perspective on the latest discoveries related to the use of scaffolds and/or stem cells in regenerative endodontics. The authors focused this review on bioactive nanofibrous scaffolds, injectable scaffolds and stem cells, and pre-clinical findings using stem-cell-based strategies. These topics are discussed in detail in an attempt to provide future direction and to shed light on

  17. SHOP: scaffold HOPping by GRID-based similarity searches.

    PubMed

    Bergmann, Rikke; Linusson, Anna; Zamora, Ismael

    2007-05-31

    A new GRID-based method for scaffold hopping (SHOP) is presented. In a fully automatic manner, scaffolds were identified in a database based on three types of 3D-descriptors. SHOP's ability to recover scaffolds was assessed and validated by searching a database spiked with fragments of known ligands of three different protein targets relevant for drug discovery using a rational approach based on statistical experimental design. Five out of eight and seven out of eight thrombin scaffolds and all seven HIV protease scaffolds were recovered within the top 10 and 31 out of 31 neuraminidase scaffolds were in the 31 top-ranked scaffolds. SHOP also identified new scaffolds with substantially different chemotypes from the queries. Docking analysis indicated that the new scaffolds would have similar binding modes to those of the respective query scaffolds observed in X-ray structures. The databases contained scaffolds from published combinatorial libraries to ensure that identified scaffolds could be feasibly synthesized.

  18. Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity.

    PubMed

    Napoletano, Paolo; Piccoli, Flavio; Schettini, Raimondo

    2018-01-12

    Automatic detection and localization of anomalies in nanofibrous materials help to reduce the cost of the production process and the time of the post-production visual inspection process. Amongst all the monitoring methods, those exploiting Scanning Electron Microscope (SEM) imaging are the most effective. In this paper, we propose a region-based method for the detection and localization of anomalies in SEM images, based on Convolutional Neural Networks (CNNs) and self-similarity. The method evaluates the degree of abnormality of each subregion of an image under consideration by computing a CNN-based visual similarity with respect to a dictionary of anomaly-free subregions belonging to a training set. The proposed method outperforms the state of the art.

  19. Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity

    PubMed Central

    Schettini, Raimondo

    2018-01-01

    Automatic detection and localization of anomalies in nanofibrous materials help to reduce the cost of the production process and the time of the post-production visual inspection process. Amongst all the monitoring methods, those exploiting Scanning Electron Microscope (SEM) imaging are the most effective. In this paper, we propose a region-based method for the detection and localization of anomalies in SEM images, based on Convolutional Neural Networks (CNNs) and self-similarity. The method evaluates the degree of abnormality of each subregion of an image under consideration by computing a CNN-based visual similarity with respect to a dictionary of anomaly-free subregions belonging to a training set. The proposed method outperforms the state of the art. PMID:29329268

  20. Effects of annulus defects and implantation of poly(lactic-co-glycolic acid) (PLGA)/fibrin gel scaffolds on nerves ingrowth in a rabbit model of annular injury disc degeneration.

    PubMed

    Xin, Long; Xu, Weixing; Yu, Leijun; Fan, Shunwu; Wang, Wei; Yu, Fang; Wang, Zhenbin

    2017-05-12

    Growth of nerve fibers has been shown to occur in a rabbit model of intravertebral disc degeneration (IVD) induced by needle puncture. As nerve growth may underlie the process of chronic pain in humans affected by disc degeneration, we sought to investigate the factors underlying nerve ingrowth in a minimally invasive annulotomy rabbit model of IVD by comparing the effects of empty disc defects with those of defects filled with poly(lactic-co-glycolic acid)/fibrin gel (PLGA) plugs. New Zealand white rabbits (n = 24) received annular injuries at three lumbar levels (L3/4, L4/5, and L5/6). The discs were randomly assigned to four groups: (a) annular defect (1.8-mm diameter; 4-mm depth) by mini-trephine, (b) annular defect implanted with a PLGA scaffold containing a fibrin gel, (c) annular puncture by a 16G needle (5-mm depth), and (d) uninjured L2/3 disc (control). Disc degeneration was evaluated by radiography, MRI, histology, real-time PCR, and analysis of proteoglycan (PG) content. Nerve ingrowth into the discs was assessed by immunostaining with the nerve marker protein gene product 9.5. Injured discs showed a progressive disc space narrowing with significant disc degeneration and proteoglycan loss, as confirmed by imaging results, molecular and compositional analysis, and histological examinations. In 16G punctured discs, nerve ingrowth was observed on the surface of scar tissue. In annular defects, nerve fibers were found to be distributed along small fissures within the fibrocartilaginous-like tissue that filled the AF. In discs filled with PLGA/ fibrin gel, more nerve fibers were observed growing deeper into the inner AF along the open annular track.  In addition, innervations scores showed significantly higher than those of punctured discs and empty defects. A limited vascular proliferation was found in the injured sites and regenerated tissues. Nerve ingrowth was significantly higher in PLGA/fibrin-filled discs than in empty defects. Possible

  1. Hydrogel-beta-TCP scaffolds and stem cells for tissue engineering bone.

    PubMed

    Weinand, Christian; Pomerantseva, Irina; Neville, Craig M; Gupta, Rajiv; Weinberg, Eli; Madisch, Ijad; Shapiro, Frederic; Abukawa, Harutsugi; Troulis, Maria J; Vacanti, Joseph P

    2006-04-01

    Trabecular bone is a material of choice for reconstruction after trauma and tumor resection and for correction of congenital defects. Autologous bone grafts are available in limited shapes and sizes; significant donor site morbidity is another major disadvantage to this approach. To overcome these limitations, we used a tissue engineering approach to create bone replacements in vitro, combining bone-marrow-derived differentiated mesenchymal stem cells (MSCs) suspended in hydrogels and 3-dimensionally printed (3DP) porous scaffolds made of beta-tricalcium-phosphate (beta-TCP). The scaffolds provided support for the formation of bone tissue in collagen I, fibrin, alginate, and pluronic F127 hydrogels during culturing in oscillating and rotating dynamic conditions. Histological evaluation including toluidine blue, alkaline phosphatase, and von Kossa staining was done at 1, 2, 4, and 6 weeks. Radiographic evaluation and high-resolution volumetric CT (VCT) scanning, expression of bone-specific genes and biomechanical compression testing were performed at 6 weeks. Both culture conditions resulted in similar bone tissue formation. Histologically collagen I and fibrin hydrogels specimens had superior bone tissue, although radiopacities were detected only in collagen I samples. VCT scan revealed density values in all but the Pluronic F127 samples, with Houndsfield unit values comparable to native bone in collagen I and fibrin glue samples. Expression of bone-specific genes was significantly higher in the collagen I samples. Pluronic F127 hydrogel did not support formation of bone tissue. All samples cultured in dynamic oscillating conditions had slightly higher mechanical strength than under rotating conditions. Bone tissue can be successfully formed in vitro using constructs comprised of collagen I hydrogel, MSCs, and porous beta-TCP scaffolds.

  2. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration.

    PubMed

    Eap, Sandy; Keller, Laetitia; Schiavi, Jessica; Huck, Olivier; Jacomine, Leandro; Fioretti, Florence; Gauthier, Christian; Sebastian, Victor; Schwinté, Pascale; Benkirane-Jessel, Nadia

    2015-01-01

    New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(ε-caprolactone) nanofibrous implant (from 700 μm to 1 cm thick) was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII), 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days' implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7 therapeutic implant by adding human mesenchymal stem cells (hMSCs). The activity of this BMP-7-functionalized implant was again further enhanced by the addition of hMSCs to the implant (living materials), in vivo, as demonstrated by the analysis of new bone formation and calcification after 30 days' implantation in mice with calvaria defects. Therefore, implants functionalized with BMP-7 nanocontainers associated with hMSCs can act as an accelerator of in vivo bone mineralization and regeneration.

  3. Electrically Conductive TPU Nanofibrous Composite with High Stretchability for Flexible Strain Sensor

    NASA Astrophysics Data System (ADS)

    Tong, Lu; Wang, Xiao-Xiong; He, Xiao-Xiao; Nie, Guang-Di; Zhang, Jun; Zhang, Bin; Guo, Wen-Zhe; Long, Yun-Ze

    2018-03-01

    Highly stretchable and electrically conductive thermoplastic polyurethane (TPU) nanofibrous composite based on electrospinning for flexible strain sensor and stretchable conductor has been fabricated via in situ polymerization of polyaniline (PANI) on TPU nanofibrous membrane. The PANI/TPU membrane-based sensor could detect a strain from 0 to 160% with fast response and excellent stability. Meanwhile, the TPU composite has good stability and durability. Besides, the composite could be adapted to various non-flat working environments and could maintain opportune conductivity at different operating temperatures. This work provides an easy operating and low-cost method to fabricate highly stretchable and electrically conductive nanofibrous membrane, which could be applied to detect quick and tiny human actions.

  4. A conducive bioceramic/polymer composite biomaterial for diabetic wound healing.

    PubMed

    Lv, Fang; Wang, Jie; Xu, Peng; Han, Yiming; Ma, Hongshi; Xu, He; Chen, Shijie; Chang, Jiang; Ke, Qinfei; Liu, Mingyao; Yi, Zhengfang; Wu, Chengtie

    2017-09-15

    Diabetic wound is a common complication of diabetes. Biomaterials offer great promise in inducing tissue regeneration for chronic wound healing. Herein, we reported a conducive Poly (caprolactone) (PCL)/gelatin nanofibrous composite scaffold containing silicate-based bioceramic particles (Nagelschmidtite, NAGEL, Ca 7 P 2 Si 2 O 16 ) for diabetic wound healing. NAGEL bioceramic particles were well distributed in the inner of PCL/gelatin nanofibers via co-electrospinning process and the Si ions maintained a sustained release from the composite scaffolds during the degradation process. The nanofibrous scaffolds significantly promoted the adhesion, proliferation and migration of human umbilical vein endothelial cells (HUVECs) and human keratinocytes (HaCaTs) in vitro. The in vivo study demonstrated that the scaffolds distinctly induced the angiogenesis, collagen deposition and re-epithelialization in the wound sites of diabetic mice model, as well as inhibited inflammation reaction. The mechanism for nanofibrous composite scaffolds accelerating diabetic wound healing is related to the activation of epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT) pathway in vivo and in vitro. Our results suggest that the released Si ions and nanofibrous structure of scaffolds have a synergetic effect on the improved efficiency of diabetic wound healing, paving the way to design functional biomaterials for tissue engineering and wound healing applications. In order to stimulate tissue regeneration for chronic wound healing, a new kind of conducive nanofibrous composite scaffold containing silicate-based bioceramic particles (Nagelschmidtite, NAGEL, Ca 7 P 2 Si 2 O 16 ) were prepared via co-electrospinning process. Biological assessments revealed that the NAGEL bioceramic particles could active epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT) pathway in vitro and in vivo. The new composite scaffold

  5. The use of platelet-rich fibrin combined with periodontal ligament and jaw bone mesenchymal stem cell sheets for periodontal tissue engineering.

    PubMed

    Wang, Zhong-Shan; Feng, Zhi-Hong; Wu, Guo-Feng; Bai, Shi-Zhu; Dong, Yan; Chen, Fa-Ming; Zhao, Yi-Min

    2016-06-21

    Periodontal regeneration involves the restoration of at least three unique tissues: cementum, periodontal ligament tissue (PDL) and alveolar bone tissue. Here, we first isolated human PDL stem cells (PDLSCs) and jaw bone mesenchymal stem cells (JBMSCs). These cells were then induced to form cell sheets using an ascorbic acid-rich approach, and the cell sheet properties, including morphology, thickness and gene expression profile, were compared. Platelet-rich fibrin (PRF) derived from human venous blood was then fabricated into bioabsorbable fibrin scaffolds containing various growth factors. Finally, the in vivo potential of a cell-material construct based on PDLSC sheets, PRF scaffolds and JBMSC sheets to form periodontal tissue was assessed in a nude mouse model. In this model, PDLSC sheet/PRF/JBMSC sheet composites were placed in a simulated periodontal space comprising human treated dentin matrix (TDM) and hydroxyapatite (HA)/tricalcium phosphate (TCP) frameworks. Eight weeks after implantation, the PDLSC sheets tended to develop into PDL-like tissues, while the JBMSC sheets tended to produce predominantly bone-like tissues. In addition, the PDLSC sheet/PRF/JBMSC sheet composites generated periodontal tissue-like structures containing PDL- and bone-like tissues. Further improvements in this cell transplantation design may have the potential to provide an effective approach for future periodontal tissue regeneration.

  6. The use of platelet-rich fibrin combined with periodontal ligament and jaw bone mesenchymal stem cell sheets for periodontal tissue engineering

    PubMed Central

    Wang, Zhong-Shan; Feng, Zhi-Hong; Wu, Guo-Feng; Bai, Shi-Zhu; Dong, Yan; Chen, Fa-Ming; Zhao, Yi-Min

    2016-01-01

    Periodontal regeneration involves the restoration of at least three unique tissues: cementum, periodontal ligament tissue (PDL) and alveolar bone tissue. Here, we first isolated human PDL stem cells (PDLSCs) and jaw bone mesenchymal stem cells (JBMSCs). These cells were then induced to form cell sheets using an ascorbic acid-rich approach, and the cell sheet properties, including morphology, thickness and gene expression profile, were compared. Platelet-rich fibrin (PRF) derived from human venous blood was then fabricated into bioabsorbable fibrin scaffolds containing various growth factors. Finally, the in vivo potential of a cell-material construct based on PDLSC sheets, PRF scaffolds and JBMSC sheets to form periodontal tissue was assessed in a nude mouse model. In this model, PDLSC sheet/PRF/JBMSC sheet composites were placed in a simulated periodontal space comprising human treated dentin matrix (TDM) and hydroxyapatite (HA)/tricalcium phosphate (TCP) frameworks. Eight weeks after implantation, the PDLSC sheets tended to develop into PDL-like tissues, while the JBMSC sheets tended to produce predominantly bone-like tissues. In addition, the PDLSC sheet/PRF/JBMSC sheet composites generated periodontal tissue-like structures containing PDL- and bone-like tissues. Further improvements in this cell transplantation design may have the potential to provide an effective approach for future periodontal tissue regeneration. PMID:27324079

  7. Optimization of a biomimetic poly-(lactic acid) ligament scaffold

    NASA Astrophysics Data System (ADS)

    Uehlin, Andrew F.

    The anterior cruciate ligament (ACL) is the most commonly injured ligament of the knee, often requiring orthopedic reconstruction using autograft or allograph tissue, both with significant disadvantages. As a result, tissue engineering an ACL replacement graft has been heavily investigated. The present study attempts to replicate the morphology and mechanical properties of the ACL using a nanomatrix composite of highly-aligned poly(lactic acid) (PLA) fibers with various surface and biochemical modifications. Additionally, this study attempts to recreate the natural mineralization gradient found at the ACL enthesis onto the scaffold, capable of inducing a favorable cellular response in vitro. Unidirectional electrospinning was used to create nanofibers of PLA, followed by an induced degradation of the nanofibers via 0.25M NaOH hydrolysis. The effects of the unidirectional electrospinning as well as the effects of NaOH hydrolysis on fiber alignment, fiber diameter, surface morphology, crystallinity, in vitro swelling, immobilization of fibrin, and mechanical properties were investigated, resulting in a modified morphology correlating to the microstructure of native ligament tissue with similar mechanical properties. Furthering the development of the PLA nanomatrix composite, a bioinkjet printer was used to immobilize nanoparticulate hydroxyapatite (HANP) on the surface of the scaffold. A series of 300pL droplets of HANP bioink were printed over a gradient pattern mimetic of (and spatially corresponding to) the mineralization gradient found over the microanatomy at the ACL enthesis. Proliferation and differentiation response of human mesenchymal stem cells (hMSCs) in vitro was assessed on a variety of conditions and combinations of the PLA nanofiber scaffold surface modifications (inclusive and exclusive of HANP, fibrin, and various time dependent NaOH treatments). It was found that a combinatory effect of the HANP gradient with fibrin on 20 minute NaOH treated PLA

  8. Construction of a Corneal Stromal Equivalent with SMILE-Derived Lenticules and Fibrin Glue.

    PubMed

    Yin, Houfa; Qiu, Peijin; Wu, Fang; Zhang, Wei; Teng, Wenqi; Qin, Zhenwei; Li, Chao; Zhou, Jiaojie; Fang, Zhi; Tang, Qiaomei; Fu, Qiuli; Ma, Jian; Yang, Yabo

    2016-09-21

    The scarcity of corneal tissue to treat deep corneal defects and corneal perforations remains a challenge. Currently, small incision lenticule extraction (SMILE)-derived lenticules appear to be a promising alternative for the treatment of these conditions. However, the thickness and toughness of a single piece of lenticule are limited. To overcome these limitations, we constructed a corneal stromal equivalent with SMILE-derived lenticules and fibrin glue. In vitro cell culture revealed that the corneal stromal equivalent could provide a suitable scaffold for the survival and proliferation of corneal epithelial cells, which formed a continuous pluristratified epithelium with the expression of characteristic markers. Finally, anterior lamellar keratoplasty in rabbits demonstrated that the corneal stromal equivalent with decellularized lenticules and fibrin glue could repair the anterior region of the stroma, leading to re-epithelialization and recovery of both transparency and ultrastructural organization. Corneal neovascularization, graft degradation, and corneal rejection were not observed within 3 months. Taken together, the corneal stromal equivalent with SMILE-derived lenticules and fibrin glue appears to be a safe and effective alternative for the repair of damage to the anterior cornea, which may provide new avenues in the treatment of deep corneal defects or corneal perforations.

  9. Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants

    NASA Astrophysics Data System (ADS)

    Ramaseshan, Ramakrishnan; Sundarrajan, Subramanian; Liu, Yingjun; Barhate, R. S.; Lala, Neeta L.; Ramakrishna, S.

    2006-06-01

    A catalyst for the detoxification of nerve agents is synthesized from β-cyclodextrin (β-CD) and o-iodosobenzoic acid (IBA). Functionalized polymer nanofibre membranes from PVC polymer are fabricated with β-CD, IBA, a blend of β-CD+IBA, and the synthesized catalyst. These functionalized nanofibres are then tested for the decontamination of paraoxon, a nerve agent stimulant, and it is observed that the stimulant gets hydrolysed. The kinetics of hydrolysis is investigated using UV spectroscopy. The rates of hydrolysis for different organophosphate hydrolyzing agents are compared. The reactivity and amount of adsorption of these catalysts are of higher capacity than the conventionally used activated charcoal. A new design for protective wear is proposed based on the functionalized nanofibre membrane.

  10. Evaluation of gold nanotracers to track adipose-derived stem cells in a PEGylated fibrin gel for dermal tissue engineering applications

    PubMed Central

    Chung, Eunna; Nam, Seung Yun; Ricles, Laura M; Emelianov, Stanislav Y; Suggs, Laura J

    2013-01-01

    Evaluating the regenerative capacity of a tissue-engineered device in a noninvasive and synchronous manner is critical to determining the mechanisms for success in clinical applications. In particular, directly tracking implanted cells in a three-dimensional (3D) scaffold is desirable in that it enables the monitoring of cellular activity in a specific and localized manner. The authors’ group has previously demonstrated that the PEGylation of fibrin results in a 3D scaffold that supports morphologic and phenotypic changes in mesenchymal stem cells that may be advantageous in wound healing applications. Recently, the authors have evaluated adipose-derived stem cells (ASCs) as a mesenchymal cell source to regenerate skin and blood vessels due to their potential for proliferation, differentiation, and production of growth factors. However, tracking and monitoring ASCs in a 3D scaffold, such as a PEGylated fibrin gel, have not yet been fully investigated. In the current paper, nanoscale gold spheres (20 nm) as cell tracers for ASCs cultured in a PEGylated fibrin gel were evaluated. An advanced dual-imaging modality combining ultrasound and photoacoustic imaging was utilized to monitor rat ASCs over time. The ASCs took up gold nanotracers and could be detected up to day 16 with high sensitivity using photoacoustic imaging. There were no detrimental effects on ASC morphology, network formation, proliferation, and protein expression/secretion (ie, smooth muscle α-actin, vascular endothelial growth factor, matrix metalloproteinase-2, and matrix metalloproteinase-9) associated with gold nanotracers. Therefore, utilization of gold nanotracers can be an effective strategy to monitor the regenerative process of a stem cell source in a 3D gel for vascular and dermal tissue engineering applications. PMID:23345978

  11. Use of autologous human mesenchymal stromal cell/fibrin clot constructs in upper limb non-unions: long-term assessment.

    PubMed

    Giannotti, Stefano; Trombi, Luisa; Bottai, Vanna; Ghilardi, Marco; D'Alessandro, Delfo; Danti, Serena; Dell'Osso, Giacomo; Guido, Giulio; Petrini, Mario

    2013-01-01

    Tissue engineering appears to be an attractive alternative to the traditional approach in the treatment of fracture non-unions. Mesenchymal stromal cells (MSCs) are considered an appealing cell source for clinical intervention. However, ex vivo cell expansion and differentiation towards the osteogenic lineage, together with the design of a suitable scaffold have yet to be optimized. Major concerns exist about the safety of MSC-based therapies, including possible abnormal overgrowth and potential cancer evolution. We examined the long-term efficacy and safety of ex vivo expanded bone marrow MSCs, embedded in autologous fibrin clots, for the healing of atrophic pseudarthrosis of the upper limb. Our research work relied on three main issues: use of an entirely autologous context (cells, serum for ex vivo cell culture, scaffold components), reduced ex vivo cell expansion, and short-term MSC osteoinduction before implantation. Bone marrow MSCs isolated from 8 patients were expanded ex vivo until passage 1 and short-term osteo-differentiated in autologous-based culture conditions. Tissue-engineered constructs designed to embed MSCs in autologous fibrin clots were locally implanted with bone grafts, calibrating their number on the extension of bone damage. Radiographic healing was evaluated with short- and long-term follow-ups (range averages: 6.7 and 76.0 months, respectively). All patients recovered limb function, with no evidence of tissue overgrowth or tumor formation. Our study indicates that highly autologous treatment can be effective and safe in the long-term healing of bone non-unions. This tissue engineering approach resulted in successful clinical and functional outcomes for all patients.

  12. Characterization of carbon nanofibre-reinforced polypropylene foams.

    PubMed

    Antunes, M; Velasco, J I; Realinho, V; Arencón, D

    2010-02-01

    In this paper, carbon-nanofibre-reinforced polypropylene foams were prepared and characterized regarding their foaming behaviour, cellular structure and both thermo-mechanical as well as electrical properties. Polypropylene (PP) nanocomposites containing 5, 10 and 20 wt% of carbon nanofibres (CNF) and a chemical blowing agent were prepared by melt-mixing inside a twin-screw extruder and subsequently water-cooled and pelletized. The extruded nanocomposites were later foamed using a one-step compression-moulding process. The thermo-mechanical properties of the CNF-reinforced PP foams were studied, analyzing the influence of the carbon nanofibres on the cellular structure and subsequent thermo-mechanical behaviour of the foams. Carbon nanofibres not only seemed to act as nucleating agents, reducing the average cell size of the foams and increasing their cell density for similar expansion ratios, but also helped produce mechanically-improved foams, even reaching for the 20 wt% CNF-reinforced ones a specific modulus around 1.2 GPa x cm3/g for densities as low as 300 kg/m3. An increasingly higher electrical conductivity was assessed for both the solids as well as the foams with increasing the amount of carbon nanofibres.

  13. Nanofibre production in spiders without electric charge.

    PubMed

    Joel, Anna-Christin; Baumgartner, Werner

    2017-06-15

    Technical nanofibre production is linked to high voltage, because nanofibres are typically produced by electrospinning. In contrast, spiders have evolved a way to produce nanofibres without high voltage. These spiders are called cribellate spiders and produce nanofibres within their capture thread production. It is suggested that their nanofibres become frictionally charged when brushed over a continuous area on the calamistrum, a comb-like structure at the metatarsus of the fourth leg. Although there are indications that electrostatic charges are involved in the formation of the thread structure, final proof is missing. We proposed three requirements to validate this hypothesis: (1) the removal of any charge during or after thread production has an influence on the structure of the thread; (2) the characteristic structure of the thread can be regenerated by charging; and (3) the thread is attracted to or repelled from differently charged objects. None of these three requirements were proven true. Furthermore, mathematical calculations reveal that even at low charges, the calculated structural assembly of the thread does not match the observed reality. Electrostatic forces are therefore not involved in the production of cribellate capture threads. © 2017. Published by The Company of Biologists Ltd.

  14. A novel fibrin-based artificial ovary prototype resembling human ovarian tissue in terms of architecture and rigidity.

    PubMed

    Chiti, Maria Costanza; Dolmans, Marie-Madeleine; Mortiaux, Lucie; Zhuge, Flanco; Ouni, Emna; Shahri, Parinaz Asiabi Kohneh; Van Ruymbeke, Evelyne; Champagne, Sophie-Demoustier; Donnez, Jacques; Amorim, Christiani Andrade

    2018-01-01

    The aim of this study is to optimize fibrin matrix composition in order to mimic human ovarian tissue architecture for human ovarian follicle encapsulation and grafting. Ultrastructure of fresh human ovarian cortex in age-related women (n = 3) and different fibrin formulations (F12.5/T1, F30/T50, F50/T50, F75/T75), rheology of fibrin matrices and histology of isolated and encapsulated human ovarian follicles in these matrices. Fresh human ovarian cortex showed a highly fibrous and structurally inhomogeneous architecture in three age-related patients, but the mean ± SD of fiber thickness (61.3 to 72.4 nm) was comparable between patients. When the fiber thickness of four different fibrin formulations was compared with human ovarian cortex, F50/T50 and F75/T75 showed similar fiber diameters to native tissue, while F12.5/T1 was significantly different (p value < 0.01). In addition, increased concentrations of fibrin exhibited enhanced storage modulus with F50/T50, resembling physiological ovarian rigidity. Excluding F12.5/T1 from further analysis, only three remaining fibrin matrices (F30/T50, F50/T50, F75/T75) were histologically investigated. For this, frozen-thawed fragments of human ovarian tissue collected from 22 patients were used to isolate ovarian follicles and encapsulate them in the three fibrin formulations. All three yielded similar follicle recovery and loss rates soon after encapsulation. Therefore, based on fiber thickness, porosity, and rigidity, we selected F50/T50 as the fibrin formulation that best mimics native tissue. Of all the different fibrin matrix concentrations tested, F50/T50 emerged as the combination of choice in terms of ultrastructure and rigidity, most closely resembling human ovarian cortex.

  15. A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain.

    PubMed

    Heher, Philipp; Maleiner, Babette; Prüller, Johanna; Teuschl, Andreas Herbert; Kollmitzer, Josef; Monforte, Xavier; Wolbank, Susanne; Redl, Heinz; Rünzler, Dominik; Fuchs, Christiane

    2015-09-01

    The generation of functional biomimetic skeletal muscle constructs is still one of the fundamental challenges in skeletal muscle tissue engineering. With the notion that structure strongly dictates functional capabilities, a myriad of cell types, scaffold materials and stimulation strategies have been combined. To further optimize muscle engineered constructs, we have developed a novel bioreactor system (MagneTissue) for rapid engineering of skeletal muscle-like constructs with the aim to resemble native muscle in terms of structure, gene expression profile and maturity. Myoblasts embedded in fibrin, a natural hydrogel that serves as extracellular matrix, are subjected to mechanical stimulation via magnetic force transmission. We identify static mechanical strain as a trigger for cellular alignment concomitant with the orientation of the scaffold into highly organized fibrin fibrils. This ultimately yields myotubes with a more mature phenotype in terms of sarcomeric patterning, diameter and length. On the molecular level, a faster progression of the myogenic gene expression program is evident as myogenic determination markers MyoD and Myogenin as well as the Ca(2+) dependent contractile structural marker TnnT1 are significantly upregulated when strain is applied. The major advantage of the MagneTissue bioreactor system is that the generated tension is not exclusively relying on the strain generated by the cells themselves in response to scaffold anchoring but its ability to subject the constructs to individually adjustable strain protocols. In future work, this will allow applying mechanical stimulation with different strain regimes in the maturation process of tissue engineered constructs and elucidating the role of mechanotransduction in myogenesis. Mechanical stimulation of tissue engineered skeletal muscle constructs is a promising approach to increase tissue functionality. We have developed a novel bioreactor-based 3D culture system, giving the user the

  16. TGF-β3 encapsulated PLCL scaffold by a supercritical CO2-HFIP co-solvent system for cartilage tissue engineering.

    PubMed

    Kim, Su Hee; Kim, Soo Hyun; Jung, Youngmee

    2015-05-28

    Mimicking the native tissue microenvironment is critical for effective tissue regeneration. Mechanical cues and sustained biological cues are important factors, particularly in load-bearing tissues such as articular cartilage or bone. Carriers including hydrogels and nanoparticles have been investigated to achieve sustained release of protein drugs. However, it is difficult to apply such carriers alone as scaffolds for cartilage regeneration because of their weak mechanical properties, and they must be combined with other biomaterials that have adequate mechanical strength. In this study, we developed the multifunctional scaffold which has similar mechanical properties to those of native cartilage and encapsulates TGF-β3 for chondrogenesis. In our previous work, we confirmed that poly(lactide-co-caprolacton) (PLCL) did not foam when exposed to supercritical CO2 below 45°C. Here, we used a supercritical carbon dioxide (scCO2)-1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) co-solvent system to facilitate processing under mild conditions because high temperature causes protein denaturation and decreases bioactivity of the protein. This processing made it possible to fabricate a TGF-β3 encapsulated elastic porous PLCL scaffold at 37°C. We investigated the tissue regeneration efficiency of the TGF-β3 encapsulated PLCL scaffold using human adipose-derived stem cells (ADSCs) in vitro and in vivo (Groups; i. PLCL scaffold+Fibrin gel+TGF-β3, ii. TGF-β3 encapsulated PLCL scaffold+Fibrin gel, iii. TGF-β3 encapsulated PLCL scaffold). We evaluated the chondrogenic abilities of the scaffolds at 4, 8, and 12weeks after subcutaneous implantation of the constructs in immune-deficient mice. Based on TGF-β3 release studies, we confirmed that TGF-β3 molecules were released by 8weeks and remained in the PLCL matrix. Explants of TGF-β3 encapsulated scaffolds by a co-solvent system exhibited distinct improvement in the compressive E-modulus and deposition of extracellular matrix

  17. Hybrid chitosan-ß-glycerol phosphate-gelatin nano-/micro fibrous scaffolds with suitable mechanical and biological properties for tissue engineering.

    PubMed

    Lotfi, Marzieh; Bagherzadeh, Roohollah; Naderi-Meshkin, Hojjat; Mahdipour, Elahe; Mafinezhad, Asghar; Sadeghnia, Hamid Reza; Esmaily, Habibollah; Maleki, Masoud; Hasssanzadeh, Halimeh; Ghayaour-Mobarhan, Majid; Bidkhori, Hamid Reza; Bahrami, Ahmad Reza

    2016-03-01

    Scaffold-based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano-/microfibrous scaffold, made from a mixture of chitosan-ß-glycerol phosphate-gelatin (chitosan-GP-gelatin) using a standard electrospinning set-up was developed. Gelatin-acid acetic and chitosan ß-glycerol phosphate-HCL solutions were prepared at ratios of 30/70, 50/50, 70/30 (w/w) and their mechanical and biological properties were engineered. Furthermore, the pore structure of the fabricated nanofibrous scaffolds was investigated and predicted using a theoretical model. Higher gelatin concentrations in the polymer blend resulted in significant increase in mean pore size and its distribution. Interaction between the scaffold and the contained cells was also monitored and compared in the test and control groups. Scaffolds with higher chitosan concentrations showed higher rate of cell attachment with better proliferation property, compared with gelatin-only scaffolds. The fabricated scaffolds, unlike many other natural polymers, also exhibit non-toxic and biodegradable properties in the grafted tissues. In conclusion, the data clearly showed that the fabricated biomaterial is a biologically compatible scaffold with potential to serve as a proper platform for retaining the cultured cells for further application in cell-based tissue engineering, especially in wound healing practices. These results suggested the potential of using mesoporous composite chitosan-GP-gelatin fibrous scaffolds for engineering three-dimensional tissues with different inherent cell characteristics. © 2015 Wiley Periodicals, Inc.

  18. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration

    PubMed Central

    Eap, Sandy; Keller, Laetitia; Schiavi, Jessica; Huck, Olivier; Jacomine, Leandro; Fioretti, Florence; Gauthier, Christian; Sebastian, Victor; Schwinté, Pascale; Benkirane-Jessel, Nadia

    2015-01-01

    New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(ε-caprolactone) nanofibrous implant (from 700 μm to 1 cm thick) was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII), 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days’ implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7 therapeutic implant by adding human mesenchymal stem cells (hMSCs). The activity of this BMP-7-functionalized implant was again further enhanced by the addition of hMSCs to the implant (living materials), in vivo, as demonstrated by the analysis of new bone formation and calcification after 30 days’ implantation in mice with calvaria defects. Therefore, implants functionalized with BMP-7 nanocontainers associated with hMSCs can act as an accelerator of in vivo bone mineralization and regeneration. PMID:25709432

  19. Unravelling the enigmatic origin of calcitic nanofibres in soils and caves: purely physicochemical or biogenic processes?

    NASA Astrophysics Data System (ADS)

    Bindschedler, S.; Cailleau, G.; Braissant, O.; Millière, L.; Job, D.; Verrecchia, E. P.

    2014-05-01

    Calcitic nanofibres are ubiquitous habits of secondary calcium carbonate (CaCO3) accumulations observed in calcareous vadose environments. Despite their widespread occurrence, the origin of these nanofeatures remains enigmatic. Three possible mechanisms fuel the debate: (i) purely physicochemical processes, (ii) mineralization of rod-shaped bacteria, and (iii) crystal precipitation on organic templates. Nanofibres can be either mineral (calcitic) or organic in nature. They are very often observed in association with needle fibre calcite (NFC), another typical secondary CaCO3 habit in terrestrial environments. This association has contributed to some confusion between both habits, however they are truly two distinct calcitic features and their recurrent association is likely to be an important fact to help understanding the origin of nanofibres. In this paper the different hypotheses that currently exist to explain the origin of calcitic nanofibres are critically reviewed. In addition to this, a new hypothesis for the origin of nanofibres is proposed based on the fact that current knowledge attributes a fungal origin to NFC. As this feature and nanofibres are recurrently observed together, a possible fungal origin for nanofibres which are associated with NFC is investigated. Sequential enzymatic digestion of the fungal cell wall of selected fungal species demonstrates that the fungal cell wall can be a source of organic nanofibres. The obtained organic nanofibres show a striking morphological resemblance when compared to their natural counterparts, emphasizing a fungal origin for part of the organic nanofibres observed in association with NFC. It is further hypothesized that these organic nanofibres may act as templates for calcite nucleation in a biologically influenced mineralization process, generating calcitic nanofibres. This highlights the possible involvement of fungi in CaCO3 biomineralization processes, a role still poorly documented. Moreover, on a global

  20. Unravelling the enigmatic origin of calcitic nanofibres in soils and caves: purely physicochemical or biogenic processes?

    NASA Astrophysics Data System (ADS)

    Bindschedler, S.; Cailleau, G.; Braissant, O.; Millière, L.; Job, D.; Verrecchia, E. P.

    2014-01-01

    Calcitic nanofibres are ubiquitous habits of secondary calcium carbonate (CaCO3) accumulations observed in calcareous vadose environments. Despite their widespread occurrence, the origin of these nanofeatures remains enigmatic. Three possible mechanisms fuel the debate: (i) purely physicochemical processes, (ii) mineralization of rod-shaped bacteria, and (iii) crystal precipitation on organic templates. Nanofibres can be either mineral (calcitic) or organic in nature. They are very often observed in association with Needle Fibre Calcite (NFC), another typical secondary CaCO3 habit in terrestrial environments. This association has contributed to some confusion between both habits, however they are truly two distinct calcitic features and their recurrent association is likely to be an important fact to help understanding the origin of nanofibres. In this manuscript the different hypotheses that currently exist to explain the origin of calcitic nanofibres are critically reviewed. In addition to this, a new hypothesis for the origin of nanofibres is proposed based on the fact that current knowledge attributes a fungal origin to NFC. As this feature and nanofibres are recurrently observed together, a possible fungal origin for nanofibres which are associated with NFC is investigated. Sequential enzymatic digestion of the fungal cell wall of selected fungal species demonstrates that the fungal cell wall can be a source of organic nanofibres. The obtained organic nanofibres show a striking morphological resemblance when compared to their natural counterparts, emphasizing a fungal origin for part of the organic nanofibres observed in association with NFC. It is further hypothesized that these organic nanofibres may act as templates for calcite nucleation in a biologically-influenced mineralization process, generating calcitic nanofibres. This highlights the possible involvement of Fungi in CaCO3 biomineralization processes, a role still poorly documented at present

  1. Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair.

    PubMed

    Yao, Chun-Hsu; Lee, Chia-Yu; Huang, Chiung-Hua; Chen, Yueh-Sheng; Chen, Kuo-Yu

    2017-10-01

    A bilayer membrane (GKU) with a commercial polyurethane wound dressing as an outer layer and electrospun gelatin/keratin nanofibrous mat as an inner layer was fabricated as a novel wound dressing. Scanning electron micrographs showed that gelatin/keratin nanofibers had a uniform morphology and bead-free structure with average fiber diameter of 160.4nm. 3-(4,5-Dimethylthiazolyl)-2,5-diphenyltetrazolium bromide assay using L929 fibroblast cells indicated that the residues released from the gelatin/keratin composite nanofibrous mat accelerated cell proliferation. Cell attachment experiments revealed that adhered cells spread better and migrated deeper into the gelatin/keratin nanofibrous mat than that into the gelatin nanofibrous mat. In animal studies, compared with the bilayer membrane without keratin, gauze and commercial wound dressing, Comfeel®, GKU membrane gave much more number of blood vessels and a greater reduction in wound area at 4days, and better wound repair at 14days with a thicker epidermis and larger number of newly formed hair follicles. GKU membrane, thus, could be a good candidate for wound dressing applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Mild process to design silk scaffolds with reduced β-sheet structure and various topographies at nanometer scale

    PubMed Central

    Pei, Yazhen; Liu, Xi; Liu, Shanshan; Lu, Qiang; Liu, Jing; Kaplan, David L; Zhu, Hesun

    2014-01-01

    Three-dimensional (3D) porous silk scaffolds with good biocompatibility and minimal immunogenicity, have promising applications in different tissue regenerations. However, a challenge remains to effectively fabricate their microstructures and mechanical properties to satisfy specific requirements of different tissues. In this study, silk scaffolds were fabricated to form extracellular matrix (ECM) mimetic nanofibrous architecture in a mild process. A slowly increasing concentration process was applied to regulate silk self-assembly into nanofibers in aqueous solution. Then glycerol was blended with the nanofiber solution and induced silk crystallization in lyophilization process, endowing freeze-dried scaffolds water-stability. The glycerol was leached from the scaffolds, leaving similar porous structure at a micrometer scale but different topographies at nanoscale. Compared to previous salt-leached and methanol annealed scaffolds, the present scaffolds showed lower β-sheet content, softer mechanical property, and improved cell growth and differentiation behaviors, implying their promising future as platforms for controlling stem cell fate and soft tissue regeneration. PMID:25463497

  3. Blood Accessibility to Fibrin in Venous Thrombosis is Thrombus Age-Dependent and Predicts Fibrinolytic Efficacy: An In Vivo Fibrin Molecular Imaging Study

    PubMed Central

    Stein-Merlob, Ashley F.; Kessinger, Chase W.; Erdem, S. Sibel; Zelada, Henry; Hilderbrand, Scott A.; Lin, Charles P.; Tearney, Guillermo J.; Jaff, Michael R.; Reed, Guy L.; Henke, Peter K.; McCarthy, Jason R.; Jaffer, Farouc A.

    2015-01-01

    Fibrinolytic therapy of venous thromboembolism (VTE) is increasingly utilized, yet limited knowledge is available regarding in vivo mechanisms that govern fibrinolytic efficacy. In particular, it is unknown how age-dependent thrombus organization limits direct blood contact with fibrin, the target of blood-based fibrinolytic agents. Utilizing high-resolution in vivo optical molecular imaging with FTP11, a near-infrared fluorescence (NIRF) fibrin-specific reporter, here we investigated the in vivo interrelationships of blood accessibility to fibrin, thrombus age, thrombus neoendothelialization, and fibrinolysis in murine venous thrombosis (VT). In both stasis VT and non-stasis VT, NIRF microscopy showed that FTP11 fibrin binding was thrombus age-dependent. FTP11 localized to the luminal surface of early-stage VT, but only minimally to subacute VT (p<0.001). Transmission electron microscopy of early stage VT revealed direct blood cell contact with luminal fibrin-rich surfaces. In contrast, subacute VT exhibited an encasing CD31+ neoendothelial layer that limited blood cell contact with thrombus fibrin in both VT models. Next we developed a theranostic strategy to predict fibrinolytic efficacy based on the in vivo fibrin accessibility to blood NIRF signal. Mice with variably aged VT underwent FTP11 injection and intravital microscopy (IVM), followed by tissue plasminogen activator infusion to induce VT fibrinolysis. Fibrin molecular IVM revealed that early stage VT, but not subacute VT, bound FTP11 (p<0.05), and experienced higher rates of fibrinolysis and total fibrinolysis (p<0.05 vs. subacute VT). Before fibrinolysis, the baseline FTP11 NIRF signal predicted the net fibrinolysis at 60 minutes (p<0.001). Taken together, these data provide novel insights into the temporal evolution of VT and its susceptibility to therapeutic fibrinolysis. Fibrin molecular imaging may provide a theranostic strategy to identify venous thrombi amenable to fibrinolytic therapies. PMID

  4. Magnesium-Containing Nanostructured Hybrid Scaffolds for Enhanced Dentin Regeneration

    PubMed Central

    Qu, Tiejun; Jing, Junjun; Jiang, Yong; Taylor, Robert J.; Feng, Jian Q.; Geiger, Benjamin

    2014-01-01

    Dental caries is one of the most prevalent chronic diseases in the United States, affecting 92% of adults aged 20–64 years. Scaffold-based tissue engineering represents a promising strategy to replace damaged dental structures and restore their biological functions. Current single-component scaffolding materials used for dental tissue regeneration, however, cannot provide the proper microenvironment for dental stem/progenitor cell adhesion, proliferation, and differentiation; new biomimetic hybrid scaffolds are needed to promote better dental tissue formation. In this work, we developed a biomimetic approach to prepare three-dimensional (3D) nanofibrous gelatin/magnesium phosphate (NF-gelatin/MgP) hybrid scaffolds. These scaffolds not only mimic the nanostructured architecture and the chemical composition of natural dentin matrices but also constantly present favorable chemical signals (Mg ions) to dental pulp stem cells (DPSCs), thus providing a desirable microenvironment to facilitate DPSC proliferation, differentiation, and biomineralization. Synthesized hybrid NF-gelatin/MgP possesses natural extracellular matrix (ECM)-like architecture, high porosity, high pore interconnectivity, well-defined pore size, and controlled Mg ion release from the scaffold. Adding MgP into NF-gelatin also increased the mechanical strength of the hybrid scaffold. The sustained release of Mg ions from the NF-gelatin/MgP (MgP=10% wt/wt) scaffold significantly enhanced the proliferation, differentiation, and biomineralization of human DPSCs in vitro. The alkaline phosphatase (ALP) activity and the gene expressions for odontogenic differentiation (collagen I [Col I], ALP, osteocalcin [OCN], dentin sialophosphoprotein [DSPP], and dentin matrix protein 1 [DMP1]) were all significantly higher (p<0.05) in the NF-gelatin/MgP group than in the NF-gelatin group. Those results were further confirmed by hematoxylin and eosin (H&E) and von Kossa staining, as shown by greater ECM secretion and

  5. Magnesium-containing nanostructured hybrid scaffolds for enhanced dentin regeneration.

    PubMed

    Qu, Tiejun; Jing, Junjun; Jiang, Yong; Taylor, Robert J; Feng, Jian Q; Geiger, Benjamin; Liu, Xiaohua

    2014-09-01

    Dental caries is one of the most prevalent chronic diseases in the United States, affecting 92% of adults aged 20-64 years. Scaffold-based tissue engineering represents a promising strategy to replace damaged dental structures and restore their biological functions. Current single-component scaffolding materials used for dental tissue regeneration, however, cannot provide the proper microenvironment for dental stem/progenitor cell adhesion, proliferation, and differentiation; new biomimetic hybrid scaffolds are needed to promote better dental tissue formation. In this work, we developed a biomimetic approach to prepare three-dimensional (3D) nanofibrous gelatin/magnesium phosphate (NF-gelatin/MgP) hybrid scaffolds. These scaffolds not only mimic the nanostructured architecture and the chemical composition of natural dentin matrices but also constantly present favorable chemical signals (Mg ions) to dental pulp stem cells (DPSCs), thus providing a desirable microenvironment to facilitate DPSC proliferation, differentiation, and biomineralization. Synthesized hybrid NF-gelatin/MgP possesses natural extracellular matrix (ECM)-like architecture, high porosity, high pore interconnectivity, well-defined pore size, and controlled Mg ion release from the scaffold. Adding MgP into NF-gelatin also increased the mechanical strength of the hybrid scaffold. The sustained release of Mg ions from the NF-gelatin/MgP (MgP=10% wt/wt) scaffold significantly enhanced the proliferation, differentiation, and biomineralization of human DPSCs in vitro. The alkaline phosphatase (ALP) activity and the gene expressions for odontogenic differentiation (collagen I [Col I], ALP, osteocalcin [OCN], dentin sialophosphoprotein [DSPP], and dentin matrix protein 1 [DMP1]) were all significantly higher (p<0.05) in the NF-gelatin/MgP group than in the NF-gelatin group. Those results were further confirmed by hematoxylin and eosin (H&E) and von Kossa staining, as shown by greater ECM secretion and

  6. Bi-Mix Antimicrobial Scaffolds for Regenerative Endodontics

    PubMed Central

    Palasuk, Jadesada; Kamocki, Krzysztof; Hippenmeyer, Lauren; Platt, Jeffrey A.; Spolnik, Kenneth J.; Gregory, Richard L.; Bottino, Marco C.

    2014-01-01

    Introduction Eliminating and/or inhibiting bacterial growth within the root canal system have been shown to play a key role in the regenerative outcome. The aim of this study was to synthesize and determine in vitro both the antimicrobial effectiveness and cytocompatibility of bi-mix antibiotic-containing polydioxanone (PDS)-based polymer scaffolds. Methods Antibiotic-containing (metronidazole, MET and ciprofloxacin, CIP) polymer solutions (distinct antibiotic weight ratios) were spun into fibers as a potential mimic to the double antibiotic paste (DAP, a MET/CIP mixture). Fiber morphology, chemical characteristics, and tensile strength were evaluated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and tensile testing, respectively. Antimicrobial efficacy was tested over time (aliquot collection) against Enterococcus faecalis (Ef), Porphyromonas gingivalis (Pg), and Fusobacterium nucleatum (Fn). Similarly, cytotoxicity was evaluated in human dental pulp stem cells (hDPSCs). Data were statistically analyzed (p<0.05). Results SEM and FTIR confirmed that electrospinning was able to produce antibiotic-containing fibers with diameter mostly in the nanoscale. Tensile strength of 1:1MET/CIP scaffolds was significantly (p<0.05) higher than pure PDS (control). Meanwhile, all other groups presented similar strength as the control. Aliquots obtained from antibiotic-containing scaffolds inhibited growth of Ef, Pg and Fn, except pure MET that did not show an inhibitory action towards Pg or Fn. Antibiotic-containing aliquots promoted slight hDPSCs viability reduction, but none of them were considered to be cytotoxic. Conclusion Our data suggest that the incorporation of multiple antibiotics within a nanofibrous scaffold holds great potential towards the development of a drug delivery system for regenerative endodontics. PMID:25201643

  7. Mechanics of a two-fiber model with one nested fiber network, as applied to the collagen-fibrin system.

    PubMed

    Nedrelow, David S; Bankwala, Danesh; Hyypio, Jeffrey D; Lai, Victor K; Barocas, Victor H

    2018-05-01

    The mechanical behavior of collagen-fibrin (col-fib) co-gels is both scientifically interesting and clinically relevant. Collagen-fibrin networks are a staple of tissue engineering research, but the mechanical consequences of changes in co-gel composition have remained difficult to predict or even explain. We previously observed fundamental differences in failure behavior between collagen-rich and fibrin-rich co-gels, suggesting an essential change in how the two components interact as the co-gel's composition changes. In this work, we explored the hypothesis that the co-gel behavior is due to a lack of percolation by the dilute component. We generated a series of computational models based on interpenetrating fiber networks. In these models, the major network component percolated the model space but the minor component did not, instead occupying a small island embedded within the larger network. Each component was assigned properties based on a fit of single-component gel data. Island size was varied to match the relative concentrations of the two components. The model predicted that networks rich in collagen, the stiffer component, would roughly match pure-collagen gel behavior with little additional stress due to the fibrin, as seen experimentally. For fibrin-rich gels, however, the model predicted a smooth increase in the overall network strength with added collagen, as seen experimentally but not consistent with an additive parallel model. We thus conclude that incomplete percolation by the low-concentration component of a co-gel is a major determinant of its macroscopic properties, especially if the low-concentration component is the stiffer component. Models for the behavior of fibrous networks have useful applications in many different fields, including polymer science, textiles, and tissue engineering. In addition to being important structural components in soft tissues and blood clots, these protein networks can serve as scaffolds for bioartificial

  8. Multilayered Electrospun Scaffolds for Tendon Tissue Engineering

    PubMed Central

    Chainani, Abby; Hippensteel, Kirk J.; Kishan, Alysha; Garrigues, N. William; Ruch, David S.; Guilak, Farshid

    2013-01-01

    Full-thickness rotator cuff tears are one of the most common causes of shoulder pain in people over the age of 65. High retear rates and poor functional outcomes are common after surgical repair, and currently available extracellular matrix scaffold patches have limited abilities to enhance new tendon formation. In this regard, tissue-engineered scaffolds may provide a means to improve repair of rotator cuff tears. Electrospinning provides a versatile method for creating nanofibrous scaffolds with controlled architectures, but several challenges remain in its application to tissue engineering, such as cell infiltration through the full thickness of the scaffold as well as control of cell growth and differentiation. Previous studies have shown that ligament-derived extracellular matrix may enhance differentiation toward a tendon or ligament phenotype by human adipose stem cells (hASCs). In this study, we investigated the use of tendon-derived extracellular matrix (TDM)-coated electrospun multilayered scaffolds compared to fibronectin (FN) or phosphate-buffered saline (PBS) coating for use in rotator cuff tendon tissue engineering. Multilayered poly(ɛ-caprolactone) scaffolds were prepared by sequentially collecting electrospun layers onto the surface of a grounded saline solution into a single scaffold. Scaffolds were then coated with TDM, FN, or PBS and seeded with hASCs. Scaffolds were maintained without exogenous growth factors for 28 days in culture and evaluated for protein content (by immunofluorescence and biochemical assay), markers of tendon differentiation, and tensile mechanical properties. The collagen content was greatest by day 28 in TDM-scaffolds. Gene expression of type I collagen, decorin, and tenascin C increased over time, with no effect of scaffold coating. Sulfated glycosaminoglycan and dsDNA contents increased over time in culture, but there was no effect of scaffold coating. The Young's modulus did not change over time, but yield strain

  9. A high efficiency microfluidic-based photocatalytic microreactor using electrospun nanofibrous TiO2 as a photocatalyst.

    PubMed

    Meng, Zhaoxu; Zhang, Xu; Qin, Jianhua

    2013-06-07

    We present a novel microfluidic-based photocatalytic microreactor by using electrospun nanofibrous TiO2 as a photocatalyst for the first time. The microreactor exhibits not only a simple fabrication process, but also much higher photocatalytic activity than that achieved by a TiO2 film microreactor.

  10. Fibrin Formation, Structure and Properties

    PubMed Central

    Weisel, John W.; Litvinov, Rustem I.

    2017-01-01

    Fibrinogen and fibrin are essential for hemostasis and are major factors in thrombosis, wound healing, and several other biological functions and pathological conditions. The X-ray crystallographic structure of major parts of fibrin(ogen), together with computational reconstructions of missing portions and numerous biochemical and biophysical studies, have provided a wealth of data to interpret molecular mechanisms of fibrin formation, its organization, and properties. On cleavage of fibrinopeptides by thrombin, fibrinogen is converted to fibrin monomers, which interact via knobs exposed by fibrinopeptide removal in the central region, with holes always exposed at the ends of the molecules. The resulting half-staggered, double-stranded oligomers lengthen into protofibrils, which aggregate laterally to make fibers, which then branch to yield a three-dimensional network. Much is now known about the structural origins of clot mechanical properties, including changes in fiber orientation, stretching and buckling, and forced unfolding of molecular domains. Studies of congenital fibrinogen variants and post-translational modifications have increased our understanding of the structure and functions of fibrin(ogen). The fibrinolytic system, with the zymogen plasminogen binding to fibrin together with tissue-type plasminogen activator to promote activation to the active proteolytic enzyme, plasmin, results in digestion of fibrin at specific lysine residues. In spite of a great increase in our knowledge of all these interconnected processes, much about the molecular mechanisms of the biological functions of fibrin(ogen) remains unknown, including some basic aspects of clotting, fibrinolysis, and molecular origins of fibrin mechanical properties. Even less is known concerning more complex (patho)physiological implications of fibrinogen and fibrin. PMID:28101869

  11. Fibrin gels exhibit improved biological, structural, and mechanical properties compared with collagen gels in cell-based tendon tissue-engineered constructs.

    PubMed

    Breidenbach, Andrew P; Dyment, Nathaniel A; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T; Rowe, David W; Kadler, Karl E; Butler, David L

    2015-02-01

    The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair.

  12. Fibrin Gels Exhibit Improved Biological, Structural, and Mechanical Properties Compared with Collagen Gels in Cell-Based Tendon Tissue-Engineered Constructs

    PubMed Central

    Dyment, Nathaniel A.; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T.; Rowe, David W.; Kadler, Karl E.; Butler, David L.

    2015-01-01

    The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair. PMID:25266738

  13. Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibres

    NASA Astrophysics Data System (ADS)

    Jain, Anjana; Betancur, Martha; Patel, Gaurangkumar D.; Valmikinathan, Chandra M.; Mukhatyar, Vivek J.; Vakharia, Ajit; Pai, S. Balakrishna; Brahma, Barunashish; MacDonald, Tobey J.; Bellamkonda, Ravi V.

    2014-03-01

    Glioblastoma multiforme is an aggressive, invasive brain tumour with a poor survival rate. Available treatments are ineffective and some tumours remain inoperable because of their size or location. The tumours are known to invade and migrate along white matter tracts and blood vessels. Here, we exploit this characteristic of glioblastoma multiforme by engineering aligned polycaprolactone (PCL)-based nanofibres for tumour cells to invade and, hence, guide cells away from the primary tumour site to an extracortical location. This extracortial sink is a cyclopamine drug-conjugated, collagen-based hydrogel. When aligned PCL-nanofibre films in a PCL/polyurethane carrier conduit were inserted in the vicinity of an intracortical human U87MG glioblastoma xenograft, a significant number of human glioblastoma cells migrated along the aligned nanofibre films and underwent apoptosis in the extracortical hydrogel. Tumour volume in the brain was significantly lower following insertion of aligned nanofibre implants compared with the application of smooth fibres or no implants.

  14. Mesenchymal Stem Cells in Oriented PLGA/ACECM Composite Scaffolds Enhance Structure-Specific Regeneration of Hyaline Cartilage in a Rabbit Model

    PubMed Central

    Guo, Weimin; Zheng, Xifu; Zhang, Weiguo; Chen, Mingxue; Wang, Zhenyong; Hao, Chunxiang; Huang, Jingxiang; Yuan, Zhiguo; Zhang, Yu; Wang, Mingjie; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Sui, Xiang; Xu, Wenjing

    2018-01-01

    Articular cartilage lacks a blood supply and nerves. Hence, articular cartilage regeneration remains a major challenge in orthopedics. Decellularized extracellular matrix- (ECM-) based strategies have recently received particular attention. The structure of native cartilage exhibits complex zonal heterogeneity. Specifically, the development of a tissue-engineered scaffold mimicking the aligned structure of native cartilage would be of great utility in terms of cartilage regeneration. Previously, we fabricated oriented PLGA/ACECM (natural, nanofibrous, articular cartilage ECM) composite scaffolds. In vitro, we found that the scaffolds not only guided seeded cells to proliferate in an aligned manner but also exhibited high biomechanical strength. To detect whether oriented cartilage regeneration was possible in vivo, we used mesenchymal stem cell (MSC)/scaffold constructs to repair cartilage defects. The results showed that cartilage defects could be completely regenerated. Histologically, these became filled with hyaline cartilage and subchondral bone. Moreover, the aligned structure of cartilage was regenerated and was similar to that of native tissue. In conclusion, the MSC/scaffold constructs enhanced the structure-specific regeneration of hyaline cartilage in a rabbit model and may be a promising treatment strategy for the repair of human cartilage defects. PMID:29666653

  15. Mesenchymal Stem Cells in Oriented PLGA/ACECM Composite Scaffolds Enhance Structure-Specific Regeneration of Hyaline Cartilage in a Rabbit Model.

    PubMed

    Guo, Weimin; Zheng, Xifu; Zhang, Weiguo; Chen, Mingxue; Wang, Zhenyong; Hao, Chunxiang; Huang, Jingxiang; Yuan, Zhiguo; Zhang, Yu; Wang, Mingjie; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Sui, Xiang; Xu, Wenjing; Liu, Shuyun; Lu, Shibi; Guo, Quanyi

    2018-01-01

    Articular cartilage lacks a blood supply and nerves. Hence, articular cartilage regeneration remains a major challenge in orthopedics. Decellularized extracellular matrix- (ECM-) based strategies have recently received particular attention. The structure of native cartilage exhibits complex zonal heterogeneity. Specifically, the development of a tissue-engineered scaffold mimicking the aligned structure of native cartilage would be of great utility in terms of cartilage regeneration. Previously, we fabricated oriented PLGA/ACECM (natural, nanofibrous, articular cartilage ECM) composite scaffolds. In vitro, we found that the scaffolds not only guided seeded cells to proliferate in an aligned manner but also exhibited high biomechanical strength. To detect whether oriented cartilage regeneration was possible in vivo, we used mesenchymal stem cell (MSC)/scaffold constructs to repair cartilage defects. The results showed that cartilage defects could be completely regenerated. Histologically, these became filled with hyaline cartilage and subchondral bone. Moreover, the aligned structure of cartilage was regenerated and was similar to that of native tissue. In conclusion, the MSC/scaffold constructs enhanced the structure-specific regeneration of hyaline cartilage in a rabbit model and may be a promising treatment strategy for the repair of human cartilage defects.

  16. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.

    PubMed

    Kennedy, Kelsey M; Bhaw-Luximon, Archana; Jhurry, Dhanjay

    2017-03-01

    Engineered scaffolds produced by electrospinning of biodegradable polymers offer a 3D, nanofibrous environment with controllable structural, chemical, and mechanical properties that mimic the extracellular matrix of native tissues and have shown promise for a number of tissue engineering applications. The microscale mechanical interactions between cells and electrospun matrices drive cell behaviors including migration and differentiation that are critical to promote tissue regeneration. Recent developments in understanding these mechanical interactions in electrospun environments are reviewed, with emphasis on how fiber geometry and polymer structure impact on the local mechanical properties of scaffolds, how altering the micromechanics cues cell behaviors, and how, in turn, cellular and extrinsic forces exerted on the matrix mechanically remodel an electrospun scaffold throughout tissue development. Techniques used to measure and visualize these mechanical interactions are described. We provide a critical outlook on technological gaps that must be overcome to advance the ability to design, assess, and manipulate the mechanical environment in electrospun scaffolds toward constructs that may be successfully applied in tissue engineering and regenerative medicine. Tissue engineering requires design of scaffolds that interact with cells to promote tissue development. Electrospinning is a promising technique for fabricating fibrous, biomimetic scaffolds. Effects of electrospun matrix microstructure and biochemical properties on cell behavior have been extensively reviewed previously; here, we consider cell-matrix interaction from a mechanical perspective. Micromechanical properties as a driver of cell behavior has been well established in planar substrates, but more recently, many studies have provided new insights into mechanical interaction in fibrillar, electrospun environments. This review provides readers with an overview of how electrospun scaffold mechanics and

  17. Agent-based modeling of porous scaffold degradation and vascularization: Optimal scaffold design based on architecture and degradation dynamics.

    PubMed

    Mehdizadeh, Hamidreza; Bayrak, Elif S; Lu, Chenlin; Somo, Sami I; Akar, Banu; Brey, Eric M; Cinar, Ali

    2015-11-01

    A multi-layer agent-based model (ABM) of biomaterial scaffold vascularization is extended to consider the effects of scaffold degradation kinetics on blood vessel formation. A degradation model describing the bulk disintegration of porous hydrogels is incorporated into the ABM. The combined degradation-angiogenesis model is used to investigate growing blood vessel networks in the presence of a degradable scaffold structure. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support results in failure for the material. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as a way to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric parameters and degradation behavior of scaffolds, and enables easy refinement of the model as new knowledge about the underlying biological phenomena becomes available. This paper proposes a multi-layer agent-based model (ABM) of biomaterial scaffold vascularization integrated with a structural-kinetic model describing bulk degradation of porous hydrogels to consider the effects of scaffold degradation kinetics on blood vessel formation. This enables the assessment of scaffold characteristics and in particular the disintegration characteristics of the scaffold on angiogenesis. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support by scaffold disintegration results in failure of the material and disruption of angiogenesis. A strategy using multi-layer scaffold with

  18. Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials.

    PubMed

    Chou, Shih-Feng; Luo, Li-Jyuan; Lai, Jui-Yang; Ma, David Hui-Kang

    2017-02-01

    Due to their ability to mimic the structure of extracellular matrix, electrospun gelatin nanofibers are promising cell scaffolding materials for tissue engineering applications. However, the hydrophilic gelatin molecules usually need stabilization before use in aqueous physiological environment. Considering that biomaterials cross-linked via film immersion technique may have a more homogeneous cross-linked structure than vapor phase cross-linking, this work aims to investigate the chemical modification of electrospun gelatin nanofibrous membranes by liquid phase carbodiimide in the presence of ethanol/water co-solvents with varying ethanol concentrations ranging from 80 to 99.5vol%. The results of characterization showed that increasing water content in the binary reaction solvent system increases the extent of cross-linking of gelatin nanofibers, but simultaneously promotes the effect of biopolymer swelling and distortion in fiber mat structure. As compared to non-cross-linked counterparts, carbodiimide treated gelatin nanofibrous mats exhibited better thermal and biological stability where the shrinkage temperature and resistance to enzymatic degradation varied in response to ethanol/water solvent composition-mediated generation of cross-links. Irrespective of their cross-linking density, all studied membrane samples did not induce any responses in ocular epithelial cell cultures derived from cornea, lens, and retina. Unlike many other cross-linking agents and/or methods (e.g., excessive vapor phase cross-linking) that may pose a risk of toxicity, our study demonstrated that these nanofibrous materials are well tolerated by anterior segment tissues. These findings also indicate the safety of using ethanol/water co-solvents for chemical cross-linking of gelatin to engineer nanofibrous materials with negligible biological effects. In summary, the present results suggest the importance of solvent-mediated carbodiimide cross-linking in modulating structure

  19. Construction of a Corneal Stromal Equivalent with SMILE-Derived Lenticules and Fibrin Glue

    PubMed Central

    Yin, Houfa; Qiu, Peijin; Wu, Fang; Zhang, Wei; Teng, Wenqi; Qin, Zhenwei; Li, Chao; Zhou, Jiaojie; Fang, Zhi; Tang, Qiaomei; Fu, Qiuli; Ma, Jian; Yang, Yabo

    2016-01-01

    The scarcity of corneal tissue to treat deep corneal defects and corneal perforations remains a challenge. Currently, small incision lenticule extraction (SMILE)-derived lenticules appear to be a promising alternative for the treatment of these conditions. However, the thickness and toughness of a single piece of lenticule are limited. To overcome these limitations, we constructed a corneal stromal equivalent with SMILE-derived lenticules and fibrin glue. In vitro cell culture revealed that the corneal stromal equivalent could provide a suitable scaffold for the survival and proliferation of corneal epithelial cells, which formed a continuous pluristratified epithelium with the expression of characteristic markers. Finally, anterior lamellar keratoplasty in rabbits demonstrated that the corneal stromal equivalent with decellularized lenticules and fibrin glue could repair the anterior region of the stroma, leading to re-epithelialization and recovery of both transparency and ultrastructural organization. Corneal neovascularization, graft degradation, and corneal rejection were not observed within 3 months. Taken together, the corneal stromal equivalent with SMILE-derived lenticules and fibrin glue appears to be a safe and effective alternative for the repair of damage to the anterior cornea, which may provide new avenues in the treatment of deep corneal defects or corneal perforations. PMID:27651001

  20. Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects

    PubMed Central

    Zhang, Xiaojin; Li, Yan; Chen, Y. Eugene; Chen, Jihua; Ma, Peter X.

    2016-01-01

    MicroRNAs (miRNAs) are being developed to enhance tissue regeneration. Here we show that a hyperbranched polymer with high miRNA-binding affinity and negligible cytotoxicity can self-assemble into nano-sized polyplexes with a ‘double-shell' miRNA distribution and high transfection efficiency. These polyplexes are encapsulated in biodegradable microspheres to enable controllable two-stage (polyplexes and miRNA) delivery. The microspheres are attached to cell-free nanofibrous polymer scaffolds that spatially control the release of miR-26a. This technology is used to regenerate critical-sized bone defects in osteoporotic mice by targeting Gsk-3β to activate the osteoblastic activity of endogenous stem cells, thus addressing a critical challenge in regenerative medicine of achieving cell-free scaffold-based miRNA therapy for tissue engineering. PMID:26765931

  1. High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating.

    PubMed

    Wang, Xuefen; Chen, Xuming; Yoon, Kyunghwan; Fang, Dufei; Hsiao, Benjamin S; Chu, Benjamin

    2005-10-01

    A novel high flux filtration medium, consisting of a three-tier composite structure, i.e., a nonporous hydrophilic nanocomposite coating top layer, an electrospun nanofibrous substrate midlayer, and a conventional nonwoven microfibrous support, was demonstrated for oil/water emulsion separations for the first time. The nanofibrous substrate was prepared by electrospinning of poly(vinyl alcohol) (PVA) followed by chemical cross-linking with glutaraldehyde (GA) in acetone. The resulting cross-linked PVA substrates showed excellent water resistance and good mechanical properties. The top coating was based on a nanocomposite layer containing hydrophilic polyether-b-polyamide copolymer or a cross-linked PVA hydrogel incorporated with surface-oxidized multiwalled carbon nanotubes (MWNTs). Scanning electron microscopy (SEM) examinations indicated that the nanocomposite layer was nonporous within the instrumental resolution and MWNTs were well dispersed in the polymer matrix. Oil/ water emulsion tests showed that this unique type of filtration media exhibited a high flux rate (up to 330 L/m2-h at the feed pressure of 100 psi) and an excellent total organic solute rejection rate (99.8%) without appreciable fouling. The increase in the concentration of surface-oxidized MWNT in the coating layer generally improves the flux rate, which can be attributed to the generation of more effective hydrophilic nanochannels for water passage in the composite membranes.

  2. Effect of nanofiber content on bone regeneration of silk fibroin/poly(ε-caprolactone) nano/microfibrous composite scaffolds

    PubMed Central

    Kim, Beom Su; Park, Ko Eun; Kim, Min Hee; You, Hyung Keun; Lee, Jun; Park, Won Ho

    2015-01-01

    The broad application of electrospun nanofibrous scaffolds in tissue engineering is limited by their small pore size, which has a negative influence on cell migration. This disadvantage could be significantly improved through the combination of nano- and microfibrous structure. To accomplish this, different nano/microfibrous scaffolds were produced by hybrid electrospinning, combining solution electrospinning with melt electrospinning, while varying the content of the nanofiber. The morphology of the silk fibroin (SF)/poly(ε-caprolactone) (PCL) nano/microfibrous composite scaffolds was investigated with field-emission scanning electron microscopy, while the mechanical and pore properties were assessed by measurement of tensile strength and mercury porosimetry. To assay cell proliferation, cell viability, and infiltration ability, human mesenchymal stem cells were seeded on the SF/PCL nano/microfibrous composite scaffolds. From in vivo tests, it was found that the bone-regenerating ability of SF/PCL nano/microfibrous composite scaffolds was closely associated with the nanofiber content in the composite scaffolds. In conclusion, this approach of controlling the nanofiber content in SF/PCL nano/microfibrous composite scaffolds could be useful in the design of novel scaffolds for tissue engineering. PMID:25624762

  3. Fibrinogen and fibrin.

    PubMed

    Weisel, John W

    2005-01-01

    Fibrinogen is a large, complex, fibrous glycoprotein with three pairs of polypeptide chains linked together by 29 disulfide bonds. It is 45 nm in length, with globular domains at each end and in the middle connected by alpha-helical coiled-coil rods. Both strongly and weakly bound calcium ions are important for maintenance of fibrinogen's structure and functions. The fibrinopeptides, which are in the central region, are cleaved by thrombin to convert soluble fibrinogen to insoluble fibrin polymer, via intermolecular interactions of the "knobs" exposed by fibrinopeptide removal with "holes" always exposed at the ends of the molecules. Fibrin monomers polymerize via these specific and tightly controlled binding interactions to make half-staggered oligomers that lengthen into protofibrils. The protofibrils aggregate laterally to make fibers, which then branch to yield a three-dimensional network-the fibrin clot-essential for hemostasis. X-ray crystallographic structures of portions of fibrinogen have provided some details on how these interactions occur. Finally, the transglutaminase, Factor XIIIa, covalently binds specific glutamine residues in one fibrin molecule to lysine residues in another via isopeptide bonds, stabilizing the clot against mechanical, chemical, and proteolytic insults. The gene regulation of fibrinogen synthesis and its assembly into multichain complexes proceed via a series of well-defined steps. Alternate splicing of two of the chains yields common variant molecular isoforms. The mechanical properties of clots, which can be quite variable, are essential to fibrin's functions in hemostasis and wound healing. The fibrinolytic system, with the zymogen plasminogen binding to fibrin together with tissue-type plasminogen activator to promote activation to the active enzyme plasmin, results in digestion of fibrin at specific lysine residues. Fibrin(ogen) also specifically binds a variety of other proteins, including fibronectin, albumin

  4. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds.

    PubMed

    Kim, Min Seong; Kim, GeunHyung

    2014-12-19

    Micro/nanofibrous scaffolds have been used widely in biomedical applications because the micro/nano-scale fibres resemble natural extracellular matrix and the high surface-to-volume ratio encourages cellular activities (attachment and proliferation). However, poor mechanical properties, low controllability of various shapes and difficulties in obtaining controllable pore structure have been obstacles to their use in hard-tissue regeneration. To overcome these shortcomings, we suggest a new composite system, which uses a combination method of wet electrospinning, rapid prototyping and a physical punching process. Using the process, we obtained polycaprolactone (PCL)/alginate composite scaffolds, consisting of electrospun PCL/alginate fibres and micro-sized PCL struts, with mean pore sizes of 821 ± 55 μm. To show the feasibility of the scaffolds for hard-tissue regeneration, the scaffolds were assessed not only for physical properties, including hydrophilicity, water absorption, and tensile and compressive strength, but also in vitro cellular responses (cell viability and proliferation) and osteogenic differentiation (alkaline phosphatase (ALP) activity, and mineralisation) by culturing with pre-osteoblasts (MC3T3-E1 cells). With the reinforcing micro-sized PCL struts, the elastic modulus of the PCL/alginate scaffold was significantly improved versus a pure PCL scaffold. Additionally, due to the alginate component in the fibrous scaffold, they showed significantly enhanced hydrophilic behaviour, water absorption (∼8-fold) and significant biological activities (∼1.6-fold for cell viability at 7 days, ∼2.3-fold for ALP activity at 14 days and ∼6.4-fold for calcium mineralisation at 14 days) compared with those of a pure PCL fibrous scaffold. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds

    PubMed Central

    Sequeira, Sharon J.; Soscia, David A.; Oztan, Basak; Mosier, Aaron P.; Jean-Gilles, Riffard; Gadre, Anand; Cady, Nathaniel C.; Yener, Bülent; Castracane, James; Larsen, Melinda

    2012-01-01

    Nanofiber scaffolds have been useful for engineering tissues derived from mesenchymal cells, but few studies have investigated their applicability for epithelial cell-derived tissues. In this study, we generated nanofiber (250 nm) or microfiber (1200 nm) scaffolds via electrospinning from the polymer, poly-L-lactic-co-glycolic acid (PLGA). Cell-scaffold contacts were visualized using fluorescent immunocytochemistry and laser scanning confocal microscopy. Focal adhesion (FA) proteins, such as phosphorylated FAK (Tyr397), paxillin (Tyr118), talin and vinculin were localized to FA complexes in adult cells grown on planar surfaces but were reduced and diffusely localized in cells grown on nanofiber surfaces, similar to the pattern observed in adult mouse salivary gland tissues. Significant differences in epithelial cell morphology and cell clustering were also observed and quantified, using image segmentation and computational cell-graph analyses. No statistically significant differences in scaffold stiffness between planar PLGA film controls compared to nanofibers scaffolds were detected using nanoindentation with atomic force microscopy, indicating that scaffold topography rather than mechanical properties accounts for changes in cell attachments and cell structure. Finally, PLGA nanofiber scaffolds could support the spontaneous self-organization and branching of dissociated embryonic salivary gland cells. Nanofiber scaffolds may therefore have applicability in the future for engineering an artificial salivary gland. PMID:22285464

  6. Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering

    PubMed Central

    Parizek, Martin; Douglas, Timothy EL; Novotna, Katarina; Kromka, Alexander; Brady, Mariea A; Renzing, Andrea; Voss, Eske; Jarosova, Marketa; Palatinus, Lukas; Tesarek, Pavel; Ryparova, Pavla; Lisa, Věra; dos Santos, Ana M; Bacakova, Lucie

    2012-01-01

    Background Nanofibrous scaffolds loaded with bioactive nanoparticles are promising materials for bone tissue engineering. Methods In this study, composite nanofibrous membranes containing a copolymer of L-lactide and glycolide (PLGA) and diamond nanoparticles were fabricated by an electrospinning technique. PLGA was dissolved in a mixture of methylene chloride and dimethyl formamide (2:3) at a concentration of 2.3 wt%, and nanodiamond (ND) powder was added at a concentration of 0.7 wt% (about 23 wt% in dry PLGA). Results In the composite scaffolds, the ND particles were either arranged like beads in the central part of the fibers or formed clusters protruding from the fibers. In the PLGA-ND membranes, the fibers were thicker (diameter 270 ± 9 nm) than in pure PLGA meshes (diameter 218 ± 4 nm), but the areas of pores among these fibers were smaller than in pure PLGA samples (0.46 ± 0.02 μm2 versus 1.28 ± 0.09 μm2 in pure PLGA samples). The PLGA-ND membranes showed higher mechanical resistance, as demonstrated by rupture tests of load and deflection of rupture probe at failure. Both types of membranes enabled the attachment, spreading, and subsequent proliferation of human osteoblast-like MG-63 cells to a similar extent, although these values were usually lower than on polystyrene dishes. Nevertheless, the cells on both types of membranes were polygonal or spindle-like in shape, and were distributed homogeneously on the samples. From days 1–7 after seeding, their number rose continuously, and at the end of the experiment, these cells were able to create a confluent layer. At the same time, the cell viability, evaluated by a LIVE/DEAD viability/cytotoxicity kit, ranged from 92% to 97% on both types of membranes. In addition, on PLGA-ND membranes, the cells formed well developed talin-containing focal adhesion plaques. As estimated by the determination of tumor necrosis factor-alpha levels in the culture medium and concentration of intercellular adhesion

  7. Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering.

    PubMed

    Parizek, Martin; Douglas, Timothy E L; Novotna, Katarina; Kromka, Alexander; Brady, Mariea A; Renzing, Andrea; Voss, Eske; Jarosova, Marketa; Palatinus, Lukas; Tesarek, Pavel; Ryparova, Pavla; Lisa, Věra; dos Santos, Ana M; Warnke, Patrick H; Bacakova, Lucie

    2012-01-01

    Nanofibrous scaffolds loaded with bioactive nanoparticles are promising materials for bone tissue engineering. In this study, composite nanofibrous membranes containing a copolymer of L-lactide and glycolide (PLGA) and diamond nanoparticles were fabricated by an electrospinning technique. PLGA was dissolved in a mixture of methylene chloride and dimethyl formamide (2:3) at a concentration of 2.3 wt%, and nanodiamond (ND) powder was added at a concentration of 0.7 wt% (about 23 wt% in dry PLGA). In the composite scaffolds, the ND particles were either arranged like beads in the central part of the fibers or formed clusters protruding from the fibers. In the PLGA-ND membranes, the fibers were thicker (diameter 270 ± 9 nm) than in pure PLGA meshes (diameter 218 ± 4 nm), but the areas of pores among these fibers were smaller than in pure PLGA samples (0.46 ± 0.02 μm(2) versus 1.28 ± 0.09 μm(2) in pure PLGA samples). The PLGA-ND membranes showed higher mechanical resistance, as demonstrated by rupture tests of load and deflection of rupture probe at failure. Both types of membranes enabled the attachment, spreading, and subsequent proliferation of human osteoblast-like MG-63 cells to a similar extent, although these values were usually lower than on polystyrene dishes. Nevertheless, the cells on both types of membranes were polygonal or spindle-like in shape, and were distributed homogeneously on the samples. From days 1-7 after seeding, their number rose continuously, and at the end of the experiment, these cells were able to create a confluent layer. At the same time, the cell viability, evaluated by a LIVE/DEAD viability/cytotoxicity kit, ranged from 92% to 97% on both types of membranes. In addition, on PLGA-ND membranes, the cells formed well developed talin-containing focal adhesion plaques. As estimated by the determination of tumor necrosis factor-alpha levels in the culture medium and concentration of intercellular adhesion molecule-1, MG-63 cells, and

  8. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering.

    PubMed

    Jahnavi, S; Saravanan, U; Arthi, N; Bhuvaneshwar, G S; Kumary, T V; Rajan, S; Verma, R S

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44 + , αSMA + , Vimentin + and CD105 - human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Silk scaffolds in bone tissue engineering: An overview.

    PubMed

    Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Kim, Hae-Won; Maiti, Tapas K; Bhattacharya, Debasis; Kundu, Subhas C

    2017-11-01

    Bone tissue plays multiple roles in our day-to-day functionality. The frequency of accidental bone damage and disorder is increasing worldwide. Moreover, as the world population continues to grow, the percentage of the elderly population continues to grow, which results in an increased number of bone degenerative diseases. This increased elderly population pushes the need for artificial bone implants that specifically employ biocompatible materials. A vast body of literature is available on the use of silk in bone tissue engineering. The current work presents an overview of this literature from materials and fabrication perspective. As silk is an easy-to-process biopolymer; this allows silk-based biomaterials to be molded into diverse forms and architectures, which further affects the degradability. This makes silk-based scaffolds suitable for treating a variety of bone reconstruction and regeneration objectives. Silk surfaces offer active sites that aid the mineralization and/or bonding of bioactive molecules that facilitate bone regeneration. Silk has also been blended with a variety of polymers and minerals to enhance its advantageous properties or introduce new ones. Several successful works, both in vitro and in vivo, have been reported using silk-based scaffolds to regenerate bone tissues or other parts of the skeletal system such as cartilage and ligament. A growing trend is observed toward the use of mineralized and nanofibrous scaffolds along with the development of technology that allows to control scaffold architecture, its biodegradability and the sustained releasing property of scaffolds. Further development of silk-based scaffolds for bone tissue engineering, taking them up to and beyond the stage of human trials, is hoped to be achieved in the near future through a cross-disciplinary coalition of tissue engineers, material scientists and manufacturing engineers. The state-of-art of silk biomaterials in bone tissue engineering, covering their wide

  10. Engineering Bi-Layer Nanofibrous Conduits for Peripheral Nerve Regeneration

    PubMed Central

    Zhu, Yiqian; Wang, Aijun; Patel, Shyam; Kurpinski, Kyle; Diao, Edward; Bao, Xuan; Kwong, George; Young, William L.

    2011-01-01

    Trauma injuries often cause peripheral nerve damage and disability. A goal in neural tissue engineering is to develop synthetic nerve conduits for peripheral nerve regeneration having therapeutic efficacy comparable to that of autografts. Nanofibrous conduits with aligned nanofibers have been shown to promote nerve regeneration, but current fabrication methods rely on rolling a fibrous sheet into the shape of a conduit, which results in a graft with inconsistent size and a discontinuous joint or seam. In addition, the long-term effects of nanofibrous nerve conduits, in comparison with autografts, are still unknown. Here we developed a novel one-step electrospinning process and, for the first time, fabricated a seamless bi-layer nanofibrous nerve conduit: the luminal layer having longitudinally aligned nanofibers to promote nerve regeneration, and the outer layer having randomly organized nanofibers for mechanical support. Long-term in vivo studies demonstrated that bi-layer aligned nanofibrous nerve conduits were superior to random nanofibrous conduits and had comparable therapeutic effects to autografts for nerve regeneration. In summary, we showed that the engineered nanostructure had a significant impact on neural tissue regeneration in situ. The results from this study will also lead to the scalable fabrication of engineered nanofibrous nerve conduits with designed nanostructure. This technology platform can be combined with drug delivery and cell therapies for tissue engineering. PMID:21501089

  11. Porous magnesium-based scaffolds for tissue engineering.

    PubMed

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Moharamzadeh, Keyvan; Boccaccini, Aldo R; Tayebi, Lobat

    2017-02-01

    Significant amount of research efforts have been dedicated to the development of scaffolds for tissue engineering. Although at present most of the studies are focused on non-load bearing scaffolds, many scaffolds have also been investigated for hard tissue repair. In particular, metallic scaffolds are being studied for hard tissue engineering due to their suitable mechanical properties. Several biocompatible metallic materials such as stainless steels, cobalt alloys, titanium alloys, tantalum, nitinol and magnesium alloys have been commonly employed as implants in orthopedic and dental treatments. They are often used to replace and regenerate the damaged bones or to provide structural support for healing bone defects. Among the common metallic biomaterials, magnesium (Mg) and a number of its alloys are effective because of their mechanical properties close to those of human bone, their natural ionic content that may have important functional roles in physiological systems, and their in vivo biodegradation characteristics in body fluids. Due to such collective properties, Mg based alloys can be employed as biocompatible, bioactive, and biodegradable scaffolds for load-bearing applications. Recently, porous Mg and Mg alloys have been specially suggested as metallic scaffolds for bone tissue engineering. With further optimization of the fabrication techniques, porous Mg is expected to make a promising hard substitute scaffold. The present review covers research conducted on the fabrication techniques, surface modifications, properties and biological characteristics of Mg alloys based scaffolds. Furthermore, the potential applications, challenges and future trends of such degradable metallic scaffolds are discussed in detail. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Porous SiO2 nanofiber grafted novel bioactive glass-ceramic coating: A structural scaffold for uniform apatite precipitation and oriented cell proliferation on inert implant.

    PubMed

    Das, Indranee; De, Goutam; Hupa, Leena; Vallittu, Pekka K

    2016-05-01

    A composite bioactive glass-ceramic coating grafted with porous silica nanofibers was fabricated on inert glass to provide a structural scaffold favoring uniform apatite precipitation and oriented cell proliferation. The coating surfaces were investigated thoroughly before and after immersion in simulated body fluid. In addition, the proliferation behavior of fibroblast cells on the surface was observed for several culture times. The nanofibrous exterior of this composite bioactive coating facilitated homogeneous growth of flake-like carbonated hydroxyapatite layer within a short period of immersion. Moreover, the embedded porous silica nanofibers enhanced hydrophilicity which is required for proper cell adhesion on the surface. The cells proliferated well following a particular orientation on the entire coating by the assistance of nanofibrous scaffold-like structural matrix. This newly engineered composite coating was effective in creating a biological structural matrix favorable for homogeneous precipitation of calcium phosphate, and organized cell growth on the inert glass surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Tumour imaging by the detection of fibrin clots in tumour stroma using an anti-fibrin Fab fragment.

    PubMed

    Obonai, Toshifumi; Fuchigami, Hirobumi; Furuya, Fumiaki; Kozuka, Naoyuki; Yasunaga, Masahiro; Matsumura, Yasuhiro

    2016-03-24

    The diagnosis of early and aggressive types of cancer is important for providing effective cancer therapy. Cancer-induced fibrin clots exist only within lesions. Previously, we developed a monoclonal antibody (clone 102-10) that recognizes insoluble fibrin but not fibrinogen or soluble fibrin and confirmed that fibrin clots form continuously in various cancers. Here, we describe the development of a Fab fragment probe of clone 102-10 for tumour imaging. The distribution of 102-10 Fab was investigated in genetically engineered mice bearing pancreatic ductal adenocarcinoma (PDAC), and its effect on blood coagulation was examined. Immunohistochemical and ex vivo imaging revealed that 102-10 Fab was distributed selectively in fibrin clots in PDAC tumours 3 h after injection and that it disappeared from the body after 24 h. 102-10 Fab had no influence on blood coagulation or fibrinolysis. Tumour imaging using anti-fibrin Fab may provide a safe and effective method for the diagnosis of invasive cancers by detecting fibrin clots in tumour stroma.

  14. Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds.

    PubMed

    Solchaga, Luis A; Temenoff, Johnna S; Gao, Jizong; Mikos, Antonios G; Caplan, Arnold I; Goldberg, Victor M

    2005-04-01

    The natural repair of osteochondral defects can be enhanced with biocompatible, biodegradable materials that support the repair process. It is our hypothesis that hyaluronan-based scaffolds are superior to synthetic scaffolds because they provide biological cues. We tested this thesis by comparing two hyaluronan-based scaffolds [auto cross-linked polysaccharide polymer (ACP) and HYAFF-11] to polyester-based scaffolds [poly(DL-lactic-co-glycolic acid) (PLGA) and poly(L-lactic acid) (PLLA)] with similar pore size, porosity and degradation times. Fifty-four rabbits received bilateral osteochondral defects. One defect received a hyaluronan-based scaffold and the contralateral defect received the corresponding polyester-based scaffold. Rabbits were euthanized 4, 12 and 20 weeks after surgery and the condyles dissected and processed for histology. Only ACP-treated defects presented bone at the base of the defect at 4 weeks. At 12 weeks, only defects treated with rapidly dissolving implants (ACP and PLGA) presented bone reconstitution consistently, while bone was present in only one third of those treated with slowly dissolving scaffolds (HYAFF-11 and PLLA). After 20 weeks, the articular surface of PLGA-treated defects presented fibrillation more frequently than in ACP-treated defects. The surface of defects treated with slowly dissolving scaffolds presented more cracks and fissures. The degradation rate of the scaffolds is critical for the repair process. Slowly dissolving scaffolds sustain thicker cartilage at the surface but, it frequently presents cracks and discontinuities. These scaffolds also delay bone formation at the base of the defects. Hyaluronan-based scaffolds appear to allow faster cell infiltration leading to faster tissue formation. The degradation of ACP leads to rapid bone formation while the slow degradation of HYAFF-11 prolongs the presence of cartilage and delays endochondral bone formation.

  15. Enhanced osteogenic potential of human mesenchymal stem cells on electrospun nanofibrous scaffolds prepared from eri-tasar silk fibroin.

    PubMed

    Panda, Niladri Nath; Biswas, Amit; Pramanik, Krishna; Jonnalagadda, Sriramakamal

    2015-07-01

    This study evaluated the mechanical properties and osteogenic potential of a silk fibroin scaffold prepared from a 70:30 blend of Eri (Philosamia ricini) and Tasar (Antheraea mylitta) silk, respectively (ET scaffolds). An electrospinning process was used to prepare uniformly blended, fibrous scaffolds of nanoscale dimensions, as confirmed by scanning and transmission electron microscopy (fiber diameter < 300 nm). Similarly prepared scaffolds derived from gelatin and Bombyx mori (BM) silk fibroin were used as controls. Mechanical testing and atomic force microscopy showed that the ET scaffolds had significantly higher tensile strength (1.83 ± 0.13 MPa) and surface roughness (0.44 μm) compared with BM (1.47 ± 0.10 MPa; 0.37 μm) and gelatin scaffolds (0.6 ± 0.07 MPa; 0.28 μm). All scaffolds were exposed to mesenchymal stem cells isolated to human chord blood (hMSCs) for up to 28 days in vitro. Alamar blue and alkaline phosphatase assay showed greater attachment and proliferation for both ET and BM scaffolds compared with gelatin. The ET scaffolds also promoted greater differentiation of the attached hMSCs as evidenced by higher expression of RunX2, osteocalcin, and CD29/CD44 expression. ET scaffolds also showed significantly higher mineralization, as evidenced by glycosaminoglycan assay, alizarin red staining, and elemental analysis of crystalline composites isolated from the scaffolds. © 2014 Wiley Periodicals, Inc.

  16. Characterization of Silk/Poly 3-Hydroxybutyrate-chitosan-multi-walled Carbon Nanotube Micro-nano Scaffold: A New Hybrid Scaffold for Tissue Engineering Applications.

    PubMed

    Mirmusavi, Mohammad Hossein; Karbasi, Saeed; Semnani, Dariush; Kharazi, Anousheh Zargar

    2018-01-01

    Long-term healing tissue engineering scaffolds must hold its full mechanical strength at least for 12 weeks. Nano-micro scaffolds consist of electrospinning nanofibers and textile microfibers to support cell behavior and mechanical strength, respectively. The new nano-micro hybrid scaffold was fabricated by electrospinning poly 3-hydroxybutyrate-chitosan-multi-walled carbon nanotube (MWNT functionalized by COOH) solution on knitted silk in a random manner with different amounts of MWNT. The physical, mechanical, and biodegradation properties were assessed through scanning electron microscopy, Fourier-transform infrared (FTIR) spectroscopy, water contact angle test, tensile strength test, and weight loss test. The scaffold without MWNT was chosen as control sample. An increase in the amount of MWNT up to 1 wt% leads to better fiber diameter distribution, more hydrophilicity, biodegradation rate, and higher tensile strength in comparison with other samples. The porosity percentage of all scaffolds is more than 80%. According to FTIR spectra, the nanofibrous coat on knitted silk did not have any effect on silk fibroin crystallinity structures, and according to tensile strength test, the coat had a significant effect on tensile strength in comparison with pure knitted silk ( P ≤ 0.05). The average fiber diameter decreased due to an increase in electrical conductivity of the solution and fiber stretch in electrical field due to MWNTs. The scaffold containing 1 wt% MWNT was more hydrophilic due to the presence of many COOH groups of functionalized MWNT, thus an increase in the hydrolysis and degradation rate of this sample. High intrinsic tensile strength of MWNTs and improvement of nano-micro interface connection lead to an increase in tensile strength in scaffolds containing MWNT.

  17. Characterization of Silk/Poly 3-Hydroxybutyrate-chitosan-multi-walled Carbon Nanotube Micro-nano Scaffold: A New Hybrid Scaffold for Tissue Engineering Applications

    PubMed Central

    Mirmusavi, Mohammad Hossein; Karbasi, Saeed; Semnani, Dariush; Kharazi, Anousheh Zargar

    2018-01-01

    Background: Long-term healing tissue engineering scaffolds must hold its full mechanical strength at least for 12 weeks. Nano-micro scaffolds consist of electrospinning nanofibers and textile microfibers to support cell behavior and mechanical strength, respectively. Methods: The new nano-micro hybrid scaffold was fabricated by electrospinning poly 3-hydroxybutyrate-chitosan-multi-walled carbon nanotube (MWNT functionalized by COOH) solution on knitted silk in a random manner with different amounts of MWNT. The physical, mechanical, and biodegradation properties were assessed through scanning electron microscopy, Fourier-transform infrared (FTIR) spectroscopy, water contact angle test, tensile strength test, and weight loss test. The scaffold without MWNT was chosen as control sample. Results: An increase in the amount of MWNT up to 1 wt% leads to better fiber diameter distribution, more hydrophilicity, biodegradation rate, and higher tensile strength in comparison with other samples. The porosity percentage of all scaffolds is more than 80%. According to FTIR spectra, the nanofibrous coat on knitted silk did not have any effect on silk fibroin crystallinity structures, and according to tensile strength test, the coat had a significant effect on tensile strength in comparison with pure knitted silk (P ≤ 0.05). The average fiber diameter decreased due to an increase in electrical conductivity of the solution and fiber stretch in electrical field due to MWNTs. The scaffold containing 1 wt% MWNT was more hydrophilic due to the presence of many COOH groups of functionalized MWNT, thus an increase in the hydrolysis and degradation rate of this sample. Conclusions: High intrinsic tensile strength of MWNTs and improvement of nano-micro interface connection lead to an increase in tensile strength in scaffolds containing MWNT. PMID:29535924

  18. Image-based metrology of porous tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Srinivasan; Robb, Richard A.

    2006-03-01

    Tissue engineering is an interdisciplinary effort aimed at the repair and regeneration of biological tissues through the application and control of cells, porous scaffolds and growth factors. The regeneration of specific tissues guided by tissue analogous substrates is dependent on diverse scaffold architectural indices that can be derived quantitatively from the microCT and microMR images of the scaffolds. However, the randomness of pore-solid distributions in conventional stochastic scaffolds presents unique computational challenges. As a result, image-based characterization of scaffolds has been predominantly qualitative. In this paper, we discuss quantitative image-based techniques that can be used to compute the metrological indices of porous tissue engineering scaffolds. While bulk averaged quantities such as porosity and surface are derived directly from the optimal pore-solid delineations, the spatially distributed geometric indices are derived from the medial axis representations of the pore network. The computational framework proposed (to the best of our knowledge for the first time in tissue engineering) in this paper might have profound implications towards unraveling the symbiotic structure-function relationship of porous tissue engineering scaffolds.

  19. Second-generation Platelet Concentrate (Platelet-rich Fibrin) as a Scaffold in Regenerative Endodontics: A Case Series.

    PubMed

    Bakhtiar, Hengameh; Esmaeili, Shahram; Fakhr Tabatabayi, Setareh; Ellini, Mohammad Reza; Nekoofar, Mohammad Hossein; Dummer, Paul M H

    2017-03-01

    The purpose of this case series was to report the clinical and radiographic results of a pulp regenerative procedure using platelet-rich fibrin (PRF), a second-generation platelet concentrate, in immature teeth with necrotic pulps. Root canal revascularization using PRF was performed on 4 immature teeth with necrotic pulps. After access cavity preparation, the root canals were irrigated with low concentration sodium hypochlorite solution (1.5% sodium hypochlorite [20 mL/canal, 5 minutes]) and then irrigated with saline (20 mL/canal, 5 minutes). Equal proportions (167 mg) of ciprofloxacin, metronidazole, and cefaclor were mixed and diluted to a final concentration of 1 g/mL. Finally, the canal was sealed with 3-4 mm of a temporary restorative material, and patients were dismissed for 2 to 3 weeks. At the second appointment, 9 mL of the patient's whole blood was obtained and centrifuged to prepare a PRF clot. Canals were irrigated with 17% EDTA, and a sharp spreader was inserted beyond the apex. Then, the PRF clot was placed inside the root canals, and Biodentine (Septodont, Saint-Maur, France) was placed directly over the PRF. The teeth were restored permanently with glass ionomer cement and composite resin. Clinical examinations revealed that all cases were asymptomatic at the recall appointments at 1, 3, 6, 12, and 18 months. Radiographs revealed resolution of the periapical lesions, further root development, and apical closure in all cases. On the basis of the short-term results up to 12 months, PRF clots acted as successful scaffolds for the regeneration of pulpal contents in immature teeth with necrotic pulps. Copyright © 2016 American Association of Endodontists. All rights reserved.

  20. Fibrin mechanical properties and their structural origins.

    PubMed

    Litvinov, Rustem I; Weisel, John W

    2017-07-01

    Fibrin is a protein polymer that is essential for hemostasis and thrombosis, wound healing, and several other biological functions and pathological conditions that involve extracellular matrix. In addition to molecular and cellular interactions, fibrin mechanics has been recently shown to underlie clot behavior in the highly dynamic intra- and extravascular environments. Fibrin has both elastic and viscous properties. Perhaps the most remarkable rheological feature of the fibrin network is an extremely high elasticity and stability despite very low protein content. Another important mechanical property that is common to many filamentous protein polymers but not other polymers is stiffening occurring in response to shear, tension, or compression. New data has begun to provide a structural basis for the unique mechanical behavior of fibrin that originates from its complex multi-scale hierarchical structure. The mechanical behavior of the whole fibrin gel is governed largely by the properties of single fibers and their ensembles, including changes in fiber orientation, stretching, bending, and buckling. The properties of individual fibrin fibers are determined by the number and packing arrangements of double-stranded half-staggered protofibrils, which still remain poorly understood. It has also been proposed that forced unfolding of sub-molecular structures, including elongation of flexible and relatively unstructured portions of fibrin molecules, can contribute to fibrin deformations. In spite of a great increase in our knowledge of the structural mechanics of fibrin, much about the mechanisms of fibrin's biological functions remains unknown. Fibrin deformability is not only an essential part of the biomechanics of hemostasis and thrombosis, but also a rapidly developing field of bioengineering that uses fibrin as a versatile biomaterial with exceptional and tunable biochemical and mechanical properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Fibrin-Enhanced Canonical Wnt Signaling Directs Plasminogen Expression in Cementoblasts

    PubMed Central

    Rahman, Saeed Ur; Ryoo, Hyun-Mo

    2017-01-01

    Cementum is a mineralized layer on the tooth’s root surface and facilitates the biomechanical anchoring of fibrous connective tissues as a part of tooth-supportive complexes. Previously, we observed that OCCM30 cementoblasts cultured on fibrin matrices underwent apoptosis due to fibrin degradation through the expression of proteases. Here, we demonstrated that OCCM30 on fibrin matrices (OCCM30-fibrin) enhanced canonical Wnt signaling, which directed to plasminogen expression. The OCCM30-fibrin showed higher levels of Wnt3a expression, nuclear translocation of β-catenin, and T-cell factor (TCF) optimal motif (TOP) reporter activity than the cells on tissue culture dishes (OCCM30-TCD), indicating that the OCCM30-fibrin enhanced canonical Wnt/β-catenin signaling. Also, OCCM30-fibrin expressed biomineralization-associated markers at higher levels than OCCM30-TCD, of which levels were further increased with LiCl, a Wnt signaling activator. The OCCM30 cementoblasts simultaneously showed that high levels of plasminogen, a critical component of fibrinolysis, were expressed in the OCCM30-fibrin. Activation of canonical Wnt signaling with LiCl treatment or with forced lymphoid enhancer factor 1 (LEF1)-expression increased the expression of plasminogen. On the contrary, the inhibition of canonical Wnt signaling with siRNAs against Wnt3a or β-catenin abrogated fibrin-enhanced plasminogen expression. Furthermore, there are three conserved putative response elements for the LEF1/β-catenin complex in the plasminogen proximal promoter regions (−900 to +54). Site-directed mutations and chromatin immunoprecipitation indicated that canonical Wnt signaling directed plasminogen expression. Taken together, this study suggests that fibrin-based materials can modulate functional periodontal formations in controlling cementoblast differentiation and fibrin degradation. PMID:29120400

  2. Electrospun nanofibres in agriculture and the food industry: a review.

    PubMed

    Noruzi, Masumeh

    2016-11-01

    The interesting characteristics of electrospun nanofibres, such as high surface-to-volume ratio, nanoporosity, and high safety, make them suitable candidates for use in a variety of applications. In the recent decade, electrospun nanofibres have been applied to different potential fields such as filtration, wound dressing, drug delivery, etc. and a significant number of review papers have been published in these fields. However, the use of electrospun nanofibres in agriculture is comparatively novel and is still in its infancy. In this paper, the specific applications of electrospun nanofibres in agriculture and food science, including plant protection using pheromone-loaded nanofibres, plant protection using encapsulation of biocontrol agents, preparation of protective clothes for farm workers, encapsulation of agrochemical materials, deoxyribonucleic acid extraction in agricultural research studies, pre-concentration and measurement of pesticides in crops and environmental samples, preparation of nanobiosensors for pesticide detection, encapsulation of food materials, fabrication of food packaging materials, and filtration of beverage products are reviewed and discussed. This paper may help researchers develop the use of electrospun nanofibres in agriculture and food science to address some serious problems such as the intensive use of pesticides. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Tumour imaging by the detection of fibrin clots in tumour stroma using an anti-fibrin Fab fragment

    PubMed Central

    Obonai, Toshifumi; Fuchigami, Hirobumi; Furuya, Fumiaki; Kozuka, Naoyuki; Yasunaga, Masahiro; Matsumura, Yasuhiro

    2016-01-01

    The diagnosis of early and aggressive types of cancer is important for providing effective cancer therapy. Cancer-induced fibrin clots exist only within lesions. Previously, we developed a monoclonal antibody (clone 102-10) that recognizes insoluble fibrin but not fibrinogen or soluble fibrin and confirmed that fibrin clots form continuously in various cancers. Here, we describe the development of a Fab fragment probe of clone 102-10 for tumour imaging. The distribution of 102-10 Fab was investigated in genetically engineered mice bearing pancreatic ductal adenocarcinoma (PDAC), and its effect on blood coagulation was examined. Immunohistochemical and ex vivo imaging revealed that 102-10 Fab was distributed selectively in fibrin clots in PDAC tumours 3 h after injection and that it disappeared from the body after 24 h. 102-10 Fab had no influence on blood coagulation or fibrinolysis. Tumour imaging using anti-fibrin Fab may provide a safe and effective method for the diagnosis of invasive cancers by detecting fibrin clots in tumour stroma. PMID:27009516

  4. XanoMatrix surfaces as scaffolds for mesenchymal stem cell culture and growth

    PubMed Central

    Bhardwaj, Garima; Webster, Thomas J

    2016-01-01

    Stem cells are being widely investigated for a wide variety of applications in tissue engineering due to their ability to differentiate into a number of cells such as neurons, osteoblasts, and fibroblasts. This ability of stem cells to differentiate into different types of cells is greatly based on mechanical and chemical cues received from their three-dimensional environments. All organs are formed by a number of cells linked together via an extracellular matrix (ECM). The ECM is a complex network of proteins and carbohydrates, which occupies intercellular spaces and regulates cellular activity by controlling cell adhesion, migration, proliferation, and differentiation. The ECM is composed of two main types of macromolecules, namely, polysaccharide glycosaminoglycans, which are covalently attached to proteins in the form of proteoglycans and fibrous proteins belonging to two functional groups, structural (collagen and elastin) and adhesive (fibronectin, laminin, vitronectin, etc). Tissue engineering is a multidisciplinary field that aims to develop biomimetic scaffolds that emulate properties of the ECM to help repair or regenerate diseased or damaged tissue. This study introduces one of these matrices, XanoMatrix, as an optimal scaffold for tissue engineering applications, in particular, for stem cell research, based on its composition, nanofibrous structure, and porosity. Results of this study suggest that XanoMatrix scaffolds are promising for stem cell tissue engineering applications and as improved cell culture inserts for studying stem cell functions (compared to traditional Corning and Falcon cell culture plates) and, thus, should be further studied. PMID:27354795

  5. Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization

    NASA Astrophysics Data System (ADS)

    Yu, Gui-Feng; Yan, Xu; Yu, Miao; Jia, Meng-Yang; Pan, Wei; He, Xiao-Xiao; Han, Wen-Peng; Zhang, Zhi-Ming; Yu, Liang-Min; Long, Yun-Ze

    2016-01-01

    A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a patterned, highly stretchable, and conductive polyaniline/poly(vinylidene fluoride) (PANI/PVDF) nanofibrous membrane is reported. Owing to the patterned structure, the nanofibrous PANI/PVDF strain sensor can detect a strain up to 110%, for comparison, which is 2.6 times higher than the common nonwoven PANI/PVDF mat and much larger than the previously reported values (usually less than 15%). Meanwhile, the conductivity of the patterned strain sensor shows a linear response to the applied strain in a wide range from 0% to about 85%. Additionally, the patterned PANI/PVDF strain sensor can completely recover to its original electrical and mechanical values within a strain range of more than 22%, and exhibits good durability over 10 000 folding-unfolding tests. Furthermore, the strain sensor also can be used to detect finger motion. The results demonstrate promising application of the patterned nanofibrous membrane in flexible electronic fields.A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a patterned, highly stretchable, and conductive polyaniline/poly(vinylidene fluoride) (PANI/PVDF) nanofibrous membrane is reported. Owing to the patterned structure, the nanofibrous PANI/PVDF strain sensor can detect a strain up to 110%, for comparison, which is 2.6 times higher than the common nonwoven PANI/PVDF mat and much larger than the previously reported values (usually less than 15%). Meanwhile, the conductivity of the patterned strain sensor shows a linear response to the applied strain in a wide range from 0% to about 85%. Additionally, the patterned PANI/PVDF strain sensor can completely recover to its original electrical and mechanical values within a strain range of more than 22%, and exhibits good durability over 10 000 folding-unfolding tests. Furthermore, the strain sensor also can be used to detect finger

  6. Morphology and crystalline phase study of electrospun TiO2 SiO2 nanofibres

    NASA Astrophysics Data System (ADS)

    Ding, Bin; Kim, Hakyong; Kim, Chulki; Khil, Myungseob; Park, Soojin

    2003-05-01

    Nanofibres of TiO2-SiO2 (Ti:Si = 50: 50 mol%) with diameters of 50-400 nm were prepared by calcining electrospun nanofibres of polyvinyl acetate (PVac)/titania-silica composite as precursor. These PVac/titania-silica hybrid nanofibres were obtained from a homogenous solution of PVac with a sol-gel of titanium isopropoxide (TiP) and tetraethoxysilane by using the electrospinning technique. The nanofibres were characterized by scanning electron microscopy (SEM), wide-angle x-ray diffraction (WAXD), Fourier transform infrared (FTIR) spectroscopy and Brunauer-Emmett-Teller (BET) surface area. SEM, WAXD and FTIR results indicated that the morphology and crystalline phase of TiO2-SiO2 nanofibres were strongly influenced by the calcination temperature and the content of titania and silica in the nanofibres. Additionally, the BET results showed that the surface area of TiO2-SiO2 nanofibres was decreased with increasing calcination temperature and the content of titania and silica in nanofibres.

  7. Effect of Laminating Pressure on Polymeric Multilayer Nanofibrous Membranes for Liquid Filtration.

    PubMed

    Yalcinkaya, Fatma; Hruza, Jakub

    2018-04-24

    In the new century, electrospun nanofibrous webs are widely employed in various applications due to their specific surface area and porous structure with narrow pore size. The mechanical properties have a major influence on the applications of nanofiber webs. Lamination technology is an important method for improving the mechanical strength of nanofiber webs. In this study, the influence of laminating pressure on the properties of polyacrylonitrile (PAN) and polyvinylidene fluoride (PVDF) nanofibers/laminate was investigated. Heat-press lamination was carried out at three different pressures, and the surface morphologies of the multilayer nanofibrous membranes were observed under an optical microscope. In addition, air permeability, water filtration, and contact angle experiments were performed to examine the effect of laminating pressure on the breathability, water permeability and surface wettability of multilayer nanofibrous membranes. A bursting strength test was developed and applied to measure the maximum bursting pressure of the nanofibers from the laminated surface. A water filtration test was performed using a cross-flow unit. Based on the results of the tests, the optimum laminating pressure was determined for both PAN and PVDF multilayer nanofibrous membranes to prepare suitable microfilters for liquid filtration.

  8. Efficient protein immobilization on polyethersolfone electrospun nanofibrous membrane via covalent binding for biosensing applications.

    PubMed

    Mahmoudifard, Matin; Soudi, Sara; Soleimani, Masoud; Hosseinzadeh, Simzar; Esmaeili, Elaheh; Vossoughi, Manouchehr

    2016-01-01

    In this paper we introduce novel strategy for antibody immobilization using high surface area electrospun nanofibrous membrane based on ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling chemistry. To present the high performance of proposed biosensors, anti-staphylococcus enterotoxin B (anti-SEB) was used as a model to demonstrate the utility of our proposed system. Polymer solution of polyethersolfone was used to fabricate fine nanofibrous membrane. Moreover, industrial polyvinylidene fluoride membrane and conventional microtiter plate were also used to compare the efficiency of antibody immobilization. Scanning electron microscopy images were taken to study the morphology of the membranes. The surface activation of nanofibrous membrane was done with the help of O2 plasma. PES nanofibrous membrane with carboxyl functional groups for covalent attachment of antibodies were treated by EDC/NHS coupling agent. The quantity of antibody immobilization was measured by enzyme-linked immuno sorbent assay (ELISA) method. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectroscopy was performed to confirm the covalent immobilization of antibody on membrane. Atomic force microscopy, scanning electron microscopy and invert fluorescence microscopy were used to analyze the antibody distribution pattern on solid surfaces. Results show that oxygen plasma treatment effectively increased the amount of antibody immobilization through EDC/NHS coupling chemistry. It was found that the use of nanofibrous membrane causes the improved detection signal of ELISA based biosensors in comparison to the standard assay carried out in the 96-well microtiter plate. This method has the potential to improve the ELISA-based biosensor and we believe that this technique can be used in various biosensing methods. Copyright © 2015. Published by Elsevier B.V.

  9. A mild process to design silk scaffolds with reduced β-sheet structure and various topographies at the nanometer scale.

    PubMed

    Pei, Yazhen; Liu, Xi; Liu, Shanshan; Lu, Qiang; Liu, Jing; Kaplan, David L; Zhu, Hesun

    2015-02-01

    Three-dimensional (3-D) porous silk scaffolds with good biocompatibility and minimal immunogenicity show promise in a range of tissue regeneration applications. However, the challenge remains to effectively fabricate their microstructures and mechanical properties to satisfy the specific requirements of different tissues. In this study, silk scaffolds were fabricated to form an extracellular matrix (ECM) mimetic nanofibrous architecture using a mild process. A slowly increasing concentration process was applied to regulate silk self-assembly into nanofibers in aqueous solution. Then glycerol was blended with the nanofiber solution and induced silk crystallization in the lyophilization process, endowing freeze-dried scaffolds with water stability. The glycerol was leached from the scaffolds, leaving a similar porous structure at the micrometer scale but different topographies at the nanoscale. Compared to previous salt-leached and methanol-annealed scaffolds, the present scaffolds showed lower β-sheet content, softer mechanical property and improved cell growth and differentiation behaviors, suggesting their promising future as platforms for controlling stem cell fate and soft tissue regeneration. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Vitamin E-loaded silk fibroin nanofibrous mats fabricated by green process for skin care application.

    PubMed

    Sheng, Xiaoyue; Fan, Linpeng; He, Chuanglong; Zhang, Kuihua; Mo, Xiumei; Wang, Hongsheng

    2013-05-01

    In the present study, we reported fabrication and skin benefit of a novel vitamin E (VE)-loaded silk fibroin (SF) nanofibrous mats. RRR-α-Tocopherol polyethylene glycol 1000 succinate (VE TPGS), a water-soluble derivative of VE, was incorporated into SF nanofiber successfully by aqua solution electrospinning for the first time. Morphology of the composite nanofibers changed with the different amount of VE TPGS: a ribbon-like shape for lower loading dose of VE TPGS, while a round shape for higher loading dose (more than 4% (wt/wt) based on the weight of SF). After treated with 75% (v/v) ethanol vapor, the composite nanofibrous mats showed an excellent water-resistant ability. In vitro study disclosed a sustained release behavior of VE TPGS disassociated from the nanofibrous mats. The mouse skin fibroblasts (L929 cells) cultured on the VE-loaded SF nanofibrous mats spread and proliferated much better than on cover slips. Moreover, the incorporation of VE TPGS was found strengthening the ability of SF nanofibrous mats on protecting the cells against oxidation stress induced by tert-butyl hydroperoxide. Our data presented impressive skin benefits of this VE-loaded SF nanofibrous mats, suggesting a promising applicative potential of this novel product on personal skin care, tissue regeneration and other related area. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Periodontal ligament cellular structures engineered with electrospun poly(DL-lactide-co-glycolide) nanofibrous membrane scaffolds.

    PubMed

    Inanç, Bülend; Arslan, Y Emre; Seker, Sükran; Elçin, A Eser; Elçin, Y Murat

    2009-07-01

    Periodontal tissue engineering is expected to overcome the limitations associated with the existing regenerative techniques for the treatment of periodontal defects involving alveolar bone, cementum, and periodontal ligament. Cell-based tissue engineering approaches involve the utilization of in vitro expanded cells with regenerative capacity and their delivery to the appropriate sites via biomaterial scaffolds. The aim of this study was to establish living periodontal ligament cell-containing structures on electrospun poly(DL-lactic-co-glycolic acid) (PLGA) nanofiber membrane scaffolds, assess their viability and characteristics, and engineer multilayered structures amenable to easy handling. Human periodontal ligament (hPDL) cells were expanded in explant culture and then characterized morphologically and immunohistochemically. PLGA nanofiber membranes were prepared by the electrospinning process; mechanical tensile properties were determined, surface topography, nanofiber size, and porosity status were investigated with SEM. Cells were seeded on the membranes at approximately 50,000 cell/cm(2) and cultured for 21 days either in expansion or in osteogenic induction medium. Cell adhesion and viability were demonstrated using SEM and MTT, respectively, and osteogenic differentiation was determined with IHC and immunohistomorphometric evaluation of osteopontin, osteocalcin, and bone sialoprotein marker expression. At days 3, 6, 9, and 12 additional cell/membrane layers were deposited on the existing ones and multilayered hybrid structures were established. Results indicate the feasibility of periodontal ligament cell-containing tissue-like structures engineering with PDL cells and electrospun nanofiber PLGA scaffolds supporting cell adhesion, viability and osteogenic differentiation properties of cells in hybrid structures amenable to macroscopic handling.

  12. The impact of various scaffold components on vascularized bone constructs.

    PubMed

    Eweida, Ahmad; Schulte, Matthias; Frisch, Oliver; Kneser, Ulrich; Harhaus, Leila

    2017-06-01

    Bone tissue engineering is gaining more interest in the field of craniofacial surgery where continuous efforts are being made to improve the outcomes via modulation of the scaffold components. In an in vitro three dimensional (3D) culture, the effect of bone morphogenic protein 2 (BMP2, 60 μg/ml) and the effect of different cell seeding densities (0.25, 0.5, and 1 × 104) of rat mesenchymal stem cells seeded on nanocrystalline hydroxyapatite in silica gel matrix (Nanobone ® ) on the cell viability and differentiation were studied. Alkaline phosphatase and viability assays were performed at day 7, day 14, and day 21 to assess the differentiation and the relative fraction of viable cells in the 3D cell cultures. In a subsequent in vivo study, we examined the effect of axial vascularization, the scaffold's particle size and the nature of the matrix (collagen type I vs. diluted fibrin) on vascularization and tissue generation in vascularized bone construct in rats. Regarding vascularization, we compared constructs vascularized randomly by extrinsic vascularization from the periphery of the implanted construct with others vascularized axially via an implanted arteriovenous loop (AVL). Regarding the particle size, we compared constructs having a scaffold particle size of 0.2 mm (powder) with other constructs having a particle size of 2 × 0.6 mm (granules). Regarding the matrix we compared constructs having a collagen matrix with others having a fibrin matrix. Various groups were compared regarding the amount of tissue generation, vascularization, and cellular proliferation. The initial seeding density had a temporary and minimal effect on the overall osteogenic differentiation of the cells. On the contrary, adding BMP2 in a concentration of 60 μg/ml over one week led to an overall enhanced osteogenic differentiation despite depressed cell viability. Axial vascularization was mandatory for efficient tissue formation and vascularization of the bone construct

  13. Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Onozuka, Katsuhiro; Ding, Bin; Tsuge, Yosuke; Naka, Takayuki; Yamazaki, Michiyo; Sugi, Shinichiro; Ohno, Shingo; Yoshikawa, Masato; Shiratori, Seimei

    2006-02-01

    We have recently fabricated dye-sensitized solar cells (DSSCs) comprising nanofibrous TiO2 membranes as electrode materials. A thin TiO2 film was pre-deposited on fluorine doped tin oxide (FTO) coated conducting glass substrate by immersion in TiF4 aqueous solution to reduce the electron back-transfer from FTO to the electrolyte. The composite polyvinyl acetate (PVac)/titania nanofibrous membranes can be deposited on the pre-deposited thin TiO2 film coated FTO by electrospinning of a mixture of PVac and titanium isopropoxide in N,N-dimethylformamide (DMF). The nanofibrous TiO2 membranes were obtained by calcining the electrospun composite nanofibres of PVac/titania as the precursor. Spectral sensitization of the nanofibrous TiO2 membranes was carried out with a ruthenium (II) complex, cis-dithiocyanate-N,N'-bis(2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) dihydrate. The results indicated that the photocurrent and conversion efficiency of electrodes can be increased with the addition of the pre-deposited TiO2 film and the adhesion treatment using DMF. Additionally, the dye loading, photocurrent, and efficiency of the electrodes were gradually increased by increasing the average thickness of the nanofibrous TiO2 membranes. The efficiency of the fibrous TiO2 photoelectrode with the average membrane thickness of 3.9 µm has a maximum value of 4.14%.

  14. Carbon Nanofibrous Materials from Electrospinning: Preparation and Energy Applications

    NASA Astrophysics Data System (ADS)

    Aboagye, Alex

    Carbon nanofibers with diameters that fall into submicron and nanometer range have attracted growing attention in recent years due to their superior chemical, electrical, and mechanical properties in combination with their unique one-dimensional nanostructures. Unlike catalytic synthesis, electrospinning polyacrylonitrile (PAN) followed by stabilization and carbonization has become a straightforward and convenient route to make continuous carbon nanofibers. The overall objective of this research was the design and production fiber based carbon nanomaterials, investigation of their structures and use in functional applications. Specifically, these carbon nanofibrous materials were employed as electrode material for energy storage and conversion devices such as dye sensitized solar cells and supercapacitors Morphology and structure of the carbon nanofibrous materials were investigated and their performance in corresponding applications were evaluated.

  15. Nano-biphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin.

    PubMed

    Song, Yue; Lin, Kaifeng; He, Shu; Wang, Chunmei; Zhang, Shuaishuai; Li, Donglin; Wang, Jimeng; Cao, Tianqing; Bi, Long; Pei, Guoxian

    2018-01-01

    As a newly emerging three-dimensional (3D) printing technology, low-temperature robocasting can be used to fabricate geometrically complex ceramic scaffolds at low temperatures. Here, we aimed to fabricate 3D printed ceramic scaffolds composed of nano-biphasic calcium phosphate (BCP), polyvinyl alcohol (PVA), and platelet-rich fibrin (PRF) at a low temperature without the addition of toxic chemicals. Corresponding nonprinted scaffolds were prepared using a freeze-drying method. Compared with the nonprinted scaffolds, the printed scaffolds had specific shapes and well-connected internal structures. The incorporation of PRF enabled both the sustained release of bioactive factors from the scaffolds and improved biocompatibility and biological activity toward bone marrow-derived mesenchymal stem cells (BMSCs) in vitro. Additionally, the printed BCP/PVA/PRF scaffolds promoted significantly better BMSC adhesion, proliferation, and osteogenic differentiation in vitro than the printed BCP/PVA scaffolds. In vivo, the printed BCP/PVA/PRF scaffolds induced a greater extent of appropriate bone formation than the printed BCP/PVA scaffolds and nonprinted scaffolds in a critical-size segmental bone defect model in rabbits. These experiments indicate that low-temperature robocasting could potentially be used to fabricate 3D printed BCP/PVA/PRF scaffolds with desired shapes and internal structures and incorporated bioactive factors to enhance the repair of segmental bone defects.

  16. Spatiotemporal Characterization of a Fibrin Clot Using Quantitative Phase Imaging

    PubMed Central

    Gannavarpu, Rajshekhar; Bhaduri, Basanta; Tangella, Krishnarao; Popescu, Gabriel

    2014-01-01

    Studying the dynamics of fibrin clot formation and its morphology is an important problem in biology and has significant impact for several scientific and clinical applications. We present a label-free technique based on quantitative phase imaging to address this problem. Using quantitative phase information, we characterized fibrin polymerization in real-time and present a mathematical model describing the transition from liquid to gel state. By exploiting the inherent optical sectioning capability of our instrument, we measured the three-dimensional structure of the fibrin clot. From this data, we evaluated the fractal nature of the fibrin network and extracted the fractal dimension. Our non-invasive and speckle-free approach analyzes the clotting process without the need for external contrast agents. PMID:25386701

  17. Evaluation of polyacrylonitrile electrospun nano-fibrous mats as leukocyte removal filter media.

    PubMed

    Pourbaghi, Raha; Zarrebini, Mohammad; Semnani, Dariush; Pourazar, Abbasali; Akbari, Nahid; Shamsfar, Reihaneh

    2018-07-01

    Removal of leukocytes from blood products is the most effective means for elimination of undesirable side effects and prevention of possible reactions in recipients. Micro-fibrous mats are currently used for removal of leukocytes from blood. In this study, samples of electrospun nano-fibrous mats were produced. The performance of the produced electrospun nano-fibrous mats as means of leukocytes removal from fresh whole blood was both evaluated and compared with that of commercially available micro-fibrous mats. In order to produce the samples, polyacrylonitrile (PAN) nano-fibrous mats were made under different electrospinning conditions. Mean fiber diameter, pore characterization and surface roughness of the PAN nano-fibrous mats were determined using image processing technique. In order to evaluate the surface tension of the fabricated mats, water contact angle was measured. The leukocyte removal performance, erythrocytes recovery percent and hemolysis rate of the nano-fibrous mats were compared. The effectiveness of nano-fibrous mats in removing leukocyte was established using both scanning electron microscope and optical microscope. Results showed that for given weight, the fabricated nano-fibrous mats were not only more efficient but also more cost-effective than their commercial counterparts. Results confirmed that changes in mean fiber diameter, the number of layer and weight of each layer in the absence of any chemical reaction or physical surface modification, the fabricated nano-fibrous mats were able to remove 5-log of leukocytes. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1759-1769, 2018. © 2017 Wiley Periodicals, Inc.

  18. A comparison of the mechanical, kinetic, and biochemical properties of fibrin clots formed with two different fibrin sealants.

    PubMed

    Hickerson, William L; Nur, Israel; Meidler, Roberto

    2011-01-01

    The objective of the present study was to compare the mechanical, kinetic, and biochemical properties of fibrin clots produced using EVICEL Fibrin Sealant (Human) and TISSEEL Fibrin Sealant. The stiffness/elasticity and strength of fibrin clots formed with EVICEL and TISSEEL were assessed using applied mechanical force and thromboelastography (TEG). The factor XIII content of the fibrin clots was also evaluated. Mean Young modulus and tensile strength of the fibrin clots produced by EVICEL were significantly higher than those of clots produced by TISSEEL (P < 0.05 for both). The mean time to initial clot formation and mean time to the predefined level of clot formation were numerically shorter for EVICEL compared with TISSEEL. Furthermore, mean maximal amplitude of the clots formed with EVICEL was significantly greater than that for the clots formed with TISSEEL. Mean concentration of factor XIII for the EVICEL fibrinogen samples tested was 9 IU/ml compared with undetectable concentrations of factor XIII for the TISSEEL fibrinogen samples. Fibrin clots formed with EVICEL have a much higher resistance to stretching and tensile strength and are more capable of maintaining their structure against applied force than those formed with TISSEEL. EVICEL also allows more rapid development of fibrin clots than TISSEEL. This superior clot strength and resilience obtained with EVICEL relative to TISSEEL may be due in large part to the presence of factor XIII.

  19. A novel platelet concentrate: titanium-prepared platelet-rich fibrin.

    PubMed

    Tunalı, Mustafa; Özdemir, Hakan; Küçükodacı, Zafer; Akman, Serhan; Yaprak, Emre; Toker, Hülya; Fıratlı, Erhan

    2014-01-01

    We developed a new product called titanium-prepared platelet-rich fibrin (T-PRF). The T-PRF method is based on the hypothesis that titanium may be more effective in activating platelets than the silica activators used with glass tubes in Chouckroun's leukocyte- and platelet-rich fibrin (L-PRF) method. In this study, we aimed to define the structural characteristics of T-PRF and compare it with L-PRF. Blood samples were collected from 10 healthy male volunteers. The blood samples were drawn using a syringe. Nine milliliters was transferred to a dry glass tube, and 9 mL was transferred to a titanium tube. Half of each clot (i.e., the blood that was clotted using T-PRF or L-PRF) was processed with a scanning electron microscope (SEM). The other half of each clot was processed for fluorescence microscopy analysis and light microscopy analysis. The T-PRF samples seemed to have a highly organized network with continuous integrity compared to the other L-PRF samples. Histomorphometric analysis showed that T-PRF fibrin network covers larger area than L-PRF fibrin network; also fibrin seemed thicker in the T-PRF samples. This is the first human study to define T-PRF as an autogenous leukocyte- and platelet-rich fibrin product. The platelet activation by titanium seems to offer some high characteristics to T-PRF.

  20. Dual Drug Loaded Biodegradable Nanofibrous Microsphere for Improving Anti-Colon Cancer Activity

    PubMed Central

    Fan, Rangrang; Li, Xiaoling; Deng, Jiaojiao; Gao, Xiang; Zhou, Liangxue; Zheng, Yu; Tong, Aiping; Zhang, Xiaoning; You, Chao; Guo, Gang

    2016-01-01

    One of the approaches being explored to increase antitumor activity of chemotherapeutics is to inject drug-loaded microspheres locally to specific anatomic sites, providing for a slow, long term release of a chemotherapeutic while minimizing systemic exposure. However, the used clinically drug carriers available at present have limitations, such as their low stability, renal clearance and residual surfactant. Here, we report docetaxel (DOC) and curcumin (CUR) loaded nanofibrous microspheres (DOC + CUR/nanofibrous microspheres), self-assembled from biodegradable PLA-PEO-PPO-PEO-PLA polymers as an injectable drug carrier without adding surfactant during the emulsification process. The obtained nanofibrous microspheres are composed entirely of nanofibers and have an open hole on the shell without the assistance of a template. It was shown that these DOC + CUR/nanofibrous microspheres could release curcumin and docetaxel slowly in vitro. The slow, sustained release of curcumin and docetaxel in vivo may help maintain local concentrations of active drug. The mechanism by which DOC + CUR/nanofibrous microspheres inhibit colorectal peritoneal carcinomatosis might involve increased induction of apoptosis in tumor cells and inhibition of tumor angiogenesis. In vitro and in vivo evaluations demonstrated efficacious synergistic antitumor effects against CT26 of curcumin and docetaxel combined nanofibrous microspheres. In conclusion, the dual drug loaded nanofibrous microspheres were considered potentially useful for treating abdominal metastases of colorectal cancer. PMID:27324595

  1. Dual Drug Loaded Biodegradable Nanofibrous Microsphere for Improving Anti-Colon Cancer Activity

    NASA Astrophysics Data System (ADS)

    Fan, Rangrang; Li, Xiaoling; Deng, Jiaojiao; Gao, Xiang; Zhou, Liangxue; Zheng, Yu; Tong, Aiping; Zhang, Xiaoning; You, Chao; Guo, Gang

    2016-06-01

    One of the approaches being explored to increase antitumor activity of chemotherapeutics is to inject drug-loaded microspheres locally to specific anatomic sites, providing for a slow, long term release of a chemotherapeutic while minimizing systemic exposure. However, the used clinically drug carriers available at present have limitations, such as their low stability, renal clearance and residual surfactant. Here, we report docetaxel (DOC) and curcumin (CUR) loaded nanofibrous microspheres (DOC + CUR/nanofibrous microspheres), self-assembled from biodegradable PLA-PEO-PPO-PEO-PLA polymers as an injectable drug carrier without adding surfactant during the emulsification process. The obtained nanofibrous microspheres are composed entirely of nanofibers and have an open hole on the shell without the assistance of a template. It was shown that these DOC + CUR/nanofibrous microspheres could release curcumin and docetaxel slowly in vitro. The slow, sustained release of curcumin and docetaxel in vivo may help maintain local concentrations of active drug. The mechanism by which DOC + CUR/nanofibrous microspheres inhibit colorectal peritoneal carcinomatosis might involve increased induction of apoptosis in tumor cells and inhibition of tumor angiogenesis. In vitro and in vivo evaluations demonstrated efficacious synergistic antitumor effects against CT26 of curcumin and docetaxel combined nanofibrous microspheres. In conclusion, the dual drug loaded nanofibrous microspheres were considered potentially useful for treating abdominal metastases of colorectal cancer.

  2. Tissue-Engineered Nanofibrous Nerve Grafts for Enhancing the Rate of Nerve Regeneration

    DTIC Science & Technology

    2015-10-01

    structured nanofibrous biodegradable nerve graft system that present ECM protein, neurotrophic factor, and pre-seeded with bone marrow stromal cells in...nanofibrous biodegradable nerve graft system that present extracellular matrix (ECM) protein, nerve growth factor, and pre-seeded with bone marrow stromal...proposed novel structured nanofibrous biodegradable grafts will provide the micro environment, bioactivity, transport features and mechanics ideal for

  3. Three Dimensional Collagen Scaffold Promotes Intrinsic Vascularisation for Tissue Engineering Applications

    PubMed Central

    Chan, Elsa C.; Kuo, Shyh-Ming; Kong, Anne M.; Morrison, Wayne A.; Dusting, Gregory J.; Mitchell, Geraldine M.

    2016-01-01

    Here, we describe a porous 3-dimensional collagen scaffold material that supports capillary formation in vitro, and promotes vascularization when implanted in vivo. Collagen scaffolds were synthesized from type I bovine collagen and have a uniform pore size of 80 μm. In vitro, scaffolds seeded with primary human microvascular endothelial cells suspended in human fibrin gel formed CD31 positive capillary-like structures with clear lumens. In vivo, after subcutaneous implantation in mice, cell-free collagen scaffolds were vascularized by host neovessels, whilst a gradual degradation of the scaffold material occurred over 8 weeks. Collagen scaffolds, impregnated with human fibrinogen gel, were implanted subcutaneously inside a chamber enclosing the femoral vessels in rats. Angiogenic sprouts from the femoral vessels invaded throughout the scaffolds and these degraded completely after 4 weeks. Vascular volume of the resulting constructs was greater than the vascular volume of constructs from chambers implanted with fibrinogen gel alone (42.7±5.0 μL in collagen scaffold vs 22.5±2.3 μL in fibrinogen gel alone; p<0.05, n = 7). In the same model, collagen scaffolds seeded with human adipose-derived stem cells (ASCs) produced greater increases in vascular volume than did cell-free collagen scaffolds (42.9±4.0 μL in collagen scaffold with human ASCs vs 25.7±1.9 μL in collagen scaffold alone; p<0.05, n = 4). In summary, these collagen scaffolds are biocompatible and could be used to grow more robust vascularized tissue engineering grafts with improved the survival of implanted cells. Such scaffolds could also be used as an assay model for studies on angiogenesis, 3-dimensional cell culture, and delivery of growth factors and cells in vivo. PMID:26900837

  4. Fibrin glue.

    PubMed

    Brennan, M

    1991-12-01

    Fibrin glue is a topical biological adhesive, the effect of which imitates the final stages of coagulation. The glue consists of a solution of concentrated human fibrinogen which is activated by the addition of bovine thrombin and calcium chloride. The resultant clot aids haemostasis and tissue sealing and is completely absorbed during wound healing without foreign body reaction or extensive fibrosis. The fibrinogen component of fibrin glue can be produced from fresh frozen plasma obtained from single unit donations thereby reducing the risks of transfusion transmitted infections encountered by exposure to pools from large numbers of donors. Methods involving precipitation of fibrinogen by cryoprecipitation, polyethylene glycol or ammonium sulphate have been described and evaluated. The risk of transmission of infection can be further reduced by using plasma from 'accredited donors' who are plasma donors regularly tested for ALT and markers of viral infection or by use of fibrinogen prepared in advance of surgery from autologous blood. The second component, a mixture of thrombin and CaCl2, is quantitatively and qualitatively well defined and commercially available (Armour Pharmaceutical Co., Thrombinar (bovine thrombin]. Thrombin is applied to the operation site simultaneously and in equal volume to the fibrinogen but from a separate syringe. In the UK a commercial heat treated fibrin glue prepared from pooled plasma is available on a doctor/named patient basis (Tisseel, Immuno, Vienna). The haemostatic and adhesive properties of fibrin glue can be employed in virtually every surgical specialty. The usefulness of the glue is particularly well documented in the fields of cardiovascular surgery, ENT and neurosurgery.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Laminin-111-derived peptide conjugated fibrin hydrogel restores salivary gland function.

    PubMed

    Nam, Kihoon; Maruyama, Christina L; Wang, Ching-Shuen; Trump, Bryan G; Lei, Pedro; Andreadis, Stelios T; Baker, Olga J

    2017-01-01

    Hyposalivation reduces the patient quality of life, as saliva is important for maintaining oral health. Current treatments for hyposalivation are limited to medications such as the muscarinic receptor agonists, pilocarpine and cevimeline. However, these therapies only provide temporary relief. Therefore, alternative therapies are essential to restore salivary gland function. An option is to use bioengineered scaffolds to promote functional salivary gland regeneration. Previous studies demonstrated that the laminin-111 protein is critical for intact salivary gland cell cluster formation and organization. However, laminin-111 protein as a whole is not suitable for clinical applications as some protein domains may contribute to unwanted side effects such as degradation, tumorigenesis and immune responses. Conversely, the use of synthetic laminin-111 peptides makes it possible to minimize the immune reactivity or pathogen transfer. In addition, it is relatively simple and inexpensive as compared to animal-derived proteins. Therefore, the goal of this study was to demonstrate whether a 20 day treatment with laminin-111-derived peptide conjugated fibrin hydrogel promotes tissue regeneration in submandibular glands of a wound healing mouse model. In this study, laminin-111-derived peptide conjugated fibrin hydrogel significantly accelerated formation of salivary gland tissue. The regenerated gland tissues displayed not only structural but also functional restoration.

  6. Laminin-111-derived peptide conjugated fibrin hydrogel restores salivary gland function

    PubMed Central

    Nam, Kihoon; Maruyama, Christina L.; Wang, Ching-Shuen; Trump, Bryan G.; Lei, Pedro; Andreadis, Stelios T.

    2017-01-01

    Hyposalivation reduces the patient quality of life, as saliva is important for maintaining oral health. Current treatments for hyposalivation are limited to medications such as the muscarinic receptor agonists, pilocarpine and cevimeline. However, these therapies only provide temporary relief. Therefore, alternative therapies are essential to restore salivary gland function. An option is to use bioengineered scaffolds to promote functional salivary gland regeneration. Previous studies demonstrated that the laminin-111 protein is critical for intact salivary gland cell cluster formation and organization. However, laminin-111 protein as a whole is not suitable for clinical applications as some protein domains may contribute to unwanted side effects such as degradation, tumorigenesis and immune responses. Conversely, the use of synthetic laminin-111 peptides makes it possible to minimize the immune reactivity or pathogen transfer. In addition, it is relatively simple and inexpensive as compared to animal-derived proteins. Therefore, the goal of this study was to demonstrate whether a 20 day treatment with laminin-111-derived peptide conjugated fibrin hydrogel promotes tissue regeneration in submandibular glands of a wound healing mouse model. In this study, laminin-111-derived peptide conjugated fibrin hydrogel significantly accelerated formation of salivary gland tissue. The regenerated gland tissues displayed not only structural but also functional restoration. PMID:29095857

  7. Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization.

    PubMed

    Yu, Gui-Feng; Yan, Xu; Yu, Miao; Jia, Meng-Yang; Pan, Wei; He, Xiao-Xiao; Han, Wen-Peng; Zhang, Zhi-Ming; Yu, Liang-Min; Long, Yun-Ze

    2016-02-07

    A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a patterned, highly stretchable, and conductive polyaniline/poly(vinylidene fluoride) (PANI/PVDF) nanofibrous membrane is reported. Owing to the patterned structure, the nanofibrous PANI/PVDF strain sensor can detect a strain up to 110%, for comparison, which is 2.6 times higher than the common nonwoven PANI/PVDF mat and much larger than the previously reported values (usually less than 15%). Meanwhile, the conductivity of the patterned strain sensor shows a linear response to the applied strain in a wide range from 0% to about 85%. Additionally, the patterned PANI/PVDF strain sensor can completely recover to its original electrical and mechanical values within a strain range of more than 22%, and exhibits good durability over 10,000 folding-unfolding tests. Furthermore, the strain sensor also can be used to detect finger motion. The results demonstrate promising application of the patterned nanofibrous membrane in flexible electronic fields.

  8. Integrating Computer- and Teacher-Based Scaffolds in Science Inquiry

    ERIC Educational Resources Information Center

    Wu, Hui-Ling; Pedersen, Susan

    2011-01-01

    Because scaffolding is a crucial form of support for students engaging in complex learning environments, it is important that researchers determine which of the numerous kinds of scaffolding will allow them to educate students most effectively. The existing literature tends to focus on computer-based scaffolding by itself rather than integrating…

  9. Biocompatibility of hydroxyapatite scaffolds processed by lithography-based additive manufacturing.

    PubMed

    Tesavibul, Passakorn; Chantaweroad, Surapol; Laohaprapanon, Apinya; Channasanon, Somruethai; Uppanan, Paweena; Tanodekaew, Siriporn; Chalermkarnnon, Prasert; Sitthiseripratip, Kriskrai

    2015-01-01

    The fabrication of hydroxyapatite scaffolds for bone tissue engineering applications by using lithography-based additive manufacturing techniques has been introduced due to the abilities to control porous structures with suitable resolutions. In this research, the use of hydroxyapatite cellular structures, which are processed by lithography-based additive manufacturing machine, as a bone tissue engineering scaffold was investigated. The utilization of digital light processing system for additive manufacturing machine in laboratory scale was performed in order to fabricate the hydroxyapatite scaffold, of which biocompatibilities were eventually evaluated by direct contact and cell-culturing tests. In addition, the density and compressive strength of the scaffolds were also characterized. The results show that the hydroxyapatite scaffold at 77% of porosity with 91% of theoretical density and 0.36 MPa of the compressive strength are able to be processed. In comparison with a conventionally sintered hydroxyapatite, the scaffold did not present any cytotoxic signs while the viability of cells at 95.1% was reported. After 14 days of cell-culturing tests, the scaffold was able to be attached by pre-osteoblasts (MC3T3-E1) leading to cell proliferation and differentiation. The hydroxyapatite scaffold for bone tissue engineering was able to be processed by the lithography-based additive manufacturing machine while the biocompatibilities were also confirmed.

  10. Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes.

    PubMed

    Peng, Shuo; Fan, Lingling; Wei, Chengzhuo; Liu, Xiaohong; Zhang, Hongwei; Xu, Weilin; Xu, Jie

    2017-02-10

    Polypyrrole (PPy) and copper sulfide (CuS) have been successfully deposited on bacterial cellulose (BC) membranes to prepare nanofibrous composite electrodes of PPy/CuS/BC for flexible supercapacitor applications. The introduction of CuS remarkably improves the specific capacitance and cycling stability of BC-based electrodes. The specific capacitance of the supercapacitors based on the PPy/CuS/BC electrodes can reach to about 580Fg -1 at a current density of 0.8mAcm -2 and can retain about 73% of their initial value after 300 cycles, while the PPy/BC-based device could retain only 21.7% after 300 cycles. This work provides a promising approach to fabricate cost-effective and flexible nanofibrous composite membranes for high-performance supercapacitor electrodes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A brief review of extrusion-based tissue scaffold bio-printing.

    PubMed

    Ning, Liqun; Chen, Xiongbiao

    2017-08-01

    Extrusion-based bio-printing has great potential as a technique for manipulating biomaterials and living cells to create three-dimensional (3D) scaffolds for damaged tissue repair and function restoration. Over the last two decades, advances in both engineering techniques and life sciences have evolved extrusion-based bio-printing from a simple technique to one able to create diverse tissue scaffolds from a wide range of biomaterials and cell types. However, the complexities associated with synthesis of materials for bio-printing and manipulation of multiple materials and cells in bio-printing pose many challenges for scaffold fabrication. This paper presents an overview of extrusion-based bio-printing for scaffold fabrication, focusing on the prior-printing considerations (such as scaffold design and materials/cell synthesis), working principles, comparison to other techniques, and to-date achievements. This paper also briefly reviews the recent development of strategies with regard to hydrogel synthesis, multi-materials/cells manipulation, and process-induced cell damage in extrusion-based bio-printing. The key issue and challenges for extrusion-based bio-printing are also identified and discussed along with recommendations for future, aimed at developing novel biomaterials and bio-printing systems, creating patterned vascular networks within scaffolds, and preserving the cell viability and functions in scaffold bio-printing. The address of these challenges will significantly enhance the capability of extrusion-based bio-printing. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nano-biphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin

    PubMed Central

    Wang, Chunmei; Zhang, Shuaishuai; Li, Donglin; Wang, Jimeng; Cao, Tianqing; Bi, Long; Pei, Guoxian

    2018-01-01

    Background and aim As a newly emerging three-dimensional (3D) printing technology, low-temperature robocasting can be used to fabricate geometrically complex ceramic scaffolds at low temperatures. Here, we aimed to fabricate 3D printed ceramic scaffolds composed of nano-biphasic calcium phosphate (BCP), polyvinyl alcohol (PVA), and platelet-rich fibrin (PRF) at a low temperature without the addition of toxic chemicals. Methods Corresponding nonprinted scaffolds were prepared using a freeze-drying method. Compared with the nonprinted scaffolds, the printed scaffolds had specific shapes and well-connected internal structures. Results The incorporation of PRF enabled both the sustained release of bioactive factors from the scaffolds and improved biocompatibility and biological activity toward bone marrow-derived mesenchymal stem cells (BMSCs) in vitro. Additionally, the printed BCP/PVA/PRF scaffolds promoted significantly better BMSC adhesion, proliferation, and osteogenic differentiation in vitro than the printed BCP/PVA scaffolds. In vivo, the printed BCP/PVA/PRF scaffolds induced a greater extent of appropriate bone formation than the printed BCP/PVA scaffolds and nonprinted scaffolds in a critical-size segmental bone defect model in rabbits. Conclusion These experiments indicate that low-temperature robocasting could potentially be used to fabricate 3D printed BCP/PVA/PRF scaffolds with desired shapes and internal structures and incorporated bioactive factors to enhance the repair of segmental bone defects. PMID:29416332

  13. bFGF-containing electrospun gelatin scaffolds with controlled nano-architectural features for directed angiogenesis

    PubMed Central

    Montero, Ramon B.; Vial, Ximena; Nguyen, Dat Tat; Farhand, Sepehr; Reardon, Mark; Pham, Si M.; Tsechpenakis, Gavriil; Andreopoulos, Fotios M.

    2011-01-01

    Current therapeutic angiogenesis strategies are focused on the development of biologically responsive scaffolds that can deliver multiple angiogenic cytokines and/or cells in ischemic regions. Herein, we report on a novel electrospinning approach to fabricate cytokine-containing nanofibrous scaffolds with tunable architecture to promote angiogenesis. Fiber diameter and uniformity were controlled by varying the concentration of the polymeric (i.e. gelatin) solution, the feed rate, needle to collector distance, and electric field potential between the collector plate and injection needle. Scaffold fiber orientation (random vs. aligned) was achieved by alternating the polarity of two parallel electrodes placed on the collector plate thus dictating fiber deposition patterns. Basic fibroblast growth factor (bFGF) was physically immobilized within the gelatin scaffolds at variable concentrations and human umbilical vein endothelial cells (HUVEC) were seeded on the top of the scaffolds. Cell proliferation and migration was assessed as a function of growth factor loading and scaffold architecture. HUVECs successfully adhered onto gelatin B scaffolds and cell proliferation was directly proportional to the loading concentrations of the growth factor (0–100 bFGF ng/mL). Fiber orientation had a pronounced effect on cell morphology and orientation. Cells were spread along the fibers of the electrospun scaffolds with the aligned orientation and developed a spindle-like morphology parallel to the scaffold's fibers. In contrast, cells seeded onto the scaffolds with random fiber orientation, did not demonstrate any directionality and appeared to have a rounder shape. Capillary formation (i.e. sprouts length and number of sprouts per bead), assessed in a 3-D in vitro angiogenesis assay, was a function of bFGF loading concentration (0 ng, 50 ng and 100 ng per scaffold) for both types of electrospun scaffolds (i.e. with aligned or random fiber orientation). PMID:22200610

  14. Monitoring sinew contraction during formation of tissue-engineered fibrin-based ligament constructs.

    PubMed

    Paxton, Jennifer Z; Wudebwe, Uchena N G; Wang, Anqi; Woods, Daniel; Grover, Liam M

    2012-08-01

    The ability to study the gross morphological changes occurring during tissue formation is vital to producing tissue-engineered structures of clinically relevant dimensions in vitro. Here, we have used nondestructive methods of digital imaging and optical coherence tomography to monitor the early-stage formation and subsequent maturation of fibrin-based tissue-engineered ligament constructs. In addition, the effect of supplementation with essential promoters of collagen synthesis, ascorbic acid (AA) and proline (P), has been assessed. Contraction of the cell-seeded fibrin gel occurs unevenly within the first 5 days of culture around two fixed anchor points before forming a longitudinal ligament-like construct. AA+P supplementation accelerates gel contraction in the maturation phase of development, producing ligament-like constructs with a higher collagen content and distinct morphology to that of unsupplemented constructs. These studies highlight the importance of being able to control the methods of tissue formation and maturation in vitro to enable the production of tissue-engineered constructs with suitable replacement tissue characteristics for repair of clinical soft-tissue injuries.

  15. Proangiogenic hydrogels within macroporous scaffolds enhance islet engraftment in an extrahepatic site.

    PubMed

    Brady, Ann-Christina; Martino, Mikaël M; Pedraza, Eileen; Sukert, Steve; Pileggi, Antonello; Ricordi, Camillo; Hubbell, Jeffrey A; Stabler, Cherie L

    2013-12-01

    The transplantation of allogeneic islets in recent clinical trials has shown substantial promise as a therapy for type 1 diabetes; however, long-term insulin independence remains inadequate. This has been largely attributed to the current intravascular, hepatic transplant site, which exposes islets to mechanical and inflammatory stresses. A highly macroporous scaffold, housed within an alternative transplant site, can support an ideal environment for islet transplantation by providing three-dimensional distribution of islets, while permitting the infiltration of host vasculature. In the present study, we sought to evaluate the synergistic effect of a proangiogenic hydrogel loaded within the void space of a macroporous poly(dimethylsiloxane) (PDMS) scaffold on islet engraftment. The fibrin-based proangiogenic hydrogel tested presents platelet derived growth factor (PDGF-BB), via a fibronectin (FN) fragment containing growth factor and major integrin binding sites in close proximity. The combination of the proangiogenic hydrogel with PDMS scaffolds resulted in a significant decrease in the time to normoglycemia for syngeneic mouse islet transplants. This benefit was associated with an observed increase in competent vessel branching, as well as mature intraislet vessels. Overall, the addition of the proangiogenic factor PDGF-BB, delivered via the FN fragment-functionalized hydrogel, positively influenced the efficiency of engraftment. These characteristics, along with its ease of retrieval, make this combination of a biostable macroporous scaffold and a degradable proangiogenic hydrogel a supportive structure for insulin-producing cells implanted in extrahepatic sites.

  16. Polycaprolactone nanofibres loaded with 20(S)-protopanaxadiol for in vitro and in vivo anti-tumour activity study

    PubMed Central

    Liu, Dan-qing; Cheng, Zhi-qiang; Feng, Qing-jie; Li, He-jie; Ye, Shu-feng

    2018-01-01

    In this work, 20(S)-protopanaxadiol (PPD)-loaded polycaprolactone (PCL) nanofibres were successfully fabricated by the electrospinning technique using Tween 80 as a solubilizer. Firstly, smooth and continuous nanofibres were collected using suitable solvents and appropriate spinning conditions. Secondly, nanofibre mats were characterized by scanning electron microscopy, thermogravimetric (TG) analysis, Fourier transform infrared spectroscopy and mechanical testing. Finally, nanofibrous membranes were evaluated using water contact angle, in vitro drug release, biodegradation test, in vitro and in vivo anti-tumour activity and cell apoptosis assay. Scanning electron microscopic observations indicated that the diameter of the drug-loaded nanofibres increased with the increase of drug concentration. TG analysis and mechanical test showed that nanofibres were equipped with great thermal and mechanical properties. Biodegradation test exhibited that the structure of fabricated nanofibres had a certain degree of change after 15 days. An in vitro release study showed that PPD from drug-loaded nanofibres could be released in a sustained and prolonged mode. The cytotoxic effect of drug-loaded nanofibre mats examined on human laryngeal carcinoma cells (Hep-2 cells) demonstrated that the prepared nanofibres had a remarkable anti-tumour effect. Meanwhile, the drug-loaded fibre mats showed a super anti-tumour effect in an in vivo anti-tumour study. All in all, PCL nanofibres could be a potential carrier of PPD for cancer treatment. PMID:29892448

  17. Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering.

    PubMed

    Zhao, Wen; Li, Jiaojiao; Jin, Kaixiang; Liu, Wenlong; Qiu, Xuefeng; Li, Chenrui

    2016-02-01

    Electrospun PLGA-based scaffolds have been applied extensively in biomedical engineering, such as tissue engineering and drug delivery system. Due to lack of the recognition sites on cells, hydropholicity and single-function, the applications of PLGA fibrous scaffolds are limited. In order to tackle these issues, many works have been done to obtain functional PLGA-based scaffolds, including surface modifications, the fabrication of PLGA-based composite scaffolds and drug-loaded scaffolds. The functional PLGA-based scaffolds have significantly improved cell adhesion, attachment and proliferation. Moreover, the current study has summarized the applications of functional PLGA-based scaffolds in wound dressing, vascular and bone tissue engineering area as well as drug delivery system. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Novel compaction resistant and ductile nanocomposite nanofibrous microfiltration membranes.

    PubMed

    Homaeigohar, Seyed Shahin; Elbahri, Mady

    2012-04-15

    Despite promising filtration abilities, low mechanical properties of extraordinary porous electrospun nanofibrous membranes could be a major challenge in their industrial development. In addition, such kind of membranes are usually hydrophobic and non-wettable. To reinforce an electrospun nanofibrous membrane made of polyethersulfone (PES) mechanically and chemically (to improve wettability), zirconia nanoparticles as a novel nanofiller in membrane technology were added to the nanofibers. The compressive and tensile results obtained through nanoindentation and tensile tests, respectively, implied an optimum mechanical properties after incorporation of zirconia nanoparticles. Especially compaction resistance of the electrospun nanofibrous membranes improved significantly as long as no agglomeration of the nanoparticles occurred and the electrospun nanocomposite membranes showed a higher tensile properties without any brittleness i.e. a high ductility. Noteworthy, for the first time the compaction level was quantified through a nanoindentation test. In addition to obtaining a desired mechanical performance, the hydrophobicity declined. Combination of promising properties of optimum mechanical and surface chemical properties led to a considerably high water permeability also retention efficiency of the nanocomposite PES nanofibrous membranes. Such finding implies a longer life span and lower energy consumption for a water filtration process. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Fibrin Sealant: The Only Approved Hemostat, Sealant, and Adhesive—a Laboratory and Clinical Perspective

    PubMed Central

    Spotnitz, William D.

    2014-01-01

    Background. Fibrin sealant became the first modern era material approved as a hemostat in the United States in 1998. It is the only agent presently approved as a hemostat, sealant, and adhesive by the Food and Drug Administration (FDA). The product is now supplied as patches in addition to the original liquid formulations. Both laboratory and clinical uses of fibrin sealant continue to grow. The new literature on this material also continues to proliferate rapidly (approximately 200 papers/year). Methods. An overview of current fibrin sealant products and their approved uses and a comprehensive PubMed based review of the recent literature (February 2012, through March 2013) on the laboratory and clinical use of fibrin sealant are provided. Product information is organized into sections based on a classification system for commercially available materials. Publications are presented in sections based on both laboratory research and clinical topics are listed in order of decreasing frequency. Results. Fibrin sealant remains useful hemostat, sealant, and adhesive. New formulations and applications continue to be developed. Conclusions. This agent remains clinically important with the recent introduction of new commercially available products. Fibrin sealant has multiple new uses that should result in further improvements in patient care. PMID:24729902

  20. Evaluation of Fibrin-Based Interpenetrating Polymer Networks as Potential Biomaterials for Tissue Engineering.

    PubMed

    Gsib, Olfat; Duval, Jean-Luc; Goczkowski, Mathieu; Deneufchatel, Marie; Fichet, Odile; Larreta-Garde, Véronique; Bencherif, Sidi Ahmed; Egles, Christophe

    2017-12-10

    Interpenetrating polymer networks (IPNs) have gained great attention for a number of biomedical applications due to their improved properties compared to individual components alone. In this study, we investigated the capacity of newly-developed naturally-derived IPNs as potential biomaterials for tissue engineering. These IPNs combine the biologic properties of a fibrous fibrin network polymerized at the nanoscale and the mechanical stability of polyethylene oxide (PEO). First, we assessed their cytotoxicity in vitro on L929 fibroblasts. We further evaluated their biocompatibility ex vivo with a chick embryo organotypic culture model. Subcutaneous implantations of the matrices were subsequently conducted on nude mice to investigate their biocompatibility in vivo. Our preliminary data highlighted that our biomaterials were non-cytotoxic (viability above 90%). The organotypic culture showed that the IPN matrices induced higher cell adhesion (across all the explanted organ tissues) and migration (skin, intestine) than the control groups, suggesting the advantages of using a biomimetic, yet mechanically-reinforced IPN-based matrix. We observed no major inflammatory response up to 12 weeks post implantation. All together, these data suggest that these fibrin-based IPNs are promising biomaterials for tissue engineering.

  1. Evaluation of Fibrin-Based Interpenetrating Polymer Networks as Potential Biomaterials for Tissue Engineering

    PubMed Central

    Gsib, Olfat; Duval, Jean-Luc; Goczkowski, Mathieu; Deneufchatel, Marie; Fichet, Odile; Larreta-Garde, Véronique

    2017-01-01

    Interpenetrating polymer networks (IPNs) have gained great attention for a number of biomedical applications due to their improved properties compared to individual components alone. In this study, we investigated the capacity of newly-developed naturally-derived IPNs as potential biomaterials for tissue engineering. These IPNs combine the biologic properties of a fibrous fibrin network polymerized at the nanoscale and the mechanical stability of polyethylene oxide (PEO). First, we assessed their cytotoxicity in vitro on L929 fibroblasts. We further evaluated their biocompatibility ex vivo with a chick embryo organotypic culture model. Subcutaneous implantations of the matrices were subsequently conducted on nude mice to investigate their biocompatibility in vivo. Our preliminary data highlighted that our biomaterials were non-cytotoxic (viability above 90%). The organotypic culture showed that the IPN matrices induced higher cell adhesion (across all the explanted organ tissues) and migration (skin, intestine) than the control groups, suggesting the advantages of using a biomimetic, yet mechanically-reinforced IPN-based matrix. We observed no major inflammatory response up to 12 weeks post implantation. All together, these data suggest that these fibrin-based IPNs are promising biomaterials for tissue engineering. PMID:29232876

  2. Design of electrospun nanofibrous mats for osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Wang, Shige; Hu, Fei; Li, Jingchao; Zhang, Shuping; Shen, Mingwu; Huang, Mingxian; Shi, Xiangyang

    2017-05-26

    The clinical translation potential of mesenchymal stem cells (MSCs) in regenerative medicine has been greatly exploited. With the merits of high surface area to volume ratio, facile control of components, well retained topography, and the capacity to mimic the native extracellular matrix (ECM), nanofibers have received a great deal of attention as bone tissue engineering scaffolds. Electrospinning has been considered as an efficient approach for scale-up fabrication of nanofibrous materials. Electrospun nanofibers are capable of stimulating cell-matrix interaction to form a cell niche, directing cellular behavior, and promoting the MSCs adhesion and proliferation. In this review, we give a comprehensive literature survey on the mechanisms of electrospun nanofibers in supporting the MSCs differentiation. Specifically, the influences of biological and physical osteogenic inductive cues on the MSCs osteogenic differentiation are reviewed. Along with the significant advances in the field, current research challenges and future perspectives are also discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A unique heterologous fibrin sealant (HFS) as a candidate biological scaffold for mesenchymal stem cells in osteoporotic rats.

    PubMed

    Orsi, Patrícia Rodrigues; Landim-Alvarenga, Fernanda Cruz; Justulin, Luis Antônio; Kaneno, Ramon; de Assis Golim, Marjorie; Dos Santos, Daniela Carvalho; Creste, Camila Fernanda Zorzella; Oba, Eunice; Maia, Leandro; Barraviera, Benedito; Ferreira, Rui Seabra

    2017-09-29

    The injection of mesenchymal stem cells (MSCs) directly into the bone of osteoporotic (OP) patients for rapid recovery has been studied worldwide. Scaffolds associated with MSCs are used to maintain and avoid cell loss after application. A unique heterologous fibrin sealant (HFS) derived from snake venom was evaluated for the cytotoxicity of its main components and as a three-dimensional biological scaffold for MSCs to repair a critical femur defect in osteoporotic rats. The cytotoxicity of HFS was assessed using a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazoliumbromide (MTT) assay and transmission electron microscopy. The cells were cultured, characterized by flow cytometry and differentiated into the osteogenic lineage. Two-month-old rats underwent ovariectomy to induce OP. After 3 months, a 5 mm critical bone defect was made in the distal end of the rat femurs and filled with HFS; HFS + MSCs; and HFS + MSCs D (differentiated into the osteogenic lineage) to evaluate the effects. An injury control group (injury and no treatment) and blank control group (no injury and no treatment) were also included. The animals were observed at days 14 and 28 by microtomographic (micro-CT) analyses, histologic and biochemical analysis, as well as scanning electron microscopy. The results revealed that one of the compounds of HFS, the thrombin-like enzyme extracted from snake venom, had no cytotoxic effects on the MSCs. OP was successfully induced, as demonstrated by the significant differences in the levels of 17β-estradiol, Micro-CT analyses and alkaline phosphatase between the ovariectomized (OVX) and non-ovariectomized (NOVX) groups. The histological data revealed that at 14 days after surgery in both the OVX and NOVX animals, the HFS + CTMs and HFS + CTMsD showed a higher formation of bone cells at the site in relation to the control group (without treatment). Collagen formation was evidenced through bone neoformation in all treated and control groups

  4. Self-supported fibrin-polyvinyl alcohol interpenetrating polymer networks: an easily handled and rehydratable biomaterial.

    PubMed

    Bidault, Laurent; Deneufchatel, Marie; Vancaeyzeele, Cédric; Fichet, Odile; Larreta-Garde, Véronique

    2013-11-11

    A fibrin hydrogel at physiological concentration (5 mg/mL) was associated with polyvinyl alcohol (PVA) inside an interpenetrating polymer networks (IPN) architecture. Previously, PVA has been modified with methacrylate functions in order to cross-link it by free-radical polymerization. The fibrin network was synthesized by the enzymatic hydrolysis of fibrinogen by thrombin. The resulting self-supported materials simultaneously exhibit the properties of the fibrin hydrogel and those of the synthetic polymer network. Their storage modulus is 50-fold higher than that of the fibrin hydrogel and they are completely rehydratable. These materials are noncytotoxic toward human fibroblast and the fibrin present on the surface of PVAm-based IPNs favors cell development.

  5. Fibrin glue for pilonidal sinus disease.

    PubMed

    Lund, Jon; Tou, Samson; Doleman, Brett; Williams, John P

    2017-01-13

    Pilonidal sinus disease is a common condition that mainly affects young adults. This condition can cause significant pain and impairment of normal activities. No consensus currently exists on the optimum treatment for pilonidal sinus and current therapies have various advantages and disadvantages. Fibrin glue has emerged as a potential treatment as both monotherapy and an adjunct to surgery. To assess the effects of fibrin glue alone or in combination with surgery compared with surgery alone in the treatment of pilonidal sinus disease. In December 2016 we searched: the Cochrane Wounds Specialised Register; CENTRAL; MEDLINE; Embase and CINAHL Plus. We also searched clinical trials registries and conference proceedings for ongoing and unpublished studies and scanned reference lists to identify additional studies. There were no restrictions with respect to language, date of publication or study setting. We included randomised controlled trials (RCTs) only. We included studies involving participants of all ages and studies conducted in any setting. We considered studies involving people with both new and recurrent pilonidal sinus. We included studies which evaluated fibrin glue monotherapy or as an adjunct to surgery. Two study authors independently extracted data and assessed risk of bias. We used standard methods expected by Cochrane. We included four RCTs with 253 participants, all were at risk of bias. One unpublished study evaluated fibrin glue monotherapy compared with Bascom's procedure, two studies evaluated fibrin glue as an adjunct to Limberg flap and one study evaluated fibrin glue as an adjunct to Karydakis flap.For fibrin glue monotherapy compared with Bascom's procedure, there were no data available for the primary outcomes of time to healing and adverse events. There was low-quality evidence of less pain on day one after the procedure with fibrin glue monotherapy compared with Bascom's procedure (mean difference (MD) -2.50, 95% confidence interval (CI

  6. Silk fibroin-based scaffolds for tissue engineering

    NASA Astrophysics Data System (ADS)

    Li, Zi-Heng; Ji, Shi-Chen; Wang, Ya-Zhen; Shen, Xing-Can; Liang, Hong

    2013-09-01

    Silk fibroin (SF) from the Bombyx mori silkworm exhibits attractive potential applications as biomechanical materials, due to its unique mechanical and biological properties. This review outlines the structure and properties of SF, including of its biocompatibility and biodegradability. It highlights recent researches on the fabrication of various SF-based composites scaffolds that are promising for tissue engineering applications, and discusses synthetic methods of various SF-based composites scaffolds and valuable approaches for controlling cell behaviors to promote the tissue repair. The function of extracellular matrices and their interaction with cells are also reviewed here.

  7. Process of making titanium carbide (TiC) nano-fibrous felts

    DOEpatents

    Fong, Hao; Zhang, Lifeng; Zhao, Yong; Zhu, Zhengtao

    2015-01-13

    A method of synthesizing mechanically resilient titanium carbide (TiC) nanofibrous felts comprising continuous nanofibers or nano-ribbons with TiC crystallites embedded in carbon matrix, comprising: (a) electrospinning a spin dope for making precursor nanofibers with diameters less than 0.5 J.Lm; (b) overlaying the nanofibers to produce a nanofibrous mat (felt); and then (c) heating the nano-felts first at a low temperature, and then at a high temperature for making electrospun continuous nanofibers or nano-ribbons with TiC crystallites embedded in carbon matrix; and (d) chlorinating the above electrospun nano-felts at an elevated temperature to remove titanium for producing carbide derived carbon (CDC) nano-fibrous felt with high specific surface areas.

  8. Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone.

    PubMed

    Ng, Angela M H; Tan, K K; Phang, M Y; Aziyati, O; Tan, G H; Isa, M R; Aminuddin, B S; Naseem, M; Fauziah, O; Ruszymah, B H I

    2008-05-01

    Biomaterial, an essential component of tissue engineering, serves as a scaffold for cell attachment, proliferation, and differentiation; provides the three dimensional (3D) structure and, in some applications, the mechanical strength required for the engineered tissue. Both synthetic and naturally occurring calcium phosphate based biomaterial have been used as bone fillers or bone extenders in orthopedic and reconstructive surgeries. This study aims to evaluate two popular calcium phosphate based biomaterial i.e., hydroxyapatite (HA) and tricalcium phosphate/hydroxyapatite (TCP/HA) granules as scaffold materials in bone tissue engineering. In our strategy for constructing tissue engineered bone, human osteoprogenitor cells derived from periosteum were incorporated with human plasma-derived fibrin and seeded onto HA or TCP/HA forming 3D tissue constructs and further maintained in osteogenic medium for 4 weeks to induce osteogenic differentiation. Constructs were subsequently implanted intramuscularly in nude mice for 8 weeks after which mice were euthanized and constructs harvested for evaluation. The differential cell response to the biomaterial (HA or TCP/HA) adopted as scaffold was illustrated by the histology of undecalcified constructs and evaluation using SEM and TEM. Both HA and TCP/HA constructs showed evidence of cell proliferation, calcium deposition, and collagen bundle formation albeit lesser in the former. Our findings demonstrated that TCP/HA is superior between the two in early bone formation and hence is the scaffold material of choice in bone tissue engineering. Copyright 2007 Wiley Periodicals, Inc.

  9. Passive Mixing Capabilities of Micro- and Nanofibres When Used in Microfluidic Systems.

    PubMed

    Matlock-Colangelo, Lauren; Colangelo, Nicholas W; Fenzl, Christoph; Frey, Margaret W; Baeumner, Antje J

    2016-08-05

    Nanofibres are increasingly being used in the field of bioanalytics due to their large surface-area-to-volume ratios and easy-to-functionalize surfaces. To date, nanofibres have been studied as effective filters, concentrators, and immobilization matrices within microfluidic devices. In addition, they are frequently used as optical and electrochemical transduction materials. In this work, we demonstrate that electrospun nanofibre mats cause appreciable passive mixing and therefore provide dual functionality when incorporated within microfluidic systems. Specifically, electrospun nanofibre mats were integrated into Y-shaped poly(methyl methacrylate) microchannels and the degree of mixing was quantified using fluorescence microscopy and ImageJ analysis. The degree of mixing afforded in relationship to fibre diameter, mat height, and mat length was studied. We observed that the most mixing was caused by small diameter PVA nanofibres (450-550 nm in diameter), producing up to 71% mixing at the microchannel outlet, compared to up to 51% with polystyrene microfibres (0.8-2.7 μm in diameter) and 29% mixing in control channels containing no fibres. The mixing afforded by the PVA nanofibres is caused by significant inhomogeneity in pore size and distribution leading to percolation. As expected, within all the studies, fluid mixing increased with fibre mat height, which corresponds to the vertical space of the microchannel occupied by the fibre mats. Doubling the height of the fibre mat led to an average increase in mixing of 14% for the PVA nanofibres and 8% for the PS microfibres. Overall, mixing was independent of the length of the fibre mat used (3-10 mm), suggesting that most mixing occurs as fluid enters and exits the fibre mat. The mixing effects observed within the fibre mats were comparable to or better than many passive mixers reported in literature. Since the nanofibre mats can be further functionalized to couple analyte concentration, immobilization, and

  10. Passive Mixing Capabilities of Micro- and Nanofibres When Used in Microfluidic Systems

    PubMed Central

    Matlock-Colangelo, Lauren; Colangelo, Nicholas W.; Fenzl, Christoph; Frey, Margaret W.; Baeumner, Antje J.

    2016-01-01

    Nanofibres are increasingly being used in the field of bioanalytics due to their large surface-area-to-volume ratios and easy-to-functionalize surfaces. To date, nanofibres have been studied as effective filters, concentrators, and immobilization matrices within microfluidic devices. In addition, they are frequently used as optical and electrochemical transduction materials. In this work, we demonstrate that electrospun nanofibre mats cause appreciable passive mixing and therefore provide dual functionality when incorporated within microfluidic systems. Specifically, electrospun nanofibre mats were integrated into Y-shaped poly(methyl methacrylate) microchannels and the degree of mixing was quantified using fluorescence microscopy and ImageJ analysis. The degree of mixing afforded in relationship to fibre diameter, mat height, and mat length was studied. We observed that the most mixing was caused by small diameter PVA nanofibres (450–550 nm in diameter), producing up to 71% mixing at the microchannel outlet, compared to up to 51% with polystyrene microfibres (0.8–2.7 μm in diameter) and 29% mixing in control channels containing no fibres. The mixing afforded by the PVA nanofibres is caused by significant inhomogeneity in pore size and distribution leading to percolation. As expected, within all the studies, fluid mixing increased with fibre mat height, which corresponds to the vertical space of the microchannel occupied by the fibre mats. Doubling the height of the fibre mat led to an average increase in mixing of 14% for the PVA nanofibres and 8% for the PS microfibres. Overall, mixing was independent of the length of the fibre mat used (3–10 mm), suggesting that most mixing occurs as fluid enters and exits the fibre mat. The mixing effects observed within the fibre mats were comparable to or better than many passive mixers reported in literature. Since the nanofibre mats can be further functionalized to couple analyte concentration, immobilization, and

  11. Fibrin matrices: The versatile therapeutic delivery systems.

    PubMed

    Ahmad, Ejaj; Fatima, Munazza Tamkeen; Hoque, Mehboob; Owais, Mohammad; Saleemuddin, Mohammed

    2015-11-01

    Fibrin sealants, that have been employed for over a century by surgeons to stop post surgery bleeding, are finding novel applications in the controlled delivery of antibiotics and several other therapeutics. Fibrinogen can be easily purified from blood plasma and converted by thrombolysis to fibrin that undergoes spontaneous aggregation to form insoluble clot. During the gelling, fibrin can be formulated into films, clots, threads, microbeads, nanoconstructs and nanoparticles. Whole plasma clots in the form of beads and microparticles can also be prepared by activating endogenous thrombin, for possible drug delivery. Fibrin formulations offer remarkable scope for controlling the porosity as well as in vivo degradability and hence the release of the associated therapeutics. Binding/covalent-linking of therapeutics to the fibrin matrix, crosslinking of the matrix with bifunctional reagents and coentrapment of protease inhibitors have been successful in regulating both in vitro and in vivo release of the therapeutics. The release rates can also be remarkably lowered by preentrapment of therapeutics in insoluble particles like liposomes or by anchoring them to the matrix via molecules that bind them as well as fibrin. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process.

    PubMed

    Park, Jeong Hun; Jung, Jin Woo; Kang, Hyun-Wook; Cho, Dong-Woo

    2014-06-01

    One of the major issues in tissue engineering has been the development of three-dimensional (3D) scaffolds, which serve as a structural template for cell growth and extracellular matrix formation. In scaffold-based tissue engineering, 3D printing (3DP) technology has been successfully applied for the fabrication of complex 3D scaffolds by using both direct and indirect techniques. In principle, direct 3DP techniques rely on the straightforward utilization of the final scaffold materials during the actual scaffold fabrication process. In contrast, indirect 3DP techniques use a negative mold based on a scaffold design, to which the desired biomaterial is cast and then sacrificed to obtain the final scaffold. Such indirect 3DP techniques generally impose a solvent-based process for scaffold fabrication, resulting in a considerable increase in the fabrication time and poor mechanical properties. In addition, the internal architecture of the resulting scaffold is affected by the properties of the biomaterial solution. In this study, we propose an advanced indirect 3DP technique using projection-based micro-stereolithography and an injection molding system (IMS) in order to address these challenges. The scaffold was fabricated by a thermal molding process using IMS to overcome the limitation of the solvent-based molding process in indirect 3DP techniques. The results indicate that the thermal molding process using an IMS has achieved a substantial reduction in scaffold fabrication time and has also provided the scaffold with higher mechanical modulus and strength. In addition, cell adhesion and proliferation studies have indicated no significant difference in cell activity between the scaffolds prepared by solvent-based and thermal molding processes.

  13. Electrically polarized PLLA nanofibers as neural tissue engineering scaffolds with improved neuritogenesis.

    PubMed

    Barroca, Nathalie; Marote, Ana; Vieira, Sandra I; Almeida, Abílio; Fernandes, Maria H V; Vilarinho, Paula M; da Cruz E Silva, Odete A B

    2018-07-01

    Tissue engineering is evolving towards the production of smart platforms exhibiting stimulatory cues to guide tissue regeneration. This work explores the benefits of electrical polarization to produce more efficient neural tissue engineering platforms. Poly (l-lactic) acid (PLLA)-based scaffolds were prepared as solvent cast films and electrospun aligned nanofibers, and electrically polarized by an in-lab built corona poling device. The characterization of the platforms by thermally stimulated depolarization currents reveals a polarization of 60 × 10 -10 C cm -2 that is stable on poled electrospun nanofibers for up to 6 months. Further in vitro studies using neuroblastoma cells reveals that platforms' polarization potentiates Retinoic Acid-induced neuronal differentiation. Additionally, in differentiating embryonic cortical neurons, poled aligned nanofibers further increased neurite outgrowth by 30% (+70 μm) over non-poled aligned nanofibers, and by 50% (+100 μm) over control conditions. Therefore, the synergy of topographical cues and electrical polarization of poled aligned nanofibers places them as promising biocompatible and bioactive platforms for neural tissue regeneration. Given their long lasting induced polarization, these PLLA poled nanofibrous scaffolds can be envisaged as therapeutic devices of long shelf life for neural repair applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Effects of borate-based bioactive glass on neuron viability and neurite extension.

    PubMed

    Marquardt, Laura M; Day, Delbert; Sakiyama-Elbert, Shelly E; Harkins, Amy B

    2014-08-01

    Bioactive glasses have recently been shown to promote regeneration of soft tissues by positively influencing tissue remodeling during wound healing. We were interested to determine whether bioactive glasses have the potential for use in the treatment of peripheral nerve injury. In these experiments, degradable bioactive borate glass was fabricated into rods and microfibers. To study the compatibility with neurons, embryonic chick dorsal root ganglia (DRG) were cultured with different forms of bioactive borate glass. Cell viability was measured with no media exchange (static condition) or routine media exchange (transient condition). Neurite extension was measured within fibrin scaffolds with embedded glass microfibers or aligned rod sheets. Mixed cultures of neurons, glia, and fibroblasts growing in static conditions with glass rods and microfibers resulted in decreased cell viability. However, the percentage of neurons compared with all cell types increased by the end of the culture protocol compared with culture without glass. Furthermore, bioactive glass and fibrin composite scaffolds promoted neurite extension similar to that of control fibrin scaffolds, suggesting that glass does not have a significant detrimental effect on neuronal health. Aligned glass scaffolds guided neurite extension in an oriented manner. Together these findings suggest that bioactive glass can provide alignment to support directed axon growth. © 2013 Wiley Periodicals, Inc.

  15. Colorimetric Humidity Sensors Based on Electrospun Polyamide/CoCl2 Nanofibrous Membranes.

    PubMed

    You, Ming-Hao; Yan, Xu; Zhang, Jun; Wang, Xiao-Xiong; He, Xiao-Xiao; Yu, Miao; Ning, Xin; Long, Yun-Ze

    2017-12-01

    Humidity indicators based on composite polyamide 66/cobalt chloride (PA66/CoCl 2 ) nanofibrous membranes (NFMs) were successfully fabricated by electrospinning. A series of NFMs with various weight percentage of CoCl 2 to PA66 were prepared, and their humidity sensitivity based on color changing and quartz crystal microbalance (QCM) were studied. Due to the color change property of cobalt chloride, the as-spun composite NFMs show obviously macroscopic color change from blue to pink as relative humidity (RH) increasing from 12.4 to 97.2%. Moreover, the QCM detection showed a linear dependence on the RH changing and exhibited short response/recovery time (less than 65.4 s/11 s), small hysteresis (less than 11%), good reproducibility, and stability. Owing to the above double sensitive mechanism on RH, the PA66/CoCl 2 composite NFM may show great potential applications from meticulous to coarse.

  16. Colorimetric Humidity Sensors Based on Electrospun Polyamide/CoCl2 Nanofibrous Membranes

    NASA Astrophysics Data System (ADS)

    You, Ming-Hao; Yan, Xu; Zhang, Jun; Wang, Xiao-Xiong; He, Xiao-Xiao; Yu, Miao; Ning, Xin; Long, Yun-Ze

    2017-05-01

    Humidity indicators based on composite polyamide 66/cobalt chloride (PA66/CoCl2) nanofibrous membranes (NFMs) were successfully fabricated by electrospinning. A series of NFMs with various weight percentage of CoCl2 to PA66 were prepared, and their humidity sensitivity based on color changing and quartz crystal microbalance (QCM) were studied. Due to the color change property of cobalt chloride, the as-spun composite NFMs show obviously macroscopic color change from blue to pink as relative humidity (RH) increasing from 12.4 to 97.2%. Moreover, the QCM detection showed a linear dependence on the RH changing and exhibited short response/recovery time (less than 65.4 s/11 s), small hysteresis (less than 11%), good reproducibility, and stability. Owing to the above double sensitive mechanism on RH, the PA66/CoCl2 composite NFM may show great potential applications from meticulous to coarse.

  17. Fibrin matrices enhance the transplant and efficacy of cytotoxic stem cell therapy for post-surgical cancer

    PubMed Central

    Bagó, Juli R.; Pegna, Guillaume J.; Okolie, Onyi; Hingtgen, Shawn D.

    2016-01-01

    Tumor-homing cytotoxic stem cell (SC) therapy is a promising new approach for treating the incurable brain cancer glioblastoma (GBM). However, problems of retaining cytotoxic SCs within the post-surgical GBM resection cavity are likely to significantly limit the clinical utility of this strategy. Here, we describe a new fibrin-based transplant approach capable of increasing cytotoxic SC retention and persistence within the resection cavity, yet remaining permissive to tumoritropic migration. This fibrin-based transplant can effectively treat both solid and post-surgical human GBM in mice. Using our murine model of image-guided model of GBM resection, we discovered that suspending human mesenchymal stem cells (hMSCS) in a fibrin matrix increased initial retention in the surgical resection cavity 2-fold and prolonged persistence in the cavity 3-fold compared to conventional delivery strategies. Time-lapse motion analysis revealed that cytotoxic hMSCs in the fibrin matrix remain tumoritropic, rapidly migrating from the fibrin matrix to co-localize with cultured human GBM cells. We encapsulated hMSCs releasing the cytotoxic agent TRAIL (hMSC-sTR) in fibrin, and found hMSC-sTR/fibrin therapy reduced the viability of multiple 3-D human GBM spheroids and regressed established human GBM xenografts 3-fold in 11 days. Mimicking clinical therapy of surgically resected GBM, intra-cavity seeding of therapeutic hMSC-sTR encapsulated in fibrin reduced post-surgical GBM volumes 6-fold, increased time to recurrence 4-fold, and prolonged median survival from 15 to 36 days compared to control-treated animals. Fibrin-based SC therapy could represent a clinically compatible, viable treatment to suppress recurrence of post-surgical GBM and other lethal cancer types. PMID:26803410

  18. A comparison of scaffold-free and scaffold-based reconstructed human skin models as alternatives to animal use.

    PubMed

    Kinikoglu, Beste

    2017-12-01

    Tissue engineered full-thickness human skin substitutes have various applications in the clinic and in the laboratory, such as in the treatment of burns or deep skin defects, and as reconstructed human skin models in the safety testing of drugs and cosmetics and in the fundamental study of skin biology and pathology. So far, different approaches have been proposed for the generation of reconstructed skin, each with its own advantages and disadvantages. Here, the classic tissue engineering approach, based on cell-seeded polymeric scaffolds, is compared with the less-studied cell self-assembly approach, where the cells are coaxed to synthesise their own extracellular matrix (ECM). The resulting full-thickness human skin substitutes were analysed by means of histological and immunohistochemical analyses. It was found that both the scaffold-free and the scaffold-based skin equivalents successfully mimicked the functionality and morphology of native skin, with complete epidermal differentiation (as determined by the expression of filaggrin), the presence of a continuous basement membrane expressing collagen VII, and new ECM deposition by dermal fibroblasts. On the other hand, the scaffold-free model had a thicker epidermis and a significantly higher number of Ki67-positive proliferative cells, indicating a higher capacity for self-renewal, as compared to the scaffold-based model. 2017 FRAME.

  19. Bioinspired Hierarchical Nanofibrous Silver-Nanoparticle/Anatase-Rutile-Titania Composite as an Anode Material for Lithium-Ion Batteries.

    PubMed

    Luo, Yan; Li, Jiao; Huang, Jianguo

    2016-11-29

    A new bioinspired hierarchical nanofibrous silver-nanoparticle/anatase-rutile-titania (Ag-NP/A-R-titania) composite was fabricated by employing a natural cellulose substance (e.g., commercial laboratory cellulose filter paper) as the structural scaffold template, which was composed of anatase-phase titania (A-titania) nanotubes with rutile-phase titania (R-titania) nanoneedles grown on the surfaces and further silver nanoparticles (AgNPs) immobilized thereon. As it was employed as an anode material for lithium-ion batteries (LIBs), high reversible capacity, enhanced rate performance, and excellent cycling stability were achieved as compared with those of the corresponding cellulose-substance-derived nanotubular A-titania, R-titania, heterogeneous anatase/rutile titania (A-R-titania) composite, and commercial P25 powder. This benefited from its unique porous cross-linked three-dimensional structure inherited from the initial cellulose substance scaffold, which enhances the sufficient electrode/electrolyte contact, relieves the severe volume change upon cycling, and improves the amount of lithium-ion storage; moreover, the high loading content of the silver component in the composite improves the electrical conductivity of the electrode. The structural integrity of the composite was maintained upon long-term charge/discharge cycling, indicating its significant stability.

  20. Dynamic Scaffolding of Socially Regulated Learning in a Computer-Based Learning Environment

    ERIC Educational Resources Information Center

    Molenaar, Inge; Roda, Claudia; van Boxtel, Carla; Sleegers, Peter

    2012-01-01

    The aim of this study is to test the effects of dynamically scaffolding social regulation of middle school students working in a computer-based learning environment. Dyads in the scaffolding condition (N=56) are supported with computer-generated scaffolds and students in the control condition (N=54) do not receive scaffolds. The scaffolds are…

  1. Development of PVA/gelatin nanofibrous scaffolds for Tissue Engineering via electrospinning

    NASA Astrophysics Data System (ADS)

    Perez-Puyana, V.; Jiménez-Rosado, M.; Romero, A.; Guerrero, A.

    2018-03-01

    The electrospinning process is an emerging and relatively easy technique to prepare three-dimensional matrices with micro- and nanofibers. To achieve it, aqueous polymer solutions from synthetic or natural polymers are used. PVA was selected as polymer and gelatin because of its biocompatibility and biodegradability. A complete characterization of the polymeric solutions (density, surface tension, etc) was previously performed. Subsequently, a standard electrospinning process (15 kV, 0.4 ml h-1 and 10 cm) was carried out to obtain scaffolds. The influence of the polymer concentration and the protein addition was observed by performing FTIR analyses and studied by analyzing the water contact angle and SEM images.

  2. Bloch surface waves confined in one dimension with a single polymeric nanofibre

    NASA Astrophysics Data System (ADS)

    Wang, Ruxue; Xia, Hongyan; Zhang, Douguo; Chen, Junxue; Zhu, Liangfu; Wang, Yong; Yang, Erchan; Zang, Tianyang; Wen, Xiaolei; Zou, Gang; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.

    2017-02-01

    Polymeric fibres with small radii (such as ≤125 nm) are delicate to handle and should be laid down on a solid substrate to obtain practical devices. However, placing these nanofibres on commonly used glass substrates prevents them from guiding light. In this study, we numerically and experimentally demonstrate that when the nanofibre is placed on a suitable dielectric multilayer, it supports a guided mode, a Bloch surface wave (BSW) confined in one dimension. The physical origin of this new mode is discussed in comparison with the typical two-dimensional BSW mode. Polymeric nanofibres are easily fabricated to contain fluorophores, which make the dielectric nanofibre and multilayer configuration suitable for developing a large range of new nanometric scale devices, such as processor-memory interconnections, devices with sensitivity to target analytes, incident polarization and multi-colour BSW modes.

  3. Bloch surface waves confined in one dimension with a single polymeric nanofibre

    PubMed Central

    Wang, Ruxue; Xia, Hongyan; Zhang, Douguo; Chen, Junxue; Zhu, Liangfu; Wang, Yong; Yang, Erchan; Zang, Tianyang; Wen, Xiaolei; Zou, Gang; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.

    2017-01-01

    Polymeric fibres with small radii (such as ≤125 nm) are delicate to handle and should be laid down on a solid substrate to obtain practical devices. However, placing these nanofibres on commonly used glass substrates prevents them from guiding light. In this study, we numerically and experimentally demonstrate that when the nanofibre is placed on a suitable dielectric multilayer, it supports a guided mode, a Bloch surface wave (BSW) confined in one dimension. The physical origin of this new mode is discussed in comparison with the typical two-dimensional BSW mode. Polymeric nanofibres are easily fabricated to contain fluorophores, which make the dielectric nanofibre and multilayer configuration suitable for developing a large range of new nanometric scale devices, such as processor–memory interconnections, devices with sensitivity to target analytes, incident polarization and multi-colour BSW modes. PMID:28155871

  4. Effect of collagen sponge and fibrin glue on bone repair

    PubMed Central

    SANTOS, Thiago de Santana; ABUNA, Rodrigo Paolo Flores; de ALMEIDA, Adriana Luisa Gonçalves; BELOTI, Marcio Mateus; ROSA, Adalberto Luiz

    2015-01-01

    ABSTRACT The ability of hemostatic agents to promote bone repair has been investigated using in vitro and in vivo models but, up to now, the results are inconclusive. Objective In this context, the aim of this study was to compare the potential of bone repair of collagen sponge with fibrin glue in a rat calvarial defect model. Material and Methods Defects of 5 mm in diameter were created in rat calvariae and treated with either collagen sponge or fibrin glue; untreated defects were used as control. At 4 and 8 weeks, histological analysis and micro-CT-based histomorphometry were carried out and data were compared by two-way ANOVA followed by Student-Newman-Keuls test when appropriated (p≤0.05). Results Three-dimensional reconstructions showed increased bone formation in defects treated with either collagen sponge or fibrin glue compared with untreated defects, which was confirmed by the histological analysis. Morphometric parameters indicated the progression of bone formation from 4 to 8 weeks. Additionally, fibrin glue displayed slightly higher bone formation rate when compared with collagen sponge. Conclusion Our results have shown the benefits of using collagen sponge and fibrin glue to promote new bone formation in rat calvarial bone defects, the latter being discreetly more advantageous. PMID:26814464

  5. Functionalized hybrid nanofibers to mimic native ECM for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Karuppuswamy, Priyadharsini; Venugopal, Jayarama Reddy; Navaneethan, Balchandar; Laiva, Ashang Luwang; Sridhar, Sreepathy; Ramakrishna, Seeram

    2014-12-01

    Nanotechnology being one of the most promising technologies today shows an extremely huge potential in the field of tissue engineering to mimic the porous topography of natural extracellular matrix (ECM). Natural polymers are incorporated into the synthetic polymers to fabricate functionalized hybrid nanofibrous scaffolds, which improve cell and tissue compatibility. The present study identified the biopolymers - aloe vera, silk fibroin and curcumin incorporated into polycaprolactone (PCL) as suitable substrates for tissue engineering. Different combinations of PCL with natural polymers - PCL/aloe vera, PCL/silk fibroin, PCL/aloe vera/silk fibroin, PCL/aloe vera/silk fibroin/curcumin were electrospun into nanofibrous scaffolds. The fabricated two dimensional nanofibrous scaffolds showed high surface area, appropriate mechanical properties, hydrophilicity and porosity, required for the regeneration of diseased tissues. The nanofibrous scaffolds were characterized by Scanning electron microscope (SEM), porometry, Instron tensile tester, VCA optima contact angle measurement and FTIR to analyze the fiber diameter and morphology, porosity and pore size distribution, mechanical strength, wettability, chemical bonds and functional groups, respectively. The average fiber diameter of obtained fibers ranged from 250 nm to 350 nm and the tensile strength of PCL scaffolds at 4.49 MPa increased upto 8.3 MPa for PCL/silk fibroin scaffolds. Hydrophobicity of PCL decreased with the incorporation of natural polymers, especially for PCL/aloe vera scaffolds. The properties of as-spun nanofiber scaffolds showed their potential as promising scaffold materials in tissue engineering applications.

  6. Towards an ideal polymer scaffold for tendon/ligament tissue engineering

    NASA Astrophysics Data System (ADS)

    Sahoo, Sambit; Ouyang, Hong Wei; Goh, James Cho-Hong; Tay, Tong-Earn; Toh, Siew Lok

    2005-04-01

    Tissue engineering holds promise in treating injured tendons and ligaments by replacing the injured tissues with "engineered tissues" with identical mechanical and functional characteristics. A biocompatible, biodegradable, porous scaffold with optimized architecture, sufficient surface area for cell attachment, growth and proliferation, faborable mechanical properties, and suitable degradation rate is a pre-requisite to achieve success with this aproach. Knitted poly(lactide-co-glycolide) (PLGA) scaffolds comprising of microfibers of 25 micron diameter were coated with PLGA nanofibers on their surfaces by electrospinning technique. A cell suspension of pig bone marrow stromal cells (BMSC) was seeded on the scaffolds by pipetting, and the cell-scaffold constructs were cultured in a CO2 incubator, at 37°C for 1-2 weeks. The "engineered tissues" were then assessed for cell attachment and proliferation, tissue formation, and mechanical properties. Nanofibers, of diameter 300-900 nm, were spread randomly over the knitted scaffold. The reduction in pore-size from about 1 mm (in the knitted scaffold) to a few micrometers (in the nano-microscaffold) allowed cell seeding by direct pipetting, and eliminated the need of a cell-delivery system like fibrin gel. BMSCs were seen to attach and proliferate well on the nano-microscaffold, producing abundant extracellular matrix. Mechanical testing revealed that the cell-seeded nano-microscaffolds possessed slightly higher values of failure load, elastic-region stiffness and toe-region stiffness, than the unseeded scaffolds. The combination of superior mechanical strength and integrity of knitted microfibers, with the large surface area and improved hydrophilicity of the electrospun nanofibers facilitated cell attachment and new tissue formation. This holds promise in tissue engineering of tendon/ligament.

  7. Dynamic Mechanical and Nanofibrous Topological Combinatory Cues Designed for Periodontal Ligament Engineering.

    PubMed

    Kim, Joong-Hyun; Kang, Min Sil; Eltohamy, Mohamed; Kim, Tae-Hyun; Kim, Hae-Won

    2016-01-01

    Complete reconstruction of damaged periodontal pockets, particularly regeneration of periodontal ligament (PDL) has been a significant challenge in dentistry. Tissue engineering approach utilizing PDL stem cells and scaffolding matrices offers great opportunity to this, and applying physical and mechanical cues mimicking native tissue conditions are of special importance. Here we approach to regenerate periodontal tissues by engineering PDL cells supported on a nanofibrous scaffold under a mechanical-stressed condition. PDL stem cells isolated from rats were seeded on an electrospun polycaprolactone/gelatin directionally-oriented nanofiber membrane and dynamic mechanical stress was applied to the cell/nanofiber construct, providing nanotopological and mechanical combined cues. Cells recognized the nanofiber orientation, aligning in parallel, and the mechanical stress increased the cell alignment. Importantly, the cells cultured on the oriented nanofiber combined with the mechanical stress produced significantly stimulated PDL specific markers, including periostin and tenascin with simultaneous down-regulation of osteogenesis, demonstrating the roles of topological and mechanical cues in altering phenotypic change in PDL cells. Tissue compatibility of the tissue-engineered constructs was confirmed in rat subcutaneous sites. Furthermore, in vivo regeneration of PDL and alveolar bone tissues was examined under the rat premaxillary periodontal defect models. The cell/nanofiber constructs engineered under mechanical stress showed sound integration into tissue defects and the regenerated bone volume and area were significantly improved. This study provides an effective tissue engineering approach for periodontal regeneration-culturing PDL stem cells with combinatory cues of oriented nanotopology and dynamic mechanical stretch.

  8. Dynamic Mechanical and Nanofibrous Topological Combinatory Cues Designed for Periodontal Ligament Engineering

    PubMed Central

    Kim, Joong-Hyun; Kang, Min Sil; Eltohamy, Mohamed; Kim, Tae-Hyun; Kim, Hae-Won

    2016-01-01

    Complete reconstruction of damaged periodontal pockets, particularly regeneration of periodontal ligament (PDL) has been a significant challenge in dentistry. Tissue engineering approach utilizing PDL stem cells and scaffolding matrices offers great opportunity to this, and applying physical and mechanical cues mimicking native tissue conditions are of special importance. Here we approach to regenerate periodontal tissues by engineering PDL cells supported on a nanofibrous scaffold under a mechanical-stressed condition. PDL stem cells isolated from rats were seeded on an electrospun polycaprolactone/gelatin directionally-oriented nanofiber membrane and dynamic mechanical stress was applied to the cell/nanofiber construct, providing nanotopological and mechanical combined cues. Cells recognized the nanofiber orientation, aligning in parallel, and the mechanical stress increased the cell alignment. Importantly, the cells cultured on the oriented nanofiber combined with the mechanical stress produced significantly stimulated PDL specific markers, including periostin and tenascin with simultaneous down-regulation of osteogenesis, demonstrating the roles of topological and mechanical cues in altering phenotypic change in PDL cells. Tissue compatibility of the tissue-engineered constructs was confirmed in rat subcutaneous sites. Furthermore, in vivo regeneration of PDL and alveolar bone tissues was examined under the rat premaxillary periodontal defect models. The cell/nanofiber constructs engineered under mechanical stress showed sound integration into tissue defects and the regenerated bone volume and area were significantly improved. This study provides an effective tissue engineering approach for periodontal regeneration—culturing PDL stem cells with combinatory cues of oriented nanotopology and dynamic mechanical stretch. PMID:26989897

  9. Boron nitride nanotubes enhance properties of chitosan-based scaffolds.

    PubMed

    Emanet, Melis; Kazanç, Emine; Çobandede, Zehra; Çulha, Mustafa

    2016-10-20

    With their low toxicity, high mechanical strength and chemical stability, boron nitride nanotubes (BNNTs) are good candidates to enhance the properties of polymers, composites and scaffolds. Chitosan-based scaffolds are exhaustively investigated in tissue engineering because of their biocompatibility and antimicrobial activity. However, their spontaneous degradation prevents their use in a range of tissue engineering applications. In this study, hydroxylated BNNTs (BNNT-OH) were included into a chitosan scaffold and tested for their mechanical strength, swelling behavior and biodegradability. The results show that inclusion of BNNTs-OH into the chitosan scaffold increases the mechanical strength and pore size at values optimal for high cellular proliferation and adhesion. The chitosan/BNNT-OH scaffold was also found to be non-toxic to Human Dermal Fibroblast (HDF) cells due to its slow degradation rate. HDF cell proliferation and adhesion were increased as compared to the chitosan-only scaffold as observed by scanning electron microscopy (SEM) and fluorescent microscopy images. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Integration of colloids into a semi-flexible network of fibrin.

    PubMed

    Bharadwaj, N Ashwin K; Kang, Jin Gu; Hatzell, Marta C; Schweizer, Kenneth S; Braun, Paul V; Ewoldt, Randy H

    2017-02-15

    Typical colloid-polymer composites have particle diameters much larger than the polymer mesh size, but successful integration of smaller colloids into a large-mesh network could allow for the realization of new colloidal states of spatial organization and faster colloid motion which can allow the possibility of switchable re-configuration of colloids or more dramatic stimuli-responsive property changes. Experimental realization of such composites requires solving non-trivial materials selection and fabrication challenges; key questions include composition regime maps of successful composites, the resulting structure and colloidal contact network, and the mechanical properties, in particular the ability to form a network and retain strain stiffening in the presence of colloids. Here, we study these fundamental questions by formulating composites with fluorescent (though not stimuli-responsive) carboxylate modified polystyrene/latex (CML) colloidal particles (diameters 200 nm and 1000 nm) in bovine fibrin networks (a semi-flexible biopolymer network with mesh size 1-5 μm). We describe and characterize two methods of composite preparation: adding colloids before fibrinogen polymerization (Method I), and electrophoretically driving colloids into a network already formed by fibrinogen polymerization (Method II). We directly image the morphology of colloidal and fibrous components with two-color fluorescent confocal microscopy under wet conditions and SEM of fixed dry samples. Mechanical properties are studied with shear and extensional rheology. Both fabrication methods are successful, though with trade-offs. Method I retains the nonlinear strain-stiffening and extensibility of the native fibrin network, but some colloid clustering is observed and fibrin network integrity is lost above a critical colloid concentration that depends on fibrinogen and thrombin concentration. Larger colloids can be included at higher volume fractions before massive aggregation occurs

  11. Platelet-Rich Fibrin: An Autologous Fibrin Matrix in Surgical Procedures: A Case Report and Review of Literature

    PubMed Central

    Eshghpour, Majid; Majidi, Mohamad Reza; Nejat, Amir Hossein

    2012-01-01

    Introduction: The healing process after surgery is a challenging issue for surgeons. Various materials and techniques have been developed to facilitate this process and reduce its period. Fibrin adhesives are often used in cardiothoracic and vascular surgery to seal diffuse microvascular bleeding and in general and plastic surgery to seal wound borders. This Case report and literature review will introduce the various usages of platelet-rich fibrin in different surgical procedures and the method of producing the matrix. Case Report: A 24-year old man with periorbital skin avulsion treated with PRF membrane has been reported and discussed in this paper. Conclusion: Platelet-rich fibrin is a natural autologous fibrin matrix, which can be produced with a simple blood sample and a table centrifuge. The material has been used in a wide range of surgical procedures to shorten the healing period and reduce post-surgical complications. PMID:24303410

  12. Release properties of tannic acid from hydrogen bond driven antioxidative cellulose nanofibrous films.

    PubMed

    Zhou, Bin; Hu, Xiaoqian; Zhu, Jinjin; Wang, Zhenzhen; Wang, Xichang; Wang, Mingfu

    2016-10-01

    Layer-by-layer (LBL) assembled films have been exploited for surface-mediated bioactive compound delivery. Here, an antioxidative hydrogen-bonded multilayer electrospun nanofibrous film was fabricated from tannic acid (TA), acting as a polyphenolic antioxidant, and poly(ethylene glycol) (PEG) via layer-by-layer assembly. It overcame the burst release behavior of nanofibrous carrier, due to the reversible/dynamic nature of hydrogen bond, which was responded to external stimuli. The PEG/TA nanofibrous films disassembled gradually and released TA to the media, when soaked in aqueous solutions. The release rate of TA increased with increasing bilayer number, pH and temperature, but decreased with enhancing ionic strength. The surface morphology of the nanofibrous mats was observed by scanning electron microscopy (SEM). The following antioxidant activity assay revealed that it could scavenge DPPH free radicals and ABTS(+) cation radicals, a major biological activity of polyphenols. This technology can be used to fabricate other phenolic-containing slowly releasing antioxidative nanofibrous films. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Platelet-rich fibrin: the benefits.

    PubMed

    Kumar, Yuvika Raj; Mohanty, Sujata; Verma, Mahesh; Kaur, Raunaq Reet; Bhatia, Priyanka; Kumar, Varun Raj; Chaudhary, Zainab

    2016-01-01

    Current published data presents confusing results about the effects of platelet-rich fibrin on bone, and there is a need for studies that throw light on its effect. Our main objective therefore was to evaluate (by fractal analysis) osseous regeneration in extraction sockets with and without platelet-rich fibrin in a study with a substantial sample and a reliable technique to calibrate its effects on bone cells. We also assessed the soft tissue response. Thirty-four patients had their bilaterally impacted third molars (68 surgical sites) extracted in this split-mouth study, following which platelet-rich fibrin was placed in one of the sockets. Patients were followed up clinically and radiographically, and a pain score and fractal analysis were used to evaluate healing of soft tissue and bone, respectively. We conclude that platelet-rich fibrin improves healing of both soft and hard tissues. Although osseous healing did not differ significantly between the groups, healing of soft tissue as judged by the pain score was significantly better in the experimental group. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. Tensile strength of biological fibrin sealants: a comparative study.

    PubMed

    Lacaze, Laurence; Le Dem, Nicolas; Bubenheim, Michael; Tsilividis, Basile; Mezghani, Julien; Schwartz, Lilian; Francois, Arnaud; Ertaud, Jean Yves; Bagot d'Arc, Maurice; Scotté, Michel

    2012-08-01

    Fibrin sealants are commonly used in liver surgery, although their effectiveness in routine clinical practice remains controversial. Individual sealant characteristics are based on hemostatic effects and adhesion properties that can be experimentally measured using the 'rat skin test' or the 'pig skin test'. This study used a more relevant and realistic experimental canine model to compare the differences in the adhesive properties of four fibrin sealants in hepatectomy: Tisseel/Tissucol, Tachosil, Quixil, and Beriplast. A partial hepatectomy was performed in beagle dogs under general anesthesia to obtain liver cross-sections. Fibrin sealants were allocated to dog livers using a Youden square design. The tensile strength measurement was performed using a traction system to measure the rupture stress point of a small wooden cylinder bonded to the liver cross-section. Significantly greater adhesion properties were observed with Tisseel/Tissucol compared with Quixil or Beriplast (P = 0.002 and 0.001, respectively). Similarly, Tachosil demonstrated significantly greater adhesive properties compared with Beriplast (P = 0.009) or Quixil (P = 0.014). No significant differences were observed between Tisseel/Tissucol and Tachosil or between Beriplast and Quixil. The results of this comparative study demonstrate that different fibrin sealants exhibit different adhesive properties. Tisseel/Tissucol and Tachosil provided greatest adhesion to liver cross-section in our canine model of hepatectomy. These results may enable the optimal choice of fibrin sealants for this procedure in clinical practice. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Hyaluronic acid-based scaffolds for tissue engineering.

    PubMed

    Chircov, Cristina; Grumezescu, Alexandru Mihai; Bejenaru, Ludovic Everard

    2018-01-01

    Hyaluronic acid (HA) is a natural glycosaminoglycan found in the extracellular matrix of most connective tissues. Due to its chemical structure, HA is a hydrophilic polymer and it is characterized by a fast degradation rate. HA-based scaffolds for tissue engineering are intensively studied due to their increased biocompatibility, biodegradability and chemical modification. Depending on the processing technique, scaffolds can be prepared in the form of hydrogels, sponges, cryogels, and injectable hydrogels, all discussed in this review.

  16. Engineering and Modeling Carbon Nanofiller-Based Scaffolds for Tissue Regeneration

    NASA Astrophysics Data System (ADS)

    Al Habis, Nuha Hamad

    Conductive biopolymers are starting to emerge as potential scaffolds of the future. These scaffolds exhibit some unique properties such as inherent conductivity, mechanical and surface properties. Traditionally, a conjugated polymer is used to constitute a conductive network. An alternative method currently being used is nanofillers as additives in the polymer. In this dissertation, we fabricated an intelligent scaffold for use in tissue engineering applications. The main idea was to enhance the mechanical, electrical properties and cell growth of scaffolds by using distinct types of nanofillers such as graphene, carbon nanofiber and carbon black. We identified the optimal concentrations of nano-additive in both fibrous and film scaffolds to obtain the highest mechanical and electrical properties without neglecting any of them. Lastly, we investigated the performance of these scaffold with cell biology. To accomplish these tasks, we first studied the mechanical properties of the scaffold as a function of morphology, concentration and variety of carbon nanofillers. Results showed that there was a gradual increase of the modulus and the fracture strength while using carbon black, carbon nanofiber and graphene, due to the small and strong carbon-to-carbon bonds and the length of the interlayer spacing. Moreover, regardless of the fabrication method, there was an increase in mechanical properties as the concentration of nanofillers increased until a threshold of 7 wt% was reached for the nanofiller film scaffold and 1%wt for the fibrous scaffold. Experimental results of carbon black exhibited a good agreement when compared with data obtained using numerical approaches and analytical models, especially in the case of lower carbon black fractions. Second, we examined the influence of electrical properties of nanofillers based on the concentration and the geometry of carbon nanofillers in the polymer matrix using experimental and numerical simulation approaches. The

  17. Multichannel Discriminative Detection of Explosive Vapors with an Array of Nanofibrous Membranes Loaded with Quantum Dots.

    PubMed

    Wu, Zhaofeng; Duan, Haiming; Li, Zhijun; Guo, Jixi; Zhong, Furu; Cao, Yali; Jia, Dianzeng

    2017-11-20

    The multichannel fluorescent sensor array based on nanofibrous membranes loaded with ZnS quantum dots (QDs) was created and demonstrated for the discriminative detection of explosives. The synergistic effect of the high surface-to-volume ratio of QDs, the good permeability of nanofibrous membranes and the differential response introduced by surface ligands was played by constructing the sensing array using nanofibrous membranes loaded with ZnS QDs featuring several surface ligands. Interestingly, although the fluorescence quenching of the nanofibrous membranes is not linearly related to the exposure time, the fingerprint of each explosive at different times is very similar in shape, and the fingerprints of the three explosives show different shapes. Three saturated vapors of nitroaromatic explosives could be reliably detected and discriminated by the array at room temperature. This work is the first step toward devising a monitoring system for explosives in the field of public security and defense. It could, for example, be coupled with the technology of image recognition and large data analysis for a rapid diagnostic test of explosives. This work further highlights the power of differential, multichannel arrays for the rapid and discriminative detection of a wide range of chemicals.

  18. Multichannel Discriminative Detection of Explosive Vapors with an Array of Nanofibrous Membranes Loaded with Quantum Dots

    PubMed Central

    Wu, Zhaofeng; Duan, Haiming; Li, Zhijun; Guo, Jixi; Zhong, Furu; Cao, Yali; Jia, Dianzeng

    2017-01-01

    The multichannel fluorescent sensor array based on nanofibrous membranes loaded with ZnS quantum dots (QDs) was created and demonstrated for the discriminative detection of explosives. The synergistic effect of the high surface-to-volume ratio of QDs, the good permeability of nanofibrous membranes and the differential response introduced by surface ligands was played by constructing the sensing array using nanofibrous membranes loaded with ZnS QDs featuring several surface ligands. Interestingly, although the fluorescence quenching of the nanofibrous membranes is not linearly related to the exposure time, the fingerprint of each explosive at different times is very similar in shape, and the fingerprints of the three explosives show different shapes. Three saturated vapors of nitroaromatic explosives could be reliably detected and discriminated by the array at room temperature. This work is the first step toward devising a monitoring system for explosives in the field of public security and defense. It could, for example, be coupled with the technology of image recognition and large data analysis for a rapid diagnostic test of explosives. This work further highlights the power of differential, multichannel arrays for the rapid and discriminative detection of a wide range of chemicals. PMID:29156627

  19. Effects of surfactants on the formation of gelatin nanofibres for controlled release of curcumin.

    PubMed

    Deng, Lingli; Kang, Xuefan; Liu, Yuyu; Feng, Fengqin; Zhang, Hui

    2017-09-15

    This work studied the effects of non-ionic Tween 80, anionic sodium dodecyl sulfonate (SDS) and cationic cetyltrimethyl ammonium bromide (CTAB) surfactants on the morphology of electrospun gelatin nanofibres, and on the release behaviour, antioxidant activity and antimicrobial activity of encapsulated curcumin. Scanning electron micrographs showed that addition of SDS significantly increased the nanofibre diameter. Fourier transform infrared and differential scanning calorimetry analysis indicated that gelatin and SDS intimately interacted via electrostatic and hydrophobic interactions. However, these interactions inhibited the release of curcumin from the nanofibres with SDS, while CTAB and Tween 80 both facilitated the release. SDS and Tween 80 showed protective effects on curcumin from the attack of 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radicals, and the increased release of curcumin from nanofibres with CTAB or Tween 80 resulted in a higher reducing power. The antimicrobial activity results suggested that the curcumin encapsulated gelatin nanofibres with CTAB exhibited effective inhibition against Staphylococcus aureus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Comparison of fibrin clots derived from peripheral blood and bone marrow.

    PubMed

    Shoji, Takeshi; Nakasa, Tomoyuki; Yoshizuka, Masaaki; Yamasaki, Takuma; Yasunaga, Yuji; Adachi, Nobuo; Ochi, Mitsuo

    2017-03-01

    Autologous fibrin clots derived from peripheral blood (pb-fibrin clot) and bone marrow (bm-fibrin clot) are thought to be effective for tissue regeneration. However, there is no report detailing the amount of growth factors in pb-/bm-fibrin clot. In this study we evaluated the amount of growth factors in human pb-/bm-fibrin clot, and prove the validity of fibrin clot for clinical use. Human pb-/bm-fibrin clots were obtained during surgery. In the first experiment, enzyme-linked immunosorbent assay (ELISA) was performed for detecting the amount of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1), fibroblast growth factor basic (bFGF), hepatocyte growth factor (HGF), transforming growth factor-beta (TGF-β), platelet derived-growth factors-AB (PDGF-AB), and stromal cell-derived factor-1 (SDF-1). In the second experiment, the efficacy of fibrin clot on the osteogenic differentiation and fibroblast proliferation was evaluated. Pb-/bm-fibrin clots were incubated in human osteoblast derived from mesenchymal stromal cells (MSCs) or human skin fibroblast. Alizarin red staining and real-time PCR (COL1A1, RUNX2) were performed for the detection of osteogenic potential. Cell-growth assay (WST-8) and real-time PCR (COL1A1) were also performed for the detection of the potential of fibroblast proliferation. ELISA analysis revealed that the amount of VEGF, HGF, bFGF, IGF-1, and SDF-1 of bm-fibrin clot group is higher than that of pb-fibrin clot group with statistical differences. Besides, we confirmed that bm-fibrin clot has much potential for the osteogenic differentiation and fibroblast proliferation. The positive outcomes confirm the efficacy of pb-/bm-fibrin clot, and bm-fibrin clot was proved to have much potential for tissue regeneration compared with pb-fibrin clot. The current study showed the potential of a strategy for regenerative medicine using bm-fibrin clot.

  1. Designing and Implementing Web-Based Scaffolding Tools for Technology-Enhanced Socioscientific Inquiry

    ERIC Educational Resources Information Center

    Shin, Suhkyung; Brush, Thomas A.; Glazewski, Krista D.

    2017-01-01

    This study explores how web-based scaffolding tools provide instructional support while implementing a socio-scientific inquiry (SSI) unit in a science classroom. This case study focused on how students used web-based scaffolding tools during SSI activities, and how students perceived the SSI unit and the scaffolding tools embedded in the SSI…

  2. Lytic resistance of fibrin containing red blood cells

    PubMed Central

    Wohner, Nikolett; Sótonyi, Péter; Machovich, Raymund; Szabó, László; Tenekedjiev, Kiril; Silva, Marta M.C.G.; Longstaff, Colin; Kolev, Krasimir

    2012-01-01

    Objective Arterial thrombi contain variable amounts of red blood cell (RBC), which interact with fibrinogen through an eptifibatide-sensitive receptor and modify the structure of fibrin. Here we evaluate the modulator role of RBCs in the lytic susceptibility of fibrin. Methods and Results If fibrin is formed at increasing RBC counts, scanning electron microscopy evidenced a decrease in fiber diameter from 150 nm to 96 nm at 40 %(v/v) RBC, an effect susceptible to eptifibatide inhibition (restoring 140 nm diameter). RBC prolonged the lysis time in a homogeneous-phase fibrinolytic assay with tissue plasminogen activator (tPA) by up to 22.7±1.6 %, but not in the presence of eptifibatide. Confocal laser microscopy using green fluorescent protein (GFP)-labeled tPA and orange fluorescent fibrin showed that 20-40 %(v/v) RBC significantly slowed down the dissolution of the clots. tPA-GFP did not accumulate on the surface of fibrin containing RBC at any cell count above 10 %. The presence of RBC in the clot suppressed the tPA-induced plasminogen activation resulting in a 45 % less plasmin generated after 30 min activation at 40 %(v/v) RBC. Conclusion RBCs confer lytic resistance to fibrin resulting from modified fibrin structure and impaired plasminogen activation through a mechanism that involves eptifibatide-sensitive fibrinogen-RBC interactions. PMID:21737785

  3. Fabrication and durable antibacterial properties of 3D porous wet electrospun RCSC/PCL nanofibrous scaffold with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Mei; Lin, Han; Wang, Yilong; Yang, Guang; Zhao, He; Sun, Dahui

    2017-08-01

    Electrospunnanofibers are used as three-dimensional (3D) scaffold materials that can alter cell attachment and cell proliferation, change the antibacterial properties of materials, and can be used as wound dressings. But the fabrication of porous 3D scaffold structure and the antibacterial properties enhancing are challenges remained to improve. With the states here, a Ranachensinensis skin collagen (RCSC)/poly(ɛ-caprolactone) (PCL)AgNP-loaded3D nanofiber scaffold is fabricated as a wound dressing material by using an improved wet electrospinning method (blending). The nanoscale of the AgNPs is proved. The 3D porous morphologies of the materials with different AgNP loadings, are determined with field emission scanning electron microscopy (FESEM) and the presence and uniformity distribution of AgNPs is confirmed by Energy dispersive X-ray (EDX) spectroscopy. The silver-ion release rates, antibacterial properties, and cytotoxicities of dressing materials with different AgNP contents are evaluated using ICP-AES, the zone inhibition method, and MTT testing. These results showed that the improved wet electrospun is an effective way to fabricate AgNP loaded 3D scaffold materials with porous structure and nearly 90% porosity and the presence of AgNPs in dressing materials strengthen the antibacterial properties. The RCSC/PCL 3D scaffold materials containing 2.0%AgNP would be promising for dressing materials application nearly without cytotoxicities.

  4. Retina tissue engineering by conjunctiva mesenchymal stem cells encapsulated in fibrin gel: Hypotheses on novel approach to retinal diseases treatment.

    PubMed

    Soleimannejad, Mostafa; Ebrahimi-Barough, Somayeh; Nadri, Samad; Riazi-Esfahani, Mohammad; Soleimani, Masoud; Tavangar, Seyed Mohammad; Ai, Jafar

    2017-04-01

    Retinitis pigmentosa (RP) and age related macular degeneration (AMD) are two retinal diseases that progress by photoreceptor cells death. In retinal transplantation studies, stem and progenitor cells inject into the sub retinal space or vitreous and then these cells can be migrate to the site of retinal degeneration and locate in the host retina and restitute vision. Our hypothesis suggests that using human conjunctiva stem cells (as the source for increasing the number of human stem cells progenitor cells in retina dysfunction diseases) with fibrin gel and also assessing its relating in vitro (cellular and molecular processes) and in vivo (vision tests and pathology) could be a promising strategy for treatment of AMD and RP disorders. In this idea, we describe a novel approach for retina tissue engineering with differentiation of conjunctiva mesenchymal stem cells (CJMSCs) into photoreceptor-like cells in fibrin gel with induction medium contain taurine. For assessment of differentiation, immunocytochemistry and real time PCR are used for the expression of Rhodopsin, RPE65, Nestin as differentiated photoreceptor cell markers in 2D and 3D culture. The results show that fibrin gel will offer a proper 3D scaffold for CJMSCs derived photoreceptor cell-like cells. Application of immune-privileged, readily available sources of adult stem cells like human conjunctiva stem cells with fibrin gel would be a promising strategy to increase the number of photoreceptor progenitor cells and promote involuntary angiogenesis needed in retina layer repair and regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Stretching single fibrin fibers hampers their lysis.

    PubMed

    Li, Wei; Lucioni, Tomas; Li, Rongzhong; Bonin, Keith; Cho, Samuel S; Guthold, Martin

    2017-09-15

    Blood clots, whose main structural component is a mesh of microscopic fibrin fibers, experience mechanical strain from blood flow, clot retraction and interactions with platelets and other cells. We developed a transparent, striated and highly stretchable substrate made from fugitive glue (a styrenic block copolymer) to investigate how mechanical strain affects lysis of single, suspended fibrin fibers. In this suspended fiber assay, lysis manifested itself by fiber elongation, thickening (disassembly), fraying and collapse. Stretching single fibrin fibers significantly hampered their lysis. This effect was seen in uncrosslinked and crosslinked fibers. Crosslinking (without stretching) also hampered single fiber lysis. Our data suggest that strain is a novel mechanosensitive factor that regulates blood clot dissolution (fibrinolysis) at the single fiber level. At the molecular level of single fibrin molecules, strain may distort, or hinder access to, plasmin cleavage sites and thereby hamper lysis. Fibrin fibers are the major structural component of a blood clot. We developed a highly stretchable substrate made from fugitive glue and a suspended fibrin fiber lysis assay to investigate the effect of stretching on single fibrin fibers lysis. The key findings from our experiments are: 1) Fibers thicken and elongate upon lysis; 2) stretching strongly reduces lysis; 3) this effect is more pronounced for uncrosslinked fibers; and 4) stretching fibers has a similar effect on reducing lysis as crosslinking fibers. At the molecular level, strain may distort plasmin cleavage sites, or restrict access to those sites. Our results suggest that strain may be a novel mechanobiological factor that regulates fibrinolysis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. The effect of fibrin on cultured vascular endothelial cells.

    PubMed

    Kadish, J L; Butterfield, C E; Folkman, J

    1979-01-01

    The normal cobblestone monolayer architecture of cultured vascular endothelium becomes rapidly disorganized after contact of the cell layer with a fibrin clot. The cells of a confluent endothelial monolayer separate into individual migratory cells in 4--6 hr after contact with fibrin. The effect is reversible in that removal of the fibrin clot results in resumption of the normal morphology within about 2 hr. No other cell type tested exhibits the same change in organization when exposed to fibrin. A similar morphological change in endothelium does occur after the cell layer is overlaid with a collagen fibril gel but a gel of methylcellulose has no effect. It is proposed that the change in behavior of endothelial cells in response to contact with fibrin may represent a cellular component of fibrinolysis. The implications of this finding for the pathophysiology of disease states involving intravascular fibrin deposition are discussed.

  7. Fibrin structural and diffusional analysis suggests that fibers are permeable to solute transport.

    PubMed

    Leonidakis, Kimon Alexandros; Bhattacharya, Pinaki; Patterson, Jennifer; Vos, Bart E; Koenderink, Gijsje H; Vermant, Jan; Lambrechts, Dennis; Roeffaers, Maarten; Van Oosterwyck, Hans

    2017-01-01

    Fibrin hydrogels are promising carrier materials in tissue engineering. They are biocompatible and easy to prepare, they can bind growth factors and they can be prepared from a patient's own blood. While fibrin structure and mechanics have been extensively studied, not much is known about the relation between structure and diffusivity of solutes within the network. This is particularly relevant for solutes with a size similar to that of growth factors. A novel methodological approach has been used in this study to retrieve quantitative structural characteristics of fibrin hydrogels, by combining two complementary techniques, namely confocal fluorescence microscopy with a fiber extraction algorithm and turbidity measurements. Bulk rheological measurements were conducted to determine the impact of fibrin hydrogel structure on mechanical properties. From these measurements it can be concluded that variations in the fibrin hydrogel structure have a large impact on the rheological response of the hydrogels (up to two orders of magnitude difference in storage modulus) but only a moderate influence on the diffusivity of dextran solutes (up to 25% difference). By analyzing the diffusivity measurements by means of the Ogston diffusion model we further provide evidence that individual fibrin fibers can be semi-permeable to solute transport, depending on the average distance between individual protofibrils. This can be important for reducing mass transport limitations, for modulating fibrinolysis and for growth factor binding, which are all relevant for tissue engineering. Fibrin is a natural biopolymer that has drawn much interest as a biomimetic carrier in tissue engineering applications. We hereby use a novel combined approach for the structural characterization of fibrin networks based on optical microscopy and light scattering methods that can also be applied to other fibrillar hydrogels, like collagen. Furthermore, our findings on the relation between solute transport

  8. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality.

    PubMed

    Si, Yang; Yu, Jianyong; Tang, Xiaomin; Ge, Jianlong; Ding, Bin

    2014-12-16

    Three-dimensional nanofibrous aerogels (NFAs) that are both highly compressible and resilient would have broad technological implications for areas ranging from electrical devices and bioengineering to damping materials; however, creating such NFAs has proven extremely challenging. Here we report a novel strategy to create fibrous, isotropically bonded elastic reconstructed (FIBER) NFAs with a hierarchical cellular structure and superelasticity by combining electrospun nanofibres and the fibrous freeze-shaping technique. Our approach causes the intrinsically lamellar deposited electrospun nanofibres to assemble into elastic bulk aerogels with tunable densities and desirable shapes on a large scale. The resulting FIBER NFAs exhibit densities of >0.12 mg cm(-3), rapid recovery from deformation, efficient energy absorption and multifunctionality in terms of the combination of thermal insulation, sound absorption, emulsion separation and elasticity-responsive electric conduction. The successful synthesis of such fascinating materials may provide new insights into the design and development of multifunctional NFAs for various applications.

  9. A dendrite-suppressing composite ion conductor from aramid nanofibres.

    PubMed

    Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A

    2015-01-27

    Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate 'weak links' where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.

  10. A dendrite-suppressing composite ion conductor from aramid nanofibres

    NASA Astrophysics Data System (ADS)

    Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A.

    2015-01-01

    Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate ‘weak links’ where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.

  11. Novel macro-microporous gelatin scaffold fabricated by particulate leaching for soft tissue reconstruction with adipose-derived stem cells.

    PubMed

    Phull, Manraj K; Eydmann, Trevor; Roxburgh, Judy; Sharpe, Justin R; Lawrence-Watt, Diana J; Phillips, Gary; Martin, Yella

    2013-02-01

    The restoration of body contours as shaped by adipose tissue remains a clinical challenge specifically in patients who have experienced loss of contour due to trauma, surgical removal of tumours or congenital abnormalities. We have developed a novel macro-microporous biomaterial for use in soft tissue re-bulking and augmentation. Alginate beads provided the pore template for the construct. Incorporation, and subsequent dissolution, of the beads within a 7 % (w/v) gelatin matrix, produced a highly porous scaffold with an average pore size of 2.01 ± 0.08 mm. The ability of this scaffold to support the in vitro growth and differentiation of human adipose-derived stem cells (ADSCs) was then investigated. Histological analysis confirmed that the scaffold itself provided a suitable environment to support the growth of ADSCs on the scaffold walls. When delivered into the macropores in a fibrin hydrogel, ADSCs proliferated and filled the pores. In addition, ADSCs could readily be differentiated along the adipogenic lineage. These results therefore describe a novel scaffold that can support the proliferation and delivery of ADSCs. The scaffold is the first stage in developing a clinical alternative to current treatment methods for soft tissue reconstruction.

  12. 21 CFR 864.7320 - Fibrinogen/fibrin degradation products assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fibrinogen/fibrin degradation products assay. 864.7320 Section 864.7320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7320 Fibrinogen/fibrin degradation products assay. (a) Identification. A fibrinogen/fibrin degradation...

  13. Engineering dextran-based scaffolds for drug delivery and tissue repair

    PubMed Central

    Sun, Guoming; Mao, Jeremy J

    2015-01-01

    Owing to its chemically reactive hydroxyl groups, dextran can be modified with different functional groups to form spherical, tubular and 3D network structures. The development of novel functional scaffolds for efficient controlled release and tissue regeneration has been a major research interest, and offers promising therapeutics for many diseases. Dextran-based scaffolds are naturally biodegradable and can serve as bioactive carriers for many protein biomolecules. The reconstruction of the in vitro microenvironment with proper signaling cues for large-scale tissue regenerative scaffolds has yet to be fully developed, and remains a significant challenge in regenerative medicine. This paper will describe recent advances in dextran-based polymers and scaffolds for controlled release and tissue engineering. Special attention is given to the development of dextran-based hydrogels that are precisely manipulated with desired structural properties and encapsulated with defined angiogenic growth factors for therapeutic neovascularization, as well as their potential for wound repair. PMID:23210716

  14. Incorporation of amoxicillin-loaded organic montmorillonite into poly(ester-urethane) urea nanofibers as a functional tissue engineering scaffold.

    PubMed

    Yu, Kui; Zhu, Tonghe; Wu, Yu; Zhou, Xiangxiang; Yang, Xingxing; Wang, Juan; Fang, Jun; El-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei

    2017-03-01

    A dual drug-loaded system is a promising alternative for the sustained drug release system and skin tissue engineering. In this study, a natural sodium montmorillonite (Na-MMT) modified by cetyl trimethyl ammonium bromide (CTAB) was prepared as a carrier to load a model drug - amoxicillin (AMX), the modified organic montmorillonite (CTAB-OMMT) loaded with AMX was marked as AMX@CTAB-OMMT and was subsequently incorporated into poly(ester-urethane) urea (PEUU) and gelatin hybrid nanofibers via electrospinning, resulting in a new drug-loaded nanofibrous scaffold (AMX@CTAB-OMMT-PU75). The scanning electron microscopy (SEM) result showed that the fiber morphology did not change after the embedding of AMX@CTAB-OMMT. Meanwhile, there was a significant increase of mechanical properties for PEUU/Gelatin hybrid nanofibers (PU75) after the incorporation of AMX@CTAB-OMMT and CTAB-OMMT. Importantly, AMX@CTAB-OMMT-PU75 nanofibers showed a kind of sustained drug release property which could be justified reasonably for the controlled release of AMX depending on the various application. The sustained release property could be identified roughly by the result of antibacterial test. The anaphylactic reaction test proved that there was no any anaphylactic reaction or inflammation on the back of rat for AMX@CTAB-OMMT-PU75 nanofibers. Consequently, the prepared drug-loaded AMX@CTAB-OMMT-PU75 nanofibrous scaffold is a promising candidate for application in the skin tissue engineering field and controlled drug release system. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Ferromagnetic and photocatalytic behaviors observed in Ca-doped BiFeO3 nanofibres

    NASA Astrophysics Data System (ADS)

    Feng, Yan-Nan; Wang, Huan-Chun; Luo, Yi-Dong; Shen, Yang; Lin, Yuan-Hua

    2013-04-01

    Ca-doped BiFeO3 nanofibres have been fabricated by electrospinning method. Our results indicate that phase transition from space group R3c to C222 can be observed by the Ca doping. These BiFeO3 nanofibres show obvious room temperature ferromagnetic behaviors, and saturation magnetization can be enhanced with the Ca-doping concentration increasing, which could be correlated with the variation of the ratio of Fe2+/Fe3+ valence state. The BiFeO3 nanofibres show obvious photocatalytic performance and can be improved by the Ca-doping.

  16. Use of fibrin sealants in cardiovascular surgery: a systematic review.

    PubMed

    Rousou, John A

    2013-05-01

    Fibrin sealants are used for hemostasis and tissue adherence. This systematic review summarizes published clinical data for fibrin sealant use in cardiovascular surgery. A literature search for the following terms was conducted using PubMed and EMBASE: (TISSEEL or Tissucol or Beriplast P or Evicel or Quixil or Crosseal or Reliseal or Fibringluraas or Bolheal or Tachosil or Vivostat or Vitagel or Artiss or "fibrin glue" or "fibrin sealant" or "fibrin tissue adhesive") and (cardiac or cardiovascular or vascular or heart or coronary or surgery). Case reports and series were excluded; although reports of controlled trials were preferred, uncontrolled trial data were also considered. Clinical trials and chart review analyses of fibrin sealants were identified and summarized. Although clinical trial data were available for other agents, the majority of published studies examined TISSEEL. Overall, TISSEEL and other fibrin sealants showed improvements over standard of care or control groups for a variety of predefined endpoints. Safety findings are also summarized. Data from these studies showed that fibrin sealants were well tolerated and provided effective hemostasis in a range of cardiac and aortic surgeries. © 2013 Wiley Periodicals, Inc.

  17. Enhancing students' higher order thinking skills through computer-based scaffolding in problem-based learning

    NASA Astrophysics Data System (ADS)

    Kim, Nam Ju

    This multiple paper dissertation addressed several issues in Problem-based learning (PBL) through conceptual analysis, meta-analysis, and empirical research. PBL is characterized by ill-structured tasks, self-directed learning process, and a combination of individual and cooperative learning activities. Students who lack content knowledge and problem-solving skills may struggle to address associated tasks that are beyond their current ability levels in PBL. This dissertation addressed a) scaffolding characteristics (i.e., scaffolding types, delivery method, customization) and their effects on students' perception of optimal challenge in PBL, b) the possibility of virtual learning environments for PBL, and c) the importance of information literacy for successful PBL learning. Specifically, this dissertation demonstrated the effectiveness of scaffolding customization (i.e., fading, adding, and fading/adding) to enhance students' self-directed learning in PBL. Moreover, the effectiveness of scaffolding was greatest when scaffolding customization is self-selected than based on fixed-time interval and their performance. This suggests that it might be important for students to take responsibility for their learning in PBL and individualized and just-in-time scaffolding can be one of the solutions to address K-12 students' difficulties in improving problem-solving skills and adjusting to PBL.

  18. Direct Writing Electrospinning of Scaffolds with Multidimensional Fiber Architecture for Hierarchical Tissue Engineering.

    PubMed

    Chen, Honglin; Malheiro, Afonso de Botelho Ferreira Braga; van Blitterswijk, Clemens; Mota, Carlos; Wieringa, Paul Andrew; Moroni, Lorenzo

    2017-11-08

    Nanofibrous structures have long been used as scaffolds for tissue engineering (TE) applications, due to their favorable characteristics, such as high porosity, flexibility, high cell attachment and enhanced proliferation, and overall resemblance to native extracellular matrix (ECM). Such scaffolds can be easily produced at a low cost via electrospinning (ESP), but generally cannot be fabricated with a regular and/or complex geometry, characterized by macropores and uniform thickness. We present here a novel technique for direct writing (DW) with solution ESP to produce complex three-dimensional (3D) multiscale and ultrathin (∼1 μm) fibrous scaffolds with desirable patterns and geometries. This technique was simply achieved via manipulating technological conditions, such as spinning solution, ambient conditions, and processing parameters. Three different regimes in fiber morphologies were observed, including bundle with dispersed fibers, bundle with a core of aligned fibers, and single fibers. The transition between these regimes depended on tip to collector distance (Wd) and applied voltage (V), which could be simplified as the ratio V/Wd. Using this technique, a scaffold mimicking the zonal organization of articular cartilage was further fabricated as a proof of concept, demonstrating the ability to better mimic native tissue organization. The DW scaffolds directed tissue organization and fibril matrix orientation in a zone-dependent way. Comparative expression of chondrogenic markers revealed a substantial upregulation of Sox9 and aggrecan (ACAN) on these structures compared to conventional electrospun meshes. Our novel method provides a simple way to produce customized 3D ultrathin fibrous scaffolds, with great potential for TE applications, in particular those for which anisotropy is of importance.

  19. Incorporation of Active DNA/Cationic Polymer Polyplexes into Hydrogel Scaffolds

    PubMed Central

    Lei, Yuguo; Huang, Suxian; Sharif-Kashani, Pooria; Chen, Yong; Kavehpour, Pirouz; Segura, Tatiana

    2010-01-01

    The effective and sustained delivery of DNA and siRNAs locally would increase the applicability of gene therapy in tissue regeneration and cancer therapy. One promising approach is to use hydrogel scaffolds to encapsulate and deliver nucleotides in the form of nanoparticles to the disease sites. However, this approach is currently limited by the inability to load concentrated and active gene delivery nanoparticles into the hydrogels due to the severe nanoparticle aggregation during the loading process. Here, we present a process to load concentrated and un-aggregated non-viral gene delivery nanoparticles, using DNA/polyethylene imine (PEI) polyplexes as an example, into neutral polyethylene glycol (PEG), negatively charged hyaluronic acid (HA) and protein fibrin hydrogels crosslinked through various chemistries. The encapsulated polyplexes are highly active both in vitro and in vivo. We believe this process will significantly advance the applications of hydrogel scaffold mediated non-viral gene delivery in tissue regeneration and cancer therapy. PMID:20822811

  20. An anisotropically and heterogeneously aligned patterned electrospun scaffold with tailored mechanical property and improved bioactivity for vascular tissue engineering.

    PubMed

    Xu, He; Li, Haiyan; Ke, Qinfei; Chang, Jiang

    2015-04-29

    The development of vascular scaffolds with controlled mechanical properties and stimulatory effects on biological activities of endothelial cells still remains a significant challenge to vascular tissue engineering. In this work, we reported an innovative approach to prepare a new type of vascular scaffolds with anisotropically and heterogeneously aligned patterns using electrospinning technique with unique wire spring templates, and further investigated the structural effects of the patterned electrospun scaffolds on mechanical properties and angiogenic differentiation of human umbilical vein endothelial cells (HUVECs). Results showed that anisotropically aligned patterned nanofibrous structure was obtained by depositing nanofibers on template in a structurally different manner, one part of nanofibers densely deposited on the embossments of wire spring and formed cylindrical-like structures in the transverse direction, while others loosely suspended and aligned along the longitudinal direction, forming a three-dimensional porous microstructure. We further found that such structures could efficiently control the mechanical properties of electrospun vascular scaffolds in both longitudinal and transverse directions by altering the interval distances between the embossments of patterned scaffolds. When HUVECs were cultured on scaffolds with different microstructures, the patterned scaffolds distinctively promoted adhesion of HUVECs at early stage and proliferation during the culture period. Most importantly, cells experienced a large shape change associated with cell cytoskeleton and nuclei remodeling, leading to a stimulatory effect on angiogenesis differentiation of HUVECs by the patterned microstructures of electrospun scaffolds, and the scaffolds with larger distances of intervals showed a higher stimulatory effect. These results suggest that electrospun scaffolds with the anisotropically and heterogeneously aligned patterns, which could efficiently control the

  1. Cytotoxic T Lymphocyte Trafficking and Survival in an Augmented Fibrin Matrix Carrier

    PubMed Central

    Zou, Zhaoxia; Denny, Erin; Brown, Christine E.; Jensen, Michael C.; Li, Gang; Fujii, Tatsuhiro; Neman, Josh; Jandial, Rahul; Chen, Mike

    2012-01-01

    Cell-based therapies have intriguing potential for the treatment of a variety of neurological disorders. One such example is genetically engineered cytotoxic T lymphocytes (CTLs) that are being investigated in brain tumor clinical trials. The development of methods for CTL delivery is critical to their use in the laboratory and clinical setting. In our study, we determined whether CTLs can migrate through fibrin matrices and if their migration, survival, and function could be modulated by adding chemokines to the matrix. Our results indicated that CTLs can freely migrate through fibrin matrices. As expected, the addition of the monocyte chemotactic protein-1 (MCP-1), also known as chemokine C-C motif ligand 2 (CCL2), to the surrounding media increased egress of the CTLs out of the fibrin clot. Interleukin (IL) -2 and/or IL-15 embedded in the matrix enhanced T cell survival and further promoted T cell migration. The interleukin-13 receptor alpha 2 specific (IL-13R alpha2) T cells that traveled out of the fibrin clot retained the capacity to kill U251 glioma cells. In summary, CTLs can survive and migrate robustly in fibrin matrices. These processes can be influenced by modification of matrix constituents. We conclude that fibrin matrices may be suitable T cell carriers and can be used to facilitate understanding of T cell interaction with the surrounding microenvironment. PMID:22496835

  2. Cytotoxic T lymphocyte trafficking and survival in an augmented fibrin matrix carrier.

    PubMed

    Zou, Zhaoxia; Denny, Erin; Brown, Christine E; Jensen, Michael C; Li, Gang; Fujii, Tatsuhiro; Neman, Josh; Jandial, Rahul; Chen, Mike

    2012-01-01

    Cell-based therapies have intriguing potential for the treatment of a variety of neurological disorders. One such example is genetically engineered cytotoxic T lymphocytes (CTLs) that are being investigated in brain tumor clinical trials. The development of methods for CTL delivery is critical to their use in the laboratory and clinical setting. In our study, we determined whether CTLs can migrate through fibrin matrices and if their migration, survival, and function could be modulated by adding chemokines to the matrix. Our results indicated that CTLs can freely migrate through fibrin matrices. As expected, the addition of the monocyte chemotactic protein-1 (MCP-1), also known as chemokine C-C motif ligand 2 (CCL2), to the surrounding media increased egress of the CTLs out of the fibrin clot. Interleukin (IL) -2 and/or IL-15 embedded in the matrix enhanced T cell survival and further promoted T cell migration. The interleukin-13 receptor alpha 2 specific (IL-13R alpha2) T cells that traveled out of the fibrin clot retained the capacity to kill U251 glioma cells. In summary, CTLs can survive and migrate robustly in fibrin matrices. These processes can be influenced by modification of matrix constituents. We conclude that fibrin matrices may be suitable T cell carriers and can be used to facilitate understanding of T cell interaction with the surrounding microenvironment.

  3. Synthesizing Results From Empirical Research on Computer-Based Scaffolding in STEM Education

    PubMed Central

    Belland, Brian R.; Walker, Andrew E.; Kim, Nam Ju; Lefler, Mason

    2016-01-01

    Computer-based scaffolding assists students as they generate solutions to complex problems, goals, or tasks, helping increase and integrate their higher order skills in the process. However, despite decades of research on scaffolding in STEM (science, technology, engineering, and mathematics) education, no existing comprehensive meta-analysis has synthesized the results of these studies. This review addresses that need by synthesizing the results of 144 experimental studies (333 outcomes) on the effects of computer-based scaffolding designed to assist the full range of STEM learners (primary through adult education) as they navigated ill-structured, problem-centered curricula. Results of our random effect meta-analysis (a) indicate that computer-based scaffolding showed a consistently positive (ḡ = 0.46) effect on cognitive outcomes across various contexts of use, scaffolding characteristics, and levels of assessment and (b) shed light on many scaffolding debates, including the roles of customization (i.e., fading and adding) and context-specific support. Specifically, scaffolding’s influence on cognitive outcomes did not vary on the basis of context-specificity, presence or absence of scaffolding change, and logic by which scaffolding change is implemented. Scaffolding’s influence was greatest when measured at the principles level and among adult learners. Still scaffolding’s effect was substantial and significantly greater than zero across all age groups and assessment levels. These results suggest that scaffolding is a highly effective intervention across levels of different characteristics and can largely be designed in many different ways while still being highly effective. PMID:28344365

  4. Clinical experience with fibrin glue in cardiac surgery.

    PubMed

    Köveker, G; de Vivie, E R; Hellberg, K D

    1981-10-01

    Cardiac surgery is often associated with hemostatic abnormalities leading to severe bleeding. Special problems are to be expected, if prosthetic material has to be implanted. Preclotting of Dacron prostheses with blood is well established but failures are sometimes encountered. Several years ago a new hemostatic sealing system (fibrin glue) was introduced into therapy. Since 1978 fibrin glue has been applied in 176 patients. The indications were: 1. sealing of woven Dacron prostheses, 2. bleeding from suture-holes (Gore-Tex), 3. diffuse myocardial bleeding and 4. prevention of kinking of coronary artery grafts. In 32 patients with an aortoventriculoplasty operation using Dacron the "blood preclotting" and "fibrin sealing" methods were compared. In the fibrin glue group there was a significant reduction in postoperative blood loss as well as a shortening of the operation time (period of protamin administration to skin closure). No fibrinolytic dissolution of the fibrin layer on the prostheses was observed.

  5. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    PubMed Central

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries. PMID:25563733

  6. Material Characterization of Microsphere-Based Scaffolds with Encapsulated Raw Materials

    PubMed Central

    Sridharan, BanuPriya; Mohan, Neethu; Berkland, Cory J.; Detamore, Michael S.

    2016-01-01

    “Raw materials,” or materials capable of serving both as building blocks and as signals, which are often but not always natural materials, are taking center stage in biomaterials for contemporary regenerative medicine. In osteochondral tissue engineering, a field leveraging the underlying bone to facilitate cartilage regeneration, common raw materials include chondroitin sulfate (CS) for cartilage and β-tricalcium phosphate (TCP) for bone. Building on our previous work with gradient scaffolds based on microspheres, here we delved deeper into the characterization of individual components. In the current study, the release of CS and TCP from poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds was evaluated over a time period of 4 weeks. Raw material encapsulated groups were compared to ‘blank’ groups and evaluated for surface topology, molecular weight, and mechanical performance as a function of time. The CS group may have led to increased surface porosity, and the addition of CS improved the mechanical performance of the scaffold. The finding that CS was completely released into the surrounding media by 4 weeks has a significant impact on future in vivo studies, given rapid bioavailability. The addition of TCP seemed to contribute to the rough external appearance of the scaffold. The current study provides an introduction to degradation patterns of homogenous raw material encapsulated scaffolds, providing characterization data to advance the field of microsphere-based scaffolds in tissue engineering. PMID:27040236

  7. Scaffolding in Problem-Based Learning for Low-Achieving Learners

    ERIC Educational Resources Information Center

    Haruehansawasin, Sanit; Kiattikomol, Paiboon

    2018-01-01

    This research investigates scaffolding approaches for supporting low-achieving learners in a problem-based learning environment. The study was conducted in a vocational school with 3 different approaches to scaffolding using 3 groups in addition to a control group. The area of focus was a learning module using computer spreadsheets. The results…

  8. Basal Lamina Mimetic Nanofibrous Peptide Networks for Skeletal Myogenesis

    NASA Astrophysics Data System (ADS)

    Yasa, I. Ceren; Gunduz, Nuray; Kilinc, Murat; Guler, Mustafa O.; Tekinay, Ayse B.

    2015-11-01

    Extracellular matrix (ECM) is crucial for the coordination and regulation of cell adhesion, recruitment, differentiation and death. Therefore, equilibrium between cell-cell and cell-matrix interactions and matrix-associated signals are important for the normal functioning of cells, as well as for regeneration. In this work, we describe importance of adhesive signals for myoblast cells’ growth and differentiation by generating a novel ECM mimetic peptide nanofiber scaffold system. We show that not only structure but also composition of bioactive signals are important for cell adhesion, growth and differentiation by mimicking the compositional and structural properties of native skeletal muscle basal lamina. We conjugated laminin-derived integrin binding peptide sequence, “IKVAV”, and fibronectin-derived well known adhesive sequence, “RGD”, into peptide nanostructures to provide adhesive and myogenic cues on a nanofibrous morphology. The myogenic and adhesive signals exhibited a synergistic effect on model myoblasts, C2C12 cells. Our results showed that self-assembled peptide nanofibers presenting laminin derived epitopes support adhesion, growth and proliferation of the cells and significantly promote the expression of skeletal muscle-specific marker genes. The functional peptide nanofibers used in this study present a biocompatible and biodegradable microenvironment, which is capable of supporting the growth and differentiation of C2C12 myoblasts into myotubes.

  9. Basal Lamina Mimetic Nanofibrous Peptide Networks for Skeletal Myogenesis

    PubMed Central

    Yasa, I. Ceren; Gunduz, Nuray; Kilinc, Murat; Guler, Mustafa O.; Tekinay, Ayse B.

    2015-01-01

    Extracellular matrix (ECM) is crucial for the coordination and regulation of cell adhesion, recruitment, differentiation and death. Therefore, equilibrium between cell-cell and cell-matrix interactions and matrix-associated signals are important for the normal functioning of cells, as well as for regeneration. In this work, we describe importance of adhesive signals for myoblast cells’ growth and differentiation by generating a novel ECM mimetic peptide nanofiber scaffold system. We show that not only structure but also composition of bioactive signals are important for cell adhesion, growth and differentiation by mimicking the compositional and structural properties of native skeletal muscle basal lamina. We conjugated laminin-derived integrin binding peptide sequence, “IKVAV”, and fibronectin-derived well known adhesive sequence, “RGD”, into peptide nanostructures to provide adhesive and myogenic cues on a nanofibrous morphology. The myogenic and adhesive signals exhibited a synergistic effect on model myoblasts, C2C12 cells. Our results showed that self-assembled peptide nanofibers presenting laminin derived epitopes support adhesion, growth and proliferation of the cells and significantly promote the expression of skeletal muscle-specific marker genes. The functional peptide nanofibers used in this study present a biocompatible and biodegradable microenvironment, which is capable of supporting the growth and differentiation of C2C12 myoblasts into myotubes. PMID:26555958

  10. ILP-based maximum likelihood genome scaffolding

    PubMed Central

    2014-01-01

    Background Interest in de novo genome assembly has been renewed in the past decade due to rapid advances in high-throughput sequencing (HTS) technologies which generate relatively short reads resulting in highly fragmented assemblies consisting of contigs. Additional long-range linkage information is typically used to orient, order, and link contigs into larger structures referred to as scaffolds. Due to library preparation artifacts and erroneous mapping of reads originating from repeats, scaffolding remains a challenging problem. In this paper, we provide a scalable scaffolding algorithm (SILP2) employing a maximum likelihood model capturing read mapping uncertainty and/or non-uniformity of contig coverage which is solved using integer linear programming. A Non-Serial Dynamic Programming (NSDP) paradigm is applied to render our algorithm useful in the processing of larger mammalian genomes. To compare scaffolding tools, we employ novel quantitative metrics in addition to the extant metrics in the field. We have also expanded the set of experiments to include scaffolding of low-complexity metagenomic samples. Results SILP2 achieves better scalability throughg a more efficient NSDP algorithm than previous release of SILP. The results show that SILP2 compares favorably to previous methods OPERA and MIP in both scalability and accuracy for scaffolding single genomes of up to human size, and significantly outperforms them on scaffolding low-complexity metagenomic samples. Conclusions Equipped with NSDP, SILP2 is able to scaffold large mammalian genomes, resulting in the longest and most accurate scaffolds. The ILP formulation for the maximum likelihood model is shown to be flexible enough to handle metagenomic samples. PMID:25253180

  11. Fibronectin alters the rate of formation and structure of the fibrin matrix.

    PubMed

    Ramanathan, Anand; Karuri, Nancy

    2014-01-10

    Plasma fibronectin is a vital component of the fibrin clot; however its role on clot structure is not clearly understood. The goal of this study was to examine the influence of fibronectin on the kinetics of formation, structural characteristics and composition of reconstituted fibrin clots or fibrin matrices. Fibrin matrices were formed by adding thrombin to 1, 2 or 4 mg/ml fibrinogen supplemented with 0-0.4 mg/ml fibronectin. The rate of fibrin matrix formation was then monitored by measuring light absorbance properties at different time points. Confocal microscopy of fluorescein conjugated fibrinogen was used to visualize the structural characteristics of fibrin matrices. The amount of fibronectin in fibrin matrices was determined through electrophoresis and immunoblotting of solubilized matrices. Fibronectin concentration positively correlated with the initial rate of fibrin matrix formation and with steady state light absorbance values of fibrin matrices. An increase in fibronectin concentration resulted in thinner and denser fibers in the fibrin matrices. Electrophoresis and immunoblotting showed that fibronectin was covalently and non-covalently bound to fibrin matrices and in the form of high molecular weight multimers. The formation of fibronectin multimers was attributed to cross-linking of fibronectin by trace amounts Factor XIIIa. These findings are novel because they link results from light absorbance studies to microcopy analyses and demonstrate an influence of fibronectin on fibrin matrix structural characteristics. This data is important in developing therapies that destabilize fibrin clots. Copyright © 2014. Published by Elsevier Inc.

  12. A novel albumin-based tissue scaffold for autogenic tissue engineering applications.

    PubMed

    Li, Pei-Shan; Lee, I-Liang; Yu, Wei-Lin; Sun, Jui-Sheng; Jane, Wann-Neng; Shen, Hsin-Hsin

    2014-07-18

    Tissue scaffolds provide a framework for living tissue regeneration. However, traditional tissue scaffolds are exogenous, composed of metals, ceramics, polymers, and animal tissues, and have a defined biocompatibility and application. This study presents a new method for obtaining a tissue scaffold from blood albumin, the major protein in mammalian blood. Human, bovine, and porcine albumin was polymerised into albumin polymers by microbial transglutaminase and was then cast by freeze-drying-based moulding to form albumin tissue scaffolds. Scanning electron microscopy and material testing analyses revealed that the albumin tissue scaffold possesses an extremely porous structure, moderate mechanical strength, and resilience. Using a culture of human mesenchymal stem cells (MSCs) as a model, we showed that MSCs can be seeded and grown in the albumin tissue scaffold. Furthermore, the albumin tissue scaffold can support the long-term osteogenic differentiation of MSCs. These results show that the albumin tissue scaffold exhibits favourable material properties and good compatibility with cells. We propose that this novel tissue scaffold can satisfy essential needs in tissue engineering as a general-purpose substrate. The use of this scaffold could lead to the development of new methods of artificial fabrication of autogenic tissue substitutes.

  13. Piezoelectric and pyroelectric properties of DL-alanine and L-lysine amino-acid polymer nanofibres

    NASA Astrophysics Data System (ADS)

    de Matos Gomes, Etelvina; Viseu, Teresa; Belsley, Michael; Almeida, Bernardo; Costa, Maria Margarida R.; Rodrigues, Vitor H.; Isakov, Dmitry

    2018-04-01

    The piezoelectric and pyroelectric properties of electrospun polyethylene oxide nanofibres embedded with polar amino acids DL-alanine and L-lysine hemihydrate are reported. A high pyroelectric coefficient of 150 μC m‑2 K‑1 was measured for L-lysine hemihydrate and piezoelectric current densities up to 7 μA m‑2 were obtained for the nanofibres. The study reveals a potential for polymer amino-acid nanofibres to be used as biocompatible energy harvesters for autonomous circuit applications like in implantable electronics.

  14. Fibrin Sealants in Dura Sealing: A Systematic Literature Review

    PubMed Central

    2016-01-01

    Background Fibrin sealants are widely used in neurosurgery to seal the suture line, provide watertight closure, and prevent cerebrospinal fluid leaks. The aim of this systematic review is to summarize the current efficacy and safety literature of fibrin sealants in dura sealing and the prevention/treatment of cerebrospinal fluid leaks. Methods A comprehensive electronic literature search was run in the following databases: Cochrane Database of Systematic Reviews, Cochrane Central Resister of Controlled Trials, clinicaltrials.gov, MEDLINE/PubMed, and EMBASE. Titles and abstracts of potential articles of interest were reviewed independently by 3 of the authors. Results A total of 1006 database records and additional records were identified. After screening for duplicates and relevance, a total of 78 articles were assessed by the investigators for eligibility. Thirty-eight were excluded and the full-text of 40 articles were included in the qualitative synthesis. Seven of these included only safety data and were included in the safety assessment. The remaining 33 articles included findings from 32 studies that enrolled a total of 2935 patients who were exposed to fibrin sealant. Among these 33 studies there were only 3 randomized controlled trials, with the remaining being prospective cohort analysis, case controlled studies, prospective or retrospective case series. One randomized controlled trial, with 89 patients exposed to fibrin sealant, found a greater rate of intraoperative watertight dura closure in the fibrin sealant group than the control group (92.1% versus 38.0%, p<0.001); however, post-operative cerebrospinal fluid leakage occurred in more fibrin sealant than control patients (6.7% versus 2.0%, p>0.05). Other clinical trials evaluated the effect of fibrin sealant in the postoperative prevention of cerebrospinal fluid leaks. These were generally lower level evidence studies (ie, not prospective, randomized, controlled trials) that were not designed or

  15. Fibrin Sealants in Dura Sealing: A Systematic Literature Review.

    PubMed

    Esposito, Felice; Angileri, Filippo Flavio; Kruse, Peter; Cavallo, Luigi Maria; Solari, Domenico; Esposito, Vincenzo; Tomasello, Francesco; Cappabianca, Paolo

    2016-01-01

    Fibrin sealants are widely used in neurosurgery to seal the suture line, provide watertight closure, and prevent cerebrospinal fluid leaks. The aim of this systematic review is to summarize the current efficacy and safety literature of fibrin sealants in dura sealing and the prevention/treatment of cerebrospinal fluid leaks. A comprehensive electronic literature search was run in the following databases: Cochrane Database of Systematic Reviews, Cochrane Central Resister of Controlled Trials, clinicaltrials.gov, MEDLINE/PubMed, and EMBASE. Titles and abstracts of potential articles of interest were reviewed independently by 3 of the authors. A total of 1006 database records and additional records were identified. After screening for duplicates and relevance, a total of 78 articles were assessed by the investigators for eligibility. Thirty-eight were excluded and the full-text of 40 articles were included in the qualitative synthesis. Seven of these included only safety data and were included in the safety assessment. The remaining 33 articles included findings from 32 studies that enrolled a total of 2935 patients who were exposed to fibrin sealant. Among these 33 studies there were only 3 randomized controlled trials, with the remaining being prospective cohort analysis, case controlled studies, prospective or retrospective case series. One randomized controlled trial, with 89 patients exposed to fibrin sealant, found a greater rate of intraoperative watertight dura closure in the fibrin sealant group than the control group (92.1% versus 38.0%, p<0.001); however, post-operative cerebrospinal fluid leakage occurred in more fibrin sealant than control patients (6.7% versus 2.0%, p>0.05). Other clinical trials evaluated the effect of fibrin sealant in the postoperative prevention of cerebrospinal fluid leaks. These were generally lower level evidence studies (ie, not prospective, randomized, controlled trials) that were not designed or powered to demonstrate a

  16. Long-Standing Motor and Sensory Recovery following Acute Fibrin Sealant Based Neonatal Sciatic Nerve Repair

    PubMed Central

    Ferreira Junior, Rui Seabra

    2016-01-01

    Brachial plexus lesion results in loss of motor and sensory function, being more harmful in the neonate. Therefore, this study evaluated neuroprotection and regeneration after neonatal peripheral nerve coaptation with fibrin sealant. Thus, P2 neonatal Lewis rats were divided into three groups: AX: sciatic nerve axotomy (SNA) without treatment; AX+FS: SNA followed by end-to-end coaptation with fibrin sealant derived from snake venom; AX+CFS: SNA followed by end-to-end coaptation with commercial fibrin sealant. Results were analyzed 4, 8, and 12 weeks after lesion. Astrogliosis, microglial reaction, and synapse preservation were evaluated by immunohistochemistry. Neuronal survival, axonal regeneration, and ultrastructural changes at ventral spinal cord were also investigated. Sensory-motor recovery was behaviorally studied. Coaptation preserved synaptic covering on lesioned motoneurons and led to neuronal survival. Reactive gliosis and microglial reaction decreased in the same groups (AX+FS, AX+CFS) at 4 weeks. Regarding axonal regeneration, coaptation allowed recovery of greater number of myelinated fibers, with improved morphometric parameters. Preservation of inhibitory synaptic terminals was accompanied by significant improvement in the motor as well as in the nociceptive recovery. Overall, the present data suggest that acute repair of neonatal peripheral nerves with fibrin sealant results in neuroprotection and regeneration of motor and sensory axons. PMID:27446617

  17. Advanced interstitial chemotherapy combined with targeted treatment of malignant glioma in rats by using drug-loaded nanofibrous membranes.

    PubMed

    Tseng, Yuan-Yun; Su, Chen-Hsing; Yang, Shun-Tai; Huang, Yin-Chen; Lee, Wei-Hwa; Wang, Yi-Chuan; Liu, Shou-Cheng; Liu, Shih-Jung

    2016-09-13

    Glioblastoma multiforme (GBM), the most prevalent and malignant form of a primary brain tumour, is resistant to chemotherapy. In this study, we concurrently loaded three chemotherapeutic agents [bis-chloroethylnitrosourea, irinotecan, and cisplatin; BIC] into 50:50 poly[(d,l)-lactide-co-glycolide] (PLGA) nanofibres and an antiangiogenic agent (combretastatin) into 75:25 PLGA nanofibres [BIC and combretastatin (BICC)/PLGA]. The BICC/PLGA nanofibrous membranes were surgically implanted onto the brain surfaces of healthy rats for conducting pharmacodynamic studies and onto C6 glioma-bearing rats for estimating the therapeutic efficacy.The chemotherapeutic agents were rapidly released from the 50:50 PLGA nanofibres after implantation, followed by the release of combretastatin (approximately 2 weeks later) from the 75:25 PLGA nanofibres. All drug concentrations remained higher in brain tissues than in the blood for more than 8 weeks. The experimental results, including attenuated malignancy, retarded tumour growth, and prolonged survival in tumour-bearing rats, demonstrated the efficacy of the BICC/PLGA nanofibrous membranes. Furthermore, the efficacy of BIC/PLGA and BICC/PLGA nanofibrous membranes was compared. The BICC/PLGA nanofibrous membranes more efficiently retarded the tumour growth and attenuated the malignancy of C6 glioma-bearing rats. Moreover, the addition of combretastatin did not significantly change the drug release behaviour of the BIC/PLGA nanofibrous membranes. The present advanced and novel interstitial chemotherapy and targeted treatment provide a potential strategy and regimen for treating GBM.

  18. Circulating Microparticles Alter Formation, Structure, and Properties of Fibrin Clots.

    PubMed

    Zubairova, Laily D; Nabiullina, Roza M; Nagaswami, Chandrasekaran; Zuev, Yuriy F; Mustafin, Ilshat G; Litvinov, Rustem I; Weisel, John W

    2015-12-04

    Despite the importance of circulating microparticles in haemostasis and thrombosis, there is limited evidence for potential causative effects of naturally produced cell-derived microparticles on fibrin clot formation and its properties. We studied the significance of blood microparticles for fibrin formation, structure, and susceptibility to fibrinolysis by removing them from platelet-free plasma using filtration. Clots made in platelet-free and microparticle-depleted plasma samples from the same healthy donors were analyzed in parallel. Microparticles accelerate fibrin polymerisation and support formation of more compact clots that resist internal and external fibrinolysis. These variations correlate with faster thrombin generation, suggesting thrombin-mediated kinetic effects of microparticles on fibrin formation, structure, and properties. In addition, clots formed in the presence of microparticles, unlike clots from the microparticle-depleted plasma, contain 0.1-0.5-μm size granular and CD61-positive material on fibres, suggesting that platelet-derived microparticles attach to fibrin. Therefore, the blood of healthy individuals contains functional microparticles at the levels that have a procoagulant potential. They affect the structure and stability of fibrin clots indirectly through acceleration of thrombin generation and through direct physical incorporation into the fibrin network. Both mechanisms underlie a potential role of microparticles in haemostasis and thrombosis as modulators of fibrin formation, structure, and resistance to fibrinolysis.

  19. Control of crosslinking for tailoring collagen-based scaffolds stability and mechanics

    PubMed Central

    Davidenko, N.; Schuster, C.F.; Bax, D.V.; Raynal, N.; Farndale, R.W.; Best, S.M.; Cameron, R.E.

    2015-01-01

    We provide evidence to show that the standard reactant concentrations used in tissue engineering to cross-link collagen-based scaffolds are up to 100 times higher than required for mechanical integrity in service, and stability against degradation in an aqueous environment. We demonstrate this with a detailed and systematic study by comparing scaffolds made from (a) collagen from two different suppliers, (b) gelatin (a partially denatured collagen) and (c) 50% collagen–50% gelatin mixtures. The materials were processed, using lyophilisation, to produce homogeneous, highly porous scaffolds with isotropic architectures and pore diameters ranging from 130 to 260 μm. Scaffolds were cross-linked using a carbodiimide treatment, to establish the effect of the variations in crosslinking conditions (down to very low concentrations) on the morphology, swelling, degradation and mechanical properties of the scaffolds. Carbodiimide concentration of 11.5 mg/ml was defined as the standard (100%) and was progressively diluted down to 0.1%. It was found that 10-fold reduction in the carbodiimide content led to the significant increase (almost 4-fold) in the amount of free amine groups (primarily on collagen lysine residues) without compromising mechanics and stability in water of all resultant scaffolds. The importance of this finding is that, by reducing cross-linking, the corresponding cell-reactive carboxylate anions (collagen glutamate or aspartate residues) that are essential for integrin-mediated binding remain intact. Indeed, a 10-fold reduction in carbodiimide crosslinking resulted in near native-like cell attachment to collagen scaffolds. We have demonstrated that controlling the degree of cross-linking, and hence retaining native scaffold chemistry, offers a major step forward in the biological performance of collagen- and gelatin-based tissue engineering scaffolds. Statement of Significance This work developed collagen and gelatine-based scaffolds with structural

  20. A Pilot Meta-Analysis of Computer-Based Scaffolding in STEM Education

    ERIC Educational Resources Information Center

    Belland, Brian R.; Walker, Andrew E.; Olsen, Megan Whitney; Leary, Heather

    2015-01-01

    This paper employs meta-analysis to determine the influence of computer-based scaffolding characteristics and study and test score quality on cognitive outcomes in science, technology, engineering, and mathematics education at the secondary, college, graduate, and adult levels. Results indicate that (a) computer-based scaffolding positively…

  1. Light responsive hybrid nanofibres for on-demand therapeutic drug and cell delivery.

    PubMed

    Li, Yan-Fang; Slemming-Adamsen, Peter; Wang, Jing; Song, Jie; Wang, Xueqin; Yu, Ying; Dong, Mingdong; Chen, Chunying; Besenbacher, Flemming; Chen, Menglin

    2017-08-01

    Smart materials for on-demand delivery of therapeutically active agents are challenging in pharmaceutical and biomaterials science. In the present study, we report hybrid nanofibres capable of being reversibly controlled to pulsatile deliver both therapeutic drugs and cells on-demand of near-infrared (NIR) light. The nanofibres, fabricated by co-electrospinning of poly (N-isopropylacrylamide), silica-coated gold nanorods and polyhedral oligomeric silsesquinoxanes have, for the first time, demonstrated rapid, reversible large-volume changes of 83% on-demand with NIR stimulation, with retained nanofibrous morphology. Combining with the extracellular matrix-mimicking fibrillary properties, the nanofibres achieved accelerated release of model drug or cells on demand with NIR triggering. The release of the model drug doxorubicin demonstrated normal anti-cancer efficacy by reducing the viability of human cervical cancer HeLa cells by 97% in 48 h. In parallel, the fibres allowed model cell NIH3T3 fibroblast entrapment, adhesion, proliferation, differentiation and, upon NIR irradiation, cell release with undisturbed cellular function. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Fibrin chain cross-linking, fibrinolysis, and in vivo sealing efficacy of differently structured fibrin sealants.

    PubMed

    Hedrich, Hans Christian; Simunek, Manuela; Reisinger, Sonja; Ferguson, James; Gulle, Heinz; Goppelt, Andreas; Redl, Heinz

    2012-08-01

    In this study, we compared the sealing characteristics and efficacy of a fibrin sealant with reduced plasminogen (FS-rplg) and a fibrin sealant with aprotinin as a fibrinolysis inhibitor (FS-apr). The relevant sealing characteristics including clot structure, fibrin chain cross-linking, and clot lysis were tested in the laboratory. The sealing efficacy was then investigated in a follow-up animal model to determine differences in the in vivo sealing properties. A total of 46 animals were available for the final analysis with 23 animals in each treatment arm. In conclusion, we saw differences in vitro between FS-rplg and FS-apr in ultrastructure and α-chain cross-linking rates as well as in the rate of fibrinolysis. These differences may explain the significantly enhanced sealing efficacy in FS-apr compared to FS-rplg shown in vivo in a rabbit intestinal model. Copyright © 2012 Wiley Periodicals, Inc.

  3. Human Kunitz-type protease inhibitor engineered for enhanced matrix retention extends longevity of fibrin biomaterials.

    PubMed

    Briquez, Priscilla S; Lorentz, Kristen M; Larsson, Hans M; Frey, Peter; Hubbell, Jeffrey A

    2017-08-01

    Aprotinin is a broad-spectrum serine protease inhibitor used in the clinic as an anti-fibrinolytic agent in fibrin-based tissue sealants. However, upon re-exposure, some patients suffer from hypersensitivity immune reactions likely related to the bovine origin of aprotinin. Here, we aimed to develop a human-derived substitute to aprotinin. Based on sequence homology analyses, we identified the Kunitz-type protease inhibitor (KPI) domain of human amyloid-β A4 precursor protein as being a potential candidate. While KPI has a lower intrinsic anti-fibrinolytic activity than aprotinin, we reasoned that its efficacy is additionally limited by its fast release from fibrin material, just as aprotinin's is. Thus, we engineered KPI variants for controlled retention in fibrin biomaterials, using either covalent binding through incorporation of a substrate for the coagulation transglutaminase Factor XIIIa or through engineering of extracellular matrix protein super-affinity domains for sequestration into fibrin. We showed that both engineered KPI variants significantly slowed plasmin-mediated fibrinolysis in vitro, outperforming aprotinin. In vivo, our best engineered KPI variant (incorporating the transglutaminase substrate) extended fibrin matrix longevity by 50%, at a dose at which aprotinin did not show efficacy, thus qualifying it as a competitive substitute of aprotinin in fibrin sealants. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. Microsphere-Based Scaffolds Encapsulating Tricalcium Phosphate And Hydroxyapatite For Bone Regeneration

    PubMed Central

    Gupta, Vineet; Lyne, Dina V.; Barragan, Marilyn; Berkland, Cory J.; Detamore, Michael S.

    2016-01-01

    Bioceramic mixtures of tricalcium phosphate (TCP) and hydroxyapatite (HAp) are widely used for bone regeneration because of their excellent cytocompatibility, osteoconduction, and osteoinduction. Therefore, we hypothesized that incorporation of a mixture of TCP and HAp in microsphere-based scaffolds would enhance osteogenesis of rat bone marrow stromal cells (rBMSCs) compared to a positive control of scaffolds with encapsulated bone-morphogenic protein-2 (BMP-2). Poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds encapsulating TCP and HAp mixtures in two different ratios (7:3 and 1:1) were fabricated with the same net ceramic content (30 wt%) to evaluate how incorporation of these ceramic mixtures would affect the osteogenesis in rBMSCs. Encapsulation of TCP/HAp mixtures impacted microsphere morphologies and the compressive moduli of the scaffolds. Additionally, TCP/HAp mixtures enhanced the end-point secretion of extracellular matrix (ECM) components relevant to bone tissue compared to the “blank” (PLGA-only) microsphere-based scaffolds as evidenced by the biochemical, gene expression, histology, and immunohistochemical characterization. Moreover, the TCP/HAp mixture groups even surpassed the BMP-2 positive control group in some instances in terms of matrix synthesis and gene expression. Lastly, gene expression data suggested that the rBMSCs responded differently to different TCP/HAp ratios presented to them. Altogether, it can be concluded that TCP/HAp mixtures stimulated the differentiation of rBMSCs toward an osteoblastic phenotype, and therefore may be beneficial in gradient microsphere-based scaffolds for osteochondral regeneration. PMID:27272903

  5. Differential regulation of macrophage inflammatory activation by fibrin and fibrinogen.

    PubMed

    Hsieh, Jessica Y; Smith, Tim D; Meli, Vijaykumar S; Tran, Thi N; Botvinick, Elliot L; Liu, Wendy F

    2017-01-01

    Fibrin is a major component of the provisional extracellular matrix formed during tissue repair following injury, and enables cell infiltration and anchoring at the wound site. Macrophages are dynamic regulators of this process, advancing and resolving inflammation in response to cues in their microenvironment. Although much is known about how soluble factors such as cytokines and chemokines regulate macrophage polarization, less is understood about how insoluble and adhesive cues, specifically the blood coagulation matrix fibrin, influence macrophage behavior. In this study, we observed that fibrin and its precursor fibrinogen elicit distinct macrophage functions. Culturing macrophages on fibrin gels fabricated by combining fibrinogen with thrombin stimulated secretion of the anti-inflammatory cytokine, interleukin-10 (IL-10). In contrast, exposure of macrophages to soluble fibrinogen stimulated high levels of inflammatory cytokine tumor necrosis factor alpha (TNF-α). Macrophages maintained their anti-inflammatory behavior when cultured on fibrin gels in the presence of soluble fibrinogen. In addition, adhesion to fibrin matrices inhibited TNF-α production in response to stimulation with LPS and IFN-γ, cytokines known to promote inflammatory macrophage polarization. Our data demonstrate that fibrin exerts a protective effect on macrophages, preventing inflammatory activation by stimuli including fibrinogen, LPS, and IFN-γ. Together, our study suggests that the presentation of fibrin(ogen) may be a key switch in regulating macrophage phenotype behavior, and this feature may provide a valuable immunomodulatory strategy for tissue healing and regeneration. Fibrin is a fibrous protein resulting from blood clotting and provides a provisional matrix into which cells migrate and to which they adhere during wound healing. Macrophages play an important role in this process, and are needed for both advancing and resolving inflammation. We demonstrate that culture of

  6. Combination of heterologous fibrin sealant and bioengineered human embryonic stem cells to improve regeneration following autogenous sciatic nerve grafting repair.

    PubMed

    Mozafari, Roghayeh; Kyrylenko, Sergiy; Castro, Mateus Vidigal; Ferreira, Rui Seabra; Barraviera, Benedito; Oliveira, Alexandre Leite Rodrigues

    2018-01-01

    Peripheral nerve injury is a worldwide clinical problem, and the preferred surgical method for treating it is the end-to-end neurorrhaphy. When it is not possible due to a large nerve gap, autologous nerve grafting is used. However, these surgical techniques result in nerve regeneration at highly variable degrees. It is thus very important to seek complementary techniques to improve motor and sensory recovery. One promising approach could be cell therapy. Transplantation therapy with human embryonic stem cells (hESCs) is appealing because these cells are pluripotent and can differentiate into specialized cell types and have self-renewal ability. Therefore, the main objective of this study was to find conditions under which functional recovery is improved after sciatic nerve neurorrhaphy. We assumed that hESC, either alone or in combination with heterologous fibrin sealant scaffold, could be used to support regeneration in a mouse model of sciatic nerve injury and repair via autografting with end-to-end neurorrhaphy. Five millimeters of the sciatic nerve of C57BL/6 J mice were transected off and rotated 180 degrees to simulate an injury, and then stumps were sutured. Next, we applied heterologous fibrin sealant and/or human embryonic stem cells genetically altered to overexpress fibroblast growth factor 2 (FGF2) at the site of the injury. The study was designed to include six experimental groups comprising neurorrhaphy (N), neurorrhaphy + heterologous fibrin sealant (N + F), neurorrhaphy + heterologous fibrin sealant + doxycycline (N + F + D), neurorrhaphy + heterologous fibrin sealant + wild-type hESC (N + F + W), neurorrhaphy + heterologous fibrin sealant + hESC off (N + F + T), and neurorrhaphy + heterologous fibrin sealant + hESC on via doxycycline (N + F + D + T). We evaluated the recovery rate using Catwalk and von Frey functional recovery tests, as well as immunohistochemistry analysis. The experiments indicated that

  7. Scaffolding in geometry based on self regulated learning

    NASA Astrophysics Data System (ADS)

    Bayuningsih, A. S.; Usodo, B.; Subanti, S.

    2017-12-01

    This research aim to know the influence of problem based learning model by scaffolding technique on junior high school student’s learning achievement. This research took location on the junior high school in Banyumas. The research data obtained through mathematic learning achievement test and self-regulated learning (SRL) questioner. Then, the data analysis used two ways ANOVA. The results showed that scaffolding has positive effect to the mathematic learning achievement. The mathematic learning achievement use PBL-Scaffolding model is better than use PBL. The high SRL category student has better mathematic learning achievement than middle and low SRL categories, and then the middle SRL category has better than low SRL category. So, there are interactions between learning model with self-regulated learning in increasing mathematic learning achievement.

  8. Driven Microbead Rheology of Fibrin Gels

    NASA Astrophysics Data System (ADS)

    Spero, R. C.; Smith, B.; Cribb, J.; O'Brien, T. E.; Lord, S. T.; Superfine, R.

    2006-11-01

    The rheological properties of fibrin, the primary structural element in blood clots, have been widely studied at the macroscopic level, because its mechanical properties are critical to its physiological function. Microbead rheology (MBR) shows promise for advancing this field in various ways. First, MBR can be performed on small sample quantities (˜1 uL), which is useful for high-throughput experimentation; second, fibrin's complex structure has a range of length scales, such that large cells may not propagate while small viruses diffuse easily through the mesh. Microbeads from 10 um to under 500 nm can probe these length scales. These characteristics suggest MBR could be useful in screening drugs for disorders involving variant clot rigidity. We report on efforts to measure the rheology of fibrin gels over the course of its polymerization. A magnetic force microscope applies pulsed forces to microbeads suspended in fibrin gels. Beads are monitored on an inverted microscope and their positions tracked by software over the 30-minute course of the gelation. A single mode Jefferies model is used to extract viscosity and elasticity from the beads' creep-recovery.

  9. Vivostat®: an autologous fibrin sealant as useful adjunct in endoscopic transnasal CSF-leak repair.

    PubMed

    Tomazic, Peter Valentin; Edlinger, Stefan; Gellner, Verena; Koele, Wolfgang; Gerstenberger, Claus; Braun, Hannes; Mokry, Michael; Stammberger, Heinz

    2015-06-01

    The benefit of fibrin glue for reduction of postoperative CSF-leaks after endoscopic skull base surgery is not clearly evident in literature. However, its use is supposed to be beneficial in fixing grafting material. As of today there is no specific data available for otolaryngological procedures. A retrospective data analysis at a tertiary care referral center on 73 patients treated endoscopically transnasally for CSF-leaks at the ENT-department Graz between 2009 and 2012 was performed. Primary closure rate between conventional fibrin glue and autologous fibrin glue were analyzed. The Vivostat(®) system was used in 33 CSF-leak closures and in 40 cases conventional fibrin glue was used. Comparing the two methods the primary closure rate using the autologous Vivostat(®) system was 75.8 and 85.0 % with conventional fibrin glue. The secondary closure the rates were 90.9 % with Vivostat(®) 92.5 % with conventional fibrin glue. The Vivosat(®) system is a useful adjunct in endoscopic CSF-leak closure. Its advantages over conventional fibrin glue are its application system for fixation of grafting material particularly in underlay techniques. Despite this advantage it cannot replace grafting material or is a substitute for proper endoscopic closure which is reflected by the closure rates.

  10. Synthesis of three-dimensional calcium carbonate nanofibrous structure from eggshell using femtosecond laser ablation

    PubMed Central

    2011-01-01

    Background Natural biomaterials from bone-like minerals derived from avian eggshells have been considered as promising bone substitutes owing to their biodegradability, abundance, and lower price in comparison with synthetic biomaterials. However, cell adhesion to bulk biomaterials is poor and surface modifications are required to improve biomaterial-cell interaction. Three-dimensional (3D) nanostructures are preferred to act as growth support platforms for bone and stem cells. Although there have been several studies on generating nanoparticles from eggshells, no research has been reported on synthesizing 3D nanofibrous structures. Results In this study, we propose a novel technique to synthesize 3D calcium carbonate interwoven nanofibrous platforms from eggshells using high repetition femtosecond laser irradiation. The eggshell waste is value engineered to calcium carbonate nanofibrous layer in a single step under ambient conditions. Our striking results demonstrate that by controlling the laser pulse repetition, nanostructures with different nanofiber density can be achieved. This approach presents an important step towards synthesizing 3D interwoven nanofibrous platforms from natural biomaterials. Conclusion The synthesized 3D nanofibrous structures can promote biomaterial interfacial properties to improve cell-platform surface interaction and develop new functional biomaterials for a variety of biomedical applications. PMID:21251288

  11. Geometric modeling of space-optimal unit-cell-based tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Srinivasan; Lu, Lichun; Yaszemski, Michael J.; Robb, Richard A.

    2005-04-01

    Tissue engineering involves regenerating damaged or malfunctioning organs using cells, biomolecules, and synthetic or natural scaffolds. Based on their intended roles, scaffolds can be injected as space-fillers or be preformed and implanted to provide mechanical support. Preformed scaffolds are biomimetic "trellis-like" structures which, on implantation and integration, act as tissue/organ surrogates. Customized, computer controlled, and reproducible preformed scaffolds can be fabricated using Computer Aided Design (CAD) techniques and rapid prototyping devices. A curved, monolithic construct with minimal surface area constitutes an efficient substrate geometry that promotes cell attachment, migration and proliferation. However, current CAD approaches do not provide such a biomorphic construct. We address this critical issue by presenting one of the very first physical realizations of minimal surfaces towards the construction of efficient unit-cell based tissue engineering scaffolds. Mask programmability, and optimal packing density of triply periodic minimal surfaces are used to construct the optimal pore geometry. Budgeted polygonization, and progressive minimal surface refinement facilitate the machinability of these surfaces. The efficient stress distributions, as deduced from the Finite Element simulations, favor the use of these scaffolds for orthopedic applications.

  12. Circulating Microparticles Alter Formation, Structure, and Properties of Fibrin Clots

    PubMed Central

    Zubairova, Laily D.; Nabiullina, Roza M.; Nagaswami, Chandrasekaran; Zuev, Yuriy F.; Mustafin, Ilshat G.; Litvinov, Rustem I.; Weisel, John W.

    2015-01-01

    Despite the importance of circulating microparticles in haemostasis and thrombosis, there is limited evidence for potential causative effects of naturally produced cell-derived microparticles on fibrin clot formation and its properties. We studied the significance of blood microparticles for fibrin formation, structure, and susceptibility to fibrinolysis by removing them from platelet-free plasma using filtration. Clots made in platelet-free and microparticle-depleted plasma samples from the same healthy donors were analyzed in parallel. Microparticles accelerate fibrin polymerisation and support formation of more compact clots that resist internal and external fibrinolysis. These variations correlate with faster thrombin generation, suggesting thrombin-mediated kinetic effects of microparticles on fibrin formation, structure, and properties. In addition, clots formed in the presence of microparticles, unlike clots from the microparticle-depleted plasma, contain 0.1–0.5-μm size granular and CD61-positive material on fibres, suggesting that platelet-derived microparticles attach to fibrin. Therefore, the blood of healthy individuals contains functional microparticles at the levels that have a procoagulant potential. They affect the structure and stability of fibrin clots indirectly through acceleration of thrombin generation and through direct physical incorporation into the fibrin network. Both mechanisms underlie a potential role of microparticles in haemostasis and thrombosis as modulators of fibrin formation, structure, and resistance to fibrinolysis. PMID:26635081

  13. Prediction of scaffold proteins based on protein interaction and domain architectures.

    PubMed

    Oh, Kimin; Yi, Gwan-Su

    2016-07-28

    Scaffold proteins are known for being crucial regulators of various cellular functions by assembling multiple proteins involved in signaling and metabolic pathways. Identification of scaffold proteins and the study of their molecular mechanisms can open a new aspect of cellular systemic regulation and the results can be applied in the field of medicine and engineering. Despite being highlighted as the regulatory roles of dozens of scaffold proteins, there was only one known computational approach carried out so far to find scaffold proteins from interactomes. However, there were limitations in finding diverse types of scaffold proteins because their criteria were restricted to the classical scaffold proteins. In this paper, we will suggest a systematic approach to predict massive scaffold proteins from interactomes and to characterize the roles of scaffold proteins comprehensively. From a total of 10,419 basic scaffold protein candidates in protein interactomes, we classified them into three classes according to the structural evidences for scaffolding, such as domain architectures, domain interactions and protein complexes. Finally, we could define 2716 highly reliable scaffold protein candidates and their characterized functional features. To assess the accuracy of our prediction, the gold standard positive and negative data sets were constructed. We prepared 158 gold standard positive data and 844 gold standard negative data based on the functional information from Gene Ontology consortium. The precision, sensitivity and specificity of our testing was 80.3, 51.0, and 98.5 % respectively. Through the function enrichment analysis of highly reliable scaffold proteins, we could confirm the significantly enriched functions that are related to scaffold protein binding. We also identified functional association between scaffold proteins and their recruited proteins. Furthermore, we checked that the disease association of scaffold proteins is higher than kinases. In

  14. Computed tomography-based tissue-engineered scaffolds in craniomaxillofacial surgery.

    PubMed

    Smith, M H; Flanagan, C L; Kemppainen, J M; Sack, J A; Chung, H; Das, S; Hollister, S J; Feinberg, S E

    2007-09-01

    Tissue engineering provides an alternative modality allowing for decreased morbidity of donor site grafting and decreased rejection of less compatible alloplastic tissues. Using image-based design and computer software, a precisely sized and shaped scaffold for osseous tissue regeneration can be created via selective laser sintering. Polycaprolactone has been used to create a condylar ramus unit (CRU) scaffold for application in temporomandibular joint reconstruction in a Yucatan minipig animal model. Following sacrifice, micro-computed tomography and histology was used to demonstrate the efficacy of this particular scaffold design. A proof-of-concept surgery has demonstrated cartilaginous tissue regeneration along the articulating surface with exuberant osseous tissue formation. Bone volumes and tissue mineral density at both the 1 and 3 month time points demonstrated significant new bone growth interior and exterior to the scaffold. Computationally designed scaffolds can support masticatory function in a large animal model as well as both osseous and cartilage regeneration. Our group is continuing to evaluate multiple implant designs in both young and mature Yucatan minipig animals. 2007 John Wiley & Sons, Ltd.

  15. Novel class of collector in electrospinning device for the fabrication of 3D nanofibrous structure for large defect load-bearing tissue engineering application.

    PubMed

    Hejazi, Fatemeh; Mirzadeh, Hamid; Contessi, Nicola; Tanzi, Maria Cristina; Faré, Silvia

    2017-05-01

    Adequate porosity, appropriate pore size, and 3D-thick shape are crucial parameters in the design of scaffolds, as they should provide the right space for cell adhesion, spreading, migration, and growth. In this work, a novel design for fabricating a 3D nanostructured scaffold by electrospinning was taken into account. Helical spring-shaped collector was purposely designed and used for electrospinning PCL fibers. Improved morphological properties and more uniform diameter distribution of collected nanofibers on the turns of helical spring-shaped collector are confirmed by SEM analysis. SEM images elaboration showed 3D pores with average diameter of 4 and 5.5 micrometer in x-y plane and z-direction, respectively. Prepared 3D scaffold possessed 99.98% porosity which led to the increased water uptake behavior in PBS at 37°C up to 10 days, and higher degradation rate compared to 2D flat structure. Uniaxial compression test on 3D scaffolds revealed an elastic modulus of 7 MPa and a stiffness of 10 2 MPa, together with very low hysteresis area and residual strain. In vitro cytocompatibility test with MG-63 osteoblast-like cells using AlamarBlue ™ colorimetric assay, indicated a continuous increase in cell viability for the 3D structure over the test duration. SEM observation showed enhanced cells spreading and diffusion into the underneath layers for 3D scaffold. Accelerated calcium deposition in 3D substrate was confirmed by EDX analysis. Obtained morphological, physical, and mechanical properties together with in vitro cytocompatibility results, suggest this novel technique as a proper method for the fabrication of 3D nanofibrous scaffolds for the regeneration of critical-size load bearing defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1535-1548, 2017. © 2017 Wiley Periodicals, Inc.

  16. Developing Mesoscale Model of Fibrin-Platelet Network Representing Blood Clotting =

    NASA Astrophysics Data System (ADS)

    Sun, Yueyi; Nikolov, Svetoslav; Bowie, Sam; Alexeev, Alexander; Lam, Wilbur; Myers, David

    Blood clotting disorders which prevent the body's natural ability to achieve hemostasis can lead to a variety of life threatening conditions such as, excessive bleeding, stroke, or heart attack. Treatment of these disorders is highly dependent on understanding the underlying physics behind the clotting process. Since clotting is a highly complex multi scale mechanism developing a fully atomistic model is currently not possible. We develop a mesoscale model based on dissipative particle dynamics (DPD) to gain fundamental understanding of the underlying principles controlling the clotting process. In our study, we examine experimental data on clot contraction using stacks of confocal microscopy images to estimate the crosslink density in the fibrin networks and platelet location. Using this data we reconstruct the platelet rich fibrin network and study how platelet-fibrin interactions affect clotting. Furthermore, we probe how different system parameters affect clot contraction. ANSF CAREER Award DMR-1255288.

  17. Fibrin glue inhibits migration of ocular surface epithelial cells

    PubMed Central

    Yeung, A M; Faraj, L A; McIntosh, O D; Dhillon, V K; Dua, H S

    2016-01-01

    Purpose Fibrin glue has been used successfully in numerous ophthalmic surgical procedures. Recently, fibrin glue has been used in limbal stem cell transplantation to reduce both operative time and to negate the need for sutures. The aim of this study was to determine the effects of fibrin glue on epithelial cell migration in vitro. Methods Corneoscleral rims were split to retain the epithelial layer, Bowman's layer, and anterior stroma. Rims were cut into eight equal-sized pieces and were placed directly on culture plates or affixed with fibrin glue. Rims were maintained in culture for 25 days and epithelial cell growth was monitored. Cells were photographed to measure area or growth and immunofluorescence staining of explants for fibrin was performed. Results Explants that were glued demonstrated significantly delayed epithelial cell growth and migration as compared with explants without glue. By day 16, all fibrin glue had dissolved and coincided with onset of cell growth from glued explants. Cell growth commenced between days 3 and 4 for control explants without glue and around days 14–16 for explants with fibrin glue. Conclusions Fibrin glue delays epithelial cell migration by acting as a physical barrier and can potentially interfere with explant-derived limbal epithelial cell migration on to the corneal surface. We propose that glue should be used to attach the conjunctival frill of the limbal explant but care should be taken to ensure that the glue does not wrap around the explant if used to secure the explant as well. Strategic use of glue, to attach the recessed conjunctiva, can be advantageous in delaying conjunctival cell migration and reducing the need for sequential sector conjunctival epitheliectomy. PMID:27367746

  18. Fibrin adhesive is better than sutures in pterygium surgery.

    PubMed

    Ratnalingam, Vanitha; Eu, Andrew Lim Keat; Ng, Gim Leong; Taharin, Rohana; John, Elizabeth

    2010-05-01

    To evaluate the recurrence rate, surgical time, and postoperative pain between conjunctival autografting with sutures and with fibrin adhesive in pterygium surgery. A prospective, randomized, double-blind, clinical trial on the benefits of using fibrin adhesive in place of sutures in pterygium surgery. One hundred seventy-five eyes with primary pterygium were randomized to undergo pterygium surgery with conjunctival autograft transplantation using either fibrin adhesive or sutures. One hundred thirty-seven eyes of 113 patients that were operated on by a single surgeon (V.R.) completed the 1-year follow-up. Sixty-eight eyes were operated with fibrin adhesive and 69 eyes with sutures. Patients were followed up at 1 day, 1 week, 1 month, 6 months, and 1 year after surgery. Pterygium recurrence and postoperative pain was graded by an independent observer (A.L.) masked to the method of treatment. Surgical time was measured with a stopwatch. All patients were followed up for 1 year. There were 3 recurrences (4.41%) in the fibrin adhesive group and 11 recurrences (15.9%) in the suture group. The mean duration required to complete surgery in the fibrin adhesive group was 16.93 +/- 2.85 minutes, whereas that of the suture group was 29.84 +/- 5.65 minutes, which was statistically significant (P < 0.001). The immediate postoperative pain score and week 1 postoperative pain score were significantly lower in the fibrin adhesive group (P < 0.05). No major complications were observed in either group. The use of fibrin adhesive in primary pterygium surgery with conjunctival autografts reduces the recurrence rate, surgical time, and postoperative pain when compared with sutures.

  19. Regulation of Plasminogen Activation on Cell Surfaces and Fibrin.

    PubMed

    Urano, Tetsumei; Castellino, Francis J; Suzuki, Yuko

    2018-05-20

    The fibrinolytic system dissolves fibrin and maintains vascular patency. Recent advances in imaging analyses allowed visualization of the spatiotemporal regulatory mechanism of fibrinolysis, as well as its regulation by other plasma haemostasis cofactors. Vascular endothelial cells (VECs) retain tissue-type plasminogen activator (tPA) after secretion and maintain high plasminogen (plg) activation potential on their surfaces. As in plasma, the serpin, plasminogen activator inhibitor type 1 (PAI-1), regulates fibrinolytic potential via inhibition of the VEC surface-bound plg activator, tPA. Once fibrin is formed, plg activation by tPA is initiated and effectively amplified on the surface of fibrin, and fibrin is rapidly degraded. The specific binding of plg and tPA to lytic edges of partly degraded fibrin via newly generated C-terminal lysine residues, which amplifies fibrin digestion, is a central aspect of this pathophysiological mechanism. Thrombomodulin (TM) plays a role in the attenuation of the plg binding on fibrin and the associated fibrinolysis, which is reversed by a carboxypeptidase B inhibitor. This suggests that the plasma procarboxypeptidase B, thrombin activatable fibrinolysis inhibitor (TAFI), which is activated by thrombin bound to TM on VECs, is a critical aspect of the regulation of plg activation on VECs and subsequent fibrinolysis. Platelets also contain PAI-1, TAFI, TM and the fibrin crosslinking enzyme, Factor (F) XIIIa, and either secrete or expose these agents upon activation in order to regulate fibrinolysis. In this review, the native machinery of plg activation and fibrinolysis, as well as their spatiotemporal regulatory mechanisms, as revealed by imaging analyses, are discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Fibrin-Targeted Magnetic Resonance Imaging Allows In Vivo Quantification of Thrombus Fibrin Content and Identifies Thrombi Amenable for Thrombolysis

    PubMed Central

    Jenkins, Julia; Modarai, Bijan; Wiethoff, Andrea J.; Phinikaridou, Alkystis; Grover, Steven P.; Patel, Ashish S.; Schaeffter, Tobias; Smith, Alberto; Botnar, Rene M.

    2014-01-01

    Objective Deep venous thrombosis is a major health problem. Thrombolytic therapies are effective in recanalizing the veins and preventing post-thrombotic complications, but there is no consensus on selection criteria. The aim of this study was to investigate a fibrin-specific MRI contrast agent (EP-2104R) for the accurate quantification of thrombus’ fibrin content in vivo and for the identification of thrombus suitable for thrombolysis. Approach and Results Venous thrombosis was induced in the inferior vena cava of 8- to 10-week-old male BALB/C mice and MRI performed 2, 4, 7, 10, 14, and 21 days later. Eighteen mice were scanned at each time point pre and 2 hours post injection of EP-2104R (8.0 μmol/kg) with 12 mice at each time point used to correlate fibrin contrast uptake with thrombus’ histological stage and fibrin content. Six mice at each time point were immediately subjected to intravascular thrombolytic therapy (10 mg/kg of tissue-type plasminogen activator). Mice were imaged to assess response to lytic therapy 24 hours after thrombolytic treatment. Two mice at each time point were scanned post injection of 0.2 mmol/kg of Gd-DTPA (gadolinium with diethylenetriaminepentacetate, Magnevist, Schering AG, Berlin, Germany) for control purpose. Contrast uptake was correlated positively with the fibrin content of the thrombus measured by Western blotting (R2=0.889; P<0.001). Thrombus relaxation rate (R1) post contrast and the change in visualized thrombus size on late gadolinium enhancement inversion recovery MRI pre–EP-2104R and post–EP-2104R injection were the best predictors for successful thrombolysis (area under the curve, 0.989 [95% confidence interval, 0.97–1.00] and 0.994 [95% confidence interval, 0.98–1.00] respectively). Conclusions MRI with a fibrin-specific contrast agent accurately estimates thrombus fibrin content in vivo and identifies thrombi that are amenable for thrombolysis. PMID:24723557

  1. Programmable biofilm-based materials from engineered curli nanofibres.

    PubMed

    Nguyen, Peter Q; Botyanszki, Zsofia; Tay, Pei Kun R; Joshi, Neel S

    2014-09-17

    The significant role of biofilms in pathogenicity has spurred research into preventing their formation and promoting their disruption, resulting in overlooked opportunities to develop biofilms as a synthetic biological platform for self-assembling functional materials. Here we present Biofilm-Integrated Nanofiber Display (BIND) as a strategy for the molecular programming of the bacterial extracellular matrix material by genetically appending peptide domains to the amyloid protein CsgA, the dominant proteinaceous component in Escherichia coli biofilms. These engineered CsgA fusion proteins are successfully secreted and extracellularly self-assemble into amyloid nanofibre networks that retain the functions of the displayed peptide domains. We show the use of BIND to confer diverse artificial functions to the biofilm matrix, such as nanoparticle biotemplating, substrate adhesion, covalent immobilization of proteins or a combination thereof. BIND is a versatile nanobiotechnological platform for developing robust materials with programmable functions, demonstrating the potential of utilizing biofilms as large-scale designable biomaterials.

  2. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair.

    PubMed

    Liu, Xiaohua; Jin, Xiaobing; Ma, Peter X

    2011-05-01

    To repair complexly shaped tissue defects, an injectable cell carrier is desirable to achieve an accurate fit and to minimize surgical intervention. However, the injectable carriers available at present have limitations, and are not used clinically for cartilage regeneration. Here, we report nanofibrous hollow microspheres self-assembled from star-shaped biodegradable polymers as an injectable cell carrier. The nanofibrous hollow microspheres, integrating the extracellular-matrix-mimicking architecture with a highly porous injectable form, were shown to efficiently accommodate cells and enhance cartilage regeneration, compared with control microspheres. The nanofibrous hollow microspheres also supported a significantly larger amount of, and higher-quality, cartilage regeneration than the chondrocytes-alone group in an ectopic implantation model. In a critical-size rabbit osteochondral defect-repair model, the nanofibrous hollow microspheres/chondrocytes group achieved substantially better cartilage repair than the chondrocytes-alone group that simulates the clinically available autologous chondrocyte implantation procedure. These results indicate that the nanofibrous hollow microspheres are an excellent injectable cell carrier for cartilage regeneration.

  3. Endoscopic treatment with fibrin glue of post-intubation tracheal laceration

    PubMed Central

    Cascone, Roberto; Di Natale, Davide; Pierdiluca, Matteo; Mastromarino, Rossella; Natale, Giovanni; De Ruberto, Emanuele; Messina, Gaetana; Vicidomini, Giovanni; Santini, Mario

    2017-01-01

    Post-intubation tracheal laceration (PITL) is a rare and potential life-threatening condition requiring prompt diagnosis and treatment. A conservative treatment is indicated in patients with laceration <2 cm in length while surgery is the treatment of choice for laceration >4 cm. For laceration between 2–4 cm, the best treatment is debate; some authors recommend surgery while others do not definitely exclude endoscopic treatment. Herein, we reported the endoscopic treatment with fibrin glue of PITL. The procedure is performed using a standard video-bronchoscopy in operating room; the patient is in spontaneous breathing and deep sedation. After identification of tracheal laceration, the fibrin glue is injected through a dedicated double lumen catheter into the lesion. After mixing both components of fibrin glue, polymerization of fibrin occurs resulting in an elastic and opaque clot that closes the lesion. The key success of the procedure is based on accurate patient selection. Patients are eligible if (I) they are clinically stable and in spontaneous respiration; (II) with a small and superficial tracheal laceration (≤4 cm in length and without oesophageal injury); (III) localized at level of the upper or middle trachea; and (IV) without clinical and/or radiological signs of mediastinal collection, of emphysema or pneumomediastinum progression, and of infection. PMID:29078663

  4. Fabrication and Handling of 3D Scaffolds Based on Polymers and Decellularized Tissues.

    PubMed

    Shpichka, Anastasia; Koroleva, Anastasia; Kuznetsova, Daria; Dmitriev, Ruslan I; Timashev, Peter

    2017-01-01

    Polymeric, ceramic and hybrid material-based three-dimensional (3D) scaffold or matrix structures are important for successful tissue engineering. While the number of approaches utilizing the use of cell-based scaffold and matrix structures is constantly growing, it is essential to provide a framework of their typical preparation and evaluation for tissue engineering. This chapter describes the fabrication of 3D scaffolds using two-photon polymerization, decellularization and cell encapsulation methods and easy-to-use protocols allowing assessing the cell morphology, cytotoxicity and viability in these scaffolds.

  5. Ultrastructure and growth factor content of equine platelet-rich fibrin gels.

    PubMed

    Textor, Jamie A; Murphy, Kaitlin C; Leach, J Kent; Tablin, Fern

    2014-04-01

    To compare fiber diameter, pore area, compressive stiffness, gelation properties, and selected growth factor content of platelet-rich fibrin gels (PRFGs) and conventional fibrin gels (FGs). PRFGs and conventional FGs prepared from the blood of 10 healthy horses. Autologous fibrinogen was used to form conventional FGs. The PRFGs were formed from autologous platelet-rich plasma of various platelet concentrations (100 × 10³ platelets/μL, 250 × 10³ platelets/μL, 500 × 10³ platelets/μL, and 1,000 × 10³ platelets/μL). All gels contained an identical fibrinogen concentration (20 mg/mL). Fiber diameter and pore area were evaluated with scanning electron microscopy. Maximum gelation rate was assessed with spectrophotometry, and gel stiffness was determined by measuring the compressive modulus. Gel weights were measured serially over 14 days as an index of contraction (volume loss). Platelet-derived growth factor-BB and transforming growth factor-β1 concentrations were quantified with ELISAs. Fiber diameters were significantly larger and mean pore areas were significantly smaller in PRFGs than in conventional FGs. Gel weight decreased significantly over time, differed significantly between PRFGs and conventional FGs, and was significantly correlated with platelet concentration. Platelet-derived growth factor-BB and transforming growth factor-β1 concentrations were highest in gels and releasates derived from 1,000 × 10³ platelets/μL. The inclusion of platelets in FGs altered the architecture and increased the growth factor content of the resulting scaffold. Platelets may represent a useful means of modifying these gels for applications in veterinary and human regenerative medicine.

  6. A Design Model of Distributed Scaffolding for Inquiry-Based Learning

    NASA Astrophysics Data System (ADS)

    Hsu, Ying-Shao; Lai, Ting-Ling; Hsu, Wei-Hsiu

    2015-04-01

    This study presents a series of three experiments that focus on how distributed scaffolding influences learners' conceptual understanding and reasoning from combined levels of triangulation, at the interactive level (discourses within a focus group) and the collective level (class). Three inquiry lessons on plate tectonics (LPT) were designed, implemented and redesigned to explore how students responded to the scaffoldings provided. The results show that the goal-oriented version (LPT3) was significantly more effective at helping students develop an understanding of plate tectonics and evidence-based reasoning than the teacher-led (LPT1) and deconstructed (LPT2) versions ( χ 2 = 11.56, p < 0.003). In LPT3, we can identify three key features of the scaffolding: an advanced organizer, deconstruction of complex tasks, and reflection on the whole inquiry cycle at the end of class time. In addition, LPT3 took much less teaching time. In other words, it appears to be effective and efficient, most likely due to synergies between teacher facilitation and lesson scaffolds. The empirical results clarify the functions of the design model proposed for distributed scaffolding: navigating inquiry, structuring tasks, supporting communication, and fostering reflection. Future studies should more closely evaluate the scaffolding system as a whole and synergies between different types of scaffolds for advancing learning.

  7. Watertight cataract incision closure using fibrin tissue adhesive.

    PubMed

    Hovanesian, John A; Karageozian, Vicken H

    2007-08-01

    To determine whether a simple method for applying fibrin tissue adhesive to a clear corneal cataract incision can create a watertight seal. Laboratory investigation. Clear corneal cataract incisions were simulated in 8 eye-bank eyes. In 4 eyes, fibrin adhesive was applied to the incision in a simple manner; the other 4 eyes were controls with no adhesive. Each eye was tested under low pressure conditions to detect fluid ingress of India Ink on the eye's surface. The eyes were tested again with external compression to distort the incision to detect fluid egress. In the eyes with fibrin adhesive, there was no egress of fluid with incision distortion and no ingress of India Ink. In the 4 eyes without adhesive, there was ingress and egress of fluid. A simple method of applying fibrin adhesive to cataract incisions created a watertight seal.

  8. Biofunctionalized nanofibrous membranes as super separators of protein and enzyme from water.

    PubMed

    Homaeigohar, Shahin; Dai, Tianhe; Elbahri, Mady

    2013-09-15

    Here, we report development of a novel biofunctionalized nanofibrous membrane which, despite its macroporous structure, is able to separate even trace amounts (as low as 2mg/L) of biomolecules such as protein and enzyme from water with an optimum efficiency of ~90%. Such an extraordinary protein selectivity at this level of pollutant concentration for a nanofibrous membrane has never been reported. In the current study, poly(acrylonitrile-co-glycidyl methacrylate) (PANGMA) electrospun nanofibers are functionalized by a bovine serum albumin (BSA) protein. This membrane is extraordinarily successful in removal of BSA protein and Candida antarctica Lipase B (Cal-B) enzyme from a water based solution. Despite a negligible non-specific adsorption of both BSA and Cal-B to the PANGMA nanofibrous membrane (8%), the separation efficiency of the biofunctionalized membrane for BSA and Cal-B reaches to 88% and 81%, respectively. The optimum separation efficiency at a trace amount of protein models is due to the water-induced conformational change of the biofunctional agent. The conformational change not only exposes more functional groups available to catch the biomolecules but also leads to swelling of the nanofibers thereby a higher steric hindrance for the solutes. Besides the optimum selectivity, the biofunctionalized membranes are highly wettable thereby highly water permeable. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudouri, O.M., E-mail: menti.goudouri@ww.uni-erlangen.de; Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki; Theodosoglou, E.

    Graphical abstract: - Highlights: • Synthesis of an Mg-based glass-ceramic via the sol–gel technique. • The heat treatment of the glass-ceramic promoted the crystallization of akermanite. • Akermanite scaffolds coated with gelatin were successfully fabricated. • An HCAp layer was developed on the surface of all scaffolds after 9 days in SBF. - Abstract: Various scaffolding materials, ceramics and especially Mg-based ceramic materials, including akermanite (Ca{sub 2}MgSi{sub 2}O{sub 7}) and diopside (CaMgSi{sub 2}O{sub 6}), have attracted interest for dental tissue regeneration because of their improved mechanical properties and controllable biodegradation. The aim of the present work was the synthesis ofmore » an Mg-based glass-ceramic, which would be used for the construction of workable akermanite scaffolds. The characterization of the synthesized material was performed by Fourier Transform Infrared Spectroscopy (FTIR) X-Ray Diffractometry (XRD) and Scanning Electron Microscopy (SEM). Finally, the apatite forming ability of the scaffolds was assessed by immersion in simulated body fluid. The scaffolds were fabricated by the foam replica technique and were subsequently coated with gelatin to provide a functional surface for increased cell attachment. Finally, SEM microphotographs and FTIR spectra of the scaffolds after immersion in SBF solution indicated the inorganic bioactive character of the scaffolds suitable for the intended applications in dental tissue engineering.« less

  10. Three-dimensional structure and cytokine distribution of platelet-rich fibrin.

    PubMed

    Bai, Meng-Yi; Wang, Ching-Wei; Wang, Jyun-Yi; Lin, Ming-Fang; Chan, Wing P

    2017-02-01

    Previous reports have revealed that several cytokines (including platelet-derived growth factor-BB, transforming growth factors-β1 and insulin-like growth factor-1) can enhance the rate of bone formation and synthesis of extracellular matrix in orthopaedics or periodontology. This study aimed to determine the concentration of cytokines within platelet-rich fibrin microstructures and investigate whether there are differences in the different portions of platelet-rich fibrin, which has implications for proper clinical use of platelet-rich fibrin gel. Whole blood was obtained from six New Zealand rabbits (male, 7 to 39 weeks old, weight 2.7-4 kg); it was then centrifuged for preparation of platelet-rich fibrin gels and harvest of plasma. The resultant platelet-rich fibrin gels were used for cytokine determination, histological analyses and scanning electron microscopy. All plasmas obtained were subject to the same cytokine determination assays for the purpose of comparison. Cytokines platelet-derived growth factor-BB and transforming growth factor-β1 formed concentration gradients from high at the red blood cell end of the platelet-rich fibrin gel (p=1.88×10-5) to low at the plasma end (p=0.19). Insulin-like growth factor-1 concentrations were similar at the red blood cell and plasma ends. The porosities of the platelet-rich fibrin samples taken in sequence from the red blood cell end to the plasma end were 6.5% ± 4.9%, 24.8% ± 7.5%, 30.3% ± 8.5%, 41.4% ± 12.3%, and 40.3% ± 11.7%, respectively, showing a gradual decrease in the compactness of the platelet-rich fibrin network. Cytokine concentrations are positively associated with platelet-rich fibrin microstructure and portion in a rabbit model. As platelet-rich fibrin is the main entity currently used in regenerative medicine, assessing cytokine concentration and the most valuable portion of PRF gels is essential and recommended to all physicians.

  11. Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering.

    PubMed

    Mondrinos, Mark J; Dembzynski, Robert; Lu, Lin; Byrapogu, Venkata K C; Wootton, David M; Lelkes, Peter I; Zhou, Jack

    2006-09-01

    Drop on demand printing (DDP) is a solid freeform fabrication (SFF) technique capable of generating microscale physical features required for tissue engineering scaffolds. Here, we report results toward the development of a reproducible manufacturing process for tissue engineering scaffolds based on injectable porogens fabricated by DDP. Thermoplastic porogens were designed using Pro/Engineer and fabricated with a commercially available DDP machine. Scaffolds composed of either pure polycaprolactone (PCL) or homogeneous composites of PCL and calcium phosphate (CaP, 10% or 20% w/w) were subsequently fabricated by injection molding of molten polymer-ceramic composites, followed by porogen dissolution with ethanol. Scaffold pore sizes, as small as 200 microm, were attainable using the indirect (porogen-based) method. Scaffold structure and porosity were analyzed by scanning electron microscopy (SEM) and microcomputed tomography, respectively. We characterized the compressive strength of 90:10 and 80:20 PCL-CaP composite materials (19.5+/-1.4 and 24.8+/-1.3 Mpa, respectively) according to ASTM standards, as well as pure PCL scaffolds (2.77+/-0.26 MPa) fabricated using our process. Human embryonic palatal mesenchymal (HEPM) cells attached and proliferated on all scaffolds, as evidenced by fluorescent nuclear staining with Hoechst 33258 and the Alamar Blue assay, with increased proliferation observed on 80:20 PCL-CaP scaffolds. SEM revealed multilayer assembly of HEPM cells on 80:20 PCL-CaP composite, but not pure PCL, scaffolds. In summary, we have developed an SFF-based injection molding process for the fabrication of PCL and PCL-CaP scaffolds that display in vitro cytocompatibility and suitable mechanical properties for hard tissue repair.

  12. Static and Dynamic Characterization of Cellulose Nanofibril Scaffold-Based Composites

    Treesearch

    Issam I. Qamhia; Ronald C. Sabo; Rani F. Elhajjar

    2014-01-01

    The reinforcement potential of novel nanocellulose-based scaffolding reinforcements composed of microfibrils 5 to 50 nm in diameter and several microns in length was investigated. The cellulose nanofibril reinforcement was used to produce a three-dimensional scaffolding. A hybrid two-step approach using vacuum pressure and hot pressing was used to integrate the...

  13. Tailoring of processing parameters for sintering microsphere-based scaffolds with dense-phase carbon dioxide

    PubMed Central

    Jeon, Ju Hyeong; Bhamidipati, Manjari; Sridharan, BanuPriya; Scurto, Aaron M.; Berkland, Cory J.; Detamore, Michael S.

    2015-01-01

    Microsphere-based polymeric tissue-engineered scaffolds offer the advantage of shape-specific constructs with excellent spatiotemporal control and interconnected porous structures. The use of these highly versatile scaffolds requires a method to sinter the discrete microspheres together into a cohesive network, typically with the use of heat or organic solvents. We previously introduced subcritical CO2 as a sintering method for microsphere-based scaffolds; here we further explored the effect of processing parameters. Gaseous or subcritical CO2 was used for making the scaffolds, and various pressures, ratios of lactic acid to glycolic acid in poly(lactic acid-co-glycolic acid), and amounts of NaCl particles were explored. By changing these parameters, scaffolds with different mechanical properties and morphologies were prepared. The preferred range of applied subcritical CO2 was 15–25 bar. Scaffolds prepared at 25 bar with lower lactic acid ratios and without NaCl particles had a higher stiffness, while the constructs made at 15 bar, lower glycolic acid content, and with salt granules had lower elastic moduli. Human umbilical cord mesenchymal stromal cells (hUCMSCs) seeded on the scaffolds demonstrated that cells penetrate the scaffolds and remain viable. Overall, the study demonstrated the dependence of the optimal CO2 sintering parameters on the polymer and conditions, and identified desirable CO2 processing parameters to employ in the sintering of microsphere-based scaffolds as a more benign alternative to heat-sintering or solvent-based sintering methods. PMID:23115065

  14. Fragment virtual screening based on Bayesian categorization for discovering novel VEGFR-2 scaffolds.

    PubMed

    Zhang, Yanmin; Jiao, Yu; Xiong, Xiao; Liu, Haichun; Ran, Ting; Xu, Jinxing; Lu, Shuai; Xu, Anyang; Pan, Jing; Qiao, Xin; Shi, Zhihao; Lu, Tao; Chen, Yadong

    2015-11-01

    The discovery of novel scaffolds against a specific target has long been one of the most significant but challengeable goals in discovering lead compounds. A scaffold that binds in important regions of the active pocket is more favorable as a starting point because scaffolds generally possess greater optimization possibilities. However, due to the lack of sufficient chemical space diversity of the databases and the ineffectiveness of the screening methods, it still remains a great challenge to discover novel active scaffolds. Since the strengths and weaknesses of both fragment-based drug design and traditional virtual screening (VS), we proposed a fragment VS concept based on Bayesian categorization for the discovery of novel scaffolds. This work investigated the proposal through an application on VEGFR-2 target. Firstly, scaffold and structural diversity of chemical space for 10 compound databases were explicitly evaluated. Simultaneously, a robust Bayesian classification model was constructed for screening not only compound databases but also their corresponding fragment databases. Although analysis of the scaffold diversity demonstrated a very unevenly distribution of scaffolds over molecules, results showed that our Bayesian model behaved better in screening fragments than molecules. Through a literature retrospective research, several generated fragments with relatively high Bayesian scores indeed exhibit VEGFR-2 biological activity, which strongly proved the effectiveness of fragment VS based on Bayesian categorization models. This investigation of Bayesian-based fragment VS can further emphasize the necessity for enrichment of compound databases employed in lead discovery by amplifying the diversity of databases with novel structures.

  15. Cell Based Meniscal Repair Using an Aligned Bioactive Nanofibrous Sheath

    DTIC Science & Technology

    2017-07-01

    to rapid joint degeneration (i.e., osteoarthritis). Tissue engineering approaches, including the combination of cells, scaffolds, and bioactive...nano/microfibers comprising engineered scaffolds can mimic the ultrastructure of the native meniscal extracellular matrix (ECM); when seeded with adult...explant and in vivo goat model. 2. KEYWORDS: Provide a brief list of keywords (limit to 20 words). Meniscus tissue engineering , electrospun

  16. Improved mechanical and electrical properties in electrospun polyimide/multiwalled carbon nanotubes nanofibrous composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zha, Jun-Wei; Sun, Fang; Wang, Si-Jiao

    2014-10-07

    Highly aligned polyimide (PI) and PI/multi-walled carbon nanotubes (PI/MWCNTs) nanofibrous composites by incorporating poly(ethylene oxide) as the dispersing medium were fabricated using electrospinning technique. The morphology, mechanical, and electrical properties of the electrospun nanofibrous composites were investigated. Scanning electron microscope showed that the functionalized MWCNTs (f-MWCNTs) were well dispersed and oriented along the nanofiber axis. Analysis of electrical properties indicated a remarkable improvement on the alternating current conductivity by introduction of the aligned f-MWCNTs. Besides, with addition of 3 vol. % f-MWCNTs, the obvious enhancement of tensile modulus and strength was achieved. Thus, the electrospun PI/MWCNTs nanofibrous composites have greatmore » potential applications in multifunctional engineering materials.« less

  17. ELECTROMAGNETICALLY INDUCED DISTORTION OF A FIBRIN MATRIX WITH EMBEDDED MICROPARTICLES

    PubMed Central

    SCOGIN, TYLER; YESUDASAN, SUMITH; WALKER, MITCHELL L. R.

    2018-01-01

    Blood clots occur in the human body when they are required to prevent bleeding. In pathological states such as diabetes and sickle cell disease, blood clots can also form undesirably due to hypercoagulable plasma conditions. With the continued effort in developing fibrin therapies for potential life-saving solutions, more mechanical modeling is needed to understand the properties of fibrin structures with inclusions. In this study, a fibrin matrix embedded with magnetic micro particles (MMPs) was subjected to a magnetic field to determine the magnitude of the required force to create plastic deformation within the fibrin clot. Using finite element (FE) analysis, we estimated the magnetic force from an electromagnet at a sample space located approximately 3 cm away from the coil center. This electromagnetic force coupled with gravity was applied on a fibrin mechanical system with MMPs to calculate the stresses and displacements. Using appropriate coil parameters, it was determined that application of a magnetic field of 730 A/m on the fibrin surface was necessary to achieve an electromagnetic force of 36 nN (to engender plastic deformation). PMID:29628543

  18. VOCs Air Pollutant Cleaning with Polyacrylonitrile/Fly Ash Nanocomposite Electrospun Nanofibrous Membranes

    NASA Astrophysics Data System (ADS)

    Cong Ge, Jun; Wang, Zi Jian; Kim, Min Soo; Choi, Nag Jung

    2018-01-01

    Volatile organic compounds (VOCs) as an environmental pollution, which have many kinds of chemical structures, and many of them are very toxic. Therefore, controlling and reducing the presence of VOCs has become a hot topic among researchers for many years. In this study, the VOCs adsorption capacity of polyacrylonitrile/fly ash (PAN/FA) nanocomposite electrospun nanofibrous membranes were investigated. The results indicated that the PAN with different contents of FA powder (20%, 40%, 60%, 80%, and 100% compared with PAN by weight) could be spun well by electrospinning. The diameter of the fiber was very fine and its arrangement was irregular. The PAN nanofibrous membrane containing 60 wt% FA powder had the highest VOCs absorption capacity compared with other nanofibrous membranes due to its large specific surface area.

  19. Fibrin sealants for the prevention of postoperative pancreatic fistula following pancreatic surgery.

    PubMed

    Cheng, Yao; Ye, Mingxin; Xiong, Xianze; Peng, Su; Wu, Hong Mei; Cheng, Nansheng; Gong, Jianping

    2016-02-15

    .7%; RR 0.80, 95% CI 0.53 to 1.21; P = 0.29; five studies), or length of hospital stay (12.9 days versus 13.1 days; MD -0.73 days, 95% CI -2.20 to 0.74; P = 0.331; six studies) between the groups. The proportion of postoperative pancreatic fistula that was clinically significant was not mentioned in most trials. On inclusion of trials that clearly distinguished clinically significant fistulas, there was inadequate evidence to establish the effect of fibrin sealants on clinically significant postoperative pancreatic fistula (9.4% versus 13.4%; RR 0.72, 95% CI 0.42 to 1.21; P = 0.21; three studies). Quality of life and cost effectiveness were not reported in any of the trials. Based on the current available evidence, fibrin sealants do not seem to prevent postoperative pancreatic fistula in people undergoing pancreatic surgery.

  20. PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications.

    PubMed

    Siddiqui, Nadeem; Asawa, Simran; Birru, Bhaskar; Baadhe, Ramaraju; Rao, Sreenivasa

    2018-05-14

    Biomaterial-based scaffolds are important cues in tissue engineering (TE) applications. Recent advances in TE have led to the development of suitable scaffold architecture for various tissue defects. In this narrative review on polycaprolactone (PCL), we have discussed in detail about the synthesis of PCL, various properties and most recent advances of using PCL and PCL blended with either natural or synthetic polymers and ceramic materials for TE applications. Further, various forms of PCL scaffolds such as porous, films and fibrous have been discussed along with the stem cells and their sources employed in various tissue repair strategies. Overall, the present review affords an insight into the properties and applications of PCL in various tissue engineering applications.

  1. Excavating the Role of Aloe Vera Wrapped Mesoporous Hydroxyapatite Frame Ornamentation in Newly Architectured Polyurethane Scaffolds for Osteogenesis and Guided Bone Regeneration with Microbial Protection.

    PubMed

    Selvakumar, M; Pawar, Harpreet Singh; Francis, Nimmy K; Das, Bodhisatwa; Dhara, Santanu; Chattopadhyay, Santanu

    2016-03-09

    scaffold compared to pristine SPU scaffold. Organ toxicity studies further confirm the absence of appreciable tissue architecture abnormalities in the renal hepatic and cardiac tissue sections. The entire results of this study manifest the feasibility of fabricating a mechanically adequate tailored nanofibrous SPU scaffold based on combinatorial soft segments of PCL, PEC, and PDMS by a biomimetic approach and the advantages of an Aloe vera wrapped mHA frame in promoting osteoblast phenotype progression with microbial protection for potential GBR applications.

  2. Preparation and characterization of antibacterial electrospun chitosan/poly (vinyl alcohol)/graphene oxide composite nanofibrous membrane

    NASA Astrophysics Data System (ADS)

    Yang, Shuai; Lei, Peng; Shan, Yujuan; Zhang, Dawei

    2018-03-01

    In this paper, chitosan (CS)/poly (vinyl alcohol) (PVA)/graphene oxide (GO) composite nanofibrous membranes were prepared via electrospinning. Such nanofibrous membranes have been characterized and investigated for their morphological, structural, thermal stability, hydrophilic and antibacterial properties. SEM images showed that the uniform and defect-free nanofibers were obtained and GO sheets, shaping spindle and spherical, were partially embedded into nanofibers. FTIR, XRD, DSC and TGA indicated the good compatibility between CS and PVA. There were strong intermolecular hydrogen bonds between the chitosan and PVA molecules. Contact angle measurement indicated that while increasing the content of GO, the distance between fibers increased and water drop showed wetting state on the surface of nanofibrous membranes. As a result, the contact angle decreased significantly. Meanwhile, good antibacterial activity of the prepared nanofibrous membranes were exhibited against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus.

  3. Elastic Behavior and Platelet Retraction in Low- and High-Density Fibrin Gels

    PubMed Central

    Wufsus, Adam R.; Rana, Kuldeepsinh; Brown, Andrea; Dorgan, John R.; Liberatore, Matthew W.; Neeves, Keith B.

    2015-01-01

    Fibrin is a biopolymer that gives thrombi the mechanical strength to withstand the forces imparted on them by blood flow. Importantly, fibrin is highly extensible, but strain hardens at low deformation rates. The density of fibrin in clots, especially arterial clots, is higher than that in gels made at plasma concentrations of fibrinogen (3–10 mg/mL), where most rheology studies have been conducted. Our objective in this study was to measure and characterize the elastic regimes of low (3–10 mg/mL) and high (30–100 mg/mL) density fibrin gels using shear and extensional rheology. Confocal microscopy of the gels shows that fiber density increases with fibrinogen concentration. At low strains, fibrin gels act as thermal networks independent of fibrinogen concentration. Within the low-strain regime, one can predict the mesh size of fibrin gels by the elastic modulus using semiflexible polymer theory. Significantly, this provides a link between gel mechanics and interstitial fluid flow. At moderate strains, we find that low-density fibrin gels act as nonaffine mechanical networks and transition to affine mechanical networks with increasing strains within the moderate regime, whereas high-density fibrin gels only act as affine mechanical networks. At high strains, the backbone of individual fibrin fibers stretches for all fibrin gels. Platelets can retract low-density gels by >80% of their initial volumes, but retraction is attenuated in high-density fibrin gels and with decreasing platelet density. Taken together, these results show that the nature of fibrin deformation is a strong function of fibrin fiber density, which has ramifications for the growth, embolization, and lysis of thrombi. PMID:25564864

  4. Stability of double-row rotator cuff repair is not adversely affected by scaffold interposition between tendon and bone.

    PubMed

    Beitzel, Knut; Chowaniec, David M; McCarthy, Mary Beth; Cote, Mark P; Russell, Ryan P; Obopilwe, Elifho; Imhoff, Andreas B; Arciero, Robert A; Mazzocca, Augustus D

    2012-05-01

    Rotator cuff reconstructions may be improved by adding growth factors, cells, or other biologic factors into the repair zone. This usually requires a biological carrier (scaffold) to be integrated into the construct and placed in the area of tendon-to-bone healing. This needs to be done without affecting the constructs mechanics. Hypothesis/ The hypothesis was that scaffold placement, as an interposition, has no adverse effects on biomechanical properties of double-row rotator cuff repair. The purpose of this study was to examine the effect of scaffold interposition on the initial strength of rotator cuff repairs. Controlled laboratory study. Twenty-five fresh-frozen shoulders (mean age: 65.5 ± 8.9 years) were randomly assigned to 5 groups. Groups were chosen to represent a broad spectrum of commonly used scaffold types: (1) double-row repair without augmentation, (2) double-row repair with interposition of a fibrin clot (Viscogel), (3) double-row repair with interposition of a collagen scaffold (Mucograft) between tendon and bone, (4) double-row repair with interposition of human dermis patch (ArthroFlex) between tendon and bone, and (5) double-row repair with human dermis patch (ArthroFlex) placed on top of the repair. Cyclic loading to measure displacement was performed to 3000 cycles at 1 Hz with an applied 10- to 100-N load. The ultimate load to failure was determined at a rate of 31 mm/min. There were no significant differences in mean displacement under cyclic loading, slope, or energy absorbed to failure between all groups (P = .128, P = .981, P = .105). Ultimate load to failure of repairs that used the collagen patch as an interposition (573.3 ± 75.6 N) and a dermis patch on top of the reconstruction (575.8 ± 22.6 N) was higher compared with the repair without a scaffold (348.9 ± 98.8 N; P = .018 and P = .025). No significant differences were found for repairs with the fibrin clot as an interposition (426.9 ± 103.6 N) and the decellularized dermis

  5. Synthesizing Results From Empirical Research on Computer-Based Scaffolding in STEM Education: A Meta-Analysis.

    PubMed

    Belland, Brian R; Walker, Andrew E; Kim, Nam Ju; Lefler, Mason

    2017-04-01

    Computer-based scaffolding assists students as they generate solutions to complex problems, goals, or tasks, helping increase and integrate their higher order skills in the process. However, despite decades of research on scaffolding in STEM (science, technology, engineering, and mathematics) education, no existing comprehensive meta-analysis has synthesized the results of these studies. This review addresses that need by synthesizing the results of 144 experimental studies (333 outcomes) on the effects of computer-based scaffolding designed to assist the full range of STEM learners (primary through adult education) as they navigated ill-structured, problem-centered curricula. Results of our random effect meta-analysis (a) indicate that computer-based scaffolding showed a consistently positive (ḡ = 0.46) effect on cognitive outcomes across various contexts of use, scaffolding characteristics, and levels of assessment and (b) shed light on many scaffolding debates, including the roles of customization (i.e., fading and adding) and context-specific support. Specifically, scaffolding's influence on cognitive outcomes did not vary on the basis of context-specificity, presence or absence of scaffolding change, and logic by which scaffolding change is implemented. Scaffolding's influence was greatest when measured at the principles level and among adult learners. Still scaffolding's effect was substantial and significantly greater than zero across all age groups and assessment levels. These results suggest that scaffolding is a highly effective intervention across levels of different characteristics and can largely be designed in many different ways while still being highly effective.

  6. Green electrospun grape seed extract-loaded silk fibroin nanofibrous mats with excellent cytocompatibility and antioxidant effect.

    PubMed

    Lin, Si; Chen, Mengxia; Jiang, Huayue; Fan, Linpeng; Sun, Binbin; Yu, Fan; Yang, Xingxing; Lou, Xiangxin; He, Chuanglong; Wang, Hongsheng

    2016-03-01

    Silk fibroin (SF) from Bombyx mori has an excellent biocompatibility and thus be widely applied in the biomedical field. Recently, various SF-based composite nanofibers have been developed for more demanding applications. Additionally, grape seed extract (GSE) has been demonstrated to be powerful on antioxidation. In the present study, we dedicate to fabricate a GSE-loaded SF/polyethylene oxide (PEO) composite nanofiber by green electrospinning. Our results indicated the successful loading of GSE into the SF/PEO composite nanofibers. The introduction of GSE did not affect the morphology of the SF/PEO nanofibers and GSE can be released from the nanofibers with a sustained manner. Furthermore, comparing with the raw SF/PEO nanofibrous mats, the GSE-loaded SF/PEO nanofibrous mats significantly enhanced the proliferation of the skin fibroblasts and also protected them against the damage from tert-butyl hydroperoxide-induced oxidative stress. All these findings suggest a promising potential of this novel GSE-loaded SF/PEO composite nanofibrous mats applied in skin care, tissue regeneration and wound healing. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Thrombin-dependent Incorporation of von Willebrand Factor into a Fibrin Network*

    PubMed Central

    Miszta, Adam; Pelkmans, Leonie; Lindhout, Theo; Krishnamoorthy, Ganeshram; de Groot, Philip G.; Hemker, Coenraad H.; Heemskerk, Johan W. M.; Kelchtermans, Hilde; de Laat, Bas

    2014-01-01

    Attachment of platelets from the circulation onto a growing thrombus is a process involving multiple platelet receptors, endothelial matrix components, and coagulation factors. It has been indicated previously that during a transglutaminase reaction activated factor XIII (FXIIIa) covalently cross-links von Willebrand factor (VWF) to polymerizing fibrin. Bound VWF further recruits and activates platelets via interactions with the platelet receptor complex glycoprotein Ib (GPIb). In the present study we found proof for binding of VWF to a fibrin monomer layer during the process of fibrinogen-to-fibrin conversion in the presence of thrombin, arvin, or a snake venom from Crotalus atrox. Using a domain deletion mutant we demonstrated the involvement of the C domains of VWF in this binding. Substantial binding of VWF to fibrin monomers persisted in the presence of the FXIIIa inhibitor K9-DON, illustrating that cross-linking via factor XIII is not essential for this phenomenon and suggesting the identification of a second mechanism through which VWF multimers incorporate into a fibrin network. Under high shear conditions, platelets were shown to adhere to fibrin only if VWF had been incorporated. In conclusion, our experiments show that the C domains of VWF and the E domain of fibrin monomers are involved in the incorporation of VWF during the polymerization of fibrin and that this incorporation fosters binding and activation of platelets. Fibrin thus is not an inert end product but partakes in further thrombus growth. Our findings help to elucidate the mechanism of thrombus growth and platelet adhesion under conditions of arterial shear rate. PMID:25381443

  8. Gelatin/Carboxymethyl chitosan based scaffolds for dermal tissue engineering applications.

    PubMed

    Agarwal, Tarun; Narayan, Rajan; Maji, Somnath; Behera, Shubhanath; Kulanthaivel, Senthilguru; Maiti, Tapas Kumar; Banerjee, Indranil; Pal, Kunal; Giri, Supratim

    2016-12-01

    The present study delineates the preparation, characterization and application of gelatin-carboxymethyl chitosan scaffolds for dermal tissue engineering. The effect of carboxymethyl chitosan and gelatin ratio was evaluated for variations in their physico-chemical-biological characteristics and drug release kinetics. The scaffolds were prepared by freeze drying method and characterized by SEM and FTIR. The study revealed that the scaffolds were highly porous with pore size ranging between 90 and 170μm, had high water uptake (400-1100%) and water retention capacity (>300%). The collagenase mediated degradation of the scaffolds was dependent on the amount of gelatin present in the formulation. A slight yet significant variation in their biological characteristics was also observed. All the formulations supported adhesion, spreading, growth and proliferation of 3T3 mouse fibroblasts. The cells seeded on the scaffolds also demonstrated expression of collagen type I, HIF1α and VEGF, providing a clue regarding their growth and proliferation along with potential to support angiogenesis during wound healing. In addition, the scaffolds showed sustained ampicillin and bovine serum albumin release, confirming their suitability as a therapeutic delivery vehicle during wound healing. All together, the results suggest that gelatin-carboxymethyl chitosan based scaffolds could be a suitable matrix for dermal tissue engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. ChemScreener: A Distributed Computing Tool for Scaffold based Virtual Screening.

    PubMed

    Karthikeyan, Muthukumarasamy; Pandit, Deepak; Vyas, Renu

    2015-01-01

    In this work we present ChemScreener, a Java-based application to perform virtual library generation combined with virtual screening in a platform-independent distributed computing environment. ChemScreener comprises a scaffold identifier, a distinct scaffold extractor, an interactive virtual library generator as well as a virtual screening module for subsequently selecting putative bioactive molecules. The virtual libraries are annotated with chemophore-, pharmacophore- and toxicophore-based information for compound prioritization. The hits selected can then be further processed using QSAR, docking and other in silico approaches which can all be interfaced within the ChemScreener framework. As a sample application, in this work scaffold selectivity, diversity, connectivity and promiscuity towards six important therapeutic classes have been studied. In order to illustrate the computational power of the application, 55 scaffolds extracted from 161 anti-psychotic compounds were enumerated to produce a virtual library comprising 118 million compounds (17 GB) and annotated with chemophore, pharmacophore and toxicophore based features in a single step which would be non-trivial to perform with many standard software tools today on libraries of this size.

  10. Amine-functionalized PVA-co-PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin.

    PubMed

    Wang, Wenwen; Zhang, Hao; Zhang, Zhifeng; Luo, Mengying; Wang, Yuedan; Liu, Qiongzhen; Chen, Yuanli; Li, Mufang; Wang, Dong

    2017-02-01

    In this study, poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membrane was activated by sodium hydroxide and cyanuric chloride, and then the activated membranes were functionalized by 1,3-propanediamine, hexamethylenediamine and diethylenetriamine to be affinity membranes for bilirubin removal, respectively. The chemical structures and morphologies of membranes were investigated by SEM, FTIR and XPS. And the adsorption ability of different amine-functionalized nanofibrous membranes for bilirubin was characterized. Furthermore, the effects of temperature, initial concentration of bilirubin, NaCl concentration and BSA concentration on the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane were studied. Results indicated that the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane could reach 85mg/g membrane when the initial bilirubin concentration was 200mg/L while the adsorption capacity could be increased to 110mg/g membrane if the initial bilirubin concentration was more than 400mg/L. The dynamic adsorption of diethylenetriamine-functionalized nanofibrous membrane showed that the ligands of amine groups on the membrane surface could be used as far as possible by recirculating the plasma with certain flow rates. Therefore, the diethylenetriamine-functionalized PVA-co-PE nanofibrous membrane possessed high adsorption capacity for bilirubin and it can be candidate as affinity membrane for bilirubin removal. Copyright © 2016. Published by Elsevier B.V.

  11. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.

    PubMed

    Naahidi, Sheva; Jafari, Mousa; Logan, Megan; Wang, Yujie; Yuan, Yongfang; Bae, Hojae; Dixon, Brian; Chen, P

    2017-09-01

    Recently, understanding of the extracellular matrix (ECM) has expanded rapidly due to the accessibility of cellular and molecular techniques and the growing potential and value for hydrogels in tissue engineering. The fabrication of hydrogel-based cellular scaffolds for the generation of bioengineered tissues has been based on knowledge of the composition and structure of ECM. Attempts at recreating ECM have used either naturally-derived ECM components or synthetic polymers with structural integrity derived from hydrogels. Due to their increasing use, their biocompatibility has been questioned since the use of these biomaterials needs to be effective and safe. It is not surprising then that the evaluation of biocompatibility of these types of biomaterials for regenerative and tissue engineering applications has been expanded from being primarily investigated in a laboratory setting to being applied in the multi-billion dollar medicinal industry. This review will aid in the improvement of design of non-invasive, smart hydrogels that can be utilized for tissue engineering and other biomedical applications. In this review, the biocompatibility of hydrogels and design criteria for fabricating effective scaffolds are examined. Examples of natural and synthetic hydrogels, their biocompatibility and use in tissue engineering are discussed. The merits and clinical complications of hydrogel scaffold use are also reviewed. The article concludes with a future outlook of the field of biocompatibility within the context of hydrogel-based scaffolds. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Glutaraldehyde cross-linking of amniotic membranes affects their nanofibrous structures and limbal epithelial cell culture characteristics.

    PubMed

    Lai, Jui-Yang; Ma, David Hui-Kang

    2013-01-01

    Given that the cells can sense nanometer dimensions, the chemical cross-linking-mediated alteration in fibrillar structure of collagenous tissue scaffolds is critical to determining their cell culture performances. This article explores, for the first time, the effect of nanofibrous structure of glutaraldehyde (GTA) cross-linked amniotic membrane (AM) on limbal epithelial cell (LEC) cultivation. Results of ninhydrin assays demonstrated that the amount of new cross-links formed between the collagen chains is significantly increased with increasing the cross-linking time from 1 to 24 hours. By transmission electron microscopy, the AM treated with GTA for a longer duration exhibited a greater extent of molecular aggregation, thereby leading to a considerable increase in nanofiber diameter and resistance against collagenase degradation. In vitro biocompatibility studies showed that the samples cross-linked with GTA for 24 hours are not well-tolerated by the human corneal epithelial cell cultures. When the treatment duration is less than 6 hours, the biological tissues cross-linked with GTA for a longer time may cause slight reductions in 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt, and anti-inflammatory activities. Nevertheless, significant collagen molecular aggregation also enhances the stemness gene expression, indicating a high ability of these AM matrices to preserve the progenitors of LECs in vitro. It is concluded that GTA cross-linking of collagenous tissue materials may affect their nanofibrous structures and corneal epithelial stem cell culture characteristics. The AM treated with GTA for 6 hours holds promise for use as a niche for the expansion and transplantation of limbal epithelial progenitor cells.

  13. Glutaraldehyde cross-linking of amniotic membranes affects their nanofibrous structures and limbal epithelial cell culture characteristics

    PubMed Central

    Lai, Jui-Yang; Ma, David Hui-Kang

    2013-01-01

    Given that the cells can sense nanometer dimensions, the chemical cross-linking-mediated alteration in fibrillar structure of collagenous tissue scaffolds is critical to determining their cell culture performances. This article explores, for the first time, the effect of nanofibrous structure of glutaraldehyde (GTA) cross-linked amniotic membrane (AM) on limbal epithelial cell (LEC) cultivation. Results of ninhydrin assays demonstrated that the amount of new cross-links formed between the collagen chains is significantly increased with increasing the cross-linking time from 1 to 24 hours. By transmission electron microscopy, the AM treated with GTA for a longer duration exhibited a greater extent of molecular aggregation, thereby leading to a considerable increase in nanofiber diameter and resistance against collagenase degradation. In vitro biocompatibility studies showed that the samples cross-linked with GTA for 24 hours are not well-tolerated by the human corneal epithelial cell cultures. When the treatment duration is less than 6 hours, the biological tissues cross-linked with GTA for a longer time may cause slight reductions in 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt, and anti-inflammatory activities. Nevertheless, significant collagen molecular aggregation also enhances the stemness gene expression, indicating a high ability of these AM matrices to preserve the progenitors of LECs in vitro. It is concluded that GTA cross-linking of collagenous tissue materials may affect their nanofibrous structures and corneal epithelial stem cell culture characteristics. The AM treated with GTA for 6 hours holds promise for use as a niche for the expansion and transplantation of limbal epithelial progenitor cells. PMID:24204144

  14. Identification and characterization of α1 -antitrypsin in fibrin clots.

    PubMed

    Talens, S; Malfliet, J J M C; van Hal, P Th W; Leebeek, F W G; Rijken, D C

    2013-07-01

    Preliminary studies indicated that α1 -antitrypsin (A1AT) is the most abundant protein that is non-covalently bound to fibrin clots prepared from plasma. The aim of this study was to identify and characterize fibrin(ogen)-bound A1AT. Plasma clots were prepared and extensively washed with saline. Clot-bound A1AT could only be extracted using denaturing agents such as urea, thiourea or SDS, pointing to an apparently strong association. Purified fibrinogen, but still containing A1AT as a contaminant, was gel filtered, which showed that the A1AT was bound to fibrinogen. A specific ELISA detected the presence of A1AT-fibrinogen complexes in both purified fibrinogen and pooled normal plasma. Finally, fibrin(ogen)-Sepharose chromatography indicated that A1AT purified from plasma contained a small fraction of fibrin(ogen)-binding A1AT. To study the inhibitory activity of fibrin(ogen)-bound A1AT, both fibrinogen containing A1AT and washed plasma clots were incubated with increasing amounts of elastase. SDS-PAGE and Western blotting showed under both conditions the generation of the A1AT-elastase complex as well as cleaved A1AT. The inhibitory activity of fibrin(ogen)-bound A1AT was also demonstrated by measuring elastase-induced lysis of fibrin clots. Fibrin clots contain strongly bound A1AT, which is functionally active as a serine protease inhibitor (serpin). This A1AT might play a role in the local regulation of proteases involved in coagulation or fibrinolysis and represent a novel link between the inflammatory and hemostatic systems. © 2013 International Society on Thrombosis and Haemostasis.

  15. Fibrin Tissue Sealant as an Adjunct to Cleft Palate Repair.

    PubMed

    Wu, Robin; Wilson, Alexander; Travieso, Roberto; Steinbacher, Derek M

    2017-07-01

    Fibrin glue is a common tissue sealant used to promote hemostasis, adhere tissues, and accelerate healing. Cleft palate repair can be technically challenging, creating dead space between tissue planes, and can be prone to complications such as would dehiscence or bleeding. The purpose of this study is to assess the role of fibrin glue as an adjunct to cleft palate repair. The authors hypothesize a beneficial impact on complication rates, including bleeding, dehiscence, and fistula formation, among others. Primary cleft palate repairs using fibrin glue were retrospectively analyzed. Demographic, intraoperative, perioperative, and postoperative data were combed for outcome variables. Complication rates were calculated in percentages and the results were compared to the published literature. Z-test statistics were performed for comparison. A total of 45 patients, 21 females and 24 males, who underwent primary cleft palate repair with fibrin glue between 2011 and 2014, had sufficient data to be reviewed. There were no instances of bleeding, dehiscence, airway obstruction, infection, oronasal fistula, or return to the operating room in any patients. One patient exhibited mild postoperative coughing and secretions that resolved with conservative measures. Another patient displayed postoperative seizure activity due to a pre-existing condition. All complication rates in our fibrin glue series were lower than those reported without the use of fibrin glue. Overall complication rates with fibrin sealant are significantly lower than overall complication rates without. Our data suggest that fibrin sealant is a beneficial adjunct to cleft palate repair. Its application is well-tolerated and the complication profile in our cohort was much less than the reported rates. The results of this preliminary study should be vetted with a prospective analysis involving a control group.

  16. Potential of nanocrystalline cellulose-fibrin nanocomposites for artificial vascular graft applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Elvie; Hu, Dehong; Abu-Lail, Nehal

    2013-02-19

    Nanocrystalline cellulose, a new bio-nanomaterial is utilized as a reinforcing material for biocompatible fibrin matrix to form into a nanocomposite for small-diameter replacement vascular graft application (SDRVG). The periodate oxidation of NCC, which provided it with a reactive carbonyl group, allowed molecular interaction between NCC and fibrin. Such interaction resulted into an effective mechanical reinforcement indicated by the improvement of max. force, elongation at break and modulus when oxidized NCC (ONCC) was incorporated into fibrin. The nanocomposite’s mechanical properties can be manipulated to conform to the native blood vessel by varying the ONCC to fibrin ratio and/or by controlling themore » degree of oxidation of NCC. Using atomic force microscopy had provided fundamental information on the effects of molecular interactions to the nanolevel mechanical properties of NCC/fibrin nanocomposites. This fundamental information established the positive feasibility and commenced continuing investigation for the practical SDRVG application of NCC/fibrin nanocomposite.« less

  17. Platelet-Poor Plasma as a Supplement for Fibroblasts Cultured in Platelet-Rich Fibrin

    PubMed Central

    Karam, Sarah Arangurem; Noronha, Thaís Gioda; Sartori, Letícia Regina Morello; San Martin, Alissa Schmidt; Demarco, Flávio Fernando; Conde, Marcus Cristian Muniz

    2017-01-01

    The aim of this study was to evaluate the proliferation and adhesion of mesenchymal cells (3T3/NIH) in Dulbecco’s Modified Eagle Medium(DMEM) supplemented with Platelet-Poor Plasma (PPP) in aPlatelet-Rich Fibrin (PRF) scaffold. Human blood was obtained and processed in a centrifuge considering the equation G=1.12xRx(RPM/1000)2 to obtain PRF and PPP.Cell adhesion and maintenance analyses were performed by MTTassays in a 96 well plate withsupplemented DMEM: PPP (90:10) for 24 hours. Besides, the PRF was deposited in a 48 well plate and 10x104 cells were seeded above each PRF (n=3) with 800µl of DMEM: PPP (90:10) and cultured for 7 days. Histological analysis and the immunohistochemical staining for Vimentin were performed. Results were analyzed by one-way ANOVA in Stata12®. A significant decrease (p<0.05) of cells adhesion in relationship to FBSwas observed. However, a similar ability of cell-maintenance for PPP 10% was observed (P>0.05). Fibroblasts culture for 7 days in PRF supplemented with PPP 10% was possible, showing positive staining for Vimentin. Therefore, PPP cell supplementation decreased the initial adhesion of cells but was able to maintain the proliferation of adhered cells and able to support their viability in PRF.It seems that this method has many clinical advantagessince it provides an autologous and natural scaffold with their respective supplement for cell culture by only one process, without using xenogeneic compounds. This could improve the potential of clinical translational therapies based on the use of PRF cultured cells, promoting the regenerative potential for future use in medicine and dentistry. PMID:28827850

  18. Fibrin glue does not improve the fixation of press-fitted cell-free collagen gel plugs in an ex vivo cartilage repair model.

    PubMed

    Efe, Turgay; Füglein, Alexander; Heyse, Thomas J; Stein, Thomas; Timmesfeld, Nina; Fuchs-Winkelmann, Susanne; Schmitt, Jan; Paletta, Jürgen R J; Schofer, Markus D

    2012-02-01

    Adequate graft fixation over a certain time period is necessary for successful cartilage repair and permanent integration of the graft into the surrounding tissue. The aim of the present study was to test the primary stability of a new cell-free collagen gel plug (CaReS(®)-1S) with two different graft fixation techniques over a simulated early postoperative period. Isolated chondral lesions (11 mm diameter by 6 mm deep) down to the subchondral bone plate were created on the medial femoral condyle in 40 porcine knee specimens. The collagen scaffolds were fixed in 20 knees each by press-fit only or by press-fit + fibrin glue. Each knee was then put through 2,000 cycles in an ex vivo continuous passive motion model. Before and after the 2,000 motions, standardized digital pictures of the grafts were taken. The area of worn surface as a percentage of the total collagen plug surface was evaluated using image analysis software. No total delamination of the scaffolds to leave an empty defect site was recorded in any of the knees. The two fixation techniques showed no significant difference in worn surface area after 2,000 cycles (P = n.s.). This study reveals that both the press-fit only and the press-fit + fibrin glue technique provide similar, adequate, stability of a type I collagen plug in the described porcine model. In the clinical setting, this fact may be particularly important for implantation of arthroscopic grafts.

  19. Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation.

    PubMed

    Mammadova-Bach, Elmina; Ollivier, Véronique; Loyau, Stéphane; Schaff, Mathieu; Dumont, Bénédicte; Favier, Rémi; Freyburger, Geneviève; Latger-Cannard, Véronique; Nieswandt, Bernhard; Gachet, Christian; Mangin, Pierre H; Jandrot-Perrus, Martine

    2015-07-30

    Fibrin, the coagulation end product, consolidates the platelet plug at sites of vascular injury and supports the recruitment of circulating platelets. In addition to integrin αIIbβ3, another as-yet-unidentified receptor is thought to mediate platelet interaction with fibrin. Platelet glycoprotein VI (GPVI) interacts with collagen and several other adhesive macromolecules. We evaluated the hypothesis that GPVI could be a functional platelet receptor for fibrin. Calibrated thrombin assays using platelet-rich plasma (PRP) showed that tissue factor-triggered thrombin generation was impaired in GPVI-deficient patients and reduced by the anti-GPVI Fab 9O12. Assays on reconstituted PRP and PRP from fibrinogen-deficient patients revealed a fibrinogen-dependent enhancement of thrombin generation, which relied on functional GPVI. The effect of GPVI was found to depend on fibrin polymerization. A binding assay showed a specific interaction between GPVI-Fc and fibrin, inhibited by the Fab 9O12. This Fab also reduced platelet adhesion to fibrin at low (300 s(-1)) and high (1500 s(-1)) wall shear rates. Platelets adherent to fibrin displayed shape change, exposure of procoagulant phospholipids, and the formation of small clots. When hirudinated blood was perfused at 1500 s(-1) over preformed fibrin-rich clots, the Fab 9O12 decreased the recruitment of platelets by up to 85%. This study identifies GPVI as a platelet receptor for polymerized fibrin with 2 major functions: (1) amplification of thrombin generation and (2) recruitment of circulating platelets to clots. These so-far-unrecognized properties of GPVI confer on it a key role in thrombus growth and stabilization. © 2015 by The American Society of Hematology.

  20. Long-term liver-specific functions of hepatocytes in electrospun chitosan nanofiber scaffolds coated with fibronectin.

    PubMed

    Rajendran, Divya; Hussain, Ali; Yip, Derek; Parekh, Amit; Shrirao, Anil; Cho, Cheul H

    2017-08-01

    In this study, a new 3D liver model was developed using biomimetic nanofiber scaffolds and co-culture system consisting of hepatocytes and fibroblasts for the maintenance of long-term liver functions. The chitosan nanofiber scaffolds were fabricated by the electrospinning technique. To enhance cellular adhesion and spreading, the surfaces of the chitosan scaffolds were coated with fibronectin (FN) by adsorption and evaluated for various cell types. Cellular phenotype, protein expression, and liver-specific functions were extensively characterized by immunofluorescent and histochemical stainings, albumin enzyme-linked immunosorbent assay and Cytochrome p450 detoxification assays, and scanning electron microscopy. The electrospun chitosan scaffolds exhibited a highly porous and randomly oriented nanofibrous structure. The FN coating on the surface of the chitosan nanofibers significantly enhanced cell attachment and spreading, as expected, as surface modification with this cell adhesion molecule on the chitosan surface is important for focal adhesion formation and integrin binding. Comparison of hepatocyte mono-cultures and co-cultures in 3D culture systems indicated that the hepatocytes in co-cultures formed colonies and maintained their morphologies and functions for prolonged periods of time. The 3D liver tissue model developed in this study will provide useful tools toward the development of engineered liver tissues for drug screening and tissue engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2119-2128, 2017. © 2017 Wiley Periodicals, Inc.

  1. Fibrin activates GPVI in human and mouse platelets

    PubMed Central

    Alshehri, Osama M.; Montague, Samantha; Watson, Stephanie K.; Frampton, Jon; Bender, Markus; Watson, Steve P.

    2015-01-01

    The glycoprotein VI (GPVI)-Fc receptor γ (FcRγ) chain is the major platelet signaling receptor for collagen. Paradoxically, in a FeCl3 injury model, occlusion, but not initiation of thrombus formation, is delayed in GPVI-deficient and GPVI-depleted mice. In this study, we demonstrate that GPVI is a receptor for fibrin and speculate that this contributes to development of an occlusive thrombus. We observed a marked increase in tyrosine phosphorylation, including the FcRγ chain and Syk, in human and mouse platelets induced by thrombin in the presence of fibrinogen and the αIIbβ3 blocker eptifibatide. This was not seen in platelets stimulated by a protease activated receptor (PAR)-4 peptide, which is unable to generate fibrin from fibrinogen. The pattern of tyrosine phosphorylation was similar to that induced by activation of GPVI. Consistent with this, thrombin did not induce tyrosine phosphorylation of Syk and the FcRγ chain in GPVI-deficient mouse platelets. Mouse platelets underwent full spreading on fibrin but not fibrinogen, which was blocked in the presence of a Src kinase inhibitor or in the absence of GPVI. Spreading on fibrin was associated with phosphatidylserine exposure (procoagulant activity), and this too was blocked in GPVI-deficient platelets. The ectodomain of GPVI was shown to bind to immobilized monomeric and polymerized fibrin. A marked increase in embolization was seen following FeCl3 injury in GPVI-deficient mice, likely contributing to the delay in occlusion in this model. These results demonstrate that GPVI is a receptor for fibrin and provide evidence that this interaction contributes to thrombus growth and stability. PMID:26282541

  2. Fabrication of hierarchical feather-mimetic polymer nanofibres

    NASA Astrophysics Data System (ADS)

    Ouyang, Shenshen; Wang, Tao; Zhong, Longgang; Peng, Meiling; Yao, Juming; Wang, Sheng

    2018-01-01

    In this study, hierarchically feather-mimetic structures formed of poly(m-phenylene isophthalamide) (PMIA) nanofibres were prepared by electrospinning and subsequent crystallisation for superwettability applications. X-ray diffraction measurementsand scanning electron microscopy show that a feather-mimetic structure of crystallised nanoflakes was formed following a hydrothermal treatment process. The nanoflakes formed a nanosized fine texture on top of a coarser-textured membrane, which greatly improved the membrane roughness and yielded a hierarchical topography. After fluorination, the membrane exhibited superamphiphobicity, with surface contact angles of 151° and 136° for water and hexadecane, respectively. The method provides new insight for the design and development of functional bionic membranes based on PMIA.

  3. Fibrin patch-based insulin-like growth factor-1 gene-modified stem cell transplantation repairs ischemic myocardium.

    PubMed

    Li, Jun; Zhu, Kai; Yang, Shan; Wang, Yulin; Guo, Changfa; Yin, Kanhua; Wang, Chunsheng; Lai, Hao

    2015-05-01

    Bone marrow mesenchymal stem cells (BMSCs), tissue-engineered cardiac patch, and therapeutic gene have all been proposed as promising therapy strategies for cardiac repair after myocardial infarction. In our study, BMSCs were modified with insulin-like growth factor-1 (IGF-1) gene, loaded into a fibrin patch, and then transplanted into a porcine model of ischemia/reperfusion (I/R) myocardium injury. The results demonstrated that IGF-1 gene overexpression could promote proliferation of endothelial cells and cardiomyocyte-like differentiation of BMSCs in vitro. Four weeks after transplantation of fibrin patch loaded with gene-modified BMSCs, IGF-1 overexpression could successfully promote angiogenesis, inhibit remodeling, increase grafted cell survival and reduce apoptosis. In conclusion, the integrated strategy, which combined fibrin patch with IGF-1 gene modified BMSCs, could promote the histological cardiac repair for a clinically relevant porcine model of I/R myocardium injury. © 2015 by the Society for Experimental Biology and Medicine.

  4. MECHANISMS INVOLVED IN FIBRIN FORMATION

    PubMed Central

    Boyles, Paul W.; Ferguson, John H.; Muehlke, Paul H.

    1951-01-01

    That the role of thrombin in the conversion of fibrinogen to fibrin is essentially enzymatic, is established not only by the minute amounts of thrombin which are effective but also by the complete independence of fibrin yields and thrombin concentrations over a very wide range of thrombin dilutions and clotting times. The thrombin-fibrinogen reaction, in the phase beyond the "latent period" at least, seems fundamentally "first order." Technical requirements of the experiments leading to these conclusions include: (1) a highly purified (e.g. 97 per cent "clottable") fibrinogen, (2) absence of traces of thrombic impurities in the fibrinogen, (3) absence of fibrinolytic protease contaminant of the thrombin and the fibrinogen, and (4) sufficient stability of the thrombin even at very high dilutions. Four conditions affecting thrombin stability have been investigated. Fibrin yields are not significantly modified by numerous experimental circumstances that influence the clotting time, such as (1) temperature, (2) pH, (3) non-specific salt action due to electrical (ionic) charges, which alter the Coulomb forces involved in the fibrillar aggregation, (4) specific ion effects, whether clot-accelerating (e.g. Ca++) or clot-inhibitory (e.g. Fe(CN)6''''), (5) occluding (adsorptive) colloids, which have a "fibrinoplastic" action, e.g. (a) acacia and probably (b) fibrinogen which has been mildly "denatured" by salt-heating, acidification, etc. The data with which several European workers have attempted to substantiate the idea of a two-stage thrombin-fibrinogen reaction with an intermediary "profibrin" (allegedly partly "denatured") have been reanalyzed with controls which lead us to very different conclusions, viz. (1) denaturation and fibrin formation are independent; (2) partial denaturation is "fibrinoplastic" (see above); and (3) conditions of strong salinity and acid pH (5.1) usually do not completely prevent the thrombin-fibrinogen reaction but merely prolong the "latent

  5. Inquiry-based science education: scaffolding pupils' self-directed learning in open inquiry

    NASA Astrophysics Data System (ADS)

    van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke

    2017-12-01

    This paper describes a multiple case study on open inquiry-based learning in primary schools. During open inquiry, teachers often experience difficulties in balancing support and transferring responsibility to pupils' own learning. To facilitate teachers in guiding open inquiry, we developed hard and soft scaffolds. The hard scaffolds consisted of documents with explanations and/or exercises regarding difficult parts of the inquiry process. The soft scaffolds included explicit references to and additional explanations of the hard scaffolds. We investigated how teacher implementation of these scaffolds contributed to pupils' self-directed learning during open inquiry. Four classes of pupils, aged 10-11, were observed while they conducted an inquiry lesson module of about 10 lessons in their classrooms. Data were acquired via classroom observations, audio recordings, and interviews with teachers and pupils. The results show that after the introduction of the hard scaffolds by the teacher, pupils were able and willing to apply them to their investigations. Combining hard scaffolds with additional soft scaffolding promoted pupils' scientific understanding and contributed to a shared guidance of the inquiry process by the teacher and her pupils. Our results imply that the effective use of scaffolds is an important element to be included in teacher professionalisation.

  6. Hydrogel-laden paper scaffold system for origami-based tissue engineering

    PubMed Central

    Kim, Su-Hwan; Lee, Hak Rae; Yu, Seung Jung; Han, Min-Eui; Lee, Doh Young; Kim, Soo Yeon; Ahn, Hee-Jin; Han, Mi-Jung; Lee, Tae-Ik; Kim, Taek-Soo; Kwon, Seong Keun; Im, Sung Gap; Hwang, Nathaniel S.

    2015-01-01

    In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca2+. This procedure ensures the formation of alginate hydrogel on the paper due to Ca2+ diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs. PMID:26621717

  7. Hydrogel-laden paper scaffold system for origami-based tissue engineering.

    PubMed

    Kim, Su-Hwan; Lee, Hak Rae; Yu, Seung Jung; Han, Min-Eui; Lee, Doh Young; Kim, Soo Yeon; Ahn, Hee-Jin; Han, Mi-Jung; Lee, Tae-Ik; Kim, Taek-Soo; Kwon, Seong Keun; Im, Sung Gap; Hwang, Nathaniel S

    2015-12-15

    In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca(2+). This procedure ensures the formation of alginate hydrogel on the paper due to Ca(2+) diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs.

  8. An Investigation on bilayer structures of electrospun polyacrylonitrile nanofibrous membrane and cellulose membrane used as filtration media for apple juice clarification

    NASA Astrophysics Data System (ADS)

    Sawitri, Asti; Miftahul Munir, Muhammad; Edikresnha, Dhewa; Sandi, Ahzab; Fauzi, Ahmad; Rajak, Abdul; Natalia, Dessy; Khairurrijal, Khairurrijal

    2018-05-01

    Nanofibrous membrane has a potential to use in filtration technology with electrospinning as one of the techniques used in synthesizing nanofibers. Polyacrylonitrile (PAN) nanofibrous membranes with various fibers diameters were electrospun by varying its precursor solution concentration. The average fibers diameters of the PAN nanofibrous membranes obtained from the precursor solution concentrations of 6, 9, 12, and 14 wt% were 341, 534, 1274, and 2107 nm, respectively. Filtration media for apple juice clarification were bilayer-structured membranes made of PAN nanofibrous membranes on commercial cellulose microfibrous membranes. It has been shown that the reduction of apple juice color or turbidity performed by the cellulose microfibrous membrane was well enhanced by the presence of the PAN nanofibrous membrane in the bilayer-structured membrane. In addition, the apple-juice color and turbidity reductions increased with decreasing the average fibers diameter of the PAN nanofibrous membrane. Furthermore, the PAN nanofibrous membrane also helped the cellulose microfibrous membrane in the bilayer-structured membrane enhance the reductions of total phenols, protein, and glucose of the apple juice.

  9. Protective fibrin-sealed plication of the small bowel in recurrent laparotomy.

    PubMed

    Holland-Cunz, S; Boelter, A V; Waag, K L

    2003-09-01

    Adhesions after recurrent abdominal operations remain extremely common and are sources of severe morbidity. Fibrin-glued plication of the small gut in a meander-like formation is supposed to guarantee a decreased risk of intestinal obstruction postoperatively. This retrospective study analyses the clinical outcome after recurrent laparotomy in children treated with bowel plication by fibrin sealant. The surgical technique of performing the fibrin-glued plication is rather simple and quick: after taking off all adhesions two to four loops of the small gut are positioned so that they lie side by side. Beginning proximal fibrin [Tissucol fibrin sealant (Baxter)] is applied between the loops; approximately 20-30 s are needed to keep the loops in position until the fibrin dries. This manoeuvre is continued until all of the small gut is fixed in one block. The gut is brought back into the abdominal cavity without loosening the loops. This fixed formation by sero-serosal adhesions or mesenterial plications is supposed to guarantee postoperative free passage. The charts of 60 children who had undergone a fibrin plication of the small bowel between 1991 and 1999 were evaluated. Additionally, questionnaires were sent to all patients, and they were invited for an examination. Sixty patients (38 boys and 22 girls) received a fibrin sealant plication because of recurrent laparotomies with heavily serosal defects or recurrent ileus because of adhesions. The youngest baby was 10 days. Since 23 patients were premature the oldest patient was 11 years old. There were no intraoperative complications attributed to the method. In the postoperative period 7/60 (12%) patients had a recurrent ileus or subileus, leading in three (5%) patients to an early relaparotomy. The fibrin-glued plication of the small bowel decreases the risk of recurrent ileus or subileus considering the high figures in the literature concerning this issue. The time-saving method is very simple and easily feasible

  10. Structure and Photoluminescence Properties of β-Ga2O3 Nanofibres Synthesized via Electrospinning Method

    NASA Astrophysics Data System (ADS)

    Sun, Chao; Deng, Jinxiang; Kong, Le; Chen, Liang; Shen, Zhen; Cao, Yisen; Zhang, Hao; Wang, Xiaoran

    2017-12-01

    This paper reported the β-Ga2O3 nanofibres which fabricated by electrospinning, and then calcining in oxygen at 750, 850, 950 and 1050°C. The structure and properties of β-Ga2O3 nanofibers have been studied though kinds of methods such as XRD, Photoluminescence (PL) spectrum, Raman spectrum, Scanning electron microscope (SEM) and FT-IR. The diameters of these nanofibres are from 60 to 130nm and the lengths of these nanofibres are about couple millimetres. The spectrum of PL which excitation at 365nm gave us the information that the emission peak of these β-Ga2O3 nanofibres is about 470nm, it may be coursed by the various defects including the vacancies of gallium and oxygen and the gallium-oxygen vacancy pairs as well, and observed that with the increasing of the annealing temperature, the emission peaks have a small bule swifting, and the crystallinity become better at the same time.

  11. Bioactive nanofibers for fibroblastic differentiation of mesenchymal precursor cells for ligament/tendon tissue engineering applications.

    PubMed

    Sahoo, Sambit; Ang, Lay-Teng; Cho-Hong Goh, James; Toh, Siew-Lok

    2010-02-01

    Mesenchymal stem cells and precursor cells are ideal candidates for tendon and ligament tissue engineering; however, for the stem cell-based approach to succeed, these cells would be required to proliferate and differentiate into tendon/ligament fibroblasts on the tissue engineering scaffold. Among the various fiber-based scaffolds that have been used in tendon/ligament tissue engineering, hybrid fibrous scaffolds comprising both microfibers and nanofibers have been recently shown to be particularly promising. With the nanofibrous coating presenting a biomimetic surface, the scaffolds can also potentially mimic the natural extracellular matrix in function by acting as a depot for sustained release of growth factors. In this study, we demonstrate that basic fibroblast growth factor (bFGF) could be successfully incorporated, randomly dispersed within blend-electrospun nanofibers and released in a bioactive form over 1 week. The released bioactive bFGF activated tyrosine phosphorylation signaling within seeded BMSCs. The bFGF-releasing nanofibrous scaffolds facilitated BMSC proliferation, upregulated gene expression of tendon/ligament-specific ECM proteins, increased production and deposition of collagen and tenascin-C, reduced multipotency of the BMSCs and induced tendon/ligament-like fibroblastic differentiation, indicating their potential in tendon/ligament tissue engineering applications. 2009 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  12. Morphology, drug release, antibacterial, cell proliferation, and histology studies of chamomile-loaded wound dressing mats based on electrospun nanofibrous poly(ɛ-caprolactone)/polystyrene blends.

    PubMed

    Motealleh, Behrooz; Zahedi, Payam; Rezaeian, Iraj; Moghimi, Morvarid; Abdolghaffari, Amir Hossein; Zarandi, Mohammad Amin

    2014-07-01

    For the first time, it has been tried to achieve optimum conditions for electrospun poly(ε-caprolactone)/polystyrene (PCL/PS) nanofibrous samples as active wound dressings containing chamomile via D-optimal design approach. In this work, systematic in vitro and in vivo studies were carried out by drug release rate, antibacterial and antifungal evaluations, cell culture, and rat wound model along with histology observation. The optimized samples were prepared under the following electrospinning conditions: PCL/PS ratio (65/35), PCL concentration 9%(w/v), PS concentration 14%(w/v), distance between the syringe needle tip and the collector 15.5 cm, applied voltage 18 kV, and solution flow rate 0.46 mL h(-1) . The FE-SEM micrographs showed electrospun PCL/PS (65/35) nanofibrous sample containing 15% chamomile had a minimum average diameter (∼175 nm) compared to the neat samples (∼268 nm). The drug released resulted in a gradual and high amount of chamomile from the optimized PCL/PS nanofibrous sample (∼70%) in respect to PCL and PS nanofibers after 48 h. This claim was also confirmed by antibacterial and antifungal evaluations in which an inhibitory zone with a diameter of about 7.6 mm was formed. The rat wound model results also indicated that the samples loaded with 15% chamomile extract were remarkably capable to heal the wounds up to 99 ± 0.5% after 14 days post-treatment periods. The adhesion of mesenchymal stem cells and their viability on the optimized samples were confirmed by MTT analysis. Also, the electrospun nanofibrous mats based on PCL/PS (65/35) showed a high efficiency in the wound closure and healing process compared to the reference sample, PCL/PS nanofibers without chamomile. Finally, the histology analysis revealed that the formation of epithelial tissues, the lack of necrosis and collagen fibers accumulation in the dermis tissues for the above optimized samples. © 2013 Wiley Periodicals, Inc.

  13. PLLA scaffolds surface-engineered via poly (propylene imine) dendrimers for improvement on its biocompatibility/controlled pH biodegradability

    NASA Astrophysics Data System (ADS)

    Ganjalinia, Atiyeah.; Akbari, Somaye.; Solouk, Atefeh.

    2017-02-01

    Novel aminolyzed Poly (L) Lactic Acid (PLLA) films and electrospun nanofibrous scaffolds were fabricated and characterized as potential substrates for tissue engineering. The second generation polypropylene imine dendrimer (PPI-G2) was used as the aminolysis agent to functionalize the inert surface of PLLA substrates directly without any pre-modification process. The effect of the solvent type, G2 concentration, reaction temperature and time were studied by following weight reduction percentage, FTIR and contact angle measurements due to determined optimum conditions. In addition, the modified scaffolds abbreviated by PLLA/G2 were analyzed using mechanical properties, SEM images and dye assays as host-guest modeling. The results indicate that under the 0.5 (wt.%) G2 concentration, ethanol as the solvent, room temperature and 4 h of treatment, the optimum conditions were obtained. It was shown that the hydrophilic properties of PLLA/G2 were greatly enhanced. Also, pH value analysis revealed that after 4 weeks, the biodegradation of PLLA caused massive immune cells infusion and inflammation in the medium through increasing the acidic rate by secretion the lactic acid, whereas the PLLA/G2 scaffolds greatly reduced and stabilize the acidic rate through aminolysis reaction. Finally, promoted cell adhesion and viability underlined the favorable properties of PLLA/G2 scaffolds as a biodegradable biomaterial for biomedical implants.

  14. Nano-ceramic composite scaffolds for bioreactor-based bone engineering.

    PubMed

    Lv, Qing; Deng, Meng; Ulery, Bret D; Nair, Lakshmi S; Laurencin, Cato T

    2013-08-01

    Composites of biodegradable polymers and bioactive ceramics are candidates for tissue-engineered scaffolds that closely match the properties of bone. We previously developed a porous, three-dimensional poly (D,L-lactide-co-glycolide) (PLAGA)/nanohydroxyapatite (n-HA) scaffold as a potential bone tissue engineering matrix suitable for high-aspect ratio vessel (HARV) bioreactor applications. However, the physical and cellular properties of this scaffold are unknown. The present study aims to evaluate the effect of n-HA in modulating PLAGA scaffold properties and human mesenchymal stem cell (HMSC) responses in a HARV bioreactor. By comparing PLAGA/n-HA and PLAGA scaffolds, we asked whether incorporation of n-HA (1) accelerates scaffold degradation and compromises mechanical integrity; (2) promotes HMSC proliferation and differentiation; and (3) enhances HMSC mineralization when cultured in HARV bioreactors. PLAGA/n-HA scaffolds (total number = 48) were loaded into HARV bioreactors for 6 weeks and monitored for mass, molecular weight, mechanical, and morphological changes. HMSCs were seeded on PLAGA/n-HA scaffolds (total number = 38) and cultured in HARV bioreactors for 28 days. Cell migration, proliferation, osteogenic differentiation, and mineralization were characterized at four selected time points. The same amount of PLAGA scaffolds were used as controls. The incorporation of n-HA did not alter the scaffold degradation pattern. PLAGA/n-HA scaffolds maintained their mechanical integrity throughout the 6 weeks in the dynamic culture environment. HMSCs seeded on PLAGA/n-HA scaffolds showed elevated proliferation, expression of osteogenic phenotypic markers, and mineral deposition as compared with cells seeded on PLAGA scaffolds. HMSCs migrated into the scaffold center with nearly uniform cell and extracellular matrix distribution in the scaffold interior. The combination of PLAGA/n-HA scaffolds with HMSCs in HARV bioreactors may allow for the generation of engineered

  15. Management of Facial Pyoderma Gangrenosum Using Platelet-Rich Fibrin: A Technical Report.

    PubMed

    Fortunato, Leonzio; Barone, Selene; Bennardo, Francesco; Giudice, Amerigo

    2018-01-31

    This report describes a case of local pyoderma gangrenosum that was treated with short-term immunosuppressive therapy and the topical application of platelet-rich fibrin (PRF). Medical treatment included oral corticosteroid therapy and topical treatment with PRF in solid and liquid form. This therapy initially led to the reduction of the ulcer's size and an improvement in symptoms, until the ulcer was completely healed after a few weeks. A relapse was treated with only the application of PRF to the affected tissue with excellent recovery. The efficacy of PRF as a guide for wound healing is a result of the continuous release of growth factors involved in tissue repair mechanisms. PRF has proved to be suitable for the management of facial pyoderma gangrenosum while allowing a reduction in systemic corticosteroid therapy. The ease of preparation, low cost, and outpatient use make PRF an optimal scaffold for tissue healing processes. Copyright © 2018 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  16. A novel autologous scaffold for diced-cartilage grafts in dorsal augmentation rhinoplasty.

    PubMed

    Bullocks, Jamal M; Echo, Anthony; Guerra, Gerardo; Stal, Samuel; Yuksel, Eser

    2011-08-01

    Diced-cartilage grafts have been used for dorsal nasal augmentation for several years with good results. However, compounds such as Surgicel and temporalis fascia used as a wrap have inherent problems associated with them, predominantly inflammation and graft resorption. An autologous carrier could provide stabilization of cartilage grafts while avoiding the complications seen with earlier techniques. In our patients, a malleable construct was used for dorsal nasal augmentation in which autologous diced-cartilage grafts were stabilized with autologous tissue glue (ATG) created from platelet-rich plasma (platelet gel) and platelet-poor plasma (fibrin glue). A prospective analysis of 68 patients, who underwent dorsal nasal augmentation utilizing ATG and diced-cartilage grafts between 2005 and 2008, were included in the study. Although there was notable maintenance of the dorsal height, no complications occurred that required explantation over a mean follow-up of 15 months. The use of ATG to stabilize diced-cartilage grafts is a safe, reliable technique for dorsal nasal augmentation. The platelet gel provides growth factors while the fibrin glue creates a scaffold that allows stabilization and diffusion of nutrients to the cartilage graft.

  17. The disulfide isomerase ERp57 is required for fibrin deposition in vivo.

    PubMed

    Zhou, J; Wu, Y; Wang, L; Rauova, L; Hayes, V M; Poncz, M; Essex, D W

    2014-11-01

    ERp57 is required for platelet function; however, whether ERp57 contributes to fibrin generation is unknown. Using an inhibitory anti-ERp57 antibody (mAb1), Pf4-Cre/ERp57(fl/fl) mice, Tie2-Cre/ERp57(fl/fl) mice, and mutants of ERp57, we analyzed the function of ERp57 in laser-induced thrombosis. Fibrin deposition was decreased in Pf4-Cre/ERp57(fl/fl) mice, consistent with a role for platelet ERp57 in fibrin generation. Fibrin deposition was further decreased with infusion of mAb1 and in Tie2-Cre/ERp57(fl/fl) mice, consistent with endothelial cells also contributing to fibrin deposition. Infusion of eptibifatide inhibited platelet and fibrin deposition, confirming a role for platelets in fibrin deposition. Infusion of recombinant ERp57 corrected the defect in fibrin deposition but not platelet accumulation, suggesting a direct effect of ERp57 on coagulation. mAb1 inhibited thrombin generation in vitro, consistent with a requirement for ERp57 in coagulation. Platelet accumulation was decreased to similar extents in Pf4-Cre/ERp57(fl/fl) mice, Tie2-Cre/ERp57(fl/fl) mice and normal mice infused with mAb1. Infusion of completely inactivated ERp57 or ERp57 with a non-functional second active site inhibited fibrin deposition and platelet accumulation, indicating that the isomerase activity of the second active site is required for these processes. ERp57 regulates thrombosis via multiple targets. © 2014 International Society on Thrombosis and Haemostasis.

  18. In vitro vascularization of a combined system based on a 3D printing technique.

    PubMed

    Zhao, Xinru; Liu, Libiao; Wang, Jiayin; Xu, Yufan; Zhang, Weiming; Khang, Gilson; Wang, Xiaohong

    2016-10-01

    A vital challenge in complex organ manufacturing is to vascularize large combined tissues. The aim of this study is to vascularize in vitro an adipose-derived stem cell (ADSC)/fibrin/collagen incorporated three-dimensional (3D) poly(d,l-lactic-co-glycolic acid) (PLGA) scaffold (10 × 10 × 10 mm 3 ) with interconnected channels. A low-temperature 3D printing technique was employed to build the PLGA scaffold. A step-by-step cocktail procedure was designed to engage or steer the ADSCs in the PLGA channels towards both endothelial and smooth muscle cell lineages. The combined system had sufficient mechanical properties to support the cell/fibrin/collagen hydrogel inside the predefined PLGA channels. The ADSCs encapsulated in the fibrin/collagen hydrogel differentiated to endothelial and smooth muscle cell lineage, respectively, corresponding to their respective locations in the construct and formed vascular-like structures. This technique allows in vitro vascularization of the predefined PLGA channels and provides a choice for complex organ manufacture. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Comparison of the mechanobiological performance of bone tissue scaffolds based on different unit cell geometries.

    PubMed

    Rodríguez-Montaño, Óscar L; Cortés-Rodríguez, Carlos Julio; Uva, Antonio E; Fiorentino, Michele; Gattullo, Michele; Monno, Giuseppe; Boccaccio, Antonio

    2018-07-01

    Enhancing the performance of scaffolds for bone regeneration requires a multidisciplinary approach involving competences in the fields of Biology, Medicine and Engineering. A number of studies have been conducted to investigate the influence of scaffolds design parameters on their mechanical and biological response. The possibilities offered by the additive manufacturing techniques to fabricate sophisticated and very complex microgeometries that until few years ago were just a geometrical abstraction, led many researchers to design scaffolds made from different unit cell geometries. The aim of this work is to find, based on mechanobiological criteria and for different load regimes, the optimal geometrical parameters of scaffolds made from beam-based repeating unit cells, namely, truncated cuboctahedron, truncated cube, rhombic dodecahedron and diamond. The performance, -expressed in terms of percentage of the scaffold volume occupied by bone-, of the scaffolds based on these unit cells was compared with that of scaffolds based on other unit cell geometries such as: hexahedron and rhombicuboctahedron. A very intriguing behavior was predicted for the truncated cube unit cell that allows the formation of large amounts of bone for low load values and of very small amounts for the medium-high ones. For high values of load, scaffolds made from hexahedron unit cells were predicted to favor the formation of the largest amounts of bone. In a clinical context where medical solutions become more and more customized, this study offers a support to the surgeon in the choice of the best scaffold to be implanted in a patient-specific anatomic region. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Study of epithelial differentiation and protein expression of keratinocyte-mesenchyme stem cell co-cultivation on electrospun nylon/B. vulgaris extract composite scaffold.

    PubMed

    Hosseinzadeh, Simzar; Soleimani, Masoud; Vossoughi, Manuchehr; Ranjbarvan, Parviz; Hamedi, Shokoh; Zamanlui, Soheila; Mahmoudifard, Matin

    2017-06-01

    Employing of the composite electrospun scaffold containing herbal extract in conjugation with co-culturing of cells can open up new window to the design of efficient biomaterials for skin tissue regeneration. Here, we introduce the synergistic effect of composite electrospun nanofibrous scaffold of nylon66 loaded with Beta vulgaris (B. vulgaris) (extract of beet roots, a plants whose widely used in Iranian folk medicine as wound healing medicine) and co-culture of mesenchymal stem-cells (MSCs)-human keratinocyte (H-keratino) differentiation towards epithelial lineage. In vitro biocompatibility was examined through MTT assay and epithelial differentiation checked by real-time PCR and immunocytochemistry (ICC) assay after co-culturing of MSCs and H-keratino on proposed scaffold. Significant enhancement in cell proliferation was detected after cell culturing on the composite type of electrospun scaffold containing B. vulgaris. Moreover, after 14days of co-culturing process, gene expression results revealed that both composite and non-composite nylon66 electrospun scaffold promote epithelial differentiation compared to mono-cell culturing of H-keratino in terms of several markers as Cytokeratin 10, Cytokeratin 14 and Involucrin and ICC of some dermal proteins like Cytokeratin 14 and Loricrin. To the best of our knowledge, findings of this study will introduce new way for the generation of novel biomaterials for the development of current skin tissue engineering. Copyright © 2017. Published by Elsevier B.V.